WorldWideScience

Sample records for cell-selective androgen receptor

  1. Selective androgen receptor modulators: in pursuit of tissue-selective androgens.

    Science.gov (United States)

    Omwancha, Josephat; Brown, Terry R

    2006-10-01

    The androgen receptor mediates the androgenic and anabolic activity of the endogenous steroids testosterone and 5alpha-dihydrotestosterone. Current knowledge of the androgen receptor protein structure, and the molecular mechanisms surrounding the binding properties and activities of agonists and antagonists has led to the design and development of novel nonsteroidal ligands with selected tissue-specific androgen receptor agonist and antagonist activities. The activity of these compounds, termed selective androgen receptor modulators (SARMs), is directed toward the maintenance or enhancement of anabolic effects on bone and muscle with minimal androgenic effects on prostate growth. SARMs are of potential therapeutic value in the treatment of male hypogonadism, osteoporosis, frailty and muscle wasting, burn injury and would healing, anemia, mood and depression, benign prostatic hyperplasia and prostate cancer.

  2. Antiandrogens act as selective androgen receptor modulators at the proteome level in prostate cancer cells.

    Science.gov (United States)

    Brooke, Greg N; Gamble, Simon C; Hough, Michael A; Begum, Shajna; Dart, D Alwyn; Odontiadis, Michael; Powell, Sue M; Fioretti, Flavia M; Bryan, Rosie A; Waxman, Jonathan; Wait, Robin; Bevan, Charlotte L

    2015-05-01

    Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor mutations, which are commonly detected in patients who relapse while receiving antiandrogens, i.e. in castrate-resistant prostate cancer. To characterize the early proteomic response to these antiandrogens we used the LNCaP prostate cancer cell line, which harbors the androgen receptor mutation most commonly detected in castrate-resistant tumors (T877A), analyzing alterations in the proteome, and comparing these to the effect of these therapeutics upon androgen receptor activity and cell proliferation. The majority are regulated post-transcriptionally, possibly via nongenomic androgen receptor signaling. Differences detected between the exposure groups demonstrate subtle changes in the biological response to each specific ligand, suggesting a spectrum of agonistic and antagonistic effects dependent on the ligand used. Analysis of the crystal structures of the AR in the presence of cyproterone acetate, hydroxyflutamide, and DHT identified important differences in the orientation of key residues located in the AF-2 and BF-3 protein interaction surfaces. This further implies that although there is commonality in the growth responses between androgens and those antiandrogens that stimulate growth in the presence of a mutation, there may also be influential differences in the growth pathways stimulated by the different ligands. This therefore has implications for prostate cancer treatment because tumors may respond differently dependent upon which mutation is present and which ligand is activating growth, also for the design of selective androgen receptor modulators, which aim to elicit differential proteomic

  3. Discovery and therapeutic promise of selective androgen receptor modulators.

    Science.gov (United States)

    Chen, Jiyun; Kim, Juhyun; Dalton, James T

    2005-06-01

    Androgens are essential for male development and the maintenance of male secondary characteristics, such as bone mass, muscle mass, body composition, and spermatogenesis. The main disadvantages of steroidal androgens are their undesirable physicochemical and pharmacokinetic properties. The recent discovery of nonsteroidal selective androgen receptor modulators (SARMs) provides a promising alternative for testosterone replacement therapies with advantages including oral bioavailability, flexibility of structural modification, androgen receptor specificity, tissue selectivity, and the lack of steroid-related side effects.

  4. Pharmacodynamics of selective androgen receptor modulators.

    Science.gov (United States)

    Yin, Donghua; Gao, Wenqing; Kearbey, Jeffrey D; Xu, Huiping; Chung, Kiwon; He, Yali; Marhefka, Craig A; Veverka, Karen A; Miller, Duane D; Dalton, James T

    2003-03-01

    The present study aimed to identify selective androgen receptor modulators (SARMs) with in vivo pharmacological activity. We examined the in vitro and in vivo pharmacological activity of four chiral, nonsteroidal SARMs synthesized in our laboratories. In the in vitro assays, these compounds demonstrated moderate to high androgen receptor (AR) binding affinity, with K(i) values ranging from 4 to 37 nM, and three of the compounds efficaciously stimulated AR-mediated reporter gene expression. The compounds were then administered subcutaneously to castrated rats to appraise their in vivo pharmacological activity. Androgenic activity was evaluated by the ability of these compounds to maintain the weights of prostate and seminal vesicle, whereas levator ani muscle weight was used as a measure of anabolic activity. The maximal response (E(max)) and dose for half-maximal effect (ED(50)) were determined for each compound and compared with that observed for testosterone propionate (TP). Compounds S-1 and S-4 demonstrated in vivo androgenic and anabolic activity, whereas compounds S-2 and S-3 did not. The activities of S-1 and S-4 were tissue-selective in that both compounds stimulated the anabolic organs more than the androgenic organs. These two compounds were less potent and efficacious than TP in androgenic activity, but their anabolic activity was similar to or greater than that of TP. Neither S-1 nor S-4 caused significant luteinizing hormone or follicle stimulating hormone suppression at doses near the ED(50) value. Thus, compounds S-1 and S-4 were identified as SARMs with potent and tissue-selective in vivo pharmacological activity, and represent the first members of a new class of SARMs with selective anabolic effects.

  5. Effect of propofol on androgen receptor activity in prostate cancer cells.

    Science.gov (United States)

    Tatsumi, Kenichiro; Hirotsu, Akiko; Daijo, Hiroki; Matsuyama, Tomonori; Terada, Naoki; Tanaka, Tomoharu

    2017-08-15

    Androgen receptor is a nuclear receptor and transcription factor activated by androgenic hormones. Androgen receptor activity plays a pivotal role in the development and progression of prostate cancer. Although accumulating evidence suggests that general anesthetics, including opioids, affect cancer cell growth and impact patient prognosis, the effect of those drugs on androgen receptor in prostate cancer is not clear. The purpose of this study was to investigate the effect of the general anesthetic propofol on androgen receptor activity in prostate cancer cells. An androgen-dependent human prostate cancer cell line (LNCaP) was stimulated with dihydrotestosterone (DHT) and exposed to propofol. The induction of androgen receptor target genes was investigated using real-time reverse transcription polymerase chain reaction, and androgen receptor protein levels and localization patterns were analyzed using immunoblotting and immunofluorescence assays. The effect of propofol on the proliferation of LNCaP cells was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Propofol significantly inhibited DHT-induced expression of androgen receptor target genes in a dose- and time-dependent manner, and immunoblotting and immunofluorescence assays indicated that propofol suppressed nuclear levels of androgen receptor proteins. Exposure to propofol for 24h suppressed the proliferation of LNCaP cells, whereas 4h of exposure did not exert significant effects. Together, our results indicate that propofol suppresses nuclear androgen receptor protein levels, and inhibits androgen receptor transcriptional activity and proliferation in LNCaP cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Selectivity in progesterone and androgen receptor binding of progestagens used in oral contraceptives

    International Nuclear Information System (INIS)

    Kloosterboer, H.J.; Vonk-Noordegraaf, C.A.; Turpijn, E.W.

    1988-01-01

    The relative binding affinities (RBAs) of four progestational compounds (norethisterone, levonorgestrel, 3-keto-desogestrel and gestodene) for the human progesterone and androgen receptors were measured in MCF-7 cytosol and intact MCF-7 cells. For the binding to the progesterone receptor, both Org 2058 and Org 3236 (or 3-keto-desogestrel) were used as labelled ligands. The following ranking (low to high) for the RBA of the nuclear (intact cells) progesterone receptor irrespective of the ligand used is found: norethisterone much less than levonorgestrel less than 3-keto-destogestrel less than gestodene. The difference between the various progestagens is significant with the exception of that between 3-keto-desogestrel and gestodene, when Org 2058 is used as ligand. For the cytosolic progesterone receptor, the same order is found with the exception that similar RBAs are found for gestodene and 3-keto-desogestrel. The four progestagens clearly differ with respect to binding to the androgen receptor using dihydrotestosterone as labelled ligand in intact cells; the ranking (low to high) is: norethisterone less than 3 keto-desogestrel less than levonorgestrel and gestodene. The difference between 3-keto-desogestrel and levonorgestrel or gestodene is significant. The selectivity indices (ratio of the mean RBA for the progesterone receptor to that of androgen receptor) in intact cells are significantly higher for 3-keto-desogestrel and gestodene than for levonorgestrel and norethisterone. From these results we conclude that the introduction of the 18-methyl in norethisterone (levonorgestel) increases both the binding to the progesterone and androgen receptors

  7. Selective androgen receptor modulators (SARMs) negatively regulate triple-negative breast cancer growth and epithelial:mesenchymal stem cell signaling.

    Science.gov (United States)

    Narayanan, Ramesh; Ahn, Sunjoo; Cheney, Misty D; Yepuru, Muralimohan; Miller, Duane D; Steiner, Mitchell S; Dalton, James T

    2014-01-01

    The androgen receptor (AR) is the most highly expressed steroid receptor in breast cancer with 75-95% of estrogen receptor (ER)-positive and 40-70% of ER-negative breast cancers expressing AR. Though historically breast cancers were treated with steroidal androgens, their use fell from favor because of their virilizing side effects and the emergence of tamoxifen. Nonsteroidal, tissue selective androgen receptor modulators (SARMs) may provide a novel targeted approach to exploit the therapeutic benefits of androgen therapy in breast cancer. Since MDA-MB-453 triple-negative breast cancer cells express mutated AR, PTEN, and p53, MDA-MB-231 triple-negative breast cancer cells stably expressing wildtype AR (MDA-MB-231-AR) were used to evaluate the in vitro and in vivo anti-proliferative effects of SARMs. Microarray analysis and epithelial:mesenchymal stem cell (MSC) co-culture signaling studies were performed to understand the mechanisms of action. Dihydrotestosterone and SARMs, but not bicalutamide, inhibited the proliferation of MDA-MB-231-AR. The SARMs reduced the MDA-MB-231-AR tumor growth and tumor weight by greater than 90%, compared to vehicle-treated tumors. SARM treatment inhibited the intratumoral expression of genes and pathways that promote breast cancer development through its actions on the AR. SARM treatment also inhibited the metastasis-promoting paracrine factors, IL6 and MMP13, and subsequent migration and invasion of epithelial:MSC co-cultures. 1. AR stimulation inhibits paracrine factors that are important for MSC interactions and breast cancer invasion and metastasis. 2. SARMs may provide promise as novel targeted therapies to treat AR-positive triple-negative breast cancer.

  8. Selective androgen receptor modulators (SARMs negatively regulate triple-negative breast cancer growth and epithelial:mesenchymal stem cell signaling.

    Directory of Open Access Journals (Sweden)

    Ramesh Narayanan

    Full Text Available The androgen receptor (AR is the most highly expressed steroid receptor in breast cancer with 75-95% of estrogen receptor (ER-positive and 40-70% of ER-negative breast cancers expressing AR. Though historically breast cancers were treated with steroidal androgens, their use fell from favor because of their virilizing side effects and the emergence of tamoxifen. Nonsteroidal, tissue selective androgen receptor modulators (SARMs may provide a novel targeted approach to exploit the therapeutic benefits of androgen therapy in breast cancer.Since MDA-MB-453 triple-negative breast cancer cells express mutated AR, PTEN, and p53, MDA-MB-231 triple-negative breast cancer cells stably expressing wildtype AR (MDA-MB-231-AR were used to evaluate the in vitro and in vivo anti-proliferative effects of SARMs. Microarray analysis and epithelial:mesenchymal stem cell (MSC co-culture signaling studies were performed to understand the mechanisms of action.Dihydrotestosterone and SARMs, but not bicalutamide, inhibited the proliferation of MDA-MB-231-AR. The SARMs reduced the MDA-MB-231-AR tumor growth and tumor weight by greater than 90%, compared to vehicle-treated tumors. SARM treatment inhibited the intratumoral expression of genes and pathways that promote breast cancer development through its actions on the AR. SARM treatment also inhibited the metastasis-promoting paracrine factors, IL6 and MMP13, and subsequent migration and invasion of epithelial:MSC co-cultures.1. AR stimulation inhibits paracrine factors that are important for MSC interactions and breast cancer invasion and metastasis. 2. SARMs may provide promise as novel targeted therapies to treat AR-positive triple-negative breast cancer.

  9. Camptothecin disrupts androgen receptor signaling and suppresses prostate cancer cell growth

    International Nuclear Information System (INIS)

    Liu, Shicheng; Yuan, Yiming; Okumura, Yutaka; Shinkai, Norihiro; Yamauchi, Hitoshi

    2010-01-01

    The androgen receptor (AR) is the main therapeutic target for treatment of metastatic prostate cancers. The present study demonstrates that the topoisomerase I inhibitor camptothecin selectively inhibits androgen-responsive growth of prostate cancer cells. Camptothecin strikingly inhibited mutated and wild-type AR protein expression in LNCaP and PC-3/AR cells. This inhibition coincided with decreased androgen-mediated AR phosphorylation at Ser 81 and reduced androgen-mediated AR transcriptional activity in a dose-dependent manner. Additionally, camptothecin disrupted the association between AR and heat shock protein 90 and impeded binding of the synthetic androgen [ 3 H]R1881 to AR in LNCaP cells. Camptothecin also blocked androgen-induced AR nuclear translocation, leading to downregulation of the AR target gene PSA. In addition to decreasing the intracellular and secreted prostate-specific antigen (PSA) levels, camptothecin markedly inhibited androgen-stimulated PSA promoter activity. Collectively, our data reveal that camptothecin not only serves as a traditional genotoxic agent but, by virtue of its ability to target and disrupt AR, may also be a novel candidate for the treatment of prostate cancer.

  10. The PPARγ ligand ciglitazone regulates androgen receptor activation differently in androgen-dependent versus androgen-independent human prostate cancer cells

    International Nuclear Information System (INIS)

    Moss, Patrice E.; Lyles, Besstina E.; Stewart, LaMonica V.

    2010-01-01

    The androgen receptor (AR) regulates growth and progression of androgen-dependent as well as androgen-independent prostate cancer cells. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists have been reported to reduce AR activation in androgen-dependent LNCaP prostate cancer cells. To determine whether PPARγ ligands are equally effective at inhibiting AR activity in androgen-independent prostate cancer, we examined the effect of the PPARγ ligands ciglitazone and rosiglitazone on C4-2 cells, an androgen- independent derivative of the LNCaP cell line. Luciferase-based reporter assays and Western blot analysis demonstrated that PPARγ ligand reduced dihydrotestosterone (DHT)-induced increases in AR activity in LNCaP cells. However, in C4-2 cells, these compounds increased DHT-induced AR driven luciferase activity. In addition, ciglitazone did not significantly alter DHT-mediated increases in prostate specific antigen (PSA) protein or mRNA levels within C4-2 cells. siRNA-based experiments demonstrated that the ciglitazone-induced regulation of AR activity observed in C4-2 cells was dependent on the presence of PPARγ. Furthermore, overexpression of the AR corepressor cyclin D1 inhibited the ability of ciglitazone to induce AR luciferase activity in C4-2 cells. Thus, our data suggest that both PPARγ and cyclin D1 levels influence the ability of ciglitazone to differentially regulate AR signaling in androgen-independent C4-2 prostate cancer cells.

  11. Design, synthesis, and biological characterization of metabolically stable selective androgen receptor modulators.

    Science.gov (United States)

    Marhefka, Craig A; Gao, Wenqing; Chung, Kiwon; Kim, Juhyun; He, Yali; Yin, Donghua; Bohl, Casey; Dalton, James T; Miller, Duane D

    2004-02-12

    A series of nonsteroidal ligands were synthesized as second-generation agonists for the androgen receptor (AR). These ligands were designed to eliminate metabolic sites identified in one of our first-generation AR agonists, which was inactive in vivo due to its rapid metabolism to inactive constituents. The binding affinity of these compounds was evaluated using AR isolated from rat ventral prostate. These second-generation compounds bound the AR in a high affinity and stereoselective manner, with K(i) values ranging from about 4 to 130 nM. The ability of these ligands to stimulate AR-mediated transcriptional activation was examined in cells transfected with the human AR and a hormone-dependent luciferase reporter gene. Although some compounds were unable to stimulate AR-mediated transcription, several demonstrated activity similar to that of dihydrotestosterone (DHT, an endogenous steroidal ligand for the AR). We also evaluated the in vivo pharmacologic activity of selected compounds in castrated male rats. Three compounds were identified as selective androgen receptor modulators (SARMs), exhibiting significant anabolic activity while having only moderate to minimal androgenic activity in vivo.

  12. Synthetic anabolic agents: steroids and nonsteroidal selective androgen receptor modulators.

    Science.gov (United States)

    Thevis, Mario; Schänzer, Wilhelm

    2010-01-01

    The central role of testosterone in the development of male characteristics, as well as its beneficial effects on physical performance and muscle growth, has led to the search for synthetic alternatives with improved pharmacological profiles. Hundreds of steroidal analogs have been prepared with a superior oral bioavailability, which should also possess reduced undesirable effects. However, only a few entered the pharmaceutical market due to severe toxicological incidences that were mainly attributed to the lack of tissue selectivity. Prominent representatives of anabolic-androgenic steroids (AAS) are for instance methyltestosterone, metandienone and stanozolol, which are discussed as model compounds with regard to general pharmacological aspects of synthetic AAS. Recently, nonsteroidal alternatives to AAS have been developed that selectively activate the androgen receptor in either muscle tissue or bones. These so-called selective androgen receptor modulators (SARMs) are currently undergoing late clinical trials (IIb) and will be prohibited by the World Anti-Doping Agency from January 2008. Their entirely synthetic structures are barely related to steroids, but particular functional groups allow for the tissue-selective activation or inhibition of androgen receptors and, thus, the stimulation of muscle growth without the risk of severe undesirable effects commonly observed in steroid replacement therapies. Hence, these compounds possess a high potential for misuse in sports and will be the subject of future doping control assays.

  13. The liver X receptor agonist T0901317 acts as androgen receptor antagonist in human prostate cancer cells

    International Nuclear Information System (INIS)

    Chuu, Chih-pin; Chen, Rou-Yu; Hiipakka, Richard A.; Kokontis, John M.; Warner, Karen V.; Xiang, Jialing; Liao, Shutsung

    2007-01-01

    T0901317 is a potent non-steroidal synthetic liver X receptor (LXR) agonist. T0901317 blocked androgenic stimulation of the proliferation of androgen-dependent LNCaP 104-S cells and androgenic suppression of the proliferation of androgen-independent LNCaP 104-R2 cells, inhibited the transcriptional activation of an androgen-dependent reporter gene by androgen, and suppressed gene and protein expression of prostate specific antigen (PSA), a target gene of androgen receptor (AR) without affecting gene and protein expression of AR. T0901317 also inhibited binding of a radiolabeled androgen to AR, but inhibition was much weaker compared to the effect of the antiandrogens, bicalutamide and hydroxyflutamide. The LXR agonist T0901317, therefore, acts as an antiandrogen in human prostate cancer cells

  14. Comparison of steroid receptors from the androgen responsive DDT1 cell line and the nonresponsive HVP cell line.

    Science.gov (United States)

    Norris, J S; Kohler, P O

    1978-01-01

    Two hamster cell lines have been isolated from androgen target tissue. The DDT1 cells derived from ductus deferens tissue exhibit a growth response to androgens, while the HVP cells derived from ventral prostate are androgen unresponsive. Both cell lines contain androgen receptors, that are similar when compared by kinetic methods, sedimentation velocity, chromatographic procedures or nuclear translocation ability. The forms of the high salt extracted nuclear receptors are indistinguishable chromatographically. Therefore, we postulate that the lesion preventing androgen induced growth in the HVP cell line is subseqent to nuclear translocation of the steroid receptor complex.

  15. The PPAR{gamma} ligand ciglitazone regulates androgen receptor activation differently in androgen-dependent versus androgen-independent human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Patrice E.; Lyles, Besstina E.; Stewart, LaMonica V., E-mail: lstewart@mmc.edu

    2010-12-10

    The androgen receptor (AR) regulates growth and progression of androgen-dependent as well as androgen-independent prostate cancer cells. Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists have been reported to reduce AR activation in androgen-dependent LNCaP prostate cancer cells. To determine whether PPAR{gamma} ligands are equally effective at inhibiting AR activity in androgen-independent prostate cancer, we examined the effect of the PPAR{gamma} ligands ciglitazone and rosiglitazone on C4-2 cells, an androgen- independent derivative of the LNCaP cell line. Luciferase-based reporter assays and Western blot analysis demonstrated that PPAR{gamma} ligand reduced dihydrotestosterone (DHT)-induced increases in AR activity in LNCaP cells. However, in C4-2 cells, these compounds increased DHT-induced AR driven luciferase activity. In addition, ciglitazone did not significantly alter DHT-mediated increases in prostate specific antigen (PSA) protein or mRNA levels within C4-2 cells. siRNA-based experiments demonstrated that the ciglitazone-induced regulation of AR activity observed in C4-2 cells was dependent on the presence of PPAR{gamma}. Furthermore, overexpression of the AR corepressor cyclin D1 inhibited the ability of ciglitazone to induce AR luciferase activity in C4-2 cells. Thus, our data suggest that both PPAR{gamma} and cyclin D1 levels influence the ability of ciglitazone to differentially regulate AR signaling in androgen-independent C4-2 prostate cancer cells.

  16. Structure-Activity Relationships of New Natural Product-Based Diaryloxazoles with Selective Activity against Androgen Receptor-Positive Breast Cancer Cells.

    Science.gov (United States)

    Robles, Andrew J; McCowen, Shelby; Cai, Shengxin; Glassman, Michaels; Ruiz, Francisco; Cichewicz, Robert H; McHardy, Stanton F; Mooberry, Susan L

    2017-11-22

    Targeted therapies for ER+/PR+ and HER2-amplified breast cancers have improved patient survival, but there are no therapies for triple negative breast cancers (TNBC) that lack expression of estrogen and progesterone receptors (ER/PR), or amplification or overexpression of HER2. Gene expression profiling of TNBC has identified molecular subtypes and representative cell lines. An extract of the Texas native plant Amyris texana was found to have selective activity against MDA-MB-453 cells, a model of the luminal androgen receptor (LAR) subtype of TNBC. Bioassay-guided fractionation identified two oxazole natural products with selective activity against this cell line. Conducted analog synthesis and structure-activity relationship studies provided analogs with more potent and selective activity against two LAR subtype cell line models, culminating in the discovery of compound 30 (CIDD-0067106). Lead compounds discovered have potent and selective antiproliferative activities, and mechanisms of action studies show they inhibit the activity of the mTORC1 pathway.

  17. Chemical Composition and Labeling of Substances Marketed as Selective Androgen Receptor Modulators and Sold via the Internet.

    Science.gov (United States)

    Van Wagoner, Ryan M; Eichner, Amy; Bhasin, Shalender; Deuster, Patricia A; Eichner, Daniel

    2017-11-28

    Recent reports have described the increasing use of nonsteroidal selective androgen receptor modulators, which have not been approved by the US Food and Drug Administration (FDA), to enhance appearance and performance. The composition and purity of such products is not known. To determine the chemical identity and the amounts of ingredients in dietary supplements and products marketed and sold through the internet as selective androgen receptor modulators and compare the analyzed contents with product labels. Web-based searches were performed from February 18, 2016, to March 25, 2016, using the Google search engine on the Chrome and Internet Explorer web browsers to identify suppliers selling selective androgen receptor modulators. The products were purchased and the identities of the compounds and their amounts were determined from April to August 2016 using chain-of-custody and World Anti-Doping Association-approved analytical procedures. Analytical findings were compared against the label information. Products marketed and sold as selective androgen receptor modulators. Chemical identities and the amount of ingredients in each product marketed and sold as selective androgen receptor modulators. Among 44 products marketed and sold as selective androgen receptor modulators, only 23 (52%) contained 1 or more selective androgen receptor modulators (Ostarine, LGD-4033, or Andarine). An additional 17 products (39%) contained another unapproved drug, including the growth hormone secretagogue ibutamoren, the peroxisome proliferator-activated receptor-δ agonist GW501516, and the Rev-ErbA agonist SR9009. Of the 44 tested products, no active compound was detected in 4 (9%) and substances not listed on the label were contained in 11 (25%). In only 18 of the 44 products (41%), the amount of active compound in the product matched that listed on the label. The amount of the compounds listed on the label differed substantially from that found by analysis in 26 of 44 products

  18. Artemisinin disrupts androgen responsiveness of human prostate cancer cells by stimulating the 26S proteasome-mediated degradation of the androgen receptor protein.

    Science.gov (United States)

    Steely, Andrea M; Willoughby, Jamin A; Sundar, Shyam N; Aivaliotis, Vasiliki I; Firestone, Gary L

    2017-10-01

    Androgen receptor (AR) expression and activity is highly linked to the development and progression of prostate cancer and is a target of therapeutic strategies for this disease. We investigated whether the antimalarial drug artemisinin, which is a sesquiterpene lactone isolated from the sweet wormwood plant Artemisia annua, could alter AR expression and responsiveness in cultured human prostate cancer cell lines. Artemisinin treatment induced the 26S proteasome-mediated degradation of the receptor protein, without altering AR transcript levels, in androgen-responsive LNCaP prostate cancer cells or PC-3 prostate cancer cells expressing exogenous wild-type AR. Furthermore, artemisinin stimulated AR ubiquitination and AR receptor interactions with the E3 ubiquitin ligase MDM2 in LNCaP cells. The artemisinin-induced loss of AR protein prevented androgen-responsive cell proliferation and ablated total AR transcriptional activity. The serine/threonine protein kinase AKT-1 was shown to be highly associated with artemisinin-induced proteasome-mediated degradation of AR protein. Artemisinin treatment activated AKT-1 enzymatic activity, enhanced receptor association with AKT-1, and induced AR serine phosphorylation. Treatment of LNCaP cells with the PI3-kinase inhibitor LY294002, which inhibits the PI3-kinase-dependent activation of AKT-1, prevented the artemisinin-induced AR degradation. Furthermore, in transfected receptor-negative PC-3 cells, artemisinin failed to stimulate the degradation of an altered receptor protein (S215A/S792A) with mutations in its two consensus AKT-1 serine phosphorylation sites. Taken together, our results indicate that artemisinin induces the degradation of AR protein and disrupts androgen responsiveness of human prostate cancer cells, suggesting that this natural compound represents a new potential therapeutic molecule that selectively targets AR levels.

  19. Nonsteroidal selective androgen receptor modulators enhance female sexual motivation.

    Science.gov (United States)

    Jones, Amanda; Hwang, Dong Jin; Duke, Charles B; He, Yali; Siddam, Anjaiah; Miller, Duane D; Dalton, James T

    2010-08-01

    Women experience a decline in estrogen and androgen levels after natural or surgically induced menopause, effects that are associated with a loss of sexual desire and bone mineral density. Studies in our laboratories have shown the beneficial effects of selective androgen receptor modulators (SARMs) in the treatment of osteoporosis and muscle wasting in animal models. A series of S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-cyano-3-trifluoromethyl-phenyl)-propionamide analogs was synthesized to evaluate the effects of B-ring substitutions on in vitro and in vivo pharmacologic activity, especially female sexual motivation. The androgen receptor (AR) relative binding affinities ranged from 0.1 to 26.5% (relative to dihydrotestosterone) and demonstrated a range of agonist activity at 100 nM. In vivo pharmacologic activity was first assessed by using male rats. Structural modifications to the B-ring significantly affected the selectivity of the SARMs, demonstrating that single-atom substitutions can dramatically and unexpectedly influence activity in androgenic (i.e., prostate) and anabolic (i.e., muscle) tissues. (S)-N-(4-cyano-3-trifluoromethyl-phenyl)-3-(3-fluoro,4-chlorophenoxy)-2-hydroxy-2-methyl-propanamide (S-23) displayed full agonist activity in androgenic and anabolic tissues; however, the remaining SARMs were more prostate-sparing, selectively maintaining the size of the levator ani muscle in castrated rats. The partner-preference paradigm was used to evaluate the effects of SARMs on female sexual motivation. With the exception of two four-halo substituted analogs, the SARMs increased sexual motivation in ovariectomized rats, with potency and efficacy comparable with testosterone propionate. These results indicate that the AR is important in regulating female libido given the nonaromatizable nature of SARMs and it could be a superior alternative to steroidal testosterone preparations in the treatment of hypoactive sexual desire disorder.

  20. Expression of a hyperactive androgen receptor leads to androgen-independent growth of prostate cancer cells.

    Science.gov (United States)

    Hsieh, Chen-Lin; Cai, Changmeng; Giwa, Ahmed; Bivins, Aaronica; Chen, Shao-Yong; Sabry, Dina; Govardhan, Kumara; Shemshedini, Lirim

    2008-07-01

    Cellular changes that affect the androgen receptor (AR) can cause prostate cancer to transition from androgen dependent to androgen independent, which is usually lethal. One common change in prostate tumors is overexpression of the AR, which has been shown to lead to androgen-independent growth of prostate cancer cells. This led us to hypothesize that expression of a hyperactive AR would be sufficient for androgen-independent growth of prostate cancer cells. To test this hypothesis, stable lune cancer prostate (LNCaP) cell lines were generated, which express a virion phosphoprotein (VP)16-AR hybrid protein that contains full-length AR fused to the strong viral transcriptional activation domain VP16. This fusion protein elicited as much as a 20-fold stronger transcriptional activity than the natural AR. Stable expression of VP16-AR in LNCaP cells yielded androgen-independent cell proliferation, while under the same growth conditions the parental LNCaP cells exhibited only androgen-dependent growth. These results show that expression of a hyperactive AR is sufficient for androgen-independent growth of prostate cancer cells. To study the molecular basis of this enhanced growth, we measured the expression of soluble guanylyl cyclase-alpha1 (sGCalpha1), a subunit of the sGC, an androgen-regulated gene that has been shown to be involved in prostate cancer cell growth. Interestingly, the expression of sGCalpha1 is androgen independent in VP16-AR-expressing cells, in contrast to its androgen-induced expression in control LNCaP cells. RNA(I)-dependent inhibition of sGCalpha1 expression resulted in significantly reduced proliferation of VP16-AR cells, implicating an important role for sGCalpha1 in the androgen-independent growth of these cells.

  1. Selective androgen receptor modulators in preclinical and clinical development.

    Science.gov (United States)

    Narayanan, Ramesh; Mohler, Michael L; Bohl, Casey E; Miller, Duane D; Dalton, James T

    2008-01-01

    Androgen receptor (AR) plays a critical role in the function of several organs including primary and accessory sexual organs, skeletal muscle, and bone, making it a desirable therapeutic target. Selective androgen receptor modulators (SARMs) bind to the AR and demonstrate osteo- and myo-anabolic activity; however, unlike testosterone and other anabolic steroids, these nonsteroidal agents produce less of a growth effect on prostate and other secondary sexual organs. SARMs provide therapeutic opportunities in a variety of diseases, including muscle wasting associated with burns, cancer, or end-stage renal disease, osteoporosis, frailty, and hypogonadism. This review summarizes the current standing of research and development of SARMs, crystallography of AR with SARMs, plausible mechanisms for their action and the potential therapeutic indications for this emerging class of drugs.

  2. Androgen Receptor Signaling in Bladder Cancer

    Science.gov (United States)

    Li, Peng; Chen, Jinbo; Miyamoto, Hiroshi

    2017-01-01

    Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in urothelial carcinogenesis as well as tumor growth. While the precise mechanisms of the functions of the androgen receptor in urothelial cells remain far from being fully understood, current evidence may offer chemopreventive or therapeutic options, using androgen deprivation therapy, in patients with bladder cancer. PMID:28241422

  3. Androgen Receptor Signaling in Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-02-01

    Full Text Available Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in urothelial carcinogenesis as well as tumor growth. While the precise mechanisms of the functions of the androgen receptor in urothelial cells remain far from being fully understood, current evidence may offer chemopreventive or therapeutic options, using androgen deprivation therapy, in patients with bladder cancer.

  4. A selective androgen receptor modulator for hormonal male contraception.

    Science.gov (United States)

    Chen, Jiyun; Hwang, Dong Jin; Bohl, Casey E; Miller, Duane D; Dalton, James T

    2005-02-01

    The recent discovery of nonsteroidal selective androgen receptor modulators (SARMs) provides a promising alternative for testosterone replacement therapies, including hormonal male contraception. The identification of an orally bioavailable SARM with the ability to mimic the central and peripheral androgenic and anabolic effects of testosterone would represent an important step toward the "male pill". We characterized the in vitro and in vivo pharmacologic activity of (S)-3-(4-chloro-3-fluorophenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethylphenyl)propionamide (C-6), a novel SARM developed in our laboratories. C-6 was identified as an androgen receptor (AR) agonist with high AR binding affinity (K(i) = 4.9 nM). C-6 showed tissue-selective pharmacologic activity with higher anabolic activity than androgenic activity in male rats. The doses required to maintain the weight of the prostate, seminal vesicles, and levator ani muscle to half the size of the maximum effects (i.e., ED(50)) were 0.78 +/- 0.06, 0.88 +/- 0.1, and 0.17 +/- 0.04 mg/day, respectively. As opposed to other SARMs, gonadotropin levels in C-6-treated groups were significantly lower than control values. C-6 also significantly decreased serum testosterone concentration in intact rats after 2 weeks of treatment. Marked suppression of spermatogenesis was observed after 10 weeks of treatment with C-6 in intact male rats. Pharmacokinetic studies of C-6 in male rats revealed that C-6 was well absorbed after oral administration (bioavailability 76%), with a long (6.3 h) half-life at a dose of 10 mg/kg. These studies show that C-6 mimicked the in vivo pharmacologic and endocrine effects of testosterone while maintaining the oral bioavailability and tissue-selective actions of nonsteroidal SARMs.

  5. Androgen receptor signaling is required for androgen-sensitive human prostate cancer cell proliferation and survival

    Directory of Open Access Journals (Sweden)

    Day Wanda V

    2005-04-01

    Full Text Available Abstract Background Androgens and androgen receptors (AR regulate normal prostate development and growth. They also are involved in pathological development of prostatic diseases, including benign prostatic hyperplasia (BPH and prostate cancer (PCa. Antiandrogen therapy for PCa, in conjunction with chemical or surgical castration, offers initial positive responses and leads to massive prostate cell death. However, cancer cells later appear as androgen-independent PCa. To investigate the role of AR in prostate cell proliferation and survival, we introduced a vector-based small interfering RNA (siRNA. This siRNA targeted 5'-untranslated region of AR mRNA for extended suppression of AR expression in androgen-sensitive human prostate LNCaP cells. Results The siRNA design successfully suppressed endogenous AR expression, as revealed by western blotting and immunofluorescence staining in LNCaP cells. LNCaP cells did not proliferate in the absence of AR and underwent apoptosis, based on elevated phospho-Histone H2B expression and higher number of apoptotic body as compared to control cells. Conclusion We demonstrated that AR is vital for prostate cell proliferation and survival in this androgen-sensitive prostate cell line. These results further strengthen the hypothesis that AR can be a therapeutic target for treating androgen-sensitive stages of PCa. Unlike antiandorgens, however, siRNA targeting AR provides a direct inactivation of AR function through the suppression of AR protein expression.

  6. Structure of the ligand-binding domain (LBD) of human androgen receptor in complex with a selective modulator LGD2226

    International Nuclear Information System (INIS)

    Wang, Feng; Liu, Xiao-qin; Li, He; Liang, Kai-ni; Miner, Jeffrey N.; Hong, Mei; Kallel, E. Adam; Oeveren, Arjan van; Zhi, Lin; Jiang, Tao

    2006-01-01

    Crystal structure of the ligand-binding domain of androgen receptor in complex with LGD2226. The androgen receptor (AR) is a ligand-inducible steroid hormone receptor that mediates androgen action, determining male sexual phenotypes and promoting spermatogenesis. As the androgens play a dominant role in male sexual development and function, steroidal androgen agonists have been used clinically for some years. However, there is a risk of potential side effects and most steroidal androgens cannot be dosed orally, which limits the use of these substances. 1,2-Dihydro-6-N,N-bis(2,2,2-trifluoroethyl) amino-4-trifluoromethyl-2-quinolinone (LGD2226) is a synthetic nonsteroidal ligand and a novel selective AR modulator. The crystal structure of the complex of LGD2226 with the androgen receptor ligand-binding domain (AR LBD) at 2.1 Å was solved and compared with the structure of the AR LBD–R1881 complex. It is hoped that this will aid in further explaining the selectivity of LGD2226 observed in in vitro and in vivo assays and in developing more selective and effective therapeutic agents

  7. Pharmacological characterization of an imidazolopyrazole as novel selective androgen receptor modulator.

    Science.gov (United States)

    Zhang, Xuqing; Allan, George F; Tannenbaum, Pamela; Sbriscia, Tifanie; Linton, Olivia; Lai, Muh-Tsann; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Lundeen, Scott G; Sui, Zhihua

    2013-03-01

    Selective androgen receptor modulators (SARMs) are androgens with tissue-selective activity. SARMs that have anabolic activity on muscle while having minimal stimulatory activity on prostate are classified as SARM agonists. They can be used to prevent the loss of lean body mass that is associated with cancer, immunodeficiency, renal disease and aging. They may also have anabolic activity on bone; thus, unlike estrogens, they may reverse the loss of bone strength associated with aging or hypogonadism. Our in-house effort on SARM program discovers a nonsteroidal androgen receptor ligand with a unique imidazolopyrazole moiety in its structure. In vitro, this compound is a weak androgen receptor binder and a weak androgen agonist. Despite this, in orchidectomized mature rats it is an effective SARM agonist, with an ED(50) on levator ani muscle of 3.3mg/kg and an ED(50) on ventral prostate of >30mg/kg. It has its maximal effect on muscle at the dose of 10mg/kg. In addition, this compound has mixed agonistic and antagonistic activities on prostate, reducing the weight of that tissue in intact rats by 22% at 10mg/kg. The compound does not have significant effect on gonadotropin levels or testosterone levels in both orchidectomized and intact male rats. It does not have notable progestin, estrogen or glucocorticoid agonistic or antagonistic activity in rats. In a female sexual behavior model, it improves the sexual desire of ovariectomized female rats for sexually mature intact males over nonsexually ovariectomized females. Overall, the imidazolopyrazole is a potent prostate-sparing candidate for development as a SARM agonist with an appropriate pharmacological profile for clinical benefit in muscle-wasting conditions and female sexual function disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Bone stroma-derived cells change coregulators recruitment to androgen receptor and decrease cell proliferation in androgen-sensitive and castration-resistant prostate cancer cells

    International Nuclear Information System (INIS)

    Villagran, Marcelo A.; Gutierrez-Castro, Francisco A.; Pantoja, Diego F.; Alarcon, Jose C.; Fariña, Macarena A.; Amigo, Romina F.; Muñoz-Godoy, Natalia A.; Pinilla, Mabel G.; Peña, Eduardo A.; Gonzalez-Chavarria, Ivan; Toledo, Jorge R.; Rivas, Coralia I.; Vera, Juan C.; McNerney, Eileen M.; Onate, Sergio A.

    2015-01-01

    Prostate cancer (CaP) bone metastasis is an early event that remains inactive until later-stage progression. Reduced levels of circulating androgens, due to andropause or androgen deprivation therapies, alter androgen receptor (AR) coactivator expression. Coactivators shift the balance towards enhanced AR-mediated gene transcription that promotes progression to androgen-resistance. Disruptions in coregulators may represent a molecular switch that reactivates latent bone metastasis. Changes in AR-mediated transcription in androgen-sensitive LNCaP and androgen-resistant C4-2 cells were analyzed for AR coregulator recruitment in co-culture with Saos-2 and THP-1. The Saos-2 cell line derived from human osteosarcoma and THP-1 cell line representing human monocytes were used to display osteoblast and osteoclast activity. Increased AR activity in androgen-resistant C4-2 was due to increased AR expression and SRC1/TIF2 recruitment and decreased SMRT/NCoR expression. AR activity in both cell types was decreased over 90% when co-cultured with Saos-2 or THP-1 due to dissociation of AR from the SRC1/TIF2 and SMRT/NCoR coregulators complex, in a ligand-dependent and cell-type specific manner. In the absence of androgens, Saos-2 decreased while THP-1 increased proliferation of LNCaP cells. In contrast, both Saos-2 and THP-1 decreased proliferation of C4-2 in absence and presence of androgens. Global changes in gene expression from both CaP cell lines identified potential cell cycle and androgen regulated genes as mechanisms for changes in cell proliferation and AR-mediated transactivation in the context of bone marrow stroma cells. - Highlights: • Decreased corepressor expression change AR in androgen-resistance prostate cancer. • Bone stroma-derived cells change AR coregulator recruitment in prostate cancer. • Bone stroma cells change cell proliferation in androgen-resistant cancer cells. • Global gene expression in CaP cells is modified by bone stroma cells in co

  9. Bone stroma-derived cells change coregulators recruitment to androgen receptor and decrease cell proliferation in androgen-sensitive and castration-resistant prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Villagran, Marcelo A.; Gutierrez-Castro, Francisco A.; Pantoja, Diego F.; Alarcon, Jose C.; Fariña, Macarena A.; Amigo, Romina F.; Muñoz-Godoy, Natalia A. [Molecular Endocrinology and Oncology Laboratory, University of Concepcion, Concepcion (Chile); Pinilla, Mabel G. [Department of Medical Specialties, School of Medicine, University of Concepcion, Concepcion (Chile); Peña, Eduardo A.; Gonzalez-Chavarria, Ivan; Toledo, Jorge R.; Rivas, Coralia I.; Vera, Juan C. [Department of Physiopathology, School of Biological Sciences, University of Concepcion, Concepcion (Chile); McNerney, Eileen M. [Molecular Endocrinology and Oncology Laboratory, University of Concepcion, Concepcion (Chile); Onate, Sergio A., E-mail: sergio.onate@udec.cl [Molecular Endocrinology and Oncology Laboratory, University of Concepcion, Concepcion (Chile); Department of Medical Specialties, School of Medicine, University of Concepcion, Concepcion (Chile); Department of Urology, State University of New York at Buffalo, NY (United States)

    2015-11-27

    Prostate cancer (CaP) bone metastasis is an early event that remains inactive until later-stage progression. Reduced levels of circulating androgens, due to andropause or androgen deprivation therapies, alter androgen receptor (AR) coactivator expression. Coactivators shift the balance towards enhanced AR-mediated gene transcription that promotes progression to androgen-resistance. Disruptions in coregulators may represent a molecular switch that reactivates latent bone metastasis. Changes in AR-mediated transcription in androgen-sensitive LNCaP and androgen-resistant C4-2 cells were analyzed for AR coregulator recruitment in co-culture with Saos-2 and THP-1. The Saos-2 cell line derived from human osteosarcoma and THP-1 cell line representing human monocytes were used to display osteoblast and osteoclast activity. Increased AR activity in androgen-resistant C4-2 was due to increased AR expression and SRC1/TIF2 recruitment and decreased SMRT/NCoR expression. AR activity in both cell types was decreased over 90% when co-cultured with Saos-2 or THP-1 due to dissociation of AR from the SRC1/TIF2 and SMRT/NCoR coregulators complex, in a ligand-dependent and cell-type specific manner. In the absence of androgens, Saos-2 decreased while THP-1 increased proliferation of LNCaP cells. In contrast, both Saos-2 and THP-1 decreased proliferation of C4-2 in absence and presence of androgens. Global changes in gene expression from both CaP cell lines identified potential cell cycle and androgen regulated genes as mechanisms for changes in cell proliferation and AR-mediated transactivation in the context of bone marrow stroma cells. - Highlights: • Decreased corepressor expression change AR in androgen-resistance prostate cancer. • Bone stroma-derived cells change AR coregulator recruitment in prostate cancer. • Bone stroma cells change cell proliferation in androgen-resistant cancer cells. • Global gene expression in CaP cells is modified by bone stroma cells in co

  10. Development of cell-penetrating bispecific antibodies targeting the N-terminal domain of androgen receptor for prostate cancer therapy.

    Science.gov (United States)

    Goicochea, Nancy L; Garnovskaya, Maria; Blanton, Mary G; Chan, Grace; Weisbart, Richard; Lilly, Michael B

    2017-12-01

    Castration-resistant prostate cancer cells exhibit continued androgen receptor signaling in spite of low levels of ligand. Current therapies to block androgen receptor signaling act by inhibiting ligand production or binding. We developed bispecific antibodies capable of penetrating cells and binding androgen receptor outside of the ligand-binding domain. Half of the bispecific antibody molecule consists of a single-chain variable fragment of 3E10, an anti-DNA antibody that enters cells. The other half is a single-chain variable fragment version of AR441, an anti-AR antibody. The resulting 3E10-AR441 bispecific antibody enters human LNCaP prostate cells and accumulates in the nucleus. The antibody binds to wild-type, mutant and splice variant androgen receptor. Binding affinity of 3E10-AR441 to androgen receptor (284 nM) was lower than that of the parental AR441 mAb (4.6 nM), but could be improved (45 nM) through alternative placement of the affinity tags, and ordering of the VH and VK domains. The 3E10-AR441 bispecific antibody blocked genomic signaling by wild-type or splice variant androgen receptor in LNCaP cells. It also blocked non-genomic signaling by the wild-type receptor. Furthermore, bispecific antibody inhibited the growth of C4-2 prostate cancer cells under androgen-stimulated conditions. The 3E10-AR441 biAb can enter prostate cancer cells and inhibits androgen receptor function in a ligand-independent manner. It may be an attractive prototype agent for prostate cancer therapy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Androgen insensitivity syndrome: gonadal androgen receptor activity

    International Nuclear Information System (INIS)

    Coulam, C.B.; Graham, M.L.; Spelsberg, T.C.

    1984-01-01

    To determine whether abnormalities of the androgen receptor previously observed in skin fibroblasts from patients with androgen insensitivity syndrome also occur in the gonads of affected individuals, androgen receptor activity in the gonads of a patient with testicular feminization syndrome was investigated. Using conditions for optimal recovery of androgen receptor from human testes established by previous studies, we detected the presence of a high-affinity (dissociation constant . 3.2 X 10(-10) mol/L), low-capacity (4.2 X 10(-12) mol/mg DNA), androgen-binding protein when tritium-labeled R1881 was incubated at 4 degrees C with nuclear extracts from the gonads of control patients or from a patient with testicular feminization syndrome but not when incubated at 37 degrees C. Thus this patient has an androgen receptor with a temperature lability similar to that of receptors from normal persons

  12. Selective androgen receptor modulators as function promoting therapies.

    Science.gov (United States)

    Bhasin, Shalender; Jasuja, Ravi

    2009-05-01

    The past decade has witnessed an unprecedented discovery effort to develop selective androgen receptor modulators (SARMs) that improve physical function and bone health without adversely affecting the prostate and cardiovascular outcomes. This review describes the historical evolution, the rationale for SARM development, and the mechanisms of testosterone action and SARM selectivity. Although steroidal SARMs have been around since the 1940s, a number of nonsteroidal SARMs that do not serve as substrates for CYP19 aromatase or 5alpha-reductase, act as full agonists in muscle and bone and as partial agonists in prostate are in development. The differing interactions of steroidal and nonsteroidal compounds with androgen receptor (AR) contribute to their unique pharmacologic actions. Ligand binding induces specific conformational changes in the ligand-binding domain, which could modulate surface topology and protein-protein interactions between AR and coregulators, resulting in tissue-specific gene regulation. Preclinical studies have demonstrated the ability of SARMs to increase muscle and bone mass in preclinical rodent models with varying degree of prostate sparing. Phase I trials of SARMs in humans have reported modest increments in fat-free mass. SARMs hold promise as a new class of function promoting anabolic therapies for a number of clinical indications, including functional limitations associated with aging and chronic disease, frailty, cancer cachexia, and osteoporosis.

  13. Development of an androgen reporter gene assay (AR-LUX) utilizing a human cell line with an endogenously regulated androgen receptor

    NARCIS (Netherlands)

    Blankvoort, B.M.G.; Groene, E.M. de; Meeteren-Kreikamp, A.P. van; Witkamp, R.F.; Rodenburg, R.J.T.; Aarts, J.M.M.J.G.

    2001-01-01

    The aim of the work described in this report is to develop and characterize a cell-based androgen reporter assay. For this purpose, the androgen receptor (AR) expressing human breast cancer cell line T47D was stably transfected with a luciferase gene under transcriptional control of the PB-ARE-2

  14. A selective androgen receptor modulator with minimal prostate hypertrophic activity restores lean body mass in aged orchidectomized male rats.

    Science.gov (United States)

    Allan, George; Sbriscia, Tifanie; Linton, Olivia; Lai, Muh-Tsann; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Ng, Raymond; Sui, Zhihua; Lundeen, Scott

    2008-06-01

    Androgens are required for the maintenance of normal sexual activity in adulthood and for enhancing muscle growth and lean body mass in adolescents and adults. Androgen receptor (AR) ligands with tissue selectivity (selective androgen receptor modulators, or SARMs) have potential for treating muscle wasting, hypogonadism of aging, osteoporosis, female sexual dysfunction, and other indications. JNJ-37654032 is a nonsteroidal AR ligand with mixed agonist and antagonist activity in androgen-responsive cell-based assays. It is an orally active SARM with muscle selectivity in orchidectomized rat models. It stimulated growth of the levator ani muscle with ED(50) 0.8 mg/kg, stimulating maximal growth at a dose of 3mg/kg. In contrast, it stimulated ventral prostate growth to 21% of its full size at 3mg/kg. At the same time, JNJ-37654032 reduced prostate weight in intact rats by 47% at 3mg/kg, while having no inhibitory effect on muscle. Using magnetic resonance imaging to monitor body composition, JNJ-37654032 restored about 20% of the lean body mass lost following orchidectomy in aged rats. JNJ-37654032 reduced follicle-stimulating hormone levels in orchidectomized rats and reduced testis size in intact rats. JNJ-37654032 is a potent prostate-sparing SARM with the potential for clinical benefit in muscle-wasting diseases.

  15. Androgens as therapy for androgen receptor-positive castration-resistant prostate cancer

    Directory of Open Access Journals (Sweden)

    Lin Hui-Ping

    2011-08-01

    Full Text Available Abstract Prostate cancer is the most frequently diagnosed non-cutaneous tumor of men in Western countries. While surgery is often successful for organ-confined prostate cancer, androgen ablation therapy is the primary treatment for metastatic prostate cancer. However, this therapy is associated with several undesired side-effects, including increased risk of cardiovascular diseases. Shortening the period of androgen ablation therapy may benefit prostate cancer patients. Intermittent Androgen Deprivation therapy improves quality of life, reduces toxicity and medical costs, and delays disease progression in some patients. Cell culture and xenograft studies using androgen receptor (AR-positive castration-resistant human prostate cancers cells (LNCaP, ARCaP, and PC-3 cells over-expressing AR suggest that androgens may suppress the growth of AR-rich prostate cancer cells. Androgens cause growth inhibition and G1 cell cycle arrest in these cells by regulating c-Myc, Skp2, and p27Kip via AR. Higher dosages of testosterone cause greater growth inhibition of relapsed tumors. Manipulating androgen/AR signaling may therefore be a potential therapy for AR-positive advanced prostate cancer.

  16. Enzalutamide inhibits androgen receptor-positive bladder cancer cell growth.

    Science.gov (United States)

    Kawahara, Takashi; Ide, Hiroki; Kashiwagi, Eiji; El-Shishtawy, Kareem A; Li, Yi; Reis, Leonardo O; Zheng, Yichun; Miyamoto, Hiroshi

    2016-10-01

    Emerging preclinical evidence suggests that androgen-mediated androgen receptor (AR) signals promote bladder cancer progression. However, little is known about the efficacy of an AR signaling inhibitor, enzalutamide, in the growth of bladder cancer cells. In this study, we compared the effects of enzalutamide and 2 other classic antiandrogens, flutamide and bicalutamide, on androgen-induced bladder cancer cell proliferation, migration, and invasion as well as tumor growth in vivo. Thiazolyl blue cell viability assay, flow cytometry, scratch wound-healing assay, transwell invasion assay, real-time polymerase chain reaction, and reporter gene assay were performed in AR-positive (e.g., UMUC3, TCCSUP, and 647V-AR) and AR-negative (e.g., UMUC3-AR-short hairpin RNA [shRNA], TCCSUP-AR-shRNA, 647V) bladder cancer lines treated with dihydrotestosterone and each AR antagonist. We also used a mouse xenograft model for bladder cancer. Dihydrotestosterone increased bladder cancer cell proliferation, migration, and invasion indicating that endogenous or exogenous AR was functional. Enzalutamide, hydroxyflutamide, and bicalutamide showed similar inhibitory effects, without significant agonist activity, on androgen-mediated cell viability/apoptosis, cell migration, and cell invasion in AR-positive lines. No significant effects of dihydrotestosterone as well as AR antagonists on the growth of AR-negative cells were seen. Correspondingly, in UMUC3 cells, these AR antagonists down-regulated androgen-induced expression of AR, matrix metalloproteinase-2, and interleukin-6. Androgen-enhanced AR-mediated transcriptional activity was also blocked by each AR antagonist exhibiting insignificant agonist activity. In UMUC3 xenograft-bearing mice, oral gavage treatment with each antiandrogen retarded tumor growth, and only enzalutamide demonstrated a statistically significant suppression compared with mock treatment. Our current data support recent observations indicating the involvement of

  17. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Maryam Ghotbaddini

    2015-07-01

    Full Text Available The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR. TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models.

  18. Restoration of the cellular secretory milieu overrides androgen dependence of in vivo generated castration resistant prostate cancer cells overexpressing the androgen receptor.

    Science.gov (United States)

    Patki, Mugdha; Huang, Yanfang; Ratnam, Manohar

    2016-07-22

    It is believed that growth of castration resistant prostate cancer (CRPC) cells is enabled by sensitization to minimal residual post-castrate androgen due to overexpression of the androgen receptor (AR). Evidence is derived from androgen-induced colony formation in the absence of cell-secreted factors or from studies involving forced AR overexpression in hormone-dependent cells. On the other hand, standard cell line models established from CRPC patient tumors (e.g., LNCaP and VCaP) are hormone-dependent and require selection pressure in castrated mice to re-emerge as CRPC cells and the resulting tumors then tend to be insensitive to the androgen antagonist enzalutamide. Therefore, we examined established CRPC model cells produced by castration of mice bearing hormone-dependent cell line xenografts including CRPC cells overexpressing full-length AR (C4-2) or co-expressing wtAR and splice-variant AR-V7 that is incapable of ligand binding (22Rv1). In standard colony formation assays, C4-2 cells were shown to be androgen-dependent and sensitive to enzalutamide whereas 22Rv1 cells were incapable of colony formation under identical conditions. However, both C4-2 and 22Rv1 cells formed colonies in conditioned media derived from the same cells or from HEK293 fibroblasts that were proven to lack androgenic activity. This effect was (i) not enhanced by androgen, (ii) insensitive to enzalutamide, (iii) dependent on AR (in C4-2) and on AR-V7 and wtAR (in 22Rv1) and (iv) sensitive to inhibitors of several signaling pathways, similar to androgen-stimulation. Therefore, during progression to CRPC in vivo, coordinate cellular changes accompanying overexpression of AR may enable cooperation between hormone-independent activity of AR and actions of cellular secretory factors to completely override androgen-dependence and sensitivity to drugs targeting hormonal factors. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effect of B-ring substitution pattern on binding mode of propionamide selective androgen receptor modulators.

    Science.gov (United States)

    Bohl, Casey E; Wu, Zengru; Chen, Jiyun; Mohler, Michael L; Yang, Jun; Hwang, Dong Jin; Mustafa, Suni; Miller, Duane D; Bell, Charles E; Dalton, James T

    2008-10-15

    Selective androgen receptor modulators (SARMs) are essentially prostate sparing androgens, which provide therapeutic potential in osteoporosis, male hormone replacement, and muscle wasting. Herein we report crystal structures of the androgen receptor (AR) ligand-binding domain (LBD) complexed to a series of potent synthetic nonsteroidal SARMs with a substituted pendant arene referred to as the B-ring. We found that hydrophilic B-ring para-substituted analogs exhibit an additional region of hydrogen bonding not seen with steroidal compounds and that multiple halogen substitutions affect the B-ring conformation and aromatic interactions with Trp741. This information elucidates interactions important for high AR binding affinity and provides new insight for structure-based drug design.

  20. Dissecting the roles of the androgen receptor in prostate cancer from molecular perspectives.

    Science.gov (United States)

    Hu, Jieping; Wang, Gongxian; Sun, Ting

    2017-05-01

    Androgen receptor plays a pivotal role in prostate cancer progression, and androgen deprivation therapy to intercept androgen receptor signal pathway is an indispensable treatment for most advanced prostate cancer patients to delay cancer progression. However, the emerging of castration-resistant prostate cancer reminds us the alteration of androgen receptor, which includes androgen receptor mutation, the formation of androgen receptor variants, and androgen receptor distribution in cancer cells. In this review, we introduce the process of androgen receptor and also its variants' formation, translocation, and function alteration by protein modification or interaction with other pathways. We dissect the roles of androgen receptor in prostate cancer from molecular perspective to provide clues for battling prostate cancer, especially castration-resistant prostate cancer.

  1. A Novel Mechanism of Androgen Receptor Action

    National Research Council Canada - National Science Library

    Roberts, Jr, Charles T

    2006-01-01

    .... Specifically, the authors had determined that the androgen receptor controls the expression of the cell-surface receptor for the hormone IGF-1 at the level of translation of the IGF-1 receptor mRNA...

  2. Prostate Cancer Cells Express More Androgen Receptor (AR) Following Androgen Deprivation, Improving Recognition by AR-Specific T Cells.

    Science.gov (United States)

    Olson, Brian M; Gamat, Melissa; Seliski, Joseph; Sawicki, Thomas; Jeffery, Justin; Ellis, Leigh; Drake, Charles G; Weichert, Jamey; McNeel, Douglas G

    2017-12-01

    Androgen deprivation is the primary therapy for recurrent prostate cancer, and agents targeting the androgen receptor (AR) pathway continue to be developed. Because androgen-deprivation therapy (ADT) has immmunostimulatory effects as well as direct antitumor effects, AR-targeted therapies have been combined with other anticancer therapies, including immunotherapies. Here, we sought to study whether an antigen-specific mechanism of resistance to ADT (overexpression of the AR) may result in enhanced AR-specific T-cell immune recognition, and whether this might be strategically combined with an antitumor vaccine targeting the AR. Androgen deprivation increased AR expression in human and murine prostate tumor cells in vitro and in vivo The increased expression persisted over time. Increased AR expression was associated with recognition and cytolytic activity by AR-specific T cells. Furthermore, ADT combined with vaccination, specifically a DNA vaccine encoding the ligand-binding domain of the AR, led to improved antitumor responses as measured by tumor volumes and delays in the emergence of castrate-resistant prostate tumors in two murine prostate cancer models (Myc-CaP and prostate-specific PTEN-deficient mice). Together, these data suggest that ADT combined with AR-directed immunotherapy targets a major mechanism of resistance, overexpression of the AR. This combination may be more effective than ADT combined with other immunotherapeutic approaches. Cancer Immunol Res; 5(12); 1074-85. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription.

    Science.gov (United States)

    Jia, Lin; Wu, Dinglan; Wang, Yuliang; You, Wenxing; Wang, Zhu; Xiao, Lijia; Cai, Ganhui; Xu, Zhenyu; Zou, Chang; Wang, Fei; Teoh, Jeremy Yuen-Chun; Ng, Chi-Fai; Yu, Shan; Chan, Franky L

    2018-03-20

    The metastatic castration-resistant prostate cancer (CRPC) is a lethal form of prostate cancer, in which the expression of androgen receptor (AR) is highly heterogeneous. Indeed, lower AR expression and attenuated AR signature activity is shown in CRPC tissues, especially in the subset of neuroendocrine prostate cancer (NEPC) and prostate cancer stem-like cells (PCSCs). However, the significance of AR downregulation in androgen insensitivity and de-differentiation of tumor cells in CRPC is poorly understood and much neglected. Our previous study shows that the orphan nuclear receptor TLX (NR2E1), which is upregulated in prostate cancer, plays an oncogenic role in prostate carcinogenesis by suppressing oncogene-induced senescence. In the present study, we further established that TLX exhibited an increased expression in metastatic CRPC. Further analyses showed that overexpression of TLX could confer resistance to androgen deprivation and anti-androgen in androgen-dependent prostate cancer cells in vitro and in vivo, whereas knockdown of endogenous TLX could potentiate the sensitivity to androgen deprivation and anti-androgen in prostate cancer cells. Our study revealed that the TLX-induced resistance to androgen deprivation and anti-androgen was mediated through its direct suppression of AR gene transcription and signaling in both androgen-stimulated and -unstimulated prostate cancer cells. We also characterized that TLX could bind directly to AR promoter and repress AR transcription by recruitment of histone modifiers, including HDAC1, HDAC3, and LSD1. Together, our present study shows, for the first time, that TLX can contribute to androgen insensitivity in CRPC via repression of AR gene transcription and signaling, and also implicates that targeting the druggable TLX may have a potential therapeutic significance in CRPC management, particularly in NEPC and PCSCs.

  4. Context dependent regulatory patterns of the androgen receptor and androgen receptor target genes

    International Nuclear Information System (INIS)

    Olsen, Jan Roger; Azeem, Waqas; Hellem, Margrete Reime; Marvyin, Kristo; Hua, Yaping; Qu, Yi; Li, Lisha; Lin, Biaoyang; Ke, XI- Song; Øyan, Anne Margrete; Kalland, Karl- Henning

    2016-01-01

    Expression of the androgen receptor (AR) is associated with androgen-dependent proliferation arrest and terminal differentiation of normal prostate epithelial cells. Additionally, activation of the AR is required for survival of benign luminal epithelial cells and primary cancer cells, thus androgen deprivation therapy (ADT) leads to apoptosis in both benign and cancerous tissue. Escape from ADT is known as castration-resistant prostate cancer (CRPC). In the course of CRPC development the AR typically switches from being a cell-intrinsic inhibitor of normal prostate epithelial cell proliferation to becoming an oncogene that is critical for prostate cancer cell proliferation. A clearer understanding of the context dependent activation of the AR and its target genes is therefore desirable. Immortalized human prostate basal epithelial EP156T cells and progeny cells that underwent epithelial to mesenchymal transition (EMT), primary prostate epithelial cells (PrECs) and prostate cancer cell lines LNCaP, VCaP and 22Rv1 were used to examine context dependent restriction and activation of the AR and classical target genes, such as KLK3. Genome-wide gene expression analyses and single cell protein analyses were applied to study the effect of different contexts. A variety of growth conditions were tested and found unable to activate AR expression and transcription of classical androgen-dependent AR target genes, such as KLK3, in prostate epithelial cells with basal cell features or in mesenchymal type prostate cells. The restriction of androgen- and AR-dependent transcription of classical target genes in prostate basal epithelial cells was at the level of AR expression. Exogenous AR expression was sufficient for androgen-dependent transcription of AR target genes in prostate basal epithelial cells, but did not exert a positive feedback on endogenous AR expression. Treatment of basal prostate epithelial cells with inhibitors of epigenetic gene silencing was not efficient in

  5. Intratumoral conversion of adrenal androgen precursors drives androgen receptor-activated cell growth in prostate cancer more potently than de novo steroidogenesis.

    Science.gov (United States)

    Kumagai, Jinpei; Hofland, Johannes; Erkens-Schulze, Sigrun; Dits, Natasja F J; Steenbergen, Jacobie; Jenster, Guido; Homma, Yukio; de Jong, Frank H; van Weerden, Wytske M

    2013-11-01

    Despite an initial response to hormonal therapy, patients with advanced prostate cancer (PC) almost always progress to castration-resistant disease (CRPC). Although serum testosterone (T) is reduced by androgen deprivation therapy, intratumoral T levels in CRPC are comparable to those in prostate tissue of eugonadal men. These levels could originate from intratumoral conversion of adrenal androgens and/or from de novo steroid synthesis. However, the relative contribution of de novo steroidogenesis to AR-driven cell growth is unknown. The relative contribution of androgen biosynthetic pathways to activate androgen receptor (AR)-regulated cell growth and expression of PSA, FKBP5, and TMPRSS2 was studied at physiologically relevant levels of adrenal androgen precursors and intermediates of de novo androgen biosynthesis in human prostate cancer cell lines, PC346C, VCaP, and LNCaP. In PC346C and VCaP, responses to pregnenolone and progesterone were absent or minimal, while large effects of adrenal androgen precursors were found. VCaP CRPC clones overexpressing CYP17A1 did not acquire an increased ability to use pregnenolone or progesterone to activate AR. In contrast, all precursors stimulated growth and gene expression in LNCaP cells, presumably resulting from the mutated AR in these cells. Our data indicate that at physiological levels of T precursors PC cells can generally convert adrenal androgens, while de novo steroidogenesis is not generally possible in PC cells and is not able to support AR transactivation and PC growth. © 2013 Wiley Periodicals, Inc.

  6. A novel selective androgen receptor modulator (SARM) MK-4541 exerts anti-androgenic activity in the prostate cancer xenograft R-3327G and anabolic activity on skeletal muscle mass & function in castrated mice.

    Science.gov (United States)

    Chisamore, Michael J; Gentile, Michael A; Dillon, Gregory Michael; Baran, Matthew; Gambone, Carlo; Riley, Sean; Schmidt, Azriel; Flores, Osvaldo; Wilkinson, Hilary; Alves, Stephen E

    2016-10-01

    The androgen receptor (AR) is a member of the nuclear hormone receptor super family of transcription factors. Androgens play an essential role in the development, growth, and maintenance of male sex organs, as well as the musculoskeletal and central nervous systems. Yet with advancing age, androgens can drive the onset of prostate cancer, the second leading cause of cancer death in males within the United States. Androgen deprivation therapy (ADT) by pharmacologic and/or surgical castration induces apoptosis of prostate cells and subsequent shrinkage of the prostate and prostate tumors. However, ADT is associated with significant musculoskeletal and behavioral adverse effects. The unique pharmacological activity of selective androgen receptor modulator (SARM) MK-4541 recently has been reported as an AR antagonist with 5α-reductase inhibitor function. The molecule inhibits proliferation and induces apoptosis in AR positive, androgen dependent prostate cancer cells. Importantly, MK-4541 inhibited androgen-dependent prostate growth in male rats yet maintained lean body mass and bone formation following ovariectomy in female rats. In the present study, we evaluated the effects of SARM MK-4541 in the androgen-dependent Dunning R3327-G prostate carcinoma xenograft mouse model as well as on skeletal muscle mass and function, and AR-regulated behavior in mice. MK-4541 significantly inhibited the growth of R3327-G prostate tumors, exhibited anti-androgen effects on the seminal vesicles, reduced plasma testosterone concentrations in intact males, and inhibited Ki67 expression. MK-4541 treated xenografts appeared similar to xenografts in castrated mice. Importantly, we demonstrate that MK-4541 exhibited anabolic activity in androgen deficient conditions, increasing lean body mass and muscle function in adult castrated mice. Moreover, MK-4541 treatment restored general activity levels in castrated mice. Thus, MK-4541 exhibits an optimum profile as an adjuvant therapy to ADT

  7. Androgen receptor signalling in Vascular Endothelial cells is dispensable for spermatogenesis and male fertility

    Directory of Open Access Journals (Sweden)

    O'Hara Laura

    2012-01-01

    Full Text Available Abstract Background Androgen signalling is essential both for male development and function of the male reproductive system in adulthood. Within the adult testis, Germ cells (GC do not express androgen receptor (AR suggesting androgen-mediated promotion of spermatogenesis must act via AR-expressing somatic cell-types. Several recent studies have exploited the Cre/lox system of conditional gene-targeting to ablate AR function from key somatic cell-types in order to establish the cell-specific role of AR in promotion of male fertility. In this study, we have used a similar approach to specifically ablate AR-signalling from Vascular Endothelial (VE cells, with a view to defining the significance of androgen signalling within this cell-type on spermatogenesis. Findings AR expression in VE cells of the testicular vasculature was confirmed using an antibody against AR. A Cre-inducible fluorescent reporter line was used to empirically establish the utility of a mouse line expressing Cre Recombinase driven by the Tie2-Promoter, for targeting VE cells. Immunofluorescent detection revealed expression of YFP (and therefore Cre Recombinase function limited to VE cells and an interstitial population of cells, believed to be macrophages, that did not express AR. Mating of Tie2-Cre males to females carrying a floxed AR gene produced Vascular Endothelial Androgen Receptor Knockout (VEARKO mice and littermate controls. Ablation of AR from all VE cells was confirmed; however, no significant differences in bodyweight or reproductive tissue weights could be detected in VEARKO animals and spermatogenesis and fertility was unaffected. Conclusions We demonstrate the successful generation and empirical validation of a cell-specific knockout of AR from VE cells, and conclude that AR expression in VE cells is not essential for spermatogenesis or male fertility.

  8. Design and synthesis of tricyclic tetrahydroquinolines as a new series of nonsteroidal selective androgen receptor modulators (SARMs).

    Science.gov (United States)

    Nagata, Naoya; Miyakawa, Motonori; Amano, Seiji; Furuya, Kazuyuki; Yamamoto, Noriko; Inoguchi, Kiyoshi

    2011-03-15

    Some tricyclic tetrahydroquinolines (THQs) were found to have the potential of a new series of nonsteroidal selective androgen receptor modulators (SARMs). Compound 5b was first designed and synthesized under our hypothesis based on a four-point pharmacophoric requirement of the 3-carbonyl, 18-methyl, 17-hydroxyl, and 13-quaternary carbon groups of dihydrotestosterone (DHT). It was revealed that this compound exhibits not only a strong androgen receptor (AR) agonistic activity (EC(50)=9.2 nM) but also the highest selectivity in binding affinity to AR among the steroid hormone receptors. Furthermore, this compound showed a weak virilizing effect with retention of the desired anabolic effect as compared with DHT in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Study the Origin and Mechanisms of Castration Resistance Characterized by Outgrowth of Prostate Cancer Cells with Low/Negative Androgen Receptor

    Science.gov (United States)

    2017-12-01

    Prostate Cancer Cells with Low/Negative Androgen Receptor 5b. GRANT NUMBER W81XWH-15-1-0540 5c. PROGRAM...role of androgen receptor (AR) signaling in disease progression, the current approach to treat prostate cancer is AR-targeted therapy. While this... Prostate cancer ; Androgen receptor ; Castration-resistant prostate cancer (CRPC); Enzalutamide resistance; GREB1; p300 6 Accomplishments Specific

  10. Androgen Receptor Localizes to Plasma Membrane by Binding to Caveolin-1 in Mouse Sertoli Cells

    Directory of Open Access Journals (Sweden)

    Qiong Deng

    2017-01-01

    Full Text Available The nonclassical androgen signaling pathway translates signals into alterations in cellular function within minutes, and this action is proposed to be mediated by an androgen receptor (AR localized to the plasma membrane. This study was designed to determine the mechanism underlying the membrane association of androgen receptor in TM4 cells, a mouse Sertoli cell line. Western blot analysis indicated testosterone-induced AR translocation to the cell membrane. Data from coimmunoprecipitation indicated that AR is associated with caveolin-1, and testosterone enhanced this association. Knockdown of caveolin-1 by shRNA decreased the amount of AR localized to membrane fraction and prevented AR membrane trafficking after being exposed to testosterone at physiological concentration. The palmitoylation inhibitor 2-bromopalmitate decreased AR membrane localization in basal condition and completely blocked testosterone-induced AR translocation to membrane fraction. These data suggested that AR localized to membrane fraction by binding with caveolin-1 through palmitoylation of the cysteine residue. This study provided a new evidence for AR membrane localization and its application for clarifying the nonclassical signaling pathway of androgens.

  11. Amino acid containing thapsigargin analogues deplete androgen receptor protein via synthesis inhibition and induce the death of prostate cancer cells

    DEFF Research Database (Denmark)

    Griend, Donald J Vander; Antony, Lizamma; Dalrymple, Susan L

    2009-01-01

    There are quantitative and/or qualitative mechanisms allowing androgen receptor (AR) growth signaling in androgen ablation refractory prostate cancer cells. Regardless of the mechanism, agents that deplete AR protein expression prevent such AR growth signaling. Thapsigargin (TG) is a highly cell......-penetrant sequiterpene-lactone that once inside cells inhibits (IC(50), approximately 10 nmol/L) critically important housekeeping SERCA 2b calcium pumps in the endoplasmic reticulum. Using a series of five genetically diverse androgen ablation refractory human prostate cancer lines (LNCaP, LAPC-4, VCaP, MDA-PCa-2b......-specific proteases, such as prostate-specific antigen and prostate-specific membrane antigen, or cancer-specific proteases, such as fibroblast activation protein, so that toxicity of these prodrugs is selectively targeted to metastatic sites of prostate cancer. Based on these results, these prodrugs are undergoing...

  12. Super-Penetrant Androgen Receptor: Overcoming Enzalutamide Sensitivity in Castration-Resistant Prostate Cancer

    Science.gov (United States)

    2016-07-01

    Prostate Cancer Research Symposium- Prostate Cancer Epigenetic Reprogramming of the Androgen Receptor in Castration Resistant Prostate Cancer , May19... cancer cells rely critically on the androgen receptor (AR) for initiation, growth and progression to castration resistant prostate cancer (CRPC...Androgen receptor, castration resistant prostate cancer , Enzalutamide , kinases. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER

  13. Testosterone-Dependent Interaction between Androgen Receptor and Aryl Hydrocarbon Receptor Induces Liver Receptor Homolog 1 Expression in Rat Granulosa Cells

    Science.gov (United States)

    Wu, Yanguang; Baumgarten, Sarah C.; Zhou, Ping

    2013-01-01

    Androgens play a major role in the regulation of normal ovarian function; however, they are also involved in the development of ovarian pathologies. These contrasting effects may involve a differential response of granulosa cells to the androgens testosterone (T) and dihydrotestosterone (DHT). To determine the molecular pathways that mediate the distinct effects of T and DHT, we studied the expression of the liver receptor homolog 1 (LRH-1) gene, which is differentially regulated by these steroids. We found that although both T and DHT stimulate androgen receptor (AR) binding to the LRH-1 promoter, DHT prevents T-mediated stimulation of LRH-1 expression. T stimulated the expression of aryl hydrocarbon receptor (AHR) and its interaction with the AR. T also promoted the recruitment of the AR/AHR complex to the LRH-1 promoter. These effects were not mimicked by DHT. We also observed that the activation of extracellular regulated kinases by T is required for AR and AHR interaction. In summary, T, but not DHT, stimulates AHR expression and the interaction between AHR and AR, leading to the stimulation of LRH-1 expression. These findings could explain the distinct response of granulosa cells to T and DHT and provide a molecular mechanism by which DHT negatively affects ovarian function. PMID:23689136

  14. Androgen responsiveness of the new human endometrial cancer cell line MFE-296.

    Science.gov (United States)

    Hackenberg, R; Beck, S; Filmer, A; Hushmand Nia, A; Kunzmann, R; Koch, M; Slater, E P; Schulz, K D

    1994-04-01

    MFE-296 endometrial cancer cells express androgen receptors in vitro. These cells, which are tumorigenic in nude mice, are derived from a moderately differentiated human endometrial adenocarcinoma. They express vimentin and the cytokeratins 7, 8, 18, and 19. Karyotyping revealed near-tetraploidy for most of the cells. No marker chromosomes were observed. DNA analyses confirmed the genetic identity of the cell line and the patient from whom the cell line was derived. Proliferation of MFE-296 cells was inhibited by the progestin R5020 and the androgen dihydrotestosterone (DHT). The inhibition of proliferation by DHT was antagonized by the antiandrogen Casodex, demonstrating the involvement of the androgen receptor. Androgen binding was determined at 22,000 binding sites per cell using a whole-cell assay (KD = 0.05 nM) and 30 fmol/mg protein with the dextran charcoal method; 7 fmol/mg protein of progesterone receptors were found, whereas estrogen receptors were below 5 fmol/mg protein. The androgen receptor was functionally intact, as demonstrated by transfection experiments with a reporter-gene construct, containing an androgen-responsive element. In MFE-296 cells the content of the androgen receptor was up-regulated by its own ligand.

  15. BA321, a novel carborane analog that binds to androgen and estrogen receptors, acts as a new selective androgen receptor modulator of bone in male mice

    International Nuclear Information System (INIS)

    Watanabe, Kenta; Hirata, Michiko; Tominari, Tsukasa; Matsumoto, Chiho; Endo, Yasuyuki; Murphy, Gillian; Nagase, Hideaki

    2016-01-01

    Carboranes are a class of carbon-containing polyhedral boron cluster compounds with globular geometry and hydrophobic surface that interact with hormone receptors such as estrogen receptor (ER) and androgen receptor (AR). We have synthesized BA321, a novel carborane compound, which binds to AR. We found here that it also binds to ERs, ERα and ERβ. In orchidectomized (ORX) mice, femoral bone mass was markedly reduced due to androgen deficiency and BA321 restored bone loss in the male, whilst the decreased weight of seminal vesicle in ORX mice was not recovered by administration of BA321. In female mice, BA321 acts as a pure estrogen agonist, and restored both the loss of bone mass and uterine atrophy due to estrogen deficiency in ovariectomized (OVX) mice. In bone tissues, the trabecular bone loss occurred in both ORX and OVX mice, and BA321 completely restored the trabecular bone loss in both sexes. Cortical bone loss occurred in ORX mice but not in OVX mice, and BA321 clearly restored cortical bone loss due to androgen deficiency in ORX mice. Therefore, BA321 is a novel selective androgen receptor modulator (SARM) that may offer a new therapy option for osteoporosis in the male. - Highlights: • A novel carborane compound BA321 binds to both AR and ERs, ERα and ERβ. • BA321 restores bone loss in orchidectomized mice without effects on sex organ. • BA321 acts as an estrogen agonist in bone and uterus in ovariectomized mice. • BA321 may be a new SARM to prevent the loss of musculoskeletal mass in elder men.

  16. BA321, a novel carborane analog that binds to androgen and estrogen receptors, acts as a new selective androgen receptor modulator of bone in male mice

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kenta [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Hirata, Michiko [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Tominari, Tsukasa [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Matsumoto, Chiho [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Endo, Yasuyuki [Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, 981-8558 (Japan); Murphy, Gillian [Department of Oncology, University of Cambridge, Cancer Research UK, Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE (United Kingdom); Nagase, Hideaki [Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY (United Kingdom); and others

    2016-09-09

    Carboranes are a class of carbon-containing polyhedral boron cluster compounds with globular geometry and hydrophobic surface that interact with hormone receptors such as estrogen receptor (ER) and androgen receptor (AR). We have synthesized BA321, a novel carborane compound, which binds to AR. We found here that it also binds to ERs, ERα and ERβ. In orchidectomized (ORX) mice, femoral bone mass was markedly reduced due to androgen deficiency and BA321 restored bone loss in the male, whilst the decreased weight of seminal vesicle in ORX mice was not recovered by administration of BA321. In female mice, BA321 acts as a pure estrogen agonist, and restored both the loss of bone mass and uterine atrophy due to estrogen deficiency in ovariectomized (OVX) mice. In bone tissues, the trabecular bone loss occurred in both ORX and OVX mice, and BA321 completely restored the trabecular bone loss in both sexes. Cortical bone loss occurred in ORX mice but not in OVX mice, and BA321 clearly restored cortical bone loss due to androgen deficiency in ORX mice. Therefore, BA321 is a novel selective androgen receptor modulator (SARM) that may offer a new therapy option for osteoporosis in the male. - Highlights: • A novel carborane compound BA321 binds to both AR and ERs, ERα and ERβ. • BA321 restores bone loss in orchidectomized mice without effects on sex organ. • BA321 acts as an estrogen agonist in bone and uterus in ovariectomized mice. • BA321 may be a new SARM to prevent the loss of musculoskeletal mass in elder men.

  17. The Androgen Receptor Bridges Stem Cell-Associated Signaling Nodes in Prostate Stem Cells

    Directory of Open Access Journals (Sweden)

    Alastair H. Davies

    2016-01-01

    Full Text Available The therapeutic potential of stem cells relies on dissecting the complex signaling networks that are thought to regulate their pluripotency and self-renewal. Until recently, attention has focused almost exclusively on a small set of “core” transcription factors for maintaining the stem cell state. It is now clear that stem cell regulatory networks are far more complex. In this review, we examine the role of the androgen receptor (AR in coordinating interactions between signaling nodes that govern the balance of cell fate decisions in prostate stem cells.

  18. PTTG1, A novel androgen responsive gene is required for androgen-induced prostate cancer cell growth and invasion

    International Nuclear Information System (INIS)

    Zhang, Zheng; Jin, Bo; Jin, Yaqiong; Huang, Shengquan; Niu, Xiaohua; Mao, Zebin; Xin, Dianqi

    2017-01-01

    Androgens (AR) play an important role in initiation and progression of prostate cancer. It has been shown that AR exert their effects mainly through the androgen-activated AR which binds to androgen response elements (AREs) in the regulatory regions of target genes to regulate the transcription of androgen-responsive genes, thus, identification of AR downstream target gene is critical to understand androgen function in prostate cancer. In this study, our results showed that androgen treatment of LNCaP cells induced PTTG1 expression, which was blocked by the androgen receptor antagonist, Casodex. Bioinformatics analysis and experiments using PTTG1 promoter deletion mutants showed that the PTTG1 promoter contains a putative androgen response element (ARE), which localizes in the −851 to −836 region of the promoter. Androgen activated androgen receptor (AR) binding to this ARE was confirmed by Chromatin immunoprecipitation (ChIP) assay. Furthermore, Knockdown of PTTG1 expression using short hairpin RNA significantly reduced androgen-induced LNCaP cell growth and invasion. In addition, we showed PTTG1 is highly expressed in metastasis prostate cancer tissue. These results suggest that PTTG1 is a novel downstream target gene of androgen receptor and take part in prostate cancer proliferation and metastasis. - Highlights: • Androgen treatment of LNCaP cells induced PTTG1 expression. • Knockdown of PTTG1 expression significantly reduced androgen-induced LNCaP cell growth and invasion. • PTTG1 is highly expressed in metastasis prostate cancer tissue. • PTTG1 is a novel downstream target gene of androgen receptor.

  19. Androgen Receptor Signaling in Bladder Cancer

    OpenAIRE

    Li, Peng; Chen, Jinbo; Miyamoto, Hiroshi

    2017-01-01

    Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in u...

  20. Development of androgen-and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays

    NARCIS (Netherlands)

    Sonneveld, E.; Jansen, H.J..; Riteco, J.A.C.; Brouwer, A.

    2005-01-01

    We have established highly sensitive and specific androgen and estrogen reporter cell lines which we have named AR (androgen receptor) and ERα (estrogen receptor alpha) CALUX® (Chemically Activated LUciferase eXpression), respectively. Both bioassays are member of a panel of CALUX reporter cell

  1. Steroidal androgens and nonsteroidal, tissue-selective androgen receptor modulator, S-22, regulate androgen receptor function through distinct genomic and nongenomic signaling pathways.

    Science.gov (United States)

    Narayanan, Ramesh; Coss, Christopher C; Yepuru, Muralimohan; Kearbey, Jeffrey D; Miller, Duane D; Dalton, James T

    2008-11-01

    Androgen receptor (AR) ligands are important for the development and function of several tissues and organs. However, the poor oral bioavailability, pharmacokinetic properties, and receptor cross-reactivity of testosterone, coupled with side effects, place limits on its clinical use. Selective AR modulators (SARMs) elicit anabolic effects in muscle and bone, sparing reproductive organs like the prostate. However, molecular mechanisms underlying the tissue selectivity remain ambiguous. We performed a variety of in vitro studies to compare and define the molecular mechanisms of an aryl propionamide SARM, S-22, as compared with dihydrotestosterone (DHT). Studies indicated that S-22 increased levator ani muscle weight but decreased the size of prostate in rats. Analysis of the upstream intracellular signaling events indicated that S-22 and DHT mediated their actions through distinct pathways. Modulation of these pathways altered the recruitment of AR and its cofactors to the PSA enhancer in a ligand-dependent fashion. In addition, S-22 induced Xenopus laevis oocyte maturation and rapid phosphorylation of several kinases, through pathways distinct from steroids. These studies reveal novel differences in the molecular mechanisms by which S-22, a nonsteroidal SARM, and DHT mediate their pharmacological effects.

  2. Selective ablation of the androgen receptor in mouse sertoli cells affects sertoli cell maturation, barrier formation and cytoskeletal development.

