WorldWideScience

Sample records for cells adopt molecular

  1. Immunotherapy of cancer employing adoptive T cell transfer

    Institute of Scientific and Technical Information of China (English)

    QIAOLI

    2005-01-01

    The current concept of“Adoptive T Cell Immunotherapy of Cancer”is quite different from how it was originally conceived.With the development of modern technology in molecular biology,cell biology,immunology and biochemistry during the last twenty years or so,adoptive immunotherapy has grown from its initial form of a simple“blood cell transfer”into its present process which involves host vauccination,effector cell activation/polarization and genetic modification.With the use of immune adjuvants and the identification/characterization of tumor-reactive T cell subsets,or in combination with other therapeutic strategies,adoptively transferred T cells have become much more potent inmediating tumor regression.In addition,studies on the trafficking of infused T cells,cell transfer performed in lymphopenic models,as well as the discovery of novel techniques in immune monitoring for the generation of effector cells in vitro and after cell transfer in vivo have provided useful tools to further improve the therapeutic efficacy of this approach.This article will review these related aspects of adoptive T cell immunotherapy of cancer with specific comments on certain critical areas in the application of this approach.With the rapidly evolving advances in this area,it is hoped that this cellular immunologic therapy as it was conceptualized in the past,can become more useful in the treatment of human cancer in the near future.

  2. PET imaging of adoptive progenitor cell therapies.

    Energy Technology Data Exchange (ETDEWEB)

    Gelovani, Juri G.

    2008-05-13

    Objectives. The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive “tracking” of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to

  3. Adoptive T cell therapy: Addressing challenges in cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Yee Cassian

    2005-04-01

    Full Text Available Abstract Adoptive T cell therapy involves the ex vivo selection and expansion of effector cells for the treatment of patients with cancer. In this review, the advantages and limitations of using antigen-specific T cells are discussed in counterpoint to vaccine strategies. Although vaccination strategies represent more readily available reagents, adoptive T cell therapy provides highly selected T cells of defined phenotype, specificity and function that may influence their biological behavior in vivo. Adoptive T cell therapy offers not only translational opportunities but also a means to address fundamental issues in the evolving field of cancer immunotherapy.

  4. Exploiting cytokines in adoptive T-cell therapy of cancer.

    Science.gov (United States)

    Petrozziello, Elisabetta; Sturmheit, Tabea; Mondino, Anna

    2015-01-01

    Adoptive immunotherapy with tumor-reactive autologous T cells, either expanded from tumor specimens or genetically engineered to express tumor-reactive T-cell receptors and chimeric antigen receptors, is holding promising results in clinical trials. Several critical issues have been identified and results underline the possibility to exploit cytokines to further ameliorate the efficacy of current treatment protocols, also encompassing adoptive T-cell therapy. Here we review latest developments on the use of cytokines to better direct the nature of the T-cell infusion product, T-cell function and persistence in vivo, as well as to modulate the tumor microenvironment.

  5. Adoptive immunotherapy via CD4+ versus CD8+ T cells

    Directory of Open Access Journals (Sweden)

    Vy Phan-Lai

    2016-04-01

    Full Text Available The goal of cancer immunotherapy is to induce specific and durable antitumor immunity. Adoptive T cell therapy (ACT has garnered wide interest, particularly in regard to strategies to improve T cell efficacy in trials. There are many types of T cells (and subsets which can be selected for use in ACT. CD4+ T cells are critical for the regulation, activation and aid of host defense mechanisms and, importantly, for enhancing the function of tumor-specific CD8+ T cells. To date, much research in cancer immunotherapy has focused on CD8+ T cells, in melanoma and other cancers. Both CD4+ T cells and CD8+ T cells have been evaluated as ACT in mice and humans, and both are effective at eliciting antitumor responses. IL-17 producing CD4+ T cells are a new subset of CD4+ T cells to be evaluated in ACT models. This review discusses the benefits of adoptive immunotherapy mediated by CD8+ and CD4+ cells. It also discusses the various type of T cells, source of T cells, and ex vivo cytokine growth factors for augmenting clinical efficacy of ACT. [Biomed Res Ther 2016; 3(4.000: 588-595

  6. Methods to Improve Adoptive T-Cell Therapy for Melanoma

    DEFF Research Database (Denmark)

    Donia, Marco; Hansen, Morten; Sendrup, Sarah L

    2013-01-01

    Further development of adoptive T-cell therapy (ACT) with autologous tumor-infiltrating lymphocytes (TILs) has the potential to markedly change the long-term prognosis of patients with metastatic melanoma, and modifications of the original protocol that can improve its clinical efficacy are highly...... desirable. In this study, we demonstrated that a high in vitro tumor reactivity of infusion products was associated with clinical responses upon adoptive transfer. In addition, we systematically characterized the responses of a series of TIL products to relevant autologous short term-cultured melanoma cell...... lines from 12 patients. We provide evidence that antitumor reactivity of both CD8(+) and CD4(+) T cells could be enhanced in most TIL products by autologous melanoma sensitization by pretreatment with low-dose IFN-γ. IFN-γ selectively enhanced responses to tumor-associated antigens other than melanoma...

  7. Adoptive cell transfer in the treatment of metastatic melanoma

    DEFF Research Database (Denmark)

    Straten, Per thor; Becker, Jürgen C

    2009-01-01

    Adoptive cell therapy (ACT) for metastatic cancer is the focus of considerable research effort. Rosenberg's laboratory demonstrated a 50% response rate in stage IV melanoma patients treated with in vitro expanded tumor-infiltrating lymphocytes (TILs) and high-dose IL-2 administered after nonmyelo......Adoptive cell therapy (ACT) for metastatic cancer is the focus of considerable research effort. Rosenberg's laboratory demonstrated a 50% response rate in stage IV melanoma patients treated with in vitro expanded tumor-infiltrating lymphocytes (TILs) and high-dose IL-2 administered after...... nonmyeloablative conditioning (Dudley et al., 2002a). Because early attempts to use expanded TILs in melanoma therapy failed to demonstrate better efficacy than high-dose IL-2 (Rosenberg et al., 1994), the efficacy of TILs and nonmyeloablative conditioning in combination implies that patient conditioning...

  8. Adoption of lean principles in a high-volume molecular diagnostic microbiology laboratory.

    Science.gov (United States)

    Mitchell, P Shawn; Mandrekar, Jayawant N; Yao, Joseph D C

    2014-07-01

    Clinical laboratories are constantly facing challenges to do more with less, enhance quality, improve test turnaround time, and reduce operational expenses. Experience with adopting and applying lean concepts and tools used extensively in the manufacturing industry is described for a high-volume clinical molecular microbiology laboratory, illustrating how operational success and benefits can be achieved.

  9. Ex vivo expansion protocol for human tumor specific T cells for adoptive T cell therapy.

    Science.gov (United States)

    Rasmussen, Anne-Marie; Borelli, Gabriel; Hoel, Hanna Julie; Lislerud, Kari; Gaudernack, Gustav; Kvalheim, Gunnar; Aarvak, Tanja

    2010-04-15

    Adoptive T cell therapy is a promising treatment strategy for patients with different types of cancer. The methods used for generation of high numbers of tumor specific T cells usually require long-term ex vivo culture, which frequently lead to generation of terminally differentiated effector cells, demonstrating low persistence in vivo. Therefore, optimization of protocols for generation of T cells for adoptive cell therapy is warranted. The aim of this work was to develop a protocol for expansion of antigen-specific T cells using Dynabeads CD3/CD28 to obtain T cells expressing markers important for in vivo persistence and survival. To achieve high numbers of antigen-specific T cells following expansion, we have tested the effect of depleting regulatory T cells using Dynabeads CD25 and including a pre-stimulation step with peptide prior to the non-specific expansion with Dynabeads. Our data demonstrate that virus- and tumor specific T cells can be expanded to high numbers using Dynabeads CD3/CD28 following optimization of the culture conditions. The expansion protocol presented here results in enrichment of antigen-specific CD8(+) T cells with an early/intermediate memory phenotype. This is observed even when the antigen-specific CD8(+) T cells demonstrated a terminal effector phenotype prior to expansion. This protocol thus results in expanded T cells with a phenotypic profile which may increase the chance of retaining long-term persistence following adoptive transfer. Based on these data we have developed a cGMP protocol for expansion of tumor specific T cells for adoptive T cell therapy.

  10. Immune responsiveness in a mouse model of combined adoptive immunotherapy with NK and dendritic cells

    Directory of Open Access Journals (Sweden)

    Feng Cui

    2013-01-01

    Conclusion: NK cells and DCs adoptive immunotherapy targeted the tumor and exhibited improved therapeutic efficacy as compared to that of the cells given alone. This strategy could induce tumorigenic immunological memory and suggests that mixed NK cells and DCs adoptive immunotherapy offers therapeutic options against cancer.

  11. Tissue distribution of adoptively transferred adherent lymphokine-activated killer cells assessed by different cell labels

    DEFF Research Database (Denmark)

    Basse, P; Herberman, R B; Hokland, M;

    1992-01-01

    Assessment of the tissue distribution of adoptively transferred adherent lymphokine-activated killer A-LAK) cells by use of 51Cr indicated that these effector cells, after an initial phase in the lungs, distributed in high numbers to liver and spleen (30% and 10% of injected dose, respectively......). However, when this experiment was repeated with 125IdUrd as cell label, fewer than 2% and 0.5% of the injected cells distributed into liver and spleen respectively. To analyse this discrepancy, we compared the tissue distribution of 51Cr- and 125IdUrd-labelled A-LAK cells with that indicated...

  12. Adoptive therapy with CAR redirected T cells for hematological malignancies.

    Science.gov (United States)

    Li, Shiqi; Yang, Zhi; Shen, Junjie; Shan, Juanjuan; Qian, Cheng

    2016-04-01

    The survival of patients with hematological malignancies has been significantly improved due to the development of new therapeutic agents. However, relapse remains a major matter for concern. Recently, T cells engineered with chimeric antigen receptor (CAR) were reported to show unprecedented responses in a range of hematological malignancies. The persistence of the CAR-T cell can last for years and tends toward long-term antitumor memory by which relapses can be effectively prevented. The primary side effects that appear in most clinical trials are cytokine release syndrome and neurotoxicity. However, these symptoms can be treated and reversed. In this review, we describe CAR structure and function and summarize recent advances in CAR-T cell therapy in hematological malignancies.

  13. Accumulation in tumor tissue of adoptively transferred T cells: A comparison between intravenous and intraperitoneal injection

    DEFF Research Database (Denmark)

    Petersen, Charlotte Christie; Petersen, Mikkel Steen; Agger, Ralf;

    2006-01-01

    Accumulation of T cells at the tumor is essential in cancer immunotherapy based on adoptive transfer of tumor-specific T cells. To gain further insight into the accumulation process and to evaluate the effect of using different routes of cell transfer, we investigated the accumulation of ovalbumin...

  14. Proliferation-linked apoptosis of adoptively transferred T cells after IL-15 administration in macaques.

    Directory of Open Access Journals (Sweden)

    Carolina Berger

    Full Text Available The adoptive transfer of antigen-specific effector T cells is being used to treat human infections and malignancy. T cell persistence is a prerequisite for therapeutic efficacy, but reliably establishing a high-level and durable T cell response by transferring cultured CD8(+ T cells remains challenging. Thus, strategies that promote a transferred high-level T cell response may improve the efficacy of T cell therapy. Lymphodepletion enhances persistence of transferred T cells in mice in part by reducing competition for IL-15, a common γ-chain cytokine that promotes T cell memory, but lymphodepleting regimens have toxicity. IL-15 can be safely administered and has minimal effects on CD4(+ regulatory T cells at low doses, making it an attractive adjunct in adoptive T cell therapy. Here, we show in lymphoreplete macaca nemestrina, that proliferation of adoptively transferred central memory-derived CD8(+ effector T (T(CM/E cells is enhanced in vivo by administering IL-15. T(CM/E cells migrated to memory niches, persisted, and acquired both central memory and effector memory phenotypes regardless of the cytokine treatment. Unexpectedly, despite maintaining T cell proliferation, IL-15 did not augment the magnitude of the transferred T cell response in blood, bone marrow, or lymph nodes. T cells induced to proliferate by IL-15 displayed increased apoptosis demonstrating that enhanced cycling was balanced by cell death. These results suggest that homeostatic mechanisms that regulate T cell numbers may interfere with strategies to augment a high-level T cell response by adoptive transfer of CD8(+ T(CM/E cells in lymphoreplete hosts.

  15. Genetically Modified T-Cell-Based Adoptive Immunotherapy in Hematological Malignancies

    Directory of Open Access Journals (Sweden)

    Baixin Ye

    2017-01-01

    Full Text Available A significant proportion of hematological malignancies remain limited in treatment options. Immune system modulation serves as a promising therapeutic approach to eliminate malignant cells. Cytotoxic T lymphocytes (CTLs play a central role in antitumor immunity; unfortunately, nonspecific approaches for targeted recognition of tumor cells by CTLs to mediate tumor immune evasion in hematological malignancies imply multiple mechanisms, which may or may not be clinically relevant. Recently, genetically modified T-cell-based adoptive immunotherapy approaches, including chimeric antigen receptor (CAR T-cell therapy and engineered T-cell receptor (TCR T-cell therapy, promise to overcome immune evasion by redirecting the specificity of CTLs to tumor cells. In clinic trials, CAR-T-cell- and TCR-T-cell-based adoptive immunotherapy have produced encouraging clinical outcomes, thereby demonstrating their therapeutic potential in mitigating tumor development. The purpose of the present review is to (1 provide a detailed overview of the multiple mechanisms for immune evasion related with T-cell-based therapies; (2 provide a current summary of the applications of CAR-T-cell- as well as neoantigen-specific TCR-T-cell-based adoptive immunotherapy and routes taken to overcome immune evasion; and (3 evaluate alternative approaches targeting immune evasion via optimization of CAR-T and TCR-T-cell immunotherapies.

  16. Molecular fluctuation in living cells

    Institute of Scientific and Technical Information of China (English)

    唐孝威

    1997-01-01

    The concept of molecular fluctuation in living cells is introduced. Many apparently different experi-mental facts in living cells, including the velocity non-uniformity of organelle movement, the saltatory movement of transport vesicles in axoplasmic transport, the chromosome oscillation during metaphase in mitosis and the pauses in the chromosome movement during anaphase are explained using a unified viewpoint. A method of determination of average number of the attached motor protein molecules from the experimental data is also proposed.

  17. Improving the outcome of adoptive cell transfer by targeting tumor escape.

    Science.gov (United States)

    Kaluza, Karen M; Vile, Richard

    2013-01-01

    Adoptive T-cell transfer is among the most promising immunotherapies against cancer. To continue increasing the potential of this therapy, our studies focus on the inhibition of tumor recurrence. Recently, we have demonstrated several ways in which combination therapies involving multiple T-cell populations and immunostimulatory chemotherapy can enhance long-term survival.

  18. Anti-CD137 monoclonal antibodies and adoptive T cell therapy: a perfect marriage?

    Science.gov (United States)

    Weigelin, Bettina; Bolaños, Elixabet; Rodriguez-Ruiz, Maria E; Martinez-Forero, Ivan; Friedl, Peter; Melero, Ignacio

    2016-05-01

    CD137(4-1BB) costimulation and adoptive T cell therapy strongly synergize in terms of achieving maximal efficacy against experimental cancers. These costimulatory biological functions of CD137 have been exploited by means of introducing the CD137 signaling domain in clinically successful chimeric antigen receptors and to more efficiently expand T cells in culture. In addition, immunomagnetic sorting of CD137-positive T cells among tumor-infiltrating lymphocytes selects for the fittest antitumor T lymphocytes for subsequent cultures. In mouse models, co-infusion of both agonist antibodies and T cells attains marked synergistic effects that result from more focused and intense cytolytic activity visualized under in vivo microscopy and from more efficient entrance of T cells into the tumor through the vasculature. These several levels of dynamic interaction between adoptive T cell therapy and CD137 offer much opportunity to raise the efficacy of current cancer immunotherapies.

  19. Technical Considerations for the Generation of Adoptively Transferred T Cells in Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Anthony Visioni

    2016-09-01

    Full Text Available A significant function of the immune system is the surveillance and elimination of aberrant cells that give rise to cancer. Even when tumors are well established and metastatic, immune-mediated spontaneous regressions have been documented. While there are have been various forms of immunotherapy, one of the most widely studied for almost 40 years is adoptive cellular immunotherapy, but its success has yet to be fully realized. Adoptive cell transfer (ACT is a therapeutic modality that has intrigued physicians and researchers for its many theoretical benefits. Preclinical investigations and human trials have utilized natural killer (NK cells, dendritic cells (DC, macrophages, T-cells or B-cells for ACT with the most intense research focused on T-cell ACT. T-cells are exquisitely specific to the target of its T-cell receptor (TCR, thus potentially reducing the amount of collateral damage and off-target effects from treatment. T-cells also possess a memory subset that may reduce the risk of recurrence of a cancer after the successful treatment of the primary disease. There are several options for the source of T-cells used in the generation of cells for ACT. Perhaps the most widely known source is T-cells generated from tumor-infiltrating lymphocytes (TILs. However, studies have also employed peripheral blood mononuclear cells (PBMCs, lymph nodes, and even induced pluripotent stem cells (IPSCs as a source of T-cells. Several important technical considerations exist regarding benefits and limitations of each source of T-cells. Unique aspects of T-cells factor into their ability to be efficacious in ACT including the total number of cells available for ACT, the anti-tumor efficacy on a per cell basis, the repertoire of TCRs specific to tumor cells, and their ability to traffic to various organs that harbor tumor. Current research is attempting to unlock the full potential of these cells to effectively and safely treat cancer.

  20. Molecular biology of the cell

    CERN Document Server

    Alberts, Bruce; Lewis, Julian

    2000-01-01

    Molecular Biology of the Cell is the classic in-dept text reference in cell biology. By extracting the fundamental concepts from this enormous and ever-growing field, the authors tell the story of cell biology, and create a coherent framework through which non-expert readers may approach the subject. Written in clear and concise language, and beautifully illustrated, the book is enjoyable to read, and it provides a clear sense of the excitement of modern biology. Molecular Biology of the Cell sets forth the current understanding of cell biology (completely updated as of Autumn 2001), and it explores the intriguing implications and possibilities of the great deal that remains unknown. The hallmark features of previous editions continue in the Fourth Edition. The book is designed with a clean and open, single-column layout. The art program maintains a completely consistent format and style, and includes over 1,600 photographs, electron micrographs, and original drawings by the authors. Clear and concise concept...

  1. Laboratory of Cell and Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Cell and Molecular Biology investigates the organization, compartmentalization, and biochemistry of eukaryotic cells and the pathology associated...

  2. CMV-specific CD8 T Cell Differentiation and Localization: Implications for Adoptive Therapies

    Directory of Open Access Journals (Sweden)

    Corinne J Smith

    2016-09-01

    Full Text Available Human cytomegalovirus (HCMV is a ubiquitous virus that causes chronic infection, and thus is one of the most common infectious complications of immune suppression. Adoptive transfer of HCMV-specific T cells has emerged as an effective method to reduce the risk for HCMV infection and/or reactivation by restoring immunity in transplant recipients. However, the CMV-specific CD8+ T cell response is comprised of a heterogenous mixture of subsets with distinct functions and localization and it is not clear if current adoptive immunotherapy protocols can reconstitute the full spectrum of CD8+ T cell immunity. The aim of this review is to briefly summarize the role of these T cell subsets in CMV immunity and to describe how current adoptive immunotherapy practices might affect their reconstitution in patients. The bulk of the CMV-specific CD8+ T cell population is made up of terminally differentiated effector T cells with immediate effector function and a short life span. Self-renewing memory T cells within the CMV-specific population retain the capacity to expand and differentiate upon challenge and are important for the long-term persistence of the CD8+ T cell response. Finally mucosal organs, which are frequent sites of CMV reactivation, are primarily inhabited by tissue resident memory T cells, which do not recirculate. Future work on adoptive transfer strategies may need to focus on striking a balance between the formation of these subsets to ensure the development of long lasting and protective immune responses that can access the organs affected by CMV disease.

  3. Next generation adoptive immunotherapy--human T cells as carriers of therapeutic nanoparticles.

    Science.gov (United States)

    Mortensen, M W; Kahns, L; Hansen, T; Sorensen, P G; Björkdahl, O; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2007-12-01

    An important step in adoptive immunotherapy in general and specifically with respect to cancer treatment is the initiation of an inflammatory T cell response at the tumor site. Here we suggest a new concept for a controlled inflammatory response in which the intrinsic cytotoxic properties of T cells are upgraded with the properties of nanoparticles transfected into the T cells during the ex vivo expansion process. We report in vitro upgrading of human T cells using PEGylated boron carbide nanoparticles functionalised with a translocation peptide aimed at Boron Neutron Capture Therapy (BNCT). A key finding is that the metabolism of such upgraded human T cells were not affected by a payload of 0.13 pg boron per cell and that the nanoparticles were retained in the cell population after several cell divisions. This is vital for transporting nanoparticles by T cells to the tumor site.

  4. Beyond the antigen receptor: editing the genome of T-cells for cancer adoptive cellular therapies

    Directory of Open Access Journals (Sweden)

    Angharad eLloyd

    2013-08-01

    Full Text Available Recent early-stage clinical trials evaluating the adoptive transfer of patient CD8+ T-cells re-directed with antigen receptors recognising tumours have shown very encouraging results. These reports provide strong support for further development of the therapeutic concept as a curative cancer treatment. In this respect combining the adoptive transfer of tumour-specific T-cells with therapies that increase their anti-tumour capacity is viewed as a promising strategy to improve treatment outcome. The ex-vivo genetic engineering step that underlies T-cell re-direction offers a unique angle to combine antigen receptor delivery with the targeting of cell intrinsic pathways that restrict T-cell effector functions. Recent progress in genome editing technologies such as protein- and RNA-guided endonucleases raise the possibility of disrupting gene expression in T-cells in order to enhance effector functions or to bypass tumour immune suppression. This approach would avoid the systemic administration of compounds that disrupt immune homeostasis, potentially avoiding autoimmune adverse effects, and could improve the efficacy of T-cell based adoptive therapies.

  5. Adoptive immunotherapy of cancer with polyclonal, 108-fold hyperexpanded, CD4+ and CD8+ T cells

    Directory of Open Access Journals (Sweden)

    Kim Julian A

    2004-11-01

    Full Text Available Abstract T cell-mediated cancer immunotherapy is dose dependent and optimally requires participation of antigen-specific CD4+ and CD8+ T cells. Here, we isolated tumor-sensitized T cells and activated them in vitro using conditions that led to greater than 108-fold numerical hyperexpansion of either the CD4+ or CD8+ subset while retaining their capacity for in vivo therapeutic efficacy. Murine tumor-draining lymph node (TDLN cells were segregated to purify the CD62Llow subset, or the CD4+ subset thereof. Cells were then propagated through multiple cycles of anti-CD3 activation with IL-2 + IL-7 for the CD8+ subset, or IL-7 + IL-23 for the CD4+ subset. A broad repertoire of TCR Vβ families was maintained throughout hyperexpansion, which was similar to the starting population. Adoptive transfer of hyper-expanded CD8+ T cells eliminated established pulmonary metastases, in an immunologically specific fashion without the requirement for adjunct IL-2. Hyper-expanded CD4+ T cells cured established tumors in intracranial or subcutaneous sites that were not susceptible to CD8+ T cells alone. Because accessibility and antigen presentation within metastases varies according to anatomic site, maintenance of a broad repertoire of both CD4+ and CD8+ T effector cells will augment the overall systemic efficacy of adoptive immunotherapy.

  6. Characterization of the natural killer T-cell response in an adoptive transfer model of atherosclerosis.

    Science.gov (United States)

    VanderLaan, Paul A; Reardon, Catherine A; Sagiv, Yuval; Blachowicz, Lydia; Lukens, John; Nissenbaum, Michael; Wang, Chyung-Ru; Getz, Godfrey S

    2007-03-01

    Natural killer T (NKT) cells have recently been implicated in atherogenesis, primarily for their ability to recognize and respond to lipid antigens. Because the atherosclerotic lesion is characterized by the retention and modification of lipids in the vascular wall, NKT cells may be involved in promoting the local vascular inflammatory response. Here, we investigate the proatherogenic role of NKT cells in an adoptive transfer model of atherosclerosis, using as recipients immune-deficient, atherosclerosis-susceptible RAG1(-/-)LDLR(-/-) mice. The adoptive transfer of an NKT cell-enriched splenocyte population from Valpha14Jalpha18 T-cell receptor transgenic mice resulted in a 73% increase in aortic root lesion area compared with recipients of NKT cell-deficient splenocytes derived from CD1d(-/-) mice after 12 weeks of Western-type diet feeding. The total serum from hypercholesterolemic mice leads to a small but significant activation of Valpha14Jalpha18 T-cell receptor-expressing hybridoma line by dendritic cells that is CD1d-dependent. Therefore, these studies demonstrate that NKT cells are proatherogenic in the absence of exogenous stimulation, and this activity is likely associated with endogenous lipid antigens carried by lipoproteins in the circulation and perhaps also in the atherosclerotic plaque.

  7. Influenza virus-specific TCR-transduced T cells as a model for adoptive immunotherapy.

    Science.gov (United States)

    Berdien, Belinda; Reinhard, Henrike; Meyer, Sabrina; Spöck, Stefanie; Kröger, Nicolaus; Atanackovic, Djordje; Fehse, Boris

    2013-06-01

    Adoptive transfer of T lymphocytes equipped with tumor-antigen specific T-cell receptors (TCRs) represents a promising strategy in cancer immunotherapy, but the approach remains technically demanding. Using influenza virus (Flu)-specific T-cell responses as a model system we compared different methods for the generation of T-cell clones and isolation of antigen-specific TCRs. Altogether, we generated 12 CD8(+) T-cell clones reacting to the Flu matrix protein (Flu-M) and 6 CD4(+) T-cell clones reacting to the Flu nucleoprotein (Flu-NP) from 4 healthy donors. IFN-γ-secretion-based enrichment of antigen-specific cells, optionally combined with tetramer staining, was the most efficient way for generating T-cell clones. In contrast, the commonly used limiting dilution approach was least efficient. TCR genes were isolated from T-cell clones and cloned into both a previously used gammaretroviral LTR-vector, MP91 and the novel lentiviral self-inactivating vector LeGO-MP that contains MP91-derived promotor and regulatory elements. To directly compare their functional efficiencies, we in parallel transduced T-cell lines and primary T cells with the two vectors encoding identical TCRs. Transduction efficiencies were approximately twice higher with the gammaretroviral vector. Secretion of high amounts of IFN-γ, IL-2 and TNF-α by transduced cells after exposure to the respective influenza target epitope proved efficient specificity transfer of the isolated TCRs to primary T-cells for both vectors, at the same time indicating superior functionality of MP91-transduced cells. In conclusion, we have developed optimized strategies to obtain and transfer antigen-specific TCRs as well as designed a novel lentiviral vector for TCR-gene transfer. Our data may help to improve adoptive T-cell therapies.

  8. Feasibility of Telomerase-Specific Adoptive T-cell Therapy for B-cell Chronic Lymphocytic Leukemia and Solid Malignancies.

    Science.gov (United States)

    Sandri, Sara; Bobisse, Sara; Moxley, Kelly; Lamolinara, Alessia; De Sanctis, Francesco; Boschi, Federico; Sbarbati, Andrea; Fracasso, Giulio; Ferrarini, Giovanna; Hendriks, Rudi W; Cavallini, Chiara; Scupoli, Maria Teresa; Sartoris, Silvia; Iezzi, Manuela; Nishimura, Michael I; Bronte, Vincenzo; Ugel, Stefano

    2016-05-01

    Telomerase (TERT) is overexpressed in 80% to 90% of primary tumors and contributes to sustaining the transformed phenotype. The identification of several TERT epitopes in tumor cells has elevated the status of TERT as a potential universal target for selective and broad adoptive immunotherapy. TERT-specific cytotoxic T lymphocytes (CTL) have been detected in the peripheral blood of B-cell chronic lymphocytic leukemia (B-CLL) patients, but display low functional avidity, which limits their clinical utility in adoptive cell transfer approaches. To overcome this key obstacle hindering effective immunotherapy, we isolated an HLA-A2-restricted T-cell receptor (TCR) with high avidity for human TERT from vaccinated HLA-A*0201 transgenic mice. Using several relevant humanized mouse models, we demonstrate that TCR-transduced T cells were able to control human B-CLL progression in vivo and limited tumor growth in several human, solid transplantable cancers. TERT-based adoptive immunotherapy selectively eliminated tumor cells, failed to trigger a self-MHC-restricted fratricide of T cells, and was associated with toxicity against mature granulocytes, but not toward human hematopoietic progenitors in humanized immune reconstituted mice. These data support the feasibility of TERT-based adoptive immunotherapy in clinical oncology, highlighting, for the first time, the possibility of utilizing a high-avidity TCR specific for human TERT. Cancer Res; 76(9); 2540-51. ©2016 AACR.

  9. Effect of adoptive transfer or depletion of regulatory T cells on triptolide-induced liver injury

    Directory of Open Access Journals (Sweden)

    Xinzhi eWang

    2016-04-01

    Full Text Available ObjectiveThe aim of this study is to clarify the role of regulatory T cell (Treg in triptolide (TP-induced hepatotoxicity. MethodsFemale C57BL/6 mice received either adoptive transfer of Tregs or depletion of Tregs, then underwent TP administration and were sacrificed 24 hours after TP administration. Liver injury was determined according to ALT and AST levels in serum and histopathological change in liver tissue. Hepatic frequencies of Treg cells and the mRNA expression levles of transcription factor FoxP3 and RORγt, IL-10, SOCS and Notch/Notch ligand were investigated.ResultsDuring TP-induced liver injury, hepatic Treg and IL-10 decreased, while Th17 cell transcription factor RORγt, SOCS signaling and Notch signaling increased, accompanied with liver inflammation. Adoptive transfer of Tregs ameliorated the severity of TP-induced liver injury, accompanied with increased levels of hepatic Treg and IL-10. Adoptive transfer of Tregs remarkably inhibited the expression of RORγt, SOCS3, Notch1 and Notch3. On the contrary, depletion of Treg cells in TP-administered mice resulted in a notable increase of RORγt, SOCS1, SOCS3 and Notch3, while the Treg and IL-10 of liver decreased. Consistent with the exacerbation of liver injury, higher serum levels of ALT and AST were detected in Treg-depleted mice. ConclusionsThese results showed that adoptive transfer or depletion of Tregs attenuated or aggravated TP-induced liver injury, suggesting that Tregs could play important roles in the progression of liver injury. SOCS proteins and Notch signaling affected Tregs, which may contribute to the pathogenesis of TP-induced hepatotoxicity.

  10. Elimination of metastatic melanoma using gold nanoshell-enabled photothermal therapy and adoptive T cell transfer.

    Directory of Open Access Journals (Sweden)

    Adham S Bear

    Full Text Available Ablative treatments such as photothermal therapy (PTT are attractive anticancer strategies because they debulk accessible tumor sites while simultaneously priming antitumor immune responses. However, the immune response following thermal ablation is often insufficient to treat metastatic disease. Here we demonstrate that PTT induces the expression of proinflammatory cytokines and chemokines and promotes the maturation of dendritic cells within tumor-draining lymph nodes, thereby priming antitumor T cell responses. Unexpectedly, however, these immunomodulatory effects were not beneficial to overall antitumor immunity. We found that PTT promoted the infiltration of secondary tumor sites by CD11b(+Ly-6G/C(+ myeloid-derived suppressor cells, consequently failing to slow the growth of poorly immunogenic B16-F10 tumors and enhancing the growth of distant lung metastases. To exploit the beneficial effects of PTT activity against local tumors and on antitumor immunity whilst avoiding the adverse consequences, we adoptively transferred gp100-specific pmel T cells following PTT. The combination of local control by PTT and systemic antitumor immune reactivity provided by adoptively transferred T cells prevented primary tumor recurrence post-ablation, inhibited tumor growth at distant sites, and abrogated the outgrowth of lung metastases. Hence, the combination of PTT and systemic immunotherapy prevented the adverse effects of PTT on metastatic tumor growth and optimized overall tumor control.

  11. Elimination of metastatic melanoma using gold nanoshell-enabled photothermal therapy and adoptive T cell transfer.

    Science.gov (United States)

    Bear, Adham S; Kennedy, Laura C; Young, Joseph K; Perna, Serena K; Mattos Almeida, Joao Paulo; Lin, Adam Y; Eckels, Phillip C; Drezek, Rebekah A; Foster, Aaron E

    2013-01-01

    Ablative treatments such as photothermal therapy (PTT) are attractive anticancer strategies because they debulk accessible tumor sites while simultaneously priming antitumor immune responses. However, the immune response following thermal ablation is often insufficient to treat metastatic disease. Here we demonstrate that PTT induces the expression of proinflammatory cytokines and chemokines and promotes the maturation of dendritic cells within tumor-draining lymph nodes, thereby priming antitumor T cell responses. Unexpectedly, however, these immunomodulatory effects were not beneficial to overall antitumor immunity. We found that PTT promoted the infiltration of secondary tumor sites by CD11b(+)Ly-6G/C(+) myeloid-derived suppressor cells, consequently failing to slow the growth of poorly immunogenic B16-F10 tumors and enhancing the growth of distant lung metastases. To exploit the beneficial effects of PTT activity against local tumors and on antitumor immunity whilst avoiding the adverse consequences, we adoptively transferred gp100-specific pmel T cells following PTT. The combination of local control by PTT and systemic antitumor immune reactivity provided by adoptively transferred T cells prevented primary tumor recurrence post-ablation, inhibited tumor growth at distant sites, and abrogated the outgrowth of lung metastases. Hence, the combination of PTT and systemic immunotherapy prevented the adverse effects of PTT on metastatic tumor growth and optimized overall tumor control.

  12. Establishment of Adoptive Immunotherapy Transfusion Time of Cytokine-induced Killer Cells

    Institute of Scientific and Technical Information of China (English)

    Wu Changping; Deng Haifeng; Jiang Jingting

    2013-01-01

    Objective:To investigate the variation of immunophenotype and cytotoxic activity of autologous cytokine-induced killer (CIK) cells in patients with malignant tumors, and explore the best time of adoptive immunotherapy infusion of CIK cells. Methods:Peripheral blood mononuclear cells (PBMC) in 40 patients with malignant tumors were collected and cultivated into CIK cells in vitro by biotechnology under induction of several kinds of cytokines including interferon γ (IFN-γ), recombinant human interleukin 1α (rhIL-1α), CD3 monoclonal antibody (CD3McAb) and recombinant human interleukin 2 (rhIL-2). Immunophenotypes were dynamically monitored by lfow cytometry (FCM), and cytotoxic activity was analyzed by methyl thiazolyl tetrazolium (MTT) method. Results:After induction and expansion at different time, CD3+, CD3+CD8+and CD3+CD56+in mononuclear cells (MNC) had an up-regulated tendency. CD3+CD4+reached the peak on day 7, and then decreased slowly;CD25 reached the peak in earlier period of cultivation (3-7 days), and decreased slowly in 7-14 days, and then decreased rapidly in 14-21 days. Human leukocyte antigen DR (HLA-DR) was on the rise in 0-14 days, and decreased rapidly after reaching the peak on day 14. The cytotoxic activity of mature CIK cells was signiifcantly higher than that of non-activated PBMC, and the difference was statistically signiifcant (P Conclusion:PBMC can be induced into typical CIK cells for about 14 days when CD3+CD56+cells are at the logarithmic phase. The best time of CIK cell adoptive immunotherapy transfusion for the patients with malignant tumors is on day 14.

  13. Adoptive T-cell therapy improves treatment of canine non–Hodgkin lymphoma post chemotherapy

    Science.gov (United States)

    O'Connor, Colleen M.; Sheppard, Sabina; Hartline, Cassie A.; Huls, Helen; Johnson, Mark; Palla, Shana L.; Maiti, Sourindra; Ma, Wencai; Davis, R. Eric; Craig, Suzanne; Lee, Dean A.; Champlin, Richard; Wilson, Heather; Cooper, Laurence J. N.

    2012-01-01

    Clinical observations reveal that an augmented pace of T-cell recovery after chemotherapy correlates with improved tumor-free survival, suggesting the add-back of T cells after chemotherapy may improve outcomes. To evaluate adoptive immunotherapy treatment for B-lineage non-Hodgkin lymphoma (NHL), we expanded T cells from client-owned canines diagnosed with NHL on artificial antigen presenting cells (aAPC) in the presence of human interleukin (IL)-2 and IL-21. Graded doses of autologous T cells were infused after CHOP chemotherapy and persisted for 49 days, homed to tumor, and significantly improved survival. Serum thymidine kinase changes predicted T-cell engraftment, while anti-tumor effects correlated with neutrophil-to-lymphocyte ratios and granzyme B expression in manufactured T cells. Therefore, chemotherapy can be used to modulate infused T-cell responses to enhance anti-tumor effects. The companion canine model has translational implications for human immunotherapy which can be readily exploited since clinical-grade canine and human T cells are propagated using identical approaches. PMID:22355761

  14. Effective adoptive transfer of haploidentical tumor-specific T cells in B 16-melanoma bearing mice

    Institute of Scientific and Technical Information of China (English)

    CUI Nai-peng; XIE Shao-jian; HAN Jin-sheng; MA Zhen-feng; CHEN Bao-ping; CAI Jian-hui

    2012-01-01

    Background Adoptive transfer of allogeneic tumor-specific T cells often results in severe graft-versus-host disease (GVHD).Here,we sought to maximize graft-versus-tumor and minimize GVHD by using haploidentical T cells in pre-irradiated B16-melanoma bearing mice.Methods C57BL/6 mice bearing B16-melanoma tumors were irradiated with 0,5,or 7 Gy total body irradiation (TBI),or 7 Gy TBI plus bone marrow transplantation.Tumor areas were measured every 3 days to assess the influence of irradiation treatment on tumor regression.B16-melanoma bearing mice were irradiated with 7 Gy TBI; sera and spleens were harvested at days 1,3,5,7,9,11,and 13 after irradiation.White blood cell levels were measured and transforming growth factor β1 (TGF-β1) and interleukin 10 (IL-10) levels in serum were detected using enzyme-linked immunosorbent assay (ELISA) kits.Real-time reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry were performed to test TGF-β1,IL-10 and Foxp3 mRNA levels and the proportion of CD4+CD25+Foxp3+ T-regulatory cells (Tregs) in spleens.B16-melanoma bearing C57BL/6 mice were irradiated with 7 Gy TBI followed by syngeneic (Syn1/Syn2) or haploidentical (Hap1/Hap2),dendritic cell-induced cytotoxic T lymphocytes (DC-CTLs) treatment,tumor areas and system GVHD were observed every 3 days.Mice were killed 21 days after the DC-CTLs adoptive transfer;histologic analyses of eyes,skin,liver,lungs,and intestine were then performed.Results Irradiation with 7 Gy TBI on the B16-melanoma-bearing mice did not influence tumor regression compared to the control group; however,it down-regulated the proportion of Tregs in spleens and the TGF-β1 and IL-10 levels in sera and spleens,suggesting inhibition of autoimmunity and intervention of tumor microenvironment.Adoptive transfer of haploidentical DC-CTLs significantly inhibited B16-melanoma growth.GVHD assessment and histology analysis showed no significant difference among the groups.Conclusion Adoptive transfer

  15. Emerging molecular approaches in stem cell biology.

    Science.gov (United States)

    Jaishankar, Amritha; Vrana, Kent

    2009-04-01

    Stem cells are characterized by their ability to self-renew and differentiate into multiple adult cell types. Although substantial progress has been made over the last decade in understanding stem cell biology, recent technological advances in molecular and systems biology may hold the key to unraveling the mystery behind stem cell self-renewal and plasticity. The most notable of these advances is the ability to generate induced pluripotent cells from somatic cells. In this review, we discuss our current understanding of molecular similarities and differences among various stem cell types. Moreover, we survey the current state of systems biology and forecast future needs and direction in the stem cell field.

  16. Tailored chemokine receptor modification improves homing of adoptive therapy T cells in a spontaneous tumor model

    Science.gov (United States)

    Martini, Elisa; Roselli, Giuliana; Morone, Diego; Angioni, Roberta; Cianciotti, Beatrice Claudia; Trovato, Anna Elisa; Franchina, Davide Giuseppe; Castino, Giovanni Francesco; Vignali, Debora; Erreni, Marco; Marchesi, Federica; Rumio, Cristiano; Kallikourdis, Marinos

    2016-01-01

    In recent years, tumor Adoptive Cell Therapy (ACT), using administration of ex vivo-enhanced T cells from the cancer patient, has become a promising therapeutic strategy. However, efficient homing of the anti-tumoral T cells to the tumor or metastatic site still remains a substantial hurdle. Yet the tumor site itself attracts both tumor-promoting and anti-tumoral immune cell populations through the secretion of chemokines. We attempted to identify these chemokines in a model of spontaneous metastasis, in order to “hijack” their function by expressing matching chemokine receptors on the cytotoxic T cells used in ACT, thus allowing us to enhance the recruitment of these therapeutic cells. Here we show that this enabled the modified T cells to preferentially home into spontaneous lymph node metastases in the TRAMP model, as well as in an inducible tumor model, E.G7-OVA. Due to the improved homing, the modified CD8+ T cells displayed an enhanced in vivo protective effect, as seen by a significant delay in E.G7-OVA tumor growth. These results offer a proof of principle for the tailored application of chemokine receptor modification as a means of improving T cell homing to the target tumor, thus enhancing ACT efficacy. Surprisingly, we also uncover that the formation of the peri-tumoral fibrotic capsule, which has been shown to impede T cell access to tumor, is partially dependent on host T cell presence. This finding, which would be impossible to observe in immunodeficient model studies, highlights possible conflicting roles that T cells may play in a therapeutic context. PMID:27177227

  17. Molecular programming of B cell memory.

    Science.gov (United States)

    McHeyzer-Williams, Michael; Okitsu, Shinji; Wang, Nathaniel; McHeyzer-Williams, Louise

    2011-12-09

    The development of high-affinity B cell memory is regulated through three separable phases, each involving antigen recognition by specific B cells and cognate T helper cells. Initially, antigen-primed B cells require cognate T cell help to gain entry into the germinal centre pathway to memory. Once in the germinal centre, B cells with variant B cell receptors must access antigens and present them to germinal centre T helper cells to enter long-lived memory B cell compartments. Following antigen recall, memory B cells require T cell help to proliferate and differentiate into plasma cells. A recent surge of information - resulting from dynamic B cell imaging in vivo and the elucidation of T follicular helper cell programmes - has reshaped the conceptual landscape surrounding the generation of memory B cells. In this Review, we integrate this new information about each phase of antigen-specific B cell development to describe the newly unravelled molecular dynamics of memory B cell programming.

  18. Melanoma Cells Can Adopt the Phenotype of Stromal Fibroblasts and Macrophages by Spontaneous Cell Fusion in Vitro.

    Science.gov (United States)

    Kemény, Lajos V; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B

    2016-06-02

    After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells' nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma-stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments.

  19. Adoptive transfer of MART-1 T cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma

    Science.gov (United States)

    Chodon, Thinle; Comin-Anduix, Begonya; Chmielowski, Bartosz; Koya, Richard C; Wu, Zhongqi; Auerbach, Martin; Ng, Charles; Avramis, Earl; Seja, Elizabeth; Villanueva, Arturo; McCannel, Tara A.; Ishiyama, Akira; Czernin, Johannes; Radu, Caius G.; Wang, Xiaoyan; Gjertson, David W.; Cochran, Alistair J.; Cornetta, Kenneth; Wong, Deborah J.L.; Kaplan-lefko, Paula; Hamid, Omid; Samlowski, Wolfram; Cohen, Peter A.; Daniels, Gregory A.; Mukherji, Bijay; Yang, Lili; Zack, Jerome A.; Kohn, Donald B.; Heath, James R.; Glaspy, John A.; Witte, Owen N.; Baltimore, David; Economou, James S.; Ribas, Antoni

    2014-01-01

    Purpose It has been demonstrated that large numbers of tumor-specific T cells for adoptive cell transfer (ACT) can be manufactured by retroviral genetic engineering of autologous peripheral blood lymphocytes and expanding them over several weeks. In mouse models, this therapy is optimized when administered with dendritic cell (DC) vaccination. We developed a short one-week manufacture protocol to determine the feasibility, safety and antitumor efficacy of this double cell therapy. Experimnetal Design A clinical trial (NCT00910650) adoptively transferring MART-1 T cell receptor (TCR) transgenic lymphocytes together with MART-1 peptide pulsed DC vaccination in HLA-A2.1 patients with metastatic melanoma. Autologous TCR transgenic cells were manufactured in 6 to 7 days using retroviral vector gene transfer, and re-infused with (n = 10) or without (n = 3) prior cryopreservation. Results 14 patients with metastatic melanoma were enrolled and nine out of 13 treated patients (69%) showed evidence of tumor regression. Peripheral blood reconstitution with MART-1-specific T cells peaked within two weeks of ACT indicating rapid in vivo expansion. Administration of freshly manufactured TCR transgenic T cells resulted in a higher persistence of MART-1-specific T cells in the blood as compared to cryopreserved. Evidence that DC vaccination could cause further in vivo expansion was only observed with ACT using non-cryopreserved T cells. Conclusion Double cell therapy with ACT of TCR engineered T cells with a very short ex vivo manipulation and DC vaccines is feasible and results in antitumor activity, but improvements are needed to maintain tumor responses. PMID:24634374

  20. A mouse model of adoptive immunotherapeutic targeting of autoimmune arthritis using allo-tolerogenic dendritic cells.

    Directory of Open Access Journals (Sweden)

    Jie Yang

    Full Text Available OBJECTIVE: Tolerogenic dendritic cells (tDCs are immunosuppressive cells with potent tolerogenic ability and are promising immunotherapeutic tools for treating rheumatoid arthritis (RA. However, it is currently unknown whether allogeneic tDCs (allo-tDCs induce tolerance in RA, and whether the numbers of adoptively transferred allo-tDCs, or the requirement for pulsing with relevant auto-antigens are important. METHODS: tDCs were derived from bone marrow precursors of C57BL/B6 mice, which were induced in vitro by GM-CSF, IL-10 and TGF-β1. Collagen-induced arthritis (CIA was modeled in D1 mice by immunization with type II collagen (CII to test the therapeutic ability of allo-tDCs against CIA. Clinical and histopathologic scores, arthritic incidence, cytokine and anti-CII antibody secretion, and CD4(+Th subsets were analyzed. RESULTS: tDCs were characterized in vitro by a stable immature phonotype and a potent immunosuppressive ability. Following adoptive transfer of low doses (5×10(5 of CII-loaded allo-tDCs, a remarkable anti-arthritic activity, improved clinical scores and histological end-points were found. Serological levels of inflammatory cytokines and anti-CII antibodies were also significantly lower in CIA mice treated with CII-pulsed allo-tDCs as compared with allo-tDCs. Moreover, treatment with allo-tDCs altered the proportion of Treg/Th17 cells. CONCLUSION: These findings suggested that allo-tDCs, especially following antigen loading, reduced the severity of CIA in a dose-dependent manner. The dampening of CIA was associated with modulated cytokine secretion, Treg/Th17 polarization and inhibition of anti-CII secretion. This study highlights the potential therapeutic utility of allo-tDCs in autoimmune arthritis and should facilitate the future design of allo-tDC immunotherapeutic strategies against RA.

  1. Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death

    Directory of Open Access Journals (Sweden)

    Abhishek D Garg

    2015-11-01

    Full Text Available The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of so-called damage-associated molecular patterns (DAMPs. The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical and clinical aspects of ICD, in an attempt to capture the essence of this clinically relevant phenomenon, and identify future challenges for this rapidly expanding field of investigation.

  2. Single-Pass, Closed-System Rapid Expansion of Lymphocyte Cultures for Adoptive Cell Therapy

    Science.gov (United States)

    Klapper, Jacob A.; Thomasian, Armen A.; Smith, Douglas M.; Gorgas, Gayle C.; Wunderlich, John R.; Smith, Franz O.; Hampson, Brian S.; Rosenberg, Steven A.; Dudley, Mark E.

    2009-01-01

    Adoptive cell therapy (ACT) for metastatic melanoma involves the ex vivo expansion and re-infusion of tumor infiltrating lymphocytes (TIL) obtained from resected specimens. With an overall objective response rate of fifty-six percent, this T-cell immunotherapy provides an appealing alternative to other therapies, including conventional therapies with lower response rates. However, there are significant regulatory and logistical concerns associated with the ex vivo activation and large scale expansion of these cells. The best current practice uses a rapid expansion protocol (REP) consisting of an ex vivo process that occurs in tissue culture flasks (T-flasks) and gas-permeable bags, utilizes OKT3 (anti-CD3 monoclonal antibody), recombinant human interleukin-2, and irradiated peripheral blood mononuclear cells to initiate rapid lymphocyte growth. A major limitation to the widespread delivery of therapy to large numbers of melanoma patients is the open system in which a REP is initiated. To address this problem, we have investigated the initiation, expansion and harvest at clinical scale of TIL in a closed-system continuous perfusion bioreactor. Each cell product met all safety criteria for patient treatment and by head-to-head comparison had a similar potency and phenotype as cells grown in control T-flasks and gas-permeable bags. However, the currently available bioreactor cassettes were limited in the total cell numbers that could be generated. This bioreactor may simplify the process of the rapid expansion of TIL under stringent regulatory conditions thereby enabling other institutions to pursue this form of ACT. PMID:19389403

  3. Prospects for adoptive immunotherapy of pancreatic cancer using chimeric antigen receptor-engineered T-cells.

    Science.gov (United States)

    Alrifai, Doraid; Sarker, Debashis; Maher, John

    2016-01-01

    Adoptive immunotherapy using chimeric antigen receptor (CAR) engineered T-cells is emerging as a powerful new approach to cancer immunotherapy. CARs are fusion molecules that couple the antibody-like binding of a native cell surface target to the delivery of a bespoke T-cell activating signal. Recent studies undertaken by several centers have demonstrated highly compelling efficacy in patients with acute and chronic B-cell malignancies. However, comparable therapeutic activity has not been achieved in solid tumors. Modern management of pancreatic ductal adenocarcinoma (PDAC) remains ineffective, reflected in the virtual equivalence of annual incidence and mortality statistics for this tumor type. Increasing evidence indicates that these tumors are recognized by the immune system, but deploy powerful evasion strategies that limit natural immune surveillance and render efforts at immunotherapy challenging. Here, we review preclinical and clinical studies that have been initiated or completed in an effort to develop CAR-based immunotherapy for PDAC. We also consider the hurdles to the effective clinical development of this exciting new therapeutic modality.

  4. Achievements and challenges of adoptive T cell therapy with tumor-infiltrating or blood-derived lymphocytes for metastatic melanoma

    DEFF Research Database (Denmark)

    Svane, Inge Marie; Verdegaal, Els M

    2014-01-01

    Adoptive cell therapy (ACT) based on autologous T cell derived either from tumor as tumor-infiltrating lymphocytes (TILs) or from peripheral blood is developing as a key area of future personalized cancer therapy. TIL-based ACT is defined as the infusion of T cells harvested from autologous fresh...... review....

  5. Human mesenchymal stem cells cultured with salivary gland biopsies adopt an epithelial phenotype.

    Science.gov (United States)

    Maria, Ola M; Tran, Simon D

    2011-06-01

    Sjogren's syndrome and radiotherapy for head and neck cancer result in severe xerostomia and irreversible salivary gland damage for which no effective treatment is currently available. Cell culture methods of primary human salivary gland epithelial cells (huSGs) are slow and cannot provide a sufficient number of cells. In addition, the majority of cultured huSGs are of a ductal phenotype and thus not fluid/saliva secretory cells. Some reports indicated that mesenchymal stem cells (MSCs) possessed the potential to differentiate into epithelial cells. To test this hypothesis with huSGs, a coculture system containing 2 chambers separated by a polyester membrane was used to study the capacity of human MSCs to adopt an epithelial phenotype when cocultured with human salivary gland biopsies. Results were that 20%-40% of cocultured MSCs expressed tight junction proteins [claudin-1 (CLDN-1), -2, -3, and -4; occludin; junctional adhesion molecule-A; and zonula occludens-1] as well as other epithelial markers [aquaporin-5, α-amylase (α-AMY), and E-cadherin], and generated a higher transepithelial electrical resistance. Electron microscopy demonstrated that these MSCs had comparable cellular structures to huSGs, such as tight junction structures and numerous secretory granules. Quantitative real time (RT)-polymerase chain reaction revealed an upregulation of several salivary genes (aquaporin-5, AMY, and CLDN-2). Moreover, the amounts of α-AMY detected in cocultured MSCs were comparable to those detected in huSGs control cultures. These data suggest that cocultured MSCs can demonstrate a temporary change into a salivary gland acinar phenotype.

  6. Adenoviral Delivery of Tumor Necrosis Factor-α and Interleukin-2 Enables Successful Adoptive Cell Therapy of Immunosuppressive Melanoma.

    Science.gov (United States)

    Siurala, Mikko; Havunen, Riikka; Saha, Dipongkor; Lumen, Dave; Airaksinen, Anu J; Tähtinen, Siri; Cervera-Carrascon, Víctor; Bramante, Simona; Parviainen, Suvi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2016-08-01

    Adoptive T-cell transfer is a promising treatment approach for metastatic cancer, but efficacy in solid tumors has only been achieved with toxic pre- and postconditioning regimens. Thus, adoptive T-cell therapies would benefit from complementary modalities that enable their full potential without excessive toxicity. We aimed to improve the efficacy and safety of adoptive T-cell transfer by using adenoviral vectors for direct delivery of immunomodulatory murine cytokines into B16.OVA melanoma tumors with concomitant T-cell receptor transgenic OT-I T-cell transfer. Armed adenoviruses expressed high local and low systemic levels of cytokine when injected into B16.OVA tumors, suggesting safety of virus-mediated cytokine delivery. Antitumor efficacy was significantly enhanced with adenoviruses coding for murine interleukin-2 (mIL-2) and tumor necrosis factor-α (mTNFα) when compared with T-cell transfer alone or viruses alone. Further improvement in efficacy was achieved with a triple combination of mIL-2, mTNFα, and OT-I T-cells. Mechanistic studies suggest that mIL-2 has an important role in activating T-cells at the tumor, while mTNFα induces chemokine expression. Furthermore, adenovirus treatments enhanced tumor-infiltration of OT-I T-cells as demonstrated by SPECT/CT imaging of (111)In-labeled cells. Our results suggest the utility of cytokine-coding adenoviruses for improving the efficacy of adoptive T-cell therapies.

  7. Adoptive cell therapy and modulation of the tumour microenvironment: new insights from ASCO 2016.

    Science.gov (United States)

    Khoja, Leila; Gyawali, Bishal

    2016-01-01

    Immuno-oncology has changed the landscape of cancer treatment in recent years. Immune checkpoint inhibitors (ICI) have shown survival advantage with long term remissions in a variety of cancers. However, there is another approach to harnessing the power of the immune system in combating cancer: the adoptive cell therapy (ACT) strategy. Although ACT is restricted to small specialized centres and has yet to deliver as much success as ICI, some important results were presented at this year's ASCO meeting. Important lessons have been learned from these studies, including the prospects and challenges ahead. In this editorial, we summarize the important studies on ACT presented at the ASCO 2016 meeting and discuss the way forward.

  8. Alloreactive natural killer cells for the treatment of acute myeloid leukemia: from stem cell transplantation to adoptive immunotherapy

    Directory of Open Access Journals (Sweden)

    Loredana eRuggeri

    2015-10-01

    Full Text Available Natural killer cells express activating and inhibitory receptors which recognize MHC class I alleles, termed Killer cell Immunoglobulin-like Receptors (KIRs. Preclinical and clinical data from haploidentical T-cell depleted stem cell transplantation have demonstrated that alloreactive KIR-L mismatched natural killer cells play a major role as effectors against acute myeloid leukemia. Outside the transplantation setting, several reports have proven the safety and feasibility of natural killer cell infusion in acute myeloid leukemia patients and, in some cases, provided evidence that transferred NK cells are functionally alloreactive and may have a role in disease control. Aim of the present work is to briefly summarize the most recent advances in the field by moving from the first preclinical and clinical demonstration of donor NK alloreactivity in the transplantation setting to the most recent attempts of exploiting the use of alloreactive NK cell infusion as a means of adoptive immunotherapy against acute myeloid leukemia. Altogether, these data highlight the pivotal role of NK cells for the development of novel immunological approaches in the clinical management of acute myeloid leukemia.

  9. Molecular Mechanisms of Cell-cell Recognition

    Institute of Scientific and Technical Information of China (English)

    WANG Jia-Huai

    2004-01-01

    Cell-cell recognition is the key for multicellular organisms to survive. This recognition critically depends on protein-protein interactions from opposing cell surfaces. Recent structural investigations reveal unique features of these cell surface receptors and how they interact. These interactions are specific, but usually relatively weak, with more hydrophilic forces involved in binding. The receptors appear to have specialized ways to present their key interacting elements for ligand-binding from the cell surface. Cell-cell contacts are multivalent. A large group of cell surface molecules are engaged in interactions. Characteristic weak interactions make possible for each individual molecule pair within the group to constantly associate-dissociate-reassociate, such that the cell-cell recognition becomes a dynamic process. The immunological synapse is a good example for immune receptors to be orchestrated in performing immunological function in a collective fashion.

  10. Molecular mechanisms controlling the cell cycle in embryonic stem cells.

    Science.gov (United States)

    Abdelalim, Essam M

    2013-12-01

    Embryonic stem (ES) cells are originated from the inner cell mass of a blastocyst stage embryo. They can proliferate indefinitely, maintain an undifferentiated state (self-renewal), and differentiate into any cell type (pluripotency). ES cells have an unusual cell cycle structure, consists mainly of S phase cells, a short G1 phase and absence of G1/S checkpoint. Cell division and cell cycle progression are controlled by mechanisms ensuring the accurate transmission of genetic information from generation to generation. Therefore, control of cell cycle is a complicated process, involving several signaling pathways. Although great progress has been made on the molecular mechanisms involved in the regulation of ES cell cycle, many regulatory mechanisms remain unknown. This review summarizes the current knowledge about the molecular mechanisms regulating the cell cycle of ES cells and describes the relationship existing between cell cycle progression and the self-renewal.

  11. Ctla-4 blockade plus adoptive T-cell transfer promotes optimal melanoma immunity in mice.

    Science.gov (United States)

    Mahvi, David A; Meyers, Justin V; Tatar, Andrew J; Contreras, Amanda; Suresh, Marulasiddappa; Leverson, Glen E; Sen, Siddhartha; Cho, Clifford S

    2015-01-01

    Immunotherapeutic approaches to the treatment of advanced melanoma have relied on strategies that augment the responsiveness of endogenous tumor-specific T-cell populations [eg, cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade-mediated checkpoint inhibition] or introduce exogenously prepared tumor-specific T-cell populations [eg, adoptive cell transfer (ACT)]. Although both approaches have shown considerable promise, response rates to these therapies remain suboptimal. We hypothesized that a combinatorial approach to immunotherapy using both CTLA-4 blockade and nonlymphodepletional ACT could offer additive therapeutic benefit. C57BL/6 mice were inoculated with syngeneic B16F10 melanoma tumors transfected to express low levels of the lymphocytic choriomeningitis virus peptide GP33 (B16GP33), and treated with no immunotherapy, CTLA-4 blockade, ACT, or combination immunotherapy of CTLA-4 blockade with ACT. Combination immunotherapy resulted in optimal control of B16GP33 melanoma tumors. Combination immunotherapy promoted a stronger local immune response reflected by enhanced tumor-infiltrating lymphocyte populations, and a stronger systemic immune responses reflected by more potent tumor antigen-specific T-cell activity in splenocytes. In addition, whereas both CTLA-4 blockade and combination immunotherapy were able to promote long-term immunity against B16GP33 tumors, only combination immunotherapy was capable of promoting immunity against parental B16F10 tumors as well. Our findings suggest that a combinatorial approach using CTLA-4 blockade with nonlymphodepletional ACT may promote additive endogenous and exogenous T-cell activities that enable greater therapeutic efficacy in the treatment of melanoma.

  12. Sponge cell culture? A molecular identification method for sponge cells

    NARCIS (Netherlands)

    Sipkema, D.; Heilig, G.H.J.; Akkermans, A.D.L.; Osinga, R.; Tramper, J.; Wijffels, R.H.

    2003-01-01

    Dissociated sponge cells are easily confused with unicellular organisms. This has been an obstacle in the development of sponge-cell lines. We developed a molecular detection method to identify cells of the sponge Dysidea avara in dissociated cell cultures. The 18S ribosomal RNA gene from a Dysidea

  13. Human molecular cytogenetics: From cells to nucleotides.

    Science.gov (United States)

    Riegel, Mariluce

    2014-03-01

    The field of cytogenetics has focused on studying the number, structure, function and origin of chromosomal abnormalities and the evolution of chromosomes. The development of fluorescent molecules that either directly or via an intermediate molecule bind to DNA has led to the development of fluorescent in situ hybridization (FISH), a technology linking cytogenetics to molecular genetics. This technique has a wide range of applications that increased the dimension of chromosome analysis. The field of cytogenetics is particularly important for medical diagnostics and research as well as for gene ordering and mapping. Furthermore, the increased application of molecular biology techniques, such as array-based technologies, has led to improved resolution, extending the recognized range of microdeletion/microduplication syndromes and genomic disorders. In adopting these newly expanded methods, cytogeneticists have used a range of technologies to study the association between visible chromosome rearrangements and defects at the single nucleotide level. Overall, molecular cytogenetic techniques offer a remarkable number of potential applications, ranging from physical mapping to clinical and evolutionary studies, making a powerful and informative complement to other molecular and genomic approaches. This manuscript does not present a detailed history of the development of molecular cytogenetics; however, references to historical reviews and experiments have been provided whenever possible. Herein, the basic principles of molecular cytogenetics, the technologies used to identify chromosomal rearrangements and copy number changes, and the applications for cytogenetics in biomedical diagnosis and research are presented and discussed.

  14. Human molecular cytogenetics: from cells to nucleotides

    Directory of Open Access Journals (Sweden)

    Mariluce Riegel

    2014-01-01

    Full Text Available The field of cytogenetics has focused on studying the number, structure, function and origin of chromosomal abnormalities and the evolution of chromosomes. The development of fluorescent molecules that either directly or via an intermediate molecule bind to DNA has led to the development of fluorescent in situ hybridization (FISH, a technology linking cytogenetics to molecular genetics. This technique has a wide range of applications that increased the dimension of chromosome analysis. The field of cytogenetics is particularly important for medical diagnostics and research as well as for gene ordering and mapping. Furthermore, the increased application of molecular biology techniques, such as array-based technologies, has led to improved resolution, extending the recognized range of microdeletion/microduplication syndromes and genomic disorders. In adopting these newly expanded methods, cytogeneticists have used a range of technologies to study the association between visible chromosome rearrangements and defects at the single nucleotide level. Overall, molecular cytogenetic techniques offer a remarkable number of potential applications, ranging from physical mapping to clinical and evolutionary studies, making a powerful and informative complement to other molecular and genomic approaches. This manuscript does not present a detailed history of the development of molecular cytogenetics; however, references to historical reviews and experiments have been provided whenever possible. Herein, the basic principles of molecular cytogenetics, the technologies used to identify chromosomal rearrangements and copy number changes, and the applications for cytogenetics in biomedical diagnosis and research are presented and discussed.

  15. Cetuximab intensifies the ADCC activity of adoptive NK cells in a nude mouse colorectal cancer xenograft model

    Science.gov (United States)

    Chen, Shanshan; Li, Xuechun; Chen, Rongming; Yin, Mingang; Zheng, Qiuhong

    2016-01-01

    Natural killer (NK) cells, discovered ~40 years ago, are believed to be the most effective cytotoxic lymphocytes to counteract cancer; however, adoptive NK cell therapy in vivo has encountered certain limitations, including a lack of specificity. The drug cetuximab can mediate antibody dependent cell mediated cytotoxicity (ADCC) activity through NK cells in vivo, and has been approved for the first-line treatment of epidermal growth factor receptor (EGFR)-positive metastatic colorectal cancer (CRC). However, the ADCC activity of adoptive NK cells, induced by cetuximab in a nude mouse CRC xenograft model, has not been previously reported. The aim of the present study was to explore the ADCC activity of cetuximab combined with adoptive NK cells in CRC xenograft models with various EGFR expressions. The nude mouse xenograft models were established by subcutaneously injecting LOVO or SW620 cells. The mice were then randomly divided into 6 groups: Phosphate-buffered saline, cetuximab, human immunoglobulin G (hIgG), NK cells, hIgG plus NK cells and cetuximab plus NK cells. The ADCC antitumor activity was evaluated in these CRC models. The results indicated that the cetuximab plus NK cells group showed the greatest tumor inhibition effect compared with the NK cells group in LOVO xenograft tumor models with positive EGFR expression. However, the combination of cetuximab and NK cells did not show a stronger tumor inhibitory effect against the SW620 xenograft tumor models compared with the efficiency of NK cells. In conclusion, cetuximab could intensify the ADCC antitumor activity of adoptive NK cells towards CRC with an increased EGFR expression. The combination of cetuximab and NK cells may be a potential immunotherapy for metastatic CRC patients with positive EGFR expression. PMID:27602116

  16. Molecular Mechanisms of HTLV-1 Cell-to-Cell Transmission

    Directory of Open Access Journals (Sweden)

    Christine Gross

    2016-03-01

    Full Text Available The tumorvirus human T-cell lymphotropic virus type 1 (HTLV-1, a member of the delta-retrovirus family, is transmitted via cell-containing body fluids such as blood products, semen, and breast milk. In vivo, HTLV-1 preferentially infects CD4+ T-cells, and to a lesser extent, CD8+ T-cells, dendritic cells, and monocytes. Efficient infection of CD4+ T-cells requires cell-cell contacts while cell-free virus transmission is inefficient. Two types of cell-cell contacts have been described to be critical for HTLV-1 transmission, tight junctions and cellular conduits. Further, two non-exclusive mechanisms of virus transmission at cell-cell contacts have been proposed: (1 polarized budding of HTLV-1 into synaptic clefts; and (2 cell surface transfer of viral biofilms at virological synapses. In contrast to CD4+ T-cells, dendritic cells can be infected cell-free and, to a greater extent, via viral biofilms in vitro. Cell-to-cell transmission of HTLV-1 requires a coordinated action of steps in the virus infectious cycle with events in the cell-cell adhesion process; therefore, virus propagation from cell-to-cell depends on specific interactions between cellular and viral proteins. Here, we review the molecular mechanisms of HTLV-1 transmission with a focus on the HTLV-1-encoded proteins Tax and p8, their impact on host cell factors mediating cell-cell contacts, cytoskeletal remodeling, and thus, virus propagation.

  17. Dictyostelium discoideum: Molecular approaches to cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Spudich, J.A.

    1987-01-01

    The central point of this book is to present Dictyostelium as a valuable eukaryotic organism for those interested in molecular studies that require a combined biochemical, structural, and genetic approach. The book is not meant to be a comprehensive compilation of all methods involving Dictyostelium, but instead is a selective set of chapters that demonstrates the utility of the organism for molecular approaches to interesting cell biological problems.

  18. Stable activity of diabetogenic cells with age in NOD mice: dynamics of reconstitution and adoptive diabetes transfer in immunocompromised mice.

