WorldWideScience

Sample records for cell-wall invertase genes

  1. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato

    DEFF Research Database (Denmark)

    Albacete, Alfonso; Cantero-Navarro, Elena; Grosskinsky, Dominik Kilian

    2015-01-01

    in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall...... invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50......%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold...

  2. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato.

    Science.gov (United States)

    Albacete, Alfonso; Cantero-Navarro, Elena; Großkinsky, Dominik K; Arias, Cintia L; Balibrea, María Encarnación; Bru, Roque; Fragner, Lena; Ghanem, Michel E; González, María de la Cruz; Hernández, Jose A; Martínez-Andújar, Cristina; van der Graaff, Eric; Weckwerth, Wolfram; Zellnig, Günther; Pérez-Alfocea, Francisco; Roitsch, Thomas

    2015-02-01

    Drought stress conditions modify source-sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold higher cwInv activity in all analysed conditions. Surprisingly, the enhanced invertase activity did not result in increased hexose concentrations due to the activation of the metabolic carbohydrate fluxes, as reflected by the maintenance of the activity of key enzymes of primary metabolism and increased levels of sugar-phosphate intermediates under water deprivation. The induced sink metabolism in the leaves explained the maintenance of photosynthetic activity, delayed senescence, and increased source activity under drought stress. Moreover, CIN1 plants also presented a better control of production of reactive oxygen species and sustained membrane protection. Those metabolic changes conferred by CIN1 overexpression were accompanied by increases in the concentrations of the

  3. Pleiotropy and its limited dissection through a metabolic gene Miniature1 (Mn1) that encodes a cell wall invertase in developing seeds of maize.

    Science.gov (United States)

    The Mn1-encoded endosperm-specific cell wall invertase is a major determinant of sink strength of developing seeds through its control of both sink size, cell number and cell size, and sink activity via sucrose hydrolysis and release of hexoses essential for energy and signaling functions. Consequen...

  4. Genome-Wide Identification, 3D Modeling, Expression and Enzymatic Activity Analysis of Cell Wall Invertase Gene Family from Cassava (Manihot esculenta Crantz

    Directory of Open Access Journals (Sweden)

    Yuan Yao

    2014-04-01

    Full Text Available The cell wall invertases play a crucial role on the sucrose metabolism in plant source and sink organs. In this research, six cell wall invertase genes (MeCWINV1-6 were cloned from cassava. All the MeCWINVs contain a putative signal peptide with a predicted extracellular location. The overall predicted structures of the MeCWINV1-6 are similar to AtcwINV1. Their N-terminus domain forms a β-propeller module and three conserved sequence domains (NDPNG, RDP and WECP(VD, in which the catalytic residues are situated in these domains; while the C-terminus domain consists of a β-sandwich module. The predicted structure of Pro residue from the WECPD (MeCWINV1, 2, 5, and 6, and Val residue from the WECVD (MeCWINV3 and 4 are different. The activity of MeCWINV1 and 3 were higher than other MeCWINVs in leaves and tubers, which suggested that sucrose was mainly catalyzed by the MeCWINV1 and 3 in the apoplastic space of cassava source and sink organs. The transcriptional levels of all the MeCWINVs and their enzymatic activity were lower in tubers than in leaves at all the stages during the cassava tuber development. It suggested that the major role of the MeCWINVs was on the regulation of carbon exportation from source leaves, and the ratio of sucrose to hexose in the apoplasts; the role of these enzymes on the sucrose unloading to tuber was weaker.

  5. Genome-wide identification, 3D modeling, expression and enzymatic activity analysis of cell wall invertase gene family from cassava (Manihot esculenta Crantz).

    Science.gov (United States)

    Yao, Yuan; Geng, Meng-Ting; Wu, Xiao-Hui; Liu, Jiao; Li, Rui-Mei; Hu, Xin-Wen; Guo, Jian-Chun

    2014-04-28

    The cell wall invertases play a crucial role on the sucrose metabolism in plant source and sink organs. In this research, six cell wall invertase genes (MeCWINV1-6) were cloned from cassava. All the MeCWINVs contain a putative signal peptide with a predicted extracellular location. The overall predicted structures of the MeCWINV1-6 are similar to AtcwINV1. Their N-terminus domain forms a β-propeller module and three conserved sequence domains (NDPNG, RDP and WECP(V)D), in which the catalytic residues are situated in these domains; while the C-terminus domain consists of a β-sandwich module. The predicted structure of Pro residue from the WECPD (MeCWINV1, 2, 5, and 6), and Val residue from the WECVD (MeCWINV3 and 4) are different. The activity of MeCWINV1 and 3 were higher than other MeCWINVs in leaves and tubers, which suggested that sucrose was mainly catalyzed by the MeCWINV1 and 3 in the apoplastic space of cassava source and sink organs. The transcriptional levels of all the MeCWINVs and their enzymatic activity were lower in tubers than in leaves at all the stages during the cassava tuber development. It suggested that the major role of the MeCWINVs was on the regulation of carbon exportation from source leaves, and the ratio of sucrose to hexose in the apoplasts; the role of these enzymes on the sucrose unloading to tuber was weaker.

  6. Gibberellin (GA3) enhances cell wall invertase activity and mRNA levels in elongating dwarf pea (Pisum sativum) shoots

    Science.gov (United States)

    Wu, L. L.; Mitchell, J. P.; Cohn, N. S.; Kaufman, P. B.

    1993-01-01

    The invertase (EC 3.2.1.26) purified from cell walls of dwarf pea stems to homogeneity has a molecular mass of 64 kilodaltons (kD). Poly(A)+RNA was isolated from shoots of dwarf pea plants, and a cDNA library was constructed using lambda gt11 as an expression vector. The expression cDNA library was screened with polyclonal antibodies against pea cell wall invertase. One invertase cDNA clone was characterized as a full-length cDNA with 1,863 base pairs. Compared with other known invertases, one homologous region in the amino acid sequence was found. The conserved motif, Asn-Asp-Pro-Asn-Gly, is located near the N-terminal end of invertase. Northern blot analysis showed that the amount of invertase mRNA (1.86 kb) was rapidly induced to a maximal level 4 h after GA3 treatment, then gradually decreased to the control level. The mRNA level at 4 h in GA3-treated peas was fivefold higher than that of the control group. The maximal increase in activity of pea cell wall invertase elicited by GA3 occcured at 8 h after GA3 treatment. This invertase isoform was shown immunocytochemically to be localized in the cell walls, where a 10-fold higher accumulation occurred in GA3-treated tissue compared with control tissue. This study indicates that the expression of the pea shoot cell-wall invertase gene could be regulated by GA3 at transcriptional and/or translational levels.

  7. Cell-wall Invertases from Rice are Differentially Expressed in Caryopsis during the Grain Filling Stage

    Institute of Scientific and Technical Information of China (English)

    Yong-Qin Wang; Gui-Fang Xiao; Zhen Zhu; Xiao-Li Wei; Hong-Lin Xu; Cheng-Lin Chai; Kun Meng; Hong-Li Zhai; Ai-Jun Sun; Yong-Gang Peng; Bin Wu

    2008-01-01

    Cell-wall Invertase plays an important role in sucrose partitioning between source and sink organs in higher plants. To Investigate the role of cell-wall invertases for seed development In rice (Oryza sativa L.), cDNAs of three putative cell-wall invertase genes OsCIN1, OsCIN2 and OsCIN3 were Isolated. Semi-quantitative reverse transcdption-polymerase chain reaction analysis revealed different expression patterns of the three genes in various rice tissues/organs. In developing ceryopses, they exhibited similar temporal expression patterns, expressed highly at the early and middle grain filling stages and gradually declined to low levels afterward. However, the spatial expression patterns of them were very different, with OsCIN1 primarily expressed in the ceryopsis coat, OsCIN2 in embryo and endosperm, and OsCIN3 In embryo. Further RNA in situ hybridization analysis revealed that a strong signal of OsCIN2 mRNA was detected In the vascular parenchyma surrounding the xylem of the chalazal vein and the aleurone layer, whereas OsCIN3 transcdpt was strongly detected in the vascular parenchyma surrounding the phloem of the chalazal vein, cross.cells, the aleurone layer and the nucellar tissue.These data indicate that the three cell-wall invertase genes play complementary/synergetic roles in assimilate unloading during the grain filling stage. In addition, the cell type-specific expression patterns of OsClN3 In source leaf blades end anthers were also Investigated, and its corresponding physiological roles were discussed.

  8. Auxin and Cell Wall Invertase Related Signaling during Rice Grain Development

    Directory of Open Access Journals (Sweden)

    Sarah Russell French

    2014-02-01

    Full Text Available Indole-3-acetic acid (IAA synthesis is required for grain-fill in maize and appears to be regulated by cell-wall invertase (CWIN activity. OsYUC12 is one of three IAA biosynthesis genes we previously reported as expressed during early rice grain development, correlating with a large increase in IAA content of the grain. This work aimed to investigate further the role of OsYUC12 and its relationship to CWIN activity and invertase inhibitors (INVINH. The analysis shows a brief peak of OsYUC12 expression early in endosperm development. Meta-analysis of microarray data, confirmed by quantitative expression analysis, revealed that OsYUC12 is coexpressed with OsIAA29, which encodes an unusual AUX/IAA transcription factor previously reported as poorly expressed. Maximum expression of OsYUC12 and OsIAA29 coincided with maximum CWIN activity, but also with a peak in INVINH expression. Unlike ZmYUC1, OsYUC12 expression is not reduced in the rice CWIN mutant, gif1. Several reports have investigated CWIN expression in rice grains but none has reported on expression of INVINH in this species. We show that rice has 54 genes encoding putative invertase/pectin methylesterase inhibitors, seven of which are expressed exclusively during grain development. Our results suggest a more complex relationship between IAA, CWIN, and INVINH than previously proposed.

  9. Structural insights into the pH-controlled targeting of plant cell-wall invertase by a specific inhibitor protein

    OpenAIRE

    Hothorn, Michael; Van den Ende, Wim; Lammens, Willem; Rybin, Vladimir; Scheffzek, Klaus

    2010-01-01

    Invertases are highly regulated enzymes with essential functions in carbohydrate partitioning, sugar signaling, and plant development. Here we present the 2.6 Å crystal structure of Arabidopsis cell-wall invertase 1 (INV1) in complex with a protein inhibitor (CIF, or cell-wall inhibitor of β-fructosidase) from tobacco. The structure identifies a small amino acid motif in CIF that directly targets the invertase active site. The activity of INV1 and its interaction with CIF are strictly pH-depe...

  10. Purification and characterization of soluble (cytosolic) and bound (cell wall) isoforms of invertases in barley (Hordeum vulgare) elongating stem tissue

    Science.gov (United States)

    Karuppiah, N.; Vadlamudi, B.; Kaufman, P. B.

    1989-01-01

    Three different isoforms of invertases have been detected in the developing internodes of barley (Hordeum vulgare). Based on substrate specificities, the isoforms have been identified to be invertases (beta-fructosidases EC 3.2.1.26). The soluble (cytosolic) invertase isoform can be purified to apparent homogeneity by diethylaminoethyl cellulose, Concanavalin-A Sepharose, organo-mercurial Sepharose, and Sephacryl S-300 chromatography. A bound (cell wall) invertase isoform can be released by 1 molar salt and purified further by the same procedures as above except omitting the organo-mercurial Sepharose affinity chromatography step. A third isoform of invertase, which is apparently tightly associated with the cell wall, cannot be isolated yet. The soluble and bound invertase isoforms were purified by factors of 60- and 7-fold, respectively. The native enzymes have an apparent molecular weight of 120 kilodaltons as estimated by gel filtration. They have been identified to be dimers under denaturing and nondenaturing conditions. The soluble enzyme has a pH optimum of 5.5, Km of 12 millimolar, and a Vmax of 80 micromole per minute per milligram of protein compared with cell wall isozyme which has a pH optimum of 4.5, Km of millimolar, and a Vmax of 9 micromole per minute per milligram of protein.

  11. Structural insights into the pH-controlled targeting of plant cell-wall invertase by a specific inhibitor protein.

    Science.gov (United States)

    Hothorn, Michael; Van den Ende, Wim; Lammens, Willem; Rybin, Vladimir; Scheffzek, Klaus

    2010-10-05

    Invertases are highly regulated enzymes with essential functions in carbohydrate partitioning, sugar signaling, and plant development. Here we present the 2.6 Å crystal structure of Arabidopsis cell-wall invertase 1 (INV1) in complex with a protein inhibitor (CIF, or cell-wall inhibitor of β-fructosidase) from tobacco. The structure identifies a small amino acid motif in CIF that directly targets the invertase active site. The activity of INV1 and its interaction with CIF are strictly pH-dependent with a maximum at about pH 4.5. At this pH, isothermal titration calorimetry reveals that CIF tightly binds its target with nanomolar affinity. CIF competes with sucrose (Suc) for the same binding site, suggesting that both the extracellular Suc concentration and the pH changes regulate association of the complex. A conserved glutamate residue in the complex interface was previously identified as an important quantitative trait locus affecting fruit quality, which implicates the invertase-inhibitor complex as a main regulator of carbon partitioning in plants. Comparison of the CIF/INV1 structure with the complex between the structurally CIF-related pectin methylesterase inhibitor (PMEI) and pectin methylesterase indicates a common targeting mechanism in PMEI and CIF. However, CIF and PMEI use distinct surface areas to selectively inhibit very different enzymatic scaffolds.

  12. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level.

    Science.gov (United States)

    Jin, Ye; Ni, Di-An; Ruan, Yong-Ling

    2009-07-01

    Invertase plays multiple pivotal roles in plant development. Thus, its activity must be tightly regulated in vivo. Emerging evidence suggests that a group of small proteins that inhibit invertase activity in vitro appears to exist in a wide variety of plants. However, little is known regarding their roles in planta. Here, we examined the function of INVINH1, a putative invertase inhibitor, in tomato (Solanum lycopersicum). Expression of a INVINH1:green fluorescent protein fusion revealed its apoplasmic localization. Ectopic overexpression of INVINH1 in Arabidopsis thaliana specifically reduced cell wall invertase activity. By contrast, silencing its expression in tomato significantly increased the activity of cell wall invertase without altering activities of cytoplasmic and vacuolar invertases. Elevation of cell wall invertase activity in RNA interference transgenic tomato led to (1) a prolonged leaf life span involving in a blockage of abscisic acid-induced senescence and (2) an increase in seed weight and fruit hexose level, which is likely achieved through enhanced sucrose hydrolysis in the apoplasm of the fruit vasculature. This assertion is based on (1) coexpression of INVINH1 and a fruit-specific cell wall invertase Lin5 in phloem parenchyma cells of young fruit, including the placenta regions connecting developing seeds; (2) a physical interaction between INVINH1 and Lin5 in vivo; and (3) a symplasmic discontinuity at the interface between placenta and seeds. Together, the results demonstrate that INVINH1 encodes a protein that specifically inhibits the activity of cell wall invertase and regulates leaf senescence and seed and fruit development in tomato by limiting the invertase activity in planta.

  13. Structural insights into the pH-controlled targeting of plant cell-wall invertase by a specific inhibitor protein

    Science.gov (United States)

    Hothorn, Michael; Van den Ende, Wim; Lammens, Willem; Rybin, Vladimir; Scheffzek, Klaus

    2010-01-01

    Invertases are highly regulated enzymes with essential functions in carbohydrate partitioning, sugar signaling, and plant development. Here we present the 2.6 Å crystal structure of Arabidopsis cell-wall invertase 1 (INV1) in complex with a protein inhibitor (CIF, or cell-wall inhibitor of β-fructosidase) from tobacco. The structure identifies a small amino acid motif in CIF that directly targets the invertase active site. The activity of INV1 and its interaction with CIF are strictly pH-dependent with a maximum at about pH 4.5. At this pH, isothermal titration calorimetry reveals that CIF tightly binds its target with nanomolar affinity. CIF competes with sucrose (Suc) for the same binding site, suggesting that both the extracellular Suc concentration and the pH changes regulate association of the complex. A conserved glutamate residue in the complex interface was previously identified as an important quantitative trait locus affecting fruit quality, which implicates the invertase–inhibitor complex as a main regulator of carbon partitioning in plants. Comparison of the CIF/INV1 structure with the complex between the structurally CIF-related pectin methylesterase inhibitor (PMEI) and pectin methylesterase indicates a common targeting mechanism in PMEI and CIF. However, CIF and PMEI use distinct surface areas to selectively inhibit very different enzymatic scaffolds. PMID:20858733

  14. Cell Wall Invertase Promotes Fruit Set under Heat Stress by Suppressing ROS-Independent Cell Death1[OPEN

    Science.gov (United States)

    2016-01-01

    Reduced cell wall invertase (CWIN) activity has been shown to be associated with poor seed and fruit set under abiotic stress. Here, we examined whether genetically increasing native CWIN activity would sustain fruit set under long-term moderate heat stress (LMHS), an important factor limiting crop production, by using transgenic tomato (Solanum lycopersicum) with its CWIN inhibitor gene silenced and focusing on ovaries and fruits at 2 d before and after pollination, respectively. We found that the increase of CWIN activity suppressed LMHS-induced programmed cell death in fruits. Surprisingly, measurement of the contents of H2O2 and malondialdehyde and the activities of a cohort of antioxidant enzymes revealed that the CWIN-mediated inhibition on programmed cell death is exerted in a reactive oxygen species-independent manner. Elevation of CWIN activity sustained Suc import into fruits and increased activities of hexokinase and fructokinase in the ovaries in response to LMHS. Compared to the wild type, the CWIN-elevated transgenic plants exhibited higher transcript levels of heat shock protein genes Hsp90 and Hsp100 in ovaries and HspII17.6 in fruits under LMHS, which corresponded to a lower transcript level of a negative auxin responsive factor IAA9 but a higher expression of the auxin biosynthesis gene ToFZY6 in fruits at 2 d after pollination. Collectively, the data indicate that CWIN enhances fruit set under LMHS through suppression of programmed cell death in a reactive oxygen species-independent manner that could involve enhanced Suc import and catabolism, HSP expression, and auxin response and biosynthesis. PMID:27462084

  15. Transgene silencing of sucrose synthase in alfalfa (Medicago sativa L.) stem vascular tissue suggests a role for invertase in cell wall cellulose synthesis.

    Science.gov (United States)

    Samac, Deborah A; Bucciarelli, Bruna; Miller, Susan S; Yang, S Samuel; O'Rourke, Jamie A; Shin, Sanghyun; Vance, Carroll P

    2015-12-01

    Alfalfa (Medicago sativa L.) is a widely adapted perennial forage crop that has high biomass production potential. Enhanced cellulose content in alfalfa stems would increase the value of the crop as a bioenergy feedstock. We examined if increased expression of sucrose synthase (SUS; EC 2.4.1.13) would increase cellulose in stem cell walls. Alfalfa plants were transformed with a truncated alfalfa phosphoenolpyruvate carboxylase gene promoter (PEPC7-P4) fused to an alfalfa nodule-enhanced SUS cDNA (MsSUS1) or the β-glucuronidase (GUS) gene. Strong GUS expression was detected in xylem and phloem indicating that the PEPC7-P4 promoter was active in stem vascular tissue. In contrast to expectations, MsSUS1 transcript accumulation was reduced 75-90 % in alfalfa plants containing the PEPC7-P4::MsSUS1 transgene compared to controls. Enzyme assays indicated that SUS activity in stems of selected down-regulated transformants was reduced by greater than 95 % compared to the controls. Although SUS activity was detected in xylem and phloem of control plants by in situ enzyme assays, plants with the PEPC7-P4::MsSUS1 transgene lacked detectable SUS activity in post-elongation stem (PES) internodes and had very low SUS activity in elongating stem (ES) internodes. Loss of SUS protein in PES internodes of down-regulated lines was confirmed by immunoblots. Down-regulation of SUS expression and activity in stem tissue resulted in no obvious phenotype or significant change in cell wall sugar composition. However, alkaline/neutral (A/N) invertase activity increased in SUS down-regulated lines and high levels of acid invertase activity were observed. In situ enzyme assays of stem tissue showed localization of neutral invertase in vascular tissues of ES and PES internodes. These results suggest that invertases play a primary role in providing glucose for cellulose biosynthesis or compensate for the loss of SUS1 activity in stem vascular tissue.

  16. Regulation of cell wall-bound invertase in pepper leaves by Xanthomonas campestris pv. vesicatoria type three effectors.

    Directory of Open Access Journals (Sweden)

    Sophia Sonnewald

    Full Text Available Xanthomonas campestris pv. vesicatoria (Xcv possess a type 3 secretion system (T3SS to deliver effector proteins into its Solanaceous host plants. These proteins are involved in suppression of plant defense and in reprogramming of plant metabolism to favour bacterial propagation. There is increasing evidence that hexoses contribute to defense responses. They act as substrates for metabolic processes and as metabolic semaphores to regulate gene expression. Especially an increase in the apoplastic hexose-to-sucrose ratio has been suggested to strengthen plant defense. This shift is brought about by the activity of cell wall-bound invertase (cw-Inv. We examined the possibility that Xcv may employ type 3 effector (T3E proteins to suppress cw-Inv activity during infection. Indeed, pepper leaves infected with a T3SS-deficient Xcv strain showed a higher level of cw-Inv mRNA and enzyme activity relative to Xcv wild type infected leaves. Higher cw-Inv activity was paralleled by an increase in hexoses and mRNA abundance for the pathogenesis-related gene PRQ. These results suggest that Xcv suppresses cw-Inv activity in a T3SS-dependent manner, most likely to prevent sugar-mediated defense signals. To identify Xcv T3Es that regulate cw-Inv activity, a screen was performed with eighteen Xcv strains, each deficient in an individual T3E. Seven Xcv T3E deletion strains caused a significant change in cw-Inv activity compared to Xcv wild type. Among them, Xcv lacking the xopB gene (Xcv ΔxopB caused the most prominent increase in cw-Inv activity. Deletion of xopB increased the mRNA abundance of PRQ in Xcv ΔxopB-infected pepper leaves, but not of Pti5 and Acre31, two PAMP-triggered immunity markers. Inducible expression of XopB in transgenic tobacco inhibited Xcv-mediated induction of cw-Inv activity observed in wild type plants and resulted in severe developmental phenotypes. Together, these data suggest that XopB interferes with cw-Inv activity in planta to

  17. Activity, but not Expression, of Soluble and Cell Wall-Bound Acid Invertases Is Induced by Abscisic Acid in Developing Apple Fruit

    Institute of Scientific and Technical Information of China (English)

    Qiu-Hong Pan; Xiang-Chun Yu; Na Zhang; Xun Zou; Chang-Cao Peng; Xiu-Ling Wang; Ke-Qin Zou; Da-Peng Zhang

    2006-01-01

    The present experiment, involving both the in vivo injection of abscisic acid (ABA) into apple (Malus domestica Brohk.) fruits and the in vivo incubation of fruit tissues in ABA-containing medium, revealed that ABA activates both soluble and cell wall-bound acid invertases. Immunoblotting and enzyme-linked immunosorbent assays showed that this ABA-induced acid invertase activation is independent of the amount of enzyme present. The acid invertase activation induced by ABA is dependent on medium pH, time course, ABA dose, living tissue and developmental stage. Two isomers of cis-(+)-ABA, (-)-ABA and transABA, had no effect on acid invertases, showing that ABA-induced acid invertase activation is specific to physiologically active cis-(+)ABA. Protein kinase inhibitors K252a and H7 as well as acid phosphatase increased the ABA-induced effects. These data indicate that ABA specifically activates both soluble and cell wall-bound acid invertases by a posttranslational mechanism probably involving reversible protein phosphorylation, and this may be one of the mechanisms by which ABA is involved in regulating fruit development.

  18. Phloem sugar flux and jasmonic acid-responsive cell wall invertase control extrafloral nectar secretion in Ricinus communis.

    Science.gov (United States)

    Millán-Cañongo, Cynthia; Orona-Tamayo, Domancar; Heil, Martin

    2014-07-01

    Plants secrete extrafloral nectar (EFN) that attracts predators. The efficiency of the resulting anti-herbivore defense depends on the quantity and spatial distribution of EFN. Thus, according to the optimal defense hypothesis (ODH), plants should secrete EFN on the most valuable organs and when herbivore pressure is high. Ricinus communis plants secreted most EFN on the youngest (i.e., most valuable) leaves and after the simulation of herbivory via the application of jasmonic acid (JA). Here, we investigated the physiological mechanisms that might produce these seemingly adaptive spatiotemporal patterns. Cell wall invertase (CWIN; EC 3.2.1.26) was most active in the hours before peak EFN secretion, its decrease preceded the decrease in EFN secretion, and CWIN activity was inducible by JA. Thus, CWIN appears to be a central player in EFN secretion: its activation by JA is likely to cause the induction of EFN secretion after herbivory. Shading individual leaves decreased EFN secretion locally on these leaves with no effect on CWIN activity in the nectaries, which is likely to be because it decreased the content of sucrose, the substrate of CWIN, in the phloem. Our results demonstrate how the interplay of two physiological processes can cause ecologically relevant spatiotemporal patterns in a plant defense trait.

  19. Cloning and expression of cell wall acid invertase gene fragment ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... photosynthetic products, plant development, hormone responses and stress ... aspects of plant life cycle, including fruit quality, yield and fertility. (Roitsch and Weber ... bracts during different developmental stages by reverse.

  20. The Physiological and Biochemical Mechanisms Providing the Increased Constitutive Cold Resistance in the Potato Plants, Expressing the Yeast SUC2 Gene Encoding Apoplastic Invertase

    Directory of Open Access Journals (Sweden)

    A.N. Deryabin

    2016-05-01

    Full Text Available The expression of heterologous genes in plants is an effective method to improve our understanding of plant resistance mechanisms. The purpose of this work was to investigate the involvement of cell-wall invertase and apoplastic sugars into constitutive cold resistance of potato (Solanum tuberosum L., cv. Dйsirйe plants, which expressed the yeast SUC2 gene encoding apoplastic invertase. WT-plants of a potato served as the control. The increase in the essential cell-wall invertase activity in the leaves of transformed plants indicates significant changes in the cellular carbohydrate metabolism and regulatory function of this enzyme. The activity of yeast invertase changed the composition of intracellular sugars in the leaves of the transformed potato plant. The total content of sugars (sucrose, glucose, fructose in the leaves and apoplast was higher in the transformants, in comparison by WT-plants. Our data indicate higher constitutive resistance of transformants to severe hypothermia conditions compared to WT-plants. This fact allows us to consider cell-wall invertase as a enzyme of carbohydrate metabolism playing an important regulatory role in the metabolic signaling upon forming increased plant resistance to low temperature. Thus, the potato line with the integrated SUC2 gene is a convenient tool to study the role of the apoplastic invertase and the products of its activity during growth, development and formation constitutive resistance to hypothermia.

  1. Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Bartley, Laura [Univ. of Oklahoma, Norman, OK (United States). Dept. of Microbiology and Plant Biology; Wu, Y. [Oklahoma State Univ., Stillwater, OK (United States); Zhu, L. [Oklahoma State Univ., Stillwater, OK (United States); Brummer, E. C. [Noble Foundation, Ardmore, OK (United States); Saha, M. [Noble Foundation, Ardmore, OK (United States)

    2016-05-31

    Inefficient conversion of biomass to biofuels is one of the main barriers for biofuel production from such materials. Approximately half of polysaccharides in biomass remain unused by typical biochemical conversion methods. Conversion efficiency is influenced by the composition and structure of cell walls of biomass. Grasses such as wheat, maize, and rice, as well as dedicated perennial bioenergy crops, like switchgrass, make up ~55% of biomass that can be produced in the United States. Grass cell walls have a different composition and patterning compared with dicotyledonous plants, including the well-studied model plant, Arabidopsis. This project identified genetic determinants of cell wall composition in grasses using both naturally occurring genetic variation of switchgrass and gene network reconstruction and functional assays in rice. In addition, the project linked functional data in rice and other species to switchgrass improvement efforts through curation of the most abundant class of regulators in the switchgrass genome. Characterizing natural diversity of switchgrass for variation in cell wall composition and properties, also known as quality, provides an unbiased avenue for identifying biologically viable diversity in switchgrass cell walls. To characterizing natural diversity, this project generated cell wall composition and enzymatic deconstruction data for ~450 genotypes of the Switchgrass Southern Association Collection (SSAC), a diverse collection composed of 36 switchgrass accessions from the southern U.S. distribution of switchgrass. Comparing these data with other measures of cell wall quality for the same samples demonstrated the complementary nature of the diverse characterization platforms now being used for biomass characterization. Association of the composition data with ~3.2K single nucleotide variant markers identified six significant single nucleotide variant markers co-associated with digestibility and another compositional trait. These

  2. Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Bartley, Laura [Univ. of Oklahoma, Norman, OK (United States). Dept. of Microbiology and Plant Biology; Wu, Y. [Oklahoma State Univ., Stillwater, OK (United States); Zhu, L. [Oklahoma State Univ., Stillwater, OK (United States); Brummer, E. C. [Noble Foundation, Ardmore, OK (United States); Saha, M. [Noble Foundation, Ardmore, OK (United States)

    2016-05-31

    Inefficient conversion of biomass to biofuels is one of the main barriers for biofuel production from such materials. Approximately half of polysaccharides in biomass remain unused by typical biochemical conversion methods. Conversion efficiency is influenced by the composition and structure of cell walls of biomass. Grasses such as wheat, maize, and rice, as well as dedicated perennial bioenergy crops, like switchgrass, make up ~55% of biomass that can be produced in the United States. Grass cell walls have a different composition and patterning compared with dicotyledonous plants, including the well-studied model plant, Arabidopsis. This project identified genetic determinants of cell wall composition in grasses using both naturally occurring genetic variation of switchgrass and gene network reconstruction and functional assays in rice. In addition, the project linked functional data in rice and other species to switchgrass improvement efforts through curation of the most abundant class of regulators in the switchgrass genome. Characterizing natural diversity of switchgrass for variation in cell wall composition and properties, also known as quality, provides an unbiased avenue for identifying biologically viable diversity in switchgrass cell walls. To characterizing natural diversity, this project generated cell wall composition and enzymatic deconstruction data for ~450 genotypes of the Switchgrass Southern Association Collection (SSAC), a diverse collection composed of 36 switchgrass accessions from the southern U.S. distribution of switchgrass. Comparing these data with other measures of cell wall quality for the same samples demonstrated the complementary nature of the diverse characterization platforms now being used for biomass characterization. Association of the composition data with ~3.2K single nucleotide variant markers identified six significant single nucleotide variant markers co-associated with digestibility and another compositional trait. These

  3. Patterns of expression of cell wall related genes in sugarcane

    Directory of Open Access Journals (Sweden)

    Lima D.U.

    2001-01-01

    Full Text Available Our search for genes related to cell wall metabolism in the sugarcane expressed sequence tag (SUCEST database (http://sucest.lbi.dcc.unicamp.br resulted in 3,283 reads (1% of the total reads which were grouped into 459 clusters (potential genes with an average of 7.1 reads per cluster. To more clearly display our correlation coefficients, we constructed surface maps which we used to investigate the relationship between cell wall genes and the sugarcane tissues libraries from which they came. The only significant correlations that we found between cell wall genes and/or their expression within particular libraries were neutral or synergetic. Genes related to cellulose biosynthesis were from the CesA family, and were found to be the most abundant cell wall related genes in the SUCEST database. We found that the highest number of CesA reads came from the root and stem libraries. The genes with the greatest number of reads were those involved in cell wall hydrolases (e.g. beta-1,3-glucanases, xyloglucan endo-beta-transglycosylase, beta-glucosidase and endo-beta-mannanase. Correlation analyses by surface mapping revealed that the expression of genes related to biosynthesis seems to be associated with the hydrolysis of hemicelluloses, pectin hydrolases being mainly associated with xyloglucan hydrolases. The patterns of cell wall related gene expression in sugarcane based on the number of reads per cluster reflected quite well the expected physiological characteristics of the tissues. This is the first work to provide a general view on plant cell wall metabolism through the expression of related genes in almost all the tissues of a plant at the same time. For example, developing flowers behaved similarly to both meristematic tissues and leaf-root transition zone tissues. Besides providing a basis for future research on the mechanisms of plant development which involve the cell wall, our findings will provide valuable tools for plant engineering in the

  4. Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean (Glycine max).

    Science.gov (United States)

    Tang, Xiaofei; Su, Tao; Han, Mei; Wei, Lai; Wang, Weiwei; Yu, Zhiyuan; Xue, Yongguo; Wei, Hongbin; Du, Yejie; Greiner, Steffen; Rausch, Thomas; Liu, Lijun

    2017-01-01

    Cell wall invertase (CWI) and vacuolar invertase (VI) play multiple functions in plant growth. As well as depending on transcriptional and post-transcriptional regulation, there is growing evidence that CWI and VI are also subject to post-translational control by small inhibitory proteins. Despite the significance of this, genes encoding inhibitors, their molecular and biochemical properties, and their potential roles in regulating seed production have not been well documented in soybean (Glycine max). In this study, two invertase inhibitor isoforms, GmCIF1 and GmC/VIF2, were characterized to possess inhibitory activities in vitro via heterologous expression. Transcript analyses showed that they were predominantly expressed in developing seeds and in response to ABA. In accordance with this, surveys of primary targets showed subcellular localizations to the apoplast in tobacco epidermis after expressing YFP-fusion constructs. Investigations using RNAi transgenic plants demonstrated marked elevations of CWI activities and improvements in seed weight in conjunction with higher accumulations of hexoses, starch, and protein in mature seeds. Further co-expression analyses of GmCIF1 with several putative CWI genes corroborated the notion that GmCIF1 modulation of CWI that affects seed weight is mainly contingent on post-translational mechanisms. Overall, the results suggest that post-translational elevation of CWI by silencing of GmCIF1 expression orchestrates the process of seed maturation through fine-tuning sucrose metabolism and sink strength.

  5. Transcriptional Wiring of Cell Wall-Related Genes in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Marek Mutwil; Colin Ruprecht; Federico M. Giorgi; Martin Bringmann; Bj(o)rn Usadel; Staffan Persson

    2009-01-01

    Transcriptional coordination, or co-expression, of genes may signify functional relatedness of the correspond-ing proteins. For example, several genes involved in secondary cell wall cellulose biosynthesis are co-expressed with genes engaged in the synthesis of xylan, which is a major component of the secondary cell wall. To extend these types of anal-yses, we investigated the co-expression relationships of all Carbohydrate-Active enZYmes (CAZy)-related genes for Arabidopsis thaliana. Thus, the intention was to transcriptionally link different cell wall-related processes to each other, and also to other biological functions. To facilitate easy manual inspection, we have displayed these interactions as networks and matrices, and created a web-based interface (http://aranet.mpimp-golm.mpg.de/corecarb) containing downloadable files for all the transcriptional associations.

  6. Cold tolerance of potato plants transformed with yeast invertase gene

    Directory of Open Access Journals (Sweden)

    Alexander N. Deryaabin

    2013-12-01

    Full Text Available Our study was carried out with potato plants (Solanum tuberosun L.,cv. Désirée transformed with the yeast invertase gene under the control of the B33 class I patatin promoter and with the proteinase inhibitor II leader peptide sequence providing for the apoplastic enzyme localization (B33-inv plants and with the plants transformed with the reporter gene encoding bb-glucuronidase under the control of the 35S CaMV promoter (control plants. Exposure to 5°C during 6 days caused an increase in invertase activity and sugar content in B33-inv leaves in comparison with the control plants. Cell membranes of B33-inv plant cells showed greater cold tolerance under low temperature conditions than control plants that was recorded by electrolyte release. We supposed that higher cold tolerance of B33-inv plants was caused by stabilizing effect of sugar on the membranes, because B33-inv plants differ from the control plants in higher invertase activity, induced by expression of yeast invertase gene, and high content of sugars.

  7. Short-term high temperature growth conditions during vegetative-to-reproductive phase transition irreversibly compromise cell wall invertase-mediated sucrose catalysis and microspore meiosis in grain sorghum

    Science.gov (United States)

    Grain sorghum (Sorghum bicolor L. Moench) crop yield is significantly compromised by high temperature stress-induced male sterility, and is attributed to reduced cell wall invertase (CWI)-mediated sucrose hydrolysis in microspores and anthers leading to altered carbohydrate metabolism and starch def...

  8. PCR-generated molecular markers for the invertase gene and sucrose accumulation in tomato.

    Science.gov (United States)

    Hadas, R; Schaffer, A; Miron, D; Fogelman, M; Granot, D

    1995-06-01

    The green-fruited tomato species, Lycopersicon hirsutum, unlike the domesticated red-fruited species, L. esculentum, accumulates sucrose during the final stages of fruit development, concomitant with the loss of soluble acid invertase activity. In order to study the genetic linkage of sucrose accumulation to the invertase gene, part of the invertase gene from L. hirsutum was cloned, sequenced and the sequence compared with the invertase sequence of the red-fruited L. esculentum. Several base changes were found in the coding region of the two invertase genes. Based on these base -pair differences, we developed a species-specific PCR assay capable of determining, in a single PCR reaction, the origin of the invertase gene in segregating seedlings of an interspecific cross. Our results indicate that the invertase gene is genetically linked to sucrose accumulation in the green-fruited L. hirsutum.

  9. Reassessment of an Arabidopsis cell wall invertase inhibitor AtCIF1 reveals its role in seed germination and early seedling growth.

    Science.gov (United States)

    Su, Tao; Wolf, Sebastian; Han, Mei; Zhao, Hongbo; Wei, Hongbin; Greiner, Steffen; Rausch, Thomas

    2016-01-01

    In higher plants, cell wall invertase (CWI) and vacuolar invertase (VI) are recognized as essential players in sugar metabolism and sugar signaling, thereby affecting source-sink interactions, plant development and responses to environmental cues. CWI and VI expression levels are transcriptionally controlled; however, both enzymes are also subject to posttranslational control by invertase inhibitor proteins. The physiological significances of inhibitor proteins during seed germination and early seedling development are not yet fully understood. Here, we demonstrate that the inhibitor isoform AtCIF1 impacted on seed germination and early seedling growth in Arabidopsis. The primary target of AtCIF1 was shown to be localized to the apoplast after expressing an AtCIF1 YFP-fusion construct in tobacco epidermis and transgenic Arabidopsis root. The analysis of expression patterns showed that AtCWI1 was co-expressed spatiotemporally with AtCIF1 within the early germinating seeds. Seed germination was observed to be accelerated independently of exogenous abscisic acid (ABA) in the AtCIF1 loss-of-function mutant cif1-1. This effect coincided with a drastic increase of CWI activity in cif1-1 mutant seeds by 24 h after the onset of germination, both in vitro and in planta. Accordingly, quantification of sugar content showed that hexose levels were significantly boosted in germinating seeds of the cif1-1 mutant. Further investigation of AtCIF1 overexpressors in Arabidopsis revealed a markedly suppressed CWI activity as well as delayed seed germination. Thus, we conclude that the posttranslational modulation of CWI activity by AtCIF1 helps to orchestrate seed germination and early seedling growth via fine-tuning sucrose hydrolysis and, possibly, sugar signaling.

  10. Fructan Biosynthetic and Breakdown Enzymes in Dicots Evolved From Different Invertases. Expression of Fructan Genes Throughout Chicory Development

    Directory of Open Access Journals (Sweden)

    Wim Van den Ende

    2002-01-01

    Full Text Available Fructans are fructose-based oligo- and polymers that serve as reserve carbohydrates in many plant species. The biochemistry of fructan biosynthesis in dicots has been resolved, and the respective cDNAs have been cloned. Recent progress has now succeeded in elucidating the biochemistry and molecular biology of fructan biodegradation in chicory, an economically important species used for commercial inulin extraction. Unlike fructan biosynthetic genes that originated from vacuolar-type invertase, fructan exohydrolases (FEHs seem to have evolved from a cell-wall invertase ancestor gene that later obtained a low iso-electric point and a vacuolar targeting signal. Expression analysis reveals that fructan enzymes are controlled mainly at the transcriptional level. Using chicory as a model system, northern analysis was consistent with enzymatic activity measurements and observed carbohydrate changes throughout its development.

  11. Targeting the AtCWIN1 gene to explore the role of invertases in sucrose transport in roots and during Botrytis cinerea infection

    Directory of Open Access Journals (Sweden)

    Florian Veillet

    2016-12-01

    Full Text Available Cell wall invertases (CWIN cleave sucrose into glucose and fructose in the apoplast. CWINs are key regulators of carbon partitioning and source/sink relationships during growth, development and under biotic stresses. In this report, we monitored the expression/activity of Arabidopsis cell wall invertases in organs behaving as source, sink or subjected to a source/sink transition after infection with the necrotrophic fungus Botrytis cinerea. We showed that organs with different source/sink status displayed differential CWIN activities, depending on carbohydrate needs or availabilities in the surrounding environment, through a transcriptional and posttranslational regulation. Loss-of-function mutation of the Arabidopsis cell wall invertase 1 gene, AtCWIN1, showed that the corresponding protein was the main contributor to the apoplastic sucrose cleaving activity in both leaves and roots. The CWIN-deficient mutant cwin1-1 exhibited a reduced capacity to actively take up external sucrose in roots, indicating that this process is mainly dependent on the sucrolytic activity of AtCWIN1. Using T-DNA and CRISPR/Cas9 mutants impaired in hexose transport, we demonstrated that external sucrose is actively absorbed in the form of hexoses by a sugar/H+ symport system involving the coordinated activity of AtCWIN1 with several Sugar Transporter Proteins (STP of the plasma membrane, i.e. STP1 and STP13. Part of external sucrose was imported without apoplastic cleavage into cwin1-1 seedling roots, highlighting an alternative AtCWIN1-independent pathway for the assimilation of external sucrose. Accordingly, we showed that several genes encoding sucrose transporters of the plasma membrane were expressed. We also detected transcript accumulation of vacuolar invertase (VIN-encoding genes and high VIN activities. Upon infection, AtCWIN1 was responsible for all the Botrytis-induced apoplastic invertase activity. We detected a transcriptional activation of several At

  12. Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra; Peck, Matthew L.; Vega-Sánchez, Miguel E.; Williams, Brian; Chiniquy, Dawn M.; Saha, Prasenjit; Pattathil, Sivakumar; Conlin, Brian; Zhu, Lan; Hahn, Michael G.; Willats, William G. T.; Scheller, Henrik V.; Ronald, Pamela C.; Bartley, Laura E.

    2016-08-01

    Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18 cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture.

  13. Identification of Cell Wall Synthesis Regulatory Genes Controlling Biomass Characteristics and Yield in Rice (Oryza Sativa)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhaohua PEng [Mississippi State University; Ronald, Palmela [UC-Davis; Wang, Guo-Liang [The Ohio State University

    2013-04-26

    This project aims to identify the regulatory genes of rice cell wall synthesis pathways using a cell wall removal and regeneration system. We completed the gene expression profiling studies following the time course from cell wall removal to cell wall regeneration in rice suspension cells. We also completed, total proteome, nuclear subproteome and histone modification studies following the course from cell wall removal and cell wall regeneration process. A large number of differentially expressed regulatory genes and proteins were identified. Meanwhile, we generated RNAi and over-expression transgenic rice for 45 genes with at least 10 independent transgenic lines for each gene. In addition, we ordered T-DNA and transposon insertion mutants for 60 genes from Korea, Japan, and France and characterized the mutants. Overall, we have mutants and transgenic lines for over 90 genes, exceeded our proposed goal of generating mutants for 50 genes. Interesting Discoveries a) Cell wall re-synthesis in protoplasts may involve a novel cell wall synthesis mechanism. The synthesis of the primary cell wall is initiated in late cytokinesis with further modification during cell expansion. Phragmoplast plays an essential role in cell wall synthesis. It services as a scaffold for building the cell plate and formation of a new cell wall. Only one phragmoplast and one new cell wall is produced for each dividing cell. When the cell wall was removed enzymatically, we found that cell wall re-synthesis started from multiple locations simultaneously, suggesting that a novel mechanism is involved in cell wall re-synthesis. This observation raised many interesting questions, such as how the starting sites of cell wall synthesis are determined, whether phragmoplast and cell plate like structures are involved in cell wall re-synthesis, and more importantly whether the same set of enzymes and apparatus are used in cell wall re-synthesis as during cytokinesis. Given that many known cell wall

  14. Cell wall composition and candidate biosynthesis gene expression during rice development

    DEFF Research Database (Denmark)

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra

    2016-01-01

    Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall...

  15. Phenotypic screening of Arabidopsis T-DNA insertion lines for cell wall mechanical properties revealed ANTHOCYANINLESS2, a cell wall-related gene.

    Science.gov (United States)

    Mabuchi, Atsushi; Soga, Kouichi; Wakabayashi, Kazuyuki; Hoson, Takayuki

    2016-02-01

    We performed a phenotypic screening of confirmed homozygous T-DNA insertion lines in Arabidopsis for cell wall extensibility, in an attempt to identify genes involved in the regulation of cell wall mechanical properties. Seedlings of each line were cultivated and the cell wall extensibility of their hypocotyls was measured with a tensile tester. Hypocotyls of lines with known cell wall-related genes showed higher or lower extensibility than those of the wild-type at high frequency, indicating that the protocol used was effective. In the first round of screening of randomly selected T-DNA insertion lines, we identified ANTHOCYANINLESS2 (ANL2), a gene involved in the regulation of cell wall mechanical properties. In the anl2 mutant, the cell wall extensibility of hypocotyls was significantly lower than that of the wild-type. Levels of cell wall polysaccharides per hypocotyl, particularly cellulose, increased in anl2. Microarray analysis showed that in anl2, expression levels of the major peroxidase genes also increased. Moreover, the activity of ionically wall-bound peroxidases clearly increased in anl2. The activation of peroxidases as well as the accumulation of cell wall polysaccharides may be involved in decreased cell wall extensibility. The approach employed in the present study could contribute to our understanding of the mechanisms underlying the regulation of cell wall mechanical properties.

  16. Molecular and functional characterization of novel fructosyltransferases and invertases from Agave tequilana.

    Directory of Open Access Journals (Sweden)

    Celso Cortés-Romero

    Full Text Available Fructans are the main storage polysaccharides found in Agave species. The synthesis of these complex carbohydrates relies on the activities of specific fructosyltransferase enzymes closely related to the hydrolytic invertases. Analysis of Agave tequilana transcriptome data led to the identification of ESTs encoding putative fructosyltransferases and invertases. Based on sequence alignments and structure/function relationships, two different genes were predicted to encode 1-SST and 6G-FFT type fructosyltransferases, in addition, 4 genes encoding putative cell wall invertases and 4 genes encoding putative vacuolar invertases were also identified. Probable functions for each gene, were assigned based on conserved amino acid sequences and confirmed for 2 fructosyltransferases and one invertase by analyzing the enzymatic activity of recombinant Agave protein s expressed and purified from Pichia pastoris. The genome organization of the fructosyltransferase/invertase genes, for which the corresponding cDNA contained the complete open reading frame, was found to be well conserved since all genes were shown to carry a 9 bp mini-exon and all showed a similar structure of 8 exons/7 introns with the exception of a cell wall invertase gene which has 7 exons and 6 introns. Fructosyltransferase genes were strongly expressed in the storage organs of the plants, especially in vegetative stages of development and to lower levels in photosynthetic tissues, in contrast to the invertase genes where higher levels of expression were observed in leaf tissues and in mature plants.

  17. Molecular and functional characterization of novel fructosyltransferases and invertases from Agave tequilana.

    Science.gov (United States)

    Cortés-Romero, Celso; Martínez-Hernández, Aída; Mellado-Mojica, Erika; López, Mercedes G; Simpson, June

    2012-01-01

    Fructans are the main storage polysaccharides found in Agave species. The synthesis of these complex carbohydrates relies on the activities of specific fructosyltransferase enzymes closely related to the hydrolytic invertases. Analysis of Agave tequilana transcriptome data led to the identification of ESTs encoding putative fructosyltransferases and invertases. Based on sequence alignments and structure/function relationships, two different genes were predicted to encode 1-SST and 6G-FFT type fructosyltransferases, in addition, 4 genes encoding putative cell wall invertases and 4 genes encoding putative vacuolar invertases were also identified. Probable functions for each gene, were assigned based on conserved amino acid sequences and confirmed for 2 fructosyltransferases and one invertase by analyzing the enzymatic activity of recombinant Agave protein s expressed and purified from Pichia pastoris. The genome organization of the fructosyltransferase/invertase genes, for which the corresponding cDNA contained the complete open reading frame, was found to be well conserved since all genes were shown to carry a 9 bp mini-exon and all showed a similar structure of 8 exons/7 introns with the exception of a cell wall invertase gene which has 7 exons and 6 introns. Fructosyltransferase genes were strongly expressed in the storage organs of the plants, especially in vegetative stages of development and to lower levels in photosynthetic tissues, in contrast to the invertase genes where higher levels of expression were observed in leaf tissues and in mature plants.

  18. Genes Required for Bacillus anthracis Secondary Cell Wall Polysaccharide Synthesis

    Science.gov (United States)

    Oh, So-Young; Lunderberg, J. Mark; Chateau, Alice; Schneewind, Olaf

    2016-01-01

    ABSTRACT The secondary cell wall polysaccharide (SCWP) is thought to be essential for vegetative growth and surface (S)-layer assembly in Bacillus anthracis; however, the genetic determinants for the assembly of its trisaccharide repeat structure are not known. Here, we report that WpaA (BAS0847) and WpaB (BAS5274) share features with membrane proteins involved in the assembly of O-antigen lipopolysaccharide in Gram-negative bacteria and propose that WpaA and WpaB contribute to the assembly of the SCWP in B. anthracis. Vegetative forms of the B. anthracis wpaA mutant displayed increased lengths of cell chains, a cell separation defect that was attributed to mislocalization of the S-layer-associated murein hydrolases BslO, BslS, and BslT. The wpaB mutant was defective in vegetative replication during early logarithmic growth and formed smaller colonies. Deletion of both genes, wpaA and wpaB, did not yield viable bacilli, and when depleted of both wpaA and wpaB, B. anthracis could not maintain cell shape, support vegetative growth, or assemble SCWP. We propose that WpaA and WpaB fulfill overlapping glycosyltransferase functions of either polymerizing repeat units or transferring SCWP polymers to linkage units prior to LCP-mediated anchoring of the polysaccharide to peptidoglycan. IMPORTANCE The secondary cell wall polysaccharide (SCWP) is essential for Bacillus anthracis growth, cell shape, and division. SCWP is comprised of trisaccharide repeats (→4)-β-ManNAc-(1→4)-β-GlcNAc-(1→6)-α-GlcNAc-(1→) with α-Gal and β-Gal substitutions; however, the genetic determinants and enzymes for SCWP synthesis are not known. Here, we identify WpaA and WpaB and report that depletion of these factors affects vegetative growth, cell shape, and S-layer assembly. We hypothesize that WpaA and WpaB are involved in the assembly of SCWP prior to transfer of this polymer onto peptidoglycan. PMID:27795328

  19. Linking expression of fructan active enzymes, cell wall invertases and sucrose transporters with fructan profiles in growing taproot of chicory (Cichorium intybus: Impact of hormonal and environmental cues

    Directory of Open Access Journals (Sweden)

    Hongbin Wei

    2016-12-01

    Full Text Available In chicory taproot, the inulin-type fructans serve as carbohydrate reserve. Inulin metabolism is mediated by fructan active enzymes (FAZYs: sucrose:sucrose 1-fructosyltransferase (1-SST; fructan synthesis, fructan:fructan-1-fructosyltransferase (1-FFT; fructan synthesis and degradation, and fructan 1-exohydrolases (1-FEH1/2a/2b; fructan degradation. In developing taproot, fructan synthesis is affected by source-to-sink sucrose transport and sink unloading. In the present study, expression of FAZYs, sucrose transporter and CWI isoforms, vacuolar invertase and sucrose synthase was determined in leaf blade, petiole and taproot of young chicory plants (taproot diameter: 2cm and compared with taproot fructan profiles for the following scenarios: i N-starvation, ii abscisic acid (ABA treatment, iii ethylene treatment (via 1-aminoyclopropane-1-carboxylic acid [ACC], and iv cold treatment. Both N-starvation and ABA treatment induced an increase in taproot oligofructans. However, while under N-starvation this increase reflected de novo synthesis, under ABA treatment gene expression profiles indicated a role for both de novo synthesis and degradation of long-chain fructans. Conversely, under ACC and cold treatment oligofructans slightly decreased, correlating with reduced expression of 1-SST and 1-FFT and increased expression of FEHs and VI. Distinct SUT and CWI expression profiles were observed, indicating a functional alignment of SUT and CWI expression with taproot fructan metabolism under different source-sink scenarios.

  20. Identification and characterization of Arabidopsis thaliana genes involved in xylem secondary cell walls.

    Science.gov (United States)

    Yokoyama, Ryusuke; Nishitani, Kazuhiko

    2006-05-01

    The xylem of higher plants offers support to aerial portions of the plant body and serves as conduit for the translocation of water and nutrients. Terminal differentiation of xylem cells typically involves deposition of thick secondary cell walls. This is a dynamic cellular process accompanied by enhanced rates of cellulose deposition and the induction of synthesis of specific secondary-wall matrix polysaccharides and lignin. The secondary cell wall is essential for the function of conductive and supportive xylem tissues. Recently, significant progress has been made in identifying the genes responsible for xylem secondary cell wall formation. However, our present knowledge is still insufficient to account for the molecular processes by which this complex system operates. To acquire further information about xylem secondary cell walls, we initially focused our research effort on a set of genes specifically implicated in secondary cell wall formation, as well as on loss-of-function mutants. Results from two microarray screens identified several key candidate genes responsible for secondary cell wall formation. Reverse genetic analyses led to the identification of a glycine-rich protein involved in maintaining the stable structure of protoxylem, which is essential for the transport of water and nutrients. A combination of expression analyses and reverse genetics allows us to systematically identify new genes required for the development of physical properties of the xylem secondary wall.

  1. Vacuolar invertases in sweet potato: molecular cloning, characterization, and analysis of gene expression.

    Science.gov (United States)

    Wang, Li-Ting; Wang, Ai-Yu; Hsieh, Chang-Wen; Chen, Chih-Yu; Sung, Hsien-Yi

    2005-05-01

    Two cDNAs (Ib beta fruct2 and Ib beta fruct3) encoding vacuolar invertases were cloned from sweet potato leaves, expressed in Pichia pastoris, and the recombinant proteins were purified by ammonium sulfate fractionation and chromatography on Ni-NTA agarose. The deduced amino acid sequences encoded by the cDNAs contained characteristic conserved elements of vacuolar invertases, including the sequence R[G/A/P]xxxGVS[E/D/M]K[S/T/A/R], located in the prepeptide region, Wxxx[M/I/V]LxWQ, located around the starting site of the mature protein, and an intact beta-fructosidase motif. The pH optimum, the substrate specificity, and the apparent K(m) values for sucrose exhibited by the recombinant proteins were similar to those of vacuolar invertases purified from sweet potato leaves and cell suspensions, thus confirming that the proteins encoded by Ib beta fruct2 and Ib beta fruct3 are vacuolar invertases. Moreover, northern analysis revealed that the expression of the two genes was differentially regulated. With the exception of mature leaves and sprouting storage roots, Ib beta fruct2 mRNA is widely expressed among the tissues of the sweet potato and is more abundant in young sink tissues. By contrast, Ib beta fruct3 mRNA was only detected in shoots and in young and mature leaves. It appears, therefore, that these two vacuolar invertases play different physiological roles during the development of the sweet potato plant.

  2. Gene Mining for Proline Based Signaling Proteins in Cell Wall of Arabidopsis thaliana

    Science.gov (United States)

    Ihsan, Muhammad Z.; Ahmad, Samina J. N.; Shah, Zahid Hussain; Rehman, Hafiz M.; Aslam, Zubair; Ahuja, Ishita; Bones, Atle M.; Ahmad, Jam N.

    2017-01-01

    The cell wall (CW) as a first line of defense against biotic and abiotic stresses is of primary importance in plant biology. The proteins associated with cell walls play a significant role in determining a plant's sustainability to adverse environmental conditions. In this work, the genes encoding cell wall proteins (CWPs) in Arabidopsis were identified and functionally classified using geneMANIA and GENEVESTIGATOR with published microarrays data. This yielded 1605 genes, out of which 58 genes encoded proline-rich proteins (PRPs) and glycine-rich proteins (GRPs). Here, we have focused on the cellular compartmentalization, biological processes, and molecular functioning of proline-rich CWPs along with their expression at different plant developmental stages. The mined genes were categorized into five classes on the basis of the type of PRPs encoded in the cell wall of Arabidopsis thaliana. We review the domain structure and function of each class of protein, many with respect to the developmental stages of the plant. We have then used networks, hierarchical clustering and correlations to analyze co-expression, co-localization, genetic, and physical interactions and shared protein domains of these PRPs. This has given us further insight into these functionally important CWPs and identified a number of potentially new cell-wall related proteins in A. thaliana. PMID:28289422

  3. Gene encoding a novel invertase from a xerophilic Aspergillus niger strain and production of the enzyme in Pichia pastoris.

    Science.gov (United States)

    Veana, Fabiola; Fuentes-Garibay, José Antonio; Aguilar, Cristóbal Noé; Rodríguez-Herrera, Raúl; Guerrero-Olazarán, Martha; Viader-Salvadó, José María

    2014-09-01

    β-Fructofuranosidases or invertases (EC 3.2.1.26) are enzymes that are widely used in the food industry, where fructose is preferred over sucrose, because it is sweeter and does not crystallize easily. Since Aspergillus niger GH1, an xerophilic fungus from the Mexican semi-desert, has been reported to be an invertase producer, and because of the need for new enzymes with biotechnological applications, in this work, we describe the gene and amino acid sequence of the invertase from A. niger GH1, and the use of a synthetic gene to produce the enzyme in the methylotrophic yeast Pichia pastoris. In addition, the produced invertase was characterized biochemically. The sequence of the invertase gene had a length of 1770 bp without introns, encodes a protein of 589 amino acids, and presented an identity of 93% and 97% with invertases from Aspergillus kawachi IFO 4308 and A. niger B60, respectively. A 4.2 L culture with the constructed recombinant P. pastoris strain showed an extracellular and periplasmic invertase production at 72 h induction of 498 and 3776 invertase units (U), respectively, which corresponds to 1018 U/L of culture medium. The invertase produced had an optimum pH of 5.0, optimum temperature of 60 °C, and specific activity of 3389 U/mg protein, and after storage for 96 h at 4 °C showed 93.7% of its activity. This invertase could be suitable for producing inverted sugar used in the food industry.

  4. Fusarium graminearum on plant cell wall: no fewer than 30 xylanase genes transcribed.

    Science.gov (United States)

    Hatsch, Didier; Phalip, Vincent; Petkovski, Elizabet; Jeltsch, Jean-Marc

    2006-07-07

    The transcription of a set of 32 putative xylanase genes from Fusarium graminearum was examined by quantitative PCR after growth on different carbon sources (hop cell wall, xylan, xylose, or carboxymethylcellulose). Growing on plant cell wall medium, this fungus displays a great diversity of expression of xylan-related genes, with 30 being induced. A second level of diversity exists because expression patterns can be very different for loci encoding enzymes with the same activity (the same EC number). The wealth of xylan-degrading enzymes and the differential expression confer on the fungus a great flexibility of reaction to variation in its environment.

  5. Inositol and Phosphatidylinositol Mediated Glucose Derepression, Gene Expression and Invertase Secretion in Yeasts

    Institute of Scientific and Technical Information of China (English)

    Zhen-Ming CHI; Jun-Feng LI; Xiang-Hong WANG; Shu-Min YAO

    2004-01-01

    Glucose repression occurs in many yeast species and some filamentous fungi, and it represses the expression and secretion of many intracellular and extracellular proteins. In recent years, it has been found that many biochemical reactions in yeast cells are mediated by phosphatidylinositol (PI)-type signaling pathway. However, little is known about the relationships between PI-type signaling and glucose repression,gene expression and invertase secretion in yeasts. Many evidences in our previous studies showed that glucose repression, invertase secretion, gene expression and cell growth were mediated by inositol and PI in Saccharomyces and Schizosaccharomyces. The elucidation of the new regulatory mechanisms of protein secretion, gene expression and glucose repression would be an entirely new aspect of inositol and PI-type signaling regulation in yeasts.

  6. Regulation of genes involved in cell wall synthesis and structure during Ustilago maydis dimorphism.

    Science.gov (United States)

    Robledo-Briones, Mariana; Ruiz-Herrera, José

    2013-02-01

    The cell wall is the structure that provides the shape to fungal cells and protects them from the difference in osmotic pressure existing between the cytosol and the external medium. Accordingly, changes in structure and composition of the fungal wall must occur during cell differentiation, including the dimorphic transition of fungi. We analyzed, by use of microarrays, the transcriptional regulation of the 639 genes identified to be involved in cell wall synthesis and structure plus the secretome of the Basidiomycota species Ustilago maydis during its dimorphic transition induced by a change in pH. Of these, 189 were differentially expressed during the process, and using as control two monomorphic mutants, one yeast like and the other mycelium constitutive, 66 genes specific of dimorphism were identified. Most of these genes were up-regulated in the mycelial phase. These included CHS genes, genes involved in β-1,6-glucan synthesis, N-glycosylation, and proteins containing a residue of glycosylphosphatidylinositol, and a number of genes from the secretome. The possible significance of these data on cell wall plasticity is discussed.

  7. IDENTIFYING GENES CONTROLLING FERULATE CROSS-LINKING FORMATION IN GRASS CELL WALLS

    Energy Technology Data Exchange (ETDEWEB)

    de O Buanafina, Marcia Maria

    2013-10-16

    DESCRIPTION/ABSTRACT This proposal focuses on cell wall feruloylation and our long term goal is to identify and isolate novel genes controlling feruloylation and to characterize the phenotype of mutants in this pathway, with a spotlight on cell wall properties. Currently, the genes underlying AX feruloylation have not been identified and the isolation of such genes could be of great importance in manipulating ferulates accretion to the wall. Mutation of the feruloyl transferase gene(s) should lead to less ferulates secreted to the cell wall and reduced ferulate cross-linking. Our current research is based on the hypothesis that controlling the level of total feruloylation will have a direct impact on the level of cross-linking and in turn impact biomass utility for forage and biofuel production. Our results/accomplishments for this project so far include: 1. Mutagenised Brachypodium population. We have developed EMS mutagenized populations of model grass species Brachypodium distachyon. EMS populations have been developed from over 28,000 mutagenized seeds generating 5,184 M2 families. A total of 20,793 plants have been screened and 1,233 were originally selected. 2. Selected Brachypodium mutants: Potential mutants on their levels of cell wall ferulates and cell wall AX ? have been selected from 708 M2 families. A total of 303 back-crosses to no-mutagenized parental stock have been done, followed by selfing selected genotypes in order to confirm heritability of traits and to remove extraneous mutations generated by EMS mutagenesis. We are currently growing 12 F5 and F6 populations in order to assess CW composition. If low level of ferulates are confirmed in the candidate lines selected the mutation could be altered in different in one or several kinds of genes such as genes encoding an AX feruloyl transferase; genes encoding the arabinosyl transferase; genes encoding the synthesis of the xylan backbone; genes encoding enzymes of the monolignol pathway affecting FA

  8. Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings.

    Science.gov (United States)

    Bischoff, Volker; Cookson, Sarah Jane; Wu, Shuang; Scheible, Wolf-Rüdiger

    2009-01-01

    Thaxtomin A, a phytotoxin produced by Streptomyces eubacteria, is suspected to act as a natural cellulose synthesis inhibitor. This view is confirmed by the results obtained from new chemical, molecular, and microscopic analyses of Arabidopsis thaliana seedlings treated with thaxtomin A. Cell wall analysis shows that thaxtomin A reduces crystalline cellulose, and increases pectins and hemicellulose in the cell wall. Treatment with thaxtomin A also changes the expression of genes involved in primary and secondary cellulose synthesis as well as genes associated with pectin metabolism and cell wall remodelling, in a manner nearly identical to isoxaben. In addition, it induces the expression of several defence-related genes and leads to callose deposition. Defects in cellulose synthesis cause ectopic lignification phenotypes in A. thaliana, and it is shown that lignification is also triggered by thaxtomin A, although in a pattern different from isoxaben. Spinning disc confocal microscopy further reveals that thaxtomin A depletes cellulose synthase complexes from the plasma membrane and results in the accumulation of these particles in a small microtubule-associated compartment. The results provide new and clear evidence for thaxtomin A having a strong impact on cellulose synthesis, thus suggesting that this is its primary mode of action.

