WorldWideScience

Sample records for cell-restricted insulin receptor

  1. Rat liver insulin receptor

    International Nuclear Information System (INIS)

    Using insulin affinity chromatography, the authors have isolated highly purified insulin receptor from rat liver. When evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions, the rat liver receptor contained the M/sub r/ 125,000 α-subunit, the M/sub r/ 90,000 β-subunit, and varying proportions of the M/sub r/ 45,000 β'-subunit. The specific insulin binding of the purified receptor was 25-30 μg of 125I-insulin/mg of protein, and the receptor underwent insulin-dependent autophosphorylation. Rat liver and human placental receptors differ from each other in several functional aspects: (1) the adsorption-desorption behavior from four insulin affinity columns indicated that the rat liver receptor binds less firmly to immobilized ligands; (2) the 125I-insulin binding affinity of the rat liver receptor is lower than that of the placental receptor; (3) partial reduction of the rat liver receptor with dithiothreitol increases its insulin binding affinity whereas the binding affinity of the placental receptor is unchanged; (4) at optimal insulin concentration, rat liver receptor autophosphorylation is stimulated 25-50-fold whereas the placental receptor is stimulated only 4-6-fold. Conversion of the β-subunit to β' by proteolysis is a major problem that occurs during exposure of the receptor to the pH 5.0 buffer used to elute the insulin affinity column. Proteolytic destruction and the accompanying loss of insulin-dependent autophosphorylation can be substantially reduced by proteolysis inhibitors. In summary, rat liver and human placental receptors differ functionally in both α- and β-subunits. Insulin binding to the α-subunit of the purified rat liver receptor communicates a signal that activates the β-subunit; however, major proteolytic destruction of the β-subunit does not affect insulin binding to the α-subunit

  2. Metformin and insulin receptors

    International Nuclear Information System (INIS)

    The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific 125I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific 125I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitro to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded

  3. Insulin receptor in Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Petruzzelli, L.; Herrera, R.; Rosen, O.

    1986-05-01

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound /sup 125/I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to /sup 125/I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to /sup 125/I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development.

  4. Insulin receptor in Drosophila melanogaster

    International Nuclear Information System (INIS)

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound 125I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to 125I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to 125I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development

  5. Studies on insulin receptor, 2

    International Nuclear Information System (INIS)

    The present study is to investigate an influence of starvation and high fat diet on insulin receptor of the plasma membrane by means of radioreceptor assay using 125I-labelled insulin. Male guinea pigs of Hartley strain were employed for the starvation study, and 125I-insulin binding capacity on the plasma membrane of the liver and kidney was determined at 24, 48 and 72 hours of the fast after the last meal. Male rats of Wistar strain were employed for the high fat study where the diet containing 35% of butter was fed ad libitum for 38 or 68 days. The animals were killed at the fast of 12 hours, and 125I-insulin binding capacity on the plasma membrane of the liver was determined. The results obtained are summarized as follows: 1) An increase in 125I-insulin binding capacity on the plasma membrane of the liver and kidney was observed by the starvation for 24 to 72 hours. 2) The mechanism of the increase by starvation was considered to be different by the organs; it was due to an increase in number of insulin receptor in the liver, and due to an increase in affinity of insulin receptor in the kidney. 3) In non-obese rats fed with high fat diet, the number of insulin receptor on the liver plasma membrane showed a decrease, and this observation clearly indicated that the decrease in number of the receptor did not depend on the obesity. 4) Obese rats also fed with high fat diet presented a decrease in number of insulin receptor without an elevation of insulin levels in the circulating blood. This indicated that at least in the obese rats fed with high fat diet, the decrease in number of the receptor was not due to hyperinsulinemia. (author)

  6. Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro

    OpenAIRE

    RobertRoot-Bernstein

    2014-01-01

    Rationale: Insulin resistance associated with hyperestrogenemias occurs in gestational diabetes mellitus, polycystic ovary syndrome, ovarian hyperstimulation syndrome, estrogen therapies, metabolic syndrome and obesity. The mechanism by which insulin and estrogen interact is unknown. We hypothesize that estrogen binds directly to insulin and the insulin receptor producing insulin resistance. Objectives: To determine the binding constants of steroid hormones to insulin, the insulin recepto...

  7. Insulin glulisine: insulin receptor signaling characteristics in vivo.

    Science.gov (United States)

    Hennige, Anita M; Lehmann, Rainer; Weigert, Cora; Moeschel, Klaus; Schäuble, Myriam; Metzinger, Elisabeth; Lammers, Reiner; Häring, Hans-Ulrich

    2005-02-01

    In recent years, recombinant DNA technology has been used to design insulin molecules that overcome the limitations of regular insulin in mealtime supplementation. However, safety issues have been raised with these alternatives, as the alteration of the three-dimensional structure may alter the interaction with the insulin and/or IGF-I receptors and therefore lead to the activation of alternate metabolic as well as mitogenic signaling pathways. It is therefore essential to carefully study acute and long-term effects in a preclinical state, as insulin therapy is meant to be a lifelong treatment. In this study, we determined in vivo the insulin receptor signaling characteristics activated by insulin glulisine (Lys(B3), Glu(B29)) at the level of insulin receptor phosphorylation, insulin receptor substrate phosphorylation, and downstream signaling elements such as phosphatidylinositol (PI) 3-kinase, AKT, and mitogen-activated protein kinase. C57BL/6 mice were injected with insulin glulisine or regular insulin and Western blot analysis was performed for liver and muscle tissue. The extent and time course of insulin receptor phosphorylation and activation of downstream signaling elements after insulin glulisine treatment was similar to that of human regular insulin in vivo. Moreover, insulin signaling in hypothalamic tissue determined by PI 3-kinase activity was comparable. Therefore, insulin glulisine may be a useful tool for diabetes treatment. PMID:15677493

  8. Agonism and antagonism at the insulin receptor

    DEFF Research Database (Denmark)

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia; Pedersen, Thomas Åskov; Vestergaard, Kirsten; Schäffer, Lauge; Blagoev, Blagoy; Oleksiewicz, Martin B; Kiselyov, Vladislav V; De Meyts, Pierre Marcel Joseph

    2012-01-01

    insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been...

  9. Insulin receptors in the mammary gland

    International Nuclear Information System (INIS)

    Insulin binding studies were conducted using mammary membrane preparations to further the authors understanding of insulin's role in regulating mammary metabolism, particularly ruminant mammary metabolism. Specific objectives were to: (1) characterize insulin binding to bovine mammary microsomes and determine if the specificity and kinetics of binding indicate the presence of insulin receptors in bovine mammary gland; (2) examine and compare insulin binding by liver and mammary microsomes of the pig and dairy cow; (3) examine insulin binding to bovine milk fat globule membranes (MFGM) and evaluate this model's usefulness in assessing insulin receptor regulation in the mammary gland of the cow; (4) examine the effect of dietary fat in insulin binding by rat mammary and liver microsomes. The specificity and kinetics of 125I-insulin binding of bovine mammary microsomes indicated the presence of insulin receptors in bovine mammary gland. Bovine liver and mammary microsomes specifically bound less 125I-insulin than did the corresponding porcine microsomes, and mammary microsomes, regardless of species, specifically bound less 125I-insulin than did liver microsomes. These differences in binding suggest differences in insulin responsiveness between pigs and cattle, as well as between the liver and mammary glands

  10. Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro

    Directory of Open Access Journals (Sweden)

    RobertRoot-Bernstein

    2014-07-01

    Methods: Ultraviolet spectroscopy, capillary electrophoresis and NMR demonstrated estrogen binding to insulin and its receptor. Horse-radish peroxidase-linked insulin was used in an ELISA-like procedure to measure the effect of estradiol on binding of insulin to its receptor. Measurements: Binding constants for estrogens to insulin and the insulin receptor were determined by concentration-dependent spectral shifts. The effect of estradiol on insulin-HRP binding to its receptor was determined by shifts in the insulin binding curve. Main Results: Estradiol bound to insulin with a Kd of 12 x 10-9 M and to the insulin receptor with a Kd of 24 x 10-9 M, while other hormones had significantly less affinity. 200 nM estradiol shifted the binding curve of insulin to its receptor 0.8 log units to the right. Conclusions: Estradiol concentrations in many hyperestrogenemic syndromes are sufficient to interfere with insulin binding to its receptor producing significant insulin resistance.

  11. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Levy, J.R.; Olefsky, J.M.

    1988-05-05

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4/sup 0/C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37/sup 0/C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.

  12. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    International Nuclear Information System (INIS)

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 40C, and internalization of insulin-receptor complexes was initiated by warming the cells to 370C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  13. Monoclonal antibodies to the human insulin receptor that activate glucose transport but not insulin receptor kinase activity.

    OpenAIRE

    Forsayeth, J R; Caro, J F; Sinha, M K; Maddux, B A; Goldfine, I D

    1987-01-01

    Three mouse monoclonal antibodies were produced that reacted with the alpha subunit of the human insulin receptor. All three both immunoprecipitated 125I-labeled insulin receptors from IM-9 lymphocytes and competitively inhibited 125I-labeled insulin binding to its receptor. Unlike insulin, the antibodies failed to stimulate receptor autophosphorylation in both intact IM-9 lymphocytes and purified human placental insulin receptors. Moreover, unlike insulin, the antibodies failed to stimulate ...

  14. Insulin and insulin-like growth factor receptors and responses

    International Nuclear Information System (INIS)

    Insulin is a member of a family of structurally related hormones with diverse physiological functions. In humans, the best-characterized members of this family include insulin, insulin-like growth factor (IGF)-I, and IGF-II. Each of these three polypeptide hormones has its own distinct receptor. The structures of each of these receptors have now been deduced from analyses of isolated cDNA clones. To study further the responses mediated through these three different receptors, the authors have been studying cells expressing the proteins encoded by these three cDNAs. The isolated cDNAs have been transfected into Chinese hamster ovary (CHO) cells, and the resulting transfected cell lines have been characterized as to the ligand-binding activities and signal-transducing activities of the expressed proteins

  15. Monoclonal antibodies to the human insulin receptor that activate glucose transport but not insulin receptor kinase activity

    Energy Technology Data Exchange (ETDEWEB)

    Forsayeth, J.R.; Caro, J.F.; Sinha, M.K.; Maddux, B.A.; Goldfine, I.D.

    1987-05-01

    Three mouse monoclonal antibodies were produced that reacted with the ..cap alpha.. subunit of the human insulin receptor. All three both immunoprecipitated /sup 125/I-labeled insulin receptors from IM-9 lymphocytes and competitively inhibited /sup 125/I-labeled insulin binding to its receptor. Unlike insulin, the antibodies failed to stimulate receptor autophosphorylation in both intact IM-9 lymphocytes and purified human placental insulin receptors. Moreover, unlike insulin, the antibodies failed to stimulate receptor-mediated phosphorylation of exogenous substrates. However, like insulin, two of the three antibodies stimulated glucose transport in isolated human adipocytes. One antibody, on a molar basis, was as potent as insulin. These studies indicate, therefore, that monoclonal antibodies to the insulin receptor can mimic a major function of insulin without activating receptor kinase activity. They also raise the possibility that certain actions of insulin such as stimulation of glucose transport may not require the activation of receptor kinase activity.

  16. Monoclonal antibodies to the human insulin receptor that activate glucose transport but not insulin receptor kinase activity

    International Nuclear Information System (INIS)

    Three mouse monoclonal antibodies were produced that reacted with the α subunit of the human insulin receptor. All three both immunoprecipitated 125I-labeled insulin receptors from IM-9 lymphocytes and competitively inhibited 125I-labeled insulin binding to its receptor. Unlike insulin, the antibodies failed to stimulate receptor autophosphorylation in both intact IM-9 lymphocytes and purified human placental insulin receptors. Moreover, unlike insulin, the antibodies failed to stimulate receptor-mediated phosphorylation of exogenous substrates. However, like insulin, two of the three antibodies stimulated glucose transport in isolated human adipocytes. One antibody, on a molar basis, was as potent as insulin. These studies indicate, therefore, that monoclonal antibodies to the insulin receptor can mimic a major function of insulin without activating receptor kinase activity. They also raise the possibility that certain actions of insulin such as stimulation of glucose transport may not require the activation of receptor kinase activity

  17. Monoclonal antibodies to the human insulin receptor block insulin binding and inhibit insulin action.

    OpenAIRE

    Roth, R A; Cassell, D J; Wong, K. Y.; Maddux, B A; Goldfine, I D

    1982-01-01

    Antibodies to the insulin receptor were prepared in BALB/c mice by immunization with IM-9 human lymphocytes, a cell type that has a large number of plasma membrane insulin receptors. The spleens of these mice were then removed, and their lymphocytes were fused to a mouse myeloma cell line, FO cells. After screening over 1,200 resulting hybrids, one stable hybrid was obtained that produced IgG1 antibodies directed towards the insulin receptor. This antibody blocked 125I-labeled insulin binding...

  18. Morphine Induces Desensitization of Insulin Receptor Signaling

    OpenAIRE

    Li, Yu; Eitan, Shoshana; Wu, Jiong; Evans, Christopher J.; Kieffer, Brigitte; Sun, Xiaojian; Polakiewicz, Roberto D.

    2003-01-01

    Morphine analgesia is mediated principally by the μ-opioid receptor (MOR). Since morphine and other opiates have been shown to influence glucose homeostasis, we investigated the hypothesis of direct cross talk between the MOR and the insulin receptor (IR) signaling cascades. We show that prolonged morphine exposure of cell lines expressing endogenous or transfected MOR, IR, and the insulin substrate 1 (IRS-1) protein specifically desensitizes IR signaling to Akt and ERK cascades. Morphine cau...

  19. Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice

    OpenAIRE

    Wojtaszewski, Jørgen F. P.; Higaki, Yasuki; Hirshman, Michael F.; Michael, M. Dodson; Dufresne, Scott D.; Kahn, C. Ronald; Goodyear, Laurie J.

    1999-01-01

    Physical exercise promotes glucose uptake into skeletal muscle and makes the working muscles more sensitive to insulin. To understand the role of insulin receptor (IR) signaling in these responses, we studied the effects of exercise and insulin on skeletal muscle glucose metabolism and insulin signaling in mice lacking insulin receptors specifically in muscle. Muscle-specific insulin receptor knockout (MIRKO) mice had normal resting 2-deoxy-glucose (2DG) uptake in soleus muscles but had no si...

  20. Binding characteristics of swine erythrocyte insulin receptors

    International Nuclear Information System (INIS)

    Crossbred gilts had 8.8 +/- 1.1% maximum binding of [125I]insulin to insulin receptors on erythrocytes. The number of insulin-binding sites per cell was 137 +/- 19, with a binding affinity ranging from 7.4 X 10(7)M-1 to 11.2 X 10(7)M-1 and mean of 8.8 X 10(7)M-1. Pregnant sows had a significant increase in maximum binding due to an increase in number of receptor sites per cell. Lactating sows fed a high-fiber diet and a low-fiber diet did not develop a significant difference in maximum binding of insulin. Sows fed the low-fiber diet had a significantly higher number of binding sites and a significantly lower binding affinity than did sows fed a high-fiber diet. Receptor-binding affinity was lower in the low-fiber diet group than in cycling gilts, whereas data from sows fed the high-fiber diet did not differ from data for cycling gilts. Data from this study indicated that insulin receptors of swine erythrocytes have binding characteristics similar to those in other species. Pregnancy and diet will alter insulin receptor binding in swine

  1. Central melanocortin receptors regulate insulin action

    OpenAIRE

    Obici, Silvana; Feng, Zhaohui; Tan, Jianzhen; Liu, LiSen; Karkanias, George; Rossetti, Luciano

    2001-01-01

    Energy balance and insulin action are tightly coregulated. Leptin regulates energy intake and expenditure partly by modulation of the melanocortin pathway in the hypothalamus. Here we demonstrate potent effects of the melanocortin pathway on insulin action and body distribution of adiposity. Conscious rats received week-long infusions of either a melanocortin receptor agonist, α-melanocyte-stimulating hormone (α-MSH), or antagonist, SHU9119, in the third cerebral ventricle while food intake w...

  2. Subetta increases phosphorylation of insulin receptor β-subunit alone and in the presence of insulin

    OpenAIRE

    Gorbunov, E A; Nicoll, J; Kachaeva, E. V.; Tarasov, S A; Epstein, O. I.

    2015-01-01

    It has been previously shown that Subetta (a drug containing released-active forms of antibodies to the insulin receptor β-subunit and antibodies to endothelial nitric oxide synthase) stimulated insulin-induced adiponectin production by mature human adipocytes in the absence of insulin. Therefore, it was assumed that Subetta could activate the insulin receptor. To confirm this hypothesis, the capacity of Subetta to activate the insulin receptor in mature human adipocytes in the absence or pre...

  3. Changing the insulin receptor to possess insulin-like growth factor I ligand specificity

    International Nuclear Information System (INIS)

    To examine the role of the N-terminal part of the insulin-like growth factor I (IGF-I) receptor and insulin receptor in determining ligand specificity, the authors prepared an expression vector encoding a hybrid receptor where exon 1 (encoding the signal peptide and seven amino acids of the α-subunit), exon 2, and exon 3 of the insulin receptor were replaced with the corresponding IGF-I receptor cDNA (938 nucleotides). To allow direct quantitative comparison of the binding capabilities of this hybrid receptor with those of the human IGF-I receptor and the insulin receptor, all three receptors were expressed in baby hamster kidney (BHK) cells as soluble molecules and partially purified before characterization. The hybrid IGF-I/insulin receptor bound IGF-I with an affinity comparable to that of the wild-type IGF-I receptor. In contrast, the hybrid receptor no longer displayed high-affinity binding of insulin. These results directly demonstrate that it is possible to change the specificity of the insulin receptor to that of the IGF-I receptor and, furthermore, that the binding specificity for IGF-I is encoded within the nucleotide sequence from 135 to 938 of the IGF-I receptor cDNA. Since the hybrid receptor only bound insulin with low affinity, the insulin binding region is likely to be located within exons 2 and 3 of the insulin receptor

  4. Receptor binding characteristics and cytotoxicity of insulin-methotrexate

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hong Ou; An-Ren Kuang; Zheng-Lu Liang; Xian Peng; Yu-Guo Zhong

    2004-01-01

    AIM: To characterize the receptor binding affinity and cytotoxicity of insulin-methotrexate (MTX) for the potential utilization of insulin as carriers for carcinoma target drugs.METHODS: MTX was covalently linked to insulin. InsulinMTX conjugate was purified by Sephadex G-25 column and analyzed by high performance liquid chromatography.Hepatocellular carcinoma cell membrane fractions were isolated by sucrose density gradient centrifugation.Competitive displacement of 125I-insulin with insulin and insulin-MTX binding to insulin receptors were carried out.Cytoreductive effect of insulin-MTX on human hepatoma BEL7402 cells and human hepatocyte cell line HL7702 was evaluated using the MTT assay.RESULTS: Insulin-MTX competed as effectively as insulin with 125I-insulin for insulin receptors. The values of Kd for insulin-MTX and insulin were 93.82±19.32 nmol/L and 5.01±1.24 nmol/L, respectively. The value of Kd for insulinMTX was significantly increased in comparison with insulin (t=7.2532,n=4, P<0.005). Insulin-MTX inhibited the growth of human hepatoma cells (BEL7402) almost as potently as MTX. The inhibitory effect reached a peak on the 5 th day when the growth of cells was inhibited by 79% at a concentration of 5.0 μg/mL insulin-MTX. Treatment with 5.0 μg/mL of MTX and 5.0 μg/mL of insulin-MTX merely resulted in inhibition of HL7702 cells by 31.5% and 7.8%on the 5 th day.CONCLUSION: Insulin-MTX specifically recognizes insulin receptors and inhibits the growth of BEL7402 cells. These results suggest that insulin can be used as a carrier in receptor mediated carcinoma-targeting therapy.

  5. Phosphorylation of insulin-like growth factor I receptor by insulin receptor tyrosine kinase in intact cultured skeletal muscle cells

    International Nuclear Information System (INIS)

    The interaction between insulin and insulin-like growth factor I (IGF I) receptors was examined by determining the ability of each receptor type to phosphorylate tyrosine residues on the other receptor in intact L6 skeletal muscle cells. This was made possible through a sequential immunoprecipitation method with two different antibodies that effectively separated the phosphorylated insulin and IGF I receptors. After incubation of intact L6 cells with various concentrations of insulin or IGF I in the presence of [32P]-orthophosphate, insulin receptors were precipitated with one of two human polyclonal anti-insulin receptor antibodies (B2 or B9). Phosphorylated IGF I receptors remained in solution and were subsequently precipitated by anti-phosphotyrosine antibodies. The identifies of the insulin and IGF I receptor β-subunits in the two immunoprecipitates were confirmed by binding affinity, by phosphopeptide mapping after trypsin digestion, and by the distinct patterns of expression of the two receptors during differentiation. Stimulated phosphorylation of the β-subunit of the insulin receptor correlated with the occupancy of the β-subunit of the insulin receptor by either insulin or IGF I as determined by affinity cross-linking. Similarly, stimulation of phosphorylation of the β-subunit of the IGF I receptor by IGF I correlated with IGF I receptor occupancy. In contrast, insulin stimulated phosphorylation of the β-subunit of the IGF I receptor at hormone concentrations that were associated with significant occupancy of the insulin receptor but negligible IGF I receptor occupancy. These findings indicate that the IGF I receptor can be a substrate for the hormone-activated insulin receptor tyrosine kinase activity in intact L6 skeletal muscle cells

  6. Phosphorylation of insulin-like growth factor I receptor by insulin receptor tyrosine kinase in intact cultured skeletal muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Beguinot, F.; Smith, R.J.; Kahn, C.R.; Maron, R.; Moses, A.C.; White, M.F.

    1988-05-03

    The interaction between insulin and insulin-like growth factor I (IGF I) receptors was examined by determining the ability of each receptor type to phosphorylate tyrosine residues on the other receptor in intact L6 skeletal muscle cells. This was made possible through a sequential immunoprecipitation method with two different antibodies that effectively separated the phosphorylated insulin and IGF I receptors. After incubation of intact L6 cells with various concentrations of insulin or IGF I in the presence of (/sup 32/P)-orthophosphate, insulin receptors were precipitated with one of two human polyclonal anti-insulin receptor antibodies (B2 or B9). Phosphorylated IGF I receptors remained in solution and were subsequently precipitated by anti-phosphotyrosine antibodies. The identifies of the insulin and IGF I receptor ..beta..-subunits in the two immunoprecipitates were confirmed by binding affinity, by phosphopeptide mapping after trypsin digestion, and by the distinct patterns of expression of the two receptors during differentiation. Stimulated phosphorylation of the ..beta..-subunit of the insulin receptor correlated with the occupancy of the ..beta..-subunit of the insulin receptor by either insulin or IGF I as determined by affinity cross-linking. Similarly, stimulation of phosphorylation of the ..beta..-subunit of the IGF I receptor by IGF I correlated with IGF I receptor occupancy. In contrast, insulin stimulated phosphorylation of the ..beta..-subunit of the IGF I receptor at hormone concentrations that were associated with significant occupancy of the insulin receptor but negligible IGF I receptor occupancy. These findings indicate that the IGF I receptor can be a substrate for the hormone-activated insulin receptor tyrosine kinase activity in intact L6 skeletal muscle cells.

  7. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Almind, K; Bjørbaek, C; Vestergaard, H;

    1993-01-01

    Since relative or absolute insulin deficiency and insulin insensitivity are involved in the aetiology of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether patients with NIDDM exhibit genetic variability in the coding region of insulin receptor substrate-1 (IRS-1), a candidate g...

  8. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Gastroenterology, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072 (China); Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yang, Yong, E-mail: yyang@houstonmethodist.org [Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Medicine, Weill Cornell Medical College, New York, NY 10065 (United States)

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  9. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers

  10. Nature and regulation of the insulin receptor: structure and function

    International Nuclear Information System (INIS)

    Native, cell-surface insulin receptor consists of two glycoprotein subunit types with apparent masses of about 125,000 daltons (alpha subunit) and 90,000 daltons (beta subunit). The alpha and beta insulin-receptor subunits seem to have distinct functions such that alpha appears to bind hormone whereas beta appears to possess intrinsic tyrosine kinase activity. In detergent extracts, insulin activates receptor autophosphorylation of tyrosine residues on its beta subunit, whereas in the presence of reductant, the alpha subunit is also phosphorylated. In intact cells, insulin activates serine/threonine phosphorylation of insulin receptor beta subunit as well as tyrosine phosphorylation. The biological role of the receptor-associated tyrosine kinase is not known. The insulin receptor kinase is regulated by beta-adrenergic agonists and other agents that elevate cAMP in adipocytes, presumably via the cAMP-dependent protein kinase. Such agents decrease receptor affinity for insulin and partially uncouple receptor tyrosine kinase activity from activation by insulin. These effects appear to contribute to the biological antagonism between insulin and beta-agonists. These data suggest the hypothesis that a complex network of tyrosine and serine/threonine phosphorylations on the insulin receptor modulate its binding and kinase activities in an antagonistic manner

  11. Study on insulin erythrocyte receptors in patients with myocadial infarction

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    @@It has been hypothesized that the defects of insulin receptors may play an important role in the insulin resistance of coronary heart disease. As a test of this hypothesis, 20 male patients with myocardial infarction, 20 male patients with type 2 diabetes mellitus and 20 normal subjects as control were investigated.Plasma insulin were determined; at the meantinme, insulin receptors of erythrocyte were indentified by means of 125 I -labeled insulin binding to erythrocytes while the affinity constants (K1 ,K2) and the number of receptors with different affinity and capacity (Q1,Q2) were calculated according to Scatchard's graphic method. The results showed that the number of insulin receptors with low affinity (Q2) on erythrocytes,K1, K, were lower in patients with myocardial infarction than those in controls ; and Q2, K1 in patents with type 2 diabetes mellitus were also lower. So we concluded that the mechanism of insulin resistance in coronary heart disease might be associated with insulin receptor and affinity abnormalities ,differed from that in diabetic state with some degree of post-receptor defects, which suggests that there may be an interrelationship among insulin receptor defects, insulin resistance,hyperinsulinemia in developing coronary heart disease.

  12. Pregnane × Receptor (PXR expression in colorectal cancer cells restricts irinotecan chemosensitivity through enhanced SN-38 glucuronidation

    Directory of Open Access Journals (Sweden)

    Lumbroso Serge

    2010-03-01

    Full Text Available Abstract Background Clinical efficacy of chemotherapy in colorectal cancer is subjected to broad inter-individual variations leading to the inability to predict outcome and toxicity. The topoisomerase I inhibitor irinotecan (CPT-11 is worldwide approved for the treatment of metastatic colorectal cancer and undergoes extensive peripheral and tumoral metabolism. PXR is a xenoreceptor activated by many drugs and environmental compounds regulating the expression of drug metabolism and transport genes in detoxification organs such as liver and gastrointestinal tract. Considering the metabolic pathway of irinotecan and the tissue distribution of Pregnane × Receptor (PXR, we hypothesized that PXR could play a key role in colon cancer cell response to irinotecan. Results PXR mRNA expression was quantified by RT-quantitative PCR in a panel of 14 colon tumor samples and their matched normal tissues. PXR expression was modulated in human colorectal cancer cells LS174T, SW480 and SW620 by transfection and siRNA strategies. Cellular response to irinotecan and its active metabolic SN38 was assessed by cell viability assays, HPLC metabolic profiles and mRNA quantification of PXR target genes. We showed that PXR was strongly expressed in colon tumor samples and displayed a great variability of expression. Expression of hPXR in human colorectal cancer cells led to a marked chemoresistance to the active metabolite SN38 correlated with PXR expression level. Metabolic profiles of SN38 showed a strong enhancement of SN38 glucuronidation to the inactive SN38G metabolite in PXR-expressing cells, correlated with an increase of UDPglucuronosyl transferases UGT1A1, UGT1A9 and UGT1A10 mRNAs. Inhibition of PXR expression by lentivirus-mediated shRNA, led to SN38 chemoresistance reversion concomitantly to a decrease of UGT1A1 expression and SN38 glucuronidation. Similarly, PXR mRNA expression levels correlated to UGT1A subfamily expression in human colon tumor biopsies

  13. Phorbol esters modulate insulin receptor phosphorylation and insulin action in cultured hepatoma cells.

    OpenAIRE

    Takayama, S; White, M F; Lauris, V; Kahn, C R

    1984-01-01

    The effect of the tumor-promoting agent phorbol 12-myristate 13-acetate (PMA) on insulin receptors and insulin action was studied in rat hepatoma cells in culture. PMA (0.1-1.0 micrograms/ml) did not affect insulin binding either acutely or chronically but inhibited insulin stimulation of glycogen synthase and tyrosine aminotransferase. PMA (1 microgram/ml) stimulated the phosphorylation of the beta subunit of insulin receptor purified from [32P]phosphate-labeled Fao cells by 1.3-fold in the ...

  14. Development of real-time reverse transcription polymerase chain reaction assays to quantify insulin-like growth factor receptor and insulin receptor expression in equine tissue

    Directory of Open Access Journals (Sweden)

    Stephen B. Hughes

    2013-03-01

    Full Text Available The insulin-like growth factor system (insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor 1 receptor, insulin-like growth factor 2 receptor and six insulin-like growth factor-binding proteins and insulin are essential to muscle metabolism and most aspects of male and female reproduction. Insulin-like growth factor and insulin play important roles in the regulation of cell growth, differentiation and the maintenance of cell differentiation in mammals. In order to better understand the local factors that regulate equine physiology, such as muscle metabolism and reproduction (e.g., germ cell development and fertilisation, real-time reverse transcription polymerase chain reaction assays for quantification of equine insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were developed. The assays were sensitive: 192 copies/µLand 891 copies/µL for insulin-like growth factor 1 receptor, messenger ribonucleic acid and insulin receptor respectively (95%limit of detection, and efficient: 1.01 for the insulin-like growth factor 1 receptor assay and 0.95 for the insulin receptor assay. The assays had a broad linear range of detection (seven logs for insulin-like growth factor 1 receptor and six logs for insulin receptor. This allowed for analysis of very small amounts of messenger ribonucleic acid. Low concentrations of both insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were detected in endometrium, lung and spleen samples, whilst high concentrations were detected in heart, muscle and kidney samples, this was most likely due to the high level of glucose metabolism and glucose utilisation by these tissues. The assays developed for insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid expression have been shown to work on equine tissue and will contribute to the understanding of insulin and insulin-like growth factor 1

  15. Labile disulfide bonds in human placental insulin receptor.

    OpenAIRE

    Finn, F. M.; Ridge, K D; HOFMANN, K

    1990-01-01

    The disulfide crosslinking pattern of human placental insulin receptor was investigated using selective reduction with tributylphosphine followed by alkylation with N-[3H]ethylmaleimide. Insulin receptor contains a single sulfhydryl group in each beta subunit whose alkylation with N-[3H]ethylmaleimide inhibits receptor autophosphorylation. Alkylation is partially inhibited by ATP or the nonhydrolyzable substrate analog adenosine 5'-[beta,gamma-imido]triphosphate when the nucleotides are added...

  16. Receptor binding of biosynthetic human insulin on isolated pig hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Gammeltoft, S.

    Biosynthetic human insulin (BHI) and pancreatic human insulin were compared with respect to receptor binding in a heterologous assay system: displacement of pork A14-/sup 125/I-monoiodoinsulin from receptors on pig hepatocytes. The concentrations of human insulin giving half-maximal displacement were identical for both preparations, i.e., 0.5 nM. Their relative potency was 1.01 +/- 0.14 (SD, N . 5), suggesting that biosynthetic and pancreatic human insulin exert the same biologic activity.

  17. Receptor binding of biosynthetic human insulin on isolated pig hepatocytes

    International Nuclear Information System (INIS)

    Biosynthetic human insulin (BHI) and pancreatic human insulin were compared with respect to receptor binding in a heterologous assay system: displacement of pork A14-125I-monoiodoinsulin from receptors on pig hepatocytes. The concentrations of human insulin giving half-maximal displacement were identical for both preparations, i.e., 0.5 nM. Their relative potency was 1.01 +/- 0.14 (SD, N . 5), suggesting that biosynthetic and pancreatic human insulin exert the same biologic activity

  18. Antibody against the insulin receptor causes disappearance of insulin receptors in 3T3-L1 cells: a possible explanation of antibody-induced insulin resistance.

    OpenAIRE

    Grunfeld, C.

    1984-01-01

    The effect of a rabbit antibody induced against the rat insulin receptor (RAR) was tested using cultured 3T3-L1 fat cells. As previously seen with antibodies against the insulin receptor from patients with the type B syndrome of insulin resistance and acanthosis nigricans, RAR acutely mimicked the action of insulin by stimulating deoxyglucose uptake. After prolonged exposure of 3T3-L1 cells to RAR, insulinomimetic activity was lost and the cells became resistant to the action of insulin. This...

  19. Phosphorylation of receptors for insulin and insulin-like growth factor I

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, S.; Cuatrecasas, P.

    1986-01-15

    The phosphorylation of receptors for insulin and insulin-like growth factor I was studied by phosphoamino acid analysis and tryptic phosphopeptide maps in an attempt to determine if protein kinase C is involved in their phosphorylation in response to insulin and insulin-like growth factor I, respectively. Two cell lines were utilized, Hep G2 and IM-9 cells. sn-1,2-Dioctanoylglycerol and 12-O-tetradecanoylphorbol 13-acetate (TPA), agents known to activate protein kinase C, stimulated the phosphorylation of the ..beta.. subunits of both receptors, as did their hormones. In unstimulated cells, phosphorylation of the insulin receptor occurred on seryl and to a lesser extent on threonyl residues. TPA stimulated seryl and threonyl phosphorylation that resulted in the appearance of four major phosphoserine-containing phosphopeptides which were not detected in the basal state and an increase in phosphorylation of a phosphothreonine-containing peptide which was present in the basal state. Insulin treatment resulted in the appearance of three major phosphotyrosine-containing tryptic peptides. In IM-9 cells, insulin also increased the phosphoserine and possibly the phosphothreonine content of the ..beta.. subunit. In both cells, the major phosphoserine-containing peptides that were stimulated by TPA were not detected following treatment with insulin. Very similar results, including similar peptide maps, were obtained for the insulin-like growth factor I receptor from cells treated with TPA and insulin-like growth factor I. Although not entirely conclusive, these results suggest that the insulin- and insulin-like growth factor I-stimulated phosphorylation of their receptors does not result from activation of protein kinase C.

  20. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    Science.gov (United States)

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. PMID:25027621

  1. Interrelationships of insulin with receptors in insulin-independent diabetes mellitus

    International Nuclear Information System (INIS)

    Parameters of insulin binding with its specific receptors were determined in small concentrations of peripheral blood mononuclear cells. Examination of 22 patients has shown that the higher the level of insUlinemia and the degree of obesity in the insUlin-independent form of diabetes mellitus, the lower insUlin binding. A decrease in the binding results from the redUction of the nUmber of binding sites and partially from the affinity of type I receptors for insulin. Causes of a decrease in the nUmber of receptors in patients with diabetes mellitus who are not suffering from obesity are discUssed

  2. Development of a Quantitative PCR Assay for Detection of Human Insulin-Like Growth Factor Receptor and Insulin Receptor Isoforms.

    Science.gov (United States)

    Flannery, Clare A; Rowzee, Anne M; Choe, Gina H; Saleh, Farrah L; Radford, Caitlin C; Taylor, Hugh S; Wood, Teresa L

    2016-04-01

    The biological activity of insulin and the insulin-like growth factor (IGF) ligands, IGF-I and IGF-II, is based in part on the relative abundance and distribution of their target receptors: the insulin receptor (IR) splice variants A (IR-A) and B (IR-B) and IGF 1 receptor (IGF-1R). However, the relative quantity of all three receptors in human tissues has never been measured together on the same scale. Due to the high homology between insulin receptor (IR)-A and IR-B proteins and lack of antibodies that discern the two IR splice variants, their mRNA sequence is the most reliable means of distinguishing between the receptors. Hence, highly specific primers for IR-A, IR-B, and IGF-1R mRNA were designed to accurately detect all three receptors by quantitative RT-PCR and enable direct quantification of relative receptor expression levels. A standard concentration curve of cDNA from each receptor was performed. Assay specificity was tested using competition assays and postamplification analysis by gel electrophoresis and cloning. Forward and reverse primer concentrations were optimized to ensure equal efficiencies across primer pairs. This assay enables a specific molecular signature of IGF/insulin signaling receptors to be assayed in different tissues, cell types, or cancers. PMID:26862994

  3. Human Y-79 retinoblastoma cells exhibit specific insulin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Saviolakis, G.A.; Kyritsis, A.P.; Chader, G.J.

    1986-07-01

    The presence of insulin receptors was investigated in human Y-79 retinoblastoma cells grown in suspension culture. The binding of (/sup 125/I) insulin to these cells was time, temperature, and pH dependent, was competed for by insulin and proinsulin but not other peptides, and was inhibited by antibodies against the insulin receptor. The Scatchard plot of insulin competition data was curvilinear and was resolved into a high-affinity (KD approximately 0.5 X 10(-9) M)/low-capacity (approximately 3000 sites/cell) and a low-affinity (KD approximately 1 X 10(-7) M)/high-capacity (approximately 155,000 sites/cell) component. Negative cooperativity was not found, in agreement with other studies in rodent neural cells. However, in contrast to studies with rodent cells, insulin specifically down-regulated its receptor on human Y-79 cells after prolonged exposure. In conclusion, these data show for the first time the presence of specific insulin receptors in human Y-79 retinoblastoma cells. Because these cells were previously shown to have several characteristics typical of neural cells, we propose their use as a model to study the effects of insulin on neural and retinal tissues of human origin.

  4. Treatment of Type B Insulin Resistance: A Novel Approach to Reduce Insulin Receptor Autoantibodies

    OpenAIRE

    "R. Malek; Chong, A. Y.; Lupsa, B. C.; Lungu, A. O.; Cochran, E. K.; Soos, M. A.; Semple, R.K.; Balow, J E; Gorden, P

    2010-01-01

    Background: Type B insulin resistance belongs to a class of diseases caused by an autoantibody to a cell surface receptor. Blockade of insulin action results in hyperglycemia, hypercatabolism, severe acanthosis nigricans, and hyperandrogenism in women. This rare autoimmune disorder has been treated with various forms of immunosuppression with mixed success.

  5. Flexibility in the Insulin Receptor Ectodomain Enables Docking of Insulin in Crystallographic Conformation Observed in a Hormone-Bound Microreceptor

    OpenAIRE

    Harish Vashisth

    2014-01-01

    Insulin binding to the insulin receptor (IR) is the first key step in initiating downstream signaling cascades for glucose homeostasis in higher organisms. The molecular details of insulin recognition by IR are not yet completely understood, but a picture of hormone/receptor interactions at one of the epitopes (Site 1) is beginning to emerge from recent structural evidence. However, insulin-bound structures of truncated IR suggest that crystallographic conformation of insulin cannot be accomm...

  6. Insulin action is blocked by a monoclonal antibody that inhibits insulin receptor kinase

    International Nuclear Information System (INIS)

    Thirty-six monoclonal antibodies to the human insulin receptor were produced. Thirty-four bound the intracellular domain of the receptor β subunit, the domain containing the tyrosine-specific kinase activity. Of these 34 antibodies, 33 recognized the rat receptor and 1 was shown to precipitate the receptors from mice, chickens and frogs with high affinity. Another of the antibodies inhibited the kinase activities of the human and frog receptors with equal potencies. This antibody inhibited the kinase activities of these receptors by more than 90%, whereas others had no effect on either kinase activity. Microinjection of the inhibiting antibody into Xenopus oocytes blocked the ability of insulin to stimulate oocyte maturation. In contrast, this inhibiting antibody did not block the ability of progesterone to stimulate the same response. Furthermore, control immunoglobulin and a noninhibiting antibody to the receptor β subunit did not block this response to insulin. These results strongly support a role for the tyrosine-specific kinase activity of the insulin receptor in mediating this biological effect of insulin

  7. Insulin-Induced Electrophysiology Changes in Human Pleura Are Mediated via Its Receptor

    OpenAIRE

    V. K. Kouritas; Ioannou, M.; Foroulis, C. N.; Desimonas, N.; K. Evaggelopoulos; Gourgoulianis, K. I.; Molyvdas, P A; Hatzoglou, C.

    2010-01-01

    Background. Insulin directly changes the sheep pleural electrophysiology. The aim of this study was to investigate whether insulin induces similar effects in human pleura, to clarify insulin receptor's involvement, and to demonstrate if glibenclamide (hypoglycemic agent) reverses this effect. Methods. Human parietal pleural specimens were mounted in Ussing chambers. Solutions containing insulin or glibenclamide and insulin with anti-insulin antibody, anti-insulin receptor antibody, and gl...

  8. Latent insulin receptors and possible receptor precursors in 3T3-L1 adipocytes.

    OpenAIRE

    Deutsch, P J; Wan, C F; Rosen, O M; Rubin, C S

    1983-01-01

    Cell surface and cryptic insulin receptors were solubilized from the particulate fraction of murine 3T3-L1 adipocytes with buffer containing 1% Triton X-100. Solubilized receptors were affinity crosslinked with 125I-labeled insulin and disuccinimidyl suberate and characterized by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and autoradiography after specific immunoprecipitation. Two insulin-binding polypeptides were identified: the more abundant protein had a Mr of 130,000, corre...

  9. Monoclonal antibodies to the insulin receptor mimic metabolic effects of insulin but do not stimulate receptor autophosphorylation in transfected NIH 3T3 fibroblasts

    International Nuclear Information System (INIS)

    The metabolic actions of insulin and anti-insulin receptor monoclonal antibodies were compared with their effects on insulin receptor phosphorylation in mouse NIH 3T3 fibroblasts transfected with human insulin receptor cDNA. In serum-starved NIH 3T3 HIR3.5 cells, uptake of 2-deoxy-[3H]glucose was stimulated up to 2-fold after 30 min with insulin, with a half-maximal effect at 0.1 nM insulin. Incorporation of [3H]thymidine was stimulated ∼ 12-fold after a 16-hr preincubation with insulin, with a half-maximal effect at 2 nM insulin. Phosphorylation of insulin receptor β-subunit in cells prelabeled with [32P]phosphate was increased 10- to 20-fold within 5 min of adding insulin. Monoclonal antibodies reacting with four different epitopes on the insulin receptor mimicked the effect of insulin on 2-deoxyglucose uptake. These antibodies also stimulated thymidine incorporation, although the maximum stimulation was only ∼ 30% that of insulin. It is concluded that the insulin-like metabolic effects of antibodies involve a mechanism of receptor activation that is independent of autophosphorylation and hence that receptor autophosphorylation is not an essential step in triggering at least some events in the insulin signaling pathway

  10. Elevated insulin receptor content in human breast cancer.

    OpenAIRE

    Papa, V.; Pezzino, V; Costantino, A.; Belfiore, A.; D. Giuffrida; Frittitta, L; Vannelli, G.B.; Brand, R.; Goldfine, I D; Vigneri, R

    1990-01-01

    The growth of breast cancer cells is under the regulation of hormones, growth factors, and their receptors. In the present study, we have employed a new, sensitive, and specific radioimmunoassay for the direct measurement of insulin receptors in surgical specimens of breast cancers. In 159 specimens the insulin receptor content was 6.15 +/- 3.69 ng/0.1 mg protein. This value was more than sixfold higher than the mean value found in both 27 normal breast tissues obtained at total mastectomy (0...

  11. Rapid internalization of the insulin receptor in rat hepatoma cells

    International Nuclear Information System (INIS)

    The authors have studied the internalization of the insulin receptor (IR) in rat hepatoma cells (Fao). The cells were surface-iodinated at 40C, stimulated with insulin at 370C, and then cooled rapidly, trypsinized at 40C and solubilized. The IR was immunoprecipitated with a specific antibody, and internalization of the IR was assessed by the appearance of trypsin-resistant bands on SDS-PAGE. Insulin induced the internalization of surface receptors with a t 1/2 of 9-10 mins; cells not exposed to insulin internalized less than 20% of the IR during 1 h at 370C. Further experiments demonstrated that the accumulation of trypsin-resistant IR paralleled a loss of receptor from the cell surface. Insulin-stimulated cells were chilled and iodinated at 40C, followed by solubilization, immunoprecipitation and SDS-PAGE; alternatively, insulin-stimulated cells were chilled, surface-bound ligand removed by washing the cells at pH 4.2, and specific [125I]insulin binding measured at 40C. Both techniques confirmed the disappearance of IR from the cell surface at rates comparable to the insulin-stimulated internalization described above. The total amount of phosphotyrosine-containing IR, as assessed by immunoprecipitation with an anti-phosphotyrosine antibody, remained constant during this time interval, suggesting that active kinase is translocated into the cell. In summary, the authors data indicate that insulin binding increases the rate of IR internalization of Fao cells. This relocation may facilitate the interaction of the activated tyrosine kinase in the IR with intracellular substrates, thus transmitting the insulin signal to metabolic pathways

  12. The insulin receptor activation process involves localized conformational changes.

    Science.gov (United States)

    Baron, V; Kaliman, P; Gautier, N; Van Obberghen, E

    1992-11-15

    The molecular process by which insulin binding to the receptor alpha-subunit induces activation of the receptor beta-subunit with ensuing substrate phosphorylation remains unclear. In this study, we aimed at approaching this molecular mechanism of signal transduction and at delineating the cytoplasmic domains implied in this process. To do this, we used antipeptide antibodies to the following sequences of the receptor beta-subunit: (i) positions 962-972 in the juxtamembrane domain, (ii) positions 1247-1261 at the end of the kinase domain, and (iii) positions 1294-1317 and (iv) positions 1309-1326, both in the receptor C terminus. We have previously shown that insulin binding to its receptor induces a conformational change in the beta-subunit C terminus. Here, we demonstrate that receptor autophosphorylation induces an additional conformational change. This process appears to be distinct from the one produced by ligand binding and can be detected in at least three different beta-subunit regions: the juxtamembrane domain, the kinase domain, and the C terminus. Hence, the cytoplasmic part of the receptor beta-subunit appears to undergo an extended conformational change upon autophosphorylation. By contrast, the insulin-induced change does not affect the juxtamembrane domain 962-972 nor the kinase domain 1247-1261 and may be limited to the receptor C terminus. Further, we show that the hormone-dependent conformational change is maintained in a kinase-deficient receptor due to a mutation at lysine 1018. Therefore, during receptor activation, the ligand-induced change could precede ATP binding and receptor autophosphorylation. We propose that insulin binding leads to a transient receptor form that may allow ATP binding and, subsequently, autophosphorylation. The second conformational change could unmask substrate-binding sites and stabilize the receptor in an active conformation. PMID:1331080

  13. Photoaffinity labeling of insulin receptors in viable cultured human lymphocytes. Demonstration of receptor shedding and degradation

    International Nuclear Information System (INIS)

    A photosensitive derivative of radiolabeled insulin, SANAH-125I-insulin, was prepared by reacting N-succinimidyl-6-(4'-azido-2'-nitrophenylamino) hexanoate (SANAH) with 125I-insulin. Cultured IM-9 cells were incubated with SANAH-125I-insulin at 16 degrees C in the dark. They were then washed, photolyzed, solubilized, and analyzed by SDS-polyacrylamide gel electrophoresis and autoradiography. Under disulfide reducing conditions, a single specific band of Mr 125,000 was obtained. The characteristics of the labeling of this band with SANAH-125I-insulin (specificity, time course, concentration effect) were the same as that of 125I-insulin interaction with the IM-9 cells and the labeling process did not affect cell viability. The solubilized photolabeled insulin receptor fraction was enriched by first adsorbing to agarose-bound wheat germ agglutinin and the material eluted with N-acetyl-D-glucosamine was then analyzed by SDS-PAGE and autoradiography. Under nonreducing conditions, a major receptor band of Mr 320 K and a minor band of 280 K were obtained. Upon disulfide bond reduction with increasing concentrations of dithiothreitol, a major band of Mr 125 K and two minor bands of Mr 210 K and 94 K were seen. When cells photolabeled at 16 degrees C were further incubated at 37 degrees C, there was a time-dependent loss of intact receptors into the incubation buffer. In contrast, no similar shedding of labeled receptors was observed from isolated rat adipocytes. Following shedding, the labeled IM-9 insulin receptors rapidly disappeared from the incubation buffer (half-time approximately 1.5 h). These results demonstrate the feasibility of photoaffinity labeling, characterizing, and following the fate of insulin receptor in viable cells. Thus receptor photoaffinity labeling should provide a suitable approach for studies of the biologic fate of insulin receptors in cells that are targets for insulin action

  14. Insulin binding changes the interface region between α subunits of the insulin receptor

    International Nuclear Information System (INIS)

    The homobifunctional cross-linking reagent disuccinimidyl suberate (DSS) was used to probe the interface region between the two α subunits of the α2β2 human insulin receptor. The two α subunits formed a covalent dimer when affinity-purified receptor or membrane-bound receptor was reacted with DSS. The α2 species was detected on protein blots from SDS gels using an anti-α-subunit antibody or 125I-concanavalin A. Alternatively, iodinated receptor was reacted with DSS and the α2 species measured directly in an SDS gel. As shown by all three assay systems, more α2 was formed when insulin was bound to receptor than when insulin was absent. These data indicate that the conformational change which occurs in the α subunit response to insulin binding results in a change in the α-α interaction within the receptor complex. The results are consistent with a kinase activation mechanism involving communication between the two αβ receptor halves

  15. Localization and synthesis of an insulin-binding region on human insulin receptor

    International Nuclear Information System (INIS)

    Seven regions of the alpha subunit of human insulin receptor (HIR) were synthesized and examined for their ability to bind radioiodinated insulin. A peptide representing one of these regions (namely, residues alpha 655-670) exhibited a specific binding activity for insulin. In quantitative radiometric titrations, the binding curves of 125I-labeled insulin to adsorbents of peptide alpha 655-670 and of purified placental membrane were similar or superimposable. The binding of radioiodinated insulin to peptide or to membrane adsorbents was completely inhibited by unlabeled insulin, and the inhibition curves indicated that the peptide and the membrane on the adsorbents had similar affinities. Synthetic peptides that were shorter (peptide alpha 661-670) or longer (peptide alpha 651-670) than the region alpha 655-670 exhibited lower insulin-binding activity. It was concluded that an insulin-binding region in the HIR alpha subunit resides within residues alpha 655-670. The results do not rule out the possibility that other regions of the alpha subunit may also participate in binding of HIR to insulin, with the region described here forming a face within a larger binding site

  16. Localization and synthesis of an insulin-binding region on human insulin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, S.; Sakata, S.; Atassi, M.Z. (Baylor College of Medicine, Houston, TX (USA))

    1990-04-01

    Seven regions of the alpha subunit of human insulin receptor (HIR) were synthesized and examined for their ability to bind radioiodinated insulin. A peptide representing one of these regions (namely, residues alpha 655-670) exhibited a specific binding activity for insulin. In quantitative radiometric titrations, the binding curves of {sup 125}I-labeled insulin to adsorbents of peptide alpha 655-670 and of purified placental membrane were similar or superimposable. The binding of radioiodinated insulin to peptide or to membrane adsorbents was completely inhibited by unlabeled insulin, and the inhibition curves indicated that the peptide and the membrane on the adsorbents had similar affinities. Synthetic peptides that were shorter (peptide alpha 661-670) or longer (peptide alpha 651-670) than the region alpha 655-670 exhibited lower insulin-binding activity. It was concluded that an insulin-binding region in the HIR alpha subunit resides within residues alpha 655-670. The results do not rule out the possibility that other regions of the alpha subunit may also participate in binding of HIR to insulin, with the region described here forming a face within a larger binding site.