    Directory of Open Access Journals (Sweden)

    Ariane Willems

    2010-11-01

    Full Text Available The observation that mice with a selective ablation of the androgen receptor (AR in Sertoli cells (SC (SCARKO mice display a complete block in meiosis supports the contention that SC play a pivotal role in the control of germ cell development by androgens. To delineate the physiological and molecular mechanism responsible for this control, we compared tubular development in pubertal SCARKO mice and littermate controls. Particular attention was paid to differences in SC maturation, SC barrier formation and cytoskeletal organization and to the molecular mediators potentially involved. Functional analysis of SC barrier development by hypertonic perfusion and lanthanum permeation techniques and immunohistochemical analysis of junction formation showed that SCARKO mice still attempt to produce a barrier separating basal and adluminal compartment but that barrier formation is delayed and defective. Defective barrier formation was accompanied by disturbances in SC nuclear maturation (immature shape, absence of prominent, tripartite nucleoli and SC polarization (aberrant positioning of SC nuclei and cytoskeletal elements such as vimentin. Quantitative RT-PCR was used to study the transcript levels of genes potentially related to the described phenomena between day 8 and 35. Differences in the expression of SC genes known to play a role in junction formation could be shown from day 8 for Cldn11, from day 15 for Cldn3 and Espn, from day 20 for Cdh2 and Jam3 and from day 35 for ZO-1. Marked differences were also noted in the transcript levels of several genes that are also related to cell adhesion and cytoskeletal dynamics but that have not yet been studied in SC (Actn3, Ank3, Anxa9, Scin, Emb, Mpzl2. It is concluded that absence of a functional AR in SC impedes the remodeling of testicular tubules expected at the onset of spermatogenesis and interferes with the creation of the specific environment needed for germ cell development.

  3. Novel series of potent, nonsteroidal, selective androgen receptor modulators based on 7H-[1,4]oxazino[3,2-g]quinolin-7-ones.

    Science.gov (United States)

    Higuchi, Robert I; Arienti, Kristen L; López, Francisco J; Mani, Neelakhanda S; Mais, Dale E; Caferro, Thomas R; Long, Yun Oliver; Jones, Todd K; Edwards, James P; Zhi, Lin; Schrader, William T; Negro-Vilar, Andrés; Marschke, Keith B

    2007-05-17

    Recent interest in orally available androgens has fueled the search for new androgens for use in hormone replacement therapy and as anabolic agents. In pursuit of this, we have discovered a series of novel androgen receptor modulators derived from 7H-[1,4]oxazino[3,2-g]quinolin-7-ones. These compounds were synthesized and evaluated in competitive binding assays and an androgen receptor transcriptional activation assay. A number of compounds from the series demonstrated single-digit nanomolar agonist activity in vitro. In addition, lead compound (R)-16e was orally active in established rodent models that measure androgenic and anabolic properties of these agents. In this assay, (R)-16e demonstrated full efficacy in muscle and only partially stimulated the prostate at 100 mg/kg. These data suggest that these compounds may be utilized as selective androgen receptor modulators or SARMs. This series represents a novel class of compounds for use in androgen replacement therapy.

  4. Targeting Prostate Cancer with Bifunctional Modulators of the Androgen Receptor

    Science.gov (United States)

    2015-06-01

    Wittmann, B.; Dwyer, M.; Cui, H.; Dye, D.; McDonnell, D.; Norris , J. Inhibition of prostate cancer cell growth by second-site androgen receptor antagonists...Wittmann, B.; Dwyer, M.; Cui, H.; Dye, D.; McDonnell, D.; Norris , J. Inhibition of prostate cancer cell growth by second-site androgen receptor...important clin- ical problem in diseases such as asthma (51, 52), ne- phrotic syndrome (53), and malignancies such as acute lymphoblastic leukemia (54

  5. Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms.

    Science.gov (United States)

    Li, Zhi Gang; Mathew, Paul; Yang, Jun; Starbuck, Michael W; Zurita, Amado J; Liu, Jie; Sikes, Charles; Multani, Asha S; Efstathiou, Eleni; Lopez, Adriana; Wang, Jing; Fanning, Tina V; Prieto, Victor G; Kundra, Vikas; Vazquez, Elba S; Troncoso, Patricia; Raymond, Austin K; Logothetis, Christopher J; Lin, Sue-Hwa; Maity, Sankar; Navone, Nora M

    2008-08-01

    In prostate cancer, androgen blockade strategies are commonly used to treat osteoblastic bone metastases. However, responses to these therapies are typically brief, and the mechanism underlying androgen-independent progression is not clear. Here, we established what we believe to be the first human androgen receptor-negative prostate cancer xenografts whose cells induced an osteoblastic reaction in bone and in the subcutis of immunodeficient mice. Accordingly, these cells grew in castrated as well as intact male mice. We identified FGF9 as being overexpressed in the xenografts relative to other bone-derived prostate cancer cells and discovered that FGF9 induced osteoblast proliferation and new bone formation in a bone organ assay. Mice treated with FGF9-neutralizing antibody developed smaller bone tumors and reduced bone formation. Finally, we found positive FGF9 immunostaining in prostate cancer cells in 24 of 56 primary tumors derived from human organ-confined prostate cancer and in 25 of 25 bone metastasis cases studied. Collectively, these results suggest that FGF9 contributes to prostate cancer-induced new bone formation and may participate in the osteoblastic progression of prostate cancer in bone. Androgen receptor-null cells may contribute to the castration-resistant osteoblastic progression of prostate cancer cells in bone and provide a preclinical model for studying therapies that target these cells.

  6. Androgen receptor signalling in peritubular myoid cells is essential for normal differentiation and function of adult Leydig cells

    DEFF Research Database (Denmark)

    Welsh, M.; Moffat, L.; Belling, Kirstine Christensen

    2012-01-01

    Testosterone synthesis depends on normal Leydig cell (LC) development, but the mechanisms controlling this development remain unclear. We recently demonstrated that androgen receptor (AR) ablation from a proportion of testicular peritubular myoid cells (PTM-ARKO) did not affect LC number, but res......Testosterone synthesis depends on normal Leydig cell (LC) development, but the mechanisms controlling this development remain unclear. We recently demonstrated that androgen receptor (AR) ablation from a proportion of testicular peritubular myoid cells (PTM-ARKO) did not affect LC number......’ subpopulation that had arrested development and only weakly expressed INSL3, luteinizing hormone receptor, and several steroidogenic enzymes. Furthermore, unlike ‘normal’ LCs in PTM-ARKOs, the ‘abnormal’ LCs did not involute as expected in response to exogenous testosterone. Differential function of these LC...... sub-populations is likely to mean that the ‘normal’ LCs work harder to compensate for the ‘abnormal’ LCs to maintain normal serum testosterone. These findings reveal new paracrine mechanisms underlying adult LC development, which can be further investigated using PTM-ARKOs....

  7. Design, synthesis, and in vivo SAR of a novel series of pyrazolines as potent selective androgen receptor modulators.

    Science.gov (United States)

    Zhang, Xuqing; Li, Xiaojie; Allan, George F; Sbriscia, Tifanie; Linton, Olivia; Lundeen, Scott G; Sui, Zhihua

    2007-08-09

    A novel series of pyrazolines 2 have been designed, synthesized, and evaluated by in vivo screening as tissue-selective androgen receptor modulators (SARMs). Structure-activity relationships (SAR) were investigated at the R1 to R6 positions as well as the core pyrazoline ring and the anilide linker. Overall, strong electron-withdrawing groups at the R1 and R2 positions and a small group at the R5 and R6 position are optimal for AR agonist activity. The (S)-isomer of 7c exhibits more potent AR agonist activity than the corresponding (R)-isomer. (S)-7c exhibited an overall partial androgenic effect but full anabolic effect via oral administration in castrated rats. It demonstrated a noticeable antiandrogenic effect on prostate in intact rats with endogenous testosterone. Thus, (S)-7c is a tissue-selective nonsteroidal androgen receptor modulator with agonist activity on muscle and mixed agonist and antagonist activity on prostate.

  8. Development of Androgen- and Estrogen-Responsive bio-assays, members of a panel of human cell line-based highly selective steroid-responsive bioassays

    NARCIS (Netherlands)

    Sonneveld, E.; Jansen, H.J.

    2004-01-01

    We have established highly sensitive and specific androgen and estrogen reporter cell lines which we have named AR (androgen receptor) and ERα (estrogen receptor alpha) CALUX® (Chemically Activated LUciferase eXpression), respectively. Both bioassays are member of a panel of CALUX reporter cell

  9. Influence of Androgen Receptor in Vascular Cells on Reperfusion following Hindlimb Ischaemia.

    Directory of Open Access Journals (Sweden)

    Junxi Wu

    Full Text Available Studies in global androgen receptor knockout (G-ARKO and orchidectomised mice suggest that androgen accelerates reperfusion of the ischaemic hindlimb by stimulating angiogenesis. This investigation used novel, vascular cell-specific ARKO mice to address the hypothesis that the impaired hindlimb reperfusion in G-ARKO mice was due to loss of AR from cells in the vascular wall.Mice with selective deletion of AR (ARKO from vascular smooth muscle cells (SM-ARKO, endothelial cells (VE-ARKO, or both (SM/VE-ARKO were compared with wild type (WT controls. Hindlimb ischaemia was induced in these mice by ligation and removal of the femoral artery. Post-operative reperfusion was reduced in SM-ARKO and SM/VE-ARKO mice. Immunohistochemistry indicated that this was accompanied by a reduced density of smooth muscle actin-positive vessels but no change in the density of isolectin B4-positive vessels in the gastrocnemius muscle. Deletion of AR from the endothelium (VE-ARKO did not alter post-operative reperfusion or vessel density. In an ex vivo (aortic ring culture model of angiogenesis, AR was not detected in vascular outgrowths and angiogenesis was not altered by vascular ARKO or by exposure to dihydrotestosterone (DHT 10-10-10-7M; 6 days.These results suggest that loss of AR from vascular smooth muscle, but not from the endothelium, contributes to impaired reperfusion in the ischaemic hindlimb of G-ARKO. Impaired reperfusion was associated with reduced collateral formation rather than reduced angiogenesis.

  10. Cyproterone acetate enhances TRAIL-induced androgen-independent prostate cancer cell apoptosis via up-regulation of death receptor 5.

    Science.gov (United States)

    Chen, Linjie; Wolff, Dennis W; Xie, Yan; Lin, Ming-Fong; Tu, Yaping

    2017-03-07

    Virtually all prostate cancer deaths occur due to obtaining the castration-resistant phenotype after prostate cancer cells escaped from apoptosis and/or growth suppression initially induced by androgen receptor blockade. TNF-related apoptosis-inducing ligand (TRAIL) was an attractive cancer therapeutic agent due to its minimal toxicity to normal cells and remarkable apoptotic activity in tumor cells. However, most localized cancers including prostate cancer are resistant to TRAIL-induced apoptosis, thereby creating a therapeutic challenge of inducing TRAIL sensitivity in cancer cells. Herein the effects of cyproterone acetate, an antiandrogen steroid, on the TRAIL-induced apoptosis of androgen receptor-negative prostate cancer cells are reported. Cell apoptosis was assessed by both annexin V/propidium iodide labeling and poly (ADP-ribose) polymerase cleavage assays. Gene and protein expression changes were determined by quantitative real-time PCR and western blot assays. The effect of cyproterone acetate on gene promoter activity was determined by luciferase reporter assay. Cyproterone acetate but not AR antagonist bicalutamide dramatically increased the susceptibility of androgen receptor-negative human prostate cancer PC-3 and DU145 cells to TRAIL-induced apoptosis but no effects on immortalized human prostate stromal PS30 cells and human embryonic kidney HEK293 cells. Further investigation of the TRAIL-induced apoptosis pathway revealed that cyproterone acetate exerted its effect by selectively increasing death receptor 5 (DR5) mRNA and protein expression. Cyproterone acetate treatment also increased DR5 gene promoter activity, which could be abolished by mutation of a consensus binding domain of transcription factor CCAAT-enhancer-binding protein homologous protein (CHOP) in the DR5 gene promoter. Cyproterone acetate increases CHOP expression in a concentration and time-dependent manner and endoplasmic reticulum stress reducer 4-phenylbutyrate could block

  11. PCA3 Silencing Sensitizes Prostate Cancer Cells to Enzalutamide-mediated Androgen Receptor Blockade.

    Science.gov (United States)

    Özgür, Emre; Celik, Ayca Iribas; Darendeliler, Emin; Gezer, Ugur

    2017-07-01

    Prostate cancer (PCa) is an androgen-dependent disease. Novel anti-androgens (i.e. enzalutamide) have recently been developed for the treatment of patients with metastatic castration-resistant prostate cancer (CRPC). Evidence is accumulating that prostate cancer antigen 3 (PCA3) is involved in androgen receptor (AR) signaling. Here, in combination with enzalutamide-mediated AR blockade, we investigated the effect of PCA3 targeting on the viability of PCa cells. In hormone-sensitive LNCaP cells, AR-overexpressing LNCaP-AR + cells and VCaP cells (representing CRPC), PCA3 was silenced using siRNA oligonucleotides. Gene expression and cell viability was assessed in PCA3-silenced and/or AR-blocked cells. PCA3 targeting reduced the expression of AR-related genes (i.e. prostate-specific antigen (PSA) and prostate-specific transcript 1 (non-protein coding) (PCGEM1)) and potentiated the effect of enzalutamide. Proliferation of PCa cells was suppressed upon PCA3 silencing with a greater effect in LNCaP-AR + cells. Furthermore, PCA3 silencing sensitized PCa cells to enzalutamide-induced loss of cell growth. PCA3, as a therapeutic target in PCa, might be used to potentiate AR antagonists. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Testicular development in mice lacking receptors for follicle stimulating hormone and androgen.

    Directory of Open Access Journals (Sweden)

    Peter J O'Shaughnessy

    Full Text Available Post-natal testicular development is dependent on gonadotrophin and androgen stimulation. Follicle stimulating hormone (FSH acts through receptors (FSHR on the Sertoli cell to stimulate spermatogenesis while androgens promote testis growth through receptors (AR on the Sertoli cells, Leydig cells and peritubular myoid cells. In this study we have examined the effects on testis development of ablating FSHRs (FSHRKO mice and/or ARs ubiquitously (ARKO mice or specifically on the Sertoli cells (SCARKO mice. Cell numbers were measured using stereological methods. In ARKO mice Sertoli cell numbers were reduced at all ages from birth until adulthood. FSHR ablation also caused small reductions in Sertoli cell numbers up to day 20 with more marked effects seen in the adult. Germ cell numbers were unaffected by FSHR and/or AR ablation at birth. By day 20 ubiquitous AR or FSHR ablation caused a marked reduction in germ cell numbers with a synergistic effect of losing both receptors (germ cell numbers in FSHRKO.ARKO mice were 3% of control. Germ cell numbers in SCARKO mice were less affected. By adulthood, in contrast, clear synergistic control of germ cell numbers had become established between the actions of FSH and androgen through the Sertoli cells. Leydig cell numbers were normal on day 1 and day 5 in all groups. By day 20 and in adult animals total AR or FSHR ablation significantly reduced Leydig cell numbers but Sertoli cell specific AR ablation had no effect. Results show that, prior to puberty, development of most testicular parameters is more dependent on FSH action than androgen action mediated through the Sertoli cells although androgen action through other cells types is crucial. Post-pubertally, germ cell numbers and spermatogenesis are dependent on FSH and androgen action through the Sertoli cells.

  13. Mass spectrometry of selective androgen receptor modulators.

    Science.gov (United States)

    Thevis, Mario; Schänzer, Wilhelm

    2008-07-01

    Nonsteroidal selective androgen receptor modulators (SARMs) are an emerging class of drugs for treatment of various diseases including osteoporosis and muscle wasting as well as the correction of age-related functional decline such as muscle strength and power. Several SARMs, which have advanced to preclinical and clinical trials, are composed of diverse chemical structures including arylpropionamide-, bicyclic hydantoin-, quinoline-, and tetrahydroquinoline-derived nuclei. Since January 2008, SARMs have been categorized as anabolic agents and prohibited by the World Anti-Doping Agency (WADA). Suitable detection methods for these low-molecular weight drugs were based on mass spectrometric approaches, which necessitated the elucidation of dissociation pathways in order to characterize and identify the target analytes in doping control samples as well as potential metabolic products and synthetic analogs. Fragmentation patterns of representatives of each category of SARMs after electrospray ionization (ESI) and collision-induced dissociation (CID) as well as electron ionization (EI) are summarized. The complexity and structural heterogeneity of these drugs is a daunting challenge for detection methods. Copyright 2008 John Wiley & Sons, Ltd.

  14. A selective androgen receptor modulator with minimal prostate hypertrophic activity enhances lean body mass in male rats and stimulates sexual behavior in female rats.

    Science.gov (United States)

    Allan, George F; Tannenbaum, Pamela; Sbriscia, Tifanie; Linton, Olivia; Lai, Muh-Tsann; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Zhang, Xuqing; Sui, Zhihua; Lundeen, Scott G

    2007-08-01

    Androgen receptor (AR) ligands with tissue selectivity (selective androgen receptor modulators, or SARMs) have potential for treating muscle wasting, hypogonadism of aging, osteoporosis, female sexual dysfunction, and other indications. JNJ-28330835 is a nonsteroidal AR ligand with mixed agonist and antagonist activity in androgen-responsive cell-based assays. It is an orally active SARM with muscle selectivity in orchidectomized rat models. It stimulated growth of the levator ani muscle, stimulating maximal growth at a dose of 10 mg/kg. At the same time, JNJ-28330835 reduced prostate weight in intact rats by a mean of 30% at 10 mg/kg, while having no inhibitory effect on muscle. Using magnetic resonance imaging (MRI) to monitor body composition, it prevented half of the loss of lean body mass associated with orchidectomy, and restored about 30% of lost lean mass to aged orchidectomized rats. It had agonist effects on markers of both osteoclast and osteoblast activity, suggesting that it reduces bone turnover. In a model of sexual behavior, JNJ-28330835 enhanced the preference of ovariectomized female rats for sexually intact male rats over nonsexual orchidectomized males. JNJ-28330835 is a prostate-sparing SARM with the potential for clinically beneficial effects in muscle-wasting diseases and sexual function disorders.

  15. Selective androgen receptor modulators for the treatment of late onset male hypogonadism.

    Science.gov (United States)

    Coss, Christopher C; Jones, Amanda; Hancock, Michael L; Steiner, Mitchell S; Dalton, James T

    2014-01-01

    Several testosterone preparations are used in the treatment of hypogonadism in the ageing male. These therapies differ in their convenience, flexibility, regional availability and expense but share their pharmacokinetic basis of approval and dearth of long-term safety data. The brevity and relatively reduced cost of pharmacokinetic based registration trials provides little commercial incentive to develop improved novel therapies for the treatment of late onset male hypogonadism. Selective androgen receptor modulators (SARMs) have been shown to provide anabolic benefit in the absence of androgenic effects on prostate, hair and skin. Current clinical development for SARMs is focused on acute muscle wasting conditions with defi ned clinical endpoints of physical function and lean body mass. Similar regulatory clarity concerning clinical deficits in men with hypogonadism is required before the beneficial pharmacology and desirable pharmacokinetics of SARMs can be employed in the treatment of late onset male hypogonadism.

  16. Selective androgen receptor modulators for the treatment of late onset male hypogonadism

    Directory of Open Access Journals (Sweden)

    Christopher C Coss

    2014-04-01

    Full Text Available Several testosterone preparations are used in the treatment of hypogonadism in the ageing male. These therapies differ in their convenience, flexibility, regional availability and expense but share their pharmacokinetic basis of approval and dearth of long-term safety data. The brevity and relatively reduced cost of pharmacokinetic based registration trials provides little commercial incentive to develop improved novel therapies for the treatment of late onset male hypogonadism. Selective androgen receptor modulators (SARMs have been shown to provide anabolic benefit in the absence of androgenic effects on prostate, hair and skin. Current clinical development for SARMs is focused on acute muscle wasting conditions with defi ned clinical endpoints of physical function and lean body mass. Similar regulatory clarity concerning clinical deficits in men with hypogonadism is required before the beneficial pharmacology and desirable pharmacokinetics of SARMs can be employed in the treatment of late onset male hypogonadism.

  17. Selective androgen receptor modulators for the treatment of late onset male hypogonadism

    Science.gov (United States)

    Coss, Christopher C; Jones, Amanda; Hancock, Michael L; Steiner, Mitchell S; Dalton, James T

    2014-01-01

    Several testosterone preparations are used in the treatment of hypogonadism in the ageing male. These therapies differ in their convenience, flexibility, regional availability and expense but share their pharmacokinetic basis of approval and dearth of long-term safety data. The brevity and relatively reduced cost of pharmacokinetic based registration trials provides little commercial incentive to develop improved novel therapies for the treatment of late onset male hypogonadism. Selective androgen receptor modulators (SARMs) have been shown to provide anabolic benefit in the absence of androgenic effects on prostate, hair and skin. Current clinical development for SARMs is focused on acute muscle wasting conditions with defined clinical endpoints of physical function and lean body mass. Similar regulatory clarity concerning clinical deficits in men with hypogonadism is required before the beneficial pharmacology and desirable pharmacokinetics of SARMs can be employed in the treatment of late onset male hypogonadism. PMID:24407183

  18. Prostate Cancer Cells in Different Androgen Receptor Status Employ Different Leucine Transporters.

    Science.gov (United States)

    Otsuki, Hideo; Kimura, Toru; Yamaga, Takashi; Kosaka, Takeo; Suehiro, Jun-Ichi; Sakurai, Hiroyuki

    2017-02-01

    Leucine stimulates cancer cell proliferation through the mTOR pathway, therefore, inhibiting leucine transporters may be a novel therapeutic target for cancer. L-type amino acid transporter (LAT) 1, a Na + -independent amino acid transporter, is highly expressed in many tumor cells. However, leucine transporter(s) in different stages of prostate cancer, particularly in the stages of castration resistance with androgen receptor (AR) expression, is unclear. LNCaP and DU145 and PC-3 cell lines were used as a model of androgen dependent, and metastatic prostate cancer. A new "LN-cr" cell line was established after culturing LNCaP cells for 6 months under androgen-free conditions, which is considered a model of castration resistant prostate cancer (CRPC) with androgen AR expression. The expression of leucine transporters was investigated with quantitative PCR and immunofluorescence. Uptake of 14 C Leucine was examined in the presence or absence of BCH (a pan-LAT inhibitor), JPH203 (an LAT1-specific inhibitor), or Na + . Cell growth was assessed with MTT assay. siRNA studies were performed to evaluate the indispensability of y + LAT2 on leucine uptake and cell viability in LN-cr. Cell viability showed a 90% decrease in the absence of leucine in all four cell lines. LNCaP cells principally expressed LAT3, and their leucine uptake was more than 90% Na + -independent. BCH, but not JPH203, inhibited leucine uptake, and cell proliferation (IC 50BCH :15 mM). DU145 and PC-3 cells predominantly expressed LAT1. Leucine uptake and cell growth were suppressed by BCH or JPH203 in a dose-dependent manner (IC 50BCH : ∼20 mM, IC 50JPH203 : ∼5 µM). In LN-cr cells, Na + -dependent uptake of leucine was 3.8 pmol/mgprotein/min, while, Na + -independent uptake was only 0.52 (P prostate cancer. Prostate 77:222-233, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Resveratrol, piceatannol and analogs inhibit activation of both wild-type and T877A mutant androgen receptor.

    Science.gov (United States)

    Lundqvist, Johan; Tringali, Corrado; Oskarsson, Agneta

    2017-11-01

    Prostate cancer growth and progression are mainly dependent on androgens and many current prostate cancer treatment options target the synthesis or function of androgens. We have previously reported that resveratrol and synthetic analogs of resveratrol with a higher bioavailability inhibit the synthesis of androgens in human adrenocortical H295R cells. Now we have studied the antiandrogenic properties of resveratrol, piceatannol and analogs in two different prostate cell lines; LNCaP and RWPE. LNCaP carry a T877A mutation in the androgen receptor while RWPE has a wild-type androgen receptor. We found that resveratrol, piceatannol and all studied analogs were able to inhibit a dihydrotestosterone-induced activation of the androgen receptor, showing that they act as antiandrogens. In LNCaP cells, all studied compounds were able to statistically significantly decrease the androgenic signaling in concentrations ≥1μM and the synthetic analogs trimethylresveratrol (RSVTM) and tetramethylpiceatannol (PICTM) were the most potent compounds. RWPE cells were not as responsive to the studied compounds as the LNCaP cells. A statistically significant decrease in the androgenic signaling was observed at concentrations ≤5μM for most compounds and RSVTM was found to be the most potent compound. Further, we studied the effects of resveratrol, piceatannol and analogs on the levels of prostate-specific antigen (PSA) in LNCaP cells and found that all studied compounds decreased the level of PSA and that the synthetic analogs diacetylresveratrol (RSVDA), triacetylresveratrol (RSVTA) and RSVTM were the most potent compounds, decreasing the PSA level by approx. 50% at concentrations ≥10μM. In a cell-free receptor binding assay we were unable to show binding of resveratrol or analogs to the ligand binding domain of the androgen receptor, indicating that the observed effects are mediated via other mechanisms than direct ligand competition. We conclude that the resveratrol

  20. Nonsteroidal Selective Androgen Receptor Modulators and Selective Estrogen Receptor β Agonists Moderate Cognitive Deficits and Amyloid-β Levels in a Mouse Model of Alzheimer’s Disease

    Science.gov (United States)

    2013-01-01

    Decreases of the sex steroids, testosterone and estrogen, are associated with increased risk of Alzheimer’s disease. Testosterone and estrogen supplementation improves cognitive deficits in animal models of Alzheimer’s disease. Sex hormones play a role in the regulation of amyloid-β via induction of the amyloid-β degrading enzymes neprilysin and insulin-degrading enzyme. To mimic the effect of dihydrotestosterone (DHT), we administered a selective androgen receptor agonist, ACP-105, alone and in combination with the selective estrogen receptor β (ERβ) agonist AC-186 to male gonadectomized triple transgenic mice. We assessed long-term spatial memory in the Morris water maze, spontaneous locomotion, and anxiety-like behavior in the open field and in the elevated plus maze. We found that ACP-105 given alone decreases anxiety-like behavior. Furthermore, when ACP-105 is administered in combination with AC-186, they increase the amyloid-β degrading enzymes neprilysin and insulin-degrading enzyme and decrease amyloid-β levels in the brain as well as improve cognition. Interestingly, the androgen receptor level in the brain was increased by chronic treatment with the same combination treatment, ACP-105 and AC-186, not seen with DHT or ACP-105 alone. Based on these results, the beneficial effect of the selective ERβ agonist as a potential therapeutic for Alzheimer’s disease warrants further investigation. PMID:24020966

  1. Tissue Selective Androgen Receptor Modulators (SARMs) Increase Pelvic Floor Muscle Mass in Ovariectomized Mice.

    Science.gov (United States)

    Ponnusamy, Suriyan; Sullivan, Ryan D; Thiyagarajan, Thirumagal; Tillmann, Heather; Getzenberg, Robert H; Narayanan, Ramesh

    2017-03-01

    Stress urinary incontinence (SUI), a prevalent condition, is represented by an involuntary leakage of urine that results, at least in part, from weakened or damaged pelvic floor muscles and is triggered by physical stress. Current treatment options are limited with no oral therapies available. The pelvic floor is rich in androgen receptor and molecules with anabolic activity including selective androgen receptor modulators (SARMs) may serve as therapeutic options for individuals with SUI. In this study, two SARMs (GTx-024 and GTx-027) were evaluated in a post-menopausal animal model in order to determine their effect on pelvic floor muscles. Female C57BL/6 mice were ovariectomized and their pelvic muscles allowed to regress. The animals were then treated with vehicle or doses of GTx-024 or GTx-027. Animal total body weight, lean body mass, and pelvic floor muscle weights were measured along with the expression of genes associated with muscle catabolism. Treatment with the SARMs resulted in a restoration of the pelvic muscles to the sham-operated weight. Coordinately, the induction of genes associated with muscle catabolism was inhibited. Although a trend was observed towards an increase in total lean body mass in the SARM-treated groups, no significant differences were detected. Treatment of an ovariectomized mouse model with SARMs resulted in an increase in pelvic floor muscles, which may translate to an improvement of symptoms associated with SUI and serves as the basis for evaluating their clinical use. J. Cell. Biochem. 118: 640-646, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Selective androgen receptor modulators for the prevention and treatment of muscle wasting associated with cancer.

    Science.gov (United States)

    Dalton, James T; Taylor, Ryan P; Mohler, Michael L; Steiner, Mitchell S

    2013-12-01

    This review highlights selective androgen receptor modulators (SARMs) as emerging agents in late-stage clinical development for the prevention and treatment of muscle wasting associated with cancer. Muscle wasting, including a loss of skeletal muscle, is a cancer-related symptom that begins early in the progression of cancer and affects a patient's quality of life, ability to tolerate chemotherapy, and survival. SARMs increase muscle mass and improve physical function in healthy and diseased individuals, and potentially may provide a new therapy for muscle wasting and cancer cachexia. SARMs modulate the same anabolic pathways targeted with classical steroidal androgens, but within the dose range in which expected effects on muscle mass and function are seen androgenic side-effects on prostate, skin, and hair have not been observed. Unlike testosterone, SARMs are orally active, nonaromatizable, nonvirilizing, and tissue-selective anabolic agents. Recent clinical efficacy data for LGD-4033, MK-0773, MK-3984, and enobosarm (GTx-024, ostarine, and S-22) are reviewed. Enobosarm, a nonsteroidal SARM, is the most well characterized clinically, and has consistently demonstrated increases in lean body mass and better physical function across several populations along with a lower hazard ratio for survival in cancer patients. Completed in May 2013, results for the Phase III clinical trials entitled Prevention and treatment Of muscle Wasting in patiEnts with Cancer1 (POWER1) and POWER2 evaluating enobosarm for the prevention and treatment of muscle wasting in patients with nonsmall cell lung cancer will be available soon, and will potentially establish a SARM, enobosarm, as the first drug for the prevention and treatment of muscle wasting in cancer patients.

  3. Therapeutic potential of the SARMs: revisiting the androgen receptor for drug discovery.

    Science.gov (United States)

    Segal, Scott; Narayanan, Ramesh; Dalton, James T

    2006-04-01

    Selective androgen receptor modulators (SARMS) bind to the androgen receptor and demonstrate anabolic activity in a variety of tissues; however, unlike testosterone and other anabolic steroids, these nonsteroidal agents are able to induce bone and muscle growth, as well as shrinking the prostate. The potential of SARMS is to maximise the positive attributes of steroidal androgens as well as minimising negative effects, thus providing therapeutic opportunities in a variety of diseases, including muscle wasting associated with burns, cancer, end-stage renal disease, osteoporosis, frailty and hypogonadism. This review summarises androgen physiology, the current status of the R&D of SARMS and potential therapeutic indications for this emerging class of drugs.

  4. The Safety, Pharmacokinetics, and Effects of LGD-4033, a Novel Nonsteroidal Oral, Selective Androgen Receptor Modulator, in Healthy Young Men

    Science.gov (United States)

    Basaria, Shehzad; Collins, Lauren; Dillon, E. Lichar; Orwoll, Katie; Storer, Thomas W.; Miciek, Renee; Ulloor, Jagadish; Zhang, Anqi; Eder, Richard; Zientek, Heather; Gordon, Gilad; Kazmi, Syed; Sheffield-Moore, Melinda

    2013-01-01

    Background. Concerns about potential adverse effects of testosterone on prostate have motivated the development of selective androgen receptor modulators that display tissue-selective activation of androgenic signaling. LGD-4033, a novel nonsteroidal, oral selective androgen receptor modulator, binds androgen receptor with high affinity and selectivity. Objectives. To evaluate the safety, tolerability, pharmacokinetics, and effects of ascending doses of LGD-4033 administered daily for 21 days on lean body mass, muscle strength, stair-climbing power, and sex hormones. Methods. In this placebo-controlled study, 76 healthy men (21–50 years) were randomized to placebo or 0.1, 0.3, or 1.0 mg LGD-4033 daily for 21 days. Blood counts, chemistries, lipids, prostate-specific antigen, electrocardiogram, hormones, lean and fat mass, and muscle strength were measured during and for 5 weeks after intervention. Results. LGD-4033 was well tolerated. There were no drug-related serious adverse events. Frequency of adverse events was similar between active and placebo groups. Hemoglobin, prostate-specific antigen, aspartate aminotransferase, alanine aminotransferase, or QT intervals did not change significantly at any dose. LGD-4033 had a long elimination half-life and dose-proportional accumulation upon multiple dosing. LGD-4033 administration was associated with dose-dependent suppression of total testosterone, sex hormone–binding globulin, high density lipoprotein cholesterol, and triglyceride levels. follicle-stimulating hormone and free testosterone showed significant suppression at 1.0-mg dose only. Lean body mass increased dose dependently, but fat mass did not change significantly. Hormone levels and lipids returned to baseline after treatment discontinuation. Conclusions. LGD-4033 was safe, had favorable pharmacokinetic profile, and increased lean body mass even during this short period without change in prostate-specific antigen. Longer randomized trials should

  5. Unraveling the Complexities of Androgen Receptor Signaling in Prostate Cancer Cells

    OpenAIRE

    Heemers, Hannelore V.; Tindall, Donald J.

    2009-01-01

    Androgen signaling is critical for proliferation of prostate cancer cells but cannot be fully inhibited by current androgen deprivation therapies. A study by Xu et al. in this issue of Cancer Cell provides insights into the complexities of androgen signaling in prostate cancer and suggests avenues to target a subset of androgen-sensitive genes.

  6. Androgen regulation of the androgen receptor coregulators

    International Nuclear Information System (INIS)

    Urbanucci, Alfonso; Waltering, Kati K; Suikki, Hanna E; Helenius, Merja A; Visakorpi, Tapio

    2008-01-01

    The critical role of the androgen receptor (AR) in the development of prostate cancer is well recognized. The transcriptional activity of AR is partly regulated by coregulatory proteins. It has been suggested that these coregulators could also be important in the progression of prostate cancer. The aim of this study was to identify coregulators whose expression is regulated by either the androgens and/or by the expression level of AR. We used empty vector and AR cDNA-transfected LNCaP cells (LNCaP-pcDNA3.1, and LNCaP-ARhi, respectively), and grew them for 4 and 24 hours in the presence of dihydrotestosterone (DHT) at various concentrations. The expression of 25 AR coregulators (SRC1, TIF2, PIAS1, PIASx, ARIP4, BRCA1, β-catenin, AIB3, AIB1, CBP, STAT1, NCoR1, AES, cyclin D1, p300, ARA24, LSD1, BAG1L, gelsolin, prohibitin, JMJD2C, JMJD1A, MAK, PAK6 and MAGE11) was then measured by using real-time quantitative RT-PCR (Q-RT-PCR). Five of the coregulators (AIB1, CBP, MAK, BRCA1 and β-catenin) showed more than 2-fold induction and 5 others (cyclin D1, gelsolin, prohibitin, JMJD1A, and JMJD2C) less than 2-fold induction. Overexpression of AR did not affect the expression of the coregulators alone. However, overexpression of AR enhanced the DHT-stimulated expression of MAK, BRCA1, AIB1 and CBP and reduced the level of expression of β-catenin, cyclinD1 and gelsolin. In conclusion, we identified 5 coactivators whose expression was induced by androgens suggesting that they could potentiate AR signaling. Overexpression of AR seems to sensitize cells for low levels of androgens

  7. Androgen receptor and immune inflammation in benign prostatic hyperplasia and prostate cancer

    Science.gov (United States)

    Izumi, Kouji; Li, Lei; Chang, Chawnshang

    2014-01-01

    Both benign prostatic hyperplasia (BPH) and prostate cancer (PCa) are frequent diseases in middle-aged to elderly men worldwide. While both diseases are linked to abnormal growth of the prostate, the epidemiological and pathological features of these two prostate diseases are different. BPH nodules typically arise from the transitional zone, and, in contrast, PCa arises from the peripheral zone. Androgen deprivation therapy alone may not be sufficient to cure these two prostatic diseases due to its undesirable side effects. The alteration of androgen receptor-mediated inflammatory signals from infiltrating immune cells and prostate stromal/epithelial cells may play key roles in those unwanted events. Herein, this review will focus on the roles of androgen/androgen receptor signals in the inflammation-induced progression of BPH and PCa. PMID:26594314

  8. Selective Androgen Receptor Down-Regulators (SARDs): A New Prostate Cancer Therapy

    National Research Council Canada - National Science Library

    Bhattacharyya, Rumi S

    2007-01-01

    The androgen receptor (AR) plays a key role in the development and progression of prostate cancer Targeting the AR for down-regulation would be a useful strategy for treating prostate cancer, especially hormone-refractory...

  9. Androgen receptor expression in human ovarian and uterine tissue of long term androgen-treated transsexual women

    NARCIS (Netherlands)

    D. Chadha; T.D. Pache; F.J. Huikeshoven (Frans); A.O. Brinkmann (Albert); Th.H. van der Kwast (Theo)

    1994-01-01

    textabstractAndrogen receptor (AR) modulation in human uteri and ovaries of long term androgen-treated transsexual female patients was investigated. Androgen receptor expression was evaluated immunohistochemically in the ovaries of 11 and the endometria and myometria of six androgen-treated

  10. Androgen receptor expression on circulating tumor cells in metastatic breast cancer.

    Directory of Open Access Journals (Sweden)

    Takeo Fujii

    Full Text Available Androgen receptor (AR is frequently detected in breast cancers, and AR-targeted therapies are showing activity in AR-positive (AR+ breast cancer. However, the role of AR in breast cancers is still not fully elucidated and the biology of AR in breast cancer remains incompletely understood. Circulating tumor cells (CTCs can serve as prognostic and diagnostic tools, prompting us to measure AR protein expression and conduct genomic analyses on CTCs in patients with metastatic breast cancer.Blood samples from patients with metastatic breast cancer were deposited on glass slides, subjected to nuclear staining with DAPI, and reacted with fluorescent-labeled antibodies to detect CD45, cytokeratin (CK, and biomarkers of interest (AR, estrogen receptor [ER], and HER2 on all nucleated cells. The stained slides were scanned and enumerated by non-enrichment-based non-biased approach independent of cell surface epithelial cell adhesion molecule (EpCAM using the Epic Sciences CTC platform. Data were analyzed using established digital pathology algorithms.Of 68 patients, 51 (75% had at least 1 CTC, and 49 of these 51 (96% had hormone-receptor-positive (HR+/HER2-negative primary tumors. AR was expressed in CK+ CTCs in 10 patients. Of these 10 patients, 3 also had ER expression in CK+ CTCs. Single cell genomic analysis of 78 CTCs from 1 of these 3 patients identified three distinct copy number patterns. AR+ cells had a lower frequency of chromosomal changes than ER+ and HER2+ cells.CTC enumeration and analysis using no enrichment or selection provides a non-biased approach to detect AR expression and chromosomal aberrations in CTCs in patients with metastatic breast cancer. The heterogeneity of intrapatient AR expression in CTCs leads to the new hypothesis that patients with AR+ CTCs have heterogeneous disease with multiple drivers. Further studies are warranted to investigate the clinical applicability of AR+ CTCs and their heterogeneity.

  11. A selective androgen receptor modulator that reduces prostate tumor size and prevents orchidectomy-induced bone loss in rats.

    Science.gov (United States)

    Allan, George; Lai, Muh-Tsann; Sbriscia, Tifanie; Linton, Olivia; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Dodds, Robert; Fiordeliso, James; Lanter, James; Sui, Zhihua; Lundeen, Scott

    2007-01-01

    The pharmacological activity of JNJ-26146900 is described. JNJ-26146900 is a nonsteroidal androgen receptor (AR) ligand with tissue-selective activity in rats. The compound was evaluated in in vitro and in vivo models of AR activity. It binds to the rat AR with a K(i) of 400nM and acts as a pure androgen antagonist in an in vitro cell-based assay. Its in vitro profile is similar to the androgen antagonist bicalutamide (Casodex). In intact rats, JNJ-26146900 reduces ventral prostate weight with an oral potency (ED(50)) of 20-30mg/kg, again comparable to that of bicalutamide. JNJ-26146900 prevented prostate tumor growth in the Dunning rat model, maximally inhibiting growth at a dose of 10mg/kg. It slowed tumor growth significantly in a CWR22-LD1 mouse xenograft model of human prostate cancer. It was tested in aged male rats for its ability to prevent bone loss and loss of lean body mass following orchidectomy. After 6 weeks of dosing, bone volume decreased by 33% in orchidectomized versus intact vehicle-treated rats with a probability (P) of less than 0.05, as measured by micro-computerized tomography analysis. At a dose of 30mg/kg, JNJ-26146900 significantly reduced castration-induced tibial bone loss as indicated by the following parameters: bone volume, trabecular connectivity, trabecular number and spacing between trabeculae. Bone mineral density decreased from 229+/-34mg/cm(3) of hydroxyapatite to 166+/-26mg/cm(3) following orchidectomy, and was maintained at 194+/-20mg/cm(3) with JNJ-26146900 treatment (Pselective androgen receptor modulators (SARMs) have the potential for anabolic effects on bone and muscle while maintaining therapeutic efficacy in prostate cancer.

  12. Molecular analysis of the androgen-receptor gene in a family with receptor-positive partial androgen insensitivity: an unusual type of intronic mutation

    NARCIS (Netherlands)

    H.T. Brüggenwirth (Hennie); A.L.M. Boehmer (Annemie); S. Ramnarain; M.C. Verleun-Mooijman; D.P.E. Satijn (David); J. Trapman (Jan); J.A. Grootegoed (Anton); A.O. Brinkmann (Albert)

    1997-01-01

    textabstractIn the coding part and the intron-exon boundaries of the androgen-receptor gene of a patient with partial androgen insensitivity, no mutation was found. The androgen receptor of this patient displayed normal ligand-binding parameters and migrated as a

  13. Somatic mosaicism of androgen receptor CAG repeats in colorectal carcinoma epithelial cells from men.

    Science.gov (United States)

    Di Fabio, Francesco; Alvarado, Carlos; Gologan, Adrian; Youssef, Emad; Voda, Linda; Mitmaker, Elliot; Beitel, Lenore K; Gordon, Philip H; Trifiro, Mark

    2009-06-01

    The X-linked human androgen receptor gene (AR) contains an exonic polymorphic trinucleotide CAG. The length of this encoded CAG tract inversely affects AR transcriptional activity. Colorectal carcinoma is known to express the androgen receptor, but data on somatic CAG repeat lengths variations in malignant and normal epithelial cells are still sporadic. Using laser capture microdissection (LCM), epithelial cells from colorectal carcinoma and normal-appearing mucosa were collected from the fresh tissue of eight consecutive male patients undergoing surgery (mean age, 70 y; range, 54-82). DNA isolated from each LCM sample underwent subsequent PCR and DNA sequencing to precisely determine AR CAG repeat lengths and the presence of microsatellite instability (MSI). Different AR CAG repeat lengths were observed in colorectal carcinoma (ranging from 0 to 36 CAG repeats), mainly in the form of multiple shorter repeat lengths. This genetic heterogeneity (somatic mosaicism) was also found in normal-appearing colorectal mucosa. Half of the carcinoma cases examined tended to have a higher number of AR CAG repeat lengths with a wider range of repeat size variation compared to normal mucosa. MSI carcinomas tended to have longer median AR CAG repeat lengths (n = 17) compared to microsatellite stable carcinomas (n = 14), although the difference was not significant (P = 0.31, Mann-Whitney test). Multiple unique somatic mutations of the AR CAG repeats occur in colorectal mucosa and in carcinoma, predominantly resulting in shorter alleles. Colorectal epithelial cells carrying AR alleles with shorter CAG repeat lengths may be more androgen-sensitive and therefore have a growth advantage.

  14. Expression profiles and functional associations of endogenous androgen receptor and caveolin-1 in prostate cancer cell lines.

    Science.gov (United States)

    Bennett, Nigel C; Hooper, John D; Johnson, David W; Gobe, Glenda C

    2014-05-01

    In prostate cancer (PCa) patients, the protein target for androgen deprivation and blockade therapies is androgen receptor (AR). AR interacts with many proteins that function to either co-activate or co-repress its activity. Caveolin-1 (Cav-1) is not found in normal prostatic epithelium, but is found in PCa, and may be an AR co-regulator protein. We investigated cell line-specific signatures and associations of endogenous AR and Cav-1 in six PCa cell lines of known androgen sensitivity: LNCaP (androgen sensitive); 22Rv1 (androgen responsive); PC3, DU145, and ALVA41 (androgen non-reliant); and RWPE1 (non-malignant). Protein and mRNA expression profiles were compared and electron microscopy used to identify cells with caveolar structures. For cell lines expressing both AR and Cav-1, knockdown techniques using small interfering RNA against AR or Cav-1 were used to test whether diminished expression of one affected the other. Co-sedimentation of AR and Cav-1 was used to test their association. A reporter assay for AR genomic activity was utilized following Cav-1 knockdown. AR-expressing LNCaP and 22Rv1 cells had low endogenous Cav-1 mRNA and protein. Cell lines that expressed little or no AR (DU145, PC3, ALVA41, and RWPE1) expressed high endogenous levels of Cav-1. AR knockdown in LNCaP cells had little effect on Cav-1, but Cav-1 knockdown inhibited AR expression and genomic activity. These data show endogenous AR and Cav-1 mRNA and protein expression is inversely related in PCa cells, with Cav-1 acting on the androgen/AR signaling axis possibly as an AR co-activator, demonstrated by diminished AR genomic activity following Cav-1 knockdown. © 2013 Wiley Periodicals, Inc.

  15. Restoration of spermatogenesis and male fertility using an androgen receptor transgene.

    Directory of Open Access Journals (Sweden)

    William H Walker

    Full Text Available Androgens signal through the androgen receptor (AR to regulate male secondary sexual characteristics, reproductive tract development, prostate function, sperm production, bone and muscle mass as well as body hair growth among other functions. We developed a transgenic mouse model in which endogenous AR expression was replaced by a functionally modified AR transgene. A bacterial artificial chromosome (BAC was constructed containing all AR exons and introns plus 40 kb each of 5' and 3' regulatory sequence. Insertion of an internal ribosome entry site and the EGFP gene 3' to AR allowed co-expression of AR and EGFP. Pronuclear injection of the BAC resulted in six founder mice that displayed EGFP production in appropriate AR expressing tissues. The six founder mice were mated into a Sertoli cell specific AR knockout (SCARKO background in which spermatogenesis is blocked at the meiosis stage of germ cell development. The AR-EGFP transgene was expressed in a cyclical manner similar to that of endogenous AR in Sertoli cells and fertility was restored as offspring were produced in the absence of Sertoli cell AR. Thus, the AR-EGFP transgene under the control of AR regulatory elements is capable of rescuing AR function in a cell selective, AR-null background. These initial studies provide proof of principle that a strategy employing the AR-EGFP transgene can be used to understand AR functions. Transgenic mice expressing selective modifications of the AR-EGFP transgene may provide crucial information needed to elicit the molecular mechanisms by which AR acts in the testis and other androgen responsive tissues.

  16. Activation of estrogen receptor beta (ERβ) regulates the expression of N-cadherin, E-cadherin and β-catenin in androgen-independent prostate cancer cells.

    Science.gov (United States)

    Silva, Rafael de Souza; Lombardi, Ana Paola G; de Souza, Deborah Simão; Vicente, Carolina M; Porto, Catarina S

    2018-03-01

    The aim of the present study was to investigate the impact of the activation of estrogen receptors on expression and localization of N-cadherin, E-cadherin and non-phosphorylated β-catenin in androgen-independent prostate cancer cells (PC-3 and DU-145) and in human post pubertal prostate epithelial cells (PNT1A). Expression of N-cadherin was detected in PNT1A and PC-3 cells, but not in DU-145 cells. E-cadherin was detected only in DU-145 cells and β-catenin was detected in all cells studied. N-cadherin and β-catenin were located preferentially in the cellular membrane of PNT1A cells and in the cytoplasm of PC-3 cells. E-cadherin and β-catenin were located preferentially in the cellular membrane of DU-145 cells. 17β-estradiol (E2) or the ERα-selective agonist PPT did not affect the content and localization of N-cadherin in PC-3 and PNT1A cells or E-cadherin in DU-145 cells. In PC-3 cells, ERβ-selective agonist DPN decreased the expression of N-cadherin. DPN-induced downregulation of N-cadherin was blocked by pretreatment with the ERβ-selective antagonist (PHTPP), indicating that ERβ1 is the upstream receptor regulating the expression of N-cadherin. In DU-145 cells, the activation of ERβ1 by DPN increased the expression of E-cadherin. Taken together, these results suggest that activation of ERβ1 is required to maintain an epithelial phenotype in PC-3 and DU-145 cells. The activation of ERβ1 also increased the expression of β-catenin in cytoplasm of PC-3 and in the cellular membrane of DU-145 cells. In conclusion, our results indicate differential expression and localization of N-cadherin, E-cadherin and β-catenin in androgen-independent prostate cancer cells. The reduction of N-cadherin content by activation of ERβ, exclusively observed in androgen-independent prostate cancer cells (PC-3), may be related to the activation of signaling pathways, such as the release of β-catenin into the cytoplasm, translocation of β-catenin to the nucleus and

  17. Stromal Androgen Receptor in Prostate Cancer Development and Progression

    Science.gov (United States)

    Leach, Damien A.; Buchanan, Grant

    2017-01-01

    Prostate cancer development and progression is the result of complex interactions between epithelia cells and fibroblasts/myofibroblasts, in a series of dynamic process amenable to regulation by hormones. Whilst androgen action through the androgen receptor (AR) is a well-established component of prostate cancer biology, it has been becoming increasingly apparent that changes in AR signalling in the surrounding stroma can dramatically influence tumour cell behavior. This is reflected in the consistent finding of a strong association between stromal AR expression and patient outcomes. In this review, we explore the relationship between AR signalling in fibroblasts/myofibroblasts and prostate cancer cells in the primary site, and detail the known functions, actions, and mechanisms of fibroblast AR signaling. We conclude with an evidence-based summary of how androgen action in stroma dramatically influences disease progression. PMID:28117763

  18. Effects of Sorafenib on C-Terminally Truncated Androgen Receptor Variants in Human Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mark Schrader

    2012-09-01

    Full Text Available Recent evidence suggests that the development of castration resistant prostate cancer (CRPCa is commonly associated with an aberrant, ligand-independent activation of the androgen receptor (AR. A putative mechanism allowing prostate cancer (PCa cells to grow under low levels of androgens, is the expression of constitutively active, C-terminally truncated AR lacking the AR-ligand binding domain (LBD. Due to the absence of a LBD, these receptors, termed ARΔLBD, are unable to respond to any form of anti-hormonal therapies. In this study we demonstrate that the multikinase inhibitor sorafenib inhibits AR as well as ARΔLBD-signalling in CRPCa cells. This inhibition was paralleled by proteasomal degradation of the AR- and ARΔLBD-molecules. In line with these observations, maximal antiproliferative effects of sorafenib were achieved in AR and ARΔLBD-positive PCa cells. The present findings warrant further investigations on sorafenib as an option for the treatment of advanced AR-positive PCa.

  19. Protein kinase D1 (PKD1) influences androgen receptor (AR) function in prostate cancer cells

    International Nuclear Information System (INIS)

    Mak, Paul; Jaggi, Meena; Syed, Viqar; Chauhan, Subhash C.; Hassan, Sazzad; Biswas, Helal; Balaji, K.C.

    2008-01-01

    Protein kinase D1 (PKD1), founding member of PKD protein family, is down-regulated in advanced prostate cancer (PCa). We demonstrate that PKD1 and androgen receptor (AR) are present as a protein complex in PCa cells. PKD1 is associated with a transcriptional complex which contains AR and promoter sequence of the Prostate Specific Antigen (PSA) gene. Ectopic expression of wild type PKD1 and the kinase dead mutant PKD1 (K628W) attenuated the ligand-dependent transcriptional activation of AR in prostate cancer cells and yeast cells indicating that PKD1 can affect AR transcription activity, whereas knocking down PKD1 enhanced the ligand-dependent transcriptional activation of AR. Co-expression of kinase dead mutant with AR significantly inhibited androgen-mediated cell proliferation in both LNCaP and DU145 PC cells. Our data demonstrate for the first time that PKD1 can influence AR function in PCa cells

  20. Polymorphic variation in the androgen receptor gene: association with risk of testicular germ cell cancer and metastatic disease

    DEFF Research Database (Denmark)

    Västermark, Åke; Giwercman, Yvonne Lundberg; Hagströmer, Oskar

    2011-01-01

    Increasing incidence of testicular germ cell cancer (TGCC) is most probably related to environment and lifestyle. However, an underlying genetic predisposition may play a role and since sex steroids are assumed to be important for the rise and progression of TGCC, a study of androgen receptor (AR...... of endocrine disruptors. From a biological point of view, our findings strengthen the hypothesis of the importance of androgen action in the aetiology and pathogenesis of testicular malignancy. Future studies should focus on the impact of sex hormones on foetal germ cell development and the interaction between...

  1. Androgen receptor requires JunD as a coactivator to switch on an oxidative stress generation pathway in prostate cancer cells.

    Science.gov (United States)

    Mehraein-Ghomi, Farideh; Basu, Hirak S; Church, Dawn R; Hoffmann, F Michael; Wilding, George

    2010-06-01

    Relatively high oxidative stress levels in the prostate are postulated to be a major factor for prostate carcinogenesis and prostate cancer (CaP) progression. We focused on elucidating metabolic pathways of oxidative stress generation in CaP cells. Previously, we showed that the transcription factor JunD is essential for androgen-induced reactive oxygen species (ROS) production in androgen-dependent human CaP cells. We also recently showed that androgen induces the first and regulatory enzyme spermidine/spermine N1-acetyltransferase (SSAT) in a polyamine catabolic pathway that produces copious amounts of metabolic ROS. Here, we present coimmunoprecipitation and Gaussia luciferase reconstitution assay data that show that JunD forms a complex with androgen-activated androgen receptor (AR) in situ. Our chromatin immunoprecipitation assay data show that JunD binds directly to a specific SSAT promoter sequence only in androgen-treated LNCaP cells. Using a vector containing a luciferase reporter gene connected to the SSAT promoter and a JunD-silenced LNCaP cell line, we show that JunD is essential for androgen-induced SSAT gene expression. The elucidation of JunD-AR complex inducing SSAT expression leading to polyamine oxidation establishes the mechanistic basis of androgen-induced ROS production in CaP cells and opens up a new prostate-specific target for CaP chemopreventive/chemotherapeutic drug development. Copyright 2010 AACR.

  2. Androgen receptor expression in Circulating Tumor Cells from castration-resistant prostate cancer patients with novel endocrine agents

    NARCIS (Netherlands)

    Crespo, M.; van Dalum, Guus; Ferraldeschi, R.; Zafeiriou, Z.; Sideris, S.; Lorente, D.; Bianchini, D.; Rodrigues, D.N.; Rijsnaes, R.; Miranda, S.; Figueiredo, I.; Flohr, P.; Nowakowska, K.; de Bono, J.S.; Terstappen, Leonardus Wendelinus Mathias Marie; Attard, G.

    2015-01-01

    Background: Abiraterone and enzalutamide are novel endocrine treatments that abrogate androgen receptor (AR) signalling in castration-resistant prostate cancer (CRPC). Here, we developed a circulating tumour cells (CTCs)-based assay to evaluate AR expression in real-time in CRPC and investigated

  3. N-Aryl-oxazolidin-2-imine Muscle Selective Androgen Receptor Modulators Enhance Potency through Pharmacophore Reorientation

    Energy Technology Data Exchange (ETDEWEB)

    Nirschl, Alexandra A.; Zou, Yan; Krystek, Jr., Stanley R.; Sutton, James C.; Simpkins, Ligaya M.; Lupisella, John A.; Kuhns, Joyce E.; Seethala, Ramakrishna; Golla, Rajasree; Sleph, Paul G.; Beehler, Blake C.; Grover, Gary J.; Egan, Donald; Fura, Aberra; Vyas, Viral P.; Li, Yi-Xin; Sack, John S.; Kish, Kevin F.; An, Yongmi; Bryson, James A.; Gougoutas, Jack Z.; DiMarco, John; Zahler, Robert; Ostrowski, Jacek; Hamann, Lawrence G.; (BMS)

    2010-11-09

    A novel selective androgen receptor modulator (SARM) scaffold was discovered as a byproduct obtained during synthesis of our earlier series of imidazolidin-2-ones. The resulting oxazolidin-2-imines are among the most potent SARMs known, with many analogues exhibiting sub-nM in vitro potency in binding and functional assays. Despite the potential for hydrolytic instability at gut pH, compounds of the present class showed good oral bioavailability and were highly active in a standard rodent pharmacological model.

  4. Differential effects of genistein on prostate cancer cells depend on mutational status of the androgen receptor.

    Directory of Open Access Journals (Sweden)

    Abeer M Mahmoud

    Full Text Available Blocking the androgen receptor (AR activity is the main goal of therapies for advanced prostate cancer (PCa. However, relapse with a more aggressive, hormone refractory PCa arises, which harbors restored AR activity. One mechanism of such reactivation occurs through acquisition of AR mutations that enable its activation by various steroidal and non-steroidal structures. Thus, natural and chemical compounds that contribute to inappropriate (androgen-independent activation of the AR become an area of intensive research. Here, we demonstrate that genistein, a soy phytoestrogen binds to both the wild and the Thr877Ala (T877A mutant types of AR competitively with androgen, nevertheless, it exerts a pleiotropic effect on PCa cell proliferation and AR activity depending on the mutational status of the AR. Genistein inhibited, in a dose-dependent way, cell proliferation and AR nuclear localization and expression in LAPC-4 cells that have wild AR. However, in LNCaP cells that express the T877A mutant AR, genistein induced a biphasic effect where physiological doses (0.5-5 µmol/L stimulated cell growth and increased AR expression and transcriptional activity, and higher doses induced inhibitory effects. Similar biphasic results were achieved in PC-3 cells transfected with AR mutants; T877A, W741C and H874Y. These findings suggest that genistein, at physiological concentrations, potentially act as an agonist and activate the mutant AR that can be present in advanced PCa after androgen ablation therapy.

  5. Amelioration of sexual behavior and motor activity deficits in a castrated rodent model with a selective androgen receptor modulator SARM-2f.

    Directory of Open Access Journals (Sweden)

    Megumi Morimoto

    Full Text Available Sarcopenia and cachexia present characteristic features of a decrease in skeletal muscle mass and strength, anorexia, and lack of motivation. Treatments for these diseases have not yet been established, although selective androgen receptor modulators (SARMs are considered as therapeutic targets. We previously reported that a novel SARM compound, SARM-2f, exhibits anabolic effect on muscles, with less stimulatory effect on prostate weight compared with testosterone, in rat Hershberger assays and cancer cachexia models. In this study, we studied the mechanism of action for SARM-2f selectivity and also assessed whether the muscle increase by this compound might lead to improvement of muscle function and physical activity. First, we examined the tissue distribution of SARM-2f. Tissue concentration was 1.2-, 1.6-, and 1.9-fold as high as the plasma concentration in the levator ani muscle, brain, and prostate, respectively. This result showed that the tissue-selective pharmacological effect did not depend on SARM-2f concentration in the tissues. The ability of SARM-2f to influence androgen receptor (AR-mediated transcriptional activation was examined by reporter assays using human normal prostate epithelial cells (PrEC and skeletal muscle cells (SKMC. SARM-2f exerted higher activity against AR in SKMC than in PrEC. Mammalian two hybrid assays showed different co-factor recruitment patterns between SARM-2f and dihydrotestosterone. Next, we studied the effect of SARM-2f on motivation and physical functions such as sexual behavior and motor activities in castrated rat or mouse models. SARM-2f restored the sexual behavior that was lost by castration in male rats. SARM-2f also increased voluntary running distance and locomotor activities. These results suggest that tissue-specific AR regulation by SARM-2f, but not tissue distribution, might account for its tissue specific androgenic effect, and that the muscle mass increase by SARM-2f leads to improvement

  6. Obstructing Androgen Receptor Activation in Prostate Cancer Cells Through Post-translational Modification by NEDD8

    Science.gov (United States)

    2012-11-01

    FACS flow cytometer analysis . In addition, we will measure the steady state protein level of p53, p21, p27, and pRb. In the Jab1 silencing cell...affected by DHT treatment, and the endogenous AR level was not affected by Jab1 silencing. Interestingly, Western blot analysis of immunoprecipitated AR...Avantaggiati, and R. G. Pestell . 2003. Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. Mol

  7. Androgen receptor expression in human ovarian and uterine tissue of long term androgen-treated transsexual women

    OpenAIRE

    Chadha, D.; Pache, T.D.; Huikeshoven, Frans; Brinkmann, Albert; Kwast, Theo

    1994-01-01

    textabstractAndrogen receptor (AR) modulation in human uteri and ovaries of long term androgen-treated transsexual female patients was investigated. Androgen receptor expression was evaluated immunohistochemically in the ovaries of 11 and the endometria and myometria of six androgen-treated transsexual female patients. This was compared with AR expression in the ovaries and uteri of premenopausal and postmenopausal women not receiving treatment and in 10 ovaries of female patients with polycy...

  8. Cotargeting of Androgen Synthesis and Androgen Receptor Expression as a Novel Treatment for Castration Resistant Prostate Cancer

    Science.gov (United States)

    2017-08-01

    disease [2-4]. The major mechanism underlying the development of CRPC is the reactivation of the androgen receptor (AR), the driver of prostate cancer ...Epigenetic Activator of Androgen Receptor Expression in Castration- Resistant Prostate Cancer . Indiana Basic Urological Research (IBUR) Symposium...principal discipline(s) of the project? Androgen receptor (AR) is the driver of prostate cancer development and progression and is the validated

  9. Androgen Receptor (AR) Physiological Roles in Male and Female Reproductive Systems: Lessons Learned from AR-Knockout Mice Lacking AR in Selective Cells1

    Science.gov (United States)

    Chang, Chawnshang; Lee, Soo Ok; Wang, Ruey-Sheng; Yeh, Shuyuan; Chang, Ta-Min

    2013-01-01

    ABSTRACT Androgens/androgen receptor (AR) signaling is involved primarily in the development of male-specific phenotypes during embryogenesis, spermatogenesis, sexual behavior, and fertility during adult life. However, this signaling has also been shown to play an important role in development of female reproductive organs and their functions, such as ovarian folliculogenesis, embryonic implantation, and uterine and breast development. The establishment of the testicular feminization (Tfm) mouse model exploiting the X-linked Tfm mutation in mice has been a good in vivo tool for studying the human complete androgen insensitivity syndrome, but this mouse may not be the perfect in vivo model. Mouse models with various cell-specific AR knockout (ARKO) might allow us to study AR roles in individual types of cells in these male and female reproductive systems, although discrepancies are found in results between labs, probably due to using various Cre mice and/or knocking out AR in different AR domains. Nevertheless, no doubt exists that the continuous development of these ARKO mouse models and careful studies will provide information useful for understanding AR roles in reproductive systems of humans and may help us to develop more effective and more specific therapeutic approaches for reproductive system-related diseases. PMID:23782840

  10. Aging up-regulates ARA55 in stromal cells, inducing androgen-mediated prostate cancer cell proliferation and migration.

    Science.gov (United States)

    Zou, Qingsong; Cui, Di; Liang, Shengjie; Xia, Shujie; Jing, Yifeng; Han, Bangmin

    2016-06-01

    Stromal cells in the peripheral zone (PZ) of the prostate from older males (PZ-old) could significantly promote Prostate cancer (PCa) growth compared with stromal cells from young males (PZ-young). But the mechanism is still unknown. In the co-culture system with PZ-old cells, Pc3/Du145 cells showed advanced proliferation and migration after Dihydrotestosterone (DHT) incubation, but DHT didn't show the similar effect in PZ-young co-culture system. Also, higher androgen/AR signal pathway activity and AR-related cytokines secretion (FGF-2, KGF, IGF-1) were found in PZ-old cells. As AR exprssison was equivalent in PZ-old and PZ-young cells, we focused on Androgen receptor associated protein-55(ARA55), a stromal-specific androgen receptor (AR) coactivator. ARA55 expression was higher in PZ-old cells compared with PZ-young cells in vitro. After knocking down ARA55 expression in PZ-old cells, the PCa growth- promoting effect from the PZ-old cells was diminished, which may be explained by the decreased the progressive cytokines secretion (FGF-2, KGF, IGF-1) from PZ-old stromal cells. In vivo, the consistent results were also found: PZ-old cells promoted prostate cancer cells growth, but this effect receded when knocking down ARA55 expression in PZ-old cells. From our study, we found PZ stromal cells presented age-related effects in proliferation and migration of prostate cancer cells in the androgen/AR dependent manner. As aging increased, more ARA55 were expressed in PZ stromal cells, leading to more sensitive androgen/androgen receptor (AR) signal pathway, then constituting a more feasible environment to cancer cells.

  11. Inhibition of Androgen Receptor Nuclear Localization and Castration-Resistant Prostate Tumor Growth by Pyrroloimidazole-based Small Molecules.

    Science.gov (United States)

    Masoodi, Khalid Z; Xu, Yadong; Dar, Javid A; Eisermann, Kurtis; Pascal, Laura E; Parrinello, Erica; Ai, Junkui; Johnston, Paul A; Nelson, Joel B; Wipf, Peter; Wang, Zhou

    2017-10-01

    The androgen receptor (AR) is a ligand-dependent transcription factor that controls the expression of androgen-responsive genes. A key step in androgen action, which is amplified in castration-resistant prostate cancer (CRPC), is AR nuclear translocation. Small molecules capable of inhibiting AR nuclear localization could be developed as novel therapeutics for CRPC. We developed a high-throughput screen and identified two structurally-related pyrroloimidazoles that could block AR nuclear localization in CRPC cells. We show that these two small molecules, 3-(4-ethoxyphenyl)-6,7-dihydro-5 H -pyrrolo[1,2- a ]imidazole (EPPI) and 3-(4-chlorophenyl)-6,7-dihydro-5 H -pyrrolo[1,2- a ]imidazole (CPPI) can inhibit the nuclear localization and transcriptional activity of AR and reduce the proliferation of AR-positive but not AR-negative prostate cancer cell lines. EPPI and CPPI did not inhibit nuclear localization of the glucocorticoid receptor or the estrogen receptor, suggesting they selectively target AR. In LNCaP tumor xenografts, CPPI inhibited the proliferation of relapsed LNCaP tumors. These findings suggest that EPPI and CPPI could serve as lead structures for the development of therapeutic agents for CRPC. Mol Cancer Ther; 16(10); 2120-9. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. Androgen Receptor Splice Variants and Resistance to Taxane Chemotherapy

    Science.gov (United States)

    2017-10-01

    resistant prostate cancer ; docetaxel; cabazitaxel; chemotherapy; androgen receptor splice variants; microtubule; ligand-binding domain; microtubule... receptor splice variants (AR-Vs) are associated with resistance to taxane chemotherapy in castration- resistant prostate cancer (CRPC). However, this...androgen receptor inhibitors in prostate cancer . Nat Rev Cancer . 2015;15:701–11.

  13. Targeting androgen receptor and JunD interaction for prevention of prostate cancer progression.

    Science.gov (United States)

    Mehraein-Ghomi, Farideh; Kegel, Stacy J; Church, Dawn R; Schmidt, Joseph S; Reuter, Quentin R; Saphner, Elizabeth L; Basu, Hirak S; Wilding, George

    2014-05-01

    Multiple studies show that reactive oxygen species (ROS) play a major role in prostate cancer (PCa) development and progression. Previously, we reported an induction of Spermidine/Spermine N(1) -Acetyl Transferase (SSAT) by androgen-activated androgen receptor (AR)-JunD protein complex that leads to over-production of ROS in PCa cells. In our current research, we identify small molecules that specifically block AR-JunD in this ROS-generating metabolic pathway. A high throughput assay based on Gaussia Luciferase reconstitution was used to identify inhibitors of the AR-JunD interaction. Selected hits were further screened using a fluorescence polarization competitor assay to eliminate those that bind to the AR Ligand Binding Domain (LBD), in order to identify molecules that specifically target events downstream to androgen activation of AR. Eleven molecules were selected for studies on their efficacy against ROS generation and growth of cultured human PCa cells by DCFH dye-oxidation assay and DNA fluorescence assay, respectively. In situ Proximity Ligation Assay (PLA), SSAT promoter-luciferase reporter assay, and western blotting of apoptosis and cell cycle markers were used to study mechanism of action of the lead compound. Selected lead compound GWARJD10 with EC(50) 10 μM against ROS production was shown to block AR-JunD interaction in situ as well as block androgen-induced SSAT gene expression at IC(50) 5 μM. This compound had no effect on apoptosis markers, but reduced cyclin D1 protein level. Inhibitor of AR-JunD interaction, GWARJD10 shows promise for prevention of progression of PCa at an early stage of the disease by blocking growth and ROS production. © 2014 Wiley Periodicals, Inc.

  14. Cellular androgen content influences enzalutamide agonism of F877L mutant androgen receptor

    Science.gov (United States)

    Coleman, Daniel J.; Van Hook, Kathryn; King, Carly J.; Schwartzman, Jacob; Lisac, Robert; Urrutia, Joshua; Sehrawat, Archana; Woodward, Josha; Wang, Nicholas J.; Gulati, Roman; Thomas, George V.; Beer, Tomasz M.; Gleave, Martin; Korkola, James E.; Gao, Lina; Heiser, Laura M.; Alumkal, Joshi J.

    2016-01-01

    Prostate cancer is the most commonly diagnosed and second-most lethal cancer among men in the United States. The vast majority of prostate cancer deaths are due to castration-resistant prostate cancer (CRPC) – the lethal form of the disease that has progressed despite therapies that interfere with activation of androgen receptor (AR) signaling. One emergent resistance mechanism to medical castration is synthesis of intratumoral androgens that activate the AR. This insight led to the development of the AR antagonist enzalutamide. However, resistance to enzalutamide invariably develops, and disease progression is nearly universal. One mechanism of resistance to enzalutamide is an F877L mutation in the AR ligand-binding domain that can convert enzalutamide to an agonist of AR activity. However, mechanisms that contribute to the agonist switch had not been fully clarified, and there were no therapies to block AR F877L. Using cell line models of castration-resistant prostate cancer (CRPC), we determined that cellular androgen content influences enzalutamide agonism of mutant F877L AR. Further, enzalutamide treatment of AR F877L-expressing cell lines recapitulated the effects of androgen activation of F877L AR or wild-type AR. Because the BET bromodomain inhibitor JQ-1 was previously shown to block androgen activation of wild-type AR, we tested JQ-1 in AR F877L-expressing CRPC models. We determined that JQ-1 suppressed androgen or enzalutamide activation of mutant F877L AR and suppressed growth of mutant F877L AR CRPC tumors in vivo, demonstrating a new strategy to treat tumors harboring this mutation. PMID:27276681

  15. Expression and function of androgen receptor coactivator p44/Mep50/WDR77 in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Martin Ligr

    Full Text Available Hormones, including estrogen and progesterone, and their receptors play an important role in the development and progression of ovarian carcinoma. Androgen, its receptor and coactivators have also been implicated in these processes. p44/Mep50/WDR77 was identified as a subunit of the methylosome complex and lately characterized as a steroid receptor coactivator that enhances androgen receptor as well as estrogen receptor-mediated transcriptional activity in a ligand-dependent manner. We previously described distinct expression and function of p44 in prostate, testis, and breast cancers. In this report, we examined the expression and function of p44 in ovarian cancer. In contrast to findings in prostate and testicular cancer and similar to breast cancer, p44 shows strong cytoplasmic localization in morphologically normal ovarian surface and fallopian tube epithelia, while nuclear p44 is observed in invasive ovarian carcinoma. We observed that p44 can serve as a coactivator of both androgen receptor (AR and estrogen receptor (ER in ovarian cells. Further, overexpression of nuclear-localized p44 stimulates proliferation and invasion in ovarian cancer cells in the presence of estrogen or androgen. These findings strongly suggest that p44 plays a role in mediating the effects of hormones during ovarian tumorigenesis.

  16. Fenofibrate down-regulates the expressions of androgen receptor (AR) and AR target genes and induces oxidative stress in the prostate cancer cell line LNCaP

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hu; Zhu, Chen; Qin, Chao [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Tao, Tao [Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Li, Jie; Cheng, Gong; Li, Pu; Cao, Qiang; Meng, Xiaoxin; Ju, Xiaobing; Shao, Pengfei; Hua, Lixin [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Gu, Min, E-mail: medzhao1980@163.com [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Yin, Changjun, E-mail: drcjyin@gmail.com [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China)

    2013-03-08

    Highlights: ► Fenofibrate induces cell cycle arrest in G1 phase and apoptosis in LNCaP cells. ► Fenofibrate reduces the expressions of androgen receptor in LNCaP cells. ► Fenofibrate induces oxidative stress in the prostate cancer cell line LNCaP. -- Abstract: Fenofibrate, a peroxisome proliferator-androgen receptor-alpha agonist, is widely used in treating different forms of hyperlipidemia and hypercholesterolemia. Recent reports have indicated that fenofibrate exerts anti-proliferative and pro-apoptotic properties. This study aims to investigate the effects of fenofibrate on the prostate cancer (PCa) cell line LNCaP. The effects of fenofibrate on LNCaP cells were evaluated by flow cytometry, reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assays, Western blot analysis, and dual-luciferase reporter assay. Fenofibrate induces cell cycle arrest in G1 phase and apoptosis in LNCaP cells, reduces the expressions of androgen receptor (AR) and AR target genes (prostate-specific antigen and TMPRSS2), and inhibits Akt phosphorylation. Fenofibrate can induce the accumulation of intracellular reactive oxygen species and malondialdehyde, and decrease the activities of total anti-oxidant and superoxide dismutase in LNCaP cells. Fenofibrate exerts an anti-proliferative property by inhibiting the expression of AR and induces apoptosis by causing oxidative stress. Therefore, our data suggest fenofibrate may have beneficial effects in fenofibrate users by preventing prostate cancer growth through inhibition of androgen activation and expression.

  17. Selective Androgen Receptor Modulators (SARMs) as Function Promoting Therapies

    Science.gov (United States)

    Bhasin, Shalender; Jasuja, Ravi

    2010-01-01

    Purpose of review The last decade has witnessed unprecedented discovery effort to develop selective androgen receptor modulators (SARMs) that improve physical function and bone health without adversely affecting the prostate and cardiovascular outcomes. This review describes the historical evolution, the rationale for SARM development, and the mechanisms of testosterone action and SARM selectivity. Recent Findings While steroidal SARMs have been around since the 1940s, a number of nonsteroidal SARMs that do not serve as substrates for CYP19 aromatase or 5α-reductase, act as full agonists in muscle and bone and as partial agonists in prostate are in development. The differing interactions of steroidal and nonsteroidal compounds with AR contribute to their unique pharmacologic actions. Ligand binding induces specific conformational changes in the ligand binding domain, which could modulate surface topology and protein-protein interactions between AR and coregulators, resulting in tissue-specific gene regulation. Preclinical studies have demonstrated the ability of SARMs to increase muscle and bone mass in preclinical rodent models with varying degree of prostate sparing. Phase I trials of SARMs in humans have reported modest increments in fat-free mass. Summary SARMs hold promise as a new class of function promoting anabolic therapies for a number of clinical indications, including functional limitations associated with aging and chronic disease, frailty, cancer cachexia, and osteoporosis. PMID:19357508

  18. ANDROGENS REGULATE T47D CELLS MOTILITY AND INVASION THROUGH ACTIN CYTOSKELETON REMODELLING

    Directory of Open Access Journals (Sweden)

    Maria Magdalena Montt-Guevara

    2016-09-01

    Full Text Available The relationship between androgens and breast cancer is controversial. Androgens have complex effects on breast cancer progression and metastasis. Moreover, androgens receptor (AR is expressed in approximately 70% to 90% of invasive breast carcinomas, which has prognostic relevance in basal-like cancers and in triple negative breast cancers. Recent studies have associated the actin-binding proteins of the Ezrin-Radixin-Moesin (ERM family with metastasis in endocrine-sensitive cancers. We studied on T47D breast cancer cells whether androgens with different characteristics, such as testosterone (T, dihydrotestosterone (DHT and dehydroepiandrosterone (DHEA may regulate breast cancer cell motility and invasion through the control of actin remodelling. We demonstrate that androgens promote migration and invasion in T47D via Moesin activation. We show that T and DHEA exert their actions via the AR and estrogen receptor (ER, while the non aromatizable androgen – DHT only recruits AR. We further report that androgen induced significant changes in actin organization with pseudopodia along with membrane ruffles formation, and this process is mediated by Moesin. Our work identifies novel mechanisms of action of androgens on breast cancer cells. Through the modulation of Moesin, androgens alter the architecture of cytoskeleton in T47D breast cancer cell and promote cell migration and invasion. These results could help to understand the biological actions of androgens on breast cancer, and eventually to develop new strategies for treatment of breast cancer.

  19. Immunohistochemical localization of androgen receptor in rat caput epididymis during postnatal development

    Directory of Open Access Journals (Sweden)

    Sema Timurkaan

    2011-09-01

    Full Text Available Objectives: The aim of this study was to investigate the developmental pattern of androgen receptor (AR in caput epididymis.Materials and methods: In this study three randomly selected rats were sacrificed at ages 21, 56, 90 and 120 days old. All male rats were anesthetized with ethyl ether before killing. Then, the caput epididymides were removed and fixed in Bouin’s fixative at +4°C for 36 hour. Afterwards the tissue samples were embedded in paraffin for routine histological methods. Later the tissues were sectioned at 5μm and mounted on poly-L-lysin-coated slides. To solve the antigen masking problem, we performed microwave stimulated antigen retrieval technique before the immunohistochemical staining. Avidin-Biotin-Peroxidase Complex (ABC method was applied for immunohistochemical staining.Results: In all age groups of rats studied, positive immunohistochemical staining for the AR appeared in nuclei of epididymal cells. The staining intensity of AR positive cells did not change depending on age. In caput epididymis, immunostainable AR was found in tubular epithelial cells (principal cells, basal cells and apical cells and peritubular smooth muscle cells. The AR staining in the epithelial cells appeared to be stronger than in the peritubular smooth muscle cells. In the epithelial cells; staining intensity was stronger in principal cells than in basal cells and apical cells.Conclusion: Staining intensity of AR positive epididymal cells irrespective of age indicated the necessity of androgens for postnatal differentiation and maintaining the structure of the epididymis. Stronger staining intensity in principal cells suggested that principal cells are more sensitive to androgen stimulation. J Clin Exp Invest 2011; 2 (3: 260-266.

  20. Androgen and retinoic acid interaction in LNCaP cells, effects on cell proliferation and expression of retinoic acid receptors and epidermal growth factor receptor

    International Nuclear Information System (INIS)

    Li, Ming-tang; Richter, Frank; Chang, Chawnshang; Irwin, Robert J; Huang, Hosea FS

    2002-01-01

    Modulation of the expression of retinoic acid receptors (RAR) α and γ in adult rat prostate by testosterone (T) suggests that RAR signaling events might mediate some of the androgen effects on prostate cells. In this study, we examined the interactions between T and retinoic acid (RA) in cell growth of human prostate carcinoma cells, LNCaP, and their relationship with the expression of RAR and epidermal growth factor receptor (EGF-R). Both T and RA, when administered alone, stimulated 3 H-thymidine incorporation in LNCaP cells in a dose-dependent manner; the effect of each agent was reciprocally attenuated by the other agent. Testosterone treatment of LNCaP cells also resulted in dose dependent, biphasic increases in RAR α and γ mRNAs; increases paralleled that of 3 H-thymidine incorporation and were attenuated by the presence of 100 nM RA. These results suggest a link between RAR signaling and the effect of T on LNCaP cell growth. Gel electrophoretic mobility shift assays revealed the presence of putative androgen responsive element (ARE) in the promoter region of RAR α gene, suggesting that a direct AR-DNA interaction might mediate the effects of T on RAR α gene. Furthermore, treatment of LNCaP cells with 20 nM T resulted in an increase in EGF-R. In contrast, EGF-R was suppressed by 100 nM RA that also suppressed the effect of T. Current results demonstrate interactions between T and RA in the expression of RARs and cell growth in LNCaP cells. The presence of putative ARE in the promoter of the RAR α gene suggests that AR-DNA interaction might mediate the effects of T on RAR α gene. The opposite effects of T and RA on the expression of RAR and EGF-R suggest that signal events of these receptors might be involved in the interaction between T and RA in the control of LNCaP cell growth

  1. Androgen and retinoic acid interaction in LNCaP cells, effects on cell proliferation and expression of retinoic acid receptors and epidermal growth factor receptor

    Directory of Open Access Journals (Sweden)

    Irwin Robert J

    2002-06-01

    Full Text Available Abstract Background Modulation of the expression of retinoic acid receptors (RAR α and γ in adult rat prostate by testosterone (T suggests that RAR signaling events might mediate some of the androgen effects on prostate cells. Method In this study, we examined the interactions between T and retinoic acid (RA in cell growth of human prostate carcinoma cells, LNCaP, and their relationship with the expression of RAR and epidermal growth factor receptor (EGF-R. Results Both T and RA, when administered alone, stimulated 3H-thymidine incorporation in LNCaP cells in a dose-dependent manner; the effect of each agent was reciprocally attenuated by the other agent. Testosterone treatment of LNCaP cells also resulted in dose dependent, biphasic increases in RAR α and γ mRNAs; increases paralleled that of 3H-thymidine incorporation and were attenuated by the presence of 100 nM RA. These results suggest a link between RAR signaling and the effect of T on LNCaP cell growth. Gel electrophoretic mobility shift assays revealed the presence of putative androgen responsive element (ARE in the promoter region of RAR α gene, suggesting that a direct AR-DNA interaction might mediate the effects of T on RAR α gene. Furthermore, treatment of LNCaP cells with 20 nM T resulted in an increase in EGF-R. In contrast, EGF-R was suppressed by 100 nM RA that also suppressed the effect of T. Conclusions Current results demonstrate interactions between T and RA in the expression of RARs and cell growth in LNCaP cells. The presence of putative ARE in the promoter of the RAR α gene suggests that AR-DNA interaction might mediate the effects of T on RAR α gene. The opposite effects of T and RA on the expression of RAR and EGF-R suggest that signal events of these receptors might be involved in the interaction between T and RA in the control of LNCaP cell growth.

  2. The pluripotency factor Nanog is directly upregulated by the androgen receptor in prostate cancer cells.

    Science.gov (United States)

    Kregel, Steven; Szmulewitz, Russell Z; Vander Griend, Donald J

    2014-11-01

    The Androgen Receptor (AR) is a nuclear hormone receptor that functions as a critical oncogene in all stages of prostate cancer progression, including progression to castration-resistance following androgen-deprivation therapy. Thus, identifying and targeting critical AR-regulated genes is one potential method to block castration-resistant cancer proliferation. Of particular importance are transcription factors that regulate stem cell pluripotency; many of these genes are emerging as critical oncogenes in numerous tumor cell types. Of these, Nanog has been previously shown to increase the self-renewal and stem-like properties of prostate cancer cells. Thus, we hypothesized that Nanog is a candidate AR target gene that may impart castration-resistance. We modulated AR signaling in LNCaP prostate cancer cells and assayed for Nanog expression. Direct AR binding to the NANOG promoter was tested using AR Chromatin Immunoprecipation (ChIP) and analyses of publically available AR ChIP-sequencing data-sets. Nanog over-expressing cells were analyzed for cell growth and cytotoxicity in response to the AR antagonist enzalutamide and the microtubule stabilizing agent docetaxel. AR signaling upregulates Nanog mRNA and protein. AR binds directly to the NANOG promoter, and was not identified within 75 kb of the NANOGP8 pseudogene, suggesting the NANOG gene locus was preferentially activated. Nanog overexpression in LNCaP cells increases overall growth, but does not increase resistance to enzalutamide or docetaxel. Nanog is a novel oncogenic AR target gene in prostate cancer cells, and stable expression of Nanog increases proliferation and growth of prostate cancer cells, but not resistance to enzalutamide or docetaxel. © 2014 Wiley Periodicals, Inc.

  3. Increased expression of heparin binding EGF (HB-EGF), amphiregulin, TGF alpha and epiregulin in androgen-independent prostate cancer cell lines.