    Science.gov (United States)

    Kaminitz, Ayelet; Mizrahi, Keren; Ash, Shifra; Ben-Nun, Avi; Askenasy, Nadir

    2014-07-01

    The non-obese diabetic (NOD) mouse is a prevalent disease model of type 1 diabetes. Immune aberrations that cause and propagate autoimmune insulitis in these mice are being continually debated, with evidence supporting both dominance of effector cells and insufficiency of suppressor mechanisms. In this study we assessed the behaviour of NOD lymphocytes under extreme expansion conditions using adoptive transfer into immunocompromised NOD.SCID (severe combined immunodeficiency) mice. CD4(+)  CD25(+) T cells do not cause islet inflammation, whereas splenocytes and CD4(+)  CD25(-) T cells induce pancreatic inflammation and hyperglycaemia in 80-100% of the NOD.SCID recipients. Adoptively transferred effector T cells migrate to the lymphoid organs and pancreas, proliferate, are activated in the target organ in situ and initiate inflammatory insulitis. Reconstitution of all components of the CD4(+) subset emphasizes the plastic capacity of different cell types to adopt effector and suppressor phenotypes. Furthermore, similar immune profiles of diabetic and euglycaemic NOD.SCID recipients demonstrate dissociation between fractional expression of CD25 and FoxP3 and the severity of insulitis. There were no evident and consistent differences in diabetogenic activity and immune reconstituting activity of T cells from pre-diabetic (11 weeks) and new onset diabetic NOD females. Similarities in immune phenotypes and variable distribution of effector and suppressor subsets in various stages of inflammation commend caution in interpretation of quantitative and qualitative aberrations as markers of disease severity in adoptive transfer experiments.

  19. Adoptive immunotherapy with Cl-IB-MECA-treated CD8+ T cells reduces melanoma growth in mice.

    Directory of Open Access Journals (Sweden)

    Antonella Montinaro

    Full Text Available Cl-IB-MECA is a selective A3 adenosine receptor agonist, which plays a crucial role in limiting tumor progression. In mice, Cl-IB-MECA administration enhances the anti-tumor T cell-mediated response. However, little is known about the activity of Cl-IB-MECA on CD8+ T cells. The aim of this study was to investigate the effect of ex vivo Cl-IB-MECA treatment of CD8+ T cells, adoptively transferred in melanoma-bearing mice. Adoptive transfer of Cl-IB-MECA-treated CD8+ T cells or a single administration of Cl-IB-MECA (20 ng/mouse inhibited tumor growth compared with the control group and significantly improved mouse survival. This was associated with the release of Th1-type cytokines and a greater influx of mature Langerin+ dendritic cells (LCs into the tumor microenvironment. CD8+ T cells treated with Cl-IB-MECA released TNF-α which plays a critical role in the therapeutic efficacy of these cells when injected to mice. Indeed, neutralization of TNF-α by a specific monoclonal Ab significantly blocked the anti-tumor activity of Cl-IB-MECA-treated T cells. This was due to the reduction in levels of cytotoxic cytokines and the presence of fewer LCs. In conclusion, these studies reveal that ex vivo treatment with Cl-IB-MECA improves CD8+ T cell adoptive immunotherapy for melanoma in a TNF-α-dependent manner.

  20. Development of allogeneic NK cell adoptive transfer therapy in metastatic melanoma patients: in vitro preclinical optimization studies.

    Directory of Open Access Journals (Sweden)

    Michal J Besser

    Full Text Available Natural killer (NK cells have long been considered as potential agents for adoptive cell therapy for solid cancer patients. Until today most studies utilized autologous NK cells and yielded disappointing results. Here we analyze various modular strategies to employ allogeneic NK cells for adoptive cell transfer, including donor-recipient HLA-C mismatching, selective activation and induction of melanoma-recognizing lysis receptors, and co-administration of antibodies to elicit antibody-dependent cell cytotoxicity (ADCC. We show that NK cell activation and induction of the relevant lysis receptors, as well as co-administration of antibodies yield substantial anti-cancer effects, which are functionally superior to HLA-C mismatching. Combination of the various strategies yielded improved effects. In addition, we developed various clinically-compatible ex vivo expansion protocols that were optimized according to fold expansion, purity and expression of lysis receptors. The main advantages of employing allogeneic NK cells are accessibility, the ability to use a single donor for many patients, combination with various strategies associated with the mechanism of action, e.g. antibodies and specific activation, as well as donor selection according to HLA or CD16 genotypes. This study rationalizes a clinical trial that combines adoptive transfer of highly potent allogeneic NK cells and antibody therapy.

  1. Homing of radiolabelled recombinant interleukin-2 activated natural killer cells and their efficacy in adoptive immunotherapy against murine fibrosarcoma

    Indian Academy of Sciences (India)

    Anuradha Rai; Ashim K Chakravarty

    2007-12-01

    Natural killer (NK) cells are spontaneously cytotoxic against tumour target cells. Their number was found to be four times more in the spleen of tumour-bearing Swiss albino mice. After activation with recombinant interleukin-2 (rIL-2), NK cells were tested and found to seek out the tumour site when injected intravenously in tumour-bearing mice. Their potential for fighting tumours in vivo was further seen following adoptive transfer of rIL-2 activated NK (A-NK) cells in tumour-bearing mice. After surgical removal of tumour load, adoptive transfer of A-NK cells inhibited tumour recurrence in 92.3% cases, thereby suggesting the use of this protocol for therapeutic purposes to obtain a better outcome.

  2. Ex vivo expansion of human T cells for adoptive immunotherapy using the novel Xeno-free CTS Immune Cell Serum Replacement.

    Science.gov (United States)

    Smith, Corey; Økern, Grethe; Rehan, Sweera; Beagley, Leone; Lee, Sau K; Aarvak, Tanja; Schjetne, Karoline W; Khanna, Rajiv

    2015-01-01

    The manufacture of clinical grade cellular products for adoptive immunotherapy requires ex vivo culture and expansion of human T cells. One of the key components in manufacturing of T cell therapies is human serum (HS) or fetal bovine serum (FBS), which can potentially expose immunotherapy recipient to adventitious infectious pathogens and are thus considered as non-cGMP compliant for adoptive therapy. Here we describe a novel xeno-free serum replacement (SR) with defined components that can be reproducibly used for the production of clinical grade T-cell therapies in combination with several different cell culture media. Dynabeads CD3/CD28 Cell Therapy System (CTS)-activated or antigen-specific T cells expanded using the xeno-free SR, CTS Immune Cell SR, showed comparable growth kinetics observed with cell culture media supplemented with HS or FBS. Importantly the xeno-free SR supplemented medium supported the optimal expansion of T cells specific for subdominant tumour-associated antigens and promoted expansion of T cells with central memory T-cell phenotype, which is favourable for in vivo survival and persistence following adoptive transfer. Furthermore, T cells expanded using xeno-free SR medium were highly amenable to lentivirus-mediated gene transduction for potential application for gene-modified T cells. Taken together, the CTS Immune Cell SR provides a novel platform strategy for the manufacture of clinical grade adoptive cellular therapies.

  3. Blockade of PD-1/PD-L1 promotes adoptive T-cell immunotherapy in a tolerogenic environment.

    Directory of Open Access Journals (Sweden)

    Stephen J P Blake

    Full Text Available Adoptive cellular immunotherapy using in vitro expanded CD8+ T cells shows promise for tumour immunotherapy but is limited by eventual loss of function of the transferred T cells through factors that likely include inactivation by tolerogenic dendritic cells (DC. The co-inhibitory receptor programmed death-1 (PD-1, in addition to controlling T-cell responsiveness at effector sites in malignancies and chronic viral diseases is an important modulator of dendritic cell-induced tolerance in naive T cell populations. The most potent therapeutic capacity amongst CD8+ T cells appears to lie within Tcm or Tcm-like cells but memory T cells express elevated levels of PD-1. Based on established trafficking patterns for Tcm it is likely Tcm-like cells interact with lymphoid-tissue DC that present tumour-derived antigens and may be inherently tolerogenic to develop therapeutic effector function. As little is understood of the effect of PD-1/PD-L1 blockade on Tcm-like CD8+ T cells, particularly in relation to inactivation by DC, we explored the effects of PD-1/PD-L1 blockade in a mouse model where resting DC tolerise effector and memory CD8+ T cells. Blockade of PD-1/PD-L1 promoted effector differentiation of adoptively-transferred Tcm-phenotype cells interacting with tolerising DC. In tumour-bearing mice with tolerising DC, effector activity was increased in both lymphoid tissues and the tumour-site and anti-tumour activity was promoted. Our findings suggest PD-1/PD-L1 blockade may be a useful adjunct for adoptive immunotherapy by promoting effector differentiation in the host of transferred Tcm-like cells.

  4. Can molecular cell biology explain chromosome motions?

    Directory of Open Access Journals (Sweden)

    Gagliardi L

    2011-05-01

    Full Text Available Abstract Background Mitotic chromosome motions have recently been correlated with electrostatic forces, but a lingering "molecular cell biology" paradigm persists, proposing binding and release proteins or molecular geometries for force generation. Results Pole-facing kinetochore plates manifest positive charges and interact with negatively charged microtubule ends providing the motive force for poleward chromosome motions by classical electrostatics. This conceptual scheme explains dynamic tracking/coupling of kinetochores to microtubules and the simultaneous depolymerization of kinetochore microtubules as poleward force is generated. Conclusion We question here why cells would prefer complex molecular mechanisms to move chromosomes when direct electrostatic interactions between known bound charge distributions can accomplish the same task much more simply.

  5. Adoptive Transfer of Treg Cells Combined with Mesenchymal Stem Cells Facilitates Repopulation of Endogenous Treg Cells in a Murine Acute GVHD Model.

    Science.gov (United States)

    Lee, Eun-Sol; Lim, Jung-Yeon; Im, Keon-Il; Kim, Nayoun; Nam, Young-Sun; Jeon, Young-Woo; Cho, Seok-Goo

    2015-01-01

    Therapeutic effects of combined cell therapy with mesenchymal stem cells (MSCs) and regulatory T cells (Treg cells) have recently been studied in acute graft-versus-host-disease (aGVHD) models. However, the underlying, seemingly synergistic mechanism behind combined cell therapy has not been determined. We investigated the origin of Foxp3+ Treg cells and interleukin 17 (IL-17+) cells in recipients following allogeneic bone marrow transplantation (allo-BMT) to identify the immunological effects of combined cell therapy. Treg cells were generated from eGFP-expressing C57BL/6 mice (Tregegfp cells) to distinguish the transferred Treg cells; recipients were then examined at different time points after BMT. Systemic infusion of MSCs and Treg cells improved survival and GVHD scores, effectively downregulating pro-inflammatory Th×and Th17 cells. These therapeutic effects of combined cell therapy resulted in an increased Foxp3+ Treg cell population. Compared to single cell therapy, adoptively transferred Tregegfp cells only showed prolonged survival in the combined cell therapy group on day 21 after allogeneic BMT. In addition, Foxp3+ Treg cells, generated endogenously from recipients, significantly increased. Significantly higher levels of Tregegfp cells were also detected in aGVHD target organs in the combined cell therapy group compared to the Treg cells group. Thus, our data indicate that MSCs may induce the long-term survival of transferred Treg cells, particularly in aGVHD target organs, and may increase the repopulation of endogenous Treg cells in recipients after BMT. Together, these results support the potential of combined cell therapy using MSCs and Treg cells for preventing aGVHD.

  6. Near-infrared imaging of adoptive immune cell therapy in breast cancer model using cell membrane labeling.

    Directory of Open Access Journals (Sweden)

    Fatma M Youniss

    Full Text Available The overall objective of this study is to non-invasively image and assess tumor targeting and retention of directly labeled T-lymphocytes following their adoptive transfer in mice. T-lymphocytes obtained from draining lymph nodes of 4T1 (murine breast cancer cell sensitized BALB/C mice were activated in-vitro with Bryostatin/Ionomycin for 18 hours, and were grown in the presence of Interleukin-2 for 6 days. T-lymphocytes were then directly labeled with 1,1-dioctadecyltetramethyl indotricarbocyanine Iodide (DiR, a lipophilic near infrared fluorescent dye that labels the cell membrane. Assays for viability, proliferation, and function of labeled T-lymphocytes showed that they were unaffected by DiR labeling. The DiR labeled cells were injected via tail vein in mice bearing 4T1 tumors in the flank. In some cases labeled 4T1 specific T-lymphocytes were injected a week before 4T1 tumor cell implantation. Multi-spectral in vivo fluorescence imaging was done to subtract the autofluorescence and isolate the near infrared signal carried by the T-lymphocytes. In recipient mice with established 4T1 tumors, labeled 4T1 specific T-lymphocytes showed marked tumor retention, which peaked 6 days post infusion and persisted at the tumor site for up to 3 weeks. When 4T1 tumor cells were implanted 1-week post-infusion of labeled T-lymphocytes, T-lymphocytes responded to the immunologic challenge and accumulated at the site of 4T1 cell implantation within two hours and the signal persisted for 2 more weeks. Tumor accumulation of labeled 4T1 specific T-lymphocytes was absent in mice bearing Meth A sarcoma tumors. When lysate of 4T1 specific labeled T-lymphocytes was injected into 4T1 tumor bearing mice the near infrared signal was not detected at the tumor site. In conclusion, our validated results confirm that the near infrared signal detected at the tumor site represents the DiR labeled 4T1 specific viable T-lymphocytes and their response to immunologic challenge

  7. Adoptive Transfer of Engineered Rhesus Simian Immunodeficiency Virus-Specific CD8+ T Cells Reduces the Number of Transmitted/Founder Viruses Established in Rhesus Macaques.

    Science.gov (United States)

    Ayala, Victor I; Trivett, Matthew T; Barsov, Eugene V; Jain, Sumiti; Piatak, Michael; Trubey, Charles M; Alvord, W Gregory; Chertova, Elena; Roser, James D; Smedley, Jeremy; Komin, Alexander; Keele, Brandon F; Ohlen, Claes; Ott, David E

    2016-11-01

    AIDS virus infections are rarely controlled by cell-mediated immunity, in part due to viral immune evasion and immunodeficiency resulting from CD4(+) T-cell infection. One likely aspect of this failure is that antiviral cellular immune responses are either absent or present at low levels during the initial establishment of infection. To test whether an extensive, timely, and effective response could reduce the establishment of infection from a high-dose inoculum, we adoptively transferred large numbers of T cells that were molecularly engineered with anti-simian immunodeficiency virus (anti-SIV) activity into rhesus macaques 3 days following an intrarectal SIV inoculation. To measure in vivo antiviral activity, we assessed the number of viruses transmitted using SIVmac239X, a molecularly tagged viral stock containing 10 genotypic variants, at a dose calculated to transmit 12 founder viruses. Single-genome sequencing of plasma virus revealed that the two animals receiving T cells expressing SIV-specific T-cell receptors (TCRs) had significantly fewer viral genotypes than the two control animals receiving non-SIV-specific T cells (means of 4.0 versus 7.5 transmitted viral genotypes; P = 0.044). Accounting for the likelihood of transmission of multiple viruses of a particular genotype, the calculated means of the total number of founder viruses transmitted were 4.5 and 14.5 in the experimental and control groups, respectively (P = 0.021). Thus, a large antiviral T-cell response timed with virus exposure can limit viral transmission. The presence of strong, preexisting T-cell responses, including those induced by vaccines, might help prevent the establishment of infection at the lower-exposure doses in humans that typically transmit only a single virus.

  8. From molecular networks to qualitative cell behavior.

    Science.gov (United States)

    Gagneur, Julien; Casari, Georg

    2005-03-21

    Adaptation and behavior are characteristics of life which are fundamentally dynamic. If we want to model the living cell we have to describe it as a dynamic system. Typical dynamic models are based on quantitative differential equations requiring very detailed kinetic knowledge. Alternative modeling techniques for less fine-grained information are better suited to available functional genomics data. As such, constraint-based techniques and qualitative modeling have proven themselves to be valid approaches in cell biology. These approaches offer formal support to check the consistency of molecular networks against phenotypic observations in the light of dynamic systems.

  9. Molecular signal transduction in vascular cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Apoptosis is a form of genetically programmed cell death, which plays a key role in regulation of cellularity in a variety of tissue and cell types including the cardiovascular tissues. Under both physiological and pathophysiological conditions, various biophysiological and biochemical factors, including mechanical forces, reactive oxygen and nitrogen species, cytokines, growth factors, oxidized lipoproteins, etc., may influence apoptosis of vascular cells. The Fas/Fas ligand/caspase death-signaling pathway, Bcl-2 protein family/mitochondria, the tumor suppressive gene p53, and the proto-oncogene c-myc may be activated in atherosclerotic lesions, and mediates vascular apoptosis during the development of atherosclerosis. Abnormal expression and dysfunction of these apoptosis-regulating genes may attenuate or accelerate vascular cell apoptosis and affect the integrity and stability of atherosclerotic plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of atherosclerosis and its major complication, the acute vascular syndromes.

  10. Hymenolepis nana: adoptive transfer of protective immunity and delayed type hypersensitivity response with mesenteric lymph node cells in mice.

    Science.gov (United States)

    Asano, K; Muramatsu, K; Okamoto, K

    1991-01-01

    A marked degree of footpad swelling was observed in BALB/c mice infected with Hymenolepis nana eggs, when soluble egg antigen was injected into their footpads 4 to 21 days after the egg infection, indicating delayed type hypersensitivity responses in infected mice. Adoptive transfer with mesenteric lymph node cells from donor mice (BALB/c strain; +/+) infected with eggs 4 days before cell collection could confer this hypersensitivity to recipient nude mice (BALB/c strain; nu/nu). These mesenteric lymph node cells were then divided into two fractions, blast-enriched and blast-depleted cells, by density gradient centrifugation with Percoll. The recipients intravenously injected with the blast-depleted cell fraction showed a marked increase in footpad thickness, whereas the intravenous transfer of the blast-enriched cell fraction resulted in an insignificant increase in footpad thickness. The transfer of the blast-enriched cell fraction, but not of the blast-depleted cell fraction, conferred a strong adoptive immunity on syngeneic recipient nude mice, when the immunity transferred was assessed by examining cysticercoids developed in the intestinal villi on Day 4 of challenge infection. The lack of delayed type hypersensitivity response in mice that received the blast-enriched cell population was not due to a lack of the capacity of the cells to induce the response, because the cells were capable of inducing a significant increase in thickness of footpads of normal mice when these cells were locally injected into the footpad together with soluble egg antigen.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Generation of autologous tumor-specific T cells for adoptive transfer based on vaccination, in vitro restimulation and CD3/CD28 dynabead-induced T cell expansion

    DEFF Research Database (Denmark)

    Brimnes, Marie Klinge; Gang, Anne Ortved; Donia, Marco

    2012-01-01

    Adoptive cell transfer (ACT) of in vitro expanded autologous tumor-infiltrating lymphocytes (TIL) has been shown to exert therapeutic efficacy in melanoma patients. We aimed to develop an ACT protocol based on tumor-specific T cells isolated from peripheral blood and in vitro expanded by Dynabead...

  12. Single molecular force across single integrins dictates cell spreading.

    Science.gov (United States)

    Chowdhury, Farhan; Li, Isaac T S; Leslie, Benjamin J; Doğanay, Sultan; Singh, Rishi; Wang, Xuefeng; Seong, Jihye; Lee, Sang-Hak; Park, Seongjin; Wang, Ning; Ha, Taekjip

    2015-10-01

    Cells' ability to sense and interpret mechanical signals from the extracellular milieu modulates the degree of cell spreading. Yet how cells detect such signals and activate downstream signaling at the molecular level remain elusive. Herein, we utilize tension gauge tether (TGT) platform to investigate the underlying molecular mechanism of cell spreading. Our data from both differentiated cells of cancerous and non-cancerous origin show that for the same stiff underlying glass substrates and for same ligand density it is the molecular forces across single integrins that ultimately determine cell spreading responses. Furthermore, by decoupling molecular stiffness and molecular tension we demonstrate that molecular stiffness has little influence on cell spreading. Our data provide strong evidence that links molecular forces at the cell-substrate interface to the degree of cell spreading.

  13. Activation of "eclipsed" lymphoid cells from advanced tumor-bearing mice through adoptive transfer to sublethally irradiated syngeneic hosts.

    Science.gov (United States)

    Youn, J K; Le Francois, D; Hue, G; Santillana, M; Barski, G

    1975-10-15

    Immunologically inactive or "eclipsed" lymphoid cells from advanced tumor-bearing mice were investigated following their adoptive transfer to irradiated syngeneic hosts. Experiments were performed with two syngeneic tumor-host system: the T5-BALB/c tumor line chronically infected with a low-leukemogenic Rauscher virus variant and the TM1-C3H tumor line developed from a spontaneous C3H/He mouse mammary tumor. In confirmation of our previous data, peritoneal cells (PC) from advanced tumor-bearing mice (EPC) appeared to have lost any capacity to inhibit specifically the growth of corresponding tumor target cells in vitro colony inhibition (CI) tests, whereas PC from immunized mice (IPC) were perfectly active. When these EPC were adoptively transferred by intraperitoneal inoculation into sublethally irradiated (450 R) syngeneic mice in association with respective tumor extracts (TE), the PC from such recipient mice, taken 5 to 13 days later, were nearly as active in in vitro CI tests as were PC from parallel IPC-recipient mice. For this recovery of specific immunological activity following the adoptive transfer of EPC the adjunction of the TE and irradiation of the recipient animals seem important and may be necessary. On the other hand, no specific immunological activity was seen in PC from irradiated mice to which PC from normal mice had been transferred with TE. In addition to the in vitro results, an effect of adoptive transfer of EPC (retardation of tumor growth) was also observed in vivo. It is concluded that the "eclipsed" immunologically inactive state of the EPC in mice bearing advanced tumor is not irreversible and that activation of these cells can occur in vivo under certain conditions helped by the presence of tumor-specific antigenic stimulus.

  14. Severe Developmental B Lymphopoietic Defects in Foxp3-Deficient Mice are Refractory to Adoptive Regulatory T Cell Therapy.

    Science.gov (United States)

    Riewaldt, Julia; Düber, Sandra; Boernert, Marie; Krey, Martina; Dembinski, Marcin; Weiss, Siegfried; Garbe, Annette I; Kretschmer, Karsten

    2012-01-01

    The role of Foxp3-expressing regulatory T (T(reg)) cells in tolerance and autoimmunity is well-established. However, although of considerable clinical interest, the role of T(reg) cells in the regulation of hematopoietic homeostasis remains poorly understood. Thus, we analysed B and T lymphopoiesis in the scurfy (Sf) mouse model of T(reg) cell deficiency. In these experiments, the near-complete block of B lymphopoiesis in the BM of adolescent Sf mice was attributed to autoimmune T cells. We could exclude a constitutive lympho-hematopoietic defect or a B cell-intrinsic function of Foxp3. Efficient B cell development in the BM early in ontogeny and pronounced extramedullary B lymphopoietic activity resulted in a peripheral pool of mature B cells in adolescent Sf mice. However, marginal zone B and B-1a cells were absent throughout ontogeny. Developmental B lymphopoietic defects largely correlated with defective thymopoiesis. Importantly, neonatal adoptive T(reg) cell therapy suppressed exacerbated production of inflammatory cytokines and restored thymopoiesis but was ineffective in recovering defective B lymphopoiesis, probably due to a failure to compensate production of stroma cell-derived IL-7 and CXCL12. Our observations on autoimmune-mediated incapacitation of the BM environment in Foxp3-deficient mice will have direct implications for the rational design of BM transplantation protocols for patients with severe genetic deficiencies in functional Foxp3(+) T(reg) cells.

  15. Bimodal ex vivo expansion of T cells from patients with head and neck squamous cell carcinoma: a prerequisite for adoptive cell transfer

    DEFF Research Database (Denmark)

    Junker, Niels; Wenandy, Lynn; Dombernowsky, Sarah Louise;

    2011-01-01

    Abstract Background aims. Adoptive transfer of tumor-infiltrating lymphocytes (TIL) has proven effective in metastatic melanoma and should therefore be explored in other types of cancer. The aim of this study was to examine the feasibility of potentially expanding clinically relevant quantities...... tumors in high-dose interleukin (IL)-2. Secondly, selected bulk cultures were rapidly expanded using anti-CD3 antibody, feeder cells and high-dose IL-2. T-cell subsets were phenotypically characterized using flow cytometry. T-cell receptor (TCR) clonotype mapping was applied to examine clonotype dynamics....... Rapid expansions generated up to 3500-fold expansion of selected TIL cultures within 17 days. The cultures mainly consisted of T-effector memory cells, with varying distributions of CD8(+) and CD4(+) subtypes both among cultures and patients. TCR clonotype mapping demonstrated oligoclonal expanded...

  16. Muscle side population cells from dystrophic or injured muscle adopt a fibro-adipogenic fate.

    Directory of Open Access Journals (Sweden)

    Christopher M Penton

    Full Text Available Muscle side population (SP cells are rare multipotent stem cells that can participate in myogenesis and muscle regeneration upon transplantation. While they have been primarily studied for the development of cell-based therapies for Duchenne muscular dystrophy, little is known regarding their non-muscle lineage choices or whether the dystrophic muscle environment affects their ability to repair muscle. Unfortunately, the study of muscle SP cells has been challenged by their low abundance and the absence of specific SP cell markers. To address these issues, we developed culture conditions for the propagation and spontaneous multi-lineage differentiation of muscle SP cells. Using this approach, we show that SP cells from wild type muscle robustly differentiate into satellite cells and form myotubes without requiring co-culture with myogenic cells. Furthermore, this myogenic activity is associated with SP cells negative for immune (CD45 and vascular (CD31 markers but positive for Pax7, Sca1, and the mesenchymal progenitor marker PDGFRα. Additionally, our studies revealed that SP cells isolated from dystrophic or cardiotoxin-injured muscle fail to undergo myogenesis. Instead, these SP cells rapidly expand giving rise to fibroblast and adipocyte progenitors (FAPs and to their differentiated progeny, fibroblasts and adipocytes. Our findings indicate that muscle damage affects the lineage choices of muscle SP cells, promoting their differentiation along fibro-adipogenic lineages while inhibiting myogenesis. These results have implications for a possible role of muscle SP cells in fibrosis and fat deposition in muscular dystrophy. In addition, our studies provide a useful in vitro system to analyze SP cell biology in both normal and pathological conditions.

  17. Immunoenhancing properties of the anti-tumor effects of adoptively transferred T cells with chemotherapeutic cyclophosphamide by co-administration of bone marrow cells

    Directory of Open Access Journals (Sweden)

    Mohamed L. Salem

    2015-10-01

    Full Text Available In this study we aimed to determine the anti-tumor efficacy of co-treatment of adoptively transferred T cells with bone marrow either harvested from naïve mice or G-CSF activated after treatment with the anti-cancer drug cyclophosphamide (CTX as a source enriched in stem cells. CTX-treated Swiss Albino (CD-1 mice were injected with 2 × 105 Ehrlich ascetic carcinoma (EAC cell line and then adoptively transferred with in vitro co-activated T cells with or without bone marrow one day post CTX treatment. All mice were vaccinated with tumor lysate and Hiltonol®. The results showed that co-transfer of activated T cells with bone marrow provided the highest antitumor effect and induced marked increase in numbers of splenocytes, leucocytes and bone marrow cells. Interestingly, T cells derived from EAC tumor-bearing host induced higher effects than those from normal mice. In sum, our data suggest that combination of CTX and activated transferred T cells with bone marrow induces proliferation and expansion of immune cells, which are functional and can be exploited in vivo to foster more effective antitumor adoptive immunotherapy strategies.

  18. Molecular regulation of plant cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  19. Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS prodigy.

    Science.gov (United States)

    Mock, Ulrike; Nickolay, Lauren; Philip, Brian; Cheung, Gordon Weng-Kit; Zhan, Hong; Johnston, Ian C D; Kaiser, Andrew D; Peggs, Karl; Pule, Martin; Thrasher, Adrian J; Qasim, Waseem

    2016-08-01

    Novel cell therapies derived from human T lymphocytes are exhibiting enormous potential in early-phase clinical trials in patients with hematologic malignancies. Ex vivo modification of T cells is currently limited to a small number of centers with the required infrastructure and expertise. The process requires isolation, activation, transduction, expansion and cryopreservation steps. To simplify procedures and widen applicability for clinical therapies, automation of these procedures is being developed. The CliniMACS Prodigy (Miltenyi Biotec) has recently been adapted for lentiviral transduction of T cells and here we analyse the feasibility of a clinically compliant T-cell engineering process for the manufacture of T cells encoding chimeric antigen receptors (CAR) for CD19 (CAR19), a widely targeted antigen in B-cell malignancies. Using a closed, single-use tubing set we processed mononuclear cells from fresh or frozen leukapheresis harvests collected from healthy volunteer donors. Cells were phenotyped and subjected to automated processing and activation using TransAct, a polymeric nanomatrix activation reagent incorporating CD3/CD28-specific antibodies. Cells were then transduced and expanded in the CentriCult-Unit of the tubing set, under stabilized culture conditions with automated feeding and media exchange. The process was continuously monitored to determine kinetics of expansion, transduction efficiency and phenotype of the engineered cells in comparison with small-scale transductions run in parallel. We found that transduction efficiencies, phenotype and function of CAR19 T cells were comparable with existing procedures and overall T-cell yields sufficient for anticipated therapeutic dosing. The automation of closed-system T-cell engineering should improve dissemination of emerging immunotherapies and greatly widen applicability.

  20. Enhanced local and systemic anti-melanoma CD8+ T cell responses after memory T cell-based adoptive immunotherapy in mice

    Science.gov (United States)

    Contreras, Amanda; Sen, Siddhartha; Tatar, Andrew J.; Mahvi, David A.; Meyers, Justin V.; Srinand, Prakrithi; Suresh, Marulasiddappa

    2016-01-01

    Adoptive cell transfer (ACT) melanoma immunotherapy typically employs acutely activated effector CD8+ T cells for their ability to rapidly recognize and clear antigen. We have previously observed that effector CD8+ T cells are highly susceptible to melanoma-induced suppression, whereas memory CD8+ T cells are not. Although memory T cells have been presumed to be potentially advantageous for ACT, the kinetics of local and systemic T cell responses after effector and memory ACT have not been compared. B16F10 melanoma cells stably transfected to express very low levels of the lymphocytic choriomeningitis virus (LCMV) peptide GP33 (B16GP33) were inoculated into syngeneic C57BL/6 mice. Equal numbers of bona fide naïve, effector, or memory phenotype GP33-specific CD8+ T cells were adoptively transferred into mice 1 day after B16GP33 inoculation. The efficacy of ACT immunotherapy was kinetically assessed using serial tumor measurements and flow cytometric analyses of local and systemic CD8+ T cell responses. Control of B16GP33 tumor growth, persistence of adoptively transferred CD8+ cells, intratumoral infiltration of CD8+ T cells, and systemic CD8+ T cell responsiveness to GP33 were strongest after ACT of memory CD8+ T cells. Following surgical tumor resection and melanoma tumor challenge, only mice receiving memory T cell-based ACT immunotherapy exhibited durable tumor-specific immunity. These findings demonstrate how the use of non-expanded memory CD8+ T cells may enhance ACT immunotherapeutic efficacy. PMID:27011014

  1. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma.

    Science.gov (United States)

    Hegde, Meenakshi; Corder, Amanda; Chow, Kevin K H; Mukherjee, Malini; Ashoori, Aidin; Kew, Yvonne; Zhang, Yi Jonathan; Baskin, David S; Merchant, Fatima A; Brawley, Vita S; Byrd, Tiara T; Krebs, Simone; Wu, Meng Fen; Liu, Hao; Heslop, Helen E; Gottschalk, Stephen; Gottachalk, Stephen; Yvon, Eric; Ahmed, Nabil

    2013-11-01

    Preclinical and early clinical studies have demonstrated that chimeric antigen receptor (CAR)-redirected T cells are highly promising in cancer therapy. We observed that targeting HER2 in a glioblastoma (GBM) cell line results in the emergence of HER2-null tumor cells that maintain the expression of nontargeted tumor-associated antigens. Combinational targeting of these tumor-associated antigens could therefore offset this escape mechanism. We studied the single-cell coexpression patterns of HER2, IL-13Rα2, and EphA2 in primary GBM samples using multicolor flow cytometry and immunofluorescence, and applied a binomial routine to the permutations of antigen expression and the related odds of complete tumor elimination. This mathematical model demonstrated that cotargeting HER2 and IL-13Rα2 could maximally expand the therapeutic reach of the T cell product in all primary tumors studied. Targeting a third antigen did not predict an added advantage in the tumor cohort studied. We therefore generated bispecific T cell products from healthy donors and from GBM patients by pooling T cells individually expressing HER2 and IL-13Rα2-specific CARs and by making individual T cells to coexpress both molecules. Both HER2/IL-13Rα2-bispecific T cell products offset antigen escape, producing enhanced effector activity in vitro immunoassays (against autologous glioma cells in the case of GBM patient products) and in an orthotopic xenogeneic murine model. Further, T cells coexpressing HER2 and IL-13Rα2-CARs exhibited accentuated yet antigen-dependent downstream signaling and a particularly enhanced antitumor activity.

  2. A novel method using blinatumomab for efficient, clinical-grade expansion of polyclonal T cells for adoptive immunotherapy.

    Science.gov (United States)

    Golay, Josée; D'Amico, Anna; Borleri, Gianmaria; Bonzi, Michela; Valgardsdottir, Rut; Alzani, Rachele; Cribioli, Sabrina; Albanese, Clara; Pesenti, Enrico; Finazzi, Maria Chiara; Quaresmini, Giulia; Nagorsen, Dirk; Introna, Martino; Rambaldi, Alessandro

    2014-11-01

    Current treatment of chronic lymphocytic leukemia (CLL) patients often results in life-threatening immunosuppression. Furthermore, CLL is still an incurable disease due to the persistence of residual leukemic cells. These patients may therefore benefit from immunotherapy approaches aimed at immunoreconstitution and/or the elimination of residual disease following chemotherapy. For these purposes, we designed a simple GMP-compliant protocol for ex vivo expansion of normal T cells from CLL patients' peripheral blood for adoptive therapy, using bispecific Ab blinatumomab (CD3 × CD19), acting both as T cell stimulator and CLL depletion agent, and human rIL-2. Starting from only 10 ml CLL peripheral blood, a mean 515 × 10(6) CD3(+) T cells were expanded in 3 wk. The resulting blinatumomab-expanded T cells (BET) were polyclonal CD4(+) and CD8(+) and mostly effector and central memory cells. The Th1 subset was slightly prevalent over Th2, whereas Th17 and T regulatory cells were CD279 compared with starting T cells and were cytotoxic against CD19(+) targets in presence of blinatumomab in vitro. In support of their functional capacity, we observed that BET, in combination with blinatumomab, had significant therapeutic activity in a systemic human diffuse large B lymphoma model in NOD-SCID mice. We propose BET as a therapeutic tool for immunoreconstitution of heavily immunosuppressed CLL patients and, in combination with bispecific Ab, as antitumor immunotherapy.

  3. Strong photocurrent enhancements in highly efficient flexible organic solar cells by adopting a microcavity configuration.

    Science.gov (United States)

    Chen, Kung-Shih; Yip, Hin-Lap; Salinas, José-Francisco; Xu, Yun-Xiang; Chueh, Chu-Chen; Jen, Alex K-Y

    2014-05-28

    Organic solar cells often show inefficient light harvesting due to a short absorption path length limited by the low charge mobility of organic semiconductors. We demonstrate a flexible organic solar cell in a microcavity configuration using a TeO2/Ag semitransparent electrode to confine the optical field within the device with significant performance improvements and reaching a power conversion efficiency of 8.56%.

  4. Molecular regulation of pancreatic stellate cell function

    Directory of Open Access Journals (Sweden)

    Jaster Robert

    2004-10-01

    Full Text Available Abstract Until now, no specific therapies are available to inhibit pancreatic fibrosis, a constant pathological feature of chronic pancreatitis and pancreatic cancer. One major reason is the incomplete knowledge of the molecular principles underlying fibrogenesis in the pancreas. In the past few years, evidence has been accumulated that activated pancreatic stellate cells (PSCs are the predominant source of extracellular matrix (ECM proteins in the diseased organ. PSCs are vitamin A-storing, fibroblast-like cells with close morphological and biochemical similarities to hepatic stellate cells (also known as Ito-cells. In response to profibrogenic mediators such as various cytokines, PSCs undergo an activation process that involves proliferation, exhibition of a myofibroblastic phenotype and enhanced production of ECM proteins. The intracellular mediators of activation signals, and their antagonists, are only partially known so far. Recent data suggest an important role of enzymes of the mitogen-activated protein kinase family in PSC activation. On the other hand, ligands of the nuclear receptor PPARγ (peroxisome proliferator-activated receptor γ stimulate maintenance of a quiescent PSC phenotype. In the future, targeting regulators of the PSC activation process might become a promising approach for the treatment of pancreatic fibrosis.

  5. Hydrocarbons depending on the chain length and head group adopt different conformations within a water-soluble nanocapsule: 1H NMR and molecular dynamics studies.

    Science.gov (United States)

    Choudhury, Rajib; Barman, Arghya; Prabhakar, Rajeev; Ramamurthy, V

    2013-01-10

    In this study we have examined the conformational preference of phenyl-substituted hydrocarbons (alkanes, alkenes, and alkynes) of different chain lengths included within a confined space provided by a molecular capsule made of two host cavitands known by the trivial name "octa acid" (OA). One- and two-dimensional (1)H NMR experiments and molecular dynamics (MD) simulations were employed to probe the location and conformation of hydrocarbons within the OA capsule. In general, small hydrocarbons adopted a linear conformation while longer ones preferred a folded conformation. In addition, the extent of folding and the location of the end groups (methyl and phenyl) were dependent on the group (H(2)C-CH(2), HC═CH, and C≡C) adjacent to the phenyl group. In addition, the rotational mobility of the hydrocarbons within the capsule varied; for example, while phenylated alkanes tumbled freely, phenylated alkenes and alkynes resisted such a motion at room temperature. Combined NMR and MD simulation studies have confirmed that molecules could adopt conformations within confined spaces different from that in solution, opening opportunities to modulate chemical behavior of guest molecules.

  6. Safety and therapeutic efficacy of adoptive p53-specific T cell antigen receptor (TCR) gene transfer

    OpenAIRE

    2014-01-01

    Immunotherapy with T cells genetically modified by retroviral transfer of tumor-associated antigen (TAA)-specific T cell receptors (TCR) is a promising approach in targeting cancer. Therefore, using a universal TAA to target different tumor entities by only one therapeutic approach was the main criteria for our TAA-specific TCR. Here, an optimized (opt) αβ-chain p53(264-272)-specific and an opt single chain (sc) p53(264-272)-specific TCR were designed, to reduce mispairing reactions of endoge...

  7. Molecular biology of testicular germ cell tumors.

    Science.gov (United States)

    Gonzalez-Exposito, R; Merino, M; Aguayo, C

    2016-06-01

    Testicular germ cell tumors (TGCTs) are the most common solid tumors in young adult men. They constitute a unique pathology because of their embryonic and germ origin and their special behavior. Genetic predisposition, environmental factors involved in their development and genetic aberrations have been under study in many works throughout the last years trying to explain the susceptibility and the transformation mechanism of TGCTs. Despite the high rate of cure in this type of tumors because its particular sensitivity to cisplatin, there are tumors resistant to chemotherapy for which it is needed to find new therapies. In the present work, it has been carried out a literature review on the most important molecular aspects involved in the onset and development of such tumors, as well as a review of the major developments regarding prognostic factors, new prognostic biomarkers and the possibility of new targeted therapies.

  8. Molecular cell death platforms and assemblies.

    Science.gov (United States)

    Mace, Peter D; Riedl, Stefan J

    2010-12-01

    Multi-cellular animals have evolved a variety of mechanisms to respond to diverse apoptotic stimuli. In general these proceed through activation of apical caspases and culminate in executioner caspase activation and cell death. Because of the breadth of possible initiators, various molecular platforms are used to trigger different apical caspases. Although some common protein domains are used to assemble the apoptosome, the PIDDosome and death receptor complexes, an array of checks-and-balances are employed to ensure appropriate activation. Notwithstanding, these pathways share the underlying principle of proximity-dependent activation and post-translational modification. Here we will describe our current structural understanding of assembly and regulation of these signaling platforms.

  9. Immune tolerance induced by adoptive transfer of dendritic cells in an insulin-dependent diabetes mellitus routine model

    Institute of Scientific and Technical Information of China (English)

    Cheng-liang ZHANG; Xiao-lei ZOU; Jia-bei PENG; Ming XIANG

    2007-01-01

    Aim: To investigate the effect and underlying mechanisms of inunune-tolerance induced by the adoptive transfer of bone marrow (BM)-derived dendritic cells (DC) in insulin-dependent diabetes mellitus (IDDM) mice. Methods: The IDDM model was established by a low dose of streptozotocin (STZ) in Balb/c mice. Two DC subpopulations were generated from the BM cells with granulocyte-macroph-age colony-stimulating factor with or without interleukin-4. The purity and the T cell stimulatory capability of DC were identified. These cells were used to modu-late autoimmune response in pre-diabetic mice. Blood glucose was examined weekly; pancreas tissues were taken for histopathological analysis, and CD4+ T cells were isolated to detect lymphocyte proliferation by MTT assay and the ratio of CD4+CD25+ T cells by fluorescence-activated cell sorting (FACS). The cytokine secretion was determined by ELISA analysis. Results: Two DC subsets were generated from BM, which have phenotypes of mature DC (mDC) and immature DC (iDC), respectively. The level of blood glucose decreased significantly by transferring iDC (P<0.01) rather than mDC. Less lymphocyte infiltration was ob-served in the islets, and pancreatic structure was intact. In vitro, proliferation of lymphocytes decreased and the proportion of CD4+CD25+ T cells increased remarkably, compared with the mDC-treated groups (P<0.05), which were associ-ated with increased level of the Th2 cytokine and reduced level of the Th1 cytokine after iDC transfer. Conclusion: Our data showed that iDC transfer was able to confer protection to mice from STZ-induced IDDM. The immune-tolerance to IDDM may be associated with promoting the production of CD4+CD25+ T cells and inducing regulatory Th2 responses in vivo.

  10. Immunomodulatory Effects of Hemagglutinin- (HA- Modified A20 B-Cell Lymphoma Expanded as a Brain Tumor on Adoptively Transferred HA-Specific CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Valentin P. Shichkin

    2014-01-01

    Full Text Available Previously, the mouse A20 B-cell lymphoma engineered to express hemagglutinin (HA antigen (A20HA was used as a systemic tumor model. In this work, we used the A20HA cells as a brain tumor. HA-specific CD4+ T cells were transferred intravenously in a tail vein 5 days after A20HA intracranial inoculation and analyzed on days 2, 9, and 16 after the adoptive transfer by different methods. The transferred cells demonstrated state of activation as early as day 2 after the adoptive transfer and most the of viable HA-specific cells became anergic on day 16. Additionally, symptoms of systemic immunosuppression were observed in mice with massive brain tumors at a late stage of the brain tumor progression (days 20–24 after the A20HA inoculation. Despite that, a deal of HA-specific CD4+ T cells kept the functional activity even at the late stage of A20HA tumor growth. The activated HA-specific CD4+ T cells were found also in the brain of brain-tumor-bearing mice. These cells were still responding to reactivation with HA-peptide in vitro. Our data support an idea about sufficient role of both the tumor-specific and -nonspecific mechanisms inducing immunosuppression in cancer patients.

  11. [Changes of T-cell clonality after induction-cultivation of peripheral T lymphocytes in adoptive immunotherapy for leukemias].

    Science.gov (United States)

    Liu, Yan; Gu, Jiang-Ying; Ou, Yuan; Li, Mian-Yang; Wang, He; Jin, Xian; Tao, Xiu-Yan; Liu, Zhao-Li; Ma, Xing-Fan; Wang, Xiu-Li; Ma, Si-Kun; Kang, Rui; Cai, Peng; Tong, Chun-Rong; Zhu, Ping

    2009-06-01

    This study was purposed to analyze the changes of T-cell clonality after induction of peripheral T lymphocytes by autogenous DC and cytokines in the preparation of adoptive immunotherapy for leukemias. The bone marrow and peripheral blood from 21 leukemia patients at remission stage after treatment and subjected to adoptive immunotherapy were collected. Their DCs and T-cells were stimulated with cytokines and then were mixed to activate T-cells. T-cell receptor beta variable region (TCRBV) families were amplified by RT-PCR, and genescan method and sequencing of the PCR products were used to observe the clonality changes of T-cells before and after the induction and cultivation of T-cells. The flow cytometry was used to identify CD3(+), CD4(+), CD8(+), CD3(+)CD56(+) and CD4(+)CD25str(+)FOXP3(+) cells to disclose the ratio change of cytotoxic T lymphocytes (CTL), helper T-cells, regulatory T-cells and NK T-cells before and after induction and cultivation of T-cells. The results showed that in the 21 patients, most of the 24 TCRBV families presented as oligoclonal distribution on genescan, several families were not expressed, and only a few families remained polyclonal. TCRBV24 was found to be oligoclonal in all of the 21 patients. DNA sequence analysis of TCRBV24 revealed a common motif of VAG in CDR3 in 3 cases and a common motif of GGG in CDR3 in 2 cases. In patient 5, both TCRBV 24 and TCRBV8 contained the same motif of GGG in CDR3. The identical motif in these patients may suggest that these T-cells recognize the same antigen. The peripheral lymphocytes demonstrated recovery of clonal profile on genescan from oligoclonal profile and absence of several families before the induction and cultivation to typical polyclonal profile in all TCRBV families after the induction by DC and cytokines for 13 days. After the induction and cultivation, the number of lymphocytes increased to 3.38 +/- 1.20 times. CD3(+), CD4(+), CD8(+), CD3(+)CD56(+) and CD4(+)CD25str(+)FOX P3

  12. Combined IL-15 and IL-12 drives the generation of CD34-derived natural killer cells with superior maturation and alloreactivity potential following adoptive transfer

    NARCIS (Netherlands)

    Cany, J.S.; Waart, A.B. van der; Spanholtz, J.; Tordoir, M.; Jansen, J.H.; Voort, R. van der; Schaap, N.P.; Dolstra, H.

    2015-01-01

    Adoptive transfer of allogeneic natural killer (NK) cells represents a promising treatment approach against cancer, including acute myeloid leukemia (AML). Previously, we reported a cytokine-based culture method for the generation of NK cell products with high cell number and purity. In this system,

  13. Adoptive transfer of osteoclast-expanded natural killer cells for immunotherapy targeting cancer stem-like cells in humanized mice.

    Science.gov (United States)

    Kozlowska, Anna K; Kaur, Kawaljit; Topchyan, Paytsar; Jewett, Anahid

    2016-07-01

    Based on data obtained from oral, pancreatic and lung cancers, glioblastoma, and melanoma, we have established that natural killer (NK) cells target cancer stem-like cells (CSCs). CSCs displaying low MHC class I, CD54, and PD-L1 are killed by cytotoxic NK cells and are differentiated by split anergized NK cells through both membrane bound and secreted forms of TNF-α and IFN-γ. NK cells select and differentiate both healthy and transformed stem-like cells, resulting in target cell maturation and shaping of their microenvironment. In our recent studies, we have observed that oral, pancreatic, and melanoma CSCs were capable of forming large tumors in humanized bone marrow, liver, thymus (hu-BLT) mice with fully reconstituted human immune system. In addition, major human immune subsets including NK cells, T cells, B cells, and monocytes were present in the spleen, bone marrow, peripheral blood, and tumor microenvironment. Similar to our previously published in vitro data, CSCs differentiated with split anergized NK cells prior to implantation in mice formed smaller tumors. Intravenous injection of functionally potent osteoclast-expanded NK cells inhibited tumor growth through differentiation of CSCs in humanized mice. In this review, we present current approaches, advances, and existing limitations in studying interactions of the immune system with the tumor, in particular NK cells with CSCs, using in vivo preclinical hu-BLT mouse model. In addition, we discuss the use of osteoclast-expanded NK cells in targeting cancer stem-like tumors in humanized mice-a strategy that provides a much-needed platform to develop effective cancer immunotherapies.

  14. Characterization and comparison of "Standard" and "Young" tumor infiltrating lymphocytes for adoptive cell therapy at a Danish Translational Research Institution

    DEFF Research Database (Denmark)

    Donia, Marco; Junker, Niels; Ellebaek, Eva;

    2012-01-01

    transferred cells. The aim of this study was to establish and validate the novel "Young TIL" method at our institution and perform a head-to-head comparison of clinical grade products generated with this protocol opposed to the conventional "Standard TIL", that we are currently using in a pilot ACT trial......, either slow expansion with high-dose IL-2 only or large numerical expansion with a rapid expansion protocol (REP), that is required for current therapeutic protocols, significantly modified TIL phenotype by reducing the frequency of less differentiated cancer-specific TILs. These studies further support...... the adoption of the Young TIL method in our current ACT trial and highlight the importance of continuous quality control of expansion protocols....

  15. A Diagnostic Assessment for Introductory Molecular and Cell Biology

    Science.gov (United States)

    Shi, Jia; Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed…

  16. Molecular semiconductors photoelectrical properties and solar cells

    CERN Document Server

    Rees, Ch

    1985-01-01

    During the past thirty years considerable efforts have been made to design the synthesis and the study of molecular semiconductors. Molecular semiconductors - and more generally molecular materials - involve interactions between individual subunits which can be separately synthesized. Organic and metallo-organic derivatives are the basis of most of the molecular materials. A survey of the literature on molecular semiconductors leaves one rather confused. It does seem to be very difficult to correlate the molecular structure of these semiconductors with their experimental electrical properties. For inorganic materials a simple definition delimits a fairly homogeneous family. If an inorganic material has a conductivity intermediate between that of an 12 1 1 3 1 1 insulator « 10- n- cm- ) and that of a metal (> 10 n- cm- ), then it is a semiconductor and will exhibit the characteristic properties of this family, such as junction formation, photoconductivity, and the photovoltaic effect. For molecular compounds,...

  17. Adoptive transfer of helminth antigen-pulsed dendritic cells protects against the development of experimental colitis in mice.

    Science.gov (United States)

    Matisz, Chelsea E; Leung, Gabriella; Reyes, Jose Luis; Wang, Arthur; Sharkey, Keith A; McKay, Derek M

    2015-11-01

    Infection with helminth parasites and treatment with worm extracts can suppress inflammatory disease, including colitis. Postulating that dendritic cells (DCs) participated in the suppression of inflammation and seeking to move beyond the use of helminths per se, we tested the ability of Hymenolepis diminuta antigen-pulsed DCs to suppress colitis as a novel cell-based immunotherapy. Bone marrow derived DCs pulsed with H. diminuta antigen (HD-DCs), or PBS-, BSA-, or LPS-DCs as controls, were transferred into wild-type (WT), interleukin-10 (IL-10) knock-out (KO), and RAG-1 KO mice, and the impact on dinitrobenzene sulphonic acid (DNBS)-induced colitis and splenic cytokine production assessed 72 h later. Mice receiving HD-DCs were significantly protected from DNBS-induced colitis and of the experimental groups only these mice displayed increased Th2 cytokines and IL-10 production. Adoptive transfer of HD-DCs protected neither RAG-1 nor IL-10 KO mice from DNBS-colitis. Furthermore, the transfer of CD4(+) splenocytes from recipients of HD-DCs protected naïve mice against DNBS-colitis, in an IL-10 dependent manner. Thus, HD-DCs are a novel anti-colitic immunotherapy that can educate anti-colitic CD4(+) T cells: mechanistically, the anti-colitic effect of HD-DCs requires that the host has an adaptive immune response and the ability to mobilize IL-10.

  18. Generation of autologous tumor-specific T cells for adoptive transfer based on vaccination, in vitro restimulation and CD3/CD28 dynabead-induced T cell expansion.

    Science.gov (United States)

    Brimnes, Marie Klinge; Gang, Anne Ortved; Donia, Marco; Thor Straten, Per; Svane, Inge Marie; Hadrup, Sine Reker

    2012-08-01

    Adoptive cell transfer (ACT) of in vitro expanded autologous tumor-infiltrating lymphocytes (TIL) has been shown to exert therapeutic efficacy in melanoma patients. We aimed to develop an ACT protocol based on tumor-specific T cells isolated from peripheral blood and in vitro expanded by Dynabeads® ClinExVivo™CD3/CD28. We show here that the addition of an in vitro restimulation step with relevant peptides prior to bead expansion dramatically increased the proportion of tumor-specific T cells in PBMC-cultures. Importantly, peptide-pulsed dendritic cells (DCs) as well as allogeneic tumor lysate-pulsed DCs from the DC vaccine preparation could be used with comparable efficiency to peptides for in vitro restimulation, to increase the tumor-specific T-cell response. Furthermore, we tested the use of different ratios and different types of Dynabeads® CD3/CD28 and CD3/CD28/CD137 T-cell expander, for optimized expansion of tumor-specific T cells. A ratio of 1:3 of Dynabeads® CD3/CD28 T-cell expander to T cells resulted in the maximum number of tumor-specific T cells. The addition of CD137 did not improve functionality or fold expansion. Both T-cell expansion systems could generate tumor-specific T cells that were both cytotoxic and effective cytokine producers upon antigen recognition. Dynabeads®-expanded T-cell cultures shows phenotypical characteristics of memory T cells with potential to migrate and expand in vivo. In addition, they possess longer telomeres compared to TIL cultures. Taken together, we demonstrate that in vitro restimulation of tumor-specific T cells prior to bead expansion is necessary to achieve high numbers of tumor-specific T cells. This is effective and easily applicable in combination with DC vaccination, by use of vaccine-generated DCs, either pulsed with peptide or tumor-lysate.

  19. Modulation of tumor response to photodynamic therapy in severe combined immunodeficient (SCID) mice by adoptively transferred lymphoid cells

    Science.gov (United States)

    Korbelik, Mladen; Krosl, Gorazd; Krosl, Jana; Dougherty, Graeme J.

    1996-04-01

    Photodynamic treatment, consisting of intravenous injection of PhotofrinR (10 mg/kg) followed by exposure to 110 J/cm2 of 630 plus or minus 10 nm light 24 hours later, cured 100% of EMT6 tumors (murine mammary sarcoma) growing in syngeneic immunocompetent BALB/C mice. In contrast, the same treatment produced no cures of EMT6 tumors growing in either nude or SCID mice (immunodeficient strains). EMT6 tumors growing in BALB/C and SCID mice showed no difference in either the level of PhotofrinR accumulated per gram of tumor tissue, or the extent of tumor cell killing during the first 24 hours post photodynamic therapy (PDT). In an attempt to improve the sensitivity to PDT of EMT6 tumors growing in SCID mice, these hosts were given either splenic T lymphocytes or whole bone marrow from BALB/C mice. The adoptive transfer of lymphocytes 9 days before PDT was successful in delaying tumor recurrence but produced no cures. A better improvement in PDT response was obtained with tumors growing in SCID mice reconstituted with BALB/C bone marrow (tumor cure rate of 63%). The results of this study demonstrate that, at least with the EMT6 tumor model, antitumor immune activity mediated by lymphoid cell populations makes an important contribution to the curative effect of PDT.

  20. Cell death in mammalian cell culture: molecular mechanisms and cell line engineering strategies.

    Science.gov (United States)

    Krampe, Britta; Al-Rubeai, Mohamed

    2010-07-01

    Cell death is a fundamentally important problem in cell lines used by the biopharmaceutical industry. Environmental stress, which can result from nutrient depletion, by-product accumulation and chemical agents, activates through signalling cascades regulators that promote death. The best known key regulators of death process are the Bcl-2 family proteins which constitute a critical intracellular checkpoint of apoptosis cell death within a common death pathway. Engineering of several members of the anti-apoptosis Bcl-2 family genes in several cell types has extended the knowledge of their molecular function and interaction with other proteins, and their regulation of cell death. In this review, we describe the various modes of cell death and their death pathways at molecular and organelle level and discuss the relevance of the growing knowledge of anti-apoptotic engineering strategies to inhibit cell death and increase productivity in mammalian cell culture.

  1. Enhanced NK cell adoptive antitumor effects against breast cancer in vitro via blockade of the transforming growth factor-β signaling pathway

    Directory of Open Access Journals (Sweden)

    Zhao Y

    2015-06-01

    Full Text Available Yue Zhao,1,* Jinyue Hu,2,* Rongguo Li,1 Jian Song,1 Yujuan Kang,1 Si Liu,1 Dongwei Zhang1 1Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 2Department of Breast and Thyroid Surgery, The Third Hospital of Zhengzhou, Zhengzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Natural killer (NK cells have great potential for improving cancer immunotherapy. Adoptive NK cell transfer, an adoptive immunotherapy, represents a promising nontoxic anticancer therapy. However, existing data indicate that tumor cells can effectively escape NK cell-mediated apoptosis through immunosuppressive effects in the tumor microenvironment, and the therapeutic activity of adoptive NK cell transfer is not as efficient as anticipated. Transforming growth factor-beta (TGF-β is a potent immunosuppressant. Genetic and epigenetic events that occur during mammary tumorigenesis circumvent the tumor-suppressing activity of TGF-β, thereby permitting late-stage breast cancer cells to acquire an invasive and metastatic phenotype in response to TGF-β. To block the TGF-β signaling pathway, NK cells were genetically modified with a dominant-negative TGF-β type II receptor by optimizing electroporation using the Amaxa Nucleofector system. These genetically modified NK cells were insensitive to TGF-β and resisted the suppressive effect of TGF-β on MCF-7 breast cancer cells in vitro. Our results demonstrate that blocking the TGF-β signaling pathway to modulate the tumor microenvironment can improve the antitumor activity of adoptive NK cells in vitro, thereby providing a new rationale for the treatment of breast cancer. Keywords: transforming growth factor-beta, natural killer cells, breast cancer, adoptive immunotherapy

  2. Molecular aspects of tumor cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Giuseppina Bozzuto

    2010-03-01

    Full Text Available Cell migration and invasion are crucial steps in many physiological events. However, they are also implicated in the physiopathology of many diseases, such as cancer. To spread through the tissues, tumor cells use mechanisms that involve several molecular actors: adhesion receptor families, receptor tyrosine kinases, cytoskeleton proteins, adapter and signalling proteins interplay in a complex scenario. The balance of cellular signals for proliferation and survival responses also regulates migratory behaviours of tumor cells. To complicate the scene of crime drug resistance players can interfere thus worsening this delicate situation. The complete understanding of this molecular jungle is an impossible mission: some molecular aspects are reviewed in this paper.

  3. Molecular imaging of stem cell transplantation for neurodegenerative diseases.

    Science.gov (United States)

    Wang, Ping; Moore, Anna

    2012-01-01

    Cell replacement therapy with stem cells holds tremendous therapeutic potential for treating neurodegenerative diseases. Over the last decade, molecular imaging techniques have proven to be of great value in tracking transplanted cells and assessing the therapeutic efficacy. This current review summarizes the role and capabilities of different molecular imaging modalities including optical imaging, nuclear imaging and magnetic resonance imaging in the field of stem cell therapy for neurodegenerative disorders. We discuss current challenges and perspectives of these techniques and encompass updated information such as theranostic imaging and optogenetics in stem cell-based treatment of neurodegenerative diseases.

  4. Adoptive transfer of Mammaglobin-A epitope specific CD8 T cells combined with a single low dose of total body irradiation eradicates breast tumors.

    Science.gov (United States)

    Lerret, Nadine M; Rogozinska, Magdalena; Jaramillo, Andrés; Marzo, Amanda L

    2012-01-01

    Adoptive T cell therapy has proven to be beneficial in a number of tumor systems by targeting the relevant tumor antigen. The tumor antigen targeted in our model is Mammaglobin-A, expressed by approximately 80% of human breast tumors. Here we evaluated the use of adoptively transferred Mammaglobin-A specific CD8 T cells in combination with low dose irradiation to induce breast tumor rejection and prevent relapse. We show Mammaglobin-A specific CD8 T cells generated by DNA vaccination with all epitopes (Mammaglobin-A2.1, A2.2, A2.4 and A2.6) and full-length DNA in vivo resulted in heterogeneous T cell populations consisting of both effector and central memory CD8 T cell subsets. Adoptive transfer of spleen cells from all Mammaglobin-A2 immunized mice into tumor-bearing SCID/beige mice induced tumor regression but this anti-tumor response was not sustained long-term. Additionally, we demonstrate that only the adoptive transfer of Mammaglobin-A2 specific CD8 T cells in combination with a single low dose of irradiation prevents tumors from recurring. More importantly we show that this single dose of irradiation results in the down regulation of the macrophage scavenger receptor 1 on dendritic cells within the tumor and reduces lipid uptake by tumor resident dendritic cells potentially enabling the dendritic cells to present tumor antigen more efficiently and aid in tumor clearance. These data reveal the potential for adoptive transfer combined with a single low dose of total body irradiation as a suitable therapy for the treatment of established breast tumors and the prevention of tumor recurrence.

  5. Application of Adoptive T-Cell Therapy Using Tumor Antigen-Specific T-Cell Receptor Gene Transfer for the Treatment of Human Leukemia

    Directory of Open Access Journals (Sweden)

    Toshiki Ochi

    2010-01-01

    Full Text Available The last decade has seen great strides in the field of cancer immunotherapy, especially the treatment of melanoma. Beginning with the identification of cancer antigens, followed by the clinical application of anti-cancer peptide vaccination, it has now been proven that adoptive T-cell therapy (ACT using cancer antigen-specific T cells is the most effective option. Despite the apparent clinical efficacy of ACT, the timely preparation of a sufficient number of cancer antigen-specific T cells for each patient has been recognized as its biggest limitation. Currently, therefore, attention is being focused on ACT with engineered T cells produced using cancer antigen-specific T-cell receptor (TCR gene transfer. With regard to human leukemia, ACT using engineered T cells bearing the leukemia antigen-specific TCR gene still remains in its infancy. However, several reports have provided preclinical data on TCR gene transfer using Wilms' tumor gene product 1 (WT1, and also preclinical and clinical data on TCR gene transfer involving minor histocompatibility antigen, both of which have been suggested to provide additional clinical benefit. In this review, we examine the current status of anti-leukemia ACT with engineered T cells carrying the leukemia antigen-specific TCR gene, and discuss the existing barriers to progress in this area.

  6. Nano-guided cell networks as conveyors of molecular communication.

    Science.gov (United States)

    Terrell, Jessica L; Wu, Hsuan-Chen; Tsao, Chen-Yu; Barber, Nathan B; Servinsky, Matthew D; Payne, Gregory F; Bentley, William E

    2015-01-01

    Advances in nanotechnology have provided unprecedented physical means to sample molecular space. Living cells provide additional capability in that they identify molecules within complex environments and actuate function. We have merged cells with nanotechnology for an integrated molecular processing network. Here we show that an engineered cell consortium autonomously generates feedback to chemical cues. Moreover, abiotic components are readily assembled onto cells, enabling amplified and 'binned' responses. Specifically, engineered cell populations are triggered by a quorum sensing (QS) signal molecule, autoinducer-2, to express surface-displayed fusions consisting of a fluorescent marker and an affinity peptide. The latter provides means for attaching magnetic nanoparticles to fluorescently activated subpopulations for coalescence into colour-indexed output. The resultant nano-guided cell network assesses QS activity and conveys molecular information as a 'bio-litmus' in a manner read by simple optical means.

  7. Molecular Imaging and Therapy of Merkel Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Volkan Beylergil

    2014-04-01

    Full Text Available Several molecular imaging modalities have been evaluated in the management of Merkel cell carcinoma (MCC, a rare and aggressive tumor with a high tendency to metastasize. Continuous progress in the field of molecular imaging might improve management in these patients. The authors review the current modalities and their impact on MCC in this brief review article.

  8. Photoactive molecules for applications in molecular imaging and cell biology.

    Science.gov (United States)

    Shao, Qing; Xing, Bengang

    2010-08-01

    Photoactive technology has proven successful for non-invasive regulation of biological activities and processes in living cells. With the light-directed generation of biomaterials or signals, mechanisms in cell biology can be investigated at the molecular level with spatial and temporal resolution. In this tutorial review, we aim to introduce the important applications of photoactive molecules for elucidating cell biology on aspects of protein engineering, fluorescence labelling, gene regulation and cell physiological functions.

  9. Molecular mobility of scaffolds' biopolymers influences cell growth.

    Science.gov (United States)

    Podlipec, Rok; Gorgieva, Selestina; Jurašin, Darija; Urbančič, Iztok; Kokol, Vanja; Strancar, Janez

    2014-09-24

    Understanding biocompatibility of materials and scaffolds is one of the main challenges in the field of tissue engineering and regeneration. The complex nature of cell-biomaterial interaction requires extensive preclinical functionality testing by studying specific cell responses to different biomaterial properties, from morphology and mechanics to surface characteristics at the molecular level. Despite constant improvements, a more general picture of biocompatibility is still lacking and tailormade scaffolds are not yet available. The scope of our study was thus the investigation of the correlation of fibroblast cell growth on different gelatin scaffolds with their morphological, mechanical as well as surface molecular properties. The latter were thoroughly investigated via polymer molecular mobility studied by site-directed spin labeling and electron paramagnetic resonance spectroscopy (EPR) for the first time. Anisotropy of the rotational motion of the gelatin side chain mobility was identified as the most correlated quantity with cell growth in the first days after adhesion, while weaker correlations were found with scaffold viscoelasticity and no correlations with scaffold morphology. Namely, the scaffolds with highly mobile or unrestricted polymers identified with the cell growth being five times less efficient (N(cells) = 60 ± 25 mm(-2)) as compared to cell growth on the scaffolds with considerable part of polymers with the restricted rotational motion (N(cells) = 290 ± 25 mm(-2)). This suggests that molecular mobility of scaffold components could play an important role in cell response to medical devices, reflecting a new aspect of the biocompatibility concept.

  10. Extending the molecular clutch beyond actin-based cell motility

    Science.gov (United States)

    Havrylenko, Svitlana; Mezanges, Xavier; Batchelder, Ellen; Plastino, Julie

    2014-10-01

    Many cell movements occur via polymerization of the actin cytoskeleton beneath the plasma membrane at the front of the cell, forming a protrusion called a lamellipodium, while myosin contraction squeezes forward the back of the cell. In what is known as the ‘molecular clutch’ description of cell motility, forward movement results from the engagement of the acto-myosin motor with cell-matrix adhesions, thus transmitting force to the substrate and producing movement. However during cell translocation, clutch engagement is not perfect, and as a result, the cytoskeleton slips with respect to the substrate, undergoing backward (retrograde) flow in the direction of the cell body. Retrograde flow is therefore inversely proportional to cell speed and depends on adhesion and acto-myosin dynamics. Here we asked whether the molecular clutch was a general mechanism by measuring motility and retrograde flow for the Caenorhabditis elegans sperm cell in different adhesive conditions. These cells move by adhering to the substrate and emitting a dynamic lamellipodium, but the sperm cell does not contain an acto-myosin cytoskeleton. Instead the lamellipodium is formed by the assembly of major sperm protein, which has no biochemical or structural similarity to actin. We find that these cells display the same molecular clutch characteristics as acto-myosin containing cells. We further show that retrograde flow is produced both by cytoskeletal assembly and contractility in these cells. Overall this study shows that the molecular clutch hypothesis of how polymerization is transduced into motility via adhesions is a general description of cell movement regardless of the composition of the cytoskeleton.

  11. High vitamin D3 diet administered during active colitis negatively affects bone metabolism in an adoptive T cell transfer model.