  17. Binding Mode of Insulin Receptor and Agonist Peptide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Insulin is a protein hormone secreted by pancreatic β cells. One of its main functions is to keep the balance of glucose inside the body by regulating the absorption and metabolism of glucose in the periphery tissue, as well as the production and storage of hepatic glycogen. The insulin receptor is a transmembrane glycoprotein in which two α subunits with a molecular weight of 135 kD and twoβ subunits with a molecular weight of 95 kD are joined by a disulfide bond to form a β-α-α-β structure. The extracellular α subunit, especially, its three domains near the N-terminal are partially responsible for signal transduction or ligand-binding, as indicated by the experiments. The extracellular α subunits are involved in binding the ligands. The experimental results indicate that the three domains of the N-terminal of the α subunits are the main determinative parts of the insulin receptor to bind the insulin or mimetic peptide.We employed the extracellular domain (PDBID: 1IGR) of the insulin-like growth factor-1 receptor (IGF-1 R ) as the template to simulate and optimize the spatial structures of the three domains in the extracellular domain of the insulin receptor, which includes 468 residues. The work was accomplished by making use of the homology program in the Insight Ⅱ package on an Origin3800 server. The docking calculations of the insulin receptor obtained by homology with hexapeptides were carried out by means of the program Affinity. The analysis indicated that there were hydrogen bonding, and electrostatic and hydrophobic effects in the docking complex of the insulin receptor with hexapeptides.Moreover, we described the spatial orientation of a mimetic peptide with agonist activity in the docking complex. We obtained a rough model of binding of DLAPSQ or STIVYS with the insulin receptor, which provides the powerful theoretical support for designing the minimal insulin mimetic peptide with agonist activity, making it possible to develop oral small

  18. Ontogenesis of somatomedin and insulin receptors in the human fetus.

    OpenAIRE

    Sara, V R; Hall, K.; Misaki, M; Fryklund, L.; Christensen, N.; Wetterberg, L

    1983-01-01

    This study examines the ontogenesis of somatomedin and insulin receptors in man. Particulate plasma membranes were prepared by ultracentrifugation from various tissues removed from fetuses after abortion and classified as less than 17, 17-25, and greater than 25 cm in length. The binding of iodinated insulinlike growth factors 1 (IGF-1) and 2 (IGF-2), somatomedin A (SMA), multiplication-stimulating activity (MSA), and insulin was examined at the different ages. In the liver, cross-reaction st...

  19. Combining GLP-1 receptor agonists with insulin

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Vilsbøll, T

    2013-01-01

    , compared with insulin, the antihyperglycaemic efficacy of GLP-1RAs is limited. The combination of a GLP-1RA and insulin might thus be highly effective for optimal glucose control, ameliorating the adverse effects typically associated with insulin. Data from clinical studies support the therapeutic......-dependent manner, thus conferring glycaemic control with a low incidence of hypoglycaemia. GLP-1RAs also promote weight loss, and have beneficial effects on markers of β cell function, lipid levels, blood pressure and cardiovascular risk markers. However, the durability of their effectiveness is unknown and......Due to the increasing prevalence of type 2 diabetes mellitus (T2DM), the emergent trend towards diagnosis in younger patients and the progressive nature of this disease, many more patients than before now require insulin to maintain glycaemic control. However, there is a degree of inertia among...

  20. Interacting with the Human Insulin Receptor

    DEFF Research Database (Denmark)

    Kidmose, Rune Thomas; Andersen, Gregers Rom

    2016-01-01

    Insulin is an essential regulator of glucose homeostasis. In this issue of Structure, Croll et al. (2016) reports a significantly improved model of the Fab-complexed IR ectodomain refined against a dataset extending to 3.3 Å.......Insulin is an essential regulator of glucose homeostasis. In this issue of Structure, Croll et al. (2016) reports a significantly improved model of the Fab-complexed IR ectodomain refined against a dataset extending to 3.3 Å....

  1. Antagonistic effects of a covalently dimerized insulin derivative on insulin receptors in 3T3-L1 adipocytes.

    OpenAIRE

    Weiland, M; Brandenburg, C; Brandenburg, D.; Joost, H. G.

    1990-01-01

    In the present study we describe the antagonistic effects of the covalently dimerized insulin derivative B29,B29'-suberoyl-insulin on insulin receptors in 3T3-L1 mouse cells. In differentiated 3T3-L1 adipocytes, the derivative fully inhibits binding of 125I-labeled insulin to its receptor with about the same affinity as unlabeled insulin. In contrast, the dimerized derivative only partially (approximately 20%) mimics insulin's effects on glucose transport and DNA synthesis in the absence of i...

  2. Insulin Receptor Substrate 2 Is a Negative Regulator of Memory Formation

    Science.gov (United States)

    Irvine, Elaine E.; Drinkwater, Laura; Radwanska, Kasia; Al-Qassab, Hind; Smith, Mark A.; O'Brien, Melissa; Kielar, Catherine; Choudhury, Agharul I.; Krauss, Stefan; Cooper, Jonathan D.; Withers, Dominic J.; Giese, Karl Peter

    2011-01-01

    Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have…

  3. Identification of phageotope of rat liver insulin receptor

    International Nuclear Information System (INIS)

    Introduction: Insulin receptor; a kind of growth factors overexpressed on hepatocellular carcinoma (HCC) cells, mediated HCC cells proliferation. The present study is to looking for' the inhibitors of the insulin receptor to suppress minor growth or to getting potent ligands targeted to HCC via affinity selection of a cyclic phage random peptide library (C7C NEB) displayed on bacteriophage M13. Methods: 17.7u of rat insulin receptor(SIGMA) immobilized on a 60 x 15mm polystyrene plate(Becton Dickinson) by incubating overnight at 4 degree C. After blocking and washing of the receptor coated plates 2 x 1011 virons of C7C phage library were added to the plate and the dish was incubated 40min at room temperature. Washed the dish with TBST and collected the phages attacked to the insulin receptors immobilized on the dish with 0.2M glycine-HCl. Positive phage clones were amplified with 200 μl ER2738 in 20ml LB-Medium in a 250 ml Erlenmeyer flask. The IC 50 ratio of the selected clones compared to the phage library mixture binding to insulin receptors was determined with a set of phages in ELISA assay. DNA sequencing of 10 positive clones were performed after three rounds of biopanning and the amino acid sequences of the fused peptides were deduced. Results: The IC50 of a positive phage clone after three rounds of biopanning was 1.23 x 108 virions, and that of the phage library mixture was 2.16 x 1010 (The ratio of the IC50 is 1: 172.4). Six peptides have a common sequence XXSXGYX via DNA sequencing. Another four peptide sequences are not similar to the motif. Corresponding peptides TK1 was synthesized according to the common sequence and the selected peptide. The TK1 partly inhibited the insulin binding to insulin receptor in three times of detection. Conclusion: A synthesized peptide TK1 with a common sequence XXSXGYX, shows special affinity to insulin receptor, was obtained via affinity selected from the C7C peptide library. It could be a potent suppressing agent and

  4. Insulin receptor substrates 1 and 2 but not Shc can activate the insulin receptor independent of insulin and induce proliferation in CHO-IR cells

    International Nuclear Information System (INIS)

    Ligand-activated insulin receptor (IR) attracts and phosphorylates various substrates such as insulin receptor substrates 1-4 (IRS) and Shc. To investigate how binding affinity for substrate affects signalling we generated chimeric receptors with the β-chain of the insulin receptor containing NPXY motives with different affinities for receptor substrates. We found that the extent of receptor tyrosine phosphorylation positively correlates with binding affinity towards IRS1/2 but not towards Shc. Moreover, overexpression of IRS1 or IRS2 but not of Shc increased IR tyrosine phosphorylation in a dose-dependent manner, also independent of insulin. Molecular truncations of IRS1 revealed that neither the isolated PH and PTB domains nor the C-terminus with the tyrosine phosphorylation sites alone are sufficient for substrate-dependent receptor activation. Overexpression of IRS1 and IRS2 impaired insulin-induced internalization of the IR in a dose-dependent manner suggesting that IRS proteins prevent endosome-associated receptor dephosphorylation/inactivation. IRS1 and IRS2 could therefore target the activated IR to different cellular compartments. Overexpression of IRS1 and IRS2 inhibited insulin-stimulated activation of the MAP kinases Erk1/2 while it increased/induced activation of Akt/PKB. Finally, overexpression of IRS1 and IRS2 but not of Shc induced DNA synthesis in starved CHO-IR cells independent of exogenous growth factors. Our results demonstrate that variations in cellular IRS1 and IRS2 concentration affect insulin signalling both upstream and downstream and that IRS proteins could play instructive rather than just permissive roles in signal transmission

  5. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    International Nuclear Information System (INIS)

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: → Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. → Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. → Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. → Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  6. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Hosomi, Naohisa [Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa (Japan); Lei, Bai; Nakano, Daisuke [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu [Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Ma, Hong [Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Griendling, Kathy K. [Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA (United States); Nishiyama, Akira [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  7. Dithiothreitol activation of the insulin receptor/kinase does not involve subunit dissociation of the native α2β2 insulin receptor subunit complex

    International Nuclear Information System (INIS)

    The subunit composition of the dithiothreitol- (DTT) activated insulin receptor/kinase was examined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and gel filtration chromatography under denaturing or nondenaturing conditions. Pretreatment of 32P-labeled insulin receptors with 50 mM DTT followed by gel filtration chromatography in 0.1% SDS demonstrated the dissociation of the α2β2 insulin receptor complex (M/sub r/ 400,000) into the monomeric 95,000 β subunit. In contrast, pretreatment of the insulin receptors with 1-50 mM DTT followed by gel filtration chromatography in 0.1% Triton X-100 resulted in no apparent alteration in mobility compared to the untreated insulin receptors. Resolution of this complex by nonreducing SDS-polyacrylamide gel electrophoresis and autoradiography demonstrated the existence of the α2β2 heterotetrameric complex with essentially no αβ heterodimeric or free monomeric β subunit species present. This suggests that the insulin receptor can reoxidize into the M/sub r/ 400,000 complex after the removal of DTT by gel filtration chromatography. To prevent reoxidation, the insulin receptors were pretreated with 50 mM DTT. Under the conditions the insulin receptors migrated as the M/sub r/ 400,000 α2β2 complex. These results demonstrate that treatment of the insulin receptors with high concentrations of DTT, followed by removal of DTT by gel filtration, results in reoxidation of the reduced α2β2 insulin receptor complex. Further, these results document that although the DTT stimulation of the insulin receptor/kinase does involve reduction of the insulin receptor subunits, it does not result in dissociation of the native α2β2 insulin receptor subunit complex

  8. Effect of tetrahydrocurcumin on insulin receptor status in type 2 diabetic rats: studies on insulin binding to erythrocytes

    Indian Academy of Sciences (India)

    Pidaran Murugan; Leelavinothan Pari; Chippada Appa Rao

    2008-03-01

    Curcumin is the most active component of turmeric. It is believed that curcumin is a potent antioxidant and anti-inflammatory agent. Tetrahydrocurcumin (THC) is one of the major metabolites of curcumin, and exhibits many of the same physiological and pharmacological activities as curcumin and, in some systems, may exert greater antioxidant activity than curcumin. Using circulating erythrocytes as the cellular mode, the insulin-binding effect of THC and curcumin was investigated. Streptozotocin (STZ)–nicotinamide-induced male Wistar rats were used as the experimental models. THC (80 mg/kg body weight) was administered orally for 45 days. The effect of THC on blood glucose, plasma insulin and insulin binding to its receptor on the cell membrane of erythrocytes were studied. Mean specific binding of insulin was significantly lowered in diabetic rats with a decrease in plasma insulin. This was due to a significant decrease in mean insulin receptors. Erythrocytes from diabetic rats showed a decreased ability for insulin–receptor binding when compared with THC-treated diabetic rats. Scatchard analysis demonstrated that the decrease in insulin binding was accounted for by a decrease in insulin receptor sites per cell, with erythrocytes of diabetic rats having less insulin receptor sites per cell than THC-treated rats. High affinity (Kd1), low affinity (Kd2) and kinetic analyses revealed an increase in the average receptor affinity of erythrocytes from THC-treated rats compared with those of diabetic rats. These results suggest that acute alteration of the insulin receptor on the membranes of erythrocytes occurred in diabetic rats. Treatment with THC significantly improved specific insulin binding to the receptors, with receptor numbers and affinity binding reaching near-normal levels. Our study suggests the mechanism by which THC increases the number of total cellular insulin binding sites resulting in a significant increase in plasma insulin. The effect of THC is

  9. Interacting with the Human Insulin Receptor.

    Science.gov (United States)

    Kidmose, Rune T; Andersen, Gregers R

    2016-03-01

    Insulin is an essential regulator of glucose homeostasis. In this issue of Structure, Croll et al. (2016) reports a significantly improved model of the Fab-complexed IR ectodomain refined against a dataset extending to 3.3 Å. PMID:26933970

  10. Cloning and characterisation of Schistosoma japonicum insulin receptors.

    Directory of Open Access Journals (Sweden)

    Hong You

    Full Text Available BACKGROUND: Schistosomes depend for growth and development on host hormonal signals, which may include the insulin signalling pathway. We cloned and assessed the function of two insulin receptors from Schistosoma japonicum in order to shed light on their role in schistosome biology. METHODOLOGY/PRINCIPAL FINDINGS: We isolated, from S. japonicum, insulin receptors 1 (SjIR-1 and 2 (SjIR-2 sharing close sequence identity to their S. mansoni homologues (SmIR-1 and SmIR-2. SjIR-1 is located on the tegument basal membrane and the internal epithelium of adult worms, whereas SjIR-2 is located in the parenchyma of males and the vitelline tissue of females. Phylogenetic analysis showed that SjIR-2 and SmIR-2 are close to Echinococcus multilocularis insulin receptor (EmIR, suggesting that SjIR-2, SmIR-2 and EmIR share similar roles in growth and development in the three taxa. Structure homology modelling recovered the conserved structure between the SjIRs and Homo sapiens IR (HIR implying a common predicted binding mechanism in the ligand domain and the same downstream signal transduction processing in the tyrosine kinase domain as in HIR. Two-hybrid analysis was used to confirm that the ligand domains of SjIR-1 and SjIR-2 contain the insulin binding site. Incubation of adult worms in vitro, both with a specific insulin receptor inhibitor and anti-SjIRs antibodies, resulted in a significant decrease in worm glucose levels, suggesting again the same function for SjIRs in regulating glucose uptake as described for mammalian cells. CONCLUSIONS: Adult worms of S. japonicum possess insulin receptors that can specifically bind to insulin, indicating that the parasite can utilize host insulin for development and growth by sharing the same pathway as mammalian cells in regulating glucose uptake. A complete understanding of the role of SjIRs in the biology of S. japonicum may result in their use as new targets for drug and vaccine development against

  11. Human insulin prepared by recombinant DNA techniques and native human insulin interact identically with insulin receptors.

    OpenAIRE

    Keefer, L M; Piron, M A; DE MEYTS, P.

    1981-01-01

    Human insulin synthesized from A and B chains separately produced in Escherichia coli from cloned synthetic genes (prepared by the Eli Lilly Research Laboratories, Indianapolis, IN) was characterized by examining its interaction with human cultured lymphocytes, human circulating erythrocytes in vitro, and isolated rat fat cells. The binding behavior of the biosynthetic insulin with human cells was indistinguishable from that of native human or porcine insulins, with respect to affinity, assoc...

  12. Alterations of intermolecular disulfides in the insulin receptor/kinase by insulin and dithiothreitol

    International Nuclear Information System (INIS)

    Dithiothreitol (DTT) was observed to increase the insulin receptor (IR) β subunit autophosphorylation and exogenous substrate phosphorylation in the presence and absence of insulin. The DTT and insulin stimulation of the IR/kinase was found to increase the initial rate of autophosphorylation without any change in the extent of phosphorylation. Similarly, the V/sub max/ of exogenous substrate phosphorylation was observed to increase without any alteration in the apparent Km of substrate binding. In the presence of relatively low concentrations of DTT, insulin was found to potentiate the IR subunit dissociation of the native α2β2 complex into αβ halves, when observed by silver staining of SDS-polyacrylamide gels and autoradiograms of IR first autophosphorylated. [3H]NEM labeling in the absence of DTT pretreatment demonstrated that only the β subunit had accessibly sulfhydryl group(s), and that insulin has no effect on the total amount of [3H]NEM incorporation. In contrast, IR that were pretreated with DTT demonstrated [3H]NEM labeling of both the α and β subunits. Further, incubation of IR with both DTT and insulin was also found to potentiate the IR subunit dissociation without any change in the total amount of [3H]NEM labeling. These results suggest that the insulin activation of the IR/kinase involves an increased sensitivity of the IR to reducing agents without alteration in the total number of accessible sulfhydryl groups

  13. The ligand specificities of the insulin receptor and the insulin-like growth factor I receptor reside in different regions of a common binding site

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, T.; Andersen, A.S.; Wiberg, F.C.; Rasmussen, J.S.; Schaeffer, L.; Balschmidt, P.; Moller, K.B.; Moller, N.P.H. (Novo Nordisk, Bagsvaerd (Denmark))

    1991-05-15

    To identify the region(s) of the insulin receptor and the insulin-like growth factor I (IGF-I) receptor responsible for ligand specificity (high-affinity binding), expression vectors encoding soluble chimeric insulin/IGF-I receptors were prepared. The chimeric receptors were expressed in mammalian cells and partially purified. Binding studies revealed that a construct comprising an IGF-I receptor in which the 68 N-terminal amino acids of the insulin receptor {alpha}-subunit had replaced the equivalent IGF-I receptor segment displayed a markedly increased affinity for insulin. In contrast, the corresponding IGF-I receptor sequence is not critical for high-affinity IGF-I binding. It is shown that part of the cysteine-rich domain determines IGF-I specificity. The authors have previously shown that exchanging exons 1, 2, and 3 of the insulin receptor with the corresponding IGF-I receptor sequence results in loss of high affinity for insulin and gain of high affinity for IGF-I. Consequently, it is suggested that the ligand specificities of the two receptors (i.e., the sequences that discriminate between insulin and IGF-I) reside in different regions of a binding site with common features present in both receptors.

  14. How insulin engages its primary binding site on the insulin receptor

    Czech Academy of Sciences Publication Activity Database

    Menting, J. G.; Whittaker, J.; Margetts, M. B.; Whittaker, L. J.; Kong, G. K. W.; Smith, B. J.; Watson, C. J.; Žáková, Lenka; Kletvíková, Emília; Jiráček, Jiří; Chan, S. J.; Steiner, D. F.; Dodson, G. G.; Brzozowski, A. M.; Weiss, M. A.; Ward, C. W.; Lawrence, M. C.

    2013-01-01

    Roč. 493, č. 7431 (2013), s. 241-245. ISSN 0028-0836 R&D Projects: GA ČR GPP207/11/P430 Institutional support: RVO:61388963 Keywords : insulin * receptor * complex * crystal structure Subject RIV: CE - Biochemistry Impact factor: 42.351, year: 2013

  15. Labile disulfide bonds in human placental insulin receptor

    International Nuclear Information System (INIS)

    The disulfide crosslinking pattern of human placental insulin receptor was investigated using selective reduction with tributylphosphine followed by alkylation with N-[3H]ethylmaleimide. Insulin receptor contains a single sulfhydryl group in each β subunit whose alkylation with N-[3H]ethylmaleimide inhibits receptor autophosphorylation. Alkylation is partially inhibited by ATP or the nonhydrolyzable substrate analog adenosine 5'-[β,γ-imido]triphosphate when the nucleotides are added as MN2+ complexes. Neither insulin nor 6 M guanidinium chloride renders additional sulfhydryl groups accessible to alkylation. When the receptor is reduced under drastic conditions with tributylphosphine in guanidinium chloride, 32 or the 37 sulfhydryl groups in the receptor's α subunit can be alkylated with N-[3H]ethylmaleimide. Surprisingly only three of the 10 cysteines in the β subunit become titratable under identical conditions. By using highly selective reducing conditions, the authors were able to determine quantitatively the maximum number of disulfide bridges that link the two αβ halves to form the tetrameric structures and those that couple the α to the β subunits. Liberation of two sulfhydryl groups in the α and one in the β subunit resulted in formation of αβ dimers. Free β subunit was formed when additional disulfide bond was reduced. Three models of the arrangement of the labile disulfide bonds, consistent with these findings, are proposed

  16. Nature and regulation of the receptors for insulin-like growth factors

    International Nuclear Information System (INIS)

    Two subtypes of IGF receptors have been identified. Type I IGF receptors have a Mr greater than 300,000 and are composed of disulfide-linked 130,000-dalton (alpha) and approximately 90,000-dalton (beta) subunits. Type I receptors preferentially bind IGF-I but also bind IGF-II and, more weakly, insulin. Type II IGF receptors consist of a 250,000-dalton protein that contains internal disulfide bonds but is not linked to other membrane components. Type II receptors bind IGF-II with higher affinity than IGF-I. They do not interact with even very high concentrations of insulin. Type I IGF receptors and insulin receptors are homologous structures. Type II IGF receptors do not appear to be homologous to type I receptors. Type II receptors do not appear to be downregulated. Insulin acutely upregulates type II IGF receptors in intact rat adipose cells by effecting a redistribution of receptors cycling between a large intracellular pool and the plasma membrane. Insulin and the IGFs elicit the same biological responses, either by cross-reacting with one of the receptors for the heterologous ligand or by concurrent activation of convergent effector pathways by binding to the homologous receptor. Which mechanism is utilized appears to depend more on the tissue than on the biological response. Insulin desensitizes rat hepatoma cells to the actions of insulin and IGFs, mediated by both insulin and IGF receptors, by mechanisms distal to hormone binding and possibly common to IGF and insulin effector pathways

  17. Tyrosine-specific protein kinase activity is associated with the purified insulin receptor.

    OpenAIRE

    Kasuga, M.; Fujita-Yamaguchi, Y; Blithe, D L; Kahn, C. R.

    1983-01-01

    Highly purified human placental insulin receptors were obtained by sequential affinity chromatography on wheat germ agglutinin and insulin-agarose. The preparation had an insulin binding capacity of 4,700 pmol/mg of protein approaching theoretical purity. The purified receptor revealed three major bands of Mr 135,000, 95,000, and 52,000 in NaDodSO4/polyacrylamide gel electrophoresis after reduction by dithiothreitol. All three bands were immunoprecipitated by anti-insulin-receptor antibodies....

  18. INSULIN ANALOGUES: ANALYSIS OF PROLIFERATIVE POTENCY AND CHARACTERIZATION OF RECEPTORS AND SIGNALLING PATHWAYS ACTIVATED IN HUMAN MAMMARY EPITHELIAL CELLS

    OpenAIRE

    Shukla, Ashish

    2009-01-01

    Insulin analogues have been developed with the aim to provide better glycaemic control to diabetic patients. They are generated by modifying the insulin backbone which, however, may alter relevant biochemical characteristics such as the affinity to insulin receptor and type I insulin-like growth factor receptor (IGF-IR), and the insulin receptor dissociation rate. As a result insulin analogues may exhibit stronger mitogenic potency than regular insulin. Normal mammary epithelial cells show hi...

  19. Role of insulin receptor phosphorylation in the insulinomimetic effects of hydrogen peroxide

    International Nuclear Information System (INIS)

    The oxidant H2O2 has many insulin-like effects in rat adipocytes. To determine whether these effects could be mediated by the tyrosine kinase activity of the insulin receptor, the ability of H2O2 to stimulate receptor phosphorylation in intact adipocytes and partially purified insulin receptors has been examined. Phosphorylation of the β subunit of the insulin receptor was increased. Stimulation of receptor phosphorylation was rapid, reaching maximal levels within 5 min, and preceded activation of glucose transport. Phosphoamino acid analysis of insulin receptors from H2O2-treated adipocytes showed that 32P incorporation into phosphotyrosine and phosphoserine residues of the β subunit was enhanced. Furthermore, partially purified receptors from H2O2-treated cells exhibit increased tyrosine kinase activity, as measured by phosphorylation of the peptide Glu80Tyr20. To define the factors involved in H2O2's effect, the authors have examined receptor phosphorylation in fat cell homogenates and purified plasma membranes. Although insulin stimulated receptor phosphorylation in both of these systems, H2O2 was only effective in the cell homogenates. These data demonstrate that, under certain conditions, H2O2 stimulates insulin receptor phosphorylation and tyrosine kinase activity, suggesting that the insulin-like effects of H2O2 may be mediated by stimulation of insulin receptor phosphorylation. This does not appear to be a direct effect of H2O2 on the insulin receptor and requires nonplasma membrane cellular constituents

  20. A docking study of insulin with LI-CR-L2 ecto domain of insulin receptor: an easy way for preliminary screening of novel anti-diabetic peptides

    OpenAIRE

    Bhattacharyya, Rajasri; Banerjee, Dibyajyoti

    2012-01-01

    Although interaction of human insulin with its receptor is studied to considerable extent such studies are currently lacking with recombinant insulin in-spite of its rampant clinical use. It is known that at molecular level the interaction of recombinant insulin with insulin receptor is similar to human insulin but not exactly same. With the increasing incidence of diabetes throughout the globe use of recombinant insulin is also increasing at a considerable rate. Therefore it is need of the h...

  1. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    Science.gov (United States)

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-01

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. PMID:27246738

  2. Potentiation of insulin-mediated glucose lowering without elevated hypoglycemia risk by a small molecule insulin receptor modulator.

    Directory of Open Access Journals (Sweden)

    Margaret Wu

    Full Text Available Insulin resistance is the key feature of type 2 diabetes and is manifested as attenuated insulin receptor (IR signaling in response to same levels of insulin binding. Several small molecule IR activators have been identified and reported to exhibit insulin sensitization properties. One of these molecules, TLK19781 (Cmpd1, was investigated to examine its IR sensitizing action in vivo. Our data demonstrate that Cmpd1, at doses that produced minimal efficacy in the absence of insulin, potentiated insulin action during an OGTT in non-diabetic mice and enhanced insulin-mediated glucose lowering in diabetic mice. Interestingly, different from insulin alone, Cmpd1 combined with insulin showed enhanced efficacy and duration of action without increased hypoglycemia. To explore the mechanism underlying the apparent glucose dependent efficacy, tissue insulin signaling was compared in healthy and diabetic mice. Cmpd1 enhanced insulin's effects on IR phosphorylation in both healthy and diabetic mice. In contrast, the compound potentiated insulin's effects on Akt phosphorylation in diabetic but not in non-diabetic mice. These differential effects on signaling corresponding to glucose levels could be part of the mechanism for reduced hypoglycemia risk. The in vivo efficacy of Cmpd1 is specific and dependent on IR expression. Results from these studies support the idea of targeting IR for insulin sensitization, which carries low hypoglycemia risk by standalone treatment and could improve the effectiveness of insulin therapies.

  3. Characterization of an endogenous substrate of the insulin receptor in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    White, M.F.; Stegmann, E.W.; Dull, T.J.; Ullrich, A.; Kahn, C.R.

    1987-07-15

    Using antiphosphotyrosine antibodies, we have characterized the tyrosine phosphorylation of an endogenous substrate of the insulin receptor in Fao hepatoma cells and in Chinese hamster ovary cells transfected with a eukaryotic expression vector containing the human insulin receptor cDNA. In Fao cells, besides the beta-subunit of the insulin receptor, a protein with a molecular mass between 170 and 210 kDa designated pp185, undergoes tyrosine phosphorylation immediately after insulin stimulation reaching a maximum level within 30 s. After 4 h of continuous insulin stimulation, the labeling of pp185 decreased to less than half of its original intensity, whereas the insulin receptor was unchanged. After 24 h of insulin stimulation, the phosphotyrosine-containing insulin receptor decreased by 75% owing to down-regulation, whereas the pp185 was completely undetectable. By several biochemical and physiological criteria, the pp185 is distinct from the insulin receptor. The pp185 and the beta-subunit of the insulin receptor were strongly labeled with (/sup 32/P)orthophosphate, but in contrast to the insulin receptor, the pp185 was not labeled by cross-linking with /sup 125/I-insulin or surface 125I iodination. Unlike the insulin receptor, the pp185 was extracted from Fao cells without detergent, and tryptic phosphopeptide mapping of the pp185 and the insulin receptor yielded distinct patterns. Thus, the pp185 is not located at the external face of the plasma membrane and does not bind insulin. Treatment of Fao cells with the phorbol ester, phorbol 12-myristate 13-acetate, stimulated the phosphorylation of two proteins with molecular weights of 170 and 210 kDa which were immunoprecipitated with the anti-phosphotyrosine antibody. Subsequent insulin stimulation increased the phosphorylation of the 210 kDa protein, but the pp185 was not detected.

  4. Replacement of lysine residue 1030 in the putative ATP-binding region of the insulin receptor abolishes insulin- and antibody-stimulated glucose uptake and receptor kinase activity

    International Nuclear Information System (INIS)

    To test whether the tyrosine kinase activity of the insulin receptor is crucial for insulin action, the authors have constructed mutations of the human insulin receptor at Lys-1030, which is in the presumed ATP-binding region. By using oligonucleotide-directed mutagenesis, this lysine residue was replaced with either methionine, arginine, or alanine. Chinese hamster ovary cells were transfected by mutant cDNAs and the expressed insulin receptors were characterized. They show here that none of these mutants exhibited insulin-activated autophosphorylation and kinase activity in vitro. They also do not mediate insulin- and antibody-stimulated uptake of 2-deoxyglucose. The tyrosine kinase activity is thus required for a key physiological response of insulin

  5. Association of the insulin-receptor variant Met-985 with hyperglycemia and non-insulin-dependent diabetes mellitus in the Netherlands : A population-based study

    NARCIS (Netherlands)

    tHart, LM; Stolk, RP; Heine, RJ; Grobbee, DE; vanderDoes, FEE; Maassen, JA

    1996-01-01

    One of the characteristics of non-insulin-dependent diabetes mellitus (NIDDM) is the presence of insulin resistance. Most NIDDM patients have a normal sequence of the insulin receptor, indicating that, if insulin-receptor mutations contribute to the development of NIDDM, they will be present only in

  6. The insulin receptor C-terminus is involved in regulation of the receptor kinase activity.

    Science.gov (United States)

    Kaliman, P; Baron, V; Alengrin, F; Takata, Y; Webster, N J; Olefsky, J M; Van Obberghen, E

    1993-09-21

    During the insulin receptor activation process, ligand binding and autophosphorylation induce two distinct conformational changes in the C-terminal domain of the receptor beta-subunit. To analyze the role of this domain and the involvement of the C-terminal autophosphorylation sites (Tyr1316 and Tyr1322) in receptor activation, we used (i) antipeptide antibodies against three different C-terminal sequences (1270-1281, 1294-1317, and 1309-1326) and (ii) an insulin receptor mutant (Y/F2) where Tyr1316 and Tyr1322 have been replaced by Phe. We show that the autophosphorylation-induced C-terminal conformational change is preserved in the Y/F2 receptor, indicating that this change is not induced by phosphorylation of the C-terminal sites but most likely by phosphorylation of the major sites in the kinase domain (Tyr1146, Tyr1150, and Tyr1151). Binding of antipeptide antibodies to the C-terminal domain modulated (activated or inhibited) both mutant and wild-type receptor-mediated phosphorylation of poly(Glu/Tyr). In contrast to the wild-type receptor, Y/F2 exhibited the same C-terminal configuration before and after insulin binding, evidencing that mutation of Tyr1316 and Tyr1322 introduced conformational changes in the C-terminus. Finally, the mutant receptor was 2-fold more active than the wild-type receptor for poly(Glu/Tyr) phosphorylation. In conclusion, the whole C-terminal region of the insulin receptor beta-subunit is likely to exert a regulatory influence on the receptor kinase activity. Perturbations of the C-terminal region, such as binding of antipeptides or mutation of Tyr1316 and Tyr1322, provoke alterations at the receptor kinase level, leading to activation or inhibition of the enzymic activity. PMID:7690586

  7. Deletion of exon 3 of the insulin receptor gene in a kindred with a familial form of insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Wertheimer, E.; Barbetti, F.; Accili, D.; Taylor, S.I. [National Institutes of Health, Bethesda, MD (United States); Litvin, Y.; Ebstein, R.P.; Bennet, E.R.

    1994-05-01

    Molecular scanning techniques, such as denaturing gradient gel electrophoresis (DGGE), greatly facilitate screening candidate genes for mutations. The authors have used DGGE to screen for mutations in the insulin receptor gene in a family in which four of five daughters were affected by type A insulin resistance in association with acanthosis nigricans and hyperandrogenism. DGGE did not detect mutations in any of the 22 exons of the insulin receptor gene. Nevertheless, Southern blot analysis suggested that there was a deletion of exon 3 in the other paternal allele of the insulin receptor gene. Analysis of the father`s cDNA confirmed that exon 3 was deleted from mRNA molecules derived from one of his two alleles of the insulin receptor gene. Furthermore, the father was found to be hemizygous for a polymorphic sequence (GAC{sup Asp} at codon 234) in exon 3 that was not inherited by any of the five daughters. Instead, all five daughters inherited the paternal allele with the deletion mutation. They did not detect mutations in the mother`s insulin receptor gene. Furthermore, the clinical syndrome did not segregate with either of the mother`s two alleles of the insulin receptor gene. Although the youngest daughter inherited the mutant allele from her father, she was not clinically affected. The explanation for the incomplete penetrance is not known. These results emphasize the importance of specifically searching for deletion mutations when screening candidate genes for mutations. Furthermore, the existence of apparently asymptomatic carriers of mutations in the insulin receptor gene, such as the father in the present study, suggests that the prevalence of mutations in the insulin receptor gene may be higher than would be predicted on the basis of the observed prevalence of patients with extreme insulin resistance. 34 refs., 6 figs., 1 tab.

  8. A novel insulin receptor-signaling platform and its link to insulin resistance and type 2 diabetes.

    Science.gov (United States)

    Alghamdi, Farah; Guo, Merry; Abdulkhalek, Samar; Crawford, Nicola; Amith, Schammim Ray; Szewczuk, Myron R

    2014-06-01

    Insulin-induced insulin receptor (IR) tyrosine kinase activation and insulin cell survival responses have been reported to be under the regulation of a membrane associated mammalian neuraminidase-1 (Neu1). The molecular mechanism(s) behind this process is unknown. Here, we uncover a novel Neu1 and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B G-protein coupled receptor (GPCR), which is essential for insulin-induced IR activation and cellular signaling. Neu1, MMP-9 and neuromedin B GPCR form a complex with IRβ subunit on the cell surface. Oseltamivir phosphate (Tamiflu®), anti-Neu1 antibodies, broad range MMP inhibitors piperazine and galardin (GM6001), MMP-9 specific inhibitor (MMP-9i), and GPCR neuromedin B specific antagonist BIM-23127 dose-dependently inhibited Neu1 activity associated with insulin stimulated rat hepatoma cells (HTCs) that overly express human IRs (HTC-IR). Tamiflu, anti-Neu1 antibodies and MMP-9i attenuated phosphorylation of IRβ and insulin receptor substrate-1 (IRS1) associated with insulin-stimulated cells. Olanzapine, an antipsychotic agent associated with insulin resistance, induced Neu3 sialidase activity in WG544 or 1140F01 human sialidosis fibroblast cells genetically defective in Neu1. Neu3 antagonist 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA) and anti-Neu3 antibodies inhibited sialidase activity associated with olanzapine treated murine Neu4 knockout macrophage cells. Olanzapine attenuated phosphorylation of IGF-R and IRS1 associated with insulin-stimulated human wild-type fibroblast cells. Our findings identify a novel insulin receptor-signaling platform that is critically essential for insulin-induced IRβ tyrosine kinase activation and cellular signaling. Olanzapine-induced Neu3 sialidase activity attenuated insulin-induced IGF-R and IRS1 phosphorylation contributing to insulin resistance. PMID:24583283

  9. APPL1 Potentiates Insulin Sensitivity by Facilitating the Binding of IRS1/2 to the Insulin Receptor

    Directory of Open Access Journals (Sweden)

    Jiyoon Ryu

    2014-05-01

    Full Text Available Binding of insulin receptor substrate proteins 1 and 2 (IRS1/2 to the insulin receptor (IR is essential for the regulation of insulin sensitivity and energy homeostasis. However, the mechanism of IRS1/2 recruitment to the IR remains elusive. Here, we identify adaptor protein APPL1 as a critical molecule that promotes IRS1/2-IR interaction. APPL1 forms a complex with IRS1/2 under basal conditions, and this complex is then recruited to the IR in response to insulin or adiponectin stimulation. The interaction between APPL1 and IR depends on insulin- or adiponectin-stimulated APPL1 phosphorylation, which is greatly reduced in insulin target tissues in obese mice. appl1 deletion in mice consistently leads to systemic insulin resistance and a significant reduction in insulin-stimulated IRS1/2, but not IR, tyrosine phosphorylation, indicating that APPL1 sensitizes insulin signaling by acting at a site downstream of the IR. Our study uncovers a mechanism regulating insulin signaling and crosstalk between the insulin and adiponectin pathways.

  10. A region of the insulin receptor important for ligand binding (residues 450-601) is recognized by patients' autoimmune antibodies and inhibitory monoclonal antibodies.

    OpenAIRE

    Zhang, B; Roth, R A

    1991-01-01

    Chimeric receptors containing different portions of the homologous human insulin receptor, insulin-like growth factor I receptor, and insulin receptor-related receptor were utilized to identify the epitopes recognized by various anti-insulin receptor antibodies. The antibodies studied included 12 monoclonal antibodies to the extracellular domain of the human insulin receptor as well as 15 patients' sera with autoimmune anti-insulin receptor antibodies. All of the patients' sera and all 8 mono...

  11. Insulin receptors in isolated human adipocytes. Characterization by photoaffinity labeling and evidence for internalization and cellular processing.

    OpenAIRE

    Berhanu, P; Kolterman, O G; Baron, A; Tsai, P; Olefsky, J M; Brandenburg, D.

    1983-01-01

    We photolabeled and characterized insulin receptors in isolated adipocytes from normal human subjects and then studied the cellular fate of the labeled insulin-receptor complexes at physiologic temperatures. The biologically active photosensitive insulin derivative, B2(2-nitro-4-azidophenylacetyl)des-PheB1-insulin (NAPA-DP-insulin) was used to photoaffinity label the insulin receptors, and the specifically labeled cellular proteins were identified by sodium dodecyl sulfate-polyacrylamide gel ...

  12. High-affinity insulin binding to an atypical insulin-like growth factor-I receptor in human breast cancer cells.

    OpenAIRE

    Milazzo, G.; Yip, C. C.; Maddux, B A; Vigneri, R; Goldfine, I D

    1992-01-01

    We studied the nature of insulin receptor binding in MCF-7 breast cancer cells. In both intact cells and solubilized receptor preparations, high-affinity insulin binding was seen. However, unlabeled insulin-like growth factor-I (IGF-I) was five-fold more potent in inhibiting 125I-insulin binding than insulin itself. With monoclonal antibodies to the insulin receptor, 30% of 125I-insulin binding was inhibited. In contrast when alpha-IR3, a monoclonal antibody that recognizes typical IGF-I rece...

  13. A divergent INS protein in Caenorhabditis elegans structurally resembles human insulin and activates the human insulin receptor

    OpenAIRE

    Hua, Qing-Xin; Nakagawa, Satoe H.; Wilken, Jill; Ramos, Rowena R.; Jia, Wenhua; Bass, Joseph; Weiss, Michael A.

    2003-01-01

    Caenorhabditis elegans contains a family of putative insulin-like genes proposed to regulate dauer arrest and senescence. These sequences often lack characteristic sequence features of human insulin essential for its folding, structure, and function. Here, we describe the structure and receptor-binding properties of INS-6, a single-chain polypeptide expressed in specific neurons. Despite multiple nonconservative changes in sequence, INS-6 recapitulates an insulin-like fold. Although lacking c...

  14. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    International Nuclear Information System (INIS)

    Research highlights: →Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. →Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. →Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. →Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia (∼18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPARγ) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 ± 16.32 vs. 126.37 ± 27.07 mg/dl) and glucose intolerance (∼78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  15. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    Energy Technology Data Exchange (ETDEWEB)

    Vikram, Ajit [Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160 062 (India); Jena, Gopabandhu, E-mail: gbjena@gmail.com [Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160 062 (India)

    2010-07-23

    Research highlights: {yields}Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. {yields}Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. {yields}Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. {yields}Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia ({approx}18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPAR{gamma}) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 {+-} 16.32 vs. 126.37 {+-} 27.07 mg/dl) and glucose intolerance ({approx}78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  16. Demonstration of insulin receptors on cultured lymphocytes of the Raji cell line

    International Nuclear Information System (INIS)

    The first step in insulin action is its interaction with a specific receptor in the plasma membrane. A number of human cultured lymphocytes have been used as model systems to investigate the insulin receptor and insulin action. The insulin on the 'Raji' cell line has been studied. These are Epstein Barr Virus (EBV)-transformed (in vivo) cultured human lymphocytes from a patient with Burkitt's lymphoma. This study clearly shown that these cells possess specific high-affinity insulin receptors. Insulin has been labelled with iodine 125 during the experimental procedures. Maximum binding of 125I-insulin has been found to be 7,7 ± 1,3% per 107 cells, and the concentration causing 50% displacement of specifically bound insulin was 3,2 ng/ml, indicating high affinity binding

  17. Role of insulin receptor phosphorylation in the insulinomimetic effects of hydrogen peroxide.

    OpenAIRE

    Hayes, G. R.; Lockwood, D H

    1987-01-01

    The oxidant H2O2 has many insulin-like effects in rat adipocytes. To determine whether these effects could be mediated by the tyrosine kinase activity of the insulin receptor, the ability of H2O2 to stimulate receptor phosphorylation in intact adipocytes and partially purified insulin receptors has been examined. Phosphorylation of the beta subunit of the insulin receptor was increased approximately 2-fold by treatment of intact cells with 3 mM H2O2, a concentration that maximally stimulates ...

  18. Characterization of the growth of murine fibroblasts that express human insulin receptors. II. Interaction of insulin with other growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Randazzo, P.A.; Jarett, L. (Univ. of Pennsylvania, Philadelphia (USA))

    1990-09-01

    The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetal calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity.

  19. Characterization of the growth of murine fibroblasts that express human insulin receptors. II. Interaction of insulin with other growth factors

    International Nuclear Information System (INIS)

    The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetal calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity

  20. A novel hydroxyfuroic acid compound as an insulin receptor activator – structure and activity relationship of a prenylindole moiety to insulin receptor activation

    Directory of Open Access Journals (Sweden)

    Tsai Henry J

    2009-07-01

    Full Text Available Abstract Background Diabetes Mellitus is a chronic disease and many patients of which require frequent subcutaneous insulin injection to maintain proper blood glucose levels. Due to the inconvenience of insulin administration, an orally active insulin replacement has long been a prime target for many pharmaceutical companies. Demethylasterriquinone (DMAQ B1, extracted from tropical fungus, Pseudomassaria sp., has been reported to be an orally effective agent at lowering circulating glucose levels in diabetic (db/db mice; however, the cytotoxicity associated with the quinone moiety has not been addressed thus far. Methods A series of hydroxyfuroic acid compounds were synthesized and tested for their efficacies at activating human insulin receptor. Cytotoxicity to Chinese hamster ovary cells, selectivities over insulin-like growth factor-1 (IGF-1, epidermal growth factor (EGF, and fibroblast growth factor (FGF receptors were examined in this study. Result and Conclusion This study reports a new non-quinone DMAQ B1 derivative, a hydroxyfuroic acid compound (D-410639, which is 128 fold less cytotoxic as DMAQ B1 and as potent as compound 2, a DMAQ B1 synthetic derivative from Merck, at activating human insulin receptor. D-410639 has little activation potential on IGF-1 receptor but is a moderate inhibitor to EGF receptor. Structure and activity relationship of the prenylindole moiety to insulin receptor activation is discussed.

  1. Hyperinsulinemia is associated with increased soluble insulin receptors release from hepatocytes

    Directory of Open Access Journals (Sweden)

    JaimeMas-Oliva

    2014-06-01

    Full Text Available It has been generally assumed that insulin circulates freely in blood. However it can also interact with plasma proteins. Insulin receptors are located in the membrane of target cells and consist of an alpha and beta subunits with a tyrosine kinase cytoplasmic domain. The ectodomain, called soluble insulin receptor (SIR has been found elevated in patients with diabetes mellitus. We explored if insulin binds to SIRs in circulation under physiological conditions and hypothesize that this SIR may be released by hepatocytes in response to high insulin concentrations. The presence of SIR in rat and human plasmas and the culture medium of hepatocytes was explored using Western blot analysis. A purification protocol was performed to isolated SIR using affinity, gel filtration and ion exchange chromatographies. A modified reverse hemolytic plaque assay was used to measure SIR release from cultured hepatocytes. Incubation with 1 nmol l-1 insulin induces the release of the insulin receptor ectodomains from normal rat hepatocytes. This effect can be partially prevented by blocking protease activity. Furthermore, plasma levels of SIR were higher in a model of metabolic syndrome, where rats are hyperinsulinemic. We also found increased SIR levels in hyperinsulinemic humans. SIR may be an important regulator of the amount of free insulin in circulation. In hyperinsulinemia the amount of this soluble receptor increases, this could lead to higher amounts of insulin bound to this receptor, rather than free insulin, which is the biologically active form of the hormone. This observation could enlighten the mechanisms of insulin resistance.

  2. Increased interaction with insulin receptor substrate 1, a novel abnormality in insulin resistance and type 2 diabetes

    DEFF Research Database (Denmark)

    Caruso, Michael; Ma, Danjun; Msallaty, Zaher;

    2014-01-01

    Insulin receptor substrate 1 (IRS1) is a key mediator of insulin signal transduction. Perturbations involving IRS1 complexes may lead to the development of insulin resistance and type 2 diabetes (T2D). Surprisingly little is known about the proteins that interact with IRS1 in humans under health...... and disease conditions. We used a proteomic approach to assess IRS1 interaction partners in skeletal muscle from lean healthy control subjects (LCs), obese insulin-resistant nondiabetic control subjects (OCs), and participants with T2D before and after insulin infusion. We identified 113 novel....... Interestingly, dozens of proteins in OCs and/or T2D patients exhibited increased associations with IRS1 compared with LCs under the basal and/or insulin-stimulated conditions, revealing multiple new dysfunctional IRS1 pathways in OCs and T2D patients. This novel abnormality, increased interaction of multiple...

  3. Identification of the insulin receptor tyrosine residues undergoing insulin-stimulated phosphorylation in intact rat hepatoma cells

    International Nuclear Information System (INIS)

    Tyr(P)-containing proteins were purified from extracts of insulin-treated rat hepatoma cells (H4-II-E-C3) by antiphosphotyrosine immunoaffinity chromatography. Two major insulin-stimulated, Tyr(P) proteins were recovered: an M/sub r/ 95,000 protein (identified as the insulin receptor β subunit by its immunoprecipitation by a patient-derived anti-insulin receptor serum and several anti-insulin receptor (peptide) anti-sera) and an M/sub r/ 180,000 protein. After purification and tryptic digestion of the M/sub r/ 95,000 protein, tryptic peptides containing Tyr (P) were purified by sequential antiphosphotyrosine immunoaffinity, reversed-phase, anion-exchange chromatography. Approximately 80% of all β subunit [32P]Tyr(P) resides on two tryptic peptides: 50-60% of [32P]Tyr(P) is found on the tryptic peptide Asp-Ile-Try-Glu-Thr-Asp-Try-Try-Arg from the tyrosine kinase domain. A second tryptic peptide is located near the carboxyl terminus; this contains 20-30% of β subunit [32P]Tyr(P) and is identified primarily in a double phosphorylated form. In a summary, the insulin-stimulated tyrosine phosphorylation of the insulin receptor in intact rat hepatoma cells involves at least 6 of the 13 tyrosine residues located on the β subunit intracellular extension. These tyrosines are clustered in several domains in a distribution virtually identical to that previously found for partially purified human insulin receptor autophosphorylated in vitro in the presence of insulin

  4. Dissociation of insulin receptor phosphorylation and stimulation of glucose transport in BC3H-1 myocytes

    International Nuclear Information System (INIS)

    The authors have investigated insulin receptor phosphorylation in differentiated cultured BC3H-1 myocytes. As for other insulin-responsive cell systems in partially purified wheat germ agglutinin receptor preparations, insulin stimulates the phosphorylation of its own receptor (95K β-subunits) in a dose dependent manner (0-400 nM), as identified by immunoprecipitation with antiinsulin receptor antibodies and SDS-PAGE. In the same preparations they show that 12-0-tetradecanyl phorbol acetate (TPA), which in many respect β-subunits in the same dose dependent manner (0-5 μM). In addition, antiinsulin receptor antibodies (B-10) also induced phosphorylation of mimics insulin action, also induced phosphorylation of the insulin receptor and HPLC tryptic maps of the 32P-labeled β-subunit were identical to those for insulin-induced receptor phosphorylation. However, while insulin and TPA are potent stimulators of glucose transport in these muscle cells, the antireceptor antibodies alone failed to provoke glucose transport at any concentration. The specificity and activity of these antibodies were confirmed in their system by their ability to inhibit insulin binding and insulin-stimulated glucose transport in a concentration-dependent manner. Their results indicate that phosphorylation of insulin receptor is not a crucial event in mediating insulin action, at least with respect to glucose transport. While the effects of the B-10 antibody in the BC3H-1 myocyte differ from those in the adipocyte, their results provide independent confirmation of their essential conclusion that phosphorylation of the insulin receptor may not be necessary nor sufficient for its acute action in promoting glucose transport

  5. Role of insulin receptor phosphorylation in the insulinomimetic effects of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, G.R.; Lockwood, D.H.

    1987-11-01

    The oxidant H/sub 2/O/sub 2/ has many insulin-like effects in rat adipocytes. To determine whether these effects could be mediated by the tyrosine kinase activity of the insulin receptor, the ability of H/sub 2/O/sub 2/ to stimulate receptor phosphorylation in intact adipocytes and partially purified insulin receptors has been examined. Phosphorylation of the ..beta.. subunit of the insulin receptor was increased. Stimulation of receptor phosphorylation was rapid, reaching maximal levels within 5 min, and preceded activation of glucose transport. Phosphoamino acid analysis of insulin receptors from H/sub 2/O/sub 2/-treated adipocytes showed that /sup 32/P incorporation into phosphotyrosine and phosphoserine residues of the ..beta.. subunit was enhanced. Furthermore, partially purified receptors from H/sub 2/O/sub 2/-treated cells exhibit increased tyrosine kinase activity, as measured by phosphorylation of the peptide Glu/sub 80/Tyr/sub 20/. To define the factors involved in H/sub 2/O/sub 2/'s effect, the authors have examined receptor phosphorylation in fat cell homogenates and purified plasma membranes. Although insulin stimulated receptor phosphorylation in both of these systems, H/sub 2/O/sub 2/ was only effective in the cell homogenates. These data demonstrate that, under certain conditions, H/sub 2/O/sub 2/ stimulates insulin receptor phosphorylation and tyrosine kinase activity, suggesting that the insulin-like effects of H/sub 2/O/sub 2/ may be mediated by stimulation of insulin receptor phosphorylation. This does not appear to be a direct effect of H/sub 2/O/sub 2/ on the insulin receptor and requires nonplasma membrane cellular constituents.

  6. Activation of the insulin receptor (IR) by insulin and a synthetic peptide has different effects on gene expression in IR-transfected L6 myoblasts

    DEFF Research Database (Denmark)

    Jensen, M.; Palsgaard, J.; Borup, R.;

    2008-01-01

    Single-chain peptides have been recently produced that display either mimetic or antagonistic properties against the insulin and IGF-1 (insulin-like growth factor 1) receptors. We have shown previously that the insulin mimetic peptide S597 leads to significant differences in receptor activation and...

  7. Insulin

    Science.gov (United States)

    ... Short Acting Humulin N NPH Human Insulin (Human Insulin Isophane Suspension) Intermediate Acting Novolin N NPH Human Insulin (Human Insulin Isophane Suspension) Intermediate Acting Lantus Insulin Glargine Long Acting ...