    DEFF Research Database (Denmark)

    Tørring, Niels; Sørensen, Boe Sandahl; Nexø, Ebba

    2000-01-01

    BACKGROUND: The proliferation of androgen-independent prostate cancer cell lines has previously been shown to be influenced by an autocrine loop of the epidermal growth factor (EGF) system. This observation has alerted us to study the expression of ligands and receptors from the EGF......-system in prostate cell lines. METHODS: The expression of the EGF system was determined by quantitative RT-PCR and ELISA in the normal prostate epithelial cell line (PNT1A), in the androgen sensitive-(LNCaP), and the androgen-independent (DU145 and PC3) prostate cancer cell lines. RESULTS: The expression of m...... which exhibit low expression of HER1. Similar results were obtained by ELISA. CONCLUSIONS: The data indicates a selective up-regulation of a subclass of ligands of the EGF-system in androgen-independent prostate cancer cell lines. We suggest this could be a mechanism to escape androgen dependence...

  4. Potent, nonsteroidal selective androgen receptor modulators (SARMs) based on 8H-[1,4]oxazino[2,3-f]quinolin-8-ones.

    Science.gov (United States)

    Higuchi, Robert I; Thompson, Anthony W; Chen, Jyun-Hung; Caferro, Thomas R; Cummings, Marquis L; Deckhut, Charlotte P; Adams, Mark E; Tegley, Christopher M; Edwards, James P; López, Francisco J; Kallel, E Adam; Karanewsky, Donald S; Schrader, William T; Marschke, Keith B; Zhi, Lin

    2007-10-01

    A series of androgen receptor modulators based on 8H-[1,4]oxazino[2,3-f]quinolin-8-ones was synthesized and evaluated in an androgen receptor transcriptional activation assay. The most potent analogues from the series exhibited single-digit nanomolar potency in vitro. Compound 18h demonstrated full efficacy in the maintenance of muscle weight, at 10 mg/kg, with reduced activity in prostate weight in an in vivo model of androgen action.

  5. Novel, non-steroidal, selective androgen receptor modulators (SARMs) with anabolic activity in bone and muscle and improved safety profile.

    Science.gov (United States)

    Rosen, J; Negro-Vilar, A

    2002-03-01

    A novel approach to the treatment of osteoporosis in men, and possibly women, is the development of selective androgen receptor modulators (SARMs) that can stimulate formation of new bone with substantially diminished proliferative activity in the prostate, as well as reduced virilizing activity in women. Over the last several years, we have developed a program to discover and develop novel, non-steroidal, orally-active selective androgen receptor modulators (SARMs) that provide improved therapeutic benefits and reduce risk and side effects. In recent studies, we have used a skeletally mature orchiectomized (ORX) male rat as an animal model of male hypogonadism for assessing the efficacy of LGD2226, a nonsteroidal, non-aromatizable, and non-5alpha-reducible SARM. We assessed the activity of LGD2226 on bone turnover, bone mass and bone strength, and also evaluated the effects exerted on classic androgen-dependent targets, such as prostate, seminal vesicles and muscle. A substantial loss of bone density was observed in ORX animals, and this loss was prevented by SARMs, as well as standard androgens. Biochemical markers of bone turnover revealed an early increase of bone resorption in androgen-deficient rats that was repressed in ORX animals treated with the oral SARM, LGD2226, during a 4-month treatment period. Differences in architectural properties and bone strength were detected by histomorphometric and mechanical analyses, demonstrating beneficial effects of LGD2226 on bone quality in androgen-deficient rats. Histomorphometric analysis of cortical bone revealed distinct anabolic activity of LGD2226 in periosteal bone. LGD2226 was able to prevent bone loss and maintain bone quality in ORX rats by stimulating bone formation, while also inhibiting bone turnover. LGD2226 also exerted anabolic activity on the levator ani muscle. Taken together, these results suggest that orally-active, non-steroidal SARMs may be useful therapeutics for both muscle and bone in elderly

  6. Establishment of a novel immortalized human prostatic epithelial cell line stably expressing androgen receptor and its application for the functional screening of androgen receptor modulators

    International Nuclear Information System (INIS)

    Yu, Shan; Wang, Ming-Wei; Yao, Xiaoqiang; Chan, F.L.

    2009-01-01

    In this study, we developed a human prostatic epithelial cell line BPH-1-AR stably expressing AR by lentiviral transduction. Characterization by immunoblot and RT-PCR showed that AR was stably expressed in all representative BPH-1-AR clones. Androgen treatment induced a secretory differentiation phenotype in BPH-1-AR cells but suppressed their cell proliferation. Treatments with AR agonists induced transactivation of a transfected PSA-gene promoter reporter in BPH-1-AR cells, whereas this transactivation was suppressed by an AR antagonist flutamide, indicating that the transduced AR in BPH-1-AR cells was functional. Finally, we utilized BPH-1-AR cells to evaluate the androgenic activities and growth effects of five newly developed non-steroidal compounds. Results showed that these compounds showed androgenic activities and growth-inhibitory effects on BPH-1-AR cells. Our results showed that BPH-1-AR cell line would be a valuable in vitro model for the study of androgen-regulated processes in prostatic epithelial cells and identification of compounds with AR-modulating activities.

  7. Cell-autonomous intracellular androgen receptor signaling drives the growth of human prostate cancer initiating cells.

    Science.gov (United States)

    Vander Griend, Donald J; D'Antonio, Jason; Gurel, Bora; Antony, Lizamma; Demarzo, Angelo M; Isaacs, John T

    2010-01-01

    The lethality of prostate cancer is due to the continuous growth of cancer initiating cells (CICs) which are often stimulated by androgen receptor (AR) signaling. However, the underlying molecular mechanism(s) for such AR-mediated growth stimulation are not fully understood. Such mechanisms may involve cancer cell-dependent induction of tumor stromal cells to produce paracrine growth factors or could involve cancer cell autonomous autocrine and/or intracellular AR signaling pathways. We utilized clinical samples, animal models and a series of AR-positive human prostate cancer cell lines to evaluate AR-mediated growth stimulation of prostate CICs. The present studies document that stromal AR expression is not required for prostate cancer growth, since tumor stroma surrounding AR-positive human prostate cancer metastases (N = 127) are characteristically AR-negative. This lack of a requirement for AR expression in tumor stromal cells is also documented by the fact that human AR-positive prostate cancer cells grow equally well when xenografted in wild-type versus AR-null nude mice. AR-dependent growth stimulation was documented to involve secretion, extracellular binding, and signaling by autocrine growth factors. Orthotopic xenograft animal studies documented that the cellautonomous autocrine growth factors which stimulate prostate CIC growth are not the andromedins secreted by normal prostate stromal cells. Such cell autonomous and extracellular autocrine signaling is necessary but not sufficient for the optimal growth of prostate CICs based upon the response to anti-androgen plus/or minus preconditioned media. AR-induced growth stimulation of human prostate CICs requires AR-dependent intracellular pathways. The identification of such AR-dependent intracellular pathways offers new leads for the development of effective therapies for prostate cancer. (c) 2009 Wiley-Liss, Inc.

  8. ING3 promotes prostate cancer growth by activating the androgen receptor.

    Science.gov (United States)

    Nabbi, Arash; McClurg, Urszula L; Thalappilly, Subhash; Almami, Amal; Mobahat, Mahsa; Bismar, Tarek A; Binda, Olivier; Riabowol, Karl T

    2017-05-16

    The androgen receptor (AR) is a major driver of prostate cancer, and increased AR levels and co-activators of the receptor promote the development of prostate cancer. INhibitor of Growth (ING) proteins target lysine acetyltransferase or lysine deacetylase complexes to the histone H3K4Me3 mark of active transcription, to affect chromatin structure and gene expression. ING3 is a stoichiometric member of the TIP60 lysine acetyltransferase complex implicated in prostate cancer development. Biopsies of 265 patients with prostate cancer were stained for ING3, pan-cytokeratin, and DNA. LNCaP and C4-2 androgen-responsive cells were used for in vitro assays including immunoprecipitation, western blotting, Luciferase reporter assay and quantitative polymerase chain reaction. Cell viability and migration assays were performed in prostate cancer cell lines using scrambled siRNA or siRNA targeting ING3. We find that ING3 levels and AR activity positively correlate in prostate cancer. ING3 potentiates androgen effects, increasing expression of androgen-regulated genes and androgen response element-driven reporters to promote growth and anchorage-independent growth. Conversely, ING3 knockdown inhibits prostate cancer cell growth and invasion. ING3 activates the AR by serving as a scaffold to increase interaction between TIP60 and the AR in the cytoplasm, enhancing receptor acetylation and translocation to the nucleus. Activation is independent of ING3's ability to target the TIP60 complex to H3K4Me3, identifying a previously unknown chromatin-independent cytoplasmic activity for ING3. In agreement with in vitro observations, analysis of The Cancer Genome Atlas (TCGA) data (n = 498) and a prostate cancer tissue microarray (n = 256) show that ING3 levels are higher in aggressive prostate cancers, with high levels of ING3 predicting shorter patient survival in a low AR subgroup. Including ING3 levels with currently used indicators such as the Gleason score provides more

  9. Androgen Receptor-Mediated Growth Suppression of HPr-1AR and PC3-Lenti-AR Prostate Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Young-Chae Kim

    Full Text Available The androgen receptor (AR mediates the developmental, physiologic, and pathologic effects of androgens including 5α-dihydrotestosterone (DHT. However, the mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells are not well understood, though they are central to prostate development, homeostasis, and neoplasia. Here, we identify androgen-responsive genes that restrain cell cycle progression and proliferation of human prostate epithelial cell lines (HPr-1AR and PC3-Lenti-AR, and we investigate the mechanisms through which AR regulates their expression. DHT inhibited proliferation of HPr-1AR and PC3-Lenti-AR, and cell cycle analysis revealed a prolonged G1 interval. In the cell cycle, the G1/S-phase transition is initiated by the activity of cyclin D and cyclin-dependent kinase (CDK complexes, which relieve growth suppression. In HPr-1AR, cyclin D1/2 and CDK4/6 mRNAs were androgen-repressed, whereas CDK inhibitor, CDKN1A, mRNA was androgen-induced. The regulation of these transcripts was AR-dependent, and involved multiple mechanisms. Similar AR-mediated down-regulation of CDK4/6 mRNAs and up-regulation of CDKN1A mRNA occurred in PC3-Lenti-AR. Further, CDK4/6 overexpression suppressed DHT-inhibited cell cycle progression and proliferation of HPr-1AR and PC3-Lenti-AR, whereas CDKN1A overexpression induced cell cycle arrest. We therefore propose that AR-mediated growth suppression of HPr-1AR involves cyclin D1 mRNA decay, transcriptional repression of cyclin D2 and CDK4/6, and transcriptional activation of CDKN1A, which serve to decrease CDK4/6 activity. AR-mediated inhibition of PC3-Lenti-AR proliferation occurs through a similar mechanism, albeit without down-regulation of cyclin D. Our findings provide insight into AR-mediated regulation of prostate epithelial cell proliferation.

  10. Minoxidil may suppress androgen receptor-related functions.

    Science.gov (United States)

    Hsu, Cheng-Lung; Liu, Jai-Shin; Lin, An-Chi; Yang, Chih-Hsun; Chung, Wen-Hung; Wu, Wen-Guey

    2014-04-30

    Although minoxidil has been used for more than two decades to treat androgenetic alopecia (AGA), an androgen-androgen receptor (AR) pathway-dominant disease, its precise mechanism of action remains elusive. We hypothesized that minoxidil may influence the AR or its downstream signaling. These tests revealed that minoxidil suppressed AR-related functions, decreasing AR transcriptional activity in reporter assays, reducing expression of AR targets at the protein level, and suppressing AR-positive LNCaP cell growth. Dissecting the underlying mechanisms, we found that minoxidil interfered with AR-peptide, AR-coregulator, and AR N/C-terminal interactions, as well as AR protein stability. Furthermore, a crystallographic analysis using the AR ligand-binding domain (LBD) revealed direct binding of minoxidil to the AR in a minoxidil-AR-LBD co-crystal model, and surface plasmon resonance assays demonstrated that minoxidil directly bound the AR with a K(d) value of 2.6 µM. Minoxidil also suppressed AR-responsive reporter activity and decreased AR protein stability in human hair dermal papilla cells. The current findings provide evidence that minoxidil could be used to treat both cancer and age-related disease, and open a new avenue for applications of minoxidil in treating androgen-AR pathway-related diseases.

  11. Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hnida, Christina; Larsen, John Christian

    2000-01-01

    Nine structurally different polycyclic aromatic hydrocarbons (PAHs) were tested for their ability to either agonize or antagonize the human androgen receptor (hAR) in a sensitive reporter gene assay based on CHO cells transiently cotransfected with a hAR vector and an MMTV-LUC vector. Benz...

  12. Baicalein suppresses the androgen receptor (AR)-mediated prostate cancer progression via inhibiting the AR N-C dimerization and AR-coactivators interaction.

    Science.gov (United States)

    Xu, Defeng; Chen, Qiulu; Liu, Yalin; Wen, Xingqiao

    2017-12-01

    Androgen receptor (AR) plays a critical role in prostate cancer (PCa) development and progression. Androgen deprivation therapy with antiandrogens to reduce androgen biosynthesis or prevent androgens from binding to AR are widely used to suppress AR-mediated PCa growth. However, most of ADT may eventually fail with development of the castration resistance after 12-24 months. Here we found that a natural product baicalein can effectively suppress the PCa progression via targeting the androgen-induced AR transactivation with little effect to AR protein expression. PCa cells including LNCaP, CWR22Rv1, C4-2, PC-3, and DU145, were treated with baicalein and luciferase assay was used to evaluate their effect on the AR transactivation. Cell growth and IC 50 were determined by MTT assay after 48 hrs treatment. RT-PCR was used to evaluate the mRNA levels of AR target genes including PSA, TMPRSS2, and TMEPA1. Western blot was used to determine AR and PSA protein expression. The natural product of baicalein can selectively inhibit AR transactivation with little effect on the other nuclear receptors, including ERα, and GR. At a low concentration, 2.5 μM of baicalein effectively suppresses the growth of AR-positive PCa cells, and has little effect on AR-negative PCa cells. Mechanism dissection suggest that baicalein can suppress AR target genes (PSA, TMPRSS2, and TMEPA1) expression in both androgen responsive LNCaP cells and castration resistant CWR22Rv1 cells, that may involve the inhibiting the AR N/C dimerization and AR-coactivators interaction. Baicalein may be developed as an effective anti-AR therapy via its ability to inhibit AR transactivation and AR-mediated PCa cell growth.

  13. The androgen receptor controls expression of the cancer-associated sTn antigen and cell adhesion through induction of ST6GalNAc1 in prostate cancer

    Science.gov (United States)

    Munkley, Jennifer; Oltean, Sebastian; Vodák, Daniel; Wilson, Brian T.; Livermore, Karen E.; Zhou, Yan; Star, Eleanor; Floros, Vasileios I.; Johannessen, Bjarne; Knight, Bridget; McCullagh, Paul; McGrath, John; Crundwell, Malcolm; Skotheim, Rolf I.; Robson, Craig N.; Leung, Hing Y.; Harries, Lorna W.; Rajan, Prabhakar; Mills, Ian G.; Elliott, David J.

    2015-01-01

    Patterns of glycosylation are important in cancer, but the molecular mechanisms that drive changes are often poorly understood. The androgen receptor drives prostate cancer (PCa) development and progression to lethal metastatic castration-resistant disease. Here we used RNA-Seq coupled with bioinformatic analyses of androgen-receptor (AR) binding sites and clinical PCa expression array data to identify ST6GalNAc1 as a direct and rapidly activated target gene of the AR in PCa cells. ST6GalNAc1 encodes a sialytransferase that catalyses formation of the cancer-associated sialyl-Tn antigen (sTn), which we find is also induced by androgen exposure. Androgens induce expression of a novel splice variant of the ST6GalNAc1 protein in PCa cells. This splice variant encodes a shorter protein isoform that is still fully functional as a sialyltransferase and able to induce expression of the sTn-antigen. Surprisingly, given its high expression in tumours, stable expression of ST6GalNAc1 in PCa cells reduced formation of stable tumours in mice, reduced cell adhesion and induced a switch towards a more mesenchymal-like cell phenotype in vitro. ST6GalNAc1 has a dynamic expression pattern in clinical datasets, being significantly up-regulated in primary prostate carcinoma but relatively down-regulated in established metastatic tissue. ST6GalNAc1 is frequently upregulated concurrently with another important glycosylation enzyme GCNT1 previously associated with prostate cancer progression and implicated in Sialyl Lewis X antigen synthesis. Together our data establishes an androgen-dependent mechanism for sTn antigen expression in PCa, and are consistent with a general role for the androgen receptor in driving important coordinate changes to the glycoproteome during PCa progression. PMID:26452038

  14. Overexpression of HepaCAM inhibits cell viability and motility through suppressing nucleus translocation of androgen receptor and ERK signaling in prostate cancer.

    Science.gov (United States)

    Song, Xuedong; Wang, Yin; Du, Hongfei; Fan, Yanru; Yang, Xue; Wang, Xiaorong; Wu, Xiaohou; Luo, Chunli

    2014-07-01

    HepaCAM is suppressed in a variety of human cancers, and involved in cell adhesion, growth, migration, invasion, and survival. However, the expression and function of HepaCAM in prostate cancer are still unknown. HepaCAM expression has been detected by RT-PCR, Western blotting and immunohistochemistry staining in prostate cell lines RWPE-1, LNCap, DU145, PC3, and in 75 human prostate tissue specimens, respectively. Meanwhile, the cell proliferation ability was detected by WST-8 assay. The role of HepaCAM in prostate cancer cell migration and invasion was examined by wound healing and transwell assay. And flow cytometry was used to observe the apoptosis of prostate cancer cells. Then we detected changes of Androgen Receptor translocation and ERK signaling using immunofluorescence staining and western blot after overexpression of HepaCAM. The HepaCAM expression was significantly down-regulated in prostate cancer tissues and undetected in prostate cancer cells. However, the low HepaCAM expression was not statistically associated with clinicopathological characteristics of prostate cancer. Overexpression of HepaCAM in prostate cancer cells decreased the cell proliferation, migration and invasion, and induced the cell apoptosis. Meanwhile, HepaCAM prevented the androgen receptor translocation from the cytoplasm to the nucleus and down-regulated the MAPK/ERK signaling. Our results suggested that HepaCAM acted as a tumor suppressor in prostate cancer. HepaCAM inhibited cell viability and motility which might be through suppressing the nuclear translocation of Androgen Receptor and down-regulating the ERK signaling. Therefore, it was indicated that HepaCAM may be a potential therapeutic target for prostate cancer. © 2014 Wiley Periodicals, Inc.

  15. Long-lasting masculinizing effects of postnatal androgens on myelin governed by the brain androgen receptor

    Science.gov (United States)

    Abi Ghanem, Charly; Degerny, Cindy; Hussain, Rashad; Liere, Philippe; Pianos, Antoine; Tourpin, Sophie; Habert, René; Schumacher, Michael

    2017-01-01

    The oligodendrocyte density is greater and myelin sheaths are thicker in the adult male mouse brain when compared with females. Here, we show that these sex differences emerge during the first 10 postnatal days, precisely at a stage when a late wave of oligodendrocyte progenitor cells arises and starts differentiating. Androgen levels, analyzed by gas chromatography/tandem-mass spectrometry, were higher in males than in females during this period. Treating male pups with flutamide, an androgen receptor (AR) antagonist, or female pups with 5α-dihydrotestosterone (5α-DHT), revealed the importance of postnatal androgens in masculinizing myelin and their persistent effect into adulthood. A key role of the brain AR in establishing the sexual phenotype of myelin was demonstrated by its conditional deletion. Our results uncover a new persistent effect of postnatal AR signaling, with implications for neurodevelopmental disorders and sex differences in multiple sclerosis. PMID:29107990

  16. An examination of the characteristics, concentration, and distribution of androgen receptor in rat testis during sexual maturation

    International Nuclear Information System (INIS)

    Buzek, S.W.

    1989-01-01

    In these studies a nuclear exchange assay was established in rat testis in which exchange after 86 hours at 4 degree C was greater than 85% complete and receptor was stable. Receptor concentration per DNA measured by exchange declined between 15 and 25 days of age in the rat testis, then increased 4-fold during sexual maturation. Proliferation of germ cells which had low receptor concentration appeared to account for the early decline in testicular receptor concentration, whereas increase in receptor number per Sertoli cell between 25 and 35 days of age contributed to the later increase. Detailed studies showed that other possible explanations for changes in receptor number were not likely. Androgen receptor dynamics in testicular cells showed rapid, specific uptake of [ 3 H]-testosterone that was easily blocked by unlabeled testosterone, and medroxyprogesterone acetate, but not as well as by the anti-androgens cyproterone acetate and hydroxyflutamide

  17. Three novel and two known androgen receptor gene mutations ...

    Indian Academy of Sciences (India)

    gene mutations associated with androgen insensitivity syndrome in sex-reversed XY female patients. J. Genet. ... signal and a C-terminal. Keywords. androgen insensitivity syndrome; androgen receptor; truncation mutation; N-terminal domain; XY sex reversal. .... and an increased risk of gonadal tumour. Mutations in SRY.

  18. Interrelation of androgen receptor and miR-30a and miR-30a function in ER-, PR-, AR+ MDA-MB-453 breast cancer cells.

    Science.gov (United States)

    Lyu, Shuhua; Liu, Han; Liu, Xia; Liu, Shan; Wang, Yahong; Yu, Qi; Niu, Yun

    2017-10-01

    The association between androgen-induced androgen receptor (AR) activating signal and microRNA (miR)-30a was investigated, as well as the function of miR-30a in estrogen receptor-negative (ER - ), progesterone receptor-negative (PR - ), and AR-positive (AR + ) MDA-MB-453 breast cancer cells. Androgen-induced AR activating signal upregulated the expression of AR, and downregulated the expression of miR-30a, b and c. Bioinformatics analysis indicated a putative miR-30a, b and c binding site in the 3'-untranslated region of AR mRNA. It was confirmed that the AR gene is a direct target of miR-30a, whereas AR does not target the miR-30a promoter, and AR activating signal may indirectly downregulate miR-30a through other cell signaling pathways. In this positive feedback mechanism AR is then upregulated through miR-30a. Overexpression of miR-30a inhibited cell proliferation, whereas inhibition of miR-30a expression by specific antisense oligonucleotides, increased cell growth. Previously, androgen-induced AR activating signal was demonstrated to inhibit cell proliferation in ER - , PR - and AR + MDA-MB-453 breast cancer cells, but AR activating signal downregulated the expression of miR-30a, relieving the inhibition of MDA-MB-453 cell growth. Therefore, in MDA-MB-453 breast cancer cells, miR-30a has two different functions regarding cell growth: Inhibition of cell proliferation through a positive feedback signaling pathway; and the relative promotion of cell proliferation through downregulation of miR-30a. Thus, the association between AR activating signal and microRNAs is complex, and microRNAs may possess different functions due to different signaling pathways. Although the results of the present study were obtained in one cell line, they contribute to subsequent studies on ER - , PR - and AR + breast cancer.

  19. Corepressive function of nuclear receptor coactivator 2 in androgen receptor of prostate cancer cells treated with antiandrogen

    International Nuclear Information System (INIS)

    Takeda, Keisuke; Hara, Noboru; Nishiyama, Tsutomu; Tasaki, Masayuki; Ishizaki, Fumio; Tomita, Yoshihiko

    2016-01-01

    Recruitment of cofactors in the interaction of the androgen receptor (AR) and AR ligands plays a critical role in determining androgenic/antiandrogenic effects of the AR ligand on signaling, but the functions of key cofactors, including nuclear receptor coactivator (NCOA), remain poorly understood in prostate cancer cells treated with AR ligands. We examined prostate cancer cell lines LNCaP and VCaP expressing mutated and wild-type ARs, respectively, to clarify the significance of NCOAs in the effect of antiandrogens. Hydroxyflutamide showed antagonistic activity against VCaP and an agonistic effect on LNCaP. Bicalutamide served as an antagonist for both. We analyzed mRNA transcription and protein expression of NCOAs in these cells pretreated with dihydrotestosterone and thereafter treated with the mentioned antiandrogens. Transcriptional silencing of candidate NCOAs and AR was performed using small interfering RNA (siRNA). Cell proliferation was evaluated with MTT assay. LNCaP treated with bicalutamide showed an about four-fold increase in the expression of NCOA2 mRNA compared to those pretreated with dihydrotestosterone alone (P <0.01). In VCaP pretreated with dihydrotestosterone, transcriptions of NCOA2 and NCOA7 were slightly increased with bicalutamide (1.96- and 2.42-fold, respectively) and hydroxyflutamide (1.33-fold in both). With Western blotting, the expression of NCOA2 protein also increased in LNCaP cells treated with bicalutamide compared with that in control cells pretreated with dihydrotestosterone alone. Following silencing with siRNA for NCOA2, PSA levels in media with LNCaP receiving bicalutamide were elevated compared with those in non-silencing controls (101.6 ± 4.2 vs. 87.8 ± 1.4 ng/mL, respectively, P =0.0495). In LNCaP cells treated with dihydrotestosterone and bicalutamide, NCOA2-silencing was associated with a higher proliferation activity compared with non-silencing control and AR-silencing. NCOA2, which has been thought to be recruited

  20. Role of Androgen Receptor Variants in Prostate Cancer: Report from the 2017 Mission Androgen Receptor Variants Meeting.

    Science.gov (United States)

    Luo, Jun; Attard, Gerhardt; Balk, Steven P; Bevan, Charlotte; Burnstein, Kerry; Cato, Laura; Cherkasov, Artem; De Bono, Johann S; Dong, Yan; Gao, Allen C; Gleave, Martin; Heemers, Hannelore; Kanayama, Mayuko; Kittler, Ralf; Lang, Joshua M; Lee, Richard J; Logothetis, Christopher J; Matusik, Robert; Plymate, Stephen; Sawyers, Charles L; Selth, Luke A; Soule, Howard; Tilley, Wayne; Weigel, Nancy L; Zoubeidi, Amina; Dehm, Scott M; Raj, Ganesh V

    2018-05-01

    Although a number of studies have demonstrated the importance of constitutively active androgen receptor variants (AR-Vs) in prostate cancer, questions still remain about the precise role of AR-Vs in the progression of castration-resistant prostate cancer (CRPC). Key stakeholders and opinion leaders in prostate cancer convened on May 11, 2017 in Boston to establish the current state of the field of AR-Vs. The meeting "Mission Androgen Receptor Variants" was the second of its kind sponsored by the Prostate Cancer Foundation (PCF). This invitation-only event was attended by international leaders in the field and representatives from sponsoring organizations (PCF and industry sponsors). Eighteen faculty members gave short presentations, which were followed by in-depth discussions. Discussions focused on three thematic topics: (1) potential of AR-Vs as biomarkers of therapeutic resistance; (2) role of AR-Vs as functionally active CRPC progression drivers; and (3) utility of AR-Vs as therapeutic targets in CRPC. The three meeting organizers synthesized this meeting report, which is intended to summarize major data discussed at the meeting and identify key questions as well as strategies for addressing these questions. There was a critical consensus that further study of the AR-Vs is an important research focus in CRPC. Contrasting views and emphasis, each supported by data, were presented at the meeting, discussed among the participants, and synthesized in this report. This article highlights the state of knowledge and outlines the most pressing questions that need to be addressed to advance the AR-V field. Although further investigation is needed to delineate the role of androgen receptor (AR) variants in metastatic castration-resistant prostate cancer, advances in measurement science have enabled development of blood-based tests for treatment selection. Detection of AR variants (eg, AR-V7) identified a patient population with poor outcomes to existing AR

  1. Androgen-independent proliferation of LNCaP prostate cancer cells infected by xenotropic murine leukemia virus-related virus

    International Nuclear Information System (INIS)

    Kakoki, Katsura; Kamiyama, Haruka; Izumida, Mai; Yashima, Yuka; Hayashi, Hideki; Yamamoto, Naoki; Matsuyama, Toshifumi; Igawa, Tsukasa; Sakai, Hideki; Kubo, Yoshinao

    2014-01-01

    Highlights: • XMRV infection induces androgen-independent growth in LNCaP cells. • XMRV infection reduces expression of androgen receptor. • XMRV promotes appearance of androgen blocker-resistant prostate cancer cells. - Abstract: Xenotropic murine leukemia virus-related virus (XMRV) is a novel gammaretrovirus that was originally isolated from human prostate cancer. It is now believed that XMRV is not the etiologic agent of prostate cancer. An analysis of murine leukemia virus (MLV) infection in various human cell lines revealed that prostate cancer cell lines are preferentially infected by XMRV, and this suggested that XMRV infection may confer some sort of growth advantage to prostate cancer cell lines. To examine this hypothesis, androgen-dependent LNCaP cells were infected with XMRV and tested for changes in certain cell growth properties. We found that XMRV-infected LNCaP cells can proliferate in the absence of the androgen dihydrotestosterone. Moreover, androgen receptor expression is significantly reduced in XMRV-infected LNCaP cells. Such alterations were not observed in uninfected and amphotropic MLV-infected LNCaP cells. This finding explains why prostate cancer cell lines are preferentially infected with XMRV

  2. Phospho-kinase profile of triple negative breast cancer and androgen receptor signaling

    International Nuclear Information System (INIS)

    Cuenca-López, María D; Montero, Juan C; Morales, Jorge C; Prat, Aleix; Pandiella, Atanasio; Ocana, Alberto

    2014-01-01

    The androgen receptor (AR) plays a central role in the oncogenesis of different tumors, as is the case in prostate cancer. In triple negative breast cancer (TNBC) a gene expression classification has described different subgroups including a luminal androgen subtype. The AR can be controlled by several mechanisms like the activation of membrane tyrosine kinases and downstream signaling pathways. However little is known in TNBC about how the AR is modulated by these mechanisms and the potential therapeutic strategists to inhibit its expression. We used human samples to evaluate the expression of AR by western-blot and phospho-proteomic kinase arrays that recognize membrane tyrosine kinase receptors and downstream mediators. Western-blots in human cell lines were carried out to analyze the expression and activation of individual proteins. Drugs against these kinases in different conditions were used to measure the expression of the androgen receptor. PCR experiments were performed to assess changes in the AR gene after therapeutic modulation of these pathways. AR is present in a subset of TNBC and its expression correlates with activated membrane receptor kinases-EGFR and PDGFRβ in human samples and cell lines. Inhibition of the PI3K/mTOR pathway in TNBC cell lines decreased notably the expression of the AR. Concomitant administration of the anti-androgen bicalutamide with the EGFR, PDGFRβ and Erk1/2 inhibitors, decreased the amount of AR compared to each agent given alone, and had an additive anti-proliferative effect. Administration of dihydrotestosterone augmented the expression of AR that was not modified by the inhibition of the PI3K/mTOR or Erk1/2 pathways. AR expression was posttranscriptionally regulated by PI3K or Erk1/2 inhibition. Our results describe the expression of the AR in TNBC as a druggable target and further suggest the combination of bicalutamide with inhibitors of EGFR, PDGFRβ or Erk1/2 for future development

  3. Disruption of the Interaction of the Androgen Receptor with Chromatin: A Novel Therapeutic Approach in Prostate Cancer

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0543 TITLE: Disruption of the Interaction of the Androgen Receptor with Chromatin : A Novel Therapeutic Approach in...DATES COVERED 8 Sep 2015 - 7 Sep 2016 4. TITLE AND SUBTITLE Disruption of the Interaction of the Androgen Receptor with Chromatin : A Novel 5a. CONTRACT...1: Select and evaluate peptides/peptidomimetics in models of PCa. Aim 2: Determine the molecular action of peptide /peptidomimetics at the chromatin

  4. The promotion on cell growth of androgen-dependent prostate cancer by antimony via mimicking androgen activity.

    Science.gov (United States)

    Zhang, Changwen; Li, Penghao; Wen, Yingwu; Feng, Guowei; Liu, Yu; Zhang, Yangyi; Xu, Yong; Zhang, Zhihong

    2018-05-15

    Antimony is a widely used heavier pnictogens in industry, and its toxicity has been a matter of concern. Although previous studies have suggested that antimony may have the function as either a tumor suppressor or an oncogene in several cancers, the molecular basis underlying antimony-mediated transformation is still unclear. In the current study, we attempt to elucidate the potential role of antimony in the development of prostate cancer. Our results showed that the concentration of antimony was much higher in serum of prostate cancer patients, and was closely associated with poor outcome of patients who underwent radical prostatectomy. Additionally, low dose of antimony could promote proliferation and invasion of androgen-dependent prostate cancer cell line LNCaP cells in vitro and in vivo. The mechanistic studies demonstrated that exposure to antimony triggered the phosphorylation of androgen receptor (AR), which transcriptionally regulates the expression of androgen-related targets, including PSA and NKX3.1. Overall, our results unearthed that antimony could promote tumor growth by mimicking androgen activity in androgen-dependent prostate cancer cells. Therefore, these findings expanded our understanding on the molecular mechanism of antimony in tumorigenesis and tumor progression of prostate cancer, and it appears to be an inspiring strategy to restrain prostate cancer by inhibiting antimony-induced androgen-like effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Identification of novel androgen receptor target genes in prostate cancer

    Directory of Open Access Journals (Sweden)

    Gerald William L

    2007-06-01

    Full Text Available Abstract Background The androgen receptor (AR plays critical roles in both androgen-dependent and castrate-resistant prostate cancer (PCa. However, little is known about AR target genes that mediate the receptor's roles in disease progression. Results Using Chromatin Immunoprecipitation (ChIP Display, we discovered 19 novel loci occupied by the AR in castrate resistant C4-2B PCa cells. Only four of the 19 AR-occupied regions were within 10-kb 5'-flanking regulatory sequences. Three were located up to 4-kb 3' of the nearest gene, eight were intragenic and four were in gene deserts. Whereas the AR occupied the same loci in C4-2B (castrate resistant and LNCaP (androgen-dependent PCa cells, differences between the two cell lines were observed in the response of nearby genes to androgens. Among the genes strongly stimulated by DHT in C4-2B cells – D-dopachrome tautomerase (DDT, Protein kinase C delta (PRKCD, Glutathione S- transferase theta 2 (GSTT2, Transient receptor potential cation channel subfamily V member 3 (TRPV3, and Pyrroline-5-carboxylate reductase 1 (PYCR1 – most were less strongly or hardly stimulated in LNCaP cells. Another AR target gene, ornithine aminotransferase (OAT, was AR-stimulated in a ligand-independent manner, since it was repressed by AR siRNA knockdown, but not stimulated by DHT. We also present evidence for in vivo AR-mediated regulation of several genes identified by ChIP Display. For example, PRKCD and PYCR1, which may contribute to PCa cell growth and survival, are expressed in PCa biopsies from primary tumors before and after ablation and in metastatic lesions in a manner consistent with AR-mediated stimulation. Conclusion AR genomic occupancy is similar between LNCaP and C4-2B cells and is not biased towards 5' gene flanking sequences. The AR transcriptionally regulates less than half the genes nearby AR-occupied regions, usually but not always, in a ligand-dependent manner. Most are stimulated and a few are

  6. A PRACTICAL APPROACH TO THE DETECTION OF ANDROGEN RECEPTOR GENE-MUTATIONS AND PEDIGREE ANALYSIS IN FAMILIES WITH X-LINKED ANDROGEN INSENSITIVITY

    NARCIS (Netherlands)

    RISSTALPERS, C; HOOGENBOEZEM, T; SLEDDENS, HFBM; VERLEUNMOOIJMAN, MCT; DEGENHART, HJ; DROP, SLS; HALLEY, DJJ; Oosterwijk, Jan; HODGINS, MB; TRAPMAN, J; BRINKMANN, AO

    Androgen insensitivity syndrome (AIS) is an X-linked disorder in which defects in the androgen receptor gene have prevented the normal development of both internal and external male structures in 46,XY individuals. This survey reports the analysis of 11 AIS subjects. The androgen receptor gene of

  7. A practical approach to the detection of androgen receptor gene mutations and pedigree analysis in families with x-linked androgen insensitivity

    NARCIS (Netherlands)

    Ris-Stalpers, C.; Hoogenboezem, T.; Sleddens, H. F.; Verleun-Mooijman, M. C.; Degenhart, H. J.; Drop, S. L.; Halley, D. J.; Oosterwijk, J. C.; Hodgins, M. B.; Trapman, J.

    1994-01-01

    Androgen insensitivity syndrome (AIS) is an X-linked disorder in which defects in the androgen receptor gene have prevented the normal development of both internal and external male structures in 46,XY individuals. This survey reports the analysis of 11 AIS subjects. The androgen receptor gene of

  8. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen C

    2006-01-01

    .... The experiments proposed in this application are based upon the hypothesis that Stat3 activation alters androgen receptor signaling pathways which in turn results in the loss of growth control in prostate cancer cells...

  9. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen

    2004-01-01

    .... The experiments proposed in this application are based upon the hypothesis that stat3 activation alters androgen receptor signaling pathways, that in turn results in the loss of growth control in prostate cancer cells...

  10. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen

    2002-01-01

    .... The experiments proposed in this application are based upon the hypothesis that Stat3 activation alters androgen receptor signaling pathways, that in turn results in the loss of growth control in prostate cancer cells...

  11. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen C

    2005-01-01

    .... The experiments proposed in this application are based upon the hypothesis that Stat3 activation alters androgen receptor signaling pathways, that in turn results in the loss of growth control in prostate cancer cells...

  12. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen

    2003-01-01

    .... The experiments proposed in this application are based upon the hypothesis that Stat3 activation alters androgen receptor signaling pathways, that in turn results in the loss of growth control in prostate cancer cells...

  13. Nucleoporin 62 and Ca(2+)/calmodulin dependent kinase kinase 2 regulate androgen receptor activity in castrate resistant prostate cancer cells.

    Science.gov (United States)

    Karacosta, Loukia G; Kuroski, Laura A; Hofmann, Wilma A; Azabdaftari, Gissou; Mastri, Michalis; Gocher, Angela M; Dai, Shuhang; Hoste, Allen J; Edelman, Arthur M

    2016-02-15

    Re-activation of the transcriptional activity of the androgen receptor (AR) is an important factor mediating progression from androgen-responsive to castrate-resistant prostate cancer (CRPC). However, the mechanisms regulating AR activity in CRPC remain incompletely understood. Ca(2+) /calmodulin-dependent kinase kinase (CaMKK) 2 was previously shown to regulate AR activity in androgen-responsive prostate cancer cells. Our objective was to further explore the basis of this regulation in CRPC cells. The abundance of CaMKK2 in nuclear fractions of androgen-responsive prostate cancer and CRPC, cells were determined by subcellular fractionation and Western blotting. CaMKK2 association with nuclear pore complexes (NPCs) and nucleoporins (Nups) including Nup62, were imaged by structured illumination and super-resolution fluorescence microscopy and co-immunoprecipitation, respectively. The abundance and subcellular localization of CaMKK2 and Nup62 in human clinical specimens of prostate cancer was visualized by immunohistochemistry. The role of Nups in the growth and viability of CRPC cells was assessed by RNA interference and cell counting. The involvement of CaMKK2 and Nup62 in regulating AR transcriptional activity was addressed by RNA interference, chromatin immunoprecipitation, androgen response element reporter assay, and Western blotting. CaMKK2 was expressed at higher levels in the nuclear fraction of CPRC C4-2 cells, than in that of androgen-responsive LNCaP cells. In C4-2 cells, CaMKK2 associated with NPCs of the nuclear envelope and physically interacted with Nup62. CaMKK2 and Nup62 demonstrated pronounced, and similar increases in both expression and perinuclear/nuclear localization in human clinical specimens of advanced prostate cancer relative to normal prostate. Knockdown of Nup62, but not of Nups, 98 or 88, reduced growth and viability of C4-2 cells. Knockdown of Nup62 produced a greater reduction of the growth and viability of C4-2 cells than of non

  14. Effect of highly bioaccumulated polychlorinated biphenyl congeners on estrogen and androgen receptor activity

    DEFF Research Database (Denmark)

    Bonefeld-Jørgensen, E.C.; Andersen, H. R.; Rasmussen, T.H.

    2001-01-01

    pleiotropic effects on the estrogen- and androgen-receptor. In MCF-7 cells a slightly increased cell proliferation was observed at low concentrations (1-10 nM) in cells co-treated with 0.01 nM 17 beta -Estradiol. whereas the compounds inhibited cell growth significantly at 1 and 10 muM. In reporter gene (ERE-tk-CAT...

  15. Role of Androgen Receptor in Growth of Androgen Independent Prostate Cancer

    National Research Council Canada - National Science Library

    Chen, Charlie

    2003-01-01

    ...) overexpression is the only consistent change in the progression of prostate cancer. In the last grand period, I confirmed by western blot analysis that androgen receptor protein is higher in HR than HS tumors...

  16. Evidence That Androgens Modulate Human Thymic T Cell Output

    Science.gov (United States)

    Olsen, Nancy J.; Kovacs, William J.

    2010-01-01

    Background The thymus has long been recognized as a target for the actions of androgenic hormones, but it has only been recently recognized that alterations in circulating levels of gonadal steroids might affect thymic output of T cells. We had the opportunity to examine parameters of thymic cellular output in several hypogonadal men undergoing androgen replacement therapy. Methods Circulating naive (CD4+CD45RA+) T cells were quantitated by flow cytometric analysis of peripheral blood mononuclear cells (PBMCs). Cells bearing T cell receptor excision circles (TRECs) were quantitated using real-time PCR amplification of DNA isolated from PBMCs from normal men and from hypogonadal men before and after testosterone replacement therapy. Results CD4+CD45+ (“naïve”) T cells comprised 10.5% of lymphocytes in normal males; this proportion was greatly increased in two hypogonadal men (35.5% and 44.4%). One man was studied sequentially during treatment with physiologic doses of testosterone. CD4+CD45RA+ cells fell from 37.36% to 20.05% after one month and to 12.51% after 7 months of normalized androgen levels. In two hypogonadal patients TREC levels fell by 83% and 78% after androgen replacement therapy. Conclusions Our observations indicate that the hypogonadal state is associated with increased thymic output of T cells and that this increase in recent thymic emigrants in peripheral blood is reversed by androgen replacement. PMID:21218609

  17. Androgen receptor or estrogen receptor-beta blockade alters DHEA-, DHT-, and E(2)-induced proliferation and PSA production in human prostate cancer cells.

    Science.gov (United States)

    Arnold, Julia T; Liu, Xunxian; Allen, Jeffrey D; Le, Hanh; McFann, Kimberly K; Blackman, Marc R

    2007-08-01

    Dehydroepiandrosterone (DHEA) is an endogenous steroid that is metabolized to androgens and/or estrogens in the human prostate. DHEA levels decline with age, and use of DHEA supplements to retard the aging process is of unproved effectiveness and safety. LNCaP and LAPC-4 prostate cancer cells were used to determine whether DHEA-modulated proliferation and prostate specific antigen (PSA) production were mediated via the androgen receptor (AR) and/or ERbeta. Cells were treated with DHEA, DHT, or E(2) and antagonists to AR (Casodex-bicalutamide) or ER (ICI 182,780) or siRNA to the respective receptors. Proliferation was assessed by MTT assay and PSA mRNA and protein secretion were measured by quantitative real-time PCR and ELISA. Associations of AR and ERbeta were analyzed by co-immunoprecipitation studies and fluorescent confocal microscopy. DHEA-, T-, and E(2)-induced proliferation of LNCaP cells was blunted by Casodex but not by ICI treatment. In LNCaP cells, Casodex and ICI suppressed hormone-induced PSA production. In LAPC-4 cells, DHT-stimulated PSA mRNA was inhibited by Casodex and ICI, and the minimal stimulation by DHEA was inhibited by ICI. Use of siRNAs confirmed involvement of AR and ERbeta in hormone-induced PSA production while AR-ERbeta co-association was suggested by immunoprecipitation and nuclear co-localization. These findings support involvement of both AR and ERbeta in mediating DHEA-, DHT-, and E(2)-induced PSA expression in prostate cancer cells. (c) 2007 Wiley-Liss, Inc.

  18. Relationship between serum response factor and androgen receptor in prostate cancer.

    Science.gov (United States)

    Prencipe, Maria; O'Neill, Amanda; O'Hurley, Gillian; Nguyen, Lan K; Fabre, Aurelie; Bjartell, Anders; Gallagher, William M; Morrissey, Colm; Kay, Elaine W; Watson, R William

    2015-11-01

    Serum response factor (SRF) is an important transcription factor in castrate-resistant prostate cancer (CRPC). Since CRPC is associated with androgen receptor (AR) hypersensitivity, we investigated the relationship between SRF and AR. Transcriptional activity was assessed by luciferase assay. Cell proliferation was measured by MTT and flow cytometry. Protein expression in patients was assessed by immunohistochemistry. To investigate AR involvement in SRF response to androgen, AR expression was down-regulated using siRNA. This resulted in the abrogation of SRF induction post-DHT. Moreover, DHT stimulation failed to induce SRF transcriptional activity in AR-negative PC346 DCC cells, which was only restored following AR over-expression. Next, SRF expression was down-regulated by siRNA, resulting in AR increased transcriptional activity in castrate-resistant LNCaP Abl cells but not in the parental LNCaP. This negative feedback loop in the resistant cells was confirmed by immunohistochemistry which showed a negative correlation between AR and SRF expression in CRPC bone metastases and a positive correlation in androgen-naïve prostatectomies. Cell proliferation was next assessed following SRF inhibition, demonstrating that SRF inhibition is more effective than AR inhibition in castrate-resistant cells. Our data support SRF as a promising therapeutic target in combination with current treatments. © 2015 Wiley Periodicals, Inc.

  19. Positive HER-2 protein expression in circulating prostate cells and micro-metastasis, resistant to androgen blockage but not diethylstilbestrol

    Directory of Open Access Journals (Sweden)

    Nigel P Murray

    2011-01-01

    resistant to androgen blockade. In an environment lacking androgens, HER-2 positive cells are selected and survive, while HER-2 negative cells are eliminated thus decreasing the serum PSA. The population of HER-2 positive cells proliferate producing androgen-independent disease. DES does not increase HER-2 expression possibly by stimulating beta-estrogen receptors and blocking HER-2 androgen receptor activation.

  20. IκBα mediates prostate cancer cell death induced by combinatorial targeting of the androgen receptor

    International Nuclear Information System (INIS)

    Carter, Sarah Louise; Centenera, Margaret Mary; Tilley, Wayne Desmond; Selth, Luke Ashton; Butler, Lisa Maree

    2016-01-01

    Combining different clinical agents to target multiple pathways in prostate cancer cells, including androgen receptor (AR) signaling, is potentially an effective strategy to improve outcomes for men with metastatic disease. We have previously demonstrated that sub-effective concentrations of an AR antagonist, bicalutamide, and the histone deacetylase inhibitor, vorinostat, act synergistically when combined to cause death of AR-dependent prostate cancer cells. In this study, expression profiling of human prostate cancer cells treated with bicalutamide or vorinostat, alone or in combination, was employed to determine the molecular mechanisms underlying this synergistic action. Cell viability assays and quantitative real time PCR were used to validate identified candidate genes. A substantial proportion of the genes modulated by the combination of bicalutamide and vorinostat were androgen regulated. Independent pathway analysis identified further pathways and genes, most notably NFKBIA (encoding IκBα, an inhibitor of NF-κB and p53 signaling), as targets of this combinatorial treatment. Depletion of IκBα by siRNA knockdown enhanced apoptosis of prostate cancer cells, while ectopic overexpression of IκBα markedly suppressed cell death induced by the combination of bicalutamide and vorinostat. These findings implicate IκBα as a key mediator of the apoptotic action of this combinatorial AR targeting strategy and a promising new therapeutic target for prostate cancer. The online version of this article (doi:10.1186/s12885-016-2188-2) contains supplementary material, which is available to authorized users

  1. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Claire [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); Lafosse, Jean-Michel [CHU Toulouse, Hopital Rangueil, Service d' orthopedie et Traumatologie, Toulouse F-31000 (France); Malavaud, Bernard [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); CHU Toulouse, Hopital Rangueil, Service d' Urologie et de Transplantation Renale, Toulouse F-31000 (France); Cuvillier, Olivier, E-mail: olivier.cuvillier@ipbs.fr [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France)

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK.

  2. Therapeutic targeting of angiotensin II receptor type 1 to regulate androgen receptor in prostate cancer.

    Science.gov (United States)

    Takahashi, Satoru; Uemura, Hiroji; Seeni, Azman; Tang, Mingxi; Komiya, Masami; Long, Ne; Ishiguro, Hitoshi; Kubota, Yoshinobu; Shirai, Tomoyuki

    2012-10-01

    With the limited strategies for curative treatment of castration-resistant prostate cancer (CRPC), public interest has focused on the potential prevention of prostate cancer. Recent studies have demonstrated that an angiotensin II receptor blocker (ARB) has the potential to decrease serum prostate-specific antigen (PSA) level and improve performance status in CRPC patients. These facts prompted us to investigate the direct effects of ARBs on prostate cancer growth and progression. Transgenic rat for adenocarcinoma of prostate (TRAP) model established in our laboratory was used. TRAP rats of 3 weeks of age received ARB (telmisartan or candesartan) at the concentration of 2 or 10 mg/kg/day in drinking water for 12 weeks. In vitro analyses for cell growth, ubiquitylation or reporter gene assay were performed using LNCaP cells. We found that both telmisartan and candesartan attenuated prostate carcinogenesis in TRAP rats by augmentation of apoptosis resulting from activation of caspases, inactivation of p38 MAPK and down-regulation of the androgen receptor (AR). Further, microarray analysis demonstrated up-regulation of estrogen receptor β (ERβ) by ARB treatment. In both parental and androgen-independent LNCaP cells, ARB inhibited both cell growth and AR-mediated transcriptional activity. ARB also exerted a mild additional effect on AR-mediated transcriptional activation by the ERβ up-regulation. An intervention study revealed that PSA progression was prolonged in prostate cancer patients given an ARB compared with placebo control. These data provide a new concept that ARBs are promising potential chemopreventive and chemotherapeutic agents for prostate cancer. Copyright © 2012 Wiley Periodicals, Inc.

  3. Non-neural androgen receptors affect sexual differentiation of brain and behaviour.

    Science.gov (United States)

    Monks, D A; Swift-Gallant, A

    2018-02-01

    Although gonadal testosterone is the principal endocrine factor that promotes masculine traits in mammals, the development of a male phenotype requires local production of both androgenic and oestrogenic signals within target tissues. Much of our knowledge concerning androgenic components of testosterone signalling in sexual differentiation comes from studies of androgen receptor (Ar) loss of function mutants. Here, we review these studies of loss of Ar function and of AR overexpression either globally or selectively in the nervous system of mice. Global and neural mutations affect socio-sexual behaviour and the neuroanatomy of these mice in a sexually differentiated manner. Some masculine traits are affected by both global and neural mutation, indicative of neural mediation, whereas other masculine traits are affected only by global mutation, indicative of an obligatory non-neural androgen target. These results support a model in which multiple sites of androgen action coordinate to produce masculine phenotypes. Furthermore, AR overexpression does not always have a phenotype opposite to that of loss of Ar function mutants, indicative of a nonlinear relationship between androgen dose and masculine phenotype in some cases. Potential mechanisms of Ar gene function in non-neural targets in producing masculine phenotypes are discussed. © 2017 British Society for Neuroendocrinology.

  4. High abundance androgen receptor in goldfish brain: characteristics and seasonal changes

    International Nuclear Information System (INIS)

    Pasmanik, M.; Callard, G.V.

    1988-01-01

    Testosterone (T) exerts its actions in brain directly via androgen receptors or, after aromatization to estradiol, via estrogen receptors. Brain aromatase activity in teleost fish is 100-1000 times greater than in mammals and would be expected to significantly reduce the quantity of androgen available for receptor binding. Experiments were carried out on the goldfish Carassius auratus to determine if androgen receptors are present in teleost brain and whether their physicochemical properties reflect elevated aromatase. Cytosolic and nuclear extracts were assayed with the use of [ 3 H]T and charcoal, Sephadex LH-20, or DNA-cellulose chromatography to separate bound and free steroids. Binding activity was saturable and had an equally high affinity for T and 5 alpha-dihydrotestosterone. Although mibolerone was a relatively weak competitor, the putative teleost androgen 11-ketotestosterone, methyltrienolone (R1881), estradiol, progesterone, and cortisol were poor ligands. Characteristics that distinguish this receptor from a steroid-binding protein in goldfish serum are the presence of binding activity in both nuclear and cytosolic extracts, a low rate of ligand-receptor dissociation, electrophoretic mobility, sedimentation properties in low vs. high salt, and tissue distribution. DNA cellulose-adhering and nonadhering forms were detected, but these did not differ in other variables measured. Although goldfish androgen receptors resembled those of mammals in all important physicochemical characteristics, they were unusually abundant compared to levels in rat brain, but comparable to levels in prostate and other male sex hormone target organs. Moreover, there were seasonal variations in total receptors, with a peak at spawning (April) 4- to 5-fold higher than values in reproductively inactive fish

  5. Stromal androgen receptor roles in the development of normal prostate, benign prostate hyperplasia, and prostate cancer.

    Science.gov (United States)

    Wen, Simeng; Chang, Hong-Chiang; Tian, Jing; Shang, Zhiqun; Niu, Yuanjie; Chang, Chawnshang

    2015-02-01

    The prostate is an androgen-sensitive organ that needs proper androgen/androgen receptor (AR) signals for normal development. The progression of prostate diseases, including benign prostate hyperplasia (BPH) and prostate cancer (PCa), also needs proper androgen/AR signals. Tissue recombination studies report that stromal, but not epithelial, AR plays more critical roles via the mesenchymal-epithelial interactions to influence the early process of prostate development. However, in BPH and PCa, much more attention has been focused on epithelial AR roles. However, accumulating evidence indicates that stromal AR is also irreplaceable and plays critical roles in prostate disease progression. Herein, we summarize the roles of stromal AR in the development of normal prostate, BPH, and PCa, with evidence from the recent results of in vitro cell line studies, tissue recombination experiments, and AR knockout animal models. Current evidence suggests that stromal AR may play positive roles to promote BPH and PCa progression, and targeting stromal AR selectively with AR degradation enhancer, ASC-J9, may allow development of better therapies with fewer adverse effects to battle BPH and PCa. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Bisphenol A affects androgen receptor function via multiple mechanisms.

    Science.gov (United States)

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B Alex; Jetten, Anton M; Austin, Christopher P; Tice, Raymond R

    2013-05-25

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR. Published by Elsevier Ireland Ltd.

  7. Bone anabolic effects of S-40503, a novel nonsteroidal selective androgen receptor modulator (SARM), in rat models of osteoporosis.

    Science.gov (United States)

    Hanada, Keigo; Furuya, Kazuyuki; Yamamoto, Noriko; Nejishima, Hiroaki; Ichikawa, Kiyonoshin; Nakamura, Tsutomu; Miyakawa, Motonori; Amano, Seiji; Sumita, Yuji; Oguro, Nao

    2003-11-01

    A novel nonsteroidal androgen receptor (AR) binder, S-40503, was successfully generated in order to develop selective androgen receptor modulators (SARMs). We evaluated the binding specificity for nuclear receptors (NRs) and osteoanabolic activities of S-40503 in comparison with a natural nonaromatizable steroid, 5alpha-dihydrotestosterone (DHT). The compound preferentially bound to AR with nanomolar affinity among NRs. When S-40503 was administrated into orchiectomized (ORX) rats for 4 weeks, bone mineral density (BMD) of femur and muscle weight of levator ani were increased as markedly as DHT, but prostate weight was not elevated over the normal at any doses tested. In contrast, DHT administration caused about 1.5-fold increase in prostate weight. The reduced virilizing activity was clearly evident from the result that 4-week treatment of normal rats with S-40503 showed no enlargement of prostate. To confirm the bone anabolic effect, S-40503 was given to ovariectomized (OVX) rats for 2 months. The compound significantly increased the BMD and biomechanical strength of femoral cortical bone, whereas estrogen, anti-bone resorptive hormone, did not. The increase in periosteal mineral apposition rate (MAR) of the femur revealed direct bone formation activity of S-40503. It was unlikely that the osteoanabolic effect of the compound was attribute to the enhancement of muscle mass, because immobilized ORX rats treated with S-40503 showed a marked increase in BMD of tibial cortical bone without any actions on the surrounding muscle tissue. Collectively, our novel compound served as a prototype for SARMs, which had unique tissue selectivity with high potency for bone formation and lower impact upon sex accessory tissues.

  8. Homology-modeled ligand-binding domains of medaka estrogen receptors and androgen receptors: A model system for the study of reproduction

    International Nuclear Information System (INIS)

    Cui Jianzhou; Shen Xueyan; Yan Zuowei; Zhao Haobin; Nagahama, Yoshitaka

    2009-01-01

    Estrogen and androgen and their receptors play critical roles in physiological processes such as sexual differentiation and development. Using the available structural models for the human estrogen receptors alpha and beta and androgen receptor as templates, we designed in silico agonist and antagonist models of medaka estrogen receptor (meER) alpha, beta-1, and beta-2, and androgen receptor (meAR) alpha and beta. Using these models, we studied (1) the structural relationship between the ligand-binding domains (LBDs) of ERs and ARs of human and medaka, and (2) whether medaka ER and AR can be potential models for studying the ligand-binding activities of various agonists and antagonists of these receptors by docking analysis. A high level of conservation was observed between the sequences of the ligand-binding domains of meERα and huERα, meERβ1 and huERβ, meERβ2, and huERβ with 62.8%, 66.4%, and 65.1% identity, respectively. The sequence conservation between meARα and huAR, meARβ, and huAR was found with 70.1% and 61.0% of identity, respectively. Thirty-three selected endocrine disrupting chemicals (EDCs), including both agonists and antagonists, were docked into the LBD of ER and AR, and the corresponding docking score for medaka models and human templates were calculated. In order to confirm the conservation of the overall geometry and the binding pocket, the backbone root mean square deviation (RMSD) for Cα atoms was derived from the structure superposition of all 10 medaka homology models to the six human templates. Our results suggested conformational conservation between the ERs and ARs of medaka and human, Thus, medaka could be highly useful as a model system for studies involving estrogen and androgen interaction with their receptors.

  9. Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor.

    Science.gov (United States)

    Yin, Donghua; He, Yali; Perera, Minoli A; Hong, Seoung Soo; Marhefka, Craig; Stourman, Nina; Kirkovsky, Leonid; Miller, Duane D; Dalton, James T

    2003-01-01

    The purposes of the present studies were to examine the androgen receptor (AR) binding ability and in vitro functional activity of multiple series of nonsteroidal compounds derived from known antiandrogen pharmacophores and to investigate the structure-activity relationships (SARs) of these nonsteroidal compounds. The AR binding properties of sixty-five nonsteroidal compounds were assessed by a radioligand competitive binding assay with the use of cytosolic AR prepared from rat prostates. The AR agonist and antagonist activities of high-affinity ligands were determined by the ability of the ligand to regulate AR-mediated transcriptional activation in cultured CV-1 cells, using a cotransfection assay. Nonsteroidal compounds with diverse structural features demonstrated a wide range of binding affinity for the AR. Ten compounds, mainly from the bicalutamide-related series, showed a binding affinity superior to the structural pharmacophore from which they were derived. Several SARs regarding nonsteroidal AR binding were revealed from the binding data, including stereoisomeric conformation, steric effect, and electronic effect. The functional activity of high-affinity ligands ranged from antagonist to full agonist for the AR. Several structural features were found to be determinative of agonist and antagonist activities. The nonsteroidal AR agonists identified from the present studies provided a pool of candidates for further development of selective androgen receptor modulators (SARMs) for androgen therapy. Also, these studies uncovered or confirmed numerous important SARs governing AR binding and functional properties by nonsteroidal molecules, which would be valuable in the future structural optimization of SARMs.

  10. Polyester monomers lack ability to bind and activate both androgenic and estrogenic receptors as determined by in vitro and in silico methods.

    Science.gov (United States)

    Osimitz, Thomas G; Welsh, William J; Ai, Ni; Toole, Colleen

    2015-01-01

    The paper presents results from the screening of seven monomers used by Eastman Chemical to make various polymers. Ethylene glycol, diethylene glycol, polytetramethylene glycol, isophthalic acid, monosodium-5-sulfoisophthalic acid, 1,4-cyclohexanedicarboxylic acid, and dimethylcyclohexanedicarboxylate were screened for potential androgenicity or estrogenicity. The following studies were conducted: QSAR for binding to the AR and ER, in vitro Androgen Receptor Binding Assay, in vitro Estrogen Receptor Binding Assays (alpha and beta isoforms), in vitro Androgen Receptor Transactivation Assay in human cells, and in vitro Estrogen Receptor Transactivation Assay in human cells. None of the QSAR models predicted that any of the monomers possessed appreciable binding affinity for either AR or ER. Binding assays showed no evidence of interaction with either the AR or the alpha or beta ER receptors. Similarly, the AR and ER transactivation assays were negative. Moreover, six of the seven monomers have been subjected to 13-week and developmental toxicity studies in rats with no androgen- or estrogen-related effects being noted. Given the negative results of the in vitro screening assays (except PMG which demonstrated cytotoxicity) as well as available repeated dose and developmental and reproductive studies, the data suggest that none of the monomers tested exhibit androgenic or estrogenic hazards. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Androgen receptor function links human sexual dimorphism to DNA methylation.

    Directory of Open Access Journals (Sweden)

    Ole Ammerpohl

    Full Text Available Sex differences are well known to be determinants of development, health and disease. Epigenetic mechanisms are also known to differ between men and women through X-inactivation in females. We hypothesized that epigenetic sex differences may also result from sex hormone functions, in particular from long-lasting androgen programming. We aimed at investigating whether inactivation of the androgen receptor, the key regulator of normal male sex development, is associated with differences of the patterns of DNA methylation marks in genital tissues. To this end, we performed large scale array-based analysis of gene methylation profiles on genomic DNA from labioscrotal skin fibroblasts of 8 males and 26 individuals with androgen insensitivity syndrome (AIS due to inactivating androgen receptor gene mutations. By this approach we identified differential methylation of 167 CpG loci representing 162 unique human genes. These were significantly enriched for androgen target genes and low CpG content promoter genes. Additional 75 genes showed a significant increase of heterogeneity of methylation in AIS compared to a high homogeneity in normal male controls. Our data show that normal and aberrant androgen receptor function is associated with distinct patterns of DNA-methylation marks in genital tissues. These findings support the concept that transcription factor binding to the DNA has an impact on the shape of the DNA methylome. These data which derived from a rare human model suggest that androgen programming of methylation marks contributes to sexual dimorphism in the human which might have considerable impact on the manifestation of sex-associated phenotypes and diseases.

  12. Zebrafish (Danio rerio) androgen receptor: sequence homology and up-regulation by the fungicide vinclozolin.

    Science.gov (United States)

    Smolinsky, Amanda N; Doughman, Jennifer M; Kratzke, Liên-Thành C; Lassiter, Christopher S

    2010-03-01

    Steroid hormones regulate gene expression in organisms by binding to receptor proteins. These hormones include the androgens, which signal through androgen receptors (ARs). Endocrine disrupters (EDCs) are chemicals in the environment that adversely affect organisms by binding to nuclear receptors, including ARs. Vinclozolin, a fungicide used on fruit and vegetable crops, is a known anti-androgen, a type of EDC that blocks signals from testosterone and its derivatives. In order to better understand the effects of EDCs, further research on androgen receptors and other hormone signaling pathways is necessary. In this study, we demonstrate the evolutionary conservation between the genomic structure of the human and zebrafish ar genes and find that ar mRNA expression increases in zebrafish embryos exposed to vinclozolin, which may be evolutionarily conserved as well. At 48 and 72 h post-fertilization, vinclozolin-treated embryos express ar mRNA 8-fold higher than the control level. These findings suggest that zebrafish embryos attempt to compensate for the presence of an anti-androgen by increasing the number of androgen receptors available.

  13. Hormonal control of spermatogenesis: expression of FSJH receptor and androgen receptor genes

    NARCIS (Netherlands)

    L.J. Blok (Leen)

    1992-01-01

    textabstractFSH and testosterone are the main hormonal regulators of spermatogenesis. The actions of androgens and FSH are mediated by their respective receptors. Receptor gene expression (mRNA and protein). is an important determinant of hormone action. Biochemical aspects of the regulation of

  14. Advantages and Limitations of Androgen Receptor-Based Methods for Detecting Anabolic Androgenic Steroid Abuse as Performance Enhancing Drugs

    Science.gov (United States)

    Bailey, Kathy; Yazdi, Tahmineh; Masharani, Umesh; Tyrrell, Blake; Butch, Anthony; Schaufele, Fred

    2016-01-01

    Testosterone (T) and related androgens are performance enhancing drugs (PEDs) abused by some athletes to gain competitive advantage. To monitor unauthorized androgen abuse, doping control programs use mass spectrometry (MS) to detect androgens, synthetic anabolic-androgenic steroids (AASs) and their metabolites in an athlete’s urine. AASs of unknown composition will not be detected by these procedures. Since AASs achieve their anabolic effects by activating the Androgen Receptor (AR), cell-based bioassays that measure the effect of a urine sample on AR activity are under investigation as complementary, pan-androgen detection methods. We evaluated an AR BioAssay as a monitor for androgen activity in urine pre-treated with glucuronidase, which releases T from the inactive T-glucuronide that predominates in urine. AR BioAssay activity levels were expressed as ‘T-equivalent’ concentrations by comparison to a T dose response curve. The T-equivalent concentrations of androgens in the urine of hypogonadal participants supplemented with T (in whom all androgenic activity should arise from T) were quantitatively identical to the T measurements conducted by MS at the UCLA Olympic Analytical Laboratory (0.96 ± 0.22). All 17 AASs studied were active in the AR BioAssay; other steroids were inactive. 12 metabolites of 10 commonly abused AASs, which are used for MS monitoring of AAS doping because of their prolonged presence in urine, had reduced or no AR BioAssay activity. Thus, the AR BioAssay can accurately and inexpensively monitor T, but its ability to monitor urinary AASs will be limited to a period immediately following doping in which the active AASs remain intact. PMID:26998755

  15. Advantages and Limitations of Androgen Receptor-Based Methods for Detecting Anabolic Androgenic Steroid Abuse as Performance Enhancing Drugs.

    Science.gov (United States)

    Bailey, Kathy; Yazdi, Tahmineh; Masharani, Umesh; Tyrrell, Blake; Butch, Anthony; Schaufele, Fred

    2016-01-01

    Testosterone (T) and related androgens are performance enhancing drugs (PEDs) abused by some athletes to gain competitive advantage. To monitor unauthorized androgen abuse, doping control programs use mass spectrometry (MS) to detect androgens, synthetic anabolic-androgenic steroids (AASs) and their metabolites in an athlete's urine. AASs of unknown composition will not be detected by these procedures. Since AASs achieve their anabolic effects by activating the Androgen Receptor (AR), cell-based bioassays that measure the effect of a urine sample on AR activity are under investigation as complementary, pan-androgen detection methods. We evaluated an AR BioAssay as a monitor for androgen activity in urine pre-treated with glucuronidase, which releases T from the inactive T-glucuronide that predominates in urine. AR BioAssay activity levels were expressed as 'T-equivalent' concentrations by comparison to a T dose response curve. The T-equivalent concentrations of androgens in the urine of hypogonadal participants supplemented with T (in whom all androgenic activity should arise from T) were quantitatively identical to the T measurements conducted by MS at the UCLA Olympic Analytical Laboratory (0.96 ± 0.22). All 17 AASs studied were active in the AR BioAssay; other steroids were inactive. 12 metabolites of 10 commonly abused AASs, which are used for MS monitoring of AAS doping because of their prolonged presence in urine, had reduced or no AR BioAssay activity. Thus, the AR BioAssay can accurately and inexpensively monitor T, but its ability to monitor urinary AASs will be limited to a period immediately following doping in which the active AASs remain intact.

  16. Androgen receptor-related diseases: what do we know?

    Science.gov (United States)

    Shukla, G C; Plaga, A R; Shankar, E; Gupta, S

    2016-05-01

    The androgen receptor (AR) and the androgen-AR signaling pathway play a significant role in male sexual differentiation and the development and function of male reproductive and non-reproductive organs. Because of AR's widely varied and important roles, its abnormalities have been identified in various diseases such as androgen insensitivity syndrome, spinal bulbar muscular atrophy, benign prostatic hyperplasia, and prostate cancer. This review provides an overview of the function of androgens and androgen-AR mediated diseases. In addition, the diseases delineated above are discussed with respect to their association with mutations and other post-transcriptional modifications in the AR. Finally, we present an introduction to the potential therapeutic application of most recent pharmaceuticals including miRNAs in prostate cancer that specifically target the transactivation function of the AR at post-transcriptional stages. © 2016 American Society of Andrology and European Academy of Andrology.

  17. Sarcosine induces increase in HER2/neu expression in androgen-dependent prostate cancer cells

    DEFF Research Database (Denmark)

    Dahl, Malin; Bouchelouche, Pierre; Kramer-Marek, Gabriela

    2011-01-01

    Increasing evidence suggests that Human epidermal growth factor receptor 2 (HER2/neu) is involved in progression of prostate cancer. Recently, sarcosine was reported to be highly increased during prostate cancer progression, and exogenous sarcosine induces an invasive phenotype in benign prostate...... epithelial cells. The aim of this work was to investigate the effect of sarcosine on HER2/neu expression in prostate cancer cell lines LNCaP (androgen dependent), PC-3 and DU145 (both androgen independent). Relative amounts of HER2/neu and androgen receptor (AR) transcripts were determined using RT...... that sarcosine is involved in the regulation of the oncoprotein HER2/neu. Thus, sarcosine may induce prostate cancer progression by increased HER2/neu expression. However, detailed information on cellular mechanisms remains to be elucidated....

  18. Neural androgen receptors affect the number of surviving new neurones in the adult dentate gyrus of male mice.

    Science.gov (United States)

    Swift-Gallant, A; Duarte-Guterman, P; Hamson, D K; Ibrahim, M; Monks, D A; Galea, L A M

    2018-04-01

    Adult hippocampal neurogenesis occurs in many mammalian species. In rats, the survival of new neurones within the hippocampus is modulated by the action of androgen via the androgen receptor (AR); however, it is not known whether this holds true in mice. Furthermore, the evidence is mixed regarding whether androgens act in neural tissue or via peripheral non-neural targets to promote new neurone survival in the hippocampus. We evaluated whether the action of androgen via AR underlies the survival of new neurones in mice, and investigated whether increasing AR selectively in neural tissue would increase new neurone survival in the hippocampus. We used the cre-loxP system to overexpress AR only in neural tissues (Nestin-AR). These males were compared with wild-type males, as well as control males with 1 of the 2 mutations required for overexpression. Mice were gonadectomised and injected with the DNA synthesis marker, bromodeoxyuridine (BrdU) and for 37 days (following BrdU injection), mice were treated with oil or dihydrotestosterone (DHT). Using immunohistochemistry, proliferation (Ki67) and survival (BrdU) of new neurones were both evaluated in the dorsal and ventral dentate gyrus. Dihydrotestosterone treatment increased the survival of new neurones in the entire hippocampus in wild-type mice and control mice that only have 1 of 2 necessary mutations for transgenic expression. However, DHT treatment did not increase the survival of new neurones in mice that overexpressed AR in neural tissue. Cell proliferation (Ki67) and cell death (pyknotic cells) were not affected by DHT treatment in wild-type or transgenic males. These results suggest that androgens act via neural AR to affect hippocampal neurogenesis by promoting cell survival; however, the relationship between androgen dose and new neurone survival is nonlinear. © 2018 British Society for Neuroendocrinology.

  19. The study of the androgen receptor profile and changes of level of serum testosterone in human prostatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhining, Gui; Xiaoke, Hu; Hanping, Lu; Wei, Fan; Naiyun, Wu; Jinhui, Gao [Zhongshan University of Medical Sciences, Guangzhou, GD (China); Hua, Mei; Jinyun, Zeng [First Affiliated Hospital of Zhongshan Univ. of Medical Sciences, Guangzhou, GD (China)

    1993-11-01

    The androgen receptors in biopsy specimens of 22 cases of human prostatic cancer (PC) were studied by radioligand binding assay. The cytoplasmic androgen receptor (AcR) and nuclear androgen receptor (AnR) densities were 305.70 +- 461.68 and 363.04 +- 391.44 pmol/g protein respectively, both were significantly higher than those of 36 benign prostatic hypertrophy (BPH) and 9 normal prostate (NP). Among the prostatic cancers, the AnR/AcR ratios were significantly different between metastatic and primary cancers. This result suggested that there might be migration of AR from nucleus to cytosol in the process of metastasis. The serum testosterone studied by RIA method are significantly lower than that of BPH and NP. Thawmounted autoradiography demonstrated that AR were mainly located in epithelial cells of the glandular tissue of prostate.

  20. Enhanced Androgen Signaling With Androgen Receptor Overexpression in the Osteoblast Lineage Controls Skeletal Turnover, Matrix Quality and Bone Architecture

    National Research Council Canada - National Science Library

    Wiren, Kristine M; Jepsen, Karl

    2006-01-01

    .... We genetically engineered transgenic mice in which androgen receptor (AR) overexpression is skeletally targeted in two separate models to better understand the role of androgen signaling directly in bone...

  1. Identification of androgen receptor antagonists: In vitro investigation and classification methodology for flavonoid.

    Science.gov (United States)

    Wu, Yang; Doering, Jon A; Ma, Zhiyuan; Tang, Song; Liu, Hongling; Zhang, Xiaowei; Wang, Xiaoxiang; Yu, Hongxia

    2016-09-01

    A tremendous gap exists between the number of potential endocrine disrupting chemicals (EDCs) possibly in the environment and the limitation of traditional regulatory testing. In this study, the anti-androgenic potencies of 21 flavonoids were analyzed in vitro, and another 32 flavonoids from the literature were selected as additional chemicals. Molecular dynamic simulations were employed to obtain four different separation approaches based on the different behaviors of ligands and receptors during the process of interaction. Specifically, ligand-receptor complex which highlighted the discriminating features of ligand escape or retention via "mousetrap" mechanism, hydrogen bonds formed during simulation times, ligand stability and the stability of the helix-12 of the receptor were investigated. Together, a methodology was generated that 87.5% of flavonoids could be discriminated as active versus inactive antagonists, and over 90% inactive antagonists could be filtered out before QSAR study. This methodology could be used as a "proof of concept" to identify inactive anti-androgenic flavonoids, as well could be beneficial for rapid risk assessment and regulation of multiple new chemicals for androgenicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Abhydrolase domain containing 2, an androgen target gene, promotes prostate cancer cell proliferation and migration.

    Science.gov (United States)

    Obinata, Daisuke; Takada, Shogo; Takayama, Ken-ichi; Urano, Tomohiko; Ito, Akiko; Ashikari, Daisaku; Fujiwara, Kyoko; Yamada, Yuta; Murata, Taro; Kumagai, Jinpei; Fujimura, Tetsuya; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Homma, Yukio; Takahashi, Satoru; Inoue, Satoshi

    2016-04-01

    The androgen receptor (AR) plays a key role in the development of prostate cancer. AR signalling mediates the expression of androgen-responsive genes, which are involved in prostate cancer development and progression. Our previous chromatin immunoprecipitation study showed that the region of abhydrolase domain containing 2 (ABHD2) includes a functional androgen receptor binding site. In this study, we demonstrated that ABHD2 is a novel androgen-responsive gene that is overexpressed in human prostate cancer tissues. The expression levels of ABHD2 in androgen-sensitive cells were evaluated by quantitative reverse transcription polymerase chain reaction and western-blot analyses. LNCaP and VCaP cells with ABHD2 overexpression or short interfering RNA (siRNA) knockdown were used for functional analyses. ABHD2 expression was examined in clinical samples of prostate cancer by immunohistochemistry. We showed that ABHD2 expression is increased by androgen in LNCaP and VCaP cells. This androgen-induced ABHD2 expression was diminished by bicalutamide. While stable expression of ABHD2 affected the enhancement of LNCaP cell proliferation and migration, siRNA-mediated ABHD2 knockdown suppressed cell proliferation and migration. In addition, the siRNA treatment significantly repressed the tumour growth derived from LNCaP cells in athymic mice. Immunohistochemical analysis of ABHD2 expression in tumour specimens showed a positive correlation of ABHD2 immunoreactivity with high Gleason score and pathological N stage. Moreover, patients with high immunoreactivity of ABHD2 showed low cancer-specific survival rates and a resistance to docetaxel-based chemotherapy. ABHD2 is a novel androgen-regulated gene that can promote prostate cancer growth and resistance to chemotherapy, and is a novel target for diagnosis and treatment of prostate cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Delta(9)-tetrahydrocannabinol inhibits 17beta-estradiol-induced proliferation and fails to activate androgen and estrogen receptors in MCF7 human breast cancer cells.

    Science.gov (United States)

    von Bueren, A O; Schlumpf, M; Lichtensteiger, W

    2008-01-01

    Delta(9)-tetrahydrocannabinol (THC) exerts palliative effects in cancer patients, but produces adverse effects on the endocrine and reproductive systems. Experimental evidence concerning such effects is controversial. Whether THC exhibits estrogenic or androgenic activity in vitro was investigated. Estrogenic effects of THC were analyzed in vitro by measuring the proliferation of estrogen-sensitive MCF7 cells. Androgenic activity was investigated by the A-Screen assay that measures androgen-dependent inhibition of proliferation of the androgen receptor (AR)-positive human mammary carcinoma cell line, MCF7-AR1. In contrast to 17beta-estradiol, included as positive control with an EC50 value (concentration required for 50% of maximal 17beta-estradiol-induced proliferation) of 1.00 x 10(-12) M, THC failed to induce cell proliferation in the MCF7 cell line at concentrations between 10(-13) and 10(-4) M. THC inhibited 17beta-estradiol-induced proliferation in wild-type MCF7 and MCF7-AR1 cells, with an IC50 value of 2.6 x 10(-5) M and 9 x 10(-6) M, respectively. THC failed to act as an estrogen, but antagonized 17beta-estradiol-induced proliferation. This effect was independent of the AR expression level.

  4. Androgen receptor activity modulates responses to cisplatin treatment in bladder cancer.

    Science.gov (United States)

    Kashiwagi, Eiji; Ide, Hiroki; Inoue, Satoshi; Kawahara, Takashi; Zheng, Yichun; Reis, Leonardo O; Baras, Alexander S; Miyamoto, Hiroshi

    2016-08-02

    Cisplatin (CDDP)-based combination chemotherapy remains the mainstream treatment for advanced bladder cancer. However, its efficacy is often limited due to the development of resistance for which underlying mechanisms are poorly understood. Meanwhile, emerging evidence has indicated the involvement of androgen-mediated androgen receptor (AR) signals in bladder cancer progression. In this study, we aimed to investigate whether AR signals have an impact on sensitivity to CDDP in bladder cancer cells. UMUC3-control-short hairpin RNA (shRNA) cells with endogenous AR and AR-negative 647V/5637 cells stably expressing AR were significantly more resistant to CDDP treatment at its pharmacological concentrations, compared with UMUC3-AR-shRNA and 647V-vector/5637-vector control cells, respectively. A synthetic androgen R1881 significantly reduced CDDP sensitivity in UMUC3, 647V-AR, or 5637-AR cells, and the addition of an anti-androgen hydroxyflutamide inhibited the effect of R1881. In these AR-positive cells, R1881 treatment also induced the expression levels of NF-κB, which is known to involve CDDP resistance, and its phosphorylated form, as well as nuclear translocation of NF-κB. In CDDP-resistant bladder cancer sublines established following long-term culture with CDDP, the expression levels of AR as well as NF-κB and phospho-NF-κB were considerably elevated, compared with respective control sublines. In bladder cancer specimens, there was a strong trend to correlate between AR positivity and chemoresistance. These results suggest that AR activation correlates with CDDP resistance presumably via modulating NF-κB activity in bladder cancer cells. Targeting AR during chemotherapy may thus be a useful strategy to overcome CDDP resistance in patients with AR-positive bladder cancer.

  5. [The impact of the androgen receptor splice variant AR-V7 on the prognosis and treatment of advanced prostate cancer].

    Science.gov (United States)

    Thelen, P; Taubert, H; Duensing, S; Kristiansen, G; Merseburger, A S; Cronauer, M V

    2018-01-25

    A recently discovered mechanism enabling prostate cancer cells to escape the effects of endocrine therapies consists in the synthesis of C-terminally truncated, constitutively active androgen receptor (AR) splice variants (AR-V). Devoid of a functional C-terminal hormone/ligand binding domain, various AR-Vs are insensitive to therapies targeting the androgen/AR signalling axis. Preliminary studies suggest that AR-V7, the most common AR-V, is a promising predictive tumour marker and a relevant selection marker for the treatment of advanced prostate cancer. This review critically outlines recent advances in AR-V7 diagnostics and presents an overview of current AR-V7 targeted therapies. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Molecular and Biochemical Effects of a Kola Nut Extract on Androgen Receptor-Mediated Pathways

    Directory of Open Access Journals (Sweden)

    Rajasree Solipuram

    2009-01-01

    Full Text Available The low incidence of prostate cancer in Asians has been attributed to chemopreventative properties of certain chemicals found in their diet. This study characterized the androgenic and chemopreventative properties of the Jamaican bush tea “Bizzy,” using androgen receptor positive and negative cell lines. Exposure of prostate cells to Biz-2 resulted in a growth inhibition (GI50 of 15 ppm in LNCaP cells and 3.6 ppm in DU145 cells. Biz-2 elicited a 2-fold increase in the mRNA of the anti-apoptotic gene Bcl2, with a 10-fold increase in that of the proapoptotic gene Bax. We observed a 2.4- to 7.5-fold change in apoptotic cells in both cell lines. Biz-2 at 10 ppm elicited a time- and dose-dependent stimulation of both the protein and mRNA levels of several androgen-regulated genes. Biz-2 caused a 36% decrease in PSA secretion and a significant increase in PSA mRNA. The relative binding affinity (IC50 of Biz-2 for AR was 2- to 5-fold lower than that of the synthetic androgen R1881. Biz-2 was found to be a specific ligand for the AR in that the natural ligand, DHT, and the anti-androgen, flutamide, displaced Biz-2 bound to AR and inhibited Biz-2-induced transcription and PSA secretion. This study provided evidence that Biz-2 extract possesses the ability to modulate prostate cancer cell biology in an AR-dependent manner.

  7. Expression, purification and crystallization of the ancestral androgen receptor-DHT complex.

    Science.gov (United States)

    Colucci, Jennifer K; Ortlund, Eric A

    2013-09-01

    Steroid receptors (SRs) are a closely related family of ligand-dependent nuclear receptors that mediate the transcription of genes critical for development, reproduction and immunity. SR dysregulation has been implicated in cancer, inflammatory diseases and metabolic disorders. SRs bind their cognate hormone ligand with exquisite specificity, offering a unique system to study the evolution of molecular recognition. The SR family evolved from an estrogen-sensitive ancestor and diverged to become sensitive to progestagens, corticoids and, most recently, androgens. To understand the structural mechanisms driving the evolution of androgen responsiveness, the ancestral androgen receptor (ancAR1) was crystallized in complex with 5α-dihydrotestosterone (DHT) and a fragment of the transcriptional mediator/intermediary factor 2 (Tif2). Crystals diffracted to 2.1 Å resolution and the resulting structure will permit a direct comparison with its progestagen-sensitive ancestor, ancestral steroid receptor 2 (AncSR2).

  8. Increased DHT levels in androgenic alopecia have been selected for to protect men from prostate cancer.

    Science.gov (United States)

    Bhargava, Shiva

    2014-04-01

    Androgenic alopecia, a condition characterized by increased levels of DHT could have been selected for due to the benefits that prostaglandin D2 (PGD(2)) has on the prostate. A DHT metabolite can increase the transcription of prostaglandin D2 synthase through estrogen receptor beta. The increase of PGD(2) can decrease the risk of prostate cancer and proliferation of prostate cancer cells. Therefore, the mechanisms behind male pattern baldness may also curtail the advancement of prostate cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The transcriptional programme of the androgen receptor (AR) in prostate cancer.