    Science.gov (United States)

    Larmonier, C B; McFadden, R-M T; Hill, F M; Schreiner, R; Ramalingam, R; Besselsen, D G; Ghishan, F K; Kiela, P R

    2013-07-01

    Decreased bone mineral density (BMD) represents an extraintestinal complication of inflammatory bowel disease (IBD). Vitamin D₃ has been considered a viable adjunctive therapy in IBD. However, vitamin D₃ plays a pleiotropic role in bone modeling and regulates the bone formation-resorption balance, depending on the physiological environment, and supplementation during active IBD may have unintended consequences. We evaluated the effects of vitamin D₃ supplementation during the active phase of disease on colonic inflammation, BMD, and bone metabolism in an adoptive IL-10-/- CD4⁺ T cell transfer model of chronic colitis. High-dose vitamin D₃ supplementation for 12 days during established disease had negligible effects on mucosal inflammation. Plasma vitamin D₃ metabolites correlated with diet, but not disease, status. Colitis significantly reduced BMD. High-dose vitamin D₃ supplementation did not affect cortical bone but led to a further deterioration of trabecular bone morphology. In mice fed a high vitamin D₃ diet, colitis more severely impacted bone formation markers (osteocalcin and bone alkaline phosphatase) and increased bone resorption markers, ratio of receptor activator of NF-κB ligand to osteoprotegrin transcript, plasma osteoprotegrin level, and the osteoclast activation marker tartrate-resistant acid phosphatase (ACp5). Bone vitamin D receptor expression was increased in mice with chronic colitis, especially in the high vitamin D₃ group. Our data suggest that vitamin D₃, at a dose that does not improve inflammation, has no beneficial effects on bone metabolism and density during active colitis or may adversely affect BMD and bone turnover. These observations should be taken into consideration in the planning of further clinical studies with high-dose vitamin D₃ supplementation in patients with active IBD.

  12. Human molecular cytogenetics: from cells to nucleotides

    OpenAIRE

    2014-01-01

    The field of cytogenetics has focused on studying the number, structure, function and origin of chromosomal abnormalities and the evolution of chromosomes. The development of fluorescent molecules that either directly or via an intermediate molecule bind to DNA has led to the development of fluorescent in situ hybridization (FISH), a technology linking cytogenetics to molecular genetics. This technique has a wide range of applications that increased the dimension of chromosome analysis. The f...

  13. Tunable Single-Cell Extraction for Molecular Analyses.

    Science.gov (United States)

    Guillaume-Gentil, Orane; Grindberg, Rashel V; Kooger, Romain; Dorwling-Carter, Livie; Martinez, Vincent; Ossola, Dario; Pilhofer, Martin; Zambelli, Tomaso; Vorholt, Julia A

    2016-07-14

    Because of cellular heterogeneity, the analysis of endogenous molecules from single cells is of significant interest and has major implications. While micromanipulation or cell sorting followed by cell lysis is already used for subsequent molecular examinations, approaches to directly extract the content of living cells remain a challenging but promising alternative to achieving non-destructive sampling and cell-context preservation. Here, we demonstrate the quantitative extraction from single cells with spatiotemporal control using fluidic force microscopy. We further present a comprehensive analysis of the soluble molecules withdrawn from the cytoplasm or the nucleus, including the detection of enzyme activities and transcript abundances. This approach has uncovered the ability of cells to withstand extraction of up to several picoliters and opens opportunities to study cellular dynamics and cell-cell communication under physiological conditions at the single-cell level.

  14. The Molecular Basis of Communication between Cells.

    Science.gov (United States)

    Snyder, Solomon H.

    1985-01-01

    Chemical messengers mediate long-range hormonal communication and short-range neural communication between cells. Background information on peptides, steroids, neuropeptides, and specialized enzymes is given. Investigations reveal that the two systems have many common intercellular messenger molecules. (DH)

  15. Molecular mechanisms of bortezomib resistant adenocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Erika Suzuki

    Full Text Available Bortezomib (Velcade™ is a reversible proteasome inhibitor that is approved for the treatment of multiple myeloma (MM. Despite its demonstrated clinical success, some patients are deprived of treatment due to primary refractoriness or development of resistance during therapy. To investigate the role of the duration of proteasome inhibition in the anti-tumor response of bortezomib, we established clonal isolates of HT-29 adenocarcinoma cells adapted to continuous exposure of bortezomib. These cells were ~30-fold resistant to bortezomib. Two novel and distinct mutations in the β5 subunit, Cys63Phe, located distal to the binding site in a helix critical for drug binding, and Arg24Cys, found in the propeptide region were found in all resistant clones. The latter mutation is a natural variant found to be elevated in frequency in patients with MM. Proteasome activity and levels of both the constitutive and immunoproteasome were increased in resistant cells, which correlated to an increase in subunit gene expression. These changes correlated with a more rapid recovery of proteasome activity following brief exposure to bortezomib. Increased recovery rate was not due to increased proteasome turnover as similar findings were seen in cells co-treated with cycloheximide. When we exposed resistant cells to the irreversible proteasome inhibitor carfilzomib we noted a slower rate of recovery of proteasome activity as compared to bortezomib in both parental and resistant cells. Importantly, carfilzomib maintained its cytotoxic potential in the bortezomib resistant cell lines. Therefore, resistance to bortezomib, can be overcome with irreversible inhibitors, suggesting prolonged proteasome inhibition induces a more potent anti-tumor response.

  16. Regulatory T Cells: Molecular Actions on Effector Cells in Immune Regulation

    Directory of Open Access Journals (Sweden)

    Asiel Arce-Sillas

    2016-01-01

    Full Text Available T regulatory cells play a key role in the control of the immune response, both in health and during illness. While the mechanisms through which T regulatory cells exert their function have been extensively described, their molecular effects on effector cells have received little attention. Thus, this revision is aimed at summarizing our current knowledge on those regulation mechanisms on the target cells from a molecular perspective.

  17. Molecular characterization of heterogeneous mesenchymal stem cells with single-cell transcriptomes.

    Science.gov (United States)

    Li, Zhongjun; Zhang, Chao; Weiner, Leslie P; Zhang, Yiqiang; Zhong, Jiang F

    2013-01-01

    Mesenchymal stem cells (MSC) are heterogeneous cell populations with promising therapeutic potentials in regenerative medicine. The therapeutic values of MSC in various clinical situations have been reported. Clonal assays (expansion of MSC from a single cell) demonstrated that multiple types of cells with different developmental potential exist in a MSC population. Due to the heterogeneous nature of MSC, molecular characterization of MSC in the absence of known biomarkers is a challenge for cell therapy with MSC. Here, we review potential therapeutic applications of MSC and discuss a systematic approach for molecular characterization of heterogeneous cell population using single-cell transcriptome analysis. Differentiation/maturation of cells is orchestrated by sequential expression of a series of genes within a cell. Therefore, single-cell mRNA expression (transcriptome) profiles from consecutive developmental stages are more similar than those from disparate stages. Bioinformatic analysis can cluster single-cell transcriptome profiles from consecutive developmental stages into a dendrogram based on the similarity matrix of these profiles. Because a single-cell is an ultimately "pure" sample in expression profiling, these dendrograms can be used to classify individual cells into molecular subpopulations within a heterogeneous cell population without known biomarkers. This approach is especially powerful in studying cell populations with little molecular information and few known biomarkers, for example the MSC populations. The molecular understanding will provide novel targets for manipulating MSC differentiation with small molecules and other drugs to enable safer and more effective therapeutic applications of MSC.

  18. Cell engineering and molecular pharming for biopharmaceuticals.

    Science.gov (United States)

    Abdullah, M A; Rahmah, Anisa Ur; Sinskey, A J; Rha, C K

    2008-05-14

    Biopharmaceuticals are often produced by recombinant E. coli or mammalian cell lines. This is usually achieved by the introduction of a gene or cDNA coding for the protein of interest into a well-characterized strain of producer cells. Naturally, each recombinant production system has its own unique advantages and disadvantages. This paper examines the current practices, developments, and future trends in the production of biopharmaceuticals. Platform technologies for rapid screening and analyses of biosystems are reviewed. Strategies to improve productivity via metabolic and integrated engineering are also highlighted.

  19. Cell Engineering and Molecular Pharming for Biopharmaceuticals

    Science.gov (United States)

    Abdullah, M.A; Rahmah, Anisa ur; Sinskey, A.J; Rha, C.K

    2008-01-01

    Biopharmaceuticals are often produced by recombinant E. coli or mammalian cell lines. This is usually achieved by the introduction of a gene or cDNA coding for the protein of interest into a well-characterized strain of producer cells. Naturally, each recombinant production system has its own unique advantages and disadvantages. This paper examines the current practices, developments, and future trends in the production of biopharmaceuticals. Platform technologies for rapid screening and analyses of biosystems are reviewed. Strategies to improve productivity via metabolic and integrated engineering are also highlighted. PMID:19662143

  20. Molecular mechanisms of male germ cell differentiation.

    Science.gov (United States)

    Hecht, N B

    1998-07-01

    During spermatogenesis, diploid stem cells differentiate, undergo meiosis, and transform into haploid spermatozoa. As this precisely timed series of events proceeds, chromosomal ploidy is reduced and the nucleosomes of the chromatin are replaced by a transcriptionally quiescent protamine-containing nucleus. The premature termination of transcription during the haploid phase of spermatogenesis necessitates an especially prominent role for posttranscriptional regulation in the temporal and spatial expression of many testis-specific proteins and isozymes. In this review article, discussion will focus on novel mechanisms regulating gene expression in mammalian male germ cells from genome to protein.

  1. Questions about Adoption

    Science.gov (United States)

    ... more about their How-to-Adopt and Adoption Parenting Network . Q: What are the different types of adoption? A: Children can be adopted through the national public child welfare system, private ...

  2. Molecular Imaging in Stem Cell Therapy for Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Fahuan Song

    2014-01-01

    Full Text Available Spinal cord injury (SCI is a serious disease of the center nervous system (CNS. It is a devastating injury with sudden loss of motor, sensory, and autonomic function distal to the level of trauma and produces great personal and societal costs. Currently, there are no remarkable effective therapies for the treatment of SCI. Compared to traditional treatment methods, stem cell transplantation therapy holds potential for repair and functional plasticity after SCI. However, the mechanism of stem cell therapy for SCI remains largely unknown and obscure partly due to the lack of efficient stem cell trafficking methods. Molecular imaging technology including positron emission tomography (PET, magnetic resonance imaging (MRI, optical imaging (i.e., bioluminescence imaging (BLI gives the hope to complete the knowledge concerning basic stem cell biology survival, migration, differentiation, and integration in real time when transplanted into damaged spinal cord. In this paper, we mainly review the molecular imaging technology in stem cell therapy for SCI.

  3. PET molecular imaging in stem cell therapy for neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiachuan; Zhang, Hong [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Zhejiang University, Medical PET Center, Hangzhou (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Tian, Mei [University of Texas, M.D. Anderson Cancer Center, Department of Experimental Diagnostic Imaging, Houston, TX (United States)

    2011-10-15

    Human neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal cord injury and multiple sclerosis are caused by loss of different types of neurons and glial cells in the brain and spinal cord. At present, there are no effective therapies against these disorders. Discovery of the therapeutic potential of stem cells offers new strategies for the treatment of neurological diseases. Direct assessment of stem cells' survival, interaction with the host and impact on neuronal functions after transplantation requires advanced in vivo imaging techniques. Positron emission tomography (PET) is a potential molecular imaging modality to evaluate the viability and function of transplanted tissue or stem cells in the nervous system. This review focuses on PET molecular imaging in stem cell therapy for neurological diseases. (orig.)

  4. Embryonic stem cell biology: insights from molecular imaging.

    Science.gov (United States)

    Sallam, Karim; Wu, Joseph C

    2010-01-01

    Embryonic stem (ES) cells have therapeutic potential in disorders of cellular loss such as myocardial infarction, type I diabetes and neurodegenerative disorders. ES cell biology in living subjects was largely poorly understood until incorporation of molecular imaging into the field. Reporter gene imaging works by integrating a reporter gene into ES cells and using a reporter probe to induce a signal detectable by normal imaging modalities. Reporter gene imaging allows for longitudinal tracking of ES cells within the same host for a prolonged period of time. This has advantages over postmortem immunohistochemistry and traditional imaging modalities. The advantages include expression of reporter gene is limited to viable cells, expression is conserved between generations of dividing cells, and expression can be linked to a specific population of cells. These advantages were especially useful in studying a dynamic cell population such as ES cells and proved useful in elucidating the biology of ES cells. Reporter gene imaging identified poor integration of differentiated ES cells transplanted into host tissue as well as delayed donor cell death as reasons for poor long-term survival in vivo. This imaging technology also confirmed that ES cells indeed have immunogenic properties that factor into cell survival and differentiation. Finally, reporter gene imaging improved our understanding of the neoplastic risk of undifferentiated ES cells in forming teratomas. Despite such advances, much remains to be understood about ES cell biology to translate this technology to the bedside, and reporter gene imaging will certainly play a key role in formulating this understanding.

  5. Morphological appearance, content of extracellular matrix and vascular density of lung metastases predicts permissiveness to infiltration by adoptively transferred natural killer and T cells

    DEFF Research Database (Denmark)

    Yang, Q.; Goding, S.; Hagenaars, M.;

    2006-01-01

    We have recently shown that adoptively transferred, IL-2-activated natural killer (A-NK) cells are able to eliminate well-established B16-F10.P1 melanoma lung metastases. However, some B16-F10.P1 lung metastases were resistant to infiltration by the A-NK cells and also resistant to the A-NK cell....... Analyses of tumors for extracellular matrix (ECM) components and PECAM-1(+) vasculature, revealed that the I-R lesions are hypovascularized and contain very little laminin, collagen and fibronectin. In contrast, the I-P loose tumors are well-vascularized and they contain high amounts of ECM components...

  6. A decade of molecular cell biology: achievements and challenges.

    Science.gov (United States)

    Akhtar, Asifa; Fuchs, Elaine; Mitchison, Tim; Shaw, Reuben J; St Johnston, Daniel; Strasser, Andreas; Taylor, Susan; Walczak, Claire; Zerial, Marino

    2011-09-23

    Nature Reviews Molecular Cell Biology celebrated its 10-year anniversary during this past year with a series of specially commissioned articles. To complement this, here we have asked researchers from across the field for their insights into how molecular cell biology research has evolved during this past decade, the key concepts that have emerged and the most promising interfaces that have developed. Their comments highlight the broad impact that particular advances have had, some of the basic understanding that we still require, and the collaborative approaches that will be essential for driving the field forward.

  7. Isolation, characterization, and molecular regulation of muscle stem cells

    Directory of Open Access Journals (Sweden)

    So-ichiro eFukada

    2013-11-01

    Full Text Available keletal muscle has great regenerative capacity which is dependent on muscle stem cells, also known as satellite cells. A loss of satellite cells and/or their function impairs skeletal muscle regeneration and leads to a loss of skeletal muscle power; therefore, the molecular mechanisms for maintaining satellite cells in a quiescent and undifferentiated state are of great interest in skeletal muscle biology. Many studies have demonstrated proteins expressed by satellite cells, including Pax7, M-cadherin, Cxcr4, syndecan3/4, and c-met. To further characterize satellite cells, we established a method to directly isolate satellite cells using a monoclonal antibody, SM/C-2.6. Using SM/C-2.6 and microarrays, we measured the genes expressed in quiescent satellite cells and demonstrated that Hesr3 may complement Hesr1 in generating quiescent satellite cells. Although Hesr1- or Hesr3-single knockout mice show a normal skeletal muscle phenotype, including satellite cells, Hesr1/Hesr3-double knockout mice show a gradual decrease in the number of satellite cells and increase in regenerative defects dependent on satellite cell numbers. We also observed that a mouse’s genetic background affects the regenerative capacity of its skeletal muscle and have established a line of DBA/2-background mdx mice that has a much more severe phenotype than the frequently used C57BL/10-mdx mice. The phenotype of DBA/2-mdx mice also seems to depend on the function of satellite cells. In this review, we summarize the methodology of direct isolation, characterization, and molecular regulation of satellite cells based on our results. The relationship between the regenerative capacity of satellite cells and progression of muscular disorders is also summarized. In the last part, we discuss application of the accumulating scientific information on satellite cells to treatment of patients with muscular disorders.

  8. Stem Cell Heterogeneity of Mononucleated Cells from Murine Peripheral Blood: Molecular Analysis

    Directory of Open Access Journals (Sweden)

    Muhammad Dain Yazid

    2011-01-01

    Full Text Available The main purpose of this paper was to determine the heterogeneity of primary isolated mononucleated cells that originated from the peripheral blood system by observing molecular markers. The isolated cells were cultured in complete medium for 4 to 7 days prior to the separation of different cell types, that is, adherent and suspension. Following a total culture time of 14 days, adherent cells activated the Cd105 gene while suspension cells activated the Sca-1 gene. Both progenitor markers, Cbfa-1 and Ostf-1, were inactivated in both suspension and adherent cells after 14-day culture compared to cells cultured 3 days in designated differentiation medium. In conclusion, molecular analyses showed that primary mononucleated cells are heterogeneous, consisting of hematopoietic stem cells (suspension and mesenchymal stem cells (adherent while both cells contained no progenitor cells.

  9. A robust, good manufacturing practice-compliant, clinical-scale procedure to generate regulatory T cells from patients with amyotrophic lateral sclerosis for adoptive cell therapy.

    Science.gov (United States)

    Alsuliman, Abdullah; Appel, Stanley H; Beers, David R; Basar, Rafet; Shaim, Hila; Kaur, Indresh; Zulovich, Jane; Yvon, Eric; Muftuoglu, Muharrem; Imahashi, Nobuhiko; Kondo, Kayo; Liu, Enli; Shpall, Elizabeth J; Rezvani, Katayoun

    2016-10-01

    Regulatory T cells (Tregs) play a fundamental role in the maintenance of self-tolerance and immune homeostasis. Defects in Treg function and/or frequencies have been reported in multiple disease models. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting upper and lower motor neurons. Compelling evidence supports a neuroprotective role for Tregs in this disease. Indeed, rapid progression in ALS patients is associated with decreased FoxP3 expression and Treg frequencies. Thus, we propose that strategies to restore Treg number and function may slow disease progression in ALS. In this study, we developed a robust, Good Manufacturing Practice (GMP)-compliant procedure to enrich and expand Tregs from ALS patients. Tregs isolated from these patients were phenotypically similar to those from healthy individuals but were impaired in their ability to suppress T-cell effector function. In vitro expansion of Tregs for 4 weeks in the presence of GMP-grade anti-CD3/CD28 beads, interleukin (IL)-2 and rapamcyin resulted in a 25- to 200-fold increase in their number and restored their immunoregulatory activity. Collectively, our data facilitate and support the implementation of clinical trials of adoptive therapy with ex vivo expanded and highly suppressive Tregs in patients with ALS.

  10. [Adoptive transfer of immunity against Nippostrongylus brasiliensis in mice. In vitro restimulation of immune cells before their transfer].

    Science.gov (United States)

    Rhalem, A; Bourdieu, C; Luffau, G; Péry, P

    1989-01-01

    When mesenteric lymph node cells from infected mice were stimulated during an in vitro culture with exoantigens or with a purified protective antigen of Nippostrongylus brasiliensis, a drop was noted in the number of cells required to transfer protection to new mice. A maximal effect was already obtained after 4 hrs. of culture, but irradiated cells or cells from another mouse strain were unable to mediate this transfer. T cells were more effective than B cells in transferring the protection.

  11. Molecular Theories of Cell Life and Death.

    Science.gov (United States)

    1987-07-27

    effects on human health . useful numbers - 1) h (Planck’s constant) = 6.626 x 10-27 erg-sec = 1.58 x 10- 3 4 cal-sec 2) 1 eV = 23 kcal/mole 3) N...Information based on Theoretical Notions from Spin-Glass Physics" Prebiotic polymers that contain internal conformational strains (analogous to...essentialA ife on another level, and vice versa. Possible roles of . such programmed cell deaths in health and diseases are reviewed. *’ 16. J. R

  12. Molecular cell biology of androgen receptor signalling.

    Science.gov (United States)

    Bennett, Nigel C; Gardiner, Robert A; Hooper, John D; Johnson, David W; Gobe, Glenda C

    2010-06-01

    The classical action of androgen receptor (AR) is to regulate gene transcriptional processes via AR nuclear translocation, response element binding and recruitment of, or crosstalk with, transcription factors. AR also utilises non-classical, non-genomic mechanisms of signal transduction. These precede gene transcription or protein synthesis, and involve steroid-induced modulation of cytoplasmic or cell membrane-bound regulatory proteins. Despite many decades of investigation, the role of AR in gene regulation of cells and tissues remains only partially characterised. AR exerts most of its effects in sex hormone-dependent tissues of the body, but the receptor is also expressed in many tissues not previously thought to be androgen sensitive. Thus it is likely that a complex, more over-arching, role for AR exists. Each AR domain co-ordinates a multitude of individual and vital roles via a diverse array of interacting partner molecules that are necessary for cellular and tissue development and maintenance. Aberrant AR activity, promoted by mutations or binding partner misregulation, can present as many clinical manifestations including androgen insensitivity syndrome and prostate cancer. In the case of malignant prostate cancer, treatment generally revolves around androgen deprivation therapies designed to interfere with AR action and the androgen signalling axis. Androgen therapies for prostate cancer often fail, highlighting a real need for increased research into AR function.

  13. Advances in tomography: probing the molecular architecture of cells.

    Science.gov (United States)

    Fridman, Karen; Mader, Asaf; Zwerger, Monika; Elia, Natalie; Medalia, Ohad

    2012-11-01

    Visualizing the dynamic molecular architecture of cells is instrumental for answering fundamental questions in cellular and structural biology. Although modern microscopy techniques, including fluorescence and conventional electron microscopy, have allowed us to gain insights into the molecular organization of cells, they are limited in their ability to visualize multicomponent complexes in their native environment. Cryo-electron tomography (cryo-ET) allows cells, and the macromolecular assemblies contained within, to be reconstructed in situ, at a resolution of 2-6 nm. By combining cryo-ET with super-resolution fluorescence microscopy approaches, it should be possible to localize proteins with high precision inside cells and so elucidate a more realistic view of cellular processes. Thus, cryo-ET may bridge the resolution gap between cellular and structural biology.

  14. Testicular germ cell tumors: Molecular genetic and clinicomorphological aspects

    Directory of Open Access Journals (Sweden)

    M. V. Nemtsova

    2015-03-01

    Full Text Available Testicular tumors are the most common form of solid cancer in young men. According to the 2004 WHO classification, testicular germ cell tumors (TGCT may present with different histological types. Embryonic cells of varying grade may be a source of TGCT and the occurrence of this type of tumors is directly related to the formation of a pool of male sex cells and gametogenesis. The paper gives information on mo- lecular stages for the process of formation of male sex cells in health, as well as ways of their impairments leading to TGCT. An investigation of the profiles of gene expression and the spectrum of molecular damages revealed genes responsible for a predisposition to the sporadic and hereditary forms of TGCT. The paper presents the current molecular genetic and clinicomorphological characteristics of TGCT. 

  15. Molecular mechanisms of TRAIL-induced apoptosis of cancer cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) is a recently identified member of the tumor necrosis factor (TNF) family[1]. Numerous studies indicate that TRAIL can induce apoptosis of cancer cells but not of normal cells, pointing to the possibility of de-veloping TRAIL into a cancer drug[2-4]. This review will summary the molecular mechanisms of TRAIL-induced apoptosis and discuss the questions to be resolved in this field.

  16. Molecular Characterization of Dendritic Cell-Derived Exosomes

    OpenAIRE

    Théry, Clotilde; Regnault, Armelle; Garin, Jérôme; Wolfers, Joseph; Zitvogel, Laurence; Ricciardi-Castagnoli, Paola; Raposo, Graça; Amigorena, Sebastian

    1999-01-01

    Exosomes are membrane vesicles secreted by hematopoietic cells upon fusion of late multivesicular endosomes with the plasma membrane. Dendritic cell (DC)-derived exosomes induce potent antitumor immune responses in mice, resulting in the regression of established tumors (Zitvogel, L., A. Regnault, A. Lozier, J. Wolfers, C. Flament, D. Tenza, P. Ricciardi-Castagnoli, G. Raposo, and S. Amigorena. 1998. Nat. Med. 4:594–600). To unravel the molecular basis of exosome-induced immune stimulation, w...

  17. The stoichiometric production of IL-2 and IFN-γ mRNA defines memory T cells that can self-renew after adoptive transfer in humans.

    Science.gov (United States)

    Wang, Anran; Chandran, Smita; Shah, Syed A; Chiu, Yu; Paria, Biman C; Aghamolla, Tamara; Alvarez-Downing, Melissa M; Lee, Chyi-Chia Richard; Singh, Sanmeet; Li, Thomas; Dudley, Mark E; Restifo, Nicholas P; Rosenberg, Steven A; Kammula, Udai S

    2012-08-29

    Adoptive immunotherapy using ex vivo-expanded tumor-reactive lymphocytes can mediate durable cancer regression in selected melanoma patients. Analyses of these trials have associated the in vivo engraftment ability of the transferred cells with their antitumor efficacy. Thus, there is intensive clinical interest in the prospective isolation of tumor-specific T cells that can reliably persist after transfer. Animal studies have suggested that central memory CD8(+) T cells (T(CM)) have divergent capabilities including effector differentiation to target antigen and stem cell-like self-renewal that enable long-term survival after adoptive transfer. We sought to isolate human melanoma-specific T(CM) to define their in vivo fate and function after autologous therapeutic transfer to metastatic patients. To facilitate the high-throughput identification of these rare cells from patients, we report that T(CM) have a defined stoichiometric production of interleukin-2 (IL-2) and interferon-γ (IFN-γ) mRNA after antigen stimulation. Melanoma-specific T cells screened for high relative IL-2 production had a T(CM) phenotype and superior in vitro proliferative capacity compared to cells with low IL-2 production. To investigate in vivo effector function and self-renewal capability, we allowed melanoma-specific T(CM) to undergo in vitro expansion and differentiation into lytic effector clones and then adoptively transferred them back into their hosts. These clones targeted skin melanocytes in all five patients and persisted long term and reacquired parental T(CM) attributes in four patients after transfer. These findings demonstrate the favorable engraftment fitness for human T(CM)-derived clones, but further efforts to improve their antitumor efficacy are still necessary.

  18. Molecular Programming of Immunological Memory in Natural Killer Cells.

    Science.gov (United States)

    Beaulieu, Aimee M; Madera, Sharline; Sun, Joseph C

    2015-01-01

    Immunological memory is a hallmark of the adaptive immune system. Although natural killer (NK) cells have traditionally been classified as a component of the innate immune system, they have recently been shown in mice and humans to exhibit certain features of immunological memory, including an ability to undergo a clonal-like expansion during virus infection, generate long-lived progeny (i.e. memory cells), and mediate recall responses against previously encountered pathogens--all characteristics previously ascribed only to adaptive immune responses by B and T cells in mammals. To date, the molecular events that govern the generation of NK cell memory are not completely understood. Using a mouse model of cytomegalovirus infection, we demonstrate that individual pro-inflammatory IL-12, IL-18, and type I-IFN signaling pathways are indispensible and play non-redundant roles in the generation of virus-specific NK cell memory. Furthermore, we discovered that antigen-specific proliferation and protection by NK cells is mediated by the transcription factor Zbtb32, which is induced by pro-inflammatory cytokines and promotes a cell cycle program in activated NK cells. A greater understanding of the molecular mechanisms controlling NK cell responses will provide novel strategies for tailoring vaccines to target infectious disease.

  19. Membrane curvature in cell biology: An integration of molecular mechanisms.

    Science.gov (United States)

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L

    2016-08-15

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.

  20. Control of cell cycle and cell growth by molecular chaperones.

    Science.gov (United States)

    Aldea, Martí; Garí, Eloi; Colomina, Neus

    2007-11-01

    Cells adapt their size to both intrinsic and extrinsic demands and, among them, those that stem from growth and proliferation rates are crucial for cell size homeostasis. Here we revisit mechanisms that regulate cell cycle and cell growth in budding yeast. Cyclin Cln3, the most upstream activator of Start, is retained at the endoplasmic reticulum in early G(1) and released by specific chaperones in late G(1) to initiate the cell cycle. On one hand, these chaperones are rate-limiting for release of Cln3 and cell cycle entry and, on the other hand, they are required for key biosynthetic processes. We propose a model whereby the competition for specialized chaperones between growth and cycle machineries could gauge biosynthetic rates and set a critical size threshold at Start.

  1. Recent Advances in the Molecular Characterization of Circulating Tumor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lowes, Lori E. [London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 4L6 (Canada); Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1 (Canada); Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 4L6 (Canada); Allan, Alison L., E-mail: alison.allan@lhsc.on.ca [London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 4L6 (Canada); Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1 (Canada); Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 4L6 (Canada); Lawson Health Research Institute, London, ON N6C 2R5 (Canada)

    2014-03-13

    Although circulating tumor cells (CTCs) were first observed over a century ago, lack of sensitive methodology precluded detailed study of these cells until recently. However, technological advances have now facilitated the identification, enumeration, and characterization of CTCs using a variety of methods. The majority of evidence supporting the use of CTCs in clinical decision-making has been related to enumeration using the CellSearch{sup ®} system and correlation with prognosis. Growing evidence also suggests that CTC monitoring can provide an early indication of patient treatment response based on comparison of CTC levels before and after therapy. However, perhaps the greatest potential that CTCs hold for oncology lies at the level of molecular characterization. Clinical treatment decisions may be more effective if they are based on molecular characteristics of metastatic cells rather than on those of the primary tumor alone. Molecular characterization of CTCs (which can be repeatedly isolated in a minimally invasive fashion) provides the opportunity for a “real-time liquid biopsy” that allows assessment of genetic drift, investigation of molecular disease evolution, and identification of actionable genomic characteristics. This review focuses on recent advances in this area, including approaches involving immunophenotyping, fluorescence in situ hybridization (FISH), multiplex RT-PCR, microarray, and genomic sequencing.

  2. Recent Advances in the Molecular Characterization of Circulating Tumor Cells

    Directory of Open Access Journals (Sweden)

    Lori E. Lowes

    2014-03-01

    Full Text Available Although circulating tumor cells (CTCs were first observed over a century ago, lack of sensitive methodology precluded detailed study of these cells until recently. However, technological advances have now facilitated the identification, enumeration, and characterization of CTCs using a variety of methods. The majority of evidence supporting the use of CTCs in clinical decision-making has been related to enumeration using the CellSearch® system and correlation with prognosis. Growing evidence also suggests that CTC monitoring can provide an early indication of patient treatment response based on comparison of CTC levels before and after therapy. However, perhaps the greatest potential that CTCs hold for oncology lies at the level of molecular characterization. Clinical treatment decisions may be more effective if they are based on molecular characteristics of metastatic cells rather than on those of the primary tumor alone. Molecular characterization of CTCs (which can be repeatedly isolated in a minimally invasive fashion provides the opportunity for a “real-time liquid biopsy” that allows assessment of genetic drift, investigation of molecular disease evolution, and identification of actionable genomic characteristics. This review focuses on recent advances in this area, including approaches involving immunophenotyping, fluorescence in situ hybridization (FISH, multiplex RT-PCR, microarray, and genomic sequencing.

  3. Syngeneic syrian hamster tumors feature tumor-infiltrating lymphocytes allowing adoptive cell therapy enhanced by oncolytic adenovirus in a replication permissive setting.

    Science.gov (United States)

    Siurala, Mikko; Vähä-Koskela, Markus; Havunen, Riikka; Tähtinen, Siri; Bramante, Simona; Parviainen, Suvi; Mathis, J Michael; Kanerva, Anna; Hemminki, Akseli

    2016-05-01

    Adoptive transfer of tumor-infiltrating lymphocytes (TIL) has shown promising yet sometimes suboptimal results in clinical trials for advanced cancer, underscoring the need for approaches improving efficacy and safety. Six implantable syngeneic tumor cell lines of the Syrian hamster were used to initiate TIL cultures. TIL generated from tumor fragments cultured in human interleukin-2 (IL-2) for 10 d were adoptively transferred into tumor-bearing hamsters with concomitant intratumoral injections of oncolytic adenovirus (Ad5-D24) for the assessment of antitumor efficacy. Pancreatic cancer (HapT1) and melanoma (RPMI 1846) TIL exhibited potent and tumor-specific cytotoxicity in effector-to-target (E/T) assays. MHC Class I blocking abrogated the cell killing of RPMI 1846 TIL, indicating cytotoxic CD8(+) T-cell activity. When TIL were combined with Ad5-D24 in vitro, HapT1 tumor cell killing was significantly enhanced over single agents. In vivo, the intratumoral administration of HapT1 TIL and Ad5-D24 resulted in improved tumor growth control compared with either treatment alone. Additionally, splenocytes derived from animals treated with the combination of Ad5-D24 and TIL killed autologous tumor cells more efficiently than monotherapy-derived splenocytes, suggesting that systemic antitumor immunity was induced. For the first time, TIL of the Syrian hamster have been cultured, characterized and used therapeutically together with oncolytic adenovirus for enhancing the efficacy of TIL therapy. Our results support human translation of oncolytic adenovirus as an enabling technology for adoptive T-cell therapy of solid tumors.

  4. [Advances of molecular targeted therapy in squamous cell lung cancer].

    Science.gov (United States)

    Ma, Li; Zhang, Shucai

    2013-12-01

    Squamous cell lung cancer (SQCLC) is one of the most prevalent subtypes of lung cancer worldwide, about 400,000 persons die from squamous-cell lung cancer around the world, and its pathogenesis is closely linked with tobacco exposure. Unfortunately, squamous-cell lung cancer patients do not benefit from major advances in the development of targeted therapeutics such as epidermal growth factor receptor (EGFR) inhibitors or anaplastic lymphoma kinase (ALK) inhibitors that show exquisite activity in lung adenocarcinomas with EGFR mutations or echinoderm microtubule associated protein like-4 (EML4)-ALK fusions, respectively. Major efforts have been launched to characterize the genomes of squamous-cell lung cancers. Among the new results emanating from these efforts are amplifications of the fibroblast growth factor receptor 1 (FGFR1) gene, the discoidin domain receptor 2 (DDR2) gene mutation as potential novel targets for the treatment of SQCLCs. Researchers find that there are many specific molecular targeted genes in the genome of squamous-cell lung cancer patients. These changes play a vital role in cell cycle regulation, oxidative stress, cell apoptosis, squamous epithelium differentiation, may be the candidate targeted moleculars in SQCLCs. Here, we provide a review on these discoveries and their implications for clinical trials in squamous-cell lung cancer assessing the value of novel therapeutics addressing these targets.

  5. Advances of Molecular Targeted Therapy in Squamous Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Li MA

    2013-12-01

    Full Text Available Squamous cell lung cancer (SQCLC is one of the most prevalent subtypes of lung cancer worldwide, about 400,000 persons die from squamous-cell lung cancer around the world, and its pathogenesis is closely linked with tobacco exposure. Unfortunately, squamous-cell lung cancer patients do not benefit from major advances in the development of targeted therapeutics such as epidermal growth factor receptor (EGFR inhibitors or anaplastic lymphoma kinase (ALK inhibitors that show exquisite activity in lungadenocarcinomas with EGFR mutations or echinoderm microtubule associated protein like-4 (EML4-ALK fusions, respectively. Major efforts have been launched to characterize the genomes of squamous-cell lung cancers. Among the new results emanating from these efforts are amplifications of the fibroblast growth factor receptor 1 (FGFR1 gene, the discoidin domain receptor 2 (DDR2 gene mutation as potential novel targets for the treatment of SQCLCs. Researchers find that there are many specific molecular targeted genes in the genome of squamous-cell lung cancer patients. These changes play a vital role in cell cycle regulation, oxidative stress, cell apoptosis, squamous epithelium differentiation, may be the candidate targeted moleculars in SQCLCs. Here, we provide a review on these discoveries and their implications for clinical trials in squamous-cell lungcancer assessing the value of novel therapeutics addressing these targets.

  6. T cell mediated pathogenesis in EAE: Molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Florian C Kurschus

    2015-06-01

    Full Text Available T cells are major initiators and mediators of disease in multiple sclerosis (MS and in its animal model experimental autoimmune encephalomyelitis (EAE. EAE is an antigen-driven autoimmune model in which immunization against myelin autoantigens elicits strong T cell responses which initiate its pathology with CNS myelin destruction. T cells cause pathogenic events by several mechanisms; some work in a direct fashion in the CNS, such as direct cytokine-induced damage, granzyme-mediated killing, or glutamate-induced neurotoxicity, whereas most are indirect mechanisms, such as activation of other cell types like macrophages, B cells, or neutrophils. This review aims to describe and discuss the molecular effector mechanism by which T cells harm the CNS during EAE.

  7. Communicating the molecular basis of cancer cell-by-cell: an interview with Tatsushi Igaki

    OpenAIRE

    2015-01-01

    ABSTRACT Tatsushi Igaki is currently based at the Kyoto University Graduate School of Biostudies, where he leads a research group dedicated to using Drosophila genetics to build a picture of the cell-cell communications underlying the establishment and maintenance of multicellular systems. His work has provided insight into the molecular bases of cell competition in the context of development and tumorigenesis, including the landmark discovery that oncogenic cells communicate with normal cell...

  8. Using Molecular Biology to Develop Drugs for Renal Cell Carcinoma

    Science.gov (United States)

    Cowey, C. Lance; Rathmell, W. Kimryn

    2010-01-01

    Background Renal cell carcinoma is a disease marked by a unique biology which has governed it’s long history of poor response to conventional cancer treatments. The discovery of the signaling pathway activated as a result of inappropriate constitutive activation of the hypoxia inducible factors (HIF), transcription factors physiologically and transiently stabilized in response to low oxygen, has provided a primary opportunity to devise treatment strategies to target this oncogenic pathway. Objective A review of the molecular pathogenesis of renal cell cancer as well as molecularly targeted therapies, both those currently available and those in development, will be provided. In addition, trials involving combination or sequential targeted therapy are discussed. Methods A detailed review of the literature describing the molecular biology of renal cell cancer and novel therapies was performed and summarized. Results/Conclusion Therapeutics targeting angiogenesis have provided the first class of agents which provide clinical benefit in a large majority of patients and heralded renal cell carcinoma as a solid tumor paradigm for the development of novel therapeutics. Multiple strategies targeting this pathway and now other identified pathways in renal cell carcinoma provide numerous potential opportunities to make major improvements in treating this historically devastating cancer. PMID:20648240

  9. Molecular imaging of cell-mediated cancer immunotherapy.

    Science.gov (United States)

    Lucignani, Giovanni; Ottobrini, Luisa; Martelli, Cristina; Rescigno, Maria; Clerici, Mario

    2006-09-01

    New strategies based on the activation of a patient's immune response are being sought to complement present conventional exogenous cancer therapies. Elucidating the trafficking pathways of immune cells in vivo, together with their migratory properties in relation to their differentiation and activation status, is useful for understanding how the immune system interacts with cancer. Methods based on tissue sampling to monitor immune responses are inadequate for repeatedly characterizing the responses of the immune system in different organs. A solution to this problem might come from molecular and cellular imaging - a branch of biomedical sciences that combines biotechnology and imaging methods to characterize, in vivo, the molecular and cellular processes involved in normal and pathologic states. The general concepts of noninvasive imaging of targeted cells as well as the technology and probes applied to cell-mediated cancer immunotherapy imaging are outlined in this review.

  10. The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation

    Science.gov (United States)

    Pelletier, Simon J.; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin

    2015-01-01

    Background: The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Methods: Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. Results: In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. Conclusion: We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. PMID:25522422

  11. DMPD: Lipoprotein trafficking in vascular cells. Molecular Trojan horses and cellularsaboteurs. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 9287290 Lipoprotein trafficking in vascular cells. Molecular Trojan horses and cell...9287290 Title Lipoprotein trafficking in vascular cells. Molecular Trojan horses ...ularsaboteurs. Hajjar DP, Haberland ME. J Biol Chem. 1997 Sep 12;272(37):22975-8. (.png) (.svg) (.html) (.csml) Show Lipoprotein traf...ficking in vascular cells. Molecular Trojan horses and cellularsaboteurs. PubmedID

  12. Comprehensive Molecular Characterization of Papillary Renal Cell Carcinoma

    Science.gov (United States)

    Linehan, W. Marston; Spellman, Paul T.; Ricketts, Christopher J.; Creighton, Chad J.; Fei, Suzanne S.; Davis, Caleb; Wheeler, David A.; Murray, Bradley A.; Schmidt, Laura; Vocke, Cathy D.; Peto, Myron; Al Mamun, Abu Amar M.; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W. Kimryn; Brooks, Angela N.; Hoadley, Katherine A.; Robertson, A. Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J.; Bootwalla, Moiz; Baylin, Stephen B.; Laird, Peter W.; Cherniack, Andrew D.; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B.; Akbani, Rehan; Leiserson, Mark D.M.; Raphael, Benjamin J.; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K.; Czerniak, Bogdan; Godwin, Andrew K.; Hakimi, A. Ari; Ho, Thai; Hsieh, James; Ittmann, Michael; Kim, William Y.; Krishnan, Bhavani; Merino, Maria J.; Mills Shaw, Kenna R.; Reuter, Victor E.; Reznik, Ed; Shelley, Carl Simon; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D.; Penny, Robert J.; Shelton, Candace; Shelton, W. Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T.; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A.; Felau, Ina; Hutter, Carolyn M.; Sheth, Margi; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S.N.; Carlsen, Rebecca; Carter, Scott L.; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R.; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, HarshaVardhan; Drummond, Jennifer; Gabriel, Stacey B.; Gibbs, Richard A.; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D. Neil; Holt, Robert A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Steven J.M.; Jones, Corbin D.; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A.; Moore, Richard A.; Morton, Donna; Mose, Lisle E.; Mungall, Andrew J.; Muzny, Donna; Parker, Joel S.; Perou, Charles M.; Roach, Jeffrey; Schein, Jacqueline E.; Schumacher, Steven E.; Shi, Yan; Simons, Janae V.; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G.; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D.; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N.; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J. Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L.; Boice, Lori; Bollag, Roni J.; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C.; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K.; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L.; Slaton, Joel; Stanton, Melissa; Thompson, R. Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M.; Winemiller, Cythnia; Zach, Leigh Anne; Zuna, Rosemary

    2016-01-01

    Background Papillary renal cell carcinoma, accounting for 15% of renal cell carcinoma, is a heterogeneous disease consisting of different types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal cell carcinoma; no effective forms of therapy for advanced disease exist. Methods We performed comprehensive molecular characterization utilizing whole-exome sequencing, copy number, mRNA, microRNA, methylation and proteomic analyses of 161 primary papillary renal cell carcinomas. Results Type 1 and Type 2 papillary renal cell carcinomas were found to be different types of renal cancer characterized by specific genetic alterations, with Type 2 further classified into three individual subgroups based on molecular differences that influenced patient survival. MET alterations were associated with Type 1 tumors, whereas Type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-ARE pathway. A CpG island methylator phenotype (CIMP) was found in a distinct subset of Type 2 papillary renal cell carcinoma characterized by poor survival and mutation of the fumarate hydratase (FH) gene. Conclusions Type 1 and Type 2 papillary renal cell carcinomas are clinically and biologically distinct. Alterations in the MET pathway are associated with Type 1 and activation of the NRF2-ARE pathway with Type 2; CDKN2A loss and CIMP in Type 2 convey a poor prognosis. Furthermore, Type 2 papillary renal cell carcinoma consists of at least 3 subtypes based upon molecular and phenotypic features. PMID:26536169

  13. Molecular Theory of the Living Cell Concepts, Molecular Mechanisms, and Biomedical Applications

    CERN Document Server

    Ji, Sungchul

    2012-01-01

    This book presents a comprehensive molecular theory of the living cell based on over thirty concepts, principles and laws imported from thermodynamics, statistical mechanics, quantum mechanics, chemical kinetics, informatics, computer science, linguistics, semiotics, and philosophy. The author formulates physically, chemically and enzymologically realistic molecular mechanisms to account for the basic living processes such as ligand-receptor interactions, protein folding, single-molecule enzymic catalysis, force-generating mechanisms in molecular motors, signal transduction, regulation of the genome-wide RNA metabolism, morphogenesis, the micro-macro coupling in coordination dynamics, the origin of life, and the mechanisms of biological evolution itself. Possible solutions to basic and practical problems facing contemporary biology and biomedical sciences have been suggested, including pharmacotheragnostics and personalized medicine.

  14. Molecular aging and rejuvenation of human muscle stem cells

    DEFF Research Database (Denmark)

    Carlson, Morgan E; Suetta, Charlotte; Conboy, Michael J

    2009-01-01

    Very little remains known about the regulation of human organ stem cells (in general, and during the aging process), and most previous data were collected in short-lived rodents. We examined whether stem cell aging in rodents could be extrapolated to genetically and environmentally variable humans....... Our findings establish key evolutionarily conserved mechanisms of human stem cell aging. We find that satellite cells are maintained in aged human skeletal muscle, but fail to activate in response to muscle attrition, due to diminished activation of Notch compounded by elevated transforming growth...... factor beta (TGF-beta)/phospho Smad3 (pSmad3). Furthermore, this work reveals that mitogen-activated protein kinase (MAPK)/phosphate extracellular signal-regulated kinase (pERK) signalling declines in human muscle with age, and is important for activating Notch in human muscle stem cells. This molecular...

  15. The molecular mechanism of embryonic stem cell pluripotency maintenance

    Institute of Scientific and Technical Information of China (English)

    WANG Qingzhong; LIU Yixun; HAN Chunsheng

    2005-01-01

    In vitro cultured embryonic stem (ES) cells are derived from the inner cell mass (ICM) of pre-implantation embryos, and are capable of giving rise to all cell and tissue types of the three germ layers upon being injected back into blastocysts. These cells are therefore said to possess pluripotency that can be maintained infinitely in culture under optimal conditions. Such pluripotency maintenance is believed to be due to the symmetrical cleavage of the cells in an undifferentiated state. The pluripotency of ES cells is the basis for their various practical and potential applications. ES cells can be used as donor cells to generate knockout or transgenic animals, as in vitro models of mammalian development, and as cell resources for cell therapy in regenerative medicine. The further success in these applications, particularly in the last two, is dependent on the establishment of a culture system with components in the medium clearly defined and the subsequent procedures for controlled differentiation of the cells into specific lineages. In turn, elucidating the molecular mechanism for pluripotency maintenance of ES cells is the prerequisite. This paper summarizes the recent progresses in this area, focusing mainly on the LIF/STAT3, BMPs/Smads, canonical Wnt, TGFβ/activin/nodal, PI3K and FGF signaling pathways and the genes such as oct4, nanog that are crucial in ES cell pluripotency maintenance. The regulatory systems of pluripotency maintenance in both mouse and human ES cells are also discussed. We believe that the cross-talkings between these signaling pathways, as well as the regulatory system underlying pluripotency maintenance will be the main focus in the area of ES cell researches in the future.

  16. Molecular mechanism of extrinsic factors affecting antiagingof stem cells

    Institute of Scientific and Technical Information of China (English)

    Tzyy Yue Wong; Mairim Alexandra Solis; Ying-Hui Chen; Lynn Ling-Huei Huang

    2015-01-01

    Scientific evidence suggests that stem cells possessthe anti-aging ability to self-renew and maintaindifferentiation potentials, and quiescent state. Theobjective of this review is to discuss the microenvironmentwhere stem cells reside in vivo , thesecreted factors to which stem cells are exposed, thehypoxic environment, and intracellular factors includinggenome stability, mitochondria integrity, epigeneticregulators, calorie restrictions, nutrients, and vitaminD. Secreted tumor growth factor-β and fibroblastgrowth factor-2 are reported to play a role in stem cellquiescence. Extracellular matrices may interact withcaveolin-1, the lipid raft on cell membrane to regulatequiescence. N-cadherin, the adhesive protein on nichecells provides support for stem cells. The hypoxicmicro-environment turns on hypoxia-inducible factor-1to prevent mesenchymal stem cells aging throughp16 and p21 down-regulation. Mitochondria expressglucosephosphate isomerase to undergo glycolysisand prevent cellular aging. Epigenetic regulators suchas p300, protein inhibitors of activated Stats and H19help maintain stem cell quiescence. In addition, calorierestriction may lead to secretion of paracrines cyclicADP-ribose by intestinal niche cells, which help maintainintestinal stem cells. In conclusion, it is crucial tounderstand the anti-aging phenomena of stem cells atthe molecular level so that the key to solving the agingmystery may be unlocked.

  17. Molecular Cell Biology of Apoptosis and Necroptosis in Cancer.

    Science.gov (United States)

    Dillon, Christopher P; Green, Douglas R

    2016-01-01

    Cell death is a major mechanism to eliminate cells in which DNA is damaged, organelles are stressed, or oncogenes are overexpressed, all events that would otherwise predispose cells to oncogenic transformation. The pathways that initiate and execute cell death are complex, genetically encoded, and subject to significant regulation. Consequently, while these pathways are often mutated in malignancy, there is considerable interest in inducing cell death in tumor cells as therapy. This chapter addresses our current understanding of molecular mechanisms contributing to two cell death pathways, apoptotic cell death and necroptosis, a regulated form of necrotic cell death. Apoptosis can be induced by a wide variety of signals, leading to protease activation that dismantles the cell. We discuss the physiological importance of each apoptosis pathway and summarize their known roles in cancer suppression and the current efforts at targeting each pathway therapeutically. The intricate mechanistic link between death receptor-mediated apoptosis and necroptosis is described, as well as the potential opportunities for utilizing necroptosis in the treatment of malignancy.

  18. Molecular deformation mechanisms of the wood cell wall material.

    Science.gov (United States)

    Jin, Kai; Qin, Zhao; Buehler, Markus J

    2015-02-01

    Wood is a biological material with outstanding mechanical properties resulting from its hierarchical structure across different scales. Although earlier work has shown that the cellular structure of wood is a key factor that renders it excellent mechanical properties at light weight, the mechanical properties of the wood cell wall material itself still needs to be understood comprehensively. The wood cell wall material features a fiber reinforced composite structure, where cellulose fibrils act as stiff fibers, and hemicellulose and lignin molecules act as soft matrix. The angle between the fiber direction and the loading direction has been found to be the key factor controlling the mechanical properties. However, how the interactions between theses constitutive molecules contribute to the overall properties is still unclear, although the shearing between fibers has been proposed as a primary deformation mechanism. Here we report a molecular model of the wood cell wall material with atomistic resolution, used to assess the mechanical behavior under shear loading in order to understand the deformation mechanisms at the molecular level. The model includes an explicit description of cellulose crystals, hemicellulose, as well as lignin molecules arranged in a layered nanocomposite. The results obtained using this model show that the wood cell wall material under shear loading deforms in an elastic and then plastic manner. The plastic regime can be divided into two parts according to the different deformation mechanisms: yielding of the matrix and sliding of matrix along the cellulose surface. Our molecular dynamics study provides insights of the mechanical behavior of wood cell wall material at the molecular level, and paves a way for the multi-scale understanding of the mechanical properties of wood.

  19. Molecular biology of normal melanocytes and melanoma cells.

    Science.gov (United States)

    Bandarchi, Bizhan; Jabbari, Cyrus Aleksandre; Vedadi, Ali; Navab, Roya

    2013-08-01

    Malignant melanoma is one of the most aggressive malignancies in humans and is responsible for 60-80% of deaths from skin cancers. The 5-year survival of patients with metastatic malignant melanoma is about 14%. Its incidence has been increasing in the white population over the past two decades. The mechanisms leading to malignant transformation of melanocytes and melanocytic lesions are poorly understood. In developing malignant melanoma, there is a complex interaction of environmental and endogenous (genetic) factors, including: dysregulation of cell proliferation, programmed cell death (apoptosis) and cell-to-cell interactions. The understanding of genetic alterations in signalling pathways of primary and metastatic malignant melanoma and their interactions may lead to therapeutics modalities, including targeted therapies, particularly in advanced melanomas that have high mortality rates and are often resistant to chemotherapy and radiotherapy. Our knowledge regarding the molecular biology of malignant melanoma has been expanding. Even though several genes involved in melanocyte development may also be associated with melanoma cell development, it is still unclear how a normal melanocyte becomes a melanoma cell. This article reviews the molecular events and recent findings associated with malignant melanoma.

  20. T cell receptor (TCR-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ signaling mediate superior tumor regression in an animal model of adoptive cell therapy

    Directory of Open Access Journals (Sweden)

    Quatromoni Jon G

    2012-06-01

    Full Text Available Abstract Tumor antigen-reactive T cells must enter into an immunosuppressive tumor microenvironment, continue to produce cytokine and deliver apoptotic death signals to affect tumor regression. Many tumors produce transforming growth factor beta (TGFβ, which inhibits T cell activation, proliferation and cytotoxicity. In a murine model of adoptive cell therapy, we demonstrate that transgenic Pmel-1 CD8 T cells, rendered insensitive to TGFβ by transduction with a TGFβ dominant negative receptor II (DN, were more effective in mediating regression of established B16 melanoma. Smaller numbers of DN Pmel-1 T cells effectively mediated tumor regression and retained the ability to produce interferon-γ in the tumor microenvironment. These results support efforts to incorporate this DN receptor in clinical trials of adoptive cell therapy for cancer.

  1. Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography.

    Science.gov (United States)

    Boitor, Radu; Sinjab, Faris; Strohbuecker, Stephanie; Sottile, Virginie; Notingher, Ioan

    2016-06-23

    Raman micro-spectroscopy (RMS) is a non-invasive technique for imaging live cells in vitro. However, obtaining quantitative molecular information from Raman spectra is difficult because the intensity of a Raman band is proportional to the number of molecules in the sampled volume, which depends on the local molecular concentration and the thickness of the cell. In order to understand these effects, we combined RMS with atomic force microscopy (AFM), a technique that can measure accurately the thickness profile of the cells. Solution-based calibration models for RNA and albumin were developed to create quantitative maps of RNA and proteins in individual fixed cells. The maps were built by applying the solution-based calibration models, based on partial least squares fitting (PLS), on raster-scan Raman maps, after accounting for the local cell height obtained from the AFM. We found that concentrations of RNA in the cytoplasm of mouse neuroprogenitor stem cells (NSCs) were as high as 25 ± 6 mg ml(-1), while proteins were distributed more uniformly and reached concentrations as high as ∼50 ± 12 mg ml(-1). The combined AFM-Raman datasets from fixed cells were also used to investigate potential improvements for normalization of Raman spectral maps. For all Raman maps of fixed cells (n = 10), we found a linear relationship between the scores corresponding to the first component (PC1) and the cell height profile obtained by AFM. We used PC1 scores to reconstruct the relative height profiles of independent cells (n = 10), and obtained correlation coefficients with AFM maps higher than 0.99. Using this normalization method, qualitative maps of RNA and protein were used to obtain concentrations for live NSCs. While this study demonstrates the potential of using AFM and RMS for measuring concentration maps for individual NSCs in vitro, further studies are required to establish the robustness of the normalization method based on principal component analysis when comparing

  2. Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact

    Science.gov (United States)

    Fan, Lin; Wang, Fengyou; Liang, Junhui; Yao, Xin; Fang, Jia; Zhang, Dekun; Wei, Changchun; Zhao, Ying; Zhang, Xiaodan

    2017-01-01

    A rising candidate for upgrading the performance of an established narrow-bandgap solar technology without adding much cost is to construct the tandem solar cells from a crystalline silicon bottom cell and a high open-circuit voltage top cell. Here, we present a four-terminal tandem solar cell architecture consisting of a self-filtered planar architecture perovskite top cell and a silicon heterojunction bottom cell. A transparent ultrathin gold electrode has been used in perovskite solar cells to achieve a semi-transparent device. The transparent ultrathin gold contact could provide a better electrical conductivity and optical reflectance-scattering to maintain the performance of the top cell compared with the traditional metal oxide contact. The four-terminal tandem solar cell yields an efficiency of 14.8%, with contributions of the top (8.98%) and the bottom cell (5.82%), respectively. We also point out that in terms of optical losses, the intermediate contact of self-filtered tandem architecture is the uppermost problem, which has been addressed in this communication, and the results show that reducing the parasitic light absorption and improving the long wavelength range transmittance without scarifying the electrical properties of the intermediate hole contact layer are the key issues towards further improving the efficiency of this architecture device. Project supported by the International Cooperation Projects of the Ministry of Science and Technology (No. 2014DFE60170), the National Natural Science Foundation of China (Nos. 61474065, 61674084), the Tianjin Research Key Program of Application Foundation and Advanced Technology (No. 15JCZDJC31300), the Key Project in the Science & Technology Pillar Program of Jiangsu Province (No. BE2014147-3), and the 111 Project (No. B16027).

  3. Low-dose ionizing radiation induces direct activation of natural killer cells and provides a novel approach for adoptive cellular immunotherapy.

    Science.gov (United States)

    Yang, Guozi; Kong, Qingyu; Wang, Guanjun; Jin, Haofan; Zhou, Lei; Yu, Dehai; Niu, Chao; Han, Wei; Li, Wei; Cui, Jiuwei

    2014-12-01

    Recent evidence indicates that limited availability and cytotoxicity have restricted the development of natural killer (NK) cells in adoptive cellular immunotherapy (ACI). While it has been reported that low-dose ionizing radiation (LDIR) could enhance the immune response in animal studies, the influence of LDIR at the cellular level has been less well defined. In this study, the authors aim to investigate the direct effects of LDIR on NK cells and the potential mechanism, and explore the application of activation and expansion of NK cells by LDIR in ACI. The authors found that expansion and cytotoxicity of NK cells were markedly augmented by LDIR. The levels of IFN-γ and TNF-α in the supernatants of cultured NK cells were significantly increased after LDIR. Additionally, the effect of the P38 inhibitor (SB203580) significantly decreased the expanded NK cell cytotoxicity, cytokine levels, and expression levels of FasL and perforin. These findings indicate that LDIR induces a direct expansion and activation of NK cells through possibly the P38-MAPK pathway, which provides a potential mechanism for stimulation of NK cells by LDIR and a novel but simplified approach for ACI.

  4. Effect of molecular electrical doping on polyfuran based photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuwen; Opitz, Andreas; Salzmann, Ingo, E-mail: ingo.salzmann@physik.hu-berlin.de [Humboldt-Universität zu Berlin, Institut für Physik and IRIS Adlershof, Brook-Taylor Straße 6, 12489 Berlin (Germany); Frisch, Johannes [Helmholtz-Zentrum für Materialien und Energie GmbH, Bereich Solarenergieforschung, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Cohen, Erez; Bendikov, Michael [Department of Organic Chemistry, Weizmann Institute of Science, 76100 Rehovot (Israel); Koch, Norbert [Humboldt-Universität zu Berlin, Institut für Physik and IRIS Adlershof, Brook-Taylor Straße 6, 12489 Berlin (Germany); Helmholtz-Zentrum für Materialien und Energie GmbH, Bereich Solarenergieforschung, Albert-Einstein-Straße 15, 12489 Berlin (Germany)

    2015-05-18

    The electronic, optical, and morphological properties of molecularly p-doped polyfuran (PF) films were investigated over a wide range of doping ratio in order to explore the impact of doping in photovoltaic applications. We find evidence for integer-charge transfer between PF and the prototypical molecular p-dopant tetrafluoro-tetracyanoquinodimethane (F4TCNQ) and employed the doped polymer in bilayer organic solar cells using fullerene as acceptor. The conductivity increase in the PF films at dopant loadings ≤2% significantly enhances the short-circuit current of photovoltaic devices. For higher doping ratios, however, F4TCNQ is found to precipitate at the heterojunction between the doped donor polymer and the fullerene acceptor. Ultraviolet photoelectron spectroscopy reveals that its presence acts beneficial to the energy-level alignment by doubling the open-circuit voltage of solar cells from 0.2 V to ca. 0.4 V, as compared to pristine PF.

  5. In focus: molecular and cell biology research in China.

    Science.gov (United States)

    Yao, Xuebiao; Li, Dangsheng; Pei, Gang

    2013-09-01

    An interactive, intellectual environment with good funding opportunities is essential for the development and success of basic research. The fast-growing economy and investment in science, together with a visionary plan, have attracted foreign scholars to work in China, motivated world-class Chinese scientists to return and strengthened the country's international collaborations. As a result, molecular and cell biology research in China has evolved rapidly over the past decade.

  6. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance

    KAUST Repository

    Lan, Xinzheng

    2015-11-18

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Here we report a solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells.

  7. Purification, Visualization, and Molecular Signature of Neural Stem Cells

    Science.gov (United States)

    Yu, Yuan Hong; Narayanan, Gunaseelan; Sankaran, Shvetha; Ramasamy, Srinivas; Chan, Shi Yu; Lin, Shuping; Chen, Jinmiao; Yang, Henry; Srivats, Hariharan

    2016-01-01

    Neural stem cells (NSCs) are isolated from primary brain tissue and propagated as a heterogeneous mix of cells, including neural progenitors. To date, NSCs have not been purified in vitro to allow study of their biology and utility in regenerative medicine. In this study, we identify C1qR1as a novel marker for NSCs and show that it can be used along with Lewis-X (LeX) to yield a highly purified population of NSCs. Using time-lapse microscopy, we are able to follow NSCs forming neurospheres, allowing their visualization. Finally, using single-cell polymerase chain reaction (PCR), we determine the molecular signature of NSCs. The single-cell PCR data suggest that along with the Notch and Shh pathways, the Hippo pathway plays an important role in NSC activity. PMID:26464067

  8. Molecular Beacons: Powerful Tools for Imaging RNA in Living Cells

    Science.gov (United States)

    Monroy-Contreras, Ricardo; Vaca, Luis

    2011-01-01

    Recent advances in RNA functional studies highlights the pivotal role of these molecules in cell physiology. Diverse methods have been implemented to measure the expression levels of various RNA species, using either purified RNA or fixed cells. Despite the fact that fixed cells offer the possibility to observe the spatial distribution of RNA, assays with capability to real-time monitoring RNA transport into living cells are needed to further understand the role of RNA dynamics in cellular functions. Molecular beacons (MBs) are stem-loop hairpin-structured oligonucleotides equipped with a fluorescence quencher at one end and a fluorescent dye (also called reporter or fluorophore) at the opposite end. This structure permits that MB in the absence of their target complementary sequence do not fluoresce. Upon binding to targets, MBs emit fluorescence, due to the spatial separation of the quencher and the reporter. Molecular beacons are promising probes for the development of RNA imaging techniques; nevertheless much work remains to be done in order to obtain a robust technology for imaging various RNA molecules together in real time and in living cells. The present work concentrates on the different requirements needed to use successfully MB for cellular studies, summarizing recent advances in this area. PMID:21876785

  9. Molecular Beacons: Powerful Tools for Imaging RNA in Living Cells

    Directory of Open Access Journals (Sweden)

    Ricardo Monroy-Contreras

    2011-01-01

    Full Text Available Recent advances in RNA functional studies highlights the pivotal role of these molecules in cell physiology. Diverse methods have been implemented to measure the expression levels of various RNA species, using either purified RNA or fixed cells. Despite the fact that fixed cells offer the possibility to observe the spatial distribution of RNA, assays with capability to real-time monitoring RNA transport into living cells are needed to further understand the role of RNA dynamics in cellular functions. Molecular beacons (MBs are stem-loop hairpin-structured oligonucleotides equipped with a fluorescence quencher at one end and a fluorescent dye (also called reporter or fluorophore at the opposite end. This structure permits that MB in the absence of their target complementary sequence do not fluoresce. Upon binding to targets, MBs emit fluorescence, due to the spatial separation of the quencher and the reporter. Molecular beacons are promising probes for the development of RNA imaging techniques; nevertheless much work remains to be done in order to obtain a robust technology for imaging various RNA molecules together in real time and in living cells. The present work concentrates on the different requirements needed to use successfully MB for cellular studies, summarizing recent advances in this area.

  10. CT halo sign as an imaging marker for response to adoptive cell therapy in metastatic melanoma with pulmonary metastases

    Energy Technology Data Exchange (ETDEWEB)

    Shrot, Shai; Apter, Sara [Department of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer (Israel); Schachter, Jacob; Shapira-Frommer, Ronnie [Sheba Medical Center, The Ella Institute for Melanoma Research and Treatment, Tel Hashomer (Israel); Besser, Michal J. [Sheba Medical Center, The Ella Institute for Melanoma Research and Treatment, Tel Hashomer (Israel); Sackler School of Medicine, Tel Aviv University, Department of Clinical Microbiology and Immunology, Tel Aviv (Israel)

    2014-06-15

    The halo sign refers to a zone of ground-glass attenuation surrounding a pulmonary nodule. Pulmonary metastatic nodules exhibiting a halo sign are seen mainly in hypervascular tumours. We describe the appearance of a halo sign following treatment of adoptive transfer of autologous tumour-infiltrating lymphocytes (TIL) to melanoma patients with lung metastases. The study included 29 melanoma patients with pulmonary metastases who received TIL therapy. Pre- and post-treatment chest CTs were retrospectively reviewed for the presence of a halo sign and its correlation with therapeutic response. A pulmonary halo sign was not seen in any pre-treatment CT. It was observed in four of 12 patients who responded to the therapy but not in those who failed to respond. Significant differences were found between response ratio in patients in whom post-TIL halo sign appeared compared with those without the halo sign (p = 0.02). The appearance of a CT halo sign in melanoma with lung metastases following TIL therapy may indicate antitumoral effect and a good response to therapy. Our findings emphasize the importance of applying new assessment criteria for immunological anticancer therapies. (orig.)

  11. Circulating tumor cells: clinically relevant molecular access based on a novel CTC flow cell.

    Directory of Open Access Journals (Sweden)

    Jessamine P Winer-Jones

    Full Text Available BACKGROUND: Contemporary cancer diagnostics are becoming increasing reliant upon sophisticated new molecular methods for analyzing genetic information. Limiting the scope of these new technologies is the lack of adequate solid tumor tissue samples. Patients may present with tumors that are not accessible to biopsy or adequate for longitudinal monitoring. One attractive alternate source is cancer cells in the peripheral blood. These rare circulating tumor cells (CTC require enrichment and isolation before molecular analysis can be performed. Current CTC platforms lack either the throughput or reliability to use in a clinical setting or they provide CTC samples at purities that restrict molecular access by limiting the molecular tools available. METHODOLOGY/PRINCIPAL FINDINGS: Recent advances in magetophoresis and microfluidics have been employed to produce an automated platform called LiquidBiopsy®. This platform uses high throughput sheath flow microfluidics for the positive selection of CTC populations. Furthermore the platform quantitatively isolates cells useful for molecular methods such as detection of mutations. CTC recovery was characterized and validated with an accuracy (<20% error and a precision (CV<25% down to at least 9 CTC/ml. Using anti-EpCAM antibodies as the capture agent, the platform recovers 78% of MCF7 cells within the linear range. Non specific recovery of background cells is independent of target cell density and averages 55 cells/mL. 10% purity can be achieved with as low as 6 CTCs/mL and better than 1% purity can be achieved with 1 CTC/mL. CONCLUSIONS/SIGNIFICANCE: The LiquidBiopsy platform is an automated validated platform that provides high throughput molecular access to the CTC population. It can be validated and integrated into the lab flow enabling CTC enumeration as well as recovery of consistently high purity samples for molecular analysis such as quantitative PCR and Next Generation Sequencing. This tool opens

  12. Genes adopt non-optimal codon usage to generate cell cycle-dependent oscillations in protein levels

    DEFF Research Database (Denmark)

    Frenkel-Morgenstern, Milana; Danon, Tamar; Christian, Thomas;

    2012-01-01

    at the protein level exhibit non-optimal codon preferences. Remarkably, cell cycle-regulated genes expressed in different phases display different codon preferences. Here, we show empirically that transfer RNA (tRNA) expression is indeed highest in the G2 phase of the cell cycle, consistent with the non......-optimal codon usage of genes expressed at this time, and lowest toward the end of G1, reflecting the optimal codon usage of G1 genes. Accordingly, protein levels of human glycyl-, threonyl-, and glutamyl-prolyl tRNA synthetases were found to oscillate, peaking in G2/M phase. In light of our findings, we propose...

  13. MHC class II/ESO tetramer-based generation of in vitro primed anti-tumor T-helper lines for adoptive cell therapy of cancer.