  9. IDENTIFYING GENES CONTROLLING FERULATE CROSS-LINKING FORMATION IN GRASS CELL WALLS

    Energy Technology Data Exchange (ETDEWEB)

    de O Buanafina, Marcia Maria

    2013-10-16

    DESCRIPTION/ABSTRACT This proposal focuses on cell wall feruloylation and our long term goal is to identify and isolate novel genes controlling feruloylation and to characterize the phenotype of mutants in this pathway, with a spotlight on cell wall properties. Currently, the genes underlying AX feruloylation have not been identified and the isolation of such genes could be of great importance in manipulating ferulates accretion to the wall. Mutation of the feruloyl transferase gene(s) should lead to less ferulates secreted to the cell wall and reduced ferulate cross-linking. Our current research is based on the hypothesis that controlling the level of total feruloylation will have a direct impact on the level of cross-linking and in turn impact biomass utility for forage and biofuel production. Our results/accomplishments for this project so far include: 1. Mutagenised Brachypodium population. We have developed EMS mutagenized populations of model grass species Brachypodium distachyon. EMS populations have been developed from over 28,000 mutagenized seeds generating 5,184 M2 families. A total of 20,793 plants have been screened and 1,233 were originally selected. 2. Selected Brachypodium mutants: Potential mutants on their levels of cell wall ferulates and cell wall AX ? have been selected from 708 M2 families. A total of 303 back-crosses to no-mutagenized parental stock have been done, followed by selfing selected genotypes in order to confirm heritability of traits and to remove extraneous mutations generated by EMS mutagenesis. We are currently growing 12 F5 and F6 populations in order to assess CW composition. If low level of ferulates are confirmed in the candidate lines selected the mutation could be altered in different in one or several kinds of genes such as genes encoding an AX feruloyl transferase; genes encoding the arabinosyl transferase; genes encoding the synthesis of the xylan backbone; genes encoding enzymes of the monolignol pathway affecting FA

  10. A higher sink competitiveness of the rooting zone and invertases are involved in dark stimulation of adventitious root formation in Petunia hybrida cuttings.

    Science.gov (United States)

    Klopotek, Yvonne; Franken, Philipp; Klaering, Hans-Peter; Fischer, Kerstin; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe

    2016-02-01

    The contribution of carbon assimilation and allocation and of invertases to the stimulation of adventitious root formation in response to a dark pre-exposure of petunia cuttings was investigated, considering the rooting zone (stem base) and the shoot apex as competing sinks. Dark exposure had no effect on photosynthesis and dark respiration during the subsequent light period, but promoted dry matter partitioning to the roots. Under darkness, higher activities of cytosolic and vacuolar invertases were maintained in both tissues when compared to cuttings under light. This was partially associated with higher RNA levels of respective genes. However, activity of cell wall invertases and transcript levels of one cell wall invertase isogene increased specifically in the stem base during the first two days after cutting excision under both light and darkness. During five days after excision, RNA accumulation of four invertase genes indicated preferential expression in the stem base compared to the apex. Darkness shifted the balance of expression of one cytosolic and two vacuolar invertase genes towards the stem base. The results indicate that dark exposure before planting enhances the carbon sink competitiveness of the rooting zone and that expression and activity of invertases contribute to the shift in carbon allocation.

  11. Plant Cell Wall Degradation by Saprophytic Bacillus subtilis Strains: Gene Clusters Responsible for Rhamnogalacturonan Depolymerization▿

    Science.gov (United States)

    Ochiai, Akihito; Itoh, Takafumi; Kawamata, Akiko; Hashimoto, Wataru; Murata, Kousaku

    2007-01-01

    Plant cell wall degradation is a premier event when Bacillus subtilis, a typical saprophytic bacterium, invades plants. Here we show the degradation system of rhamnogalacturonan type I (RG-I), a component of pectin from the plant cell wall, in B. subtilis strain 168. Strain 168 cells showed a significant growth on plant cell wall polysaccharides such as pectin, polygalacturonan, and RG-I as a carbon source. DNA microarray analysis indicated that three gene clusters (yesOPQRSTUVWXYZ, ytePQRST, and ybcMOPST-ybdABDE) are inducibly expressed in strain 168 cells grown on RG-I. Cells of an industrially important bacterium, B. subtilis strain natto, fermenting soybeans also express the gene cluster including the yes series during the assimilation of soybean used as a carbon source. Among proteins encoded in the yes cluster, YesW and YesX were found to be novel types of RG lyases releasing disaccharide from RG-I. Genetic and enzymatic properties of YesW and YesX suggest that strain 168 cells secrete YesW, which catalyzes the initial cleavage of the RG-I main chain, and the resultant oligosaccharides are converted to disaccharides through the extracellular exotype YesX reaction. The disaccharide is finally degraded into its constituent monosaccharides through the reaction of intracellular unsaturated galacturonyl hydrolases YesR and YteR. This enzymatic route for RG-I degradation in strain 168 differs significantly from that in plant-pathogenic fungus Aspergillus aculeatus. This is, to our knowledge, the first report on the bacterial system for complete RG-I main chain degradation. PMID:17449691

  12. Plant cell wall degradation by saprophytic Bacillus subtilis strains: gene clusters responsible for rhamnogalacturonan depolymerization.

    Science.gov (United States)

    Ochiai, Akihito; Itoh, Takafumi; Kawamata, Akiko; Hashimoto, Wataru; Murata, Kousaku

    2007-06-01

    Plant cell wall degradation is a premier event when Bacillus subtilis, a typical saprophytic bacterium, invades plants. Here we show the degradation system of rhamnogalacturonan type I (RG-I), a component of pectin from the plant cell wall, in B. subtilis strain 168. Strain 168 cells showed a significant growth on plant cell wall polysaccharides such as pectin, polygalacturonan, and RG-I as a carbon source. DNA microarray analysis indicated that three gene clusters (yesOPQRSTUVWXYZ, ytePQRST, and ybcMOPST-ybdABDE) are inducibly expressed in strain 168 cells grown on RG-I. Cells of an industrially important bacterium, B. subtilis strain natto, fermenting soybeans also express the gene cluster including the yes series during the assimilation of soybean used as a carbon source. Among proteins encoded in the yes cluster, YesW and YesX were found to be novel types of RG lyases releasing disaccharide from RG-I. Genetic and enzymatic properties of YesW and YesX suggest that strain 168 cells secrete YesW, which catalyzes the initial cleavage of the RG-I main chain, and the resultant oligosaccharides are converted to disaccharides through the extracellular exotype YesX reaction. The disaccharide is finally degraded into its constituent monosaccharides through the reaction of intracellular unsaturated galacturonyl hydrolases YesR and YteR. This enzymatic route for RG-I degradation in strain 168 differs significantly from that in plant-pathogenic fungus Aspergillus aculeatus. This is, to our knowledge, the first report on the bacterial system for complete RG-I main chain degradation.

  13. Powerful regulatory systems and post-transcriptional gene silencing resist increases in cellulose content in cell walls of barley

    OpenAIRE

    Tan, Hwei-Ting; Shirley, Neil J; Singh, Rohan R; Henderson, Marilyn; Dhugga, Kanwarpal S; Mayo, Gwenda M; Fincher, Geoffrey B.; Burton, Rachel A.

    2015-01-01

    Background The ability to increase cellulose content and improve the stem strength of cereals could have beneficial applications in stem lodging and producing crops with higher cellulose content for biofuel feedstocks. Here, such potential is explored in the commercially important crop barley through the manipulation of cellulose synthase genes (CesA). Results Barley plants transformed with primary cell wall (PCW) and secondary cell wall (SCW) barley cellulose synthase (HvCesA) cDNAs driven b...

  14. Cloning and characterization of acid invertase genes in the roots of the metallophyte Kummerowia stipulacea (Maxim.) Makino from two populations: Differential expression under copper stress.

    Science.gov (United States)

    Zhang, Luan; Xiong, Zhi-ting; Xu, Zhong-rui; Liu, Chen; Cai, Shen-wen

    2014-06-01

    The roots of metallophytes serve as the key interface between plants and heavy metal-contaminated underground environments. It is known that the roots of metallicolous plants show a higher activity of acid invertase enzymes than those of non-metallicolous plants when under copper stress. To test whether the higher activity of acid invertases is the result of increased expression of acid invertase genes or variations in the amino acid sequences between the two population types, we isolated full cDNAs for acid invertases from two populations of Kummerowia stipulacea (from metalliferous and non-metalliferous soils), determined their nucleotide sequences, expressed them in Pichia pastoris, and conducted real-time PCR to determine differences in transcript levels during Cu stress. Heterologous expression of acid invertase cDNAs in P. pastoris indicated that variations in the amino acid sequences of acid invertases between the two populations played no significant role in determining enzyme characteristics. Seedlings of K. stipulacea were exposed to 0.3µM Cu(2+) (control) and 10µM Cu(2+) for 7 days under hydroponics׳ conditions. The transcript levels of acid invertases in metallicolous plants were significantly higher than in non-metallicolous plants when under copper stress. The results suggest that the expression of acid invertase genes in metallicolous plants of K. stipulacea differed from those in non-metallicolous plants under such conditions. In addition, the sugars may play an important role in regulating the transcript level of acid invertase genes and acid invertase genes may also be involved in root/shoot biomass allocation.

  15. Use of the Plant Defense Protein Osmotin To Identify Fusarium oxysporum Genes That Control Cell Wall Properties

    KAUST Repository

    Lee, H.

    2010-02-26

    Fusarium oxysporum is the causative agent of fungal wilt disease in a variety of crops. The capacity of a fungal pathogen such as F. oxysporum f. sp. nicotianae to establish infection on its tobacco (Nicotiana tabacum) host depends in part on its capacity to evade the toxicity of tobacco defense proteins, such as osmotin. Fusarium genes that control resistance to osmotin would therefore reflect coevolutionary pressures and include genes that control mutual recognition, avoidance, and detoxification. We identified FOR (Fusarium Osmotin Resistance) genes on the basis of their ability to confer osmotin resistance to an osmotin-sensitive strain of Saccharomyces cerevisiae. FOR1 encodes a putative cell wall glycoprotein. FOR2 encodes the structural gene for glutamine:fructose-6-phosphate amidotransferase, the first and rate-limiting step in the biosynthesis of hexosamine and cell wall chitin. FOR3 encodes a homolog of SSD1, which controls cell wall composition, longevity, and virulence in S. cerevisiae. A for3 null mutation increased osmotin sensitivity of conidia and hyphae of F. oxysporum f. sp. nicotianae and also reduced cell wall β-1,3-glucan content. Together our findings show that conserved fungal genes that determine cell wall properties play a crucial role in regulating fungal susceptibility to the plant defense protein osmotin.

  16. A WDR Gene Is a Conserved Member of a Chitin Synthase Gene Cluster and Influences the Cell Wall in Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Gea Guerriero

    2016-06-01

    Full Text Available WD40 repeat (WDR proteins are pleiotropic molecular hubs. We identify a WDR gene that is a conserved genomic neighbor of a chitin synthase gene in Ascomycetes. The WDR gene is unique to fungi and plants, and was called Fungal Plant WD (FPWD. FPWD is within a cell wall metabolism gene cluster in the Ascomycetes (Pezizomycotina comprising chsD, a Chs activator and a GH17 glucanase. The FPWD, AN1556.2 locus was deleted in Aspergillus nidulans strain SAA.111 by gene replacement and only heterokaryon transformants were obtained. The re-annotation of Aspergilli genomes shows that AN1556.2 consists of two tightly linked separate genes, i.e., the WDR gene and a putative beta-flanking gene of unknown function. The WDR and the beta-flanking genes are conserved genomic neighbors localized within a recently identified metabolic cell wall gene cluster in genomes of Aspergilli. The heterokaryons displayed increased susceptibility to drugs affecting the cell wall, and their phenotypes, observed by optical, confocal, scanning electron and atomic force microscopy, suggest cell wall alterations. Quantitative real-time PCR shows altered expression of some cell wall-related genes. The possible implications on cell wall biosynthesis are discussed.

  17. Cloning, 3D modeling and expression analysis of three vacuolar invertase genes from cassava (Manihot Esculenta Crantz).

    Science.gov (United States)

    Yao, Yuan; Wu, Xiao-Hui; Geng, Meng-Ting; Li, Rui-Mei; Liu, Jiao; Hu, Xin-Wen; Guo, Jian-Chun

    2014-05-15

    Vacuolar invertase is one of the key enzymes in sucrose metabolism that irreversibly catalyzes the hydrolysis of sucrose to glucose and fructose in plants. In this research, three vacuolar invertase genes, named MeVINV1-3, and with 653, 660 and 639 amino acids, respectively, were cloned from cassava. The motifs of NDPNG (β-fructosidase motif), RDP and WECVD, which are conserved and essential for catalytic activity in the vacuolar invertase family, were found in MeVINV1 and MeVINV2. Meanwhile, in MeVINV3, instead of NDPNG we found the motif NGPDG, in which the three amino acids GPD are different from those in other vacuolar invertases (DPN) that might result in MeVINV3 being an inactivated protein. The N-terminal leader sequence of MeVINVs contains a signal anchor, which is associated with the sorting of vacuolar invertase to vacuole. The overall predicted 3D structure of the MeVINVs consists of a five bladed β-propeller module at N-terminus domain, and forms a β-sandwich module at the C-terminus domain. The active site of the protein is situated in the β-propeller module. MeVINVs are classified in two subfamilies, α and β groups, in which α group members of MeVINV1 and 2 are highly expressed in reproductive organs and tuber roots (considered as sink organs), while β group members of MeVINV3 are highly expressed in leaves (source organs). All MeVINVs are highly expressed in leaves, while only MeVINV1 and 2 are highly expressed in tubers at cassava tuber maturity stage. Thus, MeVINV1 and 2 play an important role in sucrose unloading and starch accumulation, as well in buffering the pools of sucrose, hexoses and sugar phosphates in leaves, specifically at later stages of plant development.

  18. Secondary cell wall composition and candidate gene expression in developing willow (Salix purpurea) stems.

    Science.gov (United States)

    Wan, Yongfang; Gritsch, Cristina; Tryfona, Theodora; Ray, Mike J; Andongabo, Ambrose; Hassani-Pak, Keywan; Jones, Huw D; Dupree, Paul; Karp, Angela; Shewry, Peter R; Mitchell, Rowan A C

    2014-05-01

    The properties of the secondary cell wall (SCW) in willow largely determine the suitability of willow biomass feedstock for potential bioenergy and biofuel applications. SCW development has been little studied in willow and it is not known how willow compares with model species, particularly the closely related genus Populus. To address this and relate SCW synthesis to candidate genes in willow, a tractable bud culture-derived system was developed in Salix purpurea, and cell wall composition and RNA-Seq transcriptome were followed in stems during early development. A large increase in SCW deposition in the period 0-2 weeks after transfer to soil was characterised by a big increase in xylan content, but no change in the frequency of substitution of xylan with glucuronic acid, and increased abundance of putative transcripts for synthesis of SCW cellulose, xylan and lignin. Histochemical staining and immunolabeling revealed that increased deposition of lignin and xylan was associated with xylem, xylem fibre cells and phloem fibre cells. Transcripts orthologous to those encoding xylan synthase components IRX9 and IRX10 and xylan glucuronyl transferase GUX1 in Arabidopsis were co-expressed, and showed the same spatial pattern of expression revealed by in situ hybridisation at four developmental stages, with abundant expression in proto-xylem, xylem fibre and ray parenchyma cells and some expression in phloem fibre cells. The results show a close similarity with SCW development in Populus species, but also give novel information on the relationship between spatial and temporal variation in xylan-related transcripts and xylan composition.

  19. Genes involved in cell wall localization and side chain formation of rhamnose-glucose polysaccharide in Streptococcus mutans.

    Science.gov (United States)

    Yamashita, Y; Tsukioka, Y; Tomihisa, K; Nakano, Y; Koga, T

    1998-11-01

    We identified in Streptococcus mutans six new genes (rgpA through rgpF), whose disruption results in a loss of serotype-specific antigenicity, specified by the glucose side chains of rhamnose-glucose polysaccharide from the cell wall. Rhamnose and glucose content of the cell wall decreased drastically in all these disruption mutants, except that in the rgpE mutant only the glucose content decreased. RgpC and RgpD are homologous to ATP-binding cassette transporter components and may be involved in polysaccharide export, whereas RgpE may be a transferase of side chain glucose.

  20. Genes Involved in Cell Wall Localization and Side Chain Formation of Rhamnose-Glucose Polysaccharide in Streptococcus mutans

    OpenAIRE

    Yamashita, Yoshihisa; Tsukioka, Yuichi; Tomihisa, Kiyotaka; Nakano, Yoshio; Koga, Toshihiko

    1998-01-01

    We identified in Streptococcus mutans six new genes (rgpA through rgpF), whose disruption results in a loss of serotype-specific antigenicity, specified by the glucose side chains of rhamnose-glucose polysaccharide from the cell wall. Rhamnose and glucose content of the cell wall decreased drastically in all these disruption mutants, except that in the rgpE mutant only the glucose content decreased. RgpC and RgpD are homologous to ATP-binding cassette transporter components and may be involve...

  1. Influence of N-glycans on Expression of Cell Wall Remodeling Related Genes in Paracoccidioides brasiliensis Yeast Cells

    Science.gov (United States)

    Almeida, Fausto; Antoniêto, Amanda Cristina Campos; Pessoni, André Moreira; Monteiro, Valdirene Neves; Alegre-Maller, Ana Claudia Paiva; Pigosso, Laurine Lacerda; Pereira, Maristela; Soares, Célia Maria de Almeida; Roque-Barreira, Maria Cristina

    2016-01-01

    Paracoccidioidomycosis is the most prevalent systemic mycosis in Latin America. It is caused by the temperature-dependent dimorphic fungus Paracoccidioides brasiliensis. The P. brasiliensis cell wall is a dynamic outer structure, composed of a network of glycoproteins and polysaccharides, such as chitin, glucan and N-glycosylated proteins. These glycoproteins can interact with the host to affect infection rates, and are known to perform other functions. We inhibited N-linked glycosylation using tunicamycin (TM), and then evaluated the expression of P. brasiliensis genes related to cell wall remodeling. Our results suggest that cell wall synthesis related genes, such as β-1,3-glucanosyltransferase (PbGEL3), 1,3-β-D-glucan synthase (PbFKS1), and α-1,4-amylase (PbAMY), as well as cell wall degrading related genes, such as N-acetyl-β-D-glucosaminidase (PbNAG1), α-1,3-glucanase (PbAGN), and β-1,3-glucanase (PbBGN1 and PbBGN2), have their expression increased by the N-glycosylation inhibition, as detected by qRT-PCR. The observed increases in gene expression levels reveal possible compensatory mechanisms for diminished enzyme activity due to the lack of glycosylation caused by TM. PMID:27226767

  2. Polymorphisms in O-methyltransferase genes are associated with stover cell wall digestibility in European maize (Zea mays L.)

    DEFF Research Database (Denmark)

    Brenner, Everton A; Zein, Imad; Chen, Yongsheng

    2010-01-01

    Background OMT (O-methyltransferase) genes are involved in lignin biosynthesis, which relates to stover cell wall digestibility. Reduced lignin content is an important determinant of both forage quality and ethanol conversion efficiency of maize stover. Results Variation in genomic sequences coding...

  3. The MP65 gene is required for cell wall integrity, adherence to epithelial cells and biofilm formation in Candida albicans

    Directory of Open Access Journals (Sweden)

    Girolamo Antonietta

    2011-05-01

    Full Text Available Abstract Background The MP65 gene of Candida albicans (orf19.1779 encodes a putative β-glucanase mannoprotein of 65 kDa, which plays a main role in a host-fungus relationship, morphogenesis and pathogenicity. In this study, we performed an extensive analysis of a mp65Δ mutant to assess the role of this protein in cell wall integrity, adherence to epithelial cells and biofilm formation. Results The mp65Δ mutant showed a high sensitivity to a range of cell wall-perturbing and degrading agents, especially Congo red, which induced morphological changes such as swelling, clumping and formation of hyphae. The mp65Δ mutant showed an activation of two MAPKs (Mkc1p and Cek1p, a high level of expression of two stress-related genes (DDR48 and SOD5, and a modulated expression of β-glucan epitopes, but no gross changes in cell wall polysaccharide composition. Interestingly, the mp65Δ mutant displayed a marked reduction in adhesion to BEC and Caco-2 cells and severe defects in biofilm formation when compared to the wild type. All of the mentioned properties were totally or partially recovered in a revertant strain, demonstrating the specificity of gene deletion. Conclusions We demonstrate that the MP65 gene of Candida albicans plays a significant role in maintaining cell wall integrity, as well as in adherence to epithelia and biofilm formation, which are major virulence attributes of this fungus.

  4. Polymorphisms in O-methyltransferase genes are associated with stover cell wall digestibility in European maize (Zea mays L.).

    Science.gov (United States)

    Brenner, Everton A; Zein, Imad; Chen, Yongsheng; Andersen, Jeppe R; Wenzel, Gerhard; Ouzunova, Milena; Eder, Joachim; Darnhofer, Birte; Frei, Uschi; Barrière, Yves; Lübberstedt, Thomas

    2010-02-12

    OMT (O-methyltransferase) genes are involved in lignin biosynthesis, which relates to stover cell wall digestibility. Reduced lignin content is an important determinant of both forage quality and ethanol conversion efficiency of maize stover. Variation in genomic sequences coding for COMT, CCoAOMT1, and CCoAOMT2 was analyzed in relation to stover cell wall digestibility for a panel of 40 European forage maize inbred lines, and re-analyzed for a panel of 34 lines from a published French study. Different methodologies for association analysis were performed and compared. Across association methodologies, a total number of 25, 12, 1, 6 COMT polymorphic sites were significantly associated with DNDF, OMD, NDF, and WSC, respectively. Association analysis for CCoAOMT1 and CCoAOMT2 identified substantially fewer polymorphic sites (3 and 2, respectively) associated with the investigated traits. Our re-analysis on the 34 lines from a published French dataset identified 14 polymorphic sites significantly associated with cell wall digestibility, two of them were consistent with our study. Promising polymorphisms putatively causally associated with variability of cell wall digestibility were inferred from the total number of significantly associated SNPs/Indels. Several polymorphic sites for three O-methyltransferase loci were associated with stover cell wall digestibility. All three tested genes seem to be involved in controlling DNDF, in particular COMT. Thus, considerable variation among Bm3 wildtype alleles can be exploited for improving cell-wall digestibility. Target sites for functional markers were identified enabling development of efficient marker-based selection strategies.

  5. Polymorphisms in O-methyltransferase genes are associated with stover cell wall digestibility in European maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Darnhofer Birte

    2010-02-01

    Full Text Available Abstract Background OMT (O-methyltransferase genes are involved in lignin biosynthesis, which relates to stover cell wall digestibility. Reduced lignin content is an important determinant of both forage quality and ethanol conversion efficiency of maize stover. Results Variation in genomic sequences coding for COMT, CCoAOMT1, and CCoAOMT2 was analyzed in relation to stover cell wall digestibility for a panel of 40 European forage maize inbred lines, and re-analyzed for a panel of 34 lines from a published French study. Different methodologies for association analysis were performed and compared. Across association methodologies, a total number of 25, 12, 1, 6 COMT polymorphic sites were significantly associated with DNDF, OMD, NDF, and WSC, respectively. Association analysis for CCoAOMT1 and CCoAOMT2 identified substantially fewer polymorphic sites (3 and 2, respectively associated with the investigated traits. Our re-analysis on the 34 lines from a published French dataset identified 14 polymorphic sites significantly associated with cell wall digestibility, two of them were consistent with our study. Promising polymorphisms putatively causally associated with variability of cell wall digestibility were inferred from the total number of significantly associated SNPs/Indels. Conclusions Several polymorphic sites for three O-methyltransferase loci were associated with stover cell wall digestibility. All three tested genes seem to be involved in controlling DNDF, in particular COMT. Thus, considerable variation among Bm3 wildtype alleles can be exploited for improving cell-wall digestibility. Target sites for functional markers were identified enabling development of efficient marker-based selection strategies.

  6. Analysis of Cell Wall-Related Genes in Organs of Medicago sativa L. under Different Abiotic Stresses.

    Science.gov (United States)

    Behr, Marc; Legay, Sylvain; Hausman, Jean-Francois; Guerriero, Gea

    2015-07-16

    Abiotic constraints are a source of concern in agriculture, because they can have a strong impact on plant growth and development, thereby affecting crop yield. The response of plants to abiotic constraints varies depending on the type of stress, on the species and on the organs. Although many studies have addressed different aspects of the plant response to abiotic stresses, only a handful has focused on the role of the cell wall. A targeted approach has been used here to study the expression of cell wall-related genes in different organs of alfalfa plants subjected for four days to three different abiotic stress treatments, namely salt, cold and heat stress. Genes involved in different steps of cell wall formation (cellulose biosynthesis, monolignol biosynthesis and polymerization) have been analyzed in different organs of Medicago sativa L. Prior to this analysis, an in silico classification of dirigent/dirigent-like proteins and class III peroxidases has been performed in Medicago truncatula and M. sativa. The final goal of this study is to infer and compare the expression patterns of cell wall-related genes in response to different abiotic stressors in the organs of an important legume crop.

  7. Post-translational inhibitory regulation of acid invertase induced by fructose and glucose in developing apple fruit

    Institute of Scientific and Technical Information of China (English)

    张大鹏; 王永章

    2002-01-01

    Acid invertase (EC 3.2.1.26) is one of the key enzymes involved in the carbohydrate sink-organ development and the sink strength modulation in crops. The experiment conducted with 'Starkrimson' apple (Malus domestica Borkh) fruit showed that, during the fruit development, the activity of acid invertase gradually declined concomitantly with the progressive accumulation of fructose, glucose and sucrose, while Western blotting assay of acid invertase detected a 30 ku peptide of which the immuno-signal intensity increased during the fruit development. The immuno-localization via immunogold electron microscopy showed that, on the one hand, acid invertase was mainly located on the flesh cell wall with numbers of the immunosignals present in the vacuole at the late stage of fruit development; and on the other hand, the amount of acid invertase increased during fruit development, which was consistent with the results of Western blotting. The in vivo pre-incubation of fruit discs with soluble sugars showed that the activity of extractible acid invertase was inhibited by fructose or glucose, while Western blotting did not detect any changes in apparent quantity of the enzyme nor other peptides than 30 ku one. So it is considered that fructose and glucose induced the post-translational or translocational inhibitory regulation of acid invertase in developing apple fruit. The mechanism of the post-translational inhibition was shown different from both the two previously reported ones that proposed either the inhibition by hexose products in the in vitro chemical reaction equilibrium system or the inhibition by the proteinaceous inhibitors. It was hypothesized that fructose and glucose might induce acid invertase inhibition by modulating the expression of some inhibition-related genes or some structural modification of acid invertase.

  8. Kinetic Induction of Oat Shoot Pulvinus Invertase mRNA by Gravistimulation and Partial cDNA Cloning by the Polymerase Chain Reaction

    Science.gov (United States)

    Wu, Liu-Lai; Song, Il; Karuppiah, Nadarajah; Kaufman, Peter B.

    1993-01-01

    An asymmetric (top vs. bottom halves of pulvini) induction of invertase mRNA by gravistimulation was analyzed in oat shoot pulvini. Total RNA and poly(A)(+) RNA, isolated from oat pulvini, and two oli-gonucleotide primers, corresponding to two conserved amino acid sequences (NDPNG and WECPD) found in invertase from other species, were used for the polymerase chain reaction (PCR). A partial length cDNA (550 bp) was obtained and characterized. A 62% nucleotide sequence homology and 58% deduced amino acid sequence homology, as compared to beta-fructosidase of carrot cell wall, was found. Northern blot analysis showed that there was an obviously transient induction of invertase mRNA by gravistimulation in the oat pulvinus system. The mRNA was rapidly induced to a maximum level at 1 hour after gravistimulation treatment and gradually decreased afterwards. The mRNA level in the bottom half of the oat pulvinus was significantly higher than that in the top half of the pulvinus tissue. The kinetic induction of invertase mRNA was consistent with the transient accumulation of invertase activity during the graviresponse of the pulvinus. This indicates that the expression of the invertase gene(s) could be regulated by gravistimulation at the transcriptional level. Southern blot analysis showed that there were two to three genomic DNA fragments which hybridized with the partial-length invertase cDNA.

  9. Kinetic Induction of Oat Shoot Pulvinus Invertase mRNA by Gravistimulation and Partial cDNA Cloning by the Polymerase Chain Reaction

    Science.gov (United States)

    Wu, Liu-Lai; Song, Il; Karuppiah, Nadarajah; Kaufman, Peter B.

    1993-01-01

    An asymmetric (top vs. bottom halves of pulvini) induction of invertase mRNA by gravistimulation was analyzed in oat shoot pulvini. Total RNA and poly(A)(+) RNA, isolated from oat pulvini, and two oli-gonucleotide primers, corresponding to two conserved amino acid sequences (NDPNG and WECPD) found in invertase from other species, were used for the polymerase chain reaction (PCR). A partial length cDNA (550 bp) was obtained and characterized. A 62% nucleotide sequence homology and 58% deduced amino acid sequence homology, as compared to beta-fructosidase of carrot cell wall, was found. Northern blot analysis showed that there was an obviously transient induction of invertase mRNA by gravistimulation in the oat pulvinus system. The mRNA was rapidly induced to a maximum level at 1 hour after gravistimulation treatment and gradually decreased afterwards. The mRNA level in the bottom half of the oat pulvinus was significantly higher than that in the top half of the pulvinus tissue. The kinetic induction of invertase mRNA was consistent with the transient accumulation of invertase activity during the graviresponse of the pulvinus. This indicates that the expression of the invertase gene(s) could be regulated by gravistimulation at the transcriptional level. Southern blot analysis showed that there were two to three genomic DNA fragments which hybridized with the partial-length invertase cDNA.

  10. Analysis of Papaya Cell Wall-Related Genes during Fruit Ripening Indicates a Central Role of Polygalacturonases during Pulp Softening

    Science.gov (United States)

    Fabi, João Paulo; Broetto, Sabrina Garcia; da Silva, Sarah Lígia Garcia Leme; Zhong, Silin; Lajolo, Franco Maria; do Nascimento, João Roberto Oliveira

    2014-01-01

    Papaya (Carica papaya L.) is a climacteric fleshy fruit that undergoes dramatic changes during ripening, most noticeably a severe pulp softening. However, little is known regarding the genetics of the cell wall metabolism in papayas. The present work describes the identification and characterization of genes related to pulp softening. We used gene expression profiling to analyze the correlations and co-expression networks of cell wall-related genes, and the results suggest that papaya pulp softening is accomplished by the interactions of multiple glycoside hydrolases. The polygalacturonase cpPG1 appeared to play a central role in the network and was further studied. The transient expression of cpPG1 in papaya results in pulp softening and leaf necrosis in the absence of ethylene action and confirms its role in papaya fruit ripening. PMID:25162506

  11. Divergence and transcriptional analysis of the division cell wall (dcw) gene cluster in Neisseria spp.

    Science.gov (United States)

    Snyder, Lori A S; Shafer, William M; Saunders, Nigel J

    2003-01-01

    Three of the 18 open reading frames in the division and cell wall synthesis cluster of the pathogenic Neisseria spp. are not present in the clusters of other bacterial species. The region containing two of these, dcaB and dcaC, displays interstrain and interspecies variability uncharacteristic of such clusters. 3' of dcaB is a Correia repeat enclosed element (CREE), which is only present in some strains. It has been suggested that this CREE is a transcriptional terminator, although we demonstrate otherwise. A gearbox-like promoter within this CREE is active in Escherichia coli but not in Neisseria meningitidis. There is an active promoter 5' of dcaC, although its sequence is not conserved. The presence of similarly located promoters has not been demonstrated in other species. In Neisseria lactamica, this promoter involves another dcw-associated CREE, the first demonstration of active promoter generation at the 5' end of this common intergenic, apparently mobile, element. Upstream of this promoter is an inverted pair of neisserial uptake signal sequences, which are commonly considered to be transcriptional terminators. It has been proposed to terminate transcription in this location, although we have demonstrated transcript extending through this uptake signal sequence. dcaC contains a 108 bp tandem repeat, which is present in different copy numbers in the neisserial strains examined. This investigation reveals extensive sequence variation, disputes the presence of transcriptional terminators and identifies active internal promoters in this normally highly conserved cluster of essential genes, and addresses the transcriptional activity of two common neisserial intergenic components.

  12. Gene Profiling for Invertase Activity: Assessment of Potato Varieties for Resistance towards Cold Induced Sweetening

    Directory of Open Access Journals (Sweden)

    Arfan Ali

    2016-02-01

    Full Text Available Background: Potato is the most important staple food in the world. Cold-induced sweetening occurs when potatoes are stored at low temperature for longer period of time. Due to non- enzymatic Millard reaction it causes unwanted changes in colour, taste and in flavor when fried and roasted at high temperature. However, long-term cold storage is mandatory to keep an adequate supply of potatoes throughout the year. The cause of cold-induced sweetening is invertase enzyme. Methods: Five potato varieties (Hermes (A Lady Rosetta (B Oscar (C Kuroda (D and Multa (E were investigated for invertase activity during two month cold storage at 4°C. Crude protein was extracted by PD Midi Trap G25 column technique. Quantification of mRNA expression was employed through QPCR. Determination of sucrose, reducing sugars and organic acids was simply done by 80% ethanol method and concentration were find out by using HPLC with already set standards. The correlation between invertase enzyme, sugar content and mRNA expression was calculated through Statistical methods. Results: Significant activity of invertase was observed at 4ºC with up to 6.3 nmol/min/mg of protein in the type-1 & 4 (cv. Hermes and Kuroda; 2.5 times less in type 2 (Rosetta and 3.5 times less in type 3 (Multa when compared with same at 4ºC. In addition, malic acid concentration was found positively correlated with invertase activity at 4ºC as compared with its concentration at harvesting time. However, citric acid and oxalic acid concentrations were independent of invertase enzyme activity. The transcript level of invertase enzyme was found significantly high in potato tubers stored at 4ºC in result 1 & 4 type, less in result type 2(C and negligible in result 3(E potato variety when revealed through reverse transcription PCR. Conclusions: In conclusion, Oscar (C and Multa (E were found more resistant to CIS at 4ºC storage and may be used for future variety improvement programs for CIS resistant

  13. Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone

    Directory of Open Access Journals (Sweden)

    Michael H Wilson

    2015-02-01

    Full Text Available Plant cell wall composition is important for regulating growth rates, especially in roots. However, neither analyses of cell wall composition nor transcriptomes on their own can comprehensively reveal which genes and processes are mediating growth and cell elongation rates. This study reveals the benefits of carrying out multiple analyses in combination. Sections of roots from five anatomically and functionally defined zones in Arabidopsis thaliana were prepared and divided into three biological replicates. We used glycan microarrays and antibodies to identify the major classes of glycans and glycoproteins present in the cell walls of these sections, and identified the expected decrease in pectin and increase in xylan from the meristematic zone (MS, through the rapid and late elongation zones (REZ, LEZ to the maturation zone and the rest of the root, including the emerging lateral roots. Other compositional changes included extensin and xyloglucan levels peaking in the REZ and increasing levels of arabinogalactan-proteins (AGP epitopes from the MS to the LEZ, which remained high through the subsequent mature zones. Immuno-staining using the same antibodies identified the tissue and (subcellular localization of many epitopes. Extensins were localized in epidermal and cortex cell walls, while AGP glycans were specific to different tissues from root-hair cells to the stele. The transcriptome analysis found several gene families peaking in the REZ. These included a large family of peroxidases (which produce the reactive oxygen species needed for cell expansion, and three xyloglucan endo-transglycosylase/hydrolase genes (XTH17, XTH18 and XTH19. The significance of the latter may be related to a role in breaking and re-joining xyloglucan cross-bridges between cellulose microfibrils, a process which is required for wall expansion. Knockdowns of these XTHs resulted in shorter root lengths, confirming a role of the corresponding proteins in root

  14. Four novel cellulose synthase (CESA) genes from Birch (Betula platyphylla Suk.) involved in primary and secondary cell Wall biosynthesis.

    Science.gov (United States)

    Liu, Xuemei; Wang, Qiuyu; Chen, Pengfei; Song, Funan; Guan, Minxiao; Jin, Lihua; Wang, Yucheng; Yang, Chuanping

    2012-09-25

    Cellulose synthase (CESA), which is an essential catalyst for the generation of plant cell wall biomass, is mainly encoded by the CesA gene family that contains ten or more members. In this study; four full-length cDNAs encoding CESA were isolated from Betula platyphylla Suk., which is an important timber species, using RT-PCR combined with the RACE method and were named as BplCesA3, -4, -7 and -8. These deduced CESAs contained the same typical domains and regions as their Arabidopsis homologs. The cDNA lengths differed among these four genes, as did the locations of the various protein domains inferred from the deduced amino acid sequences, which shared amino acid sequence identities ranging from only 63.8% to 70.5%. Real-time RT-PCR showed that all four BplCesAs were expressed at different levels in diverse tissues. Results indicated that BplCESA8 might be involved in secondary cell wall biosynthesis and floral development. BplCESA3 appeared in a unique expression pattern and was possibly involved in primary cell wall biosynthesis and seed development; it might also be related to the homogalacturonan synthesis. BplCESA7 and BplCESA4 may be related to the formation of a cellulose synthase complex and participate mainly in secondary cell wall biosynthesis. The extremely low expression abundance of the four BplCESAs in mature pollen suggested very little involvement of them in mature pollen formation in Betula. The distinct expression pattern of the four BplCesAs suggested they might participate in developments of various tissues and that they are possibly controlled by distinct mechanisms in Betula.

  15. Key gene regulating cell wall biosynthesis and recalcitrance in Populus, gene Y

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jay; Engle, Nancy; Gunter, Lee E.; Jawdy, Sara; Tschaplinski, Timothy J.; Tuskan, Gerald A.

    2015-12-08

    This disclosure provides methods and transgenic plants for improved production of renewable biofuels and other plant-derived biomaterials by altering the expression and/or activity of Gene Y, an O-acetyltransferase. This disclosure also provides expression vectors containing a nucleic acid (Gene Y) which encodes the polypeptide of SEQ ID NO: 1 and is operably linked to a heterologous promoter.

  16. Suppression of cell wall-related genes associated with stunting of Oryza glaberrima infected with Rice tungro spherical virus

    Directory of Open Access Journals (Sweden)

    Bernard O. Budot

    2014-02-01

    Full Text Available Rice tungro disease is a complex disease caused by the interaction between Rice tungro bacilliform virus and Rice tungro spherical virus (RTSV. RTSV alone does not cause recognizable symptoms in most Asian rice (Oryza sativa plants, whereas some African rice (O. glaberrima plants were found to become stunted by RTSV. Stunting of rice plants by virus infections usually accompanies the suppression of various cell wall-related genes. The expression of cell wall-related genes was examined in O. glaberrima and O. sativa infected with RTSV to see the relationship between the severity of stunting and the suppression of cell wall-related genes by RTSV. The heights of four accessions of O. glaberrima were found to decline by 14 to 34% at 28 days post-inoculation (dpi with RTSV, whereas the height reduction of O. sativa plants by RTSV was not significant. RTSV accumulated more in O. glaberrima plants than in O. sativa plants, but the level of RTSV accumulation was not correlated with the degree of height reduction among the four accessions of O. glaberrima. Examination for expression of genes for cellulose synthase A5 (CESA5 and A6 (CESA6, cellulose synthase-like A9 (CSLA9 and C7, and -expansin 1 (expansin 1 and 15 precursors in O. glaberrima and O. sativa plants between 7 and 28 dpi with RTSV showed that the genes such as those for CESA5, CESA6, CSLA9, and expansin 1were more significantly suppressed in stunted plants of O. glaberrima at 14 dpi with RTSV than in O. sativa, suggesting that stunting of O. glaberrima might be associated with these cell wall-related genes suppressed by RTSV. Examination for expression of these genes in O. sativa plants infected with other rice viruses in previous studies indicated that the suppression of the expansin 1 gene is likely to be a signature response commonly associated with virus-induced stunting of Oryza species. These results suggest that stunting of O. glaberrima by RTSV infection might be associated with

  17. Characterization of the alkaline/neutral invertase gene in Dendrobium officinale and its relationship with polysaccharide accumulation.

    Science.gov (United States)

    Gao, F; Cao, X F; Si, J P; Chen, Z Y; Duan, C L

    2016-05-06

    Dendrobium officinale is one of the most well-known traditional Chinese medicines, and polysaccharide is its main active ingredient. Many studies have investigated the synthesis and accumulation mechanisms of polysaccharide, but until recently, little was known about the molecular mechanism of how polysaccharide is synthesized because no related genes have been cloned. In this study, we cloned an alkaline/neutral invertase gene from D. officinale (DoNI) by the rapid amplification of cDNA ends (RACE) method. DoNI was 2231 bp long and contained an open reading frame that predicted a 62.8-kDa polypeptide with 554-amino acid residues. An alkaline/neutral invertase conserved domain was predicted from this deduced amino acid sequence, and DoNI had a similar deduced amino acid sequence to Setaria italica and Oryza brachyantha. We also found that DoNI expression in different tissues was closely related to DoNI activity, and more importantly, polysaccharide level. Our results indicate that DoNI is associated with polysaccharide accumulation in D. officinale.

  18. Genome-scale identification of cell-wall related genes in Arabidopsis based on co-expression network analysis

    Directory of Open Access Journals (Sweden)

    Wang Shan

    2012-08-01

    Full Text Available Abstract Background Identification of the novel genes relevant to plant cell-wall (PCW synthesis represents a highly important and challenging problem. Although substantial efforts have been invested into studying this problem, the vast majority of the PCW related genes remain unknown. Results Here we present a computational study focused on identification of the novel PCW genes in Arabidopsis based on the co-expression analyses of transcriptomic data collected under 351 conditions, using a bi-clustering technique. Our analysis identified 217 highly co-expressed gene clusters (modules under some experimental conditions, each containing at least one gene annotated as PCW related according to the Purdue Cell Wall Gene Families database. These co-expression modules cover 349 known/annotated PCW genes and 2,438 new candidates. For each candidate gene, we annotated the specific PCW synthesis stages in which it is involved and predicted the detailed function. In addition, for the co-expressed genes in each module, we predicted and analyzed their cis regulatory motifs in the promoters using our motif discovery pipeline, providing strong evidence that the genes in each co-expression module are transcriptionally co-regulated. From the all co-expression modules, we infer that 108 modules are related to four major PCW synthesis components, using three complementary methods. Conclusions We believe our approach and data presented here will be useful for further identification and characterization of PCW genes. All the predicted PCW genes, co-expression modules, motifs and their annotations are available at a web-based database: http://csbl.bmb.uga.edu/publications/materials/shanwang/CWRPdb/index.html.

  19. Vacuolar invertase gene silencing in potato (Solanum tuberosum L.) improves processing quality by decreasing the frequency of sugar-end defects.

    Science.gov (United States)

    Zhu, Xiaobiao; Richael, Craig; Chamberlain, Patrick; Busse, James S; Bussan, Alvin J; Jiang, Jiming; Bethke, Paul C

    2014-01-01

    Sugar-end defect is a tuber quality disorder and persistent problem for the French fry processing industry that causes unacceptable darkening of one end of French fries. This defect appears when environmental stress during tuber growth increases post-harvest vacuolar acid invertase activity at one end of the tuber. Reducing sugars produced by invertase form dark-colored Maillard reaction products during frying. Acrylamide is another Maillard reaction product formed from reducing sugars and acrylamide consumption has raised health concerns worldwide. Vacuolar invertase gene (VInv) expression was suppressed in cultivars Russet Burbank and Ranger Russet using RNA interference to determine if this approach could control sugar-end defect formation. Acid invertase activity and reducing sugar content decreased at both ends of tubers. Sugar-end defects and acrylamide in fried potato strips were strongly reduced in multiple transgenic potato lines. Thus vacuolar invertase silencing can minimize a long-standing French fry quality problem while providing consumers with attractive products that reduce health concerns related to dietary acrylamide.

  20. Vacuolar invertase gene silencing in potato (Solanum tuberosum L. improves processing quality by decreasing the frequency of sugar-end defects.

    Directory of Open Access Journals (Sweden)

    Xiaobiao Zhu

    Full Text Available Sugar-end defect is a tuber quality disorder and persistent problem for the French fry processing industry that causes unacceptable darkening of one end of French fries. This defect appears when environmental stress during tuber growth increases post-harvest vacuolar acid invertase activity at one end of the tuber. Reducing sugars produced by invertase form dark-colored Maillard reaction products during frying. Acrylamide is another Maillard reaction product formed from reducing sugars and acrylamide consumption has raised health concerns worldwide. Vacuolar invertase gene (VInv expression was suppressed in cultivars Russet Burbank and Ranger Russet using RNA interference to determine if this approach could control sugar-end defect formation. Acid invertase activity and reducing sugar content decreased at both ends of tubers. Sugar-end defects and acrylamide in fried potato strips were strongly reduced in multiple transgenic potato lines. Thus vacuolar invertase silencing can minimize a long-standing French fry quality problem while providing consumers with attractive products that reduce health concerns related to dietary acrylamide.

  1. Identification, Characterization and Expression Analysis of Cell Wall Related Genes in Sorghum bicolor (L. Moench, a Food, Fodder and Biofuel Crop

    Directory of Open Access Journals (Sweden)

    KRISHAN MOHAN RAI

    2016-08-01

    Full Text Available Biomass based alternative fuels offer a solution to the world’s ever-increasing energy demand. With the ability to produce high biomass in marginal lands with low inputs, sorghum has a great potential to meet second-generation biofuel needs. Despite the sorghum crop importance in biofuel and fodder industry, there is no comprehensive information available on the cell wall related genes and gene families (biosynthetic and modification. It is important to identify the cell wall related genes to understand the cell wall biosynthetic process as well as to facilitate biomass manipulation. Genome-wide analysis using gene family specific Hidden Markov Model of conserved domains identified 520 genes distributed among 20 gene families related to biosynthesis/modification of various cell wall polymers such as cellulose, hemicellulose, pectin and lignin. Chromosomal localization analysis of these genes revealed that about 65% of cell wall related genes were confined to four chromosomes (Chr. 1-4. Further, 53 tandem duplication events involving 146 genes were identified in these gene families which could be associated with expansion of genes within families in sorghum. Additionally, we also identified 137 Simple Sequence Repeats related to 112 genes and target sites for 10 miRNAs in some important families such as cellulose synthase, cellulose synthase-like and laccases, etc. To gain further insight into potential functional roles, expression analysis of these gene families was performed using publicly available data sets in various tissues and under abiotic stress conditions. Expression analysis showed tissue specificity as well as differential expression under abiotic stress conditions. Overall, our study provides a comprehensive information on cell wall related genes families in sorghum which offers a valuable resource to develop strategies for altering biomass composition by plant breeding and genetic engineering approaches.

  2. Identification, Characterization, and Expression Analysis of Cell Wall Related Genes in Sorghum bicolor (L.) Moench, a Food, Fodder, and Biofuel Crop

    Science.gov (United States)

    Rai, Krishan M.; Thu, Sandi W.; Balasubramanian, Vimal K.; Cobos, Christopher J.; Disasa, Tesfaye; Mendu, Venugopal

    2016-01-01

    Biomass based alternative fuels offer a solution to the world's ever-increasing energy demand. With the ability to produce high biomass in marginal lands with low inputs, sorghum has a great potential to meet second-generation biofuel needs. Despite the sorghum crop importance in biofuel and fodder industry, there is no comprehensive information available on the cell wall related genes and gene families (biosynthetic and modification). It is important to identify the cell wall related genes to understand the cell wall biosynthetic process as well as to facilitate biomass manipulation. Genome-wide analysis using gene family specific Hidden Markov Model of conserved domains identified 520 genes distributed among 20 gene families related to biosynthesis/modification of various cell wall polymers such as cellulose, hemicellulose, pectin, and lignin. Chromosomal localization analysis of these genes revealed that about 65% of cell wall related genes were confined to four chromosomes (Chr. 1–4). Further, 56 tandem duplication events involving 169 genes were identified in these gene families which could be associated with expansion of genes within families in sorghum. Additionally, we also identified 137 Simple Sequence Repeats related to 112 genes and target sites for 10 miRNAs in some important families such as cellulose synthase, cellulose synthase-like, and laccases, etc. To gain further insight into potential functional roles, expression analysis of these gene families was performed using publically available data sets in various tissues and under abiotic stress conditions. Expression analysis showed tissue specificity as well as differential expression under abiotic stress conditions. Overall, our study provides a comprehensive information on cell wall related genes families in sorghum which offers a valuable resource to develop strategies for altering biomass composition by plant breeding and genetic engineering approaches. PMID:27630645

  3. Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of Katahdin.

    Science.gov (United States)

    Wiberley-Bradford, Amy E; Busse, James S; Jiang, Jiming; Bethke, Paul C

    2014-11-16

    Storing potato tubers at low temperatures minimizes sprouting and disease but can cause an accumulation of reducing sugars in a process called cold-induced sweetening. Tubers with increased amounts of reducing sugars produce dark-colored, bitter-tasting fried products with elevated amounts of acrylamide, a possible carcinogen. Vacuolar invertase (VInv), which converts sucrose produced by starch breakdown to glucose and fructose, is the key determinant of reducing sugar accumulation during cold-induced sweetening. In this study, wild-type tubers and tubers in which VInv expression was reduced by RNA interference were used to investigate time- and temperature-dependent changes in sugar contents, chip color, and expression of VInv and other genes involved in starch metabolism in tubers during long-term cold storage. VInv activities and tuber reducing sugar contents were much lower, and tuber sucrose contents were much higher, in transgenic than in wild-type tubers stored at 3-9°C for up to eight months. Large differences in VInv mRNA accumulation were not observed at later times in storage, especially at temperatures below 9°C, so differences in invertase activity were likely established early in the storage period and maintained by stability of the invertase protein. Sugar contents, chip color, and expression of several of the studied genes, including AGPase and GBSS, were affected by storage temperature in both wild-type and transgenic tubers. Though transcript accumulation for other sugar-metabolism genes was affected by storage temperature and duration, it was essentially unaffected by invertase silencing and altered sugar contents. Differences in stem- and bud-end sugar contents in wild-type and transgenic tubers suggested different compartmentalization of sucrose at the two ends of stored tubers. VInv silencing significantly reduced cold-induced sweetening in stored potato tubers, likely by means of differential VInv expression early in storage. Transgenic

  4. The snf1 gene of Ustilago maydis acts as a dual regulator of cell wall degrading enzymes.

    Science.gov (United States)

    Nadal, Marina; Garcia-Pedrajas, Maria D; Gold, Scott E

    2010-12-01

    Many fungal plant pathogens are known to produce extracellular enzymes that degrade cell wall elements required for host penetration and infection. Due to gene redundancy, single gene deletions generally do not address the importance of these enzymes in pathogenicity. Cell wall degrading enzymes (CWDEs) in fungi are often subject to carbon catabolite repression at the transcriptional level such that, when glucose is available, CWDE-encoding genes, along with many other genes, are repressed. In Saccharomyces cerevisiae, one of the main players controlling this process is SNF1, which encodes a protein kinase. In this yeast, Snf1p is required to release glucose repression when this sugar is depleted from the growth medium. We have employed a reverse genetic approach to explore the role of the SNF1 ortholog as a potential regulator of CWDE gene expression in Ustilago maydis. We identified U. maydis snf1 and deleted it from the fungal genome. Consistent with our hypothesis, the relative expression of an endoglucanase and a pectinase was higher in the wild type than in the Δsnf1 mutant strain when glucose was depleted from the growth medium. However, when cells were grown in derepressive conditions, the relative expression of two xylanase genes was unexpectedly higher in the Δsnf1 strain than in the wild type, indicating that, in this case, snf1 negatively regulated the expression of these genes. Additionally, we found that, contrary to several other fungal species, U. maydis Snf1 was not required for utilization of alternative carbon sources. Also, unlike in ascomycete plant pathogens, deletion of snf1 did not profoundly affect virulence in U. maydis.

  5. Expression patterns of cell wall-modifying genes from banana during fruit ripening and in relationship with finger drop

    Science.gov (United States)

    Mbéguié-A-Mbéguié, D.; Hubert, O.; Baurens, F. C.; Matsumoto, T.; Chillet, M.; Fils-Lycaon, B.; Sidibé-Bocs, S.

    2009-01-01

    Few molecular studies have been devoted to the finger drop process that occurs during banana fruit ripening. Recent studies revealed the involvement of changes in the properties of cell wall polysaccharides in the pedicel rupture area. In this study, the expression of cell-wall modifying genes was monitored in peel tissue during post-harvest ripening of Cavendish banana fruit, at median area (control zone) and compared with that in the pedicel rupture area (drop zone). To this end, three pectin methylesterase (PME) and seven xyloglucan endotransglycosylase/hydrolase (XTH) genes were isolated. The accumulation of their mRNAs and those of polygalaturonase, expansin, and pectate lyase genes already isolated from banana were examined. During post-harvest ripening, transcripts of all genes were detected in both zones, but accumulated differentially. MaPME1, MaPG1, and MaXTH4 mRNA levels did not change in either zone. Levels of MaPME3 and MaPG3 mRNAs increased greatly only in the control zone and at the late ripening stages. For other genes, the main molecular changes occurred 1–4 d after ripening induction. MaPME2, MaPEL1, MaPEL2, MaPG4, MaXTH6, MaXTH8, MaXTH9, MaEXP1, MaEXP4, and MaEXP5 accumulated highly in the drop zone, contrary to MaXTH3 and MaXTH5, and MaEXP2 throughout ripening. For MaPG2, MaXET1, and MaXET2 genes, high accumulation in the drop zone was transient. The transcriptional data obtained from all genes examined suggested that finger drop and peel softening involved similar mechanisms. These findings also led to the proposal of a sequence of molecular events leading to finger drop and to suggest some candidates. PMID:19357434

  6. Bacterial Cell Wall Synthesis Gene uppP Is Required for Burkholderia Colonization of the Stinkbug Gut

    Science.gov (United States)

    Kim, Jiyeun Kate; Lee, Ho Jin; Kikuchi, Yoshitomo; Kitagawa, Wataru; Nikoh, Naruo

    2013-01-01

    To establish a host-bacterium symbiotic association, a number of factors involved in symbiosis must operate in a coordinated manner. In insects, bacterial factors for symbiosis have been poorly characterized at the molecular and biochemical levels, since many symbionts have not yet been cultured or are as yet genetically intractable. Recently, the symbiotic association between a stinkbug, Riptortus pedestris, and its beneficial gut bacterium, Burkholderia sp., has emerged as a promising experimental model system, providing opportunities to study insect symbiosis using genetically manipulated symbiotic bacteria. Here, in search of bacterial symbiotic factors, we targeted cell wall components of the Burkholderia symbiont by disruption of uppP gene, which encodes undecaprenyl pyrophosphate phosphatase involved in biosynthesis of various bacterial cell wall components. Under culture conditions, the ΔuppP mutant showed higher susceptibility to lysozyme than the wild-type strain, indicating impaired integrity of peptidoglycan of the mutant. When administered to the host insect, the ΔuppP mutant failed to establish normal symbiotic association: the bacterial cells reached to the symbiotic midgut but neither proliferated nor persisted there. Transformation of the ΔuppP mutant with uppP-encoding plasmid complemented these phenotypic defects: lysozyme susceptibility in vitro was restored, and normal infection and proliferation in the midgut symbiotic organ were observed in vivo. The ΔuppP mutant also exhibited susceptibility to hypotonic, hypertonic, and centrifugal stresses. These results suggest that peptidoglycan cell wall integrity is a stress resistance factor relevant to the successful colonization of the stinkbug midgut by Burkholderia symbiont. PMID:23747704

  7. Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci analysis in a Flint × Flint maize recombinant inbred line population

    Directory of Open Access Journals (Sweden)

    Wenzel Gerhard

    2007-01-01

    Full Text Available Abstract Background Cell-wall digestibility is the major target for improving the feeding value of forage maize. An understanding of the molecular basis for cell-wall digestibility is crucial towards breeding of highly digestible maize. Results 865 candidate ESTs for cell-wall digestibility were selected according to the analysis of expression profiles in 1 three sets of brown-midrib isogenic lines in the genetic background of inbreds 1332 (1332 and 1332 bm3, 5361 (5361 and 5361 bm3, and F2 (F2, F2 bm1, F2 bm2, and F2 bm3, 2 the contrasting extreme lines of FD (Flint × Dent, AS08 × AS 06, DD1 (Dent × Dent, AS11 × AS09, and DD2 (Dent × Dent, AS29 × AS30 mapping populations, and 3 two contrasting isogenic inbreds, AS20 and AS21. Out of those, 439 ESTs were assembled on our "Forage Quality Array", a small microarray specific for cell wall digestibility related experiments. Transcript profiles of 40 lines of a Flint × Flint population were monitored using the Forage Quality Array, which were contrasting for cell wall digestibility. Using t-tests (p Conclusion 102 candidate genes for cell-wall digestibility were validated by genetical genomics approach. Although the cDNA array highlights gene types (the tested gene and any close family members, trans-acting factors or metabolic bottlenecks seem to play the major role in controlling heritable variation of gene expression related to cell-wall digestibility, since no in silico mapped ESTs were in the same location as their own eQTL. Transcriptional variation was generally found to be oligogenic rather than monogenic inherited due to only 26% ESTs detected a single eQTL in the present study. One eQTL hotspot was co-localized with cell wall digestibility related QTL cluster on bins 3.05, implying that in this case the gene(s underlying QTL and eQTL are identical. As the field of genetical genomics develops, it is expected to significantly improve our knowledge about complex traits, such as cell

  8. Mutually exclusive distribution of the sap and eag S-layer genes and the lytB/lytA cell wall hydrolase genes in Bacillus thuringiensis.

    Science.gov (United States)

    Soufiane, Brahim; Sirois, Marc; Côté, Jean-Charles

    2011-10-01

    Recently, two Bacillus thuringiensis strains were reported to synthesize parasporal inclusion bodies made not of the expected crystal (Cry) proteins but rather of the surface layer proteins (SLP) Sap (encoded by sap) and EA1 (encoded by eag), respectively. Whether the presence of the sap and eag genes is restricted to these two B. thuringiensis strains or ubiquitous in B. thuringiensis is unknown. We report here the distribution of the sap and eag genes in B. thuringiensis. Strains in the Bacillus cereus group were added for comparison purposes. We show that sap and eag are either present in tandem in 35% of the B. thuringiensis strains analysed and absent in 65% of the strains. When absent, a different tandem, the lytB/lytA cell wall hydrolase genes, is present. The distribution of the sap and eag S-layer and the lytB/lytA cell wall hydrolase genes is not species-specific in B. thuringiensis, B. cereus and Bacillus weihenstephanensis. Bacillus anthracis and Bacillus mycoides harbor sap and eag but not lytB/lytA. The sap, eag and lytB/lytA genes were absent in Bacillus pseudomycoides. Clearly, the distribution of the sap and eag S-layer and the lytB/lytA cell wall hydrolase genes in B. thuringiensis and in the Bacillus cereus group is mutually exclusive. We also showed that two genes involved in cell wall metabolism, csaA and csaB, are present not only upstream of the sap and eag S-layer genes, but also upstream of the lytB/lytA tandem in strains where sap and eag are absent. Bootstrapped neighbor-joining trees were inferred from the translated amino acid sequences of sap, eag and the tandem lytB/lytA, respectively.

  9. Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from Trichoderma atroviride

    Institute of Scientific and Technical Information of China (English)

    LIU Mei (刘梅); SUN Zong-xiu (孙宗修); ZHU Jie (朱洁); XU Tong (徐同); HARMAN Gary E.; LORITO Matteo

    2004-01-01

    Three genes encoding for fungal cell wall degrading enzymes (CWDEs), ech42, nag70 and gluc78 from the biocontrol fungus Trichoderma atroviride were inserted into the binary vector pCAMBIA1305.2 singly and in all possible combinations and transformed to rice plants. More than 1800 independently regenerated plantlets in seven different populations (for each of the three genes and each of the four gene combinations) were obtained. The ech42 gene encoding for an endochitinase increased resistance to sheath blight caused by Rhizoctonia solani, while the exochitinase-encoding gene, nag70, had lesser effect. The expression level of endochitinase but exochitinase was correlated with disease resistance. Nevertheless, exochitinase enhanced the effect of endochitinase on disease resistance when the two genes co-expressed in transgenics. Resistance to Magnaporthe grisea was found in all kinds of regenerated plants including that with single gluc78. A few lines expressing either ech42 or nag70 gene were immune to the disease. Transgenic plants are being tested to further evaluate disease resistance at field level. This is the first report of multiple of expression of genes encoding CWDEs from Trichoderma atroviride that result in resistance to blast and sheath blight in rice.

  10. In tobacco BY-2 cells xyloglucan oligosaccharides alter the expression of genes involved in cell wall metabolism, signalling, stress responses, cell division and transcriptional control.

    Science.gov (United States)

    González-Pérez, Lien; Perrotta, Lara; Acosta, Alexis; Orellana, Esteban; Spadafora, Natasha; Bruno, Leonardo; Bitonti, Beatrice M; Albani, Diego; Cabrera, Juan Carlos; Francis, Dennis; Rogers, Hilary J

    2014-10-01

    Xyloglucan oligosaccharides (XGOs) are breakdown products of XGs, the most abundant hemicelluloses of the primary cell walls of non-Poalean species. Treatment of cell cultures or whole plants with XGOs results in accelerated cell elongation and cell division, changes in primary root growth, and a stimulation of defence responses. They may therefore act as signalling molecules regulating plant growth and development. Previous work suggests an interaction with auxins and effects on cell wall loosening, however their mode of action is not fully understood. The effect of an XGO extract from tamarind (Tamarindus indica) on global gene expression was therefore investigated in tobacco BY-2 cells using microarrays. Over 500 genes were differentially regulated with similar numbers and functional classes of genes up- and down-regulated, indicating a complex interaction with the cellular machinery. Up-regulation of a putative XG endotransglycosylase/hydrolase-related (XTH) gene supports the mechanism of XGO action through cell wall loosening. Differential expression of defence-related genes supports a role for XGOs as elicitors. Changes in the expression of genes related to mitotic control and differentiation also support previous work showing that XGOs are mitotic inducers. XGOs also affected expression of several receptor-like kinase genes and transcription factors. Hence, XGOs have significant effects on expression of genes related to cell wall metabolism, signalling, stress responses, cell division and transcriptional control.

  11. Aberrant Expression of Critical Genes during Secondary Cell Wall Biogenesis in a Cotton Mutant, Ligon Lintless-1 (Li-1

    Directory of Open Access Journals (Sweden)

    James J. Bolton

    2009-01-01

    Full Text Available Over ninety percent of the value of cotton comes from its fiber; however, the genetic mechanisms governing fiber development are poorly understood. Due to their biochemical and morphological diversity in fiber cells cotton fiber mutants have been useful in examining fiber development; therefore, using the Ligon Lintless (Li-1 mutant, a monogenic dominant cotton mutant with very short fibers, we employed the high throughput approaches of microarray technology and real time PCR to gain insights into what genes were critical during the secondary cell wall synthesis stage. Comparative transcriptome analysis of the normal TM-1 genotype and the near isogenic Li-1 revealed that over 100 transcripts were differentially expressed at least 2-fold during secondary wall biogenesis, although the genetic profile of the expansion phase showed no significant differences in the isolines. Of particular note, we identified three candidate gene families-expansin, sucrose synthase, and tubulin—whose expression in Li-1 deviates from normal expression patterns of its parent, TM-1. These genes may contribute to retarded growth of fibers in Li-1 since they are fiber-expressed structural and metabolic genes. This work provides more details into the mechanisms of fiber development, and suggests the Li gene is active during the later stages of fiber development.

  12. Suppression of the Vacuolar Invertase Gene Prevents Cold-Induced Sweetening in Potato12[W][OA

    Science.gov (United States)

    Bhaskar, Pudota B.; Wu, Lei; Busse, James S.; Whitty, Brett R.; Hamernik, Andy J.; Jansky, Shelley H.; Buell, C. Robin; Bethke, Paul C.; Jiang, Jiming

    2010-01-01

    Potato (Solanum tuberosum) is the third most important food crop in the world. Potato tubers must be stored at cold temperatures to prevent sprouting, minimize disease losses, and supply consumers and the processing industry with high-quality tubers throughout the year. Unfortunately, cold storage triggers an accumulation of reducing sugars in tubers. High-temperature processing of these tubers results in dark-colored, bitter-tasting products. Such products also have elevated amounts of acrylamide, a neurotoxin and potential carcinogen. We demonstrate that silencing the potato vacuolar acid invertase gene VInv prevents reducing sugar accumulation in cold-stored tubers. Potato chips processed from VInv silencing lines showed a 15-fold acrylamide reduction and were light in color even when tubers were stored at 4°C. Comparable, low levels of VInv gene expression were observed in cold-stored tubers from wild potato germplasm stocks that are resistant to cold-induced sweetening. Thus, both processing quality and acrylamide problems in potato can be controlled effectively by suppression of the VInv gene through biotechnology or targeted breeding. PMID:20736383

  13. Regulation of three genes encoding cell-wall-degrading enzymes of Trichoderma aggressivum during interaction with Agaricus bisporus.