    Science.gov (United States)

    Lamb, Alastair D; Massie, Charlie E; Neal, David E

    2014-03-01

    The androgen receptor (AR) is essential for normal prostate and prostate cancer cell growth. AR transcriptional activity is almost always maintained even in hormone relapsed prostate cancer (HRPC) in the absence of normal levels of circulating testosterone. Current molecular techniques, such as chromatin-immunoprecipitation sequencing (ChIP-seq), have permitted identification of direct AR-binding sites in cell lines and human tissue with a distinct coordinate network evident in HRPC. The effectiveness of novel agents, such as abiraterone acetate (suppresses adrenal androgens) or enzalutamide (MDV3100, potent AR antagonist), in treating advanced prostate cancer underlines the on-going critical role of the AR throughout all stages of the disease. Persistent AR activity in advanced disease regulates cell cycle activity, steroid biosynthesis and anabolic metabolism in conjunction with regulatory co-factors, such as the E2F family, c-Myc and signal transducer and activator of transcription (STAT) transcription factors. Further treatment approaches must target these other factors. © 2013 The Authors. BJU International © 2013 BJU International.

  10. Structural characteristics of anabolic androgenic steroids contributing to binding to the androgen receptor and to their anabolic and androgenic activities. Applied modifications in the steroidal structure.

    Science.gov (United States)

    Fragkaki, A G; Angelis, Y S; Koupparis, M; Tsantili-Kakoulidou, A; Kokotos, G; Georgakopoulos, C

    2009-02-01

    Anabolic androgenic steroids (AAS) are synthetic derivatives of testosterone introduced for therapeutic purposes providing enhanced anabolic potency with reduced androgenic effects. Androgens mediate their action through their binding to the androgen receptor (AR) which is mainly expressed in androgen target tissues, such as the prostate, skeletal muscle, liver and central nervous system. This paper reviews some of the wide spectrum of testosterone and synthetic AAS structure modifications related to the intended enhancement in anabolic activity. The structural features of steroids necessary for effective binding to the AR and those which contribute to the stipulation of the androgenic and anabolic activities are also presented.

  11. Androgen receptor drives cellular senescence.

    Directory of Open Access Journals (Sweden)

    Yelena Mirochnik

    Full Text Available The accepted androgen receptor (AR role is to promote proliferation and survival of prostate epithelium and thus prostate cancer progression. While growth-inhibitory, tumor-suppressive AR effects have also been documented, the underlying mechanisms are poorly understood. Here, we for the first time link AR anti-cancer action with cell senescence in vitro and in vivo. First, AR-driven senescence was p53-independent. Instead, AR induced p21, which subsequently reduced ΔN isoform of p63. Second, AR activation increased reactive oxygen species (ROS and thereby suppressed Rb phosphorylation. Both pathways were critical for senescence as was proven by p21 and Rb knock-down and by quenching ROS with N-Acetyl cysteine and p63 silencing also mimicked AR-induced senescence. The two pathways engaged in a cross-talk, likely via PML tumor suppressor, whose localization to senescence-associated chromatin foci was increased by AR activation. All these pathways contributed to growth arrest, which resolved in senescence due to concomitant lack of p53 and high mTOR activity. This is the first demonstration of senescence response caused by a nuclear hormone receptor.

  12. The influence of androgens, anti-androgens, and castration on cell proliferation in the jejunal and colonic crypt epithelia, and in dimethylhydrazine-induced adenocarcinoma of rat colon.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1982-01-01

    Androgenic hormones have previously been shown to promote cell proliferation in the small intestine of rat and androgen receptors have been demonstrated in carcinomata of the large intestine of rat. In this study the influence of testosterone and of castration on epithelial cell proliferation in the small intestine, the large intestine and in dimethylhydrazine-induced colonic tumours is compared. Cell proliferation in the small intestine and in colonic tumours was accelerated by testosterone treatment, and cell proliferation in colonic tumours, but not in the small intestine, was retarded following castration. Cell proliferation in colonic tumours was also inhibited by the anti-androgenic drug, Flutamide. Testosterone and castration each failed to influence cell proliferation in the colonic crypt epithelium of both normal and carcinogen-treated animals.

  13. Withaferin A Induces Cell Death Selectively in Androgen-Independent Prostate Cancer Cells but Not in Normal Fibroblast Cells.

    Directory of Open Access Journals (Sweden)

    Yukihiro Nishikawa

    Full Text Available Withaferin A (WA, a major bioactive component of the Indian herb Withania somnifera, induces cell death (apoptosis/necrosis in multiple types of tumor cells, but the molecular mechanism underlying this cytotoxicity remains elusive. We report here that 2 μM WA induced cell death selectively in androgen-insensitive PC-3 and DU-145 prostate adenocarcinoma cells, whereas its toxicity was less severe in androgen-sensitive LNCaP prostate adenocarcinoma cells and normal human fibroblasts (TIG-1 and KD. WA also killed PC-3 cells in spheroid-forming medium. DNA microarray analysis revealed that WA significantly increased mRNA levels of c-Fos and 11 heat-shock proteins (HSPs in PC-3 and DU-145, but not in LNCaP and TIG-1. Western analysis revealed increased expression of c-Fos and reduced expression of the anti-apoptotic protein c-FLIP(L. Expression of HSPs such as HSPA6 and Hsp70 was conspicuously elevated; however, because siRNA-mediated depletion of HSF-1, an HSP-inducing transcription factor, reduced PC-3 cell viability, it is likely that these heat-shock genes were involved in protecting against cell death. Moreover, WA induced generation of reactive oxygen species (ROS in PC-3 and DU-145, but not in normal fibroblasts. Immunocytochemistry and immuno-electron microscopy revealed that WA disrupted the vimentin cytoskeleton, possibly inducing the ROS generation, c-Fos expression and c-FLIP(L suppression. These observations suggest that multiple events followed by disruption of the vimentin cytoskeleton play pivotal roles in WA-mediated cell death.

  14. LncRNA HOTAIR Enhances the Androgen-Receptor-Mediated Transcriptional Program and Drives Castration-Resistant Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Ali Zhang

    2015-10-01

    Full Text Available Understanding the mechanisms of androgen receptor (AR activation in the milieu of low androgen is critical to effective treatment of castration-resistant prostate cancer (CRPC. Here, we report HOTAIR as an androgen-repressed lncRNA, and, as such, it is markedly upregulated following androgen deprivation therapies and in CRPC. We further demonstrate a distinct mode of lncRNA-mediated gene regulation, wherein HOTAIR binds to the AR protein to block its interaction with the E3 ubiquitin ligase MDM2, thereby preventing AR ubiquitination and protein degradation. Consequently, HOTAIR expression is sufficient to induce androgen-independent AR activation and drive the AR-mediated transcriptional program in the absence of androgen. Functionally, HOTAIR overexpression increases, whereas HOTAIR knockdown decreases, prostate cancer cell growth and invasion. Taken together, our results provide compelling evidence of lncRNAs as drivers of androgen-independent AR activity and CRPC progression, and they support the potential of lncRNAs as therapeutic targets.

  15. Androgen receptor disruption increases the osteogenic response to mechanical loading in male mice

    NARCIS (Netherlands)

    Callewaert, F.; Bakker, A.; Schrooten, J.; Van Meerbeek, B.; Verhoeven, G.; Boonen, S.; Vanderschueren, D.

    2010-01-01

    In female mice, estrogen receptor-alpha (ERα) mediates the anabolic response of bone to mechanical loading. Whether ERα plays a similar role in the male skeleton and to what extent androgens and androgen receptor (AR) affect this response in males remain unaddressed. Therefore, we studied the

  16. Antiproliferation effects of an androgen receptor triple-helix forming oligonucleotide on prostate cancer cells

    International Nuclear Information System (INIS)

    Zhang Yong; Chen Weizhen; Xie Yao; Gao Jinhui

    2005-01-01

    Objective: To provide experimental basis for antigene radiation therapy through exploring the effects of antigene strategy on androgen receptor (AR) expression and proliferation of prostate cancer cells. Methods: The triple-helix forming oligonucleotide (TFO) targeting 2447-2461nt of AR cDNA was designed and transfected LNCaP prostate cancer cells with liposome. 24-72 h after transfection, the cellular proliferation was detected by 3 H-thymidine (TdR) incorporation test, the expression of AR gene was examined by reverse transcription-polymerase chain reaction (RT-PCR) and expression of AR protein was performed by radioligand binding assay. The results of TFO were compared with antisense oligonucleotide (ASON). Results: At all time points, the AR expression levels in TFO group were markedly lower than that of ASON group (P<0.05). The inhibitory rate of TFO for cellular proliferation was significantly higher than that of ASON (P<0.05). Conclusion: The TFO was a potent inhibitor for AR expression and cell proliferation of LNCaP cells , and could be used in antigene radiotherapy. (authors)

  17. Transfected poly(I:C) activates different dsRNA receptors, leading to apoptosis or immunoadjuvant response in androgen-independent prostate cancer cells.

    Science.gov (United States)

    Palchetti, Sara; Starace, Donatella; De Cesaris, Paola; Filippini, Antonio; Ziparo, Elio; Riccioli, Anna

    2015-02-27

    Despite the effectiveness of surgery or radiation therapy for the treatment of early-stage prostate cancer (PCa), there is currently no effective strategy for late-stage disease. New therapeutic targets are emerging; in particular, dsRNA receptors Toll-like receptor 3 (TLR3) and cytosolic helicases expressed by cancer cells, once activated, exert a pro-apoptotic effect in different tumors. We previously demonstrated that the synthetic analog of dsRNA poly(I:C) induces apoptosis in the androgen-dependent PCa cell line LNCaP in a TLR3-dependent fashion, whereas only a weak apoptotic effect is observed in the more aggressive and androgen-independent PCa cells PC3 and DU145. In this paper, we characterize the receptors and the signaling pathways involved in the remarkable apoptosis induced by poly(I:C) transfected by Lipofectamine (in-poly(I:C)) compared with the 12-fold higher free poly(I:C) concentration in PC3 and DU145 cells. By using genetic inhibition of different poly(I:C) receptors, we demonstrate the crucial role of TLR3 and Src in in-poly(I:C)-induced apoptosis. Therefore, we show that the increased in-poly(I:C) apoptotic efficacy is due to a higher binding of endosomal TLR3. On the other hand, we show that in-poly(I:C) binding to cytosolic receptors MDA5 and RIG-I triggers IRF3-mediated signaling, leading uniquely to the up-regulation of IFN-β, which likely in turn induces increased TLR3, MDA5, and RIG-I proteins. In summary, in-poly(I:C) activates two distinct antitumor pathways in PC3 and DU145 cells: one mediated by the TLR3/Src/STAT1 axis, leading to apoptosis, and the other one mediated by MDA5/RIG-I/IRF3, leading to immunoadjuvant IFN-β expression. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. The long-term outcome of boys with partial androgen insensitivity syndrome and a mutation in the androgen receptor gene

    NARCIS (Netherlands)

    Lucas-Herald, A.; S. Bertelloni (Silvano); A. Juul (Anders); J. Bryce (Jillian); Jiang, J.; M. Rodie (Martina); R. Sinnott (Richard); Boroujerdi, M.; Lindhardt Johansen, M.; O. Hiort (Olaf); P-M. Holterhus (Paul-Martin); M.L. Cools (Martine); Guaragna-Filho, G.; Guerra-Junior, G.; N. Weintrob (Naomi); S.E. Hannema (Sabine); S.L.S. Drop (Stenvert); T. Guran (Tulay); F. Darendeliler (Feyza); A. Nordenström (Anna); I.A. Hughes (Ieuan A.); Acerini, C.; Tadokoro-Cuccaro, R.; S.F. Ahmed (Faisal)

    2016-01-01

    textabstractBackground: In boys with suspected partial androgen insensitivity syndrome (PAIS), systematic evidence that supports the long-term prognostic value of identifying a mutation in the androgen receptor gene (AR) is lacking. Objective: To assess the clinical characteristics and long-term

  19. The androgen receptor as an emerging target in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Kanda T

    2015-06-01

    Full Text Available Tatsuo Kanda, Osamu Yokosuka Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan Abstract: Hepatocellular carcinoma (HCC is one of the male-dominant liver diseases with poor prognosis, although treatments for HCC have been progressing in the past decades. Androgen receptor (AR is a member of the nuclear receptor superfamily. Previous studies reported that AR was expressed in human HCC and non-HCC tissues. AR is activated both ligand-dependently and ligand-independently. The latter is associated with a mitogen-activated protein kinase–, v-akt murine thymoma viral oncogene homolog 1–, or signal-transducer and activator of transcription–signaling pathway, which has been implicated in the development of HCC. It has been reported that more than 200 RNA expression levels are altered by androgen treatment. In the liver, androgen-responsive genes are cytochrome P450s, transforming growth factor , vascular endothelial growth factor, and glucose-regulated protein 78 kDa, which are also associated with human hepatocarcinogenesis. Recent studies also revealed that AR plays a role in cell migration and metastasis. It is possible that cross-talk among AR-signaling, endoplasmic reticulum stress, and innate immune response is important for human hepatocarcinogenesis and HCC development. This review shows that AR could play a potential role in human HCC and represent one of the important target molecules for the treatment of HCC. Keywords: vascular endothelial growth factor, angiogenesis, glucose-regulated protein 78 kDa, hepatocarcinogenesis, molecular targets 

  20. Loss and recovery of androgen receptor protein expression in the adult rat testis following androgen withdrawal by ethane dimethanesulfonate.

    Directory of Open Access Journals (Sweden)

    Boycho Nikolov

    2006-06-01

    Full Text Available Androgens are especially important for the maintenance of spermatogenesis in adulthood and the experimental withdrawal of testosterone (T production by ethane dimenthanesulfonate (EDS is a valuable tool for studying androgen-dependent events of spermatogenesis. The aim of the present study was to investigate the specific changes in immunoexpression of androgen receptor (AR in the testis in relation to degeneration and regeneration of Leydig cell (LC population and seminiferous epithelium. Immunohistochemistry for AR and 3beta-hydroxysteroid dehydrogenase (3beta-HSD as well as TUNEL assay for apoptosis were performed on testicular sections of control and EDS-treated rats. Serum LH and T levels were measured by RIA. Our results revealed a total loss of AR immunoexpression from the nuclei of Sertoli (SCs, LCs and peritubular cells during the first week after EDS administration and that coincided with severe drop in T levels. Two weeks after EDS administration, the AR expression was recovered in these cells but normal stage-specificity in SCs was replaced by uniform intensity of AR immunostaining at all the stages of the spermatogenic cycle. The stage-specific pattern of androgen expression in SCs with a maximum at stages VII-VIII appeared 5 weeks after treatment. LC immunoreactivity for 3beta-HSD at different time points after EDS administration correlated with values of T concentration. The maximal germ cell apoptosis on day 7 was followed by total loss of elongated spermatids 2 weeks after EDS treatment. Regeneration of seminiferous epithelium 3 weeks after EDS administration and onwards occurred in tandem with the development of new LC population indicated by the appearance of 3beta-HSD-positive cells and gradual increase in T production. The specific changes in AR after EDS including their loss and recovery in Sertoli cells paralleled with degenerative and regenerative events in Leydig and germ cell populations, confirming close functional

  1. Epigenetic repression of regulator of G-protein signaling 2 promotes androgen-independent prostate cancer cell growth.

    Science.gov (United States)

    Wolff, Dennis W; Xie, Yan; Deng, Caishu; Gatalica, Zoran; Yang, Mingjie; Wang, Bo; Wang, Jincheng; Lin, Ming-Fong; Abel, Peter W; Tu, Yaping

    2012-04-01

    G-protein-coupled receptor (GPCR)-stimulated androgen-independent activation of androgen receptor (AR) contributes to acquisition of a hormone-refractory phenotype by prostate cancer. We previously reported that regulator of G-protein signaling (RGS) 2, an inhibitor of GPCRs, inhibits androgen-independent AR activation (Cao et al., Oncogene 2006;25:3719-34). Here, we show reduced RGS2 protein expression in human prostate cancer specimens compared to adjacent normal or hyperplastic tissue. Methylation-specific PCR analysis and bisulfite sequencing indicated that methylation of the CpG island in the RGS2 gene promoter correlated with RGS2 downregulation in prostate cancer. In vitro methylation of this promoter suppressed reporter gene expression in transient transfection studies, whereas reversal of this promoter methylation with 5-aza-2'-deoxycytidine (5-Aza-dC) induced RGS2 reexpression in androgen-independent prostate cancer cells and inhibited their growth under androgen-deficient conditions. Interestingly, the inhibitory effect of 5-Aza-dC was significantly reduced by an RGS2-targeted short hairpin RNA, indicating that reexpressed RGS2 contributed to this growth inhibition. Restoration of RGS2 levels by ectopic expression in androgen-independent prostate cancer cells suppressed growth of xenografts in castrated mice. Thus, RGS2 promoter hypermethylation represses its expression and unmasks a latent pathway for AR transactivation in prostate cancer cells. Targeting this reversible process may provide a new strategy for suppressing prostate cancer progression by reestablishing its androgen sensitivity. Copyright © 2011 UICC.

  2. Anti-androgen effects of cypermethrin on the amino- and carboxyl-terminal interaction of the androgen receptor

    International Nuclear Information System (INIS)

    Hu, Jin-xia; Li, Yan-fang; Pan, Chen; Zhang, Jin-peng; Wang, Hong-mei; Li, Jing; Xu, Li-chun

    2012-01-01

    Graphical abstract: Both the known AR antagonist nilutamide and the pyrethroid insecticide cypermethrin inhibited DHT-induced AR N/C interaction in the mammalian two-hybrid assay. However, cypermethrin was a weaker androgen antagonist than nilutamide. Highlights: ► We have developed the mammalian two-hybrid assay. ► The assay displayed appropriate response to DHT and nilutamide. ► The N/C interaction was induced by DHT in a dose-dependent manner. ► Nilutamide inhibited DHT-induced AR N/C interaction. ► Cypermethrin exhibits inhibitory effects on DHT-induced AR N/C interaction. -- Abstract: The pyrethroid insecticide, cypermethrin has been demonstrated to be an environmental anti-androgen in the androgen receptor (AR) reporter gene assay. The amino- and carboxyl-terminal (N/C) interaction is required for transcription potential of the AR. In order to characterize the anti-androgen effects of cypermethrin involved in the N/C interaction of AR, the mammalian two-hybrid assay has been developed in the study. The fusion vectors pVP16-ARNTD, pM-ARLBD and the pG5CAT Reporter Vector were cotransfected into the CV-1 cells. The assay displayed appropriate response to the potent, classical AR agonist 5α-dihydrotestosterone (DHT) and known AR antagonist nilutamide. The N/C interaction was induced by DHT from 10 −11 M to 10 −5 M in a dose-dependent manner. Nilutamide did not activate N/C interaction, while inhibited DHT-induced AR N/C interaction at the concentrations from 10 −7 M to 10 −5 M. Treatment of CV-1 cells with cypermethrin alone did not activate the reporter CAT. Cypermethrin significantly decreased the DHT-induced reporter CAT expression at the higher concentration of 10 −5 M. The mammalian two-hybrid assay provides a promising tool both for defining mechanism involved in AR N/C interaction of EDCs and for screening of chemicals with androgen agonistic and antagonistic activities. Cypermethrin exhibits inhibitory effects on the DHT-induced AR N

  3. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  5. Androgen Receptor Expression in Epithelial and Stromal Cells of Prostatic Carcinoma and Benign Prostatic Hyperplasia.

    Science.gov (United States)

    Filipovski, Vanja; Kubelka-Sabit, Katerina; Jasar, Dzengis; Janevska, Vesna

    2017-08-15

    Prostatic carcinoma (PCa) derives from prostatic epithelial cells. However stromal microenvironment, associated with malignant epithelium, also plays a role in prostatic carcinogenesis. Alterations in prostatic stromal cells contribute to the loss of growth control in epithelial cells that lead to progression of PCa. To analyse the differences between Androgen Receptor (AR) expression in both epithelial and stromal cells in PCa and the surrounding benign prostatic hyperplasia (BPH) and to compare the results with tumour grade. Samples from 70 cases of radical prostatectomy specimens were used. The expression and intensity of the signal for AR was analysed in the epithelial and stromal cells of PCa and BPH, and the data was quantified using histological score (H-score). AR showed significantly lower expression in both epithelial and stromal cells of PCa compared to BPH. In PCa a significant positive correlation of AR expression was found between stromal and epithelial cells of PCa. AR expression showed a correlation between the stromal cells of PCa and tumour grade. AR expression is reduced in epithelial and stromal cells of PCa. Expression of AR in stromal cells of PCa significantly correlates with tumour grade.

  6. TBECH, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane, alters androgen receptor regulation in response to mutations associated with prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kharlyngdoh, Joubert Banjop; Asnake, Solomon; Pradhan, Ajay; Olsson, Per-Erik, E-mail: per-erik.olsson@oru.se

    2016-09-15

    Point mutations in the AR ligand-binding domain (LBD) can result in altered AR structures leading to changes of ligand specificity and functions. AR mutations associated to prostate cancer (PCa) have been shown to result in receptor activation by non-androgenic substances and anti-androgenic drugs. Two AR mutations known to alter the function of anti-androgens are the AR{sub T877A} mutation, which is frequently detected mutation in PCa tumors and the AR{sub W741C} that is rare and has been derived in vitro following exposure of cells to the anti-androgen bicalutamide. AR activation by non-androgenic environmental substances has been suggested to affect PCa progression. In the present study we investigated the effect of AR mutations (AR{sub W741C} and AR{sub T877A}) on the transcriptional activation following exposure of cells to an androgenic brominated flame retardant, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane (TBECH, also named DBE-DBCH). The AR mutations resulted in higher interaction energies and increased transcriptional activation in response to TBECH diastereomer exposures. The AR{sub T877A} mutation rendered AR highly responsive to low levels of DHT and TBECH and led to increased AR nuclear translocation. Gene expression analysis showed a stronger induction of AR target genes in LNCaP cells (AR{sub T877A}) compared to T-47D cells (AR{sub WT}) following TBECH exposure. Furthermore, AR knockdown experiments confirmed the AR dependency of these responses. The higher sensitivity of AR{sub T877A} and AR{sub W741C} to low levels of TBECH suggests that cells with these AR mutations are more susceptible to androgenic endocrine disrupters. - Highlights: • TBECH, is an endocrine disrupting compound that differ in activity depending on AR structure and sequence. • TBECH interaction with the human AR-LBD containing the mutations W741C and T877A is increased compared to the wild type receptor • The mutations, W741C and T877A, are more potent than the wild type

  7. The androgen receptor malignancy shift in prostate cancer.

    Science.gov (United States)

    Copeland, Ben T; Pal, Sumanta K; Bolton, Eric C; Jones, Jeremy O

    2018-05-01

    Androgens and the androgen receptor (AR) are necessary for the development, function, and homeostatic growth regulation of the prostate gland. However, once prostate cells are transformed, the AR is necessary for the proliferation and survival of the malignant cells. This change in AR function appears to occur in nearly every prostate cancer. We have termed this the AR malignancy shift. In this review, we summarize the current knowledge of the AR malignancy shift, including the DNA-binding patterns that define the shift, the transcriptome changes associated with the shift, the putative drivers of the shift, and its clinical implications. In benign prostate epithelial cells, the AR primarily binds consensus AR binding sites. In carcinoma cells, the AR cistrome is dramatically altered, as the AR associates with FOXA1 and HOXB13 motifs, among others. This shift leads to the transcription of genes associated with a malignant phenotype. In model systems, some mutations commonly found in localized prostate cancer can alter the AR cistrome, consistent with the AR malignancy shift. Current evidence suggests that the AR malignancy shift is necessary but not sufficient for transformation of prostate epithelial cells. Reinterpretation of prostate cancer genomic classification systems in light of the AR malignancy shift may improve our ability to predict clinical outcomes and treat patients appropriately. Identifying and targeting the molecular factors that contribute to the AR malignancy shift is not trivial but by doing so, we may be able to develop new strategies for the treatment or prevention of prostate cancer. © 2018 Wiley Periodicals, Inc.

  8. The Role of (BETA)-Catenin in Androgen Receptor Signaling

    National Research Council Canada - National Science Library

    Bhowmick, Neil A

    2006-01-01

    .... Our preliminary data seem indicate stromally derived paracrine Wnt family members activate theepithelial frizzled receptor to enable prostate epithelial survival in an androgen deficient environment...

  9. Selection for rapid embryo development correlates with embryo exposure to maternal androgens among passerine birds.

    Science.gov (United States)

    Schwabl, Hubert; Palacios, Maria G; Martin, Thomas E

    2007-08-01

    Greater offspring predation favors evolution of faster development among species. We hypothesized that greater offspring predation exerts selection on mothers to increase levels of anabolic androgens in egg yolks to achieve faster development. Here, we tested whether (1) concentrations of yolk androgens in passerine species were associated with offspring predation and (2) embryo and nestling development rates were associated with yolk androgen concentrations. We examined three androgens that increase in potency along the synthesis pathway: androstenedione (A(4)) to testosterone (T) to 5 alpha -dihydrotestosterone (5 alpha -DHT). Concentrations of none of these steroids were related to clutch size; only A(4) was allometrically related to egg volume. Species that experience greater predation showed higher yolk concentrations of T and 5 alpha -DHT. Higher concentrations of T and particularly 5 alpha -DHT were strongly correlated with faster development during the embryo period and less so during the nestling period. Development rates were most strongly correlated with 5 alpha -DHT, suggesting that potency increases along the androgen synthesis pathway and that effects are mediated by the androgen receptor pathway. These results are consistent with the hypothesis that selection for faster development by time-dependent offspring mortality may be achieved epigenetically by varying embryo exposure to maternal anabolic steroids.

  10. Pituitary Androgen Receptor Signalling Regulates Prolactin but Not Gonadotrophins in the Male Mouse

    Science.gov (United States)

    O’Hara, Laura; Curley, Michael; Tedim Ferreira, Maria; Cruickshanks, Lyndsey; Milne, Laura; Smith, Lee B.

    2015-01-01

    Production of the androgen testosterone is controlled by a negative feedback loop within the hypothalamic-pituitary-gonadal (HPG) axis. Stimulation of testicular Leydig cells by pituitary luteinising hormone (LH) is under the control of hypothalamic gonadotrophin releasing hormone (GnRH), while suppression of LH secretion by the pituitary is controlled by circulating testosterone. Exactly how androgens exert their feedback control of gonadotrophin secretion (and whether this is at the level of the pituitary), as well as the role of AR in other pituitary cell types remains unclear. To investigate these questions, we exploited a transgenic mouse line (Foxg1Cre/+; ARfl/y) which lacks androgen receptor in the pituitary gland. Both circulating testosterone and gonadotrophins are unchanged in adulthood, demonstrating that AR signalling is dispensable in the male mouse pituitary for testosterone-dependent regulation of LH secretion. In contrast, Foxg1Cre/+; ARfl/y males have a significant increase in circulating prolactin, suggesting that, rather than controlling gonadotrophins, AR-signalling in the pituitary acts to suppress aberrant prolactin production in males. PMID:25799562

  11. Sexual behavior reduces hypothalamic androgen receptor immunoreactivity

    NARCIS (Netherlands)

    Fernandez-Guasti, Alonso; Swaab, Dick; Rodríguez-Manzo, Gabriela

    2003-01-01

    Male sexual behavior is regulated by limbic areas like the medial preoptic nucleus (MPN), the bed nucleus of the stria terminalis (BST), the nucleus accumbens (nAcc) and the ventromedial hypothalamic nucleus (VMN). Neurons in these brain areas are rich in androgen receptors (AR) and express

  12. Androgen Receptor Involvement in Rat Amelogenesis: An Additional Way for Endocrine-Disrupting Chemicals to Affect Enamel Synthesis.

    Science.gov (United States)

    Jedeon, Katia; Loiodice, Sophia; Salhi, Khaled; Le Normand, Manon; Houari, Sophia; Chaloyard, Jessica; Berdal, Ariane; Babajko, Sylvie

    2016-11-01

    Endocrine-disrupting chemicals (EDCs) that interfere with the steroid axis can affect amelogenesis, leading to enamel hypomineralization similar to that of molar incisor hypomineralization, a recently described enamel disease. We investigated the sex steroid receptors that may mediate the effects of EDCs during rat amelogenesis. The expression of androgen receptor (AR), estrogen receptor (ER)-α, and progesterone receptor was dependent on the stage of ameloblast differentiation, whereas ERβ remained undetectable. AR was the only receptor selectively expressed in ameloblasts involved in final enamel mineralization. AR nuclear translocation and induction of androgen-responsive element-containing promoter activity upon T treatment, demonstrated ameloblast responsiveness to androgens. T regulated the expression of genes involved in enamel mineralization such as KLK4, amelotin, SLC26A4, and SLC5A8 but not the expression of genes encoding matrix proteins, which determine enamel thickness. Vinclozolin and to a lesser extent bisphenol A, two antiandrogenic EDCs that cause enamel defects, counteracted the actions of T. In conclusion, we show, for the first time, the following: 1) ameloblasts express AR; 2) the androgen signaling pathway is involved in the enamel mineralization process; and 3) EDCs with antiandrogenic effects inhibit AR activity and preferentially affect amelogenesis in male rats. Their action, through the AR pathway, may specifically and irreversibly affect enamel, potentially leading to the use of dental defects as a biomarker of exposure to environmental pollutants. These results are consistent with the steroid hormones affecting ameloblasts, raising the issue of the hormonal influence on amelogenesis and possible sexual dimorphism in enamel quality.

  13. Androgen receptor status is a prognostic marker in non-basal triple negative breast cancers and determines novel therapeutic options.

    Directory of Open Access Journals (Sweden)

    Pierluigi Gasparini

    Full Text Available Triple negative breast cancers are a heterogeneous group of tumors characterized by poor patient survival and lack of targeted therapeutics. Androgen receptor has been associated with triple negative breast cancer pathogenesis, but its role in the different subtypes has not been clearly defined. We examined androgen receptor protein expression by immunohistochemical analysis in 678 breast cancers, including 396 triple negative cancers. Fifty matched lymph node metastases were also examined. Association of expression status with clinical (race, survival and pathological (basal, non-basal subtype, stage, grade features was also evaluated. In 160 triple negative breast cancers, mRNA microarray expression profiling was performed, and differences according to androgen receptor status were analyzed. In triple negative cancers the percentage of androgen receptor positive cases was lower (24.8% vs 81.6% of non-triple negative cases, especially in African American women (16.7% vs 25.5% of cancers of white women. No significant difference in androgen receptor expression was observed in primary tumors vs matched metastatic lesions. Positive androgen receptor immunoreactivity was inversely correlated with tumor grade (p<0.01 and associated with better overall patient survival (p = 0.032 in the non-basal triple negative cancer group. In the microarray study, expression of three genes (HER4, TNFSF10, CDK6 showed significant deregulation in association with androgen receptor status; eg CDK6, a novel therapeutic target in triple negative cancers, showed significantly higher expression level in androgen receptor negative cases (p<0.01. These findings confirm the prognostic impact of androgen receptor expression in non-basal triple negative breast cancers, and suggest targeting of new androgen receptor-related molecular pathways in patients with these cancers.

  14. Expression of androgen and estrogen receptors in the testicular ...

    African Journals Online (AJOL)

    enoh

    2012-04-10

    Apr 10, 2012 ... 66: 1161-1168. Oliveira CA, Mahecha GA, Carnes K, Prins GS, Saunders PT, Franca. LR, Hess RA (2004). Differential hormonal regulation of estrogen receptors ERα and ER and androgen receptor expression in rat efferent ductules. Reproduction, 128(1): 73-86. O'Shaughnessy PJ, Johnston H, Willerton L ...

  15. Cloning of the human androgen receptor cDNA

    International Nuclear Information System (INIS)

    Govindan, M.V.; Burelle, M.; Cantin, C.; Kabrie, C.; Labrie, F.; Lachance, Y.; Leblanc, G.; Lefebvre, C.; Patel, P.; Simard, J.

    1988-01-01

    The authors discuss how in order to define the functional domains of the human androgen receptor, complementary DNA (cDNA) clones encoding the human androgen receptor (hAR) have been isolated from a human testis λgtll cDNA library using synthetic oligonnucleotide probes, homologous to segments of the human glucocorticoid, estradiol and progesterone receptors. The cDNA clones corresponding to the human glucocorticoid, estradiol and progesterone receptors were eliminated after cross-hybridization with their respective cDNA probes and/or after restriction mapping of the cDNA clones. The remaining cDNA clones were classified into different groups after analysis by restriction digestion and cross-hybridization. Two of the largest cDNA clones from each group were inserted into an expression vector in both orientations. The linearized plasmids were used as templates in in vitro transcription with T7 RNA polymerase. Subsequent in vitro translation of the purified transcripts in rabbit reticulocyte lysate followed by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) permitted the characterization of the encoded polyeptides. The expressed proteins larger than 30,000 Da were analyzed for their ability to bind tritium-labelled dihydrotestosterone ([ 3 H] DHT) with high affinity and specificity

  16. Androgen receptors in the pelvic diaphragm muscles of dogs with and without perineal hernia.

    Science.gov (United States)

    Mann, F A; Nonneman, D J; Pope, E R; Boothe, H W; Welshons, W V; Ganjam, V K

    1995-01-01

    Levator ani and coccygeus muscle estrogen and androgen receptors were measured in 6, healthy, > or = 5-year-old, noncastrated, male Beagles (controls) and in 24 dogs with perineal hernia. Estrogen and androgen receptor analyses were performed on levator ani and coccygeus muscle specimens obtained from control dogs at the time of castration; contralateral levator ani and coccygeus muscle specimens were assayed 2 months after castration. During herniorrhaphy of dogs with perineal hernia, levator ani (non-castrated, n = 12; castrated, n = 7) and/or coccygeus (noncastrated, n = 5; castrated, n = 4) muscle biopsy specimens were obtained for estrogen and androgen receptor analyses. For estrogen and androgen receptor assays, each muscle biopsy specimen was homogenized in Tris-EDTA-glycerol buffer, and centrifuged at 30,000 x g; extracts were used for binding with ligands: [3H]methyltrienolone (3HR1881) for androgen receptors, and [3H]estradiol-17 beta for estrogen receptors. Extracts were incubated overnight at 0 to 4 C. Nonspecific binding was estimated, using 100-fold concentration of cold ligands. Bound and free hormones were separated, using hydroxylapatite batch assay. Receptor numbers for each tissue were calculated as femtomoles (fmol) per milligram of protein. Quantified data were compared between precastration and postcastration controls, using a paired t-test. One-way ANOVA and Bonferroni post-hoc test were used to compare values for precastration controls, postcastration controls, castrated dogs with perineal hernia, and noncastrated dogs with perineal hernia. Significance was set at P < 0.05.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Expression of Androgen Receptor Is Negatively Regulated By p53

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-12-01

    Full Text Available Increased expression of androgen receptor (AR in prostate cancer (PC is associated with transition to androgen independence. Because the progression of PC to advanced stages is often associated with the loss of p53 function, we tested whether the p53 could regulate the expression of AR gene. Here we report that p53 negatively regulates the expression of AR in prostate epithelial cells (PrECs. We found that in LNCaP human prostate cancer cells that express the wild-type p53 and AR and in human normal PrECs, the activation of p53 by genotoxic stress or by inhibition of p53 nuclear export downregulated the expression of AR. Furthermore, forced expression of p53 in LNCaP cells decreased the expression of AR. Conversely, knockdown of p53 expression in LNCaP cells increased the AR expression. Consistent with the negative regulation of AR expression by p53, the p53-null HCT116 cells expressed higher levels of AR compared with the isogenic HCT116 cells that express the wildtype p53. Moreover, we noted that in etoposide treated LNCaP cells p53 bound to the promoter region of the AR gene, which contains a potential p53 DNA-binding consensus sequence, in chromatin immunoprecipitation assays. Together, our observations provide support for the idea that the loss of p53 function in prostate cancer cells contributes to increased expression of AR.

  18. To Die or to Survive, a Fatal Question for the Destiny of Prostate Cancer Cells after Androgen Deprivation Therapy

    International Nuclear Information System (INIS)

    Zhang, Kai-Xin; Firus, Jessica; Prieur, Brenda; Jia, William; Rennie, Paul S.

    2011-01-01

    Prostate cancer is the most frequently diagnosed non-skin cancer in adult males in North America and is the second leading cause of cancer-related mortality. For locally advanced or metastatic disease, androgen deprivation, through medical or surgical castration, is the primary treatment to induce prostate cancer cell death and extend patient survival. However, the vast majority of cancers progress to a castration-resistant/androgen-independent state where the cell death processes are no longer active. This review describes the main cell death processes, apoptosis, autophagy, necrosis and necroptosis, which may be activated in prostate cancers after androgen deprivation therapy as well as the molecular mechanisms through which the cancers progress to become castration resistant. In particular, the central role of persistent androgen receptor (AR)-mediated signaling and AR crosstalk with other critical cell signaling pathways, including (i) the PI3K/Akt pathway, (ii) receptor tyrosine kinases, (iii) the p38 MAPK pathway, and (iv) the Wnt/β-catenin pathway, as well as reactivation of AR by de novo synthesized androgen are discussed in this context. Understanding the molecular changes that subvert normal cell death mechanisms and thereby compromise the survival of prostate cancer patients continues to be a major challenge

  19. To Die or to Survive, a Fatal Question for the Destiny of Prostate Cancer Cells after Androgen Deprivation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai-Xin; Firus, Jessica; Prieur, Brenda [The Vancouver Prostate Centre, 2660 Oak St., Vancouver, BC V6H 3Z6 (Canada); Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6 (Canada); Jia, William [Department of Surgery and Brain Research Centre, University of British Columbia, Vancouver, BC V6H 3Z6 (Canada); Rennie, Paul S., E-mail: prennie@interchange.ubc.ca [The Vancouver Prostate Centre, 2660 Oak St., Vancouver, BC V6H 3Z6 (Canada); Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6 (Canada)

    2011-03-24

    Prostate cancer is the most frequently diagnosed non-skin cancer in adult males in North America and is the second leading cause of cancer-related mortality. For locally advanced or metastatic disease, androgen deprivation, through medical or surgical castration, is the primary treatment to induce prostate cancer cell death and extend patient survival. However, the vast majority of cancers progress to a castration-resistant/androgen-independent state where the cell death processes are no longer active. This review describes the main cell death processes, apoptosis, autophagy, necrosis and necroptosis, which may be activated in prostate cancers after androgen deprivation therapy as well as the molecular mechanisms through which the cancers progress to become castration resistant. In particular, the central role of persistent androgen receptor (AR)-mediated signaling and AR crosstalk with other critical cell signaling pathways, including (i) the PI3K/Akt pathway, (ii) receptor tyrosine kinases, (iii) the p38 MAPK pathway, and (iv) the Wnt/β-catenin pathway, as well as reactivation of AR by de novo synthesized androgen are discussed in this context. Understanding the molecular changes that subvert normal cell death mechanisms and thereby compromise the survival of prostate cancer patients continues to be a major challenge.

  20. To Die or to Survive, a Fatal Question for the Destiny of Prostate Cancer Cells after Androgen Deprivation Therapy

    Directory of Open Access Journals (Sweden)

    Paul S. Rennie

    2011-03-01

    Full Text Available Prostate cancer is the most frequently diagnosed non-skin cancer in adult males in North America and is the second leading cause of cancer-related mortality. For locally advanced or metastatic disease, androgen deprivation, through medical or surgical castration, is the primary treatment to induce prostate cancer cell death and extend patient survival. However, the vast majority of cancers progress to a castration-resistant/androgen-independent state where the cell death processes are no longer active. This review describes the main cell death processes, apoptosis, autophagy, necrosis and necroptosis, which may be activated in prostate cancers after androgen deprivation therapy as well as the molecular mechanisms through which the cancers progress to become castration resistant. In particular, the central role of persistent androgen receptor (AR-mediated signaling and AR crosstalk with other critical cell signaling pathways, including (i the PI3K/Akt pathway, (ii receptor tyrosine kinases, (iii the p38 MAPK pathway, and (iv the Wnt/β-catenin pathway, as well as reactivation of AR by de novo synthesized androgen are discussed in this context. Understanding the molecular changes that subvert normal cell death mechanisms and thereby compromise the survival of prostate cancer patients continues to be a major challenge.

  1. Splicing Factor Prp8 Interacts With NES(AR) and Regulates Androgen Receptor in Prostate Cancer Cells.

    Science.gov (United States)

    Wang, Dan; Nguyen, Minh M; Masoodi, Khalid Z; Singh, Prabhpreet; Jing, Yifeng; O'Malley, Katherine; Dar, Javid A; Dhir, Rajiv; Wang, Zhou

    2015-12-01

    Androgen receptor (AR) plays a pivotal role in the development of primary as well as advanced castration-resistant prostate cancer. Previous work in our lab identified a novel nuclear export signal (NES) (NES(AR)) in AR ligand-binding domain essential for AR nucleocytoplasmic trafficking. By characterizing the localization of green fluorescence protein (GFP)-tagged NES(AR), we designed and executed a yeast mutagenesis screen and isolated 7 yeast mutants that failed to display the NES(AR) export function. One of those mutants was identified as the splicing factor pre-mRNA processing factor 8 (Prp8). We further showed that Prp8 could regulate NES(AR) function using short hairpin RNA knockdown of Prp8 coupled with a rapamycin export assay in mammalian cells and knockdown of Prp8 could induce nuclear accumulation of GFP-tagged AR in PC3 cells. Prp8 expression was decreased in castration-resistant LuCaP35 xenograft tumors as compared with androgen-sensitive xenografts. Laser capture microdissection and quantitative PCR showed Prp8 mRNA levels were decreased in human prostate cancer specimens with high Gleason scores. In prostate cancer cells, coimmunoprecipitation and deletion mutagenesis revealed a physical interaction between Prp8 and AR mainly mediated by NES(AR). Luciferase assay with prostate specific antigen promoter-driven reporter demonstrated that Prp8 regulated AR transcription activity in prostate cancer cells. Interestingly, Prp8 knockdown also increased polyubiquitination of endogenous AR. This may be 1 possible mechanism by which it modulates AR activity. These results show that Prp8 is a novel AR cofactor that interacts with NES(AR) and regulates AR function in prostate cancer cells.

  2. Continuing Development of Alternative High-Throughput Screens to Determine Endocrine Disruption, Focusing on Androgen Receptor, Steroidogenesis, and Thyroid Pathways

    Science.gov (United States)

    The focus of this meeting is the SAP's review and comment on the Agency's proposed high-throughput computational model of androgen receptor pathway activity as an alternative to the current Tier 1 androgen receptor assay (OCSPP 890.1150: Androgen Receptor Binding Rat Prostate Cyt...

  3. Up-Regulation of Follistatin-Like 1 By the Androgen Receptor and Melanoma Antigen-A11 in Prostate Cancer.

    Science.gov (United States)

    Su, Shifeng; Parris, Amanda B; Grossman, Gail; Mohler, James L; Wang, Zengjun; Wilson, Elizabeth M

    2017-04-01

    High affinity androgen binding to the androgen receptor (AR) activates genes required for male sex differentiation and promotes the development and progression of prostate cancer. Human AR transcriptional activity involves interactions with coregulatory proteins that include primate-specific melanoma antigen-A11 (MAGE-A11), a coactivator that increases AR transcriptional activity during prostate cancer progression to castration-resistant/recurrent prostate cancer (CRPC). Microarray analysis and quantitative RT-PCR were performed to identify androgen-regulated MAGE-A11-dependent genes in LAPC-4 prostate cancer cells after lentivirus shRNA knockdown of MAGE-A11. Chromatin immunoprecipitation was used to assess androgen-dependent AR recruitment, and immunocytochemistry to localize an androgen-dependent protein in prostate cancer cells and tissue and in the CWR22 human prostate cancer xenograft. Microarray analysis of androgen-treated LAPC-4 prostate cancer cells indicated follistatin-like 1 (FSTL1) is up-regulated by MAGE-A11. Androgen-dependent up-regulation of FSTL1 was inhibited in LAPC-4 cells by lentivirus shRNA knockdown of AR or MAGE-A11. Chromatin immunoprecipitation demonstrated AR recruitment to intron 10 of the FSTL1 gene that contains a classical consensus androgen response element. Increased levels of FSTL1 protein in LAPC-4 cells correlated with higher levels of MAGE-A11 relative to other prostate cancer cells. FSTL1 mRNA levels increased in CRPC and castration-recurrent CWR22 xenografts in association with predominantly nuclear FSTL1. Increased nuclear localization of FSTL1 in prostate cancer was suggested by predominantly cytoplasmic FSTL1 in benign prostate epithelial cells and predominantly nuclear FSTL1 in epithelial cells in CRPC tissue and the castration-recurrent CWR22 xenograft. AR expression studies showed nuclear colocalization of AR and endogenous FSTL1 in response to androgen. AR and MAGE-A11 cooperate in the up-regulation of FSTL1 to

  4. Performance comparison of two androgen receptor splice variant 7 (AR-V7) detection methods.

    Science.gov (United States)

    Bernemann, Christof; Steinestel, Julie; Humberg, Verena; Bögemann, Martin; Schrader, Andres Jan; Lennerz, Jochen K

    2018-01-23

    To compare the performance of two established androgen receptor splice variant 7 (AR-V7) mRNA detection systems, as paradoxical responses to next-generation androgen-deprivation therapy in AR-V7 mRNA-positive circulating tumour cells (CTC) of patients with castration-resistant prostate cancer (CRPC) could be related to false-positive classification using detection systems with different sensitivities. We compared the performance of two established mRNA-based AR-V7 detection technologies using either SYBR Green or TaqMan chemistries. We assessed in vitro performance using eight genitourinary cancer cell lines and serial dilutions in three AR-V7-positive prostate cancer cell lines, as well as in 32 blood samples from patients with CRPC. Both assays performed identically in the cell lines and serial dilutions showed identical diagnostic thresholds. Performance comparison in 32 clinical patient samples showed perfect concordance between the assays. In particular, both assays determined AR-V7 mRNA-positive CTCs in three patients with unexpected responses to next-generation anti-androgen therapy. Thus, technical differences between the assays can be excluded as the underlying reason for the unexpected responses to next-generation anti-androgen therapy in a subset of AR-V7 patients. Irrespective of the method used, patients with AR-V7 mRNA-positive CRPC should not be systematically precluded from an otherwise safe treatment option. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.

  5. BTG2 is an LXXLL-dependent co-repressor for androgen receptor transcriptional activity

    International Nuclear Information System (INIS)

    Hu, Xu-Dong; Meng, Qing-Hui; Xu, Jia-Ying; Jiao, Yang; Ge, Chun-Min; Jacob, Asha; Wang, Ping; Rosen, Eliot M; Fan, Saijun

    2011-01-01

    Research highlights: → BTG2 associates with AR, androgen causes an increase of the interaction. → BTG2 as a co-repressor inhibits the AR-mediated transcription activity. → BTG2 inhibits the transcription activity and expression of PSA. → An intact 92 LxxLL 96 motif is essential and necessary for these activities of BTG2, while the 20 LxxLL 24 motif is not required. → Ectopic expression of BTG2 reduces proliferation of prostate cancer cells. -- Abstract: The tumor suppressor gene, BTG2 has been down-regulated in prostate cancer and the ectopic expression of this gene has been shown to inhibit prostate cancer cell growth. Sequence analysis revealed that the BTG2 protein contains two leucine-rich motifs ( 20 LxxLL 24 and 92 LxxLL 96 ), which are usually found in nuclear receptor co-factors. Based on this, we postulated that there will be an association between BTG2 and AR. In this study, we discovered that BTG2 directly bound to the androgen receptor (AR) in the absence of 5α-dihydrotestosterone (DHT), and in the presence of the androgen, this interaction was increased. BTG2 bearing the mutant 20 LxxLL 24 motif bound to AR equally efficient as the wild-type BTG2, while BTG2 bearing the mutant 92 LxxLL 96 motif failed to interact with AR. Functional studies indicated that ectopic expression of BTG2 caused a significant inhibition of AR-mediated transcriptional activity and a decreased growth of prostate cancer cells. Androgen-induced promoter activation and expression of prostate-specific antigen (PSA) are significantly attenuated by BTG2. The intact 92 LxxLL 96 motif is required for these activities. These findings, for the first time, demonstrate that BTG2 complexes with AR via an LxxLL-dependent mechanism and may play a role in prostate cancer via modulating the AR signaling pathway.

  6. BTG2 is an LXXLL-dependent co-repressor for androgen receptor transcriptional activity

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xu-Dong [School of Radiation Medicine and Public Health, Medical College of Soochow University, Suzhou 215123 (China); Meng, Qing-Hui [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057 (United States); Xu, Jia-Ying; Jiao, Yang [School of Radiation Medicine and Public Health, Medical College of Soochow University, Suzhou 215123 (China); Ge, Chun-Min [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057 (United States); Jacob, Asha; Wang, Ping [North Shore University Hospital-Long Island Jewish Medical Center and The Feinstein Institute for Medical Research, Manhasset, NY 11030 (United States); Rosen, Eliot M [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057 (United States); Fan, Saijun, E-mail: sjfan@suda.edu.cn [School of Radiation Medicine and Public Health, Medical College of Soochow University, Suzhou 215123 (China)

    2011-01-28

    Research highlights: {yields} BTG2 associates with AR, androgen causes an increase of the interaction. {yields} BTG2 as a co-repressor inhibits the AR-mediated transcription activity. {yields} BTG2 inhibits the transcription activity and expression of PSA. {yields} An intact {sup 92}LxxLL{sup 96} motif is essential and necessary for these activities of BTG2, while the {sup 20}LxxLL{sup 24} motif is not required. {yields} Ectopic expression of BTG2 reduces proliferation of prostate cancer cells. -- Abstract: The tumor suppressor gene, BTG2 has been down-regulated in prostate cancer and the ectopic expression of this gene has been shown to inhibit prostate cancer cell growth. Sequence analysis revealed that the BTG2 protein contains two leucine-rich motifs ({sup 20}LxxLL{sup 24} and {sup 92}LxxLL{sup 96}), which are usually found in nuclear receptor co-factors. Based on this, we postulated that there will be an association between BTG2 and AR. In this study, we discovered that BTG2 directly bound to the androgen receptor (AR) in the absence of 5{alpha}-dihydrotestosterone (DHT), and in the presence of the androgen, this interaction was increased. BTG2 bearing the mutant {sup 20}LxxLL{sup 24} motif bound to AR equally efficient as the wild-type BTG2, while BTG2 bearing the mutant {sup 92}LxxLL{sup 96} motif failed to interact with AR. Functional studies indicated that ectopic expression of BTG2 caused a significant inhibition of AR-mediated transcriptional activity and a decreased growth of prostate cancer cells. Androgen-induced promoter activation and expression of prostate-specific antigen (PSA) are significantly attenuated by BTG2. The intact {sup 92}LxxLL{sup 96} motif is required for these activities. These findings, for the first time, demonstrate that BTG2 complexes with AR via an LxxLL-dependent mechanism and may play a role in prostate cancer via modulating the AR signaling pathway.

  7. The ErbB family and androgen receptor signaling are targets of Celecoxib in prostate cancer.

    Science.gov (United States)

    Brizzolara, Antonella; Benelli, Roberto; Venè, Roberta; Barboro, Paola; Poggi, Alessandro; Tosetti, Francesca; Ferrari, Nicoletta

    2017-08-01

    Inflammation plays a central role in prostate cancer (PCa) development through significant crosstalk between the COX-2-ErbB family receptor network and androgen receptor (AR)-EGFR signaling pathways. The purpose of this work was to determine the ability of the COX-2 inhibitor Celecoxib to modulate the EGFR-AR signaling pathway in androgen-dependent PCa cells and to provide a rationale for its beneficial use in chemopreventive strategies. Functional studies of Celecoxib activity were performed on LNCaP prostate cancer cells. Western blotting, gene expression analysis, dual-luciferase reporter assay and ELISA were applied to assess the Celecoxib mechanisms of action. We found that Celecoxib, through EGF and amphiregulin (AREG) induction, caused EGFR and ErbB2 activation and consequent degradation associated with the inhibition of androgenic signaling. By upregulating the E3 ubiquitin ligase Nrdp1, Celecoxib also efficiently downregulated ErbB3, which is strongly implicated in castration-resistant prostate cancer. Lastly, Celecoxib directly regulated AR transcription and translation independent of ErbB activation by downregulating the RNA binding protein heterogeneous nuclear ribonucleoprotein K (hnRNP K). The simultaneous suppression of ErbB kinases and androgen signaling by Celecoxib represents a novel strategy to interrupt the vicious cycle of AR/ErbB cross-talk with the primary purpose of undermining their resilient signaling in prostate cancer progression. Our data provide important premises for the chemopreventive use of Celecoxib in the clinical management of prostate cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Pharmacokinetics and pharmacodynamics of LGD-3303 [9-chloro-2-ethyl-1-methyl-3-(2,2,2-trifluoroethyl)-3H-pyrrolo-[3,2-f]quinolin-7(6H)-one], an orally available nonsteroidal-selective androgen receptor modulator.

    Science.gov (United States)

    Vajda, Eric G; López, Francisco J; Rix, Peter; Hill, Robert; Chen, Yanling; Lee, Kyoung-Jin; O'Brien, Z; Chang, William Y; Meglasson, Martin D; Lee, Yong-Hee

    2009-02-01

    Selective androgen receptor modulators (SARMs) are a new class of molecules in development to treat a variety of diseases. SARMs maintain the beneficial effects of androgens, including increased muscle mass and bone density, while having reduced activity on unwanted side effects. The mechanisms responsible for the tissue-selective activity of SARMs are not fully understood, and the pharmacokinetic (PK)/pharmacodynamic (PD) relationships are poorly described. Tissue-specific compound distribution potentially could be a mechanism responsible for apparent tissue selectivity. We examined the PK/PD relationship of a novel SARM, LGD-3303 [9-chloro-2-ethyl-1-methyl-3-(2,2,2-trifluoroethyl)-3H-pyrrolo[3,2-f]quinolin-7(6H)-one], in a castrated rat model of androgen deficiency. LGD-3303 has potent activity on levator ani muscle but is a partial agonist on the preputial gland and ventral prostate. LGD-3303 never stimulated ventral prostate above intact levels despite increasing plasma concentrations of compound. Tissue-selective activity was maintained when LGD-3303 was dosed orally or by continuous infusion, two routes of administration with markedly different time versus exposure profiles. Despite the greater muscle activity relative to prostate activity, local tissue concentrations of LGD-3303 were higher in the prostate than in the levator ani muscle. LGD-3303 has SARM properties that are independent of its pharmacokinetic profile, suggesting that the principle mechanism for tissue-selective activity is the result of altered molecular interactions at the level of the androgen receptor.

  9. Contributions of sex, testosterone, and androgen receptor CAG repeat number to virtual Morris water maze performance.

    Science.gov (United States)

    Nowak, Nicole T; Diamond, Michael P; Land, Susan J; Moffat, Scott D

    2014-03-01

    The possibility that androgens contribute to the male advantage typically found on measures of spatial cognition has been investigated using a variety of approaches. To date, evidence to support the notion that androgens affect spatial cognition in healthy young adults is somewhat equivocal. The present study sought to clarify the association between testosterone (T) and spatial performance by extending measurements of androgenicity to include both measures of circulating T as well as an androgen receptor-specific genetic marker. The aims of this study were to assess the contributions of sex, T, and androgen receptor CAG repeat number (CAGr) on virtual Morris water task (vMWT) performance in a group of healthy young men and women. The hypothesis that men would outperform women on vMWT outcomes was supported. Results indicate that CAGr may interact with T to impact navigation performance and suggest that consideration of androgen receptor sensitivity is an important consideration in evaluating hormone-behavior relationships. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Direct Regulation of Androgen Receptor Activity by Potent CYP17 Inhibitors in Prostate Cancer Cells*

    Science.gov (United States)

    Soifer, Harris S.; Souleimanian, Naira; Wu, Sijian; Voskresenskiy, Anatoliy M.; Kisaayak Collak, Filiz; Cinar, Bekir; Stein, Cy A.

    2012-01-01

    TOK-001 and abiraterone are potent 17-heteroarylsteroid (17-HAS) inhibitors of Cyp17, one of the rate-limiting enzymes in the biosynthesis of testosterone from cholesterol in prostate cancer cells. Nevertheless, the molecular mechanism underlying the prevention of prostate cell growth by 17-HASs still remains elusive. Here, we assess the effects of 17-HASs on androgen receptor (AR) activity in LNCaP and LAPC-4 cells. We demonstrate that both TOK-001 and abiraterone reduced AR protein and mRNA expression, and antagonized AR-dependent promoter activation induced by androgen. TOK-001, but not abiraterone, is an effective apparent competitor of the radioligand [3H]R1881 for binding to the wild type and various mutant AR (W741C, W741L) proteins. In agreement with these data, TOK-001 is a consistently superior inhibitor than abiraterone of R1881-induced transcriptional activity of both wild type and mutant AR. However, neither agent was able to trans-activate the AR in the absence of R1881. Our data demonstrate that phospho-4EBP1 levels are significantly reduced by TOK-001 and to a lesser extent by abiraterone alcohol, and suggest a mechanism by which cap-dependent translation is suppressed by blocking assembly of the eIF4F and eIF4G complex to the mRNA 5′ cap. Thus, the effects of these 17-HASs on AR signaling are complex, ranging from a decrease in testosterone production through the inhibition of Cyp17 as previously described, to directly reducing both AR protein expression and R1881-induced AR trans-activation. PMID:22174412

  11. Heat shock protein 90 chaperone complex inhibitor enhanced radiosensitivity through modification of response to hormone and degradation of androgen receptor in hormone sensitive prostate cancer cell line

    International Nuclear Information System (INIS)

    Mitsuhashi, N.; Harashima, K.; Akimoto, T.

    2003-01-01

    It is easily speculated that androgen or androgen deprivation affects proliferative activity or radiosensitivity, but there has been enough information how androgen or androgen deprivation influences the response to radiation. In this setting, the effect of dihydrotestosterone (DHT) on cellular growth and radiosensitivity was examined in hormone-responsive human prostate cancer cell line (LnCap). The binding of androgen receptor (AR) with heat shock protein 90 (Hsp90) plays an important role in stability of the function of receptor. It was, therefore, examined how Hsp90 chaperone complex inhibitor modified the effect of DHT on radiosensitivity in addition to the effect of DHT, especially focusing on AR and its downstream signal transduction pathways. Hydroxy-flutamide (OH-flutamide) was also used to confirm the effect of activation of AR on radiosensitivity because AR of LnCap has a point mutation, leading to activation of AR caused by the binding of OH-flutamide. Radicicol was used as a Hsp90 chaperone complex inhibitor, and incubated with cells at a concentration of 500 nM. Radicicol was incubated with cells for 9 h, and cells were irradiated 1 h after the start of incubation. DHT and OH-flutamide were incubated with cells until staining. DHT or OH-flutamide resulted in stimulation of cellular growth in contrast to inhibition of cellular growth caused by higher concentrations, so that we adopted 1 nM as a concentration of DHT and 1μM as a concentration of OH-flutamide. DHT or OH-flutamide in combination with radiation resulted in slight decrease in radiosensitivity compared with radiation alone. Radicicol at a concentration of 500 nM in combination with DHT or OH-flutamide abolished decrease in radiosensitivity caused by DHT or OH-flutamide. In terms of the expression of AR, radicicol in combination with radiation and/or DHT, OH-flutamide induced degradation of AR. In consistent with degradation of AR, the expression of prostate specific antigen (PSA) decreased

  12. Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells.

    Science.gov (United States)

    Kilcoyne, Karen R; Smith, Lee B; Atanassova, Nina; Macpherson, Sheila; McKinnell, Chris; van den Driesche, Sander; Jobling, Matthew S; Chambers, Thomas J G; De Gendt, Karel; Verhoeven, Guido; O'Hara, Laura; Platts, Sophie; Renato de Franca, Luiz; Lara, Nathália L M; Anderson, Richard A; Sharpe, Richard M

    2014-05-06

    Fetal growth plays a role in programming of adult cardiometabolic disorders, which in men, are associated with lowered testosterone levels. Fetal growth and fetal androgen exposure can also predetermine testosterone levels in men, although how is unknown, because the adult Leydig cells (ALCs) that produce testosterone do not differentiate until puberty. To explain this conundrum, we hypothesized that stem cells for ALCs must be present in the fetal testis and might be susceptible to programming by fetal androgen exposure during masculinization. To address this hypothesis, we used ALC ablation/regeneration to identify that, in rats, ALCs derive from stem/progenitor cells that express chicken ovalbumin upstream promoter transcription factor II. These stem cells are abundant in the fetal testis of humans and rodents, and lineage tracing in mice shows that they develop into ALCs. The stem cells also express androgen receptors (ARs). Reduction in fetal androgen action through AR KO in mice or dibutyl phthalate (DBP) -induced reduction in intratesticular testosterone in rats reduced ALC stem cell number by ∼40% at birth to adulthood and induced compensated ALC failure (low/normal testosterone and elevated luteinizing hormone). In DBP-exposed males, this failure was probably explained by reduced testicular steroidogenic acute regulatory protein expression, which is associated with increased histone methylation (H3K27me3) in the proximal promoter. Accordingly, ALCs and ALC stem cells immunoexpressed increased H3K27me3, a change that was also evident in ALC stem cells in fetal testes. These studies highlight how a key component of male reproductive development can fundamentally reprogram adult hormone production (through an epigenetic change), which might affect lifetime disease risk.

  13. Red Maca (Lepidium meyenii) did not affect cell viability despite increased androgen receptor and prostate-specific antigen gene expression in the human prostate cancer cell line LNCaP.

    Science.gov (United States)

    Díaz, P; Cardenas, H; Orihuela, P A

    2016-10-01

    We examined whether aqueous extract of Lepidium meyenii (red Maca) could inhibit growth, potentiate apoptotic activity of two anticancer drugs Taxol and 2-methoxyestradiol (2ME) or change mRNA expression for the androgen target genes, androgen receptor (Ar) and prostate-specific antigen (Psa) in the human prostate cancer cell line LNCaP. Red Maca aqueous extract at 0, 10, 20, 40 or 80 μg/ml was added to LNCaP cells, and viability was evaluated by the MTS assay at 24 or 48 hr after treatment. Furthermore, LNCaP cells were treated with 80 μg/ml of red Maca plus Taxol or 2ME 5 μM and viability was assessed 48 hr later. Finally, LNCaP cells were treated with red Maca 0, 20, 40 or 80 μg/ml, and 12 hr later, mRNA level for Ar or Psa was assessed by real-time PCR. Treatment with red Maca did not affect viability of LNCaP cells. Apoptotic activity induced by Taxol and 2ME in LNCaP cells was not altered with red Maca treatment. Relative expression of the mRNA for Ar and Psa increased with red Maca 20 and 40 μg/ml, but not at 80 μg/ml. We conclude that red Maca aqueous extract does not have toxic effects, but stimulates androgen signalling in LNCaP cells. © 2016 Blackwell Verlag GmbH.

  14. PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling

    International Nuclear Information System (INIS)

    Ferreira, Luciana Bueno; Gimba, Etel Rodrigues Pereira; Palumbo, Antonio; Mello, Kivvi Duarte de; Sternberg, Cinthya; Caetano, Mauricio S; Oliveira, Felipe Leite de; Neves, Adriana Freitas; Nasciutti, Luiz Eurico; Goulart, Luiz Ricardo

    2012-01-01

    PCA3 is a non-coding RNA (ncRNA) that is highly expressed in prostate cancer (PCa) cells, but its functional role is unknown. To investigate its putative function in PCa biology, we used gene expression knockdown by small interference RNA, and also analyzed its involvement in androgen receptor (AR) signaling. LNCaP and PC3 cells were used as in vitro models for these functional assays, and three different siRNA sequences were specifically designed to target PCA3 exon 4. Transfected cells were analyzed by real-time qRT-PCR and cell growth, viability, and apoptosis assays. Associations between PCA3 and the androgen-receptor (AR) signaling pathway were investigated by treating LNCaP cells with 100 nM dihydrotestosterone (DHT) and with its antagonist (flutamide), and analyzing the expression of some AR-modulated genes (TMPRSS2, NDRG1, GREB1, PSA, AR, FGF8, CdK1, CdK2 and PMEPA1). PCA3 expression levels were investigated in different cell compartments by using differential centrifugation and qRT-PCR. LNCaP siPCA3-transfected cells significantly inhibited cell growth and viability, and increased the proportion of cells in the sub G0/G1 phase of the cell cycle and the percentage of pyknotic nuclei, compared to those transfected with scramble siRNA (siSCr)-transfected cells. DHT-treated LNCaP cells induced a significant upregulation of PCA3 expression, which was reversed by flutamide. In siPCA3/LNCaP-transfected cells, the expression of AR target genes was downregulated compared to siSCr-transfected cells. The siPCA3 transfection also counteracted DHT stimulatory effects on the AR signaling cascade, significantly downregulating expression of the AR target gene. Analysis of PCA3 expression in different cell compartments provided evidence that the main functional roles of PCA3 occur in the nuclei and microsomal cell fractions. Our findings suggest that the ncRNA PCA3 is involved in the control of PCa cell survival, in part through modulating AR signaling, which may raise new

  15. Targeting the androgen receptor in triple-negative breast cancer: current perspectives

    Directory of Open Access Journals (Sweden)

    Mina A

    2017-09-01

    Full Text Available Alain Mina,1 Rachel Yoder,2 Priyanka Sharma1 1Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Westwood, 2University of Kansas Cancer Center, Kansas City, KS, USA Abstract: Triple-negative breast cancer (TNBC is an aggressive subtype associated with frequent recurrence and metastasis. Unlike hormone receptor-positive subtypes, treatment of TNBC is currently limited by the lack of clinically available targeted therapies. Androgen signaling is necessary for normal breast development, and its dysregulation has been implicated in breast tumorigenesis. In recent years, gene expression studies have identified a subset of TNBC that is enriched for androgen receptor (AR signaling. Interference with androgen signaling in TNBC is promising, and AR-inhibiting drugs have shown antitumorigenic activity in preclinical and proof of concept clinical studies. Recent advances in our understanding of androgenic signaling in TNBC, along with the identification of interacting pathways, are allowing development of the next generation of clinical trials with AR inhibitors. As novel AR-targeting agents are developed and evaluated in clinical trials, it is equally important to establish a robust set of biomarkers for identification of TNBC tumors that are most likely to respond to AR inhibition. Keywords: triple-negative breast cancer, androgen signaling, targeted therapy, biomarkers, prognosis 

  16. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    Science.gov (United States)

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Size matters: Associations between the androgen receptor CAG repeat length and the intrafollicular hormone milieu

    DEFF Research Database (Denmark)

    Borgbo, T; Macek, M; Chrudimska, J

    2015-01-01

    Granulosa cell (GC) expressed androgen receptors (AR) and intrafollicular androgens are central to fertility. The transactivating domain of the AR contains a polymorphic CAG repeat sequence, which is linked to the transcriptional activity of AR and may influence the GC function. This study aims...... to evaluate the effects of the AR CAG repeat length on the intrafollicular hormone profiles, and the gene expression profiles of GC from human small antral follicles. In total, 190 small antral follicles (3-11 mm in diameter) were collected from 58 women undergoing ovarian cryopreservation for fertility...... expression compared to medium CAG repeat lengths (P = 0.03). In conclusion, long CAG repeat lengths in the AR were associated to significant attenuated levels of androgens and an increased conversion of testosterone into oestradiol, in human small antral follicles....

  18. 5alphaDH-DOC (5alpha-dihydro-deoxycorticosterone) activates androgen receptor in castration-resistant prostate cancer.

    Science.gov (United States)

    Uemura, Motohide; Honma, Seijiro; Chung, Suyoun; Takata, Ryo; Furihata, Mutsuo; Nishimura, Kazuo; Nonomura, Norio; Nasu, Yasutomo; Miki, Tsuneharu; Shuin, Taro; Fujioka, Tomoaki; Okuyama, Akihiko; Nakamura, Yusuke; Nakagawa, Hidewaki

    2010-08-01

    Prostate cancer often relapses during androgen-depletion therapy, even under the castration condition in which circulating androgens are drastically reduced. High expressions of androgen receptor (AR) and genes involved in androgen metabolism indicate a continued role for AR in castration-resistant prostate cancers (CRPCs). There is increasing evidence that some amounts of 5alpha-dihydrotestosterone (DHT) and other androgens are present sufficiently to activate AR within CRPC tissues, and enzymes involved in the androgen and steroid metabolism, such as 5alpha-steroid reductases, are activated in CRPCs. In this report, we screened eight natural 5alphaDH-steroids to search for novel products of 5alpha-steroid reductases, and identified 11-deoxycorticosterone (DOC) as a novel substrate for 5alpha-steroid reductases in CRPCs. 11-Deoxycorticosterone (DOC) and 5alpha-dihydro-deoxycorticosterone (5alphaDH-DOC) could promote prostate cancer cell proliferation through AR activation, and type 1 5alpha-steroid reductase (SRD5A1) could convert from DOC to 5alphaDH-DOC. Sensitive liquid chromatography-tandem mass spectrometric analysis detected 5alphaDH-DOC in some clinical CRPC tissues. These findings implicated that under an extremely low level of DHT, 5alphaDH-DOC and other products of 5alpha-steroid reductases within CRPC tissues might activate the AR pathway for prostate cancer cell proliferation and survival under castration.

  19. Effects of androgen on immunohistochemical localization of androgen receptor and Connexin 43 in mouse ovary.

    Science.gov (United States)

    Yang, Mei; Li, Jianhua; An, Yulin; Zhang, Shuiwen

    2015-10-01

    Androgens have essential roles in the regulation of follicular development and female fertility. Androgen excess is the leading defect in polycystic ovary syndrome (PCOS) patients and involved in the ovarian dysfunction. The aim of this study was to elucidate the regarding regulatory role of androgen in the follicular development of female mouse. Immunohistochemical staining and Western blot analyses were performed to detect androgen receptor (AR) and Connexin 43 (Cx43) expression in ovaries from both control and testosterone-treated group mice. In this study, localizations of AR and Cx43 were dramatically altered in testosterone-treated mouse ovaries. In addition, AR expression was significantly increased, whereas Cx43 expression was markedly decreased after testosterone treatment. Alterations of AR and Cx43 expression by testosterone with concomitant reduction of MII oocytes. Overall, these results suggest the involvement of androgen in the regulation of AR and Cx43 localizations in mouse ovary. Alterations of AR and Cx43 expression by testosterone may affect normal folliculogenesis. Together these findings will enable us to begin understanding the important roles of AR and Cx43 actions in the regulation of follicular development, as well as providing insights into the role of AR and Cx43 actions in the androgen-associated reproductive diseases such as PCOS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Characterization of Aromatase Expression in the Adult Male and Female Mouse Brain. I. Coexistence with Oestrogen Receptors α and β, and Androgen Receptors

    Science.gov (United States)

    Stanić, Davor; Dubois, Sydney; Chua, Hui Kheng; Tonge, Bruce; Rinehart, Nicole; Horne, Malcolm K.; Boon, Wah Chin

    2014-01-01

    Aromatase catalyses the last step of oestrogen synthesis. There is growing evidence that local oestrogens influence many brain regions to modulate brain development and behaviour. We examined, by immunohistochemistry, the expression of aromatase in the adult male and female mouse brain, using mice in which enhanced green fluorescent protein (EGFP) is transcribed following the physiological activation of the Cyp19A1 gene. EGFP-immunoreactive processes were distributed in many brain regions, including the bed nucleus of the stria terminalis, olfactory tubercle, medial amygdaloid nucleus and medial preoptic area, with the densest distributions of EGFP-positive cell bodies in the bed nucleus and medial amygdala. Differences between male and female mice were apparent, with the density of EGFP-positive cell bodies and fibres being lower in some brain regions of female mice, including the bed nucleus and medial amygdala. EGFP-positive cell bodies in the bed nucleus, lateral septum, medial amygdala and hypothalamus co-expressed oestrogen receptor (ER) α and β, or the androgen receptor (AR), although single-labelled EGFP-positive cells were also identified. Additionally, single-labelled ERα−, ERβ- or AR-positive cell bodies often appeared to be surrounded by EGFP-immunoreactive nerve fibres/terminals. The widespread distribution of EGFP-positive cell bodies and fibres suggests that aromatase signalling is common in the mouse brain, and that locally synthesised brain oestrogens could mediate biological effects by activating pre- and post-synaptic oestrogen α and β receptors, and androgen receptors. The higher number of EGFP-positive cells in male mice may indicate that the autocrine and paracrine effects of oestrogens are more prominent in males than females. PMID:24646567

  1. Targeting Alternative Sites on the Androgen Receptor to Treat Castration-Resistant Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Paul S. Rennie

    2013-06-01

    Full Text Available Recurrent, metastatic prostate cancer continues to be a leading cause of cancer-death in men. The androgen receptor (AR is a modular, ligand-inducible transcription factor that regulates the expression of genes that can drive the progression of this disease, and as a consequence, this receptor is a key therapeutic target for controlling prostate cancer. The current drugs designed to directly inhibit the AR are called anti-androgens, and all act by competing with androgens for binding to the androgen/ligand binding site. Unfortunately, with the inevitable progression of the cancer to castration resistance, many of these drugs become ineffective. However, there are numerous other regulatory sites on this protein that have not been exploited therapeutically. The regulation of AR activity involves a cascade of complex interactions with numerous chaperones, co-factors and co-regulatory proteins, leading ultimately to direct binding of AR dimers to specific DNA androgen response elements within the promoter and enhancers of androgen-regulated genes. As part of the family of nuclear receptors, the AR is organized into modular structural and functional domains with specialized roles in facilitating their inter-molecular interactions. These regions of the AR present attractive, yet largely unexploited, drug target sites for reducing or eliminating androgen signaling in prostate cancers. The design of small molecule inhibitors targeting these specific AR domains is only now being realized and is the culmination of decades of work, including crystallographic and biochemistry approaches to map the shape and accessibility of the AR surfaces and cavities. Here, we review the structure of the AR protein and describe recent advancements in inhibiting its activity with small molecules specifically designed to target areas distinct from the receptor’s androgen binding site. It is anticipated that these new classes of anti-AR drugs will provide an additional

  2. Identification of a novel androgen receptor agonist (or “androgen mimic”) of environmental concern: spironolactone

    Science.gov (United States)

    Spironolactone is a pharmaceutical that acts as an androgen receptor (AR) antagonist in humans to treat certain conditions such as hirsutism, various dermatologic afflictions, and female pattern hair loss. The drug is also used to treat hypertension as a diuretic. With this commo...

  3. Effect of organochlorine pesticides on human androgen receptor activation in vitro

    International Nuclear Information System (INIS)

    Lemaire, Geraldine; Terouanne, Beatrice; Mauvais, Pascale; Michel, Serge; Rahmani, Roger

    2004-01-01

    Many persistent organochlorine pesticides (OCs) have been implicated in adverse effects, that is, reproductive and developmental effects, in man and in wildlife alike. It has been hypothesized that these so-called xeno-hormones could be responsible for the increased incidence in various male sexual differentiation disorders such as hypospadias, cryptorchidism, low sperm counts and quality. In this report, OCs, called endocrine disrupters, were tested for their interaction with the androgen receptor. The stable prostatic cell line PALM, which contains a human androgen receptor (hAR) expression vector and the reporter MMTV-luciferase, was used to characterize the response of hAR to OC and was compared with synthetic androgen compound R1881. We found that all the OC pesticides tested were able to shift the agonist [ 3 H]-R1881 from its binding site to the AR in competitive binding assays. In addition, these compounds antagonize - in a dose-dependent manner - the AR-mediated transcription by synthetic AR ligand R1881. None of the pesticides reacted as agonists. These results demonstrate that OC endocrine activities in vivo probably result from direct and specific binding to the AR ligand-binding domain. Although the antagonistic potential of OC pesticides is lower than that of hydroxyflutamide, they are capable of disrupting the male hormone signaling pathway. Because these chemicals are extremely persistent and tend to bioaccumulate, these results support the hypothesis that the recent increase in the incidence of male sexual disorders could be due to long exposure to ubiquitous OC pesticides found in the environment

  4. Characterizations of Factors Affecting Androgen Receptor Transcriptional Regulation in Prostate Cancer

    National Research Council Canada - National Science Library

    Garabedian, Michael

    2003-01-01

    .... Expression of ART-27 in LNCaP cells, an androgen-dependent prostate cancer cell line, reduces androgen-mediated cellular proliferation, suggesting that ART-27 plays a role in suppressing cell growth...

  5. Differential Effects of Leptin on the Invasive Potential of Androgen-Dependent and -Independent Prostate Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Dayanand D. Deo

    2008-01-01

    Full Text Available Obesity has been linked with an increased risk of prostate cancer. The formation of toxic free oxygen radicals has been implicated in obesity mediated disease processes. Leptin is one of the major cytokines produced by adipocytes and controls body weight homeostasis through food intake and energy expenditure. The rationale of the study was to determine the impact of leptin on the metastatic potential of androgen-sensitive (LNCaP cells as well as androgen-insensitive (PC-3 and DU-145 cells. At a concentration of 200_nm, LNCaP cells showed a significant increase (20% above control; P<.0001 in cellular proliferation without any effect on androgen-insensitive cells. Furthermore, exposure to leptin caused a significant (P<.01 to P<.0001 dose-dependent decrease in migration and invasion of PC3 and Du-145 prostate carcinoma cell lines. At the molecular level, exposure of androgen-independent prostate cancer cells to leptin stimulates the phosphorylation of MAPK at early time point as well as the transcription factor STAT3, suggesting the activation of the intracellular signaling cascade upon leptin binding to its cognate receptor. Taken together, these results suggest that leptin mediates the invasive potential of prostate carcinoma cells, and that this effect is dependent on their androgen sensitivity.

  6. Tzfp represses the androgen receptor in mouse testis.

    Science.gov (United States)

    Furu, Kari; Klungland, Arne

    2013-01-01

    The testis zinc finger protein (Tzfp), also known as Repressor of GATA, belongs to the BTB/POZ zinc finger family of transcription factors and is thought to play a role in spermatogenesis due to its remarkably high expression in testis. Despite many attempts to find the in vivo role of the protein, the molecular function is still largely unknown. Here, we address this issue using a novel mouse model with a disrupted Tzfp gene. Homozygous Tzfp null mice are born at reduced frequency but appear viable and fertile. Sertoli cells in testes lacking Tzfp display an increase in Androgen Receptor (AR) signaling, and several genes in the testis, including Gata1, Aie1 and Fanc, show increased expression. Our results indicate that Tzfp function as a transcriptional regulator and that loss of the protein leads to alterations in AR signaling and reduced number of apoptotic cells in the testicular tubules.

  7. The Androgen Receptor Gene Mutations Database.

    Science.gov (United States)

    Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1998-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  8. Androgen receptor and histone lysine demethylases in ovine placenta.

    Directory of Open Access Journals (Sweden)

    Ellane R Cleys

    Full Text Available Sex steroid hormones regulate developmental programming in many tissues, including programming gene expression during prenatal development. While estradiol is known to regulate placentation, little is known about the role of testosterone and androgen signaling in placental development despite the fact that testosterone rises in maternal circulation during pregnancy and in placenta-induced pregnancy disorders. We investigated the role of testosterone in placental gene expression, and focused on androgen receptor (AR. Prenatal androgenization decreased global DNA methylation in gestational day 90 placentomes, and increased placental expression of AR as well as genes involved in epigenetic regulation, angiogenesis, and growth. As AR complexes with histone lysine demethylases (KDMs to regulate AR target genes in human cancers, we also investigated if the same mechanism is present in the ovine placenta. AR co-immunoprecipitated with KDM1A and KDM4D in sheep placentomes, and AR-KDM1A complexes were recruited to a half-site for androgen response element (ARE in the promoter region of VEGFA. Androgenized ewes also had increased cotyledonary VEGFA. Finally, in human first trimester placental samples KDM1A and KDM4D immunolocalized to the syncytiotrophoblast, with nuclear KDM1A and KDM4D immunostaining also present in the villous stroma. In conclusion, placental androgen signaling, possibly through AR-KDM complex recruitment to AREs, regulates placental VEGFA expression. AR and KDMs are also present in first trimester human placenta. Androgens appear to be an important regulator of trophoblast differentiation and placental development, and aberrant androgen signaling may contribute to the development of placental disorders.

  9. Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Alfonso Urbanucci

    2017-06-01

    Full Text Available Global changes in chromatin accessibility may drive cancer progression by reprogramming transcription factor (TF binding. In addition, histone acetylation readers such as bromodomain-containing protein 4 (BRD4 have been shown to associate with these TFs and contribute to aggressive cancers including prostate cancer (PC. Here, we show that chromatin accessibility defines castration-resistant prostate cancer (CRPC. We show that the deregulation of androgen receptor (AR expression is a driver of chromatin relaxation and that AR/androgen-regulated bromodomain-containing proteins (BRDs mediate this effect. We also report that BRDs are overexpressed in CRPCs and that ATAD2 and BRD2 have prognostic value. Finally, we developed gene stratification signature (BROMO-10 for bromodomain response and PC prognostication, to inform current and future trials with drugs targeting these processes. Our findings provide a compelling rational for combination therapy targeting bromodomains in selected patients in which BRD-mediated TF binding is enhanced or modified as cancer progresses.

  10. Myofibroblast androgen receptor expression determines cell survival in co-cultures of myofibroblasts and prostate cancer cells in vitro.

    Science.gov (United States)

    Palethorpe, Helen M; Leach, Damien A; Need, Eleanor F; Drew, Paul A; Smith, Eric

    2018-04-10

    Fibroblasts express androgen receptor (AR) in the normal prostate and during prostate cancer development. We have reported that loss of AR expression in prostate cancer-associated fibroblasts is a poor prognostic indicator. Here we report outcomes of direct and indirect co-cultures of immortalised AR-positive (PShTert-AR) or AR-negative (PShTert) myofibroblasts with prostate cancer cells. In the initial co-cultures the AR-negative PC3 cell line was used so AR expression and signalling were restricted to the myofibroblasts. In both direct and indirect co-culture with PShTert-AR myofibroblasts, paracrine signalling to the PC3 cells slowed proliferation and induced apoptosis. In contrast, PC3 cells proliferated with PShTert myofibroblasts irrespective of the co-culture method. In direct co-culture PC3 cells induced apoptosis in and destroyed PShTerts by direct signalling. Similar results were seen in direct co-cultures with AR-negative DU145 and AR-positive LNCaP and C4-2B prostate cancer cell lines. The AR ligand 5α-dihydrotestosterone (DHT) inhibited the proliferation of the PShTert-AR myofibroblasts, thereby reducing the extent of their inhibitory effect on cancer cell growth. These results suggest loss of stromal AR would favour prostate cancer cell growth in vivo , providing an explanation for the clinical observation that reduced stromal AR is associated with a poorer outcome.

  11. Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation.

    Science.gov (United States)

    Kobayashi, Takashi; Shimizu, Yosuke; Terada, Naoki; Yamasaki, Toshinari; Nakamura, Eijiro; Toda, Yoshinobu; Nishiyama, Hiroyuki; Kamoto, Toshiyuki; Ogawa, Osamu; Inoue, Takahiro

    2010-06-01

    Ras homolog-enriched in brain (Rheb), a small GTP-binding protein, is associated with prostate carcinogenesis through activating mammalian target of rapamycin (mTOR) signaling pathway. This study aimed to elucidate whether Rheb promotes proliferation of prostate cancer cells and can act as a potent therapeutic target in prostate cancer. Prostate cancer cell lines and human prostatic tissues were examined for the expression of Rheb. The effects of forced expression or knockdown of Rheb on cell proliferation were also examined. Semi-quantitative and quantitative RT-PCR were performed to evaluate mRNA expression. Western blotting was used to examine protein expression. Cell count and WST-1 assay were used to measure cell proliferation. Fluorescence-activated cell sorting was used to assess the cell cycle. Rheb mRNA and protein expression was higher in more aggressive, androgen-independent prostate cancer cell lines PC3, DU145, and C4-2, compared with the less aggressive LNCaP. Rheb expression was higher in cancer tissues than in benign prostatic epithelia. Forced expression of Rheb in LNCaP cells accelerated proliferation without enhancing androgen receptor transactivity. Attenuation of Rheb expression or treatment with the mTOR inhibitor rapamycin decreased proliferation of PC3 and DU145 cells, with a decrease in the activated form of p70S6 kinase, one of the main targets of mTOR. Rheb potentiates proliferation of prostate cancer cells and inhibition of Rheb or mTOR can lead to suppressed proliferation of aggressive prostate cancer cell lines in vitro. Rheb and the mTOR pathway are therefore probable targets for suppressing prostate cancer.

  12. Androgen and taxol cause cell type-specific alterations of centrosome and DNA organization in androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cells

    Science.gov (United States)

    Schatten, H.; Ripple, M.; Balczon, R.; Weindruch, R.; Chakrabarti, A.; Taylor, M.; Hueser, C. N.