    Science.gov (United States)

    Poli, Caroline; Raffin, Caroline; Dojcinovic, Danijel; Luescher, Immanuel; Ayyoub, Maha; Valmori, Danila

    2013-02-01

    Generation of tumor-antigen specific CD4(+) T-helper (T(H)) lines through in vitro priming is of interest for adoptive cell therapy of cancer, but the development of this approach has been limited by the lack of appropriate tools to identify and isolate low frequency tumor antigen-specific CD4(+) T cells. Here, we have used recently developed MHC class II/peptide tetramers incorporating an immunodominant peptide from NY-ESO-1 (ESO), a tumor antigen frequently expressed in different human solid and hematologic cancers, to implement an in vitro priming platform allowing the generation of ESO-specific T(H) lines. We isolated phenotypically defined CD4(+) T-cell subpopulations from circulating lymphocytes of DR52b(+) healthy donors by flow cytometry cell sorting and stimulated them in vitro with peptide ESO(119-143), autologous APC and IL-2. We assessed the frequency of ESO-specific cells in the cultures by staining with DR52b/ESO(119-143) tetramers (ESO-tetramers) and TCR repertoire of ESO-tetramer(+) cells by co-staining with TCR variable β chain (BV) specific antibodies. We isolated ESO-tetramer(+) cells by flow cytometry cell sorting and expanded them with PHA, APC and IL-2 to generate ESO-specific T(H) lines. We characterized the lines for antigen recognition, by stimulation with ESO peptide or recombinant protein, cytokine production, by intracellular staining using specific antibodies, and alloreactivity, by stimulation with allo-APC. Using this approach, we could consistently generate ESO-tetramer(+) T(H) lines from conventional CD4(+)CD25(-) naïve and central memory populations, but not from effector memory populations or CD4(+)CD25(+) Treg. In vitro primed T(H) lines recognized ESO with affinities comparable to ESO-tetramer(+) cells from patients immunized with an ESO vaccine and used a similar TCR repertoire. In this study, using MHC class II/ESO tetramers, we have implemented an in vitro priming platform allowing the generation of ESO

  14. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells.

    Directory of Open Access Journals (Sweden)

    Mehrnaz Nouri

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE, the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers. These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms and at 14 days (i.e., at the stage of paralysis after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies.

  15. Obstructive renal injury: from fluid mechanics to molecular cell biology

    Directory of Open Access Journals (Sweden)

    Alvaro C Ucero

    2010-04-01

    Full Text Available Alvaro C Ucero1,*, Sara Gonçalves2,*, Alberto Benito-Martin1, Beatriz Santamaría1, Adrian M Ramos1, Sergio Berzal1, Marta Ruiz-Ortega1, Jesus Egido1, Alberto Ortiz11Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain; 2Nefrologia e Transplantação Renal, Hospital de Santa Maria EPE, Lisbon, Portugal *Both authors contributed equally to the manuscriptAbstract: Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1 and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.Keywords: urinary tract obstruction, renal injury, fluid mechanics, molecular cell biology

  16. Development of a T cell receptor targeting an HLA-A*0201 restricted epitope from the cancer-testis antigen SSX2 for adoptive immunotherapy of cancer.

    Directory of Open Access Journals (Sweden)

    Daniel Abate-Daga

    Full Text Available The clinical success of adoptive immunotherapy of cancer relies on the selection of target antigens that are highly expressed in tumor cells but absent in essential normal tissues. A group of genes that encode the cancer/testis or cancer germline antigens have been proposed as ideal targets for immunotherapy due to their high expression in multiple cancer types and their restricted expression in immunoprivileged normal tissues. In the present work we report the isolation and characterization of human T cell receptors (TCRs with specificity for synovial sarcoma X breakpoint 2 (SSX2, a cancer/testis antigen expressed in melanoma, prostate cancer, lymphoma, multiple myeloma and pancreatic cancer, among other tumors. We isolated seven HLA-A2 restricted T cell receptors from natural T cell clones derived from tumor-infiltrated lymph nodes of two SSX2-seropositive melanoma patients, and selected four TCRs for cloning into retroviral vectors. Peripheral blood lymphocytes (PBL transduced with three of four SSX2 TCRs showed SSX241-49 (KASEKIFYV peptide specific reactivity, tumor cell recognition and tetramer binding. One of these, TCR-5, exhibited tetramer binding in both CD4 and CD8 cells and was selected for further studies. Antigen-specific and HLA-A*0201-restricted interferon-γ release, cell lysis and lymphocyte proliferation was observed following culture of TCR engineered human PBL with relevant tumor cell lines. Codon optimization was found to increase TCR-5 expression in transduced T cells, and this construct has been selected for development of clinical grade viral vector producing cells. The tumor-specific pattern of expression of SSX2, along with the potent and selective activity of TCR-5, makes this TCR an attractive candidate for potential TCR gene therapy to treat multiple cancer histologies.

  17. Adoptive Immunotherapy for Epithelial Ovarian Cancer Using T-cells Simultaneously Targeted to Tumor and Tumor-Associated Macrophages

    Science.gov (United States)

    2013-12-01

    Figure   10   that   demonstrate   ring   enhancement   around   the   viable   circumference   of   the   tumor.   When...in head and neck cancer. Taken together, it is logical to build on this experience by developing the use of TiN-4+ T-cell immunotherapy for the

  18. Colitis-inducing potency of CD4+ T cells in immunodeficient, adoptive hosts depends on their state of activation, IL-12 responsiveness, and CD45RB surface phenotype

    DEFF Research Database (Denmark)

    Claesson, M H; Bregenholt, S; Bonhagen, K

    1999-01-01

    a late-onset IBD manifest > 20 wk posttransfer. In SCID mice with IBD transplanted with IL-12-responsive CD4+ T cells, the colonic lamina propria CD4+ T cells showed a mucosa-seeking memory/effector CD45RBlow Th1 phenotype abundantly producing IFN-gamma and TNF-alpha. In SCID mice transplanted with IL-12......We studied the induction, severity and rate of progression of inflammatory bowel disease (IBD) induced in SCID mice by the adoptive transfer of low numbers of the following purified BALB/c CD4+ T cell subsets: 1) unfractionated, peripheral, small (resting), or large (activated) CD4+ T cells; 2......-unresponsive STAT-4-/- CD4+ T cells, the colonic lamina propria, mesenteric lymph node, and splenic CD4+ T cells produced very little IFN-gamma but abundant levels of TNF-alpha. The histopathologic appearance of colitis in all transplanted SCID mice was similar. These data indicate that CD45RBhigh and CD45...

  19. Molecular Mechanism of Isocupressic Acid Supresses MA-10 Cell Steroidogenesis

    Directory of Open Access Journals (Sweden)

    Kuan-Hao Tsui

    2012-01-01

    Full Text Available Consumption of ponderosa pine needles causes late-term abortions in cattle and is a serious poisonous plant problem in foothill and mountain rangelands. Isocupressic acid (IA is the component of pine needles responsible for the abortifacient effect, its abortifacient effect may be due to inhibition of steroidogenesis. To investigate the more detail molecular mechanism, we used MA-10 cell, which is wild used to investigate molecular mechanism of steroidogenesis, to characterize the molecular mechanisms underlying the actions of IA in more detail. In this report, we focus on the function of IA on important steroidogenic genes, including steroidogenic acute regulatory protein (StAR, cytochrome P450 cholesterol side-chain cleavage (P450scc, and 3β-hydroxysteroid dehydrogenase (3β-HSD. We found that IA does not affect enzyme activities of these genes but inhibits transcription of P450scc and translation of StAR and P450scc through attenuating cAMP-PKA signaling. Thus, steroid productions of cells were suppressed.

  20. Molecular signatures in response to Isoliquiritigenin in lymphoblastoid cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Eun; Hong, Eun-Jung; Nam, Hye-Young [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Hwang, Meeyul [Research Center for Biomedical Resource of Oriental Medicine, Daegu Haany University (Korea, Republic of); Kim, Ji-Hyun [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Han, Bok-Ghee, E-mail: bokghee@nih.go.kr [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Jeon, Jae-Pil, E-mail: jpjeon@cdc.go.kr [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer We identified the inhibitory effect of ISL on cell proliferation of LCLs. Black-Right-Pointing-Pointer We found ISL-induced genes and miRNAs through microarray approach. Black-Right-Pointing-Pointer ISL-treated LCLs represented gene expression changes in cell cycle and p53 pathway. Black-Right-Pointing-Pointer We revealed 12 putative mRNA-miRNA functional pairs associated with ISL effect. -- Abstract: Isoliquiritigenin (ISL) has been known to induce cell cycle arrest and apoptosis of various cancer cells. However, genetic factors regulating ISL effects remain unclear. The aim of this study was to identify the molecular signatures involved in ISL-induced cell death of EBV-transformed lymphoblastoid cell lines (LCLs) using microarray analyses. For gene expression and microRNA (miRNA) microarray experiments, each of 12 LCL strains was independently treated with ISL or DMSO as a vehicle control for a day prior to total RNA extraction. ISL treatment inhibited cell proliferation of LCLs in a dose-dependent manner. Microarray analysis showed that ISL-treated LCLs represented gene expression changes in cell cycle and p53 signaling pathway, having a potential as regulators in LCL survival and sensitivity to ISL-induced cytotoxicity. In addition, 36 miRNAs including five miRNAs with unknown functions were differentially expressed in ISL-treated LCLs. The integrative analysis of miRNA and gene expression profiles revealed 12 putative mRNA-miRNA functional pairs. Among them, miR-1207-5p and miR-575 were negatively correlated with p53 pathway- and cell cycle-associated genes, respectively. In conclusion, our study suggests that miRNAs play an important role in ISL-induced cytotoxicity in LCLs by targeting signaling pathways including p53 pathway and cell cycle.

  1. Molecular basis of potassium channels in pancreatic duct epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K channels...... in pancreatic duct cells, including KCNN4 (K 3.1), KCNMA1 (K1.1), KCNQ1 (K7.1), KCNH2 (K11.1), KCNH5 (K10.2), KCNT1 (K4.1), KCNT2 (K4.2), and KCNK5 (K5.1). We will give an overview of K channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from...... other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K channel research with respect to the physiology of secretion...

  2. Cell and molecular biology of epidermal growth factor receptor.

    Science.gov (United States)

    Ceresa, Brian P; Peterson, Joanne L

    2014-01-01

    The epidermal growth factor receptor (EGFR) has been one of the most intensely studied cell surface receptors due to its well-established roles in developmental biology, tissue homeostasis, and cancer biology. The EGFR has been critical for creating paradigms for numerous aspects of cell biology, such as ligand binding, signal transduction, and membrane trafficking. Despite this history of discovery, there is a continual stream of evidence that only the surface has been scratched. New ways of receptor regulation continue to be identified, each of which is a potential molecular target for manipulating EGFR signaling and the resultant changes in cell and tissue biology. This chapter is an update on EGFR-mediated signaling, and describes some recent developments in the regulation of receptor biology.

  3. Mechanistic modeling confronts the complexity of molecular cell biology.

    Science.gov (United States)

    Phair, Robert D

    2014-11-05

    Mechanistic modeling has the potential to transform how cell biologists contend with the inescapable complexity of modern biology. I am a physiologist-electrical engineer-systems biologist who has been working at the level of cell biology for the past 24 years. This perspective aims 1) to convey why we build models, 2) to enumerate the major approaches to modeling and their philosophical differences, 3) to address some recurrent concerns raised by experimentalists, and then 4) to imagine a future in which teams of experimentalists and modelers build-and subject to exhaustive experimental tests-models covering the entire spectrum from molecular cell biology to human pathophysiology. There is, in my view, no technical obstacle to this future, but it will require some plasticity in the biological research mind-set.

  4. Obstructive renal injury: from fluid mechanics to molecular cell biology.

    Science.gov (United States)

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-04-22

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.

  5. Aspectos moleculares da anemia falciforme Molecular aspects for sickle cell anemia

    Directory of Open Access Journals (Sweden)

    Gentil Claudino de Galiza Neto

    2003-01-01

    Full Text Available No presente artigo abordaram-se vários aspectos relacionados à natureza molecular da anemia falciforme, desordem hematológica de caráter hereditário que acomete expressivo número de indivíduos em várias regiões do mundo. As pesquisas realizadas em torno desta patologia da hemácia, ao longo de quase um século, a partir de 1910, cooperaram para a criação de um novo e importante segmento da ciência, denominado biologia molecular. A descoberta dos polimorfismos da mutação (GAT->GTG no gene que codifica a cadeia beta da hemoglobina, originando diferentes haplótipos da doença, permitiu um melhor e mais amplo conhecimento em torno da heterogeneidade clínica nos pacientes falcêmicos. Analisando a hemoglobina na sua estrutura normal e mutante, sua produção e evolução, pode-se ter um entendimento mais completo da fisiopatologia desta doença e da sua complexidade clínica.The present article dealt with various aspects related to molecular nature of sickle cell disease (SCD, a heritable hematology disorder that attacks a great number of people in different regions of the world. Researches done on red cell patology, in approximately half a century, starting since 1910, cooperated to gave origin a new branch of science called molecular biology. The discovery of mutation polymorphism (GAT -> GTC in the gene that codifies beta globin chain, give origin to different illness haplotypes, permitted a better and great knowledge about the clinic heterogeneity of the patients. Analysing hemoglobin in its normal and mutation structure as well as in its productions and evolution, one can have a complete understanding of the illness phisiopathology and its clinical complexity.

  6. Modulation of Cell Sialoglycophenotype: A Stylish Mechanism Adopted by Trypanosoma cruzi to Ensure Its Persistence in the Infected Host

    Science.gov (United States)

    Freire-de-Lima, Leonardo; da Fonseca, Leonardo M.; da Silva, Vanessa A.; da Costa, Kelli M.; Morrot, Alexandre; Freire-de-Lima, Célio G.; Previato, Jose O.; Mendonça-Previato, Lucia

    2016-01-01

    Trypanosoma cruzi, the etiological agent of Chagas disease exhibits multiple mechanisms to guarantee its establishment and persistence in the infected host. It has been well demonstrated that T. cruzi is not able to synthesize sialic acids (Sia). To acquire the monosaccharide, the parasite makes use of a multifunctional enzyme called trans-sialidase (Tc-TS). Since this enzyme has no analogous in the vertebrate host, it has been used as a target in drug therapy development. Tc-TS preferentially catalyzes the transfer of Sia from the host glycoconjugates to the terminal β-galactopyranosyl residues of mucin-like molecules present on the parasite’s cell surface. Alternatively, the enzyme can sialylate/re-sialylate glycoconjugates expressed on the surface of host cells. Since its discovery, several studies have shown that T. cruzi employs the Tc-TS activity to modulate the host cell sialoglycophenotype, thus favoring its perpetuation in the infected vertebrate. In this review, we summarize the dynamic of host/parasite sialoglycophenotype modulation, highlighting its role in the subversion of host immune response in order to promote the establishment of persistent chronic infection. PMID:27242722

  7. Nitric oxide and thermogenesis--challenge in molecular cell physiology.

    Science.gov (United States)

    Otasevic, Vesna; Korac, Aleksandra; Buzadzic, Biljana; Stancic, Ana; Jankovic, Aleksandra; Korac, Bato

    2011-06-01

    Only recently we can link thermogenesis, mitochondria, nitric oxide, and redox regulation in biochemical terms. Currently, we are discussing these processes from the aspect of fundamental principles of molecular physiology. Thus, the present article highlights both cell physiology and the principles of the maintenance of energy homeostasis in organisms. Energy homeostasis means much more than simple combustion; adipose tissues at this point of evolution development are related to a broad spectrum of metabolic disturbances and all aspects of cellular remodeling (i.e. structural, metabolic and endocrine changes). Therefore, this paper addresses not only thermogenesis but also energy homeostasis, oxidative phosphorylation and ATP production, proliferation and differentiation of brown adipocytes, their life and death, mitochondriogenesis and angiogenesis. These processes will be united by molecular players of oxidation/reduction reactions, thus creating the principles based on the redox regulation.

  8. Molecular bulk heterojunctions: an emerging approach to organic solar cells.

    Science.gov (United States)

    Roncali, Jean

    2009-11-17

    The predicted exhaustion of fossil energy resources and the pressure of environmental constraints are stimulating an intensification of research on renewable energy sources, in particular, on the photovoltaic conversion of solar energy. In this context, organic solar cells are attracting increasing interest that is motivated by the possibility of fabricating large-area, lightweight, and flexible devices using simple techniques with low environmental impact. Organic solar cells are based on a heterojunction resulting from the contact of a donor (D) and an acceptor (A) material. Absorption of solar photons creates excitons, Coulombically bound electron-hole pairs, which diffuse to the D/A interface, where they are dissociated into free holes and electrons by the electric field. D/A heterojunctions can be created with two types of architectures, namely, bilayer heterojunction and bulk heterojunction (BHJ) solar cells. BHJ cells combine the advantages of easier fabrication and higher conversion efficiency due to the considerably extended D/A interface. Until now, the development of BHJ solar cells has been essentially based on the use of soluble pi-conjugated polymers as donor material. Intensive interdisciplinary research carried out in the past 10 years has led to an increase in the conversion efficiency of BHJ cells from 0.10 to more than 5.0%. These investigations have progressively established regioregular poly(3-hexylthiophene) (P3HT) as the standard donor material for BHJ solar cells, owing to a useful combination of optical and charge-transport properties. However, besides the limit imposed to the maximum conversion efficiency by its intrinsic electronic properties, P3HT and more generally polymers pose several problems related to the control of their structure, molecular weight, polydispersity, and purification. In this context, recent years have seen the emergence of an alternative approach based on the replacement of polydisperse polymers by soluble

  9. Molecular ties between the cell cycle and differentiation in embryonic stem cells.

    Science.gov (United States)

    Li, Victor C; Kirschner, Marc W

    2014-07-01

    Attainment of the differentiated state during the final stages of somatic cell differentiation is closely tied to cell cycle progression. Much less is known about the role of the cell cycle at very early stages of embryonic development. Here, we show that molecular pathways involving the cell cycle can be engineered to strongly affect embryonic stem cell differentiation at early stages in vitro. Strategies based on perturbing these pathways can shorten the rate and simplify the lineage path of ES differentiation. These results make it likely that pathways involving cell proliferation intersect at various points with pathways that regulate cell lineages in embryos and demonstrate that this knowledge can be used profitably to guide the path and effectiveness of cell differentiation of pluripotent cells.

  10. Molecular mechanisms of cholangiocarcinoma cell inhibition by medicinal plants

    Science.gov (United States)

    Leelawat, Surang; Leelawat, Kawin

    2017-01-01

    Cholangiocarcinoma (CCA) is one of the most common causes of cancer-associated mortality in Thailand. Certain phytochemicals have been demonstrated to modulate apoptotic signaling pathways, which may be targeted for the prevention and treatment of cancer. Therefore, the aim of the present study was to investigate the effect of specific medicinal plants on the inhibition of CCA cell proliferation, and to identify the molecular mechanisms underlying this. A WST-1 cell proliferation assay was performed using an RMCCA1 cell line, and apoptotic signaling pathways were also investigated using a PathScan Stress and Apoptosis Signaling Antibody Array Kit. The cell proliferation assay indicated that extracts from the Phyllanthus emblica fruit pulp (PEf), Phyllanthus emblica seed (PEs), Terminalia chebula fruit pulp (TCf), Terminalia chebula seed (TCs), Areca catechu seed (ACs), Curcuma longa (CL) and Moringa oleifera seed (MOs) exerted anti-proliferative activity in RMCCA1 cells. In addition, the PathScan assay revealed that certain pro-apoptotic molecules, including caspase-3, poly (ADP-ribose) polymerase, checkpoint kinase 2 and tumor protein 53, exhibited increased activity in RMCCA1 cells treated with the aforementioned selected plant extracts, with the exception of PEf. The mitogen-activated protein kinase (MAPK) pathways (including ERK1/2 and p38 MAPK) expression level was significantly increased in RMCCA1 cells pre-treated with extracts of PEs, TCf, CL and MOs. The activation of protein kinase B (Akt) was significantly demonstrated in RMCCA1 cells pre-treated with extracts of TCf, ACs and MOs. In summary, the present study demonstrated that extracts of PEs, TCf, TCs, ACs, CL and MOs exhibited anti-proliferative effects in CCA cells by inducing pro-apoptotic signals and modulating signal transduction molecules. Further studies in vivo are required to demonstrate the potential applications of specific plant extracts for the treatment of human cancer.

  11. Molecular dynamics study of lipid bilayers modeling the plasma membranes of normal murine thymocytes and leukemic GRSL cells.

    Science.gov (United States)

    Andoh, Yoshimichi; Okazaki, Susumu; Ueoka, Ryuichi

    2013-04-01

    Molecular dynamics (MD) calculations for the plasma membranes of normal murine thymocytes and thymus-derived leukemic GRSL cells in water have been performed under physiological isothermal-isobaric conditions (310.15K and 1 atm) to investigate changes in membrane properties induced by canceration. The model membranes used in our calculations for normal and leukemic thymocytes comprised 23 and 25 kinds of lipids, respectively, including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. The mole fractions of the lipids adopted here were based on previously published experimental values. Our calculations clearly showed that the membrane area was increased in leukemic cells, and that the isothermal area compressibility of the leukemic plasma membranes was double that of normal cells. The calculated membranes of leukemic cells were thus considerably bulkier and softer in the lateral direction compared with those of normal cells. The tilt angle of the cholesterol and the conformation of the phospholipid fatty acid tails both showed a lower level of order in leukemic cell membranes compared with normal cell membranes. The lateral radial distribution function of the lipids also showed a more disordered structure in leukemic cell membranes than in normal cell membranes. These observations all show that, for the present thymocytes, the lateral structure of the membrane is considerably disordered by canceration. Furthermore, the calculated lateral self-diffusion coefficient of the lipid molecules in leukemic cell membranes was almost double that in normal cell membranes. The calculated rotational and wobbling autocorrelation functions also indicated that the molecular motion of the lipids was enhanced in leukemic cell membranes. Thus, here we have demonstrated that the membranes of thymocyte leukemic cells are more disordered and more fluid than normal cell membranes.

  12. Phase I Clinical Trial of 4-1BB-based Adoptive T-Cell Therapy for Epstein-Barr Virus (EBV)-positive Tumors.

    Science.gov (United States)

    Eom, Hyeon-Seok; Choi, Beom K; Lee, Youngjoo; Lee, Hyewon; Yun, Tak; Kim, Young H; Lee, Je-Jung; Kwon, Byoung S

    2016-04-01

    Although adoptive cell therapy using Ag-specific T cells has been tested successfully in the clinic, the production of these T cells has been challenging. By applying our simple and practical 4-1BB-based method for the generation of Ag-specific CD8 T cells, here we determined the maximum tolerated dose, toxicity profile, immunologic responses, and clinical efficacy of autologous Epstein-Barr virus (EBV)/LMP2A-specific CD8 T cells (EBV-induced Natural T cell; EBViNT) in patients with relapsed/refractory EBV-positive tumors. This was a single-center, phase I, dose-escalation trial study evaluating 4 escalating dosing schedules of single injected EBViNT. CD8 T-cell responses against different LMP2A peptides in each patient were determined, and the most effective peptides were used to produce EBViNT. The produced autologous EBViNTs were single infused to patients with EBV-associated malignancy who had failed to standard treatments and were of HLA-A02 or A24 type. Of 11 patients enrolled, 8 patients received a single infusion of EBViNT: 4 with nasopharyngeal carcinomas, 1 with Hodgkin lymphoma, 2 with extranodal NK/T lymphomas, and 1 with diffuse large B-cell lymphoma. Single infusion of EBViNT was well tolerated by all the patients and generated objective antitumor responses in 3 of them. EBViNT infusion induced 2 waves of interferon-γ response: 1 approximately 1 week and the other 4-8 weeks after the treatment. The strength of the second wave was related to the efficacy of the treatment. The current trial shows that EBViNT therapy is safe and may provide a new option for treating EBV-positive recurrent cancer patients resistant to conventional therapy.

  13. Adopted Children and Discipline

    Science.gov (United States)

    ... Life Listen Español Text Size Email Print Share Adopted Children & Discipline Page Content Article Body Some parents are hesitant to discipline the child they have adopted. They may set fewer limits than they would ...

  14. Molecular biology of mycoplasmas: from the minimum cell concept to the artificial cell

    Directory of Open Access Journals (Sweden)

    CAIO M.M. CORDOVA

    2016-01-01

    Full Text Available ABSTRACT Mycoplasmas are a large group of bacteria, sorted into different genera in the Mollicutes class, whose main characteristic in common, besides the small genome, is the absence of cell wall. They are considered cellular and molecular biology study models. We present an updated review of the molecular biology of these model microorganisms and the development of replicative vectors for the transformation of mycoplasmas. Synthetic biology studies inspired by these pioneering works became possible and won the attention of the mainstream media. For the first time, an artificial genome was synthesized (a minimal genome produced from consensus sequences obtained from mycoplasmas. For the first time, a functional artificial cell has been constructed by introducing a genome completely synthesized within a cell envelope of a mycoplasma obtained by transformation techniques. Therefore, this article offers an updated insight to the state of the art of these peculiar organisms' molecular biology.

  15. Molecular biology of mycoplasmas: from the minimum cell concept to the artificial cell.

    Science.gov (United States)

    Cordova, Caio M M; Hoeltgebaum, Daniela L; Machado, Laís D P N; Santos, Larissa Dos

    2016-01-01

    Mycoplasmas are a large group of bacteria, sorted into different genera in the Mollicutes class, whose main characteristic in common, besides the small genome, is the absence of cell wall. They are considered cellular and molecular biology study models. We present an updated review of the molecular biology of these model microorganisms and the development of replicative vectors for the transformation of mycoplasmas. Synthetic biology studies inspired by these pioneering works became possible and won the attention of the mainstream media. For the first time, an artificial genome was synthesized (a minimal genome produced from consensus sequences obtained from mycoplasmas). For the first time, a functional artificial cell has been constructed by introducing a genome completely synthesized within a cell envelope of a mycoplasma obtained by transformation techniques. Therefore, this article offers an updated insight to the state of the art of these peculiar organisms' molecular biology.

  16. Electron Transfer Dynamics in Efficient Molecular Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ke [Johns Hopkins Univ., Baltimore, MD (United States); Ward, William [Johns Hopkins Univ., Baltimore, MD (United States); Farnum, Byron H. [Johns Hopkins Univ., Baltimore, MD (United States); Taheri, Atefeh [Johns Hopkins Univ., Baltimore, MD (United States); Johansson, Patrik [Johns Hopkins Univ., Baltimore, MD (United States); Meyer, Gerald John [Johns Hopkins Univ., Baltimore, MD (United States)

    2014-10-01

    This research provided new mechanistic insights into surface mediated photochemical processes relevant to solar energy conversion. In this past three years our research has focused on oxidation photo-redox chemistry and on the role surface electric fields play on basic spectroscopic properties of molecular-semiconductor interfaces. Although this research as purely fundamental science, the results and their interpretation have relevance to applications in dye sensitized and photogalvanic solar cells as well as in the storage of solar energy in the form of chemical bonds.

  17. Molecular Mechanisms Underlying Genomic Instability in Brca-Deficient Cells

    Science.gov (United States)

    2012-03-01

    rejoining is then completed by activi- ties of the XRCC4/ DNA ligase IV (Lig4) complex (Critchlow and Jackson, 1998). The importance of double-strand break...Recombination in DNA Interstrand Crosslink Repair, Molecular Cell (2012), doi:10.1016/j.molcel.2012.02.015 found that loss of DNA ligase IV (Lig4) in FANCC...either C-NHEJ or A-NHEJ. The C-NHEJ pathway requires DNA ligase IV, XRCC4, Ku70, and Ku80, and is necessary for efficient repair of intrachromosomal

  18. Molecular cell biology of KATP channels: implications for neonatal diabetes.

    Science.gov (United States)

    Smith, Andrew J; Taneja, Tarvinder K; Mankouri, Jamel; Sivaprasadarao, Asipu

    2007-08-01

    ATP-sensitive potassium (KATP) channels play a key role in the regulation of insulin secretion by coupling glucose metabolism to the electrical activity of pancreatic beta-cells. To generate an electric signal of suitable magnitude, the plasma membrane of the beta-cell must contain an appropriate number of channels. An inadequate number of channels can lead to congenital hyperinsulinism, whereas an excess of channels can result in the opposite condition, neonatal diabetes. KATP channels are made up of four subunits each of Kir6.2 and the sulphonylurea receptor (SUR1), encoded by the genes KCNJ11 and ABCC8, respectively. Following synthesis, the subunits must assemble into an octameric complex to be able to exit the endoplasmic reticulum and reach the plasma membrane. While this biosynthetic pathway ensures supply of channels to the cell surface, an opposite pathway, involving clathrin-mediated endocytosis, removes channels back into the cell. The balance between these two processes, perhaps in conjunction with endocytic recycling, would dictate the channel density at the cell membrane. In this review, we discuss the molecular signals that contribute to this balance, and how an imbalance could lead to a disease state such as neonatal diabetes.

  19. Cells from icons to symbols: molecularizing cell biology in the 1980s.

    Science.gov (United States)

    Serpente, Norberto

    2011-12-01

    Over centuries cells have been the target of optical and electronic microscopes as well as others technologies, with distinctive types of visual output. Whilst optical technologies produce images 'evident to the eye', the electronic and especially the molecular create images that are more elusive to conceptualization and assessment. My study applies the semiotic approach to the production of images in cell biology to capture the shift from microscopic images to non-traditional visual technologies around 1980. Here I argue that the visual shift that coincides with the growing dominance of molecular biology involves a change from iconic to symbolic forms.

  20. The immunosuppressive effects of phthalocyanine photodynamic therapy in mice are mediated by CD4+ and CD8+ T cells and can be adoptively transferred to naive recipients.

    Science.gov (United States)

    Yusuf, Nabiha; Katiyar, Santosh K; Elmets, Craig A

    2008-01-01

    Photodynamic therapy (PDT) is a promising treatment modality for malignant tumors but it is also immunosuppressive which may reduce its therapeutic efficacy. The purpose of our study was to elucidate the role of CD4+ and CD8+ T cells in PDT immunosuppression. Using silicon phthalocyanine 4 (Pc4) as photosensitizer, nontumor-bearing CD4 knockout (CD4-/-) mice and their wild type (WT) counterparts were subjected to Pc4-PDT in a manner identical to that used for tumor regression (1 cm spot size, 0.5 mg kg(-1) Pc4, 110 J cm(-2) light) to assess the effect of Pc4-PDT on cell-mediated immunity. There was a decrease in immunosuppression in CD4-/- mice compared with WT mice. We next examined the role of CD8+ T cells in Pc4-PDT-induced immunosuppression using CD8-/- mice following the same treatment regimen used for CD4-/- mice. Similar to CD4-/- mice, CD8-/- mice exhibited less immunosuppression than WT mice. Pc4-PDT-induced immunosuppression could be adoptively transferred with spleen cells from Pc4-PDT treated donor mice to syngenic naive recipients (P PDT-induced immunosuppression but do not affect PDT-induced regression of tumors may prove superior to PDT alone in promoting long-term antitumor responses.

  1. Development of a glucose oxidase-based biocatalyst adopting both physical entrapment and crosslinking, and its use in biofuel cells

    Science.gov (United States)

    Chung, Yongjin; Ahn, Yeonjoo; Christwardana, Marcelinus; Kim, Hansung; Kwon, Yongchai

    2016-04-01

    New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL-1, they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL-1 GOx displays a high electron transfer rate, followed by excellent catalytic activity and EBC performance.New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL-1, they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL-1 GOx displays a high

  2. Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early

    Science.gov (United States)

    2013-07-01

    10-1-0422 TITLE: Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early PRINCIPAL...DATES COVERED 1 July 2010 - 30 June 2013 4. TITLE AND SUBTITLE Targeting Cell Surface Proteins in Molecular 5a. CONTRACT NUMBER Photoacoustic ...upon request). Aim 2) Prioritize ovarian cancer-associated surface proteins for their utility as molecular photoacoustic imaging targets and

  3. mRNA detection in living cell using phosphorothioate-modified molecular beacon

    Institute of Scientific and Technical Information of China (English)

    TANG HongXing; YANG XiaoHai; WANG KeMin; TAN WeiHong; LI Wei

    2009-01-01

    In this study, GFP mRNA in COS-7 cell and GFP-transfected COS-7 cell was detected in real time using phosphorothioate-modified molecular beacon based on living cell imaging method. Results showed that phosphorothioate-modified molecular beacon still kept the advantages of molecular beacon, such as, excellent selectivity, high sensitivity, and no separation detection. In addition, this modification could significantly increase the nuclease resistance of molecular beacon. Phosphorothioate-modified molecular beacon can efficiently reduce the false positive signal and improve the accuracy of living cell mRNA detection.

  4. Quantum molecular dynamics simulations of hydrogen production and solar cells

    Science.gov (United States)

    Mou, Weiwei

    The global energy crisis presents two major challenges for scientists around the world: Producing cleaner energy which is sustainable for the environment; And improving the efficiency of energy production as well as consumption. It is crucial and yet elusive to understand the atomistic mechanisms and electronic properties, which are needed in order to tackle those challenges. Quantum molecular dynamics simulations and nonadiabatic quantum molecular dynamics are two of the dominant methods used to address the atomistic and electronic properties in various energy studies. This dissertation is an ensemble of three studies in energy research: (1) Hydrogen production from the reaction of aluminum clusters with water to provide a renewable energy cycle; (2) The photo-excited charge transfer and recombination at a quaterthiophene/zinc oxide interface to improve the power conversion efficiency of hybrid poly(3-hexylthiophene) (P3HT) /ZnO solar cells; and (3) the charge transfer at a rubrene/C60 interface to understand why phenyl groups in rubrene improve the performance of rubrene/C60 solar cells.

  5. Molecular biology of breast cancer stem cells: potential clinical applications.

    Science.gov (United States)

    Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent

    2010-10-01

    Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy.

  6. Preparation of Cytokine-activated NK Cells for Use in Adoptive Cell Therapy in Cancer Patients: Protocol Optimization and Therapeutic Potential.

    Science.gov (United States)

    van Ostaijen-ten Dam, Monique M; Prins, Henk-Jan; Boerman, Gerharda H; Vervat, Carly; Pende, Daniela; Putter, Hein; Lankester, Arjan; van Tol, Maarten J D; Zwaginga, Jaap J; Schilham, Marco W

    2016-01-01

    Cell-based immunotherapy using donor-derived natural killer (NK) cells after allogeneic hematopoietic stem cell transplantation may be an attractive treatment of residual leukemia. This study aimed to optimize clinical grade production of a cytokine-activated NK-cell product. NK cells were isolated either by double depletion (CD3(-), CD19(-)) or by sequential depletion and enrichment (CD3(-,) CD56(+)) via CliniMACS from leukapheresis material and cultured in vitro with interleukin (IL)-2 or IL-15. Both NK cell isolation procedures yielded comparable recovery of NK cells and levels of T-cell contamination. After culture with cytokines, the CD3(-)CD56(+) procedure resulted in NK cells of higher purity, that is, less T cells and monocytes, higher viability, and a slightly higher yield than the CD3(-)CD19- procedure. CD69, NKp44, and NKG2A expression were higher on CD3(-)CD56(+) products, whereas lysis of Daudi cells was comparable. Five days of culture led to higher expression of CD69, NKp44, and NKp30 and lysis of K562 and Daudi cell lines. Although CD69 expression and lysis of Daudi cells were slightly higher in cultures with IL-2, T-cell contamination was lower with IL-15. Therefore, further experiments were performed with CD3(-)CD56(+) products cultured with IL-15. Cryopreservation of IL-15-activated NK cells resulted in a loss of cytotoxicity (>92%), whereas thawing of isolated, uncultured NK cells followed by culture with IL-15 yielded cells with about 43% of the original lytic activity. Five-day IL-15-activated NK cells lysed tumor target cell lines and primary leukemic blasts, providing the basis for NK cell–based immunotherapeutic strategies in a clinical setting.

  7. Cell-based selection provides novel molecular probes for cancer stem cells.

    Science.gov (United States)

    Sefah, Kwame; Bae, Kyung-Mi; Phillips, Joseph A; Siemann, Dietmar W; Su, Zhen; McClellan, Steve; Vieweg, Johannes; Tan, Weihong

    2013-06-01

    Cancer stem cells (CSC) represent a malignant subpopulation of cells in hierarchically organized tumors. They constitute a subpopulation of malignant cells within a tumor mass and possess the ability to self-renew giving rise to heterogeneous tumor cell populations with a complex set of differentiated tumor cells. CSC may be the cause of metastasis and therapeutic refractory disease. Because few markers exist to identify and isolate pure CSC, we used cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX) to create DNA aptamers that can identify novel molecular targets on the surfaces of live CSC. Out of 22 putative DNA sequences, 3 bound to ~90% and 5 bound to ~15% of DU145 prostate cancer cells. The 15% of cells that were positive for the second panel of aptamers expressed high levels of E-cadherin and CD44, had high aldehyde dehydrogenase 1 activity, grew as spheroids under nonadherent culture conditions, and initiated tumors in immune-compromised mice. The discovery of the molecular targets of these aptamers could reveal novel CSC biomarkers.

  8. Molecular characterization of Italian nevoid basal cell carcinoma syndrome patients.

    Science.gov (United States)

    Pastorino, L; Cusano, R; Nasti, S; Faravelli, F; Forzano, F; Baldo, C; Barile, M; Gliori, S; Muggianu, M; Ghigliotti, G; Lacaita, M G; Lo Muzio, L; Bianchi-Scarra, G

    2005-03-01

    Mutations in the PTCH gene, the human homolog of the Drosophila patched gene, have been found to lead to the autosomal dominant disorder termed Nevoid Basal Cell Carcinoma Syndrome (NBCCS, also called Gorlin Syndrome). Patients display an array of developmental anomalies and are prone to develop a variety of tumors, with multiple Basal Cell Carcinomas occurring frequently. We provide here the results of molecular testing of a set of Italian Nevoid Basal Cell Carcinoma Syndrome patients. Twelve familial patients belonging to 7 kindreds and 5 unaffected family members, 6 non-familial patients and an additional set of 7 patients with multiple Basal Cell Carcinoma but no other criteria for the disease were examined for mutations in the PTCH gene. All of the Nevoid Basal Cell Carcinoma Syndrome patients were found to carry variants of the PTCH gene. We detected nine novel mutations (1 of which occurring twice): 1 missense mutation (c.1436T>G [p.L479R]), 1 nonsense mutation (c.1138G>T [p.E380X]), 6 frameshift mutations (c.323_324ins2, c.2011_2012dup, c.2535_2536dup, c.2577_2583del, c.3000_3005del, c.3050_3051del), 1 novel splicing variant (c.6552A>T) and 3 mutations that have been previously reported (c.3168+5G>A, c.1526G>T [p.G509V], and c.3499G>A [p.G1167R]). None of the patients with multiple Basal Cell Carcinoma but no other criteria for the syndrome, carried germline coding region mutations.

  9. HAMLET kills tumor cells by an apoptosis-like mechanism--cellular, molecular, and therapeutic aspects.

    Science.gov (United States)

    Svanborg, Catharina; Agerstam, Helena; Aronson, Annika; Bjerkvig, Rolf; Düringer, Caroline; Fischer, Walter; Gustafsson, Lotta; Hallgren, Oskar; Leijonhuvud, Irene; Linse, Sara; Mossberg, Ann-Kristin; Nilsson, Hanna; Pettersson, Jenny; Svensson, Malin

    2003-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a protein-lipid complex that induces apoptosis-like death in tumor cells, but leaves fully differentiated cells unaffected. This review summarizes the information on the in vivo effects of HAMLET in patients and tumor models on the tumor cell biology, and on the molecular characteristics of the complex. HAMLET limits the progression of human glioblastomas in a xenograft model and removes skin papillomas in patients. This broad anti-tumor activity includes >40 different lymphomas and carcinomas and apoptosis is independent of p53 or bcl-2. In tumor cells HAMLET enters the cytoplasm, translocates to the perinuclear area, and enters the nuclei where it accumulates. HAMLET binds strongly to histones and disrupts the chromatin organization. In the cytoplasm, HAMLET targets ribosomes and activates caspases. The formation of HAMLET relies on the propensity of alpha-lactalbumin to alter its conformation when the strongly bound Ca2+ ion is released and the protein adopts the apo-conformation that exposes a new fatty acid binding site. Oleic acid (C18:1,9 cis) fits this site with high specificity, and stabilizes the altered protein conformation. The results illustrate how protein folding variants may be beneficial, and how their formation in peripheral tissues may depend on the folding change and the availability of the lipid cofactor. One example is the acid pH in the stomach of the breast-fed child that promotes the formation of HAMLET. This mechanism may contribute to the protective effect of breastfeeding against childhood tumors. We propose that HAMLET should be explored as a novel approach to tumor therapy.

  10. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines.

    Science.gov (United States)

    Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara

    2009-01-01

    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines.

  11. Th17 cells are long lived and retain a stem cell-like molecular signature.

    Science.gov (United States)

    Muranski, Pawel; Borman, Zachary A; Kerkar, Sid P; Klebanoff, Christopher A; Ji, Yun; Sanchez-Perez, Luis; Sukumar, Madhusudhanan; Reger, Robert N; Yu, Zhiya; Kern, Steven J; Roychoudhuri, Rahul; Ferreyra, Gabriela A; Shen, Wei; Durum, Scott K; Feigenbaum, Lionel; Palmer, Douglas C; Antony, Paul A; Chan, Chi-Chao; Laurence, Arian; Danner, Robert L; Gattinoni, Luca; Restifo, Nicholas P

    2011-12-23

    Th17 cells have been described as short lived, but this view is at odds with their capacity to trigger protracted damage to normal and transformed tissues. We report that Th17 cells, despite displaying low expression of CD27 and other phenotypic markers of terminal differentiation, efficiently eradicated tumors and caused autoimmunity, were long lived, and maintained a core molecular signature resembling early memory CD8(+) cells with stem cell-like properties. In addition, we found that Th17 cells had high expression of Tcf7, a direct target of the Wnt and β-catenin signaling axis, and accumulated β-catenin, a feature observed in stem cells. In vivo, Th17 cells gave rise to Th1-like effector cell progeny and also self-renewed and persisted as IL-17A-secreting cells. Multipotency was required for Th17 cell-mediated tumor eradication because effector cells deficient in IFN-γ or IL-17A had impaired activity. Thus, Th17 cells are not always short lived and are a less-differentiated subset capable of superior persistence and functionality.

  12. Quantitative Determination of Ceramide Molecular Species in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Samar Al Makdessi

    2016-09-01

    Full Text Available Background/Aims: The activation of acid sphingomyelinase by cellular stress or receptors or the de novo synthesis lead to the formation of ceramide (N-acylsphingosine, which in turn modifies the biophysical properties of cellular membrane and greatly amplifies the intensity of the initial signal. Ceramide, which acts by re-organizing a given signalosome rather than being a second messenger, has many functions in infection biology, cancer, cardiovascular syndromes, and immune regulation. Experimental studies on the infection of human cells with different bacterial agents demonstrated the activation of the acid sphingomyelinase/ceramide system. Moreover, the release of ceramide was found to be a requisite for the uptake of the pathogen. Considering the particular importance of the cellular role of ceramide, it was necessary to develop sensitive and accurate methods for its quantification. Methods: Here, we describe a method quantifying ceramide in dendritic cells and defining the different fatty acids (FA bound to sphingosine. The main steps of the method include extraction of total lipids, separation of the ceramide by thin-layer chromatography, derivatization of ceramide-fatty acids (Cer-FA, and quantitation of these acids in their methyl form by gas chromatography on polar capillary columns. The identification of FA was achieved by means of known standards and confirmed by mass spectrometry. Results: FA ranging between C10 and C24 could be detected and quantified. The concentration of the sum of Cer-FA amounted to 14.88 ± 8.98 nmol/106 cells (n=10. Oleic acid, which accounted for approximately half of Cer-FA (7.73 ± 6.52 nmol/106 cells was the predominant fatty acid followed by palmitic acid (3.47 ± 1.54 nmol/106 cells. Conclusion: This highly sensitive method allows the quantification of different molecular species of ceramides.

  13. The claim from adoption.

    Science.gov (United States)

    Petersen, Thomas Sobirk

    2002-08-01

    In this article several justifications of what I call 'the claim from adoption' are examined. The claim from adoption is that, instead of expending resources on bringing new children into the world using reproductive technology and then caring for these children, we ought to devote these resources to the adoption and care of existing destitute children. Arguments trading on the idea that resources should be directed to adoption instead of assisted reproduction because already existing people can benefit from such a use of resources whereas we cannot benefit individuals by bringing them into existence are rejected. It is then argued that a utilitarian argument proposed by Christian Munthe that supports the claim from adoption in some situations should be rejected because the support it offers does not extend to certain situations in which it seems morally obvious that resources should be expended on adoption rather than assisted reproduction. A version of the Priority View improves upon Munthe's utilitarianism by supporting the claim from adoption in the cases in which Munthe's argument failed. Some allegedly counterintuitive implications of the Priority View are then discussed, and it is concluded that the Priority View is more plausible than utilitarianism. In a concluding section on policy issues it is argued that, even though the claim from adoption can be justified in a variety of situations, it does not follow that, in these situations, governments should direct resources away from assisted reproduction and towards adoption.

  14. Viewing individual cells and ambient microvasculature using two molecular contrasts

    Science.gov (United States)

    Xie, Zhixing; Chen, Sung-Liang; Fabiilli, Mario L.; Fowlkes, J. Brian; Shung, K. Kirk; Zhou, Qifa; Wei, Xunbin; Carson, Paul L.; Wang, Xueding

    2013-03-01

    To view the individual cells and ambient microvasculature simultaneously will be helpful to study tumor angiogenesis and microenvironments. To achieve this, two molecular contrast mechanisms were exploited simultaneously by integrating two imaging modalities, confocal fluorescence microscopy (CFM) and photoacoustic microscopy (PAM). These share the same scanning optical path and laser source. The induced photoacoustic (PA) signal was detected by a highly sensitive needle hydrophone; while the back-traveling fluorescent photons emitted from the same sample were collected by an avalanche photodetector. Experiments on ex vivo rat bladders were conducted. The CFM image depicted the shape and size of the individual cells successfully. Besides large polygonal umbrella cells, some intracellular components can also be discerned. With the CFM image presenting morphologic cellular information in the bladder wall, the PAM image provides the complementary information, based on the endogenous optical absorption contrast, of the microvascular distribution inside the bladder wall, from large vessels to capillaries. Such multimodal imaging provides the opportunity to realize both histological assay and characterization of microvasculature using one imaging setup. This approach offers the possibility of comprehensive diagnosis of cancer in vivo.

  15. Isolation and Molecular Characterization of Circulating Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Xi Luo

    2014-05-01

    Full Text Available Melanoma is an invasive malignancy with a high frequency of blood-borne metastases, but circulating tumor cells (CTCs have not been readily isolated. We adapted microfluidic CTC capture to a tamoxifen-driven B-RAF/PTEN mouse melanoma model. CTCs were detected in all tumor-bearing mice and rapidly declined after B-RAF inhibitor treatment. CTCs were shed early from localized tumors, and a short course of B-RAF inhibition following surgical resection was sufficient to dramatically suppress distant metastases. The large number of CTCs in melanoma-bearing mice enabled a comparison of RNA-sequencing profiles with matched primary tumors. A mouse melanoma CTC-derived signature correlated with invasiveness and cellular motility in human melanoma. CTCs were detected in smaller numbers in patients with metastatic melanoma and declined with successful B-RAF-targeted therapy. Together, the capture and molecular characterization of CTCs provide insight into the hematogenous spread of melanoma.

  16. In vivo epigenomic profiling of germ cells reveals germ cell molecular signatures.

    Science.gov (United States)

    Ng, Jia-Hui; Kumar, Vibhor; Muratani, Masafumi; Kraus, Petra; Yeo, Jia-Chi; Yaw, Lai-Ping; Xue, Kun; Lufkin, Thomas; Prabhakar, Shyam; Ng, Huck-Hui

    2013-02-11

    The limited number of in vivo germ cells poses an impediment to genome-wide studies. Here, we applied a small-scale chromatin immunoprecipitation sequencing (ChIP-seq) method on purified mouse fetal germ cells to generate genome-wide maps of four histone modifications (H3K4me3, H3K27me3, H3K27ac, and H2BK20ac). Comparison of active chromatin state between somatic, embryonic stem, and germ cells revealed promoters and enhancers needed for stem cell maintenance and germ cell development. We found the nuclear receptor Nr5a2 motif to be enriched at a subset of germ cell cis-regulatory regions, and our results implicate Nr5a2 in germ cell biology. Interestingly, in germ cells, the H3K27me3 histone modification occurs more frequently at regions that are enriched for retrotransposons and MHC genes, indicating that these loci are specifically silenced in germ cells. Together, our study provides genome-wide histone modification maps of in vivo germ cells and reveals the molecular chromatin signatures of germ cells.

  17. Nanog1 in NTERA-2 and recombinant NanogP8 from somatic cancer cells adopt multiple protein conformations and migrate at multiple M.W species.

    Directory of Open Access Journals (Sweden)

    Bigang Liu

    Full Text Available Human Nanog1 is a 305-amino acid (aa homeodomain-containing transcription factor critical for the pluripotency of embryonic stem (ES and embryonal carcinoma (EC cells. Somatic cancer cells predominantly express a retrogene homolog of Nanog1 called NanogP8, which is ~99% similar to Nanog at the aa level. Although the predicted M.W of Nanog1/NanogP8 is ∼35 kD, both have been reported to migrate, on Western blotting (WB, at apparent molecular masses of 29-80 kD. Whether all these reported protein bands represent authentic Nanog proteins is unclear. Furthermore, detailed biochemical studies on Nanog1/NanogpP8 have been lacking. By combining WB using 8 anti-Nanog1 antibodies, immunoprecipitation, mass spectrometry, and studies using recombinant proteins, here we provide direct evidence that the Nanog1 protein in NTERA-2 EC cells exists as multiple M.W species from ~22 kD to 100 kD with a major 42 kD band detectable on WB. We then demonstrate that recombinant NanogP8 (rNanogP8 proteins made in bacteria using cDNAs from multiple cancer cells also migrate, on denaturing SDS-PAGE, at ~28 kD to 180 kD. Interestingly, different anti-Nanog1 antibodies exhibit differential reactivity towards rNanogP8 proteins, which can spontaneously form high M.W protein species. Finally, we show that most long-term cultured cancer cell lines seem to express very low levels of or different endogenous NanogP8 protein that cannot be readily detected by immunoprecipitation. Altogether, the current study reveals unique biochemical properties of Nanog1 in EC cells and NanogP8 in somatic cancer cells.

  18. Molecular Mechanisms of Microcystin Toxicity in Animal Cells

    Directory of Open Access Journals (Sweden)

    Alexandre Campos

    2010-01-01

    Full Text Available Microcystins (MC are potent hepatotoxins produced by the cyanobacteria of the genera Planktothrix, Microcystis, Aphanizomenon, Nostoc and Anabaena. These cyclic heptapeptides have strong affinity to serine/threonine protein phosphatases (PPs thereby acting as an inhibitor of this group of enzymes. Through this interaction a cascade of events responsible for the MC cytotoxic and genotoxic effects in animal cells may take place. Moreover MC induces oxidative stress in animal cells and together with the inhibition of PPs, this pathway is considered to be one of the main mechanisms of MC toxicity. In recent years new insights on the key enzymes involved in the signal-transduction and toxicity have been reported demonstrating the complexity of the interaction of these toxins with animal cells. Key proteins involved in MC up-take, biotransformation and excretion have been identified, demonstrating the ability of aquatic animals to metabolize and excrete the toxin. MC have shown to interact with the mitochondria. The consequences are the dysfunction of the organelle, induction of reactive oxygen species (ROS and cell apoptosis. MC activity leads to the differential expression/activity of transcriptional factors and protein kinases involved in the pathways of cellular differentiation, proliferation and tumor promotion activity. This activity may result from the direct inhibition of the protein phosphatases PP1 and PP2A. This review aims to summarize the increasing data regarding the molecular mechanisms of MC toxicity in animal systems, reporting for direct MC interacting proteins and key enzymes in the process of toxicity biotransformation/excretion of these cyclic peptides.

  19. The Danish Adoption Register

    DEFF Research Database (Denmark)

    Petersen, Liselotte; Sørensen, Thorkild I A

    2011-01-01

    The Danish Adoption Register was established in 1963-1964 to explore the genetic and environmental contribution to familial aggregation of schizophrenia.......The Danish Adoption Register was established in 1963-1964 to explore the genetic and environmental contribution to familial aggregation of schizophrenia....

  20. Communicating the molecular basis of cancer cell-by-cell: an interview with Tatsushi Igaki

    Directory of Open Access Journals (Sweden)

    2015-12-01

    Full Text Available Tatsushi Igaki is currently based at the Kyoto University Graduate School of Biostudies, where he leads a research group dedicated to using Drosophila genetics to build a picture of the cell-cell communications underlying the establishment and maintenance of multicellular systems. His work has provided insight into the molecular bases of cell competition in the context of development and tumorigenesis, including the landmark discovery that oncogenic cells communicate with normal cells in the tumor microenvironment to induce tumor progression in a non-autonomous fashion. In this interview, he describes his career path, highlighting the shift in his research focus from the basic principles of apoptosis to clonal evolution in cancer, and also explains why Drosophila provides a powerful model system for studying cancer biology.

  1. FTIR Spectroscopic and Molecular Analysis during Differentiation of Pluripotent Stem Cells to Pancreatic Cells

    Directory of Open Access Journals (Sweden)

    Gustavo Jesus Vazquez-Zapien

    2016-01-01

    Full Text Available Some of the greatest challenges in stem cells (SCs biology and regenerative medicine are differentiation control of SCs and ensuring the purity of differentiated cells. In this work, we differentiated mouse pluripotent stem cells (mPSCs toward pancreatic cells characterizing this differentiation process by molecular and spectroscopic technics. Both mPSCs and Differentiated Pancreatic Cells (DPCs were subjected to a genetic, phenotypic, and biochemical analysis by real-time quantitative PCR (RT-qPCR, immunocytochemistry, and Fourier Transform Infrared (FTIR spectroscopy. Cultured mPCSs expressed pluripotent genes and proteins (Nanog and SOX2. DPCs expressed endodermal genes (SOX17 and Pdx1 at day 11, an inductor gene of embryonic pancreas development (Pdx1 at day 17 and pancreas genes and proteins (Insulin and Glucagon at day 21 of differentiation. Likewise, FTIR spectra of mPSCs and DPCs at different maturation stages (11, 17, and 21 days were obtained and showed absorption bands related with different types of biomolecules. These FTIR spectra exhibited significant spectral changes agreeing with the differentiation process, particularly in proteins and nucleic acids bands. In conclusion, the obtained DPCs passed through the chronological stages of embryonic pancreas development and FTIR spectra provide a new biophysical parameter based on molecular markers indicating the differentiation process of mPSCs to specialized cells.

  2. FTIR Spectroscopic and Molecular Analysis during Differentiation of Pluripotent Stem Cells to Pancreatic Cells

    Science.gov (United States)

    Mata-Miranda, Monica Maribel; Sanchez-Monroy, Virginia; Delgado-Macuil, Raul Jacobo; Perez-Ishiwara, David Guillermo

    2016-01-01

    Some of the greatest challenges in stem cells (SCs) biology and regenerative medicine are differentiation control of SCs and ensuring the purity of differentiated cells. In this work, we differentiated mouse pluripotent stem cells (mPSCs) toward pancreatic cells characterizing this differentiation process by molecular and spectroscopic technics. Both mPSCs and Differentiated Pancreatic Cells (DPCs) were subjected to a genetic, phenotypic, and biochemical analysis by real-time quantitative PCR (RT-qPCR), immunocytochemistry, and Fourier Transform Infrared (FTIR) spectroscopy. Cultured mPCSs expressed pluripotent genes and proteins (Nanog and SOX2). DPCs expressed endodermal genes (SOX17 and Pdx1) at day 11, an inductor gene of embryonic pancreas development (Pdx1) at day 17 and pancreas genes and proteins (Insulin and Glucagon) at day 21 of differentiation. Likewise, FTIR spectra of mPSCs and DPCs at different maturation stages (11, 17, and 21 days) were obtained and showed absorption bands related with different types of biomolecules. These FTIR spectra exhibited significant spectral changes agreeing with the differentiation process, particularly in proteins and nucleic acids bands. In conclusion, the obtained DPCs passed through the chronological stages of embryonic pancreas development and FTIR spectra provide a new biophysical parameter based on molecular markers indicating the differentiation process of mPSCs to specialized cells. PMID:27651798

  3. Glioblastoma: Molecular Pathways, Stem Cells and Therapeutic Targets

    Energy Technology Data Exchange (ETDEWEB)

    Jhanwar-Uniyal, Meena, E-mail: meena_jhanwar@nymc.edu; Labagnara, Michael; Friedman, Marissa; Kwasnicki, Amanda; Murali, Raj [Department of Neurosurgery, New York Medical College, Valhalla, NY 10595 (United States)

    2015-03-25

    Glioblastoma (GBM), a WHO-defined Grade IV astrocytoma, is the most common and aggressive CNS malignancy. Despite current treatment modalities, the survival time remains dismal. The main cause of mortality in patients with this disease is reoccurrence of the malignancy, which is attributed to treatment-resistant cancer stem cells within and surrounding the primary tumor. Inclusion of novel therapies, such as immuno- and DNA-based therapy, may provide better means of treating GBM. Furthermore, manipulation of recently discovered non-coding microRNAs, some of which regulate tumor growth through the development and maintenance of GBM stem cells, could provide new prospective therapies. Studies conducted by The Cancer Genome Atlas (TCGA) also demonstrate the role of molecular pathways, specifically the activated PI3K/AKT/mTOR pathway, in GBM tumorigenesis. Inhibition of the aforementioned pathway may provide a more direct and targeted method to GBM treatment. The combination of these treatment modalities may provide an innovative therapeutic approach for the management of GBM.

  4. The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton

    Science.gov (United States)

    Bidle, Kay D.

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  5. Photodynamic Efficiency: From Molecular Photochemistry to Cell Death

    Directory of Open Access Journals (Sweden)

    Isabel O. L. Bacellar

    2015-08-01

    Full Text Available Photodynamic therapy (PDT is a clinical modality used to treat cancer and infectious diseases. The main agent is the photosensitizer (PS, which is excited by light and converted to a triplet excited state. This latter species leads to the formation of singlet oxygen and radicals that oxidize biomolecules. The main motivation for this review is to suggest alternatives for achieving high-efficiency PDT protocols, by taking advantage of knowledge on the chemical and biological processes taking place during and after photosensitization. We defend that in order to obtain specific mechanisms of cell death and maximize PDT efficiency, PSes should oxidize specific molecular targets. We consider the role of subcellular localization, how PS photochemistry and photophysics can change according to its nanoenvironment, and how can all these trigger specific cell death mechanisms. We propose that in order to develop PSes that will cause a breakthrough enhancement in the efficiency of PDT, researchers should first consider tissue and intracellular localization, instead of trying to maximize singlet oxygen quantum yields in in vitro tests. In addition to this, we also indicate many open questions and challenges remaining in this field, hoping to encourage future research.

  6. Molecular Imaging Of Metabolic Reprogramming In Mutant IDH Cells

    Directory of Open Access Journals (Sweden)

    Pavithra eViswanath

    2016-03-01

    Full Text Available Mutations in the metabolic enzyme isocitrate dehydrogenase (IDH have recently been identified as drivers in the development of several tumor types. Most notably, cytosolic IDH1 is mutated in 70-90% of low-grade gliomas and upgraded glioblastomas, and mitochondrial IDH2 is mutated in ~20% of acute myeloid leukemia cases. Wild-type IDH catalyzes the interconversion of isocitrate to α-ketoglutarate (α-KG. Mutations in the enzyme lead to loss of wild-type enzymatic activity and a neomorphic activity that converts α-KG to 2-hydroxyglutarate (2-HG. In turn, 2-HG, which has been termed an oncometabolite, inhibits key α-KG- dependent enzymes, resulting in alterations of the cellular epigenetic profile and, subsequently, inhibition of differentiation and initiation of tumorigenesis. In addition, it is now clear that the IDH mutation also induces a broad metabolic reprogramming that extends beyond 2-HG production, and this reprogramming often differs from what has been previously reported in other cancer types. In this review we will discuss in detail what is known to date about the metabolic reprogramming of mutant IDH cells and how this reprogramming has been investigated using molecular metabolic imaging. We will describe how metabolic imaging has helped shed light on the basic biology of mutant IDH cells and how this information can be leveraged to identify new therapeutic targets and to develop new clinically translatable imaging methods to detect and monitor mutant IDH tumors in vivo.

  7. Molecular Understanding of Organic Solar Cells: The Challenges

    KAUST Repository

    Brédas, Jean-Luc

    2009-11-17

    (Figure presented) Our objective in this Account is 3-fold. First, we provide an overview of the optical and electronic processes that take place in a solid-state organic solar cell, which we define as a cell in which the semiconducting materials between the electrodes are organic, be them polymers, oligomers, or small molecules; this discussion is also meant to set the conceptual framework in which many of the contributions to this Special Issue on Photovoltaics can We viewed. We successively turn our attention to (i) optical absorption and exciton formation, (ii) exciton migration to the donor - acceptor interface, (iii) exciton dissociation into charge carriers, resulting in the appearance of holes in the donor and electrons in the acceptor, (iv) charge-carrier mobility, and (v) charge collection at the electrodes. For each of these processes, we also describe the theoretical challenges that need to be overcome to gain a comprehensive understanding at the molecular level. Finally, we highlight recent theoretical advances, in particular regarding the determination of the energetics and dynamics at organic - organic interfaces, and underline that the right balance needs to be found for the optimization of material parameters that often result in opposite effects on the photovoltaic performance. © 2009 American Chemical Society.

  8. Epidemiology, molecular epidemiology, and risk factors for renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Chiara Paglino

    2011-12-01

    Full Text Available Despite only accounting for approximately 2% of all new primary cancer cases, renal cell carcinoma (RCC incidence has dramatically increased over time. Incidence rates vary greatly according to geographic areas, so that it is extremely likely that exogenous risk factors could play an important role in the development of this cancer. Several risk factors have been linked with RCC, including cigarette smoking, obesity, hypertension (and antihypertensive drugs, chronic kidney diseases (also dialysis and transplantation, as well as the use of certain analgesics. Furthermore, although RCC has not generally been considered an occupational cancer, several types of occupationally-derived exposures have been implicated in its pathogenesis. These include exposure to asbestos, chlorinated solvents, gasoline, diesel exhaust fumes, polycyclic aromatic hydrocarbons, printing inks and dyes, cadmium and lead. Finally, families with a predisposition to the development of renal neoplasms were identified and the genes involved discovered and characterized. Therefore, there are now four well-characterized, genetically determined syndromes associated with an increased incidence of kidney tumors, i.e., Von Hippel Lindau (VHL, Hereditary Papillary Renal Carcinoma (HPRC, Birt-Hogg-Dubé Syndrome (BHD, and Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC. This review will address present knowledge about the epidemiology, molecular epidemiology and risk factors of RCC.

  9. Cellular and molecular biology of aging endothelial cells.

    Science.gov (United States)

    Donato, Anthony J; Morgan, R Garrett; Walker, Ashley E; Lesniewski, Lisa A

    2015-12-01

    Cardiovascular disease (CVD) is the leading cause of death in the United States and aging is a major risk factor for CVD development. One of the major age-related arterial phenotypes thought to be responsible for the development of CVD in older adults is endothelial dysfunction. Endothelial function is modulated by traditional CVD risk factors in young adults, but advancing age is independently associated with the development of vascular endothelial dysfunction. This endothelial dysfunction results from a reduction in nitric oxide bioavailability downstream of endothelial oxidative stress and inflammation that can be further modulated by traditional CVD risk factors in older adults. Greater endothelial oxidative stress with aging is a result of augmented production from the intracellular enzymes NADPH oxidase and uncoupled eNOS, as well as from mitochondrial respiration in the absence of appropriate increases in antioxidant defenses as regulated by relevant transcription factors, such as FOXO. Interestingly, it appears that NFkB, a critical inflammatory transcription factor, is sensitive to this age-related endothelial redox change and its activation induces transcription of pro-inflammatory cytokines that can further suppress endothelial function, thus creating a vicious feed-forward cycle. This review will discuss the two macro-mechanistic processes, oxidative stress and inflammation, that contribute to endothelial dysfunction with advancing age as well as the cellular and molecular events that lead to the vicious cycle of inflammation and oxidative stress in the aged endothelium. Other potential mediators of this pro-inflammatory endothelial phenotype are increases in immune or senescent cells in the vasculature. Of note, genomic instability, telomere dysfunction or DNA damage has been shown to trigger cell senescence via the p53/p21 pathway and result in increased inflammatory signaling in arteries from older adults. This review will discuss the current state

  10. Establishment of a molecular embryonic stem cell developmental toxicity assay.

    Science.gov (United States)

    Panzica-Kelly, Julieta M; Brannen, Kimberly C; Ma, Yan; Zhang, Cindy X; Flint, Oliver P; Lehman-McKeeman, Lois D; Augustine-Rauch, Karen A

    2013-02-01

    The mouse embryonic stem cell test (EST) is a 10-day screen for teratogenic potential developed to reduce animal use for embryotoxicity testing of chemicals (Spielmann, 2005; Spielmann et al., 1997). In this study, we used the cytotoxicity IC(50) values and transcriptional expression changes as primary endpoints in a shorter 4-day version of the EST, the molecular embryonic stem cell assay. Mouse D3 embryonic stem cells were used for cytotoxicity assessment (monolayers) or grown as embryoid bodies in low attachment plates for transcriptional profiling. Sixty-five compounds with known in vivo teratogenicity (33 teratogens and 32 nonteratogens) were evaluated to develop a model for classifying compounds with teratogenic potential. The expression of 12 developmentally regulated gene targets (nanog, fgf5, gsc, cd34, axin2, apln, chst7, lhx1, fgf8, sox17, foxa2, and cxcr4) was measured following exposure of embryoid bodies to a single compound concentration (0.1 × the cytotoxicity IC(20)) for 4 days. In the decision-tree model, compounds with IC(50) values teratogens, whereas compounds in the two groups with IC(50) values between 22-200 µM and > 200 µM were categorized as teratogens if ≥ 8 and 12 genes, respectively, were deregulated by at least 10%. Forty-seven of 65 compounds of the training set were correctly identified (72% total concordance). In a test set of 12 additional compounds (5 teratogens, 7 nonteratogens), 10 were correctly classified by this approach (83% concordance). The false positive rate in the training and test sets was 24 and 0%, respectively, indicating that this assay has potential to identify teratogens.

  11. Molecular mechanisms governing competitive synaptic wiring in cerebellar Purkinje cells.

    Science.gov (United States)

    Watanabe, Masahiko

    2008-03-01

    Cerebellar Purkinje cells (PCs) play a principal role in motor coordination and motor learning. To fulfill these functions, PCs receive and integrate two types of excitatory inputs, climbing fiber (CF) and parallel fiber (PF). CFs are projection axons from the inferior olive, and convey error signals to PCs. On the other hand, PFs are T-shaped axons of cerebellar granule cells, and convey sensory and motor information carried through the pontocerebellar and spinocerebellar mossy fiber pathways. The most remarkable feature of PC circuits is the highly territorial innervation by these two excitatory afferents. A single climbing CF powerfully and exclusively innervates proximal PC dendrites, whereas hundreds of thousands of PFs innervate distal PC dendrites. Recent studies using gene-manipulated mice have been elucidating that the PC circuitry is formed and maintained by molecular mechanisms that fuel homosynaptic competition among CFs and heterosynaptic competition between CFs and PFs. GluRdelta2 (a PC-specific glutamate receptor) and precerebellin or Cbln1 (a granule cell-derived secretory protein) cooperatively work for selective strengthening of PF-PC synapses, and prevent excessive distal extension of CFs that eventually causes multiple innervation at distal dendrites. In contrast, P/Q-type Ca2+ channels, which mediate Ca2+ influx upon CF activity, selectively strengthen the innervation by a single main CF, and expel PFs and other CFs from proximal dendrites that it innervates. Therefore, we now understand that owing to these mechanisms, territorial innervation by CFs and PFs is properly structured and mono-innervation by CFs is established. Several key issues for future study are also discussed.