    Science.gov (United States)

    Abubaker, Kamal S; Sjaarda, Calvin; Castle, Alan J

    2013-06-01

    Members of the genus Trichoderma are very effective competitors of a variety of fungi. Cell-wall-degrading enzymes, including proteinases, glucanases, and chitinases, are commonly secreted as part of the competitive process. Trichoderma aggressivum is the causative agent of green mould disease of the button mushroom, Agaricus bisporus. The structures of 3 T. aggressivum genes, prb1 encoding a proteinase, ech42 encoding an endochitinase, and a β-glucanase gene, were determined. Promoter elements in the prb1 and ech42 genes suggested that transcription is regulated by carbon and nitrogen levels and by stress. Both genes had mycoparasitism-related elements indicating potential roles for the protein products in competition. The promoter of the β-glucanase gene contained CreA and AreA binding sites indicative of catabolite regulation but contained no mycoparasitism elements. Transcription of the 3 genes was measured in mixed cultures of T. aggressivum and A. bisporus. Two A. bisporus strains, U1, which is sensitive to green mould disease, and SB65, which shows some resistance, were used in co-cultivation tests to assess possible roles of the genes in disease production and severity. prb1 and ech42 were coordinately upregulated after 5 days, whereas β-glucanase transcription was upregulated from day 0 with both Agaricus strains. Upregulation was much less pronounced in mixed cultures of T. aggressivum with the resistant strain, SB65, than with the sensitive strain, U1. These observations suggested that the proteins encoded by these genes have roles in both nutrition and in severity of green mould disease.

  14. Thioridazine affects transcription of genes involved in cell wall biosynthesis in methicillin-resistant Staphylococcus aureus

    DEFF Research Database (Denmark)

    Bonde, Mette; Højland, Dorte Heidi; Kolmos, Hans Jørn

    2011-01-01

    and affect the ability of the bacteria to sustain oxacillin treatment. Furthermore, we found that thioridazine itself reduces the expression level of selected virulence genes and that selected toxin genes are not induced by thioridazine. In the present study, we find indications that the mechanism underlying...

  15. A temperature-sensitive allele of a putative mRNA splicing helicase down-regulates many cell wall genes and causes radial swelling in Arabidopsis thaliana.

    Science.gov (United States)

    Howles, Paul A; Gebbie, Leigh K; Collings, David A; Varsani, Arvind; Broad, Ronan C; Ohms, Stephen; Birch, Rosemary J; Cork, Ann H; Arioli, Tony; Williamson, Richard E

    2016-05-01

    The putative RNA helicase encoded by the Arabidopsis gene At1g32490 is a homolog of the yeast splicing RNA helicases Prp2 and Prp22. We isolated a temperature-sensitive allele (rsw12) of the gene in a screen for root radial swelling mutants. Plants containing this allele grown at the restrictive temperature showed weak radial swelling, were stunted with reduced root elongation, and contained reduced levels of cellulose. The role of the protein was further explored by microarray analysis. By using both fold change cutoffs and a weighted gene coexpression network analysis (WGCNA) to investigate coexpression of genes, we found that the radial swelling phenotype was not linked to genes usually associated with primary cell wall biosynthesis. Instead, the mutation has strong effects on expression of secondary cell wall related genes. Many genes potentially associated with secondary walls were present in the most significant WGCNA module, as were genes coding for arabinogalactans and proteins with GPI anchors. The proportion of up-regulated genes that possess introns in rsw12 was above that expected if splicing was unrelated to the activity of the RNA helicase, suggesting that the helicase does indeed play a role in splicing in Arabidopsis. The phenotype may be due to a change in the expression of one or more genes coding for cell wall proteins.

  16. Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint x Flint maize recombinant inbred line population.

    Science.gov (United States)

    Shi, Chun; Uzarowska, Anna; Ouzunova, Milena; Landbeck, Matthias; Wenzel, Gerhard; Lübberstedt, Thomas

    2007-01-18

    Cell-wall digestibility is the major target for improving the feeding value of forage maize. An understanding of the molecular basis for cell-wall digestibility is crucial towards breeding of highly digestible maize. 865 candidate ESTs for cell-wall digestibility were selected according to the analysis of expression profiles in 1) three sets of brown-midrib isogenic lines in the genetic background of inbreds 1332 (1332 and 1332 bm3), 5361 (5361 and 5361 bm3), and F2 (F2, F2 bm1, F2 bm2, and F2 bm3), 2) the contrasting extreme lines of FD (Flint x Dent, AS08 x AS 06), DD1 (Dent x Dent, AS11 x AS09), and DD2 (Dent x Dent, AS29 x AS30) mapping populations, and 3) two contrasting isogenic inbreds, AS20 and AS21. Out of those, 439 ESTs were assembled on our "Forage Quality Array", a small microarray specific for cell wall digestibility related experiments. Transcript profiles of 40 lines of a Flint x Flint population were monitored using the Forage Quality Array, which were contrasting for cell wall digestibility. Using t-tests (p quality groups. Using interval mapping, eQTL (LOD > or = 2.4) were detected for 20% (89 of 439) of the spotted ESTs. On average, these eQTL explained 39% of the transcription variation of the corresponding ESTs. Only 26% (23 of 89) ESTs detected a single eQTL. eQTL hotspots, containing greater than 5% of the total number of eQTL, were located in chromosomal bins 1.07, 1.12, 3.05, 8.03, and 9.04, respectively. Bin 3.05 was co-localized with a cell-wall digestibility related QTL cluster. 102 candidate genes for cell-wall digestibility were validated by genetical genomics approach. Although the cDNA array highlights gene types (the tested gene and any close family members), trans-acting factors or metabolic bottlenecks seem to play the major role in controlling heritable variation of gene expression related to cell-wall digestibility, since no in silico mapped ESTs were in the same location as their own eQTL. Transcriptional variation was

  17. Downregulation of the UDP-arabinomutase gene in switchgrass (Panicum virgatum L. results in increased cell wall lignin while reducing arabinose-glycans

    Directory of Open Access Journals (Sweden)

    Jonathan Duran Willis

    2016-10-01

    Full Text Available Switchgrass (Panicum virgatum L. is a C4 perennial prairie grass and a lignocellulosic biofuels feedstock. Saccharification and biofuel yields are inhibited by the plant cell wall’s natural recalcitrance against enzymatic degradation. Plant hemicellulose polysaccharides such as arabinoxylans structurally support and crosslink other cell wall polymers. Grasses have predominately Type II cell walls that are abundant in arabinoxylan, which comprise nearly 25% of aboveground biomass. A primary component of arabinoxylan synthesis is uridine diphosphate (UDP linked to arabinofuranose (Araf. A family of UDP-arabinopyranose mutase/reversible glycosylated polypeptides (UAM/RGPs catalyze the interconversion between UDP-arabinopyranose (UDP-Arap and UDP-Araf. In switchgrass we knocked down expression of the endogenous PvUAM1 gene via RNAi to investigate its role in cell wall recalcitrance in the feedstock. PvUAM1 encodes a switchgrass homolog of UDP-arabinose mutase, which converts UDP-Arap to UDP-Araf. Each transgenic line contained between one to at least seven T-DNA insertions, resulting in some cases, a 95% reduction of native PvUAM1 transcript in stem internodes. Transgenic plants had increased pigmentation in vascular tissues at nodes, but were otherwise morphologically similar to non-transgenics. There was decreased cell wall-associated arabinose in leaves and stems by over 50%, but there was an increase in cellulose in these organs. In addition, there was a commensurate change in arabinose side chain extension. Cell wall lignin composition was altered with a concurrent increase in lignin content and transcript abundance of lignin biosynthetic genes in mature tillers. Enzymatic saccharification efficiency was unchanged in the transgenic plants relative to the control, but had increased glucose in cell walls. The increased glucose detected in stems and leaves indicates that attenuation of PvUAM1 expression might have downstream effects on starch

  18. Downregulation of a UDP-Arabinomutase Gene in Switchgrass (Panicum virgatum L.) Results in Increased Cell Wall Lignin While Reducing Arabinose-Glycans

    Science.gov (United States)

    Willis, Jonathan D.; Smith, James A.; Mazarei, Mitra; Zhang, Ji-Yi; Turner, Geoffrey B.; Decker, Stephen R.; Sykes, Robert W.; Poovaiah, Charleson R.; Baxter, Holly L.; Mann, David G. J.; Davis, Mark F.; Udvardi, Michael K.; Peña, Maria J.; Backe, Jason; Bar-Peled, Maor; Stewart, C. N.

    2016-01-01

    Background: Switchgrass (Panicum virgatum L.) is a C4 perennial prairie grass and a dedicated feedstock for lignocellulosic biofuels. Saccharification and biofuel yields are inhibited by the plant cell wall’s natural recalcitrance against enzymatic degradation. Plant hemicellulose polysaccharides such as arabinoxylans structurally support and cross-link other cell wall polymers. Grasses predominately have Type II cell walls that are abundant in arabinoxylan, which comprise nearly 25% of aboveground biomass. A primary component of arabinoxylan synthesis is uridine diphosphate (UDP) linked to arabinofuranose (Araf). A family of UDP-arabinopyranose mutase (UAM)/reversible glycosylated polypeptides catalyze the interconversion between UDP-arabinopyranose (UDP-Arap) and UDP-Araf. Results: The expression of a switchgrass arabinoxylan biosynthesis pathway gene, PvUAM1, was decreased via RNAi to investigate its role in cell wall recalcitrance in the feedstock. PvUAM1 encodes a switchgrass homolog of UDP-arabinose mutase, which converts UDP-Arap to UDP-Araf. Southern blot analysis revealed each transgenic line contained between one to at least seven T-DNA insertions, resulting in some cases, a 95% reduction of native PvUAM1 transcript in stem internodes. Transgenic plants had increased pigmentation in vascular tissues at nodes, but were otherwise similar in morphology to the non-transgenic control. Cell wall-associated arabinose was decreased in leaves and stems by over 50%, but there was an increase in cellulose. In addition, there was a commensurate change in arabinose side chain extension. Cell wall lignin composition was altered with a concurrent increase in lignin content and transcript abundance of lignin biosynthetic genes in mature tillers. Enzymatic saccharification efficiency was unchanged in the transgenic plants relative to the control. Conclusion: Plants with attenuated PvUAM1 transcript had increased cellulose and lignin in cell walls. A decrease in cell

  19. IDENTIFICATION AND CHARACTERIZATION OF THERMOBIFIDA FUSCA GENES INVOLVED IN PLANT CELL WALL DEGRADATION.

    Energy Technology Data Exchange (ETDEWEB)

    David B. Wilson

    2006-01-23

    Micro-array experiments identified a number of Thermobifida fusca genes which were upregulated by growth on cellulose or plant biomass. Five of these genes were cloned, overexpressed in E. coli and the expressed proteins were purified and characterized. These were a xyloglucanase,a 1-3,beta glucanase, a family 18 hydrolase and twocellulose binding proteins that contained no catalytic domains. The catalyic domain of the family 74 endoxyloglucanase with a C-terminal, cellulose binding module was crystalized and its 3-dimensional structure was determined by X-ray crystallography.

  20. A complementary bioinformatics approach to identify potential plant cell wall glycosytransferase encoding genes

    DEFF Research Database (Denmark)

    Egelund, Jack; Skjøt, Michael; Geshi, Naomi;

    2004-01-01

    . Although much is known with regard to composition and fine structures of the plant CW, only a handful of CW biosynthetic GT genes-all classified in the CAZy system-have been characterized. In an effort to identify CW GTs that have not yet been classified in the CAZy database, a simple bioinformatics...

  1. Natural diversity of potato (Solanum tuberosum) invertases

    Science.gov (United States)

    2010-01-01

    Background Invertases are ubiquitous enzymes that irreversibly cleave sucrose into fructose and glucose. Plant invertases play important roles in carbohydrate metabolism, plant development, and biotic and abiotic stress responses. In potato (Solanum tuberosum), invertases are involved in 'cold-induced sweetening' of tubers, an adaptive response to cold stress, which negatively affects the quality of potato chips and French fries. Linkage and association studies have identified quantitative trait loci (QTL) for tuber sugar content and chip quality that colocalize with three independent potato invertase loci, which together encode five invertase genes. The role of natural allelic variation of these genes in controlling the variation of tuber sugar content in different genotypes is unknown. Results For functional studies on natural variants of five potato invertase genes we cloned and sequenced 193 full-length cDNAs from six heterozygous individuals (three tetraploid and three diploid). Eleven, thirteen, ten, twelve and nine different cDNA alleles were obtained for the genes Pain-1, InvGE, InvGF, InvCD141 and InvCD111, respectively. Allelic cDNA sequences differed from each other by 4 to 9%, and most were genotype specific. Additional variation was identified by single nucleotide polymorphism (SNP) analysis in an association-mapping population of 219 tetraploid individuals. Haplotype modeling revealed two to three major haplotypes besides a larger number of minor frequency haplotypes. cDNA alleles associated with chip quality, tuber starch content and starch yield were identified. Conclusions Very high natural allelic variation was uncovered in a set of five potato invertase genes. This variability is a consequence of the cultivated potato's reproductive biology. Some of the structural variation found might underlie functional variation that influences important agronomic traits such as tuber sugar content. The associations found between specific invertase alleles and

  2. Three loblolly pine CesA genes expressed in developing xylem are orthologous to secondary cell wall CesA genes of angiosperms.

    Science.gov (United States)

    Nairn, C Joseph; Haselkorn, Tamara

    2005-06-01

    Specific plant cellulose synthases (CesA), encoded by a multigene family, are necessary for secondary wall synthesis in vascular tissues and are critical to wood production. We obtained full-length clones for the three CesAs that are highly expressed in developing xylem and examined their phylogenetic relationships and expression patterns in loblolly pine tissues. Full-length CesA clones were isolated from cDNA of developing loblolly pine (Pinus taeda) xylem and phylogenetic inferences made from plant CesA protein sequences. Expression of the three genes was examined by Northern blot analysis and semiquantitative RT-PCR. Each of three PtCesA genes is orthologous to one of the three angiosperm secondary cell wall CesAs. The PtCesAs are coexpressed in tissues of loblolly pine with tissues undergoing secondary cell wall biosynthesis showing the highest levels of expression. Phylogenetic and expression analyses suggest that functional roles for these loblolly pine CesAs are analogous to those of orthologs in angiosperm taxa. Based upon evidence from this and other studies, we suggest division of seed plant CesA genes into six major paralogous groups, each containing orthologs from various taxa. Available evidence suggests that paralogous CesA genes and their distinct functional roles evolved before the divergence of gymnosperm and angiosperm lineages.

  3. Mycobacterial tlyA gene product is localized to cell-wall without signal sequence.

    Directory of Open Access Journals (Sweden)

    Santosh eKumar

    2015-08-01

    Full Text Available The mycobacterial tlyA gene product, Rv1694 (MtbTlyA, has been annotated as 'hemolysin' which was re-annotated as 2'-O rRNA methyl transferase. In order to function as a hemolysin, it must reach extracellular milieu with the help of signal sequence(s and/or transmembrane segment(s. However, the MtbTlyA neither has classical signals sequences that signify general/Sec/Tat pathways nor transmembrane segments. Interestingly, the tlyA gene appears to be restricted to pathogenic strains such as H37Rv, M. marinum, M. leprae, than M. smegmatis, M. vaccae, M. kansasii etc., which highlights the need for a detailed investigation to understand its functions. In this study, we have provided several evidences which highlight the presence of TlyA on the surface of M. marinum (native host and upon expression in M. smegmatis (surrogate host and E. coli (heterologous host. The TlyA was visualized at the bacterial-surface by confocal microscopy and accessible to Proteinase K. In addition, sub-cellular fractionation has revealed the presence of TlyA in the membrane fractions and this sequestration is not dependent on TatA, TatC or SecA2 pathways. As a consequence of expression, the recombinant bacteria exhibit distinct hemolysis. Interestingly, the MtbTlyA was also detected in both membrane vesicles secreted by M. smegmatis and outer membrane vesicles secreted by E. coli. Our experimental evidences unambiguously confirm that the mycobacterial TlyA can reach the extra cellular milieu without any signal sequence. Hence, the localization of TlyA class of proteins at the bacterial surface may highlight the existence of non-classical bacterial secretion mechanisms.

  4. Suppression of Cell Wall Degrading Enzymes and their Encoding Genes in Button Mushrooms (Agaricus bisporus) by CaCl2 and Citric Acid.

    Science.gov (United States)

    Khan, Zia Ullah; Jiayin, Li; Khan, Nasir Mehmood; Mou, Wangshu; Li, Dongdong; Wang, Yansheng; Feng, Simin; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2017-03-01

    Fresh button mushrooms (Agaricus bisporus) were harvested and treated with a solution of 1.5% CaCl2 + 0.5% citric acid and stored for 16 days at 12 °C. The effects of this treatment on firmness, weight, color, cell wall compositions (cellulose and chitin) and cell wall degrading enzymes (cel1ulase, beta-1, 3 glucanase, chitinase and phenylalanine ammonialyase) were investigated during post-harvest storage. The expressions of major genes (Cel1, Glu1, Chi1 and PAL1) involved in cell wall degradation during post-harvest storage were also monitored. The results revealed that the post-harvest chemical treatment maintained better firmness, weight, color and inhibited cellulase, beta-1, 3 glucanase, chitinase and phenylalanine ammonialyase activities. These findings showed that the down-regulation of cell wall degrading enzymes is a possible mechanism that delays the softening of button mushrooms by the application of combined chemical treatment.

  5. The Glycosylphosphatidylinositol Anchor Biosynthesis Genes GPI12, GAA1, and GPI8 Are Essential for Cell-Wall Integrity and Pathogenicity of the Maize Anthracnose Fungus Colletotrichum graminicola.

    Science.gov (United States)

    Oliveira-Garcia, Ely; Deising, Holger B

    2016-11-01

    Glycosylphosphatidylinositol (GPI) anchoring of proteins is one of the most common posttranslational modifications of proteins in eukaryotic cells and is important for associating proteins with the cell surface. In fungi, GPI-anchored proteins play essential roles in cross-linking of β-glucan cell-wall polymers and cell-wall rigidity. GPI-anchor synthesis is successively performed at the cytoplasmic and the luminal face of the ER membrane and involves approximately 25 proteins. While mutagenesis of auxiliary genes of this pathway suggested roles of GPI-anchored proteins in hyphal growth and virulence, essential genes of this pathway have not been characterized. Taking advantage of RNA interference (RNAi) we analyzed the function of the three essential genes GPI12, GAA1 and GPI8, encoding a cytoplasmic N-acetylglucosaminylphosphatidylinositol deacetylase, a metallo-peptide-synthetase and a cystein protease, the latter two representing catalytic components of the GPI transamidase complex. RNAi strains showed drastic cell-wall defects, resulting in exploding infection cells on the plant surface and severe distortion of in planta-differentiated infection hyphae, including formation of intrahyphal hyphae. Reduction of transcript abundance of the genes analyzed resulted in nonpathogenicity. We show here for the first time that the GPI synthesis genes GPI12, GAA1, and GPI8 are indispensable for vegetative development and pathogenicity of the causal agent of maize anthracnose, Colletotrichum graminicola.

  6. Thioridazine Induces Major Changes in Global Gene Expression and Cell Wall Composition in Methicillin-Resistant Staphylococcus aureus USA300

    DEFF Research Database (Denmark)

    Thorsing, Mette; Klitgaard, Janne Kudsk; Atilano, Magda L.

    2013-01-01

    . In the present study, we have examined the effect of a subinhibitory concentration of TDZ on antimicrobial resistance, the global transcriptome, and the cell wall composition of MRSA USA300. We show that TDZ is able to sensitize the bacteria to several classes of antimicrobials targeting the late stages...... and the transcriptomic response of S. aureus to known inhibitors of cell wall synthesis suggests that TDZ disturbs PGN biosynthesis at a stage that precedes transpeptidation by penicillin-binding proteins (PBPs). In support of this notion, dramatic changes in the muropeptide profile of USA300 were observed following...... a major impact on the cell wall biosynthesis pathway in S. aureus and provides new insights into how MRSA may be sensitized towards β-lactam antibiotics....

  7. Cell Wall Proteome

    OpenAIRE

    Boudart, Georges; Minic, Zoran; Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth; Pont-Lezica, Rafael F

    2007-01-01

    In this chapter, we will focus on the contribution of proteomics to the identification and determination of the structure and function of CWPs as well as discussing new perspectives in this area. The great variety of proteins found in the plant cell wall is described. Some families, such as glycoside hydrolases, proteases, lectins, and inhibitors of cell wall modifying enzymes, are discussed in detail. Examples of the use of proteomic techniques to elucidate the structure of various cell wall...

  8. Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone

    DEFF Research Database (Denmark)

    Wilson, Michael H; Holman, Tara J; Sørensen, Iben

    2015-01-01

    produce the reactive oxygen species (ROS) needed for cell expansion), and three xyloglucan endo-transglycosylase/hydrolase genes (XTH17, XTH18, and XTH19). The significance of the latter may be related to a role in breaking and re-joining xyloglucan cross-bridges between cellulose microfibrils, a process......Plant cell wall composition is important for regulating growth rates, especially in roots. However, neither analyses of cell wall composition nor transcriptomes on their own can comprehensively reveal which genes and processes are mediating growth and cell elongation rates. This study reveals...... which is required for wall expansion. Knockdowns of these XTHs resulted in shorter root lengths, confirming a role of the corresponding proteins in root extension growth....

  9. Antisense suppression of an acid invertase gene (MAI1) in muskmelon alters plant growth and fruit development.

    Science.gov (United States)

    Yu, Xiyan; Wang, Xiufeng; Zhang, Wenqian; Qian, Tingting; Tang, Guimin; Guo, Yankui; Zheng, Chengchao

    2008-01-01

    To unravel the roles of soluble acid invertase in muskmelon (Cucumis melo L.), its activity in transgenic muskmelon plants was reduced by an antisense approach. For this purpose, a 1038 bp cDNA fragment of muskmelon soluble acid invertase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the stems were obviously thinner. Transmission electron microscopy revealed that degradation of the chloroplast membrane occurred in transgenic leaves and the number of grana in the chloroplast was significantly reduced, suggesting that the slow growth and weaker phenotype of the transgenic plants may be due to damage to the chloroplast ultrastructure, which in turn resulted in a decrease in net photosynthetic rate. The sucrose concentration increased and levels of acid invertase decreased in transgenic fruit, and the fruit size was 60% smaller than that of the control. In addition, transgenic fruit reached full-slip at 25 d after pollination (DAP), approximately 5 d before the control fruit (full-slip at 30 DAP), and this accelerated maturity correlated with a dramatic elevation of ethylene production at the later stages of fruit development. Together, these results suggest that soluble acid invertase not only plays an important role during muskmelon plant and fruit development but also controls the sucrose content in muskmelon fruit.

  10. The transcriptional repressor TupA in Aspergillus niger is involved in controlling gene expression related to cell wall biosynthesis, development, and nitrogen source availability.

    Directory of Open Access Journals (Sweden)

    Doreen Schachtschabel

    Full Text Available The Tup1-Cyc8 (Ssn6 complex is a well characterized and conserved general transcriptional repressor complex in eukaryotic cells. Here, we report the identification of the Tup1 (TupA homolog in the filamentous fungus Aspergillus niger in a genetic screen for mutants with a constitutive expression of the agsA gene. The agsA gene encodes a putative alpha-glucan synthase, which is induced in response to cell wall stress in A. niger. Apart from the constitutive expression of agsA, the selected mutant was also found to produce an unknown pigment at high temperatures. Complementation analysis with a genomic library showed that the tupA gene could complement the phenotypes of the mutant. Screening of a collection of 240 mutants with constitutive expression of agsA identified sixteen additional pigment-secreting mutants, which were all mutated in the tupA gene. The phenotypes of the tupA mutants were very similar to the phenotypes of a tupA deletion strain. Further analysis of the tupA-17 mutant and the ΔtupA mutant revealed that TupA is also required for normal growth and morphogenesis. The production of the pigment at 37°C is nitrogen source-dependent and repressed by ammonium. Genome-wide expression analysis of the tupA mutant during exponential growth revealed derepression of a large group of diverse genes, including genes related to development and cell wall biosynthesis, and also protease-encoding genes that are normally repressed by ammonium. Comparison of the transcriptome of up-regulated genes in the tupA mutant showed limited overlap with the transcriptome of caspofungin-induced cell wall stress-related genes, suggesting that TupA is not a general suppressor of cell wall stress-induced genes. We propose that TupA is an important repressor of genes related to development and nitrogen metabolism.

  11. Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics

    Directory of Open Access Journals (Sweden)

    Wu Harry X

    2011-10-01

    Full Text Available Abstract Background The mechanical properties of wood are largely determined by the orientation of cellulose microfibrils in secondary cell walls. Several genes and their allelic variants have previously been found to affect microfibril angle (MFA and wood stiffness; however, the molecular mechanisms controlling microfibril orientation and mechanical strength are largely uncharacterised. In the present study, cDNA microarrays were used to compare gene expression in developing xylem with contrasting stiffness and MFA in juvenile Pinus radiata trees in order to gain further insights into the molecular mechanisms underlying microfibril orientation and cell wall mechanics. Results Juvenile radiata pine trees with higher stiffness (HS had lower MFA in the earlywood and latewood of each ring compared to low stiffness (LS trees. Approximately 3.4 to 14.5% out of 3, 320 xylem unigenes on cDNA microarrays were differentially regulated in juvenile wood with contrasting stiffness and MFA. Greater variation in MFA and stiffness was observed in earlywood compared to latewood, suggesting earlywood contributes most to differences in stiffness; however, 3-4 times more genes were differentially regulated in latewood than in earlywood. A total of 108 xylem unigenes were differentially regulated in juvenile wood with HS and LS in at least two seasons, including 43 unigenes with unknown functions. Many genes involved in cytoskeleton development and secondary wall formation (cellulose and lignin biosynthesis were preferentially transcribed in wood with HS and low MFA. In contrast, several genes involved in cell division and primary wall synthesis were more abundantly transcribed in LS wood with high MFA. Conclusions Microarray expression profiles in Pinus radiata juvenile wood with contrasting stiffness has shed more light on the transcriptional control of microfibril orientation and the mechanical properties of wood. The identified candidate genes provide an

  12. The Transcriptional Repressor TupA in Aspergillus niger Is Involved in Controlling Gene Expression Related to Cell Wall Biosynthesis, Development, and Nitrogen Source Availability

    DEFF Research Database (Denmark)

    Schachtschabel, Doreen; Arentshorst, Mark; Nitsche, Benjamin M

    2013-01-01

    The Tup1-Cyc8 (Ssn6) complex is a well characterized and conserved general transcriptional repressor complex in eukaryotic cells. Here, we report the identification of the Tup1 (TupA) homolog in the filamentous fungus Aspergillus niger in a genetic screen for mutants with a constitutive expression...... of the agsA gene. The agsA gene encodes a putative alpha-glucan synthase, which is induced in response to cell wall stress in A. niger. Apart from the constitutive expression of agsA, the selected mutant was also found to produce an unknown pigment at high temperatures. Complementation analysis...

  13. Dynamic metabolic flux analysis of plant cell wall synthesis.

    Science.gov (United States)

    Chen, Xuewen; Alonso, Ana P; Shachar-Hill, Yair

    2013-07-01

    The regulation of plant cell wall synthesis pathways remains poorly understood. This has become a bottleneck in designing bioenergy crops. The goal of this study was to analyze the regulation of plant cell wall precursor metabolism using metabolic flux analysis based on dynamic labeling experiments. Arabidopsis T87 cells were cultured heterotrophically with (13)C labeled sucrose. The time course of ¹³C labeling patterns in cell wall precursors and related sugar phosphates was monitored using liquid chromatography tandem mass spectrometry until steady state labeling was reached. A kinetic model based on mass action reaction mechanisms was developed to simulate the carbon flow in the cell wall synthesis network. The kinetic parameters of the model were determined by fitting the model to the labeling time course data, cell wall composition, and synthesis rates. A metabolic control analysis was performed to predict metabolic regulations that may improve plant biomass composition for biofuel production. Our results describe the routes and rates of carbon flow from sucrose to cell wall precursors. We found that sucrose invertase is responsible for the entry of sucrose into metabolism and UDP-glucose-4-epimerase plays a dominant role in UDP-Gal synthesis in heterotrophic Aradidopsis cells under aerobic conditions. We also predicted reactions that exert strong regulatory influence over carbon flow to cell wall synthesis and its composition.

  14. Expression of cell wall related genes in basal and ear internodes of silking brown-midrib-3, caffeic acid O-methyltransferase (COMT down-regulated, and normal maize plants

    Directory of Open Access Journals (Sweden)

    Martinant Jean-Pierre

    2008-06-01

    Full Text Available Abstract Background Silage maize is a major forage and energy resource for cattle feeding, and several studies have shown that lignin content and structure are the determining factors in forage maize feeding value. In maize, four natural brown-midrib mutants have modified lignin content, lignin structure and cell wall digestibility. The greatest lignin reduction and the highest cell wall digestibility were observed in the brown-midrib-3 (bm3 mutant, which is disrupted in the caffeic acid O-methyltransferase (COMT gene. Results Expression of cell wall related genes was investigated in basal and ear internodes of normal, COMT antisens (AS225, and bm3 maize plants of the INRA F2 line. A cell wall macro-array was developed with 651 gene specific tags of genes specifically involved in cell wall biogenesis. When comparing basal (older lignifying and ear (younger lignifying internodes of the normal line, all genes known to be involved in constitutive monolignol biosynthesis had a higher expression in younger ear internodes. The expression of the COMT gene was heavily reduced, especially in the younger lignifying tissues of the ear internode. Despite the fact that AS225 transgene expression was driven only in sclerenchyma tissues, COMT expression was also heavily reduced in AS225 ear and basal internodes. COMT disruption or down-regulation led to differential expressions of a few lignin pathway genes, which were all over-expressed, except for a phenylalanine ammonia-lyase gene. More unexpectedly, several transcription factor genes, cell signaling genes, transport and detoxification genes, genes involved in cell wall carbohydrate metabolism and genes encoding cell wall proteins, were differentially expressed, and mostly over-expressed, in COMT-deficient plants. Conclusion Differential gene expressions in COMT-deficient plants highlighted a probable disturbance in cell wall assembly. In addition, the gene expressions suggested modified chronology of the

  15. Accelerating forward genetics for cell wall deconstruction

    Directory of Open Access Journals (Sweden)

    Danielle eVidaurre

    2012-06-01

    Full Text Available One of the biggest challenges of cell wall biology is the elucidation of the genes involved the cell wall and their function due to the recalcitrance of the cell wall. Through traditional genetic approaches, many simple yet elegant screens have been able to identify components of the cell wall and their networks. Despite progress in the identification of several genes of the cell wall, there remain many unknown players whose function has yet to be determined. Exhausting the genetic toolbox by performing secondary screens on a genetically mutated background, chemical genetics using small molecules and improved cell wall imaging hold promise for new gene discovery and function. With the recent introduction of next-generation sequencing technologies, it is now possible to quickly and efficiently map and clone genes of interest in Arabidopsis and any model organism with a completed genome sequence. The combination of a classical genetics approach and cutting edge technology will propel cell wall biology of Arabidopsis and other useful crops forward into the future.

  16. Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts.

    Science.gov (United States)

    Blanco-Ulate, Barbara; Morales-Cruz, Abraham; Amrine, Katherine C H; Labavitch, John M; Powell, Ann L T; Cantu, Dario

    2014-01-01

    Cell walls are barriers that impair colonization of host tissues, but also are important reservoirs of energy-rich sugars. Growing hyphae of necrotrophic fungal pathogens, such as Botrytis cinerea (Botrytis, henceforth), secrete enzymes that disassemble cell wall polysaccharides. In this work we describe the annotation of 275 putative secreted Carbohydrate-Active enZymes (CAZymes) identified in the Botrytis B05.10 genome. Using RNAseq we determined which Botrytis CAZymes were expressed during infections of lettuce leaves, ripe tomato fruit, and grape berries. On the three hosts, Botrytis expressed a common group of 229 potentially secreted CAZymes, including 28 pectin backbone-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes that might target pectin and hemicellulose side-branches, and 16 enzymes predicted to degrade cellulose. The diversity of the Botrytis CAZymes may be partly responsible for its wide host range. Thirty-six candidate CAZymes with secretion signals were found exclusively when Botrytis interacted with ripe tomato fruit and grape berries. Pectin polysaccharides are notably abundant in grape and tomato cell walls, but lettuce leaf walls have less pectin and are richer in hemicelluloses and cellulose. The results of this study not only suggest that Botrytis targets similar wall polysaccharide networks on fruit and leaves, but also that it may selectively attack host wall polysaccharide substrates depending on the host tissue.

  17. The Two-Component System CesRK Controls the Transcriptional Induction of Cell Envelope-Related Genes in Listeria monocytogenes in Response to Cell Wall-Acting Antibiotics▿ †

    Science.gov (United States)

    Gottschalk, Sanne; Bygebjerg-Hove, Iver; Bonde, Mette; Nielsen, Pia Kiil; Nguyen, Thanh Ha; Gravesen, Anne; Kallipolitis, Birgitte H.

    2008-01-01

    The two-component system CesRK of Listeria monocytogenes responds to cell wall-acting antibiotics. We show here that CesRK controls the transcription of several cell envelope-related genes. The CesRK-dependent induction of these genes may be viewed as an attempt by L. monocytogenes to protect itself against the damaging effects of cell wall-acting antibiotics. PMID:18456805

  18. The two-component system CesRK controls the transcriptional induction of cell envelope-related genes in Listeria monocytogenes in response to cell wall-acting antibiotics.

    Science.gov (United States)

    Gottschalk, Sanne; Bygebjerg-Hove, Iver; Bonde, Mette; Nielsen, Pia Kiil; Nguyen, Thanh Ha; Gravesen, Anne; Kallipolitis, Birgitte H

    2008-07-01

    The two-component system CesRK of Listeria monocytogenes responds to cell wall-acting antibiotics. We show here that CesRK controls the transcription of several cell envelope-related genes. The CesRK-dependent induction of these genes may be viewed as an attempt by L. monocytogenes to protect itself against the damaging effects of cell wall-acting antibiotics.

  19. A putatively phase variable gene (dca) required for natural competence in Neisseria gonorrhoeae but not Neisseria meningitidis is located within the division cell wall (dcw) gene cluster.

    Science.gov (United States)

    Snyder, L A; Saunders, N J; Shafer, W M

    2001-02-01

    A cluster of 18 open reading frames (ORFs), 15 of which are homologous to genes involved in division and cell wall synthesis, has been identified in Neisseria gonorrhoeae and Neisseria meningitidis. The three additional ORFs, internal to the dcw cluster, are not homologous to dcw-related genes present in other bacterial species. Analysis of the N. meningitidis strain MC58 genome for foreign DNA suggests that these additional ORFs have not been acquired by recent horizontal exchange, indicating that they are a long-standing, integral part of the neisserial dcw gene cluster. Reverse transcription-PCR analysis of RNA extracted from N. gonorrhoeae strain FA19 confirmed that all three ORFs are transcribed in gonococci. One of these ORFs (dca, for division cluster competence associated), located between murE and murF, was studied in detail and found to be essential for competence in the gonococcal but not in the meningococcal strains tested. Computer analysis predicts that dca encodes an inner membrane protein similar to hypothetical proteins produced by other gram-negative bacteria. In some meningococcal strains dca is prematurely terminated following a homopolymeric tract of G's, the length of which differs between isolates of N. meningitidis, suggesting that dca is phase variable in this species. A deletion and insertional mutation was made in the dca gene of N. gonorrhoeae strain FA19 and N. meningitidis strain NMB. This mutation abrogated the ability of the gonococci to be transformed with chromosomal DNA. Thus, we conclude that the dca-encoded gene product is an essential competence factor for gonococci.

  20. Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems

    Science.gov (United States)

    2011-01-01

    Background Alfalfa, [Medicago sativa (L.) sativa], a widely-grown perennial forage has potential for development as a cellulosic ethanol feedstock. However, the genomics of alfalfa, a non-model species, is still in its infancy. The recent advent of RNA-Seq, a massively parallel sequencing method for transcriptome analysis, provides an opportunity to expand the identification of alfalfa genes and polymorphisms, and conduct in-depth transcript profiling. Results Cell walls in stems of alfalfa genotype 708 have higher cellulose and lower lignin concentrations compared to cell walls in stems of genotype 773. Using the Illumina GA-II platform, a total of 198,861,304 expression sequence tags (ESTs, 76 bp in length) were generated from cDNA libraries derived from elongating stem (ES) and post-elongation stem (PES) internodes of 708 and 773. In addition, 341,984 ESTs were generated from ES and PES internodes of genotype 773 using the GS FLX Titanium platform. The first alfalfa (Medicago sativa) gene index (MSGI 1.0) was assembled using the Sanger ESTs available from GenBank, the GS FLX Titanium EST sequences, and the de novo assembled Illumina sequences. MSGI 1.0 contains 124,025 unique sequences including 22,729 tentative consensus sequences (TCs), 22,315 singletons and 78,981 pseudo-singletons. We identified a total of 1,294 simple sequence repeats (SSR) among the sequences in MSGI 1.0. In addition, a total of 10,826 single nucleotide polymorphisms (SNPs) were predicted between the two genotypes. Out of 55 SNPs randomly selected for experimental validation, 47 (85%) were polymorphic between the two genotypes. We also identified numerous allelic variations within each genotype. Digital gene expression analysis identified numerous candidate genes that may play a role in stem development as well as candidate genes that may contribute to the differences in cell wall composition in stems of the two genotypes. Conclusions Our results demonstrate that RNA-Seq can be

  1. Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems

    Directory of Open Access Journals (Sweden)

    Lamb JoAnn FS

    2011-04-01

    Full Text Available Abstract Background Alfalfa, [Medicago sativa (L. sativa], a widely-grown perennial forage has potential for development as a cellulosic ethanol feedstock. However, the genomics of alfalfa, a non-model species, is still in its infancy. The recent advent of RNA-Seq, a massively parallel sequencing method for transcriptome analysis, provides an opportunity to expand the identification of alfalfa genes and polymorphisms, and conduct in-depth transcript profiling. Results Cell walls in stems of alfalfa genotype 708 have higher cellulose and lower lignin concentrations compared to cell walls in stems of genotype 773. Using the Illumina GA-II platform, a total of 198,861,304 expression sequence tags (ESTs, 76 bp in length were generated from cDNA libraries derived from elongating stem (ES and post-elongation stem (PES internodes of 708 and 773. In addition, 341,984 ESTs were generated from ES and PES internodes of genotype 773 using the GS FLX Titanium platform. The first alfalfa (Medicago sativa gene index (MSGI 1.0 was assembled using the Sanger ESTs available from GenBank, the GS FLX Titanium EST sequences, and the de novo assembled Illumina sequences. MSGI 1.0 contains 124,025 unique sequences including 22,729 tentative consensus sequences (TCs, 22,315 singletons and 78,981 pseudo-singletons. We identified a total of 1,294 simple sequence repeats (SSR among the sequences in MSGI 1.0. In addition, a total of 10,826 single nucleotide polymorphisms (SNPs were predicted between the two genotypes. Out of 55 SNPs randomly selected for experimental validation, 47 (85% were polymorphic between the two genotypes. We also identified numerous allelic variations within each genotype. Digital gene expression analysis identified numerous candidate genes that may play a role in stem development as well as candidate genes that may contribute to the differences in cell wall composition in stems of the two genotypes. Conclusions Our results demonstrate that RNA

  2. Ethylene regulates Apple (Malus x domestica) fruit softening through a dose x time-dependent mechanism and through differential sensitivities and dependencies of cell wall-modifying genes.

    Science.gov (United States)

    Ireland, Hilary S; Gunaseelan, Kularajathevan; Muddumage, Ratnasiri; Tacken, Emma J; Putterill, Jo; Johnston, Jason W; Schaffer, Robert J

    2014-05-01

    In fleshy fruit species that have a strong requirement for ethylene to ripen, ethylene is synthesized autocatalytically, producing increasing concentrations as the fruits ripen. Apple fruit with the ACC OXIDASE 1 (ACO1) gene suppressed cannot produce ethylene autocatalytically at ripening. Using these apple lines, an ethylene sensitivity dependency model was previously proposed, with traits such as softening showing a high dependency for ethylene as well as low sensitivity. In this study, it is shown that the molecular control of fruit softening is a complex process, with different cell wall-related genes being independently regulated and exhibiting differential sensitivities to and dependencies on ethylene at the transcriptional level. This regulation is controlled through a dose × time mechanism, which results in a temporal transcriptional response that would allow for progressive cell wall disassembly and thus softening. This research builds on the sensitivity dependency model and shows that ethylene-dependent traits can progress over time to the same degree with lower levels of ethylene. This suggests that a developmental clock measuring cumulative ethylene controls the fruit ripening process.

  3. Aphanomyces euteiches cell wall fractions containing novel glucan-chitosaccharides induce defense genes and nuclear calcium oscillations in the plant host Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Amaury Nars

    Full Text Available N-acetylglucosamine-based saccharides (chitosaccharides are components of microbial cell walls and act as molecular signals during host-microbe interactions. In the legume plant Medicago truncatula, the perception of lipochitooligosaccharide signals produced by symbiotic rhizobia and arbuscular mycorrhizal fungi involves the Nod Factor Perception (NFP lysin motif receptor-like protein and leads to the activation of the so-called common symbiotic pathway. In rice and Arabidopsis, lysin motif receptors are involved in the perception of chitooligosaccharides released by pathogenic fungi, resulting in the activation of plant immunity. Here we report the structural characterization of atypical chitosaccharides from the oomycete pathogen Aphanomyces euteiches, and their biological activity on the host Medicago truncatula. Using a combination of biochemical and biophysical approaches, we show that these chitosaccharides are linked to β-1,6-glucans, and contain a β-(1,3;1,4-glucan backbone whose β-1,3-linked glucose units are substituted on their C-6 carbon by either glucose or N-acetylglucosamine residues. This is the first description of this type of structural motif in eukaryotic cell walls. Glucan-chitosaccharide fractions of A. euteiches induced the expression of defense marker genes in Medicago truncatula seedlings independently from the presence of a functional Nod Factor Perception protein. Furthermore, one of the glucan-chitosaccharide fractions elicited calcium oscillations in the nucleus of root cells. In contrast to the asymmetric oscillatory calcium spiking induced by symbiotic lipochitooligosaccharides, this response depends neither on the Nod Factor Perception protein nor on the common symbiotic pathway. These findings open new perspectives in oomycete cell wall biology and elicitor recognition and signaling in legumes.

  4. Transcriptome Analysis of Cell Wall and NAC Domain Transcription Factor Genes during Elaeis guineensis Fruit Ripening: Evidence for Widespread Conservation within Monocot and Eudicot Lineages.

    Science.gov (United States)

    Tranbarger, Timothy J; Fooyontphanich, Kim; Roongsattham, Peerapat; Pizot, Maxime; Collin, Myriam; Jantasuriyarat, Chatchawan; Suraninpong, Potjamarn; Tragoonrung, Somvong; Dussert, Stéphane; Verdeil, Jean-Luc; Morcillo, Fabienne

    2017-01-01

    The oil palm (Elaeis guineensis), a monocotyledonous species in the family Arecaceae, has an extraordinarily oil rich fleshy mesocarp, and presents an original model to examine the ripening processes and regulation in this particular monocot fruit. Histochemical analysis and cell parameter measurements revealed cell wall and middle lamella expansion and degradation during ripening and in response to ethylene. Cell wall related transcript profiles suggest a transition from synthesis to degradation is under transcriptional control during ripening, in particular a switch from cellulose, hemicellulose, and pectin synthesis to hydrolysis and degradation. The data provide evidence for the transcriptional activation of expansin, polygalacturonase, mannosidase, beta-galactosidase, and xyloglucan endotransglucosylase/hydrolase proteins in the ripening oil palm mesocarp, suggesting widespread conservation of these activities during ripening for monocotyledonous and eudicotyledonous fruit types. Profiling of the most abundant oil palm polygalacturonase (EgPG4) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) transcripts during development and in response to ethylene demonstrated both are sensitive markers of ethylene production and inducible gene expression during mesocarp ripening, and provide evidence for a conserved regulatory module between ethylene and cell wall pectin degradation. A comprehensive analysis of NAC transcription factors confirmed at least 10 transcripts from diverse NAC domain clades are expressed in the mesocarp during ripening, four of which are induced by ethylene treatment, with the two most inducible (EgNAC6 and EgNAC7) phylogenetically similar to the tomato NAC-NOR master-ripening regulator. Overall, the results provide evidence that despite the phylogenetic distance of the oil palm within the family Arecaceae from the most extensively studied monocot banana fruit, it appears ripening of divergent monocot and eudicot fruit lineages are

  5. Gene-inducing program of human dendritic cells in response to BCG cell-wall skeleton (CWS), which reflects adjuvancy required for tumor immunotherapy.

    Science.gov (United States)

    Ishii, Kazuo; Kurita-Taniguchi, Mitsue; Aoki, Mikio; Kimura, Toru; Kashiwazaki, Yasuo; Matsumoto, Misako; Seya, Tsukasa

    2005-05-15

    Adjuvants induce the expression of a number of genes in dendritic cells (DCs), which facilitate effective antigen-presentation and cytokine/chemokine liberation. It has been accepted that the toll-like receptor (TLR) family governs the adjuvant activity in DCs. An adjuvant with a long history is mycobacteria in an oil-in-water emulsion, namely Freund's complete adjuvant. Since the active center for the adjuvancy in mycobacteria is the cell-wall skeleton (CWS), we used the bacillus Calmette-Guerin cell-wall skeleton (BCG-CWS) to test DC maturation by GeneChip analysis. We identified the genes supporting an efficient DC response and output. Approximately 2000 genes were up-regulated by BCG-CWS stimulation. BCG-CWS-, peptidoglycan (PGN)- and lipopolysaccharide (LPS)-stimulation generally up-regulated some gene clusters including genes for inflammatory cytokines (TNF, IL1alpha, IL1beta, IL6, IL12 p40, IL23 p19, etc.), chemokines (CCL20, IL8, etc.), cell adhesion molecules (ICAM-1, etc.), apoptosis-related proteins (GADD45B, BCL2A1, etc.), metabolic enzymes (PTGS2, SOD2, etc.) and miscellaneous proteins (EHD1, TNFAIP6, etc.). LPS-stimulation, but not BCG-CWS- or PGN-stimulation, up-regulated the interferon-inducible antiviral proteins, including IFIT1, IFIT2, IFIT4, CXCL10, ISG15, OASL, IFITM1 and MX1. We also found that the BCG-CWS- or PGN-stimulation up-regulated CXCL5, MMP1, etc. We discussed their properties in association with TLRs and recently discovered TLR adapters.

  6. Inferring Gene Networks for Strains of Dehalococcoides Highlights Conserved Relationships between Genes Encoding Core Catabolic and Cell-Wall Structural Proteins.

    Science.gov (United States)

    Mansfeldt, Cresten B; Heavner, Gretchen W; Rowe, Annette R; Hayete, Boris; Church, Bruce W; Richardson, Ruth E

    2016-01-01

    The interpretation of high-throughput gene expression data for non-model microorganisms remains obscured because of the high fraction of hypothetical genes and the limited number of methods for the robust inference of gene networks. Therefore, to elucidate gene-gene and gene-condition linkages in the bioremediation-important genus Dehalococcoides, we applied a Bayesian inference strategy called Reverse Engineering/Forward Simulation (REFS™) on transcriptomic data collected from two organohalide-respiring communities containing different Dehalococcoides mccartyi strains: the Cornell University mixed community D2 and the commercially available KB-1® bioaugmentation culture. In total, 49 and 24 microarray datasets were included in the REFS™ analysis to generate an ensemble of 1,000 networks for the Dehalococcoides population in the Cornell D2 and KB-1® culture, respectively. Considering only linkages that appeared in the consensus network for each culture (exceeding the determined frequency cutoff of ≥ 60%), the resulting Cornell D2 and KB-1® consensus networks maintained 1,105 nodes (genes or conditions) with 974 edges and 1,714 nodes with 1,455 edges, respectively. These consensus networks captured multiple strong and biologically informative relationships. One of the main highlighted relationships shared between these two cultures was a direct edge between the transcript encoding for the major reductive dehalogenase (tceA (D2) or vcrA (KB-1®)) and the transcript for the putative S-layer cell wall protein (DET1407 (D2) or KB1_1396 (KB-1®)). Additionally, transcripts for two key oxidoreductases (a [Ni Fe] hydrogenase, Hup, and a protein with similarity to a formate dehydrogenase, "Fdh") were strongly linked, generalizing a strong relationship noted previously for Dehalococcoides mccartyi strain 195 to multiple strains of Dehalococcoides. Notably, the pangenome array utilized when monitoring the KB-1® culture was capable of resolving signals from multiple

  7. Inferring Gene Networks for Strains of Dehalococcoides Highlights Conserved Relationships between Genes Encoding Core Catabolic and Cell-Wall Structural Proteins

    Science.gov (United States)

    Mansfeldt, Cresten B.; Heavner, Gretchen W.; Rowe, Annette R.; Hayete, Boris; Church, Bruce W.; Richardson, Ruth E.

    2016-01-01

    The interpretation of high-throughput gene expression data for non-model microorganisms remains obscured because of the high fraction of hypothetical genes and the limited number of methods for the robust inference of gene networks. Therefore, to elucidate gene-gene and gene-condition linkages in the bioremediation-important genus Dehalococcoides, we applied a Bayesian inference strategy called Reverse Engineering/Forward Simulation (REFS™) on transcriptomic data collected from two organohalide-respiring communities containing different Dehalococcoides mccartyi strains: the Cornell University mixed community D2 and the commercially available KB-1® bioaugmentation culture. In total, 49 and 24 microarray datasets were included in the REFS™ analysis to generate an ensemble of 1,000 networks for the Dehalococcoides population in the Cornell D2 and KB-1® culture, respectively. Considering only linkages that appeared in the consensus network for each culture (exceeding the determined frequency cutoff of ≥ 60%), the resulting Cornell D2 and KB-1® consensus networks maintained 1,105 nodes (genes or conditions) with 974 edges and 1,714 nodes with 1,455 edges, respectively. These consensus networks captured multiple strong and biologically informative relationships. One of the main highlighted relationships shared between these two cultures was a direct edge between the transcript encoding for the major reductive dehalogenase (tceA (D2) or vcrA (KB-1®)) and the transcript for the putative S-layer cell wall protein (DET1407 (D2) or KB1_1396 (KB-1®)). Additionally, transcripts for two key oxidoreductases (a [Ni Fe] hydrogenase, Hup, and a protein with similarity to a formate dehydrogenase, “Fdh”) were strongly linked, generalizing a strong relationship noted previously for Dehalococcoides mccartyi strain 195 to multiple strains of Dehalococcoides. Notably, the pangenome array utilized when monitoring the KB-1® culture was capable of resolving signals from

  8. Identification of lignin genes and regulatory sequences involved in secondary cell wall formation in Acacia auriculiformis and Acacia mangium via de novo transcriptome sequencing.

    Science.gov (United States)

    Wong, Melissa M L; Cannon, Charles H; Wickneswari, Ratnam

    2011-07-05

    Acacia auriculiformis × Acacia mangium hybrids are commercially important trees for the timber and pulp industry in Southeast Asia. Increasing pulp yield while reducing pulping costs are major objectives of tree breeding programs. The general monolignol biosynthesis and secondary cell wall formation pathways are well-characterized but genes in these pathways are poorly characterized in Acacia hybrids. RNA-seq on short-read platforms is a rapid approach for obtaining comprehensive transcriptomic data and to discover informative sequence variants. We sequenced transcriptomes of A. auriculiformis and A. mangium from non-normalized cDNA libraries synthesized from pooled young stem and inner bark tissues using paired-end libraries and a single lane of an Illumina GAII machine. De novo assembly produced a total of 42,217 and 35,759 contigs with an average length of 496 bp and 498 bp for A. auriculiformis and A. mangium respectively. The assemblies of A. auriculiformis and A. mangium had a total length of 21,022,649 bp and 17,838,260 bp, respectively, with the largest contig 15,262 bp long. We detected all ten monolignol biosynthetic genes using Blastx and further analysis revealed 18 lignin isoforms for each species. We also identified five contigs homologous to R2R3-MYB proteins in other plant species that are involved in transcriptional regulation of secondary cell wall formation and lignin deposition. We searched the contigs against public microRNA database and predicted the stem-loop structures of six highly conserved microRNA families (miR319, miR396, miR160, miR172, miR162 and miR168) and one legume-specific family (miR2086). Three microRNA target genes were predicted to be involved in wood formation and flavonoid biosynthesis. By using the assemblies as a reference, we discovered 16,648 and 9,335 high quality putative Single Nucleotide Polymorphisms (SNPs) in the transcriptomes of A. auriculiformis and A. mangium, respectively, thus yielding useful markers for

  9. Identification of lignin genes and regulatory sequences involved in secondary cell wall formation in Acacia auriculiformis and Acacia mangium via de novo transcriptome sequencing

    Directory of Open Access Journals (Sweden)

    Cannon Charles H

    2011-07-01

    Full Text Available Abstract Background Acacia auriculiformis × Acacia mangium hybrids are commercially important trees for the timber and pulp industry in Southeast Asia. Increasing pulp yield while reducing pulping costs are major objectives of tree breeding programs. The general monolignol biosynthesis and secondary cell wall formation pathways are well-characterized but genes in these pathways are poorly characterized in Acacia hybrids. RNA-seq on short-read platforms is a rapid approach for obtaining comprehensive transcriptomic data and to discover informative sequence variants. Results We sequenced transcriptomes of A. auriculiformis and A. mangium from non-normalized cDNA libraries synthesized from pooled young stem and inner bark tissues using paired-end libraries and a single lane of an Illumina GAII machine. De novo assembly produced a total of 42,217 and 35,759 contigs with an average length of 496 bp and 498 bp for A. auriculiformis and A. mangium respectively. The assemblies of A. auriculiformis and A. mangium had a total length of 21,022,649 bp and 17,838,260 bp, respectively, with the largest contig 15,262 bp long. We detected all ten monolignol biosynthetic genes using Blastx and further analysis revealed 18 lignin isoforms for each species. We also identified five contigs homologous to R2R3-MYB proteins in other plant species that are involved in transcriptional regulation of secondary cell wall formation and lignin deposition. We searched the contigs against public microRNA database and predicted the stem-loop structures of six highly conserved microRNA families (miR319, miR396, miR160, miR172, miR162 and miR168 and one legume-specific family (miR2086. Three microRNA target genes were predicted to be involved in wood formation and flavonoid biosynthesis. By using the assemblies as a reference, we discovered 16,648 and 9,335 high quality putative Single Nucleotide Polymorphisms (SNPs in the transcriptomes of A. auriculiformis and A. mangium

  10. Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: Key events in the evolution of herbivory in beetles.

    Science.gov (United States)

    Kirsch, Roy; Gramzow, Lydia; Theißen, Günter; Siegfried, Blair D; Ffrench-Constant, Richard H; Heckel, David G; Pauchet, Yannick

    2014-09-01

    Plant cell walls are the largest reservoir of organic carbon on earth. To breach and utilize this carbohydrate-rich protective barrier, microbes secrete plant cell wall degrading enzymes (PCWDEs) targeting pectin, cellulose and hemicelluloses. There is a growing body of evidence that genomes of some herbivorous insects also encode PCWDEs, raising questions about their evolutionary origins and functions. Among herbivorous beetles, pectin-degrading polygalacturonases (PGs) are found in the diverse superfamilies Chrysomeloidea (leaf beetles, long-horn beetles) and Curculionoidea (weevils). Here our aim was to test whether these arose from a common ancestor of beetles or via horizontal gene transfer (HGT), and whether PGs kept their ancestral function in degrading pectin or evolved novel functions. Transcriptome data derived from 10 beetle species were screened for PG-encoding sequences and used for phylogenetic comparisons with their bacterial, fungal and plant counterparts. These analyses revealed a large family of PG-encoding genes of Chrysomeloidea and Curculionoidea sharing a common ancestor, most similar to PG genes of ascomycete fungi. In addition, 50 PGs from beetle digestive systems were heterologously expressed and functionally characterized, showing a set of lineage-specific consecutively pectin-degrading enzymes, as well as conserved but enzymatically inactive PG proteins. The evidence indicates that a PG gene was horizontally transferred ∼200 million years ago from an ascomycete fungus to a common ancestor of Chrysomeloidea and Curculionoidea. This has been followed by independent duplications in these two lineages, as well as independent replacement in two sublineages of Chrysomeloidea by two other subsequent HGTs. This origin, leading to subsequent functional diversification of the PG gene family within its new hosts, was a key event promoting the evolution of herbivory in these beetles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Relating Water Deficiency to Berry Texture, Skin Cell Wall Composition, and Expression of Remodeling Genes in Two Vitis vinifera L. Varieties.

    Science.gov (United States)

    Fernandes, J C; Cobb, F; Tracana, S; Costa, G J; Valente, I; Goulao, L F; Amâncio, S

    2015-04-22

    The cell wall (CW) is a dynamic structure that responds to stress. Water shortage (WS) impacts grapevine berry composition and its sensorial quality. In the present work, berry texture, skin CW composition, and expression of remodeling genes were investigated in two V. vinifera varieties, Touriga Nacional (TN) and Trincadeira (TR), under two water regimes, Full Irrigation (FI) and No Irrigation (NI). The global results allowed an evident separation between both varieties and the water treatments. WS resulted in increased anthocyanin contents in both varieties, reduced amounts in cellulose and lignin at maturation, but an increase in arabinose-containing polysaccharides more tightly bound to the CW in TR. In response to WS, the majority of the CW related genes were down-regulated in a variety dependent pattern. The results support the assumption that WS affects grape berries by stiffening the CW through alteration in pectin structure, supporting its involvement in responses to environmental conditions.

  12. Expression atlas and comparative coexpression network analyses reveal important genes involved in the formation of lignified cell wall in Brachypodium distachyon.

    Science.gov (United States)

    Sibout, Richard; Proost, Sebastian; Hansen, Bjoern Oest; Vaid, Neha; Giorgi, Federico M; Ho-Yue-Kuang, Severine; Legée, Frédéric; Cézart, Laurent; Bouchabké-Coussa, Oumaya; Soulhat, Camille; Provart, Nicholas; Pasha, Asher; Le Bris, Philippe; Roujol, David; Hofte, Herman; Jamet, Elisabeth; Lapierre, Catherine; Persson, Staffan; Mutwil, Marek

    2017-08-01

    While Brachypodium distachyon (Brachypodium) is an emerging model for grasses, no expression atlas or gene coexpression network is available. Such tools are of high importance to provide insights into the function of Brachypodium genes. We present a detailed Brachypodium expression atlas, capturing gene expression in its major organs at different developmental stages. The data were integrated into a large-scale coexpression database ( www.gene2function.de), enabling identification of duplicated pathways and conserved processes across 10 plant species, thus allowing genome-wide inference of gene function. We highlight the importance of the atlas and the platform through the identification of duplicated cell wall modules, and show that a lignin biosynthesis module is conserved across angiosperms. We identified and functionally characterised a putative ferulate 5-hydroxylase gene through overexpression of it in Brachypodium, which resulted in an increase in lignin syringyl units and reduced lignin content of mature stems, and led to improved saccharification of the stem biomass. Our Brachypodium expression atlas thus provides a powerful resource to reveal functionally related genes, which may advance our understanding of important biological processes in grasses. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. The Lamportian cell wall

    Energy Technology Data Exchange (ETDEWEB)

    Keiliszewski, M.; Lamport, D. (Michigan State Univ. Plant Research Lab., East Lansing (United States))

    1991-05-01

    The Lamportian Warp-Weft hypothesis suggests a cellulose-extensin interpenetrating network where extensin mechanically couples the load-bearing cellulose microfibrils in a wall matrix that is best described as a microcomposite. This model is based on data gathered from the extensin-rich walls of tomato and sycamore cell suspension culture, wherein extensin precursors are insolubilized into the wall by undefined crosslinks. The authors recent work with cell walls isolated from intact tissue as well as walls from suspension cultured cells of the graminaceous monocots maize and rice, the non-graminaceous monocot asparagus, the primitive herbaceous dicot sugar beet, and the gymnosperm Douglas Fir indicate that although extensins are ubiquitous to all plant species examined, they are not the major structural protein component of most walls examined. Amino acid analyses of intact and HF-treated walls shows a major component neither an HRGP, nor directly comparable to the glycine-rich wall proteins such as those associated with seed coat walls or the 67 mole% glycine-rich proteins cloned from petunia and soybean. Clearly, structural wall protein alternatives to extensin exist and any cell wall model must take that into account. If we assume that extracellular matrices are a priori network structures, then new Hypless' structural proteins in the maize cell wall raise questions about the sort of network these proteins create: the kinds of crosslinks involved; how they are formed; and the roles played by the small amounts of HRGPs.

  14. RNA-Seq Analysis of the Expression of Genes Encoding Cell Wall Degrading Enzymes during Infection of Lupin (Lupinus angustifolius) by Phytophthora parasitica.

    Science.gov (United States)

    Blackman, Leila M; Cullerne, Darren P; Torreña, Pernelyn; Taylor, Jen; Hardham, Adrienne R

    2015-01-01

    RNA-Seq analysis has shown that over 60% (12,962) of the predicted transcripts in the Phytophthora parasitica genome are expressed during the first 60 h of lupin root infection. The infection transcriptomes included 278 of the 431 genes encoding P. parasitica cell wall degrading enzymes. The transcriptome data provide strong evidence of global transcriptional cascades of genes whose encoded proteins target the main categories of plant cell wall components. A major cohort of pectinases is predominantly expressed early but as infection progresses, the transcriptome becomes increasingly dominated by transcripts encoding cellulases, hemicellulases, β-1,3-glucanases and glycoproteins. The most highly expressed P. parasitica carbohydrate active enzyme gene contains two CBM1 cellulose binding modules and no catalytic domains. The top 200 differentially expressed genes include β-1,4-glucosidases, β-1,4-glucanases, β-1,4-galactanases, a β-1,3-glucanase, an α-1,4-polygalacturonase, a pectin deacetylase and a pectin methylesterase. Detailed analysis of gene expression profiles provides clues as to the order in which linkages within the complex carbohydrates may come under attack. The gene expression profiles suggest that (i) demethylation of pectic homogalacturonan occurs before its deacetylation; (ii) cleavage of the backbone of pectic rhamnogalacturonan I precedes digestion of its side chains; (iii) early attack on cellulose microfibrils by non-catalytic cellulose-binding proteins and enzymes with auxiliary activities may facilitate subsequent attack by glycosyl hydrolases and enzymes containing CBM1 cellulose-binding modules; (iv) terminal hemicellulose backbone residues are targeted after extensive internal backbone cleavage has occurred; and (v) the carbohydrate chains on glycoproteins are degraded late in infection. A notable feature of the P. parasitica infection transcriptome is the high level of transcription of genes encoding enzymes that degrade β-1

  15. Transcriptional analysis of cell wall and cuticle related genes during fruit development of two sweet cherry cultivars with contrasting levels of cracking tolerance

    Directory of Open Access Journals (Sweden)

    Cristián Balbontín

    2014-04-01

    Full Text Available Rain-induced cracking before harvest is the major cause of crop loss in sweet cherry (Prunus avium [L.] L. In order to better understand the relationship between cherry fruit cracking and gene expression, the transcriptional patterns of six genes related to cell wall modification and cuticular wax biosynthesis were analyzed during fruit setting (FS, fruit color change (FC and fruit ripening (FR, employing two contrasting cultivars: the cracking resistant 'Kordia' and the cracking susceptible 'Bing'. The transcription levels of AP2/EREBP-type transcription factor (PaWINB, wax synthase (WS, ß-ketoacyl-CoA synthase (PaKCS6, and ß-galactosidase (ß-Gal showed higher levels in 'Kordia' than in 'Bing' during the FS stage, while similar values were observed in both cultivars at FR stage. In contrast to that pattern, transcription levels of expansin (PaEXPl were higher at FR stage in 'Kordia' than in 'Bing'. Transcript profile of lipid transport protein gene (PaLTPGl decreased during fruit development, with higher levels in 'Bing' than in 'Kordia' at FC and FR stages suggesting no relation with cracking tolerance. The expression profiles of PaWINB, WS, PaKCS6, and ß-Gal suggest that they are genes involved in conferring cracking tolerance, likely due to their function in cuticle deposition during early stages of fruit development. In addition, a greater expression level of expansin gene would allow for a faster growth rate in 'Kordia' at FR stage.

  16. Identification of Novel Cell Wall Components

    Energy Technology Data Exchange (ETDEWEB)

    Michelle Momany

    2009-10-26

    Our DOE Biosciences-funded work focused on the fungal cell wall and morphogenesis. We are especially interested in how new cell wall material is targeted to appropriate areas for polar (asymmetric) growth. Polar growth is the only way that filamentous fungi explore the environment to find suitable substrates to degrade. Work funded by this grant has resulted in a total of twenty peer-reviewed publications. In work funded by this grant, we identified nine Aspergillus nidulans temperature-sensitive (ts) mutants that fail to send out a germ tube and show a swollen cell phenotype at restrictive temperature, the swo mutants. In other organisms, a swollen cell phenotype is often associated with misdirected growth or weakened cell walls. Our work shows that several of the A. nidulans swo mutants have defects in the establishment and maintenance of polarity. Cloning of several swo genes by complementation also showed that secondary modification of proteins seems is important in polarity. We also investigated cell wall biosynthesis and branching based on leads in literature from other organisms and found that branching and nuclear division are tied and that the cell wall reorganizes during development. In our most recent work we have focused on gene expression during the shift from isotropic to polar growth. Surprisingly we found that genes previously thought to be involved only in spore formation are important in early vegetative growth as well.