  8. Inhibition of insulin receptors by vanadate and ouabain

    International Nuclear Information System (INIS)

    Insulin binding studies were performed, using cells from 5 non-obese, non-diabetic subjects, on four separate days: 2 were paired control studies to demonstrate precision, and 2 other sets were binding studies in which one incubation solution was control and the other contained either vanadate, or ouabain. For both substances tracer binding of 125I insulin was reduced significantly, 27% by vanadate and 30% by ouabain. Furthermore, at all points on the binding curve these substances inhibited binding by 18-98%, in a pattern consistent with reduced receptor number. The concentrations of vanadate or ouabain reduced receptor number. The concentrations of vanadate or ouabain which we used did not change cell volume or inhibit trypan blue dye exclusion, as an index of cell viability. Because vanadate and ouabain inhibit Na+K+ATPase and have largely dissimilar effects on a variety of cell systems, our observations may reflect specific involvement of Na+K+ATPase in binding or closely related processes

  9. Changes in erythrocyte insulin receptors in normal dogs and keeshond dogs with inheritable, early onset, insulin dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Validation of a procedure to evaluate insulin receptors on erythrocytes (RBC-IR) in dogs is described. The specific binding of (125I)iodoinsulin to RBC-IR of normal dogs is significantly greater than binding in keeshonds with an inheritable form of early onset diabetes mellitus. This decreased binding was due to a significant decrease in RBC-IR affinity in the diabetic keeshonds. To determine the effect on RBC-IR, normal dogs were treated with either dexamethasone (0.1 mg/kg) or prednisone (0.3 mg/kg) for 10 days: concentrations of plasma cortisol, glucose, and insulin, plus binding characteristics of RBC-IR were determined. In the dexamethasone treated group, plasma glucose concentrations were elevated significantly by day 6 and continued through day 10. Insulin concentrations were elevated significantly by day 3 and remained elevated through day 10. In the prednisone treated group, glucose concentrations were elevated significantly by day 3, while insulin concentrations were elevated significantly by day 8. Maximum binding of RBC-IR was unaffected by prednisone and neither affinities nor receptor numbers were significantly different from day 1. No changes in plasma cortisol concentration were seen. Diabetic keeshonds on daily insulin treatment were removed from exogenous insulin therapy for 48 hours. Significant increases in glucose concentrations were observed, but no significant changes in cortisol, insulin, average receptor binding affinity, or RBC-IR number per cell occurred

  10. Angiotensin II Receptors Modulate Muscle Microvascular and Metabolic Responses to Insulin In Vivo

    OpenAIRE

    Chai, Weidong; Wang, WenHui; Dong, Zhenhua; Cao, Wenhong; Liu, Zhenqi

    2011-01-01

    OBJECTIVE Angiotensin (ANG) II interacts with insulin-signaling pathways to regulate insulin sensitivity. The type 1 (AT1R) and type 2 (AT2R) receptors reciprocally regulate basal perfusion of muscle microvasculature. Unopposed AT2R activity increases muscle microvascular blood volume (MBV) and glucose extraction, whereas unopposed AT1R activity decreases both. The current study examined whether ANG II receptors modulate muscle insulin delivery and sensitivity. RESEARCH DESIGN AND METHODS Ove...

  11. Insulin receptor activation in the nucleus accumbens reflects nutritive value of a recently ingested meal.

    Science.gov (United States)

    Woods, C A; Guttman, Z R; Huang, D; Kolaric, R A; Rabinowitsch, A I; Jones, K T; Cabeza de Vaca, S; Sclafani, A; Carr, K D

    2016-05-15

    With respect to feeding, insulin is typically thought of as a satiety hormone, acting in the hypothalamus to limit ingestive behavior. However, accumulating evidence suggests that insulin also has the ability to alter dopamine release in the striatum and influence food preferences. With increased access to high calorie foods, Western societies have a high prevalence of obesity, accompanied by insulin insensitivity. Little is known about how insulin is trafficked into the brain following food consumption and whether insulin insensitivity in the periphery is mirrored in the central nervous system. We investigated insulin receptor activation in the ventral striatum of rats receiving water or 16% glucose either orally or intragastrically. We also investigated whether glucose-induced insulin receptor activation was altered in food-restricted (FR) or diet-induced obesity (OB) rat models. Lastly, we examined whether insulin plays a significant role in flavor-nutrient preference learning. Glucose intake stimulated a rapid increase in insulin receptor activity in the ventral striatum of FR and ad libitum (AL) fed rats, but not OB rats. Similarly, both AL and FR, but not OB rats demonstrated significant flavor-nutrient preferences. However AL rats receiving brief inhibition of insulin activity during conditioning failed to acquire a significant flavor-nutrient preference. These findings suggest that impaired insulin receptor activation in the ventral striatum may result in inaccurate valuation of nutritive foods, which could lead to overconsumption of food or the selection of foods that don't accurately meet the body's current physiological needs. PMID:26988281

  12. Scintigraphic studies in rats. Kinetics of insulin analogues covering wide range of receptor affinities

    International Nuclear Information System (INIS)

    Whole-body kinetics of 123I-labeled human insulin and five insulin analogues were investigated by scintigraphic studies in rats. The amino acid substitutions and the relative receptor affinities (RAs), determined by binding to HepG2 cells, were: GluB12, des-B30 insulin, RA 0.15%; AspB9, GluB27 insulin, RA 18%; AspB26 insulin, RA 80%; AspB18 insulin, RA 327%; and HisA8, HisB4, GluB10, HisB27 insulin, RA 687%. All analogues were compared with human insulin (RA 100%). The analogue with RA 0.15% showed a significantly slower disappearance in the heart window, no liver uptake, and the greatest kidney radioactivity, the latter probably caused by high plasma concentrations. The low-affinity analogue (RA 18%) reached a surprisingly high hepatic peak value, although significantly lower than insulin. Kidney radioactivity was higher than for insulin. The analogue with RA 80% showed liver and kidney radioactivities that were not significantly different from those of insulin. The two high-affinity analogues (RAs 327 and 687%) showed peak liver radioactivities not significantly different from insulin. However, liver radioactivity after the peaks declined significantly more slowly. Compared with insulin, the kidney radioactivity curves were not significantly different. We conclude that high-affinity insulin analogues will bind to any available receptor that, because of the large number of receptors in the periphery and the distribution of cardiac output, favors extrahepatic elimination. In contrast, low-affinity analogues bind to receptors several times before they are eliminated. This leads to recirculation and, thus, hepatic elimination due to the high receptor density there

  13. Effect of Treatment with Different Doses of 17-Beta-Estradiol on Insulin Receptor Substrate-1

    Directory of Open Access Journals (Sweden)

    González C

    2001-07-01

    Full Text Available CONTEXT: Ovarian hormones modulate insulin sensitivity, but their exact role remains unclear. OBJECTIVE: We tried to determine whether different doses of 17-beta-estradiol cause changes in the regulation of insulin receptor substrate (IRS-1 levels, and if so, the possible implications in insulin sensitivity. DESIGN: Ovariectomized rats were treated with different doses of 17-beta-estradiol at 6, 11 and 16 days. MAIN OUTCOME MEASURES: Immunoprecipitation and Western blotting for IRS-1 were performed in different tissues. RESULTS: We found that estradiol treatment has an influence on the amount of IRS-1 but that it acts in different ways depending on the tissue studied, on the length of treatment, and on the doses employed. CONCLUSIONS: Our results suggest that low concentrations of 17-beta-estradiol could be responsible for the upregulation of insulin receptor substrate 1, increasing insulin sensitivity in muscle and adipose tissue. However, insulin receptor substrate 1 is downregulated with high concentrations of 17-beta-estradiol, thus these high hormone plasma levels could favour insulin resistance in peripheral tissues. The role of 17-beta-estradiol seems to modulate insulin receptor substrate 1 levels in insulin dependent tissues, but in a different manner in each tissue. These novel findings are important for improving knowledge about the possible risk for insulin resistance in women taking oral contraceptives or receiving hormone replacement therapy at menopause.

  14. Differences in the sites of phosphorylation of the insulin receptor in vivo and in vitro

    International Nuclear Information System (INIS)

    Phosphorylation of the insulin receptor was studied in intact well differentiated hepatoma cells (Fao) and in a solubilized and partially purified receptor preparation obtained from these cells by affinity chromatography on wheat germ agglutinin agarose. Tryptic peptides containing the phosphorylation sites of the beta-subunit of the insulin receptor were analyzed by reverse-phase high performance liquid chromatography. Phosphoamino acid content of these peptides was determined by acid hydrolysis and high voltage electrophoresis. Separation of the phosphopeptides from unstimulated Fao cells revealed one major and two minor phosphoserine-containing peptides and a single minor phosphothreonine-containing peptide. Insulin (10(-7) M) increased the phosphorylation of the beta-subunit of the insulin receptor 3- to 4-fold in the intact Fao cell. After insulin stimulation, two phosphotyrosine-containing peptides were identified. Tyrosine phosphorylation reached a steady state within 20 s after the addition of insulin and remained nearly constant for 1 h. Under our experimental conditions, no significant change in the amount of [32P]phosphoserine or [32P]phosphothreonine associated with the beta-subunit was found during the initial response of cells to insulin. When the insulin receptor was extracted from the Fao cells and incubated in vitro with [gamma-32P]ATP and Mn2+, very little phosphorylation occurred in the absence of insulin

  15. Differences in the sites of phosphorylation of the insulin receptor in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    White, M.F.; Takayama, S.; Kahn, C.R.

    1985-08-05

    Phosphorylation of the insulin receptor was studied in intact well differentiated hepatoma cells (Fao) and in a solubilized and partially purified receptor preparation obtained from these cells by affinity chromatography on wheat germ agglutinin agarose. Tryptic peptides containing the phosphorylation sites of the beta-subunit of the insulin receptor were analyzed by reverse-phase high performance liquid chromatography. Phosphoamino acid content of these peptides was determined by acid hydrolysis and high voltage electrophoresis. Separation of the phosphopeptides from unstimulated Fao cells revealed one major and two minor phosphoserine-containing peptides and a single minor phosphothreonine-containing peptide. Insulin (10(-7) M) increased the phosphorylation of the beta-subunit of the insulin receptor 3- to 4-fold in the intact Fao cell. After insulin stimulation, two phosphotyrosine-containing peptides were identified. Tyrosine phosphorylation reached a steady state within 20 s after the addition of insulin and remained nearly constant for 1 h. Under our experimental conditions, no significant change in the amount of (TSP)phosphoserine or (TSP)phosphothreonine associated with the beta-subunit was found during the initial response of cells to insulin. When the insulin receptor was extracted from the Fao cells and incubated in vitro with (gamma-TSP)ATP and MnS , very little phosphorylation occurred in the absence of insulin.

  16. Biphasic modulation of insulin receptor substrate-1 during goitrogenesis

    Directory of Open Access Journals (Sweden)

    R. Grozovsky

    2007-05-01

    Full Text Available Insulin receptor substrate-1 (IRS-1 is the main intracellular substrate for both insulin and insulin-like growth factor I (IGF-I receptors and is critical for cell mitogenesis. Thyrotropin is able to induce thyroid cell proliferation through the cyclic AMP intracellular cascade; however, the presence of either insulin or IGF-I is required for the mitogenic effect of thyroid-stimulating hormone (TSH to occur. The aim of the present study was to determine whether thyroid IRS-1 content is modulated by TSH in vivo. Strikingly, hypothyroid goitrous rats, which have chronically high serum TSH levels (control, C = 2.31 ± 0.28; methimazole (MMI 21d = 51.02 ± 6.02 ng/mL, N = 12 rats, when treated with 0.03% MMI in drinking water for 21 days, showed significantly reduced thyroid IRS-1 mRNA content. Since goiter was already established in these animals by MMI for 21 days, we also evaluated IRS-1 expression during goitrogenesis. Animals treated with MMI for different periods of time showed a progressive increase in thyroid weight (C = 22.18 ± 1.21; MMI 5d = 32.83 ± 1.48; MMI 7d = 31.1 ± 3.25; MMI 10d = 33.8 ± 1.25; MMI 14d = 45.5 ± 2.56; MMI 18d = 53.0 ± 3.01; MMI 21d = 61.9 ± 3.92 mg, N = 9-15 animals per group and serum TSH levels (C = 1.57 ± 0.2; MMI 5d = 9.95 ± 0.74; MMI 7d = 10.38 ± 0.84; MMI 10d = 17.72 ± 1.47; MMI 14d = 25.65 ± 1.23; MMI 18d = 35.38 ± 3.69; MMI 21d = 31.3 ± 2.7 ng/mL, N = 9-15 animals per group. Thyroid IRS-1 mRNA expression increased progressively during goitrogenesis, being significantly higher by the 14th day of MMI treatment, and then started to decline, reaching the lowest values by the 21st day, when a significant reduction was detected. In the liver of these animals, however, a significant decrease of IRS-1 mRNA was detected after 14 days of MMI treatment, a mechanism probably involved in the insulin resistance that occurs in hypothyroidism. The increase in IRS-1 expression during goitrogenesis may represent an

  17. Autoimmune Hypoglycemia in a Patient with Characterization of Insulin Receptor Autoantibodies

    Directory of Open Access Journals (Sweden)

    Suk Chon

    2011-02-01

    Full Text Available BackgroundType B insulin resistance syndrome is a manifestation of autoantibodies to the insulin receptor that results in severe hyperglycemia and acanthosis nigricans. However, the mechanisms by which these autoantibodies induce hypoglycemia are largely unknown. In this paper, we report the case of patient with type B insulin resistance syndrome who presented with frequent severe fasting hypoglycemia and acanthosis nigricans.MethodsTo evaluate the mechanism of hypoglycemia, we measured the inhibition of insulin binding to erythrocytes and IM9 lymphocytes in a sample of the patient's dialyzed serum before and after immunosuppressive therapy.ResultsIn the patient's pre-treatment serum IgG, the binding of 125I-insulin to erythrocytes was markedly inhibited in a dose-dependent manner until the cold insulin level reached 10-9 mol/L. We also observed dose-dependent inhibition of insulin binding to IM9 lymphocytes, which reached approximately 82% inhibition and persisted even when diluted 1:20. After treatment with glucocorticoids, insulin-erythrocyte binding activity returned to between 70% and 80% of normal, while the inhibition of insulin-lymphocyte binding was reduced by 17%.ConclusionWe treated a patient with type B insulin resistance syndrome showing recurrent fasting hypoglycemia with steroids and azathioprine. We characterized the patient's insulin receptor antibodies by measuring the inhibition of insulin binding.

  18. Identification and characterization of insulin receptors in basolateral membranes of dog intestinal mucosa

    International Nuclear Information System (INIS)

    Little is known about hormonal regulation of substrate transport and metabolism in the mucosal lining of the small intestine. Because insulin regulates these functions in other tissues by binding to its receptor, we have investigated the presence of insulin receptors in canine small intestinal mucosa with basolateral membranes (BLM) and brush border membranes (BBM) prepared by sorbitol density centrifugation. A14-[125I]iodoinsulin was used to study binding and structural characteristics of specific insulin receptors in BLM. Analysis of receptors in BLM identified binding sites with high affinity (Kd 88 pM) and low capacity (0.4 pmol/mg protein) as well as with low affinity (Kd 36 nM) and high capacity (4.7 pmol/mg protein). Binding was time, temperature, and pH dependent, and 125I-labeled insulin dissociation was enhanced in the presence of unlabeled insulin. Cross-reactivity of these receptors to proinsulin, IGF-II, and IGF-I was 4, 1.8, and less than 1%, respectively. Covalent cross-linking of labeled insulin to BLM insulin receptors with disuccinimidyl suberate revealed a single 135,000-Mr band that was completely inhibited by unlabeled insulin. There was a 16-fold greater specific binding of insulin to BLM (39.0 +/- 2.4%) than to BBM (2.5 +/- 0.6%). These results demonstrate the presence of a highly specific receptor for insulin on the vascular, but not the luminal, surface of the small intestinal mucosa in dogs, and suggest that insulin may play an important role in the regulation of gastrointestinal physiology

  19. Identification and characterization of insulin receptors in basolateral membranes of dog intestinal mucosa

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, R.L.; Gilbert, W.R.; Comens, P.G.; Gavin, J.R. III

    1987-10-01

    Little is known about hormonal regulation of substrate transport and metabolism in the mucosal lining of the small intestine. Because insulin regulates these functions in other tissues by binding to its receptor, we have investigated the presence of insulin receptors in canine small intestinal mucosa with basolateral membranes (BLM) and brush border membranes (BBM) prepared by sorbitol density centrifugation. A14-(/sup 125/I)iodoinsulin was used to study binding and structural characteristics of specific insulin receptors in BLM. Analysis of receptors in BLM identified binding sites with high affinity (Kd 88 pM) and low capacity (0.4 pmol/mg protein) as well as with low affinity (Kd 36 nM) and high capacity (4.7 pmol/mg protein). Binding was time, temperature, and pH dependent, and /sup 125/I-labeled insulin dissociation was enhanced in the presence of unlabeled insulin. Cross-reactivity of these receptors to proinsulin, IGF-II, and IGF-I was 4, 1.8, and less than 1%, respectively. Covalent cross-linking of labeled insulin to BLM insulin receptors with disuccinimidyl suberate revealed a single 135,000-Mr band that was completely inhibited by unlabeled insulin. There was a 16-fold greater specific binding of insulin to BLM (39.0 +/- 2.4%) than to BBM (2.5 +/- 0.6%). These results demonstrate the presence of a highly specific receptor for insulin on the vascular, but not the luminal, surface of the small intestinal mucosa in dogs, and suggest that insulin may play an important role in the regulation of gastrointestinal physiology.

  20. In situ autoradiography and ligand-dependent tyrosine kinase activity reveal insulin receptors and insulin-like growth factor I receptors in prepancreatic chicken embryos

    International Nuclear Information System (INIS)

    We previously reported specific cross-linking of 125I-labeled insulin and 125I-labeled insulin-like growth factor I (IGF-I) to the alpha subunit of their respective receptors in chicken embryos of 20 somites and older. To achieve adequate sensitivity and localize spatially the receptors in younger embryos, we adapted an autoradiographic technique using whole-mounted chicken blastoderms. Insulin receptors and IGF-I receptors were expressed and could be localized as early as gastrulation, before the first somite is formed. Relative density was analyzed by a computer-assisted image system, revealing overall slightly higher binding of IGF-I than of insulin. Structures rich in both types of receptors were predominantly of ectodermal origin: Hensen's node in gastrulating embryos and neural folds, neural tube and optic vesicles during neurulation. The signal transduction capability of the receptors in early organogenesis was assessed by their ability to phosphorylate the exogenous substrate poly(Glu80Tyr20). Ligand-dependent tyrosine phosphorylation was demonstrable with both insulin and IGF-I in glycoprotein-enriched preparations from embryos at days 2 through 6 of embryogenesis. There was a developmentally regulated change in ligand-dependent tyrosine kinase activity, with a sharp increase from day 2 to day 4, in contrast with a small increase in the ligand binding. Binding of 125I-labeled IGF-I was, with the solubilized receptors, severalfold higher than binding of 125I-labeled insulin. However, the insulin-dependent phosphorylation was as high as the IGF-I-dependent phosphorylation at each developmental stage

  1. Implications of compound heterozygous insulin receptor mutations in congenital muscle fibre type disproportion myopathy for the receptor kinase activation

    DEFF Research Database (Denmark)

    Klein, H H; Müller, R; Vestergaard, H;

    1999-01-01

    We studied insulin receptor kinase activation in two brothers with congenital muscle fibre type disproportion myopathy and compound heterozygous mutations of the insulin receptor gene, their parents, and their unaffected brother. In the father who has a heterozygote Arg1174-->Gln mutation, in situ...... receptors to become insulin-dependently activated. The mother carries a point mutation at the last base pair in exon 17 which, due to abnormal alternative splicing, could lead to normally transcribed receptor or truncated receptor lacking the kinase region. Kinase activation was normal in the mother...... receptors in the mother's skeletal muscle are transcribed almost exclusively from the non-mutated allele. The mutation in exon 17 could lead to reduced transcription or rapid degradation of a predominantly transcribed truncated gene product or both....

  2. Effect of glyburide on in vivo recycling of the hepatic insulin receptor

    International Nuclear Information System (INIS)

    Sulfonylureas affect insulin action at both receptor and post-receptor sites, but their exact mechanism is poorly understood. In these studies, a novel technique was used to examine the influence of glyburide on in vivo cycling of the hepatic insulin receptor. Rats were gavage-fed with 5 mg/kg per day of glyburide solubilized in 60 percent polyethylene glycol and 40 percent phosphate buffer. Control rats were fed polyethylene glycol and buffer alone. After seven days, each rat was anesthetized, the abdomen was surgically exposed, and the animal was given a saturating bolus of 30 micrograms of unlabeled insulin via the portal vein. At seven specified times from 10 seconds to 45 minutes later, a second portal vein injection of a mixture of 1.5 microCi (0.015 micrograms) 125I-labeled insulin and 15 microCi 3HOH (a highly diffusible internal reference marker) was administered; 18 seconds later (time for one circulation), the right lobe of the liver was removed, and 125I and 3H values were counted. The liver uptake index and the turnover half-time were then calculated. Glyburide caused a doubling of the turnover half-time for the receptor. This suggests that sulfonylureas potentiate the action of insulin either by increasing the dwell time of insulin on its receptor or by affecting an intracellular event that delays the recycling of the insulin receptor back to the cell surface plasma membrane

  3. Autoimmune Hypoglycemia in a Patient with Characterization of Insulin Receptor Autoantibodies

    OpenAIRE

    Chon, Suk; Choi, Moon Chan; Lee, Yun Jung; Hwang, You Cheol; Jeong, In-Kyung; Oh, Seungjoon; Ahn, Kyu Jeung; Chung, Ho Yeon; Woo, Jeong-taek; Kim, Sung-Woon; Kim, Jin-Woo; Kim, Young Seol

    2011-01-01

    Background Type B insulin resistance syndrome is a manifestation of autoantibodies to the insulin receptor that results in severe hyperglycemia and acanthosis nigricans. However, the mechanisms by which these autoantibodies induce hypoglycemia are largely unknown. In this paper, we report the case of patient with type B insulin resistance syndrome who presented with frequent severe fasting hypoglycemia and acanthosis nigricans. Methods To evaluate the mechanism of hypoglycemia, we measured th...

  4. Interaction of the C-terminal acidic domain of the insulin receptor with histone modulates the receptor kinase activity.

    Science.gov (United States)

    Baron, V; Kaliman, P; Alengrin, F; Van Obberghen, E

    1995-04-01

    In this study, we investigated the role of the insulin receptor domain 1270-1280, an acid-rich sequence located in the receptor C-terminus. Antipeptide IgG raised against this sequence were obtained and used to analyze their effect on receptor function. Antipeptide IgG inhibited receptor autophosphorylation at Tyr1146, Tyr1150 and Tyr1151. These sites are known to be key modulators of the receptor activity. Autophosphorylation at other sites may also have been inhibited. The antipeptide antibody decreased the receptor kinase activity measured with poly(Glu80Tyr20) and a synthetic peptide corresponding to the proreceptor sequence 1142-1158. We provide evidence that the effect of the antibody on substrate phosphorylation may result from the control of the phosphorylation level of the receptor. Concerning the action of the antipeptide IgG on the receptor kinase activity, histone did not behave similarly to poly(Glu80Tyr20). The antibody recognizing sequence 1270-1280 competed with histone for an overlapping binding site. Histone also modulated insulin receptor autophosphorylation, supporting the idea that interference with domain 1270-1280 alters the receptor kinase. Our data suggest that the acidic region including residues 1270-1280 of the insulin receptor C-terminus is involved in the following events: (a) receptor binding with histone, an exogenous substrate of the receptor kinase, and (b) the regulation of receptor autophosphorylation and kinase activity. Based on these observations, we would like to propose that this insulin receptor domain could interact with cellular proteins modulating the receptor kinase. PMID:7744039

  5. Antipeptide antibody that specifically inhibits insulin receptor autophosphorylation and protein kinase activity

    International Nuclear Information System (INIS)

    Two site-specific antibodies that immunoprecipitate the human insulin receptor have been prepared by immunizing rabbits with chemically synthesized peptides derived from the cDNA-predicted amino acid sequence of the β subunit of the proreceptor. Antibodies to the carboxyl terminus (AbP5) and to a domain around tyrosine-960 (AbP4) specifically recognize the β subunit of the receptor on immunoblots. Both antibodies immunoprecipitated 125I-labeled insulin-receptor complexes and the autophosphorylated receptor. Although neither antibody inhibited insulin binding to the receptor, both insulin-dependent autophosphorylation and exogenous substrate phosphorylation were inhibited by AbP4. Inhibition by AbP4 was dependent upon the phosphorylation state of the receptor; it was not detected when the receptor was autophosphorylated prior to addition of AbP4. AbP4 did not inhibit activity of the related epidermal growth factor (EGF)-receptor tyrosine protein kinase nor did it inhibit the activity of cAMP-dependent kinase or protein kinase C. The observation that an antibody directed to residues 952-967 of the proreceptor neutralizes the protein kinase activity of the β subunit suggest that this region may play a critical role in the function of the hormone-dependent, protein tyrosine-specific kinase activity of the insulin receptor

  6. The Role of Insulin Receptor Signaling in Synaptic Plasticity and Cognitive Function

    Directory of Open Access Journals (Sweden)

    Chiung-Chun Huang

    2010-06-01

    Full Text Available Insulin is the most abundant peptidergic hormone secretedby the pancreatic islets of Langerhans and plays an importantrole in organic metabolism. In recent years, various functionsfor insulin receptor signaling in the brain have been suggestedin normal neurophysiology, and a dysregulation of insulinsecretion or insulin receptor signaling has been reported inserious mental illnesses. Several lines of work in both laboratoryanimals and humans suggest that when neurons in cognitivebrain regions such as the hippocampus and cerebral cortexdo not make enough insulin or cannot respond to insulin properly,everything from very mild memory loss to severeneorodegenerative diseases can result. On the other hand,administration of insulin exerts memory-enhancing action inboth humans and experimental animals. Insulin has alsorecently been shown to regulate the endocytosis of 3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA receptors, which causes long-term depression(LTD of excitatory synaptic transmission. The fact that LTD in the mammalian brain is generallyassumed to be a synaptic mechanism underlying learning during novel experiences,this insulin-induced LTD may therefore serve as an important role in brain informationprocessesing. Recent advances in the knowledge of the biological role of brain insulin receptorsignaling in relation to synaptic plasticity and cognitive function, and of the regulatorysignaling mechanisms involved in these processes will be discussed in the article.

  7. Expression of the growth hormone receptor gene in insulin producing cells

    DEFF Research Database (Denmark)

    Møldrup, Annette; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    Growth hormone (GH) plays a dual role in glucose homeostasis. On the one hand, it exerts an insulin antagonistic effect on the peripheral tissue, on the other hand, it stimulates insulin biosynthesis and beta-cell proliferation. The expression of GH-receptors on the rat insulinoma cell line RIN-5...

  8. Mitochondrial H2O2 as an enable signal for triggering autophosphorylation of insulin receptor in neurons

    OpenAIRE

    Persiyantseva, Nadezhda A; Storozhevykh, Tatiana P; Senilova, Yana E; Gorbacheva, Lubov R; Pinelis, Vsevolod G.; Pomytkin, Igor A

    2013-01-01

    Background: Insulin receptors are widely distributed in the brain, where they play roles in synaptic function, memory formation, and neuroprotection. Autophosphorylation of the receptor in response to insulin stimulation is a critical step in receptor activation. In neurons, insulin stimulation leads to a rise in mitochondrial H2O2 production, which plays a role in receptor autophosphorylation. However, the kinetic characteristics of the H2O2 signal and its functional relationships with the i...

  9. Characterization of a second ligand binding site of the insulin receptor

    International Nuclear Information System (INIS)

    Insulin binding to its receptor is characterized by high affinity, curvilinear Scatchard plots, and negative cooperativity. These properties may be the consequence of binding of insulin to two receptor binding sites. The N-terminal L1 domain and the C-terminus of the α subunit contain one binding site. To locate a second site, we examined the binding properties of chimeric receptors in which the L1 and L2 domains and the first Fibronectin Type III repeat of the insulin-like growth factor-I receptor were replaced by corresponding regions of the insulin receptor. Substitutions of the L2 domain and the first Fibronectin Type III repeat together with the L1 domain produced 80- and 300-fold increases in affinity for insulin. Fusion of these domains to human immunoglobulin Fc fragment produced a protein which bound insulin with a K d of 2.9 nM. These data strongly suggest that these domains contain an insulin binding site

  10. Insulin signaling inhibits the 5-HT2C receptor in choroid plexus via MAP kinase

    Directory of Open Access Journals (Sweden)

    Guan Kunliang

    2003-06-01

    Full Text Available Abstract Background G protein-coupled receptors (GPCRs interact with heterotrimeric GTP-binding proteins (G proteins to modulate acute changes in intracellular messenger levels and ion channel activity. In contrast, long-term changes in cellular growth, proliferation and differentiation are often mediated by tyrosine kinase receptors and certain GPCRs by activation of mitogen-activated protein (MAP kinases. Complex interactions occur between these signaling pathways, but the specific mechanisms of such regulatory events are not well-understood. In particular it is not clear whether GPCRs are modulated by tyrosine kinase receptor-MAP kinase pathways. Results Here we describe tyrosine kinase receptor regulation of a GPCR via MAP kinase. Insulin reduced the activity of the 5-HT2C receptor in choroid plexus cells which was blocked by the MAP kinase kinase (MEK inhibitor, PD 098059. We demonstrate that the inhibitory effect of insulin and insulin-like growth factor type 1 (IGF-1 on the 5-HT2C receptor is dependent on tyrosine kinase, RAS and MAP kinase. The effect may be receptor-specific: insulin had no effect on another GPCR that shares the same G protein signaling pathway as the 5-HT2C receptor. This effect is also direct: activated MAP kinase mimicked the effect of insulin, and removing a putative MAP kinase site from the 5-HT2C receptor abolished the effect of insulin. Conclusion These results show that insulin signaling can inhibit 5-HT2C receptor activity and suggest that MAP kinase may play a direct role in regulating the function of a specific GPCR.

  11. Tyrosine kinase activity of a chimeric insulin-like-growth-factor-1 receptor containing the insulin receptor C-terminal domain. Comparison with the tyrosine kinase activities of the insulin and insulin-like-growth-factor-1 receptors using a cell-free system.

    Science.gov (United States)

    Mothe, I; Tartare, S; Kowalski-Chauvel, A; Kaliman, P; Van Obberghen, E; Ballotti, R

    1995-03-15

    In a previous study, we showed that a chimeric insulin-like-growth-factor-1 (IGF-1) receptor, with the beta subunit C-terminal part of the insulin receptor was more efficient in stimulating glycogen synthesis and p44mapk activity compared to the wild-type IFG-1 receptor [Tartare, S., Mothe, I., Kowalski-Chauvel, A., Breittmayer, J.-P., Ballotti, R. & Van Obberghen, E. (1994) J. Biol. Chem. 269, 11449-11455]. These data indicate that the receptor C-terminal domain plays an important role in the transmission of biological effects. To understand the molecular basis of the differences in receptor specificity, we studied the characteristics of insulin, IGF-1 and chimeric receptor tyrosine kinase activities in a cell-free system. We found that, compared to wild-type insulin and IGF-1 receptors, the chimeric receptor showed a decrease in (a) autophosphorylation, (b) tyrosine kinase activity towards insulin receptor substrate-1 and the insulin receptor-(1142-1158)-peptide, and (c) the ability to activate phosphatidylinositol 3-kinase. However, for all the effects measured in a cell-free system, the chimeric receptor displayed an increased response to IGF-1 compared to the native IGF-1 receptor. Concerning the cation dependence of the tyrosine kinase activity, we showed that, at 10 mM Mg2+, the ligand-stimulated phosphorylation of poly(Glu80Tyr20) by both insulin receptor and chimeric receptor was increased by Mn2+. Conversely at 50 mM Mg2+, the chimeric receptor behaved like the IGF-1 receptor, since the presence of Mn2+ decreased the stimulatory effect of IGF-1 on their kinase activity. Furthermore, the Km of the chimeric receptor for ATP was increased compared to the wild-type receptors. These data demonstrate that the replacement of the C-terminal tail of the IGF-1 receptor by that of the insulin receptor has changed the receptor characteristics studied in a cell-free system. Our findings indicate that the C-terminal domain of the insulin receptor beta subunit plays a

  12. Effect of Insulin Analogues on Insulin/IGF1 Hybrid Receptors: Increased Activation by Glargine but Not by Its Metabolites M1 and M2

    OpenAIRE

    Cécile Pierre-Eugene; Patrick Pagesy; Tuyet Thu Nguyen; Marion Neuillé; Georg Tschank; Norbert Tennagels; Cornelia Hampe; Tarik Issad

    2012-01-01

    BACKGROUND: In diabetic patients, the pharmacokinetics of injected human insulin does not permit optimal control of glycemia. Fast and slow acting insulin analogues have been developed, but they may have adverse properties, such as increased mitogenic or anti-apoptotic signaling. Insulin/IGF1 hybrid receptors (IR/IGF1R), present in most tissues, have been proposed to transmit biological effects close to those of IGF1R. However, the study of hybrid receptors is difficult because of the presenc...

  13. Influence of berberine on protein tyrosine kinase of erythrocyte insulin receptors from type 2 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Xianglei Deng; Xinrong Li; Chenggong Tian

    2005-01-01

    Objective: Bererine has been used to treat type 2 diabetes mellitus in Chinese traditional medicine because of its hypoglycemic effect. In this report, we compared the intrinsic tyrosine kinase activities of erythrocyte insulin receptors from type 2 diabetes mellitus with or without stimulation by berberine in vitro. Methods: Preparations containing insulin receptors were obtained from soluble human erythrocytes, and the insulin receptors were partially purified by affinity chromatography. The tyrosine kinase activity was measured by the exogenous substrate phosphorylation. Results: Both the membrane tyrosine kinase activity and the purified receptor tyrosine kinase activity from diabetics decreased significantly compared with those of normal individuals (reduced by 67.4 % and 47.2 %, respectively).After incubation with berberine, there is a statistical difference in the activity of membrane tyrosine kinase for diabetic patients (a 150% increase). Bererine had no effect on the tyrosine kinase activity of purified insulin receptors. Conclusion: We concluded from these results that berberine was able to improve the insulin sensitivity by increasing the protein tyrosine kinase activity of membrane-bound insulin receptors from type 2 diabetes mellitus.

  14. Control of insulin receptor level in 3T3 cells: effect of insulin-induced down-regulation and dexamethasone-induced up-regulation on rate of receptor inactivation.

    OpenAIRE

    Knutson, V P; Ronnett, G V; Lane, M D

    1982-01-01

    Chronic exposure of 3T3 mouse fibroblasts to insulin or to the glucocorticoid dexamethasone induces down-regulation and up-regulation, respectively, of cell-surface and total cellular insulin binding capacity. Both processes are reversed upon withdrawal of the inducer. Scatchard analysis of insulin binding for receptors in the down- and up-regulated states indicates that the changes in binding capacity result primarily from alterations in insulin receptor level. That these alterations in tota...

  15. Appearance of insulin and insulin-like growth factor-I (IGF-I) receptors throughout the ontogeny of brown trout (Salmo trutta fario).

    Science.gov (United States)

    Maestro, M A; Méndez, E; Bayraktaroglu, E; Baños, N; Gutiérrez, J

    1998-06-01

    Insulin and IGF-I receptors were characterized in glycoprotein fractions prepared by affinity chromatography from different developmental stages of brown trout. The specificity of insulin and IGF-I binding was demonstrated by crossed-competition assays: unlabelled insulin displaced bound radiolabelled insulin at concentrations 45-fold lower than unlabelled IGF-I, whilst unlabelled IGF-I displaced bound radiolabelled IGF-I at concentrations 2,000-fold lower than unlabelled insulin. The affinity of these receptors did not change significantly during trout development. Insulin-specific binding was detectable 3 weeks after spawning, after which it increased to a maximum in fry weighing 0.4 g, and decreased progressively to adult levels. IGF-I specific binding was detectable in newly laid eggs and increased to a maximum during organogenesis in eyed eggs. It then decreased progressively during subsequent stages of development to adult levels. The apparent molecular weight (Mr) of the alpha-subunit of brown trout insulin and IGF-I receptors was smaller than that of the alpha-subunit of the rat insulin receptor. Receptor tyrosine kinase activity was stimulated in a dose-dependent manner by insulin and IGF-I. Insulin and IGF-I stimulated tyrosine kinase activity and reached a maximum of 201 +/- 17.6 and 240 +/- 29.6% of basal phosphorylation, respectively. PMID:10984307

  16. Activation of transforming potential of the human insulin receptor gene

    International Nuclear Information System (INIS)

    A retrovirus containing part of the human insulin receptor (hIR) gene was constructed by replacing ros sequences in the avian sarcoma virus UR2 with hIR cDNA sequences coding for 46 amino acids of the extracellular domain and the entire transmembrane and cytoplasmic domains of the β subunit of hIR. The resulting virus, named UIR, contains the hIR sequence fused to the 5' portion of the UR2 gag gene coding for p19. UIR is capable of transforming chicken embryo fibroblasts and promoting formation of colonies in soft agar; however, it does not form tumors in vivo. A variant that arose from the parental UIR is capable of efficiently inducing sarcomas in vivo. UIR-transformed cells exhibit higher rates of glucose uptake and growth than normal cells. The 4-kilobase UIR genome codes for a membrane-associated, glycosylated gag-hIR fusion protein of 75 kDa designated P75/sup gag-hir/. P75/sup gag-hir/ contains a protein tyrosine kinase activity that is capable of undergoing autophosphorylation and of phosphorylating foreign substrates in vitro; it is phosphorylated at both serine and tyrosine residues in vivo

  17. Activation of transforming potential of the human insulin receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.H.; Lin, B.; Jong, S.M.J.; Dixon, D.; Ellis, L.; Roth, R.A.; Rutter, W.J.

    1987-08-01

    A retrovirus containing part of the human insulin receptor (hIR) gene was constructed by replacing ros sequences in the avian sarcoma virus UR2 with hIR cDNA sequences coding for 46 amino acids of the extracellular domain and the entire transmembrane and cytoplasmic domains of the ..beta.. subunit of hIR. The resulting virus, named UIR, contains the hIR sequence fused to the 5' portion of the UR2 gag gene coding for p19. UIR is capable of transforming chicken embryo fibroblasts and promoting formation of colonies in soft agar; however, it does not form tumors in vivo. A variant that arose from the parental UIR is capable of efficiently inducing sarcomas in vivo. UIR-transformed cells exhibit higher rates of glucose uptake and growth than normal cells. The 4-kilobase UIR genome codes for a membrane-associated, glycosylated gag-hIR fusion protein of 75 kDa designated P75/sup gag-hir/. P75/sup gag-hir/ contains a protein tyrosine kinase activity that is capable of undergoing autophosphorylation and of phosphorylating foreign substrates in vitro; it is phosphorylated at both serine and tyrosine residues in vivo

  18. All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors

    Science.gov (United States)

    Mohammadiarani, Hossein; Vashisth, Harish

    2016-01-01

    The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane–solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane–solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor. PMID

  19. Altered insulin receptor signalling and β-cell cycle dynamics in type 2 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Franco Folli

    Full Text Available Insulin resistance, reduced β-cell mass, and hyperglucagonemia are consistent features in type 2 diabetes mellitus (T2DM. We used pancreas and islets from humans with T2DM to examine the regulation of insulin signaling and cell-cycle control of islet cells. We observed reduced β-cell mass and increased α-cell mass in the Type 2 diabetic pancreas. Confocal microscopy, real-time PCR and western blotting analyses revealed increased expression of PCNA and down-regulation of p27-Kip1 and altered expression of insulin receptors, insulin receptor substrate-2 and phosphorylated BAD. To investigate the mechanisms underlying these findings, we examined a mouse model of insulin resistance in β-cells--which also exhibits reduced β-cell mass, the β-cell-specific insulin receptor knockout (βIRKO. Freshly isolated islets and β-cell lines derived from βIRKO mice exhibited poor cell-cycle progression, nuclear restriction of FoxO1 and reduced expression of cell-cycle proteins favoring growth arrest. Re-expression of insulin receptors in βIRKO β-cells reversed the defects and promoted cell cycle progression and proliferation implying a role for insulin-signaling in β-cell growth. These data provide evidence that human β- and α-cells can enter the cell-cycle, but proliferation of β-cells in T2DM fails due to G1-to-S phase arrest secondary to defective insulin signaling. Activation of insulin signaling, FoxO1 and proteins in β-cell-cycle progression are attractive therapeutic targets to enhance β-cell regeneration in the treatment of T2DM.

  20. A Study on the Insulin Receptor of the Cultured Human Fibroblasts

    International Nuclear Information System (INIS)

    To evaluated the usefulness of cultured human fibroblast for insulin receptor assay, the authors cultured fibroblast from biopsied normal adult female eyelid skin and assayed the insulin receptor with radioreceptor assay method. From the data obtained, percent of labeled insulin bound, numbers of insulin binding sites, affinity constants(Ka) and affinity of the empty sites(Ke) were calculated. The results were as follow; 1) The percent radioactivity bound of cultured fibroblast reached plateau at 4 hours 15 .deg. C incubation. 2) The scatchard plot of insulin binding to cultured human fibroblast was curvilinear and the affinity to receptor was decreased with increased receptor occupancy. 3) The numbers of high affinity, low affinity and total insulin receptor of cultured fibroblasts were 852, 24,800 and 25,652 sites per cell. 4) High and low affinity constants of cultured fibroblasts were 3.4 X 1010M-1, and l.08 X 108M-1, and the affinity of empty site was 5.0 X 108M-1.

  1. Structural differences between liver- and muscle-derived insulin receptors in rats

    International Nuclear Information System (INIS)

    The structure of insulin receptors, solubilized from rat skeletal muscle and liver, was studied. The α subunit was identified by specific cross-linking to A14 125I-insulin with disuccinimidyl suberate. Muscle- and liver-derived α subunits migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a M/sub r/ of 131,000 and 135,000, respectively. There was no significant difference in insulin binding affinity. Treatment of cross-linked, immunoprecipitated receptors with either neuraminidase or endoglycosidase H decreased the M/sub r/ of muscle- and liver-derived α subunits but did not affect the difference in M/sub r/. Autophosphorylated β subunits migrated with a M/sub r/ of 98,000 for muscle and 101,000 for liver. After partial V8 digestion of autophosphorylated, immunoprecipitated receptors the major phosphopeptide fragment migrated on SDS-PAGE at M/sub r/ 57,000 from muscle and 60,000 from liver. Glycosidase digestion of autophosphorylated receptors suggested that M/sub r/ heterogeneity was due in part to differences in the sialic acid content of β subunits. Muscle and liver are the major target organs of insulin; the apparent heterogeneity of insulin receptor structure may be relevant to tissue-specific differences in insulin action

  2. Antibody-induced down-regulation of a mutated insulin receptor lacking an intact cytoplasmic domain

    International Nuclear Information System (INIS)

    Insulin receptor down-regulation was studied in various Chinese hamster ovary (CHO) cell lines expressing transfected human insulin receptor cDNAs. In addition to a cell line expressing the normal receptor (CHO.T line), three lines expressing mutated receptors were studied: the CHO.T-t line, which expresses a receptor with a degraded cytoplasmic domain due to the removal of the C-terminal 112 amino acids, and the CHO.YF1 and CHO.YF3 lines, in which important autophosphorylation sites of the receptor kinase (tyrosines-1162 and -1163) have been replaced by phenylalanine. A monoclonal anti-receptor antibody, but not insulin itself, was found to down-regulate cell surface receptor levels in all four cell lines by 60-80% after 18-h treatment at 370C. Down-regulation of the CHO.T and CHO.T-t receptors occurred at similar antibody concentrations and with a similar time course, although the maximum level of CHO.T-t down-regulation (60%) was generally lower than the level of CHO.T down-regulation (80%). Pulse-chase labeling of these two cell types with [35S]methionine revealed that antibody treatment of both CHO.T and CHO.T-t cells resulted in a similar increase in the rate of degradation of mature receptor subunits. These results indicate that antibody-induced down-regulation of the insulin receptor in these cells can occur in the absence of various autophosphorylation sites of the receptor and that the mechanism of antibody-induced down-regulation is different from that for insulin

  3. Unique expression pattern of the three insulin receptor family members in the rat mammary gland

    DEFF Research Database (Denmark)

    Hvid, Henning; Klopfleisch, Robert; Vienberg, Sara Gry; Hansen, Bo F.; Thorup, Inger; Jensen, Henrik Elvang; Oleksiewicz, Martin B.

    2011-01-01

    mammary gland. Using laser micro-dissection, quantitative RT-PCR and immunohistochemistry, we examined the expression of IR (insulin receptor), IGF-1R (IGF-1 receptor), IRR (insulin receptor-related receptor), ERα (estrogen receptor alpha), ERβ (estrogen receptor beta) and PR (progesteron receptor) in...... young, virgin, female Sprague-Dawley rats and compared to expression in reference organs. The mammary gland displayed the highest expression of IRR and IGF-1R. In contrast, low expression of IR transcripts was observed in the mammary gland tissue with expression of the IR-A isoform being 5-fold higher...... than the expression of the IR-B. By immunohistochemistry, expression of IR and IGF-1R was detected in all mammary gland epithelial cells. Expression of ERα and PR was comparable between mammary gland and ovary, whereas expression of ERβ was lower in mammary gland than in the ovary. Finally, expression...

  4. Coordinate phosphorylation of insulin-receptor kinase and its 175,000-Mr endogenous substrate in rat hepatocytes

    International Nuclear Information System (INIS)

    To investigate the early events in insulin signal transmission in liver, isolated rat hepatocytes were labeled with 32P, and proteins phosphorylated in response to insulin were detected by immunoprecipitation with anti-phosphotyrosine and anti-receptor antibodies and analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and autoradiography. In these cells, insulin rapidly stimulated tyrosine phosphorylation of the 95,000-Mr beta-subunit of the insulin receptor and a 175,000-Mr phosphoprotein (pp175). Both proteins were precipitated by anti-phosphotyrosine antibody, whereas only the insulin receptor was recognized with anti-insulin-receptor antibody. In the insulin-stimulated state, both pp175 and the receptor beta-subunit were found to be phosphorylated on tyrosine and serine residues. Based on precipitation by the two antibodies, receptor phosphorylation was biphasic with an initial increase in tyrosine phosphorylation followed by a more gradual increase in serine phosphorylation over the first 30 min of stimulation. The time course of phosphorylation of pp175 was rapid and paralleled that of the beta-subunit of the insulin receptor. The pp175 was clearly distinguished from the insulin receptor, because it was detected only when boiling SDS was used to extract cellular phosphoproteins, whereas the insulin receptor was extracted with either Triton X-100 or SDS. In addition, the tryptic peptide maps of the two proteins were distinct. The dose-response curve for insulin stimulation was shifted slightly to the left of the insulin receptor, suggesting some signal amplification at this step. These data suggest that pp175 is a major endogenous substrate of the insulin receptor in liver and may be a cytoskeletal-associated protein

  5. Importance of the character and configuration of residues B24, B25, and B26 in insulin-receptor interactions

    International Nuclear Information System (INIS)

    By use of isolated canine hepatocytes and insulin analogs prepared by trypsin-catalyzed semisynthesis, we have investigated the importance of the aromatic triplet PheB24-PheB25-TyrB26 of the COOH-terminal B-chain domain of insulin in directing the affinity of insulin-receptor interactions. Analysis of the receptor binding potencies of analogs bearing transpositions or replacements (by Tyr, D-Tyr or their corresponding 3,5-diiodo derivatives) in this region demonstrates a wide divergence in the acceptance both of configurational change (with [D-TyrB24,PheB26]insulin and [D-TyrB25,PheB26]insulin exhibiting 160 and 0.1% of the receptor binding potency of insulin, respectively) and of detailed side chain structure (with [TyrB24,PheB26]insulin and [TyrB25,PheB26]insulin exhibiting 2 and 80% of the receptor binding potency of insulin, respectively). Additional experiments addressed the solvent accessibilities of the 4 tyrosine residues of insulin and the insulin analogs at selected peptide concentrations by use of analytical radioiodination. Whereas two analogs ([TyrB25,PheB26]insulin and [D-TyrB24,PheB26]insulin) were found to undergo self aggregation, no strict correlation was found between the ability of an analog to aggregate and its potency for interaction with the insulin receptor. Related findings are discussed in terms of the interplay between side chain and main chain structure in the COOH-terminal domain of the insulin B-chain and the structural attributes of insulin that determine the affinity of insulin-receptor interactions

  6. Partial rescue of in vivo insulin signalling in skeletal muscle by impaired insulin clearance in heterozygous carriers of a mutation in the insulin receptor gene

    DEFF Research Database (Denmark)

    Højlund, K.; Wojtaszewski, Jørgen; Birk, Jesper Bratz;

    2006-01-01

    AIMS/HYPOTHESIS: Recently we reported the coexistence of postprandial hypoglycaemia and moderate insulin resistance in heterozygous carriers of the Arg1174Gln mutation in the insulin receptor gene (INSR). Controlled studies of in vivo insulin signalling in humans with mutant INSR are unavailable,...

  7. Endocytotic uptake, processing, and retroendocytosis of human biosynthetic proinsulin by rat fibroblasts transfected with the human insulin receptor gene.

    OpenAIRE

    Levy, J R; Ullrich, A; Olefsky, J M

    1988-01-01

    The cellular itinerary and processing of insulin and proinsulin were studied to elucidate possible mechanisms for the observed in vivo differences in the biologic half-lives of these two hormones. A rat fibroblast cell line transfected with a normal human insulin receptor gene was used. Due to gene amplification, the cells express large numbers of receptors and are ideal for studying a ligand, such as proinsulin, that has a low affinity for the insulin receptor. Competitive binding at 4 degre...

  8. Electrophoretic resolution of three major insulin receptor structures with unique subunit stoichiometries.

    OpenAIRE

    Massague, J; Pilch, P F; Czech, M P

    1980-01-01

    Plasma membrane insulin receptors, affinity labeled by covalent crosslinking to receptor-bound 125I-labeled insulin, are shown to appear as a heterogeneous population of three major disulfide-linked complexes (Mr 350,000, 320,000, and 290,000) upon electrophoresis in highly porous dodecyl sulfate/polyacrylamide gels in the absence of reductant. This pattern is consistent in all rat and human tissues that were analyzed. Upon reduction of disulfide bonds, each of these receptor structures is di...

  9. Functional characterization of autophosphorylation sites of the activated insulin receptor-tyrosine kinase

    International Nuclear Information System (INIS)

    Insulin receptor, solubilized from 3T3-L1 cellular membranes and then purified, was autophosphorylated with [γ-32P]ATP in the absence or presence of insulin. Specific phosphopeptides generated by trypsin digestion of the 32P-labeled β-subunit were identified and separated by reverse phase HPLC. In the absence of insulin, radioactivity of the phosphopeptides is evenly distributed among four major peaks designated as sites I, II, III and IV, according to their order of elution. This pattern is maintained for at least the first 30 min of autophosphorylation. When the reaction is carried out in the presence of insulin, > 50% of the total 32P radioactivity is found in site I and the rate of 32P incorporation into this site is markedly higher than into sites II, III and IV. Maximal activation of tyrosine kinase activity, as estimated by substrate phosphorylation, is coincident with the nearly complete phosphorylation of site I. Delayed activation of previously autophosphorylated receptor by insulin, but not by EGF or IGF-I, produced a similar pattern where phosphorylated site I predominates. These observations indicate that one major insulin-regulated autophosphorylation site in the β-subunit is responsible for activation of the insulin receptor tyrosine kinase. The isolation of this phosphopeptide on a preparative scale and its characterization are now in progress

  10. Functional characterization of autophosphorylation sites of the activated insulin receptor-tyrosine kinase

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Riveros, J.R.; Lane, M.D.