  12. Recent advances in molecular and cell biology of testicular germ-cell tumors.

    Science.gov (United States)

    Chieffi, Paolo

    2014-01-01

    Testicular germ-cell tumors (TGCTs) are the most frequent solid malignant tumors in men 20-40 years of age and the most frequent cause of death from solid tumors in this age group. TGCTs comprise two major histologic groups: seminomas and nonseminomas germ-cell tumors (NSGCTs). NSGCTs can be further divided into embryonal, carcinoma, Teratoma, yolk sac tumor, and choriocarcinoma. Seminomas and NSGCTs present significant differences in clinical features, therapy, and prognosis, and both show characteristics of the primordial germ cells. Many discovered biomarkers including OCT3/4, SOX2, SOX17, HMGA1, Nek2, GPR30, Aurora-B, estrogen receptor β, and others have given further advantages to discriminate between histological subgroups and could represent useful novel molecular targets for antineoplastic strategies. More insight into the pathogenesis of TGCTs is likely to improve disease management not only to better treatment of these tumors but also to a better understanding of stem cells and oncogenesis.

  13. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells.

    Science.gov (United States)

    Grover, Amit; Sanjuan-Pla, Alejandra; Thongjuea, Supat; Carrelha, Joana; Giustacchini, Alice; Gambardella, Adriana; Macaulay, Iain; Mancini, Elena; Luis, Tiago C; Mead, Adam; Jacobsen, Sten Eirik W; Nerlov, Claus

    2016-03-24

    Aged haematopoietic stem cells (HSCs) generate more myeloid cells and fewer lymphoid cells compared with young HSCs, contributing to decreased adaptive immunity in aged individuals. However, it is not known how intrinsic changes to HSCs and shifts in the balance between biased HSC subsets each contribute to the altered lineage output. Here, by analysing HSC transcriptomes and HSC function at the single-cell level, we identify increased molecular platelet priming and functional platelet bias as the predominant age-dependent change to HSCs, including a significant increase in a previously unrecognized class of HSCs that exclusively produce platelets. Depletion of HSC platelet programming through loss of the FOG-1 transcription factor is accompanied by increased lymphoid output. Therefore, increased platelet bias may contribute to the age-associated decrease in lymphopoiesis.

  14. Molecular chaperone CCT3 supports proper mitotic progression and cell proliferation in hepatocellular carcinoma cells.

    Science.gov (United States)

    Zhang, Yuanyuan; Wang, Yuqi; Wei, Youheng; Wu, Jiaxue; Zhang, Pingzhao; Shen, Suqin; Saiyin, Hexige; Wumaier, Reziya; Yang, Xianmei; Wang, Chenji; Yu, Long

    2016-03-01

    CCT3 was one of the subunits of molecular chaperone CCT/TRiC complex, which plays a central role in maintaining cellular proteostasis. We demonstrated that expressions of CCT3 mRNA and protein are highly up-regulated in hepatocellular carcinoma (HCC) tissues, and high level of CCT3 is correlated with poor survival in cancer patients. In HCC cell lines, CCT3 depletion suppresses cell proliferation by inducing mitotic arrest at prometaphase and apoptosis eventually. We also identified CCT3 as a novel regulator of spindle integrity and as a requirement for proper kinetochore-microtubule attachment during mitosis. Moreover, we found that CCT3 depletion sensitizes HCC cells to microtubule destabilizing drug Vincristine. Collectively, our study suggests that CCT3 is indispensible for HCC cell proliferation, and provides a potential drug target for treatment of HCC.

  15. The Colorado Adoption Project.

    Science.gov (United States)

    Plomin, R; DeFries, J C

    1983-04-01

    This report provides an overview of the Colorado Adoption Project (CAP), a longitudinal, prospective, multivariate adoption study of behavioral development. Examples of the types of analyses that can be conducted using this design are presented. The examples are based on general cognitive-ability data for adoptive, biological, and control parents; assessments of their home environment; and Bayley Mental Development Index scores for 152 adopted children and 120 matched control children tested at both 1 and 2 years of age. The illustrative analyses include matched control children tested at both 1 and 2 years of age. The illustrative analyses include examination of genetic and environmental sources of variance, identification of environmental influence devoid of genetic bias, assessment of genotype-environment interaction and correlation, and analyses of the etiology of change and continuity in development.

  16. Adopt Your Watershed

    Data.gov (United States)

    U.S. Environmental Protection Agency — Adopt Your Watershed is a Website that encourages stewardship of the nation's water resources and serves as a national inventory of local watershed groups and...

  17. Low-dose thalidomide and donor lymphocyte infusion as adoptive immunotherapy after allogeneic stem cell transplantation in patients with multiple myeloma.

    Science.gov (United States)

    Kröger, Nicolaus; Shimoni, Avichai; Zagrivnaja, Maria; Ayuk, Francis; Lioznov, Michael; Schieder, Heike; Renges, Helmut; Fehse, Boris; Zabelina, Tatjana; Nagler, Arnon; Zander, Axel R

    2004-11-15

    To improve the antimyeloma effect of donor lymphocyte infusion (DLI) after allogeneic stem cell transplantation in multiple myeloma, we investigated in a phase 1/2 study the effect of low-dose thalidomide (100 mg) followed by DLI in 18 patients with progressive disease or residual disease and prior ineffective DLI after allografting. The overall response rate was 67%, including 22% complete remission. Major toxicity of thalidomide was weakness grade I/II (68%) and peripheral neuropathy grade I/II (28%). Only 2 patients experienced mild grade I acute graft versus host disease (aGvHD) of the skin, while no grades II to IV aGvHD was seen. De novo limited chronic GvHD (cGvHD) was seen in 2 patients (11%). The 2-year estimated overall and progression-free survival were 100% and 84%, respectively. Adoptive immunotherapy with low-dose thalidomide and DLI induces a strong antimyeloma effect with low incidence of graft versus host disease.

  18. Becoming an Adoptive Parent

    DEFF Research Database (Denmark)

    McIlvenny, Paul; Raudaskoski, Pirkko Liisa

    , we trace how adopters publicly narrate their own experiences and problems with fertility and with adoption, as well as how they construct their personal websites, network with others locally and internationally, orient to other ‘sites’ or sources of information, share advice and create 'public goods...... those practices which may precipitate a 'call for help' to distant actors, such as social welfare provision or counselling services....

  19. Adoptive immunotherapy with interleukin-2 & induced killer cells in non-small cell lung cancer: A systematic review & meta-analysis

    Directory of Open Access Journals (Sweden)

    Denghai Mi

    2016-01-01

    Interpretation & conclusions: The meta-analysis showed that IL-2 or induced killer cells combination therapy was efficacious in treating NSCLC and improved overall survival. Further analysis of trials having adequate information and data need to be done to confirm these findings.

  20. Adoptive transfer of bone marrow-derived dendritic cells decreases inhibitory and regulatory T-cell differentiation and improves survival in murine polymicrobial sepsis.

    Science.gov (United States)

    Wang, Hong-Wei; Yang, Wen; Gao, Lei; Kang, Jia-Rui; Qin, Jia-Jian; Liu, Yue-Ping; Lu, Jiang-Yang

    2015-05-01

    A decrease in the number of dendritic cells (DCs) is a major cause of post-sepsis immunosuppression and opportunistic infection and is closely associated with poor prognosis. Increasing the number of DCs to replenish their numbers post sepsis can improve the condition. This therapeutic approach could improve recovery after sepsis. Eighty C57BL/6 mice were subjected to sham or caecal ligation and puncture (CLP) surgery. Mice were divided into four groups: (i) Sham + vehicle, (ii) Sham + DC, (iii) CLP + vehicle, and (iv) CLP + DC. Bone-marrow-derived DCs (BMDCs) were administered at 6, 12 and 24 hr after surgery. After 3 days, we assessed serum indices of organ function (alanine aminotransferase, aspartate aminotransferase, creatinine, amylase and lipase), organ tissue histopathology (haematoxylin and eosin staining), cytokine [interferon-γ (IFN-γ), tumour necrosis factor-α, interleukin-12p70 (IL-12p70), IL-6 and IL-10] levels in the serum, programmed death-1 (PD-1) expression on T cells, regulatory T-cell differentiation in the spleen, and the survival rate (monitored for 7 days). BMDC transfer resulted in the following changes: a significant reduction in damage to the liver, kidney and pancreas in the CLP-septic mice as well as in the pathological changes seen in the liver, lung, small intestine and pancreas; significantly elevated levels of the T helper type 1 (Th1) cytokines IFN-γ and IL-12p70 in the serum; decreased levels of the Th2 cytokines IL-6 and IL-10 in the serum; reduced expression of PD-1 molecules on CD4(+) T cells; reduced the proliferation and differentiation of splenic suppressor T cells and CD4(+)  CD25(+)  Foxp3(+) regulatory T cells, and a significant increase in the survival rate of the septic animals. These results show that administration of BMDCs may have modulated the differentiation and immune function of T cells and contributed to alleviate immunosuppression, hence reducing organ damage and mortality post sepsis. Hence

  1. Alcohol-Induced Molecular Dysregulation in Human Embryonic Stem Cell-Derived Neural Precursor Cells

    Science.gov (United States)

    Kim, Yi Young; Roubal, Ivan; Lee, Youn Soo; Kim, Jin Seok; Hoang, Michael; Mathiyakom, Nathan; Kim, Yong

    2016-01-01

    Adverse effect of alcohol on neural function has been well documented. Especially, the teratogenic effect of alcohol on neurodevelopment during embryogenesis has been demonstrated in various models, which could be a pathologic basis for fetal alcohol spectrum disorders (FASDs). While the developmental defects from alcohol abuse during gestation have been described, the specific mechanisms by which alcohol mediates these injuries have yet to be determined. Recent studies have shown that alcohol has significant effect on molecular and cellular regulatory mechanisms in embryonic stem cell (ESC) differentiation including genes involved in neural development. To test our hypothesis that alcohol induces molecular alterations during neural differentiation we have derived neural precursor cells from pluripotent human ESCs in the presence or absence of ethanol treatment. Genome-wide transcriptomic profiling identified molecular alterations induced by ethanol exposure during neural differentiation of hESCs into neural rosettes and neural precursor cell populations. The Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis on significantly altered genes showed potential ethanol’s effect on JAK-STAT signaling pathway, neuroactive ligand-receptor interaction, Toll-like receptor (TLR) signaling pathway, cytokine-cytokine receptor interaction and regulation of autophagy. We have further quantitatively verified ethanol-induced alterations of selected candidate genes. Among verified genes we further examined the expression of P2RX3, which is associated with nociception, a peripheral pain response. We found ethanol significantly reduced the level of P2RX3 in undifferentiated hESCs, but induced the level of P2RX3 mRNA and protein in hESC-derived NPCs. Our result suggests ethanol-induced dysregulation of P2RX3 along with alterations in molecules involved in neural activity such as neuroactive ligand-receptor interaction may be a molecular event

  2. Isolation of circulating tumor cells by immunomagnetic enrichment and fluorescence-activated cell sorting (IE/FACS) for molecular profiling.

    Science.gov (United States)

    Magbanua, Mark Jesus M; Park, John W

    2013-12-01

    Circulating tumor cells (CTCs) are cells shed by the primary tumor into the blood stream capable of initiating distant metastasis. In the past decade, numerous assays have been developed to reliably detect these extremely rare cells. However, methods for purification of CTCs with little or no contamination of normal blood cells for molecular profiling are limited. We have developed a novel protocol to isolate CTCs by combining immunomagnetic enrichment and fluorescence-activated cell sorting (IE/FACS). The two-part assay includes (1) immunomagnetic capture using magnetic beads conjugated to monoclonal antibody against an epithelial cell adhesion marker (EpCAM) to enrich for tumor cells; and (2) FACS analysis using EpCAM to purify tumor cells away from mononuclear cells of hematopoietic lineage. Downstream molecular analyses of single and pooled cells confirmed the isolation of highly pure CTCs with characteristics typical that of malignant cells.

  3. The molecular photo-cell: quantum transport and energy conversion at strong non-equilibrium.

    Science.gov (United States)

    Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan

    2015-02-09

    The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system.

  4. [Molecular cytogenetic methods for studying interphase chromosomes in human brain cells].

    Science.gov (United States)

    Iurov, I Iu; Vorsanova, S G; Solov'ev, I V; Iurov, Iu B

    2010-09-01

    One of the main genetic factors determining the functional activity of the genome in somatic cells, including brain nerve cells, is the spatial organization of chromosomes in the interphase nucleus. For a long time, no studies of human brain cells were carried out until high-resolution methods of molecular cytogenetics were developed to analyze interphase chromosomes in nondividing somatic cells. The purpose of the present work was to assess the potential of high-resolution methods of interphase molecular cytogenetics for studying chromosomes and the nuclear organization in postmitotic brain cells. A high efficiency was shown by such methods as multiprobe and quantitative fluorescence in situ hybridization (Multiprobe FISH and QFISH), ImmunoMFISH (analysis of the chromosome organization in different types of brain cells), and interphase chromosome-specific multicolor banding (ICS-MCB). These approaches allowed studying the nuclear organization depending on the gene composition and types of repetitive DNA of specific chromosome regions in certain types of brain cells (in neurons and glial cells, in particular). The present work demonstrates a high potential of interphase molecular cytogenetics for studying the structural and functional organizations of the cell nucleus in highly differentiated nerve cells. Analysis of interphase chromosomes of brain cells in the normal and pathological states can be considered as a promising line of research in modern molecular cytogenetics and cell neurobiology, i. e., molecular neurocytogenetics.

  5. Polyfunctional and IFN-γ monofunctional human CD4+ T cell populations are molecularly distinct

    Science.gov (United States)

    Burel, Julie G.; Apte, Simon H.; Groves, Penny L.; McCarthy, James S.; Doolan, Denise L.

    2017-01-01

    Pathogen-specific polyfunctional T cell responses have been associated with favorable clinical outcomes, but it is not known whether molecular differences exist between polyfunctional and monofunctional cytokine-producing T cells. Here, we report that polyfunctional CD4+ T cells induced during Plasmodium falciparum (P. falciparum) blood-stage infection in humans have a unique transcriptomic profile compared with IFN-γ monofunctional CD4+ T cells and, thus, are molecularly distinct. The 14-gene signature revealed in P. falciparum–reactive polyfunctional T cells is associated with cytokine signaling and lymphocyte chemotaxis, and systems biology analysis identified IL-27 as an upstream regulator of the polyfunctional gene signature. Importantly, the polyfunctional gene signature is largely conserved in Influenza-reactive polyfunctional CD4+ T cells, suggesting that polyfunctional T cells have core characteristics independent of pathogen specificity. This study provides the first evidence to our knowledge that consistent molecular differences exist between polyfunctional and monofunctional CD4+ T cells. PMID:28194431

  6. Molecular Recognition of Human Liver Cancer Cells Using DNA Aptamers Generated via Cell-SELEX.

    Directory of Open Access Journals (Sweden)

    Jiehua Xu

    Full Text Available Most clinical cases of liver cancer cannot be diagnosed until they have evolved to an advanced stage, thus resulting in high mortality. It is well recognized that the implementation of early detection methods and the development of targeted therapies for liver cancer are essential to reducing the high mortality rates associated with this disease. To achieve these goals, molecular probes capable of recognizing liver cancer cell-specific targets are needed. Here we describe a panel of aptamers able to distinguish hepatocarcinoma from normal liver cells. The aptamers, which were selected by cell-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment, have Kd values in the range of 64-349 nM toward the target human hepatoma cell HepG2, and also recognize ovarian cancer cells and lung adenocarcinoma. The proteinase treatment experiment indicated that all aptamers could recognize target HepG2 cells through surface proteins. This outcome suggested that these aptamers could be used as potential probes for further research in cancer studies, such as developing early detection assays, targeted therapies, and imaging agents, as well as for the investigation of common membrane proteins in these distinguishable cancers.

  7. Molecular Recognition of Human Liver Cancer Cells Using DNA Aptamers Generated via Cell-SELEX.

    Science.gov (United States)

    Xu, Jiehua; Teng, I-Ting; Zhang, Liqin; Delgado, Stefanie; Champanhac, Carole; Cansiz, Sena; Wu, Cuichen; Shan, Hong; Tan, Weihong

    2015-01-01

    Most clinical cases of liver cancer cannot be diagnosed until they have evolved to an advanced stage, thus resulting in high mortality. It is well recognized that the implementation of early detection methods and the development of targeted therapies for liver cancer are essential to reducing the high mortality rates associated with this disease. To achieve these goals, molecular probes capable of recognizing liver cancer cell-specific targets are needed. Here we describe a panel of aptamers able to distinguish hepatocarcinoma from normal liver cells. The aptamers, which were selected by cell-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment), have Kd values in the range of 64-349 nM toward the target human hepatoma cell HepG2, and also recognize ovarian cancer cells and lung adenocarcinoma. The proteinase treatment experiment indicated that all aptamers could recognize target HepG2 cells through surface proteins. This outcome suggested that these aptamers could be used as potential probes for further research in cancer studies, such as developing early detection assays, targeted therapies, and imaging agents, as well as for the investigation of common membrane proteins in these distinguishable cancers.

  8. Do we need molecular tomography of a cell and how can it be achieved?

    Science.gov (United States)

    Chen, Yi-Zhang; Chen, Xiao-Ping

    2008-08-01

    1. The spatial relationship between intracellular molecules and their local concentrations are two critical parameters required for a better understanding of protein-protein interactions in the cell. 2. Determination of the local concentration of proteins in individual cells using more sophisticated techniques and determination of the spatial relationship between a molecular platform and its partners is essential for allow us to obtain more convincing and concrete scientific conclusions. 3. As a reasonable goal, development of molecular tomography of the cell is proposed.

  9. An Analysis of Environmental Dimensions Affected in Adoption of Hydrogen Fuel Cell Vehicles: A Study in Shah ALAM Industrial AREA, Selangor

    Directory of Open Access Journals (Sweden)

    Siron Rusinah

    2016-01-01

    Full Text Available The aim of the study is to identify the perceptions of respondents on environmental dimensions hat affected in adoption of hydrogen fuel cell vehicles. The study was conducted at Shah Alam industrial areas of Selangor, Malaysia, with the number of respondents are 120 respondents with various job positions that related with engineering and automobiles industry. The findings of the research shows that the dimensions of HFCV Internal Environmental total score of the items statement is 3.40 with the percentage of agreement in implementation is 3.72 percent, HFCV Environmental Information Systems shows that the total score of the items statement is 3.63 with the percentage of agreement on use to great extend is 42.5 percent, HFCV Cooperation with Customers shows that the total score of the items statement is 3.81 with the percentage of agreement on implementation is 44.2 percent. The findings on HFCV Eco Design shows that the total score of items statement is 4.02 with the percentage of agreement on implementation is 42.3 percent, HFCV Environmental Organizational Culture shows that the total score of the items statement is 3.37 with the percentage of agreement is 34.2 percent, HFCV Environmental Leadership shows that the total score of the items statement is 3.34 with the percentage of agreement is 48.2 percent. HFCV Proactive Green Innovation shows that the total score of items statement is 4.10 ahead of automobile got the highest mean score of 4.32 with the percentage of agreement is 41 percent. HFCV Environmental performance shows that the total score of the items statement is 3.87 with the percentage of agreement is 39 percent and the last environmental dimensions was HFCV Environmental Risks shows that the total score of the item statement is 4.00 with the percentage of agreement is 40 percent

  10. The Molecular Basic for Adult Stem Cell Plasticity

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Embryonic stem cells (ES cells) would be the future for regenerative medicine, but it is so far still difficult to efficiently and specifically differentiate ES cells into certain cell types for treating human diseases. Tissue-specific stem cells, neural progenitor cells (NPCs) for example, appear to have the advantage in this regard. However, they cannot expand efficiently to provide sufficient numbers of cells for clinical use. We therefore tested whether NPCs can be immortalized by ectopic expression of ...

  11. Transcriptional activity around bacterial cell death reveals molecular biomarkers for cell viability

    Directory of Open Access Journals (Sweden)

    Schuren Frank H

    2008-12-01

    Full Text Available Abstract Background In bacteriology, the ability to grow in selective media and to form colonies on nutrient agar plates is routinely used as a retrospective criterion for the detection of living bacteria. However, the utilization of indicators for bacterial viability-such as the presence of specific transcripts or membrane integrity-would overcome bias introduced by cultivation and reduces the time span of analysis from initiation to read out. Therefore, we investigated the correlation between transcriptional activity, membrane integrity and cultivation-based viability in the Gram-positive model bacterium Bacillus subtilis. Results We present microbiological, cytological and molecular analyses of the physiological response to lethal heat stress under accurately defined conditions through systematic sampling of bacteria from a single culture exposed to gradually increasing temperatures. We identified a coherent transcriptional program including known heat shock responses as well as the rapid expression of a small number of sporulation and competence genes, the latter only known to be active in the stationary growth phase. Conclusion The observed coordinated gene expression continued even after cell death, in other words after all bacteria permanently lost their ability to reproduce. Transcription of a very limited number of genes correlated with cell viability under the applied killing regime. The transcripts of the expressed genes in living bacteria – but silent in dead bacteria-include those of essential genes encoding chaperones of the protein folding machinery and can serve as molecular biomarkers for bacterial cell viability.

  12. Abnormal T-cell reactivity against paternal antigens in spontaneous abortion: adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model.

    Science.gov (United States)

    Zenclussen, Ana Claudia; Gerlof, Katrin; Zenclussen, Maria Laura; Sollwedel, André; Bertoja, Annarosa Zambon; Ritter, Thomas; Kotsch, Katja; Leber, Joachim; Volk, Hans-Dieter

    2005-03-01

    Mammalian pregnancy is thought to be a state of immunological tolerance. The mechanisms underlying this phenomenon are still poorly understood. Here, we determined whether an inappropriate function of T regulatory (Treg) cells is involved in the pathogenesis of spontaneous abortion. We evaluated spleen and decidual lymphocytes from CBA/J mice undergoing immunological abortion (DBA/2J-mated) or having normal pregnancy (BALB/c-mated) on day 14 of gestation for ex vivo cytokine production after PMA or paternal antigen (alloantigen) stimulation. Treg activity was characterized by quantifying CD4(+)CD25(+) cells, foxp3 expression, and interleukin-10 secretion. Decidual lymphocytes from abortion CBA/J mice contained a significantly higher frequency of interferon-gamma-producing T cells specific for paternal antigens compared to those from normal pregnancy (7.8% versus 2.7%, P abortion mice. Very interestingly, CD4(+)CD25(+) Treg cells from normal pregnant and nonpregnant CBA/J mice could inhibit both proliferation and interferon-gamma secretion of lymphocytes from abortion mice in vitro whereas in vivo prevention of fetal rejection could only be achieved after adoptive transfer of Treg cells from normal pregnant mice. Our data suggest that pregnancy-induced Treg cells play a vital role in maternal tolerance to the allogeneic fetus.

  13. Molecular mechanism of parallel fiber-Purkinje cell synapse formation.

    Science.gov (United States)

    Mishina, Masayoshi; Uemura, Takeshi; Yasumura, Misato; Yoshida, Tomoyuki

    2012-01-01

    The cerebellum receives two excitatory afferents, the climbing fiber (CF) and the mossy fiber-parallel fiber (PF) pathway, both converging onto Purkinje cells (PCs) that are the sole neurons sending outputs from the cerebellar cortex. Glutamate receptor δ2 (GluRδ2) is expressed selectively in cerebellar PCs and localized exclusively at the PF-PC synapses. We found that a significant number of PC spines lack synaptic contacts with PF terminals and some of residual PF-PC synapses show mismatching between pre- and postsynaptic specializations in conventional and conditional GluRδ2 knockout mice. Studies with mutant mice revealed that in addition to PF-PC synapse formation, GluRδ2 is essential for synaptic plasticity, motor learning, and the restriction of CF territory. GluRδ2 regulates synapse formation through the amino-terminal domain, while the control of synaptic plasticity, motor learning, and CF territory is mediated through the carboxyl-terminal domain. Thus, GluRδ2 is the molecule that bridges synapse formation and motor learning. We found that the trans-synaptic interaction of postsynaptic GluRδ2 and presynaptic neurexins (NRXNs) through cerebellin 1 (Cbln1) mediates PF-PC synapse formation. The synaptogenic triad is composed of one molecule of tetrameric GluRδ2, two molecules of hexameric Cbln1 and four molecules of monomeric NRXN. Thus, GluRδ2 triggers synapse formation by clustering four NRXNs. These findings provide a molecular insight into the mechanism of synapse formation in the brain.

  14. Molecular mechanism of parallel fiber-Purkinje cell synapse formation

    Directory of Open Access Journals (Sweden)

    Masayoshi eMishina

    2012-11-01

    Full Text Available The cerebellum receives two excitatory afferents, the climbing fiber (CF and the mossy fiber-parallel fiber (PF pathway, both converging onto Purkinje cells (PCs that are the sole neurons sending outputs from the cerebellar cortex. Glutamate receptor δ2 (GluRδ2 is expressed selectively in cerebellar PCs and localized exclusively at the PF-PC synapses. We found that a significant number of PC spines lack synaptic contacts with PF terminals and some of residual PF-PC synapses show mismatching between pre- and postsynaptic specializations in conventional and conditional GluRδ2 knockout mice. Studies with mutant mice revealed that in addition to PF-PC synapse formation, GluRδ2 is essential for synaptic plasticity, motor learning and the restriction of CF territory. GluRδ2 regulates synapse formation through the amino-terminal domain, while the control of synaptic plasticity, motor learning and CF territory is mediated through the carboxyl-terminal domain. Thus, GluRδ2 is the molecule that bridges synapse formation and motor learning. We found that the trans-synaptic interaction of postsynaptic GluRδ2 and presynaptic neurexins (NRXNs through Cbln1 mediates PF-PC synapse formation. The synaptogenic triad is composed of one molecule of tetrameric GluRδ2, two molecules of hexameric Cbln1 and four molecules of monomeric NRXN. Thus, GluRδ2 triggers synapse formation by clustering four NRXNs. These findings provide a molecular insight into the mechanism of synapse formation in the brain.

  15. Beyond the adoption/ non-adoption dichotomy: the impact of innovation characteristics on potential adopters' transition through adoption process stages

    NARCIS (Netherlands)

    Agarwal, M.K.; Frambach, R.T.

    2002-01-01

    Research on innovation adoption has suffered from a bias towards understanding the factors that affect the dichotomous adoption/non-adoption decision.Much less attention is devoted to the question why potential adopters fail to progress to the adoption stage from earlier stages in the decision makin

  16. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells

    DEFF Research Database (Denmark)

    Llorente, A.; Skotland, T.; Sylvanne, T.

    2013-01-01

    The molecular lipid composition of exosomes is largely unknown. In this study, sophisticated shotgun and targeted molecular lipidomic assays were performed for in-depth analysis of the lipidomes of the metastatic prostate cancer cell line, PC-3, and their released exosomes. This study, based...... in the quantification of approximately 280 molecular lipid species, provides the most extensive lipid analysis of cells and exosomes to date. Interestingly, major differences were found in the lipid composition of exosomes compared to parent cells. Exosomes show a remarkable enrichment of distinct lipids, demonstrating...

  17. Cell death in mammalian cell culture: molecular mechanisms and cell line engineering strategies

    OpenAIRE

    Krampe, Britta; Al-Rubeai, Mohamed

    2010-01-01

    Cell death is a fundamentally important problem in cell lines used by the biopharmaceutical industry. Environmental stress, which can result from nutrient depletion, by-product accumulation and chemical agents, activates through signalling cascades regulators that promote death. The best known key regulators of death process are the Bcl-2 family proteins which constitute a critical intracellular checkpoint of apoptosis cell death within a common death pathway. Engineering of several members o...

  18. Phenoxide-bridged Zinc(II)-Bis(dipicolylamine) Probes for Molecular Imaging of Cell Death

    OpenAIRE

    Clear, Kasey J.; Harmatys, Kara M.; Rice, Douglas R.; Wolter, William R.; Suckow, Mark A.; Wang, Yuzhen; Rusckowski, Mary; Smith, Bradley D.

    2015-01-01

    Cell death is involved in many pathological conditions, and there is a need for clinical and preclinical imaging agents that can target and report cell death. One of the best known biomarkers of cell death is exposure of the anionic phospholipid phosphatidylserine (PS) on the surface of dead and dying cells. Synthetic zinc(II)-bis(dipicolylamine) (Zn2BDPA) coordination complexes are known to selectively recognize PS-rich membranes and act as cell death molecular imaging agents. However, there...

  19. Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ulf Geisen

    2015-07-01

    Full Text Available Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1. Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application.

  20. Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells.

    Science.gov (United States)

    Geisen, Ulf; Zenthoefer, Marion; Peipp, Matthias; Kerber, Jannik; Plenge, Johannes; Managò, Antonella; Fuhrmann, Markus; Geyer, Roland; Hennig, Steffen; Adam, Dieter; Piker, Levent; Rimbach, Gerald; Kalthoff, Holger

    2015-07-20

    Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1). Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data) and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application.

  1. Sliding Hydrogels with Mobile Molecular Ligands and Crosslinks as 3D Stem Cell Niche.

    Science.gov (United States)

    Tong, Xinming; Yang, Fan

    2016-09-01

    The development of a sliding hydrogel with mobile crosslinks and biochemical ligands as a 3D stem cell niche is reported. The molecular mobility of this sliding hydrogel allows stem cells to reorganize the surrounding ligands and change their morphology in 3D. Without changing matrix stiffness, sliding hydrogels support efficient stem cell differentiation toward multiple lineages including adipogenesis, chondrogenesis, and osteogenesis.

  2. Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach.

    Science.gov (United States)

    Fang, Xiaohong; Tan, Weihong

    2010-01-19

    Molecular medicine is an emerging field focused on understanding the molecular basis of diseases and translating this information into strategies for diagnosis and therapy. This approach could lead to personalized medical treatments. Currently, our ability to understand human diseases at the molecular level is limited by the lack of molecular tools to identify and characterize the distinct molecular features of the disease state, especially for diseases such as cancer. Among the new tools being developed by researchers including chemists, engineers, and other scientists is a new class of nucleic acid probes called aptamers, which are ssDNA/RNA molecules selected to target a wide range of molecules and even cells. In this Account, we will focus on the use of aptamers, generated from cell-based selections, as a novel molecular tool for cancer research. Cancers originate from mutations of human genes. These genetic alterations result in molecular changes to diseased cells, which, in turn, lead to changes in cell morphology and physiology. For decades, clinicians have diagnosed cancers primarily based on the morphology of tumor cells or tissues. However, this method does not always give an accurate diagnosis and does not allow clinicians to effectively assess the complex molecular alterations that are predictive of cancer progression. As genomics and proteomics do not yet allow a full access to this molecular knowledge, aptamer probes represent one effective and practical avenue toward this goal. One special feature of aptamers is that we can isolate them by selection against cancer cells without prior knowledge of the number and arrangement of proteins on the cellular surface. These probes can identify molecular differences between normal and tumor cells and can discriminate among tumor cells of different classifications, at different disease stages, or from different patients. This Account summarizes our recent efforts to develop aptamers through cell-SELEX for the

  3. From Uniplex to Multiplex Molecular Profiling in Advanced Non-Small Cell Lung Carcinoma.

    Science.gov (United States)

    Ileana, Ecaterina E; Wistuba, Ignacio I; Izzo, Julie G

    2015-01-01

    Non-small cell lung carcinoma is a leading cause of cancer death worldwide. Understanding the molecular biology of survival and proliferation of cancer cells led to a new molecular classification of lung cancer and the development of targeted therapies with promising results. With the advances of image-guided biopsy techniques, tumor samples are becoming smaller, and the molecular testing techniques have to overcome the challenge of integrating the characterization of a panel of abnormalities including gene mutations, copy-number changes, and fusions in a reduced number of assays using only a small amount of genetic material. This article reviews the current knowledge about the most frequent actionable molecular abnormalities in non-small cell lung carcinoma, the new approaches of molecular analysis, and the implications of these findings in the context of clinical practice.

  4. Molecular basis of potassium channels in pancreatic duct epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K channels...

  5. Application of non-small cell lung cancer pleural effusion cell blocks in molecular pathological detection

    Institute of Scientific and Technical Information of China (English)

    Ying Zhang; Nan Jiang; Dongdong Qian; Xiangzhou Li; Yu Zhou; Jia Mei; Xiaohui Cao

    2014-01-01

    Objective:The tumor tissues used in molecular pathological detection were usual y obtained by surgery, which would cause trauma and may not be suitable for the terminal cancer patients. This paper evaluated the value of the non-smal celllung cancer (NSCLC) pleural ef usion cellblocks as tumor tissues replacement materials in the application of molecular pathological detection. Methods: Tumor cells were made into cellblocks through stratified centrifugal from 30 NSCLC pa-tients with the pleural ef usion. The immunohistochemistry, fluorescence in situ hybridization (FISH) and gene sequencing methods were employed in our experiments. Results:The tumor cells of cellblock section were rich and could keep part of histological structure. Immunohistochemistry staining could assist diagnosis and tumor parting. Epidermal growth factor receptor (EGFR) FISH-positive was found in 33.33%of the group, high polysomy in 6 cases, amplification in 4 cases. EGFR gene mutations were found in 8 cases of 30 samples, with an incidence of 26.67%, 6 cases were detected in the exon 19, and 2 cases were detected in the exon 21. Conclusion:The NSCLC pleural ef usion cellblocks are useful for the diagnosis and determining the primary source of tumor, instructed targeted therapy.

  6. Molecular Characterization of Squamous Cell Carcinomas From Recessive Dystrophic Epidermolysis Bullosa

    Science.gov (United States)

    2006-09-01

    Biology Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and **Unitat de Biologia Cellular Molecular , Institute Municipal d’Investigacio...AD Award Number: DAMD17-02-1-0215 TITLE: Molecular Characterization of Squamous Cell Carcinomas from Recessive Dystrophic Epidermolysis Bullosa...TYPE 3. DATES COVERED (From - To) 01-09-2006 Final 29 May 2002 - 31 Aug 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Molecular Characterization of

  7. SU-E-I-39: Molecular Image Guided Cancer Stem Cells Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Abdollahi, H

    2014-06-01

    Purpose: Cancer stem cells resistance to radiation is a problematic issue that has caused a big fail in cancer treatment. Methods: As a primary work, molecular imaging can indicate the main mechanisms of radiation resistance of cancer stem cells. By developing and commissioning new probes and nanomolecules and biomarkers, radiation scientist will able to identify the essential pathways of radiation resistance of cancer stem cells. As the second solution, molecular imaging is a best way to find biological target volume and delineate cancer stem cell tissues. In the other hand, by molecular imaging techniques one can image the treatment response in tumor and also in normal tissue. In this issue, the response of cancer stem cells to radiation during therapy course can be imaged, also the main mechanisms of radiation resistance and finding the best radiation modifiers (sensitizers) can be achieved by molecular imaging modalities. In adaptive radiotherapy the molecular imaging plays a vital role to have higher tumor control probability by delivering high radiation doses to cancer stem cells in any time of treatment. The outcome of a feasible treatment is dependent to high cancer stem cells response to radiation and removing all of which, so a good imaging modality can show this issue and preventing of tumor recurrence and metastasis. Results: Our results are dependent to use of molecular imaging as a new modality in the clinic. We propose molecular imaging as a new radiobiological technique to solve radiation therapy problems due to cancer stem cells. Conclusion: Molecular imaging guided cancer stem cell diagnosis and therapy is a new approach in the field of cancer treatment. This new radiobiological imaging technique should be developed in all clinics as a feasible tool that is more biological than physical imaging.

  8. Functional and Molecular Characterization of Rod-like Cells from Retinal Stem Cells Derived from the Adult Ciliary Epithelium

    OpenAIRE

    Gian Carlo Demontis; Claudia Aruta; Antonella Comitato; Anna De Marzo; Valeria Marigo

    2012-01-01

    In vitro generation of photoreceptors from stem cells is of great interest for the development of regenerative medicine approaches for patients affected by retinal degeneration and for high throughput drug screens for these diseases. In this study, we show unprecedented high percentages of rod-fated cells from retinal stem cells of the adult ciliary epithelium. Molecular characterization of rod-like cells demonstrates that they lose ciliary epithelial characteristics but acquire photoreceptor...

  9. Cell mechanics and stress: from molecular details to the 'universal cell reaction' and hormesis.

    Science.gov (United States)

    Agutter, Paul S

    2007-04-01

    The 'universal cell reaction' (UCR), a coordinated biphasic response to external (noxious and other) stimuli observed in all living cells, was described by Nasonov and his colleagues in the mid-20th century. This work has received no attention from cell biologists in the West, but the UCR merits serious consideration. Although it is non-specific, it is likely to be underpinned by precise mechanisms and, if these mechanisms were characterized and their relationship to the UCR elucidated, then our understanding of the integration of cellular function could be improved. As a step towards identifying such mechanisms, I review some recent advances in understanding cell mechanics and the stress response and I suggest potentially testable hypotheses. There is a particular need for time-course studies of cellular responses to different stimulus doses or intensities. I also suggest a correspondence with hormesis; re-investigation of the UCR using modern biophysical and molecular-biological techniques might throw light on this much-discussed phenomenon.

  10. Adoption, nation, migration

    DEFF Research Database (Denmark)

    Müller, Anders Riel

    2013-01-01

    Som transnationalt adopteret vokser man ofte op med en fortælling om, at man er født i et fattigt land. Og at ens første forældre var fattige eller oplevede så store problemer, at de ikke så andre muligheder end at afgive en til adoption. Det er en historie, man bliver fortalt igen og igen. Og so...

  11. Translational applications of molecular imaging in cardiovascular disease and stem cell therapy.

    Science.gov (United States)

    Du, Wei; Tao, Hongyan; Zhao, Shihua; He, Zuo-Xiang; Li, Zongjin

    2015-09-01

    Cardiovascular disease (CVD) is the leading cause of mortality and morbidity worldwide. Molecular imaging techniques provide valuable information at cellular and molecular level, as opposed to anatomical and structural layers acquired from traditional imaging modalities. More specifically, molecular imaging employs imaging probes which interact with specific molecular targets and therefore makes it possible to visualize biological processes in vivo. Molecular imaging technology is now progressing towards preclinical and clinical application that gives an integral and comprehensive guidance for the investigation of cardiovascular disease. In addition, cardiac stem cell therapy holds great promise for clinical translation. Undoubtedly, combining stem cell therapy with molecular imaging technology will bring a broad prospect for the study and treatment of cardiac disease. This review will focus on the progresses of molecular imaging strategies in cardiovascular disease and cardiac stem cell therapy. Furthermore, the perspective on the future role of molecular imaging in clinical translation and potential strategies in defining safety and efficacy of cardiac stem cell therapies will be discussed.

  12. Molecular weight fibrinogen variants alter gene expression and functional characteristics of human endothelial cells.

    NARCIS (Netherlands)

    Weijers, E.M.; Wijhe, M.H. van; Joosten, L.; Horrevoets, A.J.; Maat, M.P. de; Hinsbergh, V.W.H. van; Koolwijk, P.

    2010-01-01

    BACKGROUND: Fibrin is a temporary matrix that not only seals a wound, but also provides a temporary matrix structure for invading cells during wound healing. Two naturally occurring fibrinogen variants, high molecular weight (HMW) and low molecular weight (LMW) fibrinogen, display different properti

  13. A Demonstration of the Molecular Basis of Sickle-Cell Anemia.

    Science.gov (United States)

    Fox, Marty; Gaynor, John J.

    1996-01-01

    Describes a demonstration that permits the separation of different hemoglobin molecules within two to three hours. Introduces students to the powerful technique of gel electrophoresis and illustrates the molecular basis of sickle-cell anemia. (JRH)

  14. Tracking neuronal marker expression inside living differentiating cells using molecular beacons

    DEFF Research Database (Denmark)

    Ilieva, Mirolyuba; Della Vedova, Paolo; Hansen, Ole

    2013-01-01

    Monitoring gene expression is an important tool for elucidating mechanisms of cellular function. In order to monitor gene expression during nerve cell development, molecular beacon (MB) probes targeting markers representing different stages of neuronal differentiation were designed and synthesized...

  15. Stem cell research: from molecular physiology to therapeutic applications

    Institute of Scientific and Technical Information of China (English)

    Chengyu Jiang

    2009-01-01

    @@ Stem cell research promises remedies to many devastating diseases that are currently incurable, ranging from diabetes and Parkinson's disease to paralysis. Totipotent embryonic stem cells have great potential for generating a wide range of different human cells that can be used to restore malfunctioning or damaged cells and tissues in patients. Recent studies have shown that pluripotent stem cells derived from adult bone marrow, the umbilical cord and the placenta could also be induced to differentiate into a variety of different tissues. In this issue, we have invited several scientists in China to summarize their pioneering works in the stem cell research field.

  16. Preservation of Antigen-Specific Functions of αβ T Cells and B Cells Removed from Hematopoietic Stem Cell Transplants Suggests Their Use As an Alternative Cell Source for Advanced Manipulation and Adoptive Immunotherapy

    Science.gov (United States)

    Li Pira, Giuseppina; Di Cecca, Stefano; Biagini, Simone; Girolami, Elia; Cicchetti, Elisabetta; Bertaina, Valentina; Quintarelli, Concetta; Caruana, Ignazio; Lucarelli, Barbarella; Merli, Pietro; Pagliara, Daria; Brescia, Letizia Pomponia; Bertaina, Alice; Montanari, Mauro; Locatelli, Franco

    2017-01-01

    Hematopoietic stem cell transplantation is standard therapy for numerous hematological diseases. The use of haploidentical donors, sharing half of the HLA alleles with the recipient, has facilitated the use of this procedure as patients can rely on availability of a haploidentical donor within their family. Since HLA disparity increases the risk of graft-versus-host disease, T-cell depletion has been used to remove alloreactive lymphocytes from the graft. Selective removal of αβ T cells, which encompass the alloreactive repertoire, combined with removal of B cells to prevent EBV-related lymphoproliferative disease, proved safe and effective in clinical studies. Depleted αβ T cells and B cells are generally discarded as by-products. Considering the possible use of donor T cells for donor lymphocyte infusions or for generation of pathogen-specific T cells as mediators of graft-versus-infection effect, we tested whether cells in the discarded fractions were functionally intact. Response to alloantigens and to viral antigens comparable to that of unmanipulated cells indicated a functional integrity of αβ T cells, in spite of the manipulation used for their depletion. Furthermore, B cells proved to be efficient antigen-presenting cells, indicating that antigen uptake, processing, and presentation were fully preserved. Therefore, we propose that separated αβ T lymphocytes could be employed for obtaining pathogen-specific T cells, applying available methods for positive selection, which eventually leads to indirect allodepletion. In addition, these functional T cells could undergo additional manipulation, such as direct allodepletion or genetic modification. PMID:28386262

  17. Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2010-01-01

    Full Text Available Abstract Background Dendritic cells (DCs are often produced by granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-4 (IL-4 stimulation of monocytes. To improve the effectiveness of DC adoptive immune cancer therapy, many different agents have been used to mature DCs. We analyzed the kinetics of DC maturation by lipopolysaccharide (LPS and interferon-γ (IFN-γ induction in order to characterize the usefulness of mature DCs (mDCs for immune therapy and to identify biomarkers for assessing the quality of mDCs. Methods Peripheral blood mononuclear cells were collected from 6 healthy subjects by apheresis, monocytes were isolated by elutriation, and immature DCs (iDCs were produced by 3 days of culture with GM-CSF and IL-4. The iDCs were sampled after 4, 8 and 24 hours in culture with LPS and IFN-γ and were then assessed by flow cytometry, ELISA, and global gene and microRNA (miRNA expression analysis. Results After 24 hours of LPS and IFN-γ stimulation, DC surface expression of CD80, CD83, CD86, and HLA Class II antigens were up-regulated. Th1 attractant genes such as CXCL9, CXCL10, CXCL11 and CCL5 were up-regulated during maturation but not Treg attractants such as CCL22 and CXCL12. The expression of classical mDC biomarker genes CD83, CCR7, CCL5, CCL8, SOD2, MT2A, OASL, GBP1 and HES4 were up-regulated throughout maturation while MTIB, MTIE, MTIG, MTIH, GADD45A and LAMP3 were only up-regulated late in maturation. The expression of miR-155 was up-regulated 8-fold in mDCs. Conclusion DCs, matured with LPS and IFN-γ, were characterized by increased levels of Th1 attractants as opposed to Treg attractants and may be particularly effective for adoptive immune cancer therapy.

  18. The cytotoxic effect of Eucheuma serra agglutinin (ESA) on cancer cells and its application to molecular probe for drug delivery system using lipid vesicles.

    Science.gov (United States)

    Sugahara, T; Ohama, Y; Fukuda, A; Hayashi, M; Kawakubo, A; Kato, K

    2001-07-01

    Eucheuma serra agglutinin (ESA) derived from a marine red alga, Eucheuma serra, is a lectin that specifically binds to mannose-rich carbohydrate chains. ESA is a monomeric molecule, with a molecular weight of29,000. ESA induced cell death against several cancer cell lines, such as colon cancer Colo201 cells and cervix cancer HeLa cells. DNA ladder detection and the induction of caspase-3 activity suggested that the cell death induced by ESA against cancer cells was apoptosis. ESA bound to the cell surface of Colo201 cells in the sugar chain dependent manner. This means that the binding of ESA to the cell surface is specific for mannose-rich sugar chains recognized by ESA. The binding of ESA to the cell surface of Colo201 cells was slightly suppressed by the high concentrations of serum because of the competition with serum components possessing the mannose-rich sugar chain motifs. On the other hand, a lipid vesicle is a very useful microcapsule constructed by multilamellar structure,and adopted as drug or gene carrier. ESA was immobilized on the surface of the lipid vesicles to apply the lipid vesicles to cancer specific drug delivery system. ESA-immobilized lipid vesicles were effectively bound to cancer cell lines compared with plane vesicles.

  19. Stem cell research:from molecular physiology to therapeutic applications

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Stem cell research promises remedies to many devastating diseases that are currently incurable, ranging from diabetes and Parkinson’s disease to paralysis. Totipotent embryonic stem cells have great potential for generating a wide

  20. Molecular Beacons: Powerful Tools for Imaging RNA in Living Cells

    OpenAIRE

    Ricardo Monroy-Contreras; Luis Vaca

    2011-01-01

    Recent advances in RNA functional studies highlights the pivotal role of these molecules in cell physiology. Diverse methods have been implemented to measure the expression levels of various RNA species, using either purified RNA or fixed cells. Despite the fact that fixed cells offer the possibility to observe the spatial distribution of RNA, assays with capability to real-time monitoring RNA transport into living cells are needed to further understand the role of RNA dynamics in cellular fu...

  1. Molecular structure and biological function of proliferating cell nuclear antigen

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Proliferating cell nuclear antigen (PCNA) is the core component of replication complex in eukaryote.As a processive factor of DNA polymerase delta, PCNA coordinates the replication process by interacting with various replication proteins. PCNA appears to play an essential role in many cell events, such as DNA damage repair, cell cycle regulation, and apoptosis, through the coordination or organization of different partners. PCNA is an essential factor in cell proliferation, and has clinical significance in tumor research. In this article we review the functional structure of PCNA, which acts as a function switch in different cell events.

  2. Multicolor multicycle molecular profiling (M3P) with quantum dots for single-cell analysis

    OpenAIRE

    Zrazhevskiy, Pavel; Lawrence D. True; Gao, Xiaohu

    2013-01-01

    Here we present a detailed protocol for molecular profiling of individual cultured mammalian cells using multicolor multicycle immunofluorescence with quantum dot probes. It includes instructions for cell culture growth and processing (2 h + 48–72 h for cell growth), preparation and characterization of universal quantum dot probes (4.5 h + overnight incubation), cyclic cell staining (~4.5 h per cycle), and image analysis (varies by application). Use of quantum dot fluorescent probes enables h...

  3. Pre-emptive treatment with rituximab of molecular relapse after autologous stem cell transplantation in mantle cell lymphoma

    DEFF Research Database (Denmark)

    Andersen, Niels S; Pedersen, Lone B; Laurell, Anna

    2009-01-01

    PURPOSE: Minimal residual disease (MRD) is predictive of clinical progression in mantle-cell lymphoma (MCL). According to the Nordic MCL-2 protocol we prospectively analyzed the efficacy of pre-emptive treatment using rituximab to MCL patients in molecular relapse after autologous stem cell...

  4. Molecular Design of Synthetic Biodegradable Polymers as Cell Scaffold Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Shen-guo; WAN Yu-qing; CAI Qing; HE Bin; CHEN Wen-na

    2004-01-01

    Poly(lactic acid) and its copolymers are regarded as the most useful biomaterials. The good biocompatibility, biodegradability and mechanical properties of them make the synthetic biodegradable polymers have primary application to tissue engineering. The advantages and disadvantages of the synthetic biodegradable polymers as cell scaffold materials are evaluated. This article reviews the modification of polylactide-family aliphatic polymers to improve the cell affinity when the polymers are used as cell scaffolds. We have developed four main approaches: to modify polyester cell scaffolds in combination of plasma treating and collagen coating; to introduce hydrophilic segments into aliphatic polyester backbones; to introduce pendant functional groups into polyester chains; to modify polyester with dextran. The results of the cell cultures prove that the approaches mentioned above have improved the cell affinity of the polyesters and have modulated cell function such as adhesion, proliferation and migration.

  5. Molecular modeling and computational analyses suggests that the Sinorhizobium meliloti periplasmic regulator protein ExoR adopts a superhelical fold and is controlled by a unique mechanism of proteolysis.

    Science.gov (United States)

    Wiech, Eliza M; Cheng, Hai-Ping; Singh, Shaneen M

    2015-03-01

    The Sinorhizobium meliloti periplasmic ExoR protein and the ExoS/ChvI two-component system form a regulatory mechanism that directly controls the transformation of free-living to host-invading cells. In the absence of crystal structures, understanding the molecular mechanism of interaction between ExoR and the ExoS sensor, which is believed to drive the key regulatory step in the invasion process, remains a major challenge. In this study, we present a theoretical structural model of the active form of ExoR protein, ExoRm , generated using computational methods. Our model suggests that ExoR possesses a super-helical fold comprising 12 α-helices forming six Sel1-like repeats, including two that were unidentified in previous studies. This fold is highly conducive to mediating protein-protein interactions and this is corroborated by the identification of putative protein binding sites on the surface of the ExoRm protein. Our studies reveal two novel insights: (a) an extended conformation of the third Sel1-like repeat that might be important for ExoR regulatory function and (b) a buried proteolytic site that implies a unique proteolytic mechanism. This study provides new and interesting insights into the structure of S. meliloti ExoR, lays the groundwork for elaborating the molecular mechanism of ExoRm cleavage, ExoRm -ExoS interactions, and studies of ExoR homologs in other bacterial host interactions.

  6. Adoption of Broadband Services

    DEFF Research Database (Denmark)

    Falch, Morten

    2008-01-01

    successful markets for broadband. This is done through analysis of national policies in three European countries-Denmark, Sweden, and Germany-and the U.S., Japan, and South Korea. We concluded that successful implementation of broadband depends on the kind of policy measures to be taken at the national level....... Many countries have provided active support for stimulating diffusion of broadband and national variants of this type of policies in different countries are important for an explanation of national differences in adoption of broadband....

  7. Åben Adoption

    DEFF Research Database (Denmark)

    Jeldtoft, Nadia

    2007-01-01

    barn adopteres, jo mere stabil og uproblematisk bliver relationen mellem barn og adoptivforældre. Samtidig peger undersøgelserne på, at adoptioner med høj grad af åbenhed og kontakt mellem barn, adoptivforældrene og de biologiske forældre fungerer bedst. Hermed rokkes ved en udbredt forestilling om......Denne rapport er en systematisk forskningsoversigt over udenlandske erfaringer med adoption i forhold til anbringelse uden for hjemmet, fx familiepleje, institutionsanbringelse og hjemgivelse til de biologiske forældre. Konklusionerne i rapporten er overraskende entydige: Adopterede børn klarer sig...

  8. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.

    Science.gov (United States)

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-10-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.

  9. Gene Concepts in Higher Education Cell and Molecular Biology Textbooks

    Science.gov (United States)

    Albuquerque, Pitombo Maiana; de Almeida, Ana Maria Rocha; El-Hani, Nino Charbel

    2008-01-01

    Despite being a landmark of 20th century biology, the "classical molecular gene concept," according to which a gene is a stretch of DNA encoding a functional product, which may be a single polypeptide or RNA molecule, has been recently challenged by a series of findings (e.g., split genes, alternative splicing, overlapping and nested…

  10. Identification of molecular pathways facilitating glioma cell invasion in situ.

    Directory of Open Access Journals (Sweden)

    Ido Nevo

    Full Text Available Gliomas are mostly incurable secondary to their diffuse infiltrative nature. Thus, specific therapeutic targeting of invasive glioma cells is an attractive concept. As cells exit the tumor mass and infiltrate brain parenchyma, they closely interact with a changing micro-environmental landscape that sustains tumor cell invasion. In this study, we used a unique microarray profiling approach on a human glioma stem cell (GSC xenograft model to explore gene expression changes in situ in Invading Glioma Cells (IGCs compared to tumor core, as well as changes in host cells residing within the infiltrated microenvironment relative to the unaffected cortex. IGCs were found to have reduced expression of genes within the extracellular matrix compartment, and genes involved in cell adhesion, cell polarity and epithelial to mesenchymal transition (EMT processes. The infiltrated microenvironment showed activation of wound repair and tissue remodeling networks. We confirmed by protein analysis the downregulation of EMT and polarity related genes such as CD44 and PARD3 in IGCs, and EFNB3, a tissue-remodeling agent enriched at the infiltrated microenvironment. OLIG2, a proliferation regulator and glioma progenitor cell marker upregulated in IGCs was found to function in enhancing migration and stemness of GSCs. Overall, our results unveiled a more comprehensive picture of the complex and dynamic cell autonomous and tumor-host interactive pathways of glioma invasion than has been previously demonstrated. This suggests targeting of multiple pathways at the junction of invading tumor and microenvironment as a viable option for glioma therapy.

  11. [Molecular mechanism maintaining muscle satellite cells and the roles in sarcopenia.

    Science.gov (United States)

    Takemoto, Yusei; Fukada, So-Ichiro

    2017-01-01

    Skeletal muscle has its stem cell named satellite cell. The absence of satellite cells does not allow muscle regeneration, it is unquestionable that satellite cell is indispensable for muscle regeneration processes. A certain number of satellite cells appear to be necessary for the successful muscle regeneration, meaning the maintenance of the satellite cells is essential for the functional homeostasis of skeletal muscle. Recent studies have revealed the molecular mechanism underlying satellite cell maintenance in a steady state. A loss of those molecules responsible for the maintenance often results in decreased satellite cell pool and reduced regeneration ability. On the other hand, the contribution of satellite cells to muscle hypertrophy or aged-related atrophy(sarcopenia)is controversial. In this review, we will introduce the molecules that regulate satellite cells homeostasis in the dormant state and then further discuss the recent results on the roles of satellite cell in sarcopenia.

  12. Molecular Analysis of Motility in Metastatic Mammary Adenocarcinoma Cells

    Science.gov (United States)

    1996-09-01

    comparisons with the F-actin binding activity of EF1 from Dictyostelium (Edmonds et al., 1995). These conditions are physiological for a free living amoeba ...activity resulting from the appearance of free barbed ends very close to the leading edge of extending lamellipods. Both actin polymerization and...cells demonstrate the massive accumulation of F-actin and EGF-R in ruffles and under the plasma membrane at the free cell edge in colonies of A431 cells

  13. After adoption: dissolution or permanence?

    Science.gov (United States)

    Festinger, Trudy

    2002-01-01

    Results are presented on the whereabouts of 516 adopted children, based on a random sample of children adopted from placement in New York City in 1996. Data from interviews with adoptive parents were augmented by information from adoption subsidy records and state child tracking files, as well as interviews with caregivers of children whose adoptive parents were deceased. There were few dissolutions, but postadoption service needs were many.

  14. Coexistence and efficiency of normal and anomalous transport by molecular motors in living cells

    CERN Document Server

    Goychuk, Igor; Metzler, R

    2013-01-01

    Recent experiments reveal both passive subdiffusion of various nanoparticles and anomalous active transport of such particles by molecular motors in the molecularly crowded environment of living biological cells. Passive and active microrheology reveals that the origin of this anomalous dynamics is due to the viscoelasticity of the intracellular fluid. How do molecular motors perform in such a highly viscous, dissipative environment? Can we explain the observed co-existence of the anomalous transport of relatively large particles of 100 to 500 nm in size by kinesin motors with the normal transport of smaller particles by the same molecular motors? What is the efficiency of molecular motors in the anomalous transport regime? Here we answer these seemingly conflicting questions and consistently explain experimental findings in a generalization of the well-known continuous diffusion model for molecular motors with two conformational states in which viscoelastic effects are included.

  15. Computation Molecular Kinetics Model of HZE Induced Cell Cycle Arrest

    Science.gov (United States)

    Cucinotta, Francis A.; Ren, Lei

    2004-01-01

    Cell culture models play an important role in understanding the biological effectiveness of space radiation. High energy and charge (HZE) ions produce prolonged cell cycle arrests at the G1/S and G2/M transition points in the cell cycle. A detailed description of these phenomena is needed to integrate knowledge of the expression of DNA damage in surviving cells, including the determination of relative effectiveness factors between different types of radiation that produce differential types of DNA damage and arrest durations. We have developed a hierarchical kinetics model that tracks the distribution of cells in various cell phase compartments (early G1, late G1, S, G2, and M), however with transition rates that are controlled by rate-limiting steps in the kinetics of cyclin-cdk's interactions with their families of transcription factors and inhibitor molecules. The coupling of damaged DNA molecules to the downstream cyclin-cdk inhibitors is achieved through a description of the DNA-PK and ATM signaling pathways. For HZE irradiations we describe preliminary results, which introduce simulation of the stochastic nature of the number of direct particle traversals per cell in the modulation of cyclin-cdk and cell cycle population kinetics. Comparison of the model to data for fibroblast cells irradiated photons or HZE ions are described.

  16. The circadian molecular clock creates epidermal stem cell heterogeneity.

    Science.gov (United States)

    Janich, Peggy; Pascual, Gloria; Merlos-Suárez, Anna; Batlle, Eduard; Ripperger, Jürgen; Albrecht, Urs; Cheng, Hai-Ying M; Obrietan, Karl; Di Croce, Luciano; Benitah, Salvador Aznar

    2011-11-09

    Murine epidermal stem cells undergo alternate cycles of dormancy and activation, fuelling tissue renewal. However, only a subset of stem cells becomes active during each round of morphogenesis, indicating that stem cells coexist in heterogeneous responsive states. Using a circadian-clock reporter-mouse model, here we show that the dormant hair-follicle stem cell niche contains coexisting populations of cells at opposite phases of the clock, which are differentially predisposed to respond to homeostatic cues. The core clock protein Bmal1 modulates the expression of stem cell regulatory genes in an oscillatory manner, to create populations that are either predisposed, or less prone, to activation. Disrupting this clock equilibrium, through deletion of Bmal1 (also known as Arntl) or Per1/2, resulted in a progressive accumulation or depletion of dormant stem cells, respectively. Stem cell arrhythmia also led to premature epidermal ageing, and a reduction in the development of squamous tumours. Our results indicate that the circadian clock fine-tunes the temporal behaviour of epidermal stem cells, and that its perturbation affects homeostasis and the predisposition to tumorigenesis.

  17. Innate recognition of apoptotic cells: novel apoptotic cell-associated molecular patterns revealed by crossreactivity of anti-LPS antibodies.

    Science.gov (United States)

    Tennant, I; Pound, J D; Marr, L A; Willems, J J L P; Petrova, S; Ford, C A; Paterson, M; Devitt, A; Gregory, C D

    2013-05-01

    Cells dying by apoptosis are normally cleared by phagocytes through mechanisms that can suppress inflammation and immunity. Molecules of the innate immune system, the pattern recognition receptors (PRRs), are able to interact not only with conserved structures on microbes (pathogen-associated molecular patterns, PAMPs) but also with ligands displayed by apoptotic cells. We reasoned that PRRs might therefore interact with structures on apoptotic cells - apoptotic cell-associated molecular patterns (ACAMPs) - that are analogous to PAMPs. Here we show that certain monoclonal antibodies raised against the prototypic PAMP, lipopolysaccharide (LPS), can crossreact with apoptotic cells. We demonstrate that one such antibody interacts with a constitutively expressed intracellular protein, laminin-binding protein, which translocates to the cell surface during apoptosis and can interact with cells expressing the prototypic PRR, mCD14 as well as with CD14-negative cells. Anti-LPS cross reactive epitopes on apoptotic cells colocalised with annexin V- and C1q-binding sites on vesicular regions of apoptotic cell surfaces and were released associated with apoptotic cell-derived microvesicles (MVs). These results confirm that apoptotic cells and microbes can interact with the immune system through common elements and suggest that anti-PAMP antibodies could be used strategically to characterise novel ACAMPs associated not only with apoptotic cells but also with derived MVs.

  18. A novel small molecular STAT3 inhibitor, LY5, inhibits cell viability, cell migration, and angiogenesis in medulloblastoma cells.

    Science.gov (United States)

    Xiao, Hui; Bid, Hemant Kumar; Jou, David; Wu, Xiaojuan; Yu, Wenying; Li, Chenglong; Houghton, Peter J; Lin, Jiayuh

    2015-02-06

    Signal transducers and activators of transcription 3 (STAT3) signaling is persistently activated and could contribute to tumorigenesis of medulloblastoma. Numerous studies have demonstrated that inhibition of the persistent STAT3 signaling pathway results in decreased proliferation and increased apoptosis in human cancer cells, indicating that STAT3 is a viable molecular target for cancer therapy. In this study, we investigated a novel non-peptide, cell-permeable small molecule, named LY5, to target STAT3 in medulloblastoma cells. LY5 inhibited persistent STAT3 phosphorylation and induced apoptosis in human medulloblastoma cell lines expressing constitutive STAT3 phosphorylation. The inhibition of STAT3 signaling by LY5 was confirmed by down-regulating the expression of the downstream targets of STAT3, including cyclin D1, bcl-XL, survivin, and micro-RNA-21. LY5 also inhibited the induction of STAT3 phosphorylation by interleukin-6 (IL-6), insulin-like growth factor (IGF)-1, IGF-2, and leukemia inhibitory factor in medulloblastoma cells, but did not inhibit STAT1 and STAT5 phosphorylation stimulated by interferon-γ (IFN-γ) and EGF, respectively. In addition, LY5 blocked the STAT3 nuclear localization induced by IL-6, but did not block STAT1 and STAT5 nuclear translocation mediated by IFN-γ and EGF, respectively. A combination of LY5 with cisplatin or x-ray radiation also showed more potent effects than single treatment alone in the inhibition of cell viability in human medulloblastoma cells. Furthermore, LY5 demonstrated a potent inhibitory activity on cell migration and angiogenesis. Taken together, these findings indicate LY5 inhibits persistent and inducible STAT3 phosphorylation and suggest that LY5 is a promising therapeutic drug candidate for medulloblastoma by inhibiting persistent STAT3 signaling.

  19. Cell death by mitotic catastrophe: a molecular definition

    NARCIS (Netherlands)

    Castedo, M.; Perfettini, J.-L.; Roumier, T.; Andreau, K.; Medema, R.H.; Kroemer, G.

    2004-01-01

    The current literature is devoid of a clearcut definition of mitotic catastrophe, a type of cell death that occurs during mitosis. Here, we propose that mitotic catastrophe results from a combination of deficient cell-cycle checkpoints (in particular the DNA structure checkpoints and the spindle ass

  20. Characterization of embryonic stem cell transplantation immunobiology using molecular imaging

    NARCIS (Netherlands)

    Swijnenburg, Rutger-Jan

    2009-01-01

    Given their self-renewing and pluripotent capabilities, embryonic stem cells (ESCs) are well-poised as a cellular source for tissue regeneration therapy. Successful in vitro differentiation of both mouse (m) and human (h) ESCs into multiple somatic cell types has been reported, including cardiomyocy

  1. Molecular Mechanisms Regulating Human Dendritic Cell Development, Survival and Function

    NARCIS (Netherlands)

    L. van de Laar (Lianne)

    2011-01-01

    textabstractDendritic cells (DC) are professional antigen presenting cells (APC) with a dual function in the immune system. On the one hand, these specialized leukocytes are equipped to alert the immune system to invading pathogens or other danger signals. On the other, DC can promote tolerogenic re

  2. The molecular nature of photovoltage losses in organic solar cells

    KAUST Repository

    Schlenker, Cody W.

    2011-01-01

    Since the inception of heterojunction organic photovoltaic research the organic/organic interface has been thought to play a crucial role in determining the magnitude of the open-circuit voltage. Yet, the task of defining the molecular properties dictating the photovoltage delivered by these devices, that employ mixed or neat layers of different organic molecules to convert incident photons to electricity, is still an active area of research. This will likely be a key step in designing the new materials required for improving future device efficiencies. With the intent to underscore the importance of considering both thermodynamic and kinetic factors, this article highlights recent progress in elucidating molecular characteristics dictating photovoltage losses in heterojunction organic photovoltaics. © The Royal Society of Chemistry.

  3. Neoplastic cell transformation by high-LET radiation - Molecular mechanisms

    Science.gov (United States)

    Yang, Tracy Chui-Hsu; Craise, Laurie M.; Tobias, Cornelius A.; Mei, Man-Tong

    1989-01-01

    Quantitative data were collected on dose-response curves of cultured mouse-embryo cells (C3H10T1/2) irradiated with heavy ions of various charges and energies. Results suggests that two breaks formed on DNA within 80 A may cause cell transformation and that two DNA breaks formed within 20 A may be lethal. From results of experiments with restriction enzymes which produce DNA damages at specific sites, it was found that DNA double strand breaks are important primary lesions for radiogenic cell transformation and that blunt-ended double-strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship for high-LET radiation is similar to that for HGPRT locus mutation, chromosomal deletion, and cell transformation, indicating that common lesions may be involved in these radiation effects.

  4. Beyond a pedagogical tool: 30 years of Molecular biology of the cell.

    Science.gov (United States)

    Serpente, Norberto

    2013-02-01

    In 1983, a bulky and profusely illustrated textbook on molecular and cell biology began to inhabit the shelves of university libraries worldwide. The effect of capturing the eyes and souls of biologists was immediate as the book provided them with a new and invigorating outlook on what cells are and what they do.

  5. Molecular profiling of cytomegalovirus-induced human CD8+ T cell differentiation

    NARCIS (Netherlands)

    Hertoghs, K.M.L.; Moerland, P.D.; van Stijn, A.; Remmerswaal, E.B.M.; Yong, S.L.; van de Berg, P.J.E.J.; Ham, S.M.; Baas, F.; ten Berge, R.J.M.; van Lier, R.A.W.

    2010-01-01

    CD8+ T cells play a critical role in the immune response to viral pathogens. Persistent human cytomegalovirus (HCMV) infection results in a strong increase in the number of virus-specific, quiescent effector-type CD8+ T cells with constitutive cytolytic activity, but the molecular pathways involved

  6. Molecular and environmental cues in cardiac differentiation of mesenchymal stem cells

    NARCIS (Netherlands)

    Ramkisoensing, Arti Anushka

    2014-01-01

    In this thesis molecular and environmental cues in cardiac differentiation of mesenchymal stem cells were investigated. The main conclusions were that the cardiac differentiation potential of human mesenchymal stem cells negatively correlates with donor age. This in its own shows a negative relation

  7. Visualization and orchestration of the dynamic molecular society in cells

    Institute of Scientific and Technical Information of China (English)

    Xuebiao Yao; Guowei Fang

    2009-01-01

    @@ Visualization of specific molecules and their interactions in real space and time is essential to delineate how cellular plasticity and dynamics are achieved and orchestrated as perturbation of cellular plasticity and dynamics is detrimental to health. Elucidation of cellular dynamics requires molecular imaging at nanometer scale at millisecond resolution. The 1st International Conference on Cellular Dynamics and Chemical Biology held in Hefei, China (from 12 September to 15 September,2008) launched the quest by bringing synergism among photonics, chemistry and biology.