  17. Cell Wall Biology: Perspectives from Cell Wall Imaging

    Institute of Scientific and Technical Information of China (English)

    Kieran J.D.Lee; Susan E.Marcus; J.Paul Knox

    2011-01-01

    Polysaccharide-rich plant cell walls are important biomaterials that underpin plant growth,are major repositories for photosynthetically accumulated carbon,and,in addition,impact greatly on the human use of plants. Land plant cell walls contain in the region of a dozen major polysaccharide structures that are mostly encompassed by cellulose,hemicelluloses,and pectic polysaccharides. During the evolution of land plants,polysaccharide diversification appears to have largely involved structural elaboration and diversification within these polysaccharide groups. Cell wall chemistry is well advanced and a current phase of cell wall science is aimed at placing the complex polysaccharide chemistry in cellular contexts and developing a detailed understanding of cell wall biology. Imaging cell wall glycomes is a challenging area but recent developments in the establishment of cell wall molecular probe panels and their use in high throughput procedures are leading to rapid advances in the molecular understanding of the spatial heterogeneity of individual cell walls and also cell wall differences at taxonomic levels. The challenge now is to integrate this knowledge of cell wall heterogeneity with an understanding of the molecular and physiological mechanisms that underpin cell wall properties and functions.

  18. Rice transformation with cell wall degrading enzyme genes from Trichoderma atroviride and its effect on plant growth and resistance to fungal pathogens

    Institute of Scientific and Technical Information of China (English)

    Liu Mei; Sun Zong-Xiu; Zhu Jie; Xu Tong; Gary E Harman; Matteo Lorito; Sheri Woo

    2004-01-01

    @@ Three genes encoding for fungal cell wall degrading enzymes (CWDE), ech42, nag70 and gluc78from the biocontrol fungus Trichoderma atroviride were inserted into the binary vector pCAMBIA1305. 2 singly and in all possible combinations. The coding sequences were placed downstream of the rice actin promoter and all vectors were used to transform rice plants. A total of more than 1,800 independently regenerated plantlets in seven different populations (for each of the three genes and each of the four gene combinations) were obtained. Expression in plant was obtained for all the fungal genes used singly or in combinations. The ech42 gene encoding for an endochitinase increased resistance to sheath blight caused by Rhizoctonia solani, while the exochitinase-encoding gene, nag70, had a lesser effect. The expression level of endochitinase but not of the exochitinase was correlated with disease resistance. Nevertheless, exochitinase enhanced the positive effect of endochitinase on disease resistance when two genes were co-expressed in transgenic rice. Improved resistance to Magnaporthe grisea was found in all types of regenerated plants, including those with the gluc78 gene alone, while a few lines expressing either ech42 or nag70 appeared to be immune to this pathogen. Transgenic plants expressing the gluc78 gene alone were stunted and only few of them survived, even though they showed resistance to M. grisea. However, combination with either one of the two other genes ( ech42, nag70 ) as included in the same T-DNA region, reduced the negative effect of gluc78 on plant growth. This is the first report of single or multiple of expression of transgens encoding CWDEs that results in resistance to blast and sheath blight in rice.

  19. Identification of differentially expressed genes from Trichoderma harzianum during growth on cell wall of Fusarium solani as a tool for biotechnological application.

    Science.gov (United States)

    Vieira, Pabline Marinho; Coelho, Alexandre Siqueira Guedes; Steindorff, Andrei Stecca; de Siqueira, Saulo José Linhares; Silva, Roberto do Nascimento; Ulhoa, Cirano José

    2013-03-15

    The species of T. harzianum are well known for their biocontrol activity against many plant pathogens. However, there is a lack of studies concerning its use as a biological control agent against F. solani, a pathogen involved in several crop diseases. In this study, we have used subtractive library hybridization (SSH) and quantitative real-time PCR (RT-qPCR) techniques in order to explore changes in T. harzianum genes expression during growth on cell wall of F. solani (FSCW) or glucose. RT-qPCR was also used to examine the regulation of 18 genes, potentially involved in biocontrol, during confrontation between T. harzianum and F. solani. Data obtained from two subtractive libraries were compared after annotation using the Blast2GO suite. A total of 417 and 78 readable EST sequence were annotated in the FSCW and glucose libraries, respectively. Functional annotation of these genes identified diverse biological processes and molecular functions required during T. harzianum growth on FSCW or glucose. We identified various genes of biotechnological value encoding to proteins which function such as transporters, hydrolytic activity, adherence, appressorium development and pathogenesis. Fifteen genes were up-regulated and sixteen were down-regulated at least at one-time point during growth of T. harzianum in FSCW. During the confrontation assay most of the genes were up-regulated, mainly after contact, when the interaction has been established. This study demonstrates that T. harzianum expressed different genes when grown on FSCW compared to glucose. It provides insights into the mechanisms of gene expression involved in mycoparasitism of T. harzianum against F. solani. The identification and evaluation of these genes may contribute to the development of an efficient biological control agent.

  20. Arabidopsis thaliana T-DNA Mutants Implicate GAUT Genes in the Biosynthesis of Pectin and Xylan in Cell Walls and Seed Testa

    Institute of Scientific and Technical Information of China (English)

    Kerry H. Caffall; Sivakumar Pattathil; Sarah E. Phillips; Michael G. Hahn; Debra Mohnen

    2009-01-01

    Galacturonosyltransferase 1 (GAUT1) is an α1,4-D-galacturonosyltransferase that transfers galacturonic acid from uridine 5'-diphosphogalacturonic acid onto the pectic polysaccharide homogalacturonan (Sterling et al., 2006). The 25-member Arabidopsis thaliana GAUT1-related gene family encodes 15 GAUT and 10 GAUT-like (GATL) proteins with, respectively, 56-84 and 42-53% amino acid sequence similarity to GAUT1. Previous phylogenetic analyses of AtGAUTs indicated three clades: A through C. A comparative phylogenetic analysis of the Arabidopsis, poplar and rice GAUT families has sub-classified the GAUTs into seven clades: clade A-1 (GAUTs 1 to 3); A-2 (GAUT4); A-3 (GAUTs 5 and 6); A-4 (GAUT7); B-1(GAUTs 8 and 9); B-2 (GAUTs 10 and 11); and clade C (GAUTs 12 to 15). The Arabidopsis GAUTs have a distribution com-parable to the poplar orthologs, with the exception of GAUT2, which is absent in poplar. Rice, however, has no orthologs of GAUTs 2 and 12 and has multiple apparent orthologs of GAUTs 1, 4, and 7 compared with eitherArabidopsis or poplar. The cell wall glycosyl residue compositions of 26 homozygous T-DNA insertion mutants for 13 of 15 Arabidopsis GAUTgenes reveal significantly and reproducibly different cell walls in specific tissues of gaut mutants 6, 8, 9, 10, 11, 12, 13, and 14 from that of wild-type Arabidopsis walls. Pectin and xylan polysaccharides are affected by the loss of GAUT function, as dem-onstrated by the altered galacturonic acid, xylose, rhamnose, galactose, and arabinose composition of distinct gaut mu-tant walls. The wall glycosyl residue compositional phenotypes observed among the gaut mutants suggest that at least six different biosynthetic linkages in pectins and/or xylans are affected by the lesions in these GAUTgenes. Evidence is also presented to support a role for GAUT11 in seed mucilage expansion and in seed wall and mucilage composition.

  1. The cell wall component lipoteichoic acid of Staphylococcus aureus induces chemokine gene expression in bovine mammary epithelial cells

    Science.gov (United States)

    KIKU, Yoshio; NAGASAWA, Yuya; TANABE, Fuyuko; SUGAWARA, Kazue; WATANABE, Atsushi; HATA, Eiji; OZAWA, Tomomi; NAKAJIMA, Kei-ichi; ARAI, Toshiro; HAYASHI, Tomohito

    2016-01-01

    Staphylococcus aureus (SA) is a major cause of bovine mastitis, but its pathogenic mechanism remains poorly understood. To evaluate the role of lipoteichoic acid (LTA) in the immune or inflammatory response of SA mastitis, we investigated the gene expression profile in bovine mammary epithelial cells stimulated with LTA alone or with formalin-killed SA (FKSA) using cap analysis of gene expression. Seven common differentially expressed genes related to immune or inflammatory mediators were up-regulated under both LTA and FKSA stimulations. Three of these genes encode chemokines (IL-8, CXCL6 and CCL2) functioning as chemoattractant molecules for neutrophils and macrophages. These results suggest that the initial inflammatory response of SA infection in mammary gland may be related with LTA induced chemokine genes. PMID:27211287

  2. Molecular markers associated with the immature fiber (im) gene affecting the degree of fiber cell wall thickening in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Kim, Hee Jin; Moon, Hong S; Delhom, Christopher D; Zeng, Linghe; Fang, David D

    2013-01-01

    Cotton fiber fineness and maturity measured indirectly as micronaire (MIC) are important properties of determining fiber grades in the textile market. To understand the genetic control and molecular mechanisms of fiber fineness and maturity, we studied two near isogenic lines, Gossypium hirsutum, Texas Marker-1 wild type (TM-1) and immature fiber (im) mutant showing a significant difference in MIC values. The fibers from im mutant plants were finer and less mature with lower MIC values than those from the recurrent parent, TM-1. A comprehensive fiber property analysis of TM-1 and im mutant showed that the lower MIC of fibers in im mutant was due to the lower degree of fiber cell wall thickening as compared to the TM-1 fibers. Using an F(2) population comprising 366 progenies derived from a cross between TM-1 and im mutant, we confirmed that the immature fiber phenotype present in a mutant plant was controlled by one single recessive gene im. Furthermore, we identified 13 simple sequence repeat markers that were closely linked to the im gene located on chromosome 3. Molecular markers associated with the im gene will lay the foundation to further investigate genetic information required for improving cotton fiber fineness and maturity.

  3. The strawberry (Fragariaxananassa) fruit-specific rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes an enzyme involved in the degradation of cell-wall middle lamellae.

    Science.gov (United States)

    Molina-Hidalgo, Francisco J; Franco, Antonio R; Villatoro, Carmen; Medina-Puche, Laura; Mercado, José A; Hidalgo, Miguel A; Monfort, Amparo; Caballero, José Luis; Muñoz-Blanco, Juan; Blanco-Portales, Rosario

    2013-04-01

    Pectins are essential components of primary plant cell walls and middle lamellae, and are related to the consistency of the fruit and its textural changes during ripening. In fact, strawberries become soft as the middle lamellae of cortical parenchyma cells are extensively degraded during ripening, leading to the observed short post-harvest shelf life. Using a custom-made oligonucleotide-based strawberry microarray platform, a putative rhamnogalacturonate lyase gene (FaRGlyase1) was identified. Bioinformatic analysis of the FaRGlyase1 sequence allowed the identification of a conserved rhamnogalacturonate lyase domain, which was also present in other putative RGlyase sequences deposited in the databases. Expression of FaRGlyase1 occurred mainly in the receptacle, concurrently with ripening, and it was positively regulated by abscisic acid and negatively by auxins. FaRGLyase1 gene expression was transiently silenced by injecting live Agrobacterium cells harbouring RNA interference constructs into fruit receptacles. Light and electron microscopy analyses of these transiently silenced fruits revealed that this gene is involved in the degradation of pectins present in the middle lamella region between parenchymatic cells. In addition, genetic linkage association analyses in a strawberry-segregating population showed that FaRGLyase1 is linked to a quantitative trait loci linkage group related to fruit hardness and firmness. The results showed that FaRGlyase1 could play an important role in the fruit ripening-related softening process that reduces strawberry firmness and post-harvest life.

  4. Transcriptomic events involved in melon mature-fruit abscission comprise the sequential induction of cell-wall degrading genes coupled to a stimulation of endo and exocytosis.

    Directory of Open Access Journals (Sweden)

    Jorge Corbacho

    Full Text Available BACKGROUND: Mature-fruit abscission (MFA in fleshy-fruit is a genetically controlled process with mechanisms that, contrary to immature-fruit abscission, has not been fully characterized. Here, we use pyrosequencing to characterize the transcriptomes of melon abscission zone (AZ at three stages during AZ-cell separation in order to understand MFA control at an early stage of AZ-activation. PRINCIPAL FINDINGS: The results show that by early induction of MFA, the melon AZ exhibits major gene induction, while by late induction of MFA, melon AZ shows major gene repression. Although some genes displayed similar regulation in both early and late induction of abscission, such as EXT1-EXT4, EGase1, IAA2, ERF1, AP2D15, FLC, MADS2, ERAF17, SAP5 and SCL13 genes, the majority had different expression patterns. This implies that time-specific events occur during MFA, and emphasizes the value of characterizing multiple time-specific abscission transcriptomes. Analysis of gene-expression from these AZs reveal that a sequential induction of cell-wall-degrading genes is associated with the upregulation of genes involved in endo and exocytosis, and a shift in plant-hormone metabolism and signaling genes during MFA. This is accompanied by transcriptional activity of small-GTPases and synthaxins together with tubulins, dynamins, V-type ATPases and kinesin-like proteins potentially involved in MFA signaling. Early events are potentially controlled by down-regulation of MADS-box, AP2/ERF and Aux/IAA transcription-factors, and up-regulation of homeobox, zinc finger, bZIP, and WRKY transcription-factors, while late events may be controlled by up-regulation of MYB transcription-factors. SIGNIFICANCE: Overall, the data provide a comprehensive view on MFA in fleshy-fruit, identifying candidate genes and pathways associated with early induction of MFA. Our comprehensive gene-expression profile will be very useful for elucidating gene regulatory networks of the MFA in

  5. Disruption of cell walls for enhanced lipid recovery

    Science.gov (United States)

    Knoshaug, Eric P; Donohoe, Bryon S; Gerken, Henri; Laurens, Lieve; Van Wychen, Stefanie Rose

    2015-03-24

    Presented herein are methods of using cell wall degrading enzymes for recovery of internal lipid bodies from biomass sources such as algae. Also provided are algal cells that express at least one exogenous gene encoding a cell wall degrading enzyme and methods for recovering lipids from the cells.

  6. An autophagy gene, HoATG5, is involved in sporulation, cell wall integrity and infection of wounded barley leaves.

    Science.gov (United States)

    Liu, Ning; Ning, Guo-Ao; Liu, Xiao-Hong; Feng, Xiao-Xiao; Lu, Jian-Ping; Mao, Li-Juan; Su, Zhen-Zhu; Wang, Ying; Zhang, Chu-Long; Lin, Fu-Cheng

    2016-11-01

    The endophytic fungus Harpophora oryzae is a beneficial endosymbiont isolated from wild rice. H. oryzae can not only promote rice growth and biomass accumulation but also protect rice roots from invasion by its close relative Magnaporthe oryzae. Autophagy is a highly evolutionary conserved process from lower to higher eukaryotic organisms, and is involved in the maintenance of normal cell differentiation and development. In this study, we isolated a gene (HoATG5) which encodes an essential protein required for autophagy from the beneficial endophyte fungus H. oryzae. Using targeted gene replacement, a ΔHoATG5 mutant was generated and used to investigate the biological functions of autophagy in H. oryzae. We found that the autophagic process was blocked in the HoATG5 deletion mutant. The mutant showed increased vegetative growth and sporulation, and was sensitive to nutrient starvation. The ΔHoATG5 mutant lost its ability to penetrate and infect the wounded barley leaves. These results provide new knowledge to elaborate the molecular machinery of autophagy in endophytic fungi.

  7. A cell wall extract from Piriformospora indica promotes tuberization in potato (Solanum tuberosum L.) via enhanced expression of Ca(+2) signaling pathway and lipoxygenase gene.

    Science.gov (United States)

    Upadhyaya, Chandrama Prakash; Gururani, Mayank Anand; Prasad, Ram; Verma, Ajit

    2013-06-01

    Piriformospora indica is an axenically cultivable phytopromotional endosymbiont that mimics capabilities of arbuscular mycorrhizal fungi. This is a basidiomycete of the Sebacinaceae family, which promotes growth, development, and seed production in a variety of plant species. We report that the cell wall extract (CWE) from P. indica induces tuberization in vitro and promotes tuber growth and yield in potato. The CWE altered the calcium signaling pathway that regulates tuberization process. An increase in tuber number and size was correlated with increased transcript expression of the two Ca(2+)-dependant proteins (CaM1 and St-CDPK1) and the lipoxygenase (LOX) mRNA, which are known to play distinct roles in potato tuberization. External supplementation of Ca(2+) ions induced a similar set of tuberization pathway genes, indicating presence of an active Ca(2+) in the CWE of P. indica. Since potato tuberization is directly influenced by the presence of microflora in nature, the present study provides an insight into the novel mechanism of potato tuberization in relation to plant-microbe association. Ours is the first report on an in vitro tuber-inducing beneficial fungus.

  8. Xyloglucan endotransglucosylase and cell wall extensibility.

    Science.gov (United States)

    Miedes, E; Zarra, I; Hoson, T; Herbers, K; Sonnewald, U; Lorences, E P

    2011-02-15

    Transgenic tomato hypocotyls with altered levels of an XTH gene were used to study how XET activity could affect the hypocotyl growth and cell wall extensibility. Transgenic hypocotyls showed significant over-expression (line 13) or co-suppression (line 33) of the SlXTH1 in comparison with the wild type, with these results being correlated with the results on specific soluble XET activity, suggesting that SlXTH1 translates mainly for a soluble XET isoenzyme. A relationship between XET activity and cell wall extensibility was found, and the highest total extensibility was located in the apical hypocotyl segment of the over-expressing SlXTH1 line, where the XET-specific activity and hypocotyl growth were also highest compared with the wild line. Also, in the co-suppression SlXTH1 line, total extensibility values were lower than in the wild type line. The study of linkages between cell wall polysaccharides by FTIR showed that hypocotyls over-expressing SlXTH1 and having a higher XET-specific activity, were grouped away from the wild line, indicating that the linkages between pectins and between cellulose and xyloglucans might differ. These results suggested that the action of the increased XET activity in the transgenic line could be responsible for the cell wall structural changes, and therefore, alter the cell wall extensibility. On the other hand, results on xyloglucan oligosaccharides composition of the xyloglucan by MALDI TOF-MS showed no differences between lines, indicating that the xyloglucan structure was not affected by the XET action. These results provide evidences that XTHs from group I are involved mainly in the restructuring of the cell wall during growth and development, but they are not the limiting factor for plant growth.

  9. Distinctive expansion of gene families associated with plant cell wall degradation, secondary metabolism, and nutrient uptake in the genomes of grapevine trunk pathogens.

    Science.gov (United States)

    Morales-Cruz, Abraham; Amrine, Katherine C H; Blanco-Ulate, Barbara; Lawrence, Daniel P; Travadon, Renaud; Rolshausen, Philippe E; Baumgartner, Kendra; Cantu, Dario

    2015-06-19

    Trunk diseases threaten the longevity and productivity of grapevines in all viticulture production systems. They are caused by distantly-related fungi that form chronic wood infections. Variation in wood-decay abilities and production of phytotoxic compounds are thought to contribute to their unique disease symptoms. We recently released the draft sequences of Eutypa lata, Neofusicoccum parvum and Togninia minima, causal agents of Eutypa dieback, Botryosphaeria dieback and Esca, respectively. In this work, we first expanded genomic resources to three important trunk pathogens, Diaporthe ampelina, Diplodia seriata, and Phaeomoniella chlamydospora, causal agents of Phomopsis dieback, Botryosphaeria dieback, and Esca, respectively. Then we integrated all currently-available information into a genome-wide comparative study to identify gene families potentially associated with host colonization and disease development. The integration of RNA-seq, comparative and ab initio approaches improved the protein-coding gene prediction in T. minima, whereas shotgun sequencing yielded nearly complete genome drafts of Dia. ampelina, Dip. seriata, and P. chlamydospora. The predicted proteomes of all sequenced trunk pathogens were annotated with a focus on functions likely associated with pathogenesis and virulence, namely (i) wood degradation, (ii) nutrient uptake, and (iii) toxin production. Specific patterns of gene family expansion were described using Computational Analysis of gene Family Evolution, which revealed lineage-specific evolution of distinct mechanisms of virulence, such as specific cell wall oxidative functions and secondary metabolic pathways in N. parvum, Dia. ampelina, and E. lata. Phylogenetically-informed principal component analysis revealed more similar repertoires of expanded functions among species that cause similar symptoms, which in some cases did not reflect phylogenetic relationships, thereby suggesting patterns of convergent evolution. This study

  10. Molecular Basis of the Increase in Invertase Activity Elicited by Gravistimulation of Oat-Shoot Pulvini

    Science.gov (United States)

    Wu, Liu-Lai; Song, Il; Kim, Donghern; Kaufman, Peter B.

    1993-01-01

    An asymmetric (top vs. bottom) increase in invertase activity is elicited by gravistimulation in oatshoot pulvini starting within 3h after treatment. In order to analyze the regulation of invertase gene expression in this system, we examined the effect of gravistimulation on invertase mRNA induction. Total RNA and poly(A)(+)RNA, isolated from oat pulvini, and two oligonucleotide primers, corresponding to two conserved amino-acid sequences (NDPNG and WECPD) found in invertase from other species, were used for the Polymerase Chain Reaction (PCR). A partial-length cDNA (550 base pairs) was obtained and characterized. There was a 52 % deduced amino-acid sequence homology to that of carrot beta-fructosi- dase and a 48 % homology to that of tomato invertase. Northern blot analysis showed that there was an obvious transient accumulation of invertase mRNA elicited by gravistimulation of oat pulvini. The mRNA was rapidly induced to a maximum level at 1h following gravistimulation treatment and gradually decreased afterwards. The mRNA level in the bottom half of the oat pulvinus was significantly higher (five-fold) than that in the top half of the pulvinus tissue. The induction of invertase mRNA was consistent with the transient enhancement of invertase activity during the graviresponse of the pulvinus. These data indicate that the expression of the invertase gene(s) could be regulated by gravistimulation at the transcriptional and/or translational levels. Southern blot analysis showed that there were four genomic DNA fragments hybridized to the invertase cDNA. This suggests that an invertase gene family may exist in oat plants.

  11. Developmental evolution of flowering plant pollen tube cell walls: callose synthase (CalS gene expression patterns

    Directory of Open Access Journals (Sweden)

    Abercrombie Jason M

    2011-07-01

    Full Text Available Abstract Background A number of innovations underlie the origin of rapid reproductive cycles in angiosperms. A critical early step involved the modification of an ancestrally short and slow-growing pollen tube for faster and longer distance transport of sperm to egg. Associated with this shift are the predominantly callose (1,3-β-glucan walls and septae (callose plugs of angiosperm pollen tubes. Callose synthesis is mediated by callose synthase (CalS. Of 12 CalS gene family members in Arabidopsis, only one (CalS5 has been directly linked to pollen tube callose. CalS5 orthologues are present in several monocot and eudicot genomes, but little is known about the evolutionary origin of CalS5 or what its ancestral function may have been. Results We investigated expression of CalS in pollen and pollen tubes of selected non-flowering seed plants (gymnosperms and angiosperms within lineages that diverged below the monocot/eudicot node. First, we determined the nearly full length coding sequence of a CalS5 orthologue from Cabomba caroliniana (CcCalS5 (Nymphaeales. Semi-quantitative RT-PCR demonstrated low CcCalS5 expression within several vegetative tissues, but strong expression in mature pollen. CalS transcripts were detected in pollen tubes of several species within Nymphaeales and Austrobaileyales, and comparative analyses with a phylogenetically diverse group of sequenced genomes indicated homology to CalS5. We also report in silico evidence of a putative CalS5 orthologue from Amborella. Among gymnosperms, CalS5 transcripts were recovered from germinating pollen of Gnetum and Ginkgo, but a novel CalS paralog was instead amplified from germinating pollen of Pinus taeda. Conclusion The finding that CalS5 is the predominant callose synthase in pollen tubes of both early-diverging and model system angiosperms is an indicator of the homology of their novel callosic pollen tube walls and callose plugs. The data suggest that CalS5 had transient expression

  12. Overexpression of two cambium-abundant Chinese fir (Cunninghamia lanceolata) α-expansin genes ClEXPA1 and ClEXPA2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls.

    Science.gov (United States)

    Wang, Guifeng; Gao, Yan; Wang, Jinjun; Yang, Liwei; Song, Rentao; Li, Xiaorong; Shi, Jisen

    2011-05-01

    Expansins are unique plant cell wall proteins that possess the ability to induce immediately cell wall extension in vitro and cell expansion in vivo. To investigate the biological functions of expansins that are abundant in wood-forming tissues, we cloned two expansin genes from the differentiating xylem of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook). Phylogenetic reconstruction indicated that they belong to α-expansin (EXPA), named ClEXPA1 and ClEXPA2. Expression pattern analysis demonstrated that they are preferentially expressed in the cambium region. Overexpression of ClEXPA1 and ClEXPA2 in tobacco plants yielded pleiotropic phenotypes of plant height, stem diameter, leaf number and seed pod. The height and diameter growth of the 35S(pro) :ClEXPA1 and 35S(pro) :ClEXPA2 transgenic plants were increased drastically, exhibiting an enlargement of pith parenchyma cell size. Isolated cell walls of ClEXPA1 and ClEXPA2 overexpressors contained 30%-50% higher cellulose contents than the wild type, accompanied by a thickening of the cell walls in the xylem region. Both ClEXPA1 and ClEXPA2 are involved in plant growth and development, with a partially functional overlap. Expansins are not only able to induce cell expansion in different tissues/organs in vivo, but they also can act as a potential activator during secondary wall formation by directly or indirectly affecting cellulose metabolism, probably in a cell type-dependent manner.

  13. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol.

    Science.gov (United States)

    Belanger, A E; Besra, G S; Ford, M E; Mikusová, K; Belisle, J T; Brennan, P J; Inamine, J M

    1996-10-15

    The antimycobacterial compound ethambutol [Emb; dextro-2,2'-(ethylenediimino)-di-1-butanol] is used to treat tuberculosis as well as disseminated infections caused by Mycobacterium avium. The critical target for Emb lies in the pathway for the biosynthesis of cell wall arabinogalactan, but the molecular mechanisms for drug action and resistance are unknown. The cellular target for Emb was sought using drug resistance, via target overexpression by a plasmid vector, as a selection tool. This strategy led to the cloning of the M. avium emb region which rendered the otherwise susceptible Mycobacterium smegmatis host resistant to Emb. This region contains three complete open reading frames (ORFs), embR, embA, and embB. The translationally coupled embA and embB genes are necessary and sufficient for an Emb-resistant phenotype which depends on gene copy number, and their putative novel membrane proteins are homologous to each other. The predicted protein encoded by embR, which is related to known transcriptional activators from Streptomyces, is expendable for the phenotypic expression of Emb resistance, but an intact divergent promoter region between embR and embAB is required. An Emb-sensitive cell-free assay for arabinan biosynthesis shows that overexpression of embAB is associated with high-level Emb-resistant arabinosyl transferase activity, and that embR appears to modulate the in vitro level of this activity. These data suggest that embAB encode the drug target of Emb, the arabinosyl transferase responsible for the polymerization of arabinose into the arabinan of arabinogalactan, and that overproduction of this Emb-sensitive target leads to Emb resistance.

  14. On-Off Switches for Secondary Cell Wall Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Huan-Zhong Wang; Richard A.Dixon

    2012-01-01

    Secondary cell walls provide plants with rigidity and strength to support their body weight and ensure water and nutrient transport.They also provide textiles,timber,and potentially second-generation biofuels for human use.Genes responsible for synthesis of the different cell wall components,namely cellulose,hemicelluloses,and lignin,are coordinately expressed and under transcriptional regulation.In the past several years,cell wall-related NAC and MYB transcription factors have been intensively investigated in different species and shown to be master switches of secondary cell wall biosynthesis.Positive and negative regulators,which function upstream of NAC master switches,have also been identified in different plant tissues.Further elucidation of the regulatory mechanisms of cell wall synthesis will facilitate the engineering of plant feedstocks suitable for biofuel production.

  15. ABA-Mediated Inhibition of Germination Is Related to the Inhibition of Genes Encoding Cell-Wall Biosynthetic and Architecture:Modifying Enzymes and Structural Proteins in Medicago truncatula Embryo Axis

    Institute of Scientific and Technical Information of China (English)

    Christine Gimeno-Gilles; Eric Lelièvre; Laure Viau; Mustafa Malik-Ghulam; Claudie Ricoult; Andreas Niebel; Nathalie Leduc; Anis M. Limami

    2009-01-01

    Radicle emergence and reserves mobilization are two distinct programmes that are thought to control germination. Both programs are influenced by abscissic acid (ABA) but how this hormone controls seed germination is still poorly known. Phenotypic and microscopic observations of the embryo axis of Medicago truncatula during germination in mitotic inhibition condition triggered by 10 μM oryzalin showed that cell division was not required to allow radicle emergence. A suppressive subtractive hybridization showed that more than 10% of up-regulated genes in the embryo axis encoded proteins related to cell-wall biosynthesis. The expression of α-expansins, pectin-esterase, xylogucan-endotransglycosidase, cellulose synthase, and extensins was monitored in the embryo axis of seeds germinated on water, constant and transitory ABA. These genes were overexpressed before completion of germination in the control and strongly inhibited by ABA. The expression was re-established in the ABA transitory-treatment after the seeds were transferred back on water and proceeded to germination. This proves these genes as contributors to the completion of germination and strengthen the idea that cell-wall loosening and remodeling in relation to cell expansion in the embryo axis is a determinant feature in germination. Our results also showed that ABA controls germination through the control of radicle emergence, namely by inhibiting cell-wall loosening and expansion.

  16. 2003 Plant Cell Walls Gordon Conference

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Cosgrove

    2004-09-21

    This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

  17. Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone

    DEFF Research Database (Denmark)

    Wilson, Michael H; Holman, Tara J; Sørensen, Iben;

    2015-01-01

    and glycoproteins present in the cell walls of these sections, and identified the expected decrease in pectin and increase in xylan from the meristematic zone (MS), through the rapid and late elongation zones (REZ, LEZ) to the maturation zone and the rest of the root, including the emerging lateral roots. Other...

  18. Nitrate Uptake Affects Cell Wall Synthesis and Modeling

    Directory of Open Access Journals (Sweden)

    Simone Landi

    2017-08-01

    Full Text Available Nowadays, the relationship(s about N assimilation and cell wall remodeling in plants remains generally unclear. Enzymes involved in cell wall synthesis/modification, and nitrogen transporters play a critical role in plant growth, differentiation, and response to external stimuli. In this review, a co-expression analysis of nitrate and ammonium transporters of Arabidopsis thaliana was performed in order to explore the functional connection of these proteins with cell-wall related enzymes. This approach highlighted a strict relationship between inorganic nitrogen transporters and cell wall formation, identifying a number of co-expressed remodeling enzymes. The enzymes involved in pectin and xyloglucan synthesis resulted particularly co-regulated together with nitrate carriers, suggesting a connection between nitrate assimilation and cell wall growth regulation. Major Facilitator Carriers, and one chloride channel, are similarly co-expressed with pectin lyase, pectinacetylesterase, and cellulose synthase. Contrarily, ammonium transporters show little or no connection with those genes involved in cell wall synthesis. Different aspects related to plant development, embryogenesis, and abiotic stress response will be discussed, given the importance in plant growth of cell wall synthesis and nitrate uptake. Intriguingly, the improvement of abiotic stress tolerance in crops concerns both these processes indicating the importance in sensing the environmental constraints and mediating a response. These evaluations could help to identify candidate genes for breeding purposes.

  19. [Structure and function of fungal cell wall].

    Science.gov (United States)

    Ohno, Naohito

    2008-12-01

    Cell wall glycans of fungi/yeasts are reviewed. Fungi/yeasts produce various kinds of polysaccharides. As part of the cell wall they are interlinked with other components forming a huge network. The insolubility and complex with multiple components makes the research very tough. Studies on beta-glucan have been performed from various views, such as chemistry, conformation, solubility, tissue distribution and metabolism, biological activity, clinical application, receptor, biosynthesis, and antibody. Studies on mannan focus on immunotoxicity, such as anaphylactoid reaction and coronary arteritis induction. alpha-glucan, chitin, and capsular polysaccharide were also mentioned in relation to structure and genes. Compared with human and animal polysaccharides, fungi/yeasts polysaccharides have very characteristic properties.

  20. The invertase inhibitor Nt-CIF from tobacco: a highly thermostable four-helix bundle with an unusual N-terminal extension.

    Science.gov (United States)

    Hothorn, Michael; D'Angelo, Igor; Márquez, José Antonio; Greiner, Steffen; Scheffzek, Klaus

    2004-01-23

    Plant invertases are sucrolytic enzymes essential for plant metabolism and development. Enzyme activity is regulated on a posttranslational level via inhibitory proteins, referred to as invertase inhibitors. Ectopic expression of invertase inhibitors in crop plants has high biotechnological potential. However, little biochemical and up to now no detailed structural information is available about this class of plant regulatory proteins. Here, we present the crystal structure of the cell wall-associated invertase inhibitor Nt-CIF from tobacco at a resolution of 1.87A. The structural model reveals an asymmetric four-helix bundle with an uncommon N-terminal extension that appears to be critical for the structural integrity of the protein. Structure analysis of a second crystal form grown in the presence of CdCl(2) reveals two metal binding sites. Nt-CIF is highly thermostable and retains full inhibitory activity after cooling to ambient temperatures. The structure of Nt-CIF provides the first three-dimensional information source for the posttranslational regulation of plant invertases. Based on the recently discovered sequence homology between inhibitors of invertases and pectin methylesterases, our structural model is likely to represent a scaffold also used for the regulation of the latter enzymes, which do not share sequence similarity with invertases. Thus, our structural model sets the 3D-stage for the investigation of posttranslational regulation of invertases as well as pectin methylesterases.

  1. Isolation of the Cell Wall.

    Science.gov (United States)

    Canut, Hervé; Albenne, Cécile; Jamet, Elisabeth

    2017-01-01

    This chapter describes a method allowing the purification of the cell wall for studying both polysaccharides and proteins. The plant primary cell wall is mainly composed of polysaccharides (90-95 % in mass) and of proteins (5-10 %). At the end of growth, specialized cells may synthesize a lignified secondary wall composed of polysaccharides (about 65 %) and lignin (about 35 %). Due to its composition, the cell wall is the cellular compartment having the highest density and this property is used for its purification. It plays critical roles during plant development and in response to environmental constraints. It is largely used in the food and textile industries as well as for the production of bioenergy. All these characteristics and uses explain why its study as a true cell compartment is of high interest. The proposed method of purification can be used for large amount of material but can also be downscaled to 500 mg of fresh material. Tools for checking the quality of the cell wall preparation, such as protein analysis and microscopy observation, are also provided.

  2. NCW2, a Gene Involved in the Tolerance to Polyhexamethylene Biguanide (PHMB), May Help in the Organisation of β-1,3-Glucan Structure of Saccharomyces cerevisiae Cell Wall.

    Science.gov (United States)

    Elsztein, Carolina; de Lima, Rita de Cássia Pereira; de Barros Pita, Will; de Morais, Marcos Antonio

    2016-09-01

    In the present work, we provide biological evidences supporting the participation of NCW2 gene in the mechanism responsible for cell tolerance to polyhexamethylene biguanide (PHMB), an antifungal agent. The growth rate of yeast cells exposed to this agent was significantly reduced in ∆ncw2 strain and the mRNA levels of NCW2 gene in the presence of PHMB showed a 7-fold up-regulation. Moreover, lack of NCW2 gene turns yeast cell more resistant to zymolyase treatment, indicating that alterations in the β-glucan network do occur when Ncw2p is absent. Computational analysis of the translated protein indicated neither catalytic nor transmembrane sites and reinforced the hypothesis of secretion and anchoring to cell surface. Altogether, these results indicated that NCW2 gene codes for a protein which participates in the cell wall biogenesis in yeasts and that Ncw2p might play a role in the organisation of the β-glucan assembly.

  3. Plant Cell Wall Matrix Polysaccharide Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Ajay Pal S. Sandhu; Gursharn S. Randhawa; Kanwarpal S. Dhugga

    2009-01-01

    The wall of an expanding plant cell consists primarily of cellulose microfibrils embedded in a matrix of hemi-cellulosic and pectic polysaccharides along with small amounts of structural and enzymatic proteins. Matrix polysacchar-ides are synthesized in the Golgi and exported to the cell wall by exocytosis, where they intercalate among cellulose microfibrUs, which are made at the plasma membrane and directly deposited into the cell wall. Involvement of Golgi glucan synthesis in auxin-induced cell expansion has long been recognized; however, only recently have the genes corresponding to glucan synthases been identified. Biochemical purification was unsuccessful because of the labile nature and very low abundance of these enzymes. Mutational genetics also proved fruitless. Expression of candidate genes identified through gene expression profiling or comparative genomics in heterologous systems followed by functional characterization has been relatively successful. Several genes from the cellulose synthase-like (Cs/) family have been found to be involved in the synthesis of various hemicellulosic glycans. The usefulness of this approach, however, is limited to those enzymes that probably do not form complexes consisting of unrelated proteins. Nonconventional approaches will continue to incre-mentally unravel the mechanisms of Golgi polysaccharide biosynthesis.

  4. Regulation of arbuscular mycorrhization by apoplastic invertases: enhanced invertase activity in the leaf apoplast affects the symbiotic interaction.

    Science.gov (United States)

    Schaarschmidt, Sara; Kopka, Joachim; Ludwig-Müller, Jutta; Hause, Bettina

    2007-08-01

    The effect of constitutive invertase overexpression on the arbuscular mycorrhiza (AM) is shown. The analysis of the enhanced potential for sucrose cleavage was performed with a heterozygous line of Nicotiana tabacum 35S::cwINV expressing a chimeric gene encoding apoplast-located yeast-derived invertase with the CaMV35S promoter. Despite the 35S promoter, roots of the transgenic plants showed no or only minor effects on invertase activity whereas the activity in leaves was increased at different levels. Plants with strongly elevated leaf invertase activity, which exhibited a strong accumulation of hexoses in source leaves, showed pronounced phenotypical effects like stunted growth and chlorosis, and an undersupply of the root with carbon. Moreover, transcripts of PR (pathogenesis related) genes accumulated in the leaves. In these plants, mycorrhization was reduced. Surprisingly, plants with slightly increased leaf invertase activity showed a stimulation of mycorrhization, particularly 3 weeks after inoculation. Compared with wild-type, a higher degree of mycorrhization accompanied by a higher density of all fungal structures and a higher level of Glomus intraradices-specific rRNA was detected. Those transgenic plants showed no accumulation of hexoses in the source leaves, minor phenotypical effects and no increased PR gene transcript accumulation. The roots had even lower levels of phenolic compounds (chlorogenic acid and scopolin), amines (such as tyramine, dopamine, octopamine and nicotine) and some amino acids (including 5-amino-valeric acid and 4-amino-butyric acid), as well as an increased abscisic acid content compared with wild-type. Minor metabolic changes were found in the leaves of these plants. The changes in metabolism and defense status of the plant and their putative role in the formation of an AM symbiosis are discussed.

  5. Four Novel Cellulose Synthase (CESA Genes from Birch (Betula platyphylla Suk. Involved in Primary and Secondary Cell Wall Biosynthesis

    Directory of Open Access Journals (Sweden)

    Xuemei Liu

    2012-09-01

    Full Text Available Cellulose synthase (CESA, which is an essential catalyst for the generation of plant cell wall biomass, is mainly encoded by the CesA gene family that contains ten or more members. In this study; four full-length cDNAs encoding CESA were isolated from Betula platyphylla Suk., which is an important timber species, using RT-PCR combined with the RACE method and were named as BplCesA3, −4, −7 and −8. These deduced CESAs contained the same typical domains and regions as their Arabidopsis homologs. The cDNA lengths differed among these four genes, as did the locations of the various protein domains inferred from the deduced amino acid sequences, which shared amino acid sequence identities ranging from only 63.8% to 70.5%. Real-time RT-PCR showed that all four BplCesAs were expressed at different levels in diverse tissues. Results indicated that BplCESA8 might be involved in secondary cell wall biosynthesis and floral development. BplCESA3 appeared in a unique expression pattern and was possibly involved in primary cell wall biosynthesis and seed development; it might also be related to the homogalacturonan synthesis. BplCESA7 and BplCESA4 may be related to the formation of a cellulose synthase complex and participate mainly in secondary cell wall biosynthesis. The extremely low expression abundance of the four BplCESAs in mature pollen suggested very little involvement of them in mature pollen formation in Betula. The distinct expression pattern of the four BplCesAs suggested they might participate in developments of various tissues and that they are possibly controlled by distinct mechanisms in Betula.

  6. The cell wall of Fusarium oxysporum

    NARCIS (Netherlands)

    Schoffelmeer, EAM; Klis, FM; Sietsma, JH; Cornelissen, BJC

    1999-01-01

    Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for

  7. The cell wall of Fusarium oxysporum

    NARCIS (Netherlands)

    Schoffelmeer, EAM; Klis, FM; Sietsma, JH; Cornelissen, BJC

    1999-01-01

    Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for 50

  8. Differential regulation of grain sucrose accumulation and metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta) revealed through gene expression and enzyme activity analysis.

    Science.gov (United States)

    Privat, Isabelle; Foucrier, Séverine; Prins, Anneke; Epalle, Thibaut; Eychenne, Magali; Kandalaft, Laurianne; Caillet, Victoria; Lin, Chenwei; Tanksley, Steve; Foyer, Christine; McCarthy, James

    2008-01-01

    * Coffea arabica (Arabica) and Coffea canephora (Robusta) are the two main cultivated species used for coffee bean production. Arabica genotypes generally produce a higher coffee quality than Robusta genotypes. Understanding the genetic basis for sucrose accumulation during coffee grain maturation is an important goal because sucrose is an important coffee flavor precursor. * Nine new Coffea genes encoding sucrose metabolism enzymes have been identified: sucrose phosphate synthase (CcSPS1, CcSPS2), sucrose phosphate phosphatase (CcSP1), cytoplasmic (CaInv3) and cell wall (CcInv4) invertases and four invertase inhibitors (CcInvI1, 2, 3, 4). * Activities and mRNA abundance of the sucrose metabolism enzymes were compared at different developmental stages in Arabica and Robusta grains, characterized by different sucrose contents in mature grain. * It is concluded that Robusta accumulates less sucrose than Arabica for two reasons: Robusta has higher sucrose synthase and acid invertase activities early in grain development - the expression of CcSS1 and CcInv2 appears to be crucial at this stage and Robusta has a lower SPS activity and low CcSPS1 expression at the final stages of grain development and hence has less capacity for sucrose re-synthesis. Regulation of vacuolar invertase CcInv2 activity by invertase inhibitors CcInvI2 and/or CcInvI3 during Arabica grain development is considered.

  9. Shape dynamics of growing cell walls

    CERN Document Server

    Banerjee, Shiladitya; Dinner, Aaron R

    2015-01-01

    We introduce a general theoretical framework to study the shape dynamics of actively growing and remodeling surfaces. Using this framework we develop a physical model for growing bacterial cell walls and study the interplay of cell shape with the dynamics of growth and constriction. The model allows us to derive constraints on cell wall mechanical energy based on the observed dynamics of cell shape. We predict that exponential growth in cell size requires a constant amount of cell wall energy to be dissipated per unit volume. We use the model to understand and contrast growth in bacteria with different shapes such as spherical, ellipsoidal, cylindrical and toroidal morphologies. Coupling growth to cell wall constriction, we predict a discontinuous shape transformation, from partial constriction to cell division, as a function of the chemical potential driving cell-wall synthesis. Our model for cell wall energy and shape dynamics relates growth kinetics with cell geometry, and provides a unified framework to d...

  10. Catalysts of plant cell wall loosening

    OpenAIRE

    Cosgrove, Daniel J.

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyl...

  11. Regulatory mechanisms controlling expression of the DAN/TIR mannoprotein genes during anaerobic remodeling of the cell wall in Saccharomyces cerevisiae.

    Science.gov (United States)

    Abramova, N E; Cohen, B D; Sertil, O; Kapoor, R; Davies, K J; Lowry, C V

    2001-03-01

    The DAN/TIR genes of Saccharomyces cerevisiae encode homologous mannoproteins, some of which are essential for anaerobic growth. Expression of these genes is induced during anaerobiosis and in some cases during cold shock. We show that several heme-responsive mechanisms combine to regulate DAN/TIR gene expression. The first mechanism employs two repression factors, Mox1 and Mox2, and an activation factor, Mox4 (for mannoprotein regulation by oxygen). The genes encoding these proteins were identified by selecting for recessive mutants with altered regulation of a dan1::ura3 fusion. MOX4 is identical to UPC2, encoding a binucleate zinc cluster protein controlling expression of an anaerobic sterol transport system. Mox4/Upc2 is required for expression of all the DAN/TIR genes. It appears to act through a consensus sequence termed the AR1 site, as does Mox2. The noninducible mox4Delta allele was epistatic to the constitutive mox1 and mox2 mutations, suggesting that Mox1 and Mox2 modulate activation by Mox4 in a heme-dependent fashion. Mutations in a putative repression domain in Mox4 caused constitutive expression of the DAN/TIR genes, indicating a role for this domain in heme repression. MOX4 expression is induced both in anaerobic and cold-shocked cells, so heme may also regulate DAN/TIR expression through inhibition of expression of MOX4. Indeed, ectopic expression of MOX4 in aerobic cells resulted in partially constitutive expression of DAN1. Heme also regulates expression of some of the DAN/TIR genes through the Rox7 repressor, which also controls expression of the hypoxic gene ANB1. In addition Rox1, another heme-responsive repressor, and the global repressors Tup1 and Ssn6 are also required for full aerobic repression of these genes.

  12. [The cell wall of Coelastrum (Chlorophycees)].

    Science.gov (United States)

    Reymond, O

    1975-01-01

    The cell wall of Coelastrum is usually composed of three layers. The outermost layer was studied most extensively. It consists of erect tubules which often bear long bristles whose function may be to stabilize the algae in its enviroment. The cell wall can modify its morphology according to the enviroment.

  13. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Directory of Open Access Journals (Sweden)

    Lori B Huberman

    Full Text Available Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  14. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Science.gov (United States)

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  15. Integrative analysis and expression profiling of secondary cell wall genes in C4 biofuel model Setaria italica reveals targets for lignocellulose bioengineering

    Directory of Open Access Journals (Sweden)

    Mehanathan eMuthamilarasan

    2015-11-01

    Full Text Available Several underutilized grasses have excellent potential for use as bioenergy feedstock due to their lignocellulosic biomass. Genomic tools have enabled identification of lignocellulose biosynthesis genes in several sequenced plants. However, the non-availability of whole genome sequence of bioenergy grasses hinders the study on bioenergy genomics and their genomics-assisted crop improvement. Foxtail millet (Setaria italica L.; Si is a model crop for studying systems biology of bioenergy grasses. In the present study, a systematic approach has been used for identification of gene families involved in cellulose (CesA/Csl, callose (Gsl and monolignol biosynthesis (PAL, C4H, 4CL, HCT, C3H, CCoAOMT, F5H, COMT, CCR, CAD and construction of physical map of foxtail millet. Sequence alignment and phylogenetic analysis of identified proteins showed that monolignol biosynthesis proteins were highly diverse, whereas CesA/Csl and Gsl proteins were homologous to rice and Arabidopsis. Comparative mapping of foxtail millet lignocellulose biosynthesis genes with other C4 panicoid genomes revealed maximum homology with switchgrass, followed by sorghum and maize. Expression profiling of candidate lignocellulose genes in response to different abiotic stresses and hormone treatments showed their differential expression pattern, with significant higher expression of SiGsl12, SiPAL2, SiHCT1, SiF5H2 and SiCAD6 genes. Further, due to the evolutionary conservation of grass genomes, the insights gained from the present study could be extrapolated for identifying genes involved in lignocellulose biosynthesis in other biofuel species for further characterization.

  16. Molecular mechanisms for vascular development and secondary cell wall formation

    Directory of Open Access Journals (Sweden)

    Jung Hyun eYang

    2016-03-01

    Full Text Available Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and secondary cell wall biosynthesis has seen rapid progress due to the importance of these processes to plant biology and to the biofuel industry. Plant hormones, transcriptional regulators and peptide signaling regulate procambium/cambium proliferation, vascular patterning, and xylem differentiation. Transcriptional regulatory pathways play a pivot role in secondary cell wall biosynthesis. Although most of these discoveries are derived from research in Arabidopsis, many genes have shown conserved functions in biofuel feedstock species. Here, we review the recent advances in our understanding of vascular development and secondary cell wall formation and discuss potential biotechnological uses.

  17. Isolation of plant cell wall proteins.

    Science.gov (United States)

    Jamet, Elisabeth; Boudart, Georges; Borderies, Giséle; Charmont, Stephane; Lafitte, Claude; Rossignol, Michel; Canut, Herve; Pont-Lezica, Rafael

    2008-01-01

    The quality of a proteomic analysis of a cell compartment strongly depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific drawbacks: (1) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure; (2) polysaccharide networks of cellulose, hemicelluloses, and pectins form potential traps for contaminants such as intracellular proteins; (3) the presence of proteins interacting in many different ways with the polysaccharide matrix require different procedures to elute them from the cell wall. Three categories of CWP are distinguished: labile proteins that have little or no interactions with cell wall components, weakly bound proteins extractable with salts, and strongly bound proteins. Two alternative protocols are decribed for cell wall proteomics: (1) nondestructive techniques allowing the extraction of labile or weakly bound CWP without damaging the plasma membrane; (2) destructive techniques to isolate cell walls from which weakly or strongly bound CWP can be extracted. These protocols give very low levels of contamination by intracellular proteins. Their application should lead to a realistic view of the cell wall proteome at least for labile and weakly bound CWP extractable by salts.

  18. Recent advances in plant cell wall proteomics.

    Science.gov (United States)

    Jamet, Elisabeth; Albenne, Cécile; Boudart, Georges; Irshad, Muhammad; Canut, Hervé; Pont-Lezica, Rafael

    2008-02-01

    The plant extracellular matrix contains typical polysaccharides such as cellulose, hemicelluloses, and pectins that interact to form dense interwoven networks. Plant cell walls play crucial roles during development and constitute the first barrier of defense against invading pathogens. Cell wall proteomics has greatly contributed to the description of the protein content of a compartment specific to plants. Around 400 cell wall proteins (CWPs) of Arabidopsis, representing about one fourth of its estimated cell wall proteome, have been described. The main points to note are that: (i) the diversity of enzymes acting on polysaccharides suggests a great plasticity of cell walls; (ii) CWPs such as proteases, polysaccharide hydrolytic enzymes, and lipases may contribute to the generation of signals; (iii) proteins of unknown functions were identified, suggesting new roles for cell walls. Recently, the characterization of PTMs such as N- and O-glycosylations improved our knowledge of CWP structure. The presence of many glycoside hydrolases and proteases suggests a complex regulation of CWPs involving various types of post-translational events. The first 3-D structures to be resolved gave clues about the interactions between CWPs, or between CWPs and polysaccharides. Future work should include: extracting and identifying CWPs still recalcitrant to proteomics, describing the cell wall interactome, improving quantification, and unraveling the roles of each of the CWPs.

  19. The fungal symbiont of Acromyrmex leaf-cutting ants expresses the full spectrum of genes to degrade cellulose and other plant cell wall polysaccharides.

    Science.gov (United States)

    Grell, Morten N; Linde, Tore; Nygaard, Sanne; Nielsen, Kåre L; Boomsma, Jacobus J; Lange, Lene

    2013-12-28

    The fungus gardens of leaf-cutting ants are natural biomass conversion systems that turn fresh plant forage into fungal biomass to feed the farming ants. However, the decomposition potential of the symbiont Leucocoprinus gongylophorus for processing polysaccharides has remained controversial. We therefore used quantifiable DeepSAGE technology to obtain mRNA expression patterns of genes coding for secreted enzymes from top, middle, and bottom sections of a laboratory fungus-garden of Acromyrmex echinatior leaf-cutting ants. A broad spectrum of biomass-conversion-relevant enzyme genes was found to be expressed in situ: cellulases (GH3, GH5, GH6, GH7, AA9 [formerly GH61]), hemicellulases (GH5, GH10, CE1, GH12, GH74), pectinolytic enzymes (CE8, GH28, GH43, PL1, PL3, PL4), glucoamylase (GH15), α-galactosidase (GH27), and various cutinases, esterases, and lipases. In general, expression of these genes reached maximal values in the bottom section of the garden, particularly for an AA9 lytic polysaccharide monooxygenase and for a GH5 (endocellulase), a GH7 (reducing end-acting cellobiohydrolase), and a GH10 (xylanase), all containing a carbohydrate binding module that specifically binds cellulose (CBM1). Although we did not directly quantify enzyme abundance, the profile of expressed cellulase genes indicates that both hydrolytic and oxidative degradation is taking place. The fungal symbiont of Acromyrmex leaf-cutting ants can degrade a large range of plant polymers, but the conversion of cellulose, hemicellulose, and part of the pectin occurs primarily towards the end of the decomposition process, i.e. in the bottom section of the fungus garden. These conversions are likely to provide nutrients for the fungus itself rather than for the ants, whose colony growth and reproductive success are limited by proteins obtained from ingesting fungal gongylidia. These specialized hyphal tips are hardly produced in the bottom section of fungus gardens, consistent with the ants

  20. Metabolic control of tobacco pollination by sugars and invertases

    DEFF Research Database (Denmark)

    Goetz, Marc; Guivarc'h, Anne; Hirsche, Jörg

    2017-01-01

    that the functional coupling of sucrose cleavage by invertases and uptake of the released hexoses by monosaccharide transporters are critical for pollination in tobacco. Transcript profiling, in situ hybridization and immunolocalization of extracellular invertases and two monosaccharide transporters in vitro...

  1. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures

    Institute of Scientific and Technical Information of China (English)

    Hugo Melida; Antonio Encina; Asier Largo-Gosens; Esther Novo-Uzal; Rogelio Santiago; Federico Pomar; Pedro Garca; Penelope Garca-Angulo; Jose Luis Acebes; Jesus Alvarez

    2015-01-01

    Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment.

  2. Function of laccases in cell wall biosynthesis

    DEFF Research Database (Denmark)

    Larsen, Anders; Holm, Preben Bach; Andersen, Jeppe Reitan

    2011-01-01

    substrate specificities and expression patterns. As part of the strategic research centre Bio4Bio, the present project deals with laccase functions in relation to cell wall formation in grasses based on a study of the model species Brachypodium distachyon. Thirty-one isozymes have been retrieved from......Laccases are multicopper oxidases capable of polymerizing monolignols. Histochemical assays have shown temporal and spatial correlation with secondary cell wall formation in both herbs and woody perennials. However, in plants laccases constitutes a relatively large group of isoenzymes with unique...... hybridization. Specific isozymes that show high correlation with the process of secondary cell wall formation will be further studied in a reverse genetic study in which candidates will be knocked out using RNA interference. Phenotypes of knock-out mutants are to be described in relation to cell wall...

  3. Isolation of plant cell wall proteins

    OpenAIRE

    Jamet, Elisabeth; Boudart, Georges; Borderies, Gisèle; Charmont, Stéphane; Lafitte, Claude; Rossignol, Michel; Canut, Hervé; Pont-Lezica, Rafael F

    2007-01-01

    The quality of a proteomic analysis of a cell compartment strongly depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific drawbacks: (i) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure; (ii) polysaccharide networks of cellulose, hemicelluloses and pectins form potential traps for contaminants such as intracellular proteins; (iii) the presence of proteins ...

  4. Composition and architecture of the cell walls of grasses and the mechanisms of synthesis of cell wall polysaccharides. Final report for period September 1, 1988 - April 30, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Carpita, Nicholas C.

    2001-10-18

    This program was devoted toward complete understanding of the polysaccharide structure and architecture of the primary cell walls grasses and cereals, and the biosynthesis of the mixed-linkage beta-glucane, a cellulose interacting polymer that is synthesized uniquely by grass species and close relatives. With these studies as focal point, the support from DOE was instrumental in the development of new analytical means that enabled us to characterize carbohydrate structure, to reveal new features of cell wall dynamics during cell growth, and to apply these techniques in other model organisms. The support by DOE in these basic studies was acknowledged on numerous occasions in review articles covering current knowledge of cell wall structure, architecture, dynamics, biosynthesis, and in all genes related to cell wall biogenesis.

  5. Neural network analyses of infrared spectra for classifying cell wall architectures.

    Science.gov (United States)

    McCann, Maureen C; Defernez, Marianne; Urbanowicz, Breeanna R; Tewari, Jagdish C; Langewisch, Tiffany; Olek, Anna; Wells, Brian; Wilson, Reginald H; Carpita, Nicholas C

    2007-03-01

    About 10% of plant genomes are devoted to cell wall biogenesis. Our goal is to establish methodologies that identify and classify cell wall phenotypes of mutants on a genome-wide scale. Toward this goal, we have used a model system, the elongating maize (Zea mays) coleoptile system, in which cell wall changes are well characterized, to develop a paradigm for classification of a comprehensive range of cell wall architectures altered during development, by environmental perturbation, or by mutation. Dynamic changes in cell walls of etiolated maize coleoptiles, sampled at one-half-d intervals of growth, were analyzed by chemical and enzymatic assays and Fourier transform infrared spectroscopy. The primary walls of grasses are composed of cellulose microfibrils, glucuronoarabinoxylans, and mixed-linkage (1 --> 3),(1 --> 4)-beta-D-glucans, together with smaller amounts of glucomannans, xyloglucans, pectins, and a network of polyphenolic substances. During coleoptile development, changes in cell wall composition included a transient appearance of the (1 --> 3),(1 --> 4)-beta-D-glucans, a gradual loss of arabinose from glucuronoarabinoxylans, and an increase in the relative proportion of cellulose. Infrared spectra reflected these dynamic changes in composition. Although infrared spectra of walls from embryonic, elongating, and senescent coleoptiles were broadly discriminated from each other by exploratory principal components analysis, neural network algorithms (both genetic and Kohonen) could correctly classify infrared spectra from cell walls harvested from individuals differing at one-half-d interval of growth. We tested the predictive capabilities of the model with a maize inbred line, Wisconsin 22, and found it to be accurate in classifying cell walls representing developmental stage. The ability of artificial neural networks to classify infrared spectra from cell walls provides a means to identify many possible classes of cell wall phenotypes. This classification

  6. Identification of a cation-specific channel (TipA) in the cell wall of the gram-positive mycolata Tsukamurella inchonensis: the gene of the channel-forming protein is identical to mspA of Mycobacterium smegmatis and mppA of Mycobacterium phlei.

    Science.gov (United States)

    Dörner, Ursula; Maier, Elke; Benz, Roland

    2004-11-17

    Detergent extracts of whole cells of the Gram-positive bacterium Tsukamurella inchonensis ATCC 700082, which belongs to the mycolata, were studied for the presence of ion-permeable channels using lipid bilayer experiments. One channel with a conductance of about 4.5 nS in 1 M KCl was identified in the extracts. The channel-forming protein was purified to homogeneity by preparative SDS-PAGE. The protein responsible for channel-forming activity had an apparent molecular mass of about 33 kDa as judged by SDS-PAGE. Interestingly, the protein showed cross-reactivity with polyclonal antibodies raised against a polypeptide derived from MspA of Mycobacterium smegmatis similarly as the cell wall channel of Mycobacterium phlei. Primers derived from mspA were used to clone and sequence the gene of the cell wall channels of T. inchonensis (named tipA for T. inchonensis porin A) and M. phlei (named mppA for M. phlei porin A). Surprisingly, both genes, tipA and mppA, were found to be identical to mspA of M. smegmatis, indicating that the genomes of T. inchonensis, M. phlei and M. smegmatis contain the same genes for the major cell wall channel. RT-PCR revealed that tipA is transcribed in T. inchonensis and mppA in M. phlei. The results suggest that despite a certain distance between the three organisms, their genomes contain the same gene coding for the major cell wall channel, with a molecular mass of 22 kDa for the monomer.

  7. Genome-Wide Association Mapping for Cell Wall Composition and Properties in Temperate Grasses

    DEFF Research Database (Denmark)

    Bellucci, Andrea

    -glucans. Plant cell wall biosynthesis is regulated by a large number of genes and regulatory factors but very few of these are known and characterized. This PhD project aimed to the identification of putative candidate genes involved in plant cell wall composition and properties using a genome wide (GWAS......) approach. The species investigate were wheat, barley and B. distachyon, considered a model plant for temperate cereals. Agronomical traits as yield and plant height were also included in the analysis along with cell wall composition and saccharification properties. Several marker-trait associations were......Plant cell wall confers flexibility, support for the vital processes of the plant and resistance to abiotic stresses and pathogen. It is constituted by a complex matrix of cellulose, hemicellulose, pectins and polyphenolic compounds as lignin. These main components interact with each other...

  8. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Nathan T Reem

    2016-05-01

    Full Text Available The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity and function remains unclear. Modifications of cell wall composition can induce plant responses known as Cell Wall Integrity control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, increased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant cell wall integrity, which contributes to plant resistance to necrotrophic pathogens.

  9. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure

    OpenAIRE

    Coleman, Heather D.; Yan, Jimmy; Mansfield, Shawn D.

    2009-01-01

    Overexpression of the Gossypium hirsutum sucrose synthase (SuSy) gene under the control of 2 promoters was examined in hybrid poplar (Populus alba × grandidentata). Analysis of RNA transcript abundance, enzyme activity, cell wall composition, and soluble carbohydrates revealed significant changes in the transgenic lines. All lines showed significantly increased SuSy enzyme activity in developing xylem. This activity manifested in altered secondary cell wall cellulose content per dry weight in...

  10. "Steiner trees" between cell walls of sisal

    Institute of Scientific and Technical Information of China (English)

    LI GuanShi; YIN YaJun; LI Yan; ZHONG Zheng

    2009-01-01

    Through careful analysis on the cross-section of sisal fibers,it is found that the middle lamellae between the cell walls have clear geometric characteristics:between the cell walls of three neighboring cells,the middle lamellae form a three-way junction with 120°symmetry. If the neighboring three-way junctions are connected,a network of Steiner tree with angular symmetry and topological invariability is formed. If more and more Steiner trees are connected,a network of Steiner rings is generated. In another word,idealized cell walls and the middle lamellae are dominated by the Steiner geometry. This geometry not only depicts the geometric symmetry,the topological invariability and minimal property of the middle lamellae,but also controls the mechanics of sisal fibers.

  11. Enzymatic Modification of Plant Cell Wall Polysaccharides

    DEFF Research Database (Denmark)

    Øbro, Jens; Hayashi, Takahisa; Mikkelsen, Jørn Dalgaard

    2011-01-01

    for sustainable processes that replace chemical treatments with white biotechnology. Plants can contribute significantly to this sustainable process by producing plant or microbialenzymes in planta that are necessary for plant cell wall modification or total degradation. This will give rise to superior food......Plant cell walls are intricate structures with remarkable properties, widely used in almost every aspect of our life. Cell walls consist largely of complex polysaccharides and there is often a need for chemical and biochemical processing before industrial use. There is an increasing demand...... fibres, hydrocolloids, paper,textile, animal feeds or biofuels. Classical microbial-based fermentation systems could in the future face serious competition from plant-based expression systems for enzyme production. Plant expressed enzymes can either be targeted to specific cellular compartments...

  12. Enzymatic Modification of Plant Cell Wall Polysaccharides

    DEFF Research Database (Denmark)

    Øbro, Jens; Hayashi, Takahisa; Mikkelsen, Jørn Dalgaard

    2011-01-01

    fibres, hydrocolloids, paper,textile, animal feeds or biofuels. Classical microbial-based fermentation systems could in the future face serious competition from plant-based expression systems for enzyme production. Plant expressed enzymes can either be targeted to specific cellular compartments......Plant cell walls are intricate structures with remarkable properties, widely used in almost every aspect of our life. Cell walls consist largely of complex polysaccharides and there is often a need for chemical and biochemical processing before industrial use. There is an increasing demand...... for sustainable processes that replace chemical treatments with white biotechnology. Plants can contribute significantly to this sustainable process by producing plant or microbialenzymes in planta that are necessary for plant cell wall modification or total degradation. This will give rise to superior food...

  13. WD40-repeat proteins in plant cell wall formation: current evidence and research prospects

    Directory of Open Access Journals (Sweden)

    Gea eGuerriero

    2015-12-01

    Full Text Available The metabolic complexity of living organisms relies on supramolecular protein structures which ensure vital processes, such as signal transduction, transcription, translation and cell wall synthesis. In eukaryotes WD40-repeat (WDR proteins often function as molecular hubs mediating supramolecular interactions. WDR proteins may display a variety of interacting partners and participate in the assembly of complexes involved in distinct cellular functions. In plants, the formation of lignocellulosic biomass involves extensive synthesis of cell wall polysaccharides, a process that requires the assembly of large transmembrane enzyme complexes, intensive vesicle trafficking, interactions with the cytoskeleton, and coordinated gene expression. Because of their function as supramolecular hubs, WDR proteins could participate in each or any of these steps, although to date only few WDR proteins have been linked to the cell wall by experimental evidence. Nevertheless, several potential cell wall-related WDR proteins were recently identified using in silico aproaches, such as analyses of co-expression, interactome and conserved gene neighbourhood. Notably, some WDR genes are frequently genomic neighbours of genes coding for GT2-family polysaccharide synthases in eukaryotes, and this WDR-GT2 collinear microsynteny is detected in diverse taxa. In angiosperms, two WDR genes are collinear to cellulose synthase genes, CESAs, whereas in ascomycetous fungi several WDR genes are adjacent to chitin synthase genes, chs. In this Perspective we summarize and discuss experimental and in silico studies on the possible involvement of WDR proteins in plant cell wall formation. The prospects of biotechnological engineering for enhanced biomass production are discussed.