    1987-05-01

    Insulin receptor, solubilized from 3T3-L1 cellular membranes and then purified, was autophosphorylated with (..gamma..-/sup 32/P)ATP in the absence or presence of insulin. Specific phosphopeptides generated by trypsin digestion of the /sup 32/P-labeled ..beta..-subunit were identified and separated by reverse phase HPLC. In the absence of insulin, radioactivity of the phosphopeptides is evenly distributed among four major peaks designated as sites I, II, III and IV, according to their order of elution. This pattern is maintained for at least the first 30 min of autophosphorylation. When the reaction is carried out in the presence of insulin, > 50% of the total /sup 32/P radioactivity is found in site I and the rate of /sup 32/P incorporation into this site is markedly higher than into sites II, III and IV. Maximal activation of tyrosine kinase activity, as estimated by substrate phosphorylation, is coincident with the nearly complete phosphorylation of site I. Delayed activation of previously autophosphorylated receptor by insulin, but not by EGF or IGF-I, produced a similar pattern where phosphorylated site I predominates. These observations indicate that one major insulin-regulated autophosphorylation site in the ..beta..-subunit is responsible for activation of the insulin receptor tyrosine kinase. The isolation of this phosphopeptide on a preparative scale and its characterization are now in progress.

  11. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela [Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic); Watson, Christopher J.; Turkenburg, Johan P. [The University of York, Heslington, York YO10 5DD (United Kingdom); Jiráček, Jiří [Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic); Brzozowski, Andrzej M., E-mail: marek.brzozowski@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom); Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic)

    2014-10-01

    [AsnB26]- and [GlyB26]-insulin mutants attain a B26-turn like fold without assistance of chemical modifications. Their structures match the insulin receptor interface and expand the spectrum of insulin conformations. The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.

  12. Design of a selective insulin receptor tyrosine kinase inhibitor and its effect on glucose uptake and metabolism in intact cells

    International Nuclear Information System (INIS)

    An inhibitor of the insulin receptor tyrosine kinase (IRTK), (hydroxy-2-napthalenylmethyl)phosphonic acid, was designed and synthesized and was shown to be an inhibitor of the biological effects of insulin in vitro. With a wheat germ purified human placental insulin receptor preparation, this compound inhibited the insulin-stimulated autophosphorylation of the 95-kDa β-subunit of the insulin receptor. The ability of the kinase to phosphorylate an exogenous peptide substrate, angiotensin II, was also inhibited. Half-maximal inhibition of basal and insulin-stimulated human placental IRTK activity was found at concentrations of 150 and 100 μM, respectively, with 2 mM angiotensin II as the peptide substrate. The inhibitor was found to be specific for tyrosine kinases over serine kinases and noncompetitive with ATP. The inhibitor was converted into various (acyloxy)methyl prodrugs in order to achieve permeability through cell membranes. These prodrugs inhibited insulin-stimulated autophosphorylation of the insulin receptor 95-kDa β-subunit in intact CHO cells transfected with human insulin receptor. Inhibition of insulin-stimulated glucose oxidation in isolated rat adipocytes and 2-deoxyglucose uptake into CHO cells was observed with these prodrugs. The data provide additional evidence for the involvement of the insulin receptor tyrosine kinase in the regulation of glucose uptake and metabolism. These results and additional data reported herein suggest that this class of prodrugs and inhibitors will be useful for modulating the activity of a variety of tyrosine kinases

  13. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    International Nuclear Information System (INIS)

    [AsnB26]- and [GlyB26]-insulin mutants attain a B26-turn like fold without assistance of chemical modifications. Their structures match the insulin receptor interface and expand the spectrum of insulin conformations. The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms

  14. The insulin receptor as a transmitter of a mitogenic signal in Chinese hamster ovary CHO-K1 cells

    International Nuclear Information System (INIS)

    Insulin is the only hormone required for continued growth of Chinese hamster ovary CHO-K1 cells in the defined medium M-F12. When CHO-K1 cells are incubated in M-F12 without insulin for 48-72 hr, the cells accumulate in G1. In response to physiological concentrations of insulin an 18-fold increase in rate of DNA synthesis occurs due to cells entering S phase after an 8- to 10-hr lag; cell division begins after 24 hr. The inhibitory effect of actinomycin D and 5,6-dichlorobenzimidazole riboside indicates that RNA synthesis is required for progression to S phase. CHO-K1 cells possess insulin receptors, and the insulin effect results from insulin binding to its own receptor: (i) binding occurs at physiological insulin concentrations with a half-maximal stimulation at ∼ 14 ng/ml. (ii) At insulin concentrations used, insulin-like growth factor I and II (IGF-I and IGF-II) have little or no effect. (iii) Scatchard analysis of 125I-labeled insulin binding shows the curvilinear response typical of insulin. (iv) The Kd for the so-called high-affinity binding site and the Ke are characteristic of the insulin receptor. (v) At the minimal insulin concentrations that stimulate growth, IGF-I and IGF-II compete poorly with insulin for insulin binding, insulin competes poorly with IGF-I for IGF-I binding, and affinity labeling with 125I-labeled insulin identifies as polypeptide typical of the α subunit of the insulin receptor

  15. Insulin receptor activation and down-regulation by cationic lipid transfection reagents

    Directory of Open Access Journals (Sweden)

    Renström Ing-Marie

    2004-01-01

    Full Text Available Abstract Background Transfection agents comprised of cationic lipid preparations are widely used to transfect cell lines in culture with specific recombinant complementary DNA molecules. We have found that cells in culture are often resistant to stimulation with insulin subsequent to treatment with transfection agents such as LipofectAMINE 2000™ and FuGENE-6™. This is seen with a variety of different readouts, including insulin receptor signalling, glucose uptake into muscle cells, phosphorylation of protein kinase B and reporter gene activity in a variety of different cell types Results We now show that this is due in part to the fact that cationic lipid agents activate the insulin receptor fully during typical transfection experiments, which is then down-regulated. In attempts to circumvent this problem, we investigated the effects of increasing concentrations of LipofectAMINE 2000™ on insulin receptor phosphorylation in Chinese hamster ovary cells expressing the human insulin receptor. In addition, the efficiency of transfection that is supported by the same concentrations of transfection reagent was studied by using a green fluorescent protein construct. Our data indicate that considerably lower concentrations of LipofectAMINE 2000™ can be used than are recommended by the manufacturers. This is without sacrificing transfection efficiency markedly and avoids the problem of reducing insulin receptor expression in the cells. Conclusion Widely-used cationic lipid transfection reagents cause a state of insulin unresponsiveness in cells in culture due to fully activating and subsequently reducing the expression of the receptor in cells. This phenomenon can be avoided by reducing the concentration of reagent used in the transfection process.

  16. Effect of hypothermia on the insulin-receptor interaction in skeletal muscle plasma membranes

    International Nuclear Information System (INIS)

    The aim of the study was to investigate the effect of hypothermia on (125-I)-insulin binding to rat skeletal muscle membranes and to determine whether the decrease in blood insulin concentration could be related to changes in the number or in the affinity of insulin receptor sites according to the down-regulation theory. Rat skeletal muscle membranes were prepared from control, normothermic rats (Tr = 35.6 ± 0.3 degree C) and hypothermic rats (Tr = 26.0 ± 0.5 deg C) and purified according to Havrankowa. In order to determine the kinetic parameters of the hormone-receptor interaction the data from the competition binding studies were analysed by the method of Scatchard using the LIGAND Pc.v.3.1. computer program of Munson and Rodbard. We have shown that under hypothermic conditions insulin receptors number is significantly increased in specific hindlimb skeletal muscles but the changes take place mainly in the low affinity receptors class. The phenomenon probably results from the lack of spare high affinity insulin receptors in skeletal muscle as shown recently by Camps et al. (author). 36 refs., 3 figs, 2 tabs

  17. Expression of insulin receptor spliced variants and their functional correlates in muscle from patients with non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Hansen, Torben; Bjørbaek, C; Vestergaard, H;

    1993-01-01

    Due to alternative splicing of exon 11 of the receptor gene, the human insulin receptor exists in two forms, that have distinct tissue-specific expression and are functionally different. Needle biopsies obtained from vastus lateralis muscle from 20 patients with noninsulin-dependent diabetes...... mellitus (NIDDM) and 20 normal control subjects were analyzed for the relative expression of insulin receptor mRNA variants in a novel assay using fluorescence-labeled primers and subsequent analysis on an automated DNA sequencer. In subgroups of patients and control subjects, insulin binding and tyrosine...

  18. Disruption of growth hormone receptor prevents calorie restriction from improving insulin action and longevity.

    Directory of Open Access Journals (Sweden)

    Michael S Bonkowski

    Full Text Available Most mutations that delay aging and prolong lifespan in the mouse are related to somatotropic and/or insulin signaling. Calorie restriction (CR is the only intervention that reliably increases mouse longevity. There is considerable phenotypic overlap between long-lived mutant mice and normal mice on chronic CR. Therefore, we investigated the interactive effects of CR and targeted disruption or knock out of the growth hormone receptor (GHRKO in mice on longevity and the insulin signaling cascade. Every other day feeding corresponds to a mild (i.e. 15% CR which increased median lifespan in normal mice but not in GHRKO mice corroborating our previous findings on the effects of moderate (30% CR on the longevity of these animals. To determine why insulin sensitivity improves in normal but not GHRKO mice in response to 30% CR, we conducted insulin stimulation experiments after one year of CR. In normal mice, CR increased the insulin stimulated activation of the insulin signaling cascade (IR/IRS/PI3K/AKT in liver and muscle. Livers of GHRKO mice responded to insulin by increased activation of the early steps of insulin signaling, which was dissipated by altered PI3K subunit abundance which putatively inhibited AKT activation. In the muscle of GHRKO mice, there was elevated downstream activation of the insulin signaling cascade (IRS/PI3K/AKT in the absence of elevated IR activation. Further, we found a major reduction of inhibitory Ser phosphorylation of IRS-1 seen exclusively in GHRKO muscle which may underpin their elevated insulin sensitivity. Chronic CR failed to further modify the alterations in insulin signaling in GHRKO mice as compared to normal mice, likely explaining or contributing to the absence of CR effects on insulin sensitivity and longevity in these long-lived mice.

  19. Angiotensin II Receptor Blocker Ameliorates Stress-Induced Adipose Tissue Inflammation and Insulin Resistance

    OpenAIRE

    Motoharu Hayashi; Kyosuke Takeshita; Yasuhiro Uchida; Koji Yamamoto; Ryosuke Kikuchi; Takayuki Nakayama; Emiko Nomura; Xian Wu Cheng; Tadashi Matsushita; Shigeo Nakamura; Toyoaki Murohara

    2014-01-01

    A strong causal link exists between psychological stress and insulin resistance as well with hypertension. Meanwhile, stress-related responses play critical roles in glucose metabolism in hypertensive patients. As clinical trials suggest that angiotensin-receptor blocker delays the onset of diabetes in hypertensive patients, we investigated the effects of irbesartan on stress-induced adipose tissue inflammation and insulin resistance. C57BL/6J mice were subjected to 2-week intermittent restra...

  20. The insulin receptor substrate 1 (irs1) in intestinal epithelial differentiation and in colorectal cancer.

    OpenAIRE

    Esposito, DL; Aru, F; Lattanzio, R; Morgano, A.; Abbondanza, M; Malekzadeh, R; BISHEHSARI F; Valanzano, R; Russo, A; Piantelli, M; Moschetta, A; Lotti, LV; MARIANI-COSTANTINI R

    2012-01-01

    Colorectal cancer (CRC) is associated with lifestyle factors that affect insulin/IGF signaling, of which the insulin receptor substrate 1 (IRS1) is a key transducer. We investigated expression, localization and pathologic correlations of IRS1 in cancer-uninvolved colonic epithelium, primary CRCs with paired liver metastases and in vitro polarizing Caco2 and HT29 cells. IRS1 mRNA and protein resulted higher, relative to paired mucosa, in adenomas of familial adenomatous polyposis patients and ...

  1. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome

    OpenAIRE

    Kadowaki, Takashi; Yamauchi, Toshimasa; KUBOTA, Naoto; Hara, Kazuo; Ueki, Kohjiro; Tobe, Kazuyuki

    2006-01-01

    Adiponectin is an adipokine that is specifically and abundantly expressed in adipose tissue and directly sensitizes the body to insulin. Hypoadiponectinemia, caused by interactions of genetic factors such as SNPs in the Adiponectin gene and environmental factors causing obesity, appears to play an important causal role in insulin resistance, type 2 diabetes, and the metabolic syndrome, which are linked to obesity. The adiponectin receptors, AdipoR1 and AdipoR2, which mediate the antidiabetic ...

  2. Mammary tumorigenesis and metastasis caused by overexpression of insulin receptor substrate 1 (IRS-1) or IRS-2

    Science.gov (United States)

    Insulin receptor substrates (IRSs) are signaling adaptors that play a major role in the metabolic and mitogenic actions of insulin and insulin-like growth factors. Reports have recently noted increased levels, or activity, of IRSs in many human cancers, and some have linked this to poor patient prog...

  3. Replacement of insulin receptor tyrosine residues 1162 and 1163 does not alter the mitogenic effect of the hormone

    International Nuclear Information System (INIS)

    Chinese hamster ovary transfectants that express insulin receptors in which tyrosine residues 1162 and 1163 were replaced by phenylalanine exhibit a total inhibition of the insulin-mediated tyrosine kinase activity toward exogenous substrates; this latter activity is associated with total inhibition of the hypersensitivity reported for insulin in promoting 2-deoxyglucose uptake. The authors now present evidence that the twin tyrosines also control the insulin-mediated stimulation of glycogen synthesis. Surprisingly, this type of Chinese hamster ovary transfectant is as hypersensitive to insulin for its mitogenic effect as are Chinese hamster ovary cells expressing many intact insulin receptors. Such data suggest that (i) the insulin mitogenic effect routes through a different pathway than insulin uses to activate the transport and metabolism of glucose and (ii) the mitogenic effect of insulin is not controlled by the twin tyrosines. At the molecular level, the solubilized mutated receptor has not insulin-dependent tyrosine kinase activity, whereas this receptor displays measurable insulin-stimulated phosphorylation of its β subunit in 32P-labeled cells. The authors therefore propose that the autocatalytic phosphorylating activity of the receptor reports a cryptic tyrosine kinase activity that cannot be visualized by the use of classical exogenous substrates

  4. Context-dependent regulation of feeding behaviour by the insulin receptor, DAF-2, in Caenorhabditis elegans.

    Science.gov (United States)

    Dillon, James; Holden-Dye, Lindy; O'Connor, Vincent; Hopper, Neil A

    2016-06-01

    Insulin signalling plays a significant role in both developmental programmes and pathways modulating the neuronal signalling that controls adult behaviour. Here, we have investigated insulin signalling in food-associated behaviour in adult C. elegans by scoring locomotion and feeding on and off bacteria, the worm's food. This analysis used mutants (daf-2, daf-18) of the insulin signalling pathway, and we provide evidence for an acute role for insulin signalling in the adult nervous system distinct from its impact on developmental programmes. Insulin receptor daf-2 mutants move slower than wild type both on and off food and showed impaired locomotory responses to food deprivation. This latter behaviour is manifest as a failure to instigate dispersal following prolonged food deprivation and suggests a role for insulin signalling in this adaptive response. Insulin receptor daf-2 mutants are also deficient in pharyngeal pumping on food and off food. Pharmacological analysis showed the pharynx of daf-2 is selectively compromised in its response to 5-HT compared to the excitatory neuropeptide FLP-17. By comparing the adaptive pharyngeal behaviour in intact worms and isolated pharyngeal preparations, we determined that an insulin-dependent signal extrinsic to the pharyngeal system is involved in feeding adaptation. Hence, we suggest that reactive insulin signalling modulates both locomotory foraging and pharyngeal pumping as the animal adapts to the absence of food. We discuss this in the context of insulin signalling directing a shift in the sensitivity of neurotransmitter systems to regulate the worm's response to changes in food availability in the environment. PMID:27209024

  5. Label-Free Proteomic Identification of Endogenous, Insulin-Stimulated Interaction Partners of Insulin Receptor Substrate-1

    Science.gov (United States)

    Geetha, Thangiah; Langlais, Paul; Luo, Moulun; Mapes, Rebekka; Lefort, Natalie; Chen, Shu-Chuan; Mandarino, Lawrence J.; Yi, Zhengping

    2011-03-01

    Protein-protein interactions are key to most cellular processes. Tandem mass spectrometry (MS/MS)-based proteomics combined with co-immunoprecipitation (CO-IP) has emerged as a powerful approach for studying protein complexes. However, a majority of systematic proteomics studies on protein-protein interactions involve the use of protein overexpression and/or epitope-tagged bait proteins, which might affect binding stoichiometry and lead to higher false positives. Here, we report an application of a straightforward, label-free CO-IP-MS/MS method, without the use of protein overexpression or protein tags, to the investigation of changes in the abundance of endogenous proteins associated with a bait protein, which is in this case insulin receptor substrate-1 (IRS-1), under basal and insulin stimulated conditions. IRS-1 plays a central role in the insulin signaling cascade. Defects in the protein-protein interactions involving IRS-1 may lead to the development of insulin resistance and type 2 diabetes. HPLC-ESI-MS/MS analyses identified eleven novel endogenous insulin-stimulated IRS-1 interaction partners in L6 myotubes reproducibly, including proteins play an important role in protein dephosphorylation [protein phosphatase 1 regulatory subunit 12A, (PPP1R12A)], muscle contraction and actin cytoskeleton rearrangement, endoplasmic reticulum stress, and protein folding, as well as protein synthesis. This novel application of label-free CO-IP-MS/MS quantification to assess endogenous interaction partners of a specific protein will prove useful for understanding how various cell stimuli regulate insulin signal transduction.

  6. Insulin-stimulated Na+ transport in a model renal epithelium: protein synthesis dependence and receptor interactions

    International Nuclear Information System (INIS)

    The urinary bladder of the toad, Bufo marinus, is a well characterized model of the mammalian distal nephron. Porcine insulin (∼ 0.5-5.0 μM) stimulates net mucosal to serosal Na+ flux within 10 minutes of hormone addition. The response is maintained for at least 5 hr and is completely abolished by low doses (10μM) of the epithelial Na+ channel blocker amiloride. Insulin-stimulated Na+ transport does not require new protein synthesis since it is actinomycin-D (10μg/ml) insensitive. Also in 3 separate experiments in which epithelial cell proteins were examined by 35S-methionine labeling, 2-dimensional polyacrylamide gel electrophoresis/autoradiography, no insulin induced proteins were observed. Equimolar concentrations of purified porcine proinsulin and insulin (0.64μM) stimulate Na+ transport to the same extent. Thus, the putative toad insulin receptor may have different affinity characteristics than those demonstrated for insulin and proinsulin in mammalian tissues. Alternatively, the natriferic action of insulin in toad urinary bladders may be mediated by occupancy of another receptor. Preliminary experiments indicating that nanomolar concentrations of IGF1 stimulate Na+ transport in this tissue support the latter contention

  7. Resistin does not down-regulate the transcription of insulin receptor promoter

    Institute of Scientific and Technical Information of China (English)

    Xiao-zhi QIAO; Xian-feng WANG; Zhe-rong XU; Yun-mei YANG

    2008-01-01

    Objective: To detect the effect of resistin on the transcription of insulin receptor promoter. Methods: Luciferase reporter gene was fused downstream of human insulin receptor promoter and the enzymatic activity of luciferase was determined in the presence or absence of resistin. The resistin expressed with plasmid was stained with antibody against Myc tag which was in frame fused with resistin coding sequence, and then imaged with confocal microscopy. Results: The treatment of pIRP-LUC transfected cells with recombinant resistin did not result in significant difference in the enzymatic activity of luciferase compared to the untreated cells. Cell staining showed that green fluorescence could be observed in the cytoplasm, but not in the nucleus. Conclusion: The results suggest that the endogenous resistin may functionally locate in the cytoplasm, but does not enter the nucleus and not down-regulate the transcription of insulin receptor promoter.

  8. Polymorphisms of Exon 17 of Insulin-Receptor Gene in Pathogenesis of Human Disorders With Insulin Resistance

    Institute of Scientific and Technical Information of China (English)

    LU WANG; JIE MI; XIAO-YUAN ZHAO; JIAN-XIN WU; HONG CHENG; ZHI-KUN ZHANG; XIU-YUAN DING; DONG-QING HOU; HUILI

    2004-01-01

    To investigate the relationship between polymorphisms of insulin-receptor (INSR) gene and insulin resistance in a population-based study in China. Methods Polymerase Chain Reaction (PCR) was used to the amplify Exon 17 of INSR gene and all amplified products were analyzed by direct sequencing. Results Six single-nucleotide polymorphisms (SNPs) were found at the following loci: T to TC at the locus of 10699 (Tyr984), G to GC at the locus of 10731 (Glu994), Deletion G at the locus of 10798 (Asp1017), C to T/TC at the locus of 10923 (His1058), C to CA at the locus of 10954 (Leu1069), and T to TA at the locus of 10961 (Phe1071), which might not change the amino acid sequence. The data were in agreement with the test of Hardy-Weinberg balance (P>0.05). Among the 345 cases, all clinical indices were higher in males than in females except for HDL cholesterol (P0.05). After sex stratification in analysis,all allele frequencies on the six loci of SNPs of Exon 17 had different distributions between the insulin resistant group and the control group, but P>0.05. Conclusion SNPs of Exon 17 of INSR gene are unlikely to play a direct role in the pathogenesis of human disorders with insulin resistance.

  9. Expression of a functional human insulin receptor from a cloned cDNA in Chinese hamster ovary cells.

    OpenAIRE

    Ebina, Y; Edery, M; Ellis, L; Standring, D; Beaudoin, J; Roth, R A; Rutter, W J

    1985-01-01

    We have placed human insulin receptor cDNA into a vector under the control of the simian virus 40 (SV40) early promoter and tested its function by transient expression in microinjected Xenopus oocytes and by expression in stably transformed CHO cells. The precursor and the alpha and beta subunits of the receptor were detected by immunoprecipitation from extracts of these cells. The human insulin receptor expressed in CHO cells specifically binds 125I-labeled insulin but not insulin-like growt...

  10. Association of the insulin-receptor variant Met-985 with hyperglycemia and non-insulin-dependent diabetes mellitus in the Netherlands: A population-based study

    Energy Technology Data Exchange (ETDEWEB)

    `t Hart, L.M.; Maassen, J.A. [Leiden Univ. (Netherlands); Does, F.E.E. van der [Free Univ., Amsterdam (Netherlands)] [and others

    1996-11-01

    One of the characteristics of non-insulin-dependent diabetes mellitus (NIDDM) is the presence of insulin. Most NIDDM patients have a normal sequence of the insulin receptor, indicating that, if insulin-receptor mutations contribute to the development of NIDDM, they will be present only in a minor fraction of the NIDDM population. The goal of the present study was to examine whether insulin-receptor mutations contribute to the development of NIDDM. We examined 161 individuals with NIDDM and 538 healthy controls from the population-based Rotterdam study for the presence of mutations in the insulin-receptor gene by SSCP. A heterozygous mutation changing valine-985 into methionine was detected in 5.6% of diabetic subjects and in 1.3% of individuals with normal oral glucose tolerance test. Adjusted for age, gender, and body-mass index, this revealed a relative risk for diabetes of 4.49 (95% confidence interval 1.59-12.25) for Met-985 carriers. When the total study group was analyzed, the prevalence of the mutation increased with increasing serum glucose levels (test for trend P < .005). We conclude that the Met-985 insulin-receptor variant associates with hyperglycemia and represents a risk factor for NIDDM. 30 refs., 3 figs., 1 tab.

  11. Role of the Insulin-Like Growth Factor Type 1 Receptor in the Pathogenesis of Diabetic Encephalopathy

    OpenAIRE

    Duo Zhang; Shuang Jiang; Heng Meng

    2015-01-01

    Defective cognitive function is common in patients with diabetes, suggesting that insulin normally exerts anabolic actions in neuron, namely, diabetic encephalopathy. However, because insulin can cross-activate the insulin-like growth factor type 1 receptor (IGF-1R), which also functions in most of tissues, such as muscle and bone, it has been difficult to establish the direct (IGF-1-independent) actions of insulin in the pathogenesis of diabetic encephalopathy. To overcome this problem, we e...

  12. NOVEL ROLES FOR INSULIN RECEPTOR (IR) IN ADIPOCYTES AND SKELETAL MUSCLE CELLS VIA NEW AND UNEXPECTED SUBSTRATES

    OpenAIRE

    Ramalingam, Latha; Oh, Eunjin; Thurmond, Debbie C.

    2012-01-01

    The insulin signaling pathway regulates whole-body glucose homeostasis by transducing extracellular signals from the insulin receptor (IR) to downstream intracellular targets, thus coordinating a multitude of biological functions. Dysregulation of IR or its signal transduction is associated with insulin resistance, which may culminate in type 2 diabetes (T2D). Following initial stimulation of IR, insulin signaling diverges into different pathways, activating multiple substrates which have rol...

  13. Direct Angiotensin II Type 2 Receptor Stimulation Ameliorates Insulin Resistance in Type 2 Diabetes Mice with PPARγ Activation

    DEFF Research Database (Denmark)

    Ohshima, Kousei; Mogi, Masaki; Jing, Fei;

    2012-01-01

    The role of angiotensin II type 2 (AT(2)) receptor stimulation in the pathogenesis of insulin resistance is still unclear. Therefore we examined the possibility that direct AT(2) receptor stimulation by compound 21 (C21) might contribute to possible insulin-sensitizing/anti-diabetic effects in type...... 2 diabetes (T2DM) with PPARγ activation, mainly focusing on adipose tissue....

  14. When Intensive Insulin Therapy (MDI) Fails in Patients With Type 2 Diabetes: Switching to GLP-1 Receptor Agonist Versus Insulin Pump.

    Science.gov (United States)

    Cohen, Ohad; Filetti, Sebastiano; Castañeda, Javier; Maranghi, Marianna; Glandt, Mariela

    2016-08-01

    Treatment with insulin, alone or with oral or injectable hypoglycemic agents, is becoming increasingly common in patients with type 2 diabetes. However, approximately 40% of patients fail to reach their glycemic targets with the initially prescribed regimen and require intensification of insulin therapy, which increases the risks of weight gain and hypoglycemia. Many of these patients eventually reach a state in which further increases in the insulin dosage fail to improve glycemic control while increasing the risks of weight gain and hypoglycemia. The recently completed OpT2mise clinical trial showed that continuous subcutaneous insulin infusion (CSII) is more effective in reducing glycated hemoglobin (HbA1c) than intensification of multiple daily injection (MDI) insulin therapy in patients with type 2 diabetes who do not respond to intensive insulin therapy. CSII therapy may also be useful in patients who do not reach glycemic targets despite multidrug therapy with basal-bolus insulin and other agents, including glucagon-like peptide (GLP)-1 receptor agonists; current guidelines offer no recommendations for the treatment of such patients. Importantly, insulin and GLP-1 receptor agonists have complementary effects on glycemia and, hence, can be used either sequentially or in combination in the initial management of diabetes. Patients who have not previously failed GLP-1 receptor agonist therapy may show reduction in weight and insulin dose, in addition to moderate improvement in HbA1c, when GLP-1 receptor agonist therapy is added to MDI regimens. In subjects with long-standing type 2 diabetes who do not respond to intensive insulin therapies, switching from MDI to CSII and/or the addition of GLP-1 receptor agonists to MDI have the potential to improve glycemic control without increasing the risk of adverse events. PMID:27440831

  15. Insulin and Insulin-like Growth Factor II Differentially Regulate Endocytic Sorting and Stability of Insulin Receptor Isoform A

    Czech Academy of Sciences Publication Activity Database

    Morcavallo, A.; Genua, M.; Palummo, A.; Kletvíková, Emília; Jiráček, Jiří; Brzozowski, A. M.; Lozzo, R. V.; Belfiore, A.; Morrione, A.

    2012-01-01

    Roč. 287, č. 14 (2012), s. 11422-11436. ISSN 0021-9258 Institutional research plan: CEZ:AV0Z40550506 Keywords : insulin * IGF-II * mitogenic response * IR-A Subject RIV: CE - Biochemistry Impact factor: 4.651, year: 2012

  16. Concentrations of insulin glargine and its metabolites during long-term insulin therapy in type 2 diabetic patients and comparison of effects of insulin glargine, its metabolites, IGF-I, and human insulin on insulin and IGF-I receptor signaling

    NARCIS (Netherlands)

    A.J. Varewijck (Aimee); H. Yki-Jarvinen (Hannele); R. Schmidt (Reinhold); N. Tennagels (Norbert); J.A.M.J.L. Janssen (Joseph)

    2013-01-01

    textabstractWe investigated 1) the ability of purified glargine (GLA), metabolites 1 (M1) and 2 (M2), IGF-I, and NPH insulin to activate the insulin receptor (IR)-A and IR-B and IGF-I receptor (IGF-IR) in vitro; 2) plasma concentrations of GLA, M1, and M2 during longterm insulin therapy in type 2 di

  17. Characterization of the growth of murine fibroblasts that express human insulin receptors. I. The effect of insulin in the absence of other growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Randazzo, P.A.; Morey, V.A.; Polishook, A.K.; Jarett, L. (Univ. of Pennsylvania, Philadelphia (USA))

    1990-09-01

    The effect of insulin on the growth of murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental cells (NIH/3T3) was characterized. Insulin in the absence of other mitogens increased the rate of incorporation of thymidine into NIH 3T3/HIR cells with a half-maximal response occurring at an insulin concentration of 35 ng/ml and a maximal response that was equivalent to that elicited by 10% fetal calf serum. The thymidine incorporation rate was increased by 12 h, was maximal at approximately 16 h, and returned to basal rates at 24 h after the addition of insulin. Insulin induced a maximum of 65% of cells to incorporate thymidine. The increased DNA synthesis was accompanied by net growth. Addition of insulin to the NIH 3T3/HIR cells resulted in increased DNA content with a half-maximal response occurring at approximately 30 ng/ml insulin and a maximal response equivalent to that elicited by serum. An increase in cell number detected after the addition of insulin to the NIH 3T3/HIR suggests that the cells had progressed through mitosis. Insulin did not increase the rate of thymidine incorporation, DNA content, or number of the parental NIH 3T3 cells. These data show that insulin, in the absence of a second mitogen, is able to induce NIH 3T3/HIR fibroblasts to traverse the cell cycle.

  18. Characterization of the growth of murine fibroblasts that express human insulin receptors. I. The effect of insulin in the absence of other growth factors

    International Nuclear Information System (INIS)

    The effect of insulin on the growth of murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental cells (NIH/3T3) was characterized. Insulin in the absence of other mitogens increased the rate of incorporation of thymidine into NIH 3T3/HIR cells with a half-maximal response occurring at an insulin concentration of 35 ng/ml and a maximal response that was equivalent to that elicited by 10% fetal calf serum. The thymidine incorporation rate was increased by 12 h, was maximal at approximately 16 h, and returned to basal rates at 24 h after the addition of insulin. Insulin induced a maximum of 65% of cells to incorporate thymidine. The increased DNA synthesis was accompanied by net growth. Addition of insulin to the NIH 3T3/HIR cells resulted in increased DNA content with a half-maximal response occurring at approximately 30 ng/ml insulin and a maximal response equivalent to that elicited by serum. An increase in cell number detected after the addition of insulin to the NIH 3T3/HIR suggests that the cells had progressed through mitosis. Insulin did not increase the rate of thymidine incorporation, DNA content, or number of the parental NIH 3T3 cells. These data show that insulin, in the absence of a second mitogen, is able to induce NIH 3T3/HIR fibroblasts to traverse the cell cycle

  19. Insulin receptors mediate growth effects in cultured fetal neurons. I. Rapid stimulation of protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Heidenreich, K.A.; Toledo, S.P. (Univ. of California-San Diego, La Jolla (USA))

    1989-09-01

    In this study we have examined the effects of insulin on protein synthesis in cultured fetal chick neurons. Protein synthesis was monitored by measuring the incorporation of (3H)leucine (3H-leu) into trichloroacetic acid (TCA)-precipitable protein. Upon addition of 3H-leu, there was a 5-min lag before radioactivity occurred in protein. During this period cell-associated radioactivity reached equilibrium and was totally recovered in the TCA-soluble fraction. After 5 min, the incorporation of 3H-leu into protein was linear for 2 h and was inhibited (98%) by the inclusion of 10 micrograms/ml cycloheximide. After 24 h of serum deprivation, insulin increased 3H-leu incorporation into protein by approximately 2-fold. The stimulation of protein synthesis by insulin was dose dependent (ED50 = 70 pM) and seen within 30 min. Proinsulin was approximately 10-fold less potent than insulin on a molar basis in stimulating neuronal protein synthesis. Insulin had no effect on the TCA-soluble fraction of 3H-leu at any time and did not influence the uptake of (3H)aminoisobutyric acid into neurons. The isotope ratio of 3H-leu/14C-leu in the leucyl tRNA pool was the same in control and insulin-treated neurons. Analysis of newly synthesized proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that insulin uniformly increased the incorporation of 14C-leu into all of the resolved neuronal proteins. We conclude from these data that (1) insulin rapidly stimulates overall protein synthesis in fetal neurons independent of amino acid uptake and aminoacyl tRNA precursor pools; (2) stimulation of protein synthesis is mediated by the brain subtype of insulin receptor; and (3) insulin is potentially an important in vivo growth factor for fetal central nervous system neurons.

  20. Insulin receptors mediate growth effects in cultured fetal neurons. I. Rapid stimulation of protein synthesis

    International Nuclear Information System (INIS)

    In this study we have examined the effects of insulin on protein synthesis in cultured fetal chick neurons. Protein synthesis was monitored by measuring the incorporation of [3H]leucine (3H-leu) into trichloroacetic acid (TCA)-precipitable protein. Upon addition of 3H-leu, there was a 5-min lag before radioactivity occurred in protein. During this period cell-associated radioactivity reached equilibrium and was totally recovered in the TCA-soluble fraction. After 5 min, the incorporation of 3H-leu into protein was linear for 2 h and was inhibited (98%) by the inclusion of 10 micrograms/ml cycloheximide. After 24 h of serum deprivation, insulin increased 3H-leu incorporation into protein by approximately 2-fold. The stimulation of protein synthesis by insulin was dose dependent (ED50 = 70 pM) and seen within 30 min. Proinsulin was approximately 10-fold less potent than insulin on a molar basis in stimulating neuronal protein synthesis. Insulin had no effect on the TCA-soluble fraction of 3H-leu at any time and did not influence the uptake of [3H]aminoisobutyric acid into neurons. The isotope ratio of 3H-leu/14C-leu in the leucyl tRNA pool was the same in control and insulin-treated neurons. Analysis of newly synthesized proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that insulin uniformly increased the incorporation of 14C-leu into all of the resolved neuronal proteins. We conclude from these data that (1) insulin rapidly stimulates overall protein synthesis in fetal neurons independent of amino acid uptake and aminoacyl tRNA precursor pools; (2) stimulation of protein synthesis is mediated by the brain subtype of insulin receptor; and (3) insulin is potentially an important in vivo growth factor for fetal central nervous system neurons

  1. Combining GLP-1 receptor agonists with insulin: therapeutic rationales and clinical findings.

    Science.gov (United States)

    Holst, J J; Vilsbøll, T

    2013-01-01

    Due to the increasing prevalence of type 2 diabetes mellitus (T2DM), the emergent trend towards diagnosis in younger patients and the progressive nature of this disease, many more patients than before now require insulin to maintain glycaemic control. However, there is a degree of inertia among physicians and patients regarding the initiation and intensification of insulin therapy, in part due to concerns about the associated weight gain and increased risk of hypoglycaemia. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) increase insulin release and suppress glucagon secretion in a glucose-dependent manner, thus conferring glycaemic control with a low incidence of hypoglycaemia. GLP-1RAs also promote weight loss, and have beneficial effects on markers of β cell function, lipid levels, blood pressure and cardiovascular risk markers. However, the durability of their effectiveness is unknown and, compared with insulin, the antihyperglycaemic efficacy of GLP-1RAs is limited. The combination of a GLP-1RA and insulin might thus be highly effective for optimal glucose control, ameliorating the adverse effects typically associated with insulin. Data from clinical studies support the therapeutic potential of GLP-1RA-insulin combination therapy, typically showing beneficial effects on glycaemic control and body weight, with a low incidence of hypoglycaemia and, in established insulin therapy, facilitating reductions in insulin dose. In this review, the physiological and pharmacological rationale for using GLP-1RA and insulin therapies in combination is discussed, and data from clinical studies that have assessed the efficacy and safety of this treatment strategy are outlined. PMID:22646532

  2. Insulin receptor isoform A and insulin-like growth factor II as additional treatment targets in human osteosarcoma.

    Science.gov (United States)

    Avnet, Sofia; Sciacca, Laura; Salerno, Manuela; Gancitano, Giovanni; Cassarino, Maria Francesca; Longhi, Alessandra; Zakikhani, Mahvash; Carboni, Joan M; Gottardis, Marco; Giunti, Armando; Pollak, Michael; Vigneri, Riccardo; Baldini, Nicola

    2009-03-15

    Despite the frequent presence of an insulin-like growth factor I receptor (IGFIR)-mediated autocrine loop in osteosarcoma (OS), interfering with this target was only moderately effective in preclinical studies. Here, we considered other members of the IGF system that might be involved in the molecular pathology of OS. We found that, among 45 patients with OS, IGF-I and IGFBP-3 serum levels were significantly lower, and IGF-II serum levels significantly higher, than healthy controls. Increased IGF-II values were associated with a decreased disease-free survival. After tumor removal, both IGF-I and IGF-II levels returned to normal values. In 23 of 45 patients, we obtained tissue specimens and found that all expressed high mRNA level of IGF-II and >IGF-I. Also, isoform A of the insulin receptor (IR-A) was expressed at high level in addition to IGFIR and IR-A/IGFIR hybrids receptors (HR(A)). These receptors were also expressed in OS cell lines, and simultaneous impairment of IGFIR, IR, and Hybrid-Rs by monoclonal antibodies, siRNA, or the tyrosine kinase inhibitor BMS-536924, which blocks both IGFIR and IR, was more effective than selective anti-IGFIR strategies. Also, anti-IGF-II-siRNA treatment in low-serum conditions significantly inhibited MG-63 OS cells that have an autocrine circuit for IGF-II. In summary, IGF-II rather than IGF-I is the predominant growth factor produced by OS cells, and three different receptors (IR-A, HR(A), and IGFIR) act complementarily for an IGF-II-mediated constitutive autocrine loop, in addition to the previously shown IGFIR/IGF-I circuit. Cotargeting IGFIR and IR-A is more effective than targeting IGF-IR alone in inhibiting OS growth. PMID:19258511

  3. Knockout of Insulin-Like Growth Factor-1 Receptor Impairs Distal Lung Morphogenesis

    OpenAIRE

    Epaud, Ralph; Aubey, Flore; Xu, Jie; Chaker, Zayna; Clemessy, Maud; Dautin, Alexandre; Ahamed, Karmène; Bonora, Monique; Hoyeau, Nadia; Fléjou, Jean-François; Mailleux, Arnaud; Clement, Annick; Henrion-Caude, Alexandra; Holzenberger, Martin

    2012-01-01

    Background Insulin-like growth factors (IGF-I and -II) are pleiotropic regulators of somatic growth and development in vertebrate species. Endocrine and paracrine effects of both hormones are mediated by a common IGF type 1 receptor (IGF-1R). Lethal respiratory failure in neonatal IGF-1R knockout mice suggested a particular role for this receptor in pulmonary development, and we therefore investigated the consequences of IGF-1R inactivation in lung tissue. Methods and Findings We first genera...

  4. Aptamer-based single-molecule imaging of insulin receptors in living cells

    Science.gov (United States)

    Chang, Minhyeok; Kwon, Mijin; Kim, Sooran; Yunn, Na-Oh; Kim, Daehyung; Ryu, Sung Ho; Lee, Jong-Bong

    2014-05-01

    We present a single-molecule imaging platform that quantitatively explores the spatiotemporal dynamics of individual insulin receptors in living cells. Modified DNA aptamers that specifically recognize insulin receptors (IRs) with a high affinity were selected through the SELEX process. Using quantum dot-labeled aptamers, we successfully imaged and analyzed the diffusive motions of individual IRs in the plasma membranes of a variety of cell lines (HIR, HEK293, HepG2). We further explored the cholesterol-dependent movement of IRs to address whether cholesterol depletion interferes with IRs and found that cholesterol depletion of the plasma membrane by methyl-β-cyclodextrin reduces the mobility of IRs. The aptamer-based single-molecule imaging of IRs will provide better understanding of insulin signal transduction through the dynamics study of IRs in the plasma membrane.

  5. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans

    DEFF Research Database (Denmark)

    Stefan, Norbert; Vozarova, Barbora; Funahashi, Tohru;

    2002-01-01

    -induced tyrosine phosphorylation of the insulin receptor (IR) and also increase whole-body insulin sensitivity. To further characterize the relationship between plasma adiponectin concentration and insulin sensitivity in humans, we examined 1) the cross-sectional association between plasma adiponectin...... concentration and skeletal muscle IR tyrosine phosphorylation and 2) the prospective effect of plasma adiponectin concentration at baseline on change in insulin sensitivity. Fasting plasma adiponectin concentration, body composition (hydrodensitometry or dual energy X-ray absorptiometry), insulin sensitivity...... (insulin-stimulated glucose disposal, hyperinsulinemic clamp), and glucose tolerance (75-g oral glucose tolerance test) were measured in 55 Pima Indians (47 men and 8 women, aged 31 +/- 8 years, body fat 29 +/- 8% [mean +/- SD]; 50 with normal glucose tolerance, 3 with impaired glucose tolerance, and 2...

  6. The insulin-like growth factor 1 receptor in cancer : Old focus, new future

    NARCIS (Netherlands)

    Hartog, Hermien; Wesseling, Jelle; Boezen, H. Marike; van der Graaf, Winette T. A.

    2007-01-01

    The importance of insulin-like growth factor 1 receptor (IGF-1R) signalling in malignant behaviour of tumour cells is well established. Currently, development of drugs targeting the IGF-1R as anticancer treatment is emerging. Several IGF-1R targeting strategies are being investigated in phases I and

  7. The insulin-like growth factor 1 receptor in cancer: old focus, new future.

    NARCIS (Netherlands)

    Hartog, H. de; Wesseling, J.; Boezen, H.M.; Graaf, W.T.A. van der

    2007-01-01

    The importance of insulin-like growth factor 1 receptor (IGF-1R) signalling in malignant behaviour of tumour cells is well established. Currently, development of drugs targeting the IGF-1R as anticancer treatment is emerging. Several IGF-1R targeting strategies are being investigated in phases I and

  8. Study of Androgen and Androgen Receptor in Relation to Insulin Resistance in Polycystic Ovary Syndrome

    Institute of Scientific and Technical Information of China (English)

    初永丽; 孙永玉; 邱红玉

    2003-01-01

    In order to investigate the relationship between serum testosterone level and expression of androgen receptors in ovary in relation to insulin resistance in polycystic ovary syndrome (PCOS). Serum testosterone levels were determined by radioimmunoassay in 17 patients with PCOS and 20 cases as control group. The expression of androgen receptor in ovary was detected by immunohistochemistry method. The results showed that serum testosterone level [ (3. 1± 1.5) nmol/L] and insulin resistance index (0. 85±0. 49) in patients with PCOS were significantly higher than in control group (P<0. 05), and showed a positive relation (r=0. 65, P<0. 01). The expression levels of androgen receptor in ovary of patients with PCOS were significantly higher than that in control group (P<0.05). The optical density value was positively related with insulin resistance index (r=0.59,P<0. 01). It was concluded that androgen and androgen receptor could accelerate insulin resistance and the interaction of them might aggravate the pathophysiological change in PCOS.

  9. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex.

    Science.gov (United States)

    Záková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, Christopher J; Turkenburg, Johan P; Jiráček, Jiří; Brzozowski, Andrzej M

    2014-10-01

    The structural characterization of the insulin-insulin receptor (IR) interaction still lacks the conformation of the crucial B21-B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms. PMID:25286859

  10. Disruption of insulin receptor function inhibits proliferation in endocrine-resistant breast cancer cells.

    Science.gov (United States)

    Chan, J Y; LaPara, K; Yee, D

    2016-08-11

    The insulin-like growth factor (IGF) system is a well-studied growth regulatory pathway implicated in breast cancer biology. Clinical trials testing monoclonal antibodies directed against the type I IGF receptor (IGF1R) in combination with estrogen receptor-α (ER) targeting have been completed, but failed to show benefits in patients with endocrine-resistant tumors compared to ER targeting alone. We have previously shown that the closely related insulin receptor (InsR) is expressed in tamoxifen-resistant (TamR) breast cancer cells. Here we examined if inhibition of InsR affected TamR breast cancer cells. InsR function was inhibited by three different mechanisms: InsR short hairpin RNA, a small InsR-blocking peptide, S961 and an InsR monoclonal antibody (mAb). Suppression of InsR function by these methods in TamR cells successfully blocked insulin-mediated signaling, monolayer proliferation, cell cycle progression and anchorage-independent growth. This strategy was not effective in parental cells likely because of the presence of IGFR /InsR hybrid receptors. Downregulation of IGF1R in conjunction with InsR inhibition was more effective in blocking IGF- and insulin-mediated signaling and growth in parental cells compared with single-receptor targeting alone. Our findings show TamR cells were stimulated by InsR and were not sensitive to IGF1R inhibition, whereas in tamoxifen-sensitive parental cancer cells, the presence of both receptors, especially hybrid receptors, allowed cross-reactivity of ligand-mediated activation and growth. To suppress the IGF system, targeting of both IGF1R and InsR is optimal in endocrine-sensitive and -resistant breast cancer. PMID:26876199

  11. Characterization of the insulin sensitivity of ghrelin receptor KO mice using glycemic clamps

    Directory of Open Access Journals (Sweden)

    Morgan Kristen

    2011-01-01

    Full Text Available Abstract Background We and others have demonstrated previously that ghrelin receptor (GhrR knock out (KO mice fed a high fat diet (HFD have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG and hyperinsulinemic-euglycemic (HI-E clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity. Results Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd, and decreased hepatic glucose production (HGP. HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice. Conclusions These results indicate that improved glucose homeostasis of GhrR KO mice is

  12. Deletion of Asn{sup 281} in the {alpha}-subunit of the human insulin receptor causes constitutive activation of the receptor and insulin desensitization

    Energy Technology Data Exchange (ETDEWEB)

    Desbois-Mouthon, C.; Sert-Langeron, C.; Magre, J.; Blivet, M.J. [INSERM, Paris (France)] [and others

    1996-02-01

    We studied the structure and function of the insulin receptor (IR) in two sisters with leprechaunism. The patients had inherited alterations in the IR gene and were compound heterozygotes. Their paternal IR allele carried a major deletion, including exons 10-13, which shifted the reading frame and introduced a premature chain termination codon in the IR sequence. This allele was expressed at a very low level in cultured fibroblasts (<10% of total IR messenger ribonucleic acid content) and encoded a truncated protein lacking transmembrane and tyrosine kinase domains. The maternal IR allele was deleted of 3 bp in exon 3, causing the loss of Asn{sup 281} in the {alpha}-subunit. This allele generated levels of IR messenger ribonucleic acid and cell surface receptors similar to those seen in control fibroblasts. However, IRs from patients` cells had impaired insulin binding and exhibited in vivo and in vitro constitutive activation of autophosphorylation and tyrosine kinase activity. As a result of this IR-preactivated state, the cells were desensitized to insulin stimulation of glycogen and DNA syntheses. These findings strongly suggest that Asn{sup 281} of the IR {alpha}-subunit plays a critical role in the inhibitory constraint exerted by the extracellular {alpha}-subunit over the intracellular kinase activity. 59 refs., 6 figs.

  13. Regulator of insulin receptor affinity in rat skeletal muscle sarcolemmal vesicles

    International Nuclear Information System (INIS)

    Wheat germ agglutinin (WGA) affinity purification of detergent solubilized insulin receptors (IR) from rat skeletal muscle sarcolemmal vesicles resulted in an apparent increase in total insulin binding activity of greater than 5-fold, suggesting that an inhibitory component had been removed. This was verified when the flow-through fraction from the WGA column was dialyzed and added back to the partially purified receptor. The addition of a 100-fold dilution of the inhibitor preparation caused a 50% reduction in binding to trace amounts of 125I-insulin. Scatchard analysis revealed that the effect of the inhibitor was to decrease the affinity of the muscle IR. The inhibitor appeared to be tissue specific, inasmuch as the I50's for WGA-purified IR from rat fat and liver were 10 times the I50 for muscle IR. The I50 for insulin binding to intact IM-9 cells was 30 times the value for muscle IR. The inhibitor eluted in the void volume of Sephadex G-50 columns. Its activity was not destroyed by heating at 900C for 10 minutes, or by prolonged incubation with trypsin or dithiothreitol. The inhibitor described here may have a role in modulating insulin sensitivity in skeletal muscle

  14. Insulin-like growth factor-II receptors in cultured rat hepatocytes: regulation by cell density

    International Nuclear Information System (INIS)

    Insulin-like growth factor-II (IGF-II) receptors in primary cultures of adult rat hepatocytes were characterized and their regulation by cell density examined. In hepatocytes cultured at 5 X 10(5) cells per 3.8 cm2 plate [125I]IGF-II bound to specific, high affinity receptors (Ka = 4.4 +/- 0.5 X 10(9) l/mol). Less than 1% cross-reactivity by IGF-I and no cross-reactivity by insulin were observed. IGF-II binding increased when cells were permeabilized with 0.01% digitonin, suggesting the presence of an intracellular receptor pool. Determined by Scatchard analysis and by polyacrylamide gel electrophoresis after affinity labeling, the higher binding was due solely to an increase in binding sites present on 220 kDa type II IGF receptors. In hepatocytes cultured at low densities, the number of cell surface receptors increased markedly, from 10-20,000 receptors per cell at a culture density of 6 X 10(5) cells/well to 70-80,000 receptors per cell at 0.38 X 10(5) cells/well. The increase was not due simply to the exposure of receptors from the intracellular pool, as a density-related increase in receptors was also seen in cells permeabilized with digitonin. There was no evidence that IGF binding proteins, either secreted by hepatocytes or present in fetal calf serum, had any effect on the measurement of receptor concentration or affinity. We conclude that rat hepatocytes in primary culture contain specific IGF-II receptors and that both cell surface and intracellular receptors are regulated by cell density

  15. Non-small cell lung cancer cell survival crucially depends on functional insulin receptors.

    Science.gov (United States)

    Frisch, Carolin Maria; Zimmermann, Katrin; Zilleßen, Pia; Pfeifer, Alexander; Racké, Kurt; Mayer, Peter

    2015-08-01

    Insulin plays an important role as a growth factor and its contribution to tumor proliferation is intensely discussed. It acts via the cognate insulin receptor (IR) but can also activate the IGF1 receptor (IGF1R). Apart from increasing proliferation, insulin might have additional effects in lung cancer. Therefore, we investigated insulin action and effects of IR knockdown (KD) in three (NCI-H292, NCI-H226 and NCI-H460) independent non-small cell lung cancer (NSCLC) cell lines. All lung cancer lines studied were found to express IR, albeit with marked differences in the ratio of the two variants IR-A and IR-B. Insulin activated the classical signaling pathway with IR autophosphorylation and Akt phosphorylation. Moreover, activation of MAPK was observed in H292 cells, accompanied by enhanced proliferation. Lentiviral shRNA IR KD caused strong decrease in survival of all three lines, indicating that the effects of insulin in lung cancer go beyond enhancing proliferation. Unspecific effects were ruled out by employing further shRNAs and different insulin-responsive cells (human pre-adipocytes) for comparison. Caspase assays demonstrated that IR KD strongly induced apoptosis in these lung cancer cells, providing the physiological basis of the rapid cell loss. In search for the underlying mechanism, we analyzed alterations in the gene expression profile in response to IR KD. A strong induction of certain cytokines (e.g. IL20 and tumour necrosis factor) became obvious and it turned out that these cytokines trigger apoptosis in the NSCLC cells tested. This indicates a novel role of IR in tumor cell survival via suppression of pro-apoptotic cytokines. PMID:26113601

  16. Separate domains of the insulin receptor contain sites of autophosphorylation and tyrosine kinase activity

    International Nuclear Information System (INIS)

    The authors have studied the structure and function of the solubilized insulin receptor before and after partial proteolytic digestion to define domains in the β-subunit that undergo autophosphorylation and contain the tyrosine kinase activity. Wheat germ agglutinin purified insulin receptor from Fao cells was digested briefly at 220C with low concentrations of trypsin, staphylococcal V8 protease, or elastase. Autophosphorylation of the β-subunit was carried out before and after digestion, and the [32P]phosphoproteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, detected by autoradiography, and analyzed by tryptic peptide mapping by use of reverse-phase high-performance liquid chromatography. The 85-kDa fragment was not immunoprecipitated by an antibody directed against the C-terminal domain of the β-subunit (αPep-1), indicating that this region of the receptor was lost. The 85-kDa fragment contained about half of the [32P]phosphate originally found in the β-subunit, and tryptic peptide mapping showed that two major tryptic phosphopeptides (previously called pY2 and pY3) were removed. Three other tryptic phosphopeptides (pY1, pY1a, and pY4) were found in the 85- and 70-kDa fragments. To determined the structural requirements for kinase activity, the insulin receptor was subjected to tryptic digestion for 30 s-30 min, such that the receptor was composed exclusively of 85- and 70-kDa fragments of the β-subunit. The 85-kDa fragment exhibited autophosphorylation at pY1, pY1a, and pY4. Both the 85- and 70-kDa fragments phosphorylated tyrosine residues in a synthetic decapeptide that has the sequence of the C-terminal domain of the β-subunit of human insulin rare in the receptor

  17. Identification and evolution of two insulin receptor genes involved in Tribolium castaneum development and reproduction.