  8. Ultrastructural and molecular distinctions between the porcine inner cell mass and epiblast reveal unique pluripotent cell states

    DEFF Research Database (Denmark)

    Hall, V. J.; Jacobsen, Janus Valentin; Rasmussen, M. A.

    2010-01-01

    Characterization of the pluripotent cell populations within the porcine embryo is essential for understanding pluripotency and self-renewal regulation in the inner cell mass (ICM) and epiblast. In this study, we perform detailed ultrastructural and molecular characterization of the developing...... pluripotent cell population as it develops from the ICM to the late epiblast. The ultrastructural observations revealed that the outer cells of the ICM have a high nuclear:cytoplasmic ratio but are transcriptionally inactive and contain mitochondria with few cristae. In contrast, the epiblast cells have...

  9. Process of adoption communication openness in adoptive families: adopters’ perspective

    Directory of Open Access Journals (Sweden)

    Maria Acciaiuoli Barbosa-Ducharne

    2016-01-01

    Full Text Available Abstract Communication about adoption is a family interaction process which is more than the simple exchange of information. Adoption communication can be characterized in terms of the level of openness of family conversations regarding the child’s past and the degree of the family’s adoption social disclosure. The objective of this study is to explore the process of adoption communication openness in Portuguese adoptive families by identifying the impact of variables related to the adoption process, the adoptive parenting and the adoptee. One hundred twenty five parents of children aged 3 to 15, who were adopted on average 4 years ago, participated in this study. Data was collected during home visits using the Parents Adoption Process Interview. A cluster analysis identified three different groups of families according to the level of adoption communication openness within the family and outside. The findings also showed that the process of the adoption communication openness started when parents decided to adopt, developed in parent-child interaction and was susceptible to change under professional intervention. The relevance of training given to prospective adopters and of professional practice based on scientific evidence is highlighted.

  10. Adopting EIL in China

    Institute of Scientific and Technical Information of China (English)

    王静

    2007-01-01

    In this paper, I state my views of the global spread of English. Through analysis of the reasons of the wide spread of EIL, I emphasize that adopting varieties of models is vitally important in relation to English teaching and learning in China, despite a number of obstacles still existing. British, American, Australian, Canada, or any other English should be taught compatibly. No matter what varieties we use, intelligibility is most important among people from other cultures with different linguistic background. Pedagogy should also be adjusted to follow the features of EIL aiming to facilitate learners' communication with people from a wide range of countries and to access the vast amount of information currently available in English. Therefore, supportive policy should be made to both raise all people's awareness of English used internationally and guarantee the need from education practice. Curriculum, without doubt, should include varieties of English in addition to British and American English.

  11. Coarse-Grained Molecular Dynamics Simulation of a Red Blood Cell

    Science.gov (United States)

    Jiang, Li-Guo; Wu, Heng-An; Zhou, Xiao-Zhou; Wang, Xiu-Xi

    2010-02-01

    A worm-like chain model based on a spectrin network is employed to study the biomechanics of red blood cells. Coarse-grained molecular dynamics simulations are performed to obtain a stable configuration free of external loadings. We also discuss the influence of two parameters: the average bending modulus and the persistence length. The change in shape of a malaria-infected red blood cell can contribute to the change in its molecular-based structure. As the persistence length of the membrane network in the infected red blood cell decreases, the deformability decreases and the biconcave shape is destroyed. The numerical results are comparable with previously reported experimental results. The coarse-grained model can be used to study the relationship between macro-mechanical properties and molecular-scale structures of cells.

  12. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy

    Directory of Open Access Journals (Sweden)

    Arnauld eSergé

    2016-05-01

    Full Text Available The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation and metastasis.

  13. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy.

    Science.gov (United States)

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis.

  14. Molecular and Nanoscale Engineering of High Efficiency Excitonic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A. [Univ. of Washington, Seattle, WA (United States); Ginger, David S. [Univ. of Washington, Seattle, WA (United States); Cao, Guozhong [Univ. of Washington, Seattle, WA (United States)

    2016-01-15

    We combined the synthesis of new polymers and organic-inorganic hybrid materials with new experimental characterization tools to investigate bulk heterojunction (BHJ) polymer solar cells and hybrid organic-inorganic solar cells during the 2007-2010 period (phase I) of this project. We showed that the bulk morphology of polymer/fullerene blend solar cells could be controlled by using either self-assembled polymer semiconductor nanowires or diblock poly(3-alkylthiophenes) as the light-absorbing and hole transport component. We developed new characterization tools in-house, including photoinduced absorption (PIA) spectroscopy, time-resolved electrostatic force microscopy (TR-EFM) and conductive and photoconductive atomic force microscopy (c-AFM and pc-AFM), and used them to investigate charge transfer and recombination dynamics in polymer/fullerene BHJ solar cells, hybrid polymer-nanocrystal (PbSe) devices, and dye-sensitized solar cells (DSSCs); we thus showed in detail how the bulk photovoltaic properties are connected to the nanoscale structure of the BHJ polymer solar cells. We created various oxide semiconductor (ZnO, TiO2) nanostructures by solution processing routes, including hierarchical aggregates and nanorods/nanotubes, and showed that the nanostructured photoanodes resulted in substantially enhanced light-harvesting and charge transport, leading to enhanced power conversion efficiency of dye-sensitized solar cells.

  15. Definition of molecular determinants of prostate cancer cell bone extravasation.

    Science.gov (United States)

    Barthel, Steven R; Hays, Danielle L; Yazawa, Erika M; Opperman, Matthew; Walley, Kempland C; Nimrichter, Leonardo; Burdick, Monica M; Gillard, Bryan M; Moser, Michael T; Pantel, Klaus; Foster, Barbara A; Pienta, Kenneth J; Dimitroff, Charles J

    2013-01-15

    Advanced prostate cancer commonly metastasizes to bone, but transit of malignant cells across the bone marrow endothelium (BMEC) remains a poorly understood step in metastasis. Prostate cancer cells roll on E-selectin(+) BMEC through E-selectin ligand-binding interactions under shear flow, and prostate cancer cells exhibit firm adhesion to BMEC via β1, β4, and αVβ3 integrins in static assays. However, whether these discrete prostate cancer cell-BMEC adhesive contacts culminate in cooperative, step-wise transendothelial migration into bone is not known. Here, we describe how metastatic prostate cancer cells breach BMEC monolayers in a step-wise fashion under physiologic hemodynamic flow. Prostate cancer cells tethered and rolled on BMEC and then firmly adhered to and traversed BMEC via sequential dependence on E-selectin ligands and β1 and αVβ3 integrins. Expression analysis in human metastatic prostate cancer tissue revealed that β1 was markedly upregulated compared with expression of other β subunits. Prostate cancer cell breaching was regulated by Rac1 and Rap1 GTPases and, notably, did not require exogenous chemokines as β1, αVβ3, Rac1, and Rap1 were constitutively active. In homing studies, prostate cancer cell trafficking to murine femurs was dependent on E-selectin ligand, β1 integrin, and Rac1. Moreover, eliminating E-selectin ligand-synthesizing α1,3 fucosyltransferases in transgenic adenoma of mouse prostate mice dramatically reduced prostate cancer incidence. These results unify the requirement for E-selectin ligands, α1,3 fucosyltransferases, β1 and αVβ3 integrins, and Rac/Rap1 GTPases in mediating prostate cancer cell homing and entry into bone and offer new insight into the role of α1,3 fucosylation in prostate cancer development.

  16. MALDI mass spectrometry based molecular phenotyping of CNS glial cells for prediction in mammalian brain tissue

    DEFF Research Database (Denmark)

    Hanrieder, Jørg; Wicher, Grzegorz; Bergquist, Jonas

    2011-01-01

    profiling of mammalian neural cells using direct analysis by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). MALDI-MS analysis is rapid, sensitive, robust, and specific for large biomolecules in complex matrices. Here, we describe a newly developed...... and straightforward methodology for direct characterization of rodent CNS glial cells using MALDI-MS-based intact cell mass spectrometry (ICMS). This molecular phenotyping approach enables monitoring of cell growth stages, (stem) cell differentiation, as well as probing cellular responses towards different....... Complementary proteomic experiments revealed the identity of these signature proteins that were predominantly expressed in the different glial cell types, including histone H4 for oligodendrocytes and S100-A10 for astrocytes. MALDI imaging MS was performed, and signature masses were employed as molecular...

  17. Sex steroids and their receptors: molecular actions on brain cells.

    Science.gov (United States)

    Mannella, Paolo; Simoncini, Tommaso

    2012-03-01

    Sex steroids exert actions of paramount importance on brain cells. They contribute to shape the central nervous system during embryo development. They modulate the formation and the turnover of the interconnections between neurons. They control the function of glial cells. And they do it through a signaling machinery that is apparently simple, but that hides a level of complexity that has been unveiled only in part. Different receptor isoforms, different interactions between receptors and co-regulators, chains of events originating at the cell membrane and leading to effects in the nucleus (or the other way around) all interact to determine selective modulations of brain cells. All these actions end up in phenomenal effects on brain function that change through adolescence, pregnancy, adulthood, up to menopause and ageing. Many of these actions are relevant for degenerative processes and research may offer soon new strategies to counteract these diseases.

  18. Chimeric antigen receptor (CAR)-directed adoptive immunotherapy: a new era in targeted cancer therapy

    OpenAIRE

    Chen, Yamei; Liu, Delong

    2014-01-01

    As a result of the recent advances in molecular immunology, virology, genetics, and cell processing, chimeric antigen receptor (CAR)-directed cancer therapy has finally arrived for clinical application. CAR-directed adoptive immunotherapy represents a novel form of gene therapy, cellular therapy, and immunotherapy, a combination of three in one. Early phase clinical trial was reported in patients with refractory chronic lymphoid leukemia with 17p deletion. Accompanying the cyto...

  19. Molecular manipulation targeting regulation of dopaminergic differentiation and proliferation of neural stem cells or pluripotent stem cells.

    Science.gov (United States)

    Ding, Yin-Xiu; Wei, Li-Chun; Wang, Ya-Zhou; Cao, Rong; Wang, Xi; Chen, Liang-Wei

    2011-06-01

    Parkinson's disease (PD) is a severe deliberating neurological disease caused by progressive degenerative death of dopaminergic neurons in the substantia nigra of midbrain. While cell replacement strategy by transplantation of neural stem cells and inducement of dopaminergic neurons is recommended for the treatment of PD, understanding the differentiation mechanism and controlled proliferation of grafted stem cells remain major concerns in their clinical application. Here we review recent studies on molecular signaling pathways in regulation of dopaminergic differentiation and proliferation of stem cells, particularly Wnt/beta-catenin signaling in stimulating formation of the dopaminergic phenotype, Notch signaling in inhibiting stem cell differentiation, and Sonic hedgehog functioning in neural stem cell proliferation and neuronal cell production. Activation of oncogenes involved in uncontrolled proliferation or tumorigenicity of stem cells is also discussed. It is proposed that a selective molecular manipulation targeting strategy will greatly benefit cell replacement therapy for PD by effectively promoting dopaminergic neuronal cell generation and reducing risk of tumorigenicity of in vivo stem cell applications.

  20. Single cell molecular recognition of migrating and invading tumor cells using a targeted fluorescent probe to receptor PTPmu.

    Science.gov (United States)

    Burden-Gulley, Susan M; Qutaish, Mohammed Q; Sullivant, Kristin E; Tan, Mingqian; Craig, Sonya E L; Basilion, James P; Lu, Zheng-Rong; Wilson, David L; Brady-Kalnay, Susann M

    2013-04-01

    Detection of an extracellular cleaved fragment of a cell-cell adhesion molecule represents a new paradigm in molecular recognition and imaging of tumors. We previously demonstrated that probes that recognize the cleaved extracellular domain of receptor protein tyrosine phosphatase mu (PTPmu) label human glioblastoma brain tumor sections and the main tumor mass of intracranial xenograft gliomas. In this article, we examine whether one of these probes, SBK2, can label dispersed glioma cells that are no longer connected to the main tumor mass. Live mice with highly dispersive glioma tumors were injected intravenously with the fluorescent PTPmu probe to test the ability of the probe to label the dispersive glioma cells in vivo. Analysis was performed using a unique three-dimensional (3D) cryo-imaging technique to reveal highly migratory and invasive glioma cell dispersal within the brain and the extent of colabeling by the PTPmu probe. The PTPmu probe labeled the main tumor site and dispersed cells up to 3.5 mm away. The cryo-images of tumors labeled with the PTPmu probe provide a novel, high-resolution view of molecular tumor recognition, with excellent 3D detail regarding the pathways of tumor cell migration. Our data demonstrate that the PTPmu probe recognizes distant tumor cells even in parts of the brain where the blood-brain barrier is likely intact. The PTPmu probe has potential translational significance for recognizing tumor cells to facilitate molecular imaging, a more complete tumor resection and to serve as a molecular targeting agent to deliver chemotherapeutics to the main tumor mass and distant dispersive tumor cells.

  1. An adult tissue-specific stem cell molecular phenotype is activated in epithelial cancer stem cells and correlated to patient outcome.

    Science.gov (United States)

    Hussenet, Thomas; Dembélé, Doulaye; Martinet, Nadine; Vignaud, Jean-Michel; du Manoir, Stanislas

    2010-01-15

    Recent studies have shown that embryonic stem cell-like molecular phenotypes are commonly activated in human epithelial primary tumors and are linked to adverse patient prognosis.(1,2) However it remains unclear whether these correlations to outcome are linked to the differentiation status of the human primary tumors(1) or represent molecular reminiscences of epithelial cancer stem cells.(2) In addition, while it has been demonstrated that leukemic cancer stem cells re-acquire an embryonic stem cell-like phenotype,(3,4) the molecular basis of stem cell function in epithelial cancer stem cells has not been investigated. Here we show that a normal adult tissue-specific stem cell molecular phenotype is commonly activated in epithelial cancer stem cells and for the first time provide evidence that enrichment in cancer stem cells-specific molecular signatures are correlated to highly aggressive tumor phenotypes in human epithelial cancers.

  2. Molecular targeted therapy in the treatment of advanced stage non-small cell lung cancer (NSCLC).

    Science.gov (United States)

    Kumarakulasinghe, Nesaretnam Barr; van Zanwijk, Nico; Soo, Ross A

    2015-04-01

    Historically, patients with advanced stage non-small cell lung cancer (NSCLC) were treated with chemotherapy alone, but a therapeutic plateau has been reached. Advances in the understanding of molecular genetics have led to the recognition of multiple molecularly distinct subsets of NSCLC. This in turn has led to the development of rationally directed molecular targeted therapy, leading to improved clinical outcomes. Tumour genotyping for EGFR mutations and ALK rearrangement has meant chemotherapy is no longer given automatically as first-line treatment but reserved for when patients do not have a 'druggable' driver oncogene. In this review, we will address the current status of clinically relevant driver mutations and emerging new molecular subsets in lung adenocarcinoma and squamous cell carcinoma, and the role of targeted therapy and mechanisms of acquired resistance to targeted therapy.

  3. Single-cell detection of mRNA expression using nanofountain-probe electroporated molecular beacons.

    Science.gov (United States)

    Giraldo-Vela, Juan P; Kang, Wonmo; McNaughton, Rebecca L; Zhang, Xuemei; Wile, Brian M; Tsourkas, Andrew; Bao, Gang; Espinosa, Horacio D

    2015-05-01

    New techniques for single-cell analysis enable new discoveries in gene expression and systems biology. Time-dependent measurements on individual cells are necessary, yet the common single-cell analysis techniques used today require lysing the cell, suspending the cell, or long incubation times for transfection, thereby interfering with the ability to track an individual cell over time. Here a method for detecting mRNA expression in live single cells using molecular beacons that are transfected into single cells by means of nanofountain probe electroporation (NFP-E) is presented. Molecular beacons are oligonucleotides that emit fluorescence upon binding to an mRNA target, rendering them useful for spatial and temporal studies of live cells. The NFP-E is used to transfect a DNA-based beacon that detects glyceraldehyde 3-phosphate dehydrogenase and an RNA-based beacon that detects a sequence cloned in the green fluorescence protein mRNA. It is shown that imaging analysis of transfection and mRNA detection can be performed within seconds after electroporation and without disturbing adhered cells. In addition, it is shown that time-dependent detection of mRNA expression is feasible by transfecting the same single cell at different time points. This technique will be particularly useful for studies of cell differentiation, where several measurements of mRNA expression are required over time.

  4. Glioma-initiating cells and molecular pathology: implications for therapy.

    Science.gov (United States)

    Natsume, Atsushi; Kinjo, Sayano; Yuki, Kanako; Kato, Takenori; Ohno, Masasuke; Motomura, Kazuya; Iwami, Kenichiro; Wakabayashi, Toshihiko

    2011-02-01

    There is now compelling evidence that gliomas harbor a small population of cells, termed glioma-initiating cells (GICs), characterized by their ability to undergo self-renewal and initiate tumorigenesis. The development of therapeutic strategies targeted toward GIC signaling may improve the treatment of malignant gliomas. The characterization of GICs provides a clue to elucidating histological heterogeneity and treatment failure. The role of the stem cell marker CD133 in the initiation and progression of brain tumors is still uncertain. Here, we review some of the signaling mechanisms involved in GIC biology, such as phosphatase and tensin homolog (PTEN), sonic hedgehog, Notch, and WNT signaling pathways, maternal embryonic leucine-zipper kinase (MELK), BMI1, and Janus kinase signal transducer and activator of transcription (JAK-STAT) signaling. In addition, we discuss the role of microRNAs in GICs by focusing on microRNA-21 regulation by type I interferon.

  5. Molecular-targeted therapy for elderly patients with advanced non-small cell lung cancer

    OpenAIRE

    Antonelli,Giovanna; Libra, Massimo; PANEBIANCO, VINCENZO; Russo,Alessia Erika; Vitale, Felice Vito; COLINA, PAOLO; D'Angelo,Alessandro; ROSSELLO, ROSALBA; Ferraù, Francesco

    2015-01-01

    Lung cancer is the most common cause of cancer-related mortality in men and women. Non-small cell lung cancer (NSCLC) represents close to 90% of all lung cancers. When diagnosed, >50% of patients are >65 years old. Through an improved understanding of the molecular mechanisms involved in lung oncogenesis, molecular-targeted approaches have become an essential element for the treatment of patients with NSCLC. As the toxicity profiles of the techniques are definitely more favorable compared wit...

  6. The role of molecular strategies in the evaluation of surgical margins in oropharyngeal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Anastasios N. Kanatas

    2011-12-01

    Full Text Available The recurrence of a tumour at the resection margins in head and neck squamous cell carcinoma (HNSCC has profound implications on the morbidity and mortality of the patient. At present HNSCC does not undergo any form of molecular analysis to aid treatment strategy and prognosticate for those individuals at higher risk of recurrence. This article aims to review current research into molecular strategies for tumour evaluation, highlighting conflicting evidence and possible novel concepts for further exploration.

  7. Hydrodynamic determinants of cell necrosis and molecular delivery produced by pulsed laser microbeam irradiation of adherent cells.

    Science.gov (United States)

    Compton, Jonathan L; Hellman, Amy N; Venugopalan, Vasan

    2013-11-05

    Time-resolved imaging, fluorescence microscopy, and hydrodynamic modeling were used to examine cell lysis and molecular delivery produced by picosecond and nanosecond pulsed laser microbeam irradiation in adherent cell cultures. Pulsed laser microbeam radiation at λ = 532 nm was delivered to confluent monolayers of PtK2 cells via a 40×, 0.8 NA microscope objective. Using laser microbeam pulse durations of 180-1100 ps and pulse energies of 0.5-10.5 μJ, we examined the resulting plasma formation and cavitation bubble dynamics that lead to laser-induced cell lysis, necrosis, and molecular delivery. The cavitation bubble dynamics are imaged at times of 0.5 ns to 50 μs after the pulsed laser microbeam irradiation, and fluorescence assays assess the resulting cell viability and molecular delivery of 3 kDa dextran molecules. Reductions in both the threshold laser microbeam pulse energy for plasma formation and the cavitation bubble energy are observed with decreasing pulse duration. These energy reductions provide for increased precision of laser-based cellular manipulation including cell lysis, cell necrosis, and molecular delivery. Hydrodynamic analysis reveals critical values for the shear-stress impulse generated by the cavitation bubble dynamics governs the location and spatial extent of cell necrosis and molecular delivery independent of pulse duration and pulse energy. Specifically, cellular exposure to a shear-stress impulse J≳0.1 Pa s ensures cell lysis or necrosis, whereas exposures in the range of 0.035≲J≲0.1 Pa s preserve cell viability while also enabling molecular delivery of 3 kDa dextran. Exposure to shear-stress impulses of J≲0.035 Pa s leaves the cells unaffected. Hydrodynamic analysis of these data, combined with data from studies of 6 ns microbeam irradiation, demonstrates the primacy of shear-stress impulse in determining cellular outcome resulting from pulsed laser microbeam irradiation spanning a nearly two-orders-of-magnitude range of

  8. The Texas Adoption Project: adopted children and their intellectual resemblance to biological and adoptive parents.

    Science.gov (United States)

    Horn, J M

    1983-04-01

    Intelligence test scores were obtained from parents and children in 300 adoptive families and compared with similar measures available for the biological mothers of the same adopted children. Results supported the hypothesis that genetic variability is an important influence in the development of individual differences for intelligence. The most salient finding was that adopted children resemble their biological mothers more than they resemble the adoptive parents who reared them from birth. A small subset of the oldest adopted children did not resemble their biological mothers. The suggestion that the influence of genes declines with age is treated with caution since other adoption studies report a trend in the opposite direction.

  9. Molecular biology techniques for the diagnosis of cutaneous T-cell lymphoma.

    Science.gov (United States)

    Wood, G S; Haeffner, A; Dummer, R; Crooks, C F

    1994-04-01

    The molecular biologic analysis of TCR gene rearrangements by Southern blot analysis and various PCR-based assays has contributed significantly to the understanding of CTCL. It is now known that CTCL is a monoclonal T-cell disorder like other T-cell neoplasms and that the same tumor clone is generally present in all sites of tissue involvement. Relative to histopathologic examination, the enhanced sensitivity of molecular biologic assays has allowed the diagnosis of CTCL at an early stage in many cases. In fact, molecular biologic analysis of TCR gene rearrangements suggests that CTCL may contain a dominant monoclonal tumor cell population from the time of its earliest clinically recognizable lesions, such as the cutaneous patches once termed large plaque parapsoriasis and now generally regarded as early CTCL. Furthermore, available data indicate that, at least in some cases, tumor cells are distributed widely among cutaneous and extracutaneous tissues at a time long before this involvement can be appreciated morphologically. It is apparent that, in addition to their value in the early diagnosis and staging of cutaneous lymphomas, these molecular biologic assays are valuable in monitoring the response to therapy, detecting early relapse, and improving understanding of the compartmentalization and trafficking of tumor cells. In order to reap the full clinical benefit from this new information, however, it is important to perform prospective long-term studies designed to determine the clinical significance of molecular biologic data. In addition, the complexity of cutaneous lymphoproliferative disorders dictates that molecular biologic clonality data should never be interpreted in a vacuum. In skin disease, dominant clonality does not always equate with clinical malignancy. The proper diagnosis of CTCL and other cutaneous lymphoproliferative diseases requires the thoughtful integration of molecular biologic data with the clinicopathologic and immunophenotypic

  10. Status epilepticus increases mature granule cells in the molecular layer of the dentate gyrus in rats

    Institute of Scientific and Technical Information of China (English)

    Zhaoliang Liang; Fei Gao; Fajun Wang; Xiaochen Wang; Xinyu Song; Kejing Liu; Ren-Zhi Zhan

    2013-01-01

    Enhanced neurogenesis in the dentate gyrus of the hippocampus following seizure activity, especially status epilepticus, is associated with ectopic residence and aberrant integration of newborn granule cells. Hilar ectopic granule cells may be detrimental to the stability of dentate circuitry by means of their electrophysiological properties and synaptic connectivity. We hypothesized that status epilepticus also increases ectopic granule cells in the molecular layer. Status epilepticus was induced in male Sprague-Dawley rats by intraperitoneal injection of pilocarpine. Immunostaining showed that many doublecortin-positive cells were present in the molecular layer and the hilus 7 days after the induction of status epilepticus. At least 10 weeks after status epilepticus, the estimated number of cells positive for both prospero homeobox protein 1 and neuron-specific nuclear protein in the hilus was significantly increased. A similar trend was also found in the molecular layer. These findings indicate that status epilepticus can increase the numbers of mature and ectopic newborn granule cells in the molecular layer.

  11. Teaching Cell and Molecular Biology for Gender Equity

    Science.gov (United States)

    Sible, Jill C.; Wilhelm, Dayna E.; Lederman, Muriel

    2006-01-01

    Science, technology, engineering, and math (STEM) fields, including cell biology, are characterized by the "leaky pipeline" syndrome in which, over time, women leave the discipline. The pipeline itself and the pond into which it empties may not be neutral. Explicating invisible norms, attitudes, and practices by integrating social…

  12. Molecular Mechanisms Underlying Genomic Instability in Brca-Deficient Cells

    Science.gov (United States)

    2014-03-01

    stimu- lation to undergo antibody class switching and was shown to be highly expressed in primary human and murine germinal center B cells from tonsil ...online September 4, 2012. Robbiani, D.F., Bunting, S., Feldhahn, N., Bothmer, A., Camps, J., Deroubaix, S., McBride, K.M., Klein, I.A., Stone , G

  13. Evolution of cell cycle control: same molecular machines, different regulation

    DEFF Research Database (Denmark)

    de Lichtenberg, Ulrik; Jensen, Thomas Skøt; Brunak, Søren

    2007-01-01

    Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated or deacti......Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated...... or deactivated at specific stages during the cell cycle through a wide variety of mechanisms including transcriptional regulation, phosphorylation, subcellular translocation and targeted degradation. In a series of integrative analyses of different genome-scale data sets, we have studied how these different...... layers of regulation together control the activity of cell cycle complexes and how this regulation has evolved. The results show surprisingly poor conservation of both the transcriptional and the post-translation regulation of individual genes and proteins; however, the changes in one layer of regulation...

  14. Carcinogenesis of basal cell carcinomas: genetics and molecular mechanisms.

    Science.gov (United States)

    Lacour, J P

    2002-04-01

    Basal cell carcinoma (BCC) of the skin is the most common type of cancer in humans. Like squamous cell carcinomas, they are also believed to be ultraviolet (UV)-induced, but several data suggest that some differences might exist in the mechanisms of their UV induction. The originating cells may arise from interfollicular basal cells, hair follicles or sebaceous glands, thus from a deeper zone than the SCC ones, which probably means exposure to different doses or wavelengths of UV. The p53 gene and the patched gene (PTCH) are major targets of UV for BCC induction. Mutations in p53 are present in about 56% of human BCC, even small early lesions. The "UV signature" is observed in 65% of them. Mutations in the PTCH play also a major role in BCC development, being responsible for hereditary BCCs in Gorlin's syndrome, sporadic BCC, and BCCs isolated from xeroderma pigmentosum, although with a lower incidence of "UV signature". Smoothened-activating mutations and PTCH2 mutations are also involved in BCC formation. Transgenic mice overexpressing Smoothened or Sonic hedgehog in the skin spontaneously produce skin lesions resembling human BCCs, but contrary to findings in the hairless albino mouse and with SCC, no data on experimental UV induction of BCCs are available.

  15. Engineering molecular circuits using synthetic biology in mammalian cells.

    Science.gov (United States)

    Wieland, Markus; Fussenegger, Martin

    2012-01-01

    Synthetic biology has made significant leaps over the past decade, and it now enables rational and predictable reprogramming of cells to conduct complex physiological activities. The bases for cellular reprogramming are mainly genetic control components affecting gene expression. A huge variety of these modules, ranging from engineered fusion proteins regulating transcription to artificial RNA devices affecting translation, is available, and they often feature a highly modular scaffold. First endeavors to combine these modules have led to autoregulated expression systems and genetic cascades. Analogous to the rational engineering of electronic circuits, the existing repertoire of artificial regulatory elements has further enabled the ambitious reprogramming of cells to perform Boolean calculations or to mimic the oscillation of circadian clocks. Cells harboring synthetic gene circuits are not limited to cell culture, as they have been successfully implanted in animals to obtain tailor-made therapeutics that have made it possible to restore urea or glucose homeostasis as well as to offer an innovative approach to artificial insemination.

  16. Molecular determinants of treatment response in human germ cell tumors

    NARCIS (Netherlands)

    F. Mayer; J.A. Stoop (Hans); G.L. Scheffer (George); R. Scheper; J.W. Oosterhuis (Wolter); L.H.J. Looijenga (Leendert); C. Bokemeyer

    2003-01-01

    textabstractPURPOSE: Germ cell tumors (GCTs) are highly sensitive to cisplatin-based chemotherapy. This feature is unexplained, as is the intrinsic chemotherapy resistance of mature teratomas and the resistant phenotype of a minority of refractory GCTs. Various cellular pathways ma

  17. Molecular Thermodynamics for Cell Biology as Taught with Boxes

    Science.gov (United States)

    Mayorga, Luis S.; Lopez, Maria Jose; Becker, Wayne M.

    2012-01-01

    Thermodynamic principles are basic to an understanding of the complex fluxes of energy and information required to keep cells alive. These microscopic machines are nonequilibrium systems at the micron scale that are maintained in pseudo-steady-state conditions by very sophisticated processes. Therefore, several nonstandard concepts need to be…

  18. Design of two-photon molecular tandem architectures for solar cells by ab initio theory

    DEFF Research Database (Denmark)

    Ørnsø, Kristian Baruël; García Lastra, Juan Maria; De La Torre, Gema

    2015-01-01

    An extensive database of spectroscopic properties of molecules from ab initio calculations is used to design molecular complexes for use in tandem solar cells that convert two photons into a single electron–hole pair, thereby increasing the output voltage while covering a wider spectral range...... of the structural and energetic properties of several thousand porphyrin dyes. The third design is a molecular analogy of the intermediate band solar cell, and involves a single dye molecule with strong intersystem crossing to ensure a long lifetime of the intermediate state. Based on the calculated energy levels...... and molecular orbitals, energy diagrams are presented for the individual steps in the operation of such tandem solar cells. We find that theoretical open circuit voltages of up to 1.8 V can be achieved using these tandem designs. Questions about the practical implementation of prototypical devices...

  19. Adoption Resources for Black Children

    Science.gov (United States)

    Gallagher, Ursula M.

    1971-01-01

    The growing number of adoptions in this country, including racially mixed adoptions, attest to the general acceptance of adoption as a way of bringing love to children in need of families of their own and the satisfactions of parenthood to childless couples, single men and women, and families who have room for one more. (Author/AJ)

  20. Adoption Resource Directory: Region X.

    Science.gov (United States)

    1983

    State, regional, and national adoption resources are described in this directory for residents of Region X states (Alaska, Idaho, Oregon, and Washington). Emphasizing the adoption of children with special needs, the directory gives organizational contacts for parents in various stages of the adoption process and mentions resources for social…

  1. Sickle Cell Anemia, the First Molecular Disease: Overview of Molecular Etiology, Pathophysiology, and Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Martin H. Steinberg

    2008-01-01

    Full Text Available The root cause of sickle cell disease is a single β-globin gene mutation coding for the sickle β-hemoglobin chain. Sickle hemoglobin tetramers polymerize when deoxygenated, damaging the sickle erythrocyte. A multifaceted pathophysiology, triggered by erythrocyte injury induced by the sickle hemoglobin polymer, and encompassing more general cellular and tissue damage caused by hypoxia, oxidant damage, inflammation, abnormal intracellular interactions, and reduced nitric oxide bioavailability, sets off the events recognized clinically as sickle cell disease. This disease is a group of related disorders where sickle hemoglobin is the principal hemoglobin species. All have varying degrees of chronic hemolytic anemia, vasculopathy, vasoocclusive disease, acute and chronic organ damage, and shortened life span. Its complex pathophysiology, of which we have a reasonable understanding, provides multiple loci for potential therapeutic intervention.

  2. Molecular beacon-enabled purification of living cells by targeting cell type-specific mRNAs.

    Science.gov (United States)

    Wile, Brian M; Ban, Kiwon; Yoon, Young-Sup; Bao, Gang

    2014-10-01

    Molecular beacons (MBs) are dual-labeled oligonucleotides that fluoresce only in the presence of complementary mRNA. The use of MBs to target specific mRNAs allows sorting of specific cells from a mixed cell population. In contrast to existing approaches that are limited by available surface markers or selectable metabolic characteristics, the MB-based method enables the isolation of a wide variety of cells. For example, the ability to purify specific cell types derived from pluripotent stem cells (PSCs) is important for basic research and therapeutics. In addition to providing a general protocol for MB design, validation and nucleofection into cells, we describe how to isolate a specific cell population from differentiating PSCs. By using this protocol, we have successfully isolated cardiomyocytes differentiated from mouse or human PSCs (hPSCs) with ∼ 97% purity, as confirmed by electrophysiology and immunocytochemistry. After designing MBs, their ordering and validation requires 2 weeks, and the isolation process requires 3 h.

  3. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation

    Science.gov (United States)

    Yang, Jung Hyun; Wang, Huanzhong

    2016-01-01

    Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW biosynthesis has seen rapid progress due to the importance of these processes to plant biology and to the biofuel industry. Plant hormones, transcriptional regulators and peptide signaling regulate procambium/cambium proliferation, vascular patterning, and xylem differentiation. Transcriptional regulatory pathways play a pivot role in SCW biosynthesis. Although most of these discoveries are derived from research in Arabidopsis, many genes have shown conserved functions in biofuel feedstock species. Here, we review the recent advances in our understanding of vascular development and SCW formation and discuss potential biotechnological uses. PMID:27047525

  4. Whole-genome molecular haplotyping of single cells

    OpenAIRE

    Fan, H. Christina; Wang, Jianbin; Potanina, Anastasia; Quake, Stephen R

    2010-01-01

    Conventional experimental methods of studying the human genome are limited by the inability to independently study the combination of alleles, or haplotype, on each of the homologous copies of the chromosomes. We developed a microfluidic device capable of separating and amplifying homologous copies of each chromosome from a single human metaphase cell. Single-nucleotide polymorphism (SNP) array analysis of amplified DNA enabled us to achieve completely deterministic, whole-genome, personal ha...

  5. [Molecular basis of red blood cell adhesion to endothelium].

    Science.gov (United States)

    Wautier, J-L; Wautier, M-P

    2011-01-01

    The extent of red blood cell adhesion is correlated with the incidence of vascular complications and the severity of the disease. Patients with sickle cell anemia (HbSS) experience vasoocclusive episodes. The adhesion of RBCs from HbSS patients is increased and related to VLA-4 exposure, which binds to vascular cell adhesion molecule (VCAM-1). Inter Cellular Adhesion Molecule (ICAM-1), CD31, CD36 and glycans are potential receptors for PfEMP1 of RBCs parasited by plasmodium falciparum. The incidence of vascular complications is very high in patients with diabetes mellitus. RBC adhesion is increased and statistically correlated with the severity of the angiopathy. Glycation of RBC membrane proteins is responsible for binding to the receptor for advanced glycation end products (RAGE). Polycythemia Vera (PV) is the most frequent myeloproliferative disorder and characterized by a high occurrence of thrombosis of mesenteric and cerebral vessels. PV is due to a mutation of the Janus kinase 2 (JAK2 V617F). This mutation stimulates erythropoiesis and is the cause of Lu/BCAM (CD239) phosphorylation, which potentiated the interaction with laminin alpha 5. The couple laminin alpha 5 endothelial and phosphorylated Lu/BCAM explained the increased adhesion of RBCs from patients PV to endothelium.

  6. Molecular basis of mammalian cell invasion by Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Nobuko Yoshida

    2006-03-01

    Full Text Available Establishment of infection by Trypanosoma cruzi, the agent of Chagas' disease, depends on a series of events involving interactions of diverse parasite molecules with host components. Here we focus on the mechanisms of target cell invasion by metacyclic trypomastigotes (MT and mammalian tissue culture trypomastigotes (TCT. During MT or TCT internalization, signal transduction pathways are activated both in the parasite and the target cell, leading to Ca2+ mobilization. For cell adhesion, MT engage surface glycoproteins, such as gp82 and gp35/50, which are Ca2+ signal-inducing molecules. In T. cruzi isolates that enter host cells in gp82-mediated manner, parasite protein tyrosine kinase as well as phospholipase C are activated, and Ca2+ is released from I P3-sensitive stores, whereas in T. cruzi isolates that attach to target cells mainly through gp35/50, the signaling pathway involving adenylate cyclase appears to be stimulated, with Ca2+ release from acidocalciosomes. In addition, T. cruzi isolate-dependent inhibitory signals, mediated by MT-specific gp90, may be triggered both in the host cell and the parasite. The repertoire of TCT molecules implicated in cell invasion includes surface glycoproteins of gp85 family, with members containing binding sites for laminin and cytokeratin 18, enzymes such as cruzipain, trans-sialidase, and an oligopeptidase B that generates a Ca2+-agonist from a precursor molecule.O estabelecimento da infecção por Trypanosoma cruzi, o agente da doença de Chagas, depende de uma série de eventos envolvendo interações de diversas moléculas do parasita com componentes do hospedeiro. Focalizamos aqui os mecanismos de invasão celular por tripomastigotas metacíclicos (TM e por tripomastigotas de cultura de tecido (TCT. Durante a internalização de TM ou TCT, vias de transdução de sinal são ativadas tanto no parasita como na célula alvo, acarretando a mobilização de Ca2+. Para adesão, TM utiliza as glicoprote

  7. Effects of surface molecular chirality on adhesion and differentiation of stem cells.

    Science.gov (United States)

    Yao, Xiang; Hu, Yiwen; Cao, Bin; Peng, Rong; Ding, Jiandong

    2013-12-01

    Chirality is one of the most fascinating and ubiquitous cues in nature, especially in life. The effects of chiral surfaces on stem cells have, however, not yet been revealed. Herein we examined the molecular chirality effect on stem cell behaviors. Self assembly monolayers of L- or D-cysteine (Cys) were formed on a glass surface coated with gold. Mesenchymal stem cells (MSCs) derived from bone marrow of rats exhibited more adhering preference and thus less cell spreading on the L surface than on the d one at the confluent condition. More protein adsorption was observed on the L surface after immersed in cell culture medium with fetal bovine serum. After osteogenic and adipogenic co-induction at the confluent condition, a larger proportion of cells became osteoblasts on the d surface, while the adipogenic fraction on the L surface was found to be higher than on the D surface. In order to interpret how this chirality effect worked, we fabricated Cys microislands of two sizes on the non-fouling poly(ethylene glycol) hydrogel to pre-define the spreading areas of single cells. Then the differentiation extents did not exhibit a significant difference between L and D surfaces under a given area of microislands, yet very significant differences of osteogenesis and adipogenesis were found between different areas. So, the molecular chirality influenced stem cells, probably via favored adsorption of natural proteins on the L surface, which led to more cell adhesion; and the larger cell spreading area with higher cell tension in turn favored osteogenesis rather than adipogenesis. As a result, this study reveals the molecular chirality on material surfaces as an indirect regulator of stem cells.

  8. A novel minimally-invasive method to sample human endothelial cells for molecular profiling.

    Directory of Open Access Journals (Sweden)

    Stephen W Waldo

    Full Text Available The endothelium is a key mediator of vascular homeostasis and cardiovascular health. Molecular research on the human endothelium may provide insight into the mechanisms underlying cardiovascular disease. Prior methodology used to isolate human endothelial cells has suffered from poor yields and contamination with other cell types. We thus sought to develop a minimally invasive technique to obtain endothelial cells derived from human subjects with higher yields and purity.Nine healthy volunteers underwent endothelial cell harvesting from antecubital veins using guidewires. Fluorescence-activated cell sorting (FACS was subsequently used to purify endothelial cells from contaminating cells using endothelial surface markers (CD34/CD105/CD146 with the concomitant absence of leukocyte and platelet specific markers (CD11b/CD45. Endothelial lineage in the purified cell population was confirmed by expression of endothelial specific genes and microRNA using quantitative polymerase chain reaction (PCR.A median of 4,212 (IQR: 2161-6583 endothelial cells were isolated from each subject. Quantitative PCR demonstrated higher expression of von Willebrand Factor (vWF, P<0.001, nitric oxide synthase 3 (NOS3, P<0.001 and vascular cell adhesion molecule 1 (VCAM-1, P<0.003 in the endothelial population compared to similarly isolated leukocytes. Similarly, the level of endothelial specific microRNA-126 was higher in the purified endothelial cells (P<0.001.This state-of-the-art technique isolates human endothelial cells for molecular analysis in higher purity and greater numbers than previously possible. This approach will expedite research on the molecular mechanisms of human cardiovascular disease, elucidating its pathophysiology and potential therapeutic targets.

  9. A Novel Minimally-Invasive Method to Sample Human Endothelial Cells for Molecular Profiling

    Science.gov (United States)

    Waldo, Stephen W.; Brenner, Daniel A.; McCabe, James M.; Dela Cruz, Mark; Long, Brian; Narla, Venkata A.; Park, Joseph; Kulkarni, Ameya; Sinclair, Elizabeth; Chan, Stephen Y.; Schick, Suzaynn F.; Malik, Namita; Ganz, Peter; Hsue, Priscilla Y.

    2015-01-01

    Objective The endothelium is a key mediator of vascular homeostasis and cardiovascular health. Molecular research on the human endothelium may provide insight into the mechanisms underlying cardiovascular disease. Prior methodology used to isolate human endothelial cells has suffered from poor yields and contamination with other cell types. We thus sought to develop a minimally invasive technique to obtain endothelial cells derived from human subjects with higher yields and purity. Methods Nine healthy volunteers underwent endothelial cell harvesting from antecubital veins using guidewires. Fluorescence-activated cell sorting (FACS) was subsequently used to purify endothelial cells from contaminating cells using endothelial surface markers (CD34 / CD105 / CD146) with the concomitant absence of leukocyte and platelet specific markers (CD11b / CD45). Endothelial lineage in the purified cell population was confirmed by expression of endothelial specific genes and microRNA using quantitative polymerase chain reaction (PCR). Results A median of 4,212 (IQR: 2161 – 6583) endothelial cells were isolated from each subject. Quantitative PCR demonstrated higher expression of von Willebrand Factor (vWF, P<0.001), nitric oxide synthase 3 (NOS3, P<0.001) and vascular cell adhesion molecule 1 (VCAM-1, P<0.003) in the endothelial population compared to similarly isolated leukocytes. Similarly, the level of endothelial specific microRNA-126 was higher in the purified endothelial cells (P<0.001). Conclusion This state-of-the-art technique isolates human endothelial cells for molecular analysis in higher purity and greater numbers than previously possible. This approach will expedite research on the molecular mechanisms of human cardiovascular disease, elucidating its pathophysiology and potential therapeutic targets. PMID:25679506

  10. Intellectual resemblance among adoptive adoptive and biological relatives: the Texas adoption project.

    Science.gov (United States)

    Horn, J M; Loehlin, J C; Willerman, L

    1979-05-01

    Intellectual and personality measures were available from unwed mothers who gave their children up for adoption at birth. The same or similar measures have been obtained from 300 sets of adoptive parents and all of their adopted and natural children in the Texas Adoption Project. The sample characteristics are discussed in detail, and the basic findings for IQ are presented. Initial analyses of the data on IQ suggest moderate heritabilities. Emphasis is placed on the preliminary nature of these findings.

  11. Technology Adoption: an Interaction Perspective

    Science.gov (United States)

    Sitorus, Hotna M.; Govindaraju, Rajesri; Wiratmadja, I. I.; Sudirman, Iman

    2016-02-01

    The success of a new technology depends on how well it is accepted by its intended users. Many technologies face the problem of low adoption rate, despite the benefits. An understanding of what makes people accept or reject a new technology can help speed up the adoption rate. This paper presents a framework for technology adoption based on an interactive perspective, resulting from a literature study on technology adoption. In studying technology adoption, it is necessary to consider the interactions among elements involved in the system, for these interactions may generate new characteristics or new relationships. The interactions among elements in a system adoption have not received sufficient consideration in previous studies of technology adoption. Based on the proposed interaction perspective, technology adoption is elaborated by examining interactions among the individual (i.e. the user or prospective user), the technology, the task and the environment. The framework is formulated by adopting several theories, including Perceived Characteristics of Innovating, Diffusion of Innovation Theory, Technology Acceptance Model, Task-Technology Fit and usability theory. The proposed framework is illustrated in the context of mobile banking adoption. It is aimed to offer a better understanding of determinants of technology adoption in various contexts, including technology in manufacturing systems.

  12. Electroporation adopting trains of biphasic pulses enhances in vitro and in vivo the cytotoxic effect of doxorubicin on multidrug resistant colon adenocarcinoma cells (LoVo).

    Science.gov (United States)

    Meschini, Stefania; Condello, Maria; Lista, Pasquale; Vincenzi, Bruno; Baldi, Alfonso; Citro, Gennaro; Arancia, Giuseppe; Spugnini, Enrico P

    2012-09-01

    Few articles in the literature have focused on electroporation as a strategy to reverse multidrug resistance (MDR) of tumour cells and they are mostly limited to the improved efficacy of bleomycin. We tested the application of trains of biphasic pulses to cell suspensions and to murine xenografts as a strategy to increase the uptake of doxorubicin (DOX) and to enhance its cytotoxicity against chemoresistant cells. The human colon adenocarcinoma cell line LoVo DX, expressing MDR phenotype with high levels of P-glycoprotein (P-gp), has been used. The in vitro and in vivo studies gave the following results: (i) the application of the electric pulses to the cell suspension, immediately before DOX administration, induced a significant increase of drug retention; (ii) confocal microscopy observations showed a remarkable increase of intranuclear accumulation of DOX induced by electroporation; (iii) cell survival assay revealed a decrease of cell viability in the cultures treated with the combination of electroporation and doxorubicin; (iv) scanning electron microscopy observations revealed consistent morphological changes after the combined exposure to electroporation and doxorubicin; (v) in implanted mice the combined treatment induced an evident slowdown on the tumour growth when compared to treatment with DOX alone; (vi) histopathological analysis evidenced tumour destruction and its replacement by scar tissue in the tumours treated with the combination of doxorubicin and electroporation.

  13. Influence of molecular noise on the growth of single cells and bacterial populations.

    Directory of Open Access Journals (Sweden)

    Mischa Schmidt

    Full Text Available During the last decades experimental studies have revealed that single cells of a growing bacterial population are significantly exposed to molecular noise. Important sources for noise are low levels of metabolites and enzymes that cause significant statistical variations in the outcome of biochemical reactions. In this way molecular noise affects biological processes such as nutrient uptake, chemotactic tumbling behavior, or gene expression of genetically identical cells. These processes give rise to significant cell-to-cell variations of many directly observable quantities such as protein levels, cell sizes or individual doubling times. In this study we theoretically explore if there are evolutionary benefits of noise for a growing population of bacteria. We analyze different situations where noise is either suppressed or where it affects single cell behavior. We consider two specific examples that have been experimentally observed in wild-type Escherichia coli cells: (i the precision of division site placement (at which molecular noise is highly suppressed and (ii the occurrence of noise-induced phenotypic variations in fluctuating environments. Surprisingly, our analysis reveals that in these specific situations both regulatory schemes [i.e. suppression of noise in example (i and allowance of noise in example (ii] do not lead to an increased growth rate of the population. Assuming that the observed regulatory schemes are indeed caused by the presence of noise our findings indicate that the evolutionary benefits of noise are more subtle than a simple growth advantage for a bacterial population in nutrient rich conditions.

  14. Adoptive immunotherapy of advanced melanoma.

    Science.gov (United States)

    Shapira-Frommer, Ronnie; Schachter, Jacob

    2012-09-01

    Adoptive cell therapy (ACT) has emerged as an effective therapy for patients with metastatic melanoma. Since the first introduction of the protocol in 1988 [1], major improvements have been achieved with response rates of 40%-72% among patients who were resistant to previous treatment lines. Both cell product and conditioning regimen are major determinants of treatment efficacy; therefore, developing ACT protocols explore diverse ways to establish autologous intra-tumoral lymphocyte cultures or peripheral effector cells as well as different lymphodepleting regimens. While a proof of feasibility and a proof of concept had been established with previous published results, ACT will need to move beyond single-center experiences, to confirmatory, multi-center studies. If ACT is to move into widespread practice, it will be necessary to develop reproducible high quality cell production methods and accepted lymphodepleting regimen. Two new drugs, ipilimumab (Yervoy, Bristol-Myers Squibb) and vemurafenib (Zelboraf, Roche), were approved in 2011 for the treatment of metastatic melanoma based on positive phase III trials. Both drugs show a clear overall survival benefit, so the timing of when to use ACT will need to be carefully thought out. In contrast to these 2 new, commercially available outpatient treatments, ACT is a personally-specified product and labor-intensive therapy that demands both acquisition of high standard laboratory procedures and close clinical inpatient monitoring during treatment. It is unique among other anti-melanoma treatments, providing the potential for a durable response following a single, self-limited treatment. This perspective drives the efforts to make this protocol accessible for more patients and to explore modifications that may optimize treatment results.

  15. Coarse grained molecular dynamics and theoretical studies of carbon nanotubes entering cell membrane

    Institute of Scientific and Technical Information of China (English)

    Xinghua Shi; Yong Kong; Huajian Gao

    2008-01-01

    Motivated by recent experimental observations that carbon nanotubes (CNT) can enter animal cells, here we conduct coarse grained molecular dynamics and theore-tical studies of the intrinsic interaction mechanisms between CNT's and lipid bilayer. The results indicate that CNT-cell interaction is dominated by van der Waals and hydropho-bic forces, and that CNT's with sufficiently small radii can directly pierce through cell membrane while larger tubes tend to enter cell via a wrapping mechanism. Theoretical models are proposed to explain the observed size effect in transition of entry mechanisms.

  16. Phenotypic and Molecular Characterization of MCF10DCIS and SUM Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Nandita Barnabas

    2013-01-01

    Full Text Available We reviewed the phenotypic and molecular characteristics of MCF10DCIS.com and the SUM cell lines based on numerous studies performed over the years. The major signaling pathways that give rise to the phenotype of these cells may serve as a good resource of information when researchers in drug discovery and development use these cells to identify novel targets and biomarkers. Major signaling pathways and mutations affecting the coding sequence are also described providing important information when using these cells as a model in a variety of studies.

  17. Silicon sheet with molecular beam epitaxy for high efficiency solar cells

    Science.gov (United States)

    Allen, F. G.

    1983-01-01

    The capabilities of the new technique of Molecular Beam Epitaxy (MBE) are applied to the growth of high efficiency silicon solar cells. Because MBE can provide well controlled doping profiles of any desired arbitrary design, including doping profiles of such complexity as built-in surface fields or tandem junction cells, it would appear to be the ideal method for development of high efficiency solar cells. It was proposed that UCLA grow and characterize silicon films and p-n junctions of MBE to determine whether the high crystal quality needed for solar cells could be achieved.

  18. Spatiotemporal control of cell-cell reversible interactions using molecular engineering

    Science.gov (United States)

    Shi, Peng; Ju, Enguo; Yan, Zhengqing; Gao, Nan; Wang, Jiasi; Hou, Jianwen; Zhang, Yan; Ren, Jinsong; Qu, Xiaogang

    2016-10-01

    Manipulation of cell-cell interactions has potential applications in basic research and cell-based therapy. Herein, using a combination of metabolic glycan labelling and bio-orthogonal click reaction, we engineer cell membranes with β-cyclodextrin and subsequently manipulate cell behaviours via photo-responsive host-guest recognition. With this methodology, we demonstrate reversible manipulation of cell assembly and disassembly. The method enables light-controllable reversible assembly of cell-cell adhesion, in contrast with previously reported irreversible effects, in which altered structure could not be reused. We also illustrate the utility of the method by designing a cell-based therapy. Peripheral blood mononuclear cells modified with aptamer are effectively redirected towards target cells, resulting in enhanced cell apoptosis. Our approach allows precise control of reversible cell-cell interactions and we expect that it will promote further developments of cell-based therapy.

  19. Common molecular pathways involved in human CD133+/CD34+ progenitor cell expansion and cancer

    Directory of Open Access Journals (Sweden)

    Vêncio Ricardo Z

    2007-06-01

    Full Text Available Abstract Background Uncovering the molecular mechanism underlying expansion of hematopoietic stem and progenitor cells is critical to extend current therapeutic applications and to understand how its deregulation relates to leukemia. The characterization of genes commonly relevant to stem/progenitor cell expansion and tumor development should facilitate the identification of novel therapeutic targets in cancer. Methods CD34+/CD133+ progenitor cells were purified from human umbilical cord blood and expanded in vitro. Correlated molecular changes were analyzed by gene expression profiling using microarrays covering up to 55,000 transcripts. Genes regulated during progenitor cell expansion were identified and functionally classified. Aberrant expression of such genes in cancer was indicated by in silico SAGE. Differential expression of selected genes was assessed by real-time PCR in hematopoietic cells from chronic myeloid leukemia patients and healthy individuals. Results Several genes and signaling pathways not previously associated with ex vivo expansion of CD133+/CD34+ cells were identified, most of which associated with cancer. Regulation of MEK/ERK and Hedgehog signaling genes in addition to numerous proto-oncogenes was detected during conditions of enhanced progenitor cell expansion. Quantitative real-time PCR analysis confirmed down-regulation of several newly described cancer-associated genes in CD133+/CD34+ cells, including DOCK4 and SPARCL1 tumor suppressors, and parallel results were verified when comparing their expression in cells from chronic myeloid leukemia patients Conclusion Our findings reveal potential molecular targets for oncogenic transformation in CD133+/CD34+ cells and strengthen the link between deregulation of stem/progenitor cell expansion and the malignant process.

  20. Pancreatic acinar cells: molecular insight from studies of signal-transduction using transgenic animals.

    Science.gov (United States)

    Yule, David I

    2010-11-01

    Pancreatic acinar cells are classical exocrine gland cells. The apical regions of clusters of coupled acinar cells collectively form a lumen which constitutes the blind end of a tube created by ductal cells - a structure reminiscent of a "bunch of grapes". When activated by neural or hormonal secretagogues, pancreatic acinar cells are stimulated to secrete a variety of proteins. These proteins are predominately inactive digestive enzyme precursors called "zymogens". Acinar cell secretion is absolutely dependent on secretagogue-induced increases in intracellular free Ca(2+). The increase in [Ca(2+)](i) has precise temporal and spatial characteristics as a result of the exquisite regulation of the proteins responsible for Ca(2+) release, Ca(2+) influx and Ca(2+) clearance in the acinar cell. This brief review discusses recent studies in which transgenic animal models have been utilized to define in molecular detail the components of the Ca(2+) signaling machinery which contribute to these characteristics.

  1. Pathogen-Associated Molecular Patterns Induced Crosstalk between Dendritic Cells, T Helper Cells, and Natural Killer Helper Cells Can Improve Dendritic Cell Vaccination.

    Science.gov (United States)

    Oth, Tammy; Vanderlocht, Joris; Van Elssen, Catharina H M J; Bos, Gerard M J; Germeraad, Wilfred T V

    2016-01-01

    A coordinated cellular interplay is of crucial importance in both host defense against pathogens and malignantly transformed cells. The various interactions of Dendritic Cells (DC), Natural Killer (NK) cells, and T helper (Th) cells can be influenced by a variety of pathogen-associated molecular patterns (PAMPs) and will lead to enhanced CD8(+) effector T cell responses. Specific Pattern Recognition Receptor (PRR) triggering during maturation enables DC to enhance Th1 as well as NK helper cell responses. This effect is correlated with the amount of IL-12p70 released by DC. Activated NK cells are able to amplify the proinflammatory cytokine profile of DC via the release of IFN-γ. The knowledge on how PAMP recognition can modulate the DC is of importance for the design and definition of appropriate therapeutic cancer vaccines. In this review we will discuss the potential role of specific PAMP-matured DC in optimizing therapeutic DC-based vaccines, as some of these DC are efficiently activating Th1, NK cells, and cytotoxic T cells. Moreover, to optimize these vaccines, also the inhibitory effects of tumor-derived suppressive factors, for example, on the NK-DC crosstalk, should be taken into account. Finally, the suppressive role of the tumor microenvironment in vaccination efficacy and some proposals to overcome this by using combination therapies will be described.

  2. Molecular profiling for predicting tumor prognosis, treatment outcome and progression of squamous cell carcinoma

    OpenAIRE

    2009-01-01

    Squamous cell carcinoma is the most common histological tumor type in the cervix uteri and oral tongue. Although both cancers are diagnosed at an early stage in the majority of cases, cervical cancer has a better prognosis despite similarities in treatment. The aim of this thesis is to increase our knowledge of tumor progression in squamous cell carcinoma at the molecular level, and to use this knowledge to explore the clinical implications of this knowledge in the develop...

  3. MOLECULAR BIOLOGICAL CHARACTERISTICS OF ALK-POSITIVE ANAPLASTIC LARGE CELL LYMPHOMA

    Directory of Open Access Journals (Sweden)

    E. V. Chernyshova

    2016-01-01

    Full Text Available ALK-positive anaplastic large cell lymphoma is a heterogeneous group of mature T-cell non-Hodgkin lymphoma, and is characterized by CD30/Ki-1 expression. Recently, value of various prognostic factors is investigated. These include clinical, histological and molecular genetic changes associated with different signaling pathways activation. Some features of the mechanism of action of anaplastic lymphoma kinases and targeted therapies possibilities addressed in this review.

  4. Molecular Imaging of Stem Cells: Tracking Survival, Biodistribution, Tumorigenicity, and Immunogenicity

    Directory of Open Access Journals (Sweden)

    Eugene Gu, Wen-Yi Chen, Jay Gu, Paul Burridge, Joseph C. Wu

    2012-01-01

    Full Text Available Being able to self-renew and differentiate into virtually all cell types, both human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs have exciting therapeutic implications for myocardial infarction, neurodegenerative disease, diabetes, and other disorders involving irreversible cell loss. However, stem cell biology remains incompletely understood despite significant advances in the field. Inefficient stem cell differentiation, difficulty in verifying successful delivery to the target organ, and problems with engraftment all hamper the transition from laboratory animal studies to human clinical trials. Although traditional histopathological techniques have been the primary approach for ex vivo analysis of stem cell behavior, these postmortem examinations are unable to further elucidate the underlying mechanisms in real time and in vivo. Fortunately, the advent of molecular imaging has led to unprecedented progress in understanding the fundamental behavior of stem cells, including their survival, biodistribution, immunogenicity, and tumorigenicity in the targeted tissues of interest. This review summarizes various molecular imaging technologies and how they have advanced the current understanding of stem cell survival, biodistribution, immunogenicity, and tumorigenicity.

  5. Androgen receptor- and PIAS1-regulated gene programs in molecular apocrine breast cancer cells.

    Science.gov (United States)

    Malinen, Marjo; Toropainen, Sari; Jääskeläinen, Tiina; Sahu, Biswajyoti; Jänne, Olli A; Palvimo, Jorma J

    2015-10-15

    We have analyzed androgen receptor (AR) chromatin binding sites (ARBs) and androgen-regulated transcriptome in estrogen receptor negative molecular apocrine breast cancer cells. These analyses revealed that 42% of ARBs and 39% androgen-regulated transcripts in MDA-MB453 cells have counterparts in VCaP prostate cancer cells. Pathway analyses showed a similar enrichment of molecular and cellular functions among AR targets in both breast and prostate cancer cells, with cellular growth and proliferation being among the most enriched functions. Silencing of the coregulator SUMO ligase PIAS1 in MDA-MB453 cells influenced AR function in a target-selective fashion. An anti-apoptotic effect of the silencing suggests involvement of the PIAS1 in the regulation of cell death and survival pathways. In sum, apocrine breast cancer and prostate cancer cells share a core AR cistrome and target gene signature linked to cancer cell growth, and PIAS1 plays a similar coregulatory role for AR in both cancer cell types.

  6. Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells.

    Science.gov (United States)

    La Manno, Gioele; Gyllborg, Daniel; Codeluppi, Simone; Nishimura, Kaneyasu; Salto, Carmen; Zeisel, Amit; Borm, Lars E; Stott, Simon R W; Toledo, Enrique M; Villaescusa, J Carlos; Lönnerberg, Peter; Ryge, Jesper; Barker, Roger A; Arenas, Ernest; Linnarsson, Sten

    2016-10-06

    Understanding human embryonic ventral midbrain is of major interest for Parkinson's disease. However, the cell types, their gene expression dynamics, and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly defined human cell types, including five subtypes of radial glia-like cells and four progenitors. In the mouse, two mature fetal dopaminergic neuron subtypes diversified into five adult classes during postnatal development. Cell types and gene expression were generally conserved across species, but with clear differences in cell proliferation, developmental timing, and dopaminergic neuron development. Additionally, we developed a method to quantitatively assess the fidelity of dopaminergic neurons derived from human pluripotent stem cells, at a single-cell level. Thus, our study provides insight into the molecular programs controlling human midbrain development and provides a foundation for the development of cell replacement therapies.

  7. Single-cell technologies in molecular marine studies

    KAUST Repository

    Kodzius, Rimantas

    2015-01-24

    Middle Eastern countries are experiencing a renaissance, with heavy investment in both in infrastructure and science. King Abdullah University of Science and Technology (KAUST) is a new and modern university in Saudi Arabia. At the Computational Bioscience Research Center (CBRC) we are working on exploring the Red Sea and beyond, collaborating with Japanese and other research centers. We are using the environment to collect and analyze the microorganisms present. The platform being established at CBRC allows to process samples in a pipeline. The pipeline components consist of sample collection, processing and sequencing, following the in silico analysis, determining the gene functions, identifying the organisms. The genomes of microorganisms of interest are targeted modified by genome editing technology such as CRISPR and desired properties are selected by single cell instrumentation. The final output is to identify valuable microorganisms with production of bio-energy, nutrients, the food and fine chemicals.

  8. An overview of molecular acceptors for organic solar cells

    Directory of Open Access Journals (Sweden)

    Hudhomme Piétrick

    2013-07-01

    Full Text Available Organic solar cells (OSCs have gained serious attention during the last decade and are now considered as one of the future photovoltaic technologies for low-cost power production. The first dream of attaining 10% of power coefficient efficiency has now become a reality thanks to the development of new materials and an impressive work achieved to understand, control and optimize structure and morphology of the device. But most of the effort devoted to the development of new materials concerned the optimization of the donor material, with less attention for acceptors which to date remain dominated by fullerenes and their derivatives. This short review presents the progress in the use of non-fullerene small molecules and fullerene-based acceptors with the aim of evaluating the challenge for the next generation of acceptors in organic photovoltaics.

  9. Cell and molecular biology of DNA methyltransferase 1.

    Science.gov (United States)

    Mohan, K Naga; Chaillet, J Richard

    2013-01-01

    The DNA cytosine methyltransferase 1 (DNMT1) is a ubiquitous nuclear enzyme that catalyzes the well-established reaction of placing methyl groups on the unmethylated cytosines in methyl-CpG:CpG base pairs in the hemimethylated DNA formed by methylated parent and unmethylated daughter strands. This activity regenerates fully methylated methyl-CpG:methyl-CpG pairs. Despite the straightforward nature of its catalytic activity, detailed biochemical, genetic, and developmental studies revealed intricate details of the central regulatory role of DNMT1 in governing the epigenetic makeup of the nuclear genome. DNMT1 mediates demethylation and also participates in seemingly wide cellular functions unrelated to maintenance DNA methylation. This review brings together mechanistic details of maintenance methylation by DNMT1, its regulation at transcriptional and posttranscriptional levels, and the seemingly unexpected functions of DNMT1 in the context of DNA methylation which is central to epigenetic changes that occur during development and the process of cell differentiation.

  10. Molecular and cellular features of murine craniofacial and trunk neural crest cells as stem cell-like cells.

    Science.gov (United States)

    Hagiwara, Kunie; Obayashi, Takeshi; Sakayori, Nobuyuki; Yamanishi, Emiko; Hayashi, Ryuhei; Osumi, Noriko; Nakazawa, Toru; Nishida, Kohji

    2014-01-01

    The outstanding differentiation capacities and easier access from adult tissues, cells derived from neural crest cells (NCCs) have fascinated scientists in developmental biology and regenerative medicine. Differentiation potentials of NCCs are known to depend on their originating regions. Here, we report differential molecular features between craniofacial (cNCCs) and trunk (tNCCs) NCCs by analyzing transcription profiles and sphere forming assays of NCCs from P0-Cre/floxed-EGFP mouse embryos. We identified up-regulation of genes linked to carcinogenesis in cNCCs that were not previously reported to be related to NCCs, which was considered to be, an interesting feature in regard with carcinogenic potentials of NCCs such as melanoma and neuroblastoma. Wnt signal related genes were statistically up-regulated in cNCCs, also suggesting potential involvement of cNCCs in carcinogenesis. We also noticed intense expression of mesenchymal and neuronal markers in cNCCs and tNCCs, respectively. Consistent results were obtained from in vitro sphere-forming and differentiation assays. These results were in accordance with previous notion about differential potentials of cNCCs and tNCCs. We thus propose that sorting NCCs from P0-Cre/floxed-EGFP mice might be useful for the basic and translational research of NCCs. Furthermore, these newly-identified genes up-regulated in cNCC would provide helpful information on NC-originating tumors, developmental disorders in NCC derivatives, and potential applications of NCCs in regenerative medicine.

  11. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Frost, Jarvist M.; Butler, Keith T.; Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2014-08-01

    We report a model describing the molecular orientation disorder in CH{sub 3}NH{sub 3}PbI{sub 3}, solving a classical Hamiltonian parametrised with electronic structure calculations, with the nature of the motions informed by ab initio molecular dynamics. We investigate the temperature and static electric field dependence of the equilibrium ferroelectric (molecular) domain structure and resulting polarisability. A rich domain structure of twinned molecular dipoles is observed, strongly varying as a function of temperature and applied electric field. We propose that the internal electrical fields associated with microscopic polarisation domains contribute to hysteretic anomalies in the current-voltage response of hybrid organic-inorganic perovskite solar cells due to variations in electron-hole recombination in the bulk.

  12. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Jarvist M. Frost

    2014-08-01

    Full Text Available We report a model describing the molecular orientation disorder in CH3NH3PbI3, solving a classical Hamiltonian parametrised with electronic structure calculations, with the nature of the motions informed by ab initio molecular dynamics. We investigate the temperature and static electric field dependence of the equilibrium ferroelectric (molecular domain structure and resulting polarisability. A rich domain structure of twinned molecular dipoles is observed, strongly varying as a function of temperature and applied electric field. We propose that the internal electrical fields associated with microscopic polarisation domains contribute to hysteretic anomalies in the current-voltage response of hybrid organic-inorganic perovskite solar cells due to variations in electron-hole recombination in the bulk.

  13. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells

    Science.gov (United States)

    Frost, Jarvist M.; Butler, Keith T.; Walsh, Aron

    2014-08-01

    We report a model describing the molecular orientation disorder in CH3NH3PbI3, solving a classical Hamiltonian parametrised with electronic structure calculations, with the nature of the motions informed by ab initio molecular dynamics. We investigate the temperature and static electric field dependence of the equilibrium ferroelectric (molecular) domain structure and resulting polarisability. A rich domain structure of twinned molecular dipoles is observed, strongly varying as a function of temperature and applied electric field. We propose that the internal electrical fields associated with microscopic polarisation domains contribute to hysteretic anomalies in the current-voltage response of hybrid organic-inorganic perovskite solar cells due to variations in electron-hole recombination in the bulk.