    2000-01-01

    We investigated the effects of androgen and taxol on the androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cell lines. Cells were treated for 48 and 72 h with 0.05-1 nM of the synthetic androgen R1881 and with 100 nM taxol. Treatment of LNCaP cells with 0.05 nM R1881 led to increased cell proliferation, whereas treatment with 1 nM R1881 resulted in inhibited cell division, DNA cycle arrest, and altered centrosome organization. After treatment with 1 nM R1881, chromatin became clustered, nuclear envelopes convoluted, and mitochondria accumulated around the nucleus. Immunofluorescence microscopy with antibodies to centrosomes showed altered centrosome structure. Although centrosomes were closely associated with the nucleus in untreated cells, they dispersed into the cytoplasm after treatment with 1 nM R1881. Microtubules were only faintly detected in 1 nM R1881-treated LNCaP cells. The effects of taxol included microtubule bundling and altered mitochondria morphology, but not DNA organization. As expected, the androgen-independent prostate cancer cell line DU145 was not affected by R1881. Treatment with taxol resulted in bundling of microtubules in both cell lines. Additional taxol effects were seen in DU145 cells with micronucleation of DNA, an indication of apoptosis. Simultaneous treatment with R1881 and taxol had no additional effects on LNCaP or DU145 cells. These results suggest that LNCaP and DU145 prostate cancer cells show differences not only in androgen responsiveness but in sensitivity to taxol as well. Copyright 2000 Wiley-Liss, Inc.

  13. Characterization of niphatenones that inhibit androgen receptor N-terminal domain.

    Directory of Open Access Journals (Sweden)

    Carmen A Banuelos

    Full Text Available Androgen ablation therapy causes a temporary reduction in tumor burden in patients with advanced prostate cancer. Unfortunately the malignancy will return to form lethal castration-recurrent prostate cancer (CRPC. The androgen receptor (AR remains transcriptionally active in CRPC in spite of castrate levels of androgens in the blood. AR transcriptional activity resides in its N-terminal domain (NTD. Possible mechanisms of continued AR transcriptional activity may include, at least in part, expression of constitutively active splice variants of AR that lack the C-terminal ligand-binding domain (LBD. Current therapies that target the AR LBD, would not be effective against these AR variants. Currently no drugs are clinically available that target the AR NTD which should be effective against these AR variants as well as full-length AR. Niphatenones were originally isolated and identified in active extracts from Niphates digitalis marine sponge. Here we begin to characterize the mechanism of niphatenones in blocking AR transcriptional activity. Both enantiomers had similar IC50 values of 6 µM for inhibiting the full-length AR in a functional transcriptional assay. However, (S-niphatenone had significantly better activity against the AR NTD compared to (R-niphatenone. Consistent with niphatenones binding to and inhibiting transactivation of AR NTD, niphatenones inhibited AR splice variant. Niphatenone did not affect the transcriptional activity of the related progesterone receptor, but slightly decreased glucocorticoid receptor (GR activity and covalently bound to GR activation function-1 (AF-1 region. Niphatenone blocked N/C interactions of AR without altering either AR protein levels or its intracellular localization in response to androgen. Alkylation with glutathione suggests that niphatenones are not a feasible scaffold for further drug development.

  14. Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target

    Science.gov (United States)

    Asim, Mohammad; Massie, Charles E.; Orafidiya, Folake; Pértega-Gomes, Nelma; Warren, Anne Y.; Esmaeili, Mohsen; Selth, Luke A.; Zecchini, Heather I.; Luko, Katarina; Qureshi, Arham; Baridi, Ajoeb; Menon, Suraj; Madhu, Basetti; Escriu, Carlos; Lyons, Scott; Vowler, Sarah L.; Zecchini, Vincent R.; Shaw, Greg; Hessenkemper, Wiebke; Russell, Roslin; Mohammed, Hisham; Stefanos, Niki; Lynch, Andy G.; Grigorenko, Elena; D’Santos, Clive; Taylor, Chris; Lamb, Alastair; Sriranjan, Rouchelle; Yang, Jiali; Stark, Rory; Dehm, Scott M.; Rennie, Paul S.; Carroll, Jason S.; Griffiths, John R.; Tavaré, Simon; Mills, Ian G.; McEwan, Iain J.; Baniahmad, Aria; Tilley, Wayne D.; Neal, David E.

    2016-01-01

    Background: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling. Methods: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ2 tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided. Results: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts. Conclusions: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa. PMID:26657335

  15. Selective inhibition reveals cyclin-dependent kinase 2 as another kinase that phosphorylates the androgen receptor at serine 81

    Czech Academy of Sciences Publication Activity Database

    Jorda, Radek; Bučková, Zuzana; Řezníčková, Eva; Bouchal, J.; Kryštof, Vladimír

    2018-01-01

    Roč. 1865, č. 2 (2018), s. 354-363 ISSN 0167-4889 R&D Projects: GA MŠk(CZ) LO1204; GA MŠk(CZ) LO1304 Institutional support: RVO:61389030 Keywords : Androgen receptor * Cyclin-dependent kinase * Inhibitor * Phosphorylation * Serine 81 Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 4.521, year: 2016

  16. Neural protein gamma-synuclein interacting with androgen receptor promotes human prostate cancer progression

    International Nuclear Information System (INIS)

    Chen, Junyi; Jiao, Li; Xu, Chuanliang; Yu, Yongwei; Zhang, Zhensheng; Chang, Zheng; Deng, Zhen; Sun, Yinghao

    2012-01-01

    Gamma-synuclein (SNCG) has previously been demonstrated to be significantly correlated with metastatic malignancies; however, in-depth investigation of SNCG in prostate cancer is still lacking. In the present study, we evaluated the role of SNCG in prostate cancer progression and explored the underlying mechanisms. First, alteration of SNCG expression in LNCaP cell line to test the ability of SNCG on cellular properties in vitro and vivo whenever exposing with androgen or not. Subsequently, the Dual-luciferase reporter assays were performed to evaluate whether the role of SNCG in LNCaP is through AR signaling. Last, the association between SNCG and prostate cancer progression was assessed immunohistochemically using a series of human prostate tissues. Silencing SNCG by siRNA in LNCaP cells contributes to the inhibition of cellular proliferation, the induction of cell-cycle arrest at the G1 phase, the suppression of cellular migration and invasion in vitro, as well as the decrease of tumor growth in vivo with the notable exception of castrated mice. Subsequently, mechanistic studies indicated that SNCG is a novel androgen receptor (AR) coactivator. It interacts with AR and promotes prostate cancer cellular growth and proliferation by activating AR transcription in an androgen-dependent manner. Finally, immunohistochemical analysis revealed that SNCG was almost undetectable in benign or androgen-independent tissues prostate lesions. The high expression of SNCG is correlated with peripheral and lymph node invasion. Our data suggest that SNCG may serve as a biomarker for predicting human prostate cancer progression and metastasis. It also may become as a novel target for biomedical therapy in advanced prostate cancer

  17. Targeting the androgen receptor pathway in castration-resistant prostate cancer: progresses and prospects

    Science.gov (United States)

    Ferraldeschi, R; Welti, J; Luo, J; Attard, G; de Bono, JS

    2015-01-01

    Androgen receptor (AR) signaling is a critical pathway for prostate cancer cells, and androgen-deprivation therapy (ADT) remains the principal treatment for patients with locally advanced and metastatic disease. However, over time, most tumors become resistant to ADT. The view of castration-resistant prostate cancer (CRPC) has changed dramatically in the last several years. Progress in understanding the disease biology and mechanisms of castration resistance led to significant advancements and to paradigm shift in the treatment. Accumulating evidence showed that prostate cancers develop adaptive mechanisms for maintaining AR signaling to allow for survival and further evolution. The aim of this review is to summarize molecular mechanisms of castration resistance and provide an update in the development of novel agents and strategies to more effectively target the AR signaling pathway. PMID:24837363

  18. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads

    International Nuclear Information System (INIS)

    Martinovic-Weigelt, Dalma; Wang Ronglin; Villeneuve, Daniel L.; Bencic, David C.; Lazorchak, Jim; Ankley, Gerald T.

    2011-01-01

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96 h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4 x 44 K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals.

  19. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads

    Energy Technology Data Exchange (ETDEWEB)

    Martinovic-Weigelt, Dalma, E-mail: dalma@stthomas.edu [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States); University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105 (United States); Wang Ronglin [US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Ecological Exposure Research Division, 26W. Martin Luther King Dr., Cincinnati, OH 45268 (United States); Villeneuve, Daniel L. [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States); Bencic, David C.; Lazorchak, Jim [US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Ecological Exposure Research Division, 26W. Martin Luther King Dr., Cincinnati, OH 45268 (United States); Ankley, Gerald T. [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States)

    2011-01-25

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96 h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4 x 44 K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals.

  20. Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth.

    Science.gov (United States)

    Deng, X; Shao, G; Zhang, H-T; Li, C; Zhang, D; Cheng, L; Elzey, B D; Pili, R; Ratliff, T L; Huang, J; Hu, C-D

    2017-03-02

    Protein arginine methyltransferase 5 (PRMT5) is an emerging epigenetic enzyme that mainly represses transcription of target genes via symmetric dimethylation of arginine residues on histones H4R3, H3R8 and H2AR3. Accumulating evidence suggests that PRMT5 may function as an oncogene to drive cancer cell growth by epigenetic inactivation of several tumor suppressors. Here, we provide evidence that PRMT5 promotes prostate cancer cell growth by epigenetically activating transcription of the androgen receptor (AR) in prostate cancer cells. Knockdown of PRMT5 or inhibition of PRMT5 by a specific inhibitor reduces the expression of AR and suppresses the growth of multiple AR-positive, but not AR-negative, prostate cancer cells. Significantly, knockdown of PRMT5 in AR-positive LNCaP cells completely suppresses the growth of xenograft tumors in mice. Molecular analysis reveals that PRMT5 binds to the proximal promoter region of the AR gene and contributes mainly to the enriched symmetric dimethylation of H4R3 in the same region. Mechanistically, PRMT5 is recruited to the AR promoter by its interaction with Sp1, the major transcription factor responsible for AR transcription, and forms a complex with Brg1, an ATP-dependent chromatin remodeler, on the proximal promoter region of the AR gene. Furthermore, PRMT5 expression in prostate cancer tissues is significantly higher than that in benign prostatic hyperplasia tissues, and PRMT5 expression correlates positively with AR expression at both the protein and mRNA levels. Taken together, our results identify PRMT5 as a novel epigenetic activator of AR in prostate cancer. Given that inhibiting AR transcriptional activity or androgen synthesis remains the major mechanism of action for most existing anti-androgen agents, our findings also raise an interesting possibility that targeting PRMT5 may represent a novel approach for prostate cancer treatment by eliminating AR expression.

  1. Tzfp represses the androgen receptor in mouse testis.

    Directory of Open Access Journals (Sweden)

    Kari Furu

    Full Text Available The testis zinc finger protein (Tzfp, also known as Repressor of GATA, belongs to the BTB/POZ zinc finger family of transcription factors and is thought to play a role in spermatogenesis due to its remarkably high expression in testis. Despite many attempts to find the in vivo role of the protein, the molecular function is still largely unknown. Here, we address this issue using a novel mouse model with a disrupted Tzfp gene. Homozygous Tzfp null mice are born at reduced frequency but appear viable and fertile. Sertoli cells in testes lacking Tzfp display an increase in Androgen Receptor (AR signaling, and several genes in the testis, including Gata1, Aie1 and Fanc, show increased expression. Our results indicate that Tzfp function as a transcriptional regulator and that loss of the protein leads to alterations in AR signaling and reduced number of apoptotic cells in the testicular tubules.

  2. Androgen receptor polyglutamine repeat length (AR-CAGn) modulates the effect of testosterone on androgen-associated somatic traits in Filipino young adult men.

    Science.gov (United States)

    Ryan, Calen P; Georgiev, Alexander V; McDade, Thomas W; Gettler, Lee T; Eisenberg, Dan T A; Rzhetskaya, Margarita; Agustin, Sonny S; Hayes, M Geoffrey; Kuzawa, Christopher W

    2017-06-01

    The androgen receptor (AR) mediates expression of androgen-associated somatic traits such as muscle mass and strength. Within the human AR is a highly variable glutamine short-tandem repeat (AR-CAGn), and CAG repeat number has been inversely correlated to AR transcriptional activity in vitro. However, evidence for an attenuating effect of long AR-CAGn on androgen-associated somatic traits has been inconsistent in human populations. One possible explanation for this lack of consistency is that the effect of AR-CAGn on AR bioactivity in target tissues likely varies in relation to circulating androgen levels. We tested whether relationships between AR-CAGn and several androgen-associated somatic traits (waist circumference, lean mass, arm muscle area, and grip strength) were modified by salivary (waking and pre-bed) and circulating (total) testosterone (T) levels in young adult males living in metropolitan Cebu, Philippines (n = 675). When men's waking T was low, they had a reduction in three out of four androgen-associated somatic traits with lengthening AR-CAGn (p AR-CAGn was associated with an increase in these same somatic traits. Our finding that longer AR-CAGn predicts greater androgen-associated trait expression among high-T men runs counter to in vitro work, but is generally consistent with the few prior studies to evaluate similar interactions in human populations. Collectively, these results raise questions about the applicability of findings derived from in vitro AR-CAGn studies to the receptor's role in maintaining androgen-associated somatic traits in human populations. © 2017 Wiley Periodicals, Inc.

  3. Activation of β-catenin signaling in androgen receptor-negative prostate cancer cells.

    Science.gov (United States)

    Wan, Xinhai; Liu, Jie; Lu, Jing-Fang; Tzelepi, Vassiliki; Yang, Jun; Starbuck, Michael W; Diao, Lixia; Wang, Jing; Efstathiou, Eleni; Vazquez, Elba S; Troncoso, Patricia; Maity, Sankar N; Navone, Nora M

    2012-02-01

    To study Wnt/β-catenin in castrate-resistant prostate cancer (CRPC) and understand its function independently of the β-catenin-androgen receptor (AR) interaction. We carried out β-catenin immunocytochemical analysis, evaluated TOP-flash reporter activity (a reporter of β-catenin-mediated transcription), and sequenced the β-catenin gene in MDA prostate cancer 118a, MDA prostate cancer 118b, MDA prostate cancer 2b, and PC-3 prostate cancer cells. We knocked down β-catenin in AR-negative MDA prostate cancer 118b cells and carried out comparative gene-array analysis. We also immunohistochemically analyzed β-catenin and AR in 27 bone metastases of human CRPCs. β-Catenin nuclear accumulation and TOP-flash reporter activity were high in MDA prostate cancer 118b but not in MDA prostate cancer 2b or PC-3 cells. MDA prostate cancer 118a and MDA prostate cancer 118b cells carry a mutated β-catenin at codon 32 (D32G). Ten genes were expressed differently (false discovery rate, 0.05) in MDA prostate cancer 118b cells with downregulated β-catenin. One such gene, hyaluronan synthase 2 (HAS2), synthesizes hyaluronan, a core component of the extracellular matrix. We confirmed HAS2 upregulation in PC-3 cells transfected with D32G-mutant β-catenin. Finally, we found nuclear localization of β-catenin in 10 of 27 human tissue specimens; this localization was inversely associated with AR expression (P = 0.056, Fisher's exact test), suggesting that reduced AR expression enables Wnt/β-catenin signaling. We identified a previously unknown downstream target of β-catenin, HAS2, in prostate cancer, and found that high β-catenin nuclear localization and low or no AR expression may define a subpopulation of men with bone metastatic prostate cancer. These findings may guide physicians in managing these patients.

  4. Androgen-androgen receptor system improves chronic inflammatory conditions by suppressing monocyte chemoattractant protein-1 gene expression in adipocytes via transcriptional regulation

    Energy Technology Data Exchange (ETDEWEB)

    Morooka, Nobukatsu, E-mail: amorooka@gunma-u.ac.jp [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Ueguri, Kei [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Yee, Karen Kar Lye [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Human Resources Cultivation Center, Gunma University, 1-5-1 Tenjin-cho, Kiryushi, Gunma, 376-8515 (Japan); Yanase, Toshihiko [Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, Jonan-ku, Fukuoka, 814-0180 (Japan); Sato, Takashi [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan)

    2016-09-02

    Age-related decreases in sex hormones are closely related to chronic inflammation in obesity and metabolic diseases. Particularly, the molecular basis of androgen activity in regulating inflammation and controlling metabolism remains largely unknown. Obese adipocytes secrete monocyte chemoattractant protein-1 (MCP-1), a key chemokine that promotes the infiltration of monocytes/macrophages into adipose tissue, thereby leading to metabolic disorders. Here, we studied the role of androgen-androgen receptor (AR) action in regulating MCP-1 expression in adipose tissue. We observed the induction of Mcp-1 expression in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. Additionally, Mcp-1 expression was upregulated by culturing in conditioned medium derived from inflammatory macrophages (M1-Mφ) containing tumor necrosis factor-alpha (TNF-α). We found that sex hormones downregulated TNF-α-induced Mcp-1 and interleukin (Il)-6 expression in 3T3-L1 adipocytes. Furthermore, luciferase-reporter analysis indicated that MCP-1 promoter activity was predominantly suppressed by dihydrotestosterone (DHT)-AR interactions through functional canonical nuclear factor-kappa B (NF-κB) sites, whereas non-canonical NF-κB site containing important flanking sequences exhibited minor contributions to DHT-AR transcriptional repression. These findings suggested that androgen-AR suppressed obesity-induced chronic inflammation in adipose tissue. - Highlights: • DHT, non-aromatizable androgen suppresses Mcp-1 expression in adipocytes. • Mcp-1 transcription was negatively regulated by DHT-AR action. • DHT-AR selectively regulates Mcp-1 transcription through distinct NF-κB sites.

  5. Androgen-androgen receptor system improves chronic inflammatory conditions by suppressing monocyte chemoattractant protein-1 gene expression in adipocytes via transcriptional regulation

    International Nuclear Information System (INIS)

    Morooka, Nobukatsu; Ueguri, Kei; Yee, Karen Kar Lye; Yanase, Toshihiko; Sato, Takashi

    2016-01-01

    Age-related decreases in sex hormones are closely related to chronic inflammation in obesity and metabolic diseases. Particularly, the molecular basis of androgen activity in regulating inflammation and controlling metabolism remains largely unknown. Obese adipocytes secrete monocyte chemoattractant protein-1 (MCP-1), a key chemokine that promotes the infiltration of monocytes/macrophages into adipose tissue, thereby leading to metabolic disorders. Here, we studied the role of androgen-androgen receptor (AR) action in regulating MCP-1 expression in adipose tissue. We observed the induction of Mcp-1 expression in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. Additionally, Mcp-1 expression was upregulated by culturing in conditioned medium derived from inflammatory macrophages (M1-Mφ) containing tumor necrosis factor-alpha (TNF-α). We found that sex hormones downregulated TNF-α-induced Mcp-1 and interleukin (Il)-6 expression in 3T3-L1 adipocytes. Furthermore, luciferase-reporter analysis indicated that MCP-1 promoter activity was predominantly suppressed by dihydrotestosterone (DHT)-AR interactions through functional canonical nuclear factor-kappa B (NF-κB) sites, whereas non-canonical NF-κB site containing important flanking sequences exhibited minor contributions to DHT-AR transcriptional repression. These findings suggested that androgen-AR suppressed obesity-induced chronic inflammation in adipose tissue. - Highlights: • DHT, non-aromatizable androgen suppresses Mcp-1 expression in adipocytes. • Mcp-1 transcription was negatively regulated by DHT-AR action. • DHT-AR selectively regulates Mcp-1 transcription through distinct NF-κB sites.

  6. A Novel Dietary Flavonoid Fisetin Inhibits Androgen Receptor Signaling and Tumor Growth in Athymic Nude Mice

    Science.gov (United States)

    Khan, Naghma; Asim, Mohammad; Afaq, Farrukh; Zaid, Mohammad Abu; Mukhtar, Hasan

    2010-01-01

    Androgen receptor (AR)–mediated signaling plays an important role in the development and progression of prostate cancer (PCa). Hormonal therapies, mainly with combinations of antiandrogens and androgen deprivation, are the mainstay treatment for advanced disease. However, emergence of androgen resistance largely due to inefficient antihormone action limits their therapeutic usefulness. Here, we report that fisetin, a novel dietary flavonoid, acts as a novel AR ligand by competing with the high-affinity androgen to interact with the ligand binding domain of AR. We show that this physical interaction results in substantial decrease in AR stability and decrease in amino-terminal/carboxyl-terminal (N-C) interaction of AR. This results in blunting of AR-mediated transactivation of target genes including prostate-specific antigen (PSA). In addition, treatment of LNCaP cells with fisetin decreased AR protein levels, in part, by decreasing its promoter activity and by accelerating its degradation. Fisetin also synergized with Casodex in inducing apoptosis in LNCaP cells. Treatment with fisetin in athymic nude mice implanted with AR-positive CWR22Rυ1 human PCa cells resulted in inhibition of tumor growth and reduction in serum PSA levels. These data identify fisetin as an inhibitor of AR signaling axis and suggest that it could be a useful chemopreventive and chemotherapeutic agent to delay progression of PCa. PMID:18922931

  7. Enzalutamide inhibits proliferation of gemcitabine-resistant bladder cancer cells with increased androgen receptor expression.

    Science.gov (United States)

    Kameyama, Koji; Horie, Kengo; Mizutani, Kosuke; Kato, Taku; Fujita, Yasunori; Kawakami, Kyojiro; Kojima, Toshio; Miyazaki, Tatsuhiko; Deguchi, Takashi; Ito, Masafumi

    2017-01-01

    Advanced bladder cancer is treated mainly with gemcitabine and cisplatin, but most patients eventually become resistance. Androgen receptor (AR) signaling has been implicated in bladder cancer as well as other types of cancer including prostate cancer. In this study, we investigated the expression and role of AR in gemcitabine-resistant bladder cancer cells and also the potential of enzalutamide, an AR inhibitor, as a therapeutic for the chemoresistance. First of all, we established gemcitabine-resistant T24 cells (T24GR) from T24 bladder cancer cells and performed gene expression profiling. Microarray analysis revealed upregulation of AR expression in T24GR cells compared with T24 cells. AR mRNA and protein expression was confirmed to be increased in T24GR cells, respectively, by quantitative RT-PCR and western blot analysis, which was associated with more potent AR transcriptional activity as measured by luciferase reporter assay. The copy number of AR gene in T24GR cells determined by PCR was twice as many as that of T24 cells. AR silencing by siRNA transfection resulted in inhibition of proliferation of T24GR cells. Cell culture in charcoal-stripped serum and treatment with enzalutamide inhibited growth of T24GR cells, which was accompanied by cell cycle arrest. AR transcriptional activity was found to be reduced in T24GR cells by enzalutamide treatment. Lastly, enzalutamide also inhibited cell proliferation of HTB5 bladder cancer cells that express AR and possess intrinsic resistance to gemcitabine. Our results suggest that enzalutamide may have the potential to treat patients with advanced gemcitabine-resistant bladder cancer with increased AR expression.

  8. Inhibition of glycogen synthase kinase-3β counteracts ligand-independent activity of the androgen receptor in castration resistant prostate cancer.

    Directory of Open Access Journals (Sweden)

    Stefanie V Schütz

    Full Text Available In order to generate genomic signals, the androgen receptor (AR has to be transported into the nucleus upon androgenic stimuli. However, there is evidence from in vitro experiments that in castration-resistant prostate cancer (CRPC cells the AR is able to translocate into the nucleus in a ligand-independent manner. The recent finding that inhibition of the glycogen-synthase-kinase 3β (GSK-3β induces a rapid nuclear export of the AR in androgen-stimulated prostate cancer cells prompted us to analyze the effects of a GSK-3β inhibition in the castration-resistant LNCaP sublines C4-2 and LNCaP-SSR. Both cell lines exhibit high levels of nuclear AR in the absence of androgenic stimuli. Exposure of these cells to the maleimide SB216763, a potent GSK-3β inhibitor, resulted in a rapid nuclear export of the AR even under androgen-deprived conditions. Moreover, the ability of C4-2 and LNCaP-SSR cells to grow in the absence of androgens was diminished after pharmacological inhibition of GSK-3β in vitro. The ability of SB216763 to modulate AR signalling and function in CRPC in vivo was additionally demonstrated in a modified chick chorioallantoic membrane xenograft assay after systemic delivery of SB216763. Our data suggest that inhibition of GSK-3β helps target the AR for export from the nucleus thereby diminishing the effects of mislocated AR in CRPC cells. Therefore, inhibition of GSK-3β could be an interesting new strategy for the treatment of CRPC.

  9. Network analysis of an in vitro model of androgen-resistance in prostate cancer

    International Nuclear Information System (INIS)

    Detchokul, Sujitra; Elangovan, Aparna; Crampin, Edmund J.; Davis, Melissa J.; Frauman, Albert G.

    2015-01-01

    The development of androgen resistance is a major limitation to androgen deprivation treatment in prostate cancer. We have developed an in vitro model of androgen-resistance to characterise molecular changes occurring as androgen resistance evolves over time. Our aim is to understand biological network profiles of transcriptomic changes occurring during the transition to androgen-resistance and to validate these changes between our in vitro model and clinical datasets (paired samples before and after androgen-deprivation therapy of patients with advanced prostate cancer). We established an androgen-independent subline from LNCaP cells by prolonged exposure to androgen-deprivation. We examined phenotypic profiles and performed RNA-sequencing. The reads generated were compared to human clinical samples and were analysed using differential expression, pathway analysis and protein-protein interaction networks. After 24 weeks of androgen-deprivation, LNCaP cells had increased proliferative and invasive behaviour compared to parental LNCaP, and its growth was no longer responsive to androgen. We identified key genes and pathways that overlap between our cell line and clinical RNA sequencing datasets and analysed the overlapping protein-protein interaction network that shared the same pattern of behaviour in both datasets. Mechanisms bypassing androgen receptor signalling pathways are significantly enriched. Several steroid hormone receptors are differentially expressed in both datasets. In particular, the progesterone receptor is significantly differentially expressed and is part of the interaction network disrupted in both datasets. Other signalling pathways commonly altered in prostate cancer, MAPK and PI3K-Akt pathways, are significantly enriched in both datasets. The overlap between the human and cell-line differential expression profiles and protein networks was statistically significant showing that the cell-line model reproduces molecular patterns observed in

  10. Establishment of prostate cancer spheres from a prostate cancer cell line after phenethyl isothiocyanate treatment and discovery of androgen-dependent reversible differentiation between sphere and neuroendocrine cells.

    Science.gov (United States)

    Chen, Yamei; Cang, Shundong; Han, Liying; Liu, Christina; Yang, Patrick; Solangi, Zeeshan; Lu, Quanyi; Liu, Delong; Chiao, J W

    2016-05-03

    Prostate cancer can transform from androgen-responsive to an androgen-independent phenotype. The mechanism responsible for the transformation remains unclear. We studied the effects of an epigenetic modulator, phenethyl isothiocyanate (PEITC), on the androgen-responsive LNCaP cells. After treatment with PEITC, floating spheres were formed with characteristics of prostate cancer stem cells (PCSC). These spheres were capable of self-renewal in media with and without androgen. They have been maintained in both types of media as long term cultures. Upon androgen deprivation, the adherent spheres differentiated to neuroendocrine cells (NEC) with decreased proliferation, expression of androgen receptor, and PSA. NEC reverse differentiated to spheres when androgen was replenished. The sphere cells expressed surface marker CD44 and had enhanced histone H3K4 acetylation, DNMT1 down-regulation and GSTP1 activation. We hypothesize that PEITC-mediated alteration in epigenomics of LNCaP cells may give rise to sphere cells, whereas reversible androgenomic alterations govern the shuttling between sphere PCSC and progeny NEC. Our findings identify unrecognized properties of prostate cancer sphere cells with multi-potential plasticity. This system will facilitate development of novel therapeutic agents and allow further exploration into epigenomics and androgenomics governing the transformation to hormone refractory prostate cancer.

  11. Androgen Signaling Disruption during Fetal and Postnatal Development Affects Androgen Receptor and Connexin 43 Expression and Distribution in Adult Boar Prostate

    Directory of Open Access Journals (Sweden)

    Anna Hejmej

    2013-01-01

    Full Text Available To date, limited knowledge exists regarding the role of the androgen signaling during specific periods of development in the regulation of androgen receptor (AR and connexin 43 (Cx43 in adult prostate. Therefore, in this study we examined mRNA and protein expression, and tissue distribution of AR and Cx43 in adult boar prostates following fetal (GD20, neonatal (PD2, and prepubertal (PD90 exposure to an antiandrogen flutamide (50 mg/kg bw. In GD20 and PD2 males we found the reduction of the luminal compartment, inflammatory changes, decreased AR and increased Cx43 expression, and altered localization of both proteins. Moreover, enhanced apoptosis and reduced proliferation were detected in the prostates of these animals. In PD90 males the alterations were less evident, except that Cx43 expression was markedly upregulated. The results presented herein indicate that in boar androgen action during early fetal and neonatal periods plays a key role in the maintenance of normal phenotype and functions of prostatic cells at adulthood. Furthermore, we demonstrated that modulation of Cx43 expression in the prostate could serve as a sensitive marker of hormonal disruption during different developmental stages.

  12. Identification of selected in vitro generated phase-I metabolites of the steroidal selective androgen receptor modulator MK-0773 for doping control purposes.

    Science.gov (United States)

    Lagojda, Andreas; Kuehne, Dirk; Krug, Oliver; Thomas, Andreas; Wigger, Tina; Karst, Uwe; Schänzer, Wilhelm; Thevis, Mario

    2016-01-01

    Research into developing anabolic agents for various therapeutic purposes has been pursued for decades. As the clinical utility of anabolic-androgenic steroids has been found to be limited because of their lack of tissue selectivity and associated off-target effects, alternative drug entities have been designed and are commonly referred to as selective androgen receptor modulators (SARMs). While most of these SARMs are of nonsteroidal structure, the drug candidate MK-0773 comprises a 4-aza-steroidal nucleus. Besides the intended therapeutic use, SARMs have been found to be illicitly distributed and misused as doping agents in sport, necessitating frequently updated doping control analytical assays. As steroidal compounds reportedly undergo considerable metabolic transformations, the phase-I metabolism of MK-0773 was simulated using human liver microsomal (HLM) preparations and electrochemical conversion. Subsequently, major metabolic products were identified and characterized employing liquid chromatography-high-resolution/high- accuracy tandem mass spectrometry with electrospray (ESI) and atmospheric pressure chemical ionization (APCI) as well as nuclear magnetic resonance (NMR) spectroscopy. MK-0773 produced numerous phase-I metabolites under the chosen in vitro incubation reactions, mostly resulting from mono- and bisoxygenation of the steroid. HLM yielded at least 10 monooxygenated species, while electrochemistry-based experiments resulted predominantly in three monohydroxylated metabolites. Elemental composition data and product ion mass spectra were generated for these analytes, ESI/APCI measurements corroborated the formation of at least two N-oxygenated metabolites, and NMR data obtained from electrochemistry-derived products supported structures suggested for three monohydroxylated compounds. Hereby, the hydroxylation of the A-ring located N- bound methyl group was found to be of particular intensity. In the absence of controlled elimination studies, the

  13. Polymorphisms in the vitamin D receptor gene and the androgen receptor gene and the risk of benign prostatic hyperplasia

    NARCIS (Netherlands)

    Bousema, J. T.; Bussemakers, M. J.; van Houwelingen, K. P.; Debruyne, F. M.; Verbeek, A. L.; de la Rosette, J. J.; Kiemeney, L. A.

    2000-01-01

    Little is known about risk factors for the development of benign prostatic hyperplasia (BPH). Recently, associations were observed between prostate cancer (CaP) risk and polymorphisms in the vitamin D receptor (VDR) gene and the androgen receptor (AR) gene. Since both receptors are relevant for

  14. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads.

    Science.gov (United States)

    Martinović-Weigelt, Dalma; Wang, Rong-Lin; Villeneuve, Daniel L; Bencic, David C; Lazorchak, Jim; Ankley, Gerald T

    2011-01-25

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4×44K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals. 2010 Elsevier B.V. All rights reserved.

  15. Changes in amount and intracellular distribution of androgen receptor in human foreskin as a function of age.

    Science.gov (United States)

    Roehrborn, C G; Lange, J L; George, F W; Wilson, J D

    1987-01-01

    To provide insight into the factors that control growth of the penis we measured the amount and intracellular distribution of specific high affinity androgen receptor in foreskins obtained at circumcision from 49 males varying in age from newborn to 59 yr. Total (cytosolic plus nuclear extract) androgen receptor decreased from approximately 40 fmol/g tissue weight in newborn foreskins to approximately 25 fmol/g by 1 yr of age. The amount of receptor rose in childhood to approximately 180 fmol/g in the late teenage years and fell thereafter to approximately 20-40 fmol/g in men older than 40 yr. The amount of receptor in the nuclear fraction increased at the time of puberty and subsequently decreased in parallel with the decline in total receptor level. These changes in androgen-receptor amount are similar when expressed per milligram DNA or per milligram protein. Images PMID:3491838

  16. Androgen receptor and its splice variant, AR-V7, differentially regulate FOXA1 sensitive genes in LNCaP prostate cancer cells.

    Science.gov (United States)

    Krause, William C; Shafi, Ayesha A; Nakka, Manjula; Weigel, Nancy L

    2014-09-01

    Prostate cancer (PCa) is an androgen-dependent disease, and tumors that are resistant to androgen ablation therapy often remain androgen receptor (AR) dependent. Among the contributors to castration-resistant PCa are AR splice variants that lack the ligand-binding domain (LBD). Instead, they have small amounts of unique sequence derived from cryptic exons or from out of frame translation. The AR-V7 (or AR3) variant is constitutively active and is expressed under conditions consistent with CRPC. AR-V7 is reported to regulate a transcriptional program that is similar but not identical to that of AR. However, it is unknown whether these differences are due to the unique sequence in AR-V7, or simply to loss of the LBD. To examine transcriptional regulation by AR-V7, we have used lentiviruses encoding AR-V7 (amino acids 1-627 of AR with the 16 amino acids unique to the variant) to prepare a derivative of the androgen-dependent LNCaP cells with inducible expression of AR-V7. An additional cell line was generated with regulated expression of AR-NTD (amino acids 1-660 of AR); this mutant lacks the LBD but does not have the AR-V7 specific sequence. We find that AR and AR-V7 have distinct activities on target genes that are co-regulated by FOXA1. Transcripts regulated by AR-V7 were similarly regulated by AR-NTD, indicating that loss of the LBD is sufficient for the observed differences. Differential regulation of target genes correlates with preferential recruitment of AR or AR-V7 to specific cis-regulatory DNA sequences providing an explanation for some of the observed differences in target gene regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Androgen receptors and serum testosterone levels identify different subsets of postmenopausal breast cancers

    Directory of Open Access Journals (Sweden)

    Secreto Giorgio

    2012-12-01

    Full Text Available Abstract Background Androgen receptors (AR are frequently expressed in breast cancers, but their implication in cancer growth is still controversial. In the present study, we further investigated the role of the androgen/AR pathway in breast cancer development. Methods AR expression was evaluated by immunochemistry in a cohort of 528 postmenopausal breast cancer patients previously examined for the association of serum testosterone levels with patient and tumor characteristics. AR expression was classified according to the percentage of stained cells: AR-absent (0% and AR-poorly (1%-30%, AR-moderately (>30%-60%, and AR-highly (>60% positive. Results Statistical analysis was performed in 451 patients who experienced natural menopause. AR-high expression was significantly related with low histologic grade and estrogen receptor (ER- and progesterone receptor (PR-positive status (P trendP=0.022, although a trend across the AR expression categories was not present. When women defined by ER status were analyzed separately, regression analysis in the ER-positive group showed a significant association of high testosterone levels with AR-highly-positive expression (OR 1.86; 95% CI, 1.10-3.16, but the association was essentially due to patients greater than or equal to 65 years (OR 2.42; 95% CI, 1.22-4.82. In ER-positive group, elevated testosterone levels appeared also associated with AR-absent expression, although the small number of patients in this category limited the appearance of significant effects (OR 1.92; 95% CI, 0.73–5.02: the association was present in both age groups ( Conclusions The findings in the present study confirm that testosterone levels are a marker of hormone-dependent breast cancer and suggest that the contemporary evaluation of ER status, AR expression, and circulating testosterone levels may identify different subsets of cancers whose growth may be influenced by androgens.

  18. Assessment of endocrine disruption potential of essential oils of culinary herbs and spices involving glucocorticoid, androgen and vitamin D receptors.

    Science.gov (United States)

    Bartoňková, Iveta; Dvořák, Zdeněk

    2018-04-25

    Essential oils (EOs) of culinary herbs and spices are consumed on a daily basis. They are multicomponent mixtures of compounds with already demonstrated biological activities. Taking into account regular dietary intake and the chemical composition of EOs, they may be considered as candidates for endocrine-disrupting entities. Therefore, we examined the effects of 31 EOs of culinary herbs and spices on transcriptional activities of glucocorticoid receptor (GR), androgen receptor (AR) and vitamin D receptor (VDR). Using reporter gene assays in stably transfected cell lines, weak anti-androgen and anti-glucocorticoid activity was observed for EO of vanilla and nutmeg, respectively. Moderate augmentation of calcitriol-dependent VDR activity was caused by EOs of ginger, thyme, coriander and lemongrass. Mixed anti-glucocorticoid and VDR-stimulatory activities were displayed by EOs of turmeric, oregano, dill, caraway, verveine and spearmint. The remaining 19 EOs were inactive against all receptors under investigation. Analyses of GR, AR and VDR target genes by means of RT-PCR confirmed the VDR-stimulatory effects, but could not confirm the anti-glucocorticoid and anti-androgen effects of EOs. In conclusion, although we observed minor effects of several EOs on transcriptional activities of GR, AR and VDR, the toxicological significance of these effects is very low. Hence, 31 EOs of culinary herbs and spices may be considered safe, in terms of endocrine disruption involving receptors GR, AR and VDR.

  19. Nuclear androgen receptors in human prostatic tissue. Extraction with heparin and estimation of the number of binding sites with different methods

    International Nuclear Information System (INIS)

    Foekens, J.A.; Bolt-de Vries, J.; Mulder, E.; Blankenstein, M.A.; Schroeder, F.H.; Molen, H.J. van der

    1981-01-01

    A procedure for the estimation of nuclear androgen receptors in benign prostatic hyperplastic tissue is described, which employs extraction of receptors from nuclei with buffers containing heparin. Extraction of a nuclear pellet with a heparin-containing (1 g/l) buffer appeared to have definite advantages over 0.4 mol/l KCl extraction. Heparin appeared to be twice as efficient in extracting androgen receptors. In addition aggregated receptor proteins, formed after storage at -80 0 C, were partly deaggregated by heparin. Specific isolation of the androgen receptor was performed using either agar gel electrophoresis, protamine sulphate precipitation or LH-20 gel filtration. A comparison was made between the amounts of estimated receptors with these different techniques. Protamine sulphate precipitation resulted in the highest estimates of receptor-bound 5α-[ 3 H]dihydrotestosterone ( 3 H-DHT). Treatment of the labelled nuclear extracts with a charcoal suspension prior to the receptor assay resulted in lower amounts of estimated androgen receptors. A method for routine evaluation of nuclear androgen receptors in prostatic tissue has been evaluated, which involves extraction of nuclear pellets with a heparin-containing (1 g/l) buffer, exchange labelling of the nuclear extracts for 20 h at 10 0 C and quantification of the receptors with protamine sulphate precipitation. (Auth.)

  20. Androgen Receptor Antagonism By Divalent Ethisterone Conjugates In Castrate-Resistant Prostate Cancer Cells

    Science.gov (United States)

    Levine, Paul M.; Lee, Eugine; Greenfield, Alex; Bonneau, Richard; Logan, Susan K.; Garabedian, Michael J.; Kirshenbaum, Kent

    2013-01-01

    Sustained treatment of prostate cancer with Androgen Receptor (AR) antagonists can evoke drug resistance, leading to castrate-resistant disease. Elevated activity of the AR is often associated with this highly aggressive disease state. Therefore, new therapeutic regimens that target and modulate AR activity could prove beneficial. We previously introduced a versatile chemical platform to generate competitive and non-competitive multivalent peptoid oligomer conjugates that modulate AR activity. In particular, we identified a linear and a cyclic divalent ethisterone conjugate that exhibit potent anti-proliferative properties in LNCaP-abl cells, a model of castrate-resistant prostate cancer. Here, we characterize the mechanism of action of these compounds utilizing confocal microscopy, time-resolved fluorescence resonance energy transfer, chromatin immunoprecipitation, flow cytometry, and microarray analysis. The linear conjugate competitively blocks AR action by inhibiting DNA binding. In addition, the linear conjugate does not promote AR nuclear localization or co-activator binding. In contrast, the cyclic conjugate promotes AR nuclear localization and induces cell-cycle arrest, despite its inability to compete against endogenous ligand for binding to AR in vitro. Genome-wide expression analysis reveals that gene transcripts are differentially affected by treatment with the linear or cyclic conjugate. Although the divalent ethisterone conjugates share extensive chemical similarities, we illustrate that they can antagonize the AR via distinct mechanisms of action, establishing new therapeutic strategies for potential applications in AR pharmacology. PMID:22871957

  1. BAF57 Modulation of Androgen Receptor Action and Prostate Cancer Progression

    National Research Council Canada - National Science Library

    Link, Kevin A

    2007-01-01

    Given the requirement of the androgen receptor (AR) activation pathway for prostate cancer growth and progression, it is necessary to identify alternative means of targeting this pathway for the treatment of prostate cancer...

  2. Epigenetic Machinery Regulates Alternative Splicing of Androgen Receptor (AR) Gene in Castration-Resistant Prostate Cancer (CRPC)

    Science.gov (United States)

    2017-09-01

    Splicing of Androgen Receptor (AR) Gene in Castration-Resistant Prostate Cancer (CRPC) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jer...Epigenetic regulation of androgen receptor signaling in prostate cancer . Epigenetics. 5, 100-104. 2. Duan LL, Rai G , Roggero C, Zhang Q-J, Wei Q... Prostate Cancer (CRPC) PRINCIPAL INVESTIGATOR: Hsieh, Jer-Tsong CONTRACTING ORGANIZATION: University of Texas Southwestern Medical Center

  3. Cell-specific expression of the glucocorticoid receptor within granular convoluted tubules of the rat submaxillary gland

    International Nuclear Information System (INIS)

    Antakly, T.; Zhang, C.X.; Sarrieau, A.; Raquidan, D.

    1991-01-01

    The submaxillary gland, a heterogeneous tissue composed essentially of two functionally distinct cell types (tubular epithelial and acinar), offers an interesting system in which to study the mechanisms of steroid-dependent growth and differentiation. One cell type, the granular convoluted tubular (GCT) cell, secretes a large number of physiologically important polypeptides, including epidermal and nerve growth factors. Two steroids, androgens and glucocorticoids, greatly influence the growth, differentiation, and secretory activity of GCT cells. Because glucocorticoids can partially mimic or potentiate androgen effects, it has been thought that glucocorticoids act via androgen receptors. Since the presence of glucocorticoid receptors is a prerequisite for glucocorticoid action, we have investigated the presence and cellular distribution of glucocorticoid receptors within the rat submaxillary gland. Binding experiments using [3H]dexamethasone revealed the presence of high affinity binding sites in rat submaxillary tissue homogenates. Most of these sites were specifically competed by dexamethasone, corticosterone, and a pure glucocorticoid agonist RU 28362. Neither testosterone nor dihydrotestosterone competed for glucocorticoid binding. The cellular distribution of glucocorticoid receptors within the submaxillary gland was investigated by immunocytochemistry, using two highly specific glucocorticoid receptor antibodies. The receptor was localized in the GCT cells, but not in the acinar cells of rat and mouse submaxillary tissue sections. In GCT cells, the glucocorticoid receptor colocalized with several secretory polypeptides, including epidermal growth factor, nerve growth factor, alpha 2u-globulin, and atrial natriuretic factor

  4. CD147 modulates androgen receptor activity through the Akt/Gsk-3β/β-catenin/AR pathway in prostate cancer cells.

    Science.gov (United States)

    Fang, Fang; Qin, Yingxin; Hao, Feng; Li, Qiang; Zhang, Wei; Zhao, Chen; Chen, Shuang; Zhao, Liangzhong; Wang, Liguo; Cai, Jianhui

    2016-08-01

    The androgen signaling pathway serves an important role in the development of prostate cancer. β-Catenin is an androgen receptor (AR) cofactor and augments AR signaling. Glycogen synthase kinase-3β (GSK-3β), a target of phosphorylated serine/threonine protein kinase B (p-Akt), regulates β-catenin stability. In addition, β-catenin, a coregulator of AR, physically interacts with AR and enhances AR-mediated target gene transcription. The multifunctional glycoprotein cluster of differentiation (CD) 147 is highly expressed on the cell surface of the majority of cancer cells, and it promotes tumor invasion, metastasis and growth. In the present study, the molecular effects of CD147 on the Akt/GSK-3β/β-catenin/AR signaling network were investigated in LNCaP cells. Using short hairpin-mediated RNA knockdown of CD147 in LNCaP cells, it was demonstrated that downregulation of CD147 resulted in inhibitory phosphorylation of GSK-3β, and then promoted degeneration of β-catenin and reduced nuclear accumulation of β-catenin. In addition, immunoprecipitation studies demonstrated that CD147 downregulation decreased the formation of a complex between β-catenin and AR. It was shown that CD147 knockdown suppressed the expression of the AR target gene prostate-specific antigen and the growth of AR-positive LNCaP cells. Furthermore, inhibition of PI3K/Akt with LY294002 augmented CD147-mediated function. The present study indicates that the PI3K/Akt pathway may facilitate CD147-mediated activation of the AR pathway.

  5. Growth Inhibition by Testosterone in an Androgen Receptor Splice Variant-Driven Prostate Cancer Model.

    Science.gov (United States)

    Nakata, Daisuke; Nakayama, Kazuhide; Masaki, Tsuneo; Tanaka, Akira; Kusaka, Masami; Watanabe, Tatsuya

    2016-12-01

    Castration resistance creates a significant problem in the treatment of prostate cancer. Constitutively active splice variants of androgen receptor (AR) have emerged as drivers for resistance to androgen deprivation therapy, including the next-generation androgen-AR axis inhibitors abiraterone and enzalutamide. In this study, we describe the characteristics of a novel castration-resistant prostate cancer (CRPC) model, designated JDCaP-hr (hormone refractory). JDCaP-hr was established from an androgen-dependent JDCaP xenograft model after surgical castration. The expression of AR and its splice variants in JDCaP-hr was evaluated by immunoblotting and quantitative reverse transcription-polymerase chain reaction. The effects of AR antagonists and testosterone on JDCaP-hr were evaluated in vivo and in vitro. The roles of full-length AR (AR-FL) and AR-V7 in JDCaP-hr cell growth were evaluated using RNA interference. JDCaP-hr acquired a C-terminally truncated AR protein during progression from the parental JDCaP. The expression of AR-FL and AR-V7 mRNA was upregulated by 10-fold in JDCaP-hr compared with that in JDCaP, indicating that the JDCaP and JDCaP-hr models simulate castration resistance with some clinical features, such as overexpression of AR and its splice variants. The AR antagonist bicalutamide did not affect JDCaP-hr xenograft growth, and importantly, testosterone induced tumor regression. In vitro analysis demonstrated that androgen-independent prostate-specific antigen secretion and cell proliferation of JDCaP-hr were predominantly mediated by AR-V7. JDCaP-hr cell growth displayed a bell-shaped dependence on testosterone, and it was suppressed by physiological concentrations of testosterone. Testosterone induced rapid downregulation of both AR-FL and AR-V7 expression at physiological concentrations and suppressed expression of the AR target gene KLK3. Our findings support the clinical value of testosterone therapy, including bipolar androgen therapy, in the

  6. The NLR-related protein NWD1 is associated with prostate cancer and modulates androgen receptor signaling.

    Science.gov (United States)

    Correa, Ricardo G; Krajewska, Maryla; Ware, Carl F; Gerlic, Motti; Reed, John C

    2014-03-30

    Prostate cancer (PCa) is among the leading causes of cancer-related death in men. Androgen receptor (AR) signaling plays a seminal role in prostate development and homeostasis, and dysregulation of this pathway is intimately linked to prostate cancer pathogenesis and progression. Here, we identify the cytosolic NLR-related protein NWD1 as a novel modulator of AR signaling. We determined that expression of NWD1 becomes elevated during prostate cancer progression, based on analysis of primary tumor specimens. Experiments with cultured cells showed that NWD1 expression is up-regulated by the sex-determining region Y (SRY) family proteins. Gene silencing procedures, in conjunction with transcriptional profiling, showed that NWD1 is required for expression of PDEF (prostate-derived Ets factor), which is known to bind and co-regulate AR. Of note, NWD1 modulates AR protein levels. Depleting NWD1 in PCa cell lines reduces AR levels and suppresses activity of androgen-driven reporter genes. NWD1 knockdown potently suppressed growth of androgen-dependent LNCaP prostate cancer cells, thus showing its functional importance in an AR-dependent tumor cell model. Proteomic analysis suggested that NWD1 associates with various molecular chaperones commonly related to AR complexes. Altogether, these data suggest a role for tumor-associated over-expression of NWD1 in dysregulation of AR signaling in PCa.

  7. Synergistic co-targeting of prostate-specific membrane antigen and androgen receptor in prostate cancer.

    Science.gov (United States)

    Murga, Jose D; Moorji, Sameer M; Han, Amy Q; Magargal, Wells W; DiPippo, Vincent A; Olson, William C

    2015-02-15

    Antibody-drug conjugates (ADCs) are an emerging class of cancer therapies that have demonstrated favorable activity both as single agents and as components of combination regimens. Phase 2 testing of an ADC targeting prostate-specific membrane antigen (PSMA) in advanced prostate cancer has shown antitumor activity. The present study examined PSMA ADC used in combination with potent antiandrogens (enzalutamide and abiraterone) and other compounds. Antiproliferative activity and expression of PSMA, prostate-specific antigen and androgen receptor were evaluated in the prostate cancer cell lines LNCaP and C4-2. Cells were tested for susceptibility to antiandrogens or other inhibitors, used alone and in combination with PSMA ADC. Potential drug synergy or antagonism was evaluated using the Bliss independence method. Enzalutamide and abiraterone demonstrated robust, statistically significant synergy when combined with PSMA ADC. Largely additive activity was observed between the antiandrogens and the individual components of the ADC (free drug and unmodified antibody). Rapamycin also synergized with PSMA ADC in certain settings. Synergy was linked in part to upregulation of PSMA expression. In androgen-dependent LNCaP cells, enzalutamide and abiraterone each inhibited proliferation, upregulated PSMA expression, and synergized with PSMA ADC. In androgen-independent C4-2 cells, enzalutamide and abiraterone showed no measurable antiproliferative activity on their own but increased PSMA expression and synergized with PSMA ADC nonetheless. PSMA expression increased progressively over 3 weeks with enzalutamide and returned to baseline levels 1 week after enzalutamide removal. The findings support exploration of clinical treatment regimens that combine potent antiandrogens and PSMA-targeted therapies for prostate cancer. © 2014 Wiley Periodicals, Inc.

  8. Interaction Between a Novel p21 Activated Kinase (PAK6) and Androgen Receptor in Prostate Cancer

    National Research Council Canada - National Science Library

    Sun, Zijie

    2005-01-01

    The effects of androgens are mediated by the androgen receptor (AR), which plays a critical role in inducing normal differentiation of tissues of the reproductive organs and in the development and progression of prostate cancer...

  9. Conazole fungicides inhibit Leydig cell testosterone secretion and androgen receptor activation in vitro

    Directory of Open Access Journals (Sweden)

    Maarke J.E. Roelofs

    2014-01-01

    Full Text Available Conazole fungicides are widely used in agriculture despite their suspected endocrine disrupting properties. In this study, the potential (anti-androgenic effects of ten conazoles were assessed and mutually compared with existing data. Effects of cyproconazole (CYPRO, fluconazole (FLUC, flusilazole (FLUS, hexaconazole (HEXA, myconazole (MYC, penconazole (PEN, prochloraz (PRO, tebuconazole (TEBU, triadimefon (TRIA, and triticonazole (TRIT were examined using murine Leydig (MA-10 cells and human T47D-ARE cells stably transfected with an androgen responsive element and a firefly luciferase reporter gene. Six conazoles caused a decrease in basal testosterone (T secretion by MA-10 cells varying from 61% up to 12% compared to vehicle-treated control. T secretion was concentration-dependently inhibited after exposure of MA-10 cells to several concentrations of FLUS (IC50 = 12.4 μM or TEBU (IC50 = 2.4 μM in combination with LH. The expression of steroidogenic and cholesterol biosynthesis genes was not changed by conazole exposure. Also, there were no changes in reactive oxygen species (ROS formation that could explain the altered T secretion after exposure to conazoles. Nine conazoles decreased T-induced AR activation (IC50s ranging from 10.7 to 71.5 μM and effect potencies (REPs were calculated relative to the known AR antagonist flutamide (FLUT. FLUC had no effect on AR activation by T. FLUS was the most potent (REP = 3.61 and MYC the least potent (REP = 0.03 AR antagonist. All other conazoles had a comparable REP from 0.12 to 0.38. Our results show distinct in vitro anti-androgenic effects of several conazole fungicides arising from two mechanisms: inhibition of T secretion and AR antagonism, suggesting potential testicular toxic effects. These effects warrant further mechanistic investigation and clearly show the need for accurate exposure data in order to perform proper (human risk assessment of this class of compounds.

  10. Saw Palmetto induces growth arrest and apoptosis of androgen-dependent prostate cancer LNCaP cells via inactivation of STAT 3 and androgen receptor signaling.

    Science.gov (United States)

    Yang, Yang; Ikezoe, Takayuki; Zheng, Zhixing; Taguchi, Hirokuni; Koeffler, H Phillip; Zhu, Wei-Guo

    2007-09-01

    PC-SPES is an eight-herb mixture that has an activity against prostate cancer. Recently, we purified Saw Palmetto (Serenoa repens) from PC-SPES and found that Saw Palmetto induced growth arrest of prostate cancer LNCaP, DU145, and PC3 cells with ED50s of approximately 2.0, 2.6, and 3.3 microl/ml, respectively, as measured by mitochondrial-dependent conversion of the the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Saw Palmetto induced apoptosis of LNCaP cells in a time- and dose-dependent manner as measured by TUNEL assays. Also, Saw Palmetto increased the expression of p21waf1 and p53 protein in LNCaP cells. In addition, we found that Saw Palmetto down-regulated DHT- or IL-6-induced expression of prostate specific antigen in conjunction with down-regulation of the level of androgen receptor in the nucleus as measured by Western blot analysis. Moreover, Saw Palmetto down-regulated the IL-6-induced level of the phosphorylated form of STAT 3 in LNCaP cells. Furthermore, Saw Palmetto inhibited the growth of LNCaP cells present as tumor xenografts in BALB/c nude mice without adverse effect. These results indicate that Saw Palmetto might be useful for the treatment of individuals with prostate cancer.

  11. Prostate cancer cells differ in testosterone accumulation, dihydrotestosterone conversion, and androgen receptor signaling response to steroid 5α-reductase inhibitors.

    Science.gov (United States)

    Wu, Yue; Godoy, Alejandro; Azzouni, Faris; Wilton, John H; Ip, Clement; Mohler, James L

    2013-09-01

    Blocking 5α-reductase-mediated testosterone conversion to dihydrotestosterone (DHT) with finasteride or dutasteride is the driving hypothesis behind two prostate cancer prevention trials. Factors affecting intracellular androgen levels and the androgen receptor (AR) signaling axis need to be examined systematically in order to fully understand the outcome of interventions using these drugs. The expression of three 5α-reductase isozymes, as determined by immunohistochemistry and qRT-PCR, was studied in five human prostate cancer cell lines. Intracellular testosterone and DHT were analyzed using mass spectrometry. A luciferase reporter assay and AR-regulated genes were used to evaluate the modulation of AR activity. Prostate cancer cells were capable of accumulating testosterone to a level 15-50 times higher than that in the medium. The profile and expression of 5α-reductase isozymes did not predict the capacity to convert testosterone to DHT. Finasteride and dutasteride were able to depress testosterone uptake in addition to lowering intracellular DHT. The inhibition of AR activity following drug treatment often exceeded the expected response due to reduced availability of DHT. The ability to maintain high intracellular testosterone might compensate for the shortage of DHT. The biological effect of finasteride or dutasteride appears to be complex and may depend on the interplay of several factors, which include testosterone turnover, enzymology of DHT production, ability to use testosterone and DHT interchangeably, and propensity of cells for off-target AR inhibitory effect. © 2013 Wiley Periodicals, Inc.

  12. Expression of Progesterone and Androgen Receptors in the Breast of Premenopausal Women, Considering Menstrual Phase.

    Science.gov (United States)

    Fahlén, Mia; Zhang, Hua; Löfgren, Lars; Masironi, Britt; VON Schoultz, Eva; VON Schoultz, B O; Sahlin, Lena

    2018-03-01

    Progesterone and androgens are important for normal development and tumorigenesis of the breast. Breast tissue samples from 49 premenopausal women were obtained. The progesterone receptors (PRA, PRB, PGRMC1 and PGRMC2) and the androgen receptor (AR) were determined in malignant and benign breast tumors and control tissues. The PRB and AR mRNA levels were highest in tumors. PGRMC1 and PGRMC2 mRNA levels were higher in malignant tumors compared to their paired normal tissues. PRA protein showed most immunostaining in benign tumors. PRB immunostaining varied according to menstrual phase. AR immunostaining was highest in the glands of malignant tumors. Progesterone and androgen receptors are differently regulated in tumors compared to normal breast tissues. A malignant breast tumor could appear PR-negative if collected in the luteal phase, but positive in the follicular phase. This finding may have clinical implications. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. Minnelide Inhibits Androgen Dependent, Castration Resistant Prostate Cancer Growth by Decreasing Expression of Androgen Receptor Full Length and Splice Variants.

    Science.gov (United States)

    Isharwal, Sumit; Modi, Shrey; Arora, Nivedita; Uhlrich, Charles; Giri, Bhuwan; Barlass, Usman; Soubra, Ayman; Chugh, Rohit; Dehm, Scott M; Dudeja, Vikas; Saluja, Ashok; Banerjee, Sulagna; Konety, Badrinath

    2017-05-01

    With almost 30,000 deaths per year, prostate cancer is the second-leading cause of cancer-related death in men. Androgen Deprivation Therapy (ADT) has been the corner stone of prostate cancer treatment for decades. However, despite an initial response of prostate cancer to ADT, this eventually fails and the tumors recur, resulting in Castration Resistant Prostate Cancer (CRPC). Triptolide, a diterpene triepoxide, has been tested for its anti-tumor properties in a number of cancers for over a decade. Owing to its poor solubility in aqueous medium, its clinical application had been limited. To circumvent this problem, we have synthesized a water-soluble pro-drug of triptolide, Minnelide, that is currently being evaluated in a Phase 1 clinical trial against gastrointestinal tumors. In the current study, we assessed the therapeutic potential of Minnelide and its active compound triptolide against androgen dependent prostate cancer both in vitro as well as in vivo. Cell viability was measured by a MTT based assay after treating prostate cancer cells with multiple doses of triptolide. Apoptotic cell death was measured using a caspase 3/7 activity. Androgen Receptor (AR) promoter-binding activity was evaluated by using luciferase reporter assay. For evaluating the effect in vivo, 22Rv1 cells were implanted subcutaneously in animals, following which, treatment was started with 0.21 mg/kg Minnelide. Our study showed that treatment with triptolide induced apoptotic cell death in CRPC cells. Triptolide treatment inhibited AR transcriptional activity and decreased the expression of AR and its splice variants both at the mRNA and the protein level. Our studies show that triptolide inhibits nuclear translocation of Sp1, resulting in its decreased transcriptional activity leading to downregulation of AR and its splice variants in prostate cancer cells. In vivo, Minnelide (0.21 mg/kg) regressed subcutaneous tumors derived from CRPC 22RV1 at our study endpoint. Our animal

  14. Expression of androgen receptor and estrogen receptor-alpha in the developing pituitary gland of male sheep lamb.

    Science.gov (United States)

    Huang, Li-Bo; Yuan, Xue-Jun

    2011-09-01

    To explore the expression of androgen receptor (AR) and estrogen receptor alpha (ERα) in the developing pituitary of male lamb, we detected AR and ERα expression in the anterior pituitary of lambs aged 2-7 months old by immunohistochemistry. The results showed that both AR immunoreactivity (AR-ir) and ERα immunoreactivity (ERα-ir) were localized in the nuclei of anterior pituitary cell. The percentage of the anterior pituitary cells expressing ERα fluctuated from 8.79±0.02% to 11.80±0.04% during the examined stages, but fell significantly to the lowest level at 6 months. While the proportion of AR-ir showed significant changes, it was in 11.52±1.26% at 2 months, it firstly increased to 19.86±1.03% at 3 months, and then significantly decreased to 8.18±1.17% at 6 months (Panterior pituitary cells. These results indicate that both AR and ERα are important in regulation of secretary function of anterior pituitary in sheep lamb, although the related mechanism needs to be elucidated further. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Androgen receptor signals regulate UDP-glucuronosyltransferases in the urinary bladder: a potential mechanism of androgen-induced bladder carcinogenesis.

    Science.gov (United States)

    Izumi, Koji; Zheng, Yichun; Hsu, Jong-Wei; Chang, Chawnshang; Miyamoto, Hiroshi

    2013-02-01

    UDP-glucuronosyltransferases (UGTs), major phase II drug metabolism enzymes, play an important role in urinary bladder cancer initiation by detoxifying carcinogens. We aimed to determine if androgens regulate UGT expression via the androgen receptor (AR) pathway in the bladder. Real-time reverse transcription-polymerase chain reaction and Western blot analyses were used to assess UGT1A levels in the normal urothelium SVHUC cell line stably expressed with AR and in bladder tissues from AR knockout (ARKO) and castrated male mice. Immunohistochemistry was also performed in radical cystectomy specimens. Dihydrotestosterone (DHT) treatment in SVHUC-AR reduced mRNA expression of all the UGT1A subtypes (19-75% decrease), and hydroxyflutamide antagonized the DHT effects. In contrast, DHT showed only marginal effects on UGT1A expression in SVHUC-Vector. Of note were higher expression levels of UGT1As in SVHUC-Vector than in SVHUC-AR. In ARKO mice, all the Ugt1a subtypes were up-regulated, compared to wild-type littermates. In wild-type male mice, castration increased the expression of Ugt1a8, Ugt1a9, and Ugt1a10. Additionally, wild-type female mice had higher levels of Ugt1a than wild-type males. Immunohistochemical studies showed strong (3+) UGT1A staining in 11/24 (46%) cancer tissues, which was significantly lower than in corresponding benign tissues [17/18 (94%) cases (P = 0.0009)]. These results suggest that androgen-mediated AR signals promote bladder carcinogenesis by down-regulating the expression of UGTs in the bladder. Copyright © 2011 Wiley Periodicals, Inc.

  16. Mutation of androgen receptor N-terminal phosphorylation site Tyr-267 leads to inhibition of nuclear translocation and DNA binding.

    Directory of Open Access Journals (Sweden)

    Mehmet Karaca

    Full Text Available Reactivation of androgen receptor (AR may drive recurrent prostate cancer in castrate patients. Ack1 tyrosine kinase is overexpressed in prostate cancer and promotes castrate resistant xenograft tumor growth and enhances androgen target gene expression and AR recruitment to enhancers. Ack1 phosphorylates AR at Tyr-267 and possibly Tyr-363, both in the N-terminal transactivation domain. In this study, the role of these phosphorylation sites was investigated by characterizing the phosphorylation site mutants in the context of full length and truncated AR lacking the ligand-binding domain. Y267F and Y363F mutants showed decreased transactivation of reporters. Expression of wild type full length and truncated AR in LNCaP cells increased cell proliferation in androgen-depleted conditions and increased colony formation. However, the Y267F mutant of full length and truncated AR was defective in stimulating cell proliferation. The Y363F mutant was less severely affected than the Y267F mutant. The full length AR Y267F mutant was defective in nuclear translocation induced by androgen or Ack1 kinase. The truncated AR was constitutively localized to the nucleus. Chromatin immunoprecipitation analysis showed that it was recruited to the target enhancers without androgen. The truncated Y267F AR mutant did not exhibit constitutive nuclear localization and androgen enhancer binding activity. These results support the concept that phosphorylation of Tyr-267, and to a lesser extent Tyr-363, is required for AR nuclear translocation and recruitment and DNA binding and provide a rationale for development of novel approaches to inhibit AR activity.

  17. Differentially expressed androgen-regulated genes in androgen-sensitive tissues reveal potential biomarkers of early prostate cancer.

    Directory of Open Access Journals (Sweden)

    Dogus Murat Altintas

    Full Text Available BACKGROUND: Several data favor androgen receptor implication in prostate cancer initiation through the induction of several gene activation programs. The aim of the study is to identify potential biomarkers for early diagnosis of prostate cancer (PCa among androgen-regulated genes (ARG and to evaluate comparative expression of these genes in normal prostate and normal prostate-related androgen-sensitive tissues that do not (or rarely give rise to cancer. METHODS: ARG were selected in non-neoplastic adult human prostatic epithelial RWPE-1 cells stably expressing an exogenous human androgen receptor, using RNA-microarrays and validation by qRT-PCR. Expression of 48 preselected genes was quantified in tissue samples (seminal vesicles, prostate transitional zones and prostate cancers, benign prostatic hypertrophy obtained from surgical specimens using TaqMan® low-density arrays. The diagnostic performances of these potential biomarkers were compared to that of genes known to be associated with PCa (i.e. PCA3 and DLX1. RESULTS AND DISCUSSION: By crossing expression studies in 26 matched PCa and normal prostate transitional zone samples, and 35 matched seminal vesicle and PCa samples, 14 genes were identified. Similarly, 9 genes were overexpressed in 15 benign prostatic hypertrophy samples, as compared to PCa samples. Overall, we selected 8 genes of interest to evaluate their diagnostic performances in comparison with that of PCA3 and DLX1. Among them, 3 genes: CRYAB, KCNMA1 and SDPR, were overexpressed in all 3 reference non-cancerous tissues. The areas under ROC curves of these genes reached those of PCA3 (0.91 and DLX1 (0.94. CONCLUSIONS: We identified ARG with reduced expression in PCa and with significant diagnostic values for discriminating between cancerous and non-cancerous prostatic tissues, similar that of PCA3. Given their expression pattern, they could be considered as potentially protective against prostate cancer. Moreover, they could

  18. Partial androgen insensitivity syndrome due to somatic mosaicism of the androgen receptor.

    Science.gov (United States)

    Batista, Rafael Loch; Rodrigues, Andresa De Santi; Machado, Aline Zamboni; Nishi, Mirian Yumie; Cunha, Flávia Siqueira; Silva, Rosana Barbosa; Costa, Elaine M F; Mendonca, Berenice B; Domenice, Sorahia

    2018-01-26

    Androgen insensitivity syndrome (AIS) is the most frequent etiology of 46,XY disorders of sex development (DSDs), and it is an X-linked disorder caused by mutations in the androgen receptor (AR) gene. AIS patients present a broad phenotypic spectrum and individuals with a partial phenotype present with different degrees of undervirilized external genitalia. There are more than 500 different AR gene allelic variants reported to be linked to AIS, but the presence of somatic mosaicisms has been rarely identified. In the presence of a wild-type AR gene, a significant degree of spontaneous virilization at puberty can be observed, and it could influence the gender assignment, genetic counseling and the clinical and psychological management of these patients and the psychosexual outcomes of these patients are not known. In this study, we report two patients with AR allelic variants in heterozygous (c.382G>T and c.1769-1G>C) causing a partial AIS (PAIS) phenotype. The first patient was raised as female and she had undergone a gonadectomy at puberty. In both patients there was congruency between gender of rearing and gender identity and gender role. Somatic mosaicism is rare in AIS and nonsense AR variant allelic can cause partial AIS phenotype in this situation. Despite the risk of virilization and prenatal androgen exposure, the gender identity and gender role was concordant with sex of rearing in both cases. A better testosterone response can be expected in male individuals and this should be considered in the clinical management.

  19. [7α-18F]fluoro-17α-methyl-5α-dihydrotestosterone: a ligand for androgen receptor-mediated imaging of prostate cancer

    International Nuclear Information System (INIS)

    Garg, Pradeep K.; Labaree, David C.; Hoyte, Robert M.; Hochberg, Richard B.

    2001-01-01

    We have synthesized a 18 F-labeled androgen, [7α- 18 F]fluoro-17α-methyl-5α-dihydrotestosterone, in a no-carrier-added radiosynthesis by exchange of 18 F- (tetrabutylammonium fluoride) with the 7β-tosyloxy of 17α-methyl-5α-dihydrotestosterone. The nonradioactive steroid binds with high affinity and specificity to the androgen receptor and binds poorly, if at all, to other steroid receptors and plasma sex hormone binding globulin. The 7α- 18 F-androgen concentrates markedly in the prostate of rats by an androgen receptor-dependent mechanism. It is likely that [7α- 18 F]fluoro-17α-methyl-5α-dihydrotestosterone will be an excellent positron emission tomography imaging agent for prostate cancer

  20. Targeting Stromal Androgen Receptor Suppresses Prolactin-Driven Benign Prostatic Hyperplasia (BPH)

    Science.gov (United States)

    Lai, Kuo-Pao; Huang, Chiung-Kuei; Fang, Lei-Ya; Izumi, Kouji; Lo, Chi-Wen; Wood, Ronald; Kindblom, Jon; Yeh, Shuyuan

    2013-01-01

    Stromal-epithelial interaction plays a pivotal role to mediate the normal prostate growth, the pathogenesis of benign prostatic hyperplasia (BPH), and prostate cancer development. Until now, the stromal androgen receptor (AR) functions in the BPH development, and the underlying mechanisms remain largely unknown. Here we used a genetic knockout approach to ablate stromal fibromuscular (fibroblasts and smooth muscle cells) AR in a probasin promoter-driven prolactin transgenic mouse model (Pb-PRL tg mice) that could spontaneously develop prostate hyperplasia to partially mimic human BPH development. We found Pb-PRL tg mice lacking stromal fibromuscular AR developed smaller prostates, with more marked changes in the dorsolateral prostate lobes with less proliferation index. Mechanistically, prolactin mediated hyperplastic prostate growth involved epithelial-stromal interaction through epithelial prolactin/prolactin receptor signals to regulate granulocyte macrophage-colony stimulating factor expression to facilitate stromal cell growth via sustaining signal transducer and activator of transcription-3 activity. Importantly, the stromal fibromuscular AR could modulate such epithelial-stromal interacting signals. Targeting stromal fibromuscular AR with the AR degradation enhancer, ASC-J9®, led to the reduction of prostate size, which could be used in future therapy. PMID:23893956

  1. Transition from androgenic to neurosteroidal action of 5α-androstane-3α, 17β-diol through the type A γ-aminobutyric acid receptor in prostate cancer progression.

    Science.gov (United States)

    Xia, Ding; Lai, Doan V; Wu, Weijuan; Webb, Zachary D; Yang, Qing; Zhao, Lichao; Yu, Zhongxin; Thorpe, Jessica E; Disch, Bryan C; Ihnat, Michael A; Jayaraman, Muralidharan; Dhanasekaran, Danny N; Stratton, Kelly L; Cookson, Michael S; Fung, Kar-Ming; Lin, Hsueh-Kung

    2018-04-01

    Androgen ablation is the standard of care prescribed to patients with advanced or metastatic prostate cancer (PCa) to slow down disease progression. Unfortunately, a majority of PCa patients under androgen ablation progress to castration-resistant prostate cancer (CRPC). Several mechanisms including alternative intra-prostatic androgen production and androgen-independent androgen receptor (AR) activation have been proposed for CRPC progression. Aldo-keto reductase family 1 member C3 (AKR1C3), a multi-functional steroid metabolizing enzyme, is specifically expressed in the cytoplasm of PCa cells; and positive immunoreactivity of the type A γ-aminobutyric acid receptor (GABA A R), an ionotropic receptor and ligand-gated ion channel, is detected on the membrane of PCa cells. We studied a total of 72 radical prostatectomy cases by immunohistochemistry, and identified that 21 cases exhibited positive immunoreactivities for both AKR1C3 and GABA A R. In the dual positive cancer cases, AKR1C3 and GABA A R subunit α 1 were either expressed in the same cells or in neighboring cells. Among several possible substrates, AKR1C3 reduces 5α-dihydrotesterone (DHT) to form 5α-androstane-3α, 17β-diol (3α-diol). 3α-diol is a neurosteroid that acts as a positive allosteric modulator of the GABA A R in the central nervous system (CNS). We examined the hypothesis that 3α-diol-regulated pathological effects in the prostate are GABA A R-dependent, but are independent of the AR. In GABA A R-positive, AR-negative human PCa PC-3 cells, 3α-diol significantly stimulated cell growth in culture and the in ovo chorioallantoic membrane (CAM) xenograft model. 3α-diol also up-regulated expression of the epidermal growth factor (EGF) family of growth factors and activation of EGF receptor (EGFR) and Src as measured by quantitative polymerase chain reaction and immunoblotting, respectively. Inclusion of GABA A R antagonists reversed 3α-diol-stimulated tumor cell growth, expression of EGF

  2. Analysis of the molecular networks in androgen dependent and independent prostate cancer revealed fragile and robust subsystems.

    Directory of Open Access Journals (Sweden)

    Ryan Tasseff

    Full Text Available Androgen ablation therapy is currently the primary treatment for metastatic prostate cancer. Unfortunately, in nearly all cases, androgen ablation fails to permanently arrest cancer progression. As androgens like testosterone are withdrawn, prostate cancer cells lose their androgen sensitivity and begin to proliferate without hormone growth factors. In this study, we constructed and analyzed a mathematical model of the integration between hormone growth factor signaling, androgen receptor activation, and the expression of cyclin D and Prostate-Specific Antigen in human LNCaP prostate adenocarcinoma cells. The objective of the study was to investigate which signaling systems were important in the loss of androgen dependence. The model was formulated as a set of ordinary differential equations which described 212 species and 384 interactions, including both the mRNA and protein levels for key species. An ensemble approach was chosen to constrain model parameters and to estimate the impact of parametric uncertainty on model predictions. Model parameters were identified using 14 steady-state and dynamic LNCaP data sets taken from literature sources. Alterations in the rate of Prostatic Acid Phosphatase expression was sufficient to capture varying levels of androgen dependence. Analysis of the model provided insight into the importance of network components as a function of androgen dependence. The importance of androgen receptor availability and the MAPK/Akt signaling axes was independent of androgen status. Interestingly, androgen receptor availability was important even in androgen-independent LNCaP cells. Translation became progressively more important in androgen-independent LNCaP cells. Further analysis suggested a positive synergy between the MAPK and Akt signaling axes and the translation of key proliferative markers like cyclin D in androgen-independent cells. Taken together, the results support the targeting of both the Akt and MAPK

  3. Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: Opportunities for therapeutic targeting from multiple angles

    Science.gov (United States)

    Hoang, David T; Iczkowski, Kenneth A; Kilari, Deepak; See, William; Nevalainen, Marja T

    2017-01-01

    Despite aggressive treatment for localized cancer, prostate cancer (PC) remains a leading cause of cancer-related death for American men due to a subset of patients progressing to lethal and incurable metastatic castrate-resistant prostate cancer (CRPC). Organ-confined PC is treated by surgery or radiation with or without androgen deprivation therapy (ADT), while options for locally advanced and disseminated PC include radiation combined with ADT, or systemic treatments including chemotherapy. Progression to CRPC results from failure of ADT, which targets the androgen receptor (AR) signaling axis and inhibits AR-driven proliferation and survival pathways. The exact mechanisms underlying the transition from androgen-dependent PC to CRPC remain incompletely understood. Reactivation of AR has been shown to occur in CRPC despite depletion of circulating androgens by ADT. At the same time, the presence of AR-negative cell populations in CRPC has also been identified. While AR signaling has been proposed as the primary driver of CRPC, AR-independent signaling pathways may represent additional mechanisms underlying CRPC progression. Identification of new therapeutic strategies to target both AR-positive and AR-negative PC cell populations and, thereby, AR-driven as well as non-AR-driven PC cell growth and survival mechanisms would provide a two-pronged approach to eliminate CRPC cells with potential for synthetic lethality. In this review, we provide an overview of AR-dependent and AR-independent molecular mechanisms which drive CRPC, with special emphasis on the role of the Jak2-Stat5a/b signaling pathway in promoting castrate-resistant growth of PC through both AR-dependent and AR-independent mechanisms. PMID:27741508

  4. Multivalent Peptidomimetic Conjugates as Inhibitors of Androgen Receptor Function in Therapy-Resistant Prostate Cancer

    Science.gov (United States)

    2017-10-01

    response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...hormones that play a critical role in stimulating prostate cancer growth. Androgens activate a protein called the androgen receptor (AR), which...treat patients with prostate cancer, over time the tumors become resistant to the drugs, leaving few treatment options. The goal of this proposal is to

  5. Integrated expression profiling and ChIP-seq analyses of the growth inhibition response program of the androgen receptor.

    Directory of Open Access Journals (Sweden)

    Biaoyang Lin

    2009-08-01

    Full Text Available The androgen receptor (AR plays important roles in the development of male phenotype and in different human diseases including prostate cancers. The AR can act either as a promoter or a tumor suppressor depending on cell types. The AR proliferative response program has been well studied, but its prohibitive response program has not yet been thoroughly studied.Previous studies found that PC3 cells expressing the wild-type AR inhibit growth and suppress invasion. We applied expression profiling to identify the response program of PC3 cells expressing the AR (PC3-AR under different growth conditions (i.e. with or without androgens and at different concentration of androgens and then applied the newly developed ChIP-seq technology to identify the AR binding regions in the PC3 cancer genome. A surprising finding was that the comparison of MOCK-transfected PC3 cells with AR-transfected cells identified 3,452 differentially expressed genes (two fold cutoff even without the addition of androgens (i.e. in ethanol control, suggesting that a ligand independent activation or extremely low-level androgen activation of the AR. ChIP-Seq analysis revealed 6,629 AR binding regions in the cancer genome of PC3 cells with an FDR (false discovery rate cut off of 0.05. About 22.4% (638 of 2,849 can be mapped to within 2 kb of the transcription start site (TSS. Three novel AR binding motifs were identified in the AR binding regions of PC3-AR cells, and two of them share a core consensus sequence CGAGCTCTTC, which together mapped to 27.3% of AR binding regions (1,808/6,629. In contrast, only about 2.9% (190/6,629 of AR binding sites contains the canonical AR matrix M00481, M00447 and M00962 (from the Transfac database, which is derived mostly from AR proliferative responsive genes in androgen dependent cells. In addition, we identified four top ranking co-occupancy transcription factors in the AR binding regions, which include TEF1 (Transcriptional enhancer factor

  6. ARA24/Ran enhances the androgen-dependent NH2- and COOH-terminal interaction of the androgen receptor

    International Nuclear Information System (INIS)

    Harada, Naoki; Ohmori, Yuji; Yamaji, Ryoichi; Higashimura, Yasuki; Okamoto, Kazuki; Isohashi, Fumihide; Nakano, Yoshihisa; Inui, Hiroshi

    2008-01-01

    The androgen receptor (AR) acts as an androgen-dependent transcription factor controlling the development of prostate tissue. Upon binding to androgen, AR undergoes a dynamic structural change leading to interaction between the NH 2 - and COOH-terminal regions of AR (N-C interaction). ARA24/Ran, which is a small GTPase, functions as an AR coactivator. Here, we report that ARA24/Ran enhances the N-C interaction of AR. The constitutively GTP- or GDP-bound form of ARA24/Ran repressed the AR N-C interaction. ARA24/Ran did not enhance the transcriptional activities of AR mutants that disrupt the N-C interaction. ARA24/Ran formed an endogenous protein complex with nuclear AR, but not cytoplasmic AR. Unlike SRC-1 with the positive activity for AR N-C interaction, ARA24/Ran did not enhance the transcriptional activity of the COOH-terminal domain-deleted AR mutant that is constitutively localized in the nucleus. These data demonstrate that ARA24/Ran increases AR transactivation by enhancing the AR N-C interaction in the nucleus

  7. In human granulosa cells from small antral follicles, androgen receptor mRNA and androgen levels in follicular fluid correlate with FSH receptor mRNA

    DEFF Research Database (Denmark)

    Nielsen, M. E.; Rasmussen, I. A.; Kristensen, S. G.

    2011-01-01

    significantly with the expression of AMHRII, but did not correlate with any of the hormones in the follicular fluid. These data demonstrate an intimate association between AR expression in immature granulosa cells, and the expression of FSHR in normal small human antral follicles and between the follicular......Human small antral follicles (diameter 3-9 mm) were obtained from ovaries surgically removed for fertility preservation. From the individual aspirated follicles, granulosa cells and the corresponding follicular fluid were isolated in 64 follicles, of which 55 were available for mRNA analysis (24...... and to the follicular fluid concentrations of AMH, inhibin-B, progesterone and estradiol. AR mRNA expression in granulosa cells and the follicular fluid content of androgens both showed a highly significant positive association with the expression of FSHR mRNA in granulosa cells. AR mRNA expression also correlated...

  8. Stilbene induced inhibition of androgen receptor dimerization: implications for AR and ARΔLBD-signalling in human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Wolfgang Streicher

    Full Text Available BACKGROUND: Advanced castration resistant prostate cancer (CRPC is often characterized by an increase of C-terminally truncated, constitutively active androgen receptor (AR variants. Due to the absence of a ligand binding domain located in the AR-C-terminus, these receptor variants (also termed ARΔLBD are unable to respond to all classical forms of endocrine treatments like surgical/chemical castration and/or application of anti-androgens. METHODOLOGY: In this study we tested the effects of the naturally occurring stilbene resveratrol (RSV and (E-4-(2, 6-Difluorostyryl-N, N-dimethylaniline, a fluorinated dialkylaminostilbene (FIDAS on AR- and ARΔLBD in prostate cancer cells. The ability of the compounds to modulate transcriptional activity of AR and the ARΔLBD-variant Q640X was shown by reporter gene assays. Expression of endogenous AR and ARΔLBD mRNA and protein levels were determined by qRT-PCR and Western Blot. Nuclear translocation of AR-molecules was analyzed by fluorescence microscopy. AR and ARΔLBD/Q640X homo-/heterodimer formation was assessed by mammalian two hybrid assays. Biological activity of both compounds in vivo was demonstrated using a chick chorioallantoic membrane xenograft assay. RESULTS: The stilbenes RSV and FIDAS were able to significantly diminish AR and Q640X-signalling. Successful inhibition of the Q640X suggests that RSV and FIDAS are not interfering with the AR-ligand binding domain like all currently available anti-hormonal drugs. Repression of AR and Q640X-signalling by RSV and FIDAS in prostate cancer cells was caused by an inhibition of the AR and/or Q640X-dimerization. Although systemic bioavailability of both stilbenes is very low, both compounds were also able to downregulate tumor growth and AR-signalling in vivo. CONCLUSION: RSV and FIDAS are able to inhibit the dimerization of AR and ARΔLBD molecules suggesting that stilbenes might serve as lead compounds for a novel generation of AR-inhibitors.

  9. Update of the androgen receptor gene mutations database.

    Science.gov (United States)

    Gottlieb, B; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1999-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 309 to 374 during the past year. We have expanded the database by adding information on AR-interacting proteins; and we have improved the database by identifying those mutation entries that have been updated. Mutations of unknown significance have now been reported in both the 5' and 3' untranslated regions of the AR gene, and in individuals who are somatic mosaics constitutionally. In addition, single nucleotide polymorphisms, including silent mutations, have been discovered in normal individuals and in individuals with male infertility. A mutation hotspot associated with prostatic cancer has been identified in exon 5. The database is available on the internet (http://www.mcgill.ca/androgendb/), from EMBL-European Bioinformatics Institute (ftp.ebi.ac.uk/pub/databases/androgen), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca). Copyright 1999 Wiley-Liss, Inc.

  10. Docosahexaenoic acid inhibits the growth of hormone-dependent prostate cancer cells by promoting the degradation of the androgen receptor.