    Science.gov (United States)

    Sang, Ming; Li, Chengjun; Wu, Wei; Li, Bin

    2016-07-10

    The insulin and insulin-like signaling (IIS) pathway exists in a wide range of organisms from mammals to invertebrates and regulates several vital physiological functions. A phylogenetic analysis have indicated that insulin receptors have been duplicated at least twice among vertebrates, whereas only one duplication occurred in insects before the differentiation of Coleoptera, Hymenoptera, and Hemiptera. Thus, we cloned two putative insulin receptor genes, T.cas-ir1 and T.cas-ir2, from T. castaneum and determined that T.cas-ir1 is most strongly expressed during the late adult and early pupal stages, whereas T.cas-ir2 is most strongly expressed during the late larval stage. We found that larval RNAi against T.cas-ir1 and T.cas-ir2 causes 100% and 42.0% insect death, respectively, and that parental RNAi against T.cas-ir1 and T.cas-ir2 leads to 100% and 33.3% reductions in beetle fecundity, respectively. The hatching rate of ds-ir2 insects was 66.2%. Moreover, RNAi against these two genes increased the expression of the pkc, foxo, jnk, cdc42, ikk, and mekk genes but decreased erk gene expression. Despite these similarities, these two genes act via distinct regulatory pathways. These results indicate that these two receptors have functionally diverged with respect to the development and reproduction of T. castaneum, even though they retain some common regulatory signaling pathways. PMID:26923187

  18. A novel insulin receptor-binding protein from Momordica charantia enhances glucose uptake and glucose clearance in vitro and in vivo through triggering insulin receptor signaling pathway.

    Science.gov (United States)

    Lo, Hsin-Yi; Ho, Tin-Yun; Li, Chia-Cheng; Chen, Jaw-Chyun; Liu, Jau-Jin; Hsiang, Chien-Yun

    2014-09-10

    Diabetes, a common metabolic disorder, is characterized by hyperglycemia. Insulin is the principal mediator of glucose homeostasis. In a previous study, we identified a trypsin inhibitor, named Momordica charantia insulin receptor (IR)-binding protein (mcIRBP) in this study, that might interact with IR. The physical and functional interactions between mcIRBP and IR were clearly analyzed in the present study. Photo-cross-linking coupled with mass spectrometry showed that three regions (17-21, 34-40, and 59-66 residues) located on mcIRBP physically interacted with leucine-rich repeat domain and cysteine-rich region of IR. IR-binding assay showed that the binding behavior of mcIRBP and insulin displayed a cooperative manner. After binding to IR, mcIRBP activated the kinase activity of IR by (5.87 ± 0.45)-fold, increased the amount of phospho-IR protein by (1.31 ± 0.03)-fold, affected phosphoinositide-3-kinase/Akt pathways, and consequently stimulated the uptake of glucose in 3T3-L1 cells by (1.36 ± 0.12)-fold. Intraperitoneal injection of 2.5 nmol/kg mcIRBP significantly decreased the blood glucose levels by 20.9 ± 3.2% and 10.8 ± 3.6% in normal and diabetic mice, respectively. Microarray analysis showed that mcIRBP affected genes involved in insulin signaling transduction pathway in mice. In conclusion, our findings suggest that mcIRBP is a novel IRBP that binds to sites different from the insulin-binding sites on IR and stimulates both the glucose uptake in cells and the glucose clearance in mice. PMID:25144709

  19. Four RFLPs of the human insulin receptor gene: PstI, KpnI, RsaI (2 RFLPs)

    Energy Technology Data Exchange (ETDEWEB)

    Cox, N.J.; Spielman, R.S.; Taub, R. (Univ. of Pennsylvania School of Medicine, Philadelphia (USA)); Kahn, C.R.; Muller-Wieland, D.; Kriauciunas, K.M. (Harvard Medical School, Boston, MA (USA))

    1989-01-25

    Fragments were isolated from subclones containing the human insulin receptor cDNA. Probe 1 was a 677 bp XhoI/EcoRI fragment from the {alpha}-subunit region of the insulin receptor cDNA corresponding to nucleotides 334 to 1,011, the putative ligand binding domain. Probe 2 was a 1,599 bp PstI fragment from the {beta}-subunit region of the insulin receptor cDNA corresponding to nucleotides 2,746 to 4,345, encoding the tyrosine kinase domain.

  20. Receptors for insulin-like growth factors I and II in rat gastrointestinal epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Laburthe, M.; Rouyer-Ressard, C.; Gammeltoft, S. (Institut National de La Sante et de la Recherche Medicale, Villejuif (France) Bispebjerg Hospital, Copenhagen (Denmark))

    1988-03-01

    Distinct receptors for insulin-like growth factors (IGFs) have been characterized in rat intestinal epithelium using {sup 125}I-labeled IGF-I and {sup 125}I-labeled IGF-II. In jejunal epithelial plasma membranes, IGF-I receptors were observed with a dissociation constant (K{sub d}) of 7.2 nM and a binding capacity of 0.56 pmol/mg protein. Distinct IGF-II receptors were also found with a K{sub d} of 9.5 nM and a binding capacity of 2.61 pmol/mg protein. For IGF-I receptors the following order of affinity was observed: IGF-I > IGF-II > insulin > proinsulin. IGF-II receptors recognize IGF-II with a 20-fold higher affinity than IGF-I and display no cross-reactivity with insulin and proinsulin. Affinity labeling of intestinal membranes also discriminates between the two types of receptors, revealing a radioligand-receptor complex of relative molecular weight (M{sub r}) 130,000 using {sup 125}I-IGF-I and 250,000 for {sup 125}I-IGF-II under reducing conditions. Separation of proliferative crypt cells from mature villus cells in the small intestine makes it possible to show that a gradient of IGF receptors is present along the crypt-villus axis. {sup 125}I-IGF-I and {sup 125}I-IGF-II binding is 4.0- and 1.8-fold higher in crypt cells than in villus cells, respectively. Specific {sup 125}I-IGF binding is detectable throughout the gastrointestinal tract. The level of IGF binding is similar in stomach, small intestine, and cecum, but higher values are observed in colon.

  1. Receptors for insulin-like growth factors I and II in rat gastrointestinal epithelium

    International Nuclear Information System (INIS)

    Distinct receptors for insulin-like growth factors (IGFs) have been characterized in rat intestinal epithelium using 125I-labeled IGF-I and 125I-labeled IGF-II. In jejunal epithelial plasma membranes, IGF-I receptors were observed with a dissociation constant (Kd) of 7.2 nM and a binding capacity of 0.56 pmol/mg protein. Distinct IGF-II receptors were also found with a Kd of 9.5 nM and a binding capacity of 2.61 pmol/mg protein. For IGF-I receptors the following order of affinity was observed: IGF-I > IGF-II > insulin > proinsulin. IGF-II receptors recognize IGF-II with a 20-fold higher affinity than IGF-I and display no cross-reactivity with insulin and proinsulin. Affinity labeling of intestinal membranes also discriminates between the two types of receptors, revealing a radioligand-receptor complex of relative molecular weight (Mr) 130,000 using 125I-IGF-I and 250,000 for 125I-IGF-II under reducing conditions. Separation of proliferative crypt cells from mature villus cells in the small intestine makes it possible to show that a gradient of IGF receptors is present along the crypt-villus axis. 125I-IGF-I and 125I-IGF-II binding is 4.0- and 1.8-fold higher in crypt cells than in villus cells, respectively. Specific 125I-IGF binding is detectable throughout the gastrointestinal tract. The level of IGF binding is similar in stomach, small intestine, and cecum, but higher values are observed in colon

  2. Threonine 1336 of the human insulin receptor is a major target for phosphorylation by protein kinase C

    International Nuclear Information System (INIS)

    The ability of tumor-promoting phorbol diesters to inhibit both insulin receptor tyrosine kinase activity and its intracellular signaling correlates with the phosphorylation of the insulin receptor β subunit on serine and threonine residues. In the present studies, mouse 3T3 fibroblasts transfected with a human insulin receptor cDNA and expressing greater than one million of these receptors per cell were labeled with [32P]phosphate and treated with or without 100 nM 4β-phorbol 12β-myristate 13α-acetate (PMA). Phosphorylated insulin receptors were immunoprecipitated and digested with trypsin. Alternatively, insulin receptors affinity purified from human term placenta were phosphorylated by protein kinase C prior to trypsin digestion of the 32P-labeled β subunit. Analysis of the tryptic phosphopeptides from both the in vivo and in vitro labeled receptors by reversed-phase HPLC and two-dimensional thin-layer separation revealed that PMA and protein kinase C enhanced the phosphorylation of a peptide with identical chromatographic properties. Comparison of these data with the known, deduced receptor sequence suggested that the receptor-derived tryptic phosphopeptide might be Ile-Leu-Thr(P)-Leu-Pro-Arg. The phosphorylation site corresponds to threonine 1336 in the human insulin receptor β subunit. This threonine, which resides in a receptor domain also containing tyrosine phosphorylation sites, is located eight amino acids from the carboxyl terminus of the β subunit and may play a role in the protein kinase C induced inhibition of insulin receptor tyrosine kinase activity

  3. Threonine 1336 of the human insulin receptor is a major target for phosphorylation by protein kinase C

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, R.E.; Cao, Lin; Perregaux, D.; Czech, M.P. (Univ. of Massachusetts Medical Center, Worcester (USA))

    1990-02-20

    The ability of tumor-promoting phorbol diesters to inhibit both insulin receptor tyrosine kinase activity and its intracellular signaling correlates with the phosphorylation of the insulin receptor {beta} subunit on serine and threonine residues. In the present studies, mouse 3T3 fibroblasts transfected with a human insulin receptor cDNA and expressing greater than one million of these receptors per cell were labeled with ({sup 32}P)phosphate and treated with or without 100 nM 4{beta}-phorbol 12{beta}-myristate 13{alpha}-acetate (PMA). Phosphorylated insulin receptors were immunoprecipitated and digested with trypsin. Alternatively, insulin receptors affinity purified from human term placenta were phosphorylated by protein kinase C prior to trypsin digestion of the {sup 32}P-labeled {beta} subunit. Analysis of the tryptic phosphopeptides from both the in vivo and in vitro labeled receptors by reversed-phase HPLC and two-dimensional thin-layer separation revealed that PMA and protein kinase C enhanced the phosphorylation of a peptide with identical chromatographic properties. Comparison of these data with the known, deduced receptor sequence suggested that the receptor-derived tryptic phosphopeptide might be Ile-Leu-Thr(P)-Leu-Pro-Arg. The phosphorylation site corresponds to threonine 1336 in the human insulin receptor {beta} subunit. This threonine, which resides in a receptor domain also containing tyrosine phosphorylation sites, is located eight amino acids from the carboxyl terminus of the {beta} subunit and may play a role in the protein kinase C induced inhibition of insulin receptor tyrosine kinase activity.

  4. High-level expression of human insulin receptor cDNA in mouse NIH 3T3 cells

    International Nuclear Information System (INIS)

    In order to develop a simple, efficient system for the high-level expression of human insulin receptors in eukaryotic cells, a full-length human kidney insulin receptor cDNA was inserted into a bovine papilloma virus vector under the control of the mouse metallothionein promoter. After transfection of mouse NIH 3T3 cells with this construct, seven cell lines expressing insulin receptors were isolated; two cell lines had more than 106 receptors per cell. The cell line with the highest 125I-insulin binding (NIH 3T3 HIR3.5) had 6 x 106 receptors with a K/sub d/ of 10-9 M. This level was not dependent on exposure to metals but could be increased further to 2 x 107 receptors per cell by addition of sodium butyrate to the culture medium. The α and β subunits had apparent molecular weights of 147,000 and 105,000, respectively (compared to 135,000 and 95,000 in IM-9 human lymphocytes), values identical to those of the α and β subunits of the insulin receptors of nontransformed NIH 3T3 cells. This size difference was due to altered carbohydrate composition, as N-glycanase digestion reduced the apparent receptor subunit size of the transfected cells and IM-9 lymphocytes to identical values. The alteration in N-linked oligosaccharide composition could not be ascribed to differences in the kinetics of posttranslational processing of the insulin receptors, which was comparable to that of other cells studied. The basal rate of glycogen synthesis in the cells overexpressing insulin receptors was increased 4- to 5-fold compared with controls. Low levels of added insulin (0.1 nM) caused a 50% increase in the rate of glycogen synthesis

  5. High-level expression of human insulin receptor cDNA in mouse NIH 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, J.; Okamoto, A.K.; Thys, R.; Bell, G.I.; Steiner, D.F.; Hofmann, C.A.

    1987-08-01

    In order to develop a simple, efficient system for the high-level expression of human insulin receptors in eukaryotic cells, a full-length human kidney insulin receptor cDNA was inserted into a bovine papilloma virus vector under the control of the mouse metallothionein promoter. After transfection of mouse NIH 3T3 cells with this construct, seven cell lines expressing insulin receptors were isolated; two cell lines had more than 10/sup 6/ receptors per cell. The cell line with the highest /sup 125/I-insulin binding (NIH 3T3 HIR3.5) had 6 x 10/sup 6/ receptors with a K/sub d/ of 10/sup -9/ M. This level was not dependent on exposure to metals but could be increased further to 2 x 10/sup 7/ receptors per cell by addition of sodium butyrate to the culture medium. The ..cap alpha.. and ..beta.. subunits had apparent molecular weights of 147,000 and 105,000, respectively (compared to 135,000 and 95,000 in IM-9 human lymphocytes), values identical to those of the ..cap alpha.. and ..beta.. subunits of the insulin receptors of nontransformed NIH 3T3 cells. This size difference was due to altered carbohydrate composition, as N-glycanase digestion reduced the apparent receptor subunit size of the transfected cells and IM-9 lymphocytes to identical values. The alteration in N-linked oligosaccharide composition could not be ascribed to differences in the kinetics of posttranslational processing of the insulin receptors, which was comparable to that of other cells studied. The basal rate of glycogen synthesis in the cells overexpressing insulin receptors was increased 4- to 5-fold compared with controls. Low levels of added insulin (0.1 nM) caused a 50% increase in the rate of glycogen synthesis

  6. Hyperinsulinemia induces a reversible impairment in insulin receptor function leading to diabetes in the sand rat model of non-insulin-dependent diabetes mellitus.

    OpenAIRE

    Kanety, H.; Moshe, S; Shafrir, E; Lunenfeld, B; Karasik, A

    1994-01-01

    The insulin receptor was evaluated at different disease stages in the sand rat (Psammomys obesus), a model for nutrition-induced diabetes. Nondiabetic sand rats showed markedly low receptor number in liver compared with albino rats. Their receptor had an intact tyrosine kinase activity but a higher Km for ATP in the phosphorylation reaction of exogenous substrates. The initial effects of overeating (i.e., development of hyperinsulinemia without hyperglycemia) were associated...

  7. Hyperosmotic stress inhibits insulin receptor substrate-1 function by distinct mechanisms in 3T3-L1 adipocytes

    DEFF Research Database (Denmark)

    Gual, Philippe; Gonzalez, Teresa; Grémeaux, Thierry;

    2003-01-01

    In 3T3-L1 adipocytes, hyperosmotic stress was found to inhibit insulin signaling, leading to an insulin-resistant state. We show here that, despite normal activation of insulin receptor, hyperosmotic stress inhibits both tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and IRS-1....... Furthermore, the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented the osmotic shock-induced phosphorylation of IRS-1 on Ser307. The inhibition of mTOR completely reversed the inhibitory effect of hyperosmotic stress on insulin-induced IRS-1 tyrosine phosphorylation and PI 3-kinase activation....... In addition, prolonged osmotic stress enhanced the degradation of IRS proteins through a rapamycin-insensitive pathway and a proteasome-independent process. These data support evidence of new mechanisms involved in osmotic stress-induced cellular insulin resistance. Short-term osmotic stress induces...

  8. Antibodies to the extracellular receptor domain restore the hormone-insensitive kinase and conformation of the mutant insulin receptor valine 382.

    Science.gov (United States)

    Lebrun, C; Baron, V; Kaliman, P; Gautier, N; Dolais-Kitabgi, J; Taylor, S; Accili, D; Van Obberghen, E

    1993-05-25

    A mutation substituting a valine for phenylalanine at residue 382 in the insulin receptor alpha-subunit has been found in two sisters with a genetic form of extreme insulin resistance. This receptor mutation impairs the ability of the hormone to activate autophosphorylation of solubilized receptors and phosphorylation of substrates (Accili, D., Mosthaf, L., Ullrich, A., and Taylor, S. I. (1991) J. Biol. Chem. 266, 434-439). We have previously demonstrated that in native receptors insulin induces a conformational change in the receptor beta-subunit, which is thought to be necessary for receptor activation (Baron, V., Gautier, N., Komoriya, A., Hainaut, P., Scimeca, J. C., Mervic, M., Lavielle, S., Dolais-Kitabgi, J., and Van Obberghen, E. (1990) Biochemistry 29, 4634-4641). Hence, it was thought that a defect in this conformational change might explain the functional defect of the mutant receptor. This appears to be the case, as we demonstrate here that the mutant receptor is locked in its inactive configuration. However, we found two monoclonal antibodies, directed to the extracellular domain, which are capable of restoring the mutant receptor kinase activity. The activation of the mutant receptor was accompanied by restoration of conformational changes in the beta-subunit C terminus. From these data, we draw the two following conclusions. (i) A causal link exists between receptor kinase activation and the occurrence of conformational changes. (ii) Ligands other than insulin, such as antibodies, which perturb the extracellular domain, can function as alternative ways to restore the mutant receptor kinase. PMID:8388389

  9. Obesity-Induced Infertility and Hyperandrogenism Are Corrected by Deletion of the Insulin Receptor in the Ovarian Theca Cell

    OpenAIRE

    Wu, Sheng; Divall, Sara; Nwaopara, Amanda; Radovick, Sally; Wondisford, Fredric; Ko, CheMyong; Wolfe, Andrew

    2014-01-01

    Women with polycystic ovary syndrome (PCOS) exhibit elevated androgen levels, oligoanovulation, infertility, and insulin resistance in metabolic tissues. The aims of these studies were to determine the role of insulin signaling in the development and function of ovarian theca cells and the pathophysiologic effects of hyperinsulinism on ovarian function in obesity. We disrupted the insulin receptor (IR) gene specifically in the theca-interstitial (TI) cells of the ovaries (Cyp17IRKO). No chang...

  10. Angiotensin Receptor Blockade Increases Pancreatic Insulin Secretion and Decreases Glucose Intolerance during Glucose Supplementation in a Model of Metabolic Syndrome

    OpenAIRE

    Rodriguez, Ruben; Viscarra, Jose A.; Minas, Jacqueline N.; Nakano, Daisuke; Nishiyama, Akira; Ortiz, Rudy M.

    2012-01-01

    Renin-angiotensin system blockade improves glucose intolerance and insulin resistance, which contribute to the development of metabolic syndrome. However, the contribution of impaired insulin secretion to the pathogenesis of metabolic syndrome is not well defined. To assess the contributions of angiotensin receptor type 1 (AT1) activation and high glucose intake on pancreatic function and their effects on insulin signaling in skeletal muscle and adipose tissue, an oral glucose tolerance test ...

  11. The human insulin receptor substrate-1 gene (IRS1) is localized on 2q36

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Masaki; Matsufuji, Senya; Hayashi, Shin-ichi; Furusaka, Akihiro; Tanaka, Teruji (Jikei Univ. School of Medicine, Tokyo (Japan)); Inazawa, J.; Nakamura, Yusuke (Cancer Institute, Tokyo (Japan)); Ariyama, Takeshi (Kyoto Prefactural Univ. of Medicine (Japan)); Wands, J.R. (Harvard Medical School, Boston, MA (United States))

    1994-03-01

    The chromosomal localization of some of the genes participating in the insulin signaling pathway is known. The insulin and insulin receptor genes have been mapped to chromosomes 11 and 19, respectively. To identify the chromosomal localization of the human IRS1 gene, the fluorescence in situ hybridization technique was employed with Genomic Clone B-10. A total of 50 metaphase cells exhibiting either single or double spots of hybridization signals were examined. Among them, 32 showed the specific signals on 2q36. Therefore, the authors assigned the human IRS1 gene to 2q36. The genes for homeobox sequence (HOX4), fibronectin 1, alkaline phosphatase (intestinal), transition protein 1, villin 1, collagen (type IV), Waardenburg syndrome (type 1), alanine-glyoxylate aminotransferase, and glucagon have been localized in the vicinity of the IRS1 gene.

  12. Effect of insulin analogues on insulin/IGF1 hybrid receptors: increased activation by glargine but not by its metabolites M1 and M2.

    Directory of Open Access Journals (Sweden)

    Cécile Pierre-Eugene

    Full Text Available BACKGROUND: In diabetic patients, the pharmacokinetics of injected human insulin does not permit optimal control of glycemia. Fast and slow acting insulin analogues have been developed, but they may have adverse properties, such as increased mitogenic or anti-apoptotic signaling. Insulin/IGF1 hybrid receptors (IR/IGF1R, present in most tissues, have been proposed to transmit biological effects close to those of IGF1R. However, the study of hybrid receptors is difficult because of the presence of IR and IGF1R homodimers. Our objective was to perform the first study on the pharmacological properties of the five marketed insulin analogues towards IR/IGF1R hybrids. METHODOLOGY: To study the effect of insulin analogues on IR/IGF1R hybrids, we used our previously developed Bioluminescence Resonance Energy Transfer (BRET assay that permits specific analysis of the pharmacological properties of hybrid receptors. Moreover, we have developed a new, highly sensitive BRET-based assay to monitor phophatidylinositol-3 phosphate (PIP(3 production in living cells. Using this assay, we performed a detailed pharmacological analysis of PIP(3 production induced by IGF1, insulin and insulin analogues in living breast cancer-derived MCF-7 and MDA-MB231 cells. RESULTS: Among the five insulin analogues tested, only glargine stimulated IR/IGF1R hybrids with an EC50 that was significantly lower than insulin and close to that of IGF1. Glargine more efficiently stimulated PIP(3 production in MCF-7 cells but not in MDA-MB231 cells as compared to insulin. In contrast, glargine metabolites M1 and M2 showed lower potency for hybrid receptors stimulation, PIP(3 production, Akt and Erk1/2 phosphorylation and DNA synthesis in MCF-7 cells, compared to insulin. CONCLUSION: Glargine, possibly acting through IR/IGF1R hybrids, displays higher potency, whereas its metabolites M1 and M2 display lower potency than insulin for the stimulation of proliferative/anti-apoptotic pathways in

  13. The monomeric alpha beta form of the insulin receptor exhibits much higher insulin-dependent tyrosine-specific protein kinase activity than the intact alpha 2 beta 2 form of the receptor.

    OpenAIRE

    Fujita-Yamaguchi, Y; Kathuria, S.

    1985-01-01

    The relationship between the structure of the insulin receptor and its kinase activity was studied on the purified receptor treated with different concentrations of dithiothreitol. An enhanced autophosphorylation of the beta subunit (Mr, 90,000) was observed on NaDodSO4/PAGE under reducing conditions when the receptor was treated with 0.1-0.75 mM dithiothreitol in the presence of 1 microM insulin. Since we have previously observed (unpublished data) that incubation of the purified receptor wi...

  14. Structural analogs of human insulin-like growth factor I with reduced affinity for serum binding proteins and the type 2 insulin-like growth factor receptor

    International Nuclear Information System (INIS)

    Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. [Phe-1, Val1, Asn2, Gln3, His4, Ser8, His9, Glu12, Tyr15, Leu16]IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has >1000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. [Gln3, Ala4] IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. [Tyr15, Leu16] IGH-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. The peptide in which these four-point mutations are combined, [Gln3, Ala4, Tyr15,Leu16]IGF-I, has 600-fold reduced affinity for the serum binding proteins. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, These peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I

  15. Effect of Yoga and Traditional Physical Exercise on Hormones and Percentage Insulin Binding Receptor in Patients with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Lorenzo Gordon

    2008-01-01

    Full Text Available The objective of the study was to investigate the short-term impact of a brief lifestyle intervention of yoga and traditional Physical Training (PT exercise regimens on: serum insulin, percentage insulin binding receptor, internalization of insulin-receptor complex, T3, T4, TSH and cortisol at baseline, 3 months and 6 months in patients with type 2 diabetes mellitus. A total of 231 patients completed this prospective randomized study with 77 type 2 diabetic patients in the yoga group (62 females and 15 males that were matched with the same number of patients in the traditional Physical Training (PT exercise and control groups. Biochemical parameters such as fasting Blood Glucose (FBG, serum insulin, percentage insulin binding receptor and internalization of insulin-receptor complex were determined at the beginning (baseline and two consecutive three monthly intervals. The effect of the lifestyle interventions on hormones such as cortisol, TSH, T4 and T3 were also investigated. The FBG concentration in the yoga and the traditional PT exercise groups were markedly decreased compared with control (P 0.05. The findings indicates the beneficial effects of yoga and traditional PT exercise regimens in improving glycaemic control by increasing percentage insulin binding receptor in type 2 diabetic patients with no significant change in cortisol and thyroid hormones.

  16. Blockade of cannabinoid 1 receptor improves GLP-1R mediated insulin secretion in mice.

    Science.gov (United States)

    González-Mariscal, Isabel; Krzysik-Walker, Susan M; Kim, Wook; Rouse, Michael; Egan, Josephine M

    2016-03-01

    The cannabinoid 1 receptor (CB1) is an important regulator of energy metabolism. Reports of in vivo and in vitro studies give conflicting results regarding its role in insulin secretion, possibly due to circulatory factors, such as incretins. We hypothesized that this receptor may be a regulator of the entero-insular axis. We found that despite lower food consumption and lower body weight postprandial GLP-1 plasma concentrations were increased in CB1(-/-) mice compared to CB1(+/+) mice administered a standard diet or high fat/sugar diet. Upon exogenous GLP-1 treatment, CB1(-/-) mice had increased glucose-stimulated insulin secretion. In mouse insulinoma cells, cannabinoids reduced GLP-1R-mediated intracellular cAMP accumulation and subsequent insulin secretion. Importantly, such effects were also evident in human islets, and were prevented by pharmacologic blockade of CB1. Collectively, these findings suggest a novel mechanism in which endocannabinoids are negative modulators of incretin-mediated insulin secretion. PMID:26724516

  17. Momordica charantia and its novel polypeptide regulate glucose homeostasis in mice via binding to insulin receptor.

    Science.gov (United States)

    Lo, Hsin-Yi; Ho, Tin-Yun; Lin, Chingju; Li, Chia-Cheng; Hsiang, Chien-Yun

    2013-03-13

    Momordica charantia (MC) has been used as an alternative therapy for diabetes mellitus. This study analyzed and elucidated therapeutic targets contributing to the hypoglycemic effect of aqueous extract of MC seeds (MCSE) by transcriptomic analysis. Protein ingredients aimed at the hypoglycemic target were further identified by proteomic, docking, and receptor-binding assays. The data showed that MSCE (1 g/kg) significantly lowered the blood glucose level in normal and diabetic mice. Moreover, MCSE primarily regulated the insulin signaling pathway in muscles and adipose tissues, suggesting that MCSE might target insulin receptor (IR), stimulate the IR-downstream pathway, and subsequently display hypoglycemic activity in mice. It was further revealed that inhibitor against trypsin (TI) of MC directly docked into IR and activated the kinase activity of IR in a dose-dependent manner. In conclusion, the findings suggested that MCSE regulated glucose metabolism mainly via the insulin signaling pathway. Moreover, TI was newly identified as a novel IR-binding protein of MC that triggered the insulin signaling pathway via binding to IR. PMID:23414136

  18. The Proton-Activated Receptor GPR4 Modulates Glucose Homeostasis by Increasing Insulin Sensitivity

    Directory of Open Access Journals (Sweden)

    Luca Giudici

    2013-11-01

    Full Text Available Background: The proton-activated G protein-coupled receptor GPR4 is expressed in many tissues including white adipose tissue. GPR4 is activated by extracellular protons in the physiological pH range (i.e. pH 7.7 - 6.8 and is coupled to the production of cAMP. Methods: We examined mice lacking GPR4 and examined glucose tolerance and insulin sensitivity in young and aged mice as well as in mice fed with a high fat diet. Expression profiles of pro- and anti-inflammatory cytokines in white adipose tissue, liver and skeletal muscle was assessed. Results: Here we show that mice lacking GPR4 have an improved intraperitoneal glucose tolerance test and increased insulin sensitivity. Insulin levels were comparable but leptin levels were increased in GPR4 KO mice. Gpr4-/- showed altered expression of PPARα, IL-6, IL-10, TNFα, and TGF-1β in skeletal muscle, white adipose tissue, and liver. High fat diet abolished the differences in glucose tolerance and insulin sensitivity between Gpr4+/+ and Gpr4-/- mice. In contrast, in aged mice (12 months old, the positive effect of GPR4 deficiency on glucose tolerance and insulin sensitivity was maintained. Liver and adipose tissue showed no major differences in the mRNA expression of pro- and anti-inflammatory factors between aged mice of both genotypes. Conclusion: Thus, GPR4 deficiency improves glucose tolerance and insulin sensitivity. The effect may involve an altered balance between pro- and anti-inflammatory factors in insulin target tissues.

  19. Reevaluation of Fatty Acid Receptor 1 as a Drug Target for the Stimulation of Insulin Secretion in Humans

    OpenAIRE

    Wagner, Robert; Kaiser, Gabriele; Gerst, Felicia; Christiansen, Elisabeth; Due-Hansen, Maria E.; Grundmann, Manuel; Machicao, Fausto; Peter, Andreas; Kostenis, Evi; Ulven, Trond; Fritsche, Andreas; Häring, Hans-Ulrich; Ullrich, Susanne

    2013-01-01

    The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are undergoing investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific agonist, FFAR1-knockout mice and human islets. Nondiabetic individuals were metabolically phenotype...

  20. Receptor for Advanced Glycation End Products Regulates Adipocyte Hypertrophy and Insulin Sensitivity in Mice

    OpenAIRE

    Monden, Masayo; Koyama, Hidenori; Otsuka, Yoshiko; Morioka, Tomoaki; Mori, Katsuhito; Shoji, Takuhito; Mima, Yohei; Motoyama, Koka; Fukumoto, Shinya; Shioi, Atsushi; Emoto, Masanori; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Nishizawa, Yoshiki; Kurajoh, Masafumi

    2013-01-01

    Receptor for advanced glycation end products (RAGE) has been shown to be involved in adiposity as well as atherosclerosis even in nondiabetic conditions. In this study, we examined mechanisms underlying how RAGE regulates adiposity and insulin sensitivity. RAGE overexpression in 3T3-L1 preadipocytes using adenoviral gene transfer accelerated adipocyte hypertrophy, whereas inhibitions of RAGE by small interfering RNA significantly decrease adipocyte hypertrophy. Furthermore, double knockdown o...

  1. Insulin-like growth factor-1 receptor expression in oral squamous cell carcinoma

    OpenAIRE

    Joseph, Boby K.; Sundaram, Devipriyaa B.

    2011-01-01

    Objectives: The Insulin-like growth factor-I receptor (IGF-1R) plays critical roles in cancer development, proliferation, motility and survival. IGF-1R over expression is frequently found in various tumours and is often associated with an aggressive phenotype. Hence, the aim of the present study was to examine the expression of IGF-1R in normal oral mucosa, fibroepithelial polyps, dysplastic oral mucosa and well-differentiated squamous cell carcinomas. Materials and methods: A 3-layered s...

  2. The human insulin receptor mRNA contains a functional internal ribosome entry segment

    OpenAIRE

    Spriggs, Keith A.; Cobbold, Laura C.; Ridley, Simon H.; Coldwell, Mark; Bottley, Andrew; Bushell, Martin; Willis, Anne E.; Siddle, Kenneth

    2009-01-01

    Regulation of mRNA translation is an important mechanism determining the level of expression of proteins in eukaryotic cells. Translation is most commonly initiated by cap-dependent scanning, but many eukaryotic mRNAs contain internal ribosome entry segments (IRESs), providing an alternative means of initiation capable of independent regulation. Here, we show by using dicistronic luciferase reporter vectors that the 5'-UTR of the mRNA encoding human insulin receptor (hIR) contains a functiona...

  3. Arterial stiffness in insulin resistance: The role of nitric oxide and angiotensin II receptors

    Directory of Open Access Journals (Sweden)

    Divina G Brillante

    2008-12-01

    Full Text Available Divina G Brillante1, Anthony J O’Sullivan1, Laurence G Howes21St. George Clinical School, University of New South Wales, Kogarah, NSW, Australia; 2Department of Pharmacology and Therapeutics and Department of Cardiology, Griffith and Bond University, Gold Coast Hospital, Southport, QLD, AustraliaAbstract: The insulin resistance syndrome (INSR is associated with increased cardiovascular risk, and affects up to 25% of the Australian population aged >20 years. Increased arterial stiffness has been proposed as a common pathway by which INSR leads to increased cardiovascular risk. We have reviewed the role of nitric oxide (NO and angiotensin II receptors in the modulation of arterial stiffness in the setting of insulin resistance. There is emerging evidence that early stages of INSR may be characterized by increased basal nitric oxide activity and increased activity of non-NO vasodilators such as endothelial derived hyperpolarization factor (EDHF which is manifest by reduced arterial stiffness. Depletion of NO or ineffectiveness of NO mediated vasodilator mechanisms associated with the progression of INSR to type 2 diabetes may result in increased arterial stiffness, which predicts the development of cardiovascular disease. Thus in the early stages of INSR, increased NO and EDHF activity may represent compensatory mechanisms to early vascular damage. The renin-angiotensin system is activated in diseased vascular beds, with up regulation of the two known angiotensin II receptors: the angiotensin II type 1 receptor (AT1R and the angiotensin II type 2 receptor (AT2R. Increased AT1R mediated activity in the vasculature is central to the development of increased arterial stiffness and is enhanced in INSR states. AT2R activity is increased in early in INSR and may contribute to the apparent increase in basal NO activity. AT1R blockade may therefore be valuable treatment for early INSR as antagonism of AT1 receptors would allow angiotensin II to act

  4. Insulin Resistance and Insulin Receptor Isoform A in Cancer%胰岛素抵抗和胰岛素受体亚型A与肿瘤

    Institute of Scientific and Technical Information of China (English)

    仲英洁

    2012-01-01

    Epidemiologic studies have demonstrated that type 2 diabetes mellitus increases the incidence of cancer. In addition, several epidemiological studies have shown that insulin resistance status, characterized by hyperinsulinaemia, is associated with an increased risk for a number of malignancies, including carcinomas of the breast,pancreas and colonrectal. Indeed,the hormone insulin and its tyrosine kinase receptor have been documented both in vitro and in vivo to play a key role in cancer biology. Insulin receptor is over-expressed in several human malignancies and insulin receptor isoform A is especially over-expressed in cancer. Over-expression of insulin receptor isoform A and its high affinity for both insulin and insulin-like growth factor- Ⅱ is a major mechanism in cancer initiation and/or promotion.%流行病学调查显示,2型糖尿病患者的肿瘤发生率增加.研究发现,以高胰岛素血症为特征的胰岛素抵抗与数种肿瘤的发生风险增加有关,包括乳腺癌、胰腺癌及结直肠癌.体内外研究均显示,胰岛素及其受体在肿瘤的发生、发展中起到重要作用.胰岛素受体,尤其是胰岛素受体亚型A,在人类数种肿瘤中均有高表达,其和胰岛素及胰岛素样生长因子Ⅱ结合后,引起肿瘤的发生和(或)发展.

  5. Synchronization in G0/G1 enhances the mitogenic response of cells overexpressing the human insulin receptor A isoform to insulin

    Science.gov (United States)

    Nelander, Gitte-Mai; Hansen, Bo Falck; Jensen, Pia; Krabbe, Jonas S.; Jensen, Marianne B.; Hegelund, Anne Charlotte; Svendsen, Jette E.; Oleksiewicz, Martin B.

    2009-01-01

    Evaluating mitogenic signaling specifically through the human insulin receptor (IR) is relevant for the preclinical safety assessment of developmental insulin analogs. It is known that overexpression of IR sensitizes cells to the mitogenic effects of insulin, but it is essentially unknown how mitogenic responses can be optimized to allow practical use of such recombinant cell lines for preclinical safety testing. We constitutively overexpressed the short isoform of the human insulin receptor (hIR-A, exon 11-negative) in L6 rat skeletal myoblasts. Because the mitogenic effect of growth factors such as insulin is expected to act in G0/G1, promoting S-phase entry, we developed a combined topoinhibition + serum deprivation strategy to explore the effect of G0/G1 synchronization as an independent parameter in the context of serum deprivation, the latter being routinely used to reduce background in mitogenicity assays. G0/G1 synchronization significantly improved the mitogenic responses of L6-hIR cells to insulin, measured by 3H-thymidine incorporation. Comparison with the parental L6 cells using phospho-mitogen-activated protein kinase, phospho-AKT, as well as 3H-thymidine incorporation end points supported that the majority of the mitogenic effect of insulin in L6-hIR cells was mediated by the overexpressed hIR-A. Using the optimized L6-hIR assay, we found that the X-10 insulin analog was more mitogenic than native human insulin, supporting that X-10 exhibits increased mitogenic signaling through the hIR-A. In summary, this study provides the first demonstration that serum deprivation may not be sufficient, and G0/G1 synchronization may be required to obtain optimal responsiveness of hIR-overexpressing cell lines for preclinical safety testing. PMID:19898946

  6. New Target Genes for the Peroxisome Proliferator-Activated Receptor-γ (PPARγ Antitumour Activity: Perspectives from the Insulin Receptor

    Directory of Open Access Journals (Sweden)

    Daniela P. Foti

    2009-01-01

    Full Text Available The insulin receptor (IR plays a crucial role in mediating the metabolic and proliferative functions triggered by the peptide hormone insulin. There is considerable evidence that abnormalities in both IR expression and function may account for malignant transformation and tumour progression in some human neoplasias, including breast cancer. PPARγ is a ligand-activated, nuclear hormone receptor implicated in many pleiotropic biological functions related to cell survival and proliferation. In the last decade, PPARγ agonists—besides their known action and clinical use as insulin sensitizers—have proved to display a wide range of antineoplastic effects in cells and tissues expressing PPARγ, leading to intensive preclinical research in oncology. PPARγ and activators affect tumours by different mechanisms, involving cell proliferation and differentiation, apoptosis, antiinflammatory, and antiangiogenic effects. We recently provided evidence that PPARγ and agonists inhibit IR by non canonical, DNA-independent mechanisms affecting IR gene transcription. We conclude that IR may be considered a new PPARγ “target” gene, supporting a potential use of PPARγ agonists as antiproliferative agents in selected neoplastic tissues that overexpress the IR.

  7. Evaluation of organ-specific glucose metabolism by 18F-FDG in insulin receptor substrate-1 (IRS-1) knockout mice as a model of insulin resistance

    International Nuclear Information System (INIS)

    Insulin resistance (IR) is a physiological condition in which the body produces insulin but does not result in a sufficient biological effect. Insulin resistance is usually asymptomatic but is associated with health problems and is a factor in the metabolic syndrome. The aim of the present study is to clarify organ-specific insulin resistance in normal daily conditions using [18F]-2-fluoro-2-deoxy-D-glucose ([18F]-FDG). The biodistribution of [18F]-FDG was examined in insulin receptor substrate-1 (IRS-1) knockout mice, an animal model of skeletal muscle insulin resistance, and C57BL/6J (wild-type) mice with and without insulin loading. Mice received 0.5 MBq of [18F]-FDG injected into the tail vein, immediately followed by nothing (control cohorts) or an intraperitoneal injection of 1.5 mU/g body weight of human insulin as an insulin loading test. Blood glucose concentrations for all of the experimental animals were assessed at 0, 20, 40, and 60 min post-injection. The mice were subsequently killed, and tissue was collected for evaluation of [18F]-FDG biodistribution. The radioactivity of each organ was measured using a gamma counter. In the absence of insulin, the blood glucose concentrations of wild-type mice (132±26 mg/dl) and IRS-1 knockout mice (134±18 mg/dl) were not significantly different. Blood glucose concentrations decreased following insulin administration, with lower concentrations in wild-type mice than in knockout mice at 20, 40, and 60 min. A statistically significant difference in [18F]-FDG uptake between wild-type mice and IRS-1 knockout mice was confirmed in the heart, abdominal muscle, and femoral muscle. With insulin loading, [18F]-FDG uptake in the heart, back muscle, and abdominal muscle was significantly increased compared to without insulin loading in both wild-type mice and knockout mice. Our results showed that IR significantly affected [18F]-FDG uptake in the heart in normal daily conditions. IR was associated with decreased [18F

  8. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells.

    OpenAIRE

    Billestrup, N; Møldrup, A; Serup, P.; Mathews, L S; Norstedt, G; Nielsen, J H

    1990-01-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, we have transfected a GH receptor cDNA under the transcriptional control of the human metallothionein promoter into RIN5-AH cells. The transfected cells were found to exhibit an increased expression of GH receptors and t...

  9. The insulin receptor with phenylalanine replacing tyrosine-1146 provides evidence for separate signals regulating cellular metabolism and growth

    International Nuclear Information System (INIS)

    The authors have studied the function of a mutant insulin receptor (IR) molecule in which Try-1146, one of the first autophosphorylation sites in the β subunit, was replaced with phenylalanine (IRF1146). Autophosphorylation of the partially purified IRF1146 was reduced 60-70% when compared to the wild-type IR but was still stimulated by insulin. The phosphotransferase activity of the dephospho form of both the IR and IRF1146 toward exogenous substrates was stimulated 3- to 4-fold by insulin. However, the wild-type IR was activated 12-fold by autophosphorylation, whereas the IRF1146 was activated only 2-fold. When the IRF1146 was expressed in Chinese hamster ovary (CHO) cells, [125I]-insulin binding was normal, whereas autophosphorylation was reduced 80% when compared to cells expressing the wild-type IR. Endogeneous substrates of the insulin receptor kinase were not detected during insulin stimulation of CHO cells expressing the IRF1146. These data suggest that activation of the IR tyrosine kinase can be resolved into two components: the first is dependent on insulin binding and the second is dependent on the subsequent insulin-stimulated autophosphorylation cascade. Thus, at least two signal transduction pathways diverging from the IR are implicated in the mechanism of insulin action

  10. Acute knockdown of the insulin receptor or its substrates Irs1 and 2 in 3T3-L1 adipocytes suppresses adiponectin production

    OpenAIRE

    Groeneveld, Matthijs P; Brierley, Gemma V.; Rocha, Nuno M.; Kenneth Siddle; Semple, Robert K.

    2016-01-01

    Loss of function of the insulin receptor (INSR) in humans produces severe insulin resistance. Unlike “common” insulin resistance, this is associated with elevated plasma levels of the insulin-sensitising, adipose-derived protein adiponectin. The underlying mechanism for this paradox is unclear, and it is at odds with the acute stimulation of adiponectin secretion reported on insulin treatment of cultured adipocytes. Given recent evidence for ligand-independent actions of the INSR, we used a l...

  11. Distinct receptors for insulin-like growth factor I in rat renal glomeruli and tubules

    International Nuclear Information System (INIS)

    Purified preparations of renal glomeruli and tubules were obtained by a procedure involving perfusion of rat kidneys with magnetic iron oxide particles to selectively separate the iron-containing glomeruli from the nonmagnetic tubules. Detergent-soluble extracts of both renal glomerular and tubular membranes showed high-affinity, specific binding of 125I-labeled insulin-like growth factor I (125I-IGF-I), whereas degradation of this peptide hormone was minimal during a 90-min incubation at 22 degrees C in the presence of 2.5 mM EDTA and 5 mM N-ethylmaleimide. The affinity of these receptors for IGF-I appeared identical in the two types of renal tissue, since 50% inhibition of 125I-IGF-I binding to both glomerular and tubular tissue occurred in the presence of approximately 3 x 10(-9) M unlabeled IGF-I. In contrast, insulin was much less effective at blocking 125I-IGF-I binding to either tissue, with 1 x 10(-6) M insulin required to produce 50% inhibition of binding. Relative to 125I-IGF-I binding, 125I-insulin binding to glomerular and tubular tissue was significantly lower per milligram protein. 125I-IGF-I was specifically cross-linked to a glomerular receptor subunit that migrated as two discrete bands with relative molecular weight (Mr) of 140,000-150,000 on sodium dodecyl sulfate polyacrylamide gels in the presence of 40 mM dithiothreitol. In contrast, 125I-IGF-I was cross-linked to a tubular receptor subunit that migrated as two discrete bands but at a slightly different position, with Mr of 120,000-140,000

  12. Leprechaunism (Donohue syndrome): a case bearing novel compound heterozygous mutations in the insulin receptor gene.

    Science.gov (United States)

    Kawashima, Yuki; Nishimura, Rei; Utsunomiya, Akari; Kagawa, Reiko; Funata, Hiroaki; Fujimoto, Masanobu; Hanaki, Keiichi; Kanzaki, Susumu

    2013-01-01

    Leprechaunism (Donohue syndrome) is the most severe type of insulin receptor (INSR) gene anomaly with the majority of patients surviving for only 2 years. We report a surviving 2 -year-old male with leprechaunism, bearing novel compound heterozygous mutations in the INSR. The patient is a Japanese boy with acanthosis nigricans, lack of subcutaneous fat, hirsutism, thick lips, gum hypertrophy and extremely high insulin levels (6702 mU/mL). He was as having identified novel compound heterozygous mutations in INSR (p.T910M and p. E1047K). At 24 day-old, recombinant human insulin-like growth factor 1 (rh-IGF1) treatment was started because of poor weight gain. At 2 years old, the patient's serum glucose level and HbA1C value had worsened, and both a bolus of rh-IGF-1 and a subcutaneous injection of a rapid-acting insulin analog after meals, in addition to α-glycosidase inhibitor, were initiated from 2 years onward. Oxygen administration and biphasic positive airway pressure treatment were also initiated from 2 years old due to upper airway obstruction with adenoidal hypertrophy. In the experiments conducted using COS7 cells homozygously transfected with the INSR mutation, T910M INSR failed to process the proreceptor and decreased insulin-stimulated tyrosine phosphorylation. E1047K INSR resulted in a complete absence of insulin-stimulated tyrosine phosphorylation. These findings suggest the near absence of INSR in this patient. We consider that the rhIGF1 treatment contributed to his long survival, but it was not able to prevent his diabetic condition. Our report provides important insights into the function of INSR, and for the treatment of leprechaunism. PMID:22972224

  13. Homologous down-regulation of the insulin receptor is associated with increased receptor biosynthesis in cultured human lymphocytes (IM-9 line)

    International Nuclear Information System (INIS)

    Cultured IM-9 lymphocytes were preincubated with 1 μM insulin, a condition resulting in a 56% reduction in cell surface insulin receptors. Cellular proteins were then metabolically labeled, and the radioactivity incorporated into the insulin proreceptor and receptor mature subunits was measured over a 4-hr chase period. As early as 30 min of chase, incorporation into the proreceptor was 28 +/- 6% higher in down-regulated cells than in control cells. By 1 hr of chase, the difference reached 41 +/- 14% for the proreceptor and 84 +/- 28% for the α subunit, values returned to normal by 2 hr. At 4 hr of chase, labeling of the α subunit of down-regulated cells was diminished 36 +/- 9% below control. The increased biosynthetic rate of the proreceptor was more prominent when the chase medium contained 25 μM monensin, an inhibitor of processing of the proreceptor into mature subunits. Similar effects occurred whether [3H]mannose or [3H]lysine was used as biosynthetic marker. The effect was specific for the insulin receptor. These data demonstrate that insulin receptor homologous down-regulation is associated with increased proreceptor biosynthesis and processing into mature subunits. This might represent a cellular mechanism compensating for insulin-induced receptor loss

  14. Characterization of insulin-like growth factor I and insulin receptors on cultured bovine adrenal fasciculata cells. Role of these peptides on adrenal cell function

    International Nuclear Information System (INIS)

    We have characterized insulin-like growth factor I (IGF-I) and insulin receptors in cultured bovine adrenal cells by binding and cross-linking affinity experiments. At equilibrium the dissociation constant and the number of binding sites per cell for IGF-I were 1.4 +/- (SE) 0.3 x 10(-9) M and 19,200 +/- 2,100, respectively. Under reduction conditions, disuccinimidyl suberate cross-linked [125I]iodo-IGF-I to one receptor complex with an Mr of 125,000. Adrenal cells also contain specific insulin receptors with an apparent dissociation constant (Kd) of 10(-9) M. Under reduction conditions [125I]iodo-insulin binds to one band with an approximate Mr of 125,000. IGF-I and insulin at micromolar concentrations, but not at nanomolar concentrations, slightly stimulated DNA synthesis, but markedly potentiated the mitogenic action of fibroblast growth factor. Adrenal cells cultured in a serum-free medium containing transferrin, ascorbic acid, and insulin (5 micrograms/ml) maintained fairly constant angiotensin-II (A-II) receptor concentration per cell and increased cAMP release on response to ACTH and their steroidogenic response to both ACTH and A-II. When the cells were cultured in the same medium without insulin, the number of A-II receptors significantly decreased to 65% and the increased responsiveness was blunted. Treatment of such cells for 3 days with increasing concentrations of IGF-I (1-100 ng/ml) produced a 2- to 3-fold increase in A-II receptors and enhanced the cAMP response (3- to 4-fold) to ACTH and the steroidogenic response (4- to 6-fold) to ACTH and A-II. These effects were time and dose dependent (ED50 approximately equal to 10(-9) M). Insulin at micromolar concentrations produced an effect similar to that of IGF-I, but at nanomolar concentrations the effect was far less

  15. CB1 receptor blockade counters age-induced insulin resistance and metabolic dysfunction.

    Science.gov (United States)

    Lipina, Christopher; Vaanholt, Lobke M; Davidova, Anastasija; Mitchell, Sharon E; Storey-Gordon, Emma; Hambly, Catherine; Irving, Andrew J; Speakman, John R; Hundal, Harinder S

    2016-04-01

    The endocannabinoid system can modulate energy homeostasis by regulating feeding behaviour as well as peripheral energy storage and utilization. Importantly, many of its metabolic actions are mediated through the cannabinoid type 1 receptor (CB1R), whose hyperactivation is associated with obesity and impaired metabolic function. Herein, we explored the effects of administering rimonabant, a selective CB1R inverse agonist, upon key metabolic parameters in young (4 month old) and aged (17 month old) adult male C57BL/6 mice. Daily treatment with rimonabant for 14 days transiently reduced food intake in young and aged mice; however, the anorectic response was more profound in aged animals, coinciding with a substantive loss in body fat mass. Notably, reduced insulin sensitivity in aged skeletal muscle and liver concurred with increased CB1R mRNA abundance. Strikingly, rimonabant was shown to improve glucose tolerance and enhance skeletal muscle and liver insulin sensitivity in aged, but not young, adult mice. Moreover, rimonabant-mediated insulin sensitization in aged adipose tissue coincided with amelioration of low-grade inflammation and repressed lipogenic gene expression. Collectively, our findings indicate a key role for CB1R in aging-related insulin resistance and metabolic dysfunction and highlight CB1R blockade as a potential strategy for combating metabolic disorders associated with aging. PMID:26757949

  16. Insulin receptor regulates food intake through sulfakinin signaling in the red flour beetle, Tribolium castaneum.

    Science.gov (United States)

    Lin, Xianyu; Yu, Na; Smagghe, Guy

    2016-06-01

    Insects obtain energy and nutrients via feeding to support growth and development. The insulin signaling pathway is involved in the regulation of feeding; however, the underlying mechanisms are not fully understood. Here, we show that insulin signaling regulates food intake via crosstalk with neuropeptide sulfakinin in the red flour beetle, Tribolium castaneum. Silencing of the insulin receptor (InR) decreased the food intake in the penultimate and final instar stages, leading to a decrease of weight gain and mortality during larval-pupal metamorphosis. Interestingly, the knockdown of InR co-occurred with an increased expression of sulfakinin (sk), a gene encoding neuropeptide SK functioning as a satiety signal. In parallel, double silencing of sk and InR eliminated the inhibitory effect on food intake as induced by silencing of InR and the larvae died as prepupae. In conclusion, this study shows, for the first time, that the insulin/InR signaling regulates food intake through the sulfakinin signaling pathway in the larval stages of this important model and pest insect, indicating a novel target for pest control. PMID:26972481

  17. Leptin receptor overlapping transcript (LepROT) gene participates in insulin pathway through FoxO.

    Science.gov (United States)

    Wang, Chuan-Xu; Zhao, Ai-Hua

    2016-08-01

    Leptin receptor overlapping transcript (LepROT) is co-transcribed with the leptin receptor (LepR). However, the function and mechanism of LepROT in insulin pathway is unclear. In this study, we report the function of LepROT in maintaining consistent FoxO transcription. LepROT is constitutively expressed during larval development. 20-Hydroxyecdysone, methoprene, and insulin have no effect on the transcription of LepROT. However, the knockdown of LepROT by dsRNA injection in larvae causes delay of the development of Helicoverpa armigera. Knockdown of LepROT results in the upregulation of FoxO and downregulation of PI3K. The knockdown of LepROT also results in the subcellular translocation of FoxO from cytoplasm to nuclei. By contrast, overexpression of LepROT in the HaEpi cell line inhibits FoxO expression. Results suggest that LepROT participates in insulin signaling. PMID:27106118

  18. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells

    DEFF Research Database (Denmark)

    Billestrup, N; Møldrup, A; Serup, P;

    1990-01-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, we have transfected ...