  14. [Effects of antisense acid invertase gene on reducing sugar and starch contents of potato (Solanum tuberosum L.) tuber stored at low temperature].

    Science.gov (United States)

    Wang, Qing; Huang, Hui-Ying; Zhang, Jin-Wen; Li, Xue-Cai

    2005-10-01

    Two transgenic potato lines with antisense AcInv gene and the non-transgenic varieties were used to test the reducing sugar and starch contents. The results indicated that the reducing sugar content increased and total starch content decreased in all samples after tubers were stored at 4 degrees C for 40 d. The reducing sugar content in tubers of transgenic line "Anti-AcInv Atlantic" and "Anti-AcInv Gannongshu No.2" were lower about 23% and 18% than those of Atlantic and Gannongshu No.2 (Table 1). The total starch and the amylopectin were also decreased by 1% and 1.3% in "Anti-AcInv Atlantic" and 1.4% and 1.7% in "Anti-AcInv Gannongshu No.2" respectively (Table 2). The proportions of amylose and amylopectin were lower in the transgenic lines than the non-transgenic varieties (Figs. 1 and 2). It was only 0.29 for "Anti-AcInv Atlantic" and 0.38 for "Anti-AcInv Gannongshu No.2". Meanwhile, there are fewer dark blue starch particles in transgenic tuber, which is less than in tuber of the non-transgenic varieties by paraffin-cut section method (Fig. 3). After the tubers were transferred to the storage temperature 15-17 degrees C for 20 d, the reducing sugar contents in tubers of the two transgenic lines were significantly lower than that of non-transgenic varieties. It was 0.23% for "Anti-AcInv Atlantic" and 0.24% for "Anti-AcInv Gannongshu No.2" (Table 1). It is suggested that the trans-antisense AcInv gene in the transgenic potato down-regulates the AcInv gene expression after the tubers were stored under low temperature.

  15. Rice Brittleness Mutants: A Way to Open the 'Black Box' of Monocot Cell Wall Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Baocai Zhang; Yihua Zhou

    2011-01-01

    Rice is a model organism for studying the mechanism of cell wall biosynthesis and remolding in Gramineae.Mechanical strength is an important agronomy trait of rice(Oryza sativa L.)plants that affects crop lodging and grain yield.As a prominent physical property of cell walls,mechanical strength reflects upon the structure of different wall polymers and how they interact.Studies on the mechanisms that regulate the mechanical strength therefore consequently results in uncovering the genes functioning in cell wall biosynthesis and remodeling.Our group focuses on the study of isolation of brittle culm(bc)mutants and characterization of their corresponding genes.To date,several bc mutants have been reported.The identified genes have covered several pathways of cell wall biosynthesis,revealing many secrets of monocot cell wall biosynthesis.Here,we review the progress achieved in this research field and also highlight the perspectives in expectancy.All of those lend new insights into mechanisms of cell wall formation and are helpful for harnessing the waste rice straws for biofuel production.

  16. Role of the cell wall integrity and filamentous growth mitogen-activated protein kinase pathways in cell wall remodeling during filamentous growth.

    Science.gov (United States)

    Birkaya, Barbara; Maddi, Abhiram; Joshi, Jyoti; Free, Stephen J; Cullen, Paul J

    2009-08-01

    Many fungal species including pathogens exhibit filamentous growth (FG) as a means of foraging for nutrients. Genetic screens were performed to identify genes required for FG in the budding yeast Saccharomyces cerevisiae. Genes encoding proteins with established functions in transcriptional activation (MCM1, MATalpha2, PHD1, MSN2, SIR4, and HMS2), cell wall integrity (MPT5, WSC2, and MID2), and cell polarity (BUD5) were identified as potential regulators of FG. The transcription factors MCM1 and MATalpha2 induced invasive growth by promoting diploid-specific bipolar budding in haploid cells. Components of the cell wall integrity pathway including the cell surface proteins Slg1p/Wsc1p, Wsc2p, Mid2p, and the mitogen-activated protein kinase (MAPK) Slt2p/Mpk1p contributed to multiple aspects of the FG response including cell elongation, cell-cell adherence, and agar invasion. Mid2p and Wsc2p stimulated the FG MAPK pathway through the signaling mucin Msb2p and components of the MAPK cascade. The FG pathway contributed to cell wall integrity in parallel with the cell wall integrity pathway and in opposition with the high osmolarity glycerol response pathway. Mass spectrometry approaches identified components of the filamentous cell wall including the mucin-like proteins Msb2p, Flo11p, and subtelomeric (silenced) mucin Flo10p. Secretion of Msb2p, which occurs as part of the maturation of the protein, was inhibited by the ss-1,3-glucan layer of the cell wall, which highlights a new regulatory aspect to cell wall remodeling in this organism. Disruption of ss-1,3-glucan linkages induced mucin shedding and resulted in defects in cell-cell adhesion and invasion of cells into the agar matrix.

  17. Cell wall oxalate oxidase modifies the ferulate metabolism in cell walls of wheat shoots.

    Science.gov (United States)

    Wakabayashi, Kazuyuki; Soga, Kouichi; Hoson, Takayuki

    2011-11-01

    Oxalate oxidase (OXO) utilizes oxalate to generate hydrogen peroxide, and thereby acts as a source of hydrogen peroxide. The present study was carried out to investigate whether apoplastic OXO modifies the metabolism of cell wall-bound ferulates in wheat seedlings. Histochemical staining of OXO showed that cell walls were strongly stained, indicating the presence of OXO activity in shoot walls. When native cell walls prepared from shoots were incubated with oxalate or hydrogen peroxide, the levels of ester-linked diferulic acid (DFA) isomers were significantly increased. On the other hand, the level of ester-linked ferulic acid (FA) was substantially decreased. The decrease in FA level was accounted neither by the increases in DFA levels nor by the release of FA from cell walls during the incubation. After the extraction of ester-linked ferulates, considerable ultraviolet absorption remained in the hemicellulosic and cellulose fractions, which was increased by the treatment with oxalate or hydrogen peroxide. Therefore, a part of FA esters may form tight linkages within cell wall architecture. These results suggest that cell wall OXO is capable of modifying the metabolism of ester-linked ferulates in cell walls of wheat shoots by promoting the peroxidase action via supply of hydrogen peroxide.

  18. Cell wall degrading enzymes in Trichoderma asperellum grown on wheat bran

    DEFF Research Database (Denmark)

    Bech, Lasse; Busk, Peter Kamp; Lange, Lene

    2015-01-01

    Trichoderma asperellum is a filamentous fungus that is able to produce and secrete a wide range of extracellular hydrolytic enzymes used for plant cell wall degradation. The Trichoderma genus has attracted considerable attention from the biorefinery industry due to the production of cell wall...... degrading enzymes and strong secretion ability of this genus. Here we report extensive transcriptome analysis of plant cell wall degrading enzymes in T. asperellum. The production of cell wall degrading enzymes by T. asperellum was tested on a range of cellulosic materials under various conditions. When T...... the theory that the glycoside hydrolases have evolved from a common ancestor, followed by a specialization in which saprotrophic fungi such as T. reesei and T. longibrachiatum lost a significant number of genes including several glycoside hydrolases....

  19. Microanalysis of Plant Cell Wall Polysaccharides

    NARCIS (Netherlands)

    Obel, N.; Erben, V.; Schwarz, T.; Kühnel, S.; Fodor, A.; Pauly, M.

    2009-01-01

    Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the s

  20. Cell Wall Diversity in Forage Maize

    NARCIS (Netherlands)

    Torres, A.F.; Noordam-Boot, C.M.M.; Dolstra, Oene; Weijde, van der Tim; Combes, Eliette; Dufour, Philippe; Vlaswinkel, Louis; Visser, R.G.F.; Trindade, L.M.

    2015-01-01

    Genetic studies are ideal platforms for assessing the extent of genetic diversity, inferring the genetic architecture, and evaluating complex trait interrelations for cell wall compositional and bioconversion traits relevant to bioenergy applications. Through the characterization of a forage maiz

  1. Phenylalanine ammonia-lyase and cell wall peroxidase are cooperatively involved in the extensive formation of ferulate network in cell walls of developing rice shoots.

    Science.gov (United States)

    Wakabayashi, Kazuyuki; Soga, Kouichi; Hoson, Takayuki

    2012-02-15

    The relationship between the formation of cell wall-bound ferulic acid (FA) and diferulic acid (DFA) and the change in activities of phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) was studied in rice shoots. The length and the fresh mass of shoots increased during the growth period from day 4 to 6, while coleoptiles ceased elongation growth on day 5. The amounts of FA and DFA isomers as well as cell wall polysaccharides continued to increase during the whole period. The activities of PAL and CW-PRX greatly increased in the same manner during the period. There were close correlations between the PAL activity and ferulate content or between the CW-PRX activity and DFA content. The expression levels of investigated genes for PAL and putative CW-PRX showed good accordance with the activities of these enzymes. These results suggest that increases in PAL and CW-PRX activities are cooperatively involved in the formation of ferulate network in cell walls of rice shoots and that investigated genes may be, at least in part, associated with the enzyme activities. The substantial increase in such network probably causes the maturation of cell walls and thus the cessation of elongation growth of coleoptiles.

  2. Participation of Candida albicans transcription factor RLM1 in cell wall biogenesis and virulence.

    Science.gov (United States)

    Delgado-Silva, Yolanda; Vaz, Catarina; Carvalho-Pereira, Joana; Carneiro, Catarina; Nogueira, Eugénia; Correia, Alexandra; Carreto, Laura; Silva, Sónia; Faustino, Augusto; Pais, Célia; Oliveira, Rui; Sampaio, Paula

    2014-01-01

    Candida albicans cell wall is important for growth and interaction with the environment. RLM1 is one of the putative transcription factors involved in the cell wall integrity pathway, which plays an important role in the maintenance of the cell wall integrity. In this work we investigated the involvement of RLM1 in the cell wall biogenesis and in virulence. Newly constructed C. albicans Δ/Δrlm1 mutants showed typical cell wall weakening phenotypes, such as hypersensitivity to Congo Red, Calcofluor White, and caspofungin (phenotype reverted in the presence of sorbitol), confirming the involvement of RLM1 in the cell wall integrity. Additionally, the cell wall of C. albicans Δ/Δrlm1 showed a significant increase in chitin (213%) and reduction in mannans (60%), in comparison with the wild-type, results that are consistent with cell wall remodelling. Microarray analysis in the absence of any stress showed that deletion of RLM1 in C. albicans significantly down-regulated genes involved in carbohydrate catabolism such as DAK2, GLK4, NHT1 and TPS1, up-regulated genes involved in the utilization of alternative carbon sources, like AGP2, SOU1, SAP6, CIT1 or GAL4, and genes involved in cell adhesion like ECE1, ALS1, ALS3, HWP1 or RBT1. In agreement with the microarray results adhesion assays showed an increased amount of adhering cells and total biomass in the mutant strain, in comparison with the wild-type. C. albicans mutant Δ/Δrlm1 strain was also found to be less virulent than the wild-type and complemented strains in the murine model of disseminated candidiasis. Overall, we showed that in the absence of RLM1 the modifications in the cell wall composition alter yeast interaction with the environment, with consequences in adhesion ability and virulence. The gene expression findings suggest that this gene participates in the cell wall biogenesis, with the mutant rearranging its metabolic pathways to allow the use of alternative carbon sources.

  3. Participation of Candida albicans transcription factor RLM1 in cell wall biogenesis and virulence.

    Directory of Open Access Journals (Sweden)

    Yolanda Delgado-Silva

    Full Text Available Candida albicans cell wall is important for growth and interaction with the environment. RLM1 is one of the putative transcription factors involved in the cell wall integrity pathway, which plays an important role in the maintenance of the cell wall integrity. In this work we investigated the involvement of RLM1 in the cell wall biogenesis and in virulence. Newly constructed C. albicans Δ/Δrlm1 mutants showed typical cell wall weakening phenotypes, such as hypersensitivity to Congo Red, Calcofluor White, and caspofungin (phenotype reverted in the presence of sorbitol, confirming the involvement of RLM1 in the cell wall integrity. Additionally, the cell wall of C. albicans Δ/Δrlm1 showed a significant increase in chitin (213% and reduction in mannans (60%, in comparison with the wild-type, results that are consistent with cell wall remodelling. Microarray analysis in the absence of any stress showed that deletion of RLM1 in C. albicans significantly down-regulated genes involved in carbohydrate catabolism such as DAK2, GLK4, NHT1 and TPS1, up-regulated genes involved in the utilization of alternative carbon sources, like AGP2, SOU1, SAP6, CIT1 or GAL4, and genes involved in cell adhesion like ECE1, ALS1, ALS3, HWP1 or RBT1. In agreement with the microarray results adhesion assays showed an increased amount of adhering cells and total biomass in the mutant strain, in comparison with the wild-type. C. albicans mutant Δ/Δrlm1 strain was also found to be less virulent than the wild-type and complemented strains in the murine model of disseminated candidiasis. Overall, we showed that in the absence of RLM1 the modifications in the cell wall composition alter yeast interaction with the environment, with consequences in adhesion ability and virulence. The gene expression findings suggest that this gene participates in the cell wall biogenesis, with the mutant rearranging its metabolic pathways to allow the use of alternative carbon sources.

  4. Suppression of Hydroxycinnamate Network Formation in Cell Walls of Rice Shoots Grown under Microgravity Conditions in Space.

    Science.gov (United States)

    Wakabayashi, Kazuyuki; Soga, Kouichi; Hoson, Takayuki; Kotake, Toshihisa; Yamazaki, Takashi; Higashibata, Akira; Ishioka, Noriaki; Shimazu, Toru; Fukui, Keiji; Osada, Ikuko; Kasahara, Haruo; Kamada, Motoshi

    2015-01-01

    Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions.

  5. Suppression of Hydroxycinnamate Network Formation in Cell Walls of Rice Shoots Grown under Microgravity Conditions in Space.

    Directory of Open Access Journals (Sweden)

    Kazuyuki Wakabayashi

    Full Text Available Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA and p-coumaric acid, but it suppressed increases in diferulic acid (DFA isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL and cell wall-bound peroxidase (CW-PRX in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions.

  6. Cell wall proteins: a new insight through proteomics.

    Science.gov (United States)

    Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Pont-Lezica, Rafael F

    2006-01-01

    Cell wall proteins are essential constituents of plant cell walls; they are involved in modifications of cell wall components, wall structure, signaling and interactions with plasma membrane proteins at the cell surface. The application of proteomic approaches to the cell wall compartment raises important questions: are there technical problems specific to cell wall proteomics? What kinds of proteins can be found in Arabidopsis walls? Are some of them unexpected? What sort of post-translational modifications have been characterized in cell wall proteins to date? The purpose of this review is to discuss the experimental results obtained to date using proteomics, as well as some of the new questions challenging future research.

  7. Secretion of invertase in mitotic yeast cells.

    OpenAIRE

    Makarow, M

    1988-01-01

    In mammalian cells intracellular transport is inhibited during mitosis. Here we show that in the yeast Saccharomyces cerevisiae secretion continues uninterrupted during mitosis. S. cerevisiae cells were arrested in mitosis by treating wild-type cells with the microtubule-inhibitor nocodazole, or by incubating a temperature-sensitive cell division cycle mutant (cdc16) at the restrictive temperature. Secretion of invertase into the periplasmic space was equally efficient in mitotic and in unsyn...

  8. Water deficit modulates gene expression in growing zones of soybean seedlings. Analysis of differentially expressed cDNAs, a new beta-tubulin gene, and expression of genes encoding cell wall proteins.

    Science.gov (United States)

    Creelman, R A; Mullet, J E

    1991-10-01

    Transfer of soybean seedlings to low-water-potential vermiculite (psi w = -0.3 MPa) results in a reversible decrease in hypocotyl growth and modulation of several polysomal mRNAs (Plant Physiol 92: 205-214). We report here the isolation of two cDNA clones (pGE16 and pGE95) which correspond to genes whose mRNA levels are increased, and one cDNA clone (pGE23) which corresponds to a gene whose mRNA level is decreased in the hypocotyl zone of cell elongation by water deficit. In well-watered seedlings mRNAs hybridizing to pGE16 and pGE95 are most abundant in mature regions of the seedling, but in water-deficient seedlings mRNA levels are reduced in mature regions and enhanced in elongating regions. RNA corresponding to soybean proline-rich protein 1 (sbPRP1) shows a similar tissue distribution and response to water deficit. In contrast, in well-watered seedlings, the gene corresponding to pGE23 was highly expressed in the hypocotyl and root growing zones. Transfer of seedlings to low-water-potential vermiculite caused a rapid decrease in mRNA hybridizing to pGE23. Sequence analysis revealed that pGE23 has high homology with beta-tubulin. Water deficit also reduced the level of mRNA hybridizing to JCW1, an auxin-modulated gene, although with different kinetics. Furthermore, mRNA encoding actin, glycine-rich proteins (GRPs), and hydroxyproline-rich glycoproteins (HRGPs) were down-regulated in the hypocotyl zone of elongation of seedlings exposed to water deficit. No effect of water deficit was observed on the expression of chalcone synthase. Decreased expression of beta-tubulin, actin, JCW1, HRGP and GRP and increased expression of sbPRP1, pGE95 and pGE16 in the hypocotyl zone of cell elongation could participate in the reversible growth inhibition observed in water-deficient soybean seedlings.

  9. Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance.

    Science.gov (United States)

    Kalluri, Udaya C; Yin, Hengfu; Yang, Xiaohan; Davison, Brian H

    2014-12-01

    Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host that carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Immuno and Affinity Cytochemical Analysis of Cell Wall Composition in the Moss Physcomitrella patens.

    Science.gov (United States)

    Berry, Elizabeth A; Tran, Mai L; Dimos, Christos S; Budziszek, Michael J; Scavuzzo-Duggan, Tess R; Roberts, Alison W

    2016-01-01

    In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into several different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalactuonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants.

  11. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.

    Science.gov (United States)

    Wang, Yanting; Fan, Chunfen; Hu, Huizhen; Li, Ying; Sun, Dan; Wang, Youmei; Peng, Liangcai

    2016-01-01

    Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology.

  12. Immuno and affinity cytochemical analysis of cell wall composition in the moss Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Berry

    2016-03-01

    Full Text Available In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into several different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalacturonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogeneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants.

  13. Alfalfa stem tissues: Cell wall deposition, composition, and degradability

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.

    2002-01-01

    Declining cell wall degradability of alfalfa (Medicago sativa L.) stems with maturation limits the nutritional value of alfalfa for ruminants. This study characterized changes in cell wall concentration, composition, and degradability by rumen microbes resulting from alfalfa stem tissue proliferatio

  14. Alfalfa stem tissues: Cell wall deposition, composition, and degradability

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.

    2002-01-01

    Declining cell wall degradability of alfalfa (Medicago sativa L.) stems with maturation limits the nutritional value of alfalfa for ruminants. This study characterized changes in cell wall concentration, composition, and degradability by rumen microbes resulting from alfalfa stem tissue

  15. Alfalfa stem tissues: Cell wall deposition, composition, and degradability

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.

    2002-01-01

    Declining cell wall degradability of alfalfa (Medicago sativa L.) stems with maturation limits the nutritional value of alfalfa for ruminants. This study characterized changes in cell wall concentration, composition, and degradability by rumen microbes resulting from alfalfa stem tissue proliferatio

  16. Microanalysis of Plant Cell Wall Polysaccharides

    Institute of Scientific and Technical Information of China (English)

    Nicolai Obel; Veronika Erben; Tatjana Schwarz; Stefan Kühne; Andrea Fodor; Markus Pauly

    2009-01-01

    Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first iso-lating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apo-plastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.

  17. Detection of Cell Wall Chemical Variation in Zea Mays Mutants Using Near-Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Buyck, N.; Thomas, S.

    2001-01-01

    Corn stover is regarded as the prime candidate feedstock material for commercial biomass conversion in the United States. Variations in chemical composition of Zea mays cell walls can affect biomass conversion process yields and economics. Mutant lines were constructed by activating a Mu transposon system. The cell wall chemical composition of 48 mutant families was characterized using near-infrared (NIR) spectroscopy. NIR data were analyzed using a multivariate statistical analysis technique called Principal Component Analysis (PCA). PCA of the NIR data from 349 maize leaf samples reveals 57 individuals as outliers on one or more of six Principal Components (PCs) at the 95% confidence interval. Of these, 19 individuals from 16 families are outliers on either PC3 (9% of the variation) or PC6 (1% of the variation), the two PCs that contain information about cell wall polymers. Those individuals for which altered cell wall chemistry is confirmed with wet chemical analysis will then be subjected to fermentation analysis to determine whether or not biomass conversion process kinetics, yields and/or economics are significantly affected. Those mutants that provide indications for a decrease in process cost will be pursued further to identify the gene(s) responsible for the observed changes in cell wall composition and associated changes in process economics. These genes will eventually be incorporated into maize breeding programs directed at the development of a truly dual use crop.

  18. Regulation of Meristem Morphogenesis by Cell Wall Synthases in Arabidopsis.

    Science.gov (United States)

    Yang, Weibing; Schuster, Christoph; Beahan, Cherie T; Charoensawan, Varodom; Peaucelle, Alexis; Bacic, Antony; Doblin, Monika S; Wightman, Raymond; Meyerowitz, Elliot M

    2016-06-06

    The cell walls of the shoot apical meristem (SAM), containing the stem cell niche that gives rise to the above-ground tissues, are crucially involved in regulating differentiation. It is currently unknown how these walls are built and refined or their role, if any, in influencing meristem developmental dynamics. We have combined polysaccharide linkage analysis, immuno-labeling, and transcriptome profiling of the SAM to provide a spatiotemporal plan of the walls of this dynamic structure. We find that meristematic cells express only a core subset of 152 genes encoding cell wall glycosyltransferases (GTs). Systemic localization of all these GT mRNAs by in situ hybridization reveals members with either enrichment in or specificity to apical subdomains such as emerging flower primordia, and a large class with high expression in dividing cells. The highly localized and coordinated expression of GTs in the SAM suggests distinct wall properties of meristematic cells and specific differences between newly forming walls and their mature descendants. Functional analysis demonstrates that a subset of CSLD genes is essential for proper meristem maintenance, confirming the key role of walls in developmental pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fermentation of the endosperm cell walls of monocotyledon and dicotyledon plant species: The relationship between cell wall characteristics and fermentability

    NARCIS (Netherlands)

    Laar, van H.; Tamminga, S.; Williams, B.A.; Verstegen, M.W.A.

    2000-01-01

    Cell walls from the endosperm of four monocotyledons (maize, wheat, rye, and rice) and four dicotyledons (soya bean, lupin, faba bean, and pea) seeds were studied to relate cell wall composition and structure with fermentation characteristics. Cell wall material was isolated from the endosperm of

  20. Fermentation of the endosperm cell walls of monocotyledon and dicotyledon plant species: The relationship between cell wall characteristics and fermentability

    NARCIS (Netherlands)

    Laar, van H.; Tamminga, S.; Williams, B.A.; Verstegen, M.W.A.

    2000-01-01

    Cell walls from the endosperm of four monocotyledons (maize, wheat, rye, and rice) and four dicotyledons (soya bean, lupin, faba bean, and pea) seeds were studied to relate cell wall composition and structure with fermentation characteristics. Cell wall material was isolated from the endosperm of th

  1. Invertase immobilization onto radiation-induced graft copolymerized polyethylene pellets

    Science.gov (United States)

    de Queiroz, Alvaro Antonio Alencar; Vitolo, Michele; de Oliveira, Rômulo Cesar; Higa, Olga Zazuco

    1996-06-01

    The graft copolymer poly(ethylene-g-acrylic acid) (LDPE-g-AA) was prepared by radiation-induced graft copolymerization of acrylic acid onto low density polyethylene (LDPE) pellets, and characterized by infrared photoacoustic spectroscopy and scanning electron microscopy (SEM). The presence of the grafted poly(acrylic acid) (PAA) was established. Invertase was immobilized onto the graft polymer and the thermodynamic parameters of the soluble and immobilized enzyme were determined. The Michaelis constant, Km, and the maximum reaction velocity, Vmax, were determined for the free and the immobilized invertase. The Michaelis constant, Km was larger for the immobilized invertase than for the free enzyme, whereas Vmax was smaller for the immobilized invertase. The thermal stability of the immobilized invertase was higher than that of the free enzyme.

  2. Cell wall integrity signaling and innate immunity in plants.

    Science.gov (United States)

    Nühse, Thomas S

    2012-01-01

    All plant pathogens and parasites have had to develop strategies to overcome cell walls in order to access the host's cytoplasm. As a mechanically strong, multi-layered composite exoskeleton, the cell wall not only enables plants to grow tall but also protects them from such attacks. Many plant pathogens employ an arsenal of cell wall degrading enzymes, and it has long been thought that the detection of breaches in wall integrity contributes to the induction of defense. Cell wall fragments are danger-associated molecular patterns or DAMPs that can trigger defense signaling pathways comparable to microbial signals, but the picture is likely to be more complicated. A wide range of defects in cell wall biosynthesis leads to enhanced pathogen resistance. We are beginning to understand the essential role of cell wall integrity surveillance for plant growth, and the connection of processes like cell expansion, plasma membrane-cell wall contact and secondary wall biosynthesis with plant immunity is emerging.

  3. We’re good to grow: Dynamic integration of cell wall architecture with the machinery of growth

    Directory of Open Access Journals (Sweden)

    Matheus R Benatti

    2012-08-01

    Full Text Available Despite differences in cell wall composition between the type I cell walls of dicots and most monocots and the type II walls of commelinid monocots, all flowering plants respond to the same classes of growth regulators in the same tissue-specific way and exhibit the same growth physics. Substantial progress has been made in defining gene families and identifying mutants in cell wall-related genes, but our understanding of the biochemical basis of wall extensibility during growth is still rudimentary. In this review, we highlight insights into the physiological control of cell expansion emerging from genetic functional analyses, mostly in Arabidopsis and other dicots, and a few examples of genes of potential orthologous function in grass species. We discuss examples of cell wall architectural features that impact growth independent of composition, and progress in identifying proteins involved in transduction of growth signals and integrating their outputs in the molecular machinery of wall expansion.

  4. Cell Wall Assembly in Fucus Zygotes

    Science.gov (United States)

    Quatrano, Ralph S.; Stevens, Patricia T.

    1976-01-01

    Fertilization triggers the assembly of a cell wall around the egg cell of three brown algae, Fucus vesiculosus, F. distichus, and F. inflatus. New polysaccharide polymers are continually being added to the cell wall during the first 24 hours of synchronous embryo development. This wall assembly involves the extracellular deposition of fibrillar material by cytoplasmic vesicles fusing with the plasma membrane. One hour after fertilization a fragmented wall can be isolated free of cytoplasm and contains equal amounts of cellulose and alginic acid with no fucose-containing polymers (fucans) present. Birefringence of the wall caused by oriented cellulose microfibrils is not detected in all zygotes until 4 hours, at which time intact cell walls can be isolated that retain the shape of the zygote. These walls have a relatively low ratio of fucose to xylose and little sulfate when compared to walls from older embryos. When extracts of walls from 4-hour zygotes are subjected to cellulose acetate electrophoresis at pH 7, a single fucan (F1) can be detected. By 12 hours, purified cell walls are composed of fucans containing a relatively high ratio of fucose to xylose and high levels of sulfate, and contain a second fucan (F2) which is electrophoretically distinct from F1. F2 appears to be deposited in only a localized region of the wall, that which elongates to form the rhizoid cell. Throughout wall assembly, the polyuronide block co-polymer alginic acid did not significantly vary its mannuronic (M) to guluronic (G) acid ratio (0.33-0.55) or its block distribution (MG, 54%; GG, 30%; MM, 16%). From 6 to 24 hours of embryo development, the proportion of the major polysaccharide components found in purified walls is stable. Alginic acid is the major polymer and comprises about 60% of the total wall, while cellulose and the fucans each make-up about 20% of the remainder. During the extracellular assembly of this wall, the intracellular levels of the storage glucan laminaran

  5. Molecular regulation of plant cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  6. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Cécile eALBENNE

    2013-05-01

    Full Text Available Plant cell wall proteins (CWPs progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cells walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last ten years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii the main protein families identified and the still missing peptides; (iii the persistent issue of the non-canonical CWPs; (iv the present challenges to overcome technological bottlenecks; and (v the perspectives beyond cell wall proteomics to understand CWP functions.

  7. Plant cell wall proteomics: the leadership of Arabidopsis thaliana.

    Science.gov (United States)

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions.

  8. Plant and algal cell walls: diversity and functionality.

    Science.gov (United States)

    Popper, Zoë A; Ralet, Marie-Christine; Domozych, David S

    2014-10-01

    Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore,wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes ( plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every aspect of plant

  9. Interaction and modulation of two antagonistic cell wall enzymes of mycobacteria.

    Directory of Open Access Journals (Sweden)

    Erik C Hett

    Full Text Available Bacterial cell growth and division require coordinated cell wall hydrolysis and synthesis, allowing for the removal and expansion of cell wall material. Without proper coordination, unchecked hydrolysis can result in cell lysis. How these opposing activities are simultaneously regulated is poorly understood. In Mycobacterium tuberculosis, the resuscitation-promoting factor B (RpfB, a lytic transglycosylase, interacts and synergizes with Rpf-interacting protein A (RipA, an endopeptidase, to hydrolyze peptidoglycan. However, it remains unclear what governs this synergy and how it is coordinated with cell wall synthesis. Here we identify the bifunctional peptidoglycan-synthesizing enzyme, penicillin binding protein 1 (PBP1, as a RipA-interacting protein. PBP1, like RipA, localizes both at the poles and septa of dividing cells. Depletion of the ponA1 gene, encoding PBP1 in M. smegmatis, results in a severe growth defect and abnormally shaped cells, indicating that PBP1 is necessary for viability and cell wall stability. Finally, PBP1 inhibits the synergistic hydrolysis of peptidoglycan by the RipA-RpfB complex in vitro. These data reveal a post-translational mechanism for regulating cell wall hydrolysis and synthesis through protein-protein interactions between enzymes with antagonistic functions.

  10. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens.

    Science.gov (United States)

    Reem, Nathan T; Pogorelko, Gennady; Lionetti, Vincenzo; Chambers, Lauran; Held, Michael A; Bellincampi, Daniela; Zabotina, Olga A

    2016-01-01

    The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity (CWI) and function remains unclear. Modifications of cell wall composition can induce plant responses known as CWI control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, decreased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant CWI, which contributes to plant resistance to necrotrophic pathogens.

  11. Recent advances on the posttranslational modifications of EXTs and their roles in plant cell walls

    DEFF Research Database (Denmark)

    Velasquez, Melina; Salter, Juan Salgado; Dorosz, Javier Gloazzo;

    2012-01-01

    The genetic set up and the enzymes that define the O-glycosylation sites and transfer the activated sugars to cell wall glycoprotein Extensins (EXTs) have remained unknown for a long time. We are now beginning to see the emerging components of the molecular machinery that assembles these complex O......-glycoproteins on the plant cell wall. Genes conferring the posttranslational modifications, i.e., proline hydroxylation and subsequent O-glycosylation, of the EXTs have been recently identified. In this review we summarize the enzymes that define the O-glycosylation sites on the O-glycoproteins, i.e., the prolyl 4...

  12. Pea border cell maturation and release involve complex cell wall structural dynamics

    DEFF Research Database (Denmark)

    Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise

    2017-01-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases though, plant cells are programmed to detach and root cap-derived border cells are examples of this....... Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we...... undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immuno-carbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy (FT-IR), quantitative RT-PCR of cell wall biosynthetic genes, analysis...

  13. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi.

    Science.gov (United States)

    Kubicek, Christian P; Starr, Trevor L; Glass, N Louise

    2014-01-01

    Approximately a tenth of all described fungal species can cause diseases in plants. A common feature of this process is the necessity to pass through the plant cell wall, an important barrier against pathogen attack. To this end, fungi possess a diverse array of secreted enzymes to depolymerize the main structural polysaccharide components of the plant cell wall, i.e., cellulose, hemicellulose, and pectin. Recent advances in genomic and systems-level studies have begun to unravel this diversity and have pinpointed cell wall-degrading enzyme (CWDE) families that are specifically present or enhanced in plant-pathogenic fungi. In this review, we discuss differences between the CWDE arsenal of plant-pathogenic and non-plant-pathogenic fungi, highlight the importance of individual enzyme families for pathogenesis, illustrate the secretory pathway that transports CWDEs out of the fungal cell, and report the transcriptional regulation of expression of CWDE genes in both saprophytic and phytopathogenic fungi.

  14. Enzymology and Molecular Biology of Cell Wall Biosynthesis. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Peter M. Ray

    2000-04-01

    The following aspects of enzymology of cell wall synthesis were pursued under this cited grant: (1) Isolation of plasma membrane-localized glucan synthase II (GS-II) of pea; (2) Cloning of genes for possible plant GS-II components; (3) Golgi glucan synthase-I (GS-I); and (4) Golgi reversibly glycosylated protein 1 (RGP1).

  15. Advanced technologies for plant cell wall evolution and diversity

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik

    Plant cell walls consist of polysaccharides, glycoproteins and phenolic polymers interlinked together in a highly complex network. The detailed analysis of cell walls is challenging because of their inherent complexity and heterogeneity. Also, complex carbohydrates, unlike proteins and nucleotides...... probes (monoclonal antibodies mAbs and carbohydrate binding modules, CBMs) to rapidly profile polysaccharides across a sample set. During my PhD I have further developed the CoMPP technique and used it for cell wall analysis within the context of a variety of applied and fundamental projects. The data...... produced has provided new insight into cell wall evolution and biosynthesis and has contributed to the commercial development of cell wall materials. A major focus of the work has been the wide scale sampling of cell wall diversity across the plant kingdom, from unicellular algae to highly evolved...

  16. Arrangement of peptidoglycan in the cell wall of Staphylococcus spp.

    OpenAIRE

    Amako, K.; Umeda, A; Murata, K

    1982-01-01

    The arrangement of peptidoglycan in the cell wall of Staphylococcus was observed with the newly developed freeze-fracture technique, using n-octanol instead of water as the freezing medium. The replica of the trichloroacetic acid-extracted cell wall (TCA-wall) showed two areas. One of them has a concentric circular structure, a characteristic surface structure of the staphylococcal cell wall, and the other showed an irregular and rough surface. The chemical analysis of the wall revealed that ...

  17. Advanced technologies for plant cell wall evolution and diversity

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik

    Plant cell walls consist of polysaccharides, glycoproteins and phenolic polymers interlinked together in a highly complex network. The detailed analysis of cell walls is challenging because of their inherent complexity and heterogeneity. Also, complex carbohydrates, unlike proteins and nucleotide...... angiosperms. This analysis has enabled cell wall diversity to be placed in a phylogenetic context, and, when integrated with transcriptomic and genomic analysis has contributed to our understanding of important aspects of plant evolution....

  18. Cell Wall Heterogeneity in Root Development of Arabidopsis

    Science.gov (United States)

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  19. Cell wall degradation in the autolysis of filamentous fungi.

    Science.gov (United States)

    Perez-Leblic, M I; Reyes, F; Martinez, M J; Lahoz, R

    1982-12-27

    A systematic study on autolysis of the cell walls of fungi has been made on Neurospora crassa, Botrytis cinerea, Polystictus versicolor, Aspergillus nidulans, Schizophyllum commune, Aspergillus niger, and Mucor mucedo. During autolysis each fungus produces the necessary lytic enzymes for its autodegradation. From autolyzed cultures of each fungus enzymatic precipitates were obtained. The degree of lysis of the cell walls, obtained from non-autolyzed mycelia, was studied by incubating these cell walls with and without a supply of their own lytic enzymes. The degree of lysis increased with the incubation time and generally was higher with a supply of lytic enzymes. Cell walls from mycelia of different ages were obtained. A higher degree of lysis was always found, in young cell walls than in older cell walls, when exogenous lytic enzymes were present. In all the fungi studied, there is lysis of the cell walls during autolysis. This is confirmed by the change of the cell wall structure as well as by the degree of lysis reached by the cell wall and the release of substances, principally glucose and N-acetylglucosamine in the medium.

  20. Beyond growth: novel functions for bacterial cell wall hydrolases.

    Science.gov (United States)

    Wyckoff, Timna J; Taylor, Jennifer A; Salama, Nina R

    2012-11-01

    The peptidoglycan cell wall maintains turgor pressure and cell shape of most bacteria. Cell wall hydrolases are essential, together with synthases, for growth and daughter cell separation. Recent work in diverse organisms has uncovered new cell wall hydrolases that act autonomously or on neighboring cells to modulate invasion of prey cells, cell shape, innate immune detection, intercellular communication, and competitor lysis. The hydrolases involved in these processes catalyze the cleavage of bonds throughout the sugar and peptide moities of peptidoglycan. Phenotypes associated with these diverse hydrolases reveal new functions of the bacterial cell wall beyond growth and division.

  1. Control of the C. albicans cell wall damage response by transcriptional regulator Cas5.

    Directory of Open Access Journals (Sweden)

    Vincent M Bruno

    2006-03-01

    Full Text Available The fungal cell wall is vital for growth, development, and interaction of cells with their environment. The response to cell wall damage is well understood from studies in the budding yeast Saccharomyces cerevisiae, where numerous cell wall integrity (CWI genes are activated by transcription factor ScRlm1. Prior evidence suggests the hypothesis that both response and regulation may be conserved in the major fungal pathogen Candida albicans. We have tested this hypothesis by using a new C. albicans genetic resource: we have screened mutants defective in putative transcription factor genes for sensitivity to the cell wall biosynthesis inhibitor caspofungin. We find that the zinc finger protein CaCas5, which lacks a unique ortholog in S. cerevisiae, governs expression of many CWI genes. CaRlm1 has a modest role in this response. The transcriptional coactivator CaAda2 is also required for expression of many CaCas5-dependent genes, as expected if CaCas5 recruits CaAda2 to activate target gene transcription. Many caspofungin-induced C. albicans genes specify endoplasmic reticulum and secretion functions. Such genes are not induced in S. cerevisiae, but promote its growth in caspofungin. We have used a new resource to identify a key C. albicans transcriptional regulator of CWI genes and antifungal sensitivity. Our gene expression findings indicate that both divergent and conserved response genes may have significant functional roles. Our strategy may be broadly useful for identification of pathogen-specific regulatory pathways and critical response genes.

  2. Exploring the use of cDNA-AFLP with leaf protoplasts as a tool to study primary cell wall biosynthesis in potato

    NARCIS (Netherlands)

    Oomen, R.J.F.J.; Bergervoet-van Deelen, J.E.M.; Bachem, C.W.B.; Visser, R.G.F.; Vincken, J.P.

    2003-01-01

    An RNA fingerprinting study of potato leaf protoplasts was performed to explore its suitability for identifying candidate genes involved in primary cell wall biosynthesis. Microscopic analysis, using calcofluor white to stain cellulose, showed that the protoplasts generated a new cell wall in the fi

  3. Grass Cell Walls: A Story of Cross-Linking

    Science.gov (United States)

    Hatfield, Ronald D.; Rancour, David M.; Marita, Jane M.

    2017-01-01

    Cell wall matrices are complex composites mainly of polysaccharides, phenolics (monomers and polymers), and protein. We are beginning to understand the synthesis of these major wall components individually, but still have a poor understanding of how cell walls are assembled into complex matrices. Valuable insight has been gained by examining intact components to understand the individual elements that make up plant cell walls. Grasses are a prominent group within the plant kingdom, not only for their important roles in global agriculture, but also for the complexity of their cell walls. Ferulate incorporation into grass cell wall matrices (C3 and C4 types) leads to a cross-linked matrix that plays a prominent role in the structure and utilization of grass biomass compared to dicot species. Incorporation of p-coumarates as part of the lignin structure also adds to the complexity of grass cell walls. Feruoylation results in a wall with individual hemicellulosic polysaccharides (arabinoxylans) covalently linked to each other and to lignin. Evidence strongly suggests that ferulates not only cross-link arabinoxylans, but may be important factors in lignification of the cell wall. Therefore, the distribution of ferulates on arabinoxylans could provide a means of structuring regions of the matrix with the incorporation of lignin and have a significant impact upon localized cell wall organization. The role of other phenolics in cell wall formation such as p-coumarates (which can have concentrations higher than ferulates) remains unknown. It is possible that p-coumarates assist in the formation of lignin, especially syringyl rich lignin. The uniqueness of the grass cell wall compared to dicot sepcies may not be so much in the gross composition of the wall, but how the distinctive individual components are organized into a functional wall matrix. These features are discussed and working models are provided to illustrate how changing the organization of feruoylation and p

  4. Regulation of plant cells, cell walls and development by mechanical signals

    Energy Technology Data Exchange (ETDEWEB)

    Meyerowitz, Elliot M. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2016-06-14

    The overall goal of the revised scope of work for the final year of funding was to characterize cell wall biosynthesis in developing cotyledons and in the shoot apical meristem of Arabidopsis thaliana, as a way of learning about developmental control of cell wall biosynthesis in plants, and interactions between cell wall biosynthesis and the microtubule cytoskeleton. The proposed work had two parts – to look at the effect of mutation in the SPIRAL2 gene on microtubule organization and reorganization, and to thoroughly characterize the glycosyltransferase genes expressed in shoot apical meristems by RNA-seq experiments, by in situ hybridization of the RNAs expressed in the meristem, and by antibody staining of the products of the glycosyltransferases in meristems. Both parts were completed; the spiral2 mutant was found to speed microtubule reorientation after ablation of adjacent cells, supporting our hypothesis that reorganization correlates with microtubule severing, the rate of which is increased by the mutation. The glycosyltransferase characterization was completed and published as Yang et al. (2016). Among the new things learned was that primary cell wall biosynthesis is strongly controlled both by cell type, and by stage of cell cycle, implying not only that different, even adjacent, cells can have different sugar linkages in their (nonshared) walls, but also that a surprisingly large proportion of glycosyltransferases is regulated in the cell cycle, and therefore that the cell cycle regulates wall maturation to a degree previously unrecognized.

  5. Characterising the cellulose synthase complexes of cell walls

    NARCIS (Netherlands)

    Mansoori Zangir, N.

    2012-01-01

    One of the characteristics of the plant kingdom is the presence of a structural cell wall. Cellulose is a major component in both the primary and secondary cell walls of plants. In higher plants cellulose is synthesized by so called rosette protein complexes with cellulose synthases (CESAs) as the c

  6. Hemicellulose biosynthesis and degradation in tobacco cell walls

    NARCIS (Netherlands)

    Compier, M.G.M.

    2005-01-01

    Natural fibres have a wide range of technological applications, such as in paper and textile industries. The basic properties and the quality of plant fibres are determined by the composition of the plant cell wall. Characteristic for fibres are thick secondary cell walls, which consist of cellulose

  7. Multidimensional solid-state NMR spectroscopy of plant cell walls.

    Science.gov (United States)

    Wang, Tuo; Phyo, Pyae; Hong, Mei

    2016-09-01

    Plant biomass has become an important source of bio-renewable energy in modern society. The molecular structure of plant cell walls is difficult to characterize by most atomic-resolution techniques due to the insoluble and disordered nature of the cell wall. Solid-state NMR (SSNMR) spectroscopy is uniquely suited for studying native hydrated plant cell walls at the molecular level with chemical resolution. Significant progress has been made in the last five years to elucidate the molecular structures and interactions of cellulose and matrix polysaccharides in plant cell walls. These studies have focused on primary cell walls of growing plants in both the dicotyledonous and grass families, as represented by the model plants Arabidopsis thaliana, Brachypodium distachyon, and Zea mays. To date, these SSNMR results have shown that 1) cellulose, hemicellulose, and pectins form a single network in the primary cell wall; 2) in dicot cell walls, the protein expansin targets the hemicellulose-enriched region of the cellulose microfibril for its wall-loosening function; and 3) primary wall cellulose has polymorphic structures that are distinct from the microbial cellulose structures. This article summarizes these key findings, and points out future directions of investigation to advance our fundamental understanding of plant cell wall structure and function.

  8. Hemicellulose biosynthesis and degradation in tobacco cell walls

    NARCIS (Netherlands)

    Compier, M.G.M.

    2005-01-01

    Natural fibres have a wide range of technological applications, such as in paper and textile industries. The basic properties and the quality of plant fibres are determined by the composition of the plant cell wall. Characteristic for fibres are thick secondary cell walls, which consist of cellulose

  9. Patterns of phenylpropanoids in non-inoculated and potato virus Y-inoculated leaves of transgenic tobacco plants expressing yeast-derived invertase.

    Science.gov (United States)

    Baumert, A; Mock, H P; Schmidt, J; Herbers, K; Sonnewald, U; Strack, D

    2001-03-01

    The patterns of secondary metabolites in leaves of yeast invertase-transgenic tobacco plants (Nicotiana tabacum L. cv. Samsun NN) were analyzed. Plants expressing cytosolic yeast-derived invertase (cytInv) or apoplastic (cell wall associated) yeast invertase (cwInv) showed a characteristic phytochemical phenotype compared to untransformed controls (wild-type plants). The level of phenylpropanoids decreased in the cytInv plants but increased in the cwInv plants, which showed an induced de novo synthesis of a caffeic acid amide, i.e. N-caffeoylputrescine. In addition, the level of the coumarin glucoside scopolin was markedly enhanced. Increased accumulation of scopolin in the cwInv plants is possibly correlated with the induction of defense reactions and the appearance of necrotic lesions similar to the hypersensitive response caused by avirulent pathogens. This is consistent with results from potato virus Y-infected plants. Whereas there was no additional increase in the coumarins in leaves following infection in cwInv plants, wild-type plants showed a slight increase and cytInc a marked increase.

  10. Small molecule probes for plant cell wall polysaccharide imaging

    Directory of Open Access Journals (Sweden)

    Ian eWallace

    2012-05-01

    Full Text Available Plant cell walls are composed of interlinked polymer networks consisting of cellulose, hemicelluloses, pectins, proteins, and lignin. The ordered deposition of these components is a dynamic process that critically affects the development and differentiation of plant cells. However, our understanding of cell wall synthesis and remodeling, as well as the diverse cell wall architectures that result from these processes, has been limited by a lack of suitable chemical probes that are compatible with live-cell imaging. In this review, we summarize the currently available molecular toolbox of probes for cell wall polysaccharide imaging in plants, with particular emphasis on recent advances in small molecule-based fluorescent probes. We also discuss the potential for further development of small molecule probes for the analysis of cell wall architecture and dynamics.

  11. Brassinosteroid Mediated Cell Wall Remodeling in Grasses under Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Xiaolan Rao

    2017-05-01

    Full Text Available Unlike animals, plants, being sessile, cannot escape from exposure to severe abiotic stresses such as extreme temperature and water deficit. The dynamic structure of plant cell wall enables them to undergo compensatory changes, as well as maintain physical strength, with changing environments. Plant hormones known as brassinosteroids (BRs play a key role in determining cell wall expansion during stress responses. Cell wall deposition differs between grasses (Poaceae and dicots. Grass species include many important food, fiber, and biofuel crops. In this article, we focus on recent advances in BR-regulated cell wall biosynthesis and remodeling in response to stresses, comparing our understanding of the mechanisms in grass species with those in the more studied dicots. A more comprehensive understanding of BR-mediated changes in cell wall integrity in grass species will benefit the development of genetic tools to improve crop productivity, fiber quality and plant biomass recalcitrance.

  12. Invertase and sucrose synthase activities in coffee plants sprayed with sucrose solution Atividade de invertases e sacarose sintase em plantas de cafeeiro pulverizadas com solução de sacarose

    Directory of Open Access Journals (Sweden)

    José Carlos da Silva

    2003-01-01

    Full Text Available One management practice of which the efficiency has not yet been scientifically tested is spraying coffee plants with diluted sucrose solutions as a source of carbon for the plant. This paper evaluates the effect of foliar spraying with sugar on the endogenous level of carbohydrates and on the activities of invertase and sucrose synthase in coffee (Coffea arabica L. seedlings with reduced (low and high (normal levels of carbon reserve. The concentrations used were 0.5 and 1.0% sucrose, and water as a control. The use of sucrose at 1.0% caused an increase in the concentration of total soluble sugars in depauperate plants, as well as increased the activity of the following enzymes: cell wall and vacuole acid invertase, neutral cytosol invertase and sucrose synthase. In plants with high level of carbon reserve, no increments in total soluble sugar levels or in enzymatic activity were observed. Regardless of treatments or plants physiological state, no differences in transpiration or stomatal conductance were observed, demonstrating the stomatal control of transpiration. Photosynthesis was stimulated with the use of 0.5 and 1.0 % sucrose only in depauperate plants. Coffee seedling spraying with sucrose is only efficient for depauperate plants, at the concentration of 1.0%.Uma prática cuja eficiência não foi ainda comprovada cientificamente, é a pulverização dos cafeeiros com solução diluída de sacarose, como fonte de carbono para as plantas. Este trabalho visou estudar o efeito da pulverização de açúcar via folha nos teores endógenos de carboidratos e na atividade das enzimas invertases e sacarose sintase em mudas de cafeeiros (Coffea arabica L. com baixo (baixo e alto (normal nível de reservas de carbono. As pulverizações ocorreram nas concentrações de 0,5 e 1% de sacarose utilizando-se água como testemunha. A aplicação de sacarose a 1% aumentou a concentração de açúcares solúveis totais (AST em plantas depauperadas, como

  13. [Hydroxyproline: Rich glycoproteins of the plant and cell wall

    Energy Technology Data Exchange (ETDEWEB)

    Varner, J.E.

    1993-01-01

    Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a number of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H[sub 2]O[sub 2] production reinforce the earlier ideas of others that H[sub 2]O[sub 2] is involved in normal lignification.

  14. A comparative genome analysis of PME and PMEI families reveals the evolution of pectin metabolism in plant cell walls.

    Science.gov (United States)

    Wang, Maojun; Yuan, Daojun; Gao, Wenhui; Li, Yang; Tan, Jiafu; Zhang, Xianlong

    2013-01-01

    Pectins are fundamental polysaccharides in the plant primary cell wall. Pectins are synthesized and secreted to cell walls as highly methyl-esterified polymers and then demethyl-esterified by pectin methylesterases (PMEs), which are spatially regulated by pectin methylesterase inhibitors (PMEIs). Although PME and PMEI genes are pivotal in plant cell wall formation, few studies have focused on the evolutionary patterns of the PME and PMEI gene families. In this study, the gene origin, evolution, and expression diversity of these two families were systematically analyzed using 11 representative species, including algae, bryophytes, lycophytes and flowering land plants. The results show that 1) for the two subfamilies (PME and proPME) of PME, the origin of the PME subfamily is consistent with the appearance of pectins in early charophyte cell walls, 2) Whole genome duplication (WGD) and tandem duplication contribute to the expansion of proPME and PMEI families in land plants, 3) Evidence of selection pressure shows that the proPME and PMEI families have rapidly evolved, particularly the PMEI family in vascular plants, and 4) Comparative expression profile analysis of the two families indicates that the eudicot Arabidopsis and monocot rice have different expression patterns. In addition, the gene structure and sequence analyses show that the origin of the PMEI domain may be derived from the neofunctionalization of the pro domain after WGD. This study will advance the evolutionary understanding of the PME and PMEI families and plant cell wall development.

  15. Pectic arabinan side chains are essential for pollen cell wall integrity during pollen development.

    Science.gov (United States)

    Cankar, Katarina; Kortstee, Anne; Toonen, Marcel A J; Wolters-Arts, Mieke; Houbein, Rudolf; Mariani, Celestina; Ulvskov, Peter; Jorgensen, Bodil; Schols, Henk A; Visser, Richard G F; Trindade, Luisa M

    2014-05-01

    Pectin is a complex polysaccharide and an integral part of the primary plant cell wall and middle lamella, contributing to cell wall mechanical strength and cell adhesion. To understand the structure-function relationships of pectin in the cell wall, a set of transgenic potato lines with altered pectin composition was analysed. The expression of genes encoding enzymes involved in pectin acetylation, degradation of the rhamnogalacturonan backbone and type and length of neutral side chains, arabinan and galactan in particular, has been altered. Upon crossing of different transgenic lines, some transgenes were not transmitted to the next generation when these lines were used as a pollen donor, suggesting male sterility. Viability of mature pollen was severely decreased in potato lines with reduced pectic arabinan, but not in lines with altered galactan side chains. Anthers and pollen of different developmental stages were microscopically examined to study the phenotype in more detail. Scanning electron microscopy of flowers showed collapsed pollen grains in mature anthers and in earlier stages cytoplasmic protrusions at the site of the of kin pore, eventually leading to bursting of the pollen grain and leaking of the cytoplasm. This phenomenon is only observed after the microspores are released and the tapetum starts to degenerate. Timing of the phenotype indicates a role for pectic arabinan side chains during remodelling of the cell wall when the pollen grain is maturing and dehydrating.

  16. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure.

    Science.gov (United States)

    Coleman, Heather D; Yan, Jimmy; Mansfield, Shawn D

    2009-08-04

    Overexpression of the Gossypium hirsutum sucrose synthase (SuSy) gene under the control of 2 promoters was examined in hybrid poplar (Populus alba x grandidentata). Analysis of RNA transcript abundance, enzyme activity, cell wall composition, and soluble carbohydrates revealed significant changes in the transgenic lines. All lines showed significantly increased SuSy enzyme activity in developing xylem. This activity manifested in altered secondary cell wall cellulose content per dry weight in all lines, with increases of 2% to 6% over control levels, without influencing plant growth. The elevated concentration of cellulose was associated with an increase in cell wall crystallinity but did not alter secondary wall microfibril angle. This finding suggests that the observed increase in crystallinity is a function of altered carbon partitioning to cellulose biosynthesis rather than the result of tension wood formation. Furthermore, the augmented deposition of cellulose in the transgenic lines resulted in thicker xylem secondary cell wall and consequently improved wood density. These findings clearly implicate SuSy as a key regulator of sink strength in poplar trees and demonstrate the tight association of SuSy with cellulose synthesis and secondary wall formation.

  17. Immersion Refractometry of Isolated Bacterial Cell Walls

    Science.gov (United States)

    Marquis, Robert E.

    1973-01-01

    Immersion-refractometric and light-scattering measurements were adapted to determinations of average refractive indices and physical compactness of isolated bacterial cell walls. The structures were immersed in solutions containing various concentrations of polymer molecules that cannot penetrate into wall pores, and then an estimate was made of the polymer concentration or the refractive index of the polymer solution in which light scattering was reduced to zero. Because each wall preparation was heterogeneous, the refractive index of the medium for zero light scattering had to be estimated by extrapolation. Refractive indices for walls suspended in bovine serum albumin solutions ranged from 1.348 for walls of the rod form of Arthrobacter crystallopoietes to 1.382 for walls of the teichoic acid deficient, 52A5 strain of Staphylococcus aureus. These indices were used to calculate approximate values for solids content per milliliter, and the calculated values agreed closely with those estimated from a knowledge of dextran-impermeable volumes per gram, dry weight, of the walls. When large molecules such as dextrans or serum albumin were used for immersion refractometry, the refractive indices obtained were for entire walls, including both wall polymers and wall water. When smaller molecules that can penetrate wall pores to various extents were used with Micrococcus lysodeikticus walls, the average, apparent refractive index of the structures increased as the molecular size of probing molecules was decreased. It was possible to obtain an estimate of 1.45 to 1.46 for the refractive index of wall polymers, predominantly peptidoglycans in this case, by extrapolating the curve for refractive index versus molecular radius to a value of 0.2 nm, the approximate radius of a water molecule. This relatively low value for polymer refractive index was interpreted as evidence in favor of the amorphous, elastic model of peptidoglycan structure and against the crystalline, rigid

  18. Evaluation of the significance of cell wall polymers in flax infected with a pathogenic strain of Fusarium oxysporum.

    Science.gov (United States)

    Wojtasik, Wioleta; Kulma, Anna; Dymińska, Lucyna; Hanuza, Jerzy; Czemplik, Magdalena; Szopa, Jan

    2016-03-22

    Fusarium oxysporum infection leads to Fusarium-derived wilt, which is responsible for the greatest losses in flax (Linum usitatissimum) crop yield. Plants infected by Fusarium oxysporum show severe symptoms of dehydration due to the growth of the fungus in vascular tissues. As the disease develops, vascular browning and leaf yellowing can be observed. In the case of more virulent strains, plants die. The pathogen's attack starts with secretion of enzymes degrading the host cell wall. The main aim of the study was to evaluate the role of the cell wall polymers in the flax plant response to the infection in order to better understand the process of resistance and develop new ways to protect plants against infection. For this purpose, the expression of genes involved in cell wall polymer metabolism and corresponding polymer levels were investigated in flax seedlings after incubation with Fusarium oxysporum. This analysis was facilitated by selecting two groups of genes responding differently to the infection. The first group comprised genes strongly affected by the infection and activated later (phenylalanine ammonia lyase and glucosyltransferase). The second group comprised genes which are slightly affected (up to five times) and their expression vary as the infection progresses. Fusarium oxysporum infection did not affect the contents of cell wall polymers, but changed their structure. The results suggest that the role of the cell wall polymers in the plant response to Fusarium oxysporum infection is manifested through changes in expression of their genes and rearrangement of the cell wall polymers. Our studies provided new information about the role of cellulose and hemicelluloses in the infection process, the change of their structure and the expression of genes participating in their metabolism during the pathogen infection. We also confirmed the role of pectin and lignin in this process, indicating the major changes at the mRNA level of lignin metabolism genes

  19. Novel Enzymes for Targeted Hydrolysis of Algal Cell Walls

    DEFF Research Database (Denmark)

    Schultz-Johansen, Mikkel

    are incapable of breaking the complex polysaccharides found in seaweed cell walls. Therefore, new enzymes are needed for degradation of seaweed biomass. Bacteria that colonize the surfaces of seaweed secrete enzymes that allow them to degrade and utilize seaweed polysaccharides as energy. In addition, sea...... urchins are known algae-eaters and may therefore be inhabited by endosymbiotic bacteria that help in degradation of algal cell wall constituents. This thesis work investigated bacteria associated with seaweed, seagrass and sea urchins for their enzymatic activities against algal cell wall polysaccharides...

  20. Evolution and diversity of green plant cell walls.

    Science.gov (United States)

    Popper, Zoë A

    2008-06-01

    Plant cells are surrounded by a dynamic cell wall that performs many essential biological roles, including regulation of cell expansion, the control of tissue cohesion, ion-exchange and defence against microbes. Recent evidence shows that the suite of polysaccharides and wall proteins from which the plant cell wall is composed shows variation between monophyletic plant taxa. This is likely to have been generated during the evolution of plant groups in response to environmental stress. Understanding the natural variation and diversity that exists between cell walls from different taxa is key to facilitating their future exploitation and manipulation, for example by increasing lignocellulosic content or reducing its recalcitrance for use in biofuel generation.

  1. Cell wall ultrastructure of flocculent and non-flocculent Schizosaccharomyces pombe strains. Effect of cell wall hydrolysing enzymes on flocculation and cell wall ultastructure.

    Science.gov (United States)

    Geleta, Anna; Kristóf, Z; Maráz, Anna

    2007-03-01

    Scanning and transmission electron microscopic studies revealed the presence of slime-like, amorphous material on the surface of Schizosaccahromyces pombe RIVE 4-2-1 cells, independently, whether they were in flocculated or in non-flocculated state. Close contact of the adjacent cells via the merging outermost cell wall layers was found, however, only in the case of floc formation, which was induced by cultivating the cells in the presence of 6% (v/v) ethanol. Irreversible loss of the flocculation ability of the cells by treatment with proteinases suggests that proteinaceous cell surface molecules as lectins contribute to the cell-to-cell interaction during flocculation. Both proteinase K and pronase treatments removed a distinct outer layer of the cell wall, which indicated that the protein moieties of the phosphogalactomannan outer surface layer has a crucial role in the maintenance of cell wall integrity. In the case of lysing enzyme treatment the removal of the outermost layer was also observed as the first step of the cell wall digestion, while driselase treatment resulted in almost complete digestion of the cell wall.

  2. An ethanolamine kinase Eki1 affects radial growth and cell wall integrity in Trichoderma reesei.

    Science.gov (United States)

    He, Ronglin; Guo, Wei; Zhang, Dongyuan

    2015-09-01

    Ethanolamine kinase (ATP:ethanolamine O-phosphotransferase, EC 2.7.1.82) catalyzes the committed step of phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. The functions of eki genes that encode ethanolamine kinase have been intensively studied in mammalian cells, fruit flies and yeast. However, the role of the eki gene has not yet been characterized in filamentous fungi. In this study, Treki1, an ortholog of Saccharomyces cerevisiae EKI1, was identified and functionally characterized using a target gene deletion strategy in Trichoderma reesei. A Treki deletion mutant was less sensitive to cell wall stressors calcofluor white and Congo red and released fewer protoplasts during cell wall digestion than the parent strain QM9414. Further transcription analysis showed that the expression levels of five genes that encode chitin synthases were drastically increased in the ΔTreki1 mutant. The chitin content was also increased in the null mutant of Treki1 comparing to the parent strain. In addition, the ΔTreki1 mutant exhibited defects in radial growth, conidiation and the accumulation of ethanolamine. The results indicate that Treki1 plays a key role in growth and development and in the maintenance of cell wall integrity in T. reesei.

  3. Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis.

    Science.gov (United States)

    Zhao, Qiao; Zeng, Yining; Yin, Yanbin; Pu, Yunqiao; Jackson, Lisa A; Engle, Nancy L; Martin, Madhavi Z; Tschaplinski, Timothy J; Ding, Shi-You; Ragauskas, Arthur J; Dixon, Richard A

    2015-04-01

    Pinoresinol reductase (PrR) catalyzes the conversion of the lignan (-)-pinoresinol to (-)-lariciresinol in Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detectable in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different set of genes. The promoter of the PrR1 gene is regulated by the secondary cell wall related transcription factors SND1 and MYB46. The loss-of-function mutant of PrR1 shows, in addition to elevated levels of pinoresinol, significantly decreased lignin content and a slightly altered lignin structure with lower abundance of cinnamyl alcohol end groups. Stimulated Raman scattering (SRS) microscopy analysis indicated that the lignin content of the prr1-1 loss-of-function mutant is similar to that of wild-type plants in xylem cells, which exhibit a normal phenotype, but is reduced in the fiber cells. Together, these data suggest an association of the lignan biosynthetic enzyme encoded by PrR1 with secondary cell wall biosynthesis in fiber cells.

  4. original article the use of morphological and cell wall chemical ...

    African Journals Online (AJOL)

    boaz

    and plant debris to skin. Actinomycetoma is ... species) and plants (Streptomyces scabies) (6, 12,. 13). The cultural ... Cell wall components of Actinomycetes enable rapid qualitative identification of certain ..... morphological differentiation of an.

  5. Plant cell walls: New insights from ancient species

    DEFF Research Database (Denmark)

    Sørensen, Iben; Willats, William George Tycho

    2008-01-01

    Cell walls are a defining feature of plants and have numerous crucial roles in growth and development. They are also the largest source of terrestrial biomass and have many important industrial applications - ranging from bulk products to functional food ingredients. There is considerable interest......-D-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. Plant J 2008; 54:510-21....... in the structure and functions of cell walls, and in the evolution of their remarkably complex polysaccharide structures. The grasses and cereals (order Poales), have long been regarded as being unique in that their cell walls contain an unbranched homopolymer, (1¿3)(1¿4)-ß-D-glucan, in which short blocks of (1...

  6. Mechanical Properties of Plant Cell Walls Probed by Relaxation Spectra

    DEFF Research Database (Denmark)

    Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola

    2011-01-01

    Transformants and mutants with altered cell wall composition are expected to display a biomechanical phenotype due to the structural role of the cell wall. It is often quite difficult, however, to distinguish the mechanical behavior of a mutant's or transformant's cell walls from that of the wild...... type. This may be due to the plant’s ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply...... a method, determination of relaxation spectra, which probes, and can separate, the viscoelastic properties of different cell wall components (i.e. those properties that depend on the elastic behavior of load-bearing wall polymers combined with viscous interactions between them). A computer program, Bayes...

  7. Mechanical Properties of Plant Cell Walls Probed by Relaxation Spectra

    DEFF Research Database (Denmark)

    Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola

    2011-01-01

    Transformants and mutants with altered cell wall composition are expected to display a biomechanical phenotype due to the structural role of the cell wall. It is often quite difficult, however, to distinguish the mechanical behavior of a mutant's or transformant's cell walls from that of the wild...... type. This may be due to the plant’s ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply...... a method, determination of relaxation spectra, which probes, and can separate, the viscoelastic properties of different cell wall components (i.e. those properties that depend on the elastic behavior of load-bearing wall polymers combined with viscous interactions between them). A computer program, Bayes...