    Science.gov (United States)

    Hu, Zhimei; Qi, Haixia; Zhang, Ruixue; Zhang, Kun; Shi, Zhemin; Chang, Yanan; Chen, Linfeng; Esmaeili, Mohsen; Baniahmad, Aria; Hong, Wei

    2015-09-01

    Epidemiological and preclinical data have demonstrated the preventative effects of ω-3 polyunsaturated fatty acids, including docosahexaenoic acid (DHA), on prostate cancer. However, there are inconsistencies in these previous studies and the underlying mechanisms remain to be elucidated. In the present study, the androgen receptor (AR), which is a transcription factor involved in cell proliferation and prostate carcinogenesis, was identified as a target of DHA. It was revealed that DHA inhibited hormone‑dependent growth of LNCaP prostate cancer cells. Reverse transcription-quantitative polymerase chain reaction analysis revealed that treatment with DHA caused no alteration in the transcribed mRNA expression levels of the AR gene. However, immunoblotting revealed that this treatment reduces the protein expression level of the AR. The androgen‑induced genes were subsequently repressed by treatment with DHA. It was demonstrated that DHA exhibits no effect on the translation process of the AR, however, it promotes the proteasome‑mediated degradation of the AR. Therefore, the present study provided a novel mechanism by which DHA exhibits an inhibitory effect on growth of prostate cancer cells.

  11. Androgen receptor in early apoptotic follicles in the porcine ovary at pregnancy.

    Directory of Open Access Journals (Sweden)

    Zbigniew Tabarowski

    2006-09-01

    Full Text Available Localization of androgen receptor (AR was investigated in ovarian follicles developing and undergoing atresia during pregnancy in the pig. Immunohistochemical staining was conducted on ovarian antral follicles isolated on different days of gestation: 10, 18, 32, 50, 70, and 90. Paraffin sections were also subjected to in situ DNA labeling. TUNEL staining revealed the presence of positive follicles on all days of pregnancy but the amount of atretic follicles increased with time. However, even on day 90 of gestation many follicles were normal, with no signs of atresia. In atretic follicles, apoptotic cells were localized predominantly in the granulosa while theca was much less affected. Atretic follicles with many apoptotic cells were negative for AR. Nuclear immunostaining for AR was positive in follicles with limited amount of apoptotic cells. The same relationship was observed in ovarian follicles isolated at various days of pregnancy.

  12. JS-K, a glutathione/glutathione S-transferase-activated nitric oxide releasing prodrug inhibits androgen receptor and WNT-signaling in prostate cancer cells.

    Science.gov (United States)

    Laschak, Martin; Spindler, Klaus-Dieter; Schrader, Andres J; Hessenauer, Andrea; Streicher, Wolfgang; Schrader, Mark; Cronauer, Marcus V

    2012-03-30

    Nitric oxide (NO) and its oxidative reaction products have been repeatedly shown to block steroid receptor function via nitrosation of zinc finger structures in the DNA-binding domain (DBD). In consequence NO-donors could be of special interest for the treatment of deregulated androgen receptor(AR)-signaling in castration resistant prostate cancer (CRPC). Prostate cancer (PCa) cells were treated with JS-K, a diazeniumdiolate derivate capable of generating large amounts of intracellular NO following activation by glutathione S-transferase. Generation of NO was determined indirectly by the detection of nitrate in tissue culture medium or by immunodetection of nitrotyrosine in the cytoplasm. Effects of JS-K on intracellular AR-levels were determined by western blotting. AR-dimerization was analyzed by mammalian two hybrid assay, nuclear translocation of the AR was visualized in PCa cells transfected with a green fluorescent AR-Eos fusion protein using fluorescence microscopy. Modulation of AR- and WNT-signalling by JS-K was investigated using reporter gene assays. Tumor cell proliferation following JS-K treatment was measured by MTT-Assay. The NO-releasing compound JS-K was shown to inhibit AR-mediated reporter gene activity in 22Rv1 CRPC cells. Inhibition of AR signaling was neither due to an inhibition of nuclear import nor to a reduction in AR-dimerization. In contrast to previously tested NO-donors, JS-K was able to reduce the intracellular concentration of functional AR. This could be attributed to the generation of extremely high intracellular levels of the free radical NO as demonstrated indirectly by high levels of nitrotyrosine in JS-K treated cells. Moreover, JS-K diminished WNT-signaling in AR-positive 22Rv1 cells. In line with these observations, castration resistant 22Rv1 cells were found to be more susceptible to the growth inhibitory effects of JS-K than the androgen dependent LNCaP which do not exhibit an active WNT-signaling pathway. Our results

  13. Androgen Receptor: A Complex Therapeutic Target for Breast Cancer

    Science.gov (United States)

    Narayanan, Ramesh; Dalton, James T.

    2016-01-01

    Molecular and histopathological profiling have classified breast cancer into multiple sub-types empowering precision treatment. Although estrogen receptor (ER) and human epidermal growth factor receptor (HER2) are the mainstay therapeutic targets in breast cancer, the androgen receptor (AR) is evolving as a molecular target for cancers that have developed resistance to conventional treatments. The high expression of AR in breast cancer and recent discovery and development of new nonsteroidal drugs targeting the AR provide a strong rationale for exploring it again as a therapeutic target in this disease. Ironically, both nonsteroidal agonists and antagonists for the AR are undergoing clinical trials, making AR a complicated target to understand in breast cancer. This review provides a detailed account of AR’s therapeutic role in breast cancer. PMID:27918430

  14. Androgen Receptor: A Complex Therapeutic Target for Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ramesh Narayanan

    2016-12-01

    Full Text Available Molecular and histopathological profiling have classified breast cancer into multiple sub-types empowering precision treatment. Although estrogen receptor (ER and human epidermal growth factor receptor (HER2 are the mainstay therapeutic targets in breast cancer, the androgen receptor (AR is evolving as a molecular target for cancers that have developed resistance to conventional treatments. The high expression of AR in breast cancer and recent discovery and development of new nonsteroidal drugs targeting the AR provide a strong rationale for exploring it again as a therapeutic target in this disease. Ironically, both nonsteroidal agonists and antagonists for the AR are undergoing clinical trials, making AR a complicated target to understand in breast cancer. This review provides a detailed account of AR’s therapeutic role in breast cancer.

  15. Molecular basis of androgen insensitivity

    NARCIS (Netherlands)

    Brinkmann, A.; Jenster, G.; Ris-Stalpers, C.; van der Korput, H.; Brüggenwirth, H.; Boehmer, A.; Trapman, J.

    1996-01-01

    Male sexual differentiation and development proceed under direct control of androgens. Androgen action is mediated by the intracellular androgen receptor, which belongs to the superfamily of ligand-dependent transcription factors. In the X-linked androgen insensitivity syndrome, defects in the

  16. Androgen-Sensitized Apoptosis of HPr-1AR Human Prostate Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Congcong Chen

    Full Text Available Androgen receptor (AR signaling is crucial to the development and homeostasis of the prostate gland, and its dysregulation mediates common prostate pathologies. The mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells have been investigated in human and rodent adult prostate. However, the cellular stress response of human prostate epithelial cells is not well understood, though it is central to prostate health and pathology. Here, we report that androgen sensitizes HPr-1AR and RWPE-AR human prostate epithelial cells to cell stress agents and apoptotic cell death. Although 5α-dihydrotestosterone (DHT treatment alone did not induce cell death, co-treatment of HPr-1AR cells with DHT and an apoptosis inducer, such as staurosporine (STS, TNFt, or hydrogen peroxide, synergistically increased cell death in comparison to treatment with each apoptosis inducer by itself. We found that the synergy between DHT and apoptosis inducer led to activation of the intrinsic/mitochondrial apoptotic pathway, which is supported by robust cleavage activation of caspase-9 and caspase-3. Further, the dramatic depolarization of the mitochondrial membrane potential that we observed upon co-treatment with DHT and STS is consistent with increased mitochondrial outer membrane permeabilization (MOMP in the pro-apoptotic mechanism. Interestingly, the synergy between DHT and apoptosis inducer was abolished by AR antagonists and inhibitors of transcription and protein synthesis, suggesting that AR mediates pro-apoptotic synergy through transcriptional regulation of MOMP genes. Expression analysis revealed that pro-apoptotic genes (BCL2L11/BIM and AIFM2 were DHT-induced, whereas pro-survival genes (BCL2L1/BCL-XL and MCL1 were DHT-repressed. Hence, we propose that the net effect of these AR-mediated expression changes shifts the balance of BCL2-family proteins

  17. Changes in androgen receptor, estrogen receptor alpha, and sexual behavior with aging and testosterone in male rats.

    Science.gov (United States)

    Wu, Di; Gore, Andrea C

    2010-07-01

    Reproductive aging in males is characterized by a diminution in sexual behavior beginning in middle age. We investigated the relationships among testosterone, androgen receptor (AR) and estrogen receptor alpha (ERalpha) cell numbers in the hypothalamus, and their relationship to sexual performance in male rats. Young (3months) and middle-aged (12months) rats were given sexual behavior tests, then castrated and implanted with vehicle or testosterone capsules. Rats were tested again for sexual behavior. Numbers of AR and ERalpha immunoreactive cells were counted in the anteroventral periventricular nucleus and the medial preoptic nucleus, and serum hormones were measured. Middle-aged intact rats had significant impairments of all sexual behavior measures compared to young males. After castration and testosterone implantation, sexual behaviors in middle-aged males were largely comparable to those in the young males. In the hypothalamus, AR cell density was significantly (5-fold) higher, and ERalpha cell density significantly (6-fold) lower, in testosterone- than vehicle-treated males, with no age differences. Thus, restoration of serum testosterone to comparable levels in young and middle-aged rats resulted in similar preoptic AR and ERalpha cell density concomitant with a reinstatement of most behaviors. These data suggest that age-related differences in sexual behavior cannot be due to absolute levels of testosterone, and further, the middle-aged brain retains the capacity to respond to exogenous testosterone with changes in hypothalamic AR and ERalpha expression. Our finding that testosterone replacement in aging males has profound effects on hypothalamic receptors and behavior has potential medical implications for the treatment of age-related hypogonadism in men. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Androgen Receptor Expression in Thai Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Suthat Chottanapund

    2016-09-01

    Full Text Available The aim of this study was to investigate prevalence and related factors of androgen receptor (AR expression in Thai breast cancer patients. A descriptive study was done in 95 patients, who were admitted to Charoenkrung Pracharak Hospital, Bangkok (2011–2013. Statistical relationships were examined between AR protein expression, tumor status, and patient characteristics. Compared with those from Western countries, ethnic Thai patients were younger at age of diagnosis and had a higher proliferative index (high Ki-67 expression, which indicates unfavorable prognosis. In addition, 91% of the Thai breast tumors that were positive for any of the following receptors, estrogen receptor (ER, progesterone receptor (PR, and human epidermal growth factor receptor 2 (HER2 also expressed the AR protein, while in triple negative breast tumors only 33% were AR positive. ER and PR expression was positively related with AR expression, while AR expression was inversely correlated to Ki-67 expression. AR status was strongly correlated with ER and PR status in Thai patients. There is an inverse relationship between Ki-67 and AR, which suggests that AR may be a prognostic factor for breast cancer.

  19. The prohibitin-repressive interaction with E2F1 is rapidly inhibited by androgen signalling in prostate cancer cells

    NARCIS (Netherlands)

    Koushyar, S.; Economides, G.; Zaat, S.; Jiang, W.; Bevan, C. L.; Dart, D. A.

    2017-01-01

    Prohibitin (PHB) is a tumour suppressor molecule with pleiotropic activities across several cellular compartments including mitochondria, cell membrane and the nucleus. PHB and the steroid-activated androgen receptor (AR) have an interplay where AR downregulates PHB, and PHB represses AR.

  20. Metabolomics for informing adverse outcome pathways: Androgen receptor activation and the pharmaceutical spironolactone

    International Nuclear Information System (INIS)

    Davis, J.M.; Ekman, D.R.; Skelton, D.M.; LaLone, C.A.; Ankley, G.T.; Cavallin, J.E.; Villeneuve, D.L.; Collette, T.W.

    2017-01-01

    Highlights: • Metabolomics identified potential key events in an androgen receptor activation AOP. • Metabolomics indicate spironolactone may elicit effects via multiple nuclear receptors. • Spironolactone exposure may elicit interactive effects in multi-stressor environments. - Abstract: One objective in developing adverse outcome pathways (AOPs) is to connect biological changes that are relevant to risk assessors (i.e., fecundity) to molecular and cellular-level alterations that might be detectable at earlier stages of a chemical exposure. Here, we examined biochemical responses of fathead minnows (Pimephales promelas) to inform an AOP relevant to spironolactone’s activation of the androgen receptor, as well as explore other biological impacts possibly unrelated to this receptor. Liquid chromatography with high resolution mass spectrometry (LC–MS) was used to measure changes in endogenous polar metabolites in livers of male and female fish that were exposed to five water concentrations of spironolactone (0, 0.05, 0.5, 5, or 50 μg L"−"1) for 21 days. Metabolite profiles were affected at the two highest concentrations (5 and 50 μg L"−"1), but not in the lower-level exposures, which agreed with earlier reported results of reduced female fecundity and plasma vitellogenin (VTG) levels. We then applied partial least squares regression to assess whether metabolite alterations covaried with changes in fecundity, VTG gene expression and protein concentrations, and plasma 17β-estradiol and testosterone concentrations. Metabolite profiles significantly covaried with all measured endpoints in females, but only with plasma testosterone in males. Fecundity reductions occurred in parallel with changes in metabolites important in osmoregulation (e.g., betaine), membrane transport (e.g., L-carnitine), and biosynthesis of carnitine (e.g., methionine) and VTG (e.g., glutamate). Based on a network analysis program (i.e., mummichog), spironolactone also affected

  1. Metabolomics for informing adverse outcome pathways: Androgen receptor activation and the pharmaceutical spironolactone

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.M., E-mail: davis.john@epa.gov [U.S. EPA, National Exposure Research Laboratory, 960 College Station Rd., Athens, GA 30605 (United States); Ekman, D.R., E-mail: ekman.drew@epa.gov [U.S. EPA, National Exposure Research Laboratory, 960 College Station Rd., Athens, GA 30605 (United States); Skelton, D.M. [U.S. EPA, National Exposure Research Laboratory, 960 College Station Rd., Athens, GA 30605 (United States); LaLone, C.A.; Ankley, G.T.; Cavallin, J.E.; Villeneuve, D.L. [U.S. EPA, National Health and Environmental Effects Research Laboratory, 6201 Congdon Blvd., Duluth, MN 55804 (United States); Collette, T.W. [U.S. EPA, National Exposure Research Laboratory, 960 College Station Rd., Athens, GA 30605 (United States)

    2017-03-15

    Highlights: • Metabolomics identified potential key events in an androgen receptor activation AOP. • Metabolomics indicate spironolactone may elicit effects via multiple nuclear receptors. • Spironolactone exposure may elicit interactive effects in multi-stressor environments. - Abstract: One objective in developing adverse outcome pathways (AOPs) is to connect biological changes that are relevant to risk assessors (i.e., fecundity) to molecular and cellular-level alterations that might be detectable at earlier stages of a chemical exposure. Here, we examined biochemical responses of fathead minnows (Pimephales promelas) to inform an AOP relevant to spironolactone’s activation of the androgen receptor, as well as explore other biological impacts possibly unrelated to this receptor. Liquid chromatography with high resolution mass spectrometry (LC–MS) was used to measure changes in endogenous polar metabolites in livers of male and female fish that were exposed to five water concentrations of spironolactone (0, 0.05, 0.5, 5, or 50 μg L{sup −1}) for 21 days. Metabolite profiles were affected at the two highest concentrations (5 and 50 μg L{sup −1}), but not in the lower-level exposures, which agreed with earlier reported results of reduced female fecundity and plasma vitellogenin (VTG) levels. We then applied partial least squares regression to assess whether metabolite alterations covaried with changes in fecundity, VTG gene expression and protein concentrations, and plasma 17β-estradiol and testosterone concentrations. Metabolite profiles significantly covaried with all measured endpoints in females, but only with plasma testosterone in males. Fecundity reductions occurred in parallel with changes in metabolites important in osmoregulation (e.g., betaine), membrane transport (e.g., L-carnitine), and biosynthesis of carnitine (e.g., methionine) and VTG (e.g., glutamate). Based on a network analysis program (i.e., mummichog), spironolactone also

  2. A Time-course Study with the Androgen Receptor Antagonist Flutamide in Fish

    Science.gov (United States)

    Flutamide, a drug registered to treat some types of prostate cancer in humans, has been used for many years as a model androgen receptor (AR) antagonist in studies aimed at characterizing disruption of the vertebrate hypothalamic-pituitary-gonadal (HPG) axis. Various studies hav...

  3. Epigenomic Regulation of Androgen Receptor Signaling: Potential Role in Prostate Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Vito Cucchiara

    2017-01-01

    Full Text Available Androgen receptor (AR signaling remains the major oncogenic pathway in prostate cancer (PCa. Androgen-deprivation therapy (ADT is the principle treatment for locally advanced and metastatic disease. However, a significant number of patients acquire treatment resistance leading to castration resistant prostate cancer (CRPC. Epigenetics, the study of heritable and reversible changes in gene expression without alterations in DNA sequences, is a crucial regulatory step in AR signaling. We and others, recently described the technological advance Chem-seq, a method to identify the interaction between a drug and the genome. This has permitted better understanding of the underlying regulatory mechanisms of AR during carcinogenesis and revealed the importance of epigenetic modifiers. In screening for new epigenomic modifiying drugs, we identified SD-70, and found that this demethylase inhibitor is effective in CRPC cells in combination with current therapies. The aim of this review is to explore the role of epigenetic modifications as biomarkers for detection, prognosis, and risk evaluation of PCa. Furthermore, we also provide an update of the recent findings on the epigenetic key processes (DNA methylation, chromatin modifications and alterations in noncoding RNA profiles involved in AR expression and their possible role as therapeutic targets.

  4. GLI1, a crucial mediator of sonic hedgehog signaling in prostate cancer, functions as a negative modulator for androgen receptor

    International Nuclear Information System (INIS)

    Chen, Guangchun; Goto, Yutaka; Sakamoto, Ryuichi; Tanaka, Kimitaka; Matsubara, Eri; Nakamura, Masafumi; Zheng, Hong; Lu, Jian; Takayanagi, Ryoichi; Nomura, Masatoshi

    2011-01-01

    Research highlights: → GLI1, which play a central role in sonic hedgehog signaling in prostate cancer, can act as a co-repressor to substantially block androgen receptor-mediated transactivation. → GLI1 directly interacts with AR. → SHH-GLI pathway might be one of determinants governing the transition of prostate cancer from an androgen-dependent to an androgen-independent state. -- Abstract: Sonic hedgehog (SHH) signaling, acting in a combinatorial manner with androgen signaling, is essential for prostate patterning and development. Recently, elevated activation of SHH signaling has been shown to play important roles in proliferation, progression and metastasis of prostate cancer. In this report, we demonstrate for the first time, that GLI1, which has been shown to play a central role in SHH signaling in prostate cancer, can act as a co-repressor to substantially block androgen receptor (AR)-mediated transactivation, at least in part, by directly interacting with AR. Our observations suggest that the SHH-GLI pathway might be one of determinants governing the transition of prostate cancer from an androgen-dependent to an androgen-independent state by compensating, or even superseding androgen signaling.

  5. Immunoexpression of androgen receptors and aromatase in testes of patient with Klinefelter's syndrome.

    Directory of Open Access Journals (Sweden)

    Stanisław Fracki

    2005-02-01

    Full Text Available Klinefelter's syndrome (47, XXY is the most common chromosome aneuploidy in men and is usually characterized by underdeveloped testes and sterility. The aim of the present study was to detect cellular distribution of androgen receptors (AR and aromatase in testes of patient with KS. The tissue sections were processed for morphological and immunohistochemical staining. Additionally, levels of FSH, LH, PRL, estradiol, and testosterone were measured in the plasma. Morphological analysis revealed a complete absence of spermatogenesis. No germ cells were present in seminiferous tubules. In some tubules, nests of apparently degenerating Sertoli cells were found. In the interstitium, Leydig cell hyperplasia was observed. Using immunohistochemistry, nuclear AR staining was detected in Sertoli cells and peritubular cells, whereas in Leydig cells the staining was exclusively cytoplasmic. The immunostaining of aromatase was detected in the cytoplasm of Sertoli cells and Leydig cells. Increased levels of gonadotropins and decreased level of testosterone concomitantly with the cytoplasmic localization of AR in Leydig cells might contribute to the impaired testicular function in patient with KS.

  6. Androgen receptor agonists increase lean mass, improve cardiopulmonary functions and extend survival in preclinical models of Duchenne muscular dystrophy.

    Science.gov (United States)

    Ponnusamy, Suriyan; Sullivan, Ryan D; You, Dahui; Zafar, Nadeem; He Yang, Chuan; Thiyagarajan, Thirumagal; Johnson, Daniel L; Barrett, Maron L; Koehler, Nikki J; Star, Mayra; Stephenson, Erin J; Bridges, Dave; Cormier, Stephania A; Pfeffer, Lawrence M; Narayanan, Ramesh

    2017-07-01

    Duchenne muscular dystrophy (DMD) is a neuromuscular disease that predominantly affects boys as a result of mutation(s) in the dystrophin gene. DMD is characterized by musculoskeletal and cardiopulmonary complications, resulting in shorter life-span. Boys afflicted by DMD typically exhibit symptoms within 3-5 years of age and declining physical functions before attaining puberty. We hypothesized that rapidly deteriorating health of pre-pubertal boys with DMD could be due to diminished anabolic actions of androgens in muscle, and that intervention with an androgen receptor (AR) agonist will reverse musculoskeletal complications and extend survival. While castration of dystrophin and utrophin double mutant (mdx-dm) mice to mimic pre-pubertal nadir androgen condition resulted in premature death, maintenance of androgen levels extended the survival. Non-steroidal selective-AR modulator, GTx-026, which selectively builds muscle and bone was tested in X-linked muscular dystrophy mice (mdx). GTx-026 significantly increased body weight, lean mass and grip strength by 60-80% over vehicle-treated mdx mice. While vehicle-treated castrated mdx mice exhibited cardiopulmonary impairment and fibrosis of heart and lungs, GTx-026 returned cardiopulmonary function and intensity of fibrosis to healthy control levels. GTx-026 elicits its musculoskeletal effects through pathways that are distinct from dystrophin-regulated pathways, making AR agonists ideal candidates for combination approaches. While castration of mdx-dm mice resulted in weaker muscle and shorter survival, GTx-026 treatment increased the muscle mass, function and survival, indicating that androgens are important for extended survival. These preclinical results support the importance of androgens and the need for intervention with AR agonists to treat DMD-affected boys. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Structural analysis of complementary DNA and amino acid sequences of human and rat androgen receptors

    International Nuclear Information System (INIS)

    Chang, C.; Kokontis, J.; Liao, S.

    1988-01-01

    Structural analysis of cDNAs for human and rat androgen receptors (ARs) indicates that the amino-terminal regions of ARs are rich in oligo- and poly(amino acid) motifs as in some homeotic genes. The human AR has a long stretch of repeated glycines, whereas rat AR has a long stretch of glutamines. There is a considerable sequence similarity among ARs and the receptors for glucocorticoids, progestins, and mineralocorticoids within the steroid-binding domains. The cysteine-rich DNA-binding domains are well conserved. Translation of mRNA transcribed from AR cDNAs yielded 94- and 76-kDa proteins and smaller forms that bind to DNA and have high affinity toward androgens. These rat or human ARs were recognized by human autoantibodies to natural Ars. Molecular hybridization studies, using AR cDNAs as probes, indicated that the ventral prostate and other male accessory organs are rich in AR mRNA and that the production of AR mRNA in the target organs may be autoregulated by androgens

  8. beta-TrCP inhibition reduces prostate cancer cell growth via upregulation of the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Udi Gluschnaider

    2010-02-01

    Full Text Available Prostate cancer is a common and heterogeneous disease, where androgen receptor (AR signaling plays a pivotal role in development and progression. The initial treatment for advanced prostate cancer is suppression of androgen signaling. Later on, essentially all patients develop an androgen independent stage which does not respond to anti hormonal treatment. Thus, alternative strategies targeting novel molecular mechanisms are required. beta-TrCP is an E3 ligase that targets various substrates essential for many aspects of tumorigenesis.Here we show that beta-TrCP depletion suppresses prostate cancer and identify a relevant growth control mechanism. shRNA targeted against beta-TrCP reduced prostate cancer cell growth and cooperated with androgen ablation in vitro and in vivo. We found that beta-TrCP inhibition leads to upregulation of the aryl hydrocarbon receptor (AhR mediating the therapeutic effect. This phenomenon could be ligand independent, as the AhR ligand 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD did not alter prostate cancer cell growth. We detected high AhR expression and activation in basal cells and atrophic epithelial cells of human cancer bearing prostates. AhR expression and activation is also significantly higher in tumor cells compared to benign glandular epithelium.Together these observations suggest that AhR activation may be a cancer counteracting mechanism in the prostate. We maintain that combining beta-TrCP inhibition with androgen ablation could benefit advanced prostate cancer patients.

  9. Differentially methylated genes and androgen receptor re-expression in small cell prostate carcinomas.

    Science.gov (United States)

    Kleb, Brittany; Estécio, Marcos R H; Zhang, Jiexin; Tzelepi, Vassiliki; Chung, Woonbok; Jelinek, Jaroslav; Navone, Nora M; Tahir, Salahaldin; Marquez, Victor E; Issa, Jean-Pierre; Maity, Sankar; Aparicio, Ana

    2016-03-03

    Small cell prostate carcinoma (SCPC) morphology is rare at initial diagnosis but often emerges during prostate cancer progression and portends a dismal prognosis. It does not express androgen receptor (AR) or respond to hormonal therapies. Clinically applicable markers for its early detection and treatment with effective chemotherapy are needed. Our studies in patient tumor-derived xenografts (PDX) revealed that AR-negative SCPC (AR(-)SCPC) expresses neural development genes instead of the prostate luminal epithelial genes characteristic of AR-positive castration-resistant adenocarcinomas (AR(+)ADENO). We hypothesized that the differences in cellular lineage programs are reflected in distinct epigenetic profiles. To address this hypothesis, we compared the DNA methylation profiles of AR(-) and AR(+) PDX using methylated CpG island amplification and microarray (MCAM) analysis and identified a set of differentially methylated promoters, validated in PDX and corresponding donor patient samples. We used the Illumina 450K platform to examine additional regions of the genome and the correlation between the DNA methylation profiles of the PDX and their corresponding patient tumors. Struck by the low frequency of AR promoter methylation in the AR(-)SCPC, we investigated this region's specific histone modification patterns by chromatin immunoprecipitation. We found that the AR promoter was enriched in silencing histone modifications (H3K27me3 and H3K9me2) and that EZH2 inhibition with 3-deazaneplanocin A (DZNep) resulted in AR expression and growth inhibition in AR(-)SCPC cell lines. We conclude that the epigenome of AR(-) is distinct from that of AR(+) castration-resistant prostate carcinomas, and that the AR(-) phenotype can be reversed with epigenetic drugs.

  10. Recent progress in the development of protein-protein interaction inhibitors targeting androgen receptor-coactivator binding in prostate cancer.

    Science.gov (United States)

    Biron, Eric; Bédard, François

    2016-07-01

    The androgen receptor (AR) is a key regulator for the growth, differentiation and survival of prostate cancer cells. Identified as a primary target for the treatment of prostate cancer, many therapeutic strategies have been developed to attenuate AR signaling in prostate cancer cells. While frontline androgen-deprivation therapies targeting either the production or action of androgens usually yield favorable responses in prostate cancer patients, a significant number acquire treatment resistance. Known as the castration-resistant prostate cancer (CRPC), the treatment options are limited for this advanced stage. It has been shown that AR signaling is restored in CRPC due to many aberrant mechanisms such as AR mutations, amplification or expression of constitutively active splice-variants. Coregulator recruitment is a crucial regulatory step in AR signaling and the direct blockade of coactivator binding to AR offers the opportunity to develop therapeutic agents that would remain effective in prostate cancer cells resistant to conventional endocrine therapies. Structural analyses of the AR have identified key surfaces involved in protein-protein interaction with coregulators that have been recently used to design and develop promising AR-coactivator binding inhibitors. In this review we will discuss the design and development of small-molecule inhibitors targeting the AR-coactivator interactions for the treatment of prostate cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Small Molecule Antagonists of the Nuclear Androgen Receptor for the Treatment of Castration-Resistant Prostate Cancer.

    Science.gov (United States)

    Johnson, James K; Skoda, Erin M; Zhou, Jianhua; Parrinello, Erica; Wang, Dan; O'Malley, Katherine; Eyer, Benjamin R; Kazancioglu, Mustafa; Eisermann, Kurtis; Johnston, Paul A; Nelson, Joel B; Wang, Zhou; Wipf, Peter

    2016-08-11

    After a high-throughput screening campaign identified thioether 1 as an antagonist of the nuclear androgen receptor, a zone model was developed for structure-activity relationship (SAR) purposes and analogues were synthesized and evaluated in a cell-based luciferase assay. A novel thioether isostere, cyclopropane (1S,2R)-27, showed the desired increased potency and structural properties (stereospecific SAR response, absence of a readily oxidized sulfur atom, low molecular weight, reduced number of flexible bonds and polar surface area, and drug-likeness score) in the prostate-specific antigen luciferase assay in C4-2-PSA-rl cells to qualify as a new lead structure for prostate cancer drug development.

  12. Hormone receptor densities in relation to 10B neutron capture therapy

    International Nuclear Information System (INIS)

    Hechter, O.; Schwartz, I.L.

    1982-01-01

    This presentation is a theoretical discussion of the possibility that appropriate steroid-carborane derivatives might be used to selectively deliver boron-10 ( 10 B) to tumor cells with sex-hormone receptors in sufficient concentration for effective neutron capture theory (NCT) of hormone-dependent mammary and prostatic cancer. The results indicate the concentrations of androgen receptors (AR) and progesterone receptors (PR) in malignant prostatic cells or of estrogen receptors (ER) in malignant mammary cells are two low to achieve nuclear 10 B concentrations of 1 + g per g of tumor by using a steroid ligand coupled to a single carborane cage

  13. Differential requirements of androgen receptor in luminal progenitors during prostate regeneration and tumor initiation

    Science.gov (United States)

    Chua, Chee Wai; Epsi, Nusrat J; Leung, Eva Y; Xuan, Shouhong; Lei, Ming; Li, Bo I; Bergren, Sarah K; Hibshoosh, Hanina; Mitrofanova, Antonina

    2018-01-01

    Master regulatory genes of tissue specification play key roles in stem/progenitor cells and are often important in cancer. In the prostate, androgen receptor (AR) is a master regulator essential for development and tumorigenesis, but its specific functions in prostate stem/progenitor cells have not been elucidated. We have investigated AR function in CARNs (CAstration-Resistant Nkx3.1-expressing cells), a luminal stem/progenitor cell that functions in prostate regeneration. Using genetically--engineered mouse models and novel prostate epithelial cell lines, we find that progenitor properties of CARNs are largely unaffected by AR deletion, apart from decreased proliferation in vivo. Furthermore, AR loss suppresses tumor formation after deletion of the Pten tumor suppressor in CARNs; however, combined Pten deletion and activation of oncogenic Kras in AR-deleted CARNs result in tumors with focal neuroendocrine differentiation. Our findings show that AR modulates specific progenitor properties of CARNs, including their ability to serve as a cell of origin for prostate cancer. PMID:29334357

  14. Selective deletion of Pten in theca-interstitial cells leads to androgen excess and ovarian dysfunction in mice.

    Science.gov (United States)

    Lan, Zi-Jian; Krause, M S; Redding, S D; Li, X; Wu, G Z; Zhou, H X; Bohler, H C; Ko, C; Cooney, A J; Zhou, Junmei; Lei, Z M

    2017-03-15

    Theca cell-selective Pten mutation (tPtenMT) in mice resulted in increases in PDK1 and Akt phosphorylation, indicating an over-activation of PI3K signaling in the ovaries. These mice displayed elevated androgen levels, ovary enlargement, antral follicle accumulation, early fertility loss and increased expression of Lhcgr and genes that are crucial to androgenesis. These abnormalities were partially reversed by treatments of PI3K or Akt inhibitor. LH actions in Pten deficient theca cells were potentiated. The phosphorylation of Foxo1 was increased, while the binding of Foxo1 to forkhead response elements in the Lhcgr promoter was reduced in tPtenMT theca cells, implying a mechanism by which PI3K/Akt-induced upregulation of Lhcgr in theca cells might be mediated by reducing the inhibitory effect of Foxo1 on the Lhcgr promoter. The phenotype of tPtenMT females is reminiscent of human PCOS and suggests that dysregulated PI3K cascade in theca cells may be involved in certain types of PCOS pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Atmospheric Pressure Photoionization Tandem Mass Spectrometry of Androgens in Prostate Cancer

    Science.gov (United States)

    Lih, Fred Bjørn; Titus, Mark A.; Mohler, James L.; Tomer, Kenneth B.

    2010-01-01

    Androgen deprivation therapy is the most common treatment option for advanced prostate cancer. Almost all prostate cancers recur during androgen deprivation therapy, and new evidence suggests that androgen receptor activation persists despite castrate levels of circulating androgens. Quantitation of tissue levels of androgens is critical to understanding the mechanism of recurrence of prostate cancer during androgen deprivation therapy. A liquid chromatography atmospheric pressure photoionization tandem mass spectrometric method was developed for quantitation of tissue levels of androgens. Quantitation of the saturated keto-steroids dihydrotestosterone and 5-α-androstanedione required detection of a novel parent ion, [M + 15]+. The nature of this parent ion was explored and the method applied to prostate tissue and cell culture with comparison to results achieved using electrospray ionization. PMID:20560527

  16. Development of Novel Drugs That Target Coactivation Sites of the Androgen Receptor for Treatment of Antiandrogen-Resistant Prostate Cancer

    Science.gov (United States)

    2015-12-01

    quantifying their effect on the production of the prostate specific antigen (PSA) in prostate cancer cell lines (11). PSA is AR-regulated serine protease and... products . The hydroxylation products were observed in lesser amounts. The IV and IP serum profiles of VPC-13566 suggest that it could be administered IP...Glucocorticoid, mineralocorticoid, progesterone , and androgen receptors. Pharmacological Reviews. 2006;58:782-97. 2. Denmeade SR, Isaacs JT. A

  17. Sox2 Is an Androgen Receptor-Repressed Gene That Promotes Castration-Resistant Prostate Cancer

    Science.gov (United States)

    Kregel, Steven; Kiriluk, Kyle J.; Rosen, Alex M.; Cai, Yi; Reyes, Edwin E.; Otto, Kristen B.; Tom, Westin; Paner, Gladell P.; Szmulewitz, Russell Z.; Vander Griend, Donald J.

    2013-01-01

    Despite advances in detection and therapy, castration-resistant prostate cancer continues to be a major clinical problem. The aberrant activity of stem cell pathways, and their regulation by the Androgen Receptor (AR), has the potential to provide insight into novel mechanisms and pathways to prevent and treat advanced, castrate-resistant prostate cancers. To this end, we investigated the role of the embryonic stem cell regulator Sox2 [SRY (sex determining region Y)-box 2] in normal and malignant prostate epithelial cells. In the normal prostate, Sox2 is expressed in a portion of basal epithelial cells. Prostate tumors were either Sox2-positive or Sox2-negative, with the percentage of Sox2-positive tumors increasing with Gleason Score and metastases. In the castration-resistant prostate cancer cell line CWR-R1, endogenous expression of Sox2 was repressed by AR signaling, and AR chromatin-IP shows that AR binds the enhancer element within the Sox2 promoter. Likewise, in normal prostate epithelial cells and human embryonic stem cells, increased AR signaling also decreases Sox2 expression. Resistance to the anti-androgen MDV3100 results in a marked increase in Sox2 expression within three prostate cancer cell lines, and in the castration-sensitive LAPC-4 prostate cancer cell line ectopic expression of Sox2 was sufficient to promote castration-resistant tumor formation. Loss of Sox2 expression in the castration-resistant CWR-R1 prostate cancer cell line inhibited cell growth. Up-regulation of Sox2 was not associated with increased CD133 expression but was associated with increased FGF5 (Fibroblast Growth Factor 5) expression. These data propose a model of elevated Sox2 expression due to loss of AR-mediated repression during castration, and consequent castration-resistance via mechanisms not involving induction of canonical embryonic stem cell pathways. PMID:23326489

  18. CLONING AND IN VITRO EXPRESSION AND CHARACTERIZATION OF THE ANDROGEN RECEPTOR AND ISOLATION OF ESTROGEN RECEPTOR α FROM THE FATHEAD MINNOW (PIMEPHALES PROMELAS)

    Science.gov (United States)

    In vitro screening assays designed to identify hormone mimics or antagonists typically use mammalian (rat, human) estrogen (ER) and androgen receptors (AR). Although we know that the amino acid sequences of steroid receptors in nonmammalian vertebrates are not identical to the ma...

  19. Effects of cypermethrin on the ligand-independent interaction between androgen receptor and steroid receptor coactivator-1

    International Nuclear Information System (INIS)

    Pan, Chen; Liu, Ya-Peng; Li, Yan-Fang; Hu, Jin-Xia; Zhang, Jin-Peng; Wang, Hong-Mei; Li, Jing; Xu, Li-Chun

    2012-01-01

    The pyrethroid insecticide, cypermethrin has been considered as an environmental anti-androgen by interfering with the androgen receptor (AR) transactivation. In order to clarify the effects of cypermethrin on the ligand-independent interaction between the AR and SRC-1, the mammalian two-hybrid assay has been developed in the study. The AR N-terminal domain 1–660 amino acid residues were subcloned into the plasmid pVP16 to construct the vector pVP16-ARNTD. The SRC-1 C-terminal domain 989–1240 amino acid residues were subcloned into the plasmid pM to construct the vector pM-SRC-1. The fusion vectors pVP16-ARNTD, pM-SRC-1 and the pG5CAT Reporter Vector were cotransfected into the CV-1 cells. The AR AF1 interacted with SRC-1 in the absence of exogenous ligand 5α-dihydrotestosterone (DHT). Furthermore, DHT did not enhance the interaction between AR AF-1 and SRC-1 at the concentrations from 10 −10 M to 10 −8 M. Cypermethrin inhibited the interaction between the AR AF1 and SRC-1, and the significant reduction was detected at the concentration of 10 −5 M. It is suggested that the interaction between the AR AF1 and SRC-1 is ligand-independent. Cypermethrin inhibits AR activity by disrupting the ligand-independent AR–SRC-1 interaction.

  20. Expression of androgen receptor and prostate-specific antigen in male breast carcinoma

    International Nuclear Information System (INIS)

    Kidwai, Noman; Gong, Yun; Sun, Xiaoping; Deshpande, Charuhas G; Yeldandi, Anjana V; Rao, M Sambasiva; Badve, Sunil

    2004-01-01

    The androgen-regulated proteins prostate-specific antigen (PSA) and prostate-specific acid phosphatase (PSAP) are present in high concentrations in normal prostate and prostatic cancer and are considered to be tissue-specific to prostate. These markers are commonly used to diagnose metastatic prostate carcinoma at various sites including the male breast. However, expression of these two proteins in tumors arising in tissues regulated by androgens such as male breast carcinoma has not been thoroughly evaluated. In this study we analyzed the expression of PSA, PSAP and androgen receptor (AR) by immunohistochemistry in 26 cases of male breast carcinomas and correlated these with the expression of other prognostic markers. AR, PSA and PSAP expression was observed in 81%, 23% and 0% of carcinomas, respectively. Combined expression of AR and PSA was observed in only four tumors. Although the biological significance of PSA expression in male breast carcinomas is not clear, caution should be exercised when it is used as a diagnostic marker of metastatic prostate carcinoma

  1. CDNA CLONING OF FATHEAD MINNOW (PIMEPHALES PROMELAS) ESTROGEN AND ANDROGEN RECEPTORS FOR USE IN STEROID RECEPTOR EXTRAPOLATION STUDIES FOR ENDOCRINE DISRUPTING CHEMICALS

    Science.gov (United States)

    cDNA Cloning of Fathead minnow (Pimephales promelas) Estrogen and Androgen Receptors for Use in Steroid Receptor Extrapolation Studies for Endocrine Disrupting Chemicals. Wilson, V.S.1,, Korte, J.2, Hartig P. 1, Ankley, G.T.2, Gray, L.E., Jr 1, , and Welch, J.E.1. 1U.S...

  2. The role of androgen receptor activity mediated by the CAG repeat polymorphism in the pathogenesis of PCOS.

    Science.gov (United States)

    Baculescu, N

    2013-03-15

    Polycystic ovary syndrome (PCOS), one of the most common and complex endocrine disorders affecting up to 15 % of reproductive age women, is considered a predominantly hyperandrogenic syndrome according to the Androgen Excess Society. It is generally accepted that androgens determine the characteristic features of PCOS; in this context, a hyperactive androgen receptor (AR) at the levels of the GnRH pulse generator in the hypothalamus and at the granulosa cells in the ovary, skeletal muscle or adipocytes senses initially normal testosterone and dihydrotestosterone as biochemical hyperandrogenism and might be a crucial connection between the vicious circles of the PCOS pathogenesis. Polymorphism of the AR gene has been associated with different androgen pattern diseases. Several studies have demonstrated an association between AR with increased activity encoded by shorter CAG repeat polymorphism in the exon 1 of the AR gene and PCOS, although there are conflicting results in this field. The phenomenon is more complex because the AR activity is determined by the epigenetic effect of X chromosome inactivation (XCI). Moreover, we must evaluate the AR as a dynamic heterocomplex, with a large number of coactivators and corepressors that are essential to its function, thus mediating tissue-specific effects. In theory, any of these factors could modify the activity of AR, which likely explains the inconsistent results obtained when this activity was quantified by only the CAG polymorphism in PCOS.

  3. Circadian Rhythm of Hepatic Cytosolic and Nuclear Estrogen and Androgen Receptors

    Science.gov (United States)

    FRANCAVILLA, ANTONIO; EAGON, PATRICIA K.; DiLEO, ALFREDO; VAN THIEL, DAVID H.; PANELLA, CARMINE; POLIMENO, LORENZO; AMORUSO, CINZIA; INGROSSO, MARCELLO; AQUILINO, A. MARIA; STARZL, THOMAS E.

    2010-01-01

    Mammalian liver is a sex steroid-responsive tissue. The effects of these hormones presumably are mediated by hepatic estrogen receptors (ER) and androgen receptors (AR). Serum levels of sex hormones display circadian rhythms. Further, estrogens and androgens are commonly administered; administration of these agents is associated frequently with liver disease. Therefore, we investigated whether the cytosolic and nuclear sex steroid receptors also display a similar circadian rhythm, and whether variations occurred in the distribution of receptors between cytosolic and nuclear compartments. Animals were killed every 4 h from midnight till the following midnight; cytosolic and nuclear levels of both ER and AR were measured. Cytosolic ER reached a maximum level at 4 AM, and a minimum at 8 PM and midnight of both days. Nuclear ER was highest at 8 AM and lowest at 4 PM and 8 PM, a pattern which parallels variations in serum estradiol levels. Cytosolic AR was highest at 8 PM and lowest at midnight and 4 AM. Nuclear AR was highest at 4 AM and lowest at 4 PM and 8 PM. The highest level of nuclear AR does not correspond to the maximum serum testosterone level, which occurred at 4 PM. The total hepatic content of both ER and AR was not constant over the 24-h period, but varied considerably with time of day. These studies suggest that both ER and AR show a distinct circadian rhythm in subcellular compartmentalization, and that total hepatic content of ER and AR varies significantly during a 24-h period. PMID:3710067

  4. Fundamental considerations in the design of fluorine-18 labeled progestins and androgens as imaging agents for receptor-positive tumors of the breast and prostate

    International Nuclear Information System (INIS)

    Brandes, S.J.; Katzenellenbogen, J.A.

    1988-01-01

    A review is given of the structural and functional features which are important in the design and development of imaging agents for the progesterone receptor (PR) and the androgen receptor (AR) directed towards imaging receptor-positive tumors in the breast and prostate respectively. In particular the effects of various substituents on the biological activities and homologous receptor binding of progesterone, testosterone, nortestosterone and dihydrotestosterone are discussed. The effect of fluorine substitution on the affinities of progestins and androgens for their respective receptors is described. Other ligand systems that have high affinity for AR and PR and which may provide good bases for the design of fluorine-substituted imaging agents are also discussed. Finally, previous studies with radiolabelled progestins and androgens are described. (U.K.)

  5. Implication of androgen receptor in urinary bladder cancer: a critical mini review.

    Science.gov (United States)

    Rahmani, Arshad H; Alzohairy, Mohammad; Babiker, Ali Yousif Y; Khan, Amjad A; Aly, Salah M; Rizvi, Moshahid A

    2013-01-01

    Cancer is probably the most dreaded disease of mankind and the bladder cancer is the fifth most common type of cancer worldwide. It is a major cause of cancer morbidity and mortality. From amongst the bladder cancer, the Transitional Cell Carcinoma (TCC) is the most prevalent cancer of the bladder and accounts for 90% of all bladder cancer cases. Despite such a high prevalence, the molecular mechanism involved in the induction of bladder carcinoma and its progression are poorly understood. Tumorigenesis and tumor progression of bladder carcinomas are thought to result from the accumulation of multiple genetic alterations. The Androgen Receptor (AR) gene is located on the q arm of X chromosome (q11-12) and considered as a ligand-inducible transcription factor that regulates target gene expression. The Androgen plays a vital role in the development and maintenance of the normal urinary bladder. The AR is also involved in the development and progression of urinary bladder carcinoma, which is the most common type of carcinoma. Mutation in AR alters the ligand binding ability that may cause the progression and development of bladder cancer. Tumorigenesis and tumor progression are thought to result from changes in the function of hormonal receptor gene. The accumulation of the changes in AR expressions, determines the tumor's phenotype and ultimately the patient's clinical outcome. The early detection of which may help in management and prediction, how will it behave and respond to the therapeutic regimen. The present review aimed to study the mechanism and alteration of AR gene that play a vital role in the tumorIgenesis of bladder carcinoma.

  6. Identification of Androgen Receptor-Specific Enhancer RNAs

    Science.gov (United States)

    2017-08-01

    SUPPLEMENTARY NOTES 14. ABSTRACT The major goal of this application is to determine whether prostate cancer cells express enhancer RNAs in response to...androgen treatment such that these enhancer RNAs may serve as novel biomarkers for prostate cancer diagnosis and prognosis. There are two Tasks in...biomarkers or therapeutic targets for prostate cancer , especially for castration resistant prostate cancer . 15. SUBJECT TERMS lncRNA, eRNA, biomarker

  7. Structural Stereochemistry of Androstene Hormones Determines Interactions with Human Androgen, Estrogen, and Glucocorticoid Receptors

    Directory of Open Access Journals (Sweden)

    Thomas L. Shaak

    2013-01-01

    Full Text Available DHEA, 17α-AED, 17β-AED, and 17β-AET exhibit strong biological activity that has been attributed to androgenic, estrogenic, or antiglucocorticoid activity in vivo and in vitro. This study compared DHEA, 17α-AED, 17β-AED, and 17β-AET for their ability to activate the human AR, ER, and GR and determine the relative androgenicity, estrogenicity, and glucocorticoid activity. The results show that, at the receptor level, these androstene hormones are weak AR and even weaker ER activators. Direct androstene hormone activation of the human AR, ERα, and ERβ may not be essential for their biological function. Similarly, these hormones indirectly activated the human GR, only in the presence of high dexamethasone concentrations. These results underscore the major difference between androstene hormone interactions with these nuclear receptors and their biological effects.

  8. Changes in microfilament and focal adhesion distribution with loss of androgen responsiveness in cultured mammary tumor cells

    DEFF Research Database (Denmark)

    Couchman, J R; Yates, J; King, R J

    1981-01-01

    of the cells to grow in suspension culture. All these parameters were documented for androgen-responsive and -unresponsive cells grown in culture, as well as the transition of androgen-responsive to -unresponsive cells when deprived of androgen. The androgen-unresponsive cells had extensive and prominent...... microfilament bundles together with focal adhesions on the lower cell surface and also showed strict anchorage dependence for growth. In contrast, microfilament bundles and focal adhesions were absent from androgen-responsive cells, which furthermore had the ability to grow in suspension culture. Differences......, characteristics of both cell types were visible in the cell populations. However, at the stage where all androgen-responsive characteristics were lost, the cells were no longer androgen sensitive. The loss of androgen responsiveness in Shionogi 115 mouse mammary tumor cells is correlated with changes at the cell...

  9. Identification and characterisation of an androgen receptor from zebrafish Danio rerio

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Andersen, Ole; Bjerregaard, Poul

    2007-01-01

    ) and goldfish (Carassius auratus). Binding assays with zfAR demonstrated high affinity, saturable, single class binding site, with the characteristics of an androgen receptor. Saturation experiments along with subsequent Scatchard analysis determined that the Kd of the zfAR for 3H-testosterone was 2 n...

  10. Identification of the functional domains of ANT-1, a novel coactivator of the androgen receptor

    International Nuclear Information System (INIS)

    Fan Shuli; Goto, Kiminobu; Chen Guangchun; Morinaga, Hidetaka; Nomura, Masatoshi; Okabe, Taijiro; Nawata, Hajime; Yanase, Toshihiko

    2006-01-01

    Previously, we identified a transcriptional coactivator for the activation function-1 (AF-1) domain of the human androgen receptor (AR) and designated it androgen receptor N-terminal domain transactivating protein-1 (ANT-1). This coactivator, which contains multiple tetratricopeptide repeat (TPR) motifs from amino acid (aa) 294, is identical to a component of U5 small nuclear ribonucleoprotein particles and binds specifically to the AR or glucocorticoid receptor. Here, we identified four distinct functional domains. The AR-AF-1-binding domain, which bound to either aa 180-360 or 360-532 in AR-AF-1, clearly overlapped with TAU-1 and TAU-5. This domain and the subnuclear speckle formation domain in ANT-1 were assigned within the TPR motifs, while the transactivating and nuclear localization signal domains resided within the N-terminal sequence. The existence of these functional domains may further support the idea that ANT-1 can function as an AR-AF-1-specific coactivator while mediating a transcription-splicing coupling

  11. Diagnostic and Therapeutic Radiopharmaceutical Agents for Selective Discrimination of Prostate Cancer

    Science.gov (United States)

    2009-10-01

    selective androgen receptor modulators ( SARMs ). Abstr. Pap. Am... nonsteroidal ligands for binding and activation of the androgen receptor . Mol. Pharmacol. 63, 211–223. (10) Bohl, C. E., Chang, C., Mohler, M. L., Chen, J...Lehtovuori, P. T., and Nyronen, T. H. (2005) Three-dimensional structure-activity relationships of nonsteroidal ligands in complex with androgen receptor

  12. Neuroendocrine prostate cancer (NEPCa) increased the neighboring PCa chemo-resistance via altering the PTHrP/p38/Hsp27/androgen receptor (AR)/p21 signals

    Science.gov (United States)

    Cui, Yun; Sun, Yin; Hu, Shuai; Luo, Jie; Li, Lei; Li, Xin; Yeh, Shuyuan; Jin, Jie; Chang, Chawnshang

    2016-01-01

    Prostatic neuroendocrine cells (NE) are an integral part of prostate cancer (PCa) that are associated with PCa progression. As the current androgen-deprivation therapy (ADT) with anti-androgens may promote the neuroendocrine PCa (NEPCa) development, and few therapies can effectively suppress NEPCa, understanding the impact of NEPCa on PCa progression may help us to develop better therapies to battle PCa. Here we found NEPCa cells could increase the docetaxel-resistance of their neighboring PCa cells. Mechanism dissection revealed that through secretion of PTHrP, NEPCa cells could alter the p38/MAPK/Hsp27 signals in their neighboring PCa cells that resulted in increased androgen receptor (AR) activity via promoting AR nuclear translocation. The consequences of increased AR function might then increase docetaxel-resistance via increasing p21 expression. In vivo xenograft mice experiments also confirmed NEPCa could increase the docetaxel-resistance of neighboring PCa, and targeting this newly identified PTHrP/p38/Hsp27/AR/p21 signaling pathway with either p38 inhibitor (SB203580) or sh-PTHrP may result in improving/restoring the docetaxel sensitivity to better suppress PCa. PMID:27375022

  13. Modulation of Androgen Receptor Transcriptional Activity

    NARCIS (Netherlands)

    H.Y. Wong (Hao Yun)

    2009-01-01

    textabstractAndrogens, testosterone (T) and 5a-dihydrotestosterone (DHT), are important for male and female physiology, in particular for male sexual differentiation, development of secondary male characteristics and spermatogenesis. These hormones exert their actions by binding to the androgen

  14. Repressive effects of resveratrol on androgen receptor transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Wen-feng Shi

    2009-10-01

    Full Text Available The chemopreventive effects of resveratrol (RSV on prostate cancer have been well established; the androgen receptor (AR plays pivotal roles in prostatic tumorigenesis. However, the exact underlying molecular mechanisms about the effects of RSV on AR have not been fully elucidated. A model system is needed to determine whether and how RSV represses AR transcriptional activity.The AR cDNA was first cloned into the retroviral vector pOZ-N and then integrated into the genome of AR-negative HeLa cells to generate the AR(+ cells. The constitutively expressed AR was characterized by monitoring hormone-stimulated nuclear translocation, DNA binding, and transcriptional activation, with the AR(- cells serving as controls. AR(+ cells were treated with RSV, and both AR protein levels and AR transcriptional activity were measured simultaneously. Chromatin immunoprecipitation (ChIP assays were used to detect the effects of RSV on the recruitment of AR to its cognate element (ARE.AR in the AR (+ stable cell line functions in a manner similar to that of endogenously expressed AR. Using this model system we clearly demonstrated that RSV represses AR transcriptional activity independently of any effects on AR protein levels. However, neither the hormone-mediated nucleus translocation nor the AR/ARE interaction was affected by RSV treatment.We demonstrated unambiguously that RSV regulates AR target gene expression, at least in part, by repressing AR transcriptional activity. Repressive effects of RSV on AR activity result from mechanisms other than the affects of AR nuclear translocation or DNA binding.

  15. Identifying Environmental Chemicals as Agonists of the Androgen Receptor by Applying a Quantitative High-throughput Screening Platform

    Science.gov (United States)

    Background: The androgen receptor (AR, NR3C4) is a nuclear receptor whose main function is acting as a transcription factor regulating gene expression for male sexual development and maintaining accessory sexual organ function. It is also a necessary component of female fertility...

  16. In Vitro Androgen Bioassays as a Detection Method for Designer Androgens

    Directory of Open Access Journals (Sweden)

    Alison K. Heather

    2013-02-01

    Full Text Available Androgens are the class of sex steroids responsible for male sexual characteristics, including increased muscle mass and decreased fat mass. Illicit use of androgen doping can be an attractive option for those looking to enhance sporting performance and/or physical appearance. The use of in vitro bioassays to detect androgens, especially designer or proandrogens, is becoming increasingly important in combating androgen doping associated with nutritional supplements. The nutritional sports supplement market has grown rapidly throughout the past decade. Many of these supplements contain androgens, designer androgens or proandrogens. Many designer or proandrogens cannot be detected by the standard highly-sensitive screening methods such as gas chromatography-mass spectrometry because their chemical structure is unknown. However, in vitro androgen bioassays can detect designer and proandrogens as these assays are not reliant on knowing the chemical structure but instead are based on androgen receptor activation. For these reasons, it may be advantageous to use routine androgen bioassay screening of nutraceutical samples to help curb the increasing problem of androgen doping.

  17. Inhibition of androgen receptor by decoy molecules delays progression to castration-recurrent prostate cancer.

    Directory of Open Access Journals (Sweden)

    Jae-Kyung Myung

    Full Text Available Androgen receptor (AR is a member of the steroid receptor family and a therapeutic target for all stages of prostate cancer. AR is activated by ligand binding within its C-terminus ligand-binding domain (LBD. Here we show that overexpression of the AR NTD to generate decoy molecules inhibited both the growth and progression of prostate cancer in castrated hosts. Specifically, it was shown that lentivirus delivery of decoys delayed hormonal progression in castrated hosts as indicated by increased doubling time of tumor volume, prolonged time to achieve pre-castrate levels of serum prostate-specific antigen (PSA and PSA nadir. These clinical parameters are indicative of delayed hormonal progression and improved therapeutic response and prognosis. Decoys reduced the expression of androgen-regulated genes that correlated with reduced in situ interaction of the AR with androgen response elements. Decoys did not reduce levels of AR protein or prevent nuclear localization of the AR. Nor did decoys interact directly with the AR. Thus decoys did not inhibit AR transactivation by a dominant negative mechanism. This work provides evidence that the AR NTD plays an important role in the hormonal progression of prostate cancer and supports the development of AR antagonists that target the AR NTD.

  18. Molecular mechanisms of androgen receptor functions

    NARCIS (Netherlands)

    K. Steketee (Karine)

    2007-01-01

    textabstractThe androgens testosterone (T) and dihydrotestosterone (DHT) are steroid hormones, which are necessary for development and maintenance of the functions of the male sex organs, including the prostate. Androgens also play an important role in benign abnormalities of the prostate and in the

  19. Genomic and non-genomic effects of androgens in the cardiovascular system: clinical implications.

    Science.gov (United States)

    Lucas-Herald, Angela K; Alves-Lopes, Rheure; Montezano, Augusto C; Ahmed, S Faisal; Touyz, Rhian M

    2017-07-01

    The principle steroidal androgens are testosterone and its metabolite 5α-dihydrotestosterone (DHT), which is converted from testosterone by the enzyme 5α-reductase. Through the classic pathway with androgens crossing the plasma membrane and binding to the androgen receptor (AR) or via mechanisms independent of the ligand-dependent transactivation function of nuclear receptors, testosterone induces genomic and non-genomic effects respectively. AR is widely distributed in several tissues, including vascular endothelial and smooth muscle cells. Androgens are essential for many developmental and physiological processes, especially in male reproductive tissues. It is now clear that androgens have multiple actions besides sex differentiation and sexual maturation and that many physiological systems are influenced by androgens, including regulation of cardiovascular function [nitric oxide (NO) release, Ca 2+ mobilization, vascular apoptosis, hypertrophy, calcification, senescence and reactive oxygen species (ROS) generation]. This review focuses on evidence indicating that interplay between genomic and non-genomic actions of testosterone may influence cardiovascular function. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  20. CLONING, EXPRESSION AND CHARACTERIZATION OF THE ANDROGEN RECEPTOR AND ISOLATION OF ESTROGEN RECEPTOR ALPHA FROM THE FATHEAD MINNOW (PIMEPHALES PROMELAS)

    Science.gov (United States)

    In vitro screening assays designed to identify hormone mimics or antagonists, including those recommended for use in the EPA's Tier 1 screening battery, typically use mammalian estrogen (ER) and androgen receptors (AR) such as rat or human. Although we know that the amino acid s...

  1. Identification of the molecular switch that regulates access of 5alpha-DHT to the androgen receptor.

    Science.gov (United States)

    Penning, Trevor M; Bauman, David R; Jin, Yi; Rizner, Tea Lanisik

    2007-02-01

    Pairs of hydroxysteroid dehydrogenases (HSDs) govern ligand access to steroid receptors in target tissues and act as molecular switches. By acting as reductases or oxidases, HSDs convert potent ligands into their cognate inactive metabolites or vice versa. This pre-receptor regulation of steroid hormone action may have profound effects on hormonal response. We have identified the HSDs responsible for regulating ligand access to the androgen receptor (AR) in human prostate. Type 3 3alpha-hydroxysteroid dehydrogenase (aldo-keto reductase 1C2) acts solely as a reductase to convert 5alpha-dihydrotestosterone (DHT), a potent ligand for the AR (K(d)=10(-11)M for the AR), to the inactive androgen 3alpha-androstanediol (K(d)=10(-6)M for the AR); while RoDH like 3alpha-HSD (a short-chain dehydrogenase/reductase (SDR)) acts solely as an oxidase to convert 3alpha-androstanediol back to 5alpha-DHT. Our studies suggest that aldo-keto reductase (AKRs) and SDRs function as reductases and oxidases, respectively, to control ligand access to nuclear receptors.

  2. Effects of extract of Buddleja officinalis eye drops on androgen receptors of lacrimal gland cells of castrated rats with dry eye.

    Science.gov (United States)

    Peng, Qing-Hua; Yao, Xiao-Lei; Wu, Quan-Long; Tan, Han-Yu; Zhang, Jing-Rong

    2010-01-01

    To evaluate the effects of the extract of Buddleja officinalis eye drops in basic tears secretory volume, tear film stability, expression of androgen receptors (AR) in castrated rats with dry eye, and to investigate the therapeutic effects of the extract of Buddleja officinalis on dry eye caused by gonadal hormones level imbalance. Forty-five Wistar masculinity rats were divided at random into nine groups, including normal groups (A1, A2 and A3); model groups (B1, B2 and B3); therapy groups with extract of Buddleja officinalis eye drops (C1, C2 and C3). The "1" stood for being fed for 1 month, and "2" for 2 months, and "3" for 3 months. The dry eye model was established with orchiectomy on groups B and C. Group C was treated with Buddleja officinalis extract eye drops for one month. All rats were checked with Schirmer I test (SIT) and tear film break-up time (BUT). Expression of AR was analyzed by flow cytometer (FCM). The SIT value of group C was significantly higher than that of group B (PBuddleja officinalis is the flavonoids that can significantly inhibit happening of dry eye of rat after androgen level lowered. Its mechanism is like androgen's and it can display androgen-like activity to keep basic tears secretory volume and tear film stability.

  3. Androgen receptor distribution in the social decision-making network of eusocial naked mole-rats.

    Science.gov (United States)

    Holmes, Melissa M; Van Mil, Spencer; Bulkowski, Camila; Goldman, Sharry L; Goldman, Bruce D; Forger, Nancy G

    2013-11-01

    Naked mole-rats are highly social rodents that live in large groups and exhibit a strict reproductive and social hierarchy. Only a few animals in each colony breed; the remainder are non-reproductive and are socially subordinate to breeders. We have examined androgen receptor immunoreactive (AR+) cells in brain regions comprising the recently described social decision-making network in subordinate and breeder naked mole-rats of both sexes. We find that subordinates have a significantly higher percentage of AR+ cells in all brain regions expressing this protein. By contrast, there were no significant effects of sex and no sex-by-status interactions on the percentage of AR+ cells. Taken together with previous findings, the present data complete a systematic assessment of the distribution of AR protein in the social decision-making network of the eusocial mammalian brain and demonstrate a significant role for social status in the regulation of this protein throughout many nodes of this network. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Proteome-wide muscle protein fractional synthesis rates predict muscle mass gain in response to a selective androgen receptor modulator in rats.

    Science.gov (United States)

    Shankaran, Mahalakshmi; Shearer, Todd W; Stimpson, Stephen A; Turner, Scott M; King, Chelsea; Wong, Po-Yin Anne; Shen, Ying; Turnbull, Philip S; Kramer, Fritz; Clifton, Lisa; Russell, Alan; Hellerstein, Marc K; Evans, William J

    2016-03-15

    Biomarkers of muscle protein synthesis rate could provide early data demonstrating anabolic efficacy for treating muscle-wasting conditions. Androgenic therapies have been shown to increase muscle mass primarily by increasing the rate of muscle protein synthesis. We hypothesized that the synthesis rate of large numbers of individual muscle proteins could serve as early response biomarkers and potentially treatment-specific signaling for predicting the effect of anabolic treatments on muscle mass. Utilizing selective androgen receptor modulator (SARM) treatment in the ovariectomized (OVX) rat, we applied an unbiased, dynamic proteomics approach to measure the fractional synthesis rates (FSR) of 167-201 individual skeletal muscle proteins in triceps, EDL, and soleus. OVX rats treated with a SARM molecule (GSK212A at 0.1, 0.3, or 1 mg/kg) for 10 or 28 days showed significant, dose-related increases in body weight, lean body mass, and individual triceps but not EDL or soleus weights. Thirty-four out of the 94 proteins measured from the triceps of all rats exhibited a significant, dose-related increase in FSR after 10 days of SARM treatment. For several cytoplasmic proteins, including carbonic anhydrase 3, creatine kinase M-type (CK-M), pyruvate kinase, and aldolase-A, a change in 10-day FSR was strongly correlated (r(2) = 0.90-0.99) to the 28-day change in lean body mass and triceps weight gains, suggesting a noninvasive measurement of SARM effects. In summary, FSR of multiple muscle proteins measured by dynamics of moderate- to high-abundance proteins provides early biomarkers of the anabolic response of skeletal muscle to SARM. Copyright © 2016 the American Physiological Society.

  5. Pharmacological profile of CS-3150, a novel, highly potent and selective non-steroidal mineralocorticoid receptor antagonist.

    Science.gov (United States)

    Arai, Kiyoshi; Homma, Tsuyoshi; Morikawa, Yuka; Ubukata, Naoko; Tsuruoka, Hiyoyuki; Aoki, Kazumasa; Ishikawa, Hirokazu; Mizuno, Makoto; Sada, Toshio

    2015-08-15

    The present study was designed to characterize the pharmacological profile of CS-3150, a novel non-steroidal mineralocorticoid receptor antagonist. In the radioligand-binding assay, CS-3150 inhibited (3)H-aldosterone binding to mineralocorticoid receptor with an IC50 value of 9.4nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 36 and 713nM, respectively. CS-3150 also showed at least 1000-fold higher selectivity for mineralocorticoid receptor over other steroid hormone receptors, glucocorticoid receptor, androgen receptor and progesterone receptor. In the reporter gene assay, CS-3150 inhibited aldosterone-induced transcriptional activation of human mineralocorticoid receptor with an IC50 value of 3.7nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 66 and 970nM, respectively. CS-3150 had no agonistic effect on mineralocorticoid receptor and did not show any antagonistic or agonistic effect on glucocorticoid receptor, androgen receptor and progesterone receptor even at the high concentration of 5μM. In adrenalectomized rats, single oral administration of CS-3150 suppressed aldosterone-induced decrease in urinary Na(+)/K(+) ratio, an index of in vivo mineralocorticoid receptor activation, and this suppressive effect was more potent and longer-lasting than that of spironolactone and eplerenone. Chronic treatment with CS-3150 inhibited blood pressure elevation induced by deoxycorticosterone acetate (DOCA)/salt-loading to rats, and this antihypertensive effect was more potent than that of spironolactone and eplerenone. These findings indicate that CS-3150 is a selective and highly potent mineralocorticoid receptor antagonist with long-lasting oral activity. This agent could be useful for the treatment of hypertension, cardiovascular and renal disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Testosterone regulates keratin 33B expression in rat penis growth through androgen receptor signaling.

    Science.gov (United States)

    Ma, Yan-Min; Wu, Kai-Jie; Dang, Qiang; Shi, Qi; Gao, Yang; Guo, Peng; Xu, Shan; Wang, Xin-Yang; He, Da-Lin; Gong, Yong-Guang

    2014-01-01

    Androgen therapy is the mainstay of treatment for the hypogonadotropic hypogonadal micropenis because it obviously enhances penis growth in prepubescent microphallic patients. However, the molecular mechanisms of androgen treatment leading to penis growth are still largely unknown. To clarify this well-known phenomenon, we successfully generated a castrated male Sprague Dawley rat model at puberty followed by testosterone administration. Interestingly, compared with the control group, testosterone treatment stimulated a dose-dependent increase of penis weight, length, and width in castrated rats accompanied with a dramatic recovery of the pathological changes of the penis. Mechanistically, testosterone administration substantially increased the expression of androgen receptor (AR) protein. Increased AR protein in the penis could subsequently initiate transcription of its target genes, including keratin 33B (Krt33b). Importantly, we demonstrated that KRT33B is generally expressed in the rat penis and that most KRT33B expression is cytoplasmic. Furthermore, AR could directly modulate its expression by binding to a putative androgen response element sequence of the Krt33b promoter. Overall, this study reveals a novel mechanism facilitating penis growth after testosterone treatment in precastrated prepubescent animals, in which androgen enhances the expression of AR protein as well as its target genes, such as Krt33b.

  7. Testosterone regulates keratin 33B expression in rat penis growth through androgen receptor signaling

    Directory of Open Access Journals (Sweden)

    Yan-Min Ma

    2014-12-01

    Full Text Available Androgen therapy is the mainstay of treatment for the hypogonadotropic hypogonadal micropenis because it obviously enhances penis growth in prepubescent microphallic patients. However, the molecular mechanisms of androgen treatment leading to penis growth are still largely unknown. To clarify this well-known phenomenon, we successfully generated a castrated male Sprague Dawley rat model at puberty followed by testosterone administration. Interestingly, compared with the control group, testosterone treatment stimulated a dose-dependent increase of penis weight, length, and width in castrated rats accompanied with a dramatic recovery of the pathological changes of the penis. Mechanistically, testosterone administration substantially increased the expression of androgen receptor (AR protein. Increased AR protein in the penis could subsequently initiate transcription of its target genes, including keratin 33B (Krt33b. Importantly, we demonstrated that KRT33B is generally expressed in the rat penis and that most KRT33B expression is cytoplasmic. Furthermore, AR could directly modulate its expression by binding to a putative androgen response element sequence of the Krt33b promoter. Overall, this study reveals a novel mechanism facilitating penis growth after testosterone treatment in precastrated prepubescent animals, in which androgen enhances the expression of AR protein as well as its target genes, such as Krt33b.

  8. Lestaurtinib inhibits histone phosphorylation and androgen-dependent gene expression in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Jens Köhler

    Full Text Available BACKGROUND: Epigenetics is defined as heritable changes in gene expression that are not based on changes in the DNA sequence. Posttranslational modification of histone proteins is a major mechanism of epigenetic regulation. The kinase PRK1 (protein kinase C related kinase 1, also known as PKN1 phosphorylates histone H3 at threonine 11 and is involved in the regulation of androgen receptor signalling. Thus, it has been identified as a novel drug target but little is known about PRK1 inhibitors and consequences of its inhibition. METHODOLOGY/PRINCIPAL FINDING: Using a focused library screening approach, we identified the clinical candidate lestaurtinib (also known as CEP-701 as a new inhibitor of PRK1. Based on a generated 3D model of the PRK1 kinase using the homolog PKC-theta (protein kinase c theta protein as a template, the key interaction of lestaurtinib with PRK1 was analyzed by means of molecular docking studies. Furthermore, the effects on histone H3 threonine phosphorylation and androgen-dependent gene expression was evaluated in prostate cancer cells. CONCLUSIONS/SIGNIFICANCE: Lestaurtinib inhibits PRK1 very potently in vitro and in vivo. Applied to cell culture it inhibits histone H3 threonine phosphorylation and androgen-dependent gene expression, a feature that has not been known yet. Thus our findings have implication both for understanding of the clinical activity of lestaurtinib as well as for future PRK1 inhibitors.

  9. 17β-Hydroxysteroid Dehydrogenase Type 2 Expression Is Induced by Androgen Signaling in Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Chiaki Hashimoto

    2018-04-01

    Full Text Available Endometrial cancer is one of the most common female pelvic cancers and has been considered an androgen-related malignancy. Several studies have demonstrated the anti-cell proliferative effect of androgen on endometrial cancer cells; however, the mechanisms of the anti-cancer effect of androgen remain largely unclear. 17β-hydroxysteroid dehydrogenase type 2 (17β-HSD2, which catalyzes the conversion of E2 to E1, is known to be upregulated by androgen treatment in breast cancer cells. In this study, we therefore focused on the role of androgen on estrogen dependence in endometrial cancer. Dihydrotestosterone (DHT was found to induce 17β-HSD2 mRNA and protein expression in HEC-1B endometrial cancer cells. DHT could also inhibit cell proliferation of HEC-1B when induced by estradiol treatment. In 19 endometrioid endometrial adenocarcinoma (EEA tissues, intratumoral DHT concentration was measured by liquid chromatography/electrospray tandem mass spectrometry and was found to be significantly correlated with 17β-HSD2 immunohistochemical status. We further examined the correlations between 17β-HSD2 immunoreactivity and clinicopathological parameters in 53 EEA tissues. 17β-HSD2 status was inversely associated with the histological grade, clinical stage, and cell proliferation marker Ki-67, and positively correlated with progesterone receptor expression. 17β-HSD2 status tended to be positively associated with androgen receptor status. In 53 EEA cases, the 17β-HSD2-positive group tended to have better prognosis than that for the negative group with respect to progression-free survival and endometrial cancer-specific survival. These findings suggest that androgen suppresses the estrogen dependence of endometrial cancer through the induction of 17β-HSD2 in endometrial cancer.

  10. Proteasome-associated deubiquitinase ubiquitin-specific protease 14 regulates prostate cancer proliferation by deubiquitinating and stabilizing androgen receptor.

    Science.gov (United States)

    Liao, Yuning; Liu, Ningning; Hua, Xianliang; Cai, Jianyu; Xia, Xiaohong; Wang, Xuejun; Huang, Hongbiao; Liu, Jinbao

    2017-02-02

    Androgen receptor (AR) is frequently over-expressed and plays a critical role in the growth and progression of human prostate cancer. The therapy attempting to target AR signalling was established in decades ago but the treatment of prostate cancer is far from being satisfactory. The assignable cause is that our understanding of the mechanism of AR regulation and re-activation remains incomplete. Increasing evidence suggests that deubiquitinases are involved in the regulation of cancer development and progression but the specific underlying mechanism often is not elucidated. In the current study, we have identified ubiquitin-specific protease 14 (USP14) as a novel regulator of AR, inhibiting the degradation of AR via deubiquitinating this oncoprotein in the androgen-responsive prostate cancer cells. We found that (i) USP14 could bind to AR, and additionally, both genetic and pharmacological inhibition of USP14 accelerated the ubiquitination and degradation of AR; (ii) downregulation or inhibition of USP14 suppressed cell proliferation and colony formation of LNcap cells and, conversely, overexpression of USP14 promoted the proliferation; and (iii) reduction or inhibition of USP14 induced G0/G1 phase arrest in LNcap prostate cancer cells. Hence, we conclude that USP14 promotes prostate cancer progression likely through stabilization of AR, suggesting that USP14 could be a promising therapeutic target for prostate cancer.

  11. Development and Implementation of a High-Throughput High-Content Screening Assay to Identify Inhibitors of Androgen Receptor Nuclear Localization in Castration-Resistant Prostate Cancer Cells

    Science.gov (United States)

    Nguyen, Minh M.; Dar, Javid A.; Ai, Junkui; Wang, Yujuan; Masoodi, Khalid Z.; Shun, Tongying; Shinde, Sunita; Camarco, Daniel P.; Hua, Yun; Huryn, Donna M.; Wilson, Gabriela Mustata; Lazo, John S.; Nelson, Joel B.; Wipf, Peter

    2016-01-01

    Abstract Patients with castration-resistant prostate cancer (CRPC) can be treated with abiraterone, a potent inhibitor of androgen synthesis, or enzalutamide, a second-generation androgen receptor (AR) antagonist, both targeting AR signaling. However, most patients relapse after several months of therapy and a majority of patients with relapsed CRPC tumors express the AR target gene prostate-specific antigen (PSA), suggesting that AR signaling is reactivated and can be targeted again to inhibit the relapsed tumors. Novel small molecules capable of inhibiting AR function may lead to urgently needed therapies for patients resistant to abiraterone, enzalutamide, and/or other previously approved antiandrogen therapies. Here, we describe a high-throughput high-content screening (HCS) campaign to identify small-molecule inhibitors of AR nuclear localization in the C4-2 CRPC cell line stably transfected with GFP-AR-GFP (2GFP-AR). The implementation of this HCS assay to screen a National Institutes of Health library of 219,055 compounds led to the discovery of 3 small molecules capable of inhibiting AR nuclear localization and function in C4-2 cells, demonstrating the feasibility of using this cell-based phenotypic assay to identify small molecules targeting the subcellular localization of AR. Furthermore, the three hit compounds provide opportunities to develop novel AR drugs with potential for therapeutic intervention in CRPC patients who have relapsed after treatment with antiandrogens, such as abiraterone and/or enzalutamide. PMID:27187604

  12. Androgen receptor regulates nuclear trafficking and nuclear domain residency of corepressor HDAC7 in a ligand-dependent fashion

    International Nuclear Information System (INIS)

    Karvonen, Ulla; Jaenne, Olli A.; Palvimo, Jorma J.

    2006-01-01

    In addition to chromosomal proteins, histone deacetylases (HDACs) target transcription factors in transcriptional repression. Here, we show that the class II HDAC family member HDAC7 is an efficient corepressor of the androgen receptor (AR). HDAC7 resided in the cytoplasm in the absence of AR or a cognate ligand, but hormone-occupancy of AR induced nuclear transfer of HDAC7. Nuclear colocalization pattern of AR and HDAC7 was dependent on the nature of the ligand. In the presence of testosterone, a portion of HDAC7 localized to pearl-like nuclear domains, whereas AR occupied with antagonistic ligands cyproterone acetate- or casodex (bicalutamide) recruited HDAC7 from these domains to colocalize with the receptor in speckles and nucleoplasm in a more complete fashion. Ectopic expression of PML-3 relieved the repressive effect of HDAC7 on AR function by sequestering HDAC7 to PML-3 domains. AR acetylation at Lys630/632/633 was not the target of HDAC7 repression, since repression of AR function was independent of these acetylation sites. Moreover, the deacetylase activity of HDAC7 was in part dispensable in the repression of AR function. In sum, our results identify HDAC7 as a novel AR corepressor whose subcellular and subnuclear compartmentalization can be regulated in an androgen-selective manner

  13. Luteinizing hormone-induced Akt phosphorylation and androgen production are modulated by MAP Kinase in bovine theca cells

    Directory of Open Access Journals (Sweden)

    Fukuda Shin

    2009-11-01

    Full Text Available Abstract Background Theca cells play an important role in controlling ovarian steroidogenesis by providing aromatizable androgens for granulosa cell estrogen biosynthesis. Although it is well established that the steroidogenic activity of theca cells is mainly regulated by LH, the intracellular signal transduction mechanisms that regulate thecal proliferation and/or steroidogenesis remain obscure. In this study, we examined whether and how LH controls the PI3K/Akt signaling pathway and androgen production in bovine theca cells. We also explored whether this LH-induced PI3K/Akt activation is modulated with other signaling pathways (i.e. PKA and MAPK. Methods Ovarian theca cells were isolated from bovine small antral follicles and were incubated with LH for various durations. Phospho-Akt and total-Akt content in the cultured theca cells were examined using Western blotting. Androstenedione levels in the spent media were determined using EIA. Semi-quantitative RT-PCR analyses were conducted to analyze the mRNA levels of CYP17A1 and StAR in the theca cells. To examine whether Akt activity is involved in theca cell androgen production, the PI3K inhibitors wortmannin and LY294002 were also added to the cells. Results Akt is constitutively expressed, but is gradually phosphorylated in cultured bovine theca cells through exposure to LH. LH significantly increased androstenedione production in bovine theca cells, whereas addition of the wortmannin and LY294002 significantly decreased LH-induced androstenedione production. LH significantly increased CYP17A1 mRNA level in theca cells, whereas addition of LY294002 significantly decreased LH-induced CYP17A1 expression. Neither LH nor PI3K inhibitors alter the mRNA levels of StAR in theca cells. Although H89 (a selective inhibitor of PKA does not affect LH-mediated changes in Akt, U0126 (a potent MEK inhibitor suppressed LH-induced Akt phosphorylation, CYP17A1 expression, and androgen production in theca

  14. Synergistic killing effect of chloroquine and androgen deprivation in LNCaP cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaini, Ramesh R. [Department of Biochemistry and Molecular Biology and UNM Cancer and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM (United States); Hu, Chien-An A., E-mail: AHu@salud.unm.edu [Department of Biochemistry and Molecular Biology and UNM Cancer and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM (United States)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Chloroquine synergistically killed LNCaP cells during androgen deprivation treatment. Black-Right-Pointing-Pointer Chloroquine inhibited the function of autolysosomes and decreases the cytosolic ATP. Black-Right-Pointing-Pointer Chloroquine induced nuclear and DNA fragmentation in androgen deprived LNCaP. Black-Right-Pointing-Pointer Chloroquine may be an useful adjuvant in hormone ablation therapy in PCa patients. -- Abstract: Modulation of autophagy is a new paradigm in cancer therapeutics. Recently a novel function of chloroquine (CLQ) in inhibiting degradation of autophagic vesicles has been revealed, which raises the question whether CLQ can be used as an adjuvant in targeting autophagic pro-survival mechanism in prostate cancer (PCa). We previously showed that autophagy played a protective role during hormone ablation therapy, in part, by consuming lipid droplets in PCa cells. In addition, blocking autophagy by genetic and pharmacological means in the presence of androgen deprivation caused cell death in PCa cells. To further investigate the importance of autophagy in PCa survival and dissect the role of CLQ in PCa death, we treated hormone responsive LNCaP cells with CLQ in combination with androgen deprivation. We observed that CLQ synergistically killed LNCaP cells during androgen deprivation in a dose- and time-dependent manner. We further confirmed that CLQ inhibited the maturation of autophagic vesicles and decreased the cytosolic ATP. Moreover, CLQ induced nuclear condensation and DNA fragmentation, a hallmark of apoptosis, in androgen deprived LNCaP cells. Taken together, our finding suggests that CLQ may be an useful adjuvant in hormone ablation therapy to improve the therapeutic efficacy.

  15. Synergistic killing effect of chloroquine and androgen deprivation in LNCaP cells

    International Nuclear Information System (INIS)

    Kaini, Ramesh R.; Hu, Chien-An A.

    2012-01-01

    Highlights: ► Chloroquine synergistically killed LNCaP cells during androgen deprivation treatment. ► Chloroquine inhibited the function of autolysosomes and decreases the cytosolic ATP. ► Chloroquine induced nuclear and DNA fragmentation in androgen deprived LNCaP. ► Chloroquine may be an useful adjuvant in hormone ablation therapy in PCa patients. -- Abstract: Modulation of autophagy is a new paradigm in cancer therapeutics. Recently a novel function of chloroquine (CLQ) in inhibiting degradation of autophagic vesicles has been revealed, which raises the question whether CLQ can be used as an adjuvant in targeting autophagic pro-survival mechanism in prostate cancer (PCa). We previously showed that autophagy played a protective role during hormone ablation therapy, in part, by consuming lipid droplets in PCa cells. In addition, blocking autophagy by genetic and pharmacological means in the presence of androgen deprivation caused cell death in PCa cells. To further investigate the importance of autophagy in PCa survival and dissect the role of CLQ in PCa death, we treated hormone responsive LNCaP cells with CLQ in combination with androgen deprivation. We observed that CLQ synergistically killed LNCaP cells during androgen deprivation in a dose- and time-dependent manner. We further confirmed that CLQ inhibited the maturation of autophagic vesicles and decreased the cytosolic ATP. Moreover, CLQ induced nuclear condensation and DNA fragmentation, a hallmark of apoptosis, in androgen deprived LNCaP cells. Taken together, our finding suggests that CLQ may be an useful adjuvant in hormone ablation therapy to improve the therapeutic efficacy.