  19. Interaction of the αβ dimers of the insulin-like growth factor I receptor required for receptor autophosphorylation

    International Nuclear Information System (INIS)

    The authors have recently found that association of the two αβ dimers of the insulin-like growth factor I (IGF I) receptor is required for formation of a high-affinity binding site for IGF I. To determine the structural requirements for IGF I activated kinase activity, they have examined the effect of dissociation of the two αβ dimers of the IGF I receptor on β subunit autophosphorylation. The αβ dimers formed after treatment with 2 mM dithiothreitol (DTT) at pH 8.75 for 5 min were separated from IGF I receptor remaining as tetramers after DTT treatment by fast protein liquid chromatography on a Superose 6 gel filtration column. Purification of the αβ dimers was confirmed by Western blot analysis using 125I-labeled αIR-3, a monoclonal antibody to the IGF I receptor. Autophosphorylation of the IGF I receptor (αβ)2 tetramer, treated without DTT or remaining after DTT treatment, is stimulated 1.6-2.9-fold by IGF I. In contrast, autophosporylation of the αβ dimers incubated in the presence or absence of IGF I (100 ng/mL) does not occur. Both IGF I receptor dimers and tetramers exhibit similar kinase activities using the synthetic substrate Arg-Arg-Leu-Ile-Glu-Asp-Ala-Glu-Tyr-Ala-Ala-Arg-Gly, indicating that the failure to detect autophosphorylation of the IGF I receptor dimers does not result from inactivation of the kinase by DTT treatment. They conclude that autophosphorylation of the IGF I receptor depends upon the interaction of the two αβ dimers

  20. In vitro and in vivo antitumor effects of the dual insulin-like growth factor-I/insulin receptor inhibitor, BMS-554417.

    Science.gov (United States)

    Haluska, Paul; Carboni, Joan M; Loegering, David A; Lee, Francis Y; Wittman, Mark; Saulnier, Mark G; Frennesson, David B; Kalli, Kimberly R; Conover, Cheryl A; Attar, Ricardo M; Kaufmann, Scott H; Gottardis, Marco; Erlichman, Charles

    2006-01-01

    The insulin-like growth factor receptor (IGF-IR) and insulin receptor are either overactivated and/or overexpressed in a wide range of tumor types and contribute to tumorigenicity, proliferation, metastasis, and drug resistance. Here, we show that BMS-554417, a novel small molecule developed as an inhibitor of IGF-IR, inhibits IGF-IR and insulin receptor kinase activity and proliferation in vitro, and reduces tumor xenograft size in vivo. In a series of carcinoma cell lines, the IC50 for proliferation ranged from 120 nmol/L (Colo205) to >8.5 micromol/L (OV202). The addition of stimulatory ligands was unnecessary for the antiproliferative effect in MCF-7 and OV202 cells. BMS-554417 treatment inhibited IGF-IR and insulin receptor signaling through extracellular signal-related kinase as well as the phosphoinositide 3-kinase/Akt pathway, as evidenced by decreased Akt phosphorylation at Ser473. At doses that inhibited proliferation, the compound also caused a G0-G1 arrest and prevented nuclear accumulation of cyclin D1 in response to LR3 IGF-I. In Jurkat T-cell leukemia cells, this agent triggered apoptotic cell death via the mitochondrial pathway. BMS-554417 was orally bioavailable and significantly inhibited the growth of IGF1R-Sal tumor xenografts in vivo. BMS-554417 is a member of a novel class of IGF-IR/insulin receptor inhibitors that have potential clinical applications because of their antiproliferative and proapoptotic activity in vitro and in vivo. PMID:16397250

  1. Expression of insulin-like 3 (INSL3) and differential splicing of its receptor in the ovary of rhesus macaques

    OpenAIRE

    Jensen Jeffrey T; Patta Maristela C; Yao Shan; Hanna Carol B; Wu Xuemei

    2010-01-01

    Abstract Background Although insulin-like 3 (INSL3) has been identified in the gonad of both sexes in many species, there are only limited reports on the distribution of INSL3 and its receptor, relaxin/insulin-like family peptide receptor 2 (RXFP2), in the primate ovary. Since the hormone-receptor pair is believed to play a role in female reproduction, investigating the transcription of INSL3/RXFP2 genes and the spatiotemporal expression of INSL3 in the nonhuman primate may shed light on the ...

  2. Insulin binding and stimulation of hexose and amino acid transport by normal and receptor-defective human fibroblasts

    International Nuclear Information System (INIS)

    The authors analyzed insulin receptors in cells cultured from a sibship of related parents who had two offspring with severe insulin resistance (Leprechaunism). 124I-Insulin (1 ng/ml) binding to skin fibroblasts from the proband, mother, and father was 9, 60 and 62% of control cells, respectively, at equilibrium, Non-linear regression analysis, utilizing a two receptors model, of curvilinear Scatchard plots indicated a reduced number of high-affinity binding sites in both parents. Influx of L-Proline (System A), L-Serine (ASC) and L-Leucine (L) was similar in control and mutant cells. Similarly, during the depletion of intracellular amino acid pools, there was a release from transinhibition for System A and a decrease of transstimulation of Systems ASC and L in both cell lines. Surprisingly, insulin augmented, normally, A system influx with an ED50 = 70 ng/ml at 240C and 7 ng/ml at 370C. By contrast insulin failed to simulated 3-0-methyl-D-glucose influx into the proband's cells, while normal cells were stimulated 30% with an ED50 of 6 ng/ml. These results indicate that defective high-affinity insulin binding is inherited as an autosomal recessive trait; that general membrane functions are intact; that insulin regulates A system amino acid and hexose transport by two different mechanisms; and, that the latter mechanism is impaired by this family's receptor mutation

  3. Role of the Insulin-Like Growth Factor Type 1 Receptor in the Pathogenesis of Diabetic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Duo Zhang

    2015-01-01

    Full Text Available Defective cognitive function is common in patients with diabetes, suggesting that insulin normally exerts anabolic actions in neuron, namely, diabetic encephalopathy. However, because insulin can cross-activate the insulin-like growth factor type 1 receptor (IGF-1R, which also functions in most of tissues, such as muscle and bone, it has been difficult to establish the direct (IGF-1-independent actions of insulin in the pathogenesis of diabetic encephalopathy. To overcome this problem, we examined insulin signaling and action in primary PC-12 cells engineered for conditional disruption of the IGF-1 receptor (ΔIGF-1R. The results showed that the lower glucose metabolism and high expression of IGF-1R occurred in the brain of the DE rat model. The results also showed the defect of IGF-1R could significantly improve the ability of glucose consumption and enhance sensitivity to insulin-induced IR and Akt phosphorylation in PC12 cells. And meanwhile, IGF-1R allele gene knockout (IGF-1Rneo mice treated with HFD/STZ had better cognitive abilities than those of wild mice. Those results indicate that insulin exerts direct anabolic actions in neuron-like cells by activation of its cognate receptor and prove that IGF-1R plays an important role in the pathogenesis of diabetic encephalopathy.

  4. The insulin receptor substrate 1 associates with phosphotyrosine phosphatase SHPTP2 in liver and muscle of rats

    Directory of Open Access Journals (Sweden)

    Lima M.H.M.

    1998-01-01

    Full Text Available Insulin stimulates the tyrosine kinase activity of its receptor resulting in the phosphorylation of its cytosolic substrate, insulin receptor substrate-1 (IRS-1 which, in turn, associates with proteins containing SH2 domains. It has been shown that IRS-1 associates with the tyrosine phosphatase SHPTP2 in cell cultures. While the effect of the IRS-1/SHPTP2 association on insulin signal transduction is not completely known, this association may dephosphorylate IRS-1 and may play a critical role in the mitogenic actions of insulin. However, there is no physiological demonstration of this pathway of insulin action in animal tissues. In the present study we investigated the ability of insulin to induce association between IRS-1 and SHPTP2 in liver and muscle of intact rats, by co-immunoprecipitation with anti-IRS-1 antibody and anti-SHPTP2 antibody. In both tissues there was an increase in IRS-1 association with SHPTP2 after insulin stimulation. This association occurred when IRS-1 had the highest level of tyrosine phosphorylation and the decrease in this association was more rapid than the decrease in IRS-1 phosphorylation levels. The data provide evidence against the participation of SHPTP2 in IRS-1 dephosphorylation in rat tissues, and suggest that the insulin signal transduction pathway in rat tissues is related mainly to the mitogenic effects of the hormone.

  5. Insulin: its binding to specific receptors and its stimulation of DNA synthesis and 2',3'-cyclic nucleotide phosphohydrolase in embryonic mouse brain cell cultures

    International Nuclear Information System (INIS)

    Previously, the authors demonstrated that ornithine decarboxylase was stimulated by insulin in cultures of embryonic mouse brain cells. In the present work, they have investigated the presence and specificity of insulin receptors in these cultures. A time study showed that maximum binding of 125[I] labelled insulin was around 75 min. Other studies measured the influence of concentration and age on insulin binding. A displacement study using increasing concentrations of cold insulin, glucagon or growth hormone demonstrated that the specificity of the receptors for insulin was rather high. It was also found that insulin displayed a clear dose-dependent stimulation of thymidine incorporation into the brain cells. Insulin also stimulated the glial enzyme 2':3'-cyclic nucleotide phosphohydrolase (CNP-ase). The results suggest a dual role for insulin; it regulates both cell proliferation as well as differentiation

  6. Insulin/glucose induces natriuretic peptide clearance receptor in human adipocytes: a metabolic link with the cardiac natriuretic pathway.

    Science.gov (United States)

    Bordicchia, M; Ceresiani, M; Pavani, M; Minardi, D; Polito, M; Wabitsch, M; Cannone, V; Burnett, J C; Dessì-Fulgheri, P; Sarzani, R

    2016-07-01

    Cardiac natriuretic peptides (NP) are involved in cardiorenal regulation and in lipolysis. The NP activity is largely dependent on the ratio between the signaling receptor NPRA and the clearance receptor NPRC. Lipolysis increases when NPRC is reduced by starving or very-low-calorie diet. On the contrary, insulin is an antilipolytic hormone that increases sodium retention, suggesting a possible functional link with NP. We examined the insulin-mediated regulation of NP receptors in differentiated human adipocytes and tested the association of NP receptor expression in visceral adipose tissue (VAT) with metabolic profiles of patients undergoing renal surgery. Differentiated human adipocytes from VAT and Simpson-Golabi-Behmel Syndrome (SGBS) adipocyte cell line were treated with insulin in the presence of high-glucose or low-glucose media to study NP receptors and insulin/glucose-regulated pathways. Fasting blood samples and VAT samples were taken from patients on the day of renal surgery. We observed a potent insulin-mediated and glucose-dependent upregulation of NPRC, through the phosphatidylinositol 3-kinase pathway, associated with lower lipolysis in differentiated adipocytes. No effect was observed on NPRA. Low-glucose medium, used to simulate in vivo starving conditions, hampered the insulin effect on NPRC through modulation of insulin/glucose-regulated pathways, allowing atrial natriuretic peptide to induce lipolysis and thermogenic genes. An expression ratio in favor of NPRC in adipose tissue was associated with higher fasting insulinemia, HOMA-IR, and atherogenic lipid levels. Insulin/glucose-dependent NPRC induction in adipocytes might be a key factor linking hyperinsulinemia, metabolic syndrome, and higher blood pressure by reducing NP effects on adipocytes. PMID:27101299

  7. Robert Feulgen Prize Lecture 1993. The journey of the insulin receptor into the cell: from cellular biology to pathophysiology.

    Science.gov (United States)

    Carpentier, J L

    1993-09-01

    The data that we have reviewed indicate that insulin binds to a specific cell-surface receptor. The complex then becomes involved in a series of steps which lead the insulin-receptor complex to be internalized and rapidly delivered to endosomes. From this sorting station, the hormone is targeted to lysosomes to be degraded while the receptor is recycled back to the cell surface. This sequence of events presents two degrees of ligand specificity: (a) The first step is ligand-dependent and requires insulin-induced receptor phosphorylation of specific tyrosine residues. It consists in the surface redistribution of the receptor from microvilli where it preferentially localizes in its unoccupied form. (b) The second step is more general and consists in the association with clathrin-coated pits which represents the internalization gate common to many receptors. This sequence of events participates in the regulation of the biological action of the hormone and can thus be implicated in the pathophysiology of diabetes mellitus and various extreme insulin resistance syndromes, including type A extreme insulin resistance, leprechaunism, and Rabson-Mendehall syndrome. Alterations of the internalization process can result either from intrinsic abnormalities of the receptor or from more general alteration of the plasma membrane or of the cell metabolism. Type I diabetes is an example of the latter possibility, since general impairment of endocytosis could contribute to extracellular matrix accumulation and to an increase in blood cholesterol. Thus, better characterization of the molecular and cellular biology of the insulin receptor and of its journey inside the cell definitely leads to better understanding of disease states, including diabetes. PMID:8244769

  8. Prostaglandin A2 enhances cellular insulin sensitivity via a mechanism that involves the orphan nuclear receptor NR4A3.

    Science.gov (United States)

    Zhu, X; Walton, R G; Tian, L; Luo, N; Ho, S-R; Fu, Y; Garvey, W T

    2013-03-01

    We have previously reported that members of the NR4A family of orphan nuclear receptors can augment insulin's ability to stimulate glucose transport in adipocytes. In the current study, we endeavored to test for an insulin-sensitizing effect in muscle cells and to identify a potential transactivator. Lentiviral constructs were used to engineer both hyperexpression and shRNA silencing of NR4A3 in C2C12 myocytes. The NR4A3 hyper-expression construct led to a significant increase in glucose transport rates in the presence of maximal insulin while the NR4A3 knock-down exhibited a significant reduction in insulin-stimulated glucose transport rates. Consistently, insulin-mediated AKT phosphorylation was increased by NR4A3 hyperexpression and decreased following shRNA NR4A3 suppression. Then, we examined effects of prostaglandin A2 (PGA2) on insulin action and NR4A3 transactivation. PGA2 augmented insulin-stimulated glucose uptake in C2C12 myocytes and AKT phosphorylation after 12-h treatment, without significant effects on basal transport or basal AKT phosphorylation. More importantly, we demonstrated that PGA2 led to a greater improvement in insulin-stimulated glucose rates in NR4A3 overexpressing C2C12 myocytes, when compared with Lac-Z controls stimulated with insulin and PGA2. Moreover, the sensitizing effect of PGA2 was significantly diminished in NR4A3 knockdown myocytes compared to scramble controls. These results show for the first time that: (i) PGA2 augments insulin action in myocytes as manifested by enhanced stimulation of glucose transport and AKT phosphorylation; and (ii) the insulin sensitizing effect is dependent upon the orphan nuclear receptor NR4A3. PMID:23104421

  9. Insulin receptor substrate-1 (IRS-1 associates with small nucleolar RNA which contributes to ribosome biogenesis

    Directory of Open Access Journals (Sweden)

    Shin-IchiroTakahashi

    2014-03-01

    Full Text Available Insulin receptor substrates (IRSs are well known to play crucial roles in mediating intracellular signals of insulin-like growth factors (IGFs/insulin. Previously we showed that IRS-1 forms high molecular mass complexes containing RNAs. To identify RNAs in IRS-1 complexes, we performed UV cross-linking and immunoprecipitation (CLIP analysis using HEK293 cells expressing FLAG-IRS-1 and FLAG-IRS-2. We detected the radioactive signals in the immunoprecipitates of FLAG-IRS-1 proportional to the UV irradiation, but not in the immunoprecipitates of FLAG-IRS-2, suggesting the direct contact of RNAs with IRS-1. RNAs cross-linked to IRS-1 were then amplified by RT-PCR, followed by sequence analysis. We isolated sequence tags attributed to 25 messenger RNAs and 8 non-coding RNAs, including small nucleolar RNAs (snoRNAs. We focused on the interaction of IRS-1 with U96A snoRNA (U96A and its host Rack1 (receptor for activated C kinase 1 pre-mRNA. We confirmed the interaction of IRS-1 with U96A, and with RACK1 pre-mRNA by immunoprecipitation with IRS-1 followed by Northern blotting or RT-PCR analyses. Mature U96A in IRS-1-/- mouse embryonic fibroblasts was quantitatively less than WT. We also found that a part of nuclear IRS-1 is localized in the Cajal body, a nuclear subcompartment where snoRNA mature. The unanticipated function of IRS-1 in snoRNA biogenesis highlights the potential of RNA-associated IRS-1 complex to open a new line of investigation to dissect the novel mechanisms regulating IGFs/insulin-mediated biological events.

  10. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells

    International Nuclear Information System (INIS)

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, the authors have transfected a GH receptor cDNA under the transcriptional control of the human metallothionein promoter into RIN5-AH cells. The transfected cells were found to exhibit an increased expression of GH receptors and to contain a specific GH receptor mRNA that was not expressed in the parent cell line. The expression of GH receptors in one clone (1.24) selected for detailed analysis was increased 2.6-fold compared to untransfected cells. The increased GH receptor expression was accompanied by an increased responsiveness to GH. Thus, the maximal GH-stimulated increase of insulin biosynthesis was 4.1-fold in 1.24 cells compared to 1.9-fold in the nontransfected RIN5-AH cells. The expression of the transfected receptor was stimulated 1.6- and 2.3-fold when cells were cultured in the presence of 25 or 50 μM Zn2+ was associated with an increased magnitude of GH-stimulated insulin biosynthesis. A close stoichiometric relationship between the level of receptor expression and the level of GH-stimulated insulin biosynthesis was observed. They conclude from these results that the hepatic GH receptor is able to mediate the effect of GH on insulin biosynthesis in RIN5-AH cells

  11. Angiotensin II receptor blocker ameliorates stress-induced adipose tissue inflammation and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Motoharu Hayashi

    Full Text Available A strong causal link exists between psychological stress and insulin resistance as well with hypertension. Meanwhile, stress-related responses play critical roles in glucose metabolism in hypertensive patients. As clinical trials suggest that angiotensin-receptor blocker delays the onset of diabetes in hypertensive patients, we investigated the effects of irbesartan on stress-induced adipose tissue inflammation and insulin resistance. C57BL/6J mice were subjected to 2-week intermittent restraint stress and orally treated with vehicle, 3 and 10 mg/kg/day irbesartan. The plasma concentrations of lipid and proinflammatory cytokines [Monocyte Chemoattractant Protein-1 (MCP-1, tumor necrosis factor-α, and interleukin-6] were assessed with enzyme-linked immunosorbent assay. Monocyte/macrophage accumulation in inguinal white adipose tissue (WAT was observed with CD11b-positive cell counts and mRNA expressions of CD68 and F4/80 using immunohistochemistry and RT-PCR methods respectively. The mRNA levels of angiotensinogen, proinflammatory cytokines shown above, and adiponectin in WAT were also assessed with RT-PCR method. Glucose metabolism was assessed by glucose tolerance tests (GTTs and insulin tolerance tests, and mRNA expression of insulin receptor substrate-1 (IRS-1 and glucose transporter 4 (GLUT4 in WAT. Restraint stress increased monocyte accumulation, plasma free fatty acids, expression of angiotensinogen and proinflammatory cytokines including MCP-1, and reduced adiponectin. Irbesartan reduced stress-induced monocyte accumulation in WAT in a dose dependent manner. Irbesartan treatment also suppressed induction of adipose angiotensinogen and proinflammatory cytokines in WAT and blood, and reversed changes in adiponectin expression. Notably, irbesartan suppressed stress-induced reduction in adipose tissue weight and free fatty acid release, and improved insulin tolerance with restoration of IRS-1 and GLUT4 mRNA expressions in WAT. The results

  12. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells

    International Nuclear Information System (INIS)

    Highlights: ► G protein coupled receptor TGR5 is expressed in mouse and human islets. ► TGR5 is coupled to activation of Gs and Ca2+ release via cAMP/Epac/PLC-ε pathway. ► Activation of TGR5 by bile salts and selective ligands causes insulin secretion. ► TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic β cells. In the present study, we have identified the expression of TGR5 in pancreatic β cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated Gαs and caused an increase in intracellular cAMP and Ca2+. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective Gαs inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on Gs/cAMP/Ca2+ pathway. 8-pCPT-2′-O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic β cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  13. Improved Insulin Resistance and Lipid Metabolism by Cinnamon Extract through Activation of Peroxisome Proliferator-Activated Receptors

    OpenAIRE

    Xiaoyan Sheng; Yuebo Zhang; Zhenwei Gong; Cheng Huang; Ying Qin Zang

    2008-01-01

    Peroxisome proliferator-activated receptors (PPARs) are transcriptional factors involved in the regulation of insulin resistance and adipogenesis. Cinnamon, a widely used spice in food preparation and traditional antidiabetic remedy, is found to activate PPARγ and α, resulting in improved insulin resistance, reduced fasted glucose, FFA, LDL-c, and AST levels in high-caloric diet-induced obesity (DIO) and db/db mice in its water extract form. In vitro studies demonstrate that cinnamon increase...

  14. Epidermal Growth Factor Receptor Regulates Aberrant Expression of Insulin-Like Growth Factor-Binding Protein 3

    OpenAIRE

    TAKAOKA, MUNENORI; Harada, Hideki; Andl, Claudia D; Oyama, Kenji; Naomoto, Yoshio; Dempsey, Kelly L.; Klein-Szanto, Andres J.; El-Deiry, Wafik S; GRIMBERG, ADDA; Nakagawa, Hiroshi

    2004-01-01

    Epidermal growth factor receptor (EGFR) is frequently overexpressed in esophageal carcinoma and its precursor lesions. To gain insights into how EGFR overexpression affects cellular functions in primary human esophageal cells, we performed gene expression profiling and identified insulin-like growth factor-binding protein (IGFBP)-3 as the most up-regulated gene. IGFBP-3 regulates cell proliferation through both insulin-like growth factor-dependent and independent mechanisms. We found that IGF...

  15. Structural analogs of human insulin-like growth factor I with reduced affinity for serum binding proteins and the type 2 insulin-like growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bayne, M.L.; Applebaum, J.; Chicchi, G.G.; Hayes, N.S.; Green, B.G.; Cascieri, M.A.

    1988-05-05

    Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. (Phe/sup -1/, Val/sup 1/, Asn/sup 2/, Gln/sup 3/, His/sup 4/, Ser/sup 8/, His/sup 9/, Glu/sup 12/, Tyr/sup 15/, Leu/sup 16/)IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has >1000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. (Gln/sup 3/, Ala/sup 4/) IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. (Tyr/sup 15/, Leu/sup 16/) IGH-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. The peptide in which these four-point mutations are combined, (Gln/sup 3/, Ala/sup 4/, Tyr/sup 15/,Leu/sup 16/)IGF-I, has 600-fold reduced affinity for the serum binding proteins. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, These peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I.

  16. Insulin Receptor Substrates Irs1 and Irs2 Coordinate Skeletal Muscle Growth and Metabolism via the Akt and AMPK Pathways▿

    OpenAIRE

    Long, Yun Chau; Cheng, Zhiyong; Copps, Kyle D.; White, Morris F.

    2010-01-01

    Coordination of skeletal muscle growth and metabolism with nutrient availability is critical for metabolic homeostasis. To establish the role of insulin-like signaling in this process, we used muscle creatine kinase (MCK)-Cre to disrupt expression of insulin receptor substrates Irs1 and Irs2 in mouse skeletal/cardiac muscle. In 2-week-old mice, skeletal muscle masses and insulin responses were slightly affected by Irs1, but not Irs2, deficiency. In contrast, the combined deficiency of Irs1 an...

  17. An Extract of Artemisia dracunculus L. Enhances Insulin Receptor Signaling and Modulates Gene Expression in Skeletal Muscle in KKay Mice

    OpenAIRE

    Wang, Zhong Q.; RIBNICKY, DAVID; Zhang, Xian H.; Zuberi, Aamir; Raskin, Ilya; Yu, Yongmei; Cefalu, William T.

    2010-01-01

    An ethanolic extract of Artemisia dracunculus L. (PMI-5011) has been observed to decrease glucose and insulin levels in animal models, but the cellular mechanisms by which insulin action is enhanced in vivo is not precisely known. In this study, we evaluated the effects of PMI-5011 to modulate gene expression and cellular signaling through the insulin receptor in skeletal muscle of KK-Ay mice. Eighteen male KK-Ay mice were randomized to a diet (W/W) mixed with PMI-5011 (1%) or diet alone for ...

  18. Insulin-stimulated Na/sup +/ transport in a model renal epithelium: protein synthesis dependence and receptor interactions

    Energy Technology Data Exchange (ETDEWEB)

    Blazer-Yost, B.L.; Cox, M.

    1987-05-01

    The urinary bladder of the toad, Bufo marinus, is a well characterized model of the mammalian distal nephron. Porcine insulin (approx. 0.5-5.0 ..mu..M) stimulates net mucosal to serosal Na/sup +/ flux within 10 minutes of hormone addition. The response is maintained for at least 5 hr and is completely abolished by low doses (10..mu..M) of the epithelial Na/sup +/ channel blocker amiloride. Insulin-stimulated Na/sup +/ transport does not require new protein synthesis since it is actinomycin-D (10..mu..g/ml) insensitive. Also in 3 separate experiments in which epithelial cell proteins were examined by /sup 35/S-methionine labeling, 2-dimensional polyacrylamide gel electrophoresis/autoradiography, no insulin induced proteins were observed. Equimolar concentrations of purified porcine proinsulin and insulin (0.64..mu..M) stimulate Na/sup +/ transport to the same extent. Thus, the putative toad insulin receptor may have different affinity characteristics than those demonstrated for insulin and proinsulin in mammalian tissues. Alternatively, the natriferic action of insulin in toad urinary bladders may be mediated by occupancy of another receptor. Preliminary experiments indicating that nanomolar concentrations of IGF/sub 1/ stimulate Na/sup +/ transport in this tissue support the latter contention.

  19. Concentrations of Insulin Glargine and Its Metabolites During Long-Term Insulin Therapy in Type 2 Diabetic Patients and Comparison of Effects of Insulin Glargine, Its Metabolites, IGF-I, and Human Insulin on Insulin and IGF-I Receptor Signaling

    Science.gov (United States)

    Varewijck, Aimee J.; Yki-Järvinen, Hannele; Schmidt, Ronald; Tennagels, Norbert; Janssen, Joseph A.M.J.L.

    2013-01-01

    We investigated 1) the ability of purified glargine (GLA), metabolites 1 (M1) and 2 (M2), IGF-I, and NPH insulin to activate the insulin receptor (IR)-A and IR-B and IGF-I receptor (IGF-IR) in vitro; 2) plasma concentrations of GLA, M1, and M2 during long-term insulin therapy in type 2 diabetic patients; and 3) IR-A and IR-B activation in vitro induced by serum from patients treated with GLA or NPH insulin. A total of 104 patients (age 56.3 ± 0.8 years, BMI 31.4 ± 0.5 kg/m2, and A1C 9.1 ± 0.1% [mean ± SE]) were randomized to GLA or NPH insulin therapy for 36 weeks. Plasma concentrations of GLA, M1, and M2 were determined by liquid chromatography–tandem mass spectrometry assay. IR-A, IR-B, and IGF-IR autophosphorylation was induced by purified hormones or serum by kinase receptor activation assays. In vitro, M1 induced comparable IR-A, IR-B, and IGF-IR autophosphorylation (activation) as NPH insulin. After 36 weeks, M1 increased from undetectable (<0.2 ng/mL) to 1.5 ng/mL (0.9–2.1), while GLA and M2 remained undetectable. GLA dose correlated with M1 (r = 0.84; P < 0.001). Serum from patients treated with GLA or NPH insulin induced similar IR-A and IR-B activation. These data suggest that M1 rather than GLA mediates GLA effects and that compared with NPH insulin, GLA does not increase IGF-IR signaling during long-term insulin therapy in type 2 diabetes. PMID:23569175

  20. Systemic administration of kainic acid induces selective time dependent decrease in [125I]insulin-like growth factor I, [125I]insulin-like growth factor II and [125I]insulin receptor binding sites in adult rat hippocampal formation

    International Nuclear Information System (INIS)

    Administration of kainic acid evokes acute seizure in hippocampal pathways that results in a complex sequence of functional and structural alterations resembling human temporal lobe epilepsy. The structural alterations induced by kainic acid include selective loss of neurones in CA1-CA3 subfields and the hilar region of the dentate gyrus followed by sprouting and permanent reorganization of the synaptic connections of the mossy fibre pathways. Although the neuronal degeneration and process of reactive synaptogenesis have been extensively studied, at present little is known about means to prevent pathological conditions leading to kainate-induced cell death. In the present study, to address the role of insulin-like growth factors I and II, and insulin in neuronal survival as well as synaptic reorganization following kainate-induced seizure, the time course alterations of the corresponding receptors were evaluated. Additionally, using histological preparations, the temporal profile of neuronal degeneration and hypertrophy of resident astroglial cells were also studied. [125I]Insulin-like growth factor I binding was found to be decreased transiently in almost all regions of the hippocampal formation at 12 h following treatment with kainic acid. The dentate hilar region however, exhibited protracted decreases in [125I]insulin-like growth factor I receptor sites throughout (i.e. 30 days) the study. [125I]Insulin-like growth factor II receptor binding sites in the hippocampal formation were found to be differentially altered following systemic administration of kainic acid. A significant decrease in [125I]insulin-like growth factor II receptor sites was observed in CA1 subfield and the pyramidal cell layer of the Ammon's horn at all time points studied whereas the hilar region and the stratum radiatum did not exhibit alteration at any time. A kainate-induced decrease in [125I]insulin receptor binding was noted at all time points in the molecular layer of the dentate

  1. Research resource: new and diverse substrates for the insulin receptor isoform a revealed by quantitative proteomics after stimulation with igf-ii or insulin

    DEFF Research Database (Denmark)

    Morcavallo, Alaide; Gaspari, Marco; Pandini, Giuseppe;

    2011-01-01

    progression. We hypothesized that IGF-II binding to the IR-A elicits a unique signaling pathway. In order to obtain an unbiased evaluation of IR-A substrates differentially involved after IGF-II and insulin stimulation, we performed quantitative proteomics of IR-A substrates recruited to tyrosine......-phosphorylated protein complexes using stable isotope labeling with amino acids in cell culture in combination with antiphosphotyrosine antibody pull down and mass spectrometry. Using cells expressing only the human IR-A and lacking the IGF-I receptor, we identified 38 IR-A substrates. Only 10 were known IR mediators......, whereas 28 substrates were not previously related to IR signaling. Eleven substrates were recruited by stimulation with both ligands: two equally recruited by IGF-II and insulin, three more strongly recruited by IGF-II, and six more strongly recruited by insulin. Moreover, 14 substrates were recruited...

  2. Small potent ligands to the insulin-regulated aminopeptidase (IRAP)/AT(4) receptor.

    Science.gov (United States)

    Axén, Andreas; Andersson, Hanna; Lindeberg, Gunnar; Rönnholm, Harriet; Kortesmaa, Jarkko; Demaegdt, Heidi; Vauquelin, Georges; Karlén, Anders; Hallberg, Mathias

    2007-07-01

    Angiotensin IV analogs encompassing aromatic scaffolds replacing parts of the backbone of angiotensin IV have been synthesized and evaluated in biological assays. Several of the ligands displayed high affinities to the insulin-regulated aminopeptidase (IRAP)/AT(4) receptor. Displacement of the C-terminal of angiotensin IV with an o-substituted aryl acetic acid derivative delivered the ligand 4, which exhibited the highest binding affinity (K(i) = 1.9 nM). The high affinity of this ligand provides support to the hypothesis that angiotensin IV adopts a gamma-turn in the C-terminal of its bioactive conformation. Ligand (4) inhibits both human IRAP and aminopeptidase N-activity and induces proliferation of adult neural stem cells at low concentrations. Furthermore, ligand 4 is degraded considerably more slowly in membrane preparations than angiotensin IV. Hence, it might constitute a suitable research tool for biological studies of the (IRAP)/AT(4) receptor. PMID:17559064

  3. Partial disruption of naturally occurring groups of insulin receptors on adipocyte plasma membranes by dithiothreitol and N-ethylmaleimide: the role of disulfide bonds.

    OpenAIRE

    Jarett, L; Smith, R M

    1983-01-01

    In this ultrastructural study, monomeric ferritin-insulin was used to further elucidate the role of disulfide bonds in maintaining the natural groups of insulin receptors on adipocyte plasma membranes. Dithiothreitol (1 mM) caused partial disruption of the occupied receptor groups with an increase in single receptors to greater than 50% of total occupied receptors. N-Ethylmaleimide (1 mM) disrupted the groups to the same extent as dithiothreitol and the effect was partly additive with the dit...

  4. Effect of Exercise Training on Adiponectin Receptor Expression and Insulin Resistance in Mice Fed a High Fat Diet

    Directory of Open Access Journals (Sweden)

    Naglaa Fathy Alhusseini

    2010-01-01

    Full Text Available Problem statement: Adiponectin is an adipocyte secreted hormones, exerts its effects via the specific receptors. AdipoR1 and adipoR2 and plays a pivotal role in lipid and glucose metabolism. Approach: We investigated the effect of increased physical activities on insulin resistance and if this effect is modulated through adiponectin receptor expression. Results: We also assessed the effect of High Fat Diet (HFD on adipoRs expression. Mice were subjected to 16 weeks of HFD protocol then to 4, 6 and 8 weeks of exercise training. Following the experimental protocol the fasting plasma glucose, insulin and index of Homeostasis Model Assessment of insulin Resistance (HOMA-R were evaluated. The mRNA expression of adiponectin receptors genes were also analyzed using reverse transcription RT-PCR. The consumption of high fat diet by the mice for 16 weeks resulted in a significant increase in weight associated with insulin resistance and associated with significant decrease in adiponectin receptors R1 and R2 expression in both liver and skeletal muscle. Exercise training for 4 weeks resulted in a significant improvement in the insulin resistance state, significant increase in expression of AdipoR1 and AdipoR2 in both liver and skeletal muscles. On increasing duration of exercise training for 6 weeks and 8 weeks there was significant improvement in insulin resistance and significant increase in the expression of AdipoR1 in liver, AdipoR1 and AdipoR2 in muscle, whereas liver AdipoR2 expression was significantly decreased. Conclusion/Recommendations: we conclude that the exercise training improves insulin sensitivity and up-regulates mRNA expression of AdipoR1 in both skeletal muscle and liver in mice and AdiopR2 in muscle and this suggests that the insulin sensitizing effect of exercise training may be mediated even partially through increased adiponectin receptor expression and up regulation of adiponectin receptors reaches certain level and increasing the

  5. Insulin-like growth factors in endometrioid adenocarcinoma: Correlation with clinico-pathological features and estrogen receptor expression

    International Nuclear Information System (INIS)

    Endometrial carcinoma is a common malignancy of female genital tract. Insulin-like growth factor is known to elicit estrogen-induced mitogenic activity and anti-apoptotic effect in endometrial tissues. The retrospective study investigated the expression of insulin-like growth factors, estrogen receptors and their associations in endometrioid adenocarcinoma (EAC) from 80 EAC patients in immunohistochemistry, and 58 EAC patients and 42 control patients in quantitative RT-PCR. The Pearson correlation analysis was used to analyze their correlations with clinic-pathological parameters. Our results showed that insulin-like growth factor-1 and insulin-like growth factor-2 mRNA levels were higher in tumor tissues and tumor-adjacent tissues than those in control cells, and were inversely correlated with the malignancy of the tumor with a positive correlation with ERα and ERβ expression. Insulin-like growth factor-1R protein expression was correlated with clinical stage, and insulin-like growth factor-2R protein expression was inversely correlated with histological grade. Insulin-like growth factor system plays an important role in estrogen-induced endometrial carcinogenesis, and overexpression of insulin-like growth factor-1R in the advanced endometrioid adenocarcinoma is not estrogen-dependent

  6. Surface-expressed insulin receptors as well as IGF-I receptors both contribute to the mitogenic effects of human insulin and its analogues

    DEFF Research Database (Denmark)

    Lundby, Anders; Bolvig, Pernille; Hegelund, Anne Charlotte;

    2015-01-01

    There is a medical need for new insulin analogues. Yet, molecular alterations to the insulin molecule can theoretically result in analogues with carcinogenic effects. Preclinical carcinogenicity risk assessment for insulin analogues rests to a large extent on mitogenicity assays in cell lines. We...

  7. Human blood-brain barrier insulin-like growth factor receptor

    International Nuclear Information System (INIS)

    Insulin-like growth factor (IGF)-1 and IGF-2, may be important regulatory molecules in the CNS. Possible origins of IGFs in brain include either de novo synthesis or transport of circulating IGFs from blood into brain via receptor mediated transcytosis mechanisms at the brain capillary endothelial wall, ie, the blood-brain barrier (BBB). In the present studies, isolated human brain capillaries are used as an in vitro model system of the human BBB and the characteristics of IGF-1 or IGF-2 binding to this preparation were assessed. The total binding of IGF-2 at 37 degrees C exceeded 130% per mg protein and was threefold greater than the total binding for IGF-1. However, at 37 degrees C nonsaturable binding equaled total binding, suggesting that endocytosis is rate limiting at physiologic temperatures. Binding studies performed at 4 degrees C slowed endocytosis to a greater extent than membrane binding, and specific binding of either IGF-1 or IGF-2 was detectable. Scatchard plots for either peptide were linear and the molar dissociation constant of IGF-1 and IGF-2 binding was 2.1 +/- 0.4 and 1.1 +/- 0.1 nmol/L, respectively. Superphysiologic concentrations of porcine insulin inhibited the binding of both IGF-1 (ED50 = 2 micrograms/mL) and IGF-2 (ED50 = 0.5 microgram/mL). Affinity cross linking of 125I-IGF-1, 125I-IGF-2, and 125I-insulin to isolated human brain capillaries was performed using disuccinimidylsuberate (DSS). These studies revealed a 141 kd binding site for both IGF-1 and IGF-2, and a 133 kd binding site for insulin

  8. Autoradiographic visualization of insulin-like growth factor-II receptors in rat brain

    International Nuclear Information System (INIS)

    The documented presence of IGF-II in brain and CSF prompted us to investigate the distribution of receptors for IGF-II in rat brain slices. Human 125-I-IGF-II (10 pM) was incubated for 16 hrs at 40C with slide-mounted rat brain slices in the absence and presence of unlabeled human IGF-II (67 nM) or human insulin (86 nM). Slides were washed, dried, and exposed to X-ray film for 4-7 days. The results showed dense labeling in the granular layers of the olfactory bulbs, deep layers of the cerebral cortex, pineal gland, anterior pituitary, hippocampus (pyramidal cells CA1-CA2 and dentate gyrus), and the granule cell layers of the cerebellum. Unlabeled IGF-II eliminated most of the binding of these brain regions while insulin produced only a minimal reduction in the amount of 125I-IGF-II bound. These results indicate that a specific neural receptor for IGS-II is uniquely distributed in rat brain tissue and supports the notion that this peptide might play an important role in normal neuronal functioning

  9. Insulin-like growth factor II: complexity of biosynthesis and receptor binding

    DEFF Research Database (Denmark)

    Gammeltoft, S; Christiansen, Jan; Nielsen, F C;

    1991-01-01

    Insulin-like growth factor II (IGF-II) belongs to the insulin family of peptides and acts as a growth factor in many fetal tissues and tumors. The gene expression of IGF-II is initiated at three different promoters which gives rise to multiple transcripts. In a human rhabdomyosarcoma cell line IN...... the 4.8-kb mRNA is translated to IGF-II. The cell line secretes two forms of immunoreactive and bioactive IGF-II to the medium of molecular size 10 kd and 7.5 kd which may be involved in autocrine control of cell growth. IGF-II binds to two receptors on the surface of many cell types: the IGF...... types, however, Man-6-P induces cellular responses. We have studied rat brain neuronal precursor cells where Man-6-P acted as a mitogen suggesting that phosphomannosylated proteins may act as growth factors via the Man-6-P/IGF-II receptor. In conclusion, the gene expression and mechanism of action of...

  10. Novel nuclear localization and potential function of insulin-like growth factor-1 receptor/insulin receptor hybrid in corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yu-Chieh Wu

    Full Text Available BACKGROUND: Type I insulin-like growth factor receptor (IGF-1R and insulin receptor (INSR are highly homologous molecules, which can heterodimerize to form an IGF-1R/INSR hybrid (Hybrid-R. The presence and biological significance of the Hybrid-R in human corneal epithelium has not yet been established. In addition, while nuclear localization of IGF-1R was recently reported in cancer cells and human corneal epithelial cells, the function and profile of nuclear IGF-1R is unknown. In this study, we characterized the nuclear localization and function of the Hybrid-R and the role of IGF-1/IGF-1R and Hybrid-R signaling in the human corneal epithelium. METHODOLOGY/PRINCIPLE FINDINGS: IGF-1-mediated signaling and cell growth were examined in a human telomerized corneal epithelial (hTCEpi cell line using co-immunoprecipitation, immunoblotting and cell proliferation assays. The presence of Hybrid-R in hTCEpi and primary cultured human corneal epithelial cells was confirmed by immunofluorescence and reciprocal immunoprecipitation of whole cell lysates. We found that IGF-1 stimulated Akt and promoted cell growth through IGF-1R activation, which was independent of the Hybrid-R. The presence of Hybrid-R, but not IGF-1R/IGF-1R, was detected in nuclear extracts. Knockdown of INSR by small interfering RNA resulted in depletion of the INSR/INSR and preferential formation of Hybrid-R. Chromatin-immunoprecipitation sequencing assay with anti-IGF-1R or anti-INSR was subsequently performed to identify potential genomic targets responsible for critical homeostatic regulatory pathways. CONCLUSION/SIGNIFICANCE: In contrast to previous reports on nuclear localized IGF-1R, this is the first report identifying the nuclear localization of Hybrid-R in an epithelial cell line. The identification of a nuclear Hybrid-R and novel genomic targets suggests that IGF-1R traffics to the nucleus as an IGF-1R/INSR heterotetrameric complex to regulate corneal epithelial homeostatic

  11. Comparative 2D NMR studies of human insulin and des-pentapeptide insulin: Sequential resonance assignment and implications for protein dynamics and receptor recognition

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Qingxin (Harvard Medical School, Boston, MA (United States)); Weiss, M.A. (Harvard Medical School, Boston, MA (United States) Massachusetts General Hospital, Boston, MA (United States))

    1991-06-04

    The solution structure and dynamics of human insulin are ivestigated by 2D {sup 1}H NMR spectroscopy in reference to a previously analyzed analogue, des-pentapeptide (B26-B30) insulin. This spectroscopic comparison is of interest since (i) the structure of the C-terminal region of the B-chain has not been determined in the monomeric state and (ii) the role of this region in binding to the insulin receptor has been the subject of long-standing speculation. The present NMR studies are conducted in the presence of an organic cosolvent (20% acetic acid), under which conditions both proteins are monomeric and stably folded. Complete sequential assignment of human insulin is obtained and leads to the following conclusions. (1) The secondary structure of the insulin monomer (three {alpha}-helices and B-chain {beta}-turn) is similar to that observed in the 2-Zn crustal state. (2) The folding of DPI is essentially the same as the corresponding portion of intact insulin, in accord with the similarities between their respective crystal structues. (3) residues B24-B28 adopt an extended configuration in the monomer and pack against the hydrophobic core as in crystallographic dimers; residues B29 and B30 are largely disordered. (4) The insulin fold is shown to provide a model for collective motions in a protein with implications for the mechanism of protein-protein recognition. To their knowledge, this paper describes the first detailed analysis of a protein NMR spectrum under conditions of extensive conformational broadening.

  12. Comparative 2D NMR studies of human insulin and des-pentapeptide insulin: Sequential resonance assignment and implications for protein dynamics and receptor recognition

    International Nuclear Information System (INIS)

    The solution structure and dynamics of human insulin are ivestigated by 2D 1H NMR spectroscopy in reference to a previously analyzed analogue, des-pentapeptide (B26-B30) insulin. This spectroscopic comparison is of interest since (i) the structure of the C-terminal region of the B-chain has not been determined in the monomeric state and (ii) the role of this region in binding to the insulin receptor has been the subject of long-standing speculation. The present NMR studies are conducted in the presence of an organic cosolvent (20% acetic acid), under which conditions both proteins are monomeric and stably folded. Complete sequential assignment of human insulin is obtained and leads to the following conclusions. (1) The secondary structure of the insulin monomer (three α-helices and B-chain β-turn) is similar to that observed in the 2-Zn crustal state. (2) The folding of DPI is essentially the same as the corresponding portion of intact insulin, in accord with the similarities between their respective crystal structues. (3) residues B24-B28 adopt an extended configuration in the monomer and pack against the hydrophobic core as in crystallographic dimers; residues B29 and B30 are largely disordered. (4) The insulin fold is shown to provide a model for collective motions in a protein with implications for the mechanism of protein-protein recognition. To their knowledge, this paper describes the first detailed analysis of a protein NMR spectrum under conditions of extensive conformational broadening

  13. Comparative evaluation of optical methods and conventional isotope techniques for the detection of insulin receptors in heterogenous cell systems

    International Nuclear Information System (INIS)

    The findings of studies using radioactively labelled (I-125) insulin to characterise its binding to various heterogenous cell systems had led to a classification of the relevant receptors with those of high affinity and low capacity or vice versa. This, in turn, raised questions as to the binding properties of each individual cell or cell material of a heterogenous nature. Apparently homogenous (lymphocytes) and heterogenous (blood and islet cells) cell populations were investigated on the basis of various techniques for the separate evaluation of individual cells, which were cytofluorometry using FITC insulin and the analysis of gold insulin under the electron microscope. For the association kinetics and equilibration analysis or affinity and receptor quantity a radioactive tracer and light microscope were used. Insulin was shown to bind to erythrocytes, reticulocytes, monocytes and lymphocytes and this result finds confirmation in the relevant literature. Furthermore, binding parameters could be determined for isolated islet cells. Cytofluorometry pointed to the fact that the insulin receptors of an apparently homogenous cell system differed in affinity and number and permitted the use of a multiple parameter procedure. Thus, it holds out promise as a method to be routinely used in the clinical diagnosis of binding parameters, without requiring previous separation procedures that are complicated or involve a loss of material. Transmission electron microscopy permitted conclusions to be drawn as to the type of cell to which insulin is attached. Owing to the use of gold insulin it was possible to throw some light on the factors determining the fate of membrane-bound insulin during its uptake into the cell. (TRV)

  14. Insulin signaling, lifespan and stress resistance are modulated by metabotropic GABA receptors on insulin producing cells in the brain of Drosophila.

    Science.gov (United States)

    Enell, Lina E; Kapan, Neval; Söderberg, Jeannette A E; Kahsai, Lily; Nässel, Dick R

    2010-01-01

    Insulin-like peptides (ILPs) regulate growth, reproduction, metabolic homeostasis, life span and stress resistance in worms, flies and mammals. A set of insulin producing cells (IPCs) in the Drosophila brain that express three ILPs (DILP2, 3 and 5) have been the main focus of interest in hormonal DILP signaling. Little is, however, known about factors that regulate DILP production and release by these IPCs. Here we show that the IPCs express the metabotropic GABA(B) receptor (GBR), but not the ionotropic GABA(A) receptor subunit RDL. Diminishing the GBR expression on these cells by targeted RNA interference abbreviates life span, decreases metabolic stress resistance and alters carbohydrate and lipid metabolism at stress, but not growth in Drosophila. A direct effect of diminishing GBR on IPCs is an increase in DILP immunofluorescence in these cells, an effect that is accentuated at starvation. Knockdown of irk3, possibly part of a G protein-activated inwardly rectifying K(+) channel that may link to GBRs, phenocopies GBR knockdown in starvation experiments. Our experiments suggest that the GBR is involved in inhibitory control of DILP production and release in adult flies at metabolic stress and that this receptor mediates a GABA signal from brain interneurons that may convey nutritional signals. This is the first demonstration of a neurotransmitter that inhibits insulin signaling in its regulation of metabolism, stress and life span in an invertebrate brain. PMID:21209905

  15. Efficacy of anti-insulin-like growth factor I receptor monoclonal antibody cixutumumab in mesothelioma is highly correlated with insulin growth factor-I receptor sites/cell.