  8. Transcriptome profiling in Arabidopsis inflorescence stems grown under hypergravity in terms of cell walls and plant hormones

    Science.gov (United States)

    Tamaoki, D.; Karahara, I.; Nishiuchi, T.; De Oliveira, S.; Schreiber, L.; Wakasugi, T.; Yamada, K.; Yamaguchi, K.; Kamisaka, S.

    2009-07-01

    Land plants rely on lignified secondary cell walls in supporting their body weight on the Earth. Although gravity influences the formation of the secondary cell walls, the regulatory mechanism of their formation by gravity is not yet understood. We carried out a comprehensive analysis of gene expression in inflorescence stems of Arabidopsis thaliana L. using microarray (22 K) to identify genes whose expression is modulated under hypergravity condition (300 g). Total RNA was isolated from the basal region of inflorescence stems of plants grown for 24 h at 300 g or 1 g. Microarray analysis showed that hypergravity up-regulated the expression of 403 genes to more than 2-fold. Hypergravity up-regulated the genes responsible for the biosynthesis or modification of cell wall components such as lignin, xyloglucan, pectin and structural proteins. In addition, hypergravity altered the expression of genes related to the biosynthesis of plant hormones such as auxin and ethylene and that of genes encoding hormone-responsive proteins. Our transcriptome profiling indicates that hypergravity influences the formation of secondary cell walls by modulating the pattern of gene expression, and that auxin and/or ethylene play an important role in signaling hypergravity stimulus.

  9. Gravity resistance, another graviresponse in plants - role of microtubule-membrane-cell wall continuum

    Science.gov (United States)

    Hoson, T.; Saito, Y.; Usui, S.; Soga, K.; Wakabayashi, K.

    Resistance to the gravitational force has been a serious problem for plants to survive on land, after they first went ashore more than 400 million years ago. Thus, gravity resistance is the principal graviresponse in plants comparable to gravitropism. Nevertheless, only limited information has been obtained for this second gravity response. We have examined the mechanism of gravity resistance using hypergravity conditions produced by centrifugation. The results led a hypothesis on the mechanism of plant resistance to the gravitational force that the plant constructs a tough body by increasing the cell wall rigidity, which are brought about by modification of the cell wall metabolism and cell wall environment, especially pH. The hypothesis was further supported by space experiments during the Space Shuttle STS-95 mission. On the other hand, we have shown that gravity signal may be perceived by mechanoreceptors (mechanosensitive ion channels) on the plasma membrane and amyloplast sedimentation in statocytes is not involved in gravity resistance. Moreover, hypergravity treatment increased the expression levels of genes encoding alpha-tubulin, a component of microtubules and 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor of terpenoids such as membrane sterols. The expression of HMGR and alpha- and beta-tubulin genes increased within several hours after hypergravity treatment, depending on the magnitude of gravity. The determination of levels of gene products as well as the analysis with knockout mutants of these genes by T-DNA insertions in Arabidopsis supports the involvement of both membrane sterols and microtubules in gravity resistance. These results suggest that structural or physiological continuum of microtubule-cell membrane-cell wall is responsible for plant resistance to the gravitational force.

  10. Cell Wall Metabolism in Response to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Hyacinthe Le Gall

    2015-02-01

    Full Text Available This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic, transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i an increased level in xyloglucan endotransglucosylase/hydrolase (XTH and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  11. Fungal Invertase Expression in Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Cuitlahuac Aranda

    2006-01-01

    Full Text Available In this study invertase activity expression in Aspergillus niger Aa-20 was evaluated under different concentrations of two substrates using solid-state fermentation (SSF on polyurethane foam. Glucose was used as repressor and sucrose was the inducer. Invertase production increased when glucose was present in the medium (up to 100 g/L; however, higher concentration than this reduced the enzyme production. Induction-repression ratio obtained using any glucose concentration was at least 2.5 times higher than that under basal conditions (without inducer.

  12. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops

    Directory of Open Access Journals (Sweden)

    Hui eWEI

    2015-05-01

    Full Text Available Identifying the cell wall-ionically bound glycoside hydrolases (GHs in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, we utilize a CaCl2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This has led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360 and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3. Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16, AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31, AT1G12240 (invertase, GH32 and AT2G28470 (β-galactosidase 8, GH35, were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. The implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed.

  13. Characterization and localization of insoluble organic matrices associated with diatom cell walls: insight into their roles during cell wall formation.

    Directory of Open Access Journals (Sweden)

    Benoit Tesson

    Full Text Available Organic components associated with diatom cell wall silica are important for the formation, integrity, and function of the cell wall. Polysaccharides are associated with the silica, however their localization, structure, and function remain poorly understood. We used imaging and biochemical approaches to describe in detail characteristics of insoluble organic components associated with the cell wall in 5 different diatom species. Results show that an insoluble organic matrix enriched in mannose, likely the diatotepum, is localized on the proximal surface of the silica cell wall. We did not identify any organic matrix embedded within the silica. We also identified a distinct material consisting of glucose polymer with variable localization depending on the species. In some species this component was directly involved in the morphogenesis of silica structure while in others it appeared to be only a structural component of the cell wall. A novel glucose-rich structure located between daughter cells during division was also identified. This work for the first time correlates the structure, composition, and localization of insoluble organic matrices associated with diatom cell walls. Additionally we identified a novel glucose polymer and characterized its role during silica structure formation.

  14. Large-scale co-expression approach to dissect secondary cell wall formation across plant species

    Directory of Open Access Journals (Sweden)

    Colin eRuprecht

    2011-07-01

    Full Text Available Plant cell walls are complex composites largely consisting of carbohydrate-based polymers, and are generally divided into primary and secondary walls based on content and characteristics. Cellulose microfibrils constitute a major component of both primary and secondary cell walls and are synthesized at the plasma membrane by cellulose synthase (CESA complexes. Several studies in Arabidopsis have demonstrated the power of co-expression analyses to identify new genes associated with secondary wall cellulose biosynthesis. However, across-species comparative co-expression analyses remain largely unexplored. Here, we compared co-expressed gene vicinity networks of primary and secondary wall CESAs in Arabidopsis, barley, rice, poplar, soybean, Medicago and wheat, and identified gene families that are consistently co-regulated with cellulose biosynthesis. In addition to the expected polysaccharide acting enzymes, we also found many gene families associated with cytoskeleton, signaling, transcriptional regulation, oxidation and protein degradation. Based on these analyses, we selected and biochemically analyzed T-DNA insertion lines corresponding to approximately twenty genes from gene families that re-occur in the co-expressed gene vicinity networks of secondary wall CESAs across the seven species. We developed a statistical pipeline using principal component analysis (PCA and optimal clustering based on silhouette width to analyze sugar profiles. One of the mutants, corresponding to a pinoresinol reductase gene, displayed disturbed xylem morphology and held lower levels of lignin molecules. We propose that this type of large-scale co-expression approach, coupled with statistical analysis of the cell wall contents, will be useful to facilitate rapid knowledge transfer across plant species.

  15. GDP-mannose pyrophosphorylase is essential for cell wall integrity, morphogenesis and viability of Aspergillus fumigatus.

    Science.gov (United States)

    Jiang, Hechun; Ouyang, Haomiao; Zhou, Hui; Jin, Cheng

    2008-09-01

    GDP-mannose pyrophosphorylase (GMPP) catalyses the synthesis of GDP-mannose, which is the precursor for the mannose residues in glycoconjugates, using mannose 1-phosphate and GTP as substrates. Repression of GMPP in yeast leads to phenotypes including cell lysis, defective cell wall, and failure of polarized growth and cell separation. Although several GMPPs have been isolated and characterized in filamentous fungi, the physiological consequences of their actions are not clear. In this study, Afsrb1, which is a homologue of yeast SRB1/PSA1/VIG9, was identified in the Aspergillus fumigatus genome. The Afsrb1 gene was expressed in Escherichia coli, and recombinant AfSrb1 was functionally confirmed as a GMPP. By the replacement of the native Afsrb1 promoter with an inducible Aspergillus nidulans alcA promoter, the conditional inactivation mutant strain YJ-gmpp was constructed. The presence of 3 % glucose completely blocked transcription of P(alcA)-Afsrb1, and was lethal to strain YJ-gmpp. Repression of Afsrb1 expression in strain YJ-gmpp led to phenotypes including hyphal lysis, defective cell wall, impaired polarity maintenance, and branching site selection. Also, rapid germination and reduced conidiation were documented. However, in contrast to yeast, strain YJ-gmpp retained the ability to direct polarity establishment and septation. Our results showed that the Afsrb1 gene is essential for cell wall integrity, morphogenesis and viability of Aspergillus fumigatus.

  16. Inactivation of a heterocyst-specific invertase indicates a principal role of sucrose catabolism in heterocysts of Anabaena sp.

    Science.gov (United States)

    López-Igual, Rocío; Flores, Enrique; Herrero, Antonia

    2010-10-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that carries out N(2) fixation in specialized cells called heterocysts, which exchange nutrients and regulators with the filament's vegetative cells that perform the photosynthetic fixation of CO(2). The Anabaena genome carries two genes coding for alkaline/neutral invertases, invA and invB. As shown by Northern analysis, both genes were expressed monocistronically and induced under nitrogen deprivation, although induction was stronger for invB than for invA. Whereas expression of an InvA-N-GFP fusion (green fluorescent protein [GFP] fused to the N terminus of the InvA protein [InvA-N]) was homogeneous along the cyanobacterial filament, consistent with the lack of dependence on HetR, expression of an InvB-N-GFP fusion upon combined nitrogen deprivation took place mainly in differentiating and mature heterocysts. In an hetR genetic background, the InvB-N-GFP fusion was strongly expressed all along the filament. An insertional mutant of invA could grow diazotrophically but was impaired in nifHDK induction and exhibited an increased frequency of heterocysts, suggesting a regulatory role of the invertase-mediated carbon flux in vegetative cells. In contrast, an invB mutant was strongly impaired in diazotrophic growth, showing a crucial role of sucrose catabolism mediated by the InvB invertase in the heterocysts.

  17. Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls

    Directory of Open Access Journals (Sweden)

    Canut Hervé

    2006-05-01

    Full Text Available Abstract Background The ultimate goal of proteomic analysis of a cell compartment should be the exhaustive identification of resident proteins; excluding proteins from other cell compartments. Reaching such a goal closely depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific difficulties: (i the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP during the isolation procedure, (ii polysaccharide networks of cellulose, hemicelluloses and pectins form potential traps for contaminants such as intracellular proteins. Several reported procedures to isolate cell walls for proteomic analyses led to the isolation of a high proportion (more than 50% of predicted intracellular proteins. Since isolated cell walls should hold secreted proteins, one can imagine alternative procedures to prepare cell walls containing a lower proportion of contaminant proteins. Results The rationales of several published procedures to isolate cell walls for proteomics were analyzed, with regard to the bioinformatic-predicted subcellular localization of the identified proteins. Critical steps were revealed: (i homogenization in low ionic strength acid buffer to retain CWP, (ii purification through increasing density cushions, (iii extensive washes with a low ionic strength acid buffer to retain CWP while removing as many cytosolic proteins as possible, and (iv absence of detergents. A new procedure was developed to prepare cell walls from etiolated hypocotyls of Arabidopsis thaliana. After salt extraction, a high proportion of proteins predicted to be secreted was released (73%, belonging to the same functional classes as proteins identified using previously described protocols. Finally, removal of intracellular proteins was obtained using detergents, but their amount represented less than 3% in mass of the total protein extract, based on protein quantification. Conclusion The

  18. The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans

    Science.gov (United States)

    Thevissen, Karin; de Mello Tavares, Patricia; Xu, Deming; Blankenship, Jill; Vandenbosch, Davy; Idkowiak-Baldys, Jolanta; Govaert, Gilmer; Bink, Anna; Rozental, Sonia; de Groot, Piet W.J.; Davis, Talya R.; Kumamoto, Carol A.; Vargas, Gabriele; Nimrichter, Leonardo; Coenye, Tom; Mitchell, Aaron; Roemer, Terry; Hannun, Yusuf A.; Cammue, Bruno P.A.

    2012-01-01

    Summary The antifungal plant defensin RsAFP2 isolated from radish interacts with fungal glucosylceramides and induces apoptosis in Candida albicans. To further unravel the mechanism of RsAFP2 antifungal action and tolerance mechanisms, we screened a library of 2,868 heterozygous C. albicans deletion mutants and identified 30 RsAFP2-hypersensitive mutants. The most prominent group of RsAFP2 tolerance genes was involved in cell wall integrity and hyphal growth/septin ring formation. Consistent with these genetic data, we demonstrated that RsAFP2 interacts with the cell wall of C. albicans, which also contains glucosylceramides, and activates the cell wall integrity pathway. Moreover, we found that RsAFP2 induces mislocalization of septins and blocks the yeast-to-hypha transition in C. albicans. Increased ceramide levels have previously been shown to result in apoptosis and septin mislocalization. Therefore, ceramide levels in C. albicans membranes were analyzed following RsAFP2 treatment and, as expected, increased accumulation of phytoC24-ceramides in membranes of RsAFP2-treated C. albicans cells was detected. This is the first report on the interaction of a plant defensin with glucosylceramides in the fungal cell wall, causing cell wall stress, and on the effects of a defensin on septin localization and ceramide accumulation. PMID:22384976

  19. Diffusion of an organic cation into root cell walls.

    Science.gov (United States)

    Meychik, N R; Yermakov, I P; Prokoptseva, O S

    2003-07-01

    Uptake of a cationic dye (methylene blue) by isolated root cell walls, roots of whole transpiring seedlings, and excised roots was investigated using 7-day-old seedlings of cucumber, maize, and wheat. The number of ionogenic groups per 1 g dry and wet weight of the root cell walls, their swelling capacity (K(cw)), time-dependence of methylene blue (M(cw)) ion exchange capacity, and diffusion coefficients of the cation diffusion in the polymer matrix of the cell walls (D(cw)) were determined. The M(cw) value depended on pH (or carboxyl group dissociation); it changed in accordance with the number of carboxyl groups per 1 g cell wall dry weight. This parameter decreased in the order: cucumber > wheat > maize. For description of experimental kinetic curves and calculation of cation diffusion coefficients, the equation for ion diffusion into a cylinder of infinite length was used. The chosen model adequately described cation diffusion in cell walls and roots. Diffusion coefficient values for cucumber, wheat, and maize were 3.1*10(-8), 1.3*10(-8), and 8.4*10(-8) cm(2)/sec, respectively. There was a statistically significant linear dependence between K(cw) and D(cw) values, which characterize the same property of the polymer matrix, rigidity of its polymer structure or the degree of cross-linkage or permeability. This also confirms the right choice of the model selected for calculation of methylene blue diffusion coefficients, because K(cw) and D(cw) values were obtained in independent experiments. The coefficients determined for methylene blue diffusion in transpiring seedling roots (D(ts)) and excised roots (D(er)) depended on the plant species. The rate of methylene blue diffusion into the excised roots was either 1.5-fold lower (cucumber) or 3-4-times lower (maize, wheat) than in cell walls. The values of diffusion coefficients in roots of whole seedlings were comparable which those for the cell walls. On the basis of the experimental data and results of calculations

  20. Interaction proteins of invertase and invertase inhibitor in cold-stored potato tubers suggested a protein complex underlying post-translational regulation of invertase.

    Science.gov (United States)

    Lin, Yuan; Liu, Jun; Liu, Xun; Ou, Yongbin; Li, Meng; Zhang, Huiling; Song, Botao; Xie, Conghua

    2013-12-01

    The activity of vacuolar invertase (VI) is vital to potato cold-induced sweetening (CIS). A post-translational regulation of VI activity has been proposed which involves invertase inhibitor (VIH), but the mechanism for the interaction between VI and VIH has not been fully understood. To identify the potential partners of VI and VIH, two cDNA libraries were respectively constructed from CIS-resistant wild potato species Solanum berthaultii and CIS-sensitive potato cultivar AC035-01 for the yeast two-hybrid analysis. The StvacINV1 (one of the potato VIs) and StInvInh2B (one of the potato VIHs), previously identified to be associated with potato CIS, were used as baits to screen the two libraries. Through positive selection and sequencing, 27 potential target proteins of StvacINV1 and eight of StInvInh2B were clarified. The Kunitz-type protein inhibitors were captured by StvacINV1 in both libraries and the interaction between them was confirmed by bimolecular fluorescence complementation assay in tobacco cells, reinforcing a fundamental interaction between VI and VIH. Notably, a sucrose non-fermenting-1-related protein kinase 1 was captured by both the baits, suggesting that a protein complex could be necessary for fine turning of the invertase activity. The target proteins clarified in present research provide a route to elucidate the mechanism by which the VI activity can be subtly modulated. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. Cell wall-associated malate dehydrogenase activity from maize roots.

    Science.gov (United States)

    Hadži-Tašković Šukalović, Vesna; Vuletić, Mirjana; Marković, Ksenija; Vučinić, Zeljko

    2011-10-01

    Isolated cell walls from maize (Zea mays L.) roots exhibited ionically and covalently bound NAD-specific malate dehydrogenase activity. The enzyme catalyses a rapid reduction of oxaloacetate and much slower oxidation of malate. The kinetic and regulatory properties of the cell wall enzyme solubilized with 1M NaCl were different from those published for soluble, mitochondrial or plasma membrane malate dehydrogenase with respect to their ATP, Pi, and pH dependence. Isoelectric focusing of ionically-bound proteins and specific staining for malate dehydrogenase revealed characteristic isoforms present in cell wall isolate, different from those present in plasma membranes and crude homogenate. Much greater activity of cell wall-associated malate dehydrogenase was detected in the intensively growing lateral roots compared to primary root with decreased growth rates. Presence of Zn(2+) and Cu(2+) in the assay medium inhibited the activity of the wall-associated malate dehydrogenase. Exposure of maize plants to excess concentrations of Zn(2+) and Cu(2+) in the hydroponic solution inhibited lateral root growth, decreased malate dehydrogenase activity and changed isoform profiles. The results presented show that cell wall malate dehydrogenase is truly a wall-bound enzyme, and not an artefact of cytoplasmic contamination, involved in the developmental processes, and detoxification of heavy metals.

  2. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Darvill, Alan [Univ. of Georgia, Athens, GA (United States); Hahn, Michael G. [Univ. of Georgia, Athens, GA (United States); O' Neill, Malcolm A. [Univ. of Georgia, Athens, GA (United States); York, William S. [Univ. of Georgia, Athens, GA (United States)

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  3. Cell wall proteome analysis of Arabidopsis thaliana mature stems.

    Science.gov (United States)

    Duruflé, Harold; Clemente, Hélène San; Balliau, Thierry; Zivy, Michel; Dunand, Christophe; Jamet, Elisabeth

    2017-04-01

    Plant stems carry flowers necessary for species propagation and need to be adapted to mechanical disturbance and environmental factors. The stem cell walls are different from other organs and can modify their rigidity or viscoelastic properties for the integrity and the robustness required to withstand mechanical impacts and environmental stresses. Plant cell wall is composed of complex polysaccharide networks also containing cell wall proteins (CWPs) crucial to perceive and limit the environmental effects. The CWPs are fundamental players in cell wall remodeling processes, and today, only 86 have been identified from the mature stems of the model plant Arabidopsis thaliana. With a destructive method, this study has enlarged its coverage to 302 CWPs. This new proteome is mainly composed of 27.5% proteins acting on polysaccharides, 16% proteases, 11.6% oxido-reductases, 11% possibly related to lipid metabolism and 11% of proteins with interacting domains with proteins or polysaccharides. Compared to stem cell wall proteomes already available (Brachypodium distachyon, Sacharum officinarum, Linum usitatissimum, Medicago sativa), that of A. thaliana stems has a higher proportion of proteins acting on polysaccharides and of proteases, but a lower proportion of oxido-reductases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Growth and cell wall changes in rice roots during spaceflight.

    Science.gov (United States)

    Hoson, Takayuki; Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro; Tanimoto, Eiichi

    2003-08-01

    We analyzed the changes in growth and cell wall properties of roots of rice (Oryza sativa L. cv. Koshihikari) grown for 68.5, 91.5, and 136 h during the Space Shuttle STS-95 mission. In space, most of rice roots elongated in a direction forming a constant mean angle of about 55 degrees with the perpendicular base line away from the caryopsis in the early phase of growth, but later the roots grew in various directions, including away from the agar medium. In space, elongation growth of roots was stimulated. On the other hand, some of elasticity moduli and viscosity coefficients were higher in roots grown in space than on the ground, suggesting that the cell wall of space-grown roots has a lower capacity to expand than the controls. The levels of both cellulose and the matrix polysaccharides per unit length of roots decreased greatly, whereas the ratio of the high molecular mass polysaccharides in the hemicellulose fraction increased in space-grown roots. The prominent thinning of the cell wall could overwhelm the disadvantageous changes in the cell wall mechanical properties, leading to the stimulation of elongation growth in rice roots in space. Thus, growth and the cell wall properties of rice roots were strongly modified under microgravity conditions during spaceflight.

  5. The Cell Wall Polymer Lipoteichoic Acid Becomes Nonessential in Staphylococcus aureus Cells Lacking the ClpX Chaperone

    DEFF Research Database (Denmark)

    Baek, Kristoffer T.; Bowman, Lisa; Millership, Charlotte;

    2016-01-01

    Lipoteichoic acid (LTA) is an important cell wall component of Gram-positive bacteria and a promising target for the development of vaccines and antimicrobial compounds against Staphylococcus aureus. Here we demonstrate that mutations in the conditionally essential ltaS (LTA synthase) gene arise ...

  6. The Cell Wall Polymer Lipoteichoic Acid Becomes Nonessential in Staphylococcus aureus Cells Lacking the ClpX Chaperone

    DEFF Research Database (Denmark)

    Baek, Kristoffer T.; Bowman, Lisa; Millership, Charlotte;

    2016-01-01

    Lipoteichoic acid (LTA) is an important cell wall component of Gram-positive bacteria and a promising target for the development of vaccines and antimicrobial compounds against Staphylococcus aureus. Here we demonstrate that mutations in the conditionally essential ltaS (LTA synthase) gene arise...

  7. Identification of a novel arabinofuranosyltransferase (AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis.

    Science.gov (United States)

    Alderwick, Luke J; Seidel, Mathias; Sahm, Hermann; Besra, Gurdyal S; Eggeling, Lothar

    2006-06-09

    The cell wall mycolyl-arabinogalactan-peptidoglycan complex is essential in mycobacterial species, such as Mycobacterium tuberculosis, and is the target of several anti-tubercular drugs. For instance, ethambutol targets arabinogalactan biosynthesis through inhibition of the arabinofuranosyltransferases Mt-EmbA and Mt-EmbB. Following a detailed bioinformatics analysis of genes surrounding the conserved emb locus, we present the identification and characterization of a novel arabinofuranosyltransferase AftA (Rv3792). The enzyme catalyzes the addition of the first key arabinofuranosyl residue from the sugar donor beta-D-arabinofuranosyl-1-monophosphoryldecaprenol to the galactan domain of the cell wall, thus "priming" the galactan for further elaboration by the arabinofuranosyltransferases. Because aftA is an essential gene in M. tuberculosis, we deleted its orthologue in Corynebacterium glutamicum to produce a slow growing but viable mutant. Analysis of its cell wall revealed the complete absence of arabinose resulting in a truncated cell wall structure possessing only a galactan core with a concomitant loss of cell wall-bound mycolates. Complementation of the mutant was fully restored to the wild type phenotype by Cg-aftA. In addition, by developing an in vitro assay using recombinant Escherichia coli expressing Mt-aftA and use of cell wall galactan as an acceptor, we demonstrated the transfer of arabinose from beta-D-arabinofuranosyl-1-monophosphoryldecaprenol to galactan, and unlike the Mt-Emb proteins, Mt-AftA was not inhibited by ethambutol. This newly discovered glycosyltransferase represents an attractive drug target for further exploitation by chemotherapeutic intervention.

  8. Fluorescent Probes for Exploring Plant Cell Wall Deconstruction: A Review

    Directory of Open Access Journals (Sweden)

    Gabriel Paës

    2014-07-01

    Full Text Available Plant biomass is a potential resource of chemicals, new materials and biofuels that could reduce our dependency on fossil carbon, thus decreasing the greenhouse effect. However, due to its chemical and structural complexity, plant biomass is recalcitrant to green biological transformation by enzymes, preventing the establishment of integrated bio-refineries. In order to gain more knowledge in the architecture of plant cell wall to facilitate their deconstruction, many fluorescent probes bearing various fluorophores have been devised and used successfully to reveal the changes in structural motifs during plant biomass deconstruction, and the molecular interactions between enzymes and plant cell wall polymers. Fluorescent probes are thus relevant tools to explore plant cell wall deconstruction.

  9. Simulated microgravity inhibits cell wall regeneration of Penicillium decumbens protoplasts

    Science.gov (United States)

    Zhao, C.; Sun, Y.; Yi, Z. C.; Rong, L.; Zhuang, F. Y.; Fan, Y. B.

    2010-09-01

    This work compares cell wall regeneration from protoplasts of the fungus Penicillium decumbens under rotary culture (simulated microgravity) and stationary cultures. Using an optimized lytic enzyme mixture, protoplasts were successfully released with a yield of 5.3 × 10 5 cells/mL. Under simulated microgravity conditions, the protoplast regeneration efficiency was 33.8%, lower than 44.9% under stationary conditions. Laser scanning confocal microscopy gave direct evidence for reduced formation of polysaccharides under simulated conditions. Scanning electron microscopy showed the delayed process of cell wall regeneration by simulated microgravity. The delayed regeneration of P. decumbens cell wall under simulated microgravity was likely caused by the inhibition of polysaccharide synthesis. This research contributes to the understanding of how gravitational loads affect morphological and physiological processes of fungi.

  10. 2D-immunoblotting analysis of Sporothrix schenckii cell wall

    Directory of Open Access Journals (Sweden)

    Estela Ruiz-Baca

    2011-03-01

    Full Text Available We utilized two-dimensional gel electrophoresis and immunoblotting (2D-immunoblotting with anti-Sporothrix schenckii antibodies to identify antigenic proteins in cell wall preparations obtained from the mycelial and yeast-like morphologies of the fungus. Results showed that a 70-kDa glycoprotein (Gp70 was the major antigen detected in the cell wall of both morphologies and that a 60-kDa glycoprotein was present only in yeast-like cells. In addition to the Gp70, the wall from filament cells showed four proteins with molecular weights of 48, 55, 66 and 67 kDa, some of which exhibited several isoforms. To our knowledge, this is the first 2D-immunoblotting analysis of the S. schenckii cell wall.

  11. Role of the plant cell wall in gravity resistance.

    Science.gov (United States)

    Hoson, Takayuki; Wakabayashi, Kazuyuki

    2015-04-01

    Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, comparable to gravitropism. The cell wall is responsible for the final step of gravity resistance. The gravity signal increases the rigidity of the cell wall via the accumulation of its constituents, polymerization of certain matrix polysaccharides due to the suppression of breakdown, stimulation of cross-link formation, and modifications to the wall environment, in a wide range of situations from microgravity in space to hypergravity. Plants thus develop a tough body to resist the gravitational force via an increase in cell wall rigidity and the modification of growth anisotropy. The development of gravity resistance mechanisms has played an important role in the acquisition of responses to various mechanical stresses and the evolution of land plants.

  12. Boric Acid Disturbs Cell Wall Synthesis in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Martin Schmidt

    2010-01-01

    Full Text Available Boric acid (BA has broad antimicrobial activity that makes it a popular treatment for yeast vaginitis in complementary and alternative medicine. In the model yeast S. cerevisiae, BA disturbs the cytoskeleton at the bud neck and impairs the assembly of the septation apparatus. BA treatment causes cells to form irregular septa and leads to the synthesis of irregular cell wall protuberances that extend far into the cytoplasm. The thick, chitin-rich septa that are formed during BA exposure prevent separation of cells after abscission and cause the formation of cell chains and clumps. As a response to the BA insult, cells signal cell wall stress through the Slt2p pathway and increase chitin synthesis, presumably to repair cell wall damage.

  13. Ferulic acid is esterified to glucuronoarabinoxylans in pineapple cell walls.

    Science.gov (United States)

    Smith, B G; Harris, P J

    2001-03-01

    The ester-linkage of ferulic acid (mainly E) to polysaccharides in primary cell walls of pineapple fruit (Ananas comosus) (Bromeliaceae) was investigated by treating a cell-wall preparation with 'Driselase' which contains a mixture of endo- and exo-glycanases, but no hydroxycinnamoyl esterase activity. The most abundant feruloyl oligosaccharide released was O-[5-O-(E-feruloyl)-alpha-L-arabinofuranosyl](1-->3)-O-beta-D-xylopyranosyl-(1-->4)-D-xylopyranose (FAXX). This indicated that the ferulic acid is ester-linked to glucuronoarabinoxylans in the same way as in the primary walls of grasses and cereals (Poaceae). Glucuronoarabinoxylans are the major non-cellulosic polysaccharides in the pineapple cell walls.

  14. Primary Cell Wall Structure in the Evolution of Land Plants

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Investigation of the primary cell walls of lower plants improves our understanding of the cell biology of these organisms but also has the potential to improve our understanding of cell wall structure and function in angiosperms that evolved from lower plants. Cell walls were prepared from eight species, ranging from a moss to advanced gymnosperms, and subjected to sequential chemical extraction to separate the main polysaccharide fractions. The glycosyl compositions of these fractions were then determined by gas chromatography. The results were compared among the eight plants and among data from related studies reported in the existing published reports to identify structural features that have been either highly conserved or clearly modified during evolution. Among the highly conserved features are the presence of a cellulose framework, the presence of certain hemicelluloses such as xyloglucan, and the presence of rhamnogalacturonan Ⅱ, a domain in pectic polysaccharides. Among the modified features are the abundance of mannosyl-containing hemicelluloses and the presence of methylated sugars.

  15. Electron Microscopy of Staphylococcus aureus Cell Wall Lysis

    Science.gov (United States)

    Virgilio, R.; González, C.; Muñoz, Nubia; Mendoza, Silvia

    1966-01-01

    Virgilio, Rafael (Escuela de Química y Farmacia, Universidad de Chile, Santiago, Chile), C. González, Nubia Muñoz, and Silvia Mendoza. Electron microscopy of Staphylococcus aureus cell wall lysis. J. Bacteriol. 91:2018–2024. 1966.—A crude suspension of Staphylococcus aureus cell walls (strain Cowan III) in buffer solution was shown by electron microscopy to lyse slightly after 16 hr, probably owing to the action of autolysin. The lysis was considerably faster and more intense after the addition of lysozyme. A remarkable reduction in thickness and rigidity of the cell walls, together with the appearance of many irregular protrusions in their outlines, was observed after 2 hr; after 16 hr, there remained only a few recognizable cell wall fragments but many residual particulate remnants. When autolysin was previously inactivated by trypsin, there was a complete inhibition of the lytic action of lysozyme; on the other hand, when autolysin was inactivated by heat and lysozyme was added, a distinct decrease in the thickness of the cell walls was observed, but there was no destruction of the walls. The lytic action of lysozyme, after treatment with hot 5% trichloroacetic acid, gave rise to a marked dissolution of the structure of the cell walls, which became lost against the background, without, however, showing ostensible alteration of wall outlines. From a morphological point of view, the lytic action of autolysin plus lysozyme was quite different from that of trichloroacetic acid plus lysozyme, as shown by electron micrographs, but in both cases it was very intense. This would suggest different mechanisms of action for these agents. Images PMID:5939482

  16. Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening.

    Science.gov (United States)

    Minoia, Silvia; Boualem, Adnane; Marcel, Fabien; Troadec, Christelle; Quemener, Bernard; Cellini, Francesco; Petrozza, Angelo; Vigouroux, Jacqueline; Lahaye, Marc; Carriero, Filomena; Bendahmane, Abdelhafid

    2016-01-01

    Fruit ripening and softening are key traits for many fleshy fruit. Since cell walls play a key role in the softening process, expansins have been investigated to control fruit over ripening and deterioration. In tomato, expression of Expansin 1 gene, SlExp1, during fruit ripening was associated with fruit softening. To engineer tomato plants with long shelf life, we screened for mutant plants impaired in SlExp1 function. Characterization of two induced mutations, Slexp1-6_W211S, and Slexp1-7_Q213Stop, showed that SlExp1 loss of function leads to enhanced fruit firmness and delayed fruit ripening. Analysis of cell wall polysaccharide composition of Slexp1-7_Q213Stop mutant pointed out significant differences for uronic acid, neutral sugar and total sugar contents. Hemicelluloses chemistry analysis by endo-β-1,4-d-glucanase hydrolysis and MALDI-TOF spectrometry revealed that xyloglucan structures were affected in the fruit pericarp of Slexp1-7_Q213Stop mutant. Altogether, these results demonstrated that SlExp1 loss of function mutants yield firmer and late ripening fruits through modification of hemicellulose structure. These SlExp1 mutants represent good tools for breeding long shelf life tomato lines with contrasted fruit texture as well as for the understanding of the cell wall polysaccharide assembly dynamics in fleshy fruits.

  17. Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions.

    Science.gov (United States)

    Ghuge, Sandip A; Tisi, Alessandra; Carucci, Andrea; Rodrigues-Pousada, Renato A; Franchi, Stefano; Tavladoraki, Paraskevi; Angelini, Riccardo; Cona, Alessandra

    2015-07-14

    Polyamines (PAs) are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs), including copper amine oxidases (CuAOs) and flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). The biologically-active hydrogen peroxide (H₂O₂) is a shared compound in all of the AO-catalyzed reactions, and it has been reported to play important roles in PA-mediated developmental and stress-induced processes. In particular, the AO-driven H₂O₂ biosynthesis in the cell wall is well known to be involved in plant wound healing and pathogen attack responses by both triggering peroxidase-mediated wall-stiffening events and signaling modulation of defense gene expression. Extensive investigation by a variety of methodological approaches revealed high levels of expression of cell wall-localized AOs in root xylem tissues and vascular parenchyma of different plant species. Here, the recent progresses in understanding the role of cell wall-localized AOs as mediators of root xylem differentiation during development and/or under stress conditions are reviewed. A number of experimental pieces of evidence supports the involvement of apoplastic H₂O₂ derived from PA oxidation in xylem tissue maturation under stress-simulated conditions.

  18. The Cell Wall Lipid PDIM Contributes to Phagosomal Escape and Host Cell Exit of Mycobacterium tuberculosis

    Science.gov (United States)

    Quigley, Jeff; Hughitt, V. Keith; Velikovsky, Carlos A.; Mariuzza, Roy A.

    2017-01-01

    ABSTRACT The cell wall of Mycobacterium tuberculosis is composed of unique lipids that are important for pathogenesis. Indeed, the first-ever genetic screen in M. tuberculosis identified genes involved in the biosynthesis and transport of the cell wall lipid PDIM (phthiocerol dimycocerosates) as crucial for the survival of M. tuberculosis in mice. Here we show evidence for a novel molecular mechanism of the PDIM-mediated virulence in M. tuberculosis. We characterized the DNA interaction and the regulon of Rv3167c, a transcriptional repressor that is involved in virulence regulation of M. tuberculosis, and discovered that it controls the PDIM operon. A loss-of-function genetic approach showed that PDIM levels directly correlate with the capacity of M. tuberculosis to escape the phagosome and induce host cell necrosis and macroautophagy. In conclusion, our study attributes a novel role of the cell wall lipid PDIM in intracellular host cell modulation, which is important for host cell exit and dissemination of M. tuberculosis. PMID:28270579

  19. Influence of sorbitol on protein production and glycosylation and cell wall formation in Trichoderma reesei.

    Science.gov (United States)

    Górka-Nieć, Wioletta; Perlińska-Lenart, Urszula; Zembek, Patrycja; Palamarczyk, Grażyna; Kruszewska, Joanna S

    2010-10-01

    Sorbitol is often used at 1 mol/liter as an osmotic stabilizer for cultivation of fungi with a fragile cell wall phenotype. On the other hand, at this concentration sorbitol causes an osmotic stress in fungal cells resulting in intensive production of intracellular glycerol. The highly increased consumption of glucose for glycerol synthesis may lead to changes in processes requiring carbohydrate residues. This study provides new information on the consequences of osmotic stress to the cell wall composition, protein production and glycosylation, and cell morphology of Trichoderma reesei. We observed that high osmolarity conditions enhanced biomass production and strongly limited synthesis of cell wall glucans and chitin. Moreover, in these conditions the amount of secreted protein decreased nearly ten-fold and expression of cbh1 and cbh2 genes coding for cellobiohydrolase I and cellobiohydrolase II, the main secretory proteins in T. reesei, was inhibited resulting in a lack of the proteins in the cell and cultivation medium. The activity of DPM synthase, enzyme engaged in both N- and O-glycosylation pathways, was reduced two-fold, suggesting an overall inhibition of protein glycosylation. However, the two modes of glycosylation were affected divergently: O-glycosylation of secreted proteins decreased in the early stages of growth while N-glycosylation significantly increased in the stationary phase.

  20. Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions

    Directory of Open Access Journals (Sweden)

    Sandip A. Ghuge

    2015-07-01

    Full Text Available Polyamines (PAs are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs, including copper amine oxidases (CuAOs and flavin adenine dinucleotide (FAD-dependent polyamine oxidases (PAOs. The biologically-active hydrogen peroxide (H2O2 is a shared compound in all of the AO-catalyzed reactions, and it has been reported to play important roles in PA-mediated developmental and stress-induced processes. In particular, the AO-driven H2O2 biosynthesis in the cell wall is well known to be involved in plant wound healing and pathogen attack responses by both triggering peroxidase-mediated wall-stiffening events and signaling modulation of defense gene expression. Extensive investigation by a variety of methodological approaches revealed high levels of expression of cell wall-localized AOs in root xylem tissues and vascular parenchyma of different plant species. Here, the recent progresses in understanding the role of cell wall-localized AOs as mediators of root xylem differentiation during development and/or under stress conditions are reviewed. A number of experimental pieces of evidence supports the involvement of apoplastic H2O2 derived from PA oxidation in xylem tissue maturation under stress-simulated conditions.

  1. Characters of Fractal Ultrastructure in Wood Cell Wall

    Institute of Scientific and Technical Information of China (English)

    LI Beimei; ZHAO Guangjie

    2006-01-01

    Fractal theory was introduced in order to describe the ultrastructure of wood cell wall in this paper.The cellulose chain clusters around nano-scale were viewed as a fractal object that consists of many fibrillar structural units with different scales including microfibrils.On the basis of the morphological data of wood cell wall.fractal dimensions of multi-level fibrillar structural units were calculated by fractal-geometry approach,and then the morphological and structural characteristics of fibers as well as the influences on wood properties were investigated according to the dimensions.Besides,the fractal self-nesting character of the ultrastruture was also analyzed.

  2. Structural analysis of cell wall polysaccharides using PACE

    Energy Technology Data Exchange (ETDEWEB)

    Mortimer, Jennifer C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint BioEnergy Institute

    2017-01-01

    The plant cell wall is composed of many complex polysaccharides. The composition and structure of the polysaccharides affect various cell properties including cell shape, cell function and cell adhesion. Many techniques to characterize polysaccharide structure are complicated, requiring expensive equipment and specialized operators e.g. NMR, MALDI-MS. PACE (Polysaccharide Analysis using Carbohydrate gel Electrophoresis) uses a simple, rapid technique to analyze polysaccharide quantity and structure (Goubet et al. 2002). Whilst the method here describes xylan analysis, it can be applied (by use of the appropriate glycosyl hydrolase) to any cell wall polysaccharide.

  3. 钙处理对葡萄柚果实细胞壁物质代谢及其相关基因表达的影响%Effects of calcium treatments on cell wall material metabolism and related enzyme activities and gene expression in grapefruit(Citrus paradisi Macf.)

    Institute of Scientific and Technical Information of China (English)

    邓佳; 史正军; 王连春; 吴海波; 刘惠民

    2016-01-01

    处理对细胞壁物质代谢的调控效果优于采前钙处理。外源钙处理抑制了细胞壁降解酶基因表达水平,降低了细胞壁降解酶活性,减缓了果胶、半纤维素的解聚,从而达到调控果实膳食纤维含量、维持果实质地品质、延长果实货架期寿命的目的。%[Objectives]Study on the effect of Ca treatment on the cell wall components, the variations of cell wall degrading enzyme activities and the expression of relevant genes will help to understand the relationship between the Ca and metabolism of cell wall materials, explore the mechanisms of Ca to fruit softening, and provide base for the improvement of fruit benching time.[Methods]A field experiment was carried out in grapefruit orchard in Yuxi City, Yunnan Province in 2012.Grapefruit cultivar ‘Rio red’ was used as tested crop.The rootstock of the cultivar was grafted in 2005 on a local cultivar in density of 3 m ×3 m.The Ca treatments were composed of two parts:during fruit growing and after harvest.Growing treatment was foliar spraying 2%CaCl2 solution at very young fruit, end of young fruit, early fruit expansion, end of fruit expansion and color developing stage.After harvest treatment:the harvested fruits were soaked in 2%CaCl2 solution for 5 min, then stored at room temperature.Fruit samples were taken every 15 days and each time with 10 fruits during the storage for the measurement of relative items.[Results]The tightly bound pectins ( covalent bound pectin ) were dissembled into loosely bound pectins ( water soluble pectin, ion bound pectin) with grapefruit fruit ripening.The contents of tightly bound hemicelluloses (24%KOH-soluble fraction) decreased while loosely bound hemicelluloses(4% KOH-soluble fraction) increased. The activity and the expression of cell wall enzymes genes increased as fruit softened.PME expressed high levels after harvest.The level of PG activity increased in the early stage of storage while PG expression changed

  4. A Tomato Vacuolar Invertase Inhibitor Mediates Sucrose Metabolism and Influences Fruit Ripening.

    Science.gov (United States)

    Qin, Guozheng; Zhu, Zhu; Wang, Weihao; Cai, Jianghua; Chen, Yong; Li, Li; Tian, Shiping

    2016-11-01

    Fruit ripening is a complex process that involves a series of physiological and biochemical changes that ultimately influence fruit quality traits, such as color and flavor. Sugar metabolism is an important factor in ripening, and there is evidence that it influences various aspects of ripening, although the associated mechanism is not well understood. In this study, we identified and analyzed the expression of 36 genes involved in Suc metabolism in ripening tomato (Solanum lycopersicum) fruit. Chromatin immunoprecipitation and gel mobility shift assays indicated that SlVIF, which encodes a vacuolar invertase inhibitor, and SlVI, encoding a vacuolar invertase, are directly regulated by the global fruit ripening regulator RIPENING INHIBITOR (RIN). Moreover, we showed that SlVIF physically interacts with SlVI to control Suc metabolism. Repression of SlVIF by RNA interference delayed tomato fruit ripening, while overexpression of SlVIF accelerated ripening, with concomitant changes in lycopene production and ethylene biosynthesis. An isobaric tags for relative and absolute quantification-based quantitative proteomic analysis further indicated that the abundance of a set of proteins involved in fruit ripening was altered by suppressing SlVIF expression, including proteins associated with lycopene generation and ethylene synthesis. These findings provide evidence for the role of Suc in promoting fruit ripening and establish that SlVIF contributes to fruit quality and the RIN-mediated ripening regulatory mechanisms, which are of significant agricultural value. © 2016 American Society of Plant Biologists. All Rights Reserved.

  5. Evolutionary divergence of β-expansin structure and function in grasses parallels emergence of distinctive primary cell wall traits.

    Science.gov (United States)

    Sampedro, Javier; Guttman, Mara; Li, Lian-Chao; Cosgrove, Daniel J

    2015-01-01

    Expansins are wall-loosening proteins that promote the extension of primary cell walls without the hydrolysis of major structural components. Previously, proteins from the EXPA (α-expansin) family were found to loosen eudicot cell walls but to be less effective on grass cell walls, whereas the reverse pattern was found for EXPB (β-expansin) proteins obtained from grass pollen. To understand the evolutionary and structural bases for the selectivity of EXPB action, we assessed the extension (creep) response of cell walls from diverse monocot families to EXPA and EXPB treatments. Cell walls from Cyperaceae and Juncaceae (families closely related to grasses) displayed a typical grass response ('β-response'). Walls from more distant monocots, including some species that share with grasses high levels of arabinoxylan, responded preferentially to α-expansins ('α-response'), behaving in this regard like eudicots. An expansin with selective activity for grass cell walls was detected in Cyperaceae pollen, coinciding with the expression of genes from the divergent EXPB-I branch that includes grass pollen β-expansins. The evolutionary origin of this branch was located within Poales on the basis of phylogenetic analyses and its association with the 'sigma' whole-genome duplication. Accelerated evolution in this branch has remodeled the protein surface in contact with the substrate, potentially for binding highly substituted arabinoxylan. We propose that the evolution of the divergent EXPB-I group made a fundamental change in the target and mechanism of wall loosening in the grass lineage possible, involving a new structural role for xylans and the expansins that target them.

  6. New Model of Wood Cell Wall Microfibril and Its Implications

    Science.gov (United States)

    Umesh P. Agarwal; Sally A. Ralph; Rick S. Reiner; Carlos Baez

    2015-01-01

    Traditionally it has been accepted that the cell walls are made up of microfibrils which are partly crystalline. However, based on the recently obtained Raman evidence that showed that the interior of the microfibril was significantly disordered and water accessible, a new model is proposed. In this model, the molecular chains of cellulose are still organized along the...

  7. Polymer mobility in cell walls of cucumber hypocotyls

    Science.gov (United States)

    Fenwick, K. M.; Apperley, D. C.; Cosgrove, D. J.; Jarvis, M. C.

    1999-01-01

    Cell walls were prepared from the growing region of cucumber (Cucumis sativus) hypocotyls and examined by solid-state 13C NMR spectroscopy, in both enzymically active and inactivated states. The rigidity of individual polymer segments within the hydrated cell walls was assessed from the proton magnetic relaxation parameter, T2, and from the kinetics of cross-polarisation from 1H to 13C. The microfibrils, including most of the xyloglucan in the cell wall, as well as cellulose, behaved as very rigid solids. A minor xyloglucan fraction, which may correspond to cross-links between microfibrils, shared a lower level of rigidity with some of the pectic galacturonan. Other pectins, including most of the galactan side-chain residues of rhamnogalacturonan I, were much more mobile and behaved in a manner intermediate between the solid and liquid states. The only difference observed between the enzymically active and inactive cell walls, was the loss of a highly mobile, methyl-esterified galacturonan fraction, as the result of pectinesterase activity.

  8. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; E. Thybring, Emil; Johansen, Katja Salomon;

    2014-01-01

    . Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic bonds. This study illustrates that basic material science insights are relevant also within biochemistry......, particularly when it comes to up-scaling of processes based on insoluble feed stocks....

  9. The role of the cell wall in plant immunity

    DEFF Research Database (Denmark)

    Malinovsky, Frederikke Gro; Fangel, Jonatan Ulrik; Willats, William George Tycho

    2014-01-01

    The battle between plants and microbes is evolutionarily ancient, highly complex, and often co-dependent. A primary challenge for microbes is to breach the physical barrier of host cell walls whilst avoiding detection by the plant's immune receptors. While some receptors sense conserved microbial...

  10. Analyzing the complex machinery of cell wall biosynthesis

    NARCIS (Netherlands)

    Timmers, J.F.P.

    2009-01-01

    The plant cell wall polymers make up most of the plant biomass and provide the raw material for many economically important products including food, feed, bio-materials, chemicals, textiles, and biofuel. This broad range of functions and applications make the biosynthesis of these polysaccharides a

  11. Two endogenous proteins that induce cell wall extension in plants

    Science.gov (United States)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  12. In planta modification of the potato tuber cell wall

    NARCIS (Netherlands)

    Oomen, R.J.F.J.

    2003-01-01

    Apart from its well known uses in the human diet a large amount of the grown potatoes (about one third in the Netherlands) is used for the isolation of starch which is used in several food and non-food applications. The cell wall fibres comprise a large portion of the waste material remaining after

  13. Maize development: Cell wall changes in leaves and sheaths

    Science.gov (United States)

    Developmental changes occur in maize (Zea mays L.) as it transitions from juvenile stages to the mature plant. Changes also occur as newly formed cells mature into adult cells. Maize leaf blades, including the midribs and sheaths, undergo cell wall changes as cells transition to fully mature cell ty...

  14. Titration of Isolated Cell Walls of Lemna minor L 1

    Science.gov (United States)

    Morvan, Claudine; Demarty, Maurice; Thellier, Michel

    1979-01-01

    A theoretical model has been built to bypass the equation of titration of the cell wall. This equation, which is an extension of the Henderson-Hasselbach equation, underlines the importance of the exchange constant, the ionic strength as well as the rate of neutralization. The model is restricted to the case when the ionization degree is equal to the neutralization degree. The shape of the titration curve is shown to be strongly dependent on the valency of the base used. Experimental results have shown that isolated cell walls bear at least two kinds of sites. The first sites which are titrated after a short time of equilibration are attributed to polyuronic acids (capacity: 0.3 milliequivalents per gram fresh cell walls). The second sites, are obtained after a long time of equilibration (capacity: 1.2 to 1.3 milliequivalents per gram, fresh cell walls). Titrations have been performed with different bases [KOH, NaOH, and Ca(OH)2] and under different ionic strengths. The results obtained with NaOH and KOH do not exhibit any difference of selectivity. Conversely, the sites have a much bigger affinity for the Ca2+ ions than for the monovalent ones. The apparent pKa of the uronic acids was estimated to lie between 3.0 and 3.4; this is consistent with the values obtained with polyuronic acid solutions. PMID:16660868

  15. Evidence for a Melanin Cell Wall Component in Pneumocystis carinii

    OpenAIRE

    Icenhour, Crystal R.; Kottom, Theodore J.; Limper, Andrew H

    2003-01-01

    Fluorescein isothiocyanate-labeled monoclonal antibodies specific for fungal melanin were used in this study to visualize melanin-like components of the Pneumocystis carinii cell wall. A colorimetric enzyme assay confirmed these findings. This is the first report of melanin-like pigments in Pneumocystis.

  16. Pectin, a versatile polysaccharide present in plant cell walls

    NARCIS (Netherlands)

    Voragen, A.G.J.; Coenen, G.J.; Verhoef, R.P.; Schols, H.A.

    2009-01-01

    Pectin or pectic substances are collective names for a group of closely associated polysaccharides present in plant cell walls where they contribute to complex physiological processes like cell growth and cell differentiation and so determine the integrity and rigidity of plant tissue. They also pla

  17. Characterisation of cell wall polysaccharides in bilberries and black currants

    NARCIS (Netherlands)

    Hilz, H.

    2007-01-01

    During berry juice production, polysaccharides are released from the cell walls and cause thickening and high viscosity when the berries are mashed. Consequences are a low juice yield and a poor colour. This can be prevented by the use of enzymes that degrade these polysaccharides. To use these enzy

  18. Analyzing the complex machinery of cell wall biosynthesis

    NARCIS (Netherlands)

    Timmers, J.F.P.

    2009-01-01

    The plant cell wall polymers make up most of the plant biomass and provide the raw material for many economically important products including food, feed, bio-materials, chemicals, textiles, and biofuel. This broad range of functions and applications make the biosynthesis of these polysaccharides a

  19. Characterisation of cell-wall polysaccharides from mandarin segment membranes

    NARCIS (Netherlands)

    Coll-Almela, L.; Saura-Lopez, D.; Laencina-Sanchez, J.; Schols, H.A.; Voragen, A.G.J.; Ros-García, J.M.

    2015-01-01

    In an attempt to develop a process of enzymatic peeling of mandarin segments suitable for use on an industrial scale, the cell wall fraction of the segment membrane of Satsuma mandarin fruits was extracted to obtain a chelating agent-soluble pectin fraction (ChSS), a dilute sodium hydroxide-soluble

  20. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides

    NARCIS (Netherlands)

    Vries, de R.P.; Visser, J.

    2001-01-01

    Degradation of plant cell wall polysaccharides is of major importance in the food and feed, beverage, textile, and paper and pulp industries, as well as in several other industrial production processes. Enzymatic degradation of these polymers has received attention for many years and is becoming a m

  1. Roles of tRNA in cell wall biosynthesis

    DEFF Research Database (Denmark)

    Dare, Kiley; Ibba, Michael

    2012-01-01

    Recent research into various aspects of bacterial metabolism such as cell wall and antibiotic synthesis, degradation pathways, cellular stress, and amino acid biosynthesis has elucidated roles of aminoacyl-transfer ribonucleic acid (aa-tRNA) outside of translation. Although the two enzyme families...

  2. The digestion of yeast cell wall polysaccharides in veal calves

    NARCIS (Netherlands)

    Gaillard, B.D.E.; Weerden, van E.J.

    1976-01-01

    1. The digestibility of the cell wall polysaccharides of an alkane-grown yeast in different parts of the digestive tract of two veal calves fitted with re-entrant cannulas at the end of the ileum was studied by replacing part of the skim-milk powder of their ‘normal’, milk-substitute (all-milk-prote

  3. How the deposition of cellulose microfibrils builds cell wall architecture

    NARCIS (Netherlands)

    Emons, A.M.C.; Mulder, B.M.

    2000-01-01

    Cell walls, the extracytoplasmic matrices of plant cells, consist of an ordered array of cellulose microfibrils embedded in a matrix of polysaccharides and glycoproteins. This construction is reminiscent of steel rods in reinforced concrete. How a cell organizes these ordered textures around itself,

  4. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis

    NARCIS (Netherlands)

    Souza, De Amanda P.; Lessa Alvim Kamei, Claire; Torres Salvador, Andres Francisco; Pattathil, Sivakumar; Hahn, Michael G.; Trindade, Luisa M.; Buckeridge, Marcos S.

    2015-01-01

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell wal

  5. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls

    DEFF Research Database (Denmark)

    Marcus, Susan E; Verhertbruggen, Yves; Hervé, Cécile

    2008-01-01

    is associated with pectin in plant cell walls. They also indicate that documented patterns of cell wall epitopes in relation to cell development and cell differentiation may need to be re-considered in relation to the potential masking of cell wall epitopes by other cell wall components.......BACKGROUND: Molecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally...... regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure. RESULTS: Using a neoglycoprotein approach, in which a XXXG heptasaccharide...

  6. Molecular deformation mechanisms of the wood cell wall material.

    Science.gov (United States)

    Jin, Kai; Qin, Zhao; Buehler, Markus J

    2015-02-01

    Wood is a biological material with outstanding mechanical properties resulting from its hierarchical structure across different scales. Although earlier work has shown that the cellular structure of wood is a key factor that renders it excellent mechanical properties at light weight, the mechanical properties of the wood cell wall material itself still needs to be understood comprehensively. The wood cell wall material features a fiber reinforced composite structure, where cellulose fibrils act as stiff fibers, and hemicellulose and lignin molecules act as soft matrix. The angle between the fiber direction and the loading direction has been found to be the key factor controlling the mechanical properties. However, how the interactions between theses constitutive molecules contribute to the overall properties is still unclear, although the shearing between fibers has been proposed as a primary deformation mechanism. Here we report a molecular model of the wood cell wall material with atomistic resolution, used to assess the mechanical behavior under shear loading in order to understand the deformation mechanisms at the molecular level. The model includes an explicit description of cellulose crystals, hemicellulose, as well as lignin molecules arranged in a layered nanocomposite. The results obtained using this model show that the wood cell wall material under shear loading deforms in an elastic and then plastic manner. The plastic regime can be divided into two parts according to the different deformation mechanisms: yielding of the matrix and sliding of matrix along the cellulose surface. Our molecular dynamics study provides insights of the mechanical behavior of wood cell wall material at the molecular level, and paves a way for the multi-scale understanding of the mechanical properties of wood.

  7. Cell wall structure and function in lactic acid bacteria.

    Science.gov (United States)

    Chapot-Chartier, Marie-Pierre; Kulakauskas, Saulius

    2014-08-29

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts.

  8. Sorbitol Production By Zymomonas Mobilis ATCC 29191 In Medium Of Sucrose Pre-Treated With Invertase

    Directory of Open Access Journals (Sweden)

    Maria Antonia Pedrine Colabone Celligoi

    2002-01-01

    Full Text Available Sorbitol production by Zymomonas mobilis ATCC 29191 in medium of sucrose pre-treated with invertase was studied. The best results were obtained when the medium was pre-treated with invertase as sorbitol production of 41,39 g/L and a productivity of 1,72 g/L.h-1 in 24 hours of fermentation. The invertase addition in the fermentation broth increased 72,17% in the sorbitol formation.

  9. Sorbitol Production By Zymomonas Mobilis ATCC 29191 In Medium Of Sucrose Pre-Treated With Invertase

    OpenAIRE

    Maria Antonia Pedrine Colabone Celligoi; Viviane Cristina Schiabel; João Batista Buzato; Josiane Alessandra Vignoli; Márcio de Barros

    2002-01-01

    Sorbitol production by Zymomonas mobilis ATCC 29191 in medium of sucrose pre-treated with invertase was studied. The best results were obtained when the medium was pre-treated with invertase as sorbitol production of 41,39 g/L and a productivity of 1,72 g/L.h-1 in 24 hours of fermentation. The invertase addition in the fermentation broth increased 72,17% in the sorbitol formation.

  10. EFFECT OF NITROGEN SOURCES ON THE PRODUCTION OF INVERTASE BY YEAST SACCHAROMYCES CEREVISIAE 3090

    OpenAIRE

    Suresh P. Kamble; Jyotsna C. Borate

    2012-01-01

    Invertase from Saccharomyces cerevisiae is high cost enzyme and primarily used in the confectionary industry. For large scale production of the enzyme, feasible synthetic medium with appropriate supplemented nutrients are required. The effect of carbon source on invertase production is well known, but little is known about the effect of different nitrogen source. The aim of the present study is to see the effect of different nitrogen sources on the production of invertase in submerged ferment...

  11. Defects in Protein Folding Machinery Affect Cell Wall Integrity and Reduce Ethanol Tolerance in S. cerevisiae.

    Science.gov (United States)

    Narayanan, Aswathy; Pullepu, Dileep; Reddy, Praveen Kumar; Uddin, Wasim; Kabir, M Anaul

    2016-07-01

    The chaperonin complex CCT/TRiC (chaperonin containing TCP-1/TCP-1 ring complex) participates in the folding of many crucial proteins including actin and tubulin in eukaryotes. Mutations in genes encoding its subunits can affect protein folding and in turn, the physiology of the organism. Stress response in Saccharomyces cerevisiae is important in fermentation reactions and operates through overexpression and underexpression of genes, thus altering the protein profile. Defective protein folding machinery can disturb this process. In this study, the response of cct mutants to stress conditions in general and ethanol in specific was investigated. CCT1 mutants showed decreased resistance to different conditions tested including osmotic stress, metal ions, surfactants, reducing and oxidising agents. Cct1-3 mutant with the mutation in the conserved ATP-binding region showed irreversible defects than other mutants. These mutants were found to have inherent cell wall defects and showed decreased ethanol tolerance. This study reveals that cell wall defects and ethanol sensitivity are linked. Genetic and proteomic analyses showed that the yeast genes RPS6A (ribosomal protein), SCL1 (proteasomal subunit) and TDH3 (glyceraldehyde-3-phosphate dehydrogenase) on overexpression, improved the growth of cct1-3 mutant on ethanol. We propose the breakdown of common stress response pathways caused by mutations in CCT complex and the resulting scarcity of functional stress-responsive proteins, affecting the cell's defence against different stress agents in cct mutants. Defective cytoskeleton and perturbed cell wall integrity reduce the ethanol tolerance in the mutants which are rescued by the extragenic suppressors.

  12. Altered cell wall disassembly during ripening of Cnr tomato fruit : implications for cell wall adhesion and fruit softening

    NARCIS (Netherlands)

    Orfila, C.; Huisman, M.M.H.; Willats, W.G.T.; Alebeek, van G.J.W.M.; Schols, H.A.; Seymour, G.B.; Knox, J.P.

    2002-01-01

    The Cnr (Colourless non-ripening) tomato (Lycopersicon esculentum Mill.) mutant has an aberrant fruit-ripening phenotype in which fruit do not soften and have reduced cell adhesion between pericarp cells. Cell walls from Cnr fruit were analysed in order to assess the possible contribution of pectic

  13. Critical role for CaFEN1 and CaFEN12 of Candida albicans in cell wall integrity and biofilm formation

    Science.gov (United States)

    Alfatah, Md.; Bari, Vinay K.; Nahar, Anubhav S.; Bijlani, Swati; Ganesan, K.

    2017-01-01

    Sphingolipids are involved in several cellular functions, including maintenance of cell wall integrity. To gain insight into the role of individual genes of sphingolipid biosynthetic pathway, we have screened Saccharomyces cerevisiae strains deleted in these genes for sensitivity to cell wall perturbing agents calcofluor white and congo red. Only deletants of FEN1 and SUR4 genes were found to be sensitive to both these agents. Candida albicans strains deleted in their orthologs, CaFEN1 and CaFEN12, respectively, also showed comparable phenotypes, and a strain deleted for both these genes was extremely sensitive to cell wall perturbing agents. Deletion of these genes was reported earlier to sensitise cells to amphotericin B (AmB), which is a polyene drug that kills the cells mainly by binding and sequestering ergosterol from the plasma membrane. Here we show that their AmB sensitivity is likely due to their cell wall defect. Further, we show that double deletant of C. albicans is defective in hyphae formation as well as biofilm development. Together this study reveals that deletion of FEN1 and SUR4 orthologs of C. albicans leads to impaired cell wall integrity and biofilm formation, which in turn sensitise cells to AmB. PMID:28079132

  14. PRGL:A cell wall proline-rich protein containning GASA domain in Gerbera hybrida

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    PRPs (proline-rich proteins) are a group of cell wall proteins characterized by their proline and hy- droproline-rich repetitive peptides. The expression of PRPs in plants is stimulated by wounding and environmental stress. GASA (gibberellic acid stimulated in Arabidopsis) proteins are small peptides sharing a 60 amino acid conserved C-terminal domain containing twelve invariant cysteine residues. Most of GASAs reported are localized to apoplasm or cell wall and their expression was regulated by gibberellins (GAs). It has been reported that, in French bean, these two proteins encoding by two distinct genes formed a two-component chitin-receptor involved in plant-pathogen interactions when plant was infected. We cloned a full-length cDNA of PRGL (proline-rich GASA-like) gene which encodes a protein containing both PRP and GASA-like domains. It is demonstrated that PRGL is a new protein with characteristics of PRP and GASA by analyzing its protein structure and gene expression.

  15. Glycosyl hydrolases of cell wall are induced by sugar starvation in Arabidopsis.

    Science.gov (United States)

    Lee, Eun-Jeong; Matsumura, Yasuhiro; Soga, Kouichi; Hoson, Takayuki; Koizumi, Nozomu

    2007-03-01

    Three Arabidopsis genes encoding a putative beta-galactosidase (At5g56870), beta-xylosidase (At5g49360) and beta-glucosidase (At3g60140) are induced by sugar starvation. The deduced proteins belong to the glycosyl hydrolase families 35, 3 and 1, respectively. They are predicted to be secretory proteins that play roles in modification of cell wall polysaccharides based on amino acid similarity. The beta-galactosidase encoded by At5g56870 was identified as a secretory protein in culture medium of suspension cells by mass spectrometry analysis. This protein was specifically detected under sugar-starved conditions with a specific antibody. Induction of these genes was repressed in suspension cells grown with galactose, xylose and glucose, as well as with sucrose. In planta, expression of the genes and protein accumulation were detected when photosynthesis was inhibited. Glycosyl hydrolase activity against galactan also increased during sugar starvation. The amount of monosaccharide in pectin and hemicellulose in detached leaves decreased in response to sugar starvation. These findings suggest that the cell wall may function as a storage reserve of carbon in addition to providing physical support for the plant body.

  16. Quantitative trait loci and comparative genomics of cereal cell wall composition.

    Science.gov (United States)

    Hazen, Samuel P; Hawley, Robin M; Davis, Georgia L; Henrissat, Bernard; Walton, Jonathan D

    2003-05-01

    Quantitative trait loci (QTLs) affecting sugar composition of the cell walls of maize (Zea mays) pericarp were mapped as an approach to the identification of genes involved in cereal wall biosynthesis. Mapping was performed using the IBM (B73 x Mo17) recombinant inbred line population. There were statistically significant differences between B73 and Mo17 in content of xylose (Xyl), arabinose (Ara), galactose (Gal), and glucose. Thirteen QTLs were found, affecting the content of Xyl (two QTLs), Ara (two QTLs), Gal (five QTLs), Glc (two QTLs), Ara + Gal (one QTL), and Xyl + Glc (one QTL). The chromosomal regions corresponding to two of these, affecting Ara + Gal and Ara on maize chromosome 3, could be aligned with a syntenic region on rice (Oryza sativa) chromosome 1, which has been completely sequenced and annotated. The contiguous P1-derived artificial chromosome rice clones covering the QTLs were predicted to encode 117 and 125 proteins, respectively. Two of these genes encode putative glycosyltransferases, displaying similarity to carbohydrate-active enzyme database family GT4 (galactosyltransferases) or to family GT64 (C-terminal domain of animal heparan synthases). The results illustrate the potential of using natural variation, emerging genomic resources, and homeology within the Poaceae to identify candidate genes involved in the essential process of cell wall biosynthesis.