  16. Sphingosine kinase-1 is central to androgen-regulated prostate cancer growth and survival.

    Directory of Open Access Journals (Sweden)

    Audrey Dayon

    Full Text Available BACKGROUND: Sphingosine kinase-1 (SphK1 is an oncogenic lipid kinase notably involved in response to anticancer therapies in prostate cancer. Androgens regulate prostate cancer cell proliferation, and androgen deprivation therapy is the standard of care in the management of patients with advanced disease. Here, we explored the role of SphK1 in the regulation of androgen-dependent prostate cancer cell growth and survival. METHODOLOGY/PRINCIPAL FINDINGS: Short-term androgen removal induced a rapid and transient SphK1 inhibition associated with a reduced cell growth in vitro and in vivo, an event that was not observed in the hormono-insensitive PC-3 cells. Supporting the critical role of SphK1 inhibition in the rapid effect of androgen depletion, its overexpression could impair the cell growth decrease. Similarly, the addition of dihydrotestosterone (DHT to androgen-deprived LNCaP cells re-established cell proliferation, through an androgen receptor/PI3K/Akt dependent stimulation of SphK1, and inhibition of SphK1 could markedly impede the effects of DHT. Conversely, long-term removal of androgen support in LNCaP and C4-2B cells resulted in a progressive increase in SphK1 expression and activity throughout the progression to androgen-independence state, which was characterized by the acquisition of a neuroendocrine (NE-like cell phenotype. Importantly, inhibition of the PI3K/Akt pathway--by negatively impacting SphK1 activity--could prevent NE differentiation in both cell models, an event that could be mimicked by SphK1 inhibitors. Fascinatingly, the reversability of the NE phenotype by exposure to normal medium was linked with a pronounced inhibition of SphK1 activity. CONCLUSIONS/SIGNIFICANCE: We report the first evidence that androgen deprivation induces a differential effect on SphK1 activity in hormone-sensitive prostate cancer cell models. These results also suggest that SphK1 activation upon chronic androgen deprivation may serve as a

  17. Beyond T and DHT - novel steroid derivatives capable of wild type androgen receptor activation.

    Science.gov (United States)

    Mostaghel, Elahe A

    2014-01-01

    While androgen deprivation therapy (ADT) remains the primary treatment for metastatic prostate cancer (PCa), castration does not eliminate androgens from the prostate tumor microenvironment, and residual intratumoral androgens are implicated in nearly every mechanism by which androgen receptor (AR)-mediated signaling promotes castration-resistant disease. The uptake and intratumoral (intracrine) conversion of circulating adrenal androgens such as dehydroepiandrosterone sulfate (DHEA-S) to steroids capable of activating the wild type AR is a recognized driver of castration resistant prostate cancer (CRPC). However, less well-characterized adrenal steroids, including 11-deoxcorticosterone (DOC) and 11beta-hydroxyandrostenedione (11OH-AED) may also play a previously unrecognized role in promoting AR activation. In particular, recent data demonstrate that the 5α-reduced metabolites of DOC and 11OH-AED are activators of the wild type AR. Given the well-recognized presence of SRD5A activity in CRPC tissue, these observations suggest that in the low androgen environment of CRPC, alternative sources of 5α-reduced ligands may supplement AR activation normally mediated by the canonical 5α-reduced agonist, 5α-DHT. Herein we review the emerging data that suggests a role for these alternative steroids of adrenal origin in activating the AR, and discuss the enzymatic pathways and novel downstream metabolites mediating these effects. We conclude by discussing the potential implications of these findings for CRPC progression, particularly in context of new agents such as abiraterone and enzalutamide which target the AR-axis for prostate cancer therapy.

  18. Androgen receptor variant-7: an important predictive biomarker in castrate resistant prostate cancer

    Directory of Open Access Journals (Sweden)

    Oliver Sartor

    2015-06-01

    Full Text Available The recent manuscript in New England Journal of Medicine by Antonarakis et al. [1] has important clinical implications. This study evaluates mRNA expression of a particular androgen receptor splice variant-7 (AR-V7, in circulating tumor cells (CTCs from metastatic castrate-resistant prostate cancer (mCRPC patients receiving enzalutamide or abiraterone. The findings were striking, none of the 18 patients with detectable AR-V7 in CTCs had prostate-specific antigen (PSA responses. Further, the median time to PSA progression after enzalutamide or abiraterone treatment was only 1.3-1.4 months in AR-V7-positive patients as compared to 5.3-6.1 months in AR-V7 negative patients. AR-V7 in CTCs was also associated with shorter survival.

  19. Inhibition of Androgen Receptor Function and Level in Castration-Resistant Prostate Cancer Cells by 2-[(isoxazol-4-ylmethyl)thio]-1-(4-phenylpiperazin-1-yl)ethanone.

    Science.gov (United States)

    Masoodi, Khalid Z; Eisermann, Kurtis; Yang, Zhenyu; Dar, Javid A; Pascal, Laura E; Nguyen, Minh; O'Malley, Katherine; Parrinello, Erica; Feturi, Firuz G; Kenefake, Alex N; Nelson, Joel B; Johnston, Paul A; Wipf, Peter; Wang, Zhou

    2017-10-01

    The androgen receptor (AR) plays a critical role in the development of castration-resistant prostate cancer (CRPC) as well as in the resistance to the second-generation AR antagonist enzalutamide and the selective inhibitor of cytochrome P450 17A1 (CYP17A1) abiraterone. Novel agents targeting AR may inhibit the growth of prostate cancer cells resistant to enzalutamide and/or abiraterone. Through a high-throughput/high-content screening of a 220,000-member small molecule library, we have previously identified 2-[(isoxazol-4-ylmethyl)thio]-1-(4-phenylpiperazin-1-yl)ethanone (IMTPPE) (SID 3712502) as a novel small molecule capable of inhibiting AR transcriptional activity and protein level in C4-2 prostate cancer cells. In this study, we show that IMTPPE inhibits AR-target gene expression using real-time polymerase chain reaction, Western blot, and luciferase assays. IMTPPE inhibited proliferation of AR-positive, but not AR-negative, prostate cancer cells in culture. IMTPPE inhibited the transcriptional activity of a mutant AR lacking the ligand-binding domain (LBD), indicating that IMTPPE inhibition of AR is independent of the LBD. Furthermore, animal studies showed that IMTPPE inhibited the growth of 22Rv1 xenograft tumor, a model for enzalutamide-resistant prostate cancer. These findings suggest that IMTPPE is a potential lead compound for developing clinical candidates for the treatment of CRPC, including those resistant to enzalutamide. Copyright © 2017 Endocrine Society.

  20. Receptor-Targeted Nipah Virus Glycoproteins Improve Cell-Type Selective Gene Delivery and Reveal a Preference for Membrane-Proximal Cell Attachment.

    Directory of Open Access Journals (Sweden)

    Ruben R Bender

    2016-06-01

    Full Text Available Receptor-targeted lentiviral vectors (LVs can be an effective tool for selective transfer of genes into distinct cell types of choice. Moreover, they can be used to determine the molecular properties that cell surface proteins must fulfill to act as receptors for viral glycoproteins. Here we show that LVs pseudotyped with receptor-targeted Nipah virus (NiV glycoproteins effectively enter into cells when they use cell surface proteins as receptors that bring them closely enough to the cell membrane (less than 100 Å distance. Then, they were flexible in receptor usage as demonstrated by successful targeting of EpCAM, CD20, and CD8, and as selective as LVs pseudotyped with receptor-targeted measles virus (MV glycoproteins, the current standard for cell-type specific gene delivery. Remarkably, NiV-LVs could be produced at up to two orders of magnitude higher titers compared to their MV-based counterparts and were at least 10,000-fold less effectively neutralized than MV glycoprotein pseudotyped LVs by pooled human intravenous immunoglobulin. An important finding for NiV-LVs targeted to Her2/neu was an about 100-fold higher gene transfer activity when particles were targeted to membrane-proximal regions as compared to particles binding to a more membrane-distal epitope. Likewise, the low gene transfer activity mediated by NiV-LV particles bound to the membrane distal domains of CD117 or the glutamate receptor subunit 4 (GluA4 was substantially enhanced by reducing receptor size to below 100 Å. Overall, the data suggest that the NiV glycoproteins are optimally suited for cell-type specific gene delivery with LVs and, in addition, for the first time define which parts of a cell surface protein should be targeted to achieve optimal gene transfer rates with receptor-targeted LVs.

  1. A pp32-retinoblastoma protein complex modulates androgen receptor-mediated transcription and associates with components of the splicing machinery

    International Nuclear Information System (INIS)

    Adegbola, Onikepe; Pasternack, Gary R.

    2005-01-01

    We have previously shown pp32 and the retinoblastoma protein interact. pp32 and the retinoblastoma protein are nuclear receptor transcriptional coregulators: the retinoblastoma protein is a coactivator for androgen receptor, the major regulator of prostate cancer growth, while pp32, which is highly expressed in prostate cancer, is a corepressor of the estrogen receptor. We now show pp32 increases androgen receptor-mediated transcription and the retinoblastoma protein modulates this activity. Using affinity purification and mass spectrometry, we identify members of the pp32-retinoblastoma protein complex as PSF and nonO/p54nrb, proteins implicated in coordinate regulation of nuclear receptor-mediated transcription and splicing. We show that the pp32-retinoblastoma protein complex is modulated during TPA-induced K562 differentiation. Present evidence suggests that nuclear receptors assemble multiprotein complexes to coordinately regulate transcription and mRNA processing. Our results suggest that pp32 and the retinoblastoma protein may be part of a multiprotein complex that coordinately regulates nuclear receptor-mediated transcription and mRNA processing

  2. Prostate cancer characteristics associated with response to pre-receptor targeting of the androgen axis.

    Directory of Open Access Journals (Sweden)

    Elahe A Mostaghel

    Full Text Available Factors influencing differential responses of prostate tumors to androgen receptor (AR axis-directed therapeutics are poorly understood, and predictors of treatment efficacy are needed. We hypothesized that the efficacy of inhibiting DHT ligand synthesis would associate with intra-tumoral androgen ratios indicative of relative dependence on DHT-mediated growth.We characterized two androgen-sensitive prostate cancer xenograft models after androgen suppression by castration in combination with the SRD5A inhibitor, dutasteride, as well as a panel of castration resistant metastases obtained via rapid autopsy.In LuCaP35 tumors (intra-tumoral T:DHT ratio 2:1 dutasteride suppressed DHT to 0.02 ng/gm and prolonged survival vs. castration alone (337 vs.152 days, HR 2.8, p = 0.0015. In LuCaP96 tumors (T:DHT 10:1, survival was not improved despite similar DHT reduction (0.02 ng/gm. LuCaP35 demonstrated higher expression of steroid biosynthetic enzymes maintaining DHT levels (5-fold higher SRD5A1, 41 fold higher, 99-fold higher RL-HSD, p<0.0001 for both, reconstitution of intra-tumoral DHT (to ∼30% of untreated tumors, and ∼2 fold increased expression of full length AR. In contrast, LuCaP96 demonstrated higher levels of steroid catabolizing enzymes (6.9-fold higher AKR1C2, 3000-fold higher UGT2B15, p = 0.002 and p<0.0001 respectively, persistent suppression of intra-tumoral DHT, and 6-8 fold induction of full length AR and the ligand independent V7 AR splice variant. Human metastases demonstrated bio-active androgen levels and AR full length and AR splice-variant expression consistent with the range observed in xenografts.Intrinsic differences in basal steroidogenesis, as well as variable expression of full length and splice-variant AR, associate with response and resistance to pre-receptor AR ligand suppression. Expression of steroidogenic enzymes and AR isoforms may serve as potential biomarkers of sensitivity to potent AR-axis inhibition and

  3. Transcriptional Repression and Protein Degradation of the Ca2+-Activated K+ Channel KCa1.1 by Androgen Receptor Inhibition in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Anowara Khatun

    2018-04-01

    Full Text Available The large-conductance Ca2+-activated K+ channel KCa1.1 plays an important role in the promotion of breast cancer cell proliferation and metastasis. The androgen receptor (AR is proposed as a therapeutic target for AR-positive advanced triple-negative breast cancer. We herein investigated the effects of a treatment with antiandrogens on the functional activity, activation kinetics, transcriptional expression, and protein degradation of KCa1.1 in human breast cancer MDA-MB-453 cells using real-time PCR, Western blotting, voltage-sensitive dye imaging, and whole-cell patch clamp recording. A treatment with the antiandrogen bicalutamide or enzalutamide for 48 h significantly suppressed (1 depolarization responses induced by paxilline (PAX, a specific KCa1.1 blocker and (2 PAX-sensitive outward currents induced by the depolarizing voltage step. The expression levels of KCa1.1 transcripts and proteins were significantly decreased in MDA-MB-453 cells, and the protein degradation of KCa1.1 mainly contributed to reductions in KCa1.1 activity. Among the eight regulatory β and γ subunits, LRRC26 alone was expressed at high levels in MDA-MB-453 cells and primary and metastatic breast cancer tissues, whereas no significant changes were observed in the expression levels of LRRC26 and activation kinetics of PAX-sensitive outward currents in MDA-MB-453 cells by the treatment with antiandrogens. The treatment with antiandrogens up-regulated the expression of the ubiquitin E3 ligases, FBW7, MDM2, and MDM4 in MDA-MB-453 cells, and the protein degradation of KCa1.1 was significantly inhibited by the respective siRNA-mediated blockade of FBW7 and MDM2. Based on these results, we concluded that KCa1.1 is an androgen-responsive gene in AR-positive breast cancer cells, and its down-regulation through enhancements in its protein degradation by FBW7 and/or MDM2 may contribute, at least in part, to the antiproliferative and antimetastatic effects of antiandrogens in

  4. Intraclonal Cell Expansion and Selection Driven by B Cell Receptor in Chronic Lymphocytic Leukemia

    Science.gov (United States)

    Colombo, Monica; Cutrona, Giovanna; Reverberi, Daniele; Fabris, Sonia; Neri, Antonino; Fabbi, Marina; Quintana, Giovanni; Quarta, Giovanni; Ghiotto, Fabio; Fais, Franco; Ferrarini, Manlio

    2011-01-01

    The mutational status of the immunoglobulin heavy-chain variable region (IGHV) genes utilized by chronic lymphocytic leukemia (CLL) clones defines two disease subgroups. Patients with unmutated IGHV have a more aggressive disease and a worse outcome than patients with cells having somatic IGHV gene mutations. Moreover, up to 30% of the unmutated CLL clones exhibit very similar or identical B cell receptors (BcR), often encoded by the same IG genes. These “stereotyped” BcRs have been classified into defined subsets. The presence of an IGHV gene somatic mutation and the utilization of a skewed gene repertoire compared with normal B cells together with the expression of stereotyped receptors by unmutated CLL clones may indicate stimulation/selection by antigenic epitopes. This antigenic stimulation may occur prior to or during neoplastic transformation, but it is unknown whether this stimulation/selection continues after leukemogenesis has ceased. In this study, we focused on seven CLL cases with stereotyped BcR Subset #8 found among a cohort of 700 patients; in six, the cells expressed IgG and utilized IGHV4-39 and IGKV1-39/IGKV1D-39 genes, as reported for Subset #8 BcR. One case exhibited special features, including expression of IgM or IgG by different subclones consequent to an isotype switch, allelic inclusion at the IGH locus in the IgM-expressing cells and a particular pattern of cytogenetic lesions. Collectively, the data indicate a process of antigenic stimulation/selection of the fully transformed CLL cells leading to the expansion of the Subset #8 IgG-bearing subclone. PMID:21541442

  5. Dutasteride and enzalutamide synergistically suppress prostate tumor cell proliferation

    NARCIS (Netherlands)

    Hamid, A.R.; Verhaegh, G.W.C.T.; Smit, F.P.; RIjt-van de Westerlo, C.; Armandari, I.; Brandt, A.; Sweep, F.C.; Sedelaar, J.P.M.; Schalken, J.A.

    2015-01-01

    PURPOSE: Dihydrotestosterone is the main active androgen in the prostate and it has a role in prostate cancer progression. After androgen deprivation therapy androgen receptor signaling is still active in tumor cells. Persistent intratumor steroidogenesis and androgen receptor changes are

  6. Effects of alcohol feeding on androgen receptors in the rat pituitary gland

    International Nuclear Information System (INIS)

    Chung, K.W.

    1987-01-01

    Specific binding of testosterone-1β,2β- 3 H by cytosol from anterior pituitary gland of ethanol-fed, isocaloric control, and castrated control and ethanol-fed rats with or without testosterone treatment has been investigated by charcoal assay. The number of androgen binding sites was significantly reduced in alcohol-fed rats when compared to the isocaloric control value, with no significant change in Kd. Castration significantly increased the number of receptor sites in control rats and when castrated control animals were treated with testosterone the binding sites were decreased to the intact control level. In contrast, castration or testosterone given to castrated alcohol-fed rats did not alter alcohol-induced reduction of the receptor sites. The binding affinity (Kd) is identical in all groups. The concentration of serum luteinizing hormone (LH) was significantly lower in alcohol-fed rats when compared to that of normal controls. An increased serum LH level with a decreased testosterone level was noted in castrated control rats. However, castration of alcohol-fed rats had little or no effects on the concentrations of LH and testosterone. Administration of testosterone suppressed castration-induced high LH in control rats but alcohol induced reduction of LH level was not altered by this treatment. These findings indicate that alcohol exerts a suppressive effect on the content of androgen receptors and secretory functions of gonadotropins in the pituitary gland. 23 references, 1 figure, 1 table

  7. CARbodies: Human Antibodies Against Cell Surface Tumor Antigens Selected From Repertoires Displayed on T Cell Chimeric Antigen Receptors

    Directory of Open Access Journals (Sweden)

    Vanesa Alonso-Camino

    2013-01-01

    Full Text Available A human single-chain variable fragment (scFv antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs. The repertoire was fused to a first-generation T cell receptor ζ (TCRζ-based chimeric antigen receptor (CAR. We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system. After three rounds of activation-selection there was a clear repertoire restriction, with the emergence dominant clones. The CARbodies were purified from bacterial cultures as soluble and active proteins. Furthermore, to validate its potential application for adoptive cell therapy, human T cells were transduced with a LV encoding a second-generation costimulatory CAR (CARv2 bearing the selected CARbodies. Transduced human primary T cells expressed significant levels of the CARbodies-based CARv2 fusion protein on the cell surface, and importantly could be specifically activated, after stimulation with tumor cells. This approach is a promising tool for the generation of antibodies fully adapted to the display format (CAR and the selection context (cell synapse, which could extend the scope of current adoptive cell therapy strategies with CAR-redirected T cells.

  8. Hypochlorite Oxidation of Select Androgenic Steroids

    Science.gov (United States)

    Steroid hormones are vital for regulation of various biological functions including sexual development. Elevated concentrations of natural and synthetic androgenic steroids have been shown to adversely affect normal development in indigenous aqueous species. Androgens and their s...

  9. Testosterone increases renal anti-aging klotho gene expression via the androgen receptor-mediated pathway.

    Science.gov (United States)

    Hsu, Shih-Che; Huang, Shih-Ming; Lin, Shih-Hua; Ka, Shuk-Man; Chen, Ann; Shih, Meng-Fu; Hsu, Yu-Juei

    2014-12-01

    Gender is known to be associated with longevity and oestrogen administration induced longevity-associated gene expression is one of the potential mechanisms underlying the benefits of oestrogen on lifespan, whereas the role of testosterone in the regulation of longevity-associated gene expressions remains largely unclear. The klotho gene, predominantly expressed in the kidney, has recently been discovered to be an aging suppressor gene. In the present study, we investigated the regulatory effects of testosterone on renal klotho gene expression in vivo and in vitro. In testosterone-administered mouse kidney and NRK-52E cells, increased klotho expression was accompanied by the up-regulation of the nuclear androgen receptor (AR). Overexpression of AR enhanced the expression of klotho mRNA and protein. Conversely, testosterone-induced klotho expression was attenuated in the presence of flutamide, an AR antagonist. A reporter assay and a chromatin immunoprecipitation (ChIP) assay demonstrated that AR directly binds to the klotho promoter via androgen response elements (AREs) which reconfirmed its importance for AR binding via the element mutation. In summary, our study demonstrates that testosterone up-regulates anti-aging klotho together with AR expression in the kidney in vivo and in vitro by recruiting AR on to the AREs of the klotho promoter.

  10. Androgen and FSH synergistically stimulate lipoprotein degradation and utilization by ovary granulosa cells

    International Nuclear Information System (INIS)

    Schreiber, J.R.; Nakamura, K.; Schmit, V.; Weinstein, D.B.

    1984-01-01

    Androgen can directly modulate the induction of steroidogenic enzymes by FSH (follicle stimulating hormone) in ovary granulosa cells. In studies of its mechanism of action, the authors examined the androgen effect on granulosa cell interaction with lipoproteins, the physiologic source of cholesterol. After granulosa cells were cultured for 48 hours with and without androgen and/or FSH, the cells were incubated for 24 hours with 125 I-lipoproteins [human high density lipoprotein (HDL), rat HDL, or human low density lipoprotein (LDL)]. The media were then analyzed for lipoprotein protein coat degradation products (mainly 125 I-monoiodotyrosine) and progestin [mainly 20 alpha-dihydroprogesterone (20 alpha-DHP)]. In the absence of FSH and androgen, 2 X 10(5) granulosa cells degraded basal levels of all three lipoproteins, but produced no measurable 20 alpha-DHP. The addition of 10(-7) M androstenedione (A), testosterone (T), or 5 alpha-dihydrotestosterone (DHT) had no effect on lipoprotein protein degradation or 20 alpha-DHP production. FSH alone stimulated lipoprotein protein degradation by 50 to 300% while the addition of androgen synergistically augmented the FSH-stimulated 20 alpha-DHP production as well as protein coat degradation of all three lipoproteins. DHT and T were both effective, indicating that androgens themselves, and not estrogen products, were responsible for the effect on lipoprotein protein degradation and 20 alpha-DHP production

  11. Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor2)

    NARCIS (Netherlands)

    C.A. Berrevoets (Cor); P. Doesburg (Paul); K. Steketee (Karine); J. Trapman (Jan); A.O. Brinkmann (Albert)

    1998-01-01

    textabstractPrevious studies in yeast and mammalian cells showed a functional interaction between the amino-terminal domain and the carboxy-terminal, ligand-binding domain (LBD) of the human androgen receptor (AR). In the present study, the AR subdomains involved in

  12. Genotype and phenotype in Klinefelter syndrome - impact of androgen receptor polymorphism and skewed X inactivation

    DEFF Research Database (Denmark)

    Bojesen, A; Hertz, J M; Gravholt, C H

    2011-01-01

    The phenotypic variation of Klinefelter syndrome (KS) is wide and may by caused by various genetic and epigenetic effects. Skewed inactivation of the supra-numerical X chromosome and polymorphism in the androgen receptor (AR) have been suggested as plausible causes. We wanted to describe X...

  13. Prognostic value of androgen receptor level in breast tumors

    International Nuclear Information System (INIS)

    Gershtejn, E.S.; Smirnova, K.D.; Vishnyakova, V.V.; Ermilova, V.D.

    1988-01-01

    Androgen receptor (AR) level was studied in 254 untreated cases of breast cancer. The occurrence and mean level of AR did not depend upon stage of disease or reproductive status. Increase in degree of anaplasia of ductal-invasive carcinoma was matched by decrease in its AR-positive fraction from 75 to 20 %. Recurence-free survival in surgically treated p T 1-2 No Mo patients did not depend upon AR status of tumor. In cases of p T 1-2 Nd Mo AR-positive malignancy, recurrences or metastases occurred 2.2 times as rarely when surgery was followed by the best results were obtained with postoperative chemo- and chemoradiation treatment

  14. NF-κB and androgen receptor variant expression correlate with human BPH progression.

    Science.gov (United States)

    Austin, David C; Strand, Douglas W; Love, Harold L; Franco, Omar E; Jang, Alex; Grabowska, Magdalena M; Miller, Nicole L; Hameed, Omar; Clark, Peter E; Fowke, Jay H; Matusik, Robert J; Jin, Ren J; Hayward, Simon W

    2016-04-01

    Benign prostatic hyperplasia (BPH) is a common, chronic progressive disease. Inflammation is associated with prostatic enlargement and resistance to 5α-reductase inhibitor (5ARI) therapy. Activation of the nuclear factor-kappa B (NF-κB) pathway is linked to both inflammation and ligand-independent prostate cancer progression. NF-κB activation and androgen receptor variant (AR-V) expression were quantified in transition zone tissue samples from patients with a wide range of AUASS from incidental BPH in patients treated for low grade, localized peripheral zone prostate cancer to advanced disease requiring surgical intervention. To further investigate these pathways, human prostatic stromal and epithelial cell lines were transduced with constitutively active or kinase dead forms of IKK2 to regulate canonical NF-κB activity. The effects on AR full length (AR-FL) and androgen-independent AR-V expression as well as cellular growth and differentiation were assessed. Canonical NF-κB signaling was found to be upregulated in late versus early stage BPH, and to be strongly associated with non-insulin dependent diabetes mellitus. Elevated expression of AR-variant 7 (AR-V7), but not other AR variants, was found in advanced BPH samples. Expression of AR-V7 significantly correlated with the patient AUASS and TRUS volume. Forced activation of canonical NF-κB in human prostatic epithelial and stromal cells resulted in elevated expression of both AR-FL and AR-V7, with concomitant ligand-independent activation of AR reporters. Activation of NF-κB and over expression of AR-V7 in human prostatic epithelial cells maintained cell viability in the face of 5ARI treatment. Activation of NF-κB and AR-V7 in the prostate is associated with increased disease severity. AR-V7 expression is inducible in human prostate cells by forced activation of NF-κB resulting in resistance to 5ARI treatment, suggesting a potential mechanism by which patients may become resistant to 5ARI therapy.

  15. Chiral dimethylamine flutamide derivatives-modeling, synthesis, androgen receptor affinities and carbon-11 labeling

    International Nuclear Information System (INIS)

    Jacobson, Orit; Laky, Desideriu; Carlson, Kathryn E.; Elgavish, Sharona; Gozin, Michael; Even-Sapir, Einat; Leibovitc, Ilan; Gutman, Mordechai; Chisin, Roland; Katzenellenbogen, John A.; Mishani, Eyal

    2006-01-01

    Most prostate cancers are androgen dependent upon initial diagnosis. On the other hand, some very aggressive forms of prostate cancer were shown to have lost the expression of the androgen receptor (AR). Although the AR is routinely targeted in endocrine treatment, the clinical outcome remains suboptimal. Therefore, it is crucial to demonstrate the presence and activity of the AR in each case of prostate cancer, before and after treatment. While noninvasive positron emission tomography (PET) has the potential to determine AR expression of tumor cells in vivo, fully optimized PET imaging agents are not yet available. Based on molecular modeling, three novel derivatives of hydroxyflutamide (Compounds 1-3) were designed and synthesized. They contain an electron-rich group (dimethylamine) located on the methyl moiety, which may confer a better stability to the molecule in vivo. Compounds 1-3 have AR binding that is similar or higher than that of the currently used commercial drugs. An automated carbon-11 radiolabeling route was developed, and the compounds were successfully labeled with a 10-15% decay-corrected radiochemical yield, 99% radiochemical purity and a specific activity of 4Ci/μmol end of bombardment (n=15). These labeled biomarkers may facilitate the future quantitative molecular imaging of AR-positive prostate cancer using PET and may also allow for image-guided treatment of prostate cancer

  16. CAG repeat testing of androgen receptor polymorphism: is this necessary for the best clinical management of hypogonadism?

    Science.gov (United States)

    Francomano, Davide; Greco, Emanuela A; Lenzi, Andrea; Aversa, Antonio

    2013-10-01

    It is controversial whether or not testing the length of the androgen receptor polymorphism in clinical practice is useful for correct diagnosis and treatment of hypogonadism. To describe the molecular and clinical implications of testing the length of the androgen receptor polymorphism for treatment of hypogonadism in both male and female subjects. A systematic Medline search was conducted using several terms related to and including the terms "androgen receptor," "CAG-repeat polymorphism," "male hypogonadism," "female hypogonadism," and "neurodegenerative disease." Clinical evidence that demonstrates the importance of CAG repeat number investigation in male and female hypogonadism. A thorough review of the clinical utility of CAG repeat polymorphism investigation in men and women with hypogonadism is presented. The role of AR CAG repeat number investigation in hypogonadism (male and female) is not yet established in the clinical practice. In both sexes, a role during clinical management of hormonal replacement therapies may be hypothesized, but the CAG repeat number's relationship with the presence or absence of hypogonadal symptoms remains unclear. Pharmacogenomic investigations of the AR polymorphism may be a future option to tailor testosterone titration individually and to better identify subjects as potentially more or less responsive to treatments; also, investigation may be important to individually predict beneficial and side effects in special subpopulations, specifically, obese men and postmenopausal women. © 2013 International Society for Sexual Medicine.

  17. Intrahippocampal administration of an androgen receptor antagonist, flutamide, can increase anxiety-like behavior in intact and DHT-replaced male rats.

    Science.gov (United States)

    Edinger, Kassandra L; Frye, Cheryl A

    2006-08-01

    Testosterone (T) and its 5alpha-reduced metabolite, dihydrotestosterone (DHT), can decrease anxiety-like behavior; however, the mechanisms underlying these effects have not been established. First, we hypothesized that if T reduces anxiety-like behavior through actions of its 5alpha-reduced metabolite, DHT, then gonadectomy (GDX) would increase anxiety-like behavior, an effect which would be reversed by systemic administration of DHT. Second, we hypothesized that if T and DHT reduce anxiety-like behavior in part through actions at intracellular androgen receptors in the hippocampus, then administration of an androgen receptor antagonist, flutamide, directly to the hippocampus should increase anxiety-like behavior of intact and DHT-replaced, but not GDX, male rats. Inserts that were empty or contained flutamide were applied directly to the dorsal hippocampus of intact, GDX, or GDX and DHT-replaced rats 2 h prior to testing in the open field, elevated plus maze, or defensive freezing tasks. GDX rats exhibited significantly more anxiety-like behaviors than intact or DHT-replaced rats. Intact and DHT-replaced rats administered flutamide to the hippocampus showed significantly more anxiety-like behavior than did intact and DHT-replaced controls. However, flutamide alone did not increase anxiety-like behavior of GDX rats. Together, these findings suggest that androgens can decrease anxiety-like behavior of male rats in part through DHT's actions at androgen receptors in the hippocampus.

  18. Elevated androgen levels induce hyperinsulinemia through increase in Ins1 transcription in pancreatic beta cells in female rats.

    Science.gov (United States)

    Mishra, Jay S; More, Amar S; Kumar, Sathish

    2018-01-22

    Hyperandrogenism is associated with hyperinsulinemia and insulin resistance in adult females. We tested whether androgens dysregulate pancreatic beta cell function to induce hyperinsulinemia through transcriptional regulation of insulin gene (Ins) in the islets. Adult female Wistar rats implanted with dihydrotestosterone (DHT; 7.5-mg, 90-d release) or placebo pellets were examined after 10 weeks. DHT exposure increased plasma DHT levels by 2-fold similar to that in polycystic ovary syndrome in women. DHT exposure induced hyperinsulinemia with increased HOMA-IR index in fasting state and glucose intolerance and exaggerated insulin responses following glucose tolerance test. DHT females had no change in islet number, size and beta cell proliferation/apoptosis but exhibited significant mitochondrial dysfunction (higher ADP/ATP ratio, decreased mtDNA copy number, increased reactive oxygen production and downregulation of mitochondrial biogenesis) and enhanced glucose-stimulated insulin secretion. Ins expression was increased in DHT islets. In vitro incubation of control islets with DHT dose-dependently stimulated Ins transcription. Analysis of Ins1 gene revealed a putative androgen responsive element in the promoter. Chromatin-immunoprecipitation assays showed that androgen receptors bind to this element in response to DHT stimulation. Furthermore, reporter assays showed that the promoter element is highly responsive to androgens. Insulin stimulated glucose uptake in skeletal muscle was decreased with associated decrease in IRβ expression in DHT females. Our studies identified a novel androgen-mediated mechanism for the control of Ins expression via transcriptional regulation providing a molecular mechanism linking elevated androgens and hyperinsulemia. Decreased IRβ expression in the skeletal muscles may contribute, in part, to glucose intolerance in this model. © The Author(s) 2018. Published by Oxford University Press on behalf of Society for the Study of

  19. Methylation of the PMEPA1 gene, a negative regulator of the androgen receptor in prostate cancer.

    Science.gov (United States)

    Sharad, Shashwat; Ravindranath, Lakshmi; Haffner, Michael C; Li, Hua; Yan, Wusheng; Sesterhenn, Isabell A; Chen, Yongmei; Ali, Amina; Srinivasan, Alagarsamy; McLeod, David G; Yegnasubramanian, Srinivasan; Srivastava, Shiv; Dobi, Albert; Petrovics, Gyorgy

    2014-06-01

    The prostate transmembrane protein androgen induced 1 (PMEPA1) gene is highly expressed in prostate epithelial cells and is a direct transcriptional target for the androgen receptor (AR). AR protein levels are controlled by the AR-PMEPA1 negative feedback loop through NEDD4-E3 ligase. Reduced expression of PMEPA1 observed in prostate tumors, suggests that loss of PMEPA1 may play critical roles in prostate tumorigenesis. This study focuses on epigenetic mechanisms of reduced PMEPA1 expression in the cancer of the prostate (CaP). Benign (n = 77) and matched malignant (n = 77) prostate epithelial cells were laser capture micro-dissected from optimum cutting temperature embedded frozen prostate sections from 42 Caucasian American (CA) and 35 African American (AA) cases. Purified DNA specimens were analyzed for CpG methylation of the PMEPA1 gene. PMEPA1 mRNA expression levels were evaluated by qRT-PCR. Analysis of PMEPA1 methylation and mRNA expression in the same tumor cell populations indicated a significant inverse correlation between mRNA expression and methylation in CaP (P = 0.0115). We noted higher frequency of CpG methylation within the evaluated first intronic region of the PMEPA1 gene in prostate tumors of CA men as compared with AA. In CaP cell lines, PMEPA1 expression was induced and AR protein levels were diminished in response to treatment with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (decitabine). Cell culture-based studies demonstrated that decitabine restores PMEPA1 expression in AR-positive CaP cell lines. This report reveals the potential role of PMEPA1 gene methylation in the regulation of AR stability. Thus, downregulation of PMEPA1 may result in increased AR protein levels and function in CaP cells, contributing to prostate tumorigenesis.

  20. Supraphysiological Doses of Performance Enhancing Anabolic-Androgenic Steroids Exert Direct Toxic Effects on Neuron-like Cells

    Directory of Open Access Journals (Sweden)

    John Robert Basile

    2013-05-01

    Full Text Available Anabolic-androgenic steroids (AAS are lipophilic hormones often taken in excessive quantities by athletes and bodybuilders to enhance performance and increase muscle mass. AAS exert well known toxic effects on specific cell and tissue types and organ systems. The attention that androgen abuse has received lately should be used as an opportunity to educate both athletes and the general population regarding their adverse effects. Among numerous commercially available steroid hormones, very few have been specifically tested for direct neurotoxicity. We evaluated the effects of supraphysiological doses of methandienone and 17-α-methyltestosterone on sympathetic-like neuron cells. Vitality and apoptotic effects were analyzed, and immunofluorescence staining and western blot performed. In this study, we demonstrate that exposure of supraphysiological doses of methandienone and 17-α-methyltestosterone are toxic to the neuron-like differentiated pheochromocytoma cell line PC12, as confirmed by toxicity on neurite networks responding to nerve growth factor and the modulation of the survival and apoptosis-related proteins ERK, caspase-3, poly (ADP-ribose polymerase and heat-shock protein 90. We observe, in contrast to some previous reports but in accordance with others, expression of the androgen receptor (AR in neuron-like cells, which when inhibited mitigated the toxic effects of AAS tested, suggesting that the AR could be binding these steroid hormones to induce genomic effects. We also note elevated transcription of neuritin in treated cells, a neurotropic factor likely expressed in an attempt to resist neurotoxicity. Taken together, these results demonstrate that supraphysiological exposure to the AAS methandienone and 17-α-methyltestosterone exert neurotoxic effects by an increase in the activity of the intrinsic apoptotic pathway and alterations in neurite networks.

  1. Androgen receptor regulated microRNA miR-182-5p promotes prostate cancer progression by targeting the ARRDC3/ITGB4 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jingjing [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China); Xu, Chen [Research Center of Developmental Biology, Second Military Medical University, 800th Xiangyin Road, Shanghai, 200433 (China); Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003 (China); Fang, Ziyu; Li, Yaoming [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China); Liu, Houqi; Wang, Yue [Research Center of Developmental Biology, Second Military Medical University, 800th Xiangyin Road, Shanghai, 200433 (China); Translational Medicine Center, Second Military Medical University, 800th Xiangyin Road, Shanghai, 200433 (China); Xu, Chuanliang [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China); Sun, Yinghao, E-mail: sunyh@medmail.com.cn [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China)

    2016-05-20

    Abstracts: MicroRNAs (miRNAs) are important endogenous gene regulators that play key roles in prostate cancer development and metastasis. However, specific miRNA expression patterns in prostate cancer tissues from Chinese patients remain largely unknown. In this study, we compared miRNA expression patterns in 65 pairs of prostate cancer and para-cancer tissues by RNA sequencing and found that miR-182-5p was the most up-regulated miRNA in prostate cancer tissues. The result was validated using realtime PCR in 18 pairs of prostate cancer and para-cancer tissues. In in vitro analysis, it was confirmed that miR-182-5p promotes prostate cancer cell proliferation, invasion and migration and inhibit apoptosis. In addition, the androgen receptor directly regulated the transcription of miR-182-5p, which could target to the 3′UTR of ARRDC3 mRNA and affect the expression of ARRDC3 and its downstream gene ITGB4. For the in vivo experiment, miR-182-5p overexpression also promoted the growth and progression of prostate cancer tumors. In this regard, we suggest that miR-182-5p may be a key androgen receptor-regulated factor that contributes to the development and metastasis of Chinese prostate cancers and may be a potential target for the early diagnosis and therapeutic studies of prostate cancer. -- Highlights: •miR-182-5p is the mostly up-regulated miRNA in Chinese prostate cancer. •miR-182-5p is regulated by androgen receptor. •miR-182-5p promotes prostate cancer progression. •miR-182-5p regulates ARRDC3/ITGB4 pathway.

  2. Androgen receptor regulated microRNA miR-182-5p promotes prostate cancer progression by targeting the ARRDC3/ITGB4 pathway

    International Nuclear Information System (INIS)

    Yao, Jingjing; Xu, Chen; Fang, Ziyu; Li, Yaoming; Liu, Houqi; Wang, Yue; Xu, Chuanliang; Sun, Yinghao

    2016-01-01

    Abstracts: MicroRNAs (miRNAs) are important endogenous gene regulators that play key roles in prostate cancer development and metastasis. However, specific miRNA expression patterns in prostate cancer tissues from Chinese patients remain largely unknown. In this study, we compared miRNA expression patterns in 65 pairs of prostate cancer and para-cancer tissues by RNA sequencing and found that miR-182-5p was the most up-regulated miRNA in prostate cancer tissues. The result was validated using realtime PCR in 18 pairs of prostate cancer and para-cancer tissues. In in vitro analysis, it was confirmed that miR-182-5p promotes prostate cancer cell proliferation, invasion and migration and inhibit apoptosis. In addition, the androgen receptor directly regulated the transcription of miR-182-5p, which could target to the 3′UTR of ARRDC3 mRNA and affect the expression of ARRDC3 and its downstream gene ITGB4. For the in vivo experiment, miR-182-5p overexpression also promoted the growth and progression of prostate cancer tumors. In this regard, we suggest that miR-182-5p may be a key androgen receptor-regulated factor that contributes to the development and metastasis of Chinese prostate cancers and may be a potential target for the early diagnosis and therapeutic studies of prostate cancer. -- Highlights: •miR-182-5p is the mostly up-regulated miRNA in Chinese prostate cancer. •miR-182-5p is regulated by androgen receptor. •miR-182-5p promotes prostate cancer progression. •miR-182-5p regulates ARRDC3/ITGB4 pathway.

  3. REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer

    DEFF Research Database (Denmark)

    Svensson, Charlotte; Ceder, Jens; Iglesias Gato, Diego

    2014-01-01

    The androgen receptor (AR) is a key regulator of prostate tumorgenesis through actions that are not fully understood. We identified the repressor element (RE)-1 silencing transcription factor (REST) as a mediator of AR actions on gene repression. Chromatin immunoprecipitation showed that AR binds...... in cell cycle progression, including Aurora Kinase A, that has previously been implicated in the growth of NE-like castration-resistant tumors. The analysis of prostate cancer tissue microarrays revealed that tumors with reduced expression of REST have higher probability of early recurrence, independently...... of their Gleason score. The demonstration that REST modulates AR actions in prostate epithelia and that REST expression is negatively correlated with disease recurrence after prostatectomy, invite a deeper characterization of its role in prostate carcinogenesis....

  4. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic {beta}-cell mass

    Energy Technology Data Exchange (ETDEWEB)

    Cline, Gary W., E-mail: gary.cline@yale.edu [Yale University School of Medicine (United States); Zhao, Xiaojian [Yale University School of Medicine (United States); Jakowski, Amy B.; Soeller, Walter C.; Treadway, Judith L. [Pfizer Global Research and Development, Pfizer Inc., Groton CT (United States)

    2011-09-02

    Highlights: {yields} We screened G-protein coupled receptors for imaging pancreatic. {yields} Database mining and immunohistochemistry identified GPCRs enriched in {beta}-cells. {yields} In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. {yields} GPCR candidates for imaging of {beta}-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic {beta}-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity to islet {beta}-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 {approx} GLP-1R > mGluR5. Favorable islet selectivity and biodistribution

  5. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic β-cell mass

    International Nuclear Information System (INIS)

    Cline, Gary W.; Zhao, Xiaojian; Jakowski, Amy B.; Soeller, Walter C.; Treadway, Judith L.

    2011-01-01

    Highlights: → We screened G-protein coupled receptors for imaging pancreatic. → Database mining and immunohistochemistry identified GPCRs enriched in β-cells. → In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. → GPCR candidates for imaging of β-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic β-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity to islet β-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 ∼ GLP-1R > mGluR5. Favorable islet selectivity and biodistribution characteristics suggest several GPCRs as potential

  6. Androgen Bioassay for the Detection of Nonlabeled Androgenic Compounds in Nutritional Supplements.

    Science.gov (United States)

    Cooper, Elliot R; McGrath, Kristine C Y; Li, XiaoHong; Heather, Alison K

    2018-01-01

    Both athletes and the general population use nutritional supplements. Athletes often turn to supplements hoping that consuming the supplement will help them be more competitive and healthy, while the general population hopes to improve body image or vitality. While many supplements contain ingredients that may have useful properties, there are supplements that are contaminated with compounds that are banned for use in sport or have been deliberately adulterated to fortify a supplement with an ingredient that will produce the advertised effect. In the present study, we have used yeast cell and mammalian cell androgen bioassays to characterize the androgenic bioactivity of 112 sports supplements available from the Australian market, either over the counter or via the Internet. All 112 products did not declare an androgen on the label as an included ingredient. Our findings show that six out of 112 supplements had strong androgenic bioactivity in the yeast cell bioassay, indicating products spiked or contaminated with androgens. The mammalian cell bioassay confirmed the strong androgenic bioactivity of five out of six positive supplements. Supplement 6 was metabolized to weaker androgenic bioactivity in the mammalian cells. Further to this, Supplement 6 was positive in a yeast cell progestin bioassay. Together, these findings highlight that nutritional supplements, taken without medical supervision, could expose or predispose users to the adverse consequences of androgen abuse. The findings reinforce the need to increase awareness of the dangers of nutritional supplements and highlight the challenges that clinicians face in the fast-growing market of nutritional supplements.

  7. Reproductive phase dependent daily variation in melatonin receptors (Mel(1a) and Mel(1b)), androgen receptor (AR) and lung associated immunity of Perdicula asiatica.

    Science.gov (United States)

    Kharwar, R K; Haldar, C

    2011-06-01

    Our knowledge about the involvement of melatonin in the regulation of lung associated immune system (LAIS) is still poor though the melatonin receptor types (Mel(1a) and Mel(1b)) have been localized in lungs of some wild birds. We thought to explore the correlation between daily variation (within a 24h time scale) in peripheral melatonin and testosterone along with expression of melatonin receptors (Mel(1a) and Mel(1b)) and androgen receptor (AR) in lungs during reproductively active and inactive phases. Receptor expression of Mel(1b) was more prominent than Mel(1a) at all the time points during both the reproductive phases. The expression of AR was inversely related to both the melatonin and its receptor expression at the 24h time scale during both the reproductive phases. Results also reflected a parallel relationship of melatonin, melatonin receptors and all the immune parameters (total leukocyte count, lymphocyte count, % stimulation ratio) suggesting that peripheral melatonin might be responsible for daily periodicity of LAIS. The presence of androgen receptors in lung led us to propose that gonadal steroid does influence the LAIS. Therefore melatonin along with testosterone might be acting as a temporal synchronizer for daily rhythms in lung associated immunity in Perdicula asiatica during different reproductive phases. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. A novel inducible transactivation domain in the androgen receptor: implications for PRK in prostate cancer

    OpenAIRE

    Metzger, Eric; Müller, Judith M.; Ferrari, Stefano; Buettner, Reinhard; Schüle, Roland

    2003-01-01

    In addition to the classical activation by ligands, nuclear receptor activity is also regulated by ligand-independent signalling. Here, we unravel a novel signal transduction pathway that links the RhoA effector protein kinase C-related kinase PRK1 to the transcriptional activation of the androgen receptor (AR). Stimulation of the PRK signalling cascade results in a ligand-dependent superactivation of AR. We show that AR and PRK1 interact both in vivo and in vitro. The transactivation unit 5 ...

  9. miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells

    International Nuclear Information System (INIS)

    Gong, Ai-Yu; Eischeid, Alex N; Xiao, Jing; Zhao, Jian; Chen, Dongqing; Wang, Zhao-Yi; Young, Charles YF; Chen, Xian-Ming

    2012-01-01

    Androgen receptor (AR) signalling is critical to the initiation and progression of prostate cancer (PCa). Transcriptional activity of AR involves chromatin recruitment of co-activators, including the p300/CBP-associated factor (PCAF). Distinct miRNA expression profiles have been identified in PCa cells during the development and progression of the disease. Whether miRNAs regulate PCAF expression in PCa cells to regulate AR transcriptional activity is still unclear. Expression of PCAF was investigated in several PCa cell lines by qRT-PCR, Western blot, and immunocytochemistry. The effects of PCAF expression on AR-regulated transcriptional activity and cell growth in PCa cells were determined by chromatin immunoprecipitation, reporter gene construct analysis, and MTS assay. Targeting of PCAF by miR-17-5p was evaluated using the luciferase reporter assay. PCAF was upregulated in several PCa cell lines. Upregulation of PCAF promoted AR transcriptional activation and cell growth in cultured PCa cells. Expression of PCAF in PCa cells was associated with the downregulation of miR-17-5p. Targeting of the 3’-untranslated region of PCAF mRNA by miR-17-5p caused translational suppression and RNA degradation, and, consequently, modulation of AR transcriptional activity in PCa cells. PCAF is upregulated in cultured PCa cells, and upregulation of PCAF is associated with the downregulation of miR-17-5p. Targeting of PCAF by miR-17-5p modulates AR transcriptional activity and cell growth in cultured PCa cells

  10. Mechanism of Androgen Receptor Corepression by CKβBP2/CRIF1, a Multifunctional Transcription Factor Coregulator Expressed in Prostate Cancer

    OpenAIRE

    Tan, Jiann-an; Bai, Suxia; Grossman, Gail; Titus, Mark A.; Ford, O. Harris; Pop, Elena A.; Smith, Gary J.; Mohler, James L.; Wilson, Elizabeth M.; French, Frank S.

    2013-01-01

    The transcription factor coregulator Casein kinase IIβbinding protein 2 or CR6-interacting factor 1 (CKβBP2/CRIF1) binds the androgen receptor (AR) in prostate cancer cells and in response to dihydrotestosterone localizes with AR on the prostate-specific antigen gene enhancer, but does not bind DNA suggesting CKβBP2/CRIF1 localization in chromatin is determined by AR. In this study we show also that CKβBP2/CRIF1 inhibits wild-type AR and AR N-terminal transcriptional activity, binds to the AR...

  11. Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression

    DEFF Research Database (Denmark)

    Wang, Qian; Bailey, Charles G; Ng, Cynthia

    2011-01-01

    was sufficient to decrease cell growth and mTORC1 signaling in prostate cancer cells. These cells maintained levels of amino acid influx through androgen receptor-mediated regulation of LAT3 expression and ATF4 regulation of LAT1 expression after amino acid deprivation. These responses remained intact in primary......L-Type amino acid transporters such as LAT1 and LAT3 mediate the uptake of essential amino acids. Here, we report that prostate cancer cells coordinate the expression of LAT1 and LAT3 to maintain sufficient levels of leucine needed for mTORC1 signaling and cell growth. Inhibiting LAT function...... prostate cancer, as indicated by high levels of LAT3 in primary disease, and by increased levels of LAT1 after hormone ablation and in metastatic lesions. Taken together, our results show how prostate cancer cells respond to demands for increased essential amino acids by coordinately activating amino acid...

  12. Androgen action via testicular arteriole smooth muscle cells is important for Leydig cell function, vasomotion and testicular fluid dynamics.

    Directory of Open Access Journals (Sweden)

    Michelle Welsh

    2010-10-01

    Full Text Available Regulation of blood flow through the testicular microvasculature by vasomotion is thought to be important for normal testis function as it regulates interstitial fluid (IF dynamics which is an important intra-testicular transport medium. Androgens control vasomotion, but how they exert these effects remains unclear. One possibility is by signalling via androgen receptors (AR expressed in testicular arteriole smooth muscle cells. To investigate this and determine the overall importance of this mechanism in testis function, we generated a blood vessel smooth muscle cell-specific AR knockout mouse (SMARKO. Gross reproductive development was normal in SMARKO mice but testis weight was reduced in adulthood compared to control littermates; this reduction was not due to any changes in germ cell volume or to deficits in testosterone, LH or FSH concentrations and did not cause infertility. However, seminiferous tubule lumen volume was reduced in adult SMARKO males while interstitial volume was increased, perhaps indicating altered fluid dynamics; this was associated with compensated Leydig cell failure. Vasomotion was impaired in adult SMARKO males, though overall testis blood flow was normal and there was an increase in the overall blood vessel volume per testis in adult SMARKOs. In conclusion, these results indicate that ablating arteriole smooth muscle AR does not grossly alter spermatogenesis or affect male fertility but does subtly impair Leydig cell function and testicular fluid exchange, possibly by locally regulating microvascular blood flow within the testis.

  13. MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1α/HIF-1β

    Directory of Open Access Journals (Sweden)

    Xu Jianfeng

    2010-05-01

    Full Text Available Abstract Background In prostate cancer (PCa, the common treatment involving androgen ablation alleviates the disease temporarily, but results in the recurrence of highly aggressive and androgen-independent metastatic cancer. Therefore, more effective therapeutic approaches are needed. It is known that aberrant epigenetics contributes to prostate malignancy. Unlike genetic changes, these epigenetic alterations are reversible, which makes them attractive targets in PCa therapy to impede cancer progression. As a histone methyltransferease, Ezh2 plays an essential role in epigenetic regulation. Since Ezh2 is overexpressed and acts as an oncogene in PCa, it has been proposed as a bona fide target of PCa therapy. MicroRNAs (miRNAs regulate gene expression through modulating protein translation. Recently, the contribution of miRNAs in cancer development is increasingly appreciated. In this report, we present our study showing that microRNA-101 (miR-101 inhibits Ezh2 expression and differentially regulates prostate cancer cells. In addition, the expression of miR-101 alters upon androgen treatment and HIF-1α/HIF-1β induction. Result In our reporter assays, both miR-101 and miR-26a inhibit the expression of a reporter construct containing the 3'-UTR of Ezh2. When ectopically expressed in PC-3, DU145 and LNCaP cells, miR-101 inhibits endogenous Ezh2 expression in all three cell lines, while miR-26a only decreases Ezh2 in DU145. Ectopic miR-101 reduces the invasion ability of PC-3 cells, while restored Ezh2 expression rescues the invasiveness of PC-3 cells. Similarly, miR-101 also inhibits cell invasion and migration of DU145 and LNCaP cells, respectively. Interestingly, ectopic miR-101 exhibits differential effects on the proliferation of PC-3, DU-145 and LNCaP cells and also causes morphological changes of LNCaP cells. In addition, the expression of miR-101 is regulated by androgen receptor and HIF-1α/HIF-1β. While HIF-1α/HIF-1β induced by

  14. Effects of resveratrol and other wine polyphenols on the proliferation, apoptosis and androgen receptor expression in LNCaP cells.

    Science.gov (United States)

    Ferruelo, A; Romero, I; Cabrera, P M; Arance, I; Andrés, G; Angulo, J C

    2014-01-01

    To address the effect of resveratrol and other red wine polyphenols on cell proliferation, apoptosis and androgen receptor (AR) expression in human prostate cancer LNCaP cells. LNCaP cells (5 × 102) were cultured in microtiter plate modules and treated with gallic acid, tannic acid and quercetin (1, 5 and 10 μM), rutin and morin (25, 50 and 75 μM) and resveratrol (5, 10 and 25 μM). To address the extent of proliferation at 24, 48, 72 and 96 hours, a colorimetric immunoassay method was used. An activity caspase 3/7 detection assay was used to disclose apoptosis at 24, 48 and 72 hours. AR mARN levels were determined by real time RT-PCR. All polyphenols studied significantly inhibited (P<.05) cell proliferation compared to control. However, there were moderate differences between them. Resveratrol was the strongest inhibitor at different times and doses. Also, caspase-3 and caspase-7 activity was significantly higher (P<.05) than control in the presence of all the compounds, but the earlier response was achieved by resveratrol. Resveratrol, quercetin and morin were the only nutrients that significantly inhibited AR mRNA expression. Again resveratrol produced the highest inhibition (90-250 times less than control), followed by morin (67-100 times) and quercetin (55-91 times). All polyphenols studied showed important antiproliferative effects and induced apoptosis when added to LNCaP cells culture. We confirm that resveratrol, morin and quercetin may achieve such effect through reduced expression of AR. The synergistic effects of these compounds and their potential to prevent progression of hormone-dependent prostate cancer merit further study. Copyright © 2014 AEU. Published by Elsevier Espana. All rights reserved.

  15. Transcriptional role of androgen receptor in the expression of long non-coding RNA Sox2OT in neurogenesis.

    Directory of Open Access Journals (Sweden)

    Valentina Tosetti

    Full Text Available The complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR is a transcription factor that is already expressed during early embryonic days. However, AR role in the regulation of gene expression at early embryonic stage is yet to be determinate. Long non-coding RNA (lncRNA Sox2 overlapping transcript (Sox2OT plays a crucial role in gene expression control during development but its transcriptional regulation is still to be clearly defined. Here, using Bicalutamide in order to pharmacologically inactivated AR, we investigated whether AR participates in the regulation of the transcription of the lncRNASox2OTat early embryonic stage. We identified a new DNA binding region upstream of Sox2 locus containing three androgen response elements (ARE, and found that AR binds such a sequence in embryonic neural stem cells and in mouse embryonic brain. Our data suggest that through this binding, AR can promote the RNA polymerase II dependent transcription of Sox2OT. Our findings also suggest that AR participates in embryonic neurogenesis through transcriptional control of the long non-coding RNA Sox2OT.

  16. GGC and StuI polymorphism on the androgen receptor gene in endometrial cancer patients

    International Nuclear Information System (INIS)

    Sasaki, Masahiro; Karube, Akihiro; Karube, Yuko; Watari, Michiko; Sakuragi, Noriaki; Fujimoto, Seiichiro; Dahiya, Rajvir

    2005-01-01

    Androgens have an anti-proliferative effect on endometrial cells. Human androgen receptor (AR) gene contains two polymorphic short tandem repeats of GGC and CAG, and a single-nucleotide polymorphism on exon 1 that is recognized by the restriction enzyme, StuI. Prior studies have shown that the lengths of the CAG repeat are inversely and linearly related to AR activity and associated with endometrial cancer. However, little is known about the GGC repeat and the StuI polymorphism of the AR gene. Thus, we investigated whether these AR polymorphisms are risk factors for endometrial cancer. To test this hypothesis, the genetic distributions of these polymorphisms were investigated in blood samples from endometrial cancer patients and healthy controls. The allelic and genotyping profiles were analyzed by polymerase chain reaction (PCR), PCR-restriction fragment length polymorphism (PCR-RFLP), and direct DNA sequencing, and analyzed statistically. The GGC repeat was significantly longer in endometrial cancer patients as compared to normal healthy controls. In general, an increased risk of endometrial cancer was found with increasing GGC repeat. The relative risk for the 17 GGC repeat was greater than 4, as compared to controls. However, the StuI polymorphism was not significantly different between patients and controls. The findings suggest that increased numbers of GGC repeat on the AR gene may be a risk factor for endometrial cancer

  17. Thymus cells in myasthenia gravis selectively enhance production of anti-acetylcholine-receptor antibody by autologous blood lymphocytes

    International Nuclear Information System (INIS)

    Newsom-Davis, J.; Willcox, N.; Calder, L.

    1981-01-01

    We investigated the role of the thymus in 16 patients with myasthenia gravis without thymoma by studying the production of anti-acetylcholine-receptor antibody by thymic and blood lymphocytes cultured alone or together. In 10 responders (with the highest receptor-antibody titers in their plasma), cultured thymic cells spontaneously produced measurable receptor antibody. Receptor-antibody production by autologous blood lymphocytes was enhanced by the addition of responder's thymic cells, irradiated to abrogate antibody production and suppression (P<0.01). This enhancement was greater and more consistent than that by pokeweed mitogen; it depended on viable thymic cells, appeared to be selective for receptor antibody, and correlated with the ratio of thymic helper (OKT4-positive or OKT4+) to suppressor (OKT8+) T cells (P<0.01). These results suggest that myasthenic thymus contains cell-bound acetylcholine-receptor-like material or specific T cells (or both) that can aid receptor-antibody production. This may be relevant to the benefits of thymectomy in myasthenia and to the breakdown in self-tolerance in this and other autoimmune diseases

  18. Thymus cells in myasthenia gravis selectively enhance production of anti-acetylcholine-receptor antibody by autologous blood lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Newsom-Davis, J.; Willcox, N.; Calder, L.

    1981-11-26

    We investigated the role of the thymus in 16 patients with myasthenia gravis without thymoma by studying the production of anti-acetylcholine-receptor antibody by thymic and blood lymphocytes cultured alone or together. In 10 responders (with the highest receptor-antibody titers in their plasma), cultured thymic cells spontaneously produced measurable receptor antibody. Receptor-antibody production by autologous blood lymphocytes was enhanced by the addition of responder's thymic cells, irradiated to abrogate antibody production and suppression (P<0.01). This enhancement was greater and more consistent than that by pokeweed mitogen; it depended on viable thymic cells, appeared to be selective for receptor antibody, and correlated with the ratio of thymic helper (OKT4-positive or OKT4+) to suppressor (OKT8+) T cells (P<0.01). These results suggest that myasthenic thymus contains cell-bound acetylcholine-receptor-like material or specific T cells (or both) that can aid receptor-antibody production. This may be relevant to the benefits of thymectomy in myasthenia and to the breakdown in self-tolerance in this and other autoimmune diseases.

  19. Complete androgen insensitivity syndrome with paratesticular leiomyoma: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hoon; Oh, Hyung Woo; Lee, Mi Ja; Lim, Dong Hoon [Chosun University College of Medicine, Gwangju (Korea, Republic of)

    2017-03-15

    Complete androgen insensitivity syndrome (AIS) is a rare, X-linked recessive disorder. Patients with AIS may develop primary amenorrhea due to androgen receptor resistance, resulting in a normal female phenotype and male (XY) karyotype. We report a case of a 30-year-old woman who was diagnosed with complete AIS. Ultrasonography and magnetic resonance imaging revealed bilateral inguinal cryptorchidism and no ovaries and uterus. After gonadectomy, the inguinal mass was confirmed as testicular atrophy with hamartomatous proliferation of Leydig cells and paratesticular leiomyoma. Although these tumors have been reported in association with AIS, this is the first case of paratesticular leiomyoma with hamartomatous proliferation of Leydig cells in atrophic testes being reported in Korea.

  20. Complete androgen insensitivity syndrome with paratesticular leiomyoma: A case report

    International Nuclear Information System (INIS)

    Lee, Ji Hoon; Oh, Hyung Woo; Lee, Mi Ja; Lim, Dong Hoon

    2017-01-01

    Complete androgen insensitivity syndrome (AIS) is a rare, X-linked recessive disorder. Patients with AIS may develop primary amenorrhea due to androgen receptor resistance, resulting in a normal female phenotype and male (XY) karyotype. We report a case of a 30-year-old woman who was diagnosed with complete AIS. Ultrasonography and magnetic resonance imaging revealed bilateral inguinal cryptorchidism and no ovaries and uterus. After gonadectomy, the inguinal mass was confirmed as testicular atrophy with hamartomatous proliferation of Leydig cells and paratesticular leiomyoma. Although these tumors have been reported in association with AIS, this is the first case of paratesticular leiomyoma with hamartomatous proliferation of Leydig cells in atrophic testes being reported in Korea

  1. Prevalent flucocorticoid and androgen activity in US water sources

    Science.gov (United States)

    Stavreva, Diana A.; George, Anuja A.; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C.; Schiltz, R. Louis; Blazer, Vicki; Iwanowiczl, Luke R.; Hager, Gordon L.

    2012-01-01

    Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations.

  2. Prevalent glucocorticoid and androgen activity in US water sources.

    Science.gov (United States)

    Stavreva, Diana A; George, Anuja A; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C; Schiltz, R Louis; Blazer, Vicki S; Iwanowicz, Luke R; Hager, Gordon L

    2012-01-01

    Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations.

  3. Non-linear association between androgen receptor CAG and GGN repeat lengths and reproductive parameters in fertile European and Inuit men

    DEFF Research Database (Denmark)

    Brokken, L J S; Rylander, L; Jönsson, B A

    2013-01-01

    Recently the dogma that there is an inverse linear association between androgen receptor (AR) CAG and GGN polymorphisms and receptor activity has been challenged. We analysed the pattern of association between 21 male reproductive phenotypes and AR CAG/GGN repeat lengths in 557 proven-fertile men...

  4. Conditional Expression of the Androgen Receptor Increases Susceptibility of Bladder Cancer in Mice.

    Directory of Open Access Journals (Sweden)

    Daniel T Johnson

    Full Text Available Bladder cancer represents a significant human tumor burden, accounting for about 7.7% and 2.4% of all cancer cases in males and females, respectively. While men have a higher risk of developing bladder cancer, women tend to present at a later stage of disease and with more aggressive tumors. Previous studies have suggested a promotional role of androgen signaling in enhancing bladder cancer development. To directly assess the role of androgens in bladder tumorigenesis, we have developed a novel transgenic mouse strain, R26hARLoxP/+:Upk3aGCE/+, in which the human AR transgene is conditionally expressed in bladder urothelium. Intriguingly, both male and female R26hARLoxP/+:Upk3aGCE/+ mice display a higher incidence of urothelial cell carcinoma (UCC than the age and sex matched control littermates in response to the carcinogen, N-butyl-N-(4-hydroxybutyl nitrosamine (BBN. We detect expression of the human AR transgene in CK5-positive and p63-positive basal cells in bladder urothelium. Further analyses of UCC tissues from R26hARLoxP/+:Upk3aGCE/+ mice showed that the majority of tumor cells are of urothelial basal cell origin. Positive immunostaining of transgenic AR protein was observed in the majority of tumor cells of the transgenic mice, providing a link between transgenic AR expression and oncogenic transformation. We observed an increase in Ki67 positive cells within the UCC lesions of transgenic AR mice. Manipulating endogenous androgen levels by castration and androgen supplementation directly affected bladder tumor development in male and female R26hARLoxP/+:Upk3aGCE/+ mice, respectively. Taken together, our data demonstrate for the first time that conditional activation of transgenic AR expression in bladder urothelium enhances carciongen-induced bladder tumor formation in mice. This new AR transgenic mouse line mimics certain features of human bladder cancer and can be used to study bladder tumorigenesis and for drug development.

  5. Inverse Regulation of DHT Synthesis Enzymes 5α-Reductase Types 1 and 2 by the Androgen Receptor in Prostate Cancer.

    Science.gov (United States)

    Audet-Walsh, Étienne; Yee, Tracey; Tam, Ingrid S; Giguère, Vincent

    2017-04-01

    5α-Reductase types 1 and 2, encoded by SRD5A1 and SRD5A2, are the two enzymes that can catalyze the conversion of testosterone to dihydrotestosterone, the most potent androgen receptor (AR) agonist in prostate cells. 5α-Reductase type 2 is the predominant isoform expressed in the normal prostate. However, its expression decreases during prostate cancer (PCa) progression, whereas SRD5A1 increases, and the mechanism underlying this transcriptional regulatory switch is still unknown. Interrogation of SRD5A messenger RNA expression in three publicly available data sets confirmed that SRD5A1 is increased in primary and metastatic PCa compared with nontumoral prostate tissues, whereas SRD5A2 is decreased. Activation of AR, a major oncogenic driver of PCa, induced the expression of SRD5A1 from twofold to fourfold in three androgen-responsive PCa cell lines. In contrast, AR repressed SRD5A2 expression in this context. Chromatin-immunoprecipitation studies established that AR is recruited to both SRD5A1 and SRD5A2 genes following androgen stimulation but initiates transcriptional activation only at SRD5A1 as monitored by recruitment of RNA polymerase II and the presence of the H3K27Ac histone mark. Furthermore, we showed that the antiandrogens bicalutamide and enzalutamide block the AR-mediated regulation of both SRD5A1 and SRD5A2, highlighting an additional mechanism explaining their beneficial effects in patients. In summary, we identified an AR-dependent transcriptional regulation that explains the differential expression of 5α-reductase types 1 and 2 during PCa progression. Our work thus defines a mechanism by which androgens control their own synthesis via differential regulatory control of the expression of SRD5A1 and SRD5A2. Copyright © 2017 Endocrine Society.

  6. Perfluoroalkylated substances (PFAS) affect neither estrogen and androgen receptor activity nor steroidogenesis in human cells in vitro.

    Science.gov (United States)

    Behr, Anne-Cathrin; Lichtenstein, Dajana; Braeuning, Albert; Lampen, Alfonso; Buhrke, Thorsten

    2018-07-01

    The perfluoroalkylated substances (PFAS) perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are used for the fabrication of water- and dirt-repellent surfaces. The use of PFOS and PFOA was restricted due to their reprotoxic properties and their environmental persistence. Therefore, industry switches to alternative PFAS, however, in contrast to PFOA and PFOS only few toxicological data are available for their substitutes. The molecular mechanism(s) underlying reproductive toxicity of PFOA and PFOS are largely unknown. Here, the endocrine properties of PFOA, PFOS, and of six substitutes including perfluorohexanesulfonic acid (PFHxS), perfluorobutanesulfonic acid (PFBS), perfluorohexanoic acid (PFHxA), perfluorobutanoic acid (PFBA), ammonium perfluoro(2-methyl-3-oxahexanoate) (PMOH), and 3H-perfluoro-3-[(3-methoxypropoxy) propanoic acid] (PMPP) were examined in vitro by using human cell lines such as MCF-7, H295R, LNCaP and MDA-kb2. PFOA, PFOS and PMOH enhanced 17β-estradiol-stimulated estrogen receptor β activity, and PFOS, PMOH, PFHxA and PFBA enhanced dihydrotestosterone-stimulated androgen receptor activity. In the H295R steroidogenesis assay, PFOA and PFOS slightly enhanced estrone secretion, and progesterone secretion was marginally increased by PFOA. All these effects were only observed at concentrations above 10 μM, and none of the PFAS displayed any effect on any of the molecular endocrine endpoints at concentrations of 10 μM or below. Thus, as the blood serum concentrations of the different PFAS in the general Western population are in the range of 10 nM or below, the results suggest that PFAS might not exert endocrine effects in humans at exposure-relevant concentrations according to the molecular endpoints examined in this study. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Resistance to docetaxel in prostate cancer is associated with androgen receptor activation and loss of KDM5D expression

    Science.gov (United States)

    Komura, Kazumasa; Jeong, Seong Ho; Hinohara, Kunihiko; Qu, Fangfang; Wang, Xiaodong; Hiraki, Masayuki; Azuma, Haruhito; Lee, Gwo-Shu Mary; Kantoff, Philip W.; Sweeney, Christopher J.

    2016-01-01

    The androgen receptor (AR) plays an essential role in prostate cancer, and suppression of its signaling with androgen deprivation therapy (ADT) has been the mainstay of treatment for metastatic hormone-sensitive prostate cancer for more than 70 y. Chemotherapy has been reserved for metastatic castration-resistant prostate cancer (mCRPC). The Eastern Cooperative Oncology Group-led trial E3805: ChemoHormonal Therapy Versus Androgen Ablation Randomized Trial for Extensive Disease in Prostate Cancer (CHAARTED) showed that the addition of docetaxel to ADT prolonged overall survival compared with ADT alone in patients with metastatic hormone-sensitive prostate cancer. This finding suggests that there is an interaction between AR signaling activity and docetaxel sensitivity. Here we demonstrate that the prostate cancer cell lines LNCaP and LAPC4 display markedly different sensitivity to docetaxel with AR activation, and RNA-seq analysis of these cell lines identified KDM5D (lysine-specific demethylase 5D) encoded on the Y chromosome as a potential mediator of this sensitivity. Knocking down KDM5D expression in LNCaP leads to docetaxel resistance in the presence of dihydrotestosterone. KDM5D physically interacts with AR in the nucleus, and regulates its transcriptional activity by demethylating H3K4me3 active transcriptional marks. Attenuating KDM5D expression dysregulates AR signaling, resulting in docetaxel insensitivity. KDM5D deletion was also observed in the LNCaP-derived CRPC cell line 104R2, which displayed docetaxel insensitivity with AR activation, unlike parental LNCaP. Dataset analysis from the Oncomine database revealed significantly decreased KDM5D expression in CRPC and poorer prognosis with low KDM5D expression. Taking these data together, this work indicates that KDM5D modulates the AR axis and that this is associated with altered docetaxel sensitivity. PMID:27185910

  8. Multivalent Peptidomimetic Conjugates as Inhibitors of Androgen Receptor Function in Therapy-Resistant Prostate Cancer

    Science.gov (United States)

    2017-10-01

    treat patients with prostate cancer, over time the tumors become resistant to the drugs, leaving few treatment options. The goal of this proposal is to...interactions with the AR. 15. SUBJECT TERMS androgen receptor, prostate cancer, peptidomimetic conjugates, 16. SECURITY CLASSIFICATION OF: 17...used successfully to treat patients with prostate cancer, over time the tumors become resistant to the drugs, leaving few treatment options. The goal

  9. Androgenic and Estrogenic Response of Green Mussel Extracts from Singapore’s Coastal Environment Using a Human Cell-Based Bioassay

    Science.gov (United States)

    Bayen, Stéphane; Gong, Yinhan; Chin, Hong Soon; Lee, Hian Kee; Leong, Yong Eu; Obbard, Jeffrey Philip

    2004-01-01

    In the last decade, evidence of endocrine disruption in biota exposed to environmental pollutants has raised serious concern. Human cell-based bioassays have been developed to evaluate induced androgenic and estrogenic activities of chemical compounds. However, bioassays have been sparsely applied to environmental samples. In this study we present data on sex hormone activities in the green mussel, Perna viridis, in Singapore’s coastal waters. P. viridis is a common bioindicator of marine contamination, and this study is a follow-up to an earlier investigation that reported the presence of sex hormone activities in seawater samples from Singapore’s coastal environment. Specimens were collected from eight locations around the Singapore coastline and analyzed for persistent organic pollutants (POPs) and heavy metals. Tissue extracts were then screened for activities on androgen receptors (ARs) and estrogen receptors (ER-α and ER-β) using a reporter gene bio-assay based on a HeLa human cell line. Mussel extracts alone did not exhibit AR activity, but in the presence of the reference androgenic hormone dihydrotestosterone (DHT), activities were up to 340% higher than those observed for DHT alone. Peak activities were observed in locations adjacent to industrial and shipping activities. Estrogenic activities of the mussel extract both alone and in the presence of reference hormone were positive. Correlations were statistically investigated between sex hormone activities, levels of pollutants in the mussel tissues, and various biological parameters (specimen size, sex ratio, lipid and moisture content). Significant correlations exist between AR activities, in the presence of DHT, and total concentration of POPs (r = 0.725, p < 0.05). PMID:15531429

  10. Androgen receptor activation: a prospective therapeutic target for bladder cancer?

    Science.gov (United States)

    Mizushima, Taichi; Tirador, Kathleen A; Miyamoto, Hiroshi

    2017-03-01

    Patients with non-muscle-invasive or muscle-invasive bladder cancer undergoing surgery and currently available conventional therapy remain having a high risk of tumor recurrence or progression, respectively. Novel targeted molecular therapy is therefore expected to improve patient outcomes. Meanwhile, substantially higher incidence of bladder cancer in men has prompted research on androgen-mediated androgen receptor (AR) signaling in this malignancy. Indeed, preclinical evidence has suggested that AR signaling plays an important role in urothelial carcinogenesis and tumor outgrowth as well as resistance to some of the currently available conventional non-surgical therapies. Areas covered: We summarize and discuss available data suggesting the involvement of AR and its potential downstream targets in the development and progression of bladder cancer. Associations between AR signaling and sensitivity to cisplatin/doxorubicin or bacillus Calmette-Guérin treatment are also reviewed. Expert opinion: AR activation is likely to correlate with the promotion of urothelial carcinogenesis and cancer outgrowth as well as resistance to conventional therapies. Molecular therapy targeting the AR may thus provide effective chemopreventive and therapeutic approaches for urothelial cancer. Accordingly, bladder cancer can now be considered as an endocrine-related neoplasm. Clinical application of various anti-AR therapies available for AR-dependent prostate cancer to bladder cancer patients is anticipated.

  11. Screening of synthetic and natural product databases: Identification of novel androgens and antiandrogens.

    Science.gov (United States)

    Bobach, Claudia; Tennstedt, Stephanie; Palberg, Kristin; Denkert, Annika; Brandt, Wolfgang; de Meijere, Armin; Seliger, Barbara; Wessjohann, Ludger A

    2015-01-27

    The androgen receptor is an important pharmaceutical target for a variety of diseases. This paper presents an in silico/in vitro screening procedure to identify new androgen receptor ligands. The two-step virtual screening procedure uses a three-dimensional pharmacophore model and a docking/scoring routine. About 39,000 filtered compounds were docked with PLANTS and scored by Chemplp. Subsequent to virtual screening, 94 compounds, including 28 steroidal and 66 nonsteroidal compounds, were tested by an androgen receptor fluorescence polarization ligand displacement assay. As a result, 30 compounds were identified that show a relative binding affinity of more than 50% in comparison to 100 nM dihydrotestosterone and were classified as androgen receptor binders. For 11 androgen receptor binders of interest IC50 and Ki values were determined. The compound with the highest affinity exhibits a Ki value of 10.8 nM. Subsequent testing of the 11 compounds in a PC-3 and LNCaP multi readout proliferation assay provides insights into the potential mode of action. Further steroid receptor ligand displacement assays and docking studies on estrogen receptors α and β, glucocorticoid receptor, and progesterone receptor gave information about the specificity of the 11 most active compounds. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. (-)[125I]-iodopindolol, a new highly selective radioiodinated beta-adrenergic receptor antagonist: measurement of beta-receptors on intact rat astrocytoma cells

    International Nuclear Information System (INIS)

    Barovsky, K.; Brooker, G.

    1980-01-01

    (-)-Pindolol, one of the most potent beta-adrenergic receptor antagonists, was radioiodinated using chloramine-T oxidation of carrier-free Na 125I and separated from unreacted pindolol to yield 2200 Ci/mmole (-)-[125I]-iodopindolol ((-)-[125I]-IPin). Mass and ultraviolet spectra confirmed that the iodination occurred on the indole ring, presumably at the 3 position. The binding of radiolabeled (-)-[125I]-IPin to beta-adrenergic receptors has been studied using intact C6 rat astrocytoma cells (2B subclone) grown in monolayer cultures. Binding of (-)[125IPin was saturable with time and concentration. Using 13 pM (-)-[125I]IPin, binding equilibrium was reached in 90 min at 21-22 degrees C. The reverse rate constant was 0.026 min-1 at 21 0 C. Specific binding (expressed as 1 microM(-)-propranolol displaceable counts) of (-)-[125I]-IPin was 95% of total binding. Scatchard analysis of (-)-[125I]-I]Pin binding revealed approximately 4300 receptors/cell and a dissociation constant of 30 pM. This was in excellent agreement with the kinetically determined dissociation constant of 35 pM. Displacement by propranolol and isoproterenol showed that (-)-[125I]-IPin binding sites were pharmacologically and stereospecifically selective. These results indicate that (-)-[125I]-IPin, a pure (-)-stereoisomer, high specific activity radioligand, selectively binds to beta-adrenergic receptors in whole cells with a high percentage of specific binding and should therefore be useful in the study and measurement of cellular beta-adrenergic receptors

  13. Coagulation factor VII is regulated by androgen receptor in breast cancer.

    Science.gov (United States)

    Naderi, Ali

    2015-02-01

    Androgen receptor (AR) is widely expressed in breast cancer; however, there is limited information on the key molecular functions and gene targets of AR in this disease. In this study, gene expression data from a cohort of 52 breast cancer cell lines was analyzed to identify a network of AR co-expressed genes. A total of 300 genes, which were significantly enriched for cell cycle and metabolic functions, showed absolute correlation coefficients (|CC|) of more than 0.5 with AR expression across the dataset. In this network, a subset of 35 "AR-signature" genes were highly co-expressed with AR (|CC|>0.6) that included transcriptional regulators PATZ1, NFATC4, and SPDEF. Furthermore, gene encoding coagulation factor VII (F7) demonstrated the closest expression pattern with AR (CC=0.716) in the dataset and factor VII protein expression was significantly associated to that of AR in a cohort of 209 breast tumors. Moreover, functional studies demonstrated that AR activation results in the induction of factor VII expression at both transcript and protein levels and AR directly binds to a proximal region of F7 promoter in breast cancer cells. Importantly, AR activation in breast cancer cells induced endogenous factor VII activity to convert factor X to Xa in conjunction with tissue factor. In summary, F7 is a novel AR target gene and AR activation regulates the ectopic expression and activity of factor VII in breast cancer cells. These findings have functional implications in the pathobiology of thromboembolic events and regulation of factor VII/tissue factor signaling in breast cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Androgen receptor immunoreactivity in rat occipital cortex after callosotomy

    Directory of Open Access Journals (Sweden)

    G Lepore

    2009-08-01

    Full Text Available Gonadal steroidogenesis can be influenced by direct neural links between the central nervous system and the gonads. It is known that androgen receptor (AR is expressed in many areas of the rat brain involved in neuroendocrine control of reproduction, such as the cerebral cortex. It has been recently shown that the occipital cortex exerts an inhibitory effect on testicular stereoidogenesis by a pituitary-independent neural mechanism. Moreover, the complete transection of the corpus callosum leads to an increase in testosterone (T secretion of hemigonadectomized rats. The present study was undertaken to analyze the possible corticocortical influences regulating male reproductive activities. Adult male Wistar rats were divided into 4 groups: 1 intact animals as control; 2 rats undergoing sham callosotomy; 3 posterior callosotomy; 4 gonadectomy and posterior callosotomy. Western blot analysis showed no remarkable variations in cortical AR expression in any of the groups except in group I where a significant decrease in AR levels was found. Similarly, both immunocytochemical study and cell count estimation showed a lower AR immunoreactivity in occipital cortex of callosotomized rats than in other groups. In addition, there was no difference in serum T and LH concentration between sham-callosotomized and callosotomized rats. In conclusion, our results show that posterior callosotomy led to a reduction in AR in the right occipital cortex suggesting a putative inhibiting effect of the contralateral cortical area.

  15. Positron tomographic assessment of androgen receptors in prostatic carcinoma

    International Nuclear Information System (INIS)

    Dehdashti, Farrokh; Siegel, Barry A.; Welch, Michael J.; Picus, Joel; Michalski, Jeff M.; Dence, Carmen S.; Katzenellenbogen, John A.

    2005-01-01

    The purpose of this study was to evaluate the feasibility of androgen receptor (AR) imaging with 16β-[ 18 F]fluoro-5α-dihydrotestosterone (FDHT) by positron emission tomography (PET) and to assess the binding selectivity of FDHT to AR in patients with prostate cancer. Twenty men (age range 56-87 years) with advanced prostate cancer were studied. All except one had metastatic disease confirmed by biopsy and/or radiological studies. One patient who had radiological findings suggesting a single hepatic metastasis was found to have focal fatty infiltration on biopsy obtained after FDHT-PET and was excluded from further data analysis. FDHT uptake was assessed semiquantitatively by determination of the standardized uptake value (SUV) and tumor-to-muscle ratio (T/M). Additionally, to assess the AR binding selectivity of FDHT, patients with one or more foci of abnormally increased FDHT accumulation were studied after administration of an AR antagonist (flutamide). Conventional imaging demonstrated innumerable lesions in two patients and 43 lesions in the remaining 17 patients with advanced prostate cancer. FDHT-PET was positive in 12 of 19 patients (sensitivity of 63%), including the two patients with innumerable lesions. FDHT-PET detected 24 of 28 known lesions (86%) in the remaining ten patients. In addition, FDHT-PET detected 17 unsuspected lesions in five of these ten patients. All 12 patients with positive FDHT-PET underwent a repeat PET study after receiving flutamide for 1 day (250 mg t.i.d.). In all of these patients, there was a decrease in tumor FDHT uptake after flutamide; the mean (± standard deviation) SUV and T/M decreased from 7.0±4.7 and 6.9±3.9, respectively, to 3.0±1.5 and 3.0±1.6, respectively (p=0.002). The mean PSA in patients with positive FDHT-PET was significantly higher than that in patients with negative FDHT-PET (p=0.006). Our results document the feasibility of PET imaging of prostate cancer with FDHT and suggest that tumor uptake of FDHT

  16. Androgen receptor (AR) degradation enhancer ASC-J9® in an FDA-approved formulated solution suppresses castration resistant prostate cancer cell growth.

    Science.gov (United States)

    Cheng, Max A; Chou, Fu-Ju; Wang, Keliang; Yang, Rachel; Ding, Jie; Zhang, Qiaoxia; Li, Gonghui; Yeh, Shuyuan; Xu, Defeng; Chang, Chawnshang

    2018-03-28

    ASC-J9 ® is a recently-developed androgen receptor (AR)-degradation enhancer that effectively suppresses castration resistant prostate cancer (PCa) cell proliferation and invasion. The optimal half maximum inhibitory concentrations (IC 50 ) of ASC-J9 ® at various PCa cell confluences (20%, 50%, and 100%) were assessed via both short-term MTT growth assays and long-term clonogenic proliferation assays. Our results indicate that the IC 50 values for ASC-J9 ® increased with increasing cell confluency. The IC 50 values were significantly decreased in PCa AR-positive cells compared to PCa AR-negative cells or in normal prostate cells. This suggests that ASC-J9 ® may function mainly via targeting the AR-positive PCa cells with limited unwanted side-effects to suppress the surrounding normal prostate cells. Mechanism dissection indicated that ASC-J9 ® might function via altering the apoptosis signals to suppress the PCa AR-negative PC-3 cells. Preclinical studies using multiple in vitro PCa cell lines and an in vivo mouse model with xenografted castration-resistant PCa CWR22Rv1 cells demonstrated that ASC-J9 ® has similar AR degradation effects when dissolved in FDA-approved solvents, including DMSO, PEG-400:Tween-80 (95:5), DMA:Labrasol:Tween-80 (10:45:45), and DMA:Labrasol:Tween-20 (10:45:45). Together, results from preclinical studies suggest a potential new therapy with AR-degradation enhancer ASC-J9 ® may potentially be ready to be used in human clinical trials in order to better suppress PCa at later castration resistant stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Variation in melatonin receptors (Mel(1a) and Mel(1b)) and androgen receptor (AR) expression in the spleen of a seasonally breeding bird, Perdicula asiatica.

    Science.gov (United States)

    Yadav, S K; Haldar, C; Singh, S S

    2011-12-01

    Daily variation in the peripheral level of melatonin plays a major role in integrating reproduction and environmental information for seasonally breeding birds. However, the variation in immunity and reproduction has never been assessed in any avian species on a 24 h time scale. Therefore, to understand the relationship between immune function and reproductive phases in a seasonally breeding bird, Perdicula asiatica, the Indian jungle bush quail, we studied the daily variation of melatonin and testosterone levels along with expression of their receptors Mel(1a), Mel(1b), and androgen receptor in the spleen during the reproductively active phase. Immunocytochemistry for the melatonin receptors Mel(1a) and Mel(1b) presented a differential distribution pattern. Western blot of splenic protein suggested a daily rhythm of melatonin receptors, while acrophases for the two melatonin receptors Mel(1a) and Mel(1b) differed by 4 h, suggesting that the expression of the receptors may peak at different times, causing more of either Mel(1a) or Mel(1b) to be available at a particular time to mediate function. The circulatory melatonin level correlated with percentage stimulation ratio of splenocytes and plasma interleukin-2 level, but did not correlate with testosterone or androgen receptor, suggesting that melatonin could be a major hormone imparting a time-of-day effect on the modulation of immune function in a seasonally breeding bird during the reproductively active phase. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Substitution of aspartic acid-686 by histidine or asparagine in the human androgen receptor leads to a functionally inactive protein with altered hormone-binding characteristics

    NARCIS (Netherlands)

    Ris-Stalpers, C.; Trifiro, M. A.; Kuiper, G. G.; Jenster, G.; Romalo, G.; Sai, T.; van Rooij, H. C.; Kaufman, M.; Rosenfield, R. L.; Liao, S.