  14. Molecular Determinants of the Response of Tumor Cells to Boswellic Acids

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2011-08-01

    Full Text Available Frankincense (Boswellia serrata, B. carterii is used as traditional remedy to treat inflammatory diseases. The molecular effects of the active ingredients, the boswellic acids, on the immune system have previously been studied and verified in several clinical studies. Boswellic acids also inhibit cancer cell growth in vitro and in vivo. The molecular basis of the cytotoxicity of boswellic acids is, however, not fully understood as yet. By mRNA-based microarray, COMPARE, and hierarchical cluster analyses, we identified a panel of genes from diverse functional groups, which were significantly associated with sensitivity or resistance of a- or b-boswellic acids, such as transcription factors, signal transducers, growth regulating genes, genes involved in RNA and protein metabolism and others. This indicates that boswellic acids exert profound cytotoxicity on cancer cells by a multiplicity of molecular mechanisms.

  15. Molecular Determinants of the Response of Tumor Cells to Boswellic Acids

    Science.gov (United States)

    Eichhorn, Tolga; Greten, Henry Johannes; Efferth, Thomas

    2011-01-01

    Frankincense (Boswellia serrata, B. carterii) is used as traditional remedy to treat inflammatory diseases. The molecular effects of the active ingredients, the boswellic acids, on the immune system have previously been studied and verified in several clinical studies. Boswellic acids also inhibit cancer cell growth in vitro and in vivo. The molecular basis of the cytotoxicity of boswellic acids is, however, not fully understood as yet. By mRNA-based microarray, COMPARE, and hierarchical cluster analyses, we identified a panel of genes from diverse functional groups, which were significantly associated with sensitivity or resistance of α- or β-boswellic acids, such as transcription factors, signal transducers, growth regulating genes, genes involved in RNA and protein metabolism and others. This indicates that boswellic acids exert profound cytotoxicity on cancer cells by a multiplicity of molecular mechanisms.

  16. A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer

    Directory of Open Access Journals (Sweden)

    Kandalaft Lana E

    2012-08-01

    Full Text Available Abstract Purpose In spite of increased rates of complete response to initial chemotherapy, most patients with advanced ovarian cancer relapse and succumb to progressive disease. Rationale Genetically reprogrammed, patient-derived chimeric antigen receptor (CAR-T lymphocytes with the ability to recognize predefined surface antigens with high specificity in a non-MHC restricted manner have shown increasing anti-tumor efficacy in preclinical and clinical studies. Folate receptor-α (FRα is an ovarian cancer-specific tumor target; however, it is expressed at low levels in certain organs with risk for toxicity. Design Here we propose a phase I study testing the feasibility, safety and preliminary activity of FRα-redirected CAR-T cells bearing the CD137 (4-1BB costimulatory domain, administered after lymphodepletion for the treatment of recurrent ovarian cancer. A novel trial design is proposed that maximizes safety features. Innovation This design involves an initial accelerated dose escalation phase of FR-α CAR-T cells followed by a standard 3 + 3 escalation phase. A split-dose approach is proposed to mitigate acute adverse events. Furthermore, infusion of bulk untransduced autologous peripheral blood lymphocytes (PBL is proposed two days after CAR-T cell infusion at the lower dose levels of CAR-T cells, to suppress excessive expansion of CAR-T cells in vivo and mitigate toxicity.

  17. Molecular Dynamics Study on the Biophysical Interactions of Seven Green Tea Catechins with Cell Membranes

    Science.gov (United States)

    Molecular dynamics simulations were performed to study the interactions of bioactive catechins (flavonoids) commonly found in green tea with lipid bilayers, as model for cell membranes. Previously, a number of experimental studies rationalized catechin’s anticarcinogenic, antibacterial, and other be...

  18. Visualizing the molecular sociology at the HeLa cell nuclear periphery

    NARCIS (Netherlands)

    Mahamid, Julia; Pfeffer, Stefan; Schaffer, Miroslava; Villa, Elizabeth; Danev, Radostin; Cuellar, Luis Kuhn; Förster, Friedrich; Hyman, Anthony A; Plitzko, Jürgen M; Baumeister, Wolfgang

    2016-01-01

    The molecular organization of eukaryotic nuclear volumes remains largely unexplored. Here we combined recent developments in cryo-electron tomography (cryo-ET) to produce three-dimensional snapshots of the HeLa cell nuclear periphery. Subtomogram averaging and classification of ribosomes revealed th

  19. Molecular and genetics approaches for investigation of phospholipase D role in plant cells

    Directory of Open Access Journals (Sweden)

    Volotovsky I. D.

    2010-04-01

    Full Text Available The review is devoted to the analysis of publications ñoncerning the role of phospholipase D (PLD in regulation of metabolism in plant cells. Analysis of molecular and genetic studies suggest that PLD is an important component of various hormonal and stress signaling pathways

  20. Simple system - substantial share : The use of Dictyosrelium in cell biology and molecular medicine

    NARCIS (Netherlands)

    Mueller-Taubenberger, Annette; Kortholt, Arjan; Eichinger, Ludwig

    2013-01-01

    Dictyostelium discoideum offers unique advantages for studying fundamental cellular processes, host-pathogen interactions as well as the molecular causes of human diseases. The organism can be easily grown in large amounts and is amenable to diverse biochemical, cell biological and genetic approache

  1. MOLECULAR CHARACTERIZATION OF A RECURRING COMPLEX CHROMOSOMAL TRANSLOCATION IN 2 HUMAN EXTRAGONADAL GERM-CELL TUMORS

    NARCIS (Netherlands)

    SINKE, RJ; WEGHUIS, DO; SUIJKERBUIJK, RF; TANIGAMI, A; NAKAMURA, Y; LARSSON, C; WEBER, G; DEJONG, B; OOSTERHUIS, JW; MOLENAAR, WM; VANKESSEL, AG

    1994-01-01

    The molecular characterization of a recurring complex chromosomal translocation involving 6p21, 6p22, 6p23, and 11q13 in two independent bur similar extragonadal human germ cell rumors was initiated using fluorescence in situ hybridization (FISH) and pulse field gel electrophoresis (PFGE) techniques

  2. Molecular characterization of a recurring complex chromosomal translocation in two human extragonadal germ cell tumors.

    NARCIS (Netherlands)

    Sinke, R J; Weghuis, D O; Suijkerbuijk, R F; Tanigami, A; Nakamura, Y; Larsson, C; Weber, G; Jong, B de; Oosterhuis, J W; Molenaar, W M

    1994-01-01

    The molecular characterization of a recurring complex chromosomal translocation involving 6p21, 6p22, 6q23, and 11q13 in two independent but similar extragonadal human germ cell tumors was initiated using fluorescence in situ hybridization (FISH) and pulse field gel electrophoresis (PFGE) techniques

  3. Biomolecular Imaging Mass Spectrometry : mapping molecular distributions in cells and tissue sections

    NARCIS (Netherlands)

    Altelaar, A.F.M.

    2007-01-01

    Imaging mass spectrometry (IMS) allows the investigation of both identity and localization of the molecular content directly from tissue sections, single cells and many other surfaces. To further develop the application of IMS, different approaches to IMS will be described in this thesis and the spe

  4. Molecular beacon nanosensors for live cell detection and tracking differentiation and reprogramming

    DEFF Research Database (Denmark)

    Ilieva, Mirolyuba

    2013-01-01

    cell level is molecular beacons (MBs). They are stem-loop structured antisense oligonucleotide probes labelled with a reporter fluorophore at one end and with quencher at the other end. Upon hybridization with complementary target, hydrogen bonds between stem nucleotide bases brake, resulting...

  5. Molecular machines in living cells. Seibutsu no bunshi kikai to sono system

    Energy Technology Data Exchange (ETDEWEB)

    Osawa, F. (Aichi Inst. of Tech., Nagoya (Japan))

    1992-12-20

    At first, flagellar motors of bacteria are reviewed as a typical example of molecular machines in living cells. A rotational motor is embedded in the cell membrane at the root of the flagellum. The driving power of the rotation is the flow of hydrogen ion from the inside to the outside of the cell. In a normal state of a bacterium, potential difference of about 0.2 V is produced by the ion pump existing in the cell membrane. A molecular motor of sliding motion of muscle attracts the attention on the relation of the input and output of the molecular motor. The mechanism of the smooth motion without fluctuation in the fluctuated environment and the fluctuated input is unknown. Next, the motion of Paramecium is discussed as an example of a system composed of a number of molecular machines. Paramecium moves to a place of a suitable temperature when placed in a water tank with temperature gradient, however, it does not stop the motion at the place of the suitable temperature and increases a probability to change the direction when leaving, that is it takes a method of indirect probabilistic control. 12 refs., 8 figs.

  6. Molecular Markers of Tubulointerstitial Fibrosis and Tubular Cell Damage in Patients with Chronic Kidney Disease.

    Directory of Open Access Journals (Sweden)

    Shunsaku Nakagawa

    Full Text Available In chronic kidney disease (CKD, progressive nephron loss causes glomerular sclerosis, as well as tubulointerstitial fibrosis and progressive tubular injury. In this study, we aimed to identify molecular changes that reflected the histopathological progression of renal tubulointerstitial fibrosis and tubular cell damage. A discovery set of renal biopsies were obtained from 48 patients with histopathologically confirmed CKD, and gene expression profiles were determined by microarray analysis. The results indicated that hepatitis A virus cellular receptor 1 (also known as Kidney Injury Molecule-1, KIM-1, lipocalin 2 (also known as neutrophil gelatinase-associated lipocalin, NGAL, SRY-box 9, WAP four-disulfide core domain 2, and NK6 homeobox 2 were differentially expressed in CKD. Their expression levels correlated with the extent of tubulointerstitial fibrosis and tubular cell injury, determined by histopathological examination. The expression of these 5 genes was also increased as kidney damage progressed in a rodent unilateral ureteral obstruction model of CKD. We calculated a molecular score using the microarray gene expression profiles of the biopsy specimens. The composite area under the receiver operating characteristics curve plotted using this molecular score showed a high accuracy for diagnosing tubulointerstitial fibrosis and tubular cell damage. The robust sensitivity of this score was confirmed in a validation set of 5 individuals with CKD. These findings identified novel molecular markers with the potential to contribute to the detection of tubular cell damage and tubulointerstitial fibrosis in the kidney.

  7. Fluorescent resonance energy transfer: A tool for probing molecular cell-biomaterial interactions in three dimensions.

    Science.gov (United States)

    Huebsch, Nathaniel D; Mooney, David J

    2007-05-01

    The current paradigm in designing biomaterials is to optimize material chemical and physical parameters based on correlations between these parameters and downstream biological responses, whether in vitro or in vivo. Extensive developments in molecular design of biomaterials have facilitated identification of several biophysical and biochemical variables (e.g. adhesion peptide density, substrate elastic modulus) as being critical to cell response. However, these empirical observations do not indicate whether different parameters elicit cell responses by modulating redundant variables of the cell-material interface (e.g. number of cell-material bonds, cell-matrix mechanics). Recently, fluorescence resonance energy transfer (FRET) has been applied to quantitatively analyze parameters of the cell-material interface for both two- and three-dimensional adhesion substrates. Tools based on FRET have been utilized to quantify several parameters of the cell-material interface relevant to cell response, including molecular changes in matrix proteins induced by interactions both with surfaces and cells, the number of bonds between integrins and their adhesion ligands, and changes in the crosslink density of hydrogel synthetic extracellular matrix analogs. As such techniques allow both dynamic and 3-D analyses they will be useful to quantitatively relate downstream cellular responses (e.g. gene expression) to the composition of this interface. Such understanding will allow bioengineers to fully exploit the potential of biomaterials engineered on the molecular scale, by optimizing material chemical and physical properties to a measurable set of interfacial parameters known to elicit a predictable response in a specific cell population. This will facilitate the rational design of complex, multi-functional biomaterials used as model systems for studying diseases or for clinical applications.

  8. Effect of Interfacial Molecular Orientation on Power Conversion Efficiency of Perovskite Solar Cells.

    Science.gov (United States)

    Xiao, Minyu; Joglekar, Suneel; Zhang, Xiaoxian; Jasensky, Joshua; Ma, Jialiu; Cui, Qingyu; Guo, L Jay; Chen, Zhan

    2017-03-08

    A wide variety of charge carrier dynamics, such as transport, separation, and extraction, occur at the interfaces of planar heterojunction solar cells. Such factors can affect the overall device performance. Therefore, understanding the buried interfacial molecular structure in various devices and the correlation between interfacial structure and function has become increasingly important. Current characterization techniques for thin films such as X-ray diffraction, cross section scanning electronmicroscopy, and UV-visible absorption spectroscopy are unable to provide the needed molecular structural information at buried interfaces. In this study, by controlling the structure of the hole transport layer (HTL) in a perovskite solar cell and applying a surface/interface-sensitive nonlinear vibrational spectroscopic technique (sum frequency generation vibrational spectroscopy (SFG)), we successfully probed the molecular structure at the buried interface and correlated its structural characteristics to solar cell performance. Here, an edge-on (normal to the interface) polythiophene (PT) interfacial molecular orientation at the buried perovskite (photoactive layer)/PT (HTL) interface showed more than two times the power conversion efficiency (PCE) of a lying down (tangential) PT interfacial orientation. The difference in interfacial molecular structure was achieved by altering the alkyl side chain length of the PT derivatives, where PT with a shorter alkyl side chain showed an edge-on interfacial orientation with a higher PCE than that of PT with a longer alkyl side chain. With similar band gap alignment and bulk structure within the PT layer, it is believed that the interfacial molecular structural variation (i.e., the orientation difference) of the various PT derivatives is the underlying cause of the difference in perovskite solar cell PCE.

  9. Adopted youth and sleep difficulties

    Directory of Open Access Journals (Sweden)

    Radcliff Z

    2016-12-01

    Full Text Available Zach Radcliff, Allison Baylor, Bruce Rybarczyk Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA Abstract: Sleep is a critical component of healthy development for youth, with cascading effects on youth’s biological growth, psychological well-being, and overall functioning. Increased sleep difficulties are one of many disruptions that adopted youth may face throughout the adoption process. Sleep difficulties have been frequently cited as a major concern by adoptive parents and hypothesized in the literature as a problem that may affect multiple areas of development and functioning in adopted youth. However, there is limited research exploring this relationship. Using a biopsychosocial framework, this paper reviews the extant literature to explore the development, maintenance, and impact of sleep difficulties in adopted youth. Finally, implications for future research and clinical interventions are outlined. Keywords: adoption, sleep, youth

  10. The eukaryotic cell originated in the integration and redistribution of hyperstructures from communities of prokaryotic cells based on molecular complementarity.

    Science.gov (United States)

    Norris, Vic; Root-Bernstein, Robert

    2009-06-04

    In the "ecosystems-first" approach to the origins of life, networks of non-covalent assemblies of molecules (composomes), rather than individual protocells, evolved under the constraints of molecular complementarity. Composomes evolved into the hyperstructures of modern bacteria. We extend the ecosystems-first approach to explain the origin of eukaryotic cells through the integration of mixed populations of bacteria. We suggest that mutualism and symbiosis resulted in cellular mergers entailing the loss of redundant hyperstructures, the uncoupling of transcription and translation, and the emergence of introns and multiple chromosomes. Molecular complementarity also facilitated integration of bacterial hyperstructures to perform cytoskeletal and movement functions.

  11. Solar water splitting in a molecular photoelectrochemical cell.

    Science.gov (United States)

    Alibabaei, Leila; Brennaman, M Kyle; Norris, Michael R; Kalanyan, Berç; Song, Wenjing; Losego, Mark D; Concepcion, Javier J; Binstead, Robert A; Parsons, Gregory N; Meyer, Thomas J

    2013-12-10

    Artificial photosynthesis and the production of solar fuels could be a key element in a future renewable energy economy providing a solution to the energy storage problem in solar energy conversion. We describe a hybrid strategy for solar water splitting based on a dye sensitized photoelectrosynthesis cell. It uses a derivatized, core-shell nanostructured photoanode with the core a high surface area conductive metal oxide film--indium tin oxide or antimony tin oxide--coated with a thin outer shell of TiO2 formed by atomic layer deposition. A "chromophore-catalyst assembly" 1, [(PO3H2)2bpy)2Ru(4-Mebpy-4-bimpy)Rub(tpy)(OH2)](4+), which combines both light absorber and water oxidation catalyst in a single molecule, was attached to the TiO2 shell. Visible photolysis of the resulting core-shell assembly structure with a Pt cathode resulted in water splitting into hydrogen and oxygen with an absorbed photon conversion efficiency of 4.4% at peak photocurrent.

  12. Glucocorticoids entrain molecular clock components in human peripheral cells.

    Science.gov (United States)

    Cuesta, Marc; Cermakian, Nicolas; Boivin, Diane B

    2015-04-01

    In humans, shift work induces a desynchronization between the circadian system and the outside world, which contributes to shift work-associated medical disorders. Using a simulated night shift experiment, we previously showed that 3 d of bright light at night fully synchronize the central clock to the inverted sleep schedule, whereas the peripheral clocks located in peripheral blood mononuclear cells (PBMCs) took longer to reset. This underlines the need for testing the effects of synchronizers on both the central and peripheral clocks. Glucocorticoids display circadian rhythms controlled by the central clock and are thought to act as synchronizers of rodent peripheral clocks. In the present study, we tested whether the human central and peripheral clocks were sensitive to exogenous glucocorticoids (Cortef) administered in the late afternoon. We showed that 20 mg Cortef taken orally acutely increased PER1 expression in PBMC peripheral clocks. After 6 d of Cortef administration, the phases of central markers were not affected, whereas those of PER2-3 and BMAL1 expression in PBMCs were shifted by ∼ 9.5-11.5 h. These results demonstrate, for the first time, that human peripheral clocks are entrained by glucocorticoids. Importantly, they suggest innovative interventions for shift workers and jet-lag travelers, combining synchronizing agents for the central and peripheral clocks.

  13. Molecular imaging for assessment of mesenchymal stem cells mediated breast cancer therapy.

    Science.gov (United States)

    Leng, Liang; Wang, Yuebing; He, Ningning; Wang, Di; Zhao, Qianjie; Feng, Guowei; Su, Weijun; Xu, Yang; Han, Zhongchao; Kong, Deling; Cheng, Zhen; Xiang, Rong; Li, Zongjin

    2014-06-01

    The tumor tropism of mesenchymal stem cells (MSCs) makes them an excellent delivery vehicle used in anticancer therapy. However, the exact mechanisms of MSCs involved in tumor microenvironment are still not well defined. Molecular imaging technologies with the versatility in monitoring the therapeutic effects, as well as basic molecular and cellular processes in real time, offer tangible options to better guide MSCs mediated cancer therapy. In this study, an in situ breast cancer model was developed with MDA-MB-231 cells carrying a reporter system encoding a double fusion (DF) reporter gene consisting of firefly luciferase (Fluc) and enhanced green fluorescent protein (eGFP). In mice breast cancer model, we injected human umbilical cord-derived MSCs (hUC-MSCs) armed with a triple fusion (TF) gene containing the herpes simplex virus truncated thymidine kinase (HSV-ttk), renilla luciferase (Rluc) and red fluorescent protein (RFP) into tumor on day 13, 18, 23 after MDA-MB-231 cells injection. Bioluminescence imaging of Fluc and Rluc provided the real time monitor of tumor cells and hUC-MSCs simultaneously. We found that tumors were significantly inhibited by hUC-MSCs administration, and this effect was enhanced by ganciclovir (GCV) application. To further demonstrate the effect of hUC-MSCs on tumor cells in vivo, we employed the near infrared (NIR) imaging and the results showed that hUC-MSCs could inhibit tumor angiogenesis and increased apoptosis to a certain degree. In conclusion, hUC-MSCs can inhibit breast cancer progression by inducing tumor cell death and suppressing angiogenesis. Moreover, molecular imaging is an invaluable tool in tracking cell delivery and tumor response to hUC-MSCs therapies as well as cellular and molecular processes in tumor.

  14. Adoption and Assisted Reproduction. Adoption and Ethics, Volume 4.

    Science.gov (United States)

    Freundlich, Madelyn

    The controversies in adoption have extended across a spectrum of policy and practice issues, and although the issues have become clear, resolution has not been achieved nor has consensus developed regarding a framework on which to improve the quality of adoption policy and practice. This book is the fourth in a series to use an ethics-based…

  15. Sample preparation and in situ hybridization techniques for automated molecular cytogenetic analysis of white blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Rijke, F.M. van de; Vrolijk, H.; Sloos, W. [Leiden Univ. (Netherlands)] [and others

    1996-06-01

    With the advent in situ hybridization techniques for the analysis of chromosome copy number or structure in interphase cells, the diagnostic and prognostic potential of cytogenetics has been augmented considerably. In theory, the strategies for detection of cytogenetically aberrant cells by in situ hybridization are simple and straightforward. In practice, however, they are fallible, because false classification of hybridization spot number or patterns occurs. When a decision has to be made on molecular cytogenetic normalcy or abnormalcy of a cell sample, the problem of false classification becomes particularly prominent if the fraction of aberrant cells is relatively small. In such mosaic situations, often > 200 cells have to be evaluated to reach a statistical sound figure. The manual enumeration of in situ hybridization spots in many cells in many patient samples is tedious. Assistance in the evaluation process by automation of microscope functions and image analysis techniques is, therefore, strongly indicated. Next to research and development of microscope hardware, camera technology, and image analysis, the optimization of the specimen for the (semi)automated microscopic analysis is essential, since factors such as cell density, thickness, and overlap have dramatic influences on the speed and complexity of the analysis process. Here we describe experiments that have led to a protocol for blood cell specimen that results in microscope preparations that are well suited for automated molecular cytogenetic analysis. 13 refs., 4 figs., 1 tab.

  16. Molecular Insights into Division of Single Human Cancer Cells in On-Chip Transparent Microtubes

    Science.gov (United States)

    2016-01-01

    In vivo, mammalian cells proliferate within 3D environments consisting of numerous microcavities and channels, which contain a variety of chemical and physical cues. External environments often differ between normal and pathological states, such as the unique spatial constraints that metastasizing cancer cells experience as they circulate the vasculature through arterioles and narrow capillaries, where they can divide and acquire elongated cylindrical shapes. While metastatic tumors cause most cancer deaths, factors impacting early cancer cell proliferation inside the vasculature and those that can promote the formation of secondary tumors remain largely unknown. Prior studies investigating confined mitosis have mainly used 2D cell culture systems. Here, we mimic aspects of metastasizing tumor cells dividing inside blood capillaries by investigating single-cell divisions of living human cancer cells, trapped inside 3D rolled-up, transparent nanomembranes. We assess the molecular effects of tubular confinement on key mitotic features, using optical high- and super-resolution microscopy. Our experiments show that tubular confinement affects the morphology and dynamics of the mitotic spindle, chromosome arrangements, and the organization of the cell cortex. Moreover, we reveal that membrane blebbing and/or associated processes act as a potential genome-safety mechanism, limiting the extent of genomic instability caused by mitosis in confined circumstances, especially in tubular 3D microenvironments. Collectively, our study demonstrates the potential of rolled-up nanomembranes for gaining molecular insights into key cellular events occurring in tubular 3D microenvironments in vivo. PMID:27267364

  17. Molecular mechanisms of differentiation of murine pro-inflammatory gamma-delta T cell subsets

    Directory of Open Access Journals (Sweden)

    Bruno eSilva-Santos

    2013-12-01

    Full Text Available Gamma-delta (gd T cells are unconventional innate-like lymphocytes that actively participate in protective immunity against tumors and infectious organisms including bacteria, viruses and parasites. However, gd T cells are also involved in the development of inflammatory and autoimmune diseases. gd T cells are functionally characterized by very rapid production of pro-inflammatory cytokines, while also impacting on (slower but long-lasting adaptive immune responses. This makes it crucial to understand the molecular mechanisms that regulate  T cell effector functions. Although they share many similarities with ab T cells, our knowledge of the molecular pathways that control effector functions in gd T cells still lags significantly behind. In this review, we focus on the segregation of interferon-gamma versus interleukin-17 production in murine thymic-derived gd T cell subsets defined by CD27 and CCR6 expression levels. We summarize the most recent studies that disclose the specific epigenetic and transcriptional mechanisms that govern the stability or plasticity of discrete pro-inflammatory gd T cell subsets, whose manipulation may be valuable for regulating (autoimmune responses.

  18. Homosexuality and adoption in Brazil.

    Science.gov (United States)

    Uziel, A P

    2001-11-01

    Western societies are undergoing legal and policy changes in relation to laws governing the family, marital status, sexual orientation and the welfare of children, including in Brazil where, in the 1990s, the rights of homosexuals were incorporated into ongoing debates about what constitutes a family. This paper discusses the issue of adoption of children by homosexual men in Brazil, using information from court records from 1995-2000 in Rio de Janeiro, and from interviews with two judges, five psychologists and four social workers who evaluate those wishing to adopt. It uses the case records of one man's application to adopt, in which homosexuality became a central issue. Both the construction of masculinity in relation to parenting and concepts of the family were the parameters upon which the decision to allow him to adopt or not depended. Because the legislation does not specify what the sexual orientation of would-be adoptive parents should be, it is possible for single persons to adopt if they show they can be good parents. As more single people, alone or in couples, seek to adopt, it is important to clarify the criteria for judicial decisions on adoption applications. A dialogue is therefore needed on the meaning of family and whether and how it relates to sexual orientation. It is only on this basis that the courts can take a clear decision as to whether being homosexual is a relevant issue in regard to applications to adopt or not.

  19. Molecular mechanism of extrinsic factors affecting anti-aging of stem cells.

    Science.gov (United States)

    Wong, Tzyy Yue; Solis, Mairim Alexandra; Chen, Ying-Hui; Huang, Lynn Ling-Huei

    2015-03-26

    Scientific evidence suggests that stem cells possess the anti-aging ability to self-renew and maintain differentiation potentials, and quiescent state. The objective of this review is to discuss the micro-environment where stem cells reside in vivo, the secreted factors to which stem cells are exposed, the hypoxic environment, and intracellular factors including genome stability, mitochondria integrity, epigenetic regulators, calorie restrictions, nutrients, and vitamin D. Secreted tumor growth factor-β and fibroblast growth factor-2 are reported to play a role in stem cell quiescence. Extracellular matrices may interact with caveolin-1, the lipid raft on cell membrane to regulate quiescence. N-cadherin, the adhesive protein on niche cells provides support for stem cells. The hypoxic micro-environment turns on hypoxia-inducible factor-1 to prevent mesenchymal stem cells aging through p16 and p21 down-regulation. Mitochondria express glucosephosphate isomerase to undergo glycolysis and prevent cellular aging. Epigenetic regulators such as p300, protein inhibitors of activated Stats and H19 help maintain stem cell quiescence. In addition, calorie restriction may lead to secretion of paracrines cyclic ADP-ribose by intestinal niche cells, which help maintain intestinal stem cells. In conclusion, it is crucial to understand the anti-aging phenomena of stem cells at the molecular level so that the key to solving the aging mystery may be unlocked.

  20. The molecular mechanism of different sensitivity of breast cancer cell lines to TRAIL

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jindan; LIU Yanxin; LIU Shilian; ZHENG Dexian

    2004-01-01

    Although Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis of various cancer cells, some caner cell lines are resistant to TRAIL-induced cell death. To investigate the molecular mechanisms underlying TRAIL-resistance, two human breast cancer cell lines, MCF-7 (resistant to TRAIL) and MDA-MB-231 (sensitive to TRAIL), were used as a model system to analyze the different sensitivities to TRAIL cytotoxicity. PKCδ inhibitor rottlerin, but not MEK and ERK1/2 inhibitor U0126 nor PI3K inhibitor LY294002, was shown to enhance TRAIL-induced apoptosis in MCF-7 cells significantly, suggesting that PKCδ might play an important role in the resistance of MCF-7 cells to TRAIL. In contrast, rottlerin, U0126, and Ly294002 had no effect on MDA-MB-231 apoptosis induced by TRAIL under the same conditions. Further experiment showed that the combination of rottlerin and TRAIL cleaved PARP in the MCF-7 cells synergistically, but not in the MDA-MB-231 cells. The role of PKCδ in TRAIL-resistant MCF-7 cells was confirmed by knocking down the endogenous PKCδ expression using RNAi technology. Furthermore, caspase-3 reconstitution in MCF-7 cells was unable to alter PKCδ expression, suggesting that innate caspase-3 deficient in the cells does not cause PKCδ high expression. These data provide evidence for the first time that PKCδ plays a critical role in breast cancer cell lines to TRAIL cytotoxicity.

  1. Immunotherapy with anti-CD3 monoclonal antibodies and recombinant interleukin 2: stimulation of molecular programs of cytotoxic killer cells and induction of tumor regression.

    Science.gov (United States)

    Nakajima, F; Khanna, A; Xu, G; Lagman, M; Haschemeyer, R; Mouradian, J; Wang, J C; Stenzel, K H; Rubin, A L; Suthanthiran, M

    1994-01-01

    Adoptive cellular immunotherapy, infusions of interleukin 2 (IL-2) in conjunction with in vitro-activated killer cells, has brought new hope to patients with cancer. The broad application of this strategy, however, is constrained by the need for repeated leukapheresis and by the labor-intensive process of in vitro activation of cells. Also, current protocols generally use nonphysiological and toxic concentrations of IL-2. Identification of an in vivo stimulant that renders T cells responsive to physiologic concentrations of IL-2 represents a potential improvement over existing approaches. We have determined whether in vivo administration of monoclonal antibodies (mAbs) directed at the T-cell surface protein CD3 induces T-cell responsiveness to IL-2, stimulates cytolytic molecular programs of natural killer cells and cytotoxic T cells, and induces tumor regression. These hypotheses were explored in a murine hepatic MCA-102 fibrosarcoma model. We report that in vivo administration of anti-CD3 mAbs plus IL-2 results in intrahepatic expression of mRNA-encoding perforin, cytotoxic T-cell-specific serine esterase, and tumor necrosis factor alpha. Anti-CD3 mAbs alone or IL-2 alone failed to induce or induced minimal expression of these molecular mediators of cytotoxicity. The anti-CD3 mAbs plus IL-2 regimen also resulted in a significantly smaller number of hepatic metastases and a significantly longer survival time of tumor-bearing mice, compared to treatment with anti-CD3 mAbs alone or IL-2 alone. Our findings suggest that a regimen of anti-CD3 mAbs plus IL-2 is a more effective antitumor regimen compared with anti-CD3 mAbs alone or IL-2 alone and advance an alternative immunotherapy strategy of potential value for the treatment of cancer in humans. Images PMID:8058730

  2. Synthesis of a high molecular weight thyroglobulin dimer by two ovine thyroid cell lines: the OVNIS.

    Science.gov (United States)

    Hovsépian, S; Aouani, A; Fayet, G

    1986-05-01

    The OVNIS 6H and 5H thyroid cells, 2 permanent cell lines isolated 3 years ago from ovine tissue, synthesize a high molecular weight glycosylated protein, immunologically related to ovine thyroglobulin, which is similar to the prothyroid hormone dimer (17-19) S: thyroglobulin. Using sucrose gradient centrifugation and cell labelling with [14C]Leu or [3H]GlNH2, radioactivity was observed in proteins purified from cell layers and from cell culture media. Addition of thyrotropin to or removal from the media resulted respectively in an increase (+773%) or decrease (-1090%) of the total radioactivity detected in the (17-19)S thyroglobulin fraction. Estimation of thyroglobulin by RIA gave similar though less pronounced effects. These experiments prove (1) that thyroglobulin is still expressed in these OVNIS thyroid cell lines even after 3 years of permanent culture, (2) that TSH modulates the level of this protein through a TSH-receptor functional system.

  3. Cell and molecular biology of intervertebral disc degeneration: current understanding and implications for potential therapeutic strategies.

    Science.gov (United States)

    Wang, S Z; Rui, Y F; Lu, J; Wang, C

    2014-10-01

    Intervertebral disc degeneration (IDD) is a chronic, complex process associated with low back pain; mechanisms of its occurrence have not yet been fully elucidated. Its process is not only accompanied by morphological changes, but also by systematic changes in its histological and biochemical properties. Many cellular and molecular mechanisms have been reported to be related with IDD and to reverse degenerative trends, abnormal conditions of the living cells and altered cell phenotypes would need to be restored. Promising biological therapeutic strategies still rely on injection of active substances, gene therapy and cell transplantation. With advanced study of tissue engineering protocols based on cell therapy, combined use of seeding cells, bio-active substances and bio-compatible materials, are promising for IDD regeneration. Recently reported progenitor cells within discs themselves also hold prospects for future IDD studies. This article describes the background of IDD, current understanding and implications of potential therapeutic strategies.

  4. Cholesterol and male fertility: what about orphans and adopted?

    Science.gov (United States)

    Maqdasy, Salwan; Baptissart, Marine; Vega, Aurélie; Baron, Silvère; Lobaccaro, Jean-Marc A; Volle, David H

    2013-04-10

    The link between cholesterol homeostasis and male fertility has been clearly suggested in patients who suffer from hyperlipidemia and metabolic syndrome. This has been confirmed by the generation of several transgenic mouse models or in animals fed with high cholesterol diet. Next to the alteration of the endocrine signaling pathways through steroid receptors (androgen and estrogen receptors); "orphan" and "adopted" nuclear receptors, such as the Liver X Receptors (LXRs), the Proliferating Peroxisomal Activated Receptors (PPARs) or the Liver Receptor Homolog-1 (LRH-1), have been involved in this cross-talk. These transcription factors show distinct expression patterns in the male genital tract, explaining the large panel of phenotypes observed in transgenic male mice and highlighting the importance of lipid homesostasis and the complexity of the molecular pathways involved. Increasing our knowledge of the roles of these nuclear receptors in male germ cell differentiation could help in proposing new approaches to either treat infertile men or define new strategies for contraception.

  5. Specific survivin dual fluorescence resonance energy transfer molecular beacons for detection of human bladder cancer cells

    Institute of Scientific and Technical Information of China (English)

    Zhi-qiang WANG; Jun ZHAO; Jin ZENG; Kai-jie WU; Yu-le CHEN; Xin-ya ng WANG; Luke S CHANG; Da-lin HE

    2011-01-01

    Survivin molecular beacons can be used to detectbladder cancer cells in urine samples non-invasively.The aim of this study is to improve the specificity of detection of bladder cancer cells using survivin dual fluorescence resonance energy transfer molecular beacons (FRET MBs) that have fluorophores forming one donor-acceptor pair.Methods:Survivin-targeting dual fluorescence resonance energy transfer molecular beacons with unique target sequences were designed,which had no overlap with the other genes in the apoptosis inhibitor protein family.Human bladder cancer cell lines 5637,253J and T24,as well as the exfoliated cells in the urine of healthy adults and patients with bladder cancer were examined.Images of cells were taken using a laser scanning confocal fluorescence microscope.For assays using dual FRET MBs,the excitation wavelength was 488 nm,and the emission detection wavelengths were 520+20 nm and 560+20 nm,respectively.Results:The human bladder cancer cell lines and exfoliated cells in the urine of patients with bladder cancer incubated with the survivin dual FRET MBs exhibited strong fluorescence signals.In contrast,no fluorescence was detected in the survivin-negative human dermal fibroblasts-adult (HDF-a) cells or exfoliated cells in the urine of healthy adults incubated with the survivin dual FRET MBs.Conclusion:The results suggest that the survivin dual FRET MBs may be used as a specific and non-invasive method for early detection and follow-up of patients with bladder cancer.

  6. Stage-dependent prognostic impact of molecular signatures in clear cell renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Weber T

    2014-05-01

    Full Text Available Thomas Weber,1,2 Matthias Meinhardt,3 Stefan Zastrow,1 Andreas Wienke,4 Kati Erdmann,1 Jörg Hofmann,1 Susanne Fuessel,1 Manfred P Wirth11Department of Urology, Technische Universität Dresden, Dresden, Germany; 2Department of Oncology and Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale, Germany; 3Institute of Pathology, Technische Universität Dresden, Dresden, Germany; 4Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale, GermanyPurpose: To enhance prognostic information of protein biomarkers for clear cell renal cell carcinomas (ccRCCs, we analyzed them within prognostic groups of ccRCC harboring different tumor characteristics of this clinically and molecularly heterogeneous tumor entity.Methods: Tissue microarrays from 145 patients with primary ccRCC were immunohistochemically analyzed for VHL (von Hippel-Lindau tumor suppressor, Ki67 (marker of proliferation 1, p53 (tumor protein p53, p21 (cyclin-dependent kinase inhibitor 1A, survivin (baculoviral IAP repeat containing 5, and UEA-1 (ulex europaeus agglutinin I to assess microvessel-density.Results: When analyzing all patients, nuclear staining of Ki67 (hazard ratio [HR] 1.08, 95% confidence interval [CI] 1.04–1.12 and nuclear survivin (nS; HR 1.04, 95% CI 1.01–1.08 were significantly associated with disease-specific survival (DSS. In the cohort of patients with advanced localized or metastasized ccRCC, high staining of Ki67, p53 and nS predicted shorter DSS (Ki67: HR 1.07, 95% CI 1.02–1.11; p53: HR 1.05, 95% CI 1.01–1.09; nS: HR 1.08, 95% CI 1.02–1.14. In organ-confined ccRCC, patients with high p21-staining had a longer DSS (HR 0.96, 95% CI 0.92–0.99. In a multivariate model with stepwise backward elimination, tumor size and p21-staining showed a significant association with DSS in patients with "organ-confined" ccRCCs. The p21-staining increased the concordance index of tumor size from

  7. An integrated microfluidic platform for rapid tumor cell isolation, counting and molecular diagnosis.

    Science.gov (United States)

    Hung, Lien-Yu; Chuang, Ying-Hsin; Kuo, Hsin-Tzu; Wang, Chih-Hung; Hsu, Keng-Fu; Chou, Cheng-Yang; Lee, Gwo-Bin

    2013-04-01

    Ovarian cancer is the second most common of the gynecological cancers in Taiwan. It is challenging to diagnose at an early stage when proper treatment is the most effective. It is well recognized that the detection of tumor cells (TCs) is critical for determining cancer growth stages and may provide important information for accurate diagnosis and even prognosis. In this study, a new microfluidic platform integrated with a moving-wall micro-incubator, a micro flow cytometer and a molecular diagnosis module performed automated identification of ovarian cancer cells. By efficiently mixing the cells and immunomagnetic beads coated with specific antibodies, the target TCs were successfully isolated from the clinical samples. Then counting of the target cells was achieved by a combination of the micro flow cytometer and an optical detection module and showed a counting accuracy as high as 92.5 %. Finally, cancer-associated genes were amplified and detected by the downstream molecular diagnosis module. The fluorescence intensity of specific genes (CD24 and HE4) associated with ovarian cancer was amplified by the molecular diagnosis module and the results were comparable to traditional slab-gel electrophoresis analysis, with a limit of detection around 10 TCs. This integrated microfluidic platform realized the concept of a "lab-on-a-chip" and had advantages which included automation, disposability, lower cost and rapid diagnosis and, therefore, may provide a promising approach for the fast and accurate detection of cancer cells.

  8. The virtual cell animation collection: tools for teaching molecular and cellular biology.

    Science.gov (United States)

    Reindl, Katie M; White, Alan R; Johnson, Christina; Vender, Bradley; Slator, Brian M; McClean, Phillip

    2015-04-01

    A cell is a minifactory in which structures and molecules are assembled, rearranged, disassembled, packaged, sorted, and transported. Because cellular structures and molecules are invisible to the human eye, students often have difficulty conceptualizing the dynamic nature of cells that function at multiple scales across time and space. To represent these dynamic cellular processes, the Virtual Cell Productions team at North Dakota State University develops freely available multimedia materials to support molecular and cellular biology learning inside and outside the high school and university classroom.

  9. The Virtual Cell Animation Collection: Tools for Teaching Molecular and Cellular Biology

    Science.gov (United States)

    Reindl, Katie M.; White, Alan R.; Johnson, Christina; Vender, Bradley; Slator, Brian M.; McClean, Phillip

    2015-01-01

    A cell is a minifactory in which structures and molecules are assembled, rearranged, disassembled, packaged, sorted, and transported. Because cellular structures and molecules are invisible to the human eye, students often have difficulty conceptualizing the dynamic nature of cells that function at multiple scales across time and space. To represent these dynamic cellular processes, the Virtual Cell Productions team at North Dakota State University develops freely available multimedia materials to support molecular and cellular biology learning inside and outside the high school and university classroom. PMID:25856580

  10. Analysis of Surface Texturization of Solar Cells by Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Hsiao-Yen Chung

    2008-01-01

    Full Text Available The purpose of this paper is to develop a simple new model, based on the classic molecular dynamics simulation (MD, alternative to complex electron-photon interactions to analyze the surface texturization of solar cells. This methodology can easily propose the absorptance differences between texturing and nontexturing solar cells. To verify model feasibility, this study simulates square, pyramidal, and semicircular texturization surfaces. Simulations show that surface texturization effectively increases the absorptance of incident light for solar cells, and this paper presents optimal texturization shapes. The MD model can also be potentially used to predict the efficiency promotion in any optical reflection-absorption cases.

  11. Molecular biology of testicular germ cell tumors: unique features awaiting clinical application.

    Science.gov (United States)

    Boublikova, Ludmila; Buchler, Tomas; Stary, Jan; Abrahamova, Jitka; Trka, Jan

    2014-03-01

    Testicular germ cell tumors (TGCTs) are the most common solid tumors in young adult men characterized by distinct biologic features and clinical behavior. Both genetic predispositions and environmental factors probably play a substantial role in their etiology. TGTCs arise from a malignant transformation of primordial germ cells in a process that starts prenatally, is often associated with a certain degree of gonadal dysgenesis, and involves the acquirement of several specific aberrations, including activation of SCF-CKIT, amplification of 12p with up-regulation of stem cell genes, and subsequent genetic and epigenetic alterations. Their embryonic and germ origin determines the unique sensitivity of TGCTs to platinum-based chemotherapy. Contrary to the vast majority of other malignancies, no molecular prognostic/predictive factors nor targeted therapy is available for patients with these tumors. This review summarizes the principal molecular characteristics of TGCTs that could represent a potential basis for development of novel diagnostic and treatment approaches.

  12. Synergistic Effect and Molecular Mechanism of Homoharringtonine and Bortezomib on SKM-1 Cell Apoptosis.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    Full Text Available Myelodysplastic syndromes (MDS are clonal marrow stem-cell disorders with a high risk of progression to acute myeloid leukemia (AML. Treatment options are limited and targeted therapies are not available for MDS. In the present study, we investigated the cytotoxicity and the molecular mechanism of Homoharringtonine (HHT and Bortezomib towards high-risk MDS cell line SKM-1 in vitro and the role of miR-3151 was first evaluated in SKM-1 cells.SKM-1 cells were treated with different concentrations of HHT or Bortezomib, and cell viability was analyzed with CCK-8 assay. The influence on cell proliferation, cell cycle distribution and the percentage of apoptosis cells were analyzed by flow cytometry. Calcusyn software was used to calculate combination index (CI values. Western blot was used to analysis phosphorylation of Akt and nuclear NF-κB protein expression in SKM-1 cells. Mature miR-3151 level and p53 protein level were detected after HHT or Bortezomib treatment. The cell proliferation and p53 protein level were reassessed in SKM-1 cells infected with lentivirus to overexpress miR-3151.Simultaneous exposure to HHT and Bortezomib (10.4:1 resulted in a significant reduction of cell proliferation in SKM-1 cells (P < 0.05. Cell cycle arrest at G0/G1 and G2/M phase was observed (P < 0.05. HHT and Bortezomib synergistically induced cell apoptosis by regulating members of caspase 9, caspase 3 and Bcl-2 family (P < 0.01. The mechanisms of the synergy involved Akt and NF-κB signaling pathway inhibition, downregulation of mature miR-3151 and increment of downstream p53 protein level. Overexpression of miR-3151 promoted cell proliferation and inhibited p53 protein expression in SKM-1 (P < 0.01.HHT and Bortezomib synergistically inhibit SKM-1 cell proliferation and induce apoptosis in vitro. Inhibition of Akt and NF-κB pathway signaling contribute to molecular mechanism of HHT and Bortezomib. miR-3151 abundance is implicated in SKM-1 cell viability, cell

  13. Molecular codes for neuronal individuality and cell assembly in the brain

    Directory of Open Access Journals (Sweden)

    Takeshi eYagi

    2012-04-01

    Full Text Available The brain contains an enormous, but finite, number of neurons. The ability of this limited number of neurons to produce nearly limitless neural information over a lifetime is typically explained by combinatorial explosion; that is, by the exponential amplification of each neuron’s contribution through its incorporation into cell assemblies and neural networks. In development, each neuron expresses diverse cellular recognition molecules that permit the formation of the appropriate neural cell assemblies to elicit various brain functions. The mechanism for generating neuronal assemblies and networks must involve molecular codes that give neurons individuality and allow them to recognize one another and join appropriate networks. The extensive molecular diversity of cell-surface proteins on neurons is likely to contribute to their individual identities. The cadherin-related neuronal receptors and clustered protocadherins (CNR/Pcdh is a large subfamily within the diverse cadherin superfamily. The CNR/Pcdh genes are encoded in tandem by three gene clusters, and are present in all known vertebrate genomes. The set of CNR/Pcdh genes is expressed in a random and combinatorial manner in each neuron. In addition, cis-tetramers composed of heteromultimeric CNR/Pcdh isoforms represent selective binding units for cell-cell interactions. Here I present the mathematical probabilities for neuronal individuality based on the random and combinatorial expression of CNR/Pcdh isoforms and their formation of cis-tetramers in each neuron. Notably, CNR/Pcdh gene products are known to play crucial roles in correct axonal projections, synaptic formation, and neuronal survival. Their molecular and biological features suggest that the diverse CNR/Pcdh molecules provide the molecular code by which neuronal individuality and cell assembly permit the combinatorial explosion of networks that supports enormous processing capability and plasticity of the brain.

  14. From bench to bedside: current and future applications of molecular profiling in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yousef George M

    2009-03-01

    Full Text Available Abstract Among the adult population, renal cell carcinoma (RCC constitutes the most prevalent form of kidney neoplasm. Unfortunately, RCC is relatively asymptomatic and there are no tumor markers available for diagnostic, prognostic or predictive purposes. Molecular profiling, the global analysis of gene and protein expression profiles, is an emerging promising tool for new biomarker identification in RCC. In this review, we summarize the existing knowledge on RCC regarding clinical presentation, treatment options, and tumor marker status. We present a general overview of the more commonly used approaches for molecular profiling at the genomic, transcriptomic and proteomic levels. We also highlight the emerging role of molecular profiling as not only revolutionizing the process of new tumor marker discovery, but also for providing a better understanding of the pathogenesis of RCC that will pave the way towards new targeted therapy discovery. Furthermore, we discuss the spectrum of clinical applications of molecular profiling in RCC in the current literature. Finally, we highlight some of the potential challenging that faces the era of molecular profiling and its transition into clinical practice, and provide an insight about the future perspectives of molecular profiling in RCC.

  15. VNAR single-domain antibodies specific for BAFF inhibit B cell development by molecular mimicry.

    Science.gov (United States)

    Häsler, Julien; Flajnik, Martin F; Williams, Gareth; Walsh, Frank S; Rutkowski, J Lynn

    2016-07-01

    B cell-activating factor (BAFF) plays a dominant role in the B cell homeostasis. However, excessive BAFF promotes the development of autoreactive B-cells and several antibodies have been developed to block its activity. Bispecific antibodies with added functionality represent the next wave of biologics that may be more effective in the treatment of complex autoimmune disease. The single variable domain from the immunoglobulin new antigen receptor (VNAR) is one of the smallest antibody recognition units that could be combined with monospecific antibodies to develop bispecific agents. We isolated a panel of BAFF-binding VNARs with low nM potency from a semi-synthetic phage display library and examined their functional activity. The anti-BAFF VNARs blocked the binding of BAFF to all three of its receptors (BR3, TACI and BCMA) and the presence of the conserved DXL receptor motif found in the CDR3 regions suggests molecular mimicry as the mechanism of antagonism. One clone was formatted as an Fc fusion for functional testing and it was found to inhibit both mouse and human BAFF with equal potency ex vivo in a splenocyte proliferation assay. In mice, subchronic administration reduced the number of immature and transitional intermediates B cells and mature B cell subsets. These results indicate that VNAR single domain antibodies function as selective B-cell inhibitors and offer an alternative molecular format for targeting B-cell disorders.

  16. Plasmodium in the postgenomic era: new insights into the molecular cell biology of malaria parasites.

    Science.gov (United States)

    Garcia, Celia R S; de Azevedo, Mauro F; Wunderlich, Gerhard; Budu, Alexandre; Young, Jason A; Bannister, Lawrence

    2008-01-01

    In this review, we bring together some of the approaches toward understanding the cellular and molecular biology of Plasmodium species and their interaction with their host red blood cells. Considerable impetus has come from the development of new methods of molecular genetics and bioinformatics, and it is important to evaluate the wealth of these novel data in the context of basic cell biology. We describe how these approaches are gaining valuable insights into the parasite-host cell interaction, including (1) the multistep process of red blood cell invasion by the merozoite; (2) the mechanisms by which the intracellular parasite feeds on the red blood cell and exports parasite proteins to modify its cytoadherent properties; (3) the modulation of the cell cycle by sensing the environmental tryptophan-related molecules; (4) the mechanism used to survive in a low Ca(2+) concentration inside red blood cells; (5) the activation of signal transduction machinery and the regulation of intracellular calcium; (6) transfection technology; and (7) transcriptional regulation and genome-wide mRNA studies in Plasmodium falciparum.

  17. Large cell carcinoma of the lung: clinically oriented classification integrating immunohistochemistry and molecular biology.

    Science.gov (United States)

    Rossi, G; Mengoli, M C; Cavazza, A; Nicoli, D; Barbareschi, M; Cantaloni, C; Papotti, M; Tironi, A; Graziano, P; Paci, M; Stefani, A; Migaldi, M; Sartori, G; Pelosi, G

    2014-01-01

    This study aimed at challenging pulmonary large cell carcinoma (LLC) as tumor entity and defining different subgroups according to immunohistochemical and molecular features. Expression of markers specific for glandular (TTF-1, napsin A, cytokeratin 7), squamous cell (p40, p63, cytokeratins 5/6, desmocollin-3), and neuroendocrine (chromogranin, synaptophysin, CD56) differentiation was studied in 121 LCC across their entire histological spectrum also using direct sequencing for epidermal growth factor receptor (EGFR) and v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations and FISH analysis for ALK gene translocation. Survival was not investigated. All 47 large cell neuroendocrine carcinomas demonstrated a true neuroendocrine cell lineage, whereas all 24 basaloid and both 2 lymphoepithelioma-like carcinomas showed squamous cell markers. Eighteen out of 22 clear cell carcinomas had glandular differentiation, with KRAS mutations being present in 39 % of cases, whereas squamous cell differentiation was present in four cases. Eighteen out of 20 large cell carcinomas, not otherwise specified, had glandular differentiation upon immunohistochemistry, with an exon 21 L858R EGFR mutation in one (5 %) tumor, an exon 2 KRAS mutation in eight (40 %) tumors, and an ALK translocation in one (5 %) tumor, whereas two tumors positive for CK7 and CK5/6 and negative for all other markers were considered adenocarcinoma. All six LCC of rhabdoid type expressed TTF-1 and/or CK7, three of which also harbored KRAS mutations. When positive and negative immunohistochemical staining for these markers was combined, three subsets of LCC emerged exhibiting glandular, squamous, and neuroendocrine differentiation. Molecular alterations were restricted to tumors classified as adenocarcinoma. Stratifying LCC into specific categories using immunohistochemistry and molecular analysis may significantly impact on the choice of therapy.

  18. Faculty Adoption of Educational Technology

    Science.gov (United States)

    Moser, Franziska Zellweger

    2007-01-01

    Although faculty support has been identified as a critical factor in the success of educational-technology programs, many people involved in such efforts underestimate the complexities of integrating technology into teaching. In this article, the author proposes an adoption cycle to help tackle the complex issue of technology adoption for…

  19. Healthy Travel for International Adoptions

    Centers for Disease Control (CDC) Podcasts

    2007-10-22

    The number of international adoptions, many from developing countries, has doubled in the last 10 years. This podcast discusses ways adoptive families can protect their own health and the health of their new children.  Created: 10/22/2007 by National Center for the Prevention, Detection and Control of Infectious Diseases (NCPDCID).   Date Released: 10/24/2007.

  20. Adopting Children with Attachment Problems.

    Science.gov (United States)

    Hughes, Daniel A.

    1999-01-01

    Notes that attachment behavior in infants is a facet of normal child development, and that children with attachment problems require special attention during and after the adoption process. Presents actions needed to increase the probability that such children can be successfully adopted, detailed attachment patterns, and parenting strategies and…

  1. Intra-Firm Adoption Decisions

    NARCIS (Netherlands)

    Y.M. van Everdingen (Yvonne); B. Wierenga (Berend)

    2001-01-01

    textabstractThe subject of this paper is intra-firm adoption decisions, a relatively unexplored research area in the marketing literature. In particular, we investigate which factors influence the intra-firm adoption decisions regarding the common European currency of the treasury, purchasing and sa

  2. Theoretical Study of Copper Complexes: Molecular Structure, Properties, and Its Application to Solar Cells

    Directory of Open Access Journals (Sweden)

    Jesus Baldenebro-Lopez

    2013-01-01

    Full Text Available We present a theoretical investigation of copper complexes with potential applications as sensitizers for solar cells. The density functional theory (DFT and time-dependent DFT were utilized, using the M06 hybrid meta-GGA functional with the LANL2DZ (D95V on first row and DZVP basis sets. This level of calculation was used to find the optimized molecular structure, the absorption spectra, the molecular orbitals energies, and the chemical reactivity parameters that arise from conceptual DFT. Solvent effects have been taken into account by an implicit approach, namely, the polarizable continuum model (PCM, using the nonequilibrium version of the IEF-PCM model.

  3. Parents’ Feelings Towards Their Adoptive and Non-Adoptive Children

    Science.gov (United States)

    Glover, Marshaun B.; Mullineaux, Paula Y.; Deater-Deckard, Kirby; Petrill, Stephen A.

    2010-01-01

    In the current study, we examined parent gender differences in feelings (negativity and positivity) and perceptions of child behavioural and emotional problems in adoptive and biological parent–child dyads. In a sample of 85 families, we used a novel within-family adoption design in which one child was adopted and one child was a biological child of the couple, and tested whether the links between parent feelings and child maladjustment included effects of passive gene–environment correlation. Parents reported more negativity and less positivity as well as higher levels of externalizing behaviour for the adopted child compared to the non-adopted child, although effect sizes were small and no longer statistically significant after correcting for multiple comparisons. Fathers and mothers did not differ significantly in their reports of positive and negative feelings towards their children or in regard to child externalizing and internalizing behaviours. The correlations between parental negativity and positivity and child externalizing and internalizing were similar for fathers and mothers, and for adopted and non-adopted children. The findings suggest similar parent–child relationship processes for fathers and mothers, and that genetic transmission of behaviour from parent to child does not account for the association between parental warmth and hostility and child-adjustment problems. PMID:21088705

  4. Sec62 bridges the gap from 3q amplification to molecular cell biology in non-small cell lung cancer.

    Science.gov (United States)

    Linxweiler, Maximilian; Linxweiler, Johannes; Barth, Monika; Benedix, Julia; Jung, Volker; Kim, Yoo-Jin; Bohle, Rainer M; Zimmermann, Richard; Greiner, Markus

    2012-02-01

    The molecular carcinogenesis of lung cancer has yet to be clearly elucidated. We investigated the possible oncogenic function of SEC62 in lung cancer, which was predicted based on our previous findings that lung and thyroid cancer tissue samples exhibited increased Sec62 protein levels. The SEC62 gene locus is at 3q26.2, and 3q amplification is reportedly the most common genomic alteration in non-small cell lung cancer. We analyzed SEC62 mRNA and protein levels in tissue samples from lung cancer patients by real-time quantitative PCR, Western blot, and IHC and found significantly increased SEC62 mRNA and protein levels in tumors compared with tumor-free tissue samples from the same patients. Correlation analyses revealed significantly higher Sec62 levels in tumors with lymph node metastases compared with nonmetastatic tumors, as well as in poorly compared with moderately differentiated tumors. On the basis of these promising results, we examined the role of Sec62 in cancer cell biology in vitro. Cell migration assays with lung and thyroid cancer cells showed distinct stimulation of migration in SEC62-overexpressing cells and inhibition of migration in Sec62-depleted cells. Moreover, we found that SEC62 silencing sensitized the cells to thapsigargin-induced endoplasmic reticulum stress. Thus, our results indicate that SEC62 represents a potential candidate oncogene in the amplified 3q region in cases of non-small cell lung cancer and harbors various functions in cancer cell biology.

  5. Donor/Acceptor Molecular Orientation-Dependent Photovoltaic Performance in All-Polymer Solar Cells.

    Science.gov (United States)

    Zhou, Ke; Zhang, Rui; Liu, Jiangang; Li, Mingguang; Yu, Xinhong; Xing, Rubo; Han, Yanchun

    2015-11-18

    The correlated donor/acceptor (D/A) molecular orientation plays a crucial role in solution-processed all-polymer solar cells in term of photovoltaic performance. For the conjugated polymers PTB7-th and P(NDI2OD-T2), the preferential molecular orientation of neat PTB7-th films kept face-on regardless of the properties of processing solvents. However, an increasing content of face-on molecular orientation in the neat P(NDI2OD-T2) films could be found by changing processing solvents from chloronaphthalene (CN) and o-dichlorobenzene (oDCB) to chlorobenzene (CB). Besides, the neat P(NDI2OD-T2) films also exhibited a transformation of preferential molecular orientation from face-on to edge-on when extending film drying time by casting in the same solution. Consequently, a distribution diagram of molecular orientation for P(NDI2OD-T2) films was depicted and the same trend could be observed for the PTB7-th/P(NDI2OD-T2) blend films. By manufacture of photovoltaic devices with blend films, the relationship between the correlated D/A molecular orientation and device performance was established. The short-circuit current (Jsc) of devices processed by CN, oDCB, and CB enhanced gradually from 1.24 to 8.86 mA/cm(2) with the correlated D/A molecular orientation changing from face-on/edge-on to face-on/face-on, which could be attributed to facile exciton dissociation at D/A interface with the same molecular orientation. Therefore, the power conversion efficiency (PCE) of devices processed by CN, oDCB, and CB improved from 0.53% to 3.52% ultimately.

  6. Mesenchymal Stem Cells Support Survival and Proliferation of Primary Human Acute Myeloid Leukemia Cells through Heterogeneous Molecular Mechanisms

    Science.gov (United States)

    Brenner, Annette K.; Nepstad, Ina; Bruserud, Øystein

    2017-01-01

    Acute myeloid leukemia (AML) is a bone marrow malignancy, and various bone marrow stromal cells seem to support leukemogenesis, including osteoblasts and endothelial cells. We have investigated how normal bone marrow mesenchymal stem cells (MSCs) support the in vitro proliferation of primary human AML cells. Both MSCs and primary AML cells show constitutive release of several soluble mediators, and the mediator repertoires of the two cell types are partly overlapping. The two cell populations were cocultured on transwell plates, and MSC effects on AML cells mediated through the local cytokine/soluble mediator network could thus be evaluated. The presence of normal MSCs had an antiapoptotic and growth-enhancing effect on primary human AML cells when investigating a group of 51 unselected AML patients; this was associated with increased phosphorylation of mTOR and its downstream targets, and the effect was independent of cytogenetic or molecular-genetic abnormalities. The MSCs also supported the long-term proliferation of the AML cells. A subset of the patients also showed an altered cytokine network with supra-additive levels for several cytokines. The presence of cytokine-neutralizing antibodies or receptor inhibitors demonstrated that AML cells derived from different patients were heterogeneous with regard to effects of various cytokines on AML cell proliferation or regulation of apoptosis. We conclude that even though the effects of single cytokines derived from bone marrow MSCs on human AML cells differ among patients, the final cytokine-mediated effects of the MSCs during coculture is growth enhancement and inhibition of apoptosis.

  7. Células madre: generalidades, eventos biológicos y moleculares Stem cells: general aspects, biological and molecular events

    Directory of Open Access Journals (Sweden)

    Mónica María Cortés Márquez

    2008-09-01

    Full Text Available Las autorrenovación y la diferenciación son características de las células madre que varían entre los diferentes tipos celulares según el tejido en el que se encuentren y el microambiente que las rodee. En ambos procesos intervienen inhibidores del ciclo celular, genes implicados en rearreglos cromosómicos, proteínas del desarrollo esencial y vías de señalización específicas. La autorrenovación está regulada por diversos mecanismos, entre los cuales se destacan las vías Wnt, Notch y Hedgehog, y los factores BMI-1, p16Ink4a, ARF, NANOG, OCT3/4, SOX2, HOXB4 y sus páralogos. Los adelantos en el conocimiento de la biología de las células madre y de los mecanismos moleculares que regulan la autorrenovación y la diferenciación han convertido a estas células en una importante promesa para la investigación básica y aplicada. Self-renewal capacity and differentiation are features of stem cells that vary among the different cellular types according to the tissue in which they reside and the surrounding microenvironment. Cellular cycle inhibitors, genes implied in chromosomal rearrangements, essential development proteins and specific signaling pathways intervene in these processes. Self-renewal is regulated by different mechanisms, the most important of which are the Wnt, Notch and Hedgehog pathways, and the factors BMI-1, p16Ink4a, ARF, NANOG, OCT3/4, SOX2, HOXB4 and their paralogs. Advances in the knowledge of stem cells biology and of the molecular mechanisms that influence their selfrenewal and differentiation have made these cells an important promise for both basic and appliedresearch.

  8. The Eukaryotic Cell Originated in the Integration and Redistribution of Hyperstructures from Communities of Prokaryotic Cells Based on Molecular Complementarity

    OpenAIRE

    Vic Norris; Robert Root-Bernstein

    2009-01-01

    In the “ecosystems-first” approach to the origins of life, networks of non-covalent assemblies of molecules (composomes), rather than individual protocells, evolved under the constraints of molecular complementarity. Composomes evolved into the hyperstructures of modern bacteria. We extend the ecosystems-first approach to explain the origin of eukaryotic cells through the integration of mixed populations of bacteria. We suggest that mutualism and symbiosis resulted in cellular mergers entaili...

  9. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid

    Directory of Open Access Journals (Sweden)

    Sergio eGiannattasio

    2013-02-01

    Full Text Available Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications.

  10. Reverse engineering the mechanical and molecular pathways in stem cell morphogenesis.

    Science.gov (United States)

    Lu, Kai; Gordon, Richard; Cao, Tong

    2015-03-01

    The formation of relevant biological structures poses a challenge for regenerative medicine. During embryogenesis, embryonic cells differentiate into somatic tissues and undergo morphogenesis to produce three-dimensional organs. Using stem cells, we can recapitulate this process and create biological constructs for therapeutic transplantation. However, imperfect imitation of nature sometimes results in in vitro artifacts that fail to recapitulate the function of native organs. It has been hypothesized that developing cells may self-organize into tissue-specific structures given a correct in vitro environment. This proposition is supported by the generation of neo-organoids from stem cells. We suggest that morphogenesis may be reverse engineered to uncover its interacting mechanical pathway and molecular circuitry. By harnessing the latent architecture of stem cells, novel tissue-engineering strategies may be conceptualized for generating self-organizing transplants.

  11. Establishment and Molecular Characterization of Mesenchymal Stem Cell Lines Derived From Human Visceral & Subcutaneous Adipose Tissues

    Directory of Open Access Journals (Sweden)

    Jyoti Prakash Sutar

    2010-01-01

    Full Text Available Mesenchymal stem cells (MSCs, are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, myocytes and adipocytes. We utilized adipose tissue as our primary source, since it is a rich source of MSCs as well as it can be harvested using a minimally invasive surgical procedure. Both visceral and subcutaneous adipose tissue (VSAT, SCAT respectively samples were cultured using growth medium without using any substratum for their attachment. We observed growth of mesenchymal like cells within 15 days of culturing. In spite of the absence of any substratum, the cells adhered to the bottom of the petri dish, and spread out within 2 hours. Presently VSAT cells have reached at passage 10 whereas; SCAT cells have reached at passage 14. Morphologically MSCs obtained from visceral adipose tissue were larger in shape than subcutaneous adipose tissue. We checked these cells for presence or absence of specific stem cell molecular markers. We found that VSAT and SCAT cells confirmed their MSC phenotype by expression of specific MSC markers CD 105 and CD13 and absence of CD34 and CD 45 markers which are specific for haematopoietic stem cells. These cells also expressed SOX2 gene confirming their ability of self-renewal as well as expressed OCT4, LIF and NANOG for their properties for pluripotency & plasticity. Overall, it was shown that adipose tissue is a good source of mesenchymal stem cells. It was also shown that MSCs, isolated from adipose tissue are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, cardiomyocytes, adipocytes and liver cells which may open a new era for cell based regenerative therapies for bone, cardiac and liver disorders.

  12. The reciprocal coordination and mechanics of molecular motors in living cells.

    Science.gov (United States)

    Laib, Jeneva A; Marin, John A; Bloodgood, Robert A; Guilford, William H

    2009-03-03

    Molecular motors in living cells are involved in whole-cell locomotion, contractility, developmental shape changes, and organelle movement and positioning. Whether motors of different directionality are functionally coordinated in cells or operate in a semirandom "tug of war" is unclear. We show here that anterograde and retrograde microtubule-based motors in the flagella of Chlamydomonas are regulated such that only motors of a common directionality are engaged at any single time. A laser trap was used to position microspheres on the plasma membrane of immobilized paralyzed Chlamydomonas flagella. The anterograde and retrograde movements of the microsphere were measured with nanometer resolution as microtubule-based motors engaged the transmembrane protein FMG-1. An average of 10 motors acted to move the microsphere in either direction. Reversal of direction during a transport event was uncommon, and quiescent periods separated every transport event, suggesting the coordinated and exclusive action of only a single motor type. After a jump to 32 degrees C, temperature-sensitive mutants of kinesin-2 (fla10) showed exclusively retrograde transport events, driven by 7 motors on average. These data suggest that molecular motors in living cells can be reciprocally coordinated to engage simultaneously in large numbers and for exclusive transport in a single direction, even when a mixed population of motors is present. This offers a unique model for studying the mechanics, regulation, and directional coordination of molecular motors in a living intracellular environment.

  13. Stages based molecular mechanisms for generating cholangiocytes from liver stem/progenitor cells.

    Science.gov (United States)

    Liu, Wei-Hui; Ren, Li-Na; Chen, Tao; Liu, Li-Ye; Tang, Li-Jun

    2013-11-07

    Except for the most organized mature hepatocytes, liver stem/progenitor cells (LSPCs) can differentiate into many other types of cells in the liver including cholangiocytes. In addition, LSPCs are demonstrated to be able to give birth to other kinds of extra-hepatic cell types such as insulin-producing cells. Even more, under some bad conditions, these LSPCs could generate liver cancer stem like cells (LCSCs) through malignant transformation. In this review, we mainly concentrate on the molecular mechanisms for controlling cell fates of LSPCs, especially differentiation of cholangiocytes, insulin-producing cells and LCSCs. First of all, to certificate the cell fates of LSPCs, the following three features need to be taken into account to perform accurate phenotyping: (1) morphological properties; (2) specific markers; and (3) functional assessment including in vivo transplantation. Secondly, to promote LSPCs differentiation, systematical attention should be paid to inductive materials (such as growth factors and chemical stimulators), progressive materials including intracellular and extracellular signaling pathways, and implementary materials (such as liver enriched transcriptive factors). Accordingly, some recommendations were proposed to standardize, optimize, and enrich the effective production of cholangiocyte-like cells out of LSPCs. At the end, the potential regulating mechanisms for generation of cholangiocytes by LSPCs were carefully analyzed. The differentiation of LSPCs is a gradually progressing process, which consists of three main steps: initiation, progression and accomplishment. It's the unbalanced distribution of affecting materials in each step decides the cell fates of LSPCs.