  17. Rapid stalk elongation in tulip (Tulipa gesneriana L. cv. Apeldoorn) and the combined action of cold-induced invertase and the water-channel protein gammaTIP.

    Science.gov (United States)

    Balk, P A; de Boer, A D

    1999-09-01

    Many bulbous plants need a low-temperature treatment for flowering. Cold, for example, affects the elongation of the stalk, thereby influencing the quality of the cut flower. How the elongation of the stalk is promoted by cold and which physiological and biochemical mechanisms are involved have remained obscure. As invertase has been shown to be involved in the cold-induced elongation of the flower stalks of tulips (Lambrechts et al., 1994, Plant Physiol 104: 515-520), we further characterized this enzyme by cloning the cDNA and analysing its expression in various tissues of the tulip (Tulipa gesneriana L. cv. Apeldoorn) stalk. In addition, the role of sucrose synthase was investigated. Since turgor pressure is an important force driving cell elongation, the role of a water-channel protein (gammaTIP) was studied in relation to these two enzymes. The mRNA level of the invertase found was substantially up-regulated as a result of cold treatment. Analysis of the amino acid sequence of this invertase revealed the presence of a vacuolar targeting signal. Two different forms of sucrose synthase were found, the expression of one of them appeared to be restricted to the vascular tissue while the other form was present in the surrounding tissue. Both sucrose synthases were present in the stalk during the entire period of bulb storage and after planting, but their activities declined during stalk elongation. The expression of the gammaTIP gene was restricted mainly to the vascular tissue and its expression profile was identical to that of invertase. Simultaneous expression of invertase and gammaTIP possibly leads to an increase in osmotic potential and vacuolar water uptake, thus providing a driving force for stretching the stalk cells.

  18. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.

    Directory of Open Access Journals (Sweden)

    Eric C Martens

    2011-12-01

    Full Text Available Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for catabolism of many complex carbohydrates. However, the role of these systems in degrading the chemically diverse repertoire of plant cell wall glycans remains unknown. Here we show that two closely related human gut Bacteroides, B. thetaiotaomicron and B. ovatus, are capable of utilizing nearly all of the major plant and host glycans, including rhamnogalacturonan II, a highly complex polymer thought to be recalcitrant to microbial degradation. Transcriptional profiling and gene inactivation experiments revealed the identity and specificity of the polysaccharide utilization loci (PULs that encode individual Sus-like systems that target various plant polysaccharides. Comparative genomic analysis indicated that B. ovatus possesses several unique PULs that enable degradation of hemicellulosic polysaccharides, a phenotype absent from B. thetaiotaomicron. In contrast, the B. thetaiotaomicron genome has been shaped by increased numbers of PULs involved in metabolism of host mucin O-glycans, a phenotype that is undetectable in B. ovatus. Binding studies of the purified sensor domains of PUL-associated hybrid two-component systems in conjunction with transcriptional analyses demonstrate that complex oligosaccharides provide the regulatory cues that induce PUL activation and that each PUL is highly specific for a defined cell wall polymer. These results provide a view of how these species have diverged into different carbohydrate niches by evolving genes that target

  19. Dietary Yeast Cell Wall Extract Alters the Proteome of the Skin Mucous Barrier in Atlantic Salmon (Salmo salar): Increased Abundance and Expression of a Calreticulin-Like Protein.

    Science.gov (United States)

    Micallef, Giulia; Cash, Phillip; Fernandes, Jorge M O; Rajan, Binoy; Tinsley, John W; Bickerdike, Ralph; Martin, Samuel A M; Bowman, Alan S

    2017-01-01

    In order to improve fish health and reduce use of chemotherapeutants in aquaculture production, the immunomodulatory effect of various nutritional ingredients has been explored. In salmon, there is evidence that functional feeds can reduce the abundance of sea lice. This study aimed to determine if there were consistent changes in the skin mucus proteome that could serve as a biomarker for dietary yeast cell wall extract. The effect of dietary yeast cell wall extract on the skin mucus proteome of Atlantic salmon was examined using two-dimensional gel electrophoresis. Forty-nine spots showed a statistically significant change in their normalised volumes between the control and yeast cell wall diets. Thirteen spots were successfully identified by peptide fragment fingerprinting and LC-MS/MS and these belonged to a variety of functions and pathways. To assess the validity of the results from the proteome approach, the gene expression of a selection of these proteins was studied in skin mRNA from two different independent feeding trials using yeast cell wall extracts. A calreticulin-like protein increased in abundance at both the protein and transcript level in response to dietary yeast cell wall extract. The calreticulin-like protein was identified as a possible biomarker for yeast-derived functional feeds since it showed the most consistent change in expression in both the mucus proteome and skin transcriptome. The discovery of such a biomarker is expected to quicken the pace of research in the application of yeast cell wall extracts.

  20. C lostridium difficile surface proteins are anchored to the cell wall using CWB2 motifs that recognise the anionic polymer PSII

    Science.gov (United States)

    Willing, Stephanie E.; Candela, Thomas; Shaw, Helen Alexandra; Seager, Zoe; Mesnage, Stéphane; Fagan, Robert P.

    2015-01-01

    Summary Gram‐positive surface proteins can be covalently or non‐covalently anchored to the cell wall and can impart important properties on the bacterium in respect of cell envelope organisation and interaction with the environment. We describe here a mechanism of protein anchoring involving tandem CWB2 motifs found in a large number of cell wall proteins in the Firmicutes. In the Clostridium difficile cell wall protein family, we show the three tandem repeats of the CWB2 motif are essential for correct anchoring to the cell wall. CWB2 repeats are non‐identical and cannot substitute for each other, as shown by the secretion into the culture supernatant of proteins containing variations in the patterns of repeats. A conserved Ile Leu Leu sequence within the CWB2 repeats is essential for correct anchoring, although a preceding proline residue is dispensable. We propose a likely genetic locus encoding synthesis of the anionic polymer PSII and, using RNA knock‐down of key genes, reveal subtle effects on cell wall composition. We show that the anionic polymer PSII binds two cell wall proteins, SlpA and Cwp2, and these interactions require the CWB2 repeats, defining a new mechanism of protein anchoring in Gram‐positive bacteria. PMID:25649385

  1. Dietary Yeast Cell Wall Extract Alters the Proteome of the Skin Mucous Barrier in Atlantic Salmon (Salmo salar): Increased Abundance and Expression of a Calreticulin-Like Protein

    Science.gov (United States)

    Micallef, Giulia; Cash, Phillip; Fernandes, Jorge M. O.; Rajan, Binoy; Tinsley, John W.; Bickerdike, Ralph

    2017-01-01

    In order to improve fish health and reduce use of chemotherapeutants in aquaculture production, the immunomodulatory effect of various nutritional ingredients has been explored. In salmon, there is evidence that functional feeds can reduce the abundance of sea lice. This study aimed to determine if there were consistent changes in the skin mucus proteome that could serve as a biomarker for dietary yeast cell wall extract. The effect of dietary yeast cell wall extract on the skin mucus proteome of Atlantic salmon was examined using two-dimensional gel electrophoresis. Forty-nine spots showed a statistically significant change in their normalised volumes between the control and yeast cell wall diets. Thirteen spots were successfully identified by peptide fragment fingerprinting and LC-MS/MS and these belonged to a variety of functions and pathways. To assess the validity of the results from the proteome approach, the gene expression of a selection of these proteins was studied in skin mRNA from two different independent feeding trials using yeast cell wall extracts. A calreticulin-like protein increased in abundance at both the protein and transcript level in response to dietary yeast cell wall extract. The calreticulin-like protein was identified as a possible biomarker for yeast-derived functional feeds since it showed the most consistent change in expression in both the mucus proteome and skin transcriptome. The discovery of such a biomarker is expected to quicken the pace of research in the application of yeast cell wall extracts. PMID:28046109

  2. Identification of Quantitative Trait Loci Affecting Hemicellulose Characteristics Based on Cell Wall Composition in a Wild and Cultivated Rice Species

    Institute of Scientific and Technical Information of China (English)

    Si-Ju Zhang; Xue-Qin Song; Bai-Sheng Yu; Bao-Cai Zhang; Chuan-Qing Sun; J. Paul Knox; Yi-Hua Zhou

    2012-01-01

    Cell wall hemicellulosic polysaccharides are structurally complex and diverse.Knowledge about the synthesisof cell wall hemicelluloses and their biological roles is limited.Quantitative trait loci (QTL) mapping is a helpful tool for the dissection of complex phenotypes for gene identification.In this study,we exploited the natural variation in cell wall monosaccharide levels between a common wild rice,Yuanj,and an elite indica cultivar,Teqing,and performed QTL mapping with their introgression lines (ILs).Chemical analyses conducted on the culms of Yuanj and Teqing showed that the major alterations are found in glucose and xylose levels,which are correlated with specific hemicellulosic polymers.Glycosidic linkage examination revealed that,in Yuanj,an increase in glucose content results from a higher level of mixed linkage β-glucan (MLG),whereas a reduction in xylose content reflects a low level of xylan backbone and a varied arabinoxylan (AX) structure.Seventeen QTLs for monosaccharides have been identified through composition analysis of the culm residues of 95 core ILs.Four major QTLs affecting xylose and glucose levels are responsible for 19 and 21% of the phenotypic variance,respectively.This study provides a unique resource for the genetic dissection of rice cell wall formation and remodeling in the vegetative organs.

  3. The actin-related protein Sac1 is required for morphogenesis and cell wall integrity in Candida albicans.

    Science.gov (United States)

    Zhang, Bing; Yu, Qilin; Jia, Chang; Wang, Yuzhou; Xiao, Chenpeng; Dong, Yijie; Xu, Ning; Wang, Lei; Li, Mingchun

    2015-08-01

    Candida albicans is a common pathogenic fungus and has aroused widespread attention recently. Actin cytoskeleton, an important player in polarized growth, protein secretion and organization of cell shape, displays irreplaceable role in hyphal development and cell integrity. In this study, we demonstrated a homologue of Saccharomyces cerevisiae Sac1, in C. albicans. It is a potential PIP phosphatase with Sac domain which is related to actin organization, hyphal development, biofilm formation and cell wall integrity. Deletion of SAC1 did not lead to insitiol-auxotroph phenotype in C. albicans, but this gene rescued the growth defect of S. cerevisiae sac1Δ in the insitiol-free medium. Hyphal induction further revealed the deficiency of sac1Δ/Δ in hyphal development and biofilm formation. Fluorescence observation and real time PCR (RT-PCR) analysis suggested both actin and the hyphal cell wall protein Hwp1 were overexpressed and mislocated in this mutant. Furthermore, cell wall integrity (CWI) was largely affected by deletion of SAC1, due to the hypersensitivity to cell wall stress, changed content and distribution of chitin in the mutant. As a result, the virulence of sac1Δ/Δ was seriously attenuated. Taken together, this study provides evidence that Sac1, as a potential PIP phosphatase, is essential for actin organization, hyphal development, CWI and pathogenicity in C. albicans.

  4. A kinetic analysis of the auxin transcriptome reveals cell wall remodeling proteins that modulate lateral root development in Arabidopsis.

    Science.gov (United States)

    Lewis, Daniel R; Olex, Amy L; Lundy, Stacey R; Turkett, William H; Fetrow, Jacquelyn S; Muday, Gloria K

    2013-09-01

    To identify gene products that participate in auxin-dependent lateral root formation, a high temporal resolution, genome-wide transcript abundance analysis was performed with auxin-treated Arabidopsis thaliana roots. Data analysis identified 1246 transcripts that were consistently regulated by indole-3-acetic acid (IAA), partitioning into 60 clusters with distinct response kinetics. We identified rapidly induced clusters containing auxin-response functional annotations and clusters exhibiting delayed induction linked to cell division temporally correlated with lateral root induction. Several clusters were enriched with genes encoding proteins involved in cell wall modification, opening the possibility for understanding mechanistic details of cell structural changes that result in root formation following auxin treatment. Mutants with insertions in 72 genes annotated with a cell wall remodeling function were examined for alterations in IAA-regulated root growth and development. This reverse-genetic screen yielded eight mutants with root phenotypes. Detailed characterization of seedlings with mutations in cellulase3/glycosylhydrolase9b3 and leucine rich extensin2, genes not normally linked to auxin response, revealed defects in the early and late stages of lateral root development, respectively. The genes identified here using kinetic insight into expression changes lay the foundation for mechanistic understanding of auxin-mediated cell wall remodeling as an essential feature of lateral root development.

  5. Plant cell walls: New insights from ancient species

    DEFF Research Database (Denmark)

    Sørensen, Iben; Willats, William George Tycho

    2008-01-01

    Cell walls are a defining feature of plants and have numerous crucial roles in growth and development. They are also the largest source of terrestrial biomass and have many important industrial applications - ranging from bulk products to functional food ingredients. There is considerable interest......¿4)-linked ß-D-Glcp are joined by occasional (1¿3)-linkages. This mixed linkage glucan (MLG) has been the subject of extensive research because of the economic importance of several Poales species including rice, barley and wheat and because MLG has proven health benefits. The recent discovery of MLG......-D-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. Plant J 2008; 54:510-21....

  6. Resistance to antibiotics targeted to the bacterial cell wall.

    Science.gov (United States)

    Nikolaidis, I; Favini-Stabile, S; Dessen, A

    2014-03-01

    Peptidoglycan is the main component of the bacterial cell wall. It is a complex, three-dimensional mesh that surrounds the entire cell and is composed of strands of alternating glycan units crosslinked by short peptides. Its biosynthetic machinery has been, for the past five decades, a preferred target for the discovery of antibacterials. Synthesis of the peptidoglycan occurs sequentially within three cellular compartments (cytoplasm, membrane, and periplasm), and inhibitors of proteins that catalyze each stage have been identified, although not all are applicable for clinical use. A number of these antimicrobials, however, have been rendered inactive by resistance mechanisms. The employment of structural biology techniques has been instrumental in the understanding of such processes, as well as the development of strategies to overcome them. This review provides an overview of resistance mechanisms developed toward antibiotics that target bacterial cell wall precursors and its biosynthetic machinery. Strategies toward the development of novel inhibitors that could overcome resistance are also discussed.

  7. Cell wall bound anionic peroxidases from asparagus byproducts.

    Science.gov (United States)

    Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael

    2014-10-08

    Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters.

  8. Dislocation-mediated growth of bacterial cell walls

    CERN Document Server

    Amir, Ariel

    2012-01-01

    Recent experiments have illuminated a remarkable growth mechanism of rod-shaped bacteria: proteins associated with cell wall extension move at constant velocity in circles oriented approximately along the cell circumference (Garner et al., Science (2011), Dominguez-Escobar et al. Science (2011), van Teeffelen et al. PNAS (2011). We view these as dislocations in the partially ordered peptidoglycan structure, activated by glycan strand extension machinery, and study theoretically the dynamics of these interacting defects on the surface of a cylinder. Generation and motion of these interacting defects lead to surprising effects arising from the cylindrical geometry, with important implications for growth. We also discuss how long range elastic interactions and turgor pressure affect the dynamics of the fraction of actively moving dislocations in the bacterial cell wall.

  9. Pulsed electric field reduces the permeability of potato cell wall.

    Science.gov (United States)

    Galindo, Federico Gómez; Vernier, P Thomas; Dejmek, Petr; Vicente, António; Gundersen, Martin A

    2008-05-01

    The effect of the application of pulsed electric fields to potato tissue on the diffusion of the fluorescent dye FM1-43 through the cell wall was studied. Potato tissue was subjected to field strengths ranging from 30 to 500 V/cm, with one 1 ms rectangular pulse, before application of FM1-43 and microscopic examination. Our results show a slower diffusion of FM1-43 in the electropulsed tissue when compared with that in the non-pulsed tissue, suggesting that the electric field decreased the cell wall permeability. This is a fast response that is already detected within 30 s after the delivery of the electric field. This response was mimicked by exogenous H2O2 and blocked by sodium azide, an inhibitor of the production of H2O2 by peroxidases. (c) 2007 Wiley-Liss, Inc.

  10. Cell wall polysaccharides in black currants and bilberries-characterisation in berries, juice, and press cake

    NARCIS (Netherlands)

    Hilz, H.; Bakx, E.J.; Schols, H.A.; Voragen, A.G.J.

    2005-01-01

    Cell wall polysaccharides from black currants and bilberries were characterised in three approaches. First, compositions of skin, pulp, and seeds show the distribution of polysaccharides over these tissues. A sequential extraction of cell wall material with different aqueous extractants informs

  11. The Cell Walls of Green Algae: A Journey through Evolution and Diversity

    National Research Council Canada - National Science Library

    Domozych, David S; Ciancia, Marina; Fangel, Jonatan U; Mikkelsen, Maria Dalgaard; Ulvskov, Peter; Willats, William G T

    2012-01-01

    .... The extracellular coverings of green algae including cell walls are also diverse. A recent surge of research in green algal cell walls fueled by new emerging technologies has revealed new and critical insight concerning these coverings...

  12. Analysis of the soluble cell wall proteome of gymnosperms.

    Science.gov (United States)

    Uzal, Esther Novo; Gómez-Ros, Laura V; Hernández, Jose A; Pedreño, María A; Cuello, Juan; Ros Barceló, Alfonso

    2009-05-15

    We analyzed the cell wall proteome of lignifying suspension cell cultures (SCCs) from four gymnosperms that differ in evolution degree. This analysis showed the presence of "peptide sequence tags" (PSTs) corresponding to glucan endo-1,3-beta-D-glucosidase, xyloglucan-endotrans-glucosylase/hydrolase, chitinases, thaumatin-like proteins and proteins involved in lignin/lignan biosynthesis, such as dirigent-like proteins and peroxidases. Surprisingly, and given the abundance of peroxidases in the cell wall proteome of these gymnosperms, PSTs corresponding to peroxidases were only detected in tryptic fragments of the cell wall proteome of Cycas revoluta. The current lack of knowledge regarding C. revoluta peroxidases led us to purify, characterize and partially sequence the peroxidases responsible for lignin biosynthesis in this species. This yielded three peroxidase-enriched fractions: CrPrx 1, CrPrx 2 and CrPrx 3. Analyses of tryptic peptides of CrPrx 2 (32kDa) and CrPrx 3 (26kDa) suggest that CrPrx 3 arises from CrPrx 2 by protein truncation, and that CrPrx 3 apparently constitutes a post-translational modification of CrPrx 2. That CrPrx 2 and CrPrx 3 are apparently the same enzyme was also deduced from the similarity between the k(cat) shown by both peroxidases for the three monolignols. These results emphasize the analogies between the cell wall proteome of gymnosperms and angiosperms, the complexity of the peroxidase proteome, and the difficulties involved in establishing fine structure-function relationships.

  13. Sorption of volatile phenols by yeast cell walls

    Directory of Open Access Journals (Sweden)

    Nerea Jiménez-Moreno

    2009-01-01

    Full Text Available Nerea Jiménez-Moreno, Carmen Ancín-AzpilicuetaDepartment of Applied Chemistry, Universidad Pública de Navarra, Pamplona, SpainAbstract: Yeast walls can retain different wine compounds and so its use is interesting in order to eliminate harmful substances from the must which affect alcoholic fermentation (medium chain fatty acids or which affect wine quality in a negative way (ethyl phenols, ochratoxin A. The aim of this study was to examine the capacity of commercial yeast cell walls in eliminating volatile phenols (4-ethylphenol and 4-ethylguaiacol from a synthetic wine that contained 1 mg/L of each one of these compounds. The binding of these compounds to the wall was quite fast which would seem to indicate that the yeast wall-volatile compound union is produced in the outer surface layers of this enological additive. The cell walls used reduced the concentration of 4-ethylphenol and 4-ethylguaiacol, although it would seem that on modifying the matrix of the wine the number of free binding sites on the walls is also modified.Keywords: volatile phenols, yeast cell walls, wine, sorption

  14. Another brick in the cell wall: biosynthesis dependent growth model.

    Science.gov (United States)

    Barbacci, Adelin; Lahaye, Marc; Magnenet, Vincent

    2013-01-01

    Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i) a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii) new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  15. Another brick in the cell wall: biosynthesis dependent growth model.

    Directory of Open Access Journals (Sweden)

    Adelin Barbacci

    Full Text Available Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  16. Cell wall proteins in seedling cotyledons of Prosopis chilensis.

    Science.gov (United States)

    Rodríguez, J G; Cardemil, L

    1994-01-01

    Four cell wall proteins of cotyledons of Prosopis chilensis seedlings were characterized by PAGE and Western analyses using a polyclonal antibody, generated against soybean seed coat extensin. These proteins had M(r)s of 180,000, 126,000, 107,000 and 63,000, as determined by SDS-PAGE. The proteins exhibited a fluorescent positive reaction with dansylhydrazine suggesting that they are glycoproteins; they did not show peroxidase activity. The cell wall proteins were also characterized by their amino acid composition and by their amino-terminal sequence. These analyses revealed that there are two groups of related cell wall proteins in the cotyledons. The first group comprises the proteins of M(r)s 180,000, 126,000, 107,000 which are rich in glutamic acid/glutamine and aspartic acid/asparagine and they have almost identical NH2-terminal sequences. The second group comprises the M(r) 63,000 protein which is rich in proline, glycine, valine and tyrosine, with an NH2-terminal sequence which was very similar to that of soybean proline-rich proteins.

  17. An emerging role of pectic rhamnogalacturonanII for cell wall integrity.

    Science.gov (United States)

    Reboul, Rebecca; Tenhaken, Raimund

    2012-02-01

    The plant cell wall is a complex network of different polysaccharides and glycoproteins, showing high diversity in nature. The essential components, tethering cell wall are under debate, as novel mutants challenge established models. The mutant ugd2,3 with a reduced supply of the important wall precursor UDP-glucuronic acid reveals the critical role of the pectic compound rhamnogalacturonanII for cell wall stability. This polymer seems to be more important for cell wall integrity than the previously favored xyloglucan.

  18. Adsorption of polycyclic aromatic hydrocarbons (PAHs) on Rhizopus oryzae cell walls: application of cosolvent models for validating the cell wall-water partition coefficient.

    Science.gov (United States)

    Ma, Bin; Xu, Minmin; Wang, Jiaojiao; Chen, Huaihai; He, Yan; Wu, Laosheng; Wang, Haizhen; Xu, Jianming

    2011-11-01

    The cell wall-cosolvent partition coefficients (Km) of polycyclic aromatic hydrocarbons (PAHs) were determined for Rhizopus oryzae cell walls by controlling the volume fraction of methanol (f) ranging from 0.1 to 0.5. Five cosolvent models were employed for extrapolating the cell wall-water partition coefficients (Kw) in pure water. The extrapolated Kw values of four PAHs on R. oryzae cell walls were ranged from 2.9 to 5.1. Comparison of various Kw values of pyrene generated from extrapolation and the QSPR model, together with predicted different (PD), mean percentage deviations (MPD), and root mean square errors (RSE), revealed that the performance of the LL and Bayesian models were the best among all five tested cosolvent models. This study suggests that R. oryzae cell walls play an important role in the partitioning of PAHs during bioremediation because of the high Kw of fungal cell walls.

  19. Action of xyloglucan hydrolase within the native cell wall architecture and its effect on cell wall extensibility in azuki bean epicotyls.

    Science.gov (United States)

    Kaku, Tomomi; Tabuchi, Akira; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro; Hoson, Takayuki

    2002-01-01

    Xyloglucan hydrolase (XGH) has recently been purified from the cell wall of azuki bean (Vigna angularis Ohwi et Ohashi) epicotyls as a new type of xyloglucan-degrading enzyme [Tabuchi et al. (2001) Plant Cell Physiol. 42: 154]. In the present study, the effects of XGH on the mechanical properties of the cell wall and on the level and the molecular size of xyloglucans within the native wall architecture were examined in azuki bean epicotyls. When the epidermal tissue strips from the growing regions of azuki bean epicotyls were incubated with XGH, the mechanical extensibility of the cell wall dramatically increased. XGH exogenously applied to cell wall materials (homogenates) or epidermal tissue strips decreased the amount of xyloglucans via the solubilization of the polysaccharides. Also, XGH substantially decreased the molecular mass of xyloglucans in both materials. These results indicate that XGH is capable of hydrolyzing xyloglucans within the native cell wall architecture and thereby increasing the cell wall extensibility in azuki bean epicotyls.

  20. Pectic arabinan side chains are essential for pollen cell wall integrity during pollen development

    NARCIS (Netherlands)

    Cankar, K.; Kortstee, A.J.; Toonen, M.A.J.; Wolters-Arts, M.; Houbein, R.; Mariani, C.; Ulvskov, P.; Jorgensen, B.; Schols, H.A.; Visser, R.G.F.; Trindade, L.M.

    2014-01-01

    Pectin is a complex polysaccharide and an integral part of the primary plant cell wall and middle lamella, contributing to cell wall mechanical strength and cell adhesion. To understand the structure–function relationships of pectin in the cell wall, a set of transgenic potato lines with altered pec

  1. Plectasin, a Fungal Defensin, Targets the Bacterial Cell Wall Precursor Lipid II

    DEFF Research Database (Denmark)

    Schneider, Tanja; Kruse, Thomas; Wimmer, Reinhard

    2010-01-01

    that plectasin, a fungal defensin, acts by directly binding the bacterial cell-wall precursor Lipid II. A wide range of genetic and biochemical approaches identify cell-wall biosynthesis as the pathway targeted by plectasin. In vitro assays for cell-wall synthesis identified Lipid II as the specific cellular...

  2. Targeted and non-targeted effects in cell wall polysaccharides from transgenetically modified potato tubers

    NARCIS (Netherlands)

    Huang, J.H.

    2016-01-01

    The plant cell wall is a chemically complex network composed mainly of polysaccharides. Cell wall polysaccharides surround and protect plant cells and are responsible for the stability and rigidity of plant tissue. Pectin is a major component of primary cell wall and the middle lamella of plants. Ho

  3. Genome-wide Expression Profiling in Seedlings of the Arabidopsis Mutant uro that is Defective in the Secondary Cell Wall Formation

    Institute of Scientific and Technical Information of China (English)

    Zheng Yuan; Xuan Yao; Dabing Zhang; Yue Sun; Hai Huang

    2007-01-01

    Plant secondary growth is of tremendous importance, not only for plant growth and development but also for economic usefulness.Secondary tissues such as xylem and phloem are the conducting tissues in plant vascular systems, essentially for water and nutrient transport, respectively.On the other hand, products of plant secondary growth are important raw materials and renewable sources of energy.Although advances have been recently made towards describing molecular mechanisms that regulate secondary growth, the genetic control for this process is not yet fully understood.Secondary cell wall formation in plants shares some common mechanisms with other plant secondary growth processes.Thus, studies on the secondary cell wall formation using Arabidopsis may help to understand the regulatory mechanisms for plant secondary growth.We previously reported phenotypic characterizations of an Arabidopsis semi-dominant mutant,upright rosette (uro), which is defective in secondary cell wall growth and has an unusually soft stem.Here, we show that lignification in the secondary cell wall in uro is aberrant by analyzing hypocotyl and stem.We also show genome-wide expression profiles of uro seedlings, using the Affymetrix GeneChip that contains approximately 24 000 Arabidopsis genes.Genes identified with altered expression levels include those that function in plant hormone biosynthesis and signaling,cell division and plant secondary tissue growth.These results provide useful information for further characterizations of the regulatory network in plant secondary cell wall formation.

  4. Molecular and biochemical characterization of a novel intracellular invertase from Aspergillus niger with transfructosylating activity

    NARCIS (Netherlands)

    Yuan, Xiao-Lian; van Munster, Jolanda M.; Ram, Arthur F. J.; van der Maarel, Marc J. E. C.; Dijkhuizen, Lubbert; Goosen, C.

    2007-01-01

    A novel subfamily of putative intracellular invertase enzymes (glycoside hydrolase family 32) has previously been identified in fungal genomes. Here, we report phylogenetic, molecular, and biochemical characteristics of SucB, one of two novel intracellular invertases identified in Aspergillus niger.

  5. Synergistic effect of different plant cell wall degrading enzymes is important for virulence of Fusarium graminearum.

    Science.gov (United States)

    Paccanaro, Maria Chiara; Sella, Luca; Castiglioni, Carla; Giacomello, Francesca; Martinez-Rocha, Ana Lilia; D'Ovidio, Renato; Schäfer, Wilhelm; Favaron, Francesco

    2017-08-11

    Endo-polygalacturonases (PGs) and xylanases have been shown to play an important role during pathogenesis of some fungal pathogens of dicot plants, whilst their role in monocot pathogens is less defined. Pg1 and xyr1 genes of the wheat pathogen Fusarium graminearum encode the main PG and the major regulator of xylanase production, respectively. Single and double disrupted mutants for these genes were obtained to assess their contribution to fungal infection. Compared to wild-type strain, the ∆pg mutant showed a nearly abolished PG activity, slight reduced virulence on soybean seedlings but no significant difference in disease symptoms on wheat spikes; the ∆xyr mutant was strongly reduced in xylanase activity and moderately reduced in cellulase activity but was as virulent as wild-type on both soybean and wheat plants. Consequently, the ΔpgΔxyr double mutant was impaired in xylanase, PG and cellulase activities, but, differently from single mutants, was significantly reduced in virulence on both plants. These findings demonstrate that the concurrent presence of PG, xylanase and cellulase activities is necessary for full virulence. The observation that the uronides released from wheat cell wall after a F. graminearum PG treatment were largely increased by the fungal xylanases suggests that these enzymes act synergistically in deconstructing the plant cell wall.

  6. Shading Contributes to the Reduction of Stem Mechanical Strength by Decreasing Cell Wall Synthesis in Japonica Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Longmei Wu

    2017-05-01

    Full Text Available Low solar radiation caused by industrial development and solar dimming has become a limitation in crop production in China. It is widely accepted that low solar radiation influences many aspects of plant development, including slender, weak stems and susceptibility to lodging. However, the underlying mechanisms are not well understood. To clarify how low solar radiation affects stem mechanical strength formation and lodging resistance, the japonica rice cultivars Wuyunjing23 (lodging-resistant and W3668 (lodging-susceptible were grown under field conditions with normal light (Control and shading (the incident light was reduced by 60% with a black nylon net. The yield and yield components, plant morphological characteristics, the stem mechanical strength, cell wall components, culm microstructure, gene expression correlated with cellulose and lignin biosynthesis were measured. The results showed that shading significantly reduced grain yield attributed to reduction of spikelets per panicles and grain weight. The stem-breaking strength decreased significantly under shading treatment; consequently, resulting in higher lodging index in rice plant in both varieties, as revealed by decreased by culm diameter, culm wall thickness and increased plant height, gravity center height. Compared with control, cell wall components including non-structural carbohydrate, sucrose, cellulose, and lignin reduced quite higher. With histochemical straining, shading largely reduced lignin deposition in the sclerenchyma cells and vascular bundle cells compared with control, and decreased cellulose deposition in the parenchyma cells of culm tissue in both Wuyunjing23 and W3668. And under shading condition, gene expression involved in secondary cell wall synthesis, OsPAL, OsCOMT, OsCCoAOMT, OsCCR, and OsCAD2, and primary cell wall synthesis, OsCesA1, OsCesA3, and OsCesA8 were decreased significantly. These results suggest that gene expression involved in the reduction of

  7. Verticillium longisporum Infection Affects the Leaf Apoplastic Proteome, Metabolome, and Cell Wall Properties in Arabidopsis thaliana

    Science.gov (United States)

    Floerl, Saskia; Majcherczyk, Andrzej; Possienke, Mareike; Feussner, Kirstin; Tappe, Hella; Gatz, Christiane; Feussner, Ivo; Kües, Ursula; Polle, Andrea

    2012-01-01

    Verticillium longisporum (VL) is one of the most devastating diseases in important oil crops from the family of Brassicaceae. The fungus resides for much time of its life cycle in the extracellular fluid of the vascular system, where it cannot be controlled by conventional fungicides. To obtain insights into the biology of VL-plant interaction in the apoplast, the secretome consisting of the extracellular proteome and metabolome as well as cell wall properties were studied in the model Brassicaceae, Arabidopsis thaliana. VL infection resulted in increased production of cell wall material with an altered composition of carbohydrate polymers and increased lignification. The abundance of several hundred soluble metabolites changed in the apoplast of VL-infected plants including signalling and defence compounds such as glycosides of salicylic acid, lignans and dihydroxybenzoic acid as well as oxylipins. The extracellular proteome of healthy leaves was enriched in antifungal proteins. VL caused specific increases in six apoplast proteins (three peroxidases PRX52, PRX34, P37, serine carboxypeptidase SCPL20, α-galactosidase AGAL2 and a germin-like protein GLP3), which have functions in defence and cell wall modification. The abundance of a lectin-like, chitin-inducible protein (CILLP) was reduced. Since the transcript levels of most of the induced proteins were not elevated until late infection time points (>20 dpi), whereas those of CILLP and GLP3 were reduced at earlier time points, our results may suggest that VL enhances its virulence by rapid down-regulation and delay of induction of plant defence genes. PMID:22363647

  8. Arabidopsis Heterotrimeric G-protein Regulates Cell Wall Defense and Resistance to Necrotrophic Fungi

    Institute of Scientific and Technical Information of China (English)

    Magdalena Delcado-Cerezo; Paul Schulze-Lefert; Shauna Somerville; José Manuel Estevez; Staffan Persson; Antonio Molina; Clara Sánchez-Rodríguez; Viviana Escudero; Eva Miedes; Paula Virginia Fernández; Lucía Jordá; Camilo Hernández-Blanco; Andrea Sánchez-Vallet; Pawel Bednarek

    2012-01-01

    The Arabidopsis heterotrimeric G-protein controls defense responses to necrotrophic and vascular fungi.The agb1 mutant impaired in the Gβ subunit displays enhanced susceptibility to these pathogens.Gβ/AGB1 forms an obligate dimer with either one of the Arabidopsis Gγ subunits (γ1/AGG1 and γ2/AGG2).Accordingly,we now demonstrate that the agg1 agg2 double mutant is as susceptible as agb1 plants to the necrotrophic fungus Plectosphaerella cucumerina.To elucidate the molecular basis of heterotrimeric G-protein-mediated resistance,we performed a comparative transcriptomic analysis of agb1-1 mutant and wild-type plants upon inoculation with P cucumerina.This analysis,together with metabolomic studies,demonstrated that G-protein-mediated resistance was independent of defensive pathways required for resistance to necrotrophic fungi,such as the salicylic acid,jasmonic acid,ethylene,abscisic acid,and tryptophan-derived metabolites signaling,as these pathways were not impaired in agb1 and agg1 agg2 mutants.Notably,many mis-regulated genes in agb1 plants were related with cell wall functions,which was also the case in agg1 agg2 mutant.Biochemical analyses and Fourier Transform InfraRed (FTIR) spectroscopy of cell walls from G-protein mutants revealed that the xylose content was lower in agb1 and agg1 agg2 mutants than in wild-type plants,and that mutant walls had similar FTIR spectratypes,which differed from that of wild-type plants.The data presented here suggest a canonical functionality of the Gβ and Gγ1/γ2 subunits in the control of Arabidopsis immune responses and the regulation of cell wall composition.

  9. QID74 Cell wall protein of Trichoderma harzianum is involved in cell protection and adherence to hydrophobic surfaces.

    Science.gov (United States)

    Rosado, Iván V; Rey, Manuel; Codón, Antonio C; Govantes, Javier; Moreno-Mateos, Miguel A; Benítez, Tahía

    2007-10-01

    Trichoderma is widely used as biocontrol agent against phytopathogenic fungi, and as biofertilizer because of its ability to establish mycorriza-like association with plants. The key factor to the ecological success of this genus is the combination of very active mycoparasitic mechanisms plus effective defense strategies induced in plants. This work, different from most of the studies carried out that address the attacking mechanisms, focuses on elucidating how Trichoderma is able to tolerate hostile conditions. A gene from Trichoderma harzianum CECT 2413, qid74, was strongly expressed during starvation of carbon or nitrogen sources; it encoded a cell wall protein of 74kDa that plays a significant role in mycelium protection. qid74 was originally isolated and characterized, in a previous work, by a differential hybridization approach under simulated mycoparasitism conditions. Heterologous expression of Qid74 in Saccharomyces cerevisiae indicated that the protein, located in the cell wall, interfered with mating and sporulation but not with cell integrity. The qid74 gene was disrupted by homologous recombination and it was overexpressed by isolating transformants selected for the amdS gene that carried several copies of qid74 gene under the control of the pki promoter. Disruptants and transformants showed similar growth rate and viability when they were cultivated in different media, temperatures and osmolarities, or were subjected to different abiotic stress conditions. However, disruptants produced about 70% mass yield under any condition and were substantially more sensitive than the wild type to cell wall degradation by different lytic preparations. Transformants had similar mass yield and were more resistant to lytic enzymes but more sensitive to copper sulfate than the wild type. When experiments of adherence to hydrophobic surfaces were carried out, the disruptants had a reduced capacity to adhere, whereas that capacity in the overproducer transformants was

  10. Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space.

    Science.gov (United States)

    Hoson, Takayuki; Soga, Kouichi; Mori, Ryuji; Saiki, Mizue; Nakamura, Yukiko; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro

    2002-09-01

    We analyzed the growth rate and the cell wall properties of coleoptiles of rice seedlings grown at 23.6 degrees C for 68.5, 91.5 and 136 h during the Space Shuttle STS-95 mission. In space, elongation growth of coleoptiles was stimulated and the cell wall extensibility increased. Also, the levels of the cell wall polysaccharides per unit length of coleoptiles and the relative content of the high molecular mass matrix polysaccharides decreased in space. These differences in the cell wall polysaccharides could be involved in increasing the cell wall extensibility, leading to growth stimulation of rice coleoptiles in space.

  11. Deletion of Cg-emb in corynebacterianeae leads to a novel truncated cell wall arabinogalactan, whereas inactivation of Cg-ubiA results in an arabinan-deficient mutant with a cell wall galactan core.

    Science.gov (United States)

    Alderwick, Luke J; Radmacher, Eva; Seidel, Mathias; Gande, Roland; Hitchen, Paul G; Morris, Howard R; Dell, Anne; Sahm, Hermann; Eggeling, Lothar; Besra, Gurdyal S

    2005-09-16

    The cell wall of Mycobacterium tuberculosis has a complex ultrastructure that consists of mycolic acids connected to peptidoglycan via arabinogalactan (AG) and abbreviated as the mAGP complex. The mAGP complex is crucial for the survival and pathogenicity of M. tuberculosis and is the target of several anti-tubercular agents. Apart from sharing a similar mAGP and the availability of the complete genome sequence, Corynebacterium glutamicum has proven useful in the study of orthologous M. tuberculosis genes essential for viability. Here we examined the effects of particular genes involved in AG polymerization by gene deletion in C. glutamicum. The anti-tuberculosis drug ethambutol is thought to target a set of arabinofuranosyltransferases (Emb) that are involved in arabinan polymerization. Deletion of emb in C. glutamicum results in a slow growing mutant with profound morphological changes. Chemical analysis revealed a dramatic reduction of arabinose resulting in a novel truncated AG structure possessing only terminal arabinofuranoside (t-Araf) residues with a corresponding loss of cell wall bound mycolic acids. Treatment of wild-type C. glutamicum with ethambutol and subsequent cell wall analyses resulted in an identical phenotype comparable to the C. glutamicum emb deletion mutant. Additionally, disruption of ubiA in C. glutamicum, the first enzyme involved in the biosynthesis of the sugar donor decaprenol phosphoarabinose (DPA), resulted in a complete loss of cell wall arabinan. Herein, we establish for the first time, (i) that in contrast to M. tuberculosis embA and embB mutants, deletion of C. glutamicum emb leads to a highly truncated AG possessing t-Araf residues, (ii) the exact site of attachment of arabinan chains in AG, and (iii) DPA is the only Araf sugar donor in AG biosynthesis suggesting the presence of a novel enzyme responsible for "priming" the galactan domain for further elaboration by Emb, resulting in the final maturation of the native AG

  12. Altering carbon allocation in hybrid poplar (Populus alba × grandidentata) impacts cell wall growth and development.

    Science.gov (United States)

    Unda, Faride; Kim, Hoon; Hefer, Charles; Ralph, John; Mansfield, Shawn D

    2016-12-20

    Galactinol synthase is a pivotal enzyme involved in the synthesis of the raffinose family of oligosaccharides (RFOs) that function as transport carbohydrates in the phloem, as storage compounds in sink tissues and as soluble metabolites that combat both abiotic and biotic stress in several plant species. Hybrid poplar (Populus alba × grandidentata) overexpressing the Arabidopsis thaliana GolS3 (AtGolS3) gene showed clear effects on development; the extreme overexpressing lines were stunted and had cell wall traits characteristic of tension wood, whereas lines with only moderate up-regulation grew normally and had moderately altered secondary cell wall composition and ultrastructure. Stem cross-sections of the developing xylem revealed a significant increase in the number of vessels, as well as the clear presence of a G-layer in the fibres. Furthermore, AtGolS3-OE lines possessed higher cellulose and lower lignin contents, an increase in cellulose crystallinity, and significantly altered hemicellulose-derived carbohydrates, notably manifested by their mannose and xylose contents. In addition, the transgenic plants displayed elevated xylem starch content. Transcriptome interrogation of the transgenic plants showed a significant up-regulation of genes involved in the synthesis of myo-inositol, along with genes involved in sucrose degradation. The results suggest that the overexpression of GolS and its product galactinol may serve as a molecular signal that initiates metabolic changes, culminating in a change in cell wall development and potentially the formation of tension wood.

  13. Effects of Argentilactone on the Transcriptional Profile, Cell Wall and Oxidative Stress of Paracoccidioides spp.

    Science.gov (United States)

    Araújo, Felipe Souto; Coelho, Luciene Melo; Silva, Lívia do Carmo; da Silva Neto, Benedito Rodrigues; Parente-Rocha, Juliana Alves; Bailão, Alexandre Melo; de Oliveira, Cecília Maria Alves; Fernandes, Gabriel da Rocha; Hernández, Orville; Ochoa, Juan Guillermo McEwen; Soares, Célia Maria de Almeida; Pereira, Maristela

    2016-01-01

    Paracoccidioides spp., a dimorphic pathogenic fungus, is the etiologic agent of paracoccidioidomycosis (PCM). PCM is an endemic disease that affects at least 10 million people in Latin America, causing severe public health problems. The drugs used against pathogenic fungi have various side effects and limited efficacy; therefore, there is an inevitable and urgent medical need for the development of new antifungal drugs. In the present study, we evaluated the transcriptional profile of Paracoccidioides lutzii exposed to argentilactone, a constituent of the essential oil of Hyptis ovalifolia. A total of 1,058 genes were identified, of which 208 were up-regulated and 850 were down-regulated. Cell rescue, defense and virulence, with a total of 26 genes, was a functional category with a large number of genes induced, including heat shock protein 90 (hsp90), cytochrome c peroxidase (ccp), the hemoglobin ligand RBT5 (rbt5) and superoxide dismutase (sod). Quantitative real-time PCR revealed an increase in the expression level of all of those genes. An enzymatic assay showed a significant increase in SOD activity. The reduced growth of Pbhsp90-aRNA, Pbccp-aRNA, Pbsod-aRNA and Pbrbt5-aRNA isolates in the presence of argentilactone indicates the importance of these genes in the response of Paracoccidioides spp. to argentilactone. The response of the P. lutzii cell wall to argentilactone treatment was also evaluated. The results showed that argentilactone caused a decrease in the levels of polymers in the cell wall. These results suggest that argentilactone is a potential candidate for antifungal therapy. PMID:26734764

  14. Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species.

    Science.gov (United States)

    Zhao, Yunjun; Sun, Jiayan; Xu, Peng; Zhang, Rui; Li, Laigeng

    2014-02-01

    Alternative splicing is an important mechanism involved in regulating the development of multicellular organisms. Although many genes in plants undergo alternative splicing, little is understood of its significance in regulating plant growth and development. In this study, alternative splicing of black cottonwood (Populus trichocarpa) wood-associated NAC domain transcription factor (PtrWNDs), PtrWND1B, is shown to occur exclusively in secondary xylem fiber cells. PtrWND1B is expressed with a normal short-transcript PtrWND1B-s as well as its alternative long-transcript PtrWND1B-l. The intron 2 structure of the PtrWND1B gene was identified as a critical sequence that causes PtrWND1B alternative splicing. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening. The two PtrWND1B isoforms play antagonistic roles in regulating cell wall thickening during fiber cell differentiation in Populus spp. PtrWND1B-s overexpression enhanced fiber cell wall thickening, while overexpression of PtrWND1B-l repressed fiber cell wall thickening. Alternative splicing may enable more specific regulation of processes such as fiber cell wall thickening during wood formation.

  15. Rice Brittle culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls.

    Science.gov (United States)

    Kotake, Toshihisa; Aohara, Tsutomu; Hirano, Ko; Sato, Ami; Kaneko, Yasuko; Tsumuraya, Yoichi; Takatsuji, Hiroshi; Kawasaki, Shinji

    2011-03-01

    The brittle culm (bc) mutants of Gramineae plants having brittle skeletal structures are valuable materials for studying secondary cell walls. In contrast to other recessive bc mutants, rice Bc6 is a semi-dominant bc mutant with easily breakable plant bodies. In this study, the Bc6 gene was cloned by positional cloning. Bc6 encodes a cellulose synthase catalytic subunit, OsCesA9, and has a missense mutation in its highly conserved region. In culms of the Bc6 mutant, the proportion of cellulose was reduced by 38%, while that of hemicellulose was increased by 34%. Introduction of the semi-dominant Bc6 mutant gene into wild-type rice significantly reduced the percentage of cellulose, causing brittle phenotypes. Transmission electron microscopy analysis revealed that Bc6 mutation reduced the cell wall thickness of sclerenchymal cells in culms. In rice expressing a reporter construct, BC6 promoter activity was detected in the culms, nodes, and flowers, and was localized primarily in xylem tissues. This expression pattern was highly similar to that of BC1, which encodes a COBRA-like protein involved in cellulose synthesis in secondary cell walls in rice. These results indicate that BC6 is a secondary cell wall-specific CesA that plays an important role in proper deposition of cellulose in the secondary cell walls.

  16. Profiling the Hydrolysis of Isolated Grape Berry Skin Cell Walls by Purified Enzymes.

    Science.gov (United States)

    Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Vivier, Melané A

    2015-09-23

    The unraveling of crushed grapes by maceration enzymes during winemaking is difficult to study because of the complex and rather undefined nature of both the substrate and the enzyme preparations. In this study we simplified both the substrate, by using isolated grape skin cell walls, and the enzyme preparations, by using purified enzymes in buffered conditions, to carefully follow the impact of the individual and combined enzymes on the grape skin cell walls. By using cell wall profiling techniques we could monitor the compositional changes in the grape cell wall polymers due to enzyme activity. Extensive enzymatic hydrolysis, achieved with a preparation of pectinases or pectinases combined with cellulase or hemicellulase enzymes, completely removed or drastically reduced levels of pectin polymers, whereas less extensive hydrolysis only opened up the cell wall structure and allowed extraction of polymers from within the cell wall layers. Synergistic enzyme activity was detectable as well as indications of specific cell wall polymer associations.

  17. Life behind cell walls: paradigm lost, paradigm regained.

    Science.gov (United States)

    Lamport, D T

    2001-09-01

    This review of the living cell wall and its protein components is in two parts. The first is anecdotal. A personal account spanning over 40 years research may perhaps be an antidote to one stereotypical view of scientists as detached and humorless. The second part deals with the meaning of function, particularly as it applies to hydroxyproline-rich glycoproteins. Function is a difficult word to define objectively. However, with help from such luminaries as Humpty Dumpty: "A word means what I want it to mean, neither more nor less," and Wittgenstein: "Giving examples of usage ... is the only way to talk about meaning," it is possible to construct a ziggurat representing increasingly complex levels of organization from molecular structure to ecology. Forty years ago I suggested that hydroxyproline-rich structural proteins played a key role in cell wall functioning. But because the bulk of the wall is carbohydrate, there has been an understandable resistance to paradigm change. Expansins, paradoxically, contribute greatly to this resistance because their modus operandi as cell-wall-loosening proteins is based on the idea that they break hydrogen bonds between polysaccharide chains allowing slippage. However, this view is not consistent with the recent discovery [Grobe et al. (1999) Eur. J. Biochem 263: 33-40] that beta-expansins may be proteases, as it implies that the extensin network is not a straightjacket but a substrate for expansin in muro. Such a direct role for extensins in both negative and positive regulation of cell expansion and elongation may constitute a major morphogenetic mechanism operating at all levels of plant growth and development.

  18. Cellulose-hemicellulose interaction in wood secondary cell-wall

    Science.gov (United States)

    Zhang, Ning; Li, Shi; Xiong, Liming; Hong, Yu; Chen, Youping

    2015-12-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.

  19. Cell wall swelling, fracture mode, and the mechanical properties of cherry fruit skins are closely related.

    Science.gov (United States)

    Brüggenwirth, Martin; Knoche, Moritz

    2017-04-01

    Cell wall swelling, fracture mode (along the middle lamellae vs. across cell walls), stiffness, and pressure at fracture of the sweet cherry fruit skin are closely related. Skin cracking is a common phenomenon in many crops bearing fleshy fruit. The objectives were to investigate relationships between the mode of fracture, the extent of cell wall swelling, and the mechanical properties of the fruit skin using sweet cherry (Prunus avium) as a model. Cracking was induced by incubating whole fruit in deionised water or by fracturing exocarp segments (ESs) in biaxial tensile tests. The fracture mode of epidermal cells was investigated by light microscopy. In biaxial tensile tests, the anticlinal cell walls of the ES fractured predominantly across the cell walls (rather than along) and showed no cell wall swelling. In contrast, fruit incubated in water fractured predominantly along the anticlinal epidermal cell walls and the cell walls were swollen. Swelling of cell walls also occurred when ESs were incubated in malic acid, in hypertonic solutions of sucrose, or in water. Compared to the untreated controls, these treatments resulted in more frequent fractures along the cell walls, lower pressures at fracture (p fracture), and lower moduli of elasticity (E, i.e., less stiff). Conversely, compared to the untreated controls, incubating the ES in CaCl2 and in high concentrations of ethanol resulted in thinner cell walls, in less frequent fractures along the cell walls, higher E and p fracture. Our study demonstrates that fracture mode, stiffness, and pressure at fracture are closely related to cell wall swelling. A number of other factors, including cultivar, ripening stage, turgor, CaCl2, and malic acid, exert their effects only indirectly, i.e., by affecting cell wall swelling.

  20. Enzymes and other agents that enhance cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1999-01-01

    Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.

  1. Mass spectrometry for characterizing plant cell wall polysaccharides

    Directory of Open Access Journals (Sweden)

    Stefan eBauer

    2012-03-01

    Full Text Available Mass spectrometry is a selective and powerful technique to obtain identification and structural information on compounds present in complex mixtures. Since it requires only small sample amount it is an excellent tool for researchers interested in detecting changes in composition of complex carbohydrates of plants. This mini-review gives an overview of common mass spectrometry techniques applied to the analysis of plant cell wall carbohydrates. It presents examples in which mass spectrometry has been used to elucidate the structure of oligosaccharides derived from hemicelluloses and pectins and illustrates how information on sequence, linkages, branching and modifications are obtained from characteristic fragmentation patterns.

  2. Chitosan Obtained from Cell Wall of Aspergillus Niger Mycelium

    Institute of Scientific and Technical Information of China (English)

    HUANG Hui-li; LIN Wen-luan; LIN Jian-ming

    2004-01-01

    Chitin from cell walls of Aspergillus Niger mycelium was prepared. A new method for the preparation of high deacetylation degree chitosan was studied in a dilute sodium hydroxide solution at a high pressure. The experimental results indicate that the deacetylation degree of the chitosan can reach 80% under the condition of a 5.00 mol/L sodium hydroxide solution at 0.1 MPa of pressure for 1 h. This method shows the advantages of the applications in the industry production and environment protection.

  3. Effects of yeast cell-wall characteristics on 4-ethylphenol sorption capacity in model wine.

    Science.gov (United States)

    Pradelles, Rémi; Alexandre, Herve; Ortiz-Julien, Anne; Chassagne, David

    2008-12-24

    Saccharomyces cerevisiae is an efficient biosorbant, used in winemaking to reduce the concentration of undesirable molecules such as fatty acids. Volatile phenols such as 4-ethylphenol, which causes a horsy smell in wine, are particular targets of this type of curative process. This study demonstrates that the sorption capacity of 4-ethylphenol by yeasts is greatly influenced by strain nature, methods, and medium used for biomass production and drying after harvesting. S. cerevisiae mutant strains with deletion of genes encoding specific proteins involved in cell-wall structure and composition were studied, and a major role for mannoproteins in 4-ethylphenol sorption was identified. It was confirmed that 4-ethylphenol sorption occurs at the surface of the yeast wall and that not all mannoproteins are determinants of sorption: the sorption capacity of cells with deletion of the Gas1p-encoding gene was 75% lower than that of wild type. Physicochemical properties of yeast cell surface have been also studied.

  4. Identification of Sporopollenin as the Outer Layer of Cell Wall in Microalga Chlorella protothecoides

    Science.gov (United States)

    He, Xi; Dai, Junbiao; Wu, Qingyu

    2016-01-01

    Chlorella protothecoides has been put forth as a promising candidate for commercial biodiesel production. However, the cost of biodiesel remains much higher than diesel from fossil fuel sources, partially due to the high costs of oil extraction from algae. Here, we identified the presence of a sporopollenin layer outside the polysaccharide cell wall; this was evaluated using transmission electron microscopy, 2-aminoethanol treatment, acetolysis, and Fourier Transform Infrared Spectroscopy. We also performed bioinformatics analysis of the genes of the C. protothecoides genome that are likely involved in sporopollenin synthesis, secretion, and translocation, and evaluated the expression of these genes via real-time PCR. We also found that that removal of this sporopollenin layer greatly improved the efficiency of oil extraction. PMID:27446068

  5. Gibberellin overproduction promotes sucrose synthase expression and secondary cell wall deposition in cotton fibers.

    Directory of Open Access Journals (Sweden)

    Wen-Qin Bai

    Full Text Available Bioactive gibberellins (GAs comprise an important class of natural plant growth regulators and play essential roles in cotton fiber development. To date, the molecular base of GAs' functions in fiber development is largely unclear. To address this question, the endogenous bioactive GA levels in cotton developing fibers were elevated by specifically up-regulating GA 20-oxidase and suppressing GA 2-oxidase via transgenic methods. Higher GA levels in transgenic cotton fibers significantly increased micronaire values, 1000-fiber weight, cell wall thickness and cellulose contents of mature fibers. Quantitative RT-PCR and biochemical analysis revealed that the transcription of sucrose synthase gene GhSusA1 and sucrose synthase activities were significantly enhanced in GA overproducing transgenic fibers, compared to the wild-type cotton. In addition, exogenous application of bioactive GA could promote GhSusA1 expression in cultured fibers, as well as in cotton hypocotyls. Our results suggested that bioactive GAs promoted secondary cell wall deposition in cotton fibers by enhancing sucrose synthase expression.

  6. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    Directory of Open Access Journals (Sweden)

    Andreia Michelle Smith-Moritz

    2015-08-01

    Full Text Available The CELLULOSE SYNTHASE-LIKE F6 (CslF6 gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG, a cell wall polysaccharide that is hypothesized to be a tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of three day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell was of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.

  7. Quantitative trait loci for cell wall components in recombinant inbred lines of maize (Zea mays L.) II: leaf sheath tissue.

    Science.gov (United States)

    Krakowsky, M D; Lee, M; Coors, J G

    2006-02-01

    While maize silage is a significant feed component in animal production operations, little information is available on the genetic bases of fiber and lignin concentrations in maize, which are negatively correlated with digestibility. Fiber is composed largely of cellulose, hemicellulose and lignin, which are the primary components of plant cell walls. Variability for these traits in maize germplasm has been reported, but the sources of the variation and the relationships between these traits in different tissues are not well understood. In this study, 191 recombinant inbred lines of B73 (low-intermediate levels of cell wall components, CWCs) x De811 (high levels of CWCs) were analyzed for quantitative trait loci (QTL) associated with CWCs in the leaf sheath. Samples were harvested from plots at two locations in 1998 and one in 1999 and assayed for neutral detergent fiber (NDF), acid detergent fiber (ADF) and acid detergent lignin (ADL). QTL were detected on all ten chromosomes, most in tissue specific clusters in concordance with the high genotypic correlations for CWCs within the same tissue. Adjustment of NDF for its subfraction, ADF, revealed that most of the genetic variation in NDF was probably due to variation in ADF. The low to moderate genotypic correlations for the same CWC across leaf sheath and stalk tissues indicate that some genes for CWCs may only be expressed in certain tissues. Many of the QTL herein were detected in other populations, and some are linked to candidate genes for cell wall carbohydrate biosynthesis.

  8. Measuring the Mechanical Properties of Plant Cell Walls

    Directory of Open Access Journals (Sweden)

    Hannes Vogler

    2015-03-01

    Full Text Available The size, shape and stability of a plant depend on the flexibility and integrity of its cell walls, which, at the same time, need to allow cell expansion for growth, while maintaining mechanical stability. Biomechanical studies largely vanished from the focus of plant science with the rapid progress of genetics and molecular biology since the mid-twentieth century. However, the development of more sensitive measurement tools renewed the interest in plant biomechanics in recent years, not only to understand the fundamental concepts of growth and morphogenesis, but also with regard to economically important areas in agriculture, forestry and the paper industry. Recent advances have clearly demonstrated that mechanical forces play a crucial role in cell and organ morphogenesis, which ultimately define plant morphology. In this article, we will briefly review the available methods to determine the mechanical properties of cell walls, such as atomic force microscopy (AFM and microindentation assays, and discuss their advantages and disadvantages. But we will focus on a novel methodological approach, called cellular force microscopy (CFM, and its automated successor, real-time CFM (RT-CFM.

  9. Dental pulp response to bacterial cell wall material.

    Science.gov (United States)

    Warfvinge, J; Dahlén, G; Bergenholtz, G

    1985-08-01

    Lipopolysaccharides (LPS) from Bacteroides oralis and Veillonella parvula and cell wall material from Lactobacillus casei were studied for their capacity to induce leukocyte migration in the dental pulp and in an implanted wound chamber. Three adult monkeys were challenged using lyophilized material sealed into buccal Class V cavities prepared in dentin. Pulp tissue responses were observed histologically eight and 72 hours after initiation of the experiment. Subjacent to cut dentinal tubules, bacterial materials induced polymorphonuclear leukocyte (PMN's) infiltration in the pulp tissue of the majority of test teeth examined. Responses were similar for the three bacterial test materials at both time periods. Topical applications of bovine serum albumin (BSA), used as a control, induced significantly less accumulation of PMN's. Assessments of induced exudate volumes and leukocyte densities in chambers implanted in rats showed comparable rankings with pulpal experiment between test (i.e., bacterial) and control (BSA) materials. Analysis of the data indicates that high-molecular-weight complexes of bacterial cell walls may adversely affect pulpal tissue across freshly exposed dentin.

  10. Chemical Profiling of the Plant Cell Wall through Raman Microspectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ju; Singh, Seema; Sun, Lan; Simmons, Blake; Auer, Manfred; Parvin, Bahram

    2010-03-02

    This paper presents a computational framework for chemical pro.ling of the plant cell wall through the Raman spectroscopy. The system enables query of known spectral signatures and clustering of spectral data based on intrinsic properties. As a result, presence and relative concentration of speci.c chemical bonds can be quanti.ed. The primary contribution of this paper is in representation of raman pro.le in terms of .uorescence background and multiscale peak detection at each grid point (voxel). Such a representation allows ef.cient spatial segmentation based on the coupling between high-level salient properties and low-level symbolic representation at each voxel. The high-level salient properties refer to preferred peaks and their attributes for the entire image. The low-level symbolic representations are based on .uorescence background, spectral peak locations, and their attributes. We present results on a corn stover tissue section that is imaged through Raman microscopy, and the results are consistent with the literature. In addition, automatic clustering indicates several distinct layers of the cell walls with different spectral signatures.

  11. A radioimmunoassay for lignin in plant cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Dawley, R.M.

    1989-01-01

    Lignin detection and determination in herbaceous tissue requires selective, specific assays which are not currently available. A radioimmunoassay (RIA) was developed to study lignin metabolism in these tissues. A {beta}-aryl ether lignin model compound was synthesized, linked to keyhole limpet hemocyanin using a water-soluble carbodiimide, and injected into rabbits. The highest titer of the antiserum obtained was 34 {eta}g/mL of model derivatized BSA. An in vitro system was developed to characterize the RIA. The model compound was linked to amino activated polyacrylamide beads to mimic lignin in the cell walls. {sup 125}I Radiolabelled protein A was used to detect IgG antibody binding. The RIA was shown in the in vitro system to exhibit saturable binding. The amount of antibody bound decreased when the serum was diluted. Immunoelectrophoresis and competitive binding experiments confirmed that both aromatic rings of the lignin model compound had been antigenic. Chlorogenic acid, a phenolic known to be present in plant cells, did not compete for antibody binding. The RIA was used to measure lignin in milled plant samples and barley seedlings. Antiserum binding to wheat cell walls and stressed barley segments was higher than preimmune serum binding. Antibody binding to stressed barley tissue decreased following NaClO{sub 2} delignification. The RIA was found to be less sensitive than expected, so several avenues for improving the method are discussed.

  12. Studying biomolecule localization by engineering bacterial cell wall curvature.

    Directory of Open Access Journals (Sweden)

    Lars D Renner

    Full Text Available In this article we describe two techniques for exploring the relationship between bacterial cell shape and the intracellular organization of proteins. First, we created microchannels in a layer of agarose to reshape live bacterial cells and predictably control their mean cell wall curvature, and quantified the influence of curvature on the localization and distribution of proteins in vivo. Second, we used agarose microchambers to reshape bacteria whose cell wall had been chemically and enzymatically removed. By combining microstructures with different geometries and fluorescence microscopy, we determined the relationship between bacterial shape and the localization for two different membrane-associated proteins: i the cell-shape related protein MreB of Escherichia coli, which is positioned along the long axis of the rod-shaped cell; and ii the negative curvature-sensing cell division protein DivIVA of Bacillus subtilis, which is positioned primarily at cell division sites. Our studies of intracellular organization in live cells of E. coli and B. subtilis demonstrate that MreB is largely excluded from areas of high negative curvature, whereas DivIVA localizes preferentially to regions of high negative curvature. These studies highlight a unique approach for studying the relationship between cell shape and intracellular organization in intact, live bacteria.

  13. Development of tuberous roots and sugar accumulation as related to invertase activity and mineral nutrition.

    Science.gov (United States)

    Ricardo, C P; Sovia, D

    1974-03-01

    Sucrose storage in tuberous roots was not observed when the tissues had very high activities of acid invertase. High activities of the enzyme were always present in the roots at early stages of their development. In species where the activity of the enzyme decreased during root development, sucrose was stored. Thus, acid invertase was undetectable in mature roots of carrots (Daucus carota L.) where sucrose formed almost 80% of the dry matter. Conversely, radish (Raphanus sativus L.) and turnip (Brassica rapa L.) roots, in which the activity of the enzyme remained high until maturity, did not store appreciable amounts of sucrose (2% and 9%, respectively, of the dry matter in the mature roots), reducing sugars being the main reserve (more than 80% of the dry matter in mature turnips). The correlation between sucrose content and acid invertase activity was furthermore evident in both sucrose- and hexose-storing roots when the activity of this enzyme was affected by changes in the mineral nutrition. Deficiencies of nitrogen and sulphur reduced the activity of acid and alkaline invertases and led to increase in sucrose content and decrease in reducing sugars. However, the decline of alkaline invertase activity in tissues low in acid invertase had no clear effect on sugar content. Sodium chloride (10(-1)M) affected acid invertase and sugars in a manner similar to that of the two deficiencies, but had practically no effect on alkaline invertase. The changes in sugar content produced by the variations in mineral nutrition were small in hexose-storing roots in relation to those of sucrose-storing roots. It is possible that this result is related to the different levels of acid invertase in the two types of roots.

  14. Plant Cell Wall Proteins: A Large Body of Data, but What about Runaways?

    Science.gov (United States)

    Albenne, Cécile; Canut, Hervé; Hoffmann, Laurent; Jamet, Elisabeth

    2014-04-17

    Plant cell wall proteomics has been a very dynamic field of research for about fifteen years. A full range of strategies has been proposed to increase the number of identified proteins and to characterize their post-translational modifications. The protocols are still improving to enlarge the coverage of cell wall proteomes. Comparisons between these proteomes have been done based on various working strategies or different physiological stages. In this review, two points are highlighted. The first point is related to data analysis with an overview of the cell wall proteomes already described. A large body of data is now available with the description of cell wall proteomes of seventeen plant species. CWP contents exhibit particularities in relation to the major differences in cell wall composition and structure between these plants and between plant organs. The second point is related to methodology and concerns the present limitations of the coverage of cell wall proteomes. Because of the variety of cell wall structures and of the diversity of protein/polysaccharide and protein/protein interactions in cell walls, some CWPs can be missing either because they are washed out during the purification of cell walls or because they are covalently linked to cell wall components.