    1991-01-01

    We have identified two different single nucleotide alterations in codon 686 (GAC; aspartic acid) in exon 4 of the human androgen receptor gene in three unrelated families with the complete form of androgen insensitivity. One mutation (G----C) results in an aspartic acid----histidine substitution

  19. Partial Androgen Insensitivity Syndrome Presenting with Gynecomastia

    Directory of Open Access Journals (Sweden)

    Sung Won Lee

    2015-06-01

    Full Text Available Gynecomastia is a benign enlargement of the male breast caused by the proliferation of glandular breast tissue. Determining the various causes of gynecomastia such as physiological causes, drugs, systemic diseases, and endocrine disorders is important. Androgen insensitivity syndrome (AIS is a rare endocrine disorder presenting with gynecomastia and is a disorder of male sexual differentiation caused by mutations within the androgen receptor gene. All individuals with AIS have the 46 XY karyotype, although AIS phenotypes can be classified as mild, partial or complete and can differ among both males and females including ambiguous genitalia or infertility in males. We experienced a case of partial AIS presenting with gynecomastia and identified the androgen receptor gene mutation.

  20. Androgens as double-edged swords: Induction and suppression of follicular development.

    Science.gov (United States)

    Pan, Jie-Xue; Zhang, Jun-Yu; Ke, Zhang-Hong; Wang, Fang-Fang; Barry, John A; Hardiman, Paul J; Qu, Fan

    2015-01-01

    Androgens, which are mediated via the androgen receptor (AR), play important roles in normal follicular development and female fertility. However, just like a double-edged sword, besides the positive effects of androgen on follicular development, abnormal androgen levels, especially as in hyperandrogenism, seriously suppress normal follicular development. A crucial balance exists between the importance of androgens in follicular development and their negative effects when in excess. As the first meiotic division and epigenetic reprogramming are two critical events in oogenesis, abnormal androgen levels or deficiency in androgen/AR signaling in the ovary may affect these vital events. Oocytes have a tendency to develop genomic instability, thus resulting in an increasing incidence of unpredictable adult diseases. Although many studies have explored the effects of androgens and AR on follicular development, the conclusions are controversial and there has been no thorough review of this topic. This review focuses on the roles of androgens in the physiological process of follicular development, summarizes new insights into the roles of androgens in the arrested development of follicles, and discusses the potential risk of adult diseases originating from abnormal follicular androgen levels or androgen receptor signals, which may determine areas for future studies.

  1. Multivalent Peptidomimetic Conjugates as Inhibitors of Androgen Receptor Function in Therapy-Resistant Prostate Cancer

    Science.gov (United States)

    2016-10-01

    findings in the journal Cancer Research. 15. SUBJECT TERMS androgen receptor, prostate cancer, peptidomimetic conjugates, 16. SECURITY CLASSIFICATION OF...CAN-16-0385. Epub 2016 Aug 3, which is widely read by basic and clinical oncologists. The study was also highlighted in the journal Nature Reviews...This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Received February 11

  2. The emerging role of the androgen receptor in bladder cancer.

    Science.gov (United States)

    Lombard, Alan P; Mudryj, Maria

    2015-10-01

    Men are three to four times more likely to get bladder cancer than women. The gender disparity characterizing bladder cancer diagnoses has been investigated. One hypothesis is that androgen receptor (AR) signaling is involved in the etiology and progression of this disease. Although bladder cancer is not typically described as an endocrine-related malignancy, it has become increasingly clear that AR signaling plays a role in bladder tumors. This review summarizes current findings regarding the role of the AR in bladder cancer. We discuss work demonstrating AR expression in bladder cancer and its role in promoting formation and progression of tumors. Additionally, we discuss the therapeutic potential of targeting the AR in this disease. © 2015 Society for Endocrinology.

  3. Prognostic value of sex-hormone receptor expression in non-muscle-invasive bladder cancer.

    Science.gov (United States)

    Nam, Jong Kil; Park, Sung Woo; Lee, Sang Don; Chung, Moon Kee

    2014-09-01

    We investigated sex-hormone receptor expression as predicting factor of recurrence and progression in patients with non-muscle invasive bladder cancer. We retrospectively evaluated tumor specimens from patients treated for transitional cell carcinoma of the bladder at our institution between January 2006 and January 2011. Performing immunohistochemistry using a monoclonal androgen receptor antibody and monoclonal estrogen receptor-beta antibody on paraffin-embedded tissue sections, we assessed the relationship of immunohistochemistry results and prognostic factors such as recurrence and progression. A total of 169 patients with bladder cancer were evaluated in this study. Sixty-threepatients had expressed androgen receptors and 52 patients had estrogen receptor beta. On univariable analysis, androgen receptor expression was significant lower in recurrence rates (p=0.001), and estrogen receptor beta expression was significant higher in progression rates (p=0.004). On multivariable analysis, significant association was found between androgen receptor expression and lower recurrence rates (hazard ratio=0.500; 95% confidence interval, 0.294 to 0.852; p=0.011), but estrogen receptor beta expression was not significantly associated with progression rates. We concluded that the possibility of recurrence was low when the androgen receptor was expressed in the bladder cancer specimen and it could be the predicting factor of the stage, number of tumors, carcinoma in situ lesion and recurrence.

  4. Renaturation of the androgen receptor after denaturation in SDS

    International Nuclear Information System (INIS)

    Johnson, M.P.; Young, C.Y.F.; Rowley, D.R.; Tindall, D.J.

    1986-01-01

    Renaturation of the steroid binding activity of receptor proteins is a potentially useful tool for their purification and analysis. Cytosol was prepared from rat Dunning prostate tumor in buffer containing molybdate and then denatured by addition of SDS buffer and heating. Aliquots were precipitated in cold acetone and the resulting pellets were washed and solubilized with a small volume of solution containing a chaotropic agent such as 6M guanidine, 8M urea, or 5M sodium iodide. After a 20-minute incubation, samples were diluted 20-fold with buffer containing 4nM [ 3 H]dihydrotestosterone with or without excess unlabeled dihydrotestosterone. Diluted samples were incubated at 0 0 C for varying periods of time prior to assay of bound radioactivity using hydroxylapatite. A time-course of renaturation after exposure to guanidine showed a steady increase of specific binding activity during the first 7 hrs post-dilution that remained stable up to 22 hrs. Experiments with guanidine consistently demonstrated that 25-50% of binding activity was recoverable. Preliminary results using urea or sodium iodide were similar. Efforts to optimize recovery and to characterize the renatured androgen receptor are in progress

  5. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer.

    Science.gov (United States)

    Carver, Brett S; Chapinski, Caren; Wongvipat, John; Hieronymus, Haley; Chen, Yu; Chandarlapaty, Sarat; Arora, Vivek K; Le, Carl; Koutcher, Jason; Scher, Howard; Scardino, Peter T; Rosen, Neal; Sawyers, Charles L

    2011-05-17

    Prostate cancer is characterized by its dependence on androgen receptor (AR) and frequent activation of PI3K signaling. We find that AR transcriptional output is decreased in human and murine tumors with PTEN deletion and that PI3K pathway inhibition activates AR signaling by relieving feedback inhibition of HER kinases. Similarly, AR inhibition activates AKT signaling by reducing levels of the AKT phosphatase PHLPP. Thus, these two oncogenic pathways cross-regulate each other by reciprocal feedback. Inhibition of one activates the other, thereby maintaining tumor cell survival. However, combined pharmacologic inhibition of PI3K and AR signaling caused near-complete prostate cancer regressions in a Pten-deficient murine prostate cancer model and in human prostate cancer xenografts, indicating that both pathways coordinately support survival. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Androgen Receptor Splice Variants and Resistance to Taxane Chemotherapy

    Science.gov (United States)

    2015-10-01

    or absence of 10 nM DHT . Dual-luciferase assay was performed at 24 h post treatment using the Dual-luciferase Reporter Assay System (Promega). The...were cultured under androgen-deprived condition unless specified. DHT , 1 nmol/L for 24 hours. Xu et al. Cancer Res; 75(17) September 1, 2015 Cancer...the dihydrotestosterone ( DHT ) groups, 1 nmol/L DHT was added at 24 hours after transfection. At 48 hours after transfection, cells were fixed with 70

  7. Detection of the arylpropionamide-derived selective androgen receptor modulator (SARM) S-4 (Andarine) in a black-market product.

    Science.gov (United States)

    Thevis, Mario; Geyer, Hans; Kamber, Matthias; Schänzer, Wilhelm

    2009-08-01

    Non-steroidal and tissue-selective anabolic agents such as selective androgen receptor modulators (SARMs) represent a promising class of therapeutics for the treatment of various diseases such as sarcopenia or cancer cachexia. Advanced compounds of SARMs are based on an arylpropionamide-derived structure and leading drug candidates have successfully completed phase-II-clinical trials. Although none of these therapeutics have been approved, their performance-enhancing qualities and the black-market availability of these products makes them a viable target for misuse in the athletic community. In 2008, SARMs were added to the Prohibited List established by the World Anti-Doping Agency (WADA). That SARMs are the subject of misuse even without clinical approval was proved for the first time by the detection of the drug candidate Andarine (also referred to as S-4, S-3-(4-acetylamino-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide), advertised, sold and supplied via the Internet. The oily liquids, declared as green tea extracts and face moisturizer, were assayed using state-of-the-art analytical procedures and S-4 was found at concentrations of approximately 150 mg/mL. The authenticity of the product was demonstrated in comparison to reference material by liquid chromatography, high resolution/high accuracy (tandem) mass spectrometry using positive and negative electrospray ionization, and comparison to reference material. Moreover, an impurity resulting from poor product purification was detected, accounting for approximately 10% of S-4. This consisted of 2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-3-(4-nitro-3-trifluoromethyl-phenylamino)-propionamide. The ease of purchasing non-approved drug candidates that could potentially increase athletic performance demonstrates the need to operate proactively in the continued fight against doping. The early inclusion of emerging drugs into routine sports drug testing procedures is a key

  8. A Somatically Acquired Enhancer of the Androgen Receptor Is a Noncoding Driver in Advanced Prostate Cancer. | Office of Cancer Genomics

    Science.gov (United States)

    Increased androgen receptor (AR) activity drives therapeutic resistance in advanced prostate cancer. The most common resistance mechanism is amplification of this locus presumably targeting the AR gene. Here, we identify and characterize a somatically acquired AR enhancer located 650 kb centromeric to the AR. Systematic perturbation of this enhancer using genome editing decreased proliferation by suppressing AR levels. Insertion of an additional copy of this region sufficed to increase proliferation under low androgen conditions and to decrease sensitivity to enzalutamide.

  9. Lignans isolated from Campylotropis hirtella (Franch.) Schindl. decreased prostate specific antigen and androgen receptor expression in LNCaP cells.

    Science.gov (United States)

    Han, Hui-Ying; Wang, Xiang-Hong; Wang, Nai-Li; Ling, Ming-Tat; Wong, Yong-Chuan; Yao, Xin-Sheng

    2008-08-27

    Accumulating epidemiological data suggest that Asian men have lower incidences of prostate cancer and benign prostate hyperplasia (BPH) compared with American and European populations and may have benefited from their higher intake of phytoestrogens in their diet. However, how these phytochemicals affect prostatic diseases is still unclear. In this study, we isolated six lignans from a plant, Campylotropis hirtella (Franch.) Schindl., which has been used as a folk medicine for treatment of BPH in China, through bioassay guided fractionation. They were dehydrodiconiferyl alcohol (C1), 4-[(-6-hydroxy-2,3-dihydro-1-benzofuran-3-yl)methyl]-5-methoxybenzene-1,3-diol (C2), erythro-guaiacylglycerol-beta-O-4'-coniferyl ether (C3), threo-guaiacylglycerol-beta-O-4'-coniferyl ether (C4), secoisolariciresinol (C5), and prupaside (C6), where C2 was identified as a new lignan analog. Their IC50 values for inhibition of prostate specific antigen (PSA) secretion were 19, 45, 110, 128, 137, and 186 microM, respectively, from C1 to C6 in LNCaP cells. Further study showed that C1-5 down-regulated cellular PSA expression and C1-4 also decreased androgen receptor (AR) expression in LNCaP cells. Furthermore, we investigated the proapoptotic effect of C1 on LNCaP cells. The active forms of caspase 3 associated with the specific proteolysis of poly (ADP-ribose) polymerase (PARP) were detected, and the antiapoptotic protein Bcl-2 was down-regulated after the treatment with C1. These results collectively indicated that these lignans may have chemopreventive or therapeutic actions for prostate cancer through suppressing AR signaling pathway and inducing apoptosis.

  10. Expression of androgen-binding protein (ABP) in human cardiac myocytes.

    Science.gov (United States)

    Schock, H W; Herbert, Z; Sigusch, H; Figulla, H R; Jirikowski, G F; Lotze, U

    2006-04-01

    Cardiomyocytes are known to be androgen targets. Changing systemic steroid levels are thought to be linked to various cardiac ailments, including dilated cardiomyopathy (DCM). The mode of action of gonadal steroid hormones on the human heart is unknown to date. In the present study, we used high-resolution immunocytochemistry on semithin sections (1 microm thick), IN SITU hybridization, and mass spectrometry to investigate the expression of androgen-binding protein (ABP) in human myocardial biopsies taken from male patients with DCM. We observed distinct cytoplasmic ABP immunoreactivity in a fraction of the myocytes. IN SITU hybridization with synthetic oligonucleotide probes revealed specific hybridization signals in these cells. A portion of the ABP-positive cells contained immunostaining for androgen receptor. With SELDI TOF mass spectrometry of affinity purified tissue extracts of human myocardium, we confirmed the presence of a 50 kDa protein similar to ABP. Our observations provide evidence of an intrinsic expression of ABP in human heart. ABP may be secreted from myocytes in a paracrine manner perhaps to influence the bioavailabity of gonadal steroids in myocardium.

  11. The sexually dimorphic adipose fin is an androgen target tissue in the brown trout (Salmo trutta fario).

    Science.gov (United States)

    Hisar, Olcay; Sönmez, Adem Yavuz; Hisar, Şükriye Aras; Budak, Harun; Gültepe, Nejdet

    2013-04-01

    An investigation has been described on the relationship of body length, age and sex with adipose fin length and the number of androgen receptor (AR)-containing cells in the adipose fin as a secondary sexual characteristic for brown trout (Salmo trutta fario). Firstly, body and adipose fin lengths of 2- to 5-year-old brown trout were measured. Thereafter, these fish were killed by decapitation, then their sexes were determined, and adipose fins were excised. The cellular bases of AR binding activities in the adipose fins were analyzed with an antibody against human/rat AR peptide. Immunocytochemistry and western blotting techniques were performed with this antibody. Analysis of morphological measurements indicated that body length and age had a linear relationship with adipose fin length. The coefficients of determination for the body length and age were 0.92 and 0.85 in the male fish and 0.76 and 0.73 in the female fish against the adipose fin length, respectively. At 2 years of age, cells in the adipose fin did not exhibit AR immunoreactivity. However, AR-immunopositive cells were abundant in the adipose fin of 3- to 5-year-old fish. Moreover, the number of AR-immunopositive cells was significantly (P brown trout is a probable target for androgen action and that tissue function or development may to some extent be androgen dependent. In addition, it is likely that such an effect will be mediated by specific androgen receptors.

  12. Opposing effects of estradiol- and testosterone-membrane binding sites on T47D breast cancer cell apoptosis

    International Nuclear Information System (INIS)

    Kampa, Marilena; Nifli, Artemissia-Phoebe; Charalampopoulos, Ioannis; Alexaki, Vassilia-Ismini; Theodoropoulos, Panayiotis A.; Stathopoulos, Efstathios N.; Gravanis, Achille; Castanas, Elias

    2005-01-01

    Classical steroid mode of action involves binding to intracellular receptors, the later acting as ligand-activated nuclear transcription factors. Recently, membrane sites for different steroids have been also identified, mediating rapid, non-genomic, steroid actions. Membrane sites for estrogen and androgen have been found in a number of different cell types, bearing or not classical intracellular receptors. In the present study, with the use of radioligand binding, flow cytometry and confocal laser microscopy, we report that T47D human breast cancer cells express specific and saturable membrane receptors for both estrogen (K D 4.06 ± 3.31 nM) and androgen (K D 7.64 ± 3.15 nM). Upon activation with BSA-conjugated, non-permeable ligands (E 2 -BSA and testosterone-BSA), membrane estrogen receptors protect cells from serum-deprivation-induced apoptosis, while androgen receptors induce apoptosis in serum-supplemented T47D cells. In addition, co-incubation of cells with a fixed concentration of one steroid and varying concentrations of the other reversed the abovementioned effect (apoptosis for androgen, and anti-apoptosis for E 2 ), suggesting that the fate of the cell depends on the relative concentration of either steroid in the culture medium. We also report the identification of membrane receptors for E 2 and androgen in biopsy slides from breast cancer patients. Both sites are expressed, with the staining for membrane E 2 being strongly present in ER-negative, less differentiated, more aggressive tumors. These findings suggest that aromatase inhibitors may exert their beneficial effects on breast cancer by also propagating the metabolism of local steroids towards androgen, inducing thus cell apoptosis through membrane androgen receptor activation

  13. Anabolic Androgenic Steroids and Intracellular Calcium Signaling: A Mini Review on Mechanisms and Physiological Implications

    Science.gov (United States)

    Vicencio, J.M.; Estrada, M.; Galvis, D.; Bravo, R.; Contreras, A.E.; Rotter, D.; Szabadkai, G.; Hill, J.A.; Rothermel, B.A.; Jaimovich, E.; Lavandero, S.

    2015-01-01

    Increasing evidence suggests that nongenomic effects of testosterone and anabolic androgenic steroids (AAS) operate concertedly with genomic effects. Classically, these responses have been viewed as separate and independent processes, primarily because nongenomic responses are faster and appear to be mediated by membrane androgen receptors, whereas long-term genomic effects are mediated through cytosolic androgen receptors regulating transcriptional activity. Numerous studies have demonstrated increases in intracellular Ca2+ in response to AAS. These Ca2+ mediated responses have been seen in a diversity of cell types, including osteoblasts, platelets, skeletal muscle cells, cardiac myocytes and neurons. The versatility of Ca2+ as a second messenger provides these responses with a vast number of pathophysiological implications. In cardiac cells, testosterone elicits voltage-dependent Ca2+ oscillations and IP3R-mediated Ca2+ release from internal stores, leading to activation of MAPK and mTOR signaling that promotes cardiac hypertrophy. In neurons, depending upon concentration, testosterone can provoke either physiological Ca2+ oscillations, essential for synaptic plasticity, or sustained, pathological Ca2+ transients that lead to neuronal apoptosis. We propose therefore, that Ca2+ acts as an important point of crosstalk between nongenomic and genomic AAS signaling, representing a central regulator that bridges these previously thought to be divergent responses. PMID:21443511

  14. [Effects of extract of Buddleja officinalis eye drops on androgen receptors of lacrimal gland cells of castrated rats with dry eye].

    Science.gov (United States)

    Peng, Qing-Hua; Yao, Xiao-Lei; Wu, Quan-Long

    2012-01-01

    To observe the effects of the extract of Buddleja officinalis eye drops (EBOED) on basic tears secretory volume, tear film stability, and expressions of androgen receptors (AR) in castrated rats with dry eye, and to investigate the mechanism of EBOED on dry eye caused by decreased anti-androgen levels. Forty-five male Wistar rats were randomly divided into the blank group, the model group, and the treatment group (treated by EBOED), respectively. Rats in each group were further divided into three sub-groups (fed for one month, two months, and three months, respectively). There were totally nine groups, with five in each. The dry eye model was established with orchiectomy of rats in the model group and the treatment group. EBOED was given to rats in the treatment group for one successive month. Schirmer I test (SIT) and breakup time of tear film (BUT) were determined in all experimental rats. Expressions of AR was analyzed by flow cytometer. Ths SIT value, BUT, and AR positive rate in the model group at the 1st, 2nd, 3rd month were lower than those in the blank group of the same time points (P < 0.01). There was statistical difference in SIT value, BUT, and AR positive rate between the model group and the treatment group at the three time points (P < 0.01). Take the three-month subgroup as an example, the SIT value in the treatment group was (12.667 +/- 5.221) mm, obviously higher than that in the model group (2.676 +/- 1.987) mm. The BUT in the treatment group was (11.758 +/- 4.415) s, obviously longer than that of the model group (4.667 +/- 2.108) s. The AR positive rate in the treatment group was 49.33% +/- 3.44%, obviously higher than that of the model group (33.32% +/- 7.12%, all P < 0.01). The main components of EBOED was the flavonoids which could significantly inhibit the occurrence of dry eye in rats with decreased androgen levels. Its mechanism might possibly be similar to androgen.

  15. ENVIRONMENTAL ANDROGENS AND ANTIANDROGENS: AN EXPANDING CHEMICAL UNIVERSE

    Science.gov (United States)

    Within the last ten years, awareness has grown about environmental chemicals that display antiandrogenic or androgenic activity. While studies in the early 1990s focused on pesticides that acted as androgen receptor (AR) antagonists, it soon became evident that this was not the ...

  16. Development of a New Class of Drugs To Inhibit All Forms of Androgen Receptor in Castration Resistant Prostate Cancers

    Science.gov (United States)

    2016-10-01

    receptor, castration-resistant prostate cancer, DNA binding domain, androgen response element, AR inhibitor, chromatin, x-ray crystallography , pre-clinical...14228 (months 1-30) 3.2. Synthesis of derivatives of our lead compounds (months 6-30). 3.3.Experimental evaluation of the developed synthetic

  17. How nonuniform contact profiles of T cell receptors modulate thymic selection outcomes

    Science.gov (United States)

    Chen, Hanrong; Chakraborty, Arup K.; Kardar, Mehran

    2018-03-01

    T cell receptors (TCRs) bind foreign or self-peptides attached to major histocompatibility complex (MHC) molecules, and the strength of this interaction determines T cell activation. Optimizing the ability of T cells to recognize a diversity of foreign peptides yet be tolerant of self-peptides is crucial for the adaptive immune system to properly function. This is achieved by selection of T cells in the thymus, where immature T cells expressing unique, stochastically generated TCRs interact with a large number of self-peptide-MHC; if a TCR does not bind strongly enough to any self-peptide-MHC, or too strongly with at least one self-peptide-MHC, the T cell dies. Past theoretical work cast thymic selection as an extreme value problem and characterized the statistical enrichment or depletion of amino acids in the postselection TCR repertoire, showing how T cells are selected to be able to specifically recognize peptides derived from diverse pathogens yet have limited self-reactivity. Here, we investigate how the diversity of the postselection TCR repertoire is modified when TCRs make nonuniform contacts with peptide-MHC. Specifically, we were motivated by recent experiments showing that amino acids at certain positions of a TCR sequence have large effects on thymic selection outcomes, and crystal structure data that reveal a nonuniform contact profile between a TCR and its peptide-MHC ligand. Using a representative TCR contact profile as an illustration, we show via simulations that the statistical enrichment or depletion of amino acids now varies by position according to the contact profile, and, importantly, it depends on the implementation of nonuniform contacts during thymic selection. We explain these nontrivial results analytically. Our study has implications for understanding the selection forces that shape the functionality of the postselection TCR repertoire.

  18. Testosterone regulates the autophagic clearance of androgen binding protein in rat Sertoli cells

    Science.gov (United States)

    Ma, Yi; Yang, Hao-Zheng; Xu, Long-Mei; Huang, Yi-Ran; Dai, Hui-Li; Kang, Xiao-Nan

    2015-01-01

    Dysregulation of androgen-binding protein (ABP) is associated with a number of endocrine and andrology diseases. However, the ABP metabolism in Sertoli cells is largely unknown. We report that autophagy degrades ABP in rat Sertoli cells, and the autophagic clearance of ABP is regulated by testosterone, which prolongs the ABP biological half-life by inhibiting autophagy. Further studies identified that the autophagic clearance of ABP might be selectively regulated by testosterone, independent of stress (hypoxia)-induced autophagic degradation. These data demonstrate that testosterone up-regulates ABP expression at least partially by suppressing the autophagic degradation. We report a novel finding with respect to the mechanisms by which ABP is cleared, and by which the process is regulated in Sertoli cells. PMID:25745956

  19. Racial Variations in Prostate Cancer Molecular Subtypes and Androgen Receptor Signaling Reflect Anatomic Tumor Location.

    Science.gov (United States)

    Faisal, Farzana A; Sundi, Debasish; Tosoian, Jeffrey J; Choeurng, Voleak; Alshalalfa, Mohammed; Ross, Ashley E; Klein, Eric; Den, Robert; Dicker, Adam; Erho, Nicholas; Davicioni, Elai; Lotan, Tamara L; Schaeffer, Edward M

    2016-07-01

    Prostate cancer (PCa) subtypes based on ETS gene expression have been described. Recent studies suggest there are racial differences in tumor location, with PCa located anteriorly more often among African-American (AA) compared to Caucasian-American (CA) men. In this retrospective analysis of a multi-institutional cohort treated by radical prostatectomy (179 CA, 121 AA), we evaluated associations among molecular subtype, race, anatomic tumor location, and androgen receptor (AR) signaling. Subtype (m-ERG(+), m-ETS(+), m-SPINK1(+), or triple-negative) was determined using distribution-based outlier analysis. AR signaling was investigated using gene expression profiling of canonical AR targets. m-ERG(+) was more common in CA than AA men (47% vs 22%, pprostate cancer molecular subtypes, and tumor location. Location-specific differences in androgen regulation may further underlie these relationships. Copyright © 2015. Published by Elsevier B.V.

  20. Androgen-deprivation therapy-induced aggressive prostate cancer with neuroendocrine differentiation

    Directory of Open Access Journals (Sweden)

    Julia Lipianskaya

    2014-08-01

    Full Text Available Most prostate cancers (PCas are classified as acinar type (conventional adenocarcinoma which are composed of tumor cells with luminal differentiation including the expression of androgen receptor (AR and prostate-specific antigen (PSA. There are also scattered neuroendocrine (NE cells in every case of adenocarcinoma. The NE cells are quiesecent, do not express AR or PSA, and their function remains unclear. We have demonstrated that IL8-CXCR2-P53 pathway provides a growth-inhibitory signal and keeps the NE cells in benign prostate and adenocarcinoma quiescent. Interestingly, some patients with a history of adenocarcinoma recur with small cell neuroendocrine carcinoma (SCNC after hormonal therapy, and such tumors are composed of pure NE cells that are highly proliferative and aggressive, due to P53 mutation and inactivation of the IL8-CXCR2-P53 pathway. The incidence of SCNC will likely increase due to the widespread use of novel drugs that further inhibit AR function or intratumoral androgen synthesis. A phase II trial has demonstrated that platinum-based chemotherapy may be useful for such therapy-induced tumors.

  1. Adiponectin and its receptors in the ovary: further evidence for a link between obesity and hyperandrogenism in polycystic ovary syndrome.

    Directory of Open Access Journals (Sweden)

    Fabio V Comim

    Full Text Available Polycystic ovary syndrome (PCOS, characterized by ovarian androgen excess, is the commonest endocrine disorder in women. Obesity increases androgen synthesis, a phenomenon attributed to the accompanying hyperinsulinemia. Our hypothesis was that adipokines, fat cell-derived hormones, play a direct role in modulating ovarian androgen secretion. Therefore, the aims of this study were to explore the effects of adipokines (in particular, adiponectin on ovarian steroidogenesis and compare the expression of adiponectin receptors in ovaries from women with and without PCO. Sections of archived human ovaries (nine from women with normal ovaries and 16 with PCOS, classified histologically, with reference to menstrual history and ultrasound were analysed by quantitative morphometry and the proportion of positive-labelling cells compared. In addition, studies of androgen production in relation to adipokine function in primary bovine theca cell culture were also performed. A significantly lower proportion of theca cells expressed adiponectin receptors 1 and 2 (AdipoR1, AdipoR2 in polycystic ovaries than in normal ovaries. In cultured theca cells, adiponectin suppressed androstenedione production and gene expression of LH receptor and key enzymes in the androgen synthesis pathway. Moreover, knockdown of genes for AdipoR1 and AdipoR2 was associated with increased androstenedione secretion by bovine theca cells. These results provide evidence for a direct link between fat cell metabolism and ovarian steroidogenesis, suggesting that disruption of adiponectin and/or its receptors plays a key role in pathogenesis of hyperandrogenism in PCOS.

  2. Adiponectin and Its Receptors in the Ovary: Further Evidence for a Link between Obesity and Hyperandrogenism in Polycystic Ovary Syndrome

    Science.gov (United States)

    Comim, Fabio V.; Hardy, Kate; Franks, Stephen

    2013-01-01

    Polycystic ovary syndrome (PCOS), characterized by ovarian androgen excess, is the commonest endocrine disorder in women. Obesity increases androgen synthesis, a phenomenon attributed to the accompanying hyperinsulinemia. Our hypothesis was that adipokines, fat cell-derived hormones, play a direct role in modulating ovarian androgen secretion. Therefore, the aims of this study were to explore the effects of adipokines (in particular, adiponectin) on ovarian steroidogenesis and compare the expression of adiponectin receptors in ovaries from women with and without PCO. Sections of archived human ovaries (nine from women with normal ovaries and 16 with PCOS, classified histologically, with reference to menstrual history and ultrasound) were analysed by quantitative morphometry and the proportion of positive-labelling cells compared. In addition, studies of androgen production in relation to adipokine function in primary bovine theca cell culture were also performed. A significantly lower proportion of theca cells expressed adiponectin receptors 1 and 2 (AdipoR1, AdipoR2) in polycystic ovaries than in normal ovaries. In cultured theca cells, adiponectin suppressed androstenedione production and gene expression of LH receptor and key enzymes in the androgen synthesis pathway. Moreover, knockdown of genes for AdipoR1 and AdipoR2 was associated with increased androstenedione secretion by bovine theca cells. These results provide evidence for a direct link between fat cell metabolism and ovarian steroidogenesis, suggesting that disruption of adiponectin and/or its receptors plays a key role in pathogenesis of hyperandrogenism in PCOS. PMID:24260388

  3. Patient-derived Hormone-naive Prostate Cancer Xenograft Models Reveal Growth Factor Receptor Bound Protein 10 as an Androgen Receptor-repressed Gene Driving the Development of Castration-resistant Prostate Cancer.

    Science.gov (United States)

    Hao, Jun; Ci, Xinpei; Xue, Hui; Wu, Rebecca; Dong, Xin; Choi, Stephen Yiu Chuen; He, Haiqing; Wang, Yu; Zhang, Fang; Qu, Sifeng; Zhang, Fan; Haegert, Anne M; Gout, Peter W; Zoubeidi, Amina; Collins, Colin; Gleave, Martin E; Lin, Dong; Wang, Yuzhuo

    2018-06-01

    Although androgen deprivation therapy is initially effective in controlling growth of hormone-naive prostate cancers (HNPCs) in patients, currently incurable castration-resistant prostate cancer (CRPC) inevitably develops. To identify CRPC driver genes that may provide new targets to enhance CRPC therapy. Patient-derived xenografts (PDXs) of HNPCs that develop CRPC following host castration were examined for changes in expression of genes at various time points after castration using transcriptome profiling analysis; particular attention was given to pre-CRPC changes in expression indicative of genes acting as potential CRPC drivers. The functionality of a potential CRPC driver was validated via its knockdown in cultured prostate cancer cells; its clinical relevance was established using data from prostate cancer patient databases. Eighty genes were found to be significantly upregulated at the CRPC stage, while seven of them also showed elevated expression prior to CRPC development. Among the latter, growth factor receptor bound protein 10 (GRB10) was the most significantly and consistently upregulated gene. Moreover, elevated GRB10 expression in clinical prostate cancer samples correlated with more aggressive tumor types and poorer patient treatment outcome. GRB10 knockdown markedly reduced prostate cancer cell proliferation and activity of AKT, a well-established CRPC mediator. A positive correlation between AKT activity and GRB10 expression was also found in clinical cohorts. GRB10 acts as a driver of CRPC and sensitizes androgen receptor pathway inhibitors, and hence GRB10 targeting provides a novel therapeutic strategy for the disease. Development of castration-resistant prostate cancer (CRPC) is a major problem in the management of the disease. Using state-of-the-art patient-derived hormone-naive prostate cancer xenograft models, we found and validated the growth factor receptor bound protein 10 gene as a driver of CRPC, indicating that it may be used as a

  4. HOXB13 promotes androgen independent growth of LNCaP prostate cancer cells by the activation of E2F signaling

    Directory of Open Access Journals (Sweden)

    Choi Chan

    2010-05-01

    Full Text Available Abstract Background Androgen signaling plays a critical role in the development of prostate cancer and its progression. However, androgen-independent prostate cancer cells emerge after hormone ablation therapy, resulting in significant clinical problems. We have previously demonstrated that the HOXB13 homeodomain protein functions as a prostate cancer cell growth suppressor by inhibiting androgen-mediated signals. However, the role of the HOXB13 in androgen-independent growth of prostate cancer cells remains unexplained. Results In this report, we first demonstrated that HOXB13 was highly overexpressed in hormone-refractory tumors compared to tumors without prostate-specific antigen after initial treatment. Functionally, in an androgen-free environment minimal induction of HOXB13 in LNCaP prostate cancer cells, to the level of the normal prostate, markedly promoted cell proliferation while suppression inhibited cell proliferation. The HOXB13-mediated cell growth promotion in the absence of androgen, appears to be mainly accomplished through the activation of RB-E2F signaling by inhibiting the expression of the p21waf tumor suppressor. Indeed, forced expression of HOXB13 dramatically decreased expression of p21waf; this inhibition largely affected HOXB13-mediated promotion of E2F signaling. Conclusions Taken together, the results of this study demonstrated the presence of a novel pathway that helps understand androgen-independent survival of prostate cancer cells. These findings suggest that upregulation of HOXB13 is associated with an additive growth advantage of prostate cancer cells in the absence of or low androgen concentrations, by the regulation of p21-mediated E2F signaling.

  5. Temporal and Spatial Dynamics of Androgen Receptor Conformation and Interactions in Prostate Cancer Cells

    National Research Council Canada - National Science Library

    Schaufele, Fred

    2007-01-01

    ... for prostate cancer treatment. Studies supported by this grant indicate that the failure of tumors to respond to anti-androgen therapy corresponded best with an increased nuclear transport of AR...

  6. Androgen-Dependent Regulation of Human MUC1 Mucin Expression

    Directory of Open Access Journals (Sweden)

    Stephen Mitchell

    2002-01-01

    Full Text Available MUC1 mucin is transcriptionally regulated by estrogen, progesterone, and glucocorticoids. Our objective was to determine whether androgen receptor. (20AR activation regulates expression of MUC1. The following breast and prostatic cell lines were phenotyped and grouped according to AR and MUC1protein expression: 1 AR+MUCi + [DAR17+19. (20AR transfectants of DU-145, ZR-75-1, MDA-MB-453, and T47D]; 2 AR-MUCi+ [DZeoi. (20AR- vector control, DU-145, BT20, MDA-MB231, and MCF7]; 3 AIR +MUCi -. (20LNCaP and LNCaP-r. Cell proliferation was determined using the MTT assay in the presence of synthetic androgen R1881, 0.1 pM to 1 µM. Cell surface MUC1expression was determined by flow cytometry in the presence or absence of oestradiol, medroxy progesterone acetate or R1881, with and without 4 hydroxy-flutamide. (204-OH, a nonsteroidal AR antagonist. The functional significance of MUC1expression was investigated with a cell-cell aggregation assay. Only AR+ MUC1 + cell lines showed a significant increase in MUC1expression with AR activation. (20P. (20range =.01 to .0001, reversed in the presence of 4-OHF. Cell proliferation was unaffected. Increased expression of MUC1was associated with a significant. (20P. (20range =.002 to .001 reduction in cell-cell adhesion. To our knowledge, this is the first description of androgen-dependent regulation of MUC1mucin. This is also functionally associated with decreased cell-cell adhesion, a recognised feature of progressive malignancy. These findings have important implications for physiological and pathological processes.

  7. Detection of anabolic steroids in dietary supplements: The added value of an androgen yeast bioassay in parallel with a liquid chromatography-tandem mass spectrometry screening method

    NARCIS (Netherlands)

    Rijk, J.C.W.; Bovee, T.F.H.; Wang, S.; Poucke, C.; Peteghem, van C.; Nielen, M.W.F.

    2009-01-01

    Recently we constructed a recombinant yeast cell that expresses the human androgen receptor (hAR) and yeast enhanced green fluorescent protein (yEGFP), the latter in response to androgens. When exposed to testosterone, the concentration where half-maximal activation is reached (EC50) was 50 nM.

  8. Clinical Relevance of Androgen Receptor Splice Variants in Castration-Resistant Prostate Cancer.

    Science.gov (United States)

    Maughan, Benjamin L; Antonarakis, Emmanuel S

    2015-12-01

    Metastatic castration-resistant prostate cancer (mCRPC) currently benefits from a wealth of treatment options, yet still remains lethal in the vast majority of patients. It is becoming increasingly understood that this disease entity continues to evolve over time, acquiring additional and diverse resistance mechanisms with each subsequent therapy used. This dynamic relationship between treatment pressure and disease resistance can be challenging for the managing clinician. The recent discovery of alternate splice variants of the androgen receptor (AR) is one potential mechanism of escape in mCRPC, and recognizing this resistance mechanism might be important for optimal treatment selection for our patients. AR-V7 appears to be the most relevant AR splice variant, and early clinical data suggest that it is a negative prognostic marker in mCRPC. Emerging evidence also suggests that detection of AR-V7 may be associated with resistance to novel hormonal therapy (abiraterone and enzalutamide) but may be compatible with sensitivity to taxane chemotherapy (docetaxel and cabazitaxel). Adding to this complexity is the observation that AR-V7 is a dynamic marker whose status may change across time and depending on selective pressures induced by different therapies. Finally, it is possible that AR-V7 may represent a therapeutic target in mCRPC if drugs can be designed that degrade or inhibit AR splice variants or block their transcriptional activity. Several such agents (including galeterone, EPI-506, and bromodomain/BET inhibitors) are now in clinical development.

  9. Conflicting selective forces affect T cell receptor contacts in an immunodominant human immunodeficiency virus epitope

    DEFF Research Database (Denmark)

    Iversen, Astrid K N; Stewart-Jones, Guillaume; Learn, Gerald H

    2006-01-01

    two principal, diametrically opposed evolutionary pathways that exclusively affect T cell-receptor contact residues. One pathway was characterized by acquisition of CTL escape mutations and the other by selection for wild-type amino acids. The pattern of CTL responses to epitope variants shaped which...

  10. Role of androgen receptor and associated lysine-demethylase coregulators, LSD1 and JMJD2A, in localized and advanced human bladder cancer.

    Science.gov (United States)

    Kauffman, Eric C; Robinson, Brian D; Downes, Martin J; Powell, Leagh G; Lee, Ming Ming; Scherr, Douglas S; Gudas, Lorraine J; Mongan, Nigel P

    2011-12-01

    Bladder cancer is approximately three times more common in men as compared to women. We and others have previously investigated the contribution of androgens and the androgen receptor (AR) to bladder cancer. JMJD2A and LSD1 are recently discovered AR coregulator proteins that mediate AR-dependent transcription via recently described histone lysine-demethylation (KDM) mechanisms. We used immunohistochemistry to examine JMJD2A, LSD1, and AR expression in 72 radical cystectomy specimens, resulting in evaluation of 129 tissue samples (59 urothelial carcinoma, 70 benign). We tested levels of these proteins for statistical association with clinicopathologic variables and patient survival. Expression of these markers was also assessed in human bladder cancer cell lines. The effects of pharmacological inhibition of LSD1 on the proliferation of these bladder cancer cells was determined. JMJD2A and AR levels were significantly lower in malignant versus benign urothelium, while increased LSD1 levels were observed in malignant urothelium relative to benign. A significant reduction in all three proteins occurred with cancer stage progression, including muscle invasion (JMJD2A/LSD1/AR), extravesical extension (JMJD2A/LSD1), and lymph node metastasis (JMJD2A/AR). Lower JMJD2A intensity correlated with additional poor prognostic features, including lymphovascular invasion, concomitant carcinoma in situ and tobacco usage, and predicted significantly worse overall survival. Pharmacological inhibition of LSD1 suppressed bladder cancer cell proliferation and androgen-induced transcription. Our results support a novel role for the AR-KDM complex in bladder cancer initiation and progression, identify JMJD2A as a promising prognostic biomarker, and demonstrate targeting of the KDM activity as an effective potential approach for bladder cancer growth inhibition. Copyright © 2011 Wiley Periodicals, Inc.

  11. The six most widely used selective serotonin reuptake inhibitors decrease androgens and increase estrogens in the H295R cell line

    DEFF Research Database (Denmark)

    Hansen, Cecilie Hurup; Larsen, Lizette Weber; Sørensen, Amalie Møller

    2017-01-01

    Selective serotonin reuptake inhibitors (SSRIs) used as first line of treatment in major depressive disorder (MDD) are known to exert negative effects on the endocrine system and fertility. The aim of the present study was to investigate the possible endocrine disrupting effect of six SSRIs...... in the pathway. Furthermore, all SSRIs relatively increased the estrogen/androgen ratio, indicating stimulating effects on the aromatase. Our study demonstrates the potential of SSRIs to interfere with steroid production in the H295R cells around Cmax levels and indicates that these drugs should be investigated...... validated LC-MS/MS method. All 6 SSRIs were found to exert endocrine disrupting effects on steroid hormone synthesis at concentrations just around Cmax. Although the mechanisms of disruption were all different, they all resulted in decreased testosterone levels, some due to effects on CYP17, some earlier...

  12. Androgen receptor levels during progression of prostate cancer in the transgenic adenocarcinoma of mouse prostate model

    Directory of Open Access Journals (Sweden)

    Krisna Murti

    2010-02-01

    Full Text Available Aim To construct tissue microarrays (TMAs that consisted of prostate tumours from the transgenic adenocarcinoma of mouse prostate (TRAMP mice and non-transgenic murine prostates and to assess androgen receptor (AR levels during progression of prostate cancer in TRAMP mice by immunohistochemistry.Methods Haematoxylin and eosin (H&E sections from the ventral and dorso-lateral prostate lobes of non-transgenic, intact TRAMP and castrated TRAMP were used to demarcate regions of interest for TMAs construction. The samples on TMAs were used to evaluate AR expression using video image analysis (VIA.Results AR was expressed during cancer progression, but AR levels were reduced or absent in late stage disease. Furthermore, when AR levels were compared in tumours from intact and castrate animals, a significant increase in AR levels was observed following androgen ablation.Conclusion Similar to clinical prostate cancer, in the TRAMP model, prostate tumours evolve mechanisms to maintain AR expression and AR responsive gene pathways following castration to facilitate continued tumour growth. (Med J Indones 2010; 19:5-13Keywords : androgen ablation therapy, tissue microarrays, haematoxylin and eosin, video image analysis

  13. The clinical and molecular spectrum of androgen insensitivity syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Hiort, O.; Sinnecker, G.H.G.; Holterhus, P.M.; Nitsche, E.M.; Kruse, K. [Medical Univ. of Luebeck (Germany)

    1996-05-03

    Androgen insensitivity syndromes (AIS) are due to end-organ resistance to androgenic steroids in males leading to defective virilization of the external genitalia. The phenotype encompasses a wide array of genital ambiguity and may range from completely female to undervirilized but unequivocally male with infertility. This disorder is caused by mutations of the androgen receptor and is an X-linked recessive trait. We have studied 47 patients with AIS and have characterized the underlying molecular abnormality in the androgen receptor gene. Twenty patients had complete AIS and twenty-seven had partial AIS. Of the latter, 11 were of predominantly female phenotypic appearance and gender was assigned accordingly, while 16 were raised as males. Within the group of complete AIS, two patients had gross deletions within the gene, one had a small deletion, and one had an insertion. In the other patients with complete AIS, as well as all individuals with partial AIS, single nucleotide substitutions within the coding region were detected, each leading to an amino acid alteration. Seven codons were involved in more than one mutation in different cases. In addition, in one patient with spinal and bulbar muscular atrophy, an elongation of a glutamine-repeat was characterized. We conclude that mutations in the androgen receptor gene may be present throughout the whole coding region. However, our study provides evidence that several mutational hot spots exist. 18 refs., 2 figs.

  14. Spatial memory performance in androgen insensitive male rats.

    Science.gov (United States)

    Jones, Bryan A; Watson, Neil V

    2005-06-02

    Masculinization of the developing rodent brain critically depends on the process of aromatization of circulating testosterone (T) to its estrogenic metabolite 17beta-estradiol, which subsequently interacts with estrogen receptors to permanently masculinize the brain. However, it remains unclear what role other androgenic mechanisms may play in the process of masculinization. A novel way of examining this is through the study of male rats that express the tfm mutation of the androgen receptor (AR) gene; such males are fully androgen insensitive and manifest a female phenotype due to a failure of AR-mediated masculinization of peripheral structures. Because tfm-affected males develop secretory testes and have near-normal T titers during development, aromatization would be expected to proceed normally, and brain mechanisms may be developmentally masculinized despite the feminized periphery. We compared tfm-affected males (X(tfm)Y) with normal males and females in the Morris Water Maze, a task in which males typically perform better than females. Performance of tfm-affected males was intermediate between that of normal males and females. While an overall male superiority was found in the task, the X(tfm)Y group reached male-typical escape latencies faster than females. Furthermore, in the X(tfm)Y group, the granule cell layer of the dentate gyrus was significantly larger than in females. These results support the suggestion that that AR mediated mechanisms contribute to the masculinization of spatial behaviours and hippocampal morphology, and this may be independent of estrogenic processes.

  15. Androgen Modulates Functions of Endothelial Progenitor Cells through Activated Egr1 Signaling

    Directory of Open Access Journals (Sweden)

    Yizhou Ye

    2016-01-01

    Full Text Available Researches show that androgens have important effects on migration of endothelial cells and endothelial protection in coronary heart disease. Endothelial progenitor cells (EPCs as a progenitor cell type that can differentiate into endothelial cells, have a critical role in angiogenesis and endothelial protection. The relationship between androgen and the functions of EPCs has animated much interest and controversy. In this study, we investigated the angiogenic and migratory functions of EPCs after treatment by dihydrotestosterone (DHT and the molecular mechanisms as well. We found that DHT treatment enhanced the incorporation of EPCs into tubular structures formed by HUVECs and the migratory activity of EPCs in the transwell assay dose dependently. Moreover, microarray analysis was performed to explore how DHT changes the gene expression profiles of EPCs. We found 346 differentially expressed genes in androgen-treated EPCs. Angiogenesis-related genes like Egr-1, Vcan, Efnb2, and Cdk2ap1 were identified to be regulated upon DHT treatment. Furthermore, the enhanced angiogenic and migratory abilities of EPCs after DHT treatment were inhibited by Egr1-siRNA transfection. In conclusion, our findings suggest that DHT markedly enhances the vessel forming ability and migration capacity of EPCs. Egr1 signaling may be a possible pathway in this process.

  16. Androgen Stimulates Growth of Mouse Preantral Follicles In Vitro: Interaction With Follicle-Stimulating Hormone and With Growth Factors of the TGFβ Superfamily.

    Science.gov (United States)

    Laird, Mhairi; Thomson, Kacie; Fenwick, Mark; Mora, Jocelyn; Franks, Stephen; Hardy, Kate

    2017-04-01

    Androgens are essential for the normal function of mature antral follicles but also have a role in the early stages of follicle development. Polycystic ovary syndrome (PCOS), the most common cause of anovulatory infertility, is characterized by androgen excess and aberrant follicle development that includes accelerated early follicle growth. We have examined the effects of testosterone and dihydrotestosterone (DHT) on development of isolated mouse preantral follicles in culture with the specific aim of investigating interaction with follicle-stimulating hormone (FSH), the steroidogenic pathway, and growth factors of the TGFβ superfamily that are known to have a role in early follicle development. Both testosterone and DHT stimulated follicle growth and augmented FSH-induced growth and increased the incidence of antrum formation among the granulosa cell layers of these preantral follicles after 72 hours in culture. Effects of both androgens were reversed by the androgen receptor antagonist flutamide. FSH receptor expression was increased in response to both testosterone and DHT, as was that of Star, whereas Cyp11a1 was down-regulated. The key androgen-induced changes in the TGFβ signaling pathway were down-regulation of Amh, Bmp15, and their receptors. Inhibition of Alk6 (Bmpr1b), a putative partner for Amhr2 and Bmpr2, by dorsomorphin resulted in augmentation of androgen-stimulated growth and modification of androgen-induced gene expression. Our findings point to varied effects of androgen on preantral follicle growth and function, including interaction with FSH-activated growth and steroidogenesis, and, importantly, implicate the intrafollicular TGFβ system as a key mediator of androgen action. These findings provide insight into abnormal early follicle development in PCOS.

  17. Novel Uses for the Anabolic Androgenic Steroids Nandrolone and Oxandrolone in the Management of Male Health.

    Science.gov (United States)

    Wu, Christopher; Kovac, Jason R

    2016-10-01

    There has recently been renewed interest in novel clinical applications of the anabolic-androgenic steroid (AAS) testosterone and its synthetic derivatives, particularly given with the rising popularity of testosterone supplementation therapy (TST) for the treatment of male hypogonadism. In this manuscript, we provide a brief review of the history of AAS and discuss clinical applications of two of the more well-known AAS: nandrolone and oxandrolone. Both agents exhibit favorable myotrophic/androgenic ratios and have been investigated for effectiveness in numerous disease states. We also provide a brief synopsis of selective androgen receptor modulators (SARMs) and postulate how these orally active, non-aromatizing, tissue-selective agents might be used in contemporary andrology. Currently, the applications of testosterone alternatives in hypogonadism are limited. However, it is tempting to speculate that these agents may one day become accepted as alternatives, or adjuncts, to the treatment of male hypogonadism.

  18. Regulation of expression of Na+,K+-ATPase in androgen-dependent and androgen-independent prostate cancer

    NARCIS (Netherlands)

    L.J. Blok (Leen); G.T.G. Chang; M. Steenbeek-Slotboom (M.); W.M. van Weerden (Wytske); H.G. Swarts; J.J.H.H.M. de Pont (J. J H H M); G.J. van Steenbrugge (Gert Jan); A.O. Brinkmann (Albert)

    1999-01-01

    textabstractThe β1-subunit of Na+,K+-ATPase was isolated and identified as an androgen down-regulated gene. Expression was observed at high levels in androgen-independent as compared to androgen-dependent (responsive) human prostate cancer cell lines and xenografts when grown in the presence of

  19. SOCS2 mediates the cross talk between androgen and growth hormone signaling in prostate cancer

    DEFF Research Database (Denmark)

    Iglesias Gato, Diego; Chuan, Yin Choy; Wikström, Pernilla

    2014-01-01

    ) as mediator of the cross talk between androgens and GH signals in the prostate and its potential role as tumor suppressor in prostate cancer (PCa). We observed that SOCS2 protein levels assayed by immunohistochemistry are elevated in hormone therapy-naive localized prostatic adenocarcinoma in comparison...... of transcription 5 protein (STAT5) and androgen receptor-dependent transcription. Consequentially, SOCS2 inhibits GH activation of Janus kinase 2, Src and STAT5 as well as both cell invasion and cell proliferation in vitro. In vivo, SOCS2 limits proliferation and production of IGF-1 in the prostate in response......Anabolic signals such as androgens and the growth hormone/insulin-like growth factor 1 (GH/IGF-1) axis play an essential role in the normal development of the prostate but also in its malignant transformation. In this study, we investigated the role of suppressor of cytokine signaling 2 (SOCS2...

  20. Progesterone receptor expression during prostate cancer progression suggests a role of this receptor in stromal cell differentiation.

    Science.gov (United States)

    Yu, Yue; Yang, Ou; Fazli, Ladan; Rennie, Paul S; Gleave, Martin E; Dong, Xuesen

    2015-07-01

    The progesterone receptor, like the androgen receptor, belongs to the steroid receptor superfamily. Our previous studies have reported that the PR is expressed specifically in prostate stroma. PR inhibits proliferation of, and regulates cytokine secretion by stromal cells. However, PR protein expression in cancer-associated stroma during prostate cancer progression has not been profiled. Since the phenotypes of prostate stromal cells change dynamically as tumors progress, whether the PR plays a role in regulating stromal cell differentiation needs to be investigated. Immunohistochemistry assays measured PR protein levels on human prostate tissue microarrays containing 367 tissue cores from benign prostate, prostate tumors with different Gleason scores, tumors under various durations of castration therapy, and tumors at the castration-resistant stage. Immunoblotting assays determined whether PR regulated the expression of alpha smooth muscle actin (α-SMA), vimentin, and fibroblast specific protein (FSP) in human prostate stromal cells. PR protein levels decreased in cancer-associated stroma when compared with that in benign prostate stroma. This reduction in PR expression was not correlated with Gleason scores. PR protein levels were elevated by castration therapy, but reduced to pre-castration levels when tumors progressed to the castration-resistant stage. Enhanced PR expression in human prostate stromal cells increased α-SMA, but decreased vimentin and FSP protein levels ligand-independently. These results suggest that PR plays an active role in regulating stromal cell phenotypes during prostate cancer progression. © 2015 Wiley Periodicals, Inc.

  1. Effect of long-term treatment with steroid hormones or tamoxifen on the progesterone receptor and androgen receptor in the endometrium of ovariectomized cynomolgus macaques

    Directory of Open Access Journals (Sweden)

    Cline J Mark

    2003-02-01

    Full Text Available Abstract The progesterone receptor (PR and androgen receptor (AR belong to the nuclear receptor superfamily. Two isoforms of PR (A and B have been identified with different functions. The expression of AR, each isoform of PR and their involvement in long-term effects on the endometrium after hormonal replacement therapy (HRT or tamoxifen (TAM treatment is not known. The aims of this study were to determine PR(A+B, PRB and AR distribution by immunohistochemistry in the macaque (Macaca fascicularis endometrium. Ovariectomized (OVX animals were orally treated continuously for 35 months with either conjugated equine estrogens (CEE; medroxyprogesterone acetate (MPA; the combination of CEE/MPA; or TAM. Treatment with CEE/MPA tended to down-regulate PR in the superficial glands, but increased it in the stroma. TAM treatment increased both the PR and PRB levels in the stroma. Overall, less than 20% of the cells were positive for the PRB isoform and less variation was observed after steroid treatment. AR was found in the stroma, mainly distributed in the basal layer of the endometrium in the OVX and steroid treated groups, but was absent in the TAM treated group. No AR was found in the glandular epithelium. The present data show that long-term hormone treatment affects the PR level, and also the ratio between PRA and PRB in the endometrium.

  2. Synergic prodegradative activity of Bicalutamide and trehalose on the mutant androgen receptor responsible for spinal and bulbar muscular atrophy

    NARCIS (Netherlands)

    Giorgetti, Elise; Rusmini, Paola; Crippa, Valeria; Cristofani, Riccardo; Boncoraglio, Alessandra; Cicardi, Maria E.; Galbiati, Mariarita; Poletti, Angelo

    2015-01-01

    Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease due to a CAG triplet-repeat expansion in the androgen receptor (AR) gene, which is translated into an elongated polyglutamine (polyQ) tract in AR protein (ARpolyQ). ARpolyQ toxicity is activated by the AR ligand testosterone

  3. Androgen receptor positive triple negative breast cancer: Clinicopathologic, prognostic, and predictive features.

    Directory of Open Access Journals (Sweden)

    Kristine Astvatsaturyan

    Full Text Available Overexpression of the androgen receptor (AR characterizes a distinct molecular subset of triple negative breast carcinomas (TNBC. The role of AR as a prognostic/predictive biomarker in TNBC is controversial, but increasing evidence suggests that this subset may respond to therapeutic agents targeting AR. Evaluation of AR has not been standardized, and criteria for selection of patients for antiandrogen therapy remain controversial. In this study we determine the appropriate threshold of AR immunoreactivity to define AR positive (AR+ TNBC, describe the clinicopathologic features of AR+ TNBC, and discuss the utility of AR positivity as a prognostic and predictive marker in TNBC.135 invasive TNBC processed in accordance with ASCO/CAP guidelines, were immunostained for AR. Clinicopathologic features of AR+ TNBC were analyzed and compared to AR negative (AR- TNBC. Patients' age, tumor size, tumor grade, lymph node status, proliferation rate, immunopositivity for EGFR, CK5/6, Ki-67, and disease free survival (DFS were evaluated statistically.A 1% cutpoint was confirmed as the appropriate threshold for AR positivity. Using this cutpoint 41% of 135 TNBC were AR+. AR+ TNBC occurred in older women, were larger, had lower mean proliferation rate and increased incidence of axillary metastasis than AR- TNBC. 76% of TNBC with apocrine morphology were AR+. A subset of AR+TNBC expressed basal markers (EGFR and CK5/6. A prognostic model was created.AR identifies a heterogeneous group of TNBC. Additional evaluation of EGFR expression allowed us to stratify TNBCs into 3 risk groups with significant differences in DFS and therapeutic implications: low-risk (AR+ EGFR- which represents the LAR molecular subtype with the best prognosis and may benefit the most from anti-androgen therapies; high-risk (AR- EGFR+ which represents the basal molecular subtype with the worst prognosis and may benefit the most from chemotherapy regimens; intermediate-risk (AR+EGFR+ and AR

  4. A study of the prostate, androgens and sexual activity of male rats

    Directory of Open Access Journals (Sweden)

    Garcia Luis I

    2007-03-01

    Full Text Available Abstract Background The prostate is a sexual gland that produces important substances for the potency of sperm to fertilize eggs within the female reproductive tract, and is under complex endocrine control. Taking advantage of the peculiar behavioral pattern of copulating male rats, we developed experimental paradigms to determine the influence of sexual behavior on the level of serum testosterone, prostate androgen receptors, and mRNA for androgen receptors in male rats displaying up to four consecutive ejaculations. Methods The effect of four consecutive ejaculations was investigated by determining levels of (i testosterone in serum by solid phase RIA, (ii androgen receptors at the ventral prostate with Western Blots, and (iii androgen receptors-mRNA with RT-PCR. Data were analyzed with a one-way ANOVA followed by a post hoc application of Dunnett's test if required. Results The constant execution of sexual behavior did not produce any change in the weight of the ventral prostate. Serum testosterone increased after the second ejaculation, and remained elevated even after four ejaculations. The androgen receptor at the ventral prostate was higher after the first to third ejaculations, but returned suddenly to baseline levels after the fourth ejaculation. The level of mRNA increased after the first ejaculation, continued to increase after the second, and reached the highest peak after the third ejaculation; however, it returned suddenly to baseline levels after the fourth ejaculation. Conclusion Four consecutive ejaculations by sexually experienced male rats had important effects on the physiological responses of the ventral prostate. Fast responses were induced as a result of sexual behavior that involved an increase and decrease in androgen receptors after one and four ejaculations, respectively. However, a progressive response was observed in the elevation of mRNA for androgen receptors, which also showed a fast decrease after four

  5. Muscle Dysfunction in Androgen Deprivation: Role of Ryanodine Receptor

    Science.gov (United States)

    2016-11-01

    reversible pharmacological treatment is a key therapeutic goal in prostate cancer patients. This life prolonging treatment is accompanied by the adverse... reversible pharmacological treatment, is a key therapeutic goal of androgen deprivation therapies (ADT) used in patients with androgen-dependent...gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men. J Clin Endocrinol Metab. Aug 2000;85(8):2839

  6. The therapeutic effects of docosahexaenoic acid on oestrogen/androgen-induced benign prostatic hyperplasia in rats

    International Nuclear Information System (INIS)

    Wang, Chao; Luo, Fei; Zhou, Ying; Du, Xiaoling; Shi, Jiandang; Zhao, Xiaoling; Xu, Yong; Zhu, Yan; Hong, Wei; Zhang, Ju

    2016-01-01

    Benign prostatic hyperplasia (BPH) is one of the major disorders of the urinary system in elderly men. Docosahexaenoic acid (DHA) is the main component of n-3 polyunsaturated fatty acids (n-3 PUFAs) and has nerve protective, anti-inflammatory and tumour-growth inhibitory effects. Here, the therapeutic potential of DHA in treating BPH was investigated. Seal oil effectively prevented the development of prostatic hyperplasia induced by oestradiol/testosterone in a rat model by suppressing the increase of the prostatic index (PI), reducing the thickness of the peri-glandular smooth muscle layer, inhibiting the proliferation of both prostate epithelial and stromal cells, and downregulating the expression of androgen receptor (AR) and oestrogen receptor α (ERα). An in vitro study showed that DHA inhibited the growth of the human prostate stromal cell line WPMY-1 and the epithelial cell line RWPE-1 in a dose- and time-dependent manner. In both cell lines, the DHA arrested the cell cycle in the G2/M phase. In addition, DHA also reduced the expression of ERα and AR in the WPMY-1 and RWPE-1 cells. These results indicate that DHA inhibits the multiplication of prostate stromal and epithelial cells through a mechanism that may involve cell cycle arrest and the downregulation of ERα and AR expression. - Highlights: • Seal oil prevents oestradiol/testosterone (E2/T)-induced BPH in castrated rats. • Seal oil downregulates the expression of oestrogen receptor α(ERα) and androgen receptor (AR) in rat BPH tissues. • DHA inhibits the growth of human prostate stromal and epithelial cells in vitro. • DHA arrests human prostate stromal and epithelial cells in the G2/M phase and downregulates the expression of cyclin B1. • DHA inhibits the expression of ERα and AR in human prostate stromal and epithelial cells.

  7. The therapeutic effects of docosahexaenoic acid on oestrogen/androgen-induced benign prostatic hyperplasia in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071 (China); Luo, Fei [Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211 (China); Zhou, Ying; Du, Xiaoling; Shi, Jiandang; Zhao, Xiaoling [Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071 (China); Xu, Yong [Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211 (China); Zhu, Yan [Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193 (China); Hong, Wei, E-mail: hongwei@tijmu.edu.cn [Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070 (China); Zhang, Ju, E-mail: zhangju@nankai.edu.cn [Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071 (China)

    2016-07-15

    Benign prostatic hyperplasia (BPH) is one of the major disorders of the urinary system in elderly men. Docosahexaenoic acid (DHA) is the main component of n-3 polyunsaturated fatty acids (n-3 PUFAs) and has nerve protective, anti-inflammatory and tumour-growth inhibitory effects. Here, the therapeutic potential of DHA in treating BPH was investigated. Seal oil effectively prevented the development of prostatic hyperplasia induced by oestradiol/testosterone in a rat model by suppressing the increase of the prostatic index (PI), reducing the thickness of the peri-glandular smooth muscle layer, inhibiting the proliferation of both prostate epithelial and stromal cells, and downregulating the expression of androgen receptor (AR) and oestrogen receptor α (ERα). An in vitro study showed that DHA inhibited the growth of the human prostate stromal cell line WPMY-1 and the epithelial cell line RWPE-1 in a dose- and time-dependent manner. In both cell lines, the DHA arrested the cell cycle in the G2/M phase. In addition, DHA also reduced the expression of ERα and AR in the WPMY-1 and RWPE-1 cells. These results indicate that DHA inhibits the multiplication of prostate stromal and epithelial cells through a mechanism that may involve cell cycle arrest and the downregulation of ERα and AR expression. - Highlights: • Seal oil prevents oestradiol/testosterone (E2/T)-induced BPH in castrated rats. • Seal oil downregulates the expression of oestrogen receptor α(ERα) and androgen receptor (AR) in rat BPH tissues. • DHA inhibits the growth of human prostate stromal and epithelial cells in vitro. • DHA arrests human prostate stromal and epithelial cells in the G2/M phase and downregulates the expression of cyclin B1. • DHA inhibits the expression of ERα and AR in human prostate stromal and epithelial cells.

  8. Reduced fetal androgen exposure compromises Leydig cell function in adulthood

    NARCIS (Netherlands)

    Teerds, K.J.; Keijer, J.

    2015-01-01

    Disruption of normal fetal development can influence functioning of organs and cells in adulthood. Circumstantial evidence suggests that subtle reductions in fetal androgen production may be the cause of adult male reproductive disorders due to reduced testosterone production. The mechanisms through

  9. Spatiotemporal dynamics of androgen signaling underlie sexual differentiation and congenital malformations of the urethra and vagina

    Science.gov (United States)

    Larkins, Christine E.; Enriquez, Ana B.; Cohn, Martin J.

    2016-01-01

    Disorders of sex development (DSDs) are congenital anomalies that affect sexual differentiation of genitourinary organs and secondary sex characters. A common cause of female genital virilization is congenital adrenal hyperplasia (CAH), in which excess androgen production during development of 46XX females can result in vaginal atresia, masculinization of the urethra, a single urogenital sinus, and clitoral hypertrophy or ambiguous external genitalia. Development of the vagina depends on sexual differentiation of the urogenital sinus ridge, an epithelial thickening that forms where the sex ducts attach to the anterior urethra. In females, the sinus ridge descends posteriorly to allow the vaginal opening to form in the vulva, whereas in males and in females with CAH, androgens inhibit descent of the sinus ridge. The mechanisms that regulate development of the female urethra and vagina are largely unknown. Here we show that the timing and duration of, and the cell population targeted by, androgen signaling determine the position of vaginal attachment to the urethra. Manipulations of androgen signaling in utero reveal a temporal window of development when sinus ridge fate is determined. Cell type-specific genetic deletions of androgen receptor (Ar) identify a subpopulation of mesenchymal cells that regulate sinus ridge morphogenesis. These results reveal a common mechanism that coordinates development of the vagina and feminization of the urethra, which may account for development of a single urogenital sinus in females exposed to excessive androgen during a critical period of prenatal development. PMID:27821748

  10. Androgen signaling promotes translation of TMEFF2 in prostate cancer cells via phosphorylation of the α subunit of the translation initiation factor 2.

    Directory of Open Access Journals (Sweden)

    Ryan F Overcash

    Full Text Available The type I transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2, is expressed mainly in brain and prostate. Expression of TMEFF2 is deregulated in prostate cancer, suggesting a role in this disease, but the molecular mechanism(s involved in this effect are not clear. Although androgens promote tmeff2 transcription, androgen delivery to castrated animals carrying CWR22 xenografts increases TMEFF2 protein levels in the absence of mRNA changes, suggesting that TMEFF2 may also be post-transcriptionally regulated. Here we show that translation of TMEFF2 is regulated by androgens. Addition of physiological concentrations of dihydrotestosterone (DHT to prostate cancer cell lines increases translation of endogenous TMEFF2 or transfected TMEFF2-Luciferase fusions, and this effect requires the presence of upstream open reading frames (uORFs in the 5'-untranslated region (5'-UTR of TMEFF2. Using chemical and siRNA inhibition of the androgen receptor (AR, we show that the androgen effect on TMEFF2 translation is mediated by the AR. Importantly, DHT also promotes phosphorylation of the α subunit of the translation initiation factor 2 (eIF2α in an AR-dependent manner, paralleling the effect on TMEFF2 translation. Moreover, endoplasmic reticulum (ER stress conditions, which promote eIF2α phosphorylation, also stimulate TMEFF2 translation. These results indicate that androgen signaling promotes eIF2α phosphorylation and subsequent translation of TMEFF2 via a mechanism that requires uORFs in the 5'-UTR of TMEFF2.

  11. Regulation of uterine progesterone receptors by the nonsteroidal anti-androgen hydroxyflutamide

    International Nuclear Information System (INIS)

    Chandrasekhar, Y.; Armstrong, D.T.

    1991-01-01

    The authors have recently reported that the anti-androgen hydroxyflutamide causes delayed implantation and exhibits antideciduogenic activity in the rat. The present experiments were conducted to examine whether hydroxyflutamide binds to the uterine progesterone receptors and/or alters the progesterone binding sites in the uterus. Cytosol and nuclear fractions from decidualized rat uterus were incubated with [3H]-R5020 without or with increasing concentrations of radioinert R5020, RU486, dihydrotestosterone, or hydroxyflutamide. From the log-dose inhibition curves, the relative binding affinity of both hydroxyflutamide and dihydrotestosterone was less than 0.1% and 2%, compared with R5020 (100%) for displacing [3H]-R5020 bound to uterine cytosol and nuclear fractions, respectively. Injection of estradiol-17 beta (1 microgram/rat) to ovariectomized prepubertal rats induced a 1.85-fold increase in uterine weight by 24 h. Hydroxyflutamide at 2.5 or 5.0 mg did not significantly alter the estrogen-induced increase in uterine weight. Compared to vehicle alone, estrogen induced an approximately 5-fold increase in uterine cytosolic progesterone binding sites. Hydroxyflutamide at both 2.5- and 5.0-mg doses significantly attenuated the estrogen-induced elevation in uterine progesterone binding sites. These studies demonstrate that hydroxyflutamide does not bind with high affinity to progesterone receptors, but suppresses the estrogen-induced elevation in progesterone receptor levels in the uterus

  12. Testosterone treatment increases androgen receptor and aromatase gene expression in myotubes from patients with PCOS and controls, but does not induce insulin resistance.

    Science.gov (United States)

    Eriksen, Mette Brandt; Glintborg, Dorte; Nielsen, Michael Friberg Bruun; Jakobsen, Marianne Antonius; Brusgaard, Klaus; Tan, Qihua; Gaster, Michael

    2014-09-05

    Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity is conserved in cultured myotubes (in vitro) from patients with PCOS, but the effect of testosterone on this insulin sensitivity is unknown. We investigated the effect of 7days testosterone treatment (100nmol/l) on glucose transport and gene expression levels of hormone receptors and enzymes involved in the synthesis and conversion of testosterone (HSD17B1, HSD17B2, CYP19A1, SRD5A1-2, AR, ER-α, HSD17B6 and AKR1-3) in myotubes from ten patients with PCOS and ten matched controls. Testosterone treatment significantly increased aromatase and androgen receptor gene expression levels in patients and controls. Glucose transport in myotubes was comparable in patients with PCOS vs. controls and was unchanged by testosterone treatment (p=0.21 PCOS vs. controls). These results suggest that testosterone treatment of myotubes increases the aromatase and androgen receptor gene expression without affecting insulin sensitivity and if testosterone is implicated in muscular insulin resistance in PCOS, this is by and indirect mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Compounds from Cynomorium songaricum with Estrogenic and Androgenic Activities Suppress the Oestrogen/Androgen-Induced BPH Process.

    Science.gov (United States)

    Wang, Xueni; Tao, Rui; Yang, Jing; Miao, Lin; Wang, Yu; Munyangaju, Jose Edouard; Wichai, Nuttapong; Wang, Hong; Zhu, Yan; Liu, Erwei; Chang, Yanxu; Gao, Xiumei

    2017-01-01

    To investigate the phytoestrogenic and phytoandrogenic activities of compounds isolated from CS and uncover the role of CS in prevention of oestrogen/androgen-induced BPH. Cells were treated with CS compounds, and immunofluorescence assay was performed to detect the nuclear translocation of ER α or AR in MCF-7 or LNCaP cells; luciferase reporter assay was performed to detect ERs or AR transcriptional activity in HeLa or AD293 cells; MTT assay was performed to detect the cell proliferation of MCF-7 or LNCaP cells. Oestrogen/androgen-induced BPH model was established in rat and the anti-BPH, anti-estrogenic, and anti-androgenic activities of CS in vivo were further investigated. The nuclear translocation of ER α was stimulated by nine CS compounds, three of which also stimulated AR translocation. The transcriptional activities of ER α and ER β were induced by five compounds, within which only ECG induced AR transcriptional activity as well. Besides, ECG stimulated the proliferation of both MCF-7 cells and LNCaP cells. CS extract suppressed oestrogen/androgen-induced BPH progress in vivo by downregulation of E2 and T level in serum and alteration of the expressions of ER α , ER β , and AR in the prostate. Our data demonstrates that compounds from CS exhibit phytoestrogenic and phytoandrogenic activities, which may contribute to inhibiting the oestrogen/androgen-induced BPH development.

  14. In vivo imaging of brain androgen receptors in rats: a [18F]FDHT PET study

    International Nuclear Information System (INIS)

    Khayum, M.A.; Doorduin, J.; Antunes, I.F.; Kwizera, C.; Zijlma, R.; Boer, J.A. den; Dierckx, R.A.J.O.; Vries, E.F.J. de

    2015-01-01

    Introduction: Steroid hormones like androgens play an important role in the development and maintenance of several brain functions. Androgens can act through androgen receptors (AR) in the brain. This study aims to demonstrate the feasibility of positron emission tomography (PET) with 16β-[ 18 F]fluoro-5α-dihydrotestosterone ([ 18 F]FDHT) to image AR expression in the brain. Methods: Male Wistar rats were either orchiectomized to inhibit endogenous androgen production or underwent sham-surgery. Fifteen days after surgery, rats were subjected to a 90-min dynamic [ 18 F]FDHT PET scan with arterial blood sampling. In a subset of orchiectomized rats, 1 mg/kg dihydrotestosterone was co-injected with the tracer in order to saturate the AR. Plasma samples were analyzed for the presence of radioactive metabolites by radio-TLC. Pharmacokinetic modeling was performed to quantify brain kinetics of the tracer. After the PET scan, the animals were terminated for ex-vivo biodistribution. Results: PET imaging and ex vivo biodistribution studies showed low [ 18 F]FDHT uptake in all brain regions, except pituitary. [ 18 F]FDHT uptake in the surrounding cranial bones was high and increased over time. [ 18 F]FDHT was rapidly metabolized in rats. Metabolism was significantly faster in orchiectomized rats than in sham-orchiectomized rats. Quantitative analysis of PET data indicated substantial spill-over of activity from cranial bones into peripheral brain regions, which prevented further analysis of peripheral brain regions. Logan graphical analysis and kinetic modeling using 1- and 2-tissue compartment models showed reversible and homogenously distributed tracer uptake in central brain regions. [ 18 F]FDHT uptake in the brain could not be blocked by endogenous androgens or administration of dihydrotestosterone. Conclusion: The results of this study indicate that imaging of AR availability in rat brain with [ 18 F]FDHT PET is not feasible. The low AR expression in the brain, the

  15. Androgens and estrogens in skeletal sexual dimorphism

    Science.gov (United States)

    Laurent, Michaël; Antonio, Leen; Sinnesael, Mieke; Dubois, Vanessa; Gielen, Evelien; Classens, Frank; Vanderschueren, Dirk

    2014-01-01

    Bone is an endocrine tissue expressing androgen and estrogen receptors as well as steroid metabolizing enzymes. The bioactivity of circulating sex steroids is modulated by sex hormone-binding globulin and local conversion in bone tissue, for example, from testosterone (T) to estradiol (E2) by aromatase, or to dihydrotestosterone by 5α-reductase enzymes. Our understanding of the structural basis for gender differences in bone strength has advanced considerably over recent years due to increasing use of (high resolution) peripheral computed tomography. These microarchitectural insights form the basis to understand sex steroid influences on male peak bone mass and turnover in cortical vs trabecular bone. Recent studies using Cre/LoxP technology have further refined our mechanistic insights from global knockout mice into the direct contributions of sex steroids and their respective nuclear receptors in osteoblasts, osteoclasts, osteocytes, and other cells to male osteoporosis. At the same time, these studies have reinforced the notion that androgen and estrogen deficiency have both direct and pleiotropic effects via interaction with, for example, insulin-like growth factor 1, inflammation, oxidative stress, central nervous system control of bone metabolism, adaptation to mechanical loading, etc., This review will summarize recent advances on these issues in the field of sex steroid actions in male bone homeostasis. PMID:24385015

  16. Downregulation of androgen receptors by NaAsO2 via inhibition of AKT-NF-κB and HSP90 in castration resistant prostate cancer.

    Science.gov (United States)

    Kim, Yunlim; Park, Sang Eun; Moon, Jeong-Weon; Kim, Bong-Min; Kim, Ha-Gyeong; Jeong, In Gab; Yoo, Sangjun; Ahn, Jae Beom; You, Dalsan; Pak, Jhang Ho; Kim, Sujong; Hwang, Jung Jin; Kim, Choung-Soo

    2017-07-01

    Androgen and androgen receptor (AR) play essential roles in the development and maintenance of prostate cancer. The recently identified AR splice variants (AR-Vs) have been considered as a plausible mechanism for the primary resistance against androgen deprivation therapy (ADT) in castration-resistant prostate cancer (CRPC). Sodium meta-arsenite (NaAsO 2 ; KML001; Kominox), a trivalent arsenical, is an orally bioavailable and water soluble, which is currently in phase I/II clinical trials for the treatment of prostate cancer. It has a potent anti-cancer effect on prostate cancer cells and xenografts. The aim of this study was to examine the effect of NaAsO 2 on AR signaling in LNCaP and 22Rv1 CRPC cells. We used hormone-sensitive LNCaP cells, hormone-insensitive 22Rv1 cells, and CRPC patient-derived primary cells. We analyzed anti-cancer effect of NaAsO 2 using real-time quantitative reverse transcription-PCR, Western blotting, immunofluorescence staining and CellTiter Glo® luminescent assay. Statistical evaluation of the results was performed by one-way ANOVA. NaAsO 2 significantly reduced the translocation of AR and AR-Vs to the nucleus as well as their level in LNCaP and 22Rv1 cells. Besides, the level of the prostate-specific antigen (PSA), downstream target gene of AR, was also decreased. This compound was also an effective modulator of AKT-dependent NF-κB activation which regulates AR. NaAsO 2 significantly inhibited phosphorylation of AKT and expression and nuclear translocation of NF-κB. We then investigated the effect of NaAsO 2 on AR stabilization. NaAsO 2 promoted HSP90 acetylation by down-regulating HDAC6, which reduces the stability of AR in prostate cancer cells. Here, we show that NaAsO 2 disrupts AR signaling at multiple levels by affecting AR expression, stability, and degradation in primary tumor cell cultures from prostate cancer patients as well as CRPC cell lines. These results suggest that NaAsO 2 could be a novel therapeutics for prostate

  17. NMR WaterLOGSY Reveals Weak Binding of Bisphenol A with Amyloid Fibers of a Conserved 11 Residue Peptide from Androgen Receptor.

    Directory of Open Access Journals (Sweden)

    Julia Asencio-Hernández

    Full Text Available There is growing evidence that bisphenol A (BPA, a molecule largely released in the environment, has detrimental effects on ecosystems and on human health. It acts as an endocrine disruptor targeting steroid hormone receptors, such as the estrogen receptor (ER, estrogen-related receptor (ERR and androgen receptor (AR. BPA-derived molecules have recently been shown to interact with the AR N-terminal domain (AR-NTD, which is known to be largely intrinsically disordered. This N-terminal domain contains an 11 residue conserved domain that forms amyloid fibers upon oxidative dimerisation through its strictly conserved Cys240 residue. We investigate here the interaction of BPA, and other potential endocrine disruptors, with AR-NTD amyloid fibers using the WaterLOGSY NMR experiment. We observed a selective binding of these compounds to the amyloid fibers formed by the AR-NTD conserved region and glutamine homopolymers. This observation suggests that the high potency of endocrine disruptors may result, in part, from their ability to bind amyloid forms of nuclear receptors in addition to their cognate binding sites. This property may be exploited to design future therapeutic strategies targeting AR related diseases such as the spinal bulbar muscular atrophy or prostate cancer. The ability of NMR WaterLOGSY experiments to detect weak interactions between small ligands and amyloid fibers may prove to be of particular interest for identifying promising hit molecules.

  18. The role of testosterone in coordinating male life history strategies: The moderating effects of the androgen receptor CAG repeat polymorphism.

    Science.gov (United States)

    Gettler, Lee T; Ryan, Calen P; Eisenberg, Dan T A; Rzhetskaya, Margarita; Hayes, M Geoffrey; Feranil, Alan B; Bechayda, Sonny Agustin; Kuzawa, Christopher W

    2017-01-01

    Partnered fathers often have lower testosterone than single non-parents, which is theorized to relate to elevated testosterone (T) facilitating competitive behaviors and lower T contributing to nurturing. Cultural- and individual-factors moderate the expression of such psychobiological profiles. Less is known about genetic variation's role in individual psychobiological responses to partnering and fathering, particularly as related to T. We examined the exon 1 CAG (polyglutamine) repeat (CAGn) within the androgen receptor (AR) gene. AR CAGn shapes T's effects after it binds to AR by affecting AR transcriptional activity. Thus, this polymorphism is a strong candidate to influence individual-level profiles of "androgenicity." While males with a highly androgenic profile are expected to engage in a more competitive-oriented life history strategy, low androgenic men are at increased risk of depression, which could lead to similar outcomes for certain familial dynamics, such as marriage stability and parenting. Here, in a large longitudinal study of Filipino men (n=683), we found that men who had high androgenicity (elevated T and shorter CAGn) or low androgenicity (lower T and longer CAGn) showed elevated likelihood of relationship instability over the 4.5-year study period and were also more likely be relatively uninvolved with childcare as fathers. We did not find that CAGn moderated men's T responses to the fatherhood transition. In total, our results provide evidence for invested fathering and relationship stability at intermediate levels of androgenicity and help inform our understanding of variation in male reproductive strategies and the individual hormonal and genetic differences that underlie it. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Reversal of androgen inhibition of estrogen-activated sexual behavior by cholinergic agents.

    Science.gov (United States)

    Dohanich, G P; Cada, D A

    1989-12-01

    Androgens have been found to inhibit lordosis activated by estrogen treatment of ovariectomized female rats. In the present experiments, dihydrotestosterone propionate (200 micrograms for 3 days) inhibited the incidence of lordosis in ovariectomized females treated with estradiol benzoate (1 microgram for 3 days). This inhibition of lordosis was reversed 15 min after bilateral intraventricular infusion of physostigmine (10 micrograms/cannula), an acetylcholinesterase inhibitor, or carbachol (0.5 microgram/cannula), a cholinergic receptor agonist. This reversal of inhibition appears to be mediated by cholinergic muscarinic receptors since pretreatment with scopolamine (4 mg/kg, ip), a muscarinic receptor blocker, prevented the reversal of androgen inhibition by physostigmine. These results indicate that androgens may inhibit estrogen-activated lordosis through interference with central cholinergic muscarinic mechanisms.

  20. Regulation of protein kinase C-related kinase (PRK) signalling by the TPα and TPβ isoforms of the human thromboxane A2 receptor: Implications for thromboxane- and androgen- dependent neoplastic and epigenetic responses in prostate cancer.

    Science.gov (United States)

    O'Sullivan, Aine G; Mulvaney, Eamon P; Kinsella, B Therese

    2017-04-01

    The prostanoid thromboxane (TX) A 2 and its T Prostanoid receptor (the TP) are increasingly implicated in prostate cancer (PCa). Mechanistically, we recently discovered that both TPα and TPβ form functional signalling complexes with members of the protein kinase C-related kinase (PRK) family, AGC- kinases essential for the epigenetic regulation of androgen receptor (AR)-dependent transcription and promising therapeutic targets for treatment of castrate-resistant prostate cancer (CRPC). Critically, similar to androgens, activation of the PRKs through the TXA 2 /TP signalling axis induces phosphorylation of histone H3 at Thr11 (H3Thr11), a marker of androgen-induced chromatin remodelling and transcriptional activation, raising the possibility that TXA 2 -TP signalling can mimic and/or enhance AR-induced cellular changes even in the absence of circulating androgens such as in CRPC. Hence the aim of the current study was to investigate whether TXA 2 /TP-induced PRK activation can mimic and/or enhance AR-mediated cellular responses in the model androgen-responsive prostate adenocarcinoma LNCaP cell line. We reveal that TXA 2 /TP signalling can act as a neoplastic- and epigenetic-regulator, promoting and enhancing both AR-associated chromatin remodelling (H3Thr11 phosphorylation, WDR5 recruitment and acetylation of histone H4 at lysine 16) and AR-mediated transcriptional activation (e.g of the KLK3/prostate-specific antigen and TMPRSS2 genes) through mechanisms involving TPα/TPβ mediated-PRK1 and PRK2, but not PRK3, signalling complexes. Overall, these data demonstrate that TPα/TPβ can act as neoplastic and epigenetic regulators by mimicking and/or enhancing the actions of androgens within the prostate and provides further mechanistic insights into the role of the TXA 2 /TP signalling axis in PCa, including potentially in CRPC. Copyright © 2017 Elsevier B.V. All rights reserved.