    Science.gov (United States)

    Kalra, Neetu; Zhang, Jingli; Yu, Yunkai; Ho, Mitchell; Merino, Maria; Cao, Liang; Hassan, Raffit

    2012-11-01

    Insulin growth factor-I receptor (IGF-IR) is expressed in mesothelioma and therefore an attractive target for therapy. The antitumor activity of cixutumumab, a humanized monoclonal antibody to IGF-IR, in mesothelioma and relationship to IGF-IR expression was investigated using eight early passage tumor cells obtained from patients, nine established cell lines and an in vivo human mesothelioma tumor xenograft model. Although IGF-IR expression at the mRNA and protein level was present in all mesothelioma cells, using a quantitative ELISA immunoassay, there was considerable variability of IGF-IR expression ranging from 1 to 14 ng/mg of lysate. Using flow cytometry, the number of IGF-IR surface receptors varied from ≈ 2,000 to 50,000 sites/cell. Cells expressing >10,000 sites/cell had greater than 10% growth inhibition when treated with cixutumumab (100 μg/ml). Cixutumumab also induced antibody-dependent cell-mediated toxicity (>10% specific lysis) in cell lines, which had >20,000 IGF-IR sites/cell. Treatment with cixutumumab decreased phosphorylation of IGF-IR, Akt and Erk in cell lines, H226 and H28 having 24,000 and 51,000 IGF-IR sites/cell, respectively, but not in the cell line H2052 with 3,000 IGF-IR sites/cell. In vivo, cixutumumab treatment delayed growth of H226 mesothelioma tumor xenografts in mice and improved the overall survival of these mice compared to mice treated with saline (p < 0.004). Our results demonstrate that the antitumor efficacy of cixutumumab including inhibition of IGF-IR downstream signaling is highly correlated with IGF-IR sites/cell. A phase II clinical trial of cixutumumab is currently ongoing for the treatment of patients with mesothelioma. PMID:22323052

  16. Glucagon-like peptide 1 receptor playsa critical role in geniposide-regulated insulin secretion in INS-1 cells

    Institute of Scientific and Technical Information of China (English)

    Li-xia GUO; Zhi-ning XIA; Xue GAO; Fei YIN; Jian-hui LIU

    2012-01-01

    Aim:To explore the role of the glucagon-like peptide 1 receptor (GLP-1R) in geniposide regulated insulin secretion in rat INS-1 insulinoma cells.Methods:Rat INS-1 insulinoma cells were cultured.The content of insulin in the culture medium was measured with ELISA assay.GLP-1R gene in INS-1 cells was knocked down with shRNA interference.The level of GLP-1R protein in INS-1 cells was measured with Western blotting.Results:Geniposide (0.01-100 μmol/L) increased insulin secretion from INS-1 cells in a concentration-dependent manner.Geniposide (10 μmol/L) enhanced acute insulin secretion in response to both the low (5.5 mmol/L) and moderately high levels (11 mmol/L) of glucose.Blockade of GLP-1R with the GLP-1R antagonist exendin (9-39) (200 nmol/L) or knock-down of GLP-1R with shRNA interference in INS-1 cells decreased the effect of geniposide (10 μmol/L) on insulin secretion stimulated by glucose (5.5 mmol/L).Conclusion:Geniposide increases insulin secretion through glucagon-like peptide 1 receptors in rat INS-1 insulinoma cells.

  17. Reevaluation of fatty acid receptor 1 as a drug target for the stimulation of insulin secretion in humans.

    Science.gov (United States)

    Wagner, Robert; Kaiser, Gabriele; Gerst, Felicia; Christiansen, Elisabeth; Due-Hansen, Maria E; Grundmann, Manuel; Machicao, Fausto; Peter, Andreas; Kostenis, Evi; Ulven, Trond; Fritsche, Andreas; Häring, Hans-Ulrich; Ullrich, Susanne

    2013-06-01

    The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are undergoing investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific agonist, FFAR1-knockout mice and human islets. Nondiabetic individuals were metabolically phenotyped and genotyped. In vitro experiments indicated that palmitate and a specific FFAR1 agonist, TUG-469, stimulate glucose-induced insulin secretion through FFAR1. The proapoptotic effect of chronic exposure of β-cells to palmitate was independent of FFAR1. TUG-469 was protective, whereas inhibition of FFAR1 promoted apoptosis. In accordance with the proapoptotic effect of palmitate, in vivo cross-sectional observations demonstrated a negative association between fasting free fatty acids (NEFAs) and insulin secretion. Because NEFAs stimulate secretion through FFAR1, we examined the interaction of genetic variation in FFAR1 with NEFA and insulin secretion. The inverse association of NEFA and secretion was modulated by rs1573611 and became steeper for carriers of the minor allele. In conclusion, FFAR1 agonists support β-cell function, but variation in FFAR1 influences NEFA effects on insulin secretion and therefore could affect therapeutic efficacy of FFAR1 agonists. PMID:23378609

  18. Insulin Receptor Substrate Adaptor Proteins Mediate Prognostic Gene Expression Profiles in Breast Cancer

    Science.gov (United States)

    Becker, Marc A.; Ibrahim, Yasir H.; Oh, Annabell S.; Fagan, Dedra H.; Byron, Sara A.; Sarver, Aaron L.; Lee, Adrian V.; Shaw, Leslie M.; Fan, Cheng; Perou, Charles M.; Yee, Douglas

    2016-01-01

    Therapies targeting the type I insulin-like growth factor receptor (IGF-1R) have not been developed with predictive biomarkers to identify tumors with receptor activation. We have previously shown that the insulin receptor substrate (IRS) adaptor proteins are necessary for linking IGF1R to downstream signaling pathways and the malignant phenotype in breast cancer cells. The purpose of this study was to identify gene expression profiles downstream of IGF1R and its two adaptor proteins. IRS-null breast cancer cells (T47D-YA) were engineered to express IRS-1 or IRS-2 alone and their ability to mediate IGF ligand-induced proliferation, motility, and gene expression determined. Global gene expression signatures reflecting IRS adaptor specific and primary vs. secondary ligand response were derived (Early IRS-1, Late IRS-1, Early IRS-2 and Late IRS-2) and functional pathway analysis examined. IRS isoforms mediated distinct gene expression profiles, functional pathways, and breast cancer subtype association. For example, IRS-1/2-induced TGFb2 expression and blockade of TGFb2 abrogated IGF-induced cell migration. In addition, the prognostic value of IRS proteins was significant in the luminal B breast tumor subtype. Univariate and multivariate analyses confirmed that IRS adaptor signatures correlated with poor outcome as measured by recurrence-free and overall survival. Thus, IRS adaptor protein expression is required for IGF ligand responses in breast cancer cells. IRS-specific gene signatures represent accurate surrogates of IGF activity and could predict response to anti-IGF therapy in breast cancer. PMID:26991655

  19. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Mirshahi, Faridoddin [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Grider, John R. [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Murthy, Karnam S., E-mail: skarnam@vcu.edu [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Sanyal, Arun J., E-mail: asanyal@mcvh-vcu.edu [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  20. A novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia linked to a mutation in the human insulin receptor gene

    DEFF Research Database (Denmark)

    Højlund, Kurt; Hansen, Torben; Lajer, Maria;

    2004-01-01

    revealed a missense mutation (Arg1174Gln) in the tyrosine kinase domain of the insulin receptor gene that cosegregated with the disease phenotype (logarithm of odds [LOD] score 3.21). In conclusion, we report a novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia. The findings demonstrate the...

  1. Arsenite and insulin exhibit opposing effects on epidermal growth factor receptor and keratinocyte proliferative potential

    International Nuclear Information System (INIS)

    Previous work has suggested that arsenic exposure contributes to skin carcinogenesis by preserving the proliferative potential of human epidermal keratinocytes, thereby slowing the exit of putative target stem cells into the differentiation pathway. To find a molecular basis for this action, present work has explored the influence of arsenite on keratinocyte responses to epidermal growth factor (EGF). The ability of cultured keratinocytes to found colonies upon passaging several days after confluence was preserved by arsenite and EGF in an additive fashion, but neither was effective when the receptor tyrosine kinase activity was inhibited. Arsenite prevented the loss of EGF receptor protein and phosphorylation of tyrosine 1173, preserving its capability to signal. The level of nuclear β-catenin was higher in cells treated with arsenite and EGF in parallel to elevated colony forming ability, and expression of a dominant negative β-catenin suppressed the increase in both colony forming ability and yield of putative stem cells induced by arsenite and EGF. As judged by expression of three genes regulated by β-catenin, this transcription factor had substantially higher activity in the arsenite/EGF-treated cells. Trivalent antimony exhibited the same effects as arsenite. A novel finding is that insulin in the medium induced the loss of EGF receptor protein, which was largely prevented by arsenite exposure

  2. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    International Nuclear Information System (INIS)

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  3. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016 (China); Wang, Jianwei, E-mail: wangjianwei1968@gmail.com [Department of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016 (China); Gu, Tieguang [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia); Yamahara, Johji [Pharmafood Institute, Kyoto 602-8136 (Japan); Li, Yuhao, E-mail: yuhao@sitcm.edu.au [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia)

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  4. Influence of reductive diet and physical aerobic training on binding and degradation of 125J-insulin by erythrocyte receptors in children with simple obesity

    International Nuclear Information System (INIS)

    Insuline resistance, expressed by lower insuline binding by receptors, is related to the obesity. Improvement of the binding was observed together with reduction of body weight and in result of physical exercise. In the work was investigated an influence of complex result of reductive diet at the level of 1300-1500 kcal and systematic half-an-hour aerobic exercise on binding and degradation of 125J-insulin by erythrocyte receptors in children with simple obesity. The rest binding of insulin by erythrocyte receptors in obese children was compared with the result observed in the children having normal body weight. Results of these researches confirm that systematic physical exercise connected with reductive diet improves the indexes of lipid balance, increases efficiency of the organism, estimated by maximal oxygen absorption, decreases body weight and improves binding of 125J-insulin to erythrocyte receptors. (authors)

  5. Insulin receptor isoforms: an integrated view focused on gestational diabetes mellitus.

    Science.gov (United States)

    Westermeier, F; Sáez, T; Arroyo, P; Toledo, F; Gutiérrez, J; Sanhueza, C; Pardo, F; Leiva, A; Sobrevia, L

    2016-05-01

    The human insulin receptor (IR) exists in two isoforms that differ by the absence (IR-A) or the presence (IR-B) of a 12-amino acid segment encoded by exon 11. Both isoforms are functionally distinct regarding their binding affinities and intracellular signalling. However, the underlying mechanisms related to their cellular functions in several tissues are only partially understood. In this review, we summarize the current knowledge in this field regarding the alternative splicing of IR isoform, tissue-specific distribution and signalling both in physiology and disease, with an emphasis on the human placenta in gestational diabetes mellitus (GDM). Furthermore, we discuss the clinical relevance of IR isoforms highlighted by findings that show altered insulin signalling due to differential IR-A and IR-B expression in human placental endothelium in GDM pregnancies. Future research and clinical studies focused on the role of IR isoform signalling might provide novel therapeutic targets for treating GDM to improve the adverse maternal and neonatal outcomes. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26431063

  6. The human insulin receptor mRNA contains a functional internal ribosome entry segment

    Science.gov (United States)

    Spriggs, Keith A.; Cobbold, Laura C.; Ridley, Simon H.; Coldwell, Mark; Bottley, Andrew; Bushell, Martin; Willis, Anne E.; Siddle, Kenneth

    2009-01-01

    Regulation of mRNA translation is an important mechanism determining the level of expression of proteins in eukaryotic cells. Translation is most commonly initiated by cap-dependent scanning, but many eukaryotic mRNAs contain internal ribosome entry segments (IRESs), providing an alternative means of initiation capable of independent regulation. Here, we show by using dicistronic luciferase reporter vectors that the 5′-UTR of the mRNA encoding human insulin receptor (hIR) contains a functional IRES. RNAi-mediated knockdown showed that the protein PTB was required for maximum IRES activity. Electrophoretic mobility shift assays confirmed that PTB1, PTB2 and nPTB, but not unr or PTB4, bound to hIR mRNA, and deletion mapping implicated a CCU motif 448 nt upstream of the initiator AUG in PTB binding. The IR-IRES was functional in a number of cell lines, and most active in cells of neuronal origin, as assessed by luciferase reporter assays. The IRES was more active in confluent than sub-confluent cells, but activity did not change during differentiation of 3T3-L1 fibroblasts to adipocytes. IRES activity was stimulated by insulin in sub-confluent cells. The IRES may function to maintain expression of IR protein in tissues such as the brain where mRNA translation by cap-dependent scanning is less effective. PMID:19654240

  7. PTPIP51: A New Interaction Partner of the Insulin Receptor and PKA in Adipose Tissue

    Directory of Open Access Journals (Sweden)

    M. A. Bobrich

    2013-01-01

    Full Text Available Aims. Our previous experiments revealed an association of PTPIP51 (protein tyrosine phosphatase interacting protein 51 with the insulin signalling pathway through PTP1B and 14-3-3beta. We aimed to clarify the role of PTPIP51 in adipocyte metabolism. Methods. Four groups of ten C57Bl/6 mice each were used. Two groups were fed a standard diet; two groups were fed a high-fat diet. Two groups (one high-fat diet and one standard diet were submitted to endurance training, while the remaining two groups served as untrained control groups. After ten weeks, we measured glucose tolerance of the mice. Adipose tissue samples were analyzed by immunofluorescence and Duolink proximity ligation assay to quantify interactions of PTPIP51 with either insulin receptor (IR or PKA. Results. PTPIP51 and the IR and PTPIP51 and PKA, respectively, were colocalized in all groups. Standard diet animals that were submitted to endurance training showed low PTPIP51-IR and PTPIP51-PKA interactions. The interaction levels of both the IR and PKA differed between the feeding and training groups. Conclusion. PTPIP51 might serve as a linking protein in adipocyte metabolism by connecting the IR-triggered lipogenesis with the PKA-dependent lipolysis. PTPIP51 interacts with both proteins, therefore being a potential gateway for the cooperation of both pathways.

  8. Identification of the bioactive and consensus peptide motif from Momordica charantia insulin receptor-binding protein.

    Science.gov (United States)

    Lo, Hsin-Yi; Li, Chia-Cheng; Ho, Tin-Yun; Hsiang, Chien-Yun

    2016-08-01

    Many food bioactive peptides with diverse functions have been discovered by studying plant proteins. We have previously identified a 68-residue insulin receptor (IR)-binding protein (mcIRBP) from Momordica charantia that exhibits hypoglycemic effects in mice via interaction with IR. By in vitro digestion, we found that mcIRBP-19, spanning residues 50-68 of mcIRBP, enhanced the binding of insulin to IR, stimulated the phosphorylation of PDK1 and Akt, induced the expression of glucose transporter 4, and stimulated both the uptake of glucose in cells and the clearance of glucose in diabetic mice. Furthermore, mcIRBP-19 homologs were present in various plants and shared similar β-hairpin structures and IR kinase-activating abilities to mcIRBP-19. In conclusion, our findings suggested that mcIRBP-19 is a blood glucose-lowering bioactive peptide that exhibits IR-binding potentials. Moreover, we newly identified novel IR-binding bioactive peptides in various plants which belonged to different taxonomic families. PMID:26988505

  9. Inhibition of human insulin gene transcription by peroxisome proliferator-activated receptor γ and thiazolidinedione oral antidiabetic drugs

    Science.gov (United States)

    Schinner, S; Krätzner, R; Baun, D; Dickel, C; Blume, R; Oetjen, E

    2009-01-01

    Background and purpose: The transcription factor peroxisome proliferator-activated receptor γ (PPARγ) is essential for glucose homeostasis. PPARγ ligands reducing insulin levels in vivo are used as drugs to treat type 2 diabetes mellitus. Genes regulated by PPARγ have been found in several tissues including insulin-producing pancreatic islet β-cells. However, the role of PPARγ at the insulin gene was unknown. Therefore, the effect of PPARγ and PPARγ ligands like rosiglitazone on insulin gene transcription was investigated. Experimental approach: Reporter gene assays were used in the β-cell line HIT and in primary mature pancreatic islets of transgenic mice. Mapping studies and internal mutations were carried out to locate PPARγ-responsive promoter regions. Key results: Rosiglitazone caused a PPARγ-dependent inhibition of insulin gene transcription in a β-cell line. This inhibition was concentration-dependent and had an EC50 similar to that for the activation of a reporter gene under the control of multimerized PPAR binding sites. Also in normal primary pancreatic islets of transgenic mice, known to express high levels of PPARγ, rosiglitazone inhibited glucose-stimulated insulin gene transcription. Transactivation and mapping experiments suggest that, in contrast to the rat glucagon gene, the inhibition of the human insulin gene promoter by PPARγ/rosiglitazone does not depend on promoter-bound Pax6 and is attributable to the proximal insulin gene promoter region around the transcription start site from −56 to +18. Conclusions and implications: The human insulin gene represents a novel PPARγ target that may contribute to the action of thiazolidinediones in type 2 diabetes mellitus. PMID:19338578

  10. Alteration in insulin action

    DEFF Research Database (Denmark)

    Tanti, J F; Gual, P; Grémeaux, T;

    2004-01-01

    Insulin resistance, when combined with impaired insulin secretion, contributes to the development of type 2 diabetes. Insulin resistance is characterised by a decrease in insulin effect on glucose transport in muscle and adipose tIssue. Tyrosine phosphorylation of insulin receptor substrate 1 (IR...

  11. Lipodystrophy Due to Adipose Tissue-Specific Insulin Receptor Knockout Results in Progressive NAFLD.

    Science.gov (United States)

    Softic, Samir; Boucher, Jeremie; Solheim, Marie H; Fujisaka, Shiho; Haering, Max-Felix; Homan, Erica P; Winnay, Jonathon; Perez-Atayde, Antonio R; Kahn, C Ronald

    2016-08-01

    Ectopic lipid accumulation in the liver is an almost universal feature of human and rodent models of generalized lipodystrophy and is also a common feature of type 2 diabetes, obesity, and metabolic syndrome. Here we explore the progression of fatty liver disease using a mouse model of lipodystrophy created by a fat-specific knockout of the insulin receptor (F-IRKO) or both IR and insulin-like growth factor 1 receptor (F-IR/IGFRKO). These mice develop severe lipodystrophy, diabetes, hyperlipidemia, and fatty liver disease within the first weeks of life. By 12 weeks of age, liver demonstrated increased reactive oxygen species, lipid peroxidation, histological evidence of balloon degeneration, and elevated serum alanine aminotransferase and aspartate aminotransferase levels. In these lipodystrophic mice, stored liver lipids can be used for energy production, as indicated by a marked decrease in liver weight with fasting and increased liver fibroblast growth factor 21 expression and intact ketogenesis. By 52 weeks of age, liver accounted for 25% of body weight and showed continued balloon degeneration in addition to inflammation, fibrosis, and highly dysplastic liver nodules. Progression of liver disease was associated with improvement in blood glucose levels, with evidence of altered expression of gluconeogenic and glycolytic enzymes. However, these mice were able to mobilize stored glycogen in response to glucagon. Feeding F-IRKO and F-IR/IGFRKO mice a high-fat diet for 12 weeks accelerated the liver injury and normalization of blood glucose levels. Thus, severe fatty liver disease develops early in lipodystrophic mice and progresses to advanced nonalcoholic steatohepatitis with highly dysplastic liver nodules. The liver injury is propagated by lipotoxicity and is associated with improved blood glucose levels. PMID:27207510

  12. Testosterone treatment increases androgen receptor and aromatase gene expression in myotubes from patients with PCOS and controls, but does not induce insulin resistance

    DEFF Research Database (Denmark)

    Eriksen, Mette Brandt; Glintborg, Dorte; Nielsen, Michael Friberg Bruun;

    2014-01-01

    Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity...... sensitivity and if testosterone is implicated in muscular insulin resistance in PCOS, this is by and indirect mechanism....... is conserved in cultured myotubes (in vitro) from patients with PCOS, but the effect of testosterone on this insulin sensitivity is unknown. We investigated the effect of 7days testosterone treatment (100nmol/l) on glucose transport and gene expression levels of hormone receptors and enzymes involved...

  13. Monomer-dimer model explains the results of radiation inactivation: binding characteristics of insulin receptor purified from human placenta

    International Nuclear Information System (INIS)

    The technique of radiation inactivation has been used on highly purified human placental insulin receptor in order to determine the functional molecular size responsible for the insulin binding and to evaluate the affinity regulator hypothesis, which has been proposed to explain the increase in specific insulin binding to rat liver membranes observed at low radiation does. Three different types of inactivation curves were observed: (1) biphasic with an enhanced binding activity after exposure to low radiation doses, (2) nonlinear with no change in binding activity after exposure to low radiation doses, and (3) linear with a loss in the binding activity with increasing radiation exposures. A monomer-dimer model was the simplest model that best described the three types of radiation inactivation curves observed. The model predicts that an increase in insulin binding activity would result after exposure to low radiation doses when the initial dimer/monomer ratio is equal to or greater than 1 and a monomer is more active than a dimer. The monomer size of the binding activity was estimated to be 227,000 daltons by this model. To substantiate this model, the purified receptor was fractionated by Sepharose CL-6B chromatography. The insulin binding profile of this column indicated two peaks. These studies suggest that the affinity regulator does not exist as a separate structural protein but is due to the dimeric form of the receptor. The dimeric form (α2β2) possesses a much lower specific activity for insulin binding than does the monomeric αβ form (under the standard conditions), but the dimeric structure is necessary to observe the negative cooperative binding isotherm

  14. 20-Hydroxyeicosatetraenoic acid impairs endothelial insulin signaling by inducing phosphorylation of the insulin receptor substrate-1 at Ser616.

    Directory of Open Access Journals (Sweden)

    Xuguang Li

    Full Text Available 20-Hydroxyeicosatetraenoic acid (20-HETE induces endothelial dysfunction and is correlated with diabetes. This study was designed to investigate the effects of 20-HETE on endothelial insulin signaling.Human umbilical vein endothelial cells (HUVECs or C57BL/6J mice were treated with 20-HETE in the presence or absence of insulin, and p-ERK1/2, p-JNK, IRS-1/PI3K/AKT/eNOS pathway, were examined in endothelial cells and aortas by immunoblotting. eNOS activity and nitric oxide production were measured. 20-HETE increased ERK1/2 phosphorylation and IRS-1 phosphorylation at Ser616; these effects were reversed by ERK1/2 inhibition. We further observed that 20-HETE treatment resulted in impaired insulin-stimulated IRS-1 phosphorylation at Tyr632 and subsequent PI3-kinase/Akt activation. Furthermore, 20-HETE treatment blocked insulin-stimulated phosphorylation of eNOS at the stimulatory Ser1177 site, eNOS activation and NO production; these effects were reversed by inhibiting ERK1/2. Treatment of C57BL/6J mice with 20-HETE resulted in ERK1/2 activation and impaired insulin-dependent activation of the IRS-1/PI3K/Akt/eNOS pathway in the aorta. Our data suggest that the 20-HETE activation of IRS-1 phosphorylation at Ser616 is dependent on ERK1/2 and leads to impaired insulin-stimulated vasodilator effects that are mediated by the IRS-1/PI3K/AKT/eNOS pathway.

  15. Swim training of monosodium L-glutamate-obese mice improves the impaired insulin receptor tyrosine phosphorylation in pancreatic islets.

    Science.gov (United States)

    Miranda, Rosiane Aparecida; Branco, Renato Chaves Souto; Gravena, Clarice; Barella, Luiz Felipe; da Silva Franco, Claudinéia Conationi; Andreazzi, Ana Eliza; de Oliveira, Júlio Cezar; Picinato, Maria Cecília; de Freitas Mathias, Paulo Cezar

    2013-06-01

    The goal of the present study was to investigate changes on glucose homoeostasis and of the insulin receptor (IR) and insulin receptor substrate-1 (IRS-1) signalling in pancreatic islets from MSG-obese mice submitted to or not submitted to swim training. Swim training of 90-day-old MSG mice was used to evaluate whether signalling pathways of the IR and IRS-1 in islets are involved with the insulin resistance and glucose intolerance observed in this obese animal model. The results showed that IR tyrosine phosphorylation (pIR) was reduced by 42 % in MSG-obese mice (MSG, 6.7 ± 0.2 arbitrary units (a.u.); control, 11.5 ± 0.4 a.u.); on the other hand, exercise training increased pIR by 76 % in MSG mice without affecting control mice (MSG, 11.8 ± 0.3; control, 12.8 ± 0.2 a.u.). Although the treatment with MSG increased IRS-1 tyrosine phosphorylation (pIRS-1) by 96 % (MSG, 17.02 ± 0.6; control, 8.7 ± 0.2 a.u.), exercise training also increased it in both groups (control, 13.6 ± 0.1; MSG, 22.2 ± 1.1 a.u.). Current research shows that the practice of swim training increases the tyrosine phosphorylation of IRS-1 which can modulate the effect caused by obesity in insulin receptors. PMID:22983867

  16. AT1-IR-beta Association: A New Mechanism for the Inhibition of Insulin Receptor Function in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Lakshmi Pulakat

    2008-01-01

    Full Text Available Epidemiological evidence show that increased mortality in breast cancer is linked to hypertension and insulin resistance. Because Angiotensin II (Ang II, a hormone implicated in hypertension and insulin resistance, is a normal mitogen for breast tissue and elevated expression of the Ang II receptor AT1 is seen in breast cancer, we analyzed the effects of Ang II exposure on the functions of IR in human breast cancer cell line MCF-7. Exposure of MCF-7 to Ang II for 2 hours a significantly reduced 125I-insulin binding to IR, and b induced co-immuno-precipitation of the AT1 with IR-beta subunit. These Ang II-mediated effects on IR were inhibited by the AT1 antagonist losartan, and were not observed when exposure time was below 1-hour. These observations suggest extended exposure to Ang II have detrimental effects on insulin binding to IR that were not discovered in the previous studies where Ang II-exposure of insulin responsive cells was performed for periods less than one hour. In addition, they suggest a novel mechanism that involves AT1-IR-beta association for the inhibition of insulin binding to IR in response to extended exposure (2-hours of breast cancer cells to elevated levels of Ang II (as seen in hypertensive patients, and provides a molecular link for the inhibition of normal IR signaling by Ang II in breast cancer.

  17. Expression of an insulin/interleukin-1 receptor antagonist hybrid gene in insulin-producing cell lines (HIT-T15 and NIT-1) confers resistance against interleukin-1-induced nitric oxide production.

    OpenAIRE

    Welsh, N; K. Bendtzen; Welsh, M.

    1995-01-01

    A hybrid gene consisting of the insulin gene enhancer/promoter region, the signal sequence, the insulin B- and C-chains, and the human interleukin-1 receptor antagonist (IL-1ra) gene was constructed. This hybrid gene was transfected together with the pSV2-neo construct into the insulin-producing cell lines HIT-T15 and NIT-1. One of the geneticin-selected clones, HITra2, expressed a 1.4-kb mRNA, which hybridized both to insulin and IL-1ra-cDNA in Northern blot analysis. Three proteins, with th...

  18. Grb-IR: a SH2-domain-containing protein that binds to the insulin receptor and inhibits its function.

    OpenAIRE

    Liu, F; Roth, R A

    1995-01-01

    To identify potential signaling molecules involved in mediating insulin-induced biological responses, a yeast two-hybrid screen was performed with the cytoplasmic domain of the human insulin receptor (IR) as bait to trap high-affinity interacting proteins encoded by human liver or HeLa cDNA libraries. A SH2-domain-containing protein was identified that binds with high affinity in vitro to the autophosphorylated IR. The mRNA for this protein was found by Northern blot analyses to be highest in...

  19. IGF1/insulin receptor kinase inhibition by BMS-536924 is better tolerated than alloxan-induced hypoinsulinemia and more effective than metformin in the treatment of experimental insulin-responsive breast cancer.

    Science.gov (United States)

    Dool, Carly Jade; Mashhedi, Haider; Zakikhani, Mahvash; David, Stéphanie; Zhao, Yunhua; Birman, Elena; Carboni, Joan M; Gottardis, Marco; Blouin, Marie-José; Pollak, Michael

    2011-12-01

    Epidemiologic and experimental evidence suggest that a subset of breast cancer is insulin responsive, but it is unclear whether safe and effective therapies that target the insulin receptor (IR), which is homologous to oncogenes of the tyrosine kinase class, can be developed. We demonstrate that both pharmacologic inhibition of IR family tyrosine kinase activity and insulin deficiency have anti-neoplastic activity in a model of insulin-responsive breast cancer. Unexpectedly, in contrast to insulin deficiency, pharmacologic IR family inhibition does not lead to significant hyperglycemia and is well tolerated. We show that pharmacokinetic factors explain the tolerability of receptor inhibition relative to insulin deficiency, as the small molecule receptor kinase inhibitor BMS-536924 does not accumulate in muscle at levels sufficient to block insulin-stimulated glucose uptake. Metformin, which lowers insulin levels only in settings of hyperinsulinemia, had minimal activity in this normoinsulinemic model. These findings highlight the importance of tissue-specific drug accumulation as a determinant of efficacy and toxicity of tyrosine kinase inhibitors and suggest that therapeutic targeting of the IR family for cancer treatment is practical. PMID:21946410

  20. Insulin receptor substrate-1/2 mediates IL-4-induced migration of human airway epithelial cells

    Science.gov (United States)

    White, Steven R.; Martin, Linda D.; Abe, Mark K.; Marroquin, Bertha A.; Stern, Randi; Fu, Xiaoying

    2009-01-01

    Migration of airway epithelial cells (AEC) is an integral component of airway mucosal repair after injury. The inflammatory cytokine IL-4, abundant in chronic inflammatory airways diseases such as asthma, stimulates overproduction of mucins and secretion of chemokines from AEC; these actions enhance persistent airway inflammation. The effect of IL-4 on AEC migration and repair after injury, however, is not known. We examined migration in primary human AEC differentiated in air-liquid interface culture for 3 wk. Wounds were created by mechanical abrasion and followed to closure using digital microscopy. Concurrent treatment with IL-4 up to 10 ng/ml accelerated migration significantly in fully differentiated AEC. As expected, IL-4 treatment induced phosphorylation of the IL-4 receptor-associated protein STAT (signal transducer and activator of transcription)6, a transcription factor known to mediate several IL-4-induced AEC responses. Expressing a dominant negative STAT6 cDNA delivered by lentivirus infection, however, failed to block IL-4-stimulated migration. In contrast, decreasing expression of either insulin receptor substrate (IRS)-1 or IRS-2 using a silencing hairpin RNA blocked IL-4-stimulated AEC migration completely. These data demonstrate that IL-4 can accelerate migration of differentiated AEC after injury. This reparative response does not require STAT6 activation, but rather requires IRS-1 and/or IRS-2. PMID:19447894

  1. Regulation of leptin on insulin secretion and sulfonulurea receptor 1 transcription level in isolated rats pancreatic islets

    Institute of Scientific and Technical Information of China (English)

    袁莉; 安汉祥; 邓秀玲; 李卓娅

    2003-01-01

    Objective To investigate the regulation of leptin on insulin secretion and expression of ATP-sensitive potassium channel subunit sulfonulurea receptor 1 (SUR1) mRNA, and to determine whether the effects of leptin are mediated through known intracellular signaling transduction. Methods Pancreatic islets were isolated by the collagenase method from male SD rats. The purified islets were incubated with different concentrations of leptin for 2 h in the presence of different concentrations of glucose. Insulin release was measured using radioimmunoassay. Expression of SUR1 mRNA was detected by RT-PCR. Results In the presence of leptin 2 nmol/L, insulin release was significantly inhibited at either 11.1 or 16.7 mmol/L glucose concentration (bothP<0.05), but insulin release was not altered at glucose of 5.6 mmol/L physiological concentration. The dose-response experiment showed that the maximal effect of leptin on insulin secretion achieved at 2 nmol/L. Exposure of islets to 2 nmol/L leptin induced a significant increase of SUR1 transcription evels by 71% (P<0.01) at 11.1 mmol/L glucose and by 56% (P<0.05) at 16.7 mmol/L glucose concentration. Selective phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor wortmannin significantly prevented the leptin effect on insulin secretion and SUR1 mRNA expression. Conclusions Regulatory effects of leptin on insulin secretion could be biphasic at different concentrations of glucose and leptin. The stimulatory regulation of SUR1 transcription levels may be mediated through activation of PI 3-kinase pathway, which may be a possible mechanism of leptin in regulating insulin secretion.

  2. Pinitol Supplementation Does Not Affect Insulin-Mediated Glucose Metabolism and Muscle Insulin Receptor Content and Phosphorylation in Older Humans12

    OpenAIRE

    Campbell, Wayne W.; Haub, Mark D; Fluckey, James D.; Ostlund, Richard E; John P. Thyfault; Morse-Carrithers, Hannah; Hulver, Matthew W.; Birge, Zonda K.

    2004-01-01

    This study assessed the effect of oral pinitol supplementation on oral and intravenous glucose tolerances and on skeletal muscle insulin receptor content and phosphorylation in older people. Fifteen people (6 men, 9 women; age 66 ± 8 y; BMI 27.9 ± 3.3 kg/m2; hemoglobin A1c 5.39 ± 0.46%, mean ± SD) completed a 7-wk protocol. Subjects were randomly assigned to groups that during wk 2−7 consumed twice daily either a non-nutritive beverage (Placebo group, n = 8) or the same beverage with 1000 mg ...

  3. Venus Kinase Receptors at the Crossroads of Insulin Signaling: Their Role in Reproduction for Helminths and Insects

    Science.gov (United States)

    Dissous, Colette

    2015-01-01

    Venus kinase receptors (VKRs) are invertebrate receptor tyrosine kinases (TKs) first discovered in the human parasite Schistosoma. They contain an extracellular Venus FlyTrap module similar to the ligand-binding domain of G protein-coupled receptors of class C and an intracellular TK domain similar to that of insulin receptors. VKRs are present from cnidarians to echinoderms. They were shown to be activated by amino-acids, to induce insulin-like intracellular pathways, and to be highly expressed in larvae and in gonads of helminths and insects. The function of VKR in gametogenesis was demonstrated in schistosomes by VKR silencing and recent studies in Aedes aegypti have confirmed the importance of VKR in mosquito egg formation. AaeVKR was shown to bind to ovary ecdysteroidogenic hormone and to activate the production of ecdysteroids by the ovary, independently of signaling mediated by insulin-like peptides. These new data confirm and specify the function of VKRs in the reproduction of helminths and insects and they open interesting perspectives for elucidating the role of VKRs in other models. VKR targeting would also provide opportunities for the control of parasites and various vector-borne infectious diseases. PMID:26284029

  4. Venus Kinase Receptors at the crossroads of insulin signaling: their role in reproduction for helminths and insects

    Directory of Open Access Journals (Sweden)

    Colette eDissous

    2015-08-01

    Full Text Available Venus kinase receptors (VKRs are invertebrate receptor tyrosine kinases (RTKs first discovered in the human parasite Schistosoma. They contain an extracellular Venus FlyTrap (VFT module similar to the ligand-binding domain of G protein-coupled receptors of class C and an intracellular tyrosine kinase domain similar to that of insulin receptors. VKRs are present from cnidarians to echinoderms. They were shown to be activated by amino-acids, to induce insulin-like intracellular pathways and to be highly expressed in larvae and in gonads of helminths and insects. The function of VKR in gametogenesis was demonstrated in schistosomes by VKR silencing and recent studies in Aedes aegypti have confirmed the importance of VKR in mosquito egg formation. AaeVKR was shown to bind to ovary ecdysteroidogenic hormone (OEH and to activate the production of ecdysteroids by the ovary, independently of signaling mediated by insulin-like peptides. These new data confirm and specify the function of VKRs in the reproduction of helminths and insects and they open interesting perspectives for elucidating the role of VKRs in other models. VKR targeting would also provide opportunities for the control of parasites and various vector-borne diseases.

  5. Nine-month follow-up of the insulin receptor signalling cascade in the brain of streptozotocin rat model of sporadic Alzheimer's disease

    OpenAIRE

    Osmanović Barilar, Jelena; Knezović, Ana; Grünblatt, Edna; Riederer, Peter; Šalković-Petrišić, Melita

    2015-01-01

    Sporadic Alzheimer disease (sAD) is associated with impairment of insulin receptor (IR) signalling in the brain. Rats used to model sAD develop insulin-resistant brain state following intracerebroventricular treatment with a betacytotoxic drug streptozotocin (STZ-icv). Brain IR signalling has been explored usually at only one time point in periods ≤3 months after the STZ-icv administration. We have investigated insulin signalling in the rat hippocampus at five time points in periods ≤9 months...

  6. Conjugated Linoleic Acids Mediate Insulin Release through Islet G Protein-coupled Receptor FFA1/GPR40

    DEFF Research Database (Denmark)

    Schmidt, Johannes; Liebscher, Kathrin; Merten, Nicole;

    2011-01-01

    of insulin resistance and the risk of developing diabetes. However, the mechanisms accounting for the effects of CLAs on glucose homeostasis are incompletely understood. Herein we provide evidence that CLAs specifically activate the cell surface receptor FFA1, an emerging therapeutic target to treat...... type 2 diabetes. Using different recombinant cellular systems engineered to stably express FFA1 and a set of diverse functional assays including the novel, label-free non-invasive dynamic mass redistribution technology (Corning® Epic® biosensor), both CLA isomers cis-9, trans-11-CLA and trans-10, cis......-12-CLA were found to activate FFA1 in vitro at concentrations sufficient to also account for FFA1 activation in vivo. Each CLA isomer markedly increased glucose-stimulated insulin secretion in insulin-producing INS-1E cells that endogenously express FFA1 and in primary pancreatic β-cells of wild type...

  7. The insulin receptor substrate 1 (IRS1 in intestinal epithelial differentiation and in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Diana L Esposito

    Full Text Available Colorectal cancer (CRC is associated with lifestyle factors that affect insulin/IGF signaling, of which the insulin receptor substrate 1 (IRS1 is a key transducer. We investigated expression, localization and pathologic correlations of IRS1 in cancer-uninvolved colonic epithelium, primary CRCs with paired liver metastases and in vitro polarizing Caco2 and HT29 cells. IRS1 mRNA and protein resulted higher, relative to paired mucosa, in adenomas of familial adenomatous polyposis patients and in CRCs that overexpressed c-MYC, ß-catenin, InsRß, and IGF1R. Analysis of IRS1 immunostaining in 24 cases of primary CRC with paired colonic epithelium and hepatic metastasis showed that staining intensity was significantly higher in metastases relative to both primary CRC (P<0.01 and colonic epithelium (P<0.01. Primary and metastatic CRCs, compared to colonic epithelium, contained significantly higher numbers of IRS1-positive cells (P = 0.013 and P = 0.014, respectively. Pathologic correlations in 163 primary CRCs revealed that diffuse IRS1 staining was associated with tumors combining differentiated phenotype and aggressive markers (high Ki67, p53, and ß-catenin. In Caco 2 IRS1 and InsR were maximally expressed after polarization, while IGF1R was highest in pre-polarized cells. No nuclear IRS1 was detected, while, with polarization, phosphorylated IRS1 (pIRS1 shifted from the lateral to the apical plasma membrane and was expressed in surface cells only. In HT29, that carry mutations constitutively activating survival signaling, IRS1 and IGF1R decreased with polarization, while pIRS1 localized in nuclear spots throughout the course. Overall, these data provide evidence that IRS1 is modulated according to CRC differentiation, and support a role of IRS1 in CRC progression and liver metastatization.

  8. The insulin receptor substrate 1 (IRS1) in intestinal epithelial differentiation and in colorectal cancer.

    Science.gov (United States)

    Esposito, Diana L; Aru, Federica; Lattanzio, Rossano; Morgano, Annalisa; Abbondanza, Michela; Malekzadeh, Reza; Bishehsari, Faraz; Valanzano, Rosa; Russo, Antonio; Piantelli, Mauro; Moschetta, Antonio; Lotti, Lavinia Vittoria; Mariani-Costantini, Renato

    2012-01-01

    Colorectal cancer (CRC) is associated with lifestyle factors that affect insulin/IGF signaling, of which the insulin receptor substrate 1 (IRS1) is a key transducer. We investigated expression, localization and pathologic correlations of IRS1 in cancer-uninvolved colonic epithelium, primary CRCs with paired liver metastases and in vitro polarizing Caco2 and HT29 cells. IRS1 mRNA and protein resulted higher, relative to paired mucosa, in adenomas of familial adenomatous polyposis patients and in CRCs that overexpressed c-MYC, ß-catenin, InsRß, and IGF1R. Analysis of IRS1 immunostaining in 24 cases of primary CRC with paired colonic epithelium and hepatic metastasis showed that staining intensity was significantly higher in metastases relative to both primary CRC (P<0.01) and colonic epithelium (P<0.01). Primary and metastatic CRCs, compared to colonic epithelium, contained significantly higher numbers of IRS1-positive cells (P = 0.013 and P = 0.014, respectively). Pathologic correlations in 163 primary CRCs revealed that diffuse IRS1 staining was associated with tumors combining differentiated phenotype and aggressive markers (high Ki67, p53, and ß-catenin). In Caco 2 IRS1 and InsR were maximally expressed after polarization, while IGF1R was highest in pre-polarized cells. No nuclear IRS1 was detected, while, with polarization, phosphorylated IRS1 (pIRS1) shifted from the lateral to the apical plasma membrane and was expressed in surface cells only. In HT29, that carry mutations constitutively activating survival signaling, IRS1 and IGF1R decreased with polarization, while pIRS1 localized in nuclear spots throughout the course. Overall, these data provide evidence that IRS1 is modulated according to CRC differentiation, and support a role of IRS1 in CRC progression and liver metastatization. PMID:22558377

  9. Expression of insulin-like 3 (INSL3 and differential splicing of its receptor in the ovary of rhesus macaques

    Directory of Open Access Journals (Sweden)

    Jensen Jeffrey T

    2010-12-01

    Full Text Available Abstract Background Although insulin-like 3 (INSL3 has been identified in the gonad of both sexes in many species, there are only limited reports on the distribution of INSL3 and its receptor, relaxin/insulin-like family peptide receptor 2 (RXFP2, in the primate ovary. Since the hormone-receptor pair is believed to play a role in female reproduction, investigating the transcription of INSL3/RXFP2 genes and the spatiotemporal expression of INSL3 in the nonhuman primate may shed light on the functional aspects of the system in humans. Methods Database mining, molecular and immunological methods were applied. Results One single INSL3 transcript and three novel splice variant transcripts of RXFP2 were identified in the ovary of rhesus macaques. While the full-length RXFP2 transcript is barely detectable in granulosa cells during the periovulatory period, INSL3 transcript and protein are highly abundant in theca cells surrounding antral follicles. Moreover, the INSL3 level in follicular fluid is 3-4 times higher than that in female serum which remains low throughout the menstrual cycle. Conclusions The presence of INSL3 and its receptor in the ovary implies a potential role of the ligand-receptor pair in female reproduction in nonhuman primates. However, the existence of multiple splice variants of RXFP2 indicates a very complex nature of the hormone-receptor system.

  10. Heterologous transmembrane signaling by a human insulin receptor-v-ros hybrid in Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    A hybrid receptor molecule composed of the extracellular ligand-binding domain of the human insulin receptor and the transmembrane and cytoplasmic (protein-tyrosine kinase) domains of the chicken sarcoma virus UR2 transforming protein p68/sup gag-ros/ has been constructed and expressed in Chinese hamster ovary (CHO) cells. The hybrid is processed normally into α and hybrid β subunits, is expressed on the cell surface at high levels, and binds insulin with near-wild-type affinity. Furthermore, insulin stimulates the phosphorylation on tyrosine resides of the hybrid β-subunit in vivo and the phosphorylation of an exogeneous substrate [poly(Glu,Tyr)] in vitro. Thus the hybrid is capable of heterologous transmembrane signaling. However, the hybrid mediates neither the insulin-activated uptake of 2-deoxyglucose nor the incorporation of [3H]thymidine into DNA, suggesting that the physiological response(s) mediated by ligand-activated protein-tyrosine kinases may utilize distinct intracellular mechanisms for postreceptor signaling

  11. Heterologous transmembrane signaling by a human insulin receptor-v-ros hybrid in Chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, L.; Morgan, D.O.; Jong, S.M.; Wang, L.H.; Roth, R.A.; Rutter, W.J.

    1987-08-01

    A hybrid receptor molecule composed of the extracellular ligand-binding domain of the human insulin receptor and the transmembrane and cytoplasmic (protein-tyrosine kinase) domains of the chicken sarcoma virus UR2 transforming protein p68/sup gag-ros/ has been constructed and expressed in Chinese hamster ovary (CHO) cells. The hybrid is processed normally into ..cap alpha.. and hybrid ..beta.. subunits, is expressed on the cell surface at high levels, and binds insulin with near-wild-type affinity. Furthermore, insulin stimulates the phosphorylation on tyrosine resides of the hybrid ..beta..-subunit in vivo and the phosphorylation of an exogeneous substrate (poly(Glu,Tyr)) in vitro. Thus the hybrid is capable of heterologous transmembrane signaling. However, the hybrid mediates neither the insulin-activated uptake of 2-deoxyglucose nor the incorporation of (/sup 3/H)thymidine into DNA, suggesting that the physiological response(s) mediated by ligand-activated protein-tyrosine kinases may utilize distinct intracellular mechanisms for postreceptor signaling

  12. Four RFLPs of the human insulin receptor gene: PstI, KpnI, RsaI (2 RFLPs)

    Energy Technology Data Exchange (ETDEWEB)

    Cox, N.J.; Spielman, R.S.; Taub, R. (Univ. of Pennsylvania School of Medicine, Philadelphia (USA)); Kahn, C.R.; Muller-Wieland, D.; Kriauciunas, K.M. (Harvard Medical School, Boston, MA (USA))

    1988-08-25

    Fragments were isolated from subclones containing the insulin receptor cDNA described. Probe 1 as obtained from an SP64 subclone containing the 1011bp EcoRI fragment from the 5{prime} region of the U11rich cDNA. Probe 1 was a 677bp XhoI/EcoRI fragment from the {alpha} subunit region of the IR cDNA corresponding to nucleotides 334 to 1011, the putative ligand binding domain. Probe 2 was obtained from an SP64 subclone containing the 4190bp EcoRI fragment from the 3{prime} end of the U11rich cDNA. Probe 2 was a 1599 bp PstI fragment from the {beta} subunit region of the insulin receptor cDNA corresponding to nucleotides 2746 to 4345, encoding the tyrosine kinase domain. Segregation in at least one family was observed for the PstI, KpnI, and RsaI ({beta}) polymorphisms.

  13. Extension of Drosophila lifespan by cinnamon through a sex-specific dependence on the insulin receptor substrate chico.

    Science.gov (United States)

    Schriner, Samuel E; Kuramada, Steven; Lopez, Terry E; Truong, Stephanie; Pham, Andrew; Jafari, Mahtab

    2014-12-01

    Cinnamon is a spice commonly used worldwide to flavor desserts, fruits, cereals, breads, and meats. Numerous health benefits have been attributed to its consumption, including the recent suggestion that it may decrease blood glucose levels in people with diabetes. Insulin signaling is an integral pathway regulating the lifespan of laboratory organisms, such as worms, flies, and mice. We posited that if cinnamon truly improved the clinical signs of diabetes in people that it would also act on insulin signaling in laboratory organisms and increase lifespan. We found that cinnamon did extend lifespan in the fruit fly, Drosophila melanogaster. However, it had no effect on the expression levels of the 3 aging-related Drosophila insulin-like peptides nor did it alter sugar, fat, or soluble protein levels, as would be predicted. In addition, cinnamon exhibited no protective effects in males against oxidative challenges. However, in females it did confer a protective effect against paraquat, but sensitized them to iron. Cinnamon provided no protective effect against desiccation and starvation in females, but sensitized males to both. Interestingly, cinnamon protected both sexes against cold, sensitized both to heat, and elevated HSP70 expression levels. We also found that cinnamon required the insulin receptor substrate to extend lifespan in males, but not females. We conclude that cinnamon does not extend lifespan by improving stress tolerance in general, though it does act, at least in part, through insulin signaling. PMID:25456850

  14. Insulin-like growth factor-I and insulin-like growth factor binding proteins in the bovine mammary gland: Receptors, endogenous secretion, and appearance in milk

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, P.G.

    1988-01-01

    This is the first study to characterize both insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding proteins (IGFBPs) in bovine milk, to characterize the IGF-I receptor in the dry and lactating mammary gland, and to report de novo synthesis and secretion of IGF-I and IGFBP from normal mammary tissue. Immunoreactive IGF-I was principally associated with 45 kDa IGFBP in milk. Multiparous cows had a higher IGF-I concentration of 307 ng/ml than primiparous cows at 147 ng/ml. IGF-I concentration on day 56 of lactation was 34 ng/ml for combined parity groups. At parturition, IGF-I mass in blood and milk pools was 1.4 and 1.2 mg, respectively. Binding of {sup 125}I-IGF-I was specific for IGF-I with anIC{sub 50} of 2.2 ng which was a 10- and 1273-fold greater affinity than IGF-II and insulin, respectively. Association constants, as determined by Scatchard analysis, were similar for both pregnant and lactating cows at 3.5 and 4.0 L/nM, respectively. In addition, estimated mean receptor concentration was 0.25 and 0.23 pM/mg protein for pregnant and lactating cows, respectively. In a survey of mammary microscomes prepared from 48 cows, {sup 125}I-IGF-I binding declined with progressing lactation and a similar trend was observed during pregnancy.

  15. Relaxin, Its Receptor (RXFP1), and Insulin-Like Peptide 4 Expression Through Gestation and in Placenta Accreta

    OpenAIRE

    Goh, William; Yamamoto, Sandra Y.; Thompson, Karen S.; Bryant-Greenwood, Gillian D.

    2013-01-01

    This study was designed to show whether placental relaxin (RLN), its receptor (RXFP1), or insulin-like peptide 4 (INSL4) might have altered expression in patients with placenta accreta. The baseline expression of their genes through gestation (n = 34) was quantitated in the placental basal plate (BP) and villous trophoblast (TR), and compared to their expression in placenta accreta (n = 6). The proteins were also immunolocalized and quantitated in the accreta tissues. The messenger RNAs (mRNA...

  16. Bile Acids Acutely Stimulate Insulin Secretion of Mouse β-Cells via Farnesoid X Receptor Activation and KATP Channel Inhibition

    OpenAIRE

    Düfer, Martina; Hörth, Katrin; Wagner, Rebecca; Schittenhelm, Björn; Prowald, Susanne; Wagner, Thomas F. J.; Oberwinkler, Johannes; Lukowski, Robert; Gonzalez, Frank J.; Krippeit-Drews, Peter; Drews, Gisela

    2012-01-01

    Type 2 diabetes mellitus is associated with alterations in bile acid (BA) signaling. The aim of our study was to test whether pancreatic β-cells contribute to BA-dependent regulation of glucose homeostasis. Experiments were performed with islets from wild-type, farnesoid X receptor (FXR) knockout (KO), and β-cell ATP-dependent K+ (KATP) channel gene SUR1 (ABCC8) KO mice, respectively. Sodium taurochenodeoxycholate (TCDC) increased glucose-induced insulin secretion. This effect was mimicked by...

  17. Melanocortin-4 receptor activation inhibits c-Jun N-terminal kinase activity and promotes insulin signaling

    OpenAIRE

    Chai, Biaoxin; Li, Ji-Yao; Zhang, Weizhen; Wang, Hui; Mulholland, Michael W.

    2009-01-01

    The melanocortin system is crucial to regulation of energy homeostasis. The melanocortin receptor type 4 (MC4R) modulates insulin signaling via effects on c-Jun N-terminal kinase (JNK). The melanocortin agonist NDP-MSH dose-dependently inhibited JNK activity in HEK293 cells stably expressing the human MC4R; effects were reversed by melanocortin receptor antagonist. NDP-MSH time- and dose-dependently inhibited IRS-1ser307 phosphorylation, effects also reversed by a specific melanocortin recept...