  15. Plant Cell Wall Proteins: A Large Body of Data, but What about Runaways?

    Directory of Open Access Journals (Sweden)

    Cécile Albenne

    2014-04-01

    Full Text Available Plant cell wall proteomics has been a very dynamic field of research for about fifteen years. A full range of strategies has been proposed to increase the number of identified proteins and to characterize their post-translational modifications. The protocols are still improving to enlarge the coverage of cell wall proteomes. Comparisons between these proteomes have been done based on various working strategies or different physiological stages. In this review, two points are highlighted. The first point is related to data analysis with an overview of the cell wall proteomes already described. A large body of data is now available with the description of cell wall proteomes of seventeen plant species. CWP contents exhibit particularities in relation to the major differences in cell wall composition and structure between these plants and between plant organs. The second point is related to methodology and concerns the present limitations of the coverage of cell wall proteomes. Because of the variety of cell wall structures and of the diversity of protein/polysaccharide and protein/protein interactions in cell walls, some CWPs can be missing either because they are washed out during the purification of cell walls or because they are covalently linked to cell wall components.

  16. Employing proteomic analysis to compare Paracoccidioides lutzii yeast and mycelium cell wall proteins.

    Science.gov (United States)

    Araújo, Danielle Silva; de Sousa Lima, Patrícia; Baeza, Lilian Cristiane; Parente, Ana Flávia Alves; de Melo Bailão, Alexandre; Borges, Clayton Luiz; de Almeida Soares, Célia Maria

    2017-08-24

    Paracoccidioidomycosis is an important systemic mycosis caused by thermodimorphic fungi of the Paracoccidioides genus. During the infective process, the cell wall acts at the interface between the fungus and the host. In this way, the cell wall has a key role in growth, environment sensing and interaction, as well as morphogenesis of the fungus. Since the cell wall is absent in mammals, it may present molecules that are described as target sites for new antifungal drugs. Despite its importance, up to now few studies have been conducted employing proteomics in for the identification of cell wall proteins in Paracoccidioides spp. Here, a detailed proteomic approach, including cell wall-fractionation coupled to NanoUPLC-MS(E), was used to study and compare the cell wall fractions from Paracoccidioides lutzii mycelia and yeast cells. The analyzed samples consisted of cell wall proteins extracted by hot SDS followed by extraction by mild alkali. In summary, 512 proteins constituting different cell wall fractions were identified, including 7 predicted GPI-dependent cell wall proteins that are potentially involved in cell wall metabolism. Adhesins previously described in Paracoccidioides spp. such as enolase, glyceraldehyde-3-phosphate dehydrogenase were identified. Comparing the proteins in mycelium and yeast cells, we detected some that are common to both fungal phases, such as Ecm33, and some specific proteins, as glucanase Crf1. All of those proteins were described in the metabolism of cell wall. Our study provides an important elucidation of cell wall composition of fractions in Paracoccidioides, opening a way to understand the fungus cell wall architecture. Copyright © 2017. Published by Elsevier B.V.

  17. Properties of lead deposits in cell walls of radish (Raphanus sativus) roots.

    Science.gov (United States)

    Inoue, Hiroshi; Fukuoka, Daisuke; Tatai, Yuri; Kamachi, Hiroyuki; Hayatsu, Manabu; Ono, Manami; Suzuki, Suechika

    2013-01-01

    Various mechanisms are involved in detoxification of heavy metals such as lead (Pb) in plant cells. Most of the Pb taken up by plants accumulates in their roots. However, the detailed properties of Pb complexes in roots remain unclear. We have investigated the properties of Pb deposits in root cell walls of radish (Raphanus sativus L.) seedlings grown on glass beads bed containing Pb pellets, which are the source of Pb-contamination in shooting range soils. Pb deposits were tightly bound to cell walls. Cell wall fragments containing about 50,000 ppm Pb were prepared from the roots. After extracting Pb from the cell wall fragments using HCl, Pb ions were recombined with the Pb-extracted cell wall fragments in a solution containing Pb acetate. When the cell wall fragments were treated with pectinase (E.C. 3.2.1.15) and were chemically modified with 1-ethyl-3-dimethylamino-propylcarboimide, the Pb-rebinding ability of the treated cell wall fragments decreased. When acid-treated cell wall fragments were incubated in a solution containing Pb(2+) and excess amounts of a chelating agent, Pb recombined with the cell wall fragments were measured to estimate the affinity between Pb(2+) and the cell wall fragments. Our data show that Pb(2+) binds to carboxyl groups of cell walls. The source of the carboxyl groups is suggested to be pectic compounds. A stability constant of the Pb-cell wall complex was estimated to be about 10(8). The role of root cell walls in the mechanism underlying heavy metal tolerance was discussed.

  18. The Fusarium oxysporum gnt2, Encoding a Putative N-Acetylglucosamine Transferase, Is Involved in Cell Wall Architecture and Virulence

    Science.gov (United States)

    López-Fernández, Loida; Ruiz-Roldán, Carmen; Pareja-Jaime, Yolanda; Prieto, Alicia; Khraiwesh, Husam; Roncero, M. Isabel G.

    2013-01-01

    With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt) in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. Δgnt2 mutants had αalterations in cell wall properties related to terminal αor β-linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. Δgnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity. PMID:24416097

  19. Putrescine Alleviates Iron Deficiency via NO-Dependent Reutilization of Root Cell-Wall Fe in Arabidopsis.

    Science.gov (United States)

    Zhu, Xiao Fang; Wang, Bin; Song, Wen Feng; Zheng, Shao Jian; Shen, Ren Fang

    2016-01-01

    Plants challenged with abiotic stress show enhanced polyamines levels. Here, we show that the polyamine putrescine (Put) plays an important role to alleviate Fe deficiency. The adc2-1 mutant, which is defective in Put biosynthesis, was hypersensitive to Fe deficiency compared with wild type (Col-1 of Arabidopsis [Arabidopsis thaliana]). Exogenous Put decreased the Fe bound to root cell wall, especially to hemicellulose, and increased root and shoot soluble Fe content, thus alleviating the Fe deficiency-induced chlorosis. Intriguingly, exogenous Put induced the accumulation of nitric oxide (NO) under both Fe-sufficient (+Fe) and Fe-deficient (-Fe) conditions, although the ferric-chelate reductase (FCR) activity and the expression of genes related to Fe uptake were induced only under -Fe treatment. The alleviation of Fe deficiency by Put was diminished in the hemicellulose-level decreased mutant-xth31 and in the noa1 and nia1nia2 mutants, in which the endogenous NO levels are reduced, indicating that both NO and hemicellulose are involved in Put-mediated alleviation of Fe deficiency. However, the FCR activity and the expression of genes related to Fe uptake were still up-regulated under -Fe+Put treatment compared with -Fe treatment in xth31, and Put-induced cell wall Fe remobilization was abolished in noa1 and nia1nia2, indicating that Put-regulated cell wall Fe reutilization is dependent on NO. From our results, we conclude that Put is involved in the remobilization of Fe from root cell wall hemicellulose in a process dependent on NO accumulation under Fe-deficient condition in Arabidopsis.

  20. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae.

    Directory of Open Access Journals (Sweden)

    Gennady V Pogorelko

    Full Text Available The immutans (im variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues and sinks (white tissues early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-to-nucleus signaling, perhaps mediated by ROS. We conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and host-pathogen interactions.

  1. Modification of potato cell wall pectin by the introduction of rhamnogalacturonan lyase and β-galactosidase transgenes and their side effects

    NARCIS (Netherlands)

    Huang, Jie Hong; Kortstee, Anne; Dees, Dianka C.T.; Trindade, Luisa M.; Schols, Henk A.; Gruppen, Harry

    2016-01-01

    Genes encoding pectic enzymes were introduced to wild-type potato Karnico. Cell wall materials were extracted from Karnico and transgenic lines expressing β-galactosidase (β-Gal-14 mutant) or rhamnogalacturonan lyase (RGL-18 mutant). After sequential extraction, β-Gal-14 hot buffer-soluble solids

  2. Graft union formation in grapevine induces transcriptional changes related to cell wall modification, wounding, hormone signalling, and secondary metabolism.

    Science.gov (United States)

    Cookson, Sarah Jane; Clemente Moreno, Maria José; Hevin, Cyril; Nyamba Mendome, Larissa Zita; Delrot, Serge; Trossat-Magnin, Claudine; Ollat, Nathalie

    2013-07-01

    Grafting is particularly important to the cultivation of perennial crops such as grapevine (Vitis vinifera) because rootstocks can provide resistance to soil-borne pests and diseases as well as improve tolerance to some abiotic stresses. Successful grafting is a complex biochemical and structural process beginning with the adhesion of the two grafted partners, followed by callus formation and the establishment of a functional vascular system. At the molecular level, the sequence of events underlying graft union formation remains largely uncharacterized. The present study investigates the transcriptome of grapevine rootstock and graft interface tissues sampled 3 d and 28 d after grafting of over-wintering stems in the spring. Many genes were differentially expressed over time, from 3 d to 28 d after grafting, which could be related to the activation of stem growth and metabolic activity in the spring. This hypothesis is supported by the up-regulation of many genes associated with cell wall synthesis, and phloem and xylem development. Generally, there was an up-regulation of gene expression in the graft interface tissue compared with the rootstock, particularly genes involved in cell wall synthesis, secondary metabolism, and signalling. Although there was overlap between the genes differentially expressed over time (from 3 d to 28 d after grafting) with the gene differentially expressed between the rootstock and the graft interface, numerous graft interface-specific genes were identified.

  3. Apple russeting as seen through the RNA-seq lens: strong alterations in the exocarp cell wall.

    Science.gov (United States)

    Legay, Sylvain; Guerriero, Gea; Deleruelle, Amélie; Lateur, Marc; Evers, Danièle; André, Christelle M; Hausman, Jean-Francois

    2015-05-01

    Russeting, a commercially important defect in the exocarp of apple (Malus × domestica), is mainly characterized by the accumulation of suberin on the inner part of the cell wall of the outer epidermal cell layers. However, knowledge on the underlying genetic components triggering this trait remains sketchy. Bulk transcriptomic profiling was performed on the exocarps of three russeted and three waxy apple varieties. This experimental design was chosen to lower the impact of genotype on the obtained results. Validation by qPCR was carried out on representative genes and additional varieties. Gene ontology enrichment revealed a repression of lignin and cuticle biosynthesis genes in russeted exocarps, concomitantly with an enhanced expression of suberin deposition, stress responsive, primary sensing, NAC and MYB-family transcription factors, and specific triterpene biosynthetic genes. Notably, a strong correlation (R(2) = 0.976) between the expression of a MYB93-like transcription factor and key suberin biosynthetic genes was found. Our results suggest that russeting is induced by a decreased expression of cuticle biosynthetic genes, leading to a stress response which not only affects suberin deposition, but also the entire structure of the cell wall. The large number of candidate genes identified in this study provides a solid foundation for further functional studies.

  4. The Role of Pectin Acetylation in the Organization of Plant Cell Walls

    DEFF Research Database (Denmark)

    Fimognari, Lorenzo

    All plant cells are surrounded by one or more cell wall layers. The cell wall serves as a stiff mechanical support while it allows cells to expand and provide a protective barrier to invading pathogens. Cell walls are dynamic structures composed of entangled cell wall polysaccharides that must...... adopt defined 3D organization to allow their composition/interactions to be tweaked upon developmental need. Failure to build functional cell wall architecture will affect plant growth and resistance to stresses. In this PhD dissertation I explored the role of pectin acetylation in controlling...... that the loss of structural integrity in the cell wall was the underlying cause for triggering defenses response. This hypothesis was tested in Manuscript II. Through a suppressor screen of 30.000 Arabidopsis rwa2 plants and mapping of mutations by next generation sequencing, we pinpointed pectin deacetylation...

  5. The connection of cytoskeletal network with plasma membrane and the cell wall

    Institute of Scientific and Technical Information of China (English)

    Zengyu Liu; Staffan Persson; Yi Zhang

    2015-01-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosyn-thesis and modifications, and aim to provide a platform for further studies in this field.

  6. Interplay between calcineurin and the Slt2 MAP-kinase in mediating cell wall integrity, conidiation and virulence in the insect fungal pathogen Beauveria bassiana.

    Science.gov (United States)

    Huang, Shuaishuai; He, Zhangjiang; Zhang, Shiwei; Keyhani, Nemat O; Song, Yulin; Yang, Zhi; Jiang, Yahui; Zhang, Wenli; Pei, Yan; Zhang, Yongjun

    2015-10-01

    The entomopathogenic fungus, Beauveria bassiana, is of environmental and economic importance as an insect pathogen, currently used for the biological control of a number of pests. Cell wall integrity and conidiation are critical parameters for the ability of the fungus to infect insects and for production of the infectious propagules. The contribution of calcineurin and the Slt2 MAP kinase to cell wall integrity and development in B. bassiana was investigated. Gene knockouts of either the calcineurin CNA1 subunit or the Slt2 MAP kinase resulted in decreased tolerance to calcofluor white and high temperature. In contrast, the Δcna1 strain was more tolerant to Congo red but more sensitive to osmotic stress (NaCl, sorbitol) than the wild type, whereas the Δslt2 strain had the opposite phenotype. Changes in cell wall structure and composition were seen in the Δslt2 and Δcna1 strains during growth under cell wall stress as compared to the wild type. Both Δslt2 and Δcna1 strains showed significant alterations in growth, conidiation, and viability. Elevation of intracellular ROS levels, and decreased conidial hydrophobicity and adhesion to hydrophobic surfaces, were also seen for both mutants, as well as decreased virulence. Under cell wall stress conditions, inactivation of Slt2 significantly repressed CN-mediated phosphatase activity suggesting some level of cross talk between the two pathways. Comparative transcriptome profiling of the Δslt2 and Δcna1 strains revealed alterations in the expression of distinct gene sets, with overlap in transcripts involved in cell wall integrity, stress response, conidiation and virulence. These data illustrate convergent and divergent phenotypes and targets of the calcineurin and Slt2 pathways in B. bassiana.

  7. Suppression of Arabidopsis peroxidase 72 alters cell wall and phenylpropanoid metabolism.

    Science.gov (United States)

    Fernández-Pérez, Francisco; Pomar, Federico; Pedreño, María A; Novo-Uzal, Esther

    2015-10-01

    Class III peroxidases are glycoproteins with a major role in cell wall maturation such as lignin formation. Peroxidases are usually present in a high number of isoenzymes, which complicates to assign specific functions to individual peroxidase isoenzymes. Arabidopsis genome encodes for 73 peroxidases, among which AtPrx72 has been shown to participate in lignification. Here, we report by using knock out peroxidase mutants how the disruption of AtPrx72 causes thinner secondary walls in interfascicular fibres but not in the xylem of the stem. This effect is also age-dependent, and AtPrx72 function seems to be particularly important when lignification prevails over elongation processes. Finally, the suppression AtPrx72 leads to the down-regulation of lignin biosynthesis pathway, as well as genes and transcription factors involved in secondary wall thickening.

  8. Systems Level Engineering of Plant Cell Wall Biosynthesis to Improve Biofuel Feedstock Quality

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Samuel

    2013-09-27

    Our new regulatory model of cell wall biosynthesis proposes original network architecture with several newly incorporated components. The mapped set of protein-DNA interactions will serve as a foundation for 1) understanding the regulation of a complex and integral plant component and 2) the manipulation of crop species for biofuel and biotechnology purposes. This study revealed interesting and novel aspects of grass growth and development and further enforce the importance of a grass model system. By functionally characterizing a suite of genes, we have begun to improve the sparse model for transcription regulation of biomass accumulation in grasses. In the process, we have advanced methodology and brachy molecular genetic tools that will serve as valuable community resource.

  9. Heterologous expression of plant cell wall glycosyltransferases in Pichia, pea and tobacco

    DEFF Research Database (Denmark)

    Petersen, Bent Larsen; Damager, Iben; Faber, Kirsten

    to participate in plant CW biosynthesis, has been achieved in only a few cases. We have previously reported the characterisation of two highly homologous plant-specific membrane-bound GTs, which when expressed as secreted tagged soluble proteins in the baculo virus system, catalysed the transfer of xylose from......The plant cell wall (CW) consists of numerous complex and uniqe carbohydrate polymer structures. Although the structure (sugar composition) of the various plant CW components are known in some detail, functional characterisation of of the more than 300 glycosyltransferases (GTs), that are believed...... UDP-xylose on to the monosaccharide sugar fucose. Partly based on these data, the two genes were proposed to function in the biosynthesis of pectic rhamnogalacturonan II (RG-II) and designated RhamnoGalacturonan XylosylTransferase 1 and -2 (RGXT1 and -2), accordingly (Egelund et al. 2006, The Plant...

  10. Distribution of the novel cell wall anchored protein-encoding gene sasX in Staphylococcus aureus strains%新的细胞壁锚定蛋白编码基因sasX在金黄色葡萄球菌中的分布

    Institute of Scientific and Technical Information of China (English)

    杜昕; 宋燕; 田月如; 阮斐怡; 吕元; 李敏

    2011-01-01

    Objective To investigate the distribution and effect on antibiotic resistance of the novel cell wall anchored protein-encoding gene sasX.Methods A total of 300 S.aureus isolates were randomly collected from inpatients with S.aureus infection in Shanghai Huashan hospital in 2004, 2007 and 2010.Meanwhile,170 S.aureus isolates from the nasal swabs of healthy people were collected as part of a population-based community prevalence study.Typing of S.aureus isolates were identified by using multilocus sequence typing (MLST) and S.aureus-specific staphylococcal protein A typing (spa typing).Determination of oxacillin MICs was used to screen MRSA.PCR and sequencing were used to analyze sasX gene.The effect on antibiotic resistance of sasX gene was detect by disc agar diffusion drug sensitive test.Results The major clonal types of the 300 S.aureus isolates collected from inpatients with S.aureus infection were ST239 ( 110,36.7%) and ST5 (122,40.7%).From 2004 to 2010,the percentage of isolates from inpatients with S.aureus infection was increased from 17% to 39%,but sasX was only found in 0.59% of the S.aureus isolates from the nasal swabs of healthy people.The percentage of sasX positive was increased from 47.2% to 83.8% in ST239.The percentage of sasX positive MRSA was increased from 26.4% to 50.8%,but the percentage of sasX positive MSSA was about 10%.Antibiotic resistance of sasX positive strains were higher than that of sasX negative strains.Conclusions SasX gene is mainly detected in nosocomial pathogenic S.aureus and it is a possible virulence factor of S.aureus in hosptal setting.The presence of sasX gene is related to antibiotic resistance.For better understanding the real function of this novel gene,further studies such as expression of the encoded protein should be carried out.%目的 研究细胞壁锚定蛋白编码基因sasX在金黄色葡萄球菌中的分布及对细菌耐药性的影响.方法 随机收集上海华山医院2004、2007

  11. Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy

    Science.gov (United States)

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2008-01-01

    A recently described plant cell wall dissolution system has been modified to use perdeuterated solvents to allow direct in-NMR-tube dissolution and high-resolution solution-state NMR of the whole cell wall without derivatization. Finely ground cell wall material dissolves in a solvent system containing dimethylsulfoxide-d6 and 1-methylimidazole-d6 in a ratio of 4:1 (v/...

  12. Analyzing Cell Wall Elasticity After Hormone Treatment: An Example Using Tobacco BY-2 Cells and Auxin.

    Science.gov (United States)

    Braybrook, Siobhan A

    2017-01-01

    Atomic force microscopy, and related nano-indentation techniques, is a valuable tool for analyzing the elastic properties of plant cell walls as they relate to changes in cell wall chemistry, changes in development, and response to hormones. Within this chapter I will describe a method for analyzing the effect of the phytohormone auxin on the cell wall elasticity of tobacco BY-2 cells. This general method may be easily altered for different experimental systems and hormones of interest.

  13. Soya beans and Maize : The effect of chemical and physical structure of cell wall polysaccharides on fermentation kinetics

    OpenAIRE

    Laar, van de, P.

    2000-01-01

    The analysis of the relationship between cell wall composition and fermentation of endosperm cell walls of soya beans and maize was approached from three different angles. Firstly, the fermentation (rate and extent of fermentation, the sugar degradation pattern, and volatile fatty acid production) of soya bean and maize cell walls was analysed, both in situ and in vitro. This analysis revealed that the physical structure of the cell wall (particle size and cell wall thickness) influences cell...

  14. Cell wall proteins of Sporothrix schenckii as immunoprotective agents.

    Science.gov (United States)

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; López-Romero, Everardo; Cuéllar-Cruz, Mayra; Ruiz-Baca, Estela

    2014-01-01

    Sporothrix schenckii is the etiological agent of sporotrichosis, an endemic subcutaneous mycosis in Latin America. Cell wall (CW) proteins located on the cell surface are inducers of cellular and humoral immune responses, potential candidates for diagnosis purposes and to generate vaccines to prevent fungal infections. This mini-review emphasizes the potential use of S. schenckii CW proteins as protective and therapeutic immune response inducers against sporotrichosis. A number of pathogenic fungi display CW components that have been characterized as inducers of protective cellular and humoral immune responses against the whole pathogen from which they were originally purified. The isolation and characterization of immunodominant protein components of the CW of S. schenckii have become relevant because of their potential in the development of protective and therapeutic immune responses against sporotrichosis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).

  15. MreB: pilot or passenger of cell wall synthesis?

    Science.gov (United States)

    White, Courtney L; Gober, James W

    2012-02-01

    The discovery that the bacterial cell shape determinant MreB is related to actin spurred new insights into bacterial morphogenesis and development. The trafficking and mechanical roles of the eukaryotic cytoskeleton were hypothesized to have a functional ancestor in MreB based on evidence implicating MreB as an organizer of cell wall synthesis. Genetic, biochemical and cytological studies implicate MreB as a coordinator of a large multi-protein peptidoglycan (PG) synthesizing holoenzyme. Recent advances in microscopy and new biochemical evidence, however, suggest that MreB may function differently than previously envisioned. This review summarizes our evolving knowledge of MreB and attempts to refine the generalized model of the proteins organizing PG synthesis in bacteria. This is generally thought to be conserved among eubacteria and the majority of the discussion will focus on studies from a few well-studied model organisms.

  16. The role of the cell wall in fungal pathogenesis.

    Science.gov (United States)

    Arana, David M; Prieto, Daniel; Román, Elvira; Nombela, César; Alonso-Monge, Rebeca; Pla, Jesús

    2009-05-01

    Fungal infections are a serious health problem. In recent years, basic research is focusing on the identification of fungal virulence factors as promising targets for the development of novel antifungals. The wall, as the most external cellular component, plays a crucial role in the interaction with host cells mediating processes such as adhesion or phagocytosis that are essential during infection. Specific components of the cell wall (called PAMPs) interact with specific receptors in the immune cell (called PRRs), triggering responses whose molecular mechanisms are being elucidated. We review here the main structural carbohydrate components of the fungal wall (glucan, mannan and chitin), how their biogenesis takes place in fungi and the specific receptors that they interact with. Different model fungal pathogens are chosen to illustrate the functional consequences of this interaction. Finally, the identification of the key components will have important consequences in the future and will allow better approaches to treat fungal infections.

  17. Atkinesin-13A modulates cell-wall synthesis and cell expansion in Arabidopsis thaliana via the THESEUS1 pathway.

    Directory of Open Access Journals (Sweden)

    Ushio Fujikura

    2014-09-01

    Full Text Available Growth of plant organs relies on cell proliferation and expansion. While an increasingly detailed picture about the control of cell proliferation is emerging, our knowledge about the control of cell expansion remains more limited. We demonstrate here that the internal-motor kinesin AtKINESIN-13A (AtKIN13A limits cell expansion and cell size in Arabidopsis thaliana, with loss-of-function atkin13a mutants forming larger petals with larger cells. The homolog, AtKINESIN-13B, also affects cell expansion and double mutants display growth, gametophytic and early embryonic defects, indicating a redundant role of the two genes. AtKIN13A is known to depolymerize microtubules and influence Golgi motility and distribution. Consistent with this function, AtKIN13A interacts genetically with ANGUSTIFOLIA, encoding a regulator of Golgi dynamics. Reduced AtKIN13A activity alters cell wall structure as assessed by Fourier-transformed infrared-spectroscopy and triggers signalling via the THESEUS1-dependent cell-wall integrity pathway, which in turn promotes the excess cell expansion in the atkin13a mutant. Thus, our results indicate that the intracellular activity of AtKIN13A regulates cell expansion and wall architecture via THESEUS1, providing a compelling case of interplay between cell wall integrity sensing and expansion.

  18. Regulatory specialization of xyloglucan (XG) and glucuronoarabinoxylan (GAX) in pericarp cell walls during fruit ripening in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Takizawa, Ayami; Hyodo, Hiromi; Wada, Kanako; Ishii, Tadashi; Satoh, Shinobu; Iwai, Hiroaki

    2014-01-01

    Disassembly of cell wall polysaccharides by various cell wall hydrolases during fruit softening causes structural changes in hemicellulose and pectin that affect the physical properties and softening of tomato fruit. In a previous study, we showed that the changes in pectin during tomato fruit ripening were unique in each fruit tissue. In this study, to clarify the changes in hemicellulose in tissues during tomato fruit ripening, we focused on glucuronoarabinoxylan (GAX) and xyloglucan (XG). GAX was detected only in the skin and inner epidermis of the pericarp using LM11 antibodies, whereas a large increase in XG was detected in all fruit tissues using LM15 antibodies. The activity of hemicellulose degradation enzymes, such as β-xylosidase and α-arabinofuranosidase, decreased gradually during fruit ripening, although the tomato fruits continued to soften. In contrast, GAX and XG biosynthesis-related genes were expressed in all tomato fruit tissues even during ripening, indicating that XG was synthesized throughout the fruit and that GAX may be synthesized only in the vascular bundles and the inner epidermis. Our results suggest that changes in the cell wall architecture and tissue-specific distribution of XG and GAX might be required for the regulation of fruit softening and the maintenance of fruit shape.

  19. Regulatory specialization of xyloglucan (XG and glucuronoarabinoxylan (GAX in pericarp cell walls during fruit ripening in tomato (Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Ayami Takizawa

    Full Text Available Disassembly of cell wall polysaccharides by various cell wall hydrolases during fruit softening causes structural changes in hemicellulose and pectin that affect the physical properties and softening of tomato fruit. In a previous study, we showed that the changes in pectin during tomato fruit ripening were unique in each fruit tissue. In this study, to clarify the changes in hemicellulose in tissues during tomato fruit ripening, we focused on glucuronoarabinoxylan (GAX and xyloglucan (XG. GAX was detected only in the skin and inner epidermis of the pericarp using LM11 antibodies, whereas a large increase in XG was detected in all fruit tissues using LM15 antibodies. The activity of hemicellulose degradation enzymes, such as β-xylosidase and α-arabinofuranosidase, decreased gradually during fruit ripening, although the tomato fruits continued to soften. In contrast, GAX and XG biosynthesis-related genes were expressed in all tomato fruit tissues even during ripening, indicating that XG was synthesized throughout the fruit and that GAX may be synthesized only in the vascular bundles and the inner epidermis. Our results suggest that changes in the cell wall architecture and tissue-specific distribution of XG and GAX might be required for the regulation of fruit softening and the maintenance of fruit shape.

  20. Ethambutol-mediated cell wall modification in recombinant Corynebacterium glutamicum increases the biotransformation rates of cyclohexanone derivatives.

    Science.gov (United States)

    Yun, Ji-Yeong; Lee, Jung-Eun; Yang, Kyung-Mi; Cho, Suekyung; Kim, Arim; Kwon, Yong-Uk; Kwon, Yong-Euk; Park, Jin-Byung

    2012-01-01

    The effects of structural modification of cell wall on the biotransformation capability by recombinant Corynebacterium glutamicum cells, expressing the chnB gene encoding cyclohexanone monooxygenase of Acinetobacter calcoaceticus NCIMB 9871, were investigated. Baeyer-Villiger oxygenation of 2-(2'-acetoxyethyl) cyclohexanone (MW 170 Da) into R-7-(2'-acetoxyethyl)-2-oxepanone was used as a model reaction. The whole-cell biotransformation followed Michaelis-Menten kinetics. The V (max) and K (S) values were estimated as 96.8 U g(-1) of dry cells and 0.98 mM, respectively. The V (max) was comparable with that of cyclohexanone oxygenation, whereas the K (S) was almost eightfold higher. The K (S) value of 2-(2'-acetoxyethyl) cyclohexanone oxygenation was reduced by ca. 30% via altering the cell envelop structure of C. glutamicum with ethambutol, which inhibits arabinosyl transferases involved in the biosynthesis of cell wall arabinogalactan and mycolate layers. The higher whole-cell biotransformation rate was also observed in the oxygenation of ethyl 2-cyclohexanone acetate upon ethambutol treatment of the recombinant C. glutamicum. Therefore, it was assumed that the biotransformation efficiency of C. glutamicum-based biocatalysts, with respect to medium- to large-sized lipophilic organic substrates (MW > ca. 170), can be enhanced by engineering their cell wall outer layers, which are known to function as a formidable barrier to lipophilic molecules.

  1. Free mycolic acid accumulation in the cell wall of the mce1 operon mutant strain of Mycobacterium tuberculosis.

    Science.gov (United States)

    Cantrell, Sally A; Leavell, Michael D; Marjanovic, Olivera; Iavarone, Anthony T; Leary, Julie A; Riley, Lee W

    2013-10-01

    The lipid-rich cell wall of Mycobacterium tuberculosis, the agent of tuberculosis, serves as an effective barrier against many chemotherapeutic agents and toxic host cell effector molecules, and it may contribute to the mechanism of persistence. Mycobacterium tuberculosis strains mutated in a 13-gene operon called mce1, which encodes a putative ABC lipid transporter, induce aberrant granulomatous response in mouse lungs. Because of the postulated role of the mce1 operon in lipid importation, we compared the cell wall lipid composition of wild type and mce1 operon mutant M. tuberculosis H37Rv strains. High resolution mass spectrometric analyses of the mce1 mutant lipid extracts showed unbound mycolic acids to accumulate in the cell wall. Quantitative analysis revealed a 10.7 fold greater amount of free mycolates in the mutant compared to that of the wild type strain. The free mycolates were comprised of alpha, methoxy and keto mycolates in the ratio 1:0.9:0.6, respectively. Since the mce1 operon is regulated in vivo, the free mycolates that accumulate during infection may serve as a barrier for M. tuberculosis against toxic products and contribute to the pathogen's persistence.

  2. A soluble acid invertase is directed to the vacuole by a signal anchor mechanism.

    Science.gov (United States)

    Rae, Anne L; Casu, Rosanne E; Perroux, Jai M; Jackson, Mark A; Grof, Christopher P L

    2011-06-15

    Enzyme activities in the vacuole have an important impact on the net concentration of sucrose. In sugarcane (Saccharum hybrid), immunolabelling demonstrated that a soluble acid invertase (β-fructofuranosidase; EC 3.2.1.26) is present in the vacuole of storage parenchyma cells during sucrose accumulation. Examination of sequences from sugarcane, barley and rice showed that the N-terminus of the invertase sequence contains a signal anchor and a tyrosine motif, characteristic of single-pass membrane proteins destined for lysosomal compartments. The N-terminal peptide from the barley invertase was shown to be capable of directing the green fluorescent protein to the vacuole in sugarcane cells. The results suggest that soluble acid invertase is sorted to the vacuole in a membrane-bound form.

  3. Invertase immobilization by adsorption on polymer microspheres studied by radioiodination technique

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Alvaro A.A. de [Universidade Federal de Itajuba, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Fisica e Quimica]. E-mail: alencar@unifei.edu.br; Pontin, Luiz F. [Universidade Federal de Itajuba, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Matematica e Computacao]. E-mail: pontin@unifei.edu.br; Higa, Olga Z.; Ribela, Maria Tereza C.P. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Lab. de Biologia Molecular]. E-mail: ozahiga@ipen.br; Tomotani, Ester J.; Vitolo, Michele [Sao Paulo Univ., SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Tecnologia Bioquimico-Farmaceutica]. E-mail: michenzi@usp.br

    2005-07-01

    In this paper, we report the study of the diffusion behavior of invertase onto polystyrene-divinylbenzene (PS-DVB) microspheres. To detect the surface concentration of protein adsorbed on the microspheres, the chloramine-T method was used to label invertase and has been applied to the study of protein sorption properties on the microspheres. The sorption isotherms and the diffusion coefficient (D{sub f}) were computed from experimental results and the concentration of bound invertase was determined in terms of the Fick's law. The Hill equation was applied to the data and the binding capacity of the microspheres were estimated. The results of adsorption show that the radiolabelling invertase method are efficacious at the protein surface concentration detection and can be used to investigate the enzyme immobilization by sorption properties of polymer microspheres. (author)

  4. Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves

    Directory of Open Access Journals (Sweden)

    Mediesse Kengne Francine

    2014-12-01

    Full Text Available Objective: To examine the total phenolic and protein contents, and the antioxidant activities of cell wall polysaccharide fractions of Stevia rebaudiana leaves. Methods: Three different polysaccharide-enriched fractions, namely FPE (extract with 50 mmol/ L ethylene diamine tetra acetic acid, FPK (extract with 0.05 mol/L KOH and FH (extract with 4 mol/L KOH were extracted from Stevia rebaudiana leaves. The antioxidant activity of these fractions was evaluated based on their ability to scavenge DPPH (1, 1-diphenyl-2-picryl hydrazyl free radical, to reduce ferric power, to chelate ferrous ion and to protect human DNA. Results: The results indicated that protein content was found to be higher in FPK polysaccharide enriched fraction (47.48 µg per mg of FPK. Furthermore, the phenolic compound analysis according to the Folin-Ciocalteu method was higher in FPK (17.71 µg ferulic acid. The DPPH maximal inhibition percentage of the three polysaccharide-enriched fractions at 400 µg/mL was 27.66%, 59.90% and 23.21% respectively for FPE, FPK and FH. All the polysaccharide fractions exhibited a ferric reducing power except the FH one. The three fractions also exhibited lipid peroxidation inhibition, and they completely reverted the DNA damage induced by H2O2/FeCl2. FPK showed the strongest scavenging activity against the DPPH radical, the best chelating ability and lipid peroxidation inhibition. Conclusions: Stevia cell wall polysaccharide fractions are potent protective agents against oxidative stress. The analysis revealed major differences in the antioxidant activity in the three polysaccharides fractions. However, the 0.05 mol/L KOH pectin fraction (FPK showed better antioxidant activity.

  5. Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves

    Institute of Scientific and Technical Information of China (English)

    Mediesse Kengne Francine; Woguia Alice Louise; Fogue Souopgui Pythagore; Atogho-Tiedeu Barbara; Simo Gustave; Thadde Boudjeko

    2014-01-01

    Objective: To examine the total phenolic and protein contents, and the antioxidant activities of cell wall polysaccharide fractions of Stevia rebaudiana leaves.Methods:L ethylene diamine tetra acetic acid), FPK (extract with 0.05 mol/L KOH) and FH (extract with 4 mol/L KOH) were extracted from Stevia rebaudiana leaves. The antioxidant activity of these fractions was evaluated based on their ability to scavenge DPPH (1, 1-diphenyl-2-picryl hydrazyl) free radical, to reduce ferric power, to chelate ferrous ion and to protect human DNA. Three different polysaccharide-enriched fractions, namely FPE (extract with 50 mmol/Results: The results indicated that protein content was found to be higher in FPK polysaccharide enriched fraction (47.48 µg per mg of FPK). Furthermore, the phenolic compound analysis according to the Folin-Ciocalteu method was higher in FPK (17.71 µg ferulic acid). The DPPH maximal inhibition percentage of the three polysaccharide-enriched fractions at 400 µg/mL was 27.66%, 59.90% and 23.21% respectively for FPE, FPK and FH. All the polysaccharide fractions exhibited a ferric reducing power except the FH one. The three fractions also exhibited lipid peroxidation inhibition, and they completely reverted the DNA damage induced by H2O2/FeCl2. FPK showed the strongest scavenging activity against the DPPH radical, the best chelating ability and lipid peroxidation inhibition.Conclusions: Stevia cell wall polysaccharide fractions are potent protective agents against oxidative stress. The analysis revealed major differences in the antioxidant activity in the three polysaccharides fractions. However, the 0.05 mol/L KOH pectin fraction (FPK) showed better antioxidant activity.

  6. Plant cell walls throughout evolution: towards a molecular understanding of their design principles

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    2009-02-16

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche,which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.

  7. Area Expansivity Moduli of Regenerating Plant Protoplast Cell Walls Exposed to Shear Flows

    Science.gov (United States)

    Fujimura, Yuu; Iino, Masaaki; Watanabe, Ugai

    2005-05-01

    To control the elasticity of the plant cell wall, protoplasts isolated from cultured Catharanthus roseus cells were regenerated in shear flows of 115 s-1 (high shear) and 19.2 s-1 (low shear, as a control). The surface area expansivity modulus and the surface breaking strength of these regenerating protoplasts were measured by a micropipette aspiration technique. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye. High shear exposure for 3 h doubled both the surface area modulus and breaking strength observed under low shear, significantly decreased cell wall synthesis, and roughly quadrupled the moduli of the cell wall. Based on the cell wall synthesis data, we estimated the three-dimensional modulus of the cell wall to be 4.1± 1.2 GPa for the high shear, and 0.35± 0.2 GPa for the low shear condition, using the surface area expansivity modulus divided by the cell wall thickness, which is identical with the Young’s modulus divided by 2(1-σ), where σ is Poisson's ratio. We concluded that high shear exposure considerably strengthens the newly synthesized cell wall.

  8. Conditioning of Parsley (Petroselinum crispum L.) Suspension Cells Increases Elicitor-Induced Incorporation of Cell Wall Phenolics.

    Science.gov (United States)

    Kauss, H.; Franke, R.; Krause, K.; Conrath, U.; Jeblick, W.; Grimmig, B.; Matern, U.

    1993-06-01

    The elicitor-induced incorporation of phenylpropanoid derivatives into the cell wall and the secretion of soluble coumarin derivatives (phytoalexins) by parsley (Petroselinum crispum L.) suspension cultures can be potentiated by pretreatment of the cultures with 2,6-dichloroisonicotinic acid or derivatives of salicylic acid. To investigate this phenomenon further, the cell walls and an extracellular soluble polymer were isolated from control cells or cells treated with an elicitor from Phytophthora megasperma f. sp. glycinea. After alkaline hydrolysis, both fractions from elicited cells showed a greatly increased content of 4-coumaric, ferulic, and 4-hydroxybenzoic acid, as well as 4-hydroxybenzaldehyde and vanillin. Two minor peaks were identified as tyrosol and methoxytyrosol. The pretreatment effect is most pronounced at a low elicitor concentration. Its specificity was elaborated for coumarin secretion. When the parsley suspension cultures were preincubated for 1 d with 2,6-dichloroisonicotinic, 4- or 5-chlorosalicylic, or 3,5- dichlorosalicylic acid, the cells exhibited a greatly increased elicitor response. Pretreatment with isonicotinic, salicylic, acetylsalicylic, or 2,6-dihydroxybenzoic acid was less efficient in enhancing the response, and some other isomers were inactive. This increase in elicitor response was also observed for the above-mentioned monomeric phenolics, which were liberated from cell walls upon alkaline hydrolysis and for "lignin-like" cell wall polymers determined by the thioglycolic acid method. It was shown for 5-chlorosalicylic acid that conditioning most likely improves the signal transduction leading to the activation of genes encoding phenylalanine ammonia lyase and 4-coumarate: coenzyme A ligase. The conditioning thus sensitizes the parsley suspension cells to respond to lower elicitor concentrations. If a similar mechanism were to apply to whole plants treated with 2,6-dichloroisonicotinic acid, a known inducer of systemic

  9. Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription factor PtrMYB152 in Arabidopsis.

    Science.gov (United States)

    Wang, Shucai; Li, Eryang; Porth, Ilga; Chen, Jin-Gui; Mansfield, Shawn D; Douglas, Carl J

    2014-05-23

    Poplar has 192 annotated R2R3 MYB genes, of which only three have been shown to play a role in the regulation of secondary cell wall formation. Here we report the characterization of PtrMYB152, a poplar homolog of the Arabidopsis R2R3 MYB transcription factor AtMYB43, in the regulation of secondary cell wall biosynthesis. The expression of PtrMYB152 in secondary xylem is about 18 times of that in phloem. When expressed in Arabidopsis under the control of either 35S or PtrCesA8 promoters, PtrMYB152 increased secondary cell wall thickness, which is likely caused by increased lignification. Accordingly, elevated expression of genes encoding sets of enzymes in secondary wall biosynthesis were observed in transgenic plants expressing PtrMYB152. Arabidopsis protoplast transfection assays suggested that PtrMYB152 functions as a transcriptional activator. Taken together, our results suggest that PtrMYB152 may be part of a regulatory network activating expression of discrete sets of secondary cell wall biosynthesis genes.

  10. Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription factor PtrMYB152 in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shucai [Northeast Normal Univ., Changchun (China); Univ. of British Columbia, Vancouver, BC (Canada); Li, Eryang [Univ. of British Columbia, Vancouver, BC (Canada); Porth, Ilga [Univ. of British Columbia, Vancouver, BC (Canada); Chen, Jin-Gui [Univ. of British Columbia, Vancouver, BC (Canada); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mansfield, Shawn D. [Univ. of British Columbia, Vancouver, BC (Canada); Douglas, Carl [Univ. of British Columbia, Vancouver, BC (Canada)

    2014-05-23

    Poplar has 192 annotated R2R3 MYB genes, of which only three have been shown to play a role in the regulation of secondary cell wall formation. Here we report the characterization of PtrMYB152, a poplar homolog of the Arabidopsis R2R3 MYB transcription factor AtMYB43, in the regulation of secondary cell wall biosynthesis. The expression of PtrMYB152 in secondary xylem is about 18 times of that in phloem. When expressed in Arabidopsis under the control of either 35S or PtrCesA8 promoters, PtrMYB152 increased secondary cell wall thickness, which is likely caused by increased lignification. Accordingly, elevated expression of genes encoding sets of enzymes in secondary wall biosynthesis were observed in transgenic plants expressing PtrMYB152. Arabidopsis protoplast transfection assays suggested that PtrMYB152 functions as a transcriptional activator. Taken together, our results suggest that PtrMYB152 may be part of a regulatory network activating expression of discrete sets of secondary cell wall biosynthesis genes.

  11. Structure of Plant Cell Walls: XI. GLUCURONOARABINOXYLAN, A SECOND HEMICELLULOSE IN THE PRIMARY CELL WALLS OF SUSPENSION-CULTURED SYCAMORE CELLS.

    Science.gov (United States)

    Darvill, J E; McNeil, M; Darvill, A G; Albersheim, P

    1980-12-01

    The isolation, purification, and partial characterization of a glucuronoarabinoxylan, a previously unobserved component of the primary cell walls of dicotyledonous plants, are described. The glucuronoarabinoxylan constitutes approximately 5% of the primary walls of suspension-cultured sycamore cells. This glucuronoarabinoxylan possesses many of the structural characteristics of analogous polysaccharides that have been isolated from the primary and secondary cell walls of monocots as well as from the secondary cell walls of dicots. The glucuronoarabinoxylan of primary dicot cell walls has a linear beta-1,4-linked d-xylopyranosyl backbone with both neutral and acidic sidechains attached at intervals along its length. The acidic sidechains are terminated with glucuronosyl or 4-O-methyl glucuronosyl residues, whereas the neutral sidechains are composed of arabinosyl and/or xylosyl residues.

  12. Carbohydrate-active enzymes in pythium and their role in plant cell wall and storage polysaccharide degradation.

    Directory of Open Access Journals (Sweden)

    Marcelo M Zerillo

    Full Text Available Carbohydrate-active enzymes (CAZymes are involved in the metabolism of glycoconjugates, oligosaccharides, and polysaccharides and, in the case of plant pathogens, in the degradation of the host cell wall and storage compounds. We performed an in silico analysis of CAZymes predicted from the genomes of seven Pythium species (Py. aphanidermatum, Py. arrhenomanes, Py. irregulare, Py. iwayamai, Py. ultimum var. ultimum, Py. ultimum var. sporangiiferum and Py. vexans using the "CAZymes Analysis Toolkit" and "Database for Automated Carbohydrate-active Enzyme Annotation" and compared them to previously published oomycete genomes. Growth of Pythium spp. was assessed in a minimal medium containing selected carbon sources that are usually present in plants. The in silico analyses, coupled with our in vitro growth assays, suggest that most of the predicted CAZymes are involved in the metabolism of the oomycete cell wall with starch and sucrose serving as the main carbohydrate sources for growth of these plant pathogens. The genomes of Pythium spp. also encode pectinases and cellulases that facilitate degradation of the plant cell wall and are important in hyphal penetration; however, the species examined in this study lack the requisite genes for the complete saccharification of these carbohydrates for use as a carbon source. Genes encoding for xylan, xyloglucan, (galacto(glucomannan and cutin degradation were absent or infrequent in Pythium spp.. Comparative analyses of predicted CAZymes in oomycetes indicated distinct evolutionary histories. Furthermore, CAZyme gene families among Pythium spp. were not uniformly distributed in the genomes, suggesting independent gene loss events, reflective of the polyphyletic relationships among some of the species.

  13. Modification of chemical properties of cell walls by silicon and its role in regulation of the cell wall extensibility in oat leaves.

    Science.gov (United States)

    Hossain, Mohammad Talim; Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro; Fujii, Shuhei; Yamamoto, Ryoichi; Hoson, Takayuki

    2007-04-01

    Effects of silicon on the mechanical and chemical properties of cell walls in the second leaf of oat (Avena sativa L.) seedlings were investigated. The cell wall extensibility in the basal region of the second leaf was considerably higher than that in the middle and subapical regions. Externally applied silicon increased the cell wall extensibility in the basal region, but it did not affect the extensibility in the middle and subapical regions. The amounts of cell wall polysaccharides and phenolic compounds, such as diferulic acid (DFA) and ferulic acid (FA), per unit length were lower in the basal region than in the middle and subapical regions of the leaf, and silicon altered these amounts in the basal region. In this region, silicon decreased the amounts of matrix polymers and cellulose per unit length and of DFA and FA, both per unit length and unit matrix polymer content. Silicon treatment also lowered the activity of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) in the basal region. In contrast, the amount of silicon in cell walls increased in response to silicon treatment in three regions. These results suggest that in the basal region, silicon reduces the net wall mass and the formation of phenolic acid-mediated cross-linkages between wall polysaccharides. Such modifications of wall architecture may be responsible for the silicon-induced increase in the cell wall extensibility in oat leaves.

  14. Relating Nanoscale Accessibility within Plant Cell Walls to Improved Enzyme Hydrolysis Yields in Corn Stover Subjected to Diverse Pretreatments.

    Science.gov (United States)

    Crowe, Jacob D; Zarger, Rachael A; Hodge, David B

    2017-10-04

    Simultaneous chemical modification and physical reorganization of plant cell walls via alkaline hydrogen peroxide or liquid hot water pretreatment can alter cell wall structural properties impacting nanoscale porosity. Nanoscale porosity was characterized using solute exclusion to assess accessible pore volumes, water retention value as a proxy for accessible water-cell walls surface area, and solute-induced cell wall swelling to measure cell wall rigidity. Key findings concluded that delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity and that the subsequent cell wall swelling resulted increased nanoscale porosity and improved enzyme binding and hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 Å dextran probe within the cell wall was found to be correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields.

  15. Regulation of cell wall remodeling in grapevine (Vitis vinifera L.) callus under individual mineral stress deficiency.

    Science.gov (United States)

    Fernandes, João C; Goulao, Luis F; Amâncio, Sara

    2016-01-15

    Cell wall (CW) is a dynamic structure that determines the plant form, growth and response to environmental conditions. Vitis vinifera callus grown under nitrogen (-N), phosphorous (-P) and sulfur (-S) deficiency were used as a model system to address the influence of mineral stress in CW remodeling. Callus cells morphology was altered, mostly under -N, resulting in changes in cell length and width compared with the control. CW composition ascertained with specific staining and immuno-detection showed a decrease in cellulose and altered pattern of pectin methylesterification. Under mineral stress genes expression from candidate families disclosed mainly a downregulation of a glycosyl hydrolase family 9C (GH9C), xyloglucan transglycosylase/hydrolases (XTHs) with predicted hydrolytic activity and pectin methylesterases (PMEs). Conversely, upregulation of PMEs inhibitors (PMEIs) was observed. While methylesterification patterns can be associated to PME/PMEI gene expression, the lower cellulose content cannot be attributed to altered cellulose synthase (CesA) gene expression suggesting the involvement of other gene families. Salt extracts from -N and -P callus tissues increased plastic deformation in cucumber hypocotyls while no effect was observed with -S extracts. The lower endo-acting glycosyl hydrolase activity of -N callus extracts pinpoints a more expressive impact of -N on CW-remodeling.

  16. Cell Wall Remodeling in Abscission Zone Cells during Ethylene-Promoted Fruit Abscission in Citrus

    Science.gov (United States)

    Merelo, Paz; Agustí, Javier; Arbona, Vicent; Costa, Mário L.; Estornell, Leandro H.; Gómez-Cadenas, Aurelio; Coimbra, Silvia; Gómez, María D.; Pérez-Amador, Miguel A.; Domingo, Concha; Talón, Manuel; Tadeo, Francisco R.

    2017-01-01

    Abscission is a cell separation process by which plants can shed organs such as fruits, leaves, or flowers. The process takes place in specific locations termed abscission zones. In fruit crops like citrus, fruit abscission represents a high percentage of annual yield losses. Thus, understanding the molecular regulation of abscission is of capital relevance to control production. To identify genes preferentially expressed within the citrus fruit abscission zone (AZ-C), we performed a comparative transcriptomics assay at the cell type resolution level between the AZ-C and adjacent fruit rind cells (non-abscising tissue) during ethylene-promoted abscission. Our strategy combined laser microdissection with microarray analysis. Cell wall modification-related gene families displayed prominent representation in the AZ-C. Phylogenetic analyses of such gene families revealed a link between phylogenetic proximity and expression pattern during abscission suggesting highly conserved roles for specific members of these families in abscission. Our transcriptomic data was validated with (and strongly supported by) a parallel approach consisting on anatomical, histochemical and biochemical analyses on the AZ-C during fruit abscission. Our work identifies genes potentially involved in organ abscission and provides relevant data for future biotechnology approaches aimed at controlling such crucial process for citrus yield. PMID:28228766

  17. An arabinogalactan protein associated with secondary cell wall formation in differentiating xylem of loblolly pine.

    Science.gov (United States)

    Zhang, Yi; Brown, Garth; Whetten, Ross; Loopstra, Carol A; Neale, David; Kieliszewski, Marcia J; Sederoff, Ronald R

    2003-05-01

    Arabinogalactan proteins (AGPs) are abundant plant proteoglycans implicated in plant growth and development. Here, we report the genetic characterization, partial purification and immunolocalization of a classical AGP (PtaAGP6, accession number AF101785) in loblolly pine (Pinus taeda L.). A PtaAGP6 full-length cDNA clone was expressed in bacteria. PtaAGP6 resembles tomato LeAGP-1 and Arabidopsis AtAGP17-19 in that they all possess a subdomain composed of basic amino acids. The accessibility of this domain in the glycoprotein makes it possible to label the PtaAGP6 epitopes on the cell surface or in the cell wall with polyclonal antibodies raised against this subdomain. The antibodies recognize the peptide of the basic subdomain and bind to the intact protein molecule. A soluble protein-containing fraction was purified from the differentiating xylem of pine trees by using beta-glucosyl Yariv reagent (beta-glcY) and was recognized by antibodies against the basic subdomain. Immunolocalization studies showed that the PtaAGP6 epitopes are restricted to a file of cells that just precede secondary cell wall thickening, suggesting roles in xylem differentiation and wood formation. The location of apparent labeling of the PtaAGP6 epitopes is separated from the location of lignin deposition. Multiple single nucleotide polymorphisms (SNPs) were detected in EST variants. Denaturing HPLC analysis of PCR products suggests that PtaAGP6 is encoded by a single gene. Mobility variation in denaturing gel electrophoresis was used to map PtaAGP6 SNPs to a site on linkage group 5.

  18. Living with an imperfect cell wall: compensation of femAB inactivation in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Bierbaum Gabriele

    2007-09-01

    Full Text Available Abstract Background Synthesis of the Staphylococcus aureus peptidoglycan pentaglycine interpeptide bridge is catalyzed by the nonribosomal peptidyl transferases FemX, FemA and FemB. Inactivation of the femAB operon reduces the interpeptide to a monoglycine, leading to a poorly crosslinked peptidoglycan. femAB mutants show a reduced growth rate and are hypersusceptible to virtually all antibiotics, including methicillin, making FemAB a potential target to restore β-lactam susceptibility in methicillin-resistant S. aureus (MRSA. Cis-complementation with wild type femAB only restores synthesis of the pentaglycine interpeptide and methicillin resistance, but the growth rate remains low. This study characterizes the adaptations that ensured survival of the cells after femAB inactivation. Results In addition to slow growth, the cis-complemented femAB mutant showed temperature sensitivity and a higher methicillin resistance than the wild type. Transcriptional profiling paired with reporter metabolite analysis revealed multiple changes in the global transcriptome. A number of transporters for sugars, glycerol, and glycine betaine, some of which could serve as osmoprotectants, were upregulated. Striking differences were found in the transcription of several genes involved in nitrogen metabolism and the arginine-deiminase pathway, an alternative for ATP production. In addition, microarray data indicated enhanced expression of virulence factors that correlated with premature expression of the global regulators sae, sarA, and agr. Conclusion Survival under conditions preventing normal cell wall formation triggered complex adaptations that incurred a fitness cost, showing the remarkable flexibility of S. aureus to circumvent cell wall damage. Potential FemAB inhibitors would have to be used in combination with other antibiotics to prevent selection of resistant survivors.

  19. Structural changes in cell wall pectins during strawberry fruit development.

    Science.gov (United States)

    Paniagua, Candelas; Santiago-Doménech, Nieves; Kirby, Andrew R; Gunning, A Patrick; Morris, Victor J; Quesada, Miguel A; Matas, Antonio J; Mercado, José A

    2017-09-01

    Strawberry (Fragaria × anannasa Duch.) is one of the most important soft fruit. Rapid loss of firmness occurs during the ripening process, resulting in a short shelf life and high economic losses. To get insight into the role of pectin matrix in the softening process, cell walls from strawberry fruit at two developmental stages, unripe-green and ripe-red, were extracted and sequentially fractionated with different solvents to obtain fractions enriched in a specific component. The yield of cell wall material as well as the per fresh weight contents of the different fractions decreased in ripe fruit. The largest reduction was observed in the pectic fractions extracted with a chelating agent (trans-1,2- diaminocyclohexane-N,N,N'N'-tetraacetic acid, CDTA fraction) and those covalently bound to the wall (extracted with Na2CO3). Uronic acid content of these two fractions also decreased significantly during ripening, but the amount of soluble pectins extracted with phenol:acetic acid:water (PAW) and water increased in ripe fruit. Fourier transform infrared spectroscopy of the different fractions showed that the degree of esterification decreased in CDTA pectins but increased in soluble fractions at ripen stage. The chromatographic analysis of pectin fractions by gel filtration revealed that CDTA, water and, mainly PAW polyuronides were depolymerised in ripe fruit. By contrast, the size of Na2CO3 pectins was not modified. The nanostructural characteristics of CDTA and Na2CO3 pectins were analysed by atomic force microscopy (AFM). Isolated pectic chains present in the CDTA fractions were significantly longer and more branched in samples from green fruit than those from red fruit. No differences in contour length were observed in Na2CO3 strands between samples of both stages. However, the percentage of branched chains decreased from 19.7% in unripe samples to 3.4% in ripe fruit. The number of pectin aggregates was higher in green fruit samples of both fractions. These

  20. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment

    Science.gov (United States)

    Shishir P. S. Chundawat; Bryon S. Donohoe; Leonardo da Costa Sousa; Thomas Elder; Umesh P. Agarwal; Fachuang Lu; John Ralph; Michael E. Himmel; Venkatesh Balan; Bruce E. Dale

    2011-01-01

    Deconstruction of lignocellulosic plant cell walls to fermentable sugars by thermochemical and/or biological means is impeded by several poorly understood ultrastructural and chemical barriers. A promising thermochemical pretreatment called ammonia fiber expansion (AFEX) overcomes the native recalcitrance of cell walls through subtle morphological and physicochemical...

  1. CONSTITUTIVE MELANIN IN THE CELL WALL OF THE ETIOLOGIC AGENT OF LOBO'S DISEASE

    Directory of Open Access Journals (Sweden)

    TABORDA Valeria B.A.

    1999-01-01

    Full Text Available Lobo's disease is a chronic granulomatous disease caused by the obligate pathogenic fungus, whose cell walls contain constitutive melanin. In contrast, melanin does not occur in the cell walls of Paracoccidioides brasiliensis when stained by the Fontana-Masson stain.

  2. Cell wall composition as a maize defense mechanism against corn borers.

    Science.gov (United States)

    Barros-Rios, Jaime; Malvar, Rosa A; Jung, Hans-Joachim G; Santiago, Rogelio

    2011-04-01

    European and Mediterranean corn borers are two of the most economically important insect pests of maize (Zea mays L.) in North America and southern Europe, respectively. Cell wall structure and composition were evaluated in pith and rind tissues of resistant and susceptible inbred lines as possible corn borer resistance traits. Composition of cell wall polysaccharides, lignin concentration and composition, and cell wall bound forms of hydroxycinnamic acids were measured. As expected, most of the cell wall components were found at higher concentrations in the rind than in the pith tissues, with the exception of galactose and total diferulate esters. Pith of resistant inbred lines had significantly higher concentrations of total cell wall material than susceptible inbred lines, indicating that the thickness of cell walls could be the initial barrier against corn borer larvae attack. Higher concentrations of cell wall xylose and 8-O-4-coupled diferulate were found in resistant inbreds. Stem tunneling by corn borers was negatively correlated with concentrations of total diferulates, 8-5-diferulate and p-coumarate esters. Higher total cell wall, xylose, and 8-coupled diferulates concentrations appear to be possible mechanisms of corn borer resistance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. High-resolution solution-state NMR of unfractionated plant cell walls

    Science.gov (United States)

    John Ralph; Fachuang Lu; Hoon Kim; Dino Ress; Daniel J. Yelle; Kenneth E. Hammel; Sally A. Ralph; Bernadette Nanayakkara; Armin Wagner; Takuya Akiyama; Paul F. Schatz; Shawn D. Mansfield; Noritsugu Terashima; Wout Boerjan; Bjorn Sundberg; Mattias Hedenstrom

    2009-01-01

    Detailed structural studies on the plant cell wall have traditionally been difficult. NMR is one of the preeminent structural tools, but obtaining high-resolution solution-state spectra has typically required fractionation and isolation of components of interest. With recent methods for dissolution of, admittedly, finely divided plant cell wall material, the wall can...

  4. Detection of 2 immunoreactive antigens in the cell wall of Sporothrix brasiliensis and Sporothrix globosa.

    Science.gov (United States)

    Ruiz-Baca, Estela; Hernández-Mendoza, Gustavo; Cuéllar-Cruz, Mayra; Toriello, Conchita; López-Romero, Everardo; Gutiérrez-Sánchez, Gerardo

    2014-07-01

    The cell wall of members of the Sporothrix schenckii complex contains highly antigenic molecules which are potentially useful for the diagnosis and treatment of sporotrichosis. In this study, 2 immunoreactive antigens of 60 (Gp60) and 70 kDa (Gp70) were detected in the cell wall of the yeast morphotypes of Sporothrix brasiliensis and Sporothrix globosa.

  5. Features and functions of covalently linked proteins in fungal cell walls.

    NARCIS (Netherlands)

    de Groot, P.W.J.; Ram, A.F.; Klis, F.M.

    2005-01-01

    The cell walls of many ascomycetous yeasts consist of an internal network of stress-bearing polysaccharides, which serve as a scaffold for a dense external layer of glycoproteins. GPI-modified proteins are the most abundant cell wall proteins and often display a common organization. Their C-terminus

  6. Modification of cell wall architecture of wheat coleoptiles grown under hypergravity conditions.

    Science.gov (United States)

    Wakabayashi, Kazuyuki; Soga, Kouichi; Kamisaka, Seiichiro; Hoson, Takayuki

    2003-10-01

    Cell wall structure of wheat coleoptiles grown under continuous hypergravity (300 g) conditions was investigated. Length of coleoptiles exposed to hypergravity for 2-4 days from germination stage was 60-70% of that of 1 g control. The amounts of cell wall polysaccharides substantially increased during the incubation period both in 1 g control and hypergravity-treated coleoptiles. As a results, the levels of cell wall polysaccharides per unit length of coleoptile, which mean the thickness of cell walls, largely increased under hypergravity conditions. The major sugar components of the hemicellulose fraction, a polymer fraction extracted from cell walls with strong alkali, were arabinose (Ara), xylose (Xyl) and glucose (Glc). The molar ratios of Ara and Xyl to Glc in hypergravity-treated coleoptiles were higher than those in control coleoptiles. Furthermore, the fractionation of hemicellulosic polymers into the neutral and acidic polymers by the anion-exchange column showed that the levels of acidic polymers in cell walls of hypergravity-treated coleoptiles were higher than those of control coleoptiles. These results suggest that hypergravity stimuli bias the synthesis of hemicellulosic polysaccharides and increase the proportion of acidic polymers, such as arabinoxylans, in cell walls of wheat coleoptiles. These structural changes in cell walls may contribute to plant resistance to hypergravity stimuli.

  7. Murein and pseudomurein cell wall binding domains of bacteria and archaea-a comparative view

    NARCIS (Netherlands)

    Visweswaran, Ganesh Ram R.; Dijkstra, Bauke W.; Kok, Jan

    2011-01-01

    The cell wall, a major barrier protecting cells from their environment, is an essential compartment of both bacteria and archaea. It protects the organism from internal turgor pressure and gives a defined shape to the cell. The cell wall serves also as an anchoring surface for various proteins and a

  8. [Studies on active ingredients in Corydalis, broken cell wall corydalis and its processed products].

    Science.gov (United States)

    Cao, Liu; Diu, Zhi-Ying; Wang, Ping; Sun, Wei; Tian, Yong-Liang

    2008-06-01

    To compare the contents of tetrahydropalmatine and dehydrocorydaline in corydalis, broken cell wall corydalis and its different processed products. The broken cell wall technique was used to corydalis, and then both the corydalis and broken cell wall corydalis were processed. The method of chromatography which was used to determine the contents of tetrahydropalmatine and dehydrocorydaline in corydalis broken cell wall corydalis and its different processed products was performed by RP-HPLC with Kromasil ODS-C18 (4.6 mm x 250 mm, 5 microm) column was used at 35 degrees C, acetonitrile-acetate buffer solution (pH 6.0) (30:70) as mobile phase of 1 mL x min(-1) flow rate, detection wavelength was set at 280 nm. The contents of the two active components in broken cell wall corydalis were higher than that in corydalis, while that in broken cell wall and vinegar-fried corydalis was highest in the products of breaked cell wall corydalis. Breaking the cell wall of corydalis can help to dissolute alkaloids.

  9. In Vivo Cell Wall Loosening by Hydroxyl Radicals during Cress Seed Germination and Elongation Growth

    NARCIS (Netherlands)

    Muller, K.; Linkies, A.; Vreeburg, R.A.M.; Fry, S.C.; Krieger-Liszkay, A.; Leubner-Metzger, G.

    2009-01-01

    Loosening of cell walls is an important developmental process in key stages of the plant life cycle, including seed germination, elongation growth, and fruit ripening. Here, we report direct in vivo evidence for hydroxyl radical (·OH)-mediated cell wall loosening during plant seed germination and se

  10. The plant cell wall in the feeding sites of cyst nematodes.

    Science.gov (United States)

    Bohlmann, Holger; Sobczak, Miroslaw

    2014-01-01

    Plant parasitic cyst nematodes (genera Heterodera and Globodera) are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2) and migrate intracellularly toward the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC) within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.

  11. The plant cell wall in the feeding sites of cyst nematodes

    Directory of Open Access Journals (Sweden)

    Holger eBohlmann

    2014-03-01

    Full Text Available Plant parasitic cyst nematodes (genera Heterodera and Globodera are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2 and migrate intracellularly towards the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.

  12. Interactions between grape skin cell wall material and commercial enological tannins. Practical implications.

    Science.gov (United States)

    Bautista-Ortín, Ana Belén; Cano-Lechuga, Mario; Ruiz-García, Yolanda; Gómez-Plaza, Encarna

    2014-01-01

    Commercial enological tannins were used to investigate the role that cell wall material plays in proanthocyanidin adsorption. Insoluble cell wall material, prepared from the skin of Vitis vinifera L. cv. Monastrell berries, was combined with solutions containing six different commercial enological tannins (proanthocyanidin-type tannins). Analysis of the proanthocyanidins in the solution, after fining with cell wall material, using phloroglucinolysis and size exclusion chromatography, provided quantitative and qualitative information on the non-adsorbed compounds. Cell wall material showed strong affinity