  14. Continuous high throughput molecular adhesion based cell sorting using ridged microchannels

    Science.gov (United States)

    Tasadduq, Bushra; Wang, Gonghao; Alexeev, Alexander; Sarioglu, Ali Fatih; Sulchek, Todd

    2016-11-01

    Cell molecular interactions govern important physiological processes such as stem cell homing, inflammation and cancer metastasis. But due to a lack of effective separation technologies selective to these interactions it is challenging to specifically sort cells. Other label free separation techniques based on size, stiffness and shape do not provide enough specificity to cell type, and correlation to clinical condition. We propose a novel microfluidic device capable of high throughput molecule dependent separation of cells by flowing them through a microchannel decorated with molecule specific coated ridges. The unique aspect of this sorting design is the use of optimized gap size which is small enough to lightly squeeze the cells while flowing under the ridged part of the channel to increase the surface area for interaction between the ligand on cell surface and coated receptor molecule but large enough so that biomechanical markers, stiffness and viscoelasticity, do not dominate the cell separation mechanism. We are able to separate Jurkat cells based on its expression of PSGL-1ligand using ridged channel coated with P selectin at a flow rate of 0.045ml/min and achieve 2-fold and 5-fold enrichment of PSGL-1 positive and negative Jurkat cells respectively.

  15. Molecular characterisation of stromal populations derived from human embryonic stem cells

    DEFF Research Database (Denmark)

    Harkness, L.; Twine, N. A.; Abu Dawud, R.;

    2015-01-01

    Human bone marrow-derived stromal (skeletal) stem cells (BM-hMSC) are being employed in an increasing number of clinical trials for tissue regeneration. A limiting factor for their clinical use is the inability to obtain sufficient cell numbers. Human embryonic stem cells (hESC) can provide an un......ESC-stromal cells can thus be considered as a possible alternative candidate cells for hMSC, to be employed in regenerative medicine protocols.......Human bone marrow-derived stromal (skeletal) stem cells (BM-hMSC) are being employed in an increasing number of clinical trials for tissue regeneration. A limiting factor for their clinical use is the inability to obtain sufficient cell numbers. Human embryonic stem cells (hESC) can provide...... an unlimited source of clinical grade cells for therapy. We have generated MSC-like cells from hESC (called here hESC-stromal) that exhibit surface markers and differentiate to osteoblasts and adipocytes, similar to BM-hMSC. In the present study, we used microarray analysis to compare the molecular phenotype...

  16. Conventional and molecular cytogenetic diagnostic methods in stem cell research: a concise review.

    Science.gov (United States)

    Catalina, Purificación; Cobo, Fernando; Cortés, José L; Nieto, Ana I; Cabrera, Carmen; Montes, Rosa; Concha, Angel; Menendez, Pablo

    2007-09-01

    Regenerative medicine and cell therapy are emerging clinical disciplines in the field of stem cell biology. The most important sources for cell transplantation are human embryonic and adult stem cells. The future use of these human stem cell lines in humans requires a guarantee of exhaustive control with respect to quality control, safety and traceability. Genetic instability and chromosomal abnormalities represent a potential weakness in basic studies and future therapeutic applications based on these stem cell lines, and may explain, at least in part, their usual tumourigenic properties. So, the introduction of the cytogenetic programme in the determination of the chromosomal stability is a key point in the establishment of the stem cell lines. The aim of this review is to provide readers with an up-to-date overview of all the cytogenetic techniques, both conventional methods and molecular fluorescence methods, to be used in a stem cell bank or other stem cell research centres. Thus, it is crucial to optimize and validate their use in the determination of the chromosomal stability of these stem cell lines, and assess the advantages and limitations of these cutting-edge cytogenetic technologies.

  17. Age-related molecular genetic changes of murine bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Webster Keith A

    2010-04-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSC are pluripotent cells, present in the bone marrow and other tissues that can differentiate into cells of all germ layers and may be involved in tissue maintenance and repair in adult organisms. Because of their plasticity and accessibility these cells are also prime candidates for regenerative medicine. The contribution of stem cell aging to organismal aging is under debate and one theory is that reparative processes deteriorate as a consequence of stem cell aging and/or decrease in number. Age has been linked with changes in osteogenic and adipogenic potential of MSCs. Results Here we report on changes in global gene expression of cultured MSCs isolated from the bone marrow of mice at ages 2, 8, and 26-months. Microarray analyses revealed significant changes in the expression of more than 8000 genes with stage-specific changes of multiple differentiation, cell cycle and growth factor genes. Key markers of adipogenesis including lipoprotein lipase, FABP4, and Itm2a displayed age-dependent declines. Expression of the master cell cycle regulators p53 and p21 and growth factors HGF and VEGF also declined significantly at 26 months. These changes were evident despite multiple cell divisions in vitro after bone marrow isolation. Conclusions The results suggest that MSCs are subject to molecular genetic changes during aging that are conserved during passage in culture. These changes may affect the physiological functions and the potential of autologous MSCs for stem cell therapy.

  18. Molecular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae

    Science.gov (United States)

    Beaussart, Audrey; Péchoux, Christine; Trieu-Cuot, Patrick; Hols, Pascal; Mistou, Michel-Yves; Dufrêne, Yves F.

    2014-11-01

    The surface of many bacterial pathogens is covered with polysaccharides that play important roles in mediating pathogen-host interactions. In Streptococcus agalactiae, the capsular polysaccharide (CPS) is recognized as a major virulence factor while the group B carbohydrate (GBC) is crucial for peptidoglycan biosynthesis and cell division. Despite the important roles of CPS and GBC, there is little information available on the molecular organization of these glycopolymers on the cell surface. Here, we use atomic force microscopy (AFM) and transmission electron microscopy (TEM) to analyze the nanoscale distribution of CPS and GBC in wild-type (WT) and mutant strains of S. agalactiae. TEM analyses reveal that in WT bacteria, peptidoglycan is covered with a very thin (few nm) layer of GBC (the ``pellicle'') overlaid by a 15-45 nm thick layer of CPS (the ``capsule''). AFM-based single-molecule mapping with specific antibody probes shows that CPS is exposed on WT cells, while it is hardly detected on mutant cells impaired in CPS production (ΔcpsE mutant). By contrast, both TEM and AFM show that CPS is over-expressed in mutant cells altered in GBC expression (ΔgbcO mutant), indicating that the production of the two surface glycopolymers is coordinated in WT cells. In addition, AFM topographic imaging and molecular mapping with specific lectin probes demonstrate that removal of CPS (ΔcpsE), but not of GBC (ΔgbcO), leads to the exposure of peptidoglycan, organized into 25 nm wide bands running parallel to the septum. These results indicate that CPS forms a homogeneous barrier protecting the underlying peptidoglycan from environmental exposure, while the presence of GBC does not prevent peptidoglycan detection. This work shows that single-molecule AFM, combined with high-resolution TEM, represents a powerful platform for analysing the molecular arrangement of the cell wall polymers of bacterial pathogens.

  19. Spectral properties of molecular iodine absorption cells filled to saturation pressure

    Science.gov (United States)

    Hrabina, Jan; Sarbort, Martin; Cip, Ondrej; Lazar, Josef

    2014-05-01

    The absorption cells - optical frequencies references - represent the crucial part of setups for practical realization of the meter unit - highly stable laser standards, where varied laser sources are frequency locked to the selected absorption transitions. Furthermore, not only in the most precise laboratory instruments, but also in less demanding interferometric measuring setups the frequency stabilization of the lasers throught the absorption in suitable media ensure the direct traceability to the fundamental standard of length. We present the results of measurement and evaluation of spectral properties of molecular iodine absorption cells filled to saturation pressure of absorption media. A set of cells filled with different amounts of molecular iodine was prepared and an agreement between expected and resulting spectral properties of these cells was observed and evaluated. The cells made of borosilicate glass instead of common fused silica were tested for their spectral properties in greater detail with special care for the absorption media purity - the measured hyperfine transitions linewidths were compared to cells traditionally made of fused silica glass with well known iodine purity. The usage of borosilicate glass material represents easier manufacturing process and also significant costs reduction but a great care must be taken to control/avoid the risk of absorption media contamination. An approach relying on measurement of linewidth of the hyperfine transitions is proposed and discussed.

  20. Molecular sieving action of the cell membrane during gradual osmotic hemolysis

    Energy Technology Data Exchange (ETDEWEB)

    MacGregor, R.D. II

    1977-05-01

    Rat erythrocytes were hemolyzed by controlled gradual osmotic hemolysis to study cell morphology and hemoglobin loss from individual cells. Results suggest that each increase in the rate of loss of a protein from the cells during the initial phases of controlled gradual osmotic hemolysis is caused by the passage of a previously impermeable species across the stressed membrane. Similarly, during the final stages of controlled gradual osmotic hemolysis, each sharp decrease in the rate of loss of a protein corresponds to the termination of a molecular flow. A theoretical model is described that predicts the molecular sieving of soluble globular proteins across the stressed red cell membrane. Hydrophobic interactions occur between the soluble proteins and the lipid bilayer portion of the cell membrane. A spectrin network subdivides the bilayer into domains that restrict the insertion of large molecules into the membrane. Other membrane proteins affect soluble protein access to the membrane. Changes in the loss curves caused by incubation of red cells are discussed in terms of the model.

  1. Sox2 transcription network acts as a molecular switch to regulate properties of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Koji; Shimozaki

    2014-01-01

    Neural stem cells(NSCs) contribute to ontogeny by producing neurons at the appropriate time and location. Neurogenesis from NSCs is also involved in various biological functions in adults. Thus, NSCs continue to exert their effects throughout the lifespan of the organism. The mechanism regulating the core functional properties of NSCs is governed by intra- and extracellular signals. Among the transcription factors that serve as molecular switches, Sox2 is considered a key factor in NSCs. Sox2 forms a core network with partner factors, thereby functioning as a molecular switch. This review discusses how the network of Sox2 partner and target genes illustrates the molecular characteristics of the mechanism underlying the self-renewal and multipotency of NSCs.

  2. Fluorescence fluctuation microscopy: a diversified arsenal of methods to investigate molecular dynamics inside cells.

    Science.gov (United States)

    Weidemann, Thomas; Mücksch, Jonas; Schwille, Petra

    2014-10-01

    Fluorescence microscopy provides insight into the subcellular organization of biological functions. However, images are snap shots averaging over a highly dynamic molecular system. Fluorescence fluctuation microscopy, employing similar detection technology, encompasses a powerful arsenal of analysis tools that investigate the molecular heterogeneity in space and time. Analyzing signal fluctuations from small ensembles (several hundred particles) reveals their concentration, the stoichiometry, the stochastic motion, as well as superimposed signatures of the environment such as spatial confinement and binding events. Thus, fluctuation analysis provides access to dynamic molecular properties that can be used to build physical models of cellular processes. In the last decade these methods experienced a remarkable diversification, which we revisit here with a particular focus on live cell applications.

  3. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells

    Directory of Open Access Journals (Sweden)

    Haqqani Arsalan S

    2013-01-01

    Full Text Available Abstract Background In addition to possessing intracellular vesicles, eukaryotic cells also produce extracellular microvesicles, ranging from 50 to 1000 nm in diameter that are released or shed into the microenvironment under physiological and pathological conditions. These membranous extracellular organelles include both exosomes (originating from internal vesicles of endosomes and ectosomes (originating from direct budding/shedding of plasma membranes. Extracellular microvesicles contain cell-specific collections of proteins, glycoproteins, lipids, nucleic acids and other molecules. These vesicles play important roles in intercellular communication by acting as carrier for essential cell-specific information to target cells. Endothelial cells in the brain form the blood–brain barrier, a specialized interface between the blood and the brain that tightly controls traffic of nutrients and macromolecules between two compartments and interacts closely with other cells forming the neurovascular unit. Therefore, brain endothelial cell extracellular microvesicles could potentially play important roles in ‘externalizing’ brain-specific biomarkers into the blood stream during pathological conditions, in transcytosis of blood-borne molecules into the brain, and in cell-cell communication within the neurovascular unit. Methods To study cell-specific molecular make-up and functions of brain endothelial cell exosomes, methods for isolation of extracellular microvesicles using mass spectrometry-compatible protocols and the characterization of their signature profiles using mass spectrometry -based proteomics were developed. Results A total of 1179 proteins were identified in the isolated extracellular microvesicles from brain endothelial cells. The microvesicles were validated by identification of almost 60 known markers, including Alix, TSG101 and the tetraspanin proteins CD81 and CD9. The surface proteins on isolated microvesicles could potentially

  4. Functional and Molecular Characterization of Rod-like Cells from Retinal Stem Cells Derived from the Adult Ciliary Epithelium

    Science.gov (United States)

    Demontis, Gian Carlo; Aruta, Claudia; Comitato, Antonella; De Marzo, Anna; Marigo, Valeria

    2012-01-01

    In vitro generation of photoreceptors from stem cells is of great interest for the development of regenerative medicine approaches for patients affected by retinal degeneration and for high throughput drug screens for these diseases. In this study, we show unprecedented high percentages of rod-fated cells from retinal stem cells of the adult ciliary epithelium. Molecular characterization of rod-like cells demonstrates that they lose ciliary epithelial characteristics but acquire photoreceptor features. Rod maturation was evaluated at two levels: gene expression and electrophysiological functionality. Here we present a strong correlation between phototransduction protein expression and functionality of the cells in vitro. We demonstrate that in vitro generated rod-like cells express cGMP-gated channels that are gated by endogenous cGMP. We also identified voltage-gated channels necessary for rod maturation and viability. This level of analysis for the first time provides evidence that adult retinal stem cells can generate highly homogeneous rod-fated cells. PMID:22432014

  5. Functional and molecular characterization of rod-like cells from retinal stem cells derived from the adult ciliary epithelium.

    Directory of Open Access Journals (Sweden)

    Gian Carlo Demontis

    Full Text Available In vitro generation of photoreceptors from stem cells is of great interest for the development of regenerative medicine approaches for patients affected by retinal degeneration and for high throughput drug screens for these diseases. In this study, we show unprecedented high percentages of rod-fated cells from retinal stem cells of the adult ciliary epithelium. Molecular characterization of rod-like cells demonstrates that they lose ciliary epithelial characteristics but acquire photoreceptor features. Rod maturation was evaluated at two levels: gene expression and electrophysiological functionality. Here we present a strong correlation between phototransduction protein expression and functionality of the cells in vitro. We demonstrate that in vitro generated rod-like cells express cGMP-gated channels that are gated by endogenous cGMP. We also identified voltage-gated channels necessary for rod maturation and viability. This level of analysis for the first time provides evidence that adult retinal stem cells can generate highly homogeneous rod-fated cells.

  6. Toward chelerythrine optimization: Analogues designed by molecular simplification exhibit selective growth inhibition in non-small-cell lung cancer cells.

    Science.gov (United States)

    Yang, Rosania; Tavares, Maurício T; Teixeira, Sarah F; Azevedo, Ricardo A; C Pietro, Diego; Fernandes, Thais B; Ferreira, Adilson K; Trossini, Gustavo H G; Barbuto, José A M; Parise-Filho, Roberto

    2016-10-01

    A series of novel chelerythrine analogues was designed and synthesized. Antitumor activity was evaluated against A549, NCI-H1299, NCI-H292, and NCI-H460 non-small-cell lung cancer (NSCLC) cell lines in vitro. The selectivity of the most active analogues and chelerythrine was also evaluated, and we compared their cytotoxicity in NSCLC cells and non-tumorigenic cell lines, including human umbilical vein endothelial cells (HUVECs) and LL24 human lung fibroblasts. In silico studies were performed to establish structure-activity relationships between chelerythrine and the analogues. The results showed that analogue compound 3f induced significant dose-dependent G0/G1 cell cycle arrest in A549 and NCI-H1299 cells. Theoretical studies indicated that the molecular arrangement and electron characteristics of compound 3f were closely related to the profile of chelerythrine, supporting its activity. The present study presents a new and simplified chelerythrinoid scaffold with enhanced selectivity against NSCLC tumor cells for further optimization.

  7. Deciphering causal and statistical relations of molecular aberrations and gene expressions in NCI-60 cell lines

    Directory of Open Access Journals (Sweden)

    Li Shyh-Dar

    2011-11-01

    Full Text Available Abstract Background Cancer cells harbor a large number of molecular alterations such as mutations, amplifications and deletions on DNA sequences and epigenetic changes on DNA methylations. These aberrations may dysregulate gene expressions, which in turn drive the malignancy of tumors. Deciphering the causal and statistical relations of molecular aberrations and gene expressions is critical for understanding the molecular mechanisms of clinical phenotypes. Results In this work, we proposed a computational method to reconstruct association modules containing driver aberrations, passenger mRNA or microRNA expressions, and putative regulators that mediate the effects from drivers to passengers. By applying the module-finding algorithm to the integrated datasets of NCI-60 cancer cell lines, we found that gene expressions were driven by diverse molecular aberrations including chromosomal segments' copy number variations, gene mutations and DNA methylations, microRNA expressions, and the expressions of transcription factors. In-silico validation indicated that passenger genes were enriched with the regulator binding motifs, functional categories or pathways where the drivers were involved, and co-citations with the driver/regulator genes. Moreover, 6 of 11 predicted MYB targets were down-regulated in an MYB-siRNA treated leukemia cell line. In addition, microRNA expressions were driven by distinct mechanisms from mRNA expressions. Conclusions The results provide rich mechanistic information regarding molecular aberrations and gene expressions in cancer genomes. This kind of integrative analysis will become an important tool for the diagnosis and treatment of cancer in the era of personalized medicine.

  8. Molecular classification of basal cell carcinoma of skin by gene expression profiling.

    Science.gov (United States)

    Jee, Byul A; Lim, Hyoseob; Kwon, So Mee; Jo, Yuna; Park, Myong Chul; Lee, Il Jae; Woo, Hyun Goo

    2015-12-01

    Non-melanoma skin cancers (NMSC) including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are more common kinds of skin cancer. Although these tumors share common pathological and clinical features, their similarity and heterogeneity at molecular levels are not fully elaborated yet. Here, by performing comparative analysis of gene expression profiling of BCC, SCC, and normal skin tissues, we could classify the BCC into three subtypes of classical, SCC-like, and normal-like BCCs. Functional enrichment and pathway analyses revealed the molecular characteristics of each subtype. The classical BCC showed the enriched expression and transcription signature with the activation of Wnt and Hedgehog signaling pathways, which were well known key features of BCC. By contrast, the SCC-like BCC was enriched with immune-response genes and oxidative stress-related genes. Network analysis revealed the PLAU/PLAUR as a key regulator of SCC-like BCC. The normal-like BCC showed prominent activation of metabolic processes particularly the fatty acid metabolism. The existence of these molecular subtypes could be validated in an independent dataset, which demonstrated the three subgroups of BCC with distinct functional enrichment. In conclusion, we suggest a novel molecular classification of BCC providing insights on the heterogeneous progression of BCC.

  9. Novel molecular aberrations and pathologic findings in a tubulocystic variant of renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Nikhil A Sangle

    2013-01-01

    Full Text Available Tubulocystic renal cell carcinoma (TRCC is an indolent type of renal cell carcinoma with a good prognosis based on the limited number of published cases. Herein, we describe the unusual clinical, pathologic and molecular findings in a case of TRCC. Our patient with TRCC had two local recurrences and a brain metastasis following radical nephrectomy. Unusual histologic findings included focal solid growth pattern and cytologic atypia. A genome-wide molecular inversion probe assay identified copy number (CN loss in three chromosome regions and one region with copy-neutral loss of heterozygosity (copy-neutral LOH. Copy number variations (CNVs were observed (chromosomes 4p16.1 and 17q21.31-q21.32 in both the tumor and the normal tissue, and most likely represents benign variations. The loss of entire chromosomes 9, 18 and 15 and copy-neutral LOH involving 6p22.1 was observed only in the tumor. The presence of these clinical, pathologic and molecular findings could be related to an increased risk for tumor recurrence and poor prognosis. The novel molecular findings described in TRCC might represent new targets for novel therapies.

  10. Molecular signatures to define spermatogenic cells in common marmoset (Callithrix jacchus).

    Science.gov (United States)

    Lin, Zachary Yu-Ching; Imamura, Masanori; Sano, Chiaki; Nakajima, Ryusuke; Suzuki, Tomoko; Yamadera, Rie; Takehara, Yuji; Okano, Hirotaka James; Sasaki, Erika; Okano, Hideyuki

    2012-05-01

    Germ cell development is a fundamental process required to produce offspring. The developmental program of spermatogenesis has been assumed to be similar among mammals. However, recent studies have revealed differences in the molecular properties of primate germ cells compared with the well-characterized mouse germ cells. This may prevent simple application of rodent insights into higher primates. Therefore, thorough investigation of primate germ cells is necessary, as this may lead to the development of more appropriate animal models. The aim of this study is to define molecular signatures of spermatogenic cells in the common marmoset, Callithrix jacchus. Interestingly, NANOG, PRDM1, DPPA3 (STELLA), IFITM3, and ZP1 transcripts, but no POU5F1 (OCT4), were detected in adult marmoset testis. Conversely, mouse testis expressed Pou5f1 but not Nanog, Prdm1, Dppa3, Ifitm3, and Zp1. Other previously described mouse germ cell markers were conserved in marmoset and mouse testes. Intriguingly, marmoset spermatogenic cells underwent dynamic protein expression in a developmental stage-specific manner; DDX4 (VASA) protein was present in gonocytes, diminished in spermatogonial cells, and reexpressed in spermatocytes. To investigate epigenetic differences between adult marmoset and mice, DNA methylation analyses identified unique epigenetic profiles to marmoset and mice. Marmoset NANOG and POU5F1 promoters in spermatogenic cells exhibited a methylation status opposite to that in mice, while the DDX4 and LEFTY1 loci, as well as imprinted genes, displayed an evolutionarily conserved methylation pattern. Marmosets have great advantages as models for human reproductive biology and are also valuable as experimental nonhuman primates; thus, the current study provides an important platform for primate reproductive biology, including possible applications to humans.

  11. Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells.

    Science.gov (United States)

    Brzeszczynska, J; Samuel, K; Greenhough, S; Ramaesh, K; Dhillon, B; Hay, D C; Ross, J A

    2014-06-01

    It has been suggested that the isolation of scalable populations of limbal stem cells may lead to radical changes in ocular therapy. In particular, the derivation and transplantation of corneal stem cells from these populations may result in therapies providing clinical normality of the diseased or damaged cornea. Although feasible in theory, the lack of donor material in sufficient quantity and quality currently limits such a strategy. A potential scalable source of corneal cells could be derived from pluripotent stem cells (PSCs). We developed an in vitro and serum-free corneal differentiation model which displays significant promise. Our stepwise differentiation model was designed with reference to development and gave rise to cells which displayed similarities to epithelial progenitor cells which can be specified to cells displaying a corneal epithelial phenotype. We believe our approach is novel, provides a robust model of human development and in the future, may facilitate the generation of corneal epithelial cells that are suitable for clinical use. Additionally, we demonstrate that following continued cell culture, stem cell-derived corneal epithelial cells undergo transdifferentiation and exhibit squamous metaplasia and therefore, also offer an in vitro model of disease.

  12. Human BAT possesses molecular signatures that resemble beige/brite cells.

    Directory of Open Access Journals (Sweden)

    Louis Z Sharp

    Full Text Available Brown adipose tissue (BAT dissipates chemical energy and generates heat to protect animals from cold and obesity. Rodents possess two types of UCP-1 positive brown adipocytes arising from distinct developmental lineages: "classical" brown adipocytes develop during the prenatal stage whereas "beige" or "brite" cells that reside in white adipose tissue (WAT develop during the postnatal stage in response to chronic cold or PPARγ agonists. Beige cells' inducible characteristics make them a promising therapeutic target for obesity treatment, however, the relevance of this cell type in humans remains unknown. In the present study, we determined the gene signatures that were unique to classical brown adipocytes and to beige cells induced by a specific PPARγ agonist rosiglitazone in mice. Subsequently we applied the transcriptional data to humans and examined the molecular signatures of human BAT isolated from multiple adipose depots. To our surprise, nearly all the human BAT abundantly expressed beige cell-selective genes, but the expression of classical brown fat-selective genes were nearly undetectable. Interestingly, expression of known brown fat-selective genes such as PRDM16 was strongly correlated with that of the newly identified beige cell-selective genes, but not with that of classical brown fat-selective genes. Furthermore, histological analyses showed that a new beige cell marker, CITED1, was selectively expressed in the UCP1-positive beige cells as well as in human BAT. These data indicate that human BAT may be primary composed of beige/brite cells.

  13. Molecular mechanisms associated with ALA-PDT of brain tumor cells

    Science.gov (United States)

    Alqawi, Omar; Espiritu, Myrna; Singh, Gurmit

    2009-06-01

    Previous studies have shown that low-dose PDT using 5-aminolevulinic acid (ALA)-induced photoporphyrin IX (PpIX) can induce apoptosis in tumor cells without causing necrosis. In this study we investigated the molecular mechanisms associated with apoptosis after ALA-PDT treatment in two brain glioma cell lines: human U87, and rat CNS-1cells. We used high energy light at a short time (acute PDT) and low energy light at a long time of exposure (metronomic PDT) to treat both cell lines. The cells were treated with 0.25 mM ALA at 5 joules for energy. We found that CNS-1 cells were more resistant to ALA-PDT than U87 cells when treated by both acute and metronomic PDT. To screen possible apoptosis mechanisms associated with acute and metronomic PDT, microarray analysis of gene expression was performed on RNA from glioblastoma cells treated with either acute or metronomic ALA-PDT. Within the set of genes that were negatively or positively regulated by both treatments are tumor necrosis factor receptors. The expression of TNF receptors was investigated further by RT-PCR and western blotting. The apoptosis mechanism of the cell death occurred through different pathways including BCL-2 and TNF receptors, and in part caused by cleaving caspase 3. Interestingly, metronomic ALA-PDT inhibited the expression of LTβR and the transcription factor NFκB. This inhibition was ALA concentration dependent at low concentrations.

  14. Antiproliferative and Molecular Mechanism of Eugenol-Induced Apoptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eko Supriyanto

    2012-05-01

    Full Text Available Phenolic phytochemicals are a broad class of nutraceuticals found in plants which have been extensively researched by scientists for their health-promoting potential. One such a compound which has been comprehensively used is eugenol (4-allyl-2-methoxyphenol, which is the active component of Syzigium aromaticum (cloves. Aromatic plants like nutmeg, basil, cinnamon and bay leaves also contain eugenol. Eugenol has a wide range of applications like perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. Increasing volumes of literature showed eugenol possesses antioxidant, antimutagenic, antigenotoxic, anti-inflammatory and anticancer properties. Molecular mechanism of eugenol-induced apoptosis in melanoma, skin tumors, osteosarcoma, leukemia, gastric and mast cells has been well documented. This review article will highlight the antiproliferative activity and molecular mechanism of the eugenol induced apoptosis against the cancer cells and animal models.

  15. Reduced folate carrier: biochemistry and molecular biology of the normal and methotrexate-resistant cell.

    Science.gov (United States)

    Bosson, Geoffrey

    2003-01-01

    The cytotoxic drug methotrexate uses the reduced folate carrier for transport into the cell, where it inhibits key enzymes in nucleotide biosynthesis. Resistance to methotrexate can be achieved by altering the genetic code of the reduced folate carrier gene and thus change the structure and function of the protein. Our understanding of RFC structure and function is based on the information gained from studying the uptake of folates and antifolates in living cells and the application of molecular techniques to determine gene expression and genetic mutations. The aim of this essay is to explain the structure and function of the reduced folate carrier, review the molecular biology of the reduced folate carrier gene and the mutations and polymorphisms that can result in methotrexate resistance.

  16. Use of cell-SELEX to generate DNA aptamers as molecular probes of HPV-associated cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Jessica C Graham

    Full Text Available BACKGROUND: Disease-specific biomarkers are an important tool for the timely and effective management of pathological conditions, including determination of susceptibility, diagnosis, and monitoring efficacy of preventive or therapeutic strategies. Aptamers, comprising single-stranded or double-stranded DNA or RNA, can serve as biomarkers of disease or biological states. Aptamers can bind to specific epitopes on macromolecules by virtue of their three dimensional structures and, much like antibodies, aptamers can be used to target specific epitopes on the basis of their molecular shape. The Systematic Evolution of Ligands by EXponential enrichment (SELEX is the approach used to select high affinity aptamers for specific macromolecular targets from among the >10(13 oligomers comprising typical random oligomer libraries. In the present study, we used live cell-based SELEX to identify DNA aptamers which recognize cell surface differences between HPV-transformed cervical carcinoma cancer cells and isogenic, nontumorigenic, revertant cell lines. METHODOLOGY/PRINCIPAL FINDINGS: Whole-cell SELEX methodology was adapted for use with adherent cell lines (which we termed Adherent Cell-SELEX (AC-SELEX. Using this approach, we identified high affinity aptamers (nanomolar range K(d to epitopes specific to the cell surface of two nontumorigenic, nontumorigenic revertants derived from the human cervical cancer HeLa cell line, and demonstrated the loss of these epitopes in another human papillomavirus transformed cervical cancer cell line (SiHa. We also performed preliminary investigation of the aptamer epitopes and their binding characteristics. CONCLUSIONS/SIGNIFICANCE: Using AC-SELEX we have generated several aptamers that have high affinity and specificity to the nontumorigenic, revertant of HPV-transformed cervical cancer cells. These aptamers can be used to identify new biomarkers that are related to carcinogenesis. Panels of aptamers, such as these may

  17. Molecular Determinants of Antiestrogen and Drug Sensitivity in Breast Carcinoma Cells

    Science.gov (United States)

    1997-08-01

    unpublished data Ekkehart Lausch Vera Fedosova Natalia Krugman 11 Somatic Cell and Molecular Genetics, Vol. 22, No. 4, 1996, pp. 291-309 Effects of Infection...I.B. 7000. (1994). Proc. Natl. Acad. Sci. U.S.A. 91:3744-3748. 30. Wang, H., Paul , R., Burgeson, R.E., Keene, D.R., and 18. Gudkov, A.V., Zelnick, C.R

  18. Multiscale Molecular Simulation of Solution Processing of SMDPPEH: PCBM Small-Molecule Organic Solar Cells.

    Science.gov (United States)

    Lee, Cheng-Kuang; Pao, Chun-Wei

    2016-08-17

    Solution-processed small-molecule organic solar cells are a promising renewable energy source because of their low production cost, mechanical flexibility, and light weight relative to their pure inorganic counterparts. In this work, we developed a coarse-grained (CG) Gay-Berne ellipsoid molecular simulation model based on atomistic trajectories from all-atom molecular dynamics simulations of smaller system sizes to systematically study the nanomorphology of the SMDPPEH/PCBM/solvent ternary blend during solution processing, including the blade-coating process by applying external shear to the solution. With the significantly reduced overall system degrees of freedom and computational acceleration from GPU, we were able to go well beyond the limitation of conventional all-atom molecular simulations with a system size on the order of hundreds of nanometers with mesoscale molecular detail. Our simulations indicate that, similar to polymer solar cells, the optimal blending ratio in small-molecule organic solar cells must provide the highest specific interfacial area for efficient exciton dissociation, while retaining balanced hole/electron transport pathway percolation. We also reveal that blade-coating processes have a significant impact on nanomorphology. For given donor/acceptor blending ratios, applying an external shear force can effectively promote donor/acceptor phase segregation and stacking in the SMDPPEH domains. The present study demonstrated the capability of an ellipsoid-based coarse-grained model for studying the nanomorphology evolution of small-molecule organic solar cells during solution processing/blade-coating and provided links between fabrication protocols and device nanomorphologies.

  19. Molecular Engineering Combined with Cosensitization Leads to Record Photovoltaic Efficiency for Non-ruthenium Solar Cells.

    Science.gov (United States)

    Hill, Jonathan P

    2016-02-24

    Here comes the sun: By using a combined strategy of molecular engineering and cosensitization, impressively high Jsc and Voc values were achieved for porphyrin dyes, resulting in high photovoltaic efficiencies up to 11.5 %, a record for non-ruthenium dye-sensitized solar cells (DSSCs) with the I(-) /I3 (-) electrolyte. The results provide insight into furthering the development of efficient DSSCs through synergistically enhanced photovoltage and photocurrent.

  20. Molecular imaging of hypoxia in non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Connie [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); National Cancer Centre, Department of Radiation Oncology, Singapore (Singapore); St Thomas' Hospital, Imaging 2, London (United Kingdom); Blower, Philip J. [King' s College London, St Thomas' Hospital, Department of Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Goh, Vicky [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Department of Radiology, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Landau, David B. [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Department of Clinical Oncology, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Cook, Gary J.R. [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Clinical PET Imaging Centre, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom)

    2015-05-01

    Non-small-cell lung cancer (NSCLC) is the commonest cancer worldwide but survival remains poor with a high risk of relapse, particularly after nonsurgical treatment. Hypoxia is present in a variety of solid tumours, including NSCLC. It is associated with treatment resistance and a poor prognosis, although when recognised may be amenable to different treatment strategies. Thus, noninvasive assessment of intratumoral hypoxia could be used to stratify patients for modification of subsequent treatment to improve tumour control. Molecular imaging approaches targeting hypoxic cells have shown some early success in the clinical setting. This review evaluates the evidence for hypoxia imaging using PET in NSCLC and explores its potential clinical utility. (orig.)

  1. Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters

    Directory of Open Access Journals (Sweden)

    Carole Grätzel

    2013-01-01

    Full Text Available Mesoscopic solar cells are one of the most promising photovoltaic technologies among third generation photovoltaics due to their low cost and high efficiency. The morphology of wide-band semiconductors, sensitized with molecular or nanosized light harvesters, used as electron collectors contribute substantially to the device performance. Recent developments in the use of organic–inorganic layer structured perovskites as light absorbers and as electron or hole transport materials allows reduction in the thickness of photoanodes to the submicron level and have raised the power conversion efficiency of solid state mesoscopic solar cells above the 10% level.

  2. Molecular determinants of the antitumor effects of trichostatin A in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Elisabeth; Emonds; Brit; Fitzner; Robert; Jaster

    2010-01-01

    AIM:To gain molecular insights into the action of the histone deacetylase inhibitor(HDACI) trichostatin-A(TSA) in pancreatic cancer(PC) cells.METHODS:Three PC cell lines,BxPC-3,AsPC-1 and CAPAN-1,were treated with various concentrations of TSA for def ined periods of time.DNA synthesis was assessed by measuring the incorporation of 5-bromo-2'deoxyuridine.Gene expression at the level of mRNA was quantif ied by real-time polymerase chain reaction.Expression and phosphorylation of proteins was monitored by imm...

  3. Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters

    KAUST Repository

    Grätzel, Carole

    2013-01-01

    Mesoscopic solar cells are one of the most promising photovoltaic technologies among third generation photovoltaics due to their low cost and high efficiency. The morphology of wide-band semiconductors, sensitized with molecular or nanosized light harvesters, used as electron collectors contribute substantially to the device performance. Recent developments in the use of organic-inorganic layer structured perovskites as light absorbers and as electron or hole transport materials allows reduction in the thickness of photoanodes to the submicron level and have raised the power conversion efficiency of solid state mesoscopic solar cells above the 10% level.

  4. Multimodal Resources in Transnational Adoption

    DEFF Research Database (Denmark)

    Raudaskoski, Pirkko Liisa

    The paper discusses an empirical analysis which highlights the multimodal nature of identity construction. A documentary on transnational adoption provides real life incidents as research material. The incidents involve (or from them emerge) various kinds of multimodal resources and participants...

  5. Molecular signatures of the primitive prostate stem cell niche reveal novel mesenchymal-epithelial signaling pathways.

    Directory of Open Access Journals (Sweden)

    Roy Blum

    Full Text Available BACKGROUND: Signals between stem cells and stroma are important in establishing the stem cell niche. However, very little is known about the regulation of any mammalian stem cell niche as pure isolates of stem cells and their adjacent mesenchyme are not readily available. The prostate offers a unique model to study signals between stem cells and their adjacent stroma as in the embryonic prostate stem cell niche, the urogenital sinus mesenchyme is easily separated from the epithelial stem cells. Here we investigate the distinctive molecular signals of these two stem cell compartments in a mammalian system. METHODOLOGY/PRINCIPAL FINDINGS: We isolated fetal murine urogenital sinus epithelium and urogenital sinus mesenchyme and determined their differentially expressed genes. To distinguish transcripts that are shared by other developing epithelial/mesenchymal compartments from those that pertain to the prostate stem cell niche, we also determined the global gene expression of epidermis and dermis of the same embryos. Our analysis indicates that several of the key transcriptional components that are predicted to be active in the embryonic prostate stem cell niche regulate processes such as self-renewal (e.g., E2f and Ap2, lipid metabolism (e.g., Srebp1 and cell migration (e.g., Areb6 and Rreb1. Several of the enriched promoter binding motifs are shared between the prostate epithelial/mesenchymal compartments and their epidermis/dermis counterparts, indicating their likely relevance in epithelial/mesenchymal signaling in primitive cellular compartments. Based on differential gene expression we also defined ligand-receptor interactions that may be part of the molecular interplay of the embryonic prostate stem cell niche. CONCLUSIONS/SIGNIFICANCE: We provide a comprehensive description of the transcriptional program of the major regulators that are likely to control the cellular interactions in the embryonic prostatic stem cell niche, many of which may

  6. Molecular Mechanism of Bovine Trabecular Meshwork Cells Apoptosis Induced by Dexamethasone and Protection by Pilocarpine

    Institute of Scientific and Technical Information of China (English)

    Yajuan Gu; Shujun Zeng; Pengxin Qiu; Yuping Wu; Dawei Peng; Guangmei Yan

    2005-01-01

    Purpose: To study the molecular mechanism of trabecular meshwork cells apoptosis induced by dexamethasone and the protection of pilocarpine.Methods: Determining mRNA expression with reverse transcription-polymerase chain reaction (RT-PCR), protein expression with Western blots and the percentage of apoptotic cells with fluorescent microscopy.Results: Dexamethasone up-regulated Fas proteins and affected Bax, caspase-8 and caspase-9 proteins in an action of first decrease then increase. Pre-treatment with pilocarpine decreased the four proteins expression, which were increased by dexamethasone. Pilocarpine self could decrease pro-apoptotic factors Bax, caspase-8 and caspase-9 proteins expression.Conclusion: Fas/FasL pathway participated in apoptotic process induced by dexamethasone in trabecular meshwork cells and the process was probably related with both caspase-8 and caspase-9 pathways. Pilocarpine protected the cells against apoptosis through down-regulating Fas, Bax, caspase-8 and caspase-9 proteins expression.

  7. Molecular-genetic insights in paediatric T-cell acute lymphoblastic leukaemia.

    Science.gov (United States)

    Van Vlierberghe, Pieter; Pieters, Rob; Beverloo, H Berna; Meijerink, Jules P P

    2008-10-01

    Paediatric T-cell acute lymphoblastic leukaemia (T-ALL) is an aggressive malignancy of thymocytes that accounts for about 15% of ALL cases and for which treatment outcome remains inferior compared to B-lineage acute leukaemias. In T-ALL, leukemic transformation of maturating thymocytes is caused by a multistep pathogenesis involving numerous genetic abnormalities that drive normal T-cells into uncontrolled cell growth and clonal expansion. This review provides an overview of the current knowledge on onco- and tumor suppressor genes in T-ALL and suggests a classification of these genetic defects into type A and type B abnormalities. Type A abnormalities may delineate distinct molecular-cytogenetic T-ALL subgroups, whereas type B abnormalities are found in all major T-ALL subgroups and synergize with these type A mutations during T-cell pathogenesis.

  8. Analysis of Pyramidal Surface Texturization of Silicon Solar Cells by Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Hsiao-Yen Chung

    2008-01-01

    Full Text Available The purpose of this paper is to explore the relations between surface texturization and absorptance of multicrystalline silicon solar cells by a simple new model, based on the classic molecular (MD dynamics simulation, alternative to complex electron-photon interactions to analyze the surface texturization of solar cells. In this study, the large tilted angle leads to the lower efficiency of solar cell. To consider the effect of incident angle, a range of high efficiency exists due to the increasing probability of second reflection. Furthermore, the azimuth angle of incident light also affects the efficiency of solar cells. Our results agree well with previous studies. This MD model can potentially be used to predict the efficiency promotion in any optical reflection-absorption cases.

  9. Idiopathic Autism: Cellular and Molecular Phenotypes in Pluripotent Stem Cell-Derived Neurons.

    Science.gov (United States)

    Liu, Xiaozhuo; Campanac, Emilie; Cheung, Hoi-Hung; Ziats, Mark N; Canterel-Thouennon, Lucile; Raygada, Margarita; Baxendale, Vanessa; Pang, Alan Lap-Yin; Yang, Lu; Swedo, Susan; Thurm, Audrey; Lee, Tin-Lap; Fung, Kwok-Pui; Chan, Wai-Yee; Hoffman, Dax A; Rennert, Owen M

    2016-06-29

    Autism spectrum disorder is a complex neurodevelopmental disorder whose pathophysiology remains elusive as a consequence of the unavailability for study of patient brain neurons; this deficit may potentially be circumvented by neural differentiation of induced pluripotent stem cells. Rare syndromes with single gene mutations and autistic symptoms have significantly advanced the molecular and cellular understanding of autism spectrum disorders; however, in aggregate, they only represent a fraction of all cases of autism. In an effort to define the cellular and molecular phenotypes in human neurons of non-syndromic autism, we generated induced pluripotent stem cells (iPSCs) from three male autism spectrum disorder patients who had no identifiable clinical syndromes, and their unaffected male siblings and subsequently differentiated these patient-specific stem cells into electrophysiologically active neurons. iPSC-derived neurons from these autistic patients displayed decreases in the frequency and kinetics of spontaneous excitatory postsynaptic currents relative to controls, as well as significant decreases in Na(+) and inactivating K(+) voltage-gated currents. Moreover, whole-genome microarray analysis of gene expression identified 161 unique genes that were significantly differentially expressed in autistic patient iPSC-derived neurons (>twofold, FDR autism spectrum disorder. Our data demonstrate aberrant voltage-gated currents and underlying molecular changes related to synaptic function in iPSC-derived neurons from individuals with idiopathic autism as compared to unaffected siblings controls.

  10. p/n-Polarity of thiophene oligomers in photovoltaic cells: role of molecular vs. supramolecular properties.

    Science.gov (United States)

    Ghosh, Tanwistha; Gopal, Anesh; Saeki, Akinori; Seki, Shu; Nair, Vijayakumar C

    2015-04-28

    Molecular and supramolecular properties play key roles in the optoelectronic properties and photovoltaic performances of organic materials. In the present work, we show how small changes in the molecular structure affect such properties, which in turn control the intrinsic and fundamental properties such as the p/n-polarity of organic semiconductors in bulk-heterojunction solar cells. Herein, we designed and synthesized two acceptor-donor-acceptor type semiconducting thiophene oligomers end-functionalized with oxazolone/isoxazolone derivatives (OT1 and OT2 respectively). The HOMO-LUMO energy levels of both derivatives were found to be positioned in such a way that they can act as electron acceptors to P3HT and electron donors to PCBM. However, OT1 functions as a donor (with PCBM) and OT2 as an acceptor (with P3HT) in BHJ photovoltaic cells, and their reverse roles results in either no or poor performance of the cells. Detailed studies using UV-vis absorption and fluorescence spectroscopy, time-correlated single photon counting, UV-photoelectron spectroscopy, density functional theory calculations, X-ray diffraction, and thermal gravimetric analysis proved that both molecular and supramolecular properties contributed equally but in a contrasting manner to the abovementioned observation. The obtained results were further validated by flash-photolysis time-resolved microwave conductivity studies which showed an excellent correlation between the structure, property, and device performances of the materials.

  11. Thermometry of Guided Molecular Beams from a Cryogenic Buffer-Gas Cell

    CERN Document Server

    Wu, X; Zeppenfeld, M; Chervenkov, S; Rempe, G

    2016-01-01

    We present a comprehensive characterization of cold molecular beams from a cryogenic buffer-gas cell, providing an insight into the physics of buffer-gas cooling. Cold molecular beams are extracted from a cryogenic cell by electrostatic guiding, which is also used to measure their velocity distribution. Molecules' rotational-state distribution is probed via radio-frequency resonant depletion spectroscopy. With the help of complete trajectory simulations, yielding the guiding efficiency for all of the thermally populated states, we are able to determine both the rotational and the translational temperature of the molecules at the output of the buffer-gas cell. This thermometry method is demonstrated for various regimes of buffer-gas cooling and beam formation as well as for molecular species of different sizes, $\\rm{CH_3F}$ and $\\rm{CF_3CCH}$. Comparison between the rotational and translational temperatures provides evidence of faster rotational thermalization for the $\\rm{CH_3F-He}$ system in the limit of low...

  12. Biscuit melanoidins of different molecular masses protect human HepG2 cells against oxidative stress.

    Science.gov (United States)

    Martín, María Angeles; Ramos, Sonia; Mateos, Raquel; Rufián-Henares, José Angel; Morales, Francisco José; Bravo, Laura; Goya, Luis

    2009-08-26

    Soluble melanoidins from biscuits were enzymatically solubilized and isolated by sequential ultrafiltration and separated by molecular mass in three different fractions, below 3 kDa, between 3 and 10 kDa, and over 10 kDa; the latter was subsequently digested by simulating gastric plus pancreatic digestive conditions. The four fractions were investigated for their protective effect against an oxidative challenge in HepG2 cells. Pretreatment of cells for 20 h with 0.5-10 microg/mL of any of the four fractions prevented the increased cell damage evoked by the challenge but, except for the intermediate size fraction, did not suppress the increased reactive oxygen species. Antioxidant defenses were rapidly restored after the challenge, and the increase of the oxidative stress biomarker malondialdehyde was prevented by the pretreatment with all but the undigested high molecular mass fraction. The results show that treatment of HepG2 cells with concentrations of biscuit melanoidins within the expected physiological range confers on the cells a significant protection against an oxidative challenge.

  13. Molecular Mechanisms of Fenofibrate-Induced Metabolic Catastrophe and Glioblastoma Cell Death

    Science.gov (United States)

    Wilk, Anna; Wyczechowska, Dorota; Zapata, Adriana; Dean, Matthew; Mullinax, Jennifer; Marrero, Luis; Parsons, Christopher; Peruzzi, Francesca; Culicchia, Frank; Ochoa, Augusto; Grabacka, Maja

    2014-01-01

    Fenofibrate (FF) is a common lipid-lowering drug and a potent agonist of the peroxisome proliferator-activated receptor alpha (PPARα). FF and several other agonists of PPARα have interesting anticancer properties, and our recent studies demonstrate that FF is very effective against tumor cells of neuroectodermal origin. In spite of these promising anticancer effects, the molecular mechanism(s) of FF-induced tumor cell toxicity remains to be elucidated. Here we report a novel PPARα-independent mechanism explaining FF's cytotoxicity in vitro and in an intracranial mouse model of glioblastoma. The mechanism involves accumulation of FF in the mitochondrial fraction, followed by immediate impairment of mitochondrial respiration at the level of complex I of the electron transport chain. This mitochondrial action sensitizes tested glioblastoma cells to the PPARα-dependent metabolic switch from glycolysis to fatty acid β-oxidation. As a consequence, prolonged exposure to FF depletes intracellular ATP, activates the AMP-activated protein kinase–mammalian target of rapamycin–autophagy pathway, and results in extensive tumor cell death. Interestingly, autophagy activators attenuate and autophagy inhibitors enhance FF-induced glioblastoma cytotoxicity. Our results explain the molecular basis of FF-induced glioblastoma cytotoxicity and reveal a new supplemental therapeutic approach in which intracranial infusion of FF could selectively trigger metabolic catastrophe in glioblastoma cells. PMID:25332241

  14. Biophysical and molecular comparison of sodium current in cells isolated from canine atria and pulmonary vein.

    Science.gov (United States)

    Barajas-Martinez, Hector; Goodrow, Robert J; Hu, Dan; Patel, Payal; Desai, Mayurika; Panama, Brian K; Treat, Jacqueline A; Aistrup, Gary L; Cordeiro, Jonathan M

    2017-02-27

    The collar of the pulmonary vein (PV) is the focal point for the initiation of atrial arrhythmias, but the mechanisms underlying how PV cells differ from neighboring left atrial tissue are unclear. We examined the biophysical and molecular properties of INa in cells isolated from the canine pulmonary sleeve and compared the properties to left atrial tissue. PV and left atrial myocytes were isolated and patch clamp techniques were used to record INa. Action potential recordings from either tissue type were made using high-resistance electrodes. mRNA was determined using quantitative RT-PCR and proteins were determined by Western blot. Analysis of the action potential characteristics showed that PV tissue had a lower Vmax compared with left atrial tissue. Fast INa showed that current density was slightly lower in PV cells compared with LA cells (-96 ± 18.7 pA/pF vs. -120 ± 6.7 pA/pF, respectively, p < 0.05). The recovery from inactivation of INa in PV cells was slightly slower but no marked difference in steady-state inactivation was noted. Analysis of late INa during a 225-ms pulse showed that late INa was significantly smaller in PV cells compared to LA cells at all measured time points into the pulse. These results suggest PV cells have lower density of both peak and late INa. Molecular analysis of Nav1.5 and the four beta subunits showed lower levels of Nav1.5 as well as Navβ1 subunits, confirming the biophysical findings. These data show that a lower density of INa may lead to depression of excitability and predispose the PV collar to re-entrant circuits under pathophysiological conditions.

  15. Molecular evolution of hepatitis A virus in a human diploid cell line

    Institute of Scientific and Technical Information of China (English)

    Cai-Hua Tang; Jiang-Sen Mao; Shao-Ai Chai; Yong Chen; Fang-Cheng Zhuang

    2007-01-01

    AIM: To investigate the hotspots, direction, and the time course of evolution of hepatitis A virus in the process of consecutive cell culture passage in human KMB17 diploid cells.METHODS: Wild type hepatitis A virus H2w was serially propagated in KMB17 cells until passage 30, and the full-length genomes of H2w and its six chosen progenies were determined by directly sequencing RT-PCR products amplified from viral genomic RNA. Alignment comparison of sequences from H2w with its six progenies and phylogenetic analysis of the whole VP1 region from H2w, progenies of H2w, and other cell culture adapted hepatitis A virus were then carried out to obtain data on the molecular evolution of hepatitis A virus in the process of consecutive passage in KMB17 cells.RESULTS: Most of the mutations occurred by passage 5 and several hotspots related to adaptation of the virus during cell growth were observed. After that stage, few additional mutations occurred through the remaining duration of passage in KMB17 cells except for mutation in the virulence determinants, which occurred in the vicinity of passage 15. The phylogenetic analysis of the whole VP1 region suggested that the progenies of H2w evolved closely to other cell culture adapted hepatitis A virus, i.e. MBB, L-A-1, other than its progenitor H2w.CONCLUSION: Hepatitis A virus served as a useful model for studying molecular evolution of viruses in a given environment. The information obtained in this study may provide assistance in cultivating the next generation of a seed virus for live hepatitis A vaccine production.

  16. Immunoregulatory Effects Triggered by Lactic Acid Bacteria Exopolysaccharides: New Insights into Molecular Interactions with Host Cells

    Directory of Open Access Journals (Sweden)

    Jonathan Laiño

    2016-08-01

    Full Text Available Researchers have demonstrated that lactic acid bacteria (LAB with immunomodulatory capabilities (immunobiotics exert their beneficial effects through several molecules, including cell wall, peptidoglycan, and exopolysaccharides (EPS, that are able to interact with specific host cell receptors. EPS from LAB show a wide heterogeneity in its composition, meaning that biological properties depend on the strain and. therefore, only a part of the mechanism of action has been elucidated for these molecules. In this review, we summarize the current knowledge of the health-promoting actions of EPS from LAB with special focus on their immunoregulatory actions. In addition, we describe our studies using porcine intestinal epithelial cells (PIE cells as a model to evaluate the molecular interactions of EPS from two immunobiotic LAB strains and the host cells. Our studies showed that EPS from immunobiotic LAB have anti-inflammatory capacities in PIE cells since they are able to reduce the production of inflammatory cytokines in cells challenged with the Toll-like receptor (TLR-4-agonist lipopolysaccharide. The effects of EPS were dependent on TLR2, TLR4, and negative regulators of TLR signaling. We also reported that the radioprotective 105 (RP105/MD1 complex, a member of the TLR family, is partially involved in the immunoregulatory effects of the EPS from LAB. Our work described, for the first time, that LAB and their EPS reduce inflammation in intestinal epithelial cells in a RP105/MD1-dependent manner. A continuing challenge for the future is to reveal more effector-receptor relationships in immunobiotic-host interactions that contribute to the beneficial effects of these bacteria on mucosal immune homeostasis. A detailed molecular understanding should lead to a more rational use of immunobiotics in general, and their EPS in particular, as efficient prevention and therapies for specific immune-related disorders in humans and animals.

  17. Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1.

    Science.gov (United States)

    Salah, R; Michaud, P; Mati, F; Harrat, Z; Lounici, H; Abdi, N; Drouiche, N; Mameri, N

    2013-01-01

    In the present study, anticancer activities of chitin, chitosan and low molecular weight chitin were evaluated using a human tumour cell line, THP-1. A molecular weight-activity relationship and an electrostatic interaction-activity relationship were determined. The cytotoxic effects of chitin and derivatives were also evaluated using a normal human foetal lung fibroblastic cell line, MRC-5 and the specific cytotoxicity of chitin and derivatives to tumour cell lines was demonstrated. The high antitumour effect of low molecular weight of chitin was established.

  18. The Role of c-MYC in B-Cell Lymphomas: Diagnostic and Molecular Aspects.

    Science.gov (United States)

    Nguyen, Lynh; Papenhausen, Peter; Shao, Haipeng

    2017-04-05

    c-MYC is one of the most essential transcriptional factors, regulating a diverse array of cellular functions, including proliferation, growth, and apoptosis. Dysregulation of c-MYC is essential in the pathogenesis of a number of B-cell lymphomas, but is rarely reported in T-cell lymphomas. c-MYC dysregulation induces lymphomagenesis by loss of the tight control of c-MYC expression, leading to overexpression of intact c-MYC protein, in contrast to the somatic mutations or fusion proteins seen in many other oncogenes. Dysregulation of c-MYC in B-cell lymphomas occurs either as a primary event in Burkitt lymphoma, or secondarily in aggressive lymphomas such as diffuse large B-cell lymphoma, plasmablastic lymphoma, mantle cell lymphoma, or double-hit lymphoma. Secondary c-MYC changes include gene translocation and gene amplification, occurring against a background of complex karyotype, and most often confer aggressive clinical behavior, as evidenced in the double-hit lymphomas. In low-grade B-cell lymphomas, acquisition of c-MYC rearrangement usually results in transformation into highly aggressive lymphomas, with some exceptions. In this review, we discuss the role that c-MYC plays in the pathogenesis of B-cell lymphomas, the molecular alterations that lead to c-MYC dysregulation, and their effect on prognosis and diagnosis in specific types of B-cell lymphoma.

  19. Molecular Mechanisms of Induction of Tolerant and Tolerogenic Intestinal Dendritic Cells in Mice.

    Science.gov (United States)

    Steimle, Alex; Frick, Julia-Stefanie

    2016-01-01

    How does the host manage to tolerate its own intestinal microbiota? A simple question leading to complicated answers. In order to maintain balanced immune responses in the intestine, the host immune system must tolerate commensal bacteria in the gut while it has to simultaneously keep the ability to fight pathogens and to clear infections. If this tender equilibrium is disturbed, severe chronic inflammatory reactions can result. Tolerogenic intestinal dendritic cells fulfil a crucial role in balancing immune responses and therefore creating homeostatic conditions and preventing from uncontrolled inflammation. Although several dendritic cell subsets have already been characterized to play a pivotal role in this process, less is known about definite molecular mechanisms of how intestinal dendritic cells are converted into tolerogenic ones. Here we review how gut commensal bacteria interact with intestinal dendritic cells and why this bacteria-host cell interaction is crucial for induction of dendritic cell tolerance in the intestine. Hereby, different commensal bacteria can have distinct effects on the phenotype of intestinal dendritic cells and these effects are mainly mediated by impacting toll-like receptor signalling in dendritic cells.

  20. Cellular and molecular toxicology of lead. I. Effect of lead on cultured cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Kusell, M.; O' Cheskey, S.; Gerschenson, L.E.

    1978-01-01

    Growth studies were done on a cultured rat liver cell line (RLC-GAI) grown in a chemically defined medium in the presence of lead nitrate. Lead reversibly inhibited the growth of these cells even after 6 d of exposure to the heavy metal. To compare lead sensitivity in various cell lines, GI50 and LD50 values were determined in the RLC-GAI cells as well as two glioma cell lines (B82 and C/sub 6/) and a neuroblastoma cell line (N18). The LD50 values paralleled but were consistently lower than the GI50 values. Since lead is known to affect heme synthesis, hemin was added to test the possibility of preventing the growth-inhibitory effect of the lead. The growth capacity of lead-treated cells did not change with the addition of hemin. It is thought that differentiated cultured cell lines such as these could be useful in examining the molecular mechanism of lead toxicity.

  1. Cellular and molecular alterations in human epithelial cells transformed by high let radiation

    Science.gov (United States)

    Hei, T. K.; Piao, C. Q.; Sutter, T.; Willey, J. C.; Suzuki, K.

    An understanding of the radiobiological effects of high LET radiation is essential for human risk estimation and radiation protection. In the present study, we show that a single, 30 cGy dose of 150 keV/mum ^4He ions can malignantly transform human papillomavirus immortalized human bronchial epithelial [BEP2D] cells. Transformed cells produce progressively growing tumors in nude mice. The transformation frequency by the single dose of alpha particles is estimated to be approximately 4 x 10^-7. Based on the average cross-sectional area of BEP2D cells, it can be calculated that a mean traversal of 1.4 particles per cell is sufficient to induce tumorigenic conversion of these cells 3 to 4 months post-irradiation. Tumorigenic BEP2D cells overexpress mutated p53 tumor suppressor oncoproteins in addition to the cell cycle control gene cyclin D1 and D2. This model provides an opportunity to study the cellular and molecular changes at the various stages in radiation carcinogenesis involving human cells.

  2. Open adoption and adoptive mothers: attitudes toward birthmothers, adopted children, and parenting.

    Science.gov (United States)

    Lee, J S; Twaite, J A

    1997-10-01

    The nature and extent of contact between 238 adoptive mothers and their child's biological mother was assessed for the period prior to the birth of the child and during the first two years of the child's life. Adoptive mothers who reported such contact prior to the child's birth had significantly more favorable attitudes toward both the biological mother and the adopted child. Those with contact either before or after the birth also demonstrated significantly more favorable parenting attitudes. Policy implications and the need for further research are noted.

  3. Load cell adoption in an electronic drag force flowmeter Medidor de vazão eletrônico com célula de carga

    Directory of Open Access Journals (Sweden)

    Antonio Pires de Camargo

    2011-06-01

    Full Text Available This research introduces the development of an electronic flowmeter based on the drag force that a body experiences when immersed in a fluid stream. Its main goal was the development of an Electronic Drag Force Flowmeter (EDFF using a load cell, as well as the evaluation of its performance parameters. The developed flowmeter should not require specialized labor, equipments, computers or any sophisticated and complex method, providing an easy and accurate way of flow estimation. This research was carried out in the following stages: (i EDFF mechanical structure development; (ii data acquisition system and embedded software design; and (iii evaluation of EDFF performance parameters. EDFF has routines for instantaneous flow rate measurement, interactive calibration, and also several flow meter parameter adjustments, allowing data transmission via a RS232 protocol. The real-time flow measurement task updates values of instantaneous flow rate each seven seconds, enabling unit selection. The interactive calibration routine guides users during all calibration process showing instructions on EDFF's display. A data digital filtering procedure was implemented in an embedded software using the Grubbs' Test in order to identify and to remove outliers from the acquired data. The Method of Least Squares was also implemented in the embedded software in order to calculate the fitting model coefficients on the calibration procedure. This flowmeter is able to work from 1.94 to 7.78 dm³ s-1 with an uncertainty of ± 5.7%. The coefficient of local head loss (K was close to 0.55 for Reynolds number values higher than 10(5. The developed EDFF is a low-cost and stand-alone system with potential for agricultural applications.Este estudo apresenta o desenvolvimento de um medidor de vazão baseado na força de arraste que atua em um corpo imerso em uma corrente líquida. O principal objetivo foi o desenvolvimento de um Medidor de Vazão Eletrônico tipo Força (MVEF

  4. The molecular mechanisms and gene expression profiling for shikonin-induced apoptotic and necroptotic cell death in U937 cells.

    Science.gov (United States)

    Piao, Jin-Lan; Cui, Zheng-Guo; Furusawa, Yukihiro; Ahmed, Kanwal; Rehman, Mati Ur; Tabuchi, Yoshiaki; Kadowaki, Makoto; Kondo, Takashi

    2013-09-25

    Shikonin (SHK), a natural naphthoquinone derived from the Chinese medical herb Lithospermum erythrorhizon, induces both apoptosis and necroptosis in several cancer cell lines. However, the detailed molecular mechanisms involved in the initiation of cell death are still unclear. In the present study, caspase-dependent apoptosis was induced by SHK treatment at 1μM after 6h in U937 cells, with increase in DNA fragmentation, generation of intracellular reactive oxygen species (ROS), fraction of cells with low mitochondrial membrane potential (MMP), and in the expression of BH3 only proteins Noxa and tBid. Interestingly, caspase-independent cell death was also detected with SHK treatment at 10μM, observed as increase in SYTOX® Green staining and release of lactate dehydrogenase (LDH). Necrostatin-1 (Nec-1) completely inhibited the SHK-induced leakage of LDH and SYTOX® Green staining. Cell permeable exogenous glutathione (GSH) completely inhibited 1μM SHK-induced apoptosis and converted 10μM SHK-induced necroptosis to apoptosis. Gene expression profiling revealed that 353 genes were found to be significantly regulated by 1μM and 85 genes by 10μM of SHK treatment, respectively. Among these genes, the transcription factor 3 (ATF3) and DNA-damage-inducible transcript 3 (DDIT3) were highly expressed at 1μM of SHK treatment, while tumor necrosis factor (TNF) expression mainly increased at 10μM treatment. These findings provide novel information for the molecular mechanism of SHK-induced apoptosis and necroptosis.

  5. Melanoma: Stem cells, sun exposure and hallmarks for carcinogenesis, molecular concepts and future clinical implications

    Directory of Open Access Journals (Sweden)

    Kyrgidis Athanassios

    2010-01-01

    Full Text Available Background :The classification and prognostic assessment of melanoma is currently based on morphologic and histopathologic biomarkers. Availability of an increasing number of molecular biomarkers provides the potential for redefining diagnostic and prognostic categories and utilizing pharmacogenomics for the treatment of patients. The aim of the present review is to provide a basis that will allow the construction-or reconstruction-of future melanoma research. Methods: We critically review the common medical databases (PubMed, EMBASE, Scopus and Cochrane CENTRAL for studies reporting on molecular biomarkers for melanoma. Results are discussed along the hallmarks proposed for malignant transformation by Hanahan and Weinberg. We further discuss the genetic basis of melanoma with regard to the possible stem cell origin of melanoma cells and the role of sunlight in melanoma carcinogenesis. Results: Melanocyte precursors undergo several genome changes -UV-induced or not- which could be either mutations or epigenetic. These changes provide stem cells with abilities to self-invoke growth signals, to suppress anti-growth signals, to avoid apoptosis, to replicate without limit, to invade, proliferate and sustain angiogenesis. Melanocyte stem cells are able to progressively collect these changes in their genome. These new potential functions, drive melanocyte precursors to the epidermis were they proliferate and might cause benign nevi. In the epidermis, they are still capable of acquiring new traits via changes to their genome. With time, such changes could add up to transform a melanocyte precursor to a malignant melanoma stem cell. Conclusions : Melanoma cannot be considered a "black box" for researchers anymore. Current trends in the diagnosis and prognosis of melanoma are to individualize treatment based on molecular biomarkers. Pharmacogenomics constitute a promising field with regard to melanoma patients′ treatment. Finally, development of novel

  6. Molecular Cloning and Functional Analysis of ESGP, an Embryonic Stem Cell and Germ Cell Specific Protein

    Institute of Scientific and Technical Information of China (English)

    Yan-Mei CHEN; Zhong-Wei DU; Zhen YAO

    2005-01-01

    Several putative Oct-4 downstream genes from mouse embryonic stem (ES) cells have been identified using the suppression-subtractive hybridization method. In this study, one of the novel genes encoding an ES cell and germ cell specific protein (ESGP) was cloned by rapid amplification of cDNA ends.ESGP contains 801 bp encoding an 84 amino acid small protein and has no significant homology to any known genes. There is a signal peptide at the N-terminal of ESGP protein as predicted by SeqWeb (GCG)(SeqWeb version 2.0.2, http://gcg.biosino.org:8080/). The result of immunofluorescence assay suggested that ESGP might encode a secretory protein. The expression pattern of ESGP is consistent with the expression of Oct-4 during embryonic development. ESGP protein was detected in fertilized oocyte, from 3.5 day postcoital (dpc) blastocyst to 17.5 dpc embryo, and was only detected in testis and ovary tissues in adult. In vitro, ESGP was only expressed in pluripotent cell lines, such as embryonic stem cells, embryonic carcinoma cells and embryonic germ cells, but not in their differentiated progenies. Despite its specific expression,forced expression of ESGP is not indispensable for the effect of Oct-4 on ES cell self-renewal, and does not affect the differentiation to three germ layers.

  7. Approaches for cytogenetic and molecular analyses of small flow-sorted cell populations from childhood leukemia bone marrow samples

    DEFF Research Database (Denmark)

    Obro, Nina Friesgaard; Madsen, Hans O.; Ryder, Lars Peter;

    2011-01-01

    defined cell populations with subsequent analyses of leukemia-associated cytogenetic and molecular marker. The approaches described here optimize the use of the same tube of unfixed, antibody-stained BM cells for flow-sorting of small cell populations and subsequent exploratory FISH and PCR-based analyses....

  8. Change of the cell cycle after flutamide treatment in prostate cancer cells and its molecular mechanism

    Institute of Scientific and Technical Information of China (English)

    Yong Wang; Wei-Jun Qin; He Wang; Guo-Xing Shao; Chen Shao; Chang-Hong Shi; Lei Zhang; Hong-Hong Yue; Peng-Fei Wang; Bo Yang; Yun-Tao Zhang; Fan Liu

    2005-01-01

    Aim: To explore the effect of androgen receptor (AR) on the expression of the cell cycle-related genes, such as CDKN1A and BTG1, in prostate cancer cell line LNCaP. Methods: After AR antagonist flutamide treatment and confirmation of its effect by phase contrast microscope and flow cytometry, the differential expression of the cell cycle-related genes was analyzed by a cDNA microarray. The flutamide treated cells were set as the experimental group and the LNCaP cells as the control. We labeled cDNA probes of the experimental group and control group with Cy5 and Cy3 dyes, respectively, through reverse transcription. Then we hybridized the cDNA probes with cDNA microarrays, which contained 8 126 unique human cDNA sequences and the chip was scanned to get the fluorescent values of Cy5 and Cy3 on each spot. After primary analysis, reverse transcription polymerase chain reaction (RTPCR) tests were carried out to confirm the results of the chips. Results:After AR antagonist flutamide treatment,three hundred and twenty-six genes (3.93 %) expressed differentially, 97 down-regulated and 219 up-regulated.Among them, eight up-regulated genes might be cell cycle-related, namely CDC10, NRAS, BTG1, Weel, CLK3,DKFZP564A122, CDKN1A and BTG2. The CDKN1A and BTG1 gene mRNA expression was confirmed to be higher in the experimental group by RT-PCR, whilep53 mRNA expression had no significant changes. Conclusio