  18. Preparation of biologically active monomeric ferritin-insulin and its use as a high resolution electron microscopic marker of occupied insulin receptors

    International Nuclear Information System (INIS)

    A rapid, reproducible method for preparing monomeric ferritin-insulin conjugate is described using porcine insulin and horse spleen ferritin as starting materials. The standard protocol includes superactivation of ferritin, conjugation of insulin, neutralization of unreacted aldehyde group, concentration of ferritin and ferritin-insulin, and purification of monomeric ferritin-insulin. Characterization was performed by radioimmunoassay, radioreceptor assay, and bioassay

  19. Insulin like growth factor 2 regulation of aryl hydrocarbon receptor in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tomblin, Justin K.; Salisbury, Travis B., E-mail: salisburyt@marshall.edu

    2014-01-17

    Highlights: •IGF-2 stimulates concurrent increases in AHR and CCND1 expression. •IGF-2 promotes the binding of AHR to the endogenous cyclin D1 promoter. •AHR knockdown inhibits IGF-2 stimulated increases in CCND1 mRNA and protein. •AHR knockdown inhibits IGF-2 stimulated increases in MCF-7 proliferation. -- Abstract: Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma protein (RB1). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-7 breast cancer proliferation by inducing AHR. Western blot and quantitative real time PCR (Q-PCR) analysis revealed that IGF-2 induced an approximately 2-fold increase (P < .001) in the expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by Q-PCR indicated that IGF-2 promoted (P < .001) a 7-fold increase in AHR binding on the CCND1 promoter. AHR knockdown significantly (P < .001) inhibited IGF-2 stimulated increases in CCND1 mRNA and protein. AHR knockdown cells were less (P < .001) responsive to the proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be important for the proliferation of IGF responsive cancer cells that also express AHR.

  20. Human circulating monocytes internalize 125I-insulin in a similar fashion to rat hepatocytes: relevance to receptor regulation in target and nontarget tissues

    International Nuclear Information System (INIS)

    Circulating monocytes bind 125I-insulin in a specific fashion and have been used to analyze the ambient receptor status in humans. When freshly isolated circulating monocytes are incubated with 125I-insulin and examined by electron microscopic autoradiography, approximately 18% of the labeled material is internalized after 15 minutes at 37 degrees C. By 2 hours at 37 degrees C, approximately one half of the 125I-insulin is internalized. Internalization occurs also at 15 degrees C but at a slower rate. Furthermore, the monocytes bind and internalize 125I-insulin in a manner that mirrors that of major target tissues, such as rat hepatocytes. These data suggest that the insulin receptor of the circulating monocyte might be regulated by adsorptive endocytosis in a manner analogous to that of target tissue, such as the liver

  1. Leptin receptor polymorphisms interact with polyunsaturated fatty acids to augment risk of insulin resistance and metabolic syndrome in adults.

    Science.gov (United States)

    Phillips, Catherine M; Goumidi, Louisa; Bertrais, Sandrine; Field, Martyn R; Ordovas, Jose M; Cupples, L Adrienne; Defoort, Catherine; Lovegrove, Julie A; Drevon, Christian A; Blaak, Ellen E; Gibney, Michael J; Kiec-Wilk, Beata; Karlstrom, Britta; Lopez-Miranda, Jose; McManus, Ross; Hercberg, Serge; Lairon, Denis; Planells, Richard; Roche, Helen M

    2010-02-01

    The leptin receptor (LEPR) is associated with insulin resistance, a key feature of metabolic syndrome (MetS). Gene-fatty acid interactions may affect MetS risk. The objective was to investigate the relationship among LEPR polymorphisms, insulin resistance, and MetS risk and whether plasma fatty acids, a biomarker of dietary fatty acids, modulate this. LEPR polymorphisms (rs10493380, rs1137100, rs1137101, rs12067936, rs1805096, rs2025805, rs3790419, rs3790433, rs6673324, and rs8179183), biochemical measurements, and plasma fatty acid profiles were determined in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1754). LEPR rs3790433 GG homozygotes had increased MetS risk compared with the minor A allele carriers [odds ratio (OR) = 1.65; 95% CI: 1.05-2.57; P = 0.028], which may be accounted for by their increased risk of elevated insulin concentrations (OR 2.40; 95% CI: 1.28-4.50; P = 0.006) and insulin resistance (OR = 2.15; 95% CI: 1.18-3.90; P = 0.012). Low (less than median) plasma (n-3) and high (n-6) PUFA status exacerbated the genetic risk conferred by GG homozygosity to hyperinsulinemia (OR 2.92-2.94) and insulin resistance (OR 3.40-3.47). Interestingly, these associations were abolished against a high (n-3) or low (n-6) PUFA background. Importantly, we replicated some of these findings in an independent cohort. Homozygosity for the LEPR rs3790433 G allele was associated with insulin resistance, which may predispose to increased MetS risk. Novel gene-nutrient interactions between LEPR rs3790433 and PUFA suggest that these genetic influences were more evident in individuals with low plasma (n-3) or high plasma (n-6) PUFA. PMID:20032477

  2. Drosophila insulin-producing cells are differentially modulated by serotonin and octopamine receptors and affect social behavior.

    Directory of Open Access Journals (Sweden)

    Jiangnan Luo

    Full Text Available A set of 14 insulin-producing cells (IPCs in the Drosophila brain produces three insulin-like peptides (DILP2, 3 and 5. Activity in IPCs and release of DILPs is nutrient dependent and controlled by multiple factors such as fat body-derived proteins, neurotransmitters, and neuropeptides. Two monoamine receptors, the octopamine receptor OAMB and the serotonin receptor 5-HT1A, are expressed by the IPCs. These receptors may act antagonistically on adenylate cyclase. Here we investigate the action of the two receptors on activity in and output from the IPCs. Knockdown of OAMB by targeted RNAi led to elevated Dilp3 transcript levels in the brain, whereas 5-HT1A knockdown resulted in increases of Dilp2 and 5. OAMB-RNAi in IPCs leads to extended survival of starved flies and increased food intake, whereas 5-HT1A-RNAi produces the opposite phenotypes. However, knockdown of either OAMB or 5-HT1A in IPCs both lead to increased resistance to oxidative stress. In assays of carbohydrate levels we found that 5-HT1A knockdown in IPCs resulted in elevated hemolymph glucose, body glycogen and body trehalose levels, while no effects were seen after OAMB knockdown. We also found that manipulations of the two receptors in IPCs affected male aggressive behavior in different ways and 5-HT1A-RNAi reduced courtship latency. Our observations suggest that activation of 5-HT1A and OAMB signaling in IPCs generates differential effects on Dilp transcription, fly physiology, metabolism and social interactions. However the findings do not support an antagonistic action of the two monoamines and their receptors in this particular system.

  3. Association of β3 Adrenergic Receptor and Peroxisome Proliferator-activated Receptor Gamma 2 Polymorphisms With Insulin Sensitivity: A Twin Study

    Institute of Scientific and Technical Information of China (English)

    TIAN-JIAO CHEN; CHENG-YE JI; XIAO-YING ZHENG; YONG-HUA HU

    2007-01-01

    Objective To study the effect of β3 adrenergic receptor (β3AR) Trp64Arg and peroxisome proliferator activated receptor gamma 2 (PPARγ2) Pro12Ala polymorphisms on insulin resistance. Methods One hundred and eight dizygotic twin pairs were enrolled in this study. Microsatellite polymorphism was used to diagnose zygosity of twins. Insulin sensitivity was estimated with logarithm transformed homeostasis model assessment (HOMA). PCR-RFLP analysis was performed to detect the variants. As a supplement to the sib-pair method, identity by state (IBS) was used to analyze the association of polymorphisms with insulin sensitivity. Results The genotype frequencies of Trp64Trg, Trp64Arg, and Arg64Arg were 72.3%, 23.8%, and 3.9%, respectively, while the genotype frequencies of Pro12Pro, Pro12Ala, and Ala12Ala were 89.9%, 9.6%,and 0.5%, respectively. For β3AR Trp64Arg the interclass co-twin correlations of Waist-to-hip ratio (WHR), blood glucose (GLU), and insulin (INS), homeostasis model assessment insulin resistance index (HOMA-IR) of the twin pairs sharing 2alleles of IBS were greater than those sharing 0-1 allele of IBS, and HOMA-IR had statistic significance. For PPARγ2 Pro12Ala most traits of twin pairs sharing 2 alleles of IBS had greater correlations and statistic significance in body mass index (BMI),WHR, percent of body fat (PBF) and GLU, but there were low correlations of either insulin or HOMA-IR of twin pairs sharing 1 or 2 alleles of IBS. The combined effects of the two variations showed less squared significant twin-pair differences of INS and HOMA-IR among twins sharing 4 alleles of IBS. Conclusions β3AR Trp64Arg and PPARγ2 Pro12Ala polymorphisms might be associated with insulin resistance and obesity, and there might be slight synergistic effects between this two gene loci,and further studies are necessary to confirm this finding.

  4. Study of Mutation in Tyrosine Protein Kinase of Insulin Receptor Gene in Patients with Polycystic Ovarian Syndrome

    Institute of Scientific and Technical Information of China (English)

    Min LI; Hong-yu QIU; Yong-yu SUN; Hong-fa LI; Yong-li CHU

    2003-01-01

    Objective To explore the molecular mechanism of insulin resistance in the patients with polycystic ovarian syndrome (PCOS)Methods Polymerase chain reaction, silver staining-single strand conformation polymorphism(PCR-SSCP) and DNA direct sequencing were used to detect the mutation of insulin receptor(INSR) gene in exon 17~21 with the abdominal wall adipose tissue from 31 patients with PCOS (PCOS Group) and 30 patients with pure hysteromyoma in reproductive lift (Control Group).Results Twenty-two variant SSCP patterns in exon 17 of INSR gene were detected. Direct sequence analysis of exon 17 showed that homozygous nonsense mutation was two alleles single nucleotide polymorphism(SNP) at the codon 1058 (CAC→CAT). Exons 18~21 were not detected with any significantly mutation. The INSR gene His1058C→T substitution collecting rate and insulin resistance were significantly higher in the PCOS group than in the control group (P=0.0293, P<0.05, P<0.01).Conclusion It is suggested that the SNP in codon 1058 of the INSR gene might be related with the insulin resistance in PCOS patients, which has hereditary tendency. And the missense mutation,nonsense mutation and frameshift mutation at exons 18~21 in tyrosine protein kinase region of INSR gene for PCOS patients were not frequently observed.

  5. A clinical study on insulin receptors of mononuclear cells in diabetes

    International Nuclear Information System (INIS)

    125I-insulin binding activity to mononuclear cells was studied in 75 noninsulin-dependent diabetic subjects and 31 normal subjects and the following results were obtained. 1. 125I-insulin binding is directly proportional to the mononuclear cell concentrations. There is a linear increase of specific 125I-insulin binding. 2. The binding of 125I-insulin to mononuclear cells is displaced by the increasing concentration of native insulin. 3. The 125I-insulin degradation in the incubation medium after incubation of mononuclear cells for 24 hours at 40C was almost 5% in this study. 4. The insulin binding activity in diabetic subjects was lower than that in normal subjects (P < 0.001) without any significant difference in affinity constant. 5. The relationship of binding activity to age of diabetics (r = 0.06, N.S), relative body weitht (r = 0.06, N.S) and duration of diabetes from onset was not significant. 6. In untreated noninsulin-dependent diabetics the insulin binding activity was inversely correlated to fasting blood glucose level (r = 0.78, P < 0.001) and slightly inversely correlated to serum insulin level (r = 0.47, P < 0.01). A slight inverse correlation was also observed in serum triglyceride level (r = 0.53, P < 0.01) and in total cholesterol level (r = 0.29, P < 0.05). 7. No significant difference between the binding activity was observed by grade of diabetic retinopathy. 8. After treatment with diet and/or sulfonylurea, the diabetics exhibited a significant increase in insulin binding activity (P < 0.005) but no significant difference in plasma insulin level, body weight and plasma lipid levels was observed. (author)

  6. Insulin-like growth factor-I receptor signaling blockade combined with radiation.

    Science.gov (United States)

    Allen, Gregory W; Saba, Corey; Armstrong, Eric A; Huang, Shyh-Min; Benavente, Sergio; Ludwig, Dale L; Hicklin, Daniel J; Harari, Paul M

    2007-02-01

    Signaling through the insulin-like growth factor-I receptor (IGF-IR) is implicated in cellular proliferation, apoptosis, carcinogenesis, metastasis, and resistance to cytotoxic cancer therapies. Targeted disruption of IGF-IR signaling combined with cytotoxic therapy may therefore yield improved anticancer efficacy over conventional treatments alone. In this study, a fully human anti-IGF-IR monoclonal antibody A12 (ImClone Systems, Inc., New York, NY) is examined as an adjunct to radiation therapy. IGF-IR expression is shown for a diverse cohort of cell lines, whereas targeted IGF-IR blockade by A12 inhibits IGF-IR phosphorylation and activation of the downstream effectors Akt and mitogen-activated protein kinase. Anchorage-dependent proliferation and xenograft growth is inhibited by A12 in a dose-dependent manner, particularly for non-small cell lung cancer lines. Clonogenic radiation survival of H226 and H460 cells grown under anchorage-dependent conditions is impaired by A12, demonstrating a radiation dose-enhancing effect for IGF-IR blockade. Postradiation anchorage-independent colony formation is inhibited by A12 in A549 and H460 cells. In the H460 xenograft model, combining A12 and radiation significantly enhances antitumor efficacy compared with either modality alone. These effects may be mediated by promotion of radiation-induced, double-stranded DNA damage and apoptosis as observed in cell culture. In summary, these results validate IGF-IR signal transduction blockade as a promising strategy to improve radiation therapy efficacy in human tumors, forming a basis for future clinical trials. PMID:17283150

  7. Characterization of insulin-like growth factor I and epidermal growth factor receptors in meningioma

    International Nuclear Information System (INIS)

    Receptors for insulin-like growth factor I (IGF-I) and epidermal growth factor (EGF) were localized and characterized in eight samples of human meningioma (four fibrous, two meningothelial, and two angioblastic types), using quantitative autoradiographic techniques. Effects of both growth factors on deoxyribonucleic acid (DNA) synthesis in the cultured meningioma cells were examined. High numbers of specific binding sites for both IGF-I and EGF were homogeneously present in tissue sections derived from fibrous and meningothelial types of meningiomas, whereas binding sites for these growth factors were not detectable in adjacent leptomeninges. While relatively large numbers of IGF-I binding sites were located in the wall of the intratumoral vasculature, the number of binding sites in the stromal component was lower in angioblastic-type meningiomas, including a low number of EGF binding sites detected only in the stromal portion. Scatchard analysis revealed the presence of a single class of high-affinity binding sites for both IGF-I and EGF in the meningiomas examined (dissociation constant (Kd) = 0.6 to 2.9 nM, and the maximum number of binding sites (Bmax) = 16 to 80 fmol/mg for IGF-I; and Kd = 0.6 to 4.0 nM, Bmax = 3 to 39 fmol/mg for EGF). Both growth factors increased the synthesis of DNA, in a dose-dependent manner, as measured by 3H-thymidine incorporation. The combination of IGF-I and EGF synergistically stimulated the synthesis of DNA, and the effects seen with 10% fetal bovine serum could be reproduced at a concentration of 10(-10) M. These observations can be interpreted to mean that both IGF-I and EGF may be involved in the growth modulation of meningiomas, possibly through paracrine or autocrine mechanisms

  8. Increased hepatic expression of insulin-like growth factor-I receptor in chronic hepatitis C

    Institute of Scientific and Technical Information of China (English)

    José Tadeu Stefano; Maria Lúcia Corr(e)a-Giannella; Cristiane Maria Freitas Ribeiro; Ven(a)ncio Avancini Ferreira Alves; Paulo Celso Bosco Massarollo; Marcel Cerqueira Cesar Machado; Daniel Giannella-Neto

    2006-01-01

    AIM: Although increased insulin-like growth factor-I receptor (IGF-IR) gene expression has been reported in hepatocellular carcinoma, studies assessing IGF-IR in chronic hepatitis C (CHC) and cirrhosis are scarce. We therefore aimed to evaluate IGF-IR and IGF-I mRNA expression in liver from patient with CHC.METHODS: IGF-IR and IGF-I mRNA content were determined by semi-quantitative RT-PCR and IGF-IR protein expression was determined by immunohisto chemistry in hepatic tissue obtained from patients with CHC before (34 patients) and after(10patients) therapy with interferon-α and ribavirin.RESULTS: An increase of IGF-IR mRNA content was observed in hepatictissue obtained from all CHC patients as well as from 6 cadaveric liver donors following orthopic transplantation (an attempt to evaluate normal livers) in comparison to normalliver, while no relevant modifications were detected in IGF-I mRNA content.The immunohistochemical results showed that the raise in IGF-IR mRNA content was related both to ductular reaction and to increased IGF-IR expression in hepatocytes. A decrease in IGF-IR mRNA content was observed in patients who achieved sustained virological response after therapy, suggesting an improvement in hepatic damage.CONCLUSION: The up-regulation of IGF-IR expression in hepatocytes of patients with CHC could constitute an attempt to stimulate hepatocyte regeneration.Considering that liver is the organ with the highest levels of IGF-I, our finding of increased IGF-IR expression after both acute and chronic hepatic damage highlights the need for additional studies to elucidate the role of IGF-I in liver regeneration.

  9. Rosiglitazone treatment of patients with extreme insulin resistance and diabetes mellitus due to insulin receptor mutations has no effects on glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Vestergaard, H; Lund, S; Pedersen, O; Vestergaard, Henrik

    2001-01-01

    Rosiglitazone, a thiazolidinedione (TZD), increases insulin sensitivity by reducing levels of plasma NEFA, triglycerides (TG), glucose and serum insulin. Rosiglitazone treatment decreases insulin resistance in type 2 diabetic patients, but no data exist concerning rosiglitazone treatment of...... patients with syndromes of extreme insulin resistance....

  10. Functional properties of an isolated αβ heterodimeric human placenta insulin-like growth factor 1 receptor complex

    International Nuclear Information System (INIS)

    Treatment of human placenta membranes at pH 8.5 in the presence of 2.0 mM dithiothreitol (DTT) for 5 min, followed by the simultaneous removal of the DTT and pH adjustment of pH 7.6, resulted in the formation of a functional αβ heterodimeric insulin-like growth factor 1 (IGF-1) receptor complex from the native α2β2 heterotetrameric disulfide-linked state. The membrane-bound αβ heterodimeric complex displayed similar curvilinear 125I-IGF-1 equilibrium binding compared to the α2β2 heterotetrameric complex. 125I-IGF-1 binding to both the isolated α2β2 heterotetrameric and αβ heterodimeric complexes demonstrated a marked straightening of the Scatchard plots, compared to the placenta membrane-bound IGF-1 receptors, with a 2-fold increase in the high-affinity binding component. IGF-1 stimulation of IGF-1 receptor autophosphorylation indicated that the ligand-dependent activation of αβ heterodimeric protein kinase activity occurred concomitant with the reassociation into a covalent α2β2 heterotetrameric state. These data demonstrate that (i) a combination of alkaline pH and DTT treatment of human placenta membranes results in the formation of an αβ heterodimeric IGF-1 receptor complex, (ii) unlike the insulin receptor, high-affinity homogeneous IGF-1 binding occurs in both the α2β2 heterotetrameric and αβ heterodimeric complexes, and (iii) IGF-1-dependent autophosphorylation of the αβ heterodimeric IGF-1 receptor complex correlates wit an IGF-1 dependent covalent reassociation into an α2β2 heterotetrameric disulfide-linked state

  11. Knockout of insulin-like growth factor-1 receptor impairs distal lung morphogenesis.

    Directory of Open Access Journals (Sweden)

    Ralph Epaud

    Full Text Available BACKGROUND: Insulin-like growth factors (IGF-I and -II are pleiotropic regulators of somatic growth and development in vertebrate species. Endocrine and paracrine effects of both hormones are mediated by a common IGF type 1 receptor (IGF-1R. Lethal respiratory failure in neonatal IGF-1R knockout mice suggested a particular role for this receptor in pulmonary development, and we therefore investigated the consequences of IGF-1R inactivation in lung tissue. METHODS AND FINDINGS: We first generated compound heterozygous mutant mice harboring a hypomorphic (Igf1r(neo and a null (Igf1r(- allele. These IGF-1R(neo/- mice express only 22% of normal IGF-1R levels and are viable. In adult IGF-1R(neo/- mice, we assessed lung morphology and respiratory physiology and found normal histomorphometric characteristics and normal breathing response to hypercapnia. We then generated homozygous IGF-1R knockout mutants (IGF-1R(-/- and analyzed their lung development during late gestation using histomorphometric and immunohistochemical methods. IGF-1R(-/- embryos displayed severe lung hypoplasia and markedly underdeveloped diaphragms, leading to lethal neonatal respiratory distress. Importantly, IGF-1R(-/- lungs from late gestation embryos were four times smaller than control lungs and showed markedly thickened intersaccular mesenchyme, indicating strongly delayed lung maturation. Cell proliferation and apoptosis were significantly increased in IGF-1R(-/- lung tissue as compared with IGF-1R(+/+ controls. Immunohistochemistry using pro-SP-C, NKX2-1, CD31 and vWF as markers revealed a delay in cell differentiation and arrest in the canalicular stage of prenatal respiratory organ development in IGF-1R(-/- mutant mice. CONCLUSIONS/SIGNIFICANCE: We found that low levels of IGF-1R were sufficient to ensure normal lung development in mice. In contrast, complete absence of IGF-1R significantly delayed end-gestational lung maturation. Results indicate that IGF-1R plays

  12. Association of severe insulin resistance with both loss of limb fat and elevated serum tumor necrosis factor receptor levels in HIV lipodystrophy.

    Science.gov (United States)

    Mynarcik, D C; McNurlan, M A; Steigbigel, R T; Fuhrer, J; Gelato, M C

    2000-12-01

    HIV-lipodystrophy (HIV-LD) is characterized by the loss of body fat from the limbs and face, an increase in truncal fat, insulin resistance, and hyperlipidemia, factors placing affected patients at increased risk for vascular disease. This study evaluated insulin sensitivity and inflammatory status associated with HIV-LD and provides suggestions about its etiology. Insulin sensitivity and immune activation markers were assessed in 12 control subjects and 2 HIV-positive groups, 14 without and 15 with LD syndrome. Peripheral insulin sensitivity (mostly skeletal muscle) was determined with the hyperinsulinemic-euglycemic clamp. Circulating insulin-like growth factor (IGF) binding protein-1 (IGFBP-1) and free fatty acid (FFA) levels, and their response to insulin infusion were indicative of insulin responsiveness of liver and adipose tissue, respectively. Serum levels of soluble type 2 tumor necrosis factor-alpha (TNF-alpha) receptor (sTNFR2) were used as an indicator of immune activation. HIV-LD study subjects had significantly reduced (twofold) peripheral insulin sensitivity, but normal levels of FFA and reduced levels of IGFBP-1, relative to the nonlipodystrophy groups, indicating that the loss of insulin sensitivity was more pronounced in skeletal muscle than in liver or fat. The significant loss of peripheral fat in the HIV-LD group (34%; p <.05) closely correlated with the reduced peripheral insulin sensitivity (p =. 0001). Levels of sTNFR2 were elevated in all HIV-infected study subjects, but they were significantly higher in those with lipodystrophy than without, and sTNFR2 levels strongly correlated with the reduction in insulin sensitivity (p =.0001). Loss of peripheral fat, normal levels of FFA, and reduced levels of IGFBP-1 indicate that insulin resistance in HIV-LD is distinct from type 2 diabetes and obesity. The relationship between the degree of insulin resistance and sTNFR2 levels suggests an inflammatory stimulus is contributing to the development of

  13. Comparison of the expression of insulin receptor to H22 hepatoma cells with normal liver cells of mice

    International Nuclear Information System (INIS)

    Insulin is labelled with 125I by Ch-T method. Receptor binding assay of 125I-insulin to H22 hepatoma cells and normal mice liver cells are performed respectively. Binding data are calculated according to Scatchard analysis using the ligand program. Statistical comparison is made with the paired t-test. Kd values of H22 hepatoma cells and normal mice liver cells are 1.81 +- 0.56 nmol/L and 2.10 +- 0.91 nmol/L respectively, values of Bmax are 5.61 +- 1.10 a mol per cell and 3.22 +- 0.81 a mol per cell respectively. H22 hepatoma cells have a significantly higher Bmax than normal mice liver cells (P d values have little difference (P > 0.05)

  14. Insulin enhances glucose-stimulated insulin secretion in healthy humans

    OpenAIRE

    Bouche, Clara; Lopez, Ximena; Fleischman, Amy; Cypess, Aaron M.; O'Shea, Sheila; Stefanovski, Darko; Bergman, Richard N.; Rogatsky, Eduard; Stein, Daniel T.; Kahn, C. Ronald; Kulkarni, Rohit N.; Goldfine, Allison B.

    2010-01-01

    Islet β-cells express both insulin receptors and insulin-signaling proteins. Recent evidence from rodents in vivo and from islets isolated from rodents or humans suggests that the insulin signaling pathway is physiologically important for glucose sensing. We evaluated whether insulin regulates β-cell function in healthy humans in vivo. Glucose-induced insulin secretion was assessed in healthy humans following 4-h saline (low insulin/sham clamp) or isoglycemic-hyperinsulinemic (high insulin) c...

  15. Dietary approaches to stop hypertension influence on insulin receptor substrate-1gene expression: A randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Marzieh Kafeshani

    2015-01-01

    Full Text Available Background: Insulin receptor substrate (IRS Type 1 is a main substrate for the insulin receptor, controls insulin signaling in skeletal muscle, adipose tissue, and the vascular, so it is an important candidate gene for insulin resistance (IR. We aimed to compare the effects of the Dietary Approaches to Stop Hypertension (DASH and Usual Dietary Advices (UDA on IRS1 gene expression in women at risk for cardiovascular disease. Materials and Methods: A randomized controlled clinical trial was performed in 44 women at risk for cardiovascular disease. Participants were randomly assigned to a UDA diet or the DASH diet. The DASH diet was rich in fruits, vegetables, whole grains, and low-fat dairy products and low in saturated fat, total fat, cholesterol, refined grains, and sweets, with a total of 2400 mg/day sodium. The UDA diet was a regular diet with healthy dietary advice. Gene expression was assessed by the real-time polymerase chain reaction at the first of study and after 12 weeks. Independent sample t-test and paired-samples t-test were used to compare means of all variables within and between two groups respectively. Results: IRS1 gene expression was increased in DASH group compared with UDA diet (P = 0.00. Weight and waist circumference decreased in DASH group significantly compared to the UDA group (P < 0.05 but the results between the two groups showed no significant difference. Conclusion: DASH diet increased IRS1 gene expression and probably has beneficial effects on IR risks.

  16. GSK1838705A, an insulin-like growth factor-1 receptor/insulin receptor inhibitor, induces apoptosis and reduces viability of docetaxel-resistant prostate cancer cells both in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Zhou F

    2015-04-01

    Full Text Available Fayou Zhou,1,2 Xianguo Chen,1 Song Fan,1 Sheng Tai,1 Changqin Jiang,1 Yifei Zhang,1 Zongyao Hao,1 Jun Zhou,1 Haoqiang Shi,1 Li Zhang,1 Chaozhao Liang1 1Department of Urology, First Affiliated Hospital of Anhui Medical University, Hefei, 2Department of Urology, Traditional Chinese Medical Hospital of Wuhu City, WuHu, People’s Republic of China Abstract: Prostate cancer is the leading malignancy and the second most common cause of cancer-related death in men. Despite high cure rates with surgery and/or radiation, 30%–40% of patients eventually develop advanced cancer. Docetaxel is one of the most effective and well established chemotherapeutic agents for prostate cancer. However, docetaxel resistance often develops within months. Combination therapies have been proposed to improve the therapeutic efficacy of docetaxel in prostate cancer, and there is an urgent need to identify agents that are effective for treatment of the disease, especially docetaxel-resistant prostate cancer. In this work, we investigated the activity of GSK1838705A, a potent insulin-like growth factor-1 receptor (IGF1R/insulin receptor (IR inhibitor, in prostate cancer, especially docetaxel-resistant prostate cancer. We found that GSK1838705A could effectively reduce the viability of both docetaxel-sensitive and docetaxel-resistant prostate cancer cells. GSK1838705A induced marked apoptosis in docetaxel-resistant cells, and also dramatically inhibited migration of these cells. Further, GSK1838705A significantly inhibited phosphorylation of IGF1R/IR. Importantly, GSK1838705A significantly suppressed docetaxel-resistant PC-3R tumor growth in vivo. This is the first study of GSK1838705A in prostate cancer. Our results indicate that GSK1838705A is a promising compound for the treatment of prostate cancer, especially for those who develop resistance to docetaxel, and might shed new light on treatment for prostate cancer. Keywords: prostate cancer, GSK1838705A, insulin

  17. Grb-IR: A SH2-Domain-Containing Protein that Binds to the Insulin Receptor and Inhibits Its Function

    Science.gov (United States)

    Liu, Feng; Roth, Richard A.

    1995-10-01

    To identify potential signaling molecules involved in mediating insulin-induced biological responses, a yeast two-hybrid screen was performed with the cytoplasmic domain of the human insulin receptor (IR) as bait to trap high-affinity interacting proteins encoded by human liver or HeLa cDNA libraries. A SH2-domain-containing protein was identified that binds with high affinity in vitro to the autophosphorylated IR. The mRNA for this protein was found by Northern blot analyses to be highest in skeletal muscle and was also detected in fat by PCR. To study the role of this protein in insulin signaling, a full-length cDNA encoding this protein (called Grb-IR) was isolated and stably expressed in Chinese hamster ovary cells overexpressing the human IR. Insulin treatment of these cells resulted in the in situ formation of a complex of the IR and the 60-kDa Grb-IR. Although almost 75% of the Grb-IR protein was bound to the IR, it was only weakly tyrosine-phosphorylated. The formation of this complex appeared to inhibit the insulin-induced increase in tyrosine phosphorylation of two endogenous substrates, a 60-kDa GTPase-activating-protein-associated protein and, to a lesser extent, IR substrate 1. The subsequent association of this latter protein with phosphatidylinositol 3-kinase also appeared to be inhibited. These findings raise the possibility that Grb-IR is a SH2-domain-containing protein that directly complexes with the IR and serves to inhibit signaling or redirect the IR signaling pathway.

  18. Liquid fructose down-regulates liver insulin receptor substrate 2 and gluconeogenic enzymes by modifying nutrient sensing factors in rats.

    Science.gov (United States)

    Rebollo, Alba; Roglans, Núria; Baena, Miguel; Padrosa, Anna; Sánchez, Rosa M; Merlos, Manuel; Alegret, Marta; Laguna, Juan C

    2014-02-01

    High consumption of fructose-sweetened beverages has been linked to a high prevalence of chronic metabolic diseases. We have previously shown that a short course of fructose supplementation as a liquid solution induces glucose intolerance in female rats. In the present work, we characterized the fructose-driven changes in the liver and the molecular pathways involved. To this end, female rats were supplemented or not with liquid fructose (10%, w/v) for 7 or 14 days. Glucose and pyruvate tolerance tests were performed, and the expression of genes related to insulin signaling, gluconeogenesis and nutrient sensing pathways was evaluated. Fructose-supplemented rats showed increased plasma glucose excursions in glucose and pyruvate tolerance tests and reduced hepatic expression of several genes related to insulin signaling, including insulin receptor substrate 2 (IRS-2). However, the expression of key gluconeogenic enzymes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, was reduced. These effects were caused by an inactivation of hepatic forkhead box O1 (FoxO1) due to an increase in its acetylation state driven by a reduced expression and activity of sirtuin 1 (SIRT1). Further contributing to FoxO1 inactivation, fructose consumption elevated liver expression of the spliced form of X-box-binding-protein-1 as a consequence of an increase in the activity of the mammalian target of rapamycin 1 and protein 38-mitogen activated protein kinase (p38-MAPK). Liquid fructose affects both insulin signaling (IRS-2 and FoxO1) and nutrient sensing pathways (p38-MAPK, mTOR and SIRT1), thus disrupting hepatic insulin signaling without increasing the expression of key gluconeogenic enzymes. PMID:24445051

  19. Reevaluation of Fatty acid receptor 1 (FFAR1/GPR40) as drug target for the stimulation of insulin secretion in humans

    DEFF Research Database (Denmark)

    Wagner, Robert; Kaiser, Gabriele; Gerst, Felicia;

    2013-01-01

    observations demonstrated a negative association between fasting free fatty acids (NEFA) and insulin secretion. As NEFA stimulate secretion through FFAR1, we examined the interaction of genetic variation in FFAR1 with NEFA and insulin secretion. The inverse association of NEFA and secretion was modulated by rs......The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are under investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes...... risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific agonist, FFAR1-knockout mice and human islets. Nondiabetic individuals were metabolically phenotyped and genotyped. In vitro experiments indicated that palmitate and a specific FFAR1-agonist, TUG-469...

  20. In vivo imaging of insulin receptors by PET: preclinical evaluation of iodine-125 and iodine-124 labelled human insulin

    Energy Technology Data Exchange (ETDEWEB)

    Iozzo, P.; Osman, S.; Glaser, M.; Knickmeier, M.; Ferrannini, E.; Pike, V.W.; Camici, P.G.; Law, M.P. E-mail: marilyn.law@csc.mrc.ac.uk

    2002-01-01

    [A{sub 14}-*I]iodoinsulin was prepared for studies to assess the suitability of labeled iodoinsulin for positron emission tomography (PET). Iodine-125 was used to establish the methods and for preliminary studies in rats. Further studies and PET scanning in rats were carried out using iodine-124. Tissue and plasma radioactivity was measured as the uptake index (UI={l_brace}cpm{center_dot}(g tissue){sup -1}{r_brace}/{l_brace}cpm injected{center_dot}(g body weight){sup -1}{r_brace}) at 1 to 40 min after intravenous injection of either [A{sub 14}-{sup 125}I]iodoinsulin or [A{sub 14}-{sup 124}I]iodoinsulin. For both radiotracers, initial clearance of radioactivity from plasma was rapid (T{sub 1/2} {approx} 1 min), reaching a plateau (UI = 2.8) at {approx} 5 min which was maintained for 35 min. Tissue biodistributions of the two radiotracers were comparable; at 10 min after injection, UI for myocardium was 2.4, liver, 4.0, pancreas, 5.4, brain, 0.17, kidney, 22, lung, 2.3, muscle, 0.54 and fat, 0.28. Predosing rats with unlabelled insulin reduced the UI for myocardium (0.95), liver (1.8), pancreas (1.2) and brain (0.08), increased that for kidney (61) but had no effect on that for lung (2.5), muscle (0.50) or fat (0.34). Analysis of radioactivity in plasma demonstrated a decrease of [{sup 125}I]iodoinsulin associated with the appearance of labeled metabolites; the percentage of plasma radioactivity due to [{sup 125}I]iodoinsulin was 40% at 5 min and 10% at 10 min. The heart, liver and kidneys were visualized using [{sup 124}I]iodoinsulin with PET.

  1. In vivo imaging of insulin receptors by PET: preclinical evaluation of iodine-125 and iodine-124 labelled human insulin

    International Nuclear Information System (INIS)

    [A14-*I]iodoinsulin was prepared for studies to assess the suitability of labeled iodoinsulin for positron emission tomography (PET). Iodine-125 was used to establish the methods and for preliminary studies in rats. Further studies and PET scanning in rats were carried out using iodine-124. Tissue and plasma radioactivity was measured as the uptake index (UI={cpm·(g tissue)-1}/{cpm injected·(g body weight)-1}) at 1 to 40 min after intravenous injection of either [A14-125I]iodoinsulin or [A14-124I]iodoinsulin. For both radiotracers, initial clearance of radioactivity from plasma was rapid (T1/2 ∼ 1 min), reaching a plateau (UI = 2.8) at ∼ 5 min which was maintained for 35 min. Tissue biodistributions of the two radiotracers were comparable; at 10 min after injection, UI for myocardium was 2.4, liver, 4.0, pancreas, 5.4, brain, 0.17, kidney, 22, lung, 2.3, muscle, 0.54 and fat, 0.28. Predosing rats with unlabelled insulin reduced the UI for myocardium (0.95), liver (1.8), pancreas (1.2) and brain (0.08), increased that for kidney (61) but had no effect on that for lung (2.5), muscle (0.50) or fat (0.34). Analysis of radioactivity in plasma demonstrated a decrease of [125I]iodoinsulin associated with the appearance of labeled metabolites; the percentage of plasma radioactivity due to [125I]iodoinsulin was 40% at 5 min and 10% at 10 min. The heart, liver and kidneys were visualized using [124I]iodoinsulin with PET

  2. Insulin and the insulin-like growth factors I and II are mitogenic to cultured rat sciatic nerve segments and stimulate [3H]thymidine incorporation through their respective receptors

    DEFF Research Database (Denmark)

    Svenningsen, Åsa Fex; Kanje, M

    1996-01-01

    , on [3H]thymidine incorporation into cultured nerve segments from the rat sciatic nerve. Segments cultured in nM (0.1-1.7 nM) concentrations of insulin, truncated IGF-I (tIGF-I), long R3IGF-I, or IGF-II exhibited an increase in [3H]thymidine incorporation compared with control segments. IGF-II was......The factors that control proliferation of Schwann cells during peripheral nerve regeneration are not yet known. In this study we investigated the effects of insulin, insulin-like growth factor I and II (IGF-I and IGF-II), IGF-I analogues, and factors that interfere with their respective receptors...... most potent. JB1, an IGF-I antagonist, counteracted the effects of tIGF-I and insulin. The results suggest that non-neuronal cells in the nerve segment, probably Schwann cells, possess distinct receptors for insulin, IGF-I, and IGF-II and that these receptors may be involved in the control of Schwann...

  3. Binding of insulin to rat pancreatic islets: comparison between pancreatic human insulin and biosynthetic human insulin

    Energy Technology Data Exchange (ETDEWEB)

    Verspohl, E.J.; Ammon, H.P.

    Human pancreatic insulin, biosynthetic human insulin (BHI), and pork insulin were compared in terms of their binding characteristics to insulin receptors on rat pancreatic islets. There was no difference in binding or on biologic effect, i.e., ability to inhibit insulin secretion.

  4. Deficiency in type 1 insulin-like growth factor receptor in mice protects against oxygen-induced lung injury.

    OpenAIRE

    Ahamed, Karmene; Epaud, Ralph; Holzenberger, Martin; Bonora, Monique; Flejou, Jean-François; Puard, Julien; Clément, Annick; Henrion-Caude, Alexandra

    2005-01-01

    BACKGROUND: Cellular responses to aging and oxidative stress are regulated by type 1 insulin-like growth factor receptor (IGF-1R). Oxidant injury, which is implicated in the pathophysiology of a number of respiratory diseases, acutely upregulates IGF-1R expression in the lung. This led us to suspect that reduction of IGF-1R levels in lung tissue could prevent deleterious effects of oxygen exposure. METHODS: Since IGF-1R null mutant mice die at birth from respiratory failure, we generated comp...

  5. Inhibition of Type I Insulin-Like Growth Factor Receptor Signaling Attenuates the Development of Breast Cancer Brain Metastasis

    OpenAIRE

    Saldana, Sandra M.; Lee, Heng-Huan; Lowery, Frank J; Khotskaya, Yekaterina B.; Xia, Weiya; Zhang, Chenyu; Chang, Shih-Shin; Chou, Chao-Kai; Steeg, Patricia S; Yu, Dihua; Hung, Mien-Chie

    2013-01-01

    Brain metastasis is a common cause of mortality in cancer patients, yet potential therapeutic targets remain largely unknown. The type I insulin-like growth factor receptor (IGF-IR) is known to play a role in the progression of breast cancer and is currently being investigated in the clinical setting for various types of cancer. The present study demonstrates that IGF-IR is constitutively autophosphorylated in brain-seeking breast cancer sublines. Knockdown of IGF-IR results in a decrease of ...

  6. Newer insulin analogues and inhaled insulin

    Directory of Open Access Journals (Sweden)

    Girish C

    2006-03-01

    Full Text Available Diabetes is a metabolic disease with high prevalence worldwide. Exogenous insulin is used in the management of this condition. The development of human insulin has provided tighter control of glycaemia in diabetic patients. Insulin analogues like insulin lispro and aspart were developed to closely match its profile with physiological secretion. The newer additions to this armamentarium are insulin glulisine, insulin detemir and albulin.Insulin glulisine is a short acting analogue with a rapid onset of action. The antiapoptotic property, mediated through insulin substrate receptor-2 has a favourable protective action on beta cells. Insulin detemir is a long acting analogue, soluble at neutral pH, which reversibly binds to albumin in plasma, prolonging its action. Its lower affinity for insulin receptors necessitates higher doses compared to human insulin. The reduction in body weight is an additional advantage of detemir. A major concern about all newer insulin analogues is their altered mitogenic properties and resultant risk of carcinogenicity on long term use. Albulin is a latest addition of insulin analogue which is under various in vitro and in vivo studies. Inhaled insulin in powder form (Exubera is recently approved by FDA and appears promising.

  7. Differential Expression of Insulin-Like Growth Factor-I Receptor on Human Bone Marrow-Derived Mesenchymal Stem Cells Induced by Tumor Necrosis Factor-α

    OpenAIRE

    Sahraean, Z.; Ayatollahi, M.; Yaghobi, R.; Ziaei, R.

    2014-01-01

    Background: Cell-based therapy has been implicated in the treatment of liver diseases. Mesenchymal stem cells from various sources such as bone marrow are available. These cells are one of the major candidates in cell therapy. The production of insulin-like growth factor-I increases in the regenerating organ. The insulin-like growth factor-I in liver regeneration is effective after binding to insulin-like growth factor-I receptor. Objective: To test our hypothesis that tumor necrosis factor-α...

  8. The B2 receptor of bradykinin is not essential for the post-exercise increase in glucose uptake by insulin-stimulated mouse skeletal muscle

    OpenAIRE

    Schweitzer, George G.; Castorena, Carlos M.; Hamada, Taku; Funai, Katsuhiko; Arias, Edward B.; Cartee, Gregory D.

    2011-01-01

    Bradykinin can enhance skeletal muscle glucose uptake (GU), and exercise increases both bradykinin production and muscle insulin sensitivity, but bradykinin’s relationship with post-exercise insulin action is uncertain. Our primary aim was to determine if the B2 receptor of bradykinin (B2R) is essential for the post-exercise increase in GU by insulin-stimulated mouse soleus muscles. Wildtype (WT) and B2R knockout (B2RKO) mice were sedentary or performed 60 minutes of treadmill exercise. Isola...

  9. Result of oral intake of glucose by healthy subjects and patients with essential hypertension on the binding and degradation of 125I-insulin by erythrocyte receptors

    International Nuclear Information System (INIS)

    The work presents the results of researches of binding and degradation of 125I-insulin by erythrocyte receptors in the patients with essential hypertension and healthy patients after glucose intake. In order to obtain full representation of the pattern of changes the serum IRI and glucose concentrations were assayed. Binding and degradation of 125I-insulin by erythrocyte receptors were determined with the method described by Gambhir (1977), modified by the authors. The modification consisted in usage of constant concentrations of iodized insulin (0.9 pg/0.1 ml) and bovine insulin (2.4 I.U./0.1 ml). Before administration of glucose and in 30, 60 and 120 minutes after, venous blood was collected from ulnar vein. All examined persons were in sitting position during the trial of glucose intake. Obtained results show, that blood insulin level in the patients with essential hypertension is statistically significantly higher than in healthy persons of similar anthropometric characteristics. Binding of 125-I-insulin to erythrocyte receptors in fasting state is statistically significantly lower. Degradation after glucose intake in the patients shows decreasing tendency, while in healthy persons-growing tendency. (author). 19 refs, 4 figs, 3 tabs

  10. Studies on the mechanism of insulin resistance in the liver from humans with noninsulin-dependent diabetes. Insulin action and binding in isolated hepatocytes, insulin receptor structure, and kinase activity.

    OpenAIRE

    Caro, J F; Ittoop, O; Pories, W J; Meelheim, D; Flickinger, E G; F. Thomas; Jenquin, M; Silverman, J F; Khazanie, P G; Sinha, M K

    1986-01-01

    We have developed a method to isolate insulin-responsive human hepatocytes from an intraoperative liver biopsy to study insulin action and resistance in man. Hepatocytes from obese patients with noninsulin-dependent diabetes were resistant to maximal insulin concentration, and those from obese controls to submaximal insulin concentration in comparison to nonobese controls. Insulin binding per cell number was similar in all groups. However, insulin binding per surface area was decreased in the...

  11. Modulation of Insulin Receptor Substrate-1 and Some Inflammatory Variables in Hyperinsulinemic Rats Treated with Cinnamon Extract

    Directory of Open Access Journals (Sweden)

    Mohamed H. Mahfouz

    2010-01-01

    Full Text Available Cinnamon Extract (CE has shown to be generally safe when ingested and to have many pharmacological properties. Problem statement: Study the effects of daily intake of CE on the modulation of hepatic, cardiac Insulin Receptor Substrate-1 (IRS-1 and their relations to some inflammatory variables in hyperinsulinemic rats. Approach: The influence of CE administered orally was studied in hyperinsulinemic rats. Eighteen male Wistar rats were divided into 3 groups of 6 rats each. Group 1; control animals received starch as control diet, while Groups 2; rats were fed a "high-fructose diet"(60%. Group 3; fructose-fed rats received orally CE (0.5 mL/rat/day from the 16th day of fructose feeding in experimental period. The animals were maintained in their respective groups for 30 days. At the end of the experimental period, Serum levels of glucose, insulin, lipid profile, Total Antioxidant Capacity (TAC, Malondialdehyde (MDA, sialic acid and soluble Fas (sFas were assayed. Hepatic and cardiac IRS-1 levels were also evaluated. Results: Fed high fructose diet to rats induced significant elevations in serum levels of glucose, insulin, triacylglycerol, HDL-c, sialic acid, sFas and MDA, while the level of serum TAC was significantly reduced as compared to controls. Also significant reduction in the levels of hepatic and cardiac IRS-1 were recorded as compared to controls. Oral administration of cinnamon extract to fructose-fed rats alleviated the effects of fructose and these rats showed a normal level of the parameters studied. The percentage changes of IRS-1 level in fructose-fed rats before and after treatment with CE were 38.51 for liver and 31.92% for cardiac muscle. This increase in IRS-1 level after treatment is still lowered than control level with the percentage change -11.82 and -9.93% for liver and cardiac muscle respectively. There was a significant positive correlation between IRS-1 and TAC level whereas there was negative correlation between IRS-1

  12. Radiation inactivation experiments predict that a large aggregate form of the insulin receptor is a highly active tyrosine-specific protein kinase

    International Nuclear Information System (INIS)

    The technique of radiation inactivation has been used on a highly purified insulin receptor in order to determine the functional molecular size responsible for tyrosine-specific protein kinase activity. When both insulin binding and kinase activities were analyzed with the same receptor preparations, the functional size for kinase activity was found to be larger than that for insulin binding activity. The radiation inactivation curve for kinase activity was multiphasic. This indicates that at least two components contribute to total kinase activity. The average minimal functional size for the kinase was 370,000 +/- 60,000 daltons (n = 7) which corresponds to the alpha 2 beta 2 form of the insulin receptor. The average functional size for larger forms was estimated to be approximately 4 X 10(6) daltons. (To minimize the complexity of the model used in this analysis, we have analyzed the radiation inactivation curves of the insulin receptor kinase activity with a two-component model. However, we believe that the larger component, greater than 1 X 10(6) daltons, is probably not a single molecular weight species but rather represents a continuum of sizes or aggregates of the alpha 2 beta 2 form of the receptor.) These larger forms contributed 93% of the total activity. Mild reduction of the insulin receptor preparation with dithiothreitol (DTT) activated the total kinase activity by 3.5-fold. Under this condition, the minimal functional kinase size was 380,000 +/- 30,000 daltons (n = 6) while the average functional size for the larger forms was approximately 3 X 10(6) daltons

  13. Acute knockdown of the insulin receptor or its substrates Irs1 and 2 in 3T3-L1 adipocytes suppresses adiponectin production

    Science.gov (United States)

    Groeneveld, Matthijs P.; Brierley, Gemma V.; Rocha, Nuno M.; Siddle, Kenneth; Semple, Robert K.

    2016-01-01

    Loss of function of the insulin receptor (INSR) in humans produces severe insulin resistance. Unlike “common” insulin resistance, this is associated with elevated plasma levels of the insulin-sensitising, adipose-derived protein adiponectin. The underlying mechanism for this paradox is unclear, and it is at odds with the acute stimulation of adiponectin secretion reported on insulin treatment of cultured adipocytes. Given recent evidence for ligand-independent actions of the INSR, we used a lentiviral system to knock down Insr or its substrates Irs1 and Irs2 conditionally in 3T3-L1 murine preadipocytes/adipocytes to assess whether acute loss of their expression has different consequences to withdrawal of insulin. Efficient knockdown of either Insr or Irs1/2 was achieved by conditional shRNA expression, severely attenuating insulin-stimulated AKT phosphorylation and glucose uptake. Dual knockdown of Irs1 and Irs2 but not Insr in preadipocytes impaired differentiation to adipocytes. Acute knockdown of Insr or both Irs1 and Irs2 in adipocytes increased Adipoq mRNA expression but reduced adiponectin secretion, assessed by immunoassay. Knockdown sustained for 14 days also reduced immunoassay-detected adiponectin secretion, and moreover induced delipidation of the cells. These findings argue against a distinct effect of Insr deficiency to promote adiponectin secretion as the explanation for paradoxical insulin receptoropathy-related hyperadiponectinaemia. PMID:26888756

  14. AT1 receptor blockade attenuates insulin resistance and myocardial remodeling in rats with diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Silvio A Oliveira-Junior

    Full Text Available BACKGROUND: Although obesity has been associated with metabolic and cardiac disturbances, the carrier mechanisms for these responses are poorly understood. This study analyzed whether angiotensin II blockade attenuates metabolic and cardiovascular disorders in rats with diet-induced obesity. MATERIAL AND METHODS: Wistar-Kyoto (n = 40 rats were subjected to control (C; 3.2 kcal/g and hypercaloric diets (OB; 4.6 kcal/g for 30 weeks. Subsequently, rats were distributed to four groups: C, CL, OB, and OBL. L groups received Losartan (30 mg/kg/day for five weeks. After this period we performed in vivo glucose tolerance and insulin tolerance tests, and measured triacylglycerol, insulin, angiotensin-converting enzyme activity (ACE, and leptin levels. Cardiovascular analyzes included systolic blood pressure (SBP, echocardiography, myocardial morphometric study, myosin heavy chain composition, and measurements of myocardial protein levels of angiotensin, extracellular signal-regulated (ERK1/2, c-Jun amino-terminal kinases (JNK, insulin receptor subunit β (βIR, and phosphatidylinositol 3-kinase (PI3K by Western Blot. RESULTS: Glucose metabolism, insulin, lipid, and ACE activity disorders observed with obesity were minimized by Losartan. Moreover, obesity was associated with increased SBP, myocardial hypertrophy, interstitial fibrosis and improved systolic performance; these effects were also minimized with Losartan. On a molecular level, OB exhibited higher ERK, Tyr-phosphorylated βIR, and PI3K expression, and reduced myocardial angiotensin and JNK expression. ERK and JNK expression were regulated in the presence of Losartan, while angiotensin, Tyr-βRI, total and Tyr-phosphorylated PI3K expression were elevated in the OBL group. CONCLUSION: Angiotensin II blockade with Losartan attenuates obesity-induced metabolic and cardiovascular changes.

  15. Improved Insulin Resistance and Lipid Metabolism by Cinnamon Extract through Activation of Peroxisome Proliferator-Activated Receptors

    Directory of Open Access Journals (Sweden)

    Xiaoyan Sheng

    2008-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are transcriptional factors involved in the regulation of insulin resistance and adipogenesis. Cinnamon, a widely used spice in food preparation and traditional antidiabetic remedy, is found to activate PPARγ and α, resulting in improved insulin resistance, reduced fasted glucose, FFA, LDL-c, and AST levels in high-caloric diet-induced obesity (DIO and db/db mice in its water extract form. In vitro studies demonstrate that cinnamon increases the expression of peroxisome proliferator-activated receptors γ and α (PPARγ/α and their target genes such as LPL, CD36, GLUT4, and ACO in 3T3-L1 adipocyte. The transactivities of both full length and ligand-binding domain (LBD of PPARγ and PPARα are activated by cinnamon as evidenced by reporter gene assays. These data suggest that cinnamon in its water extract form can act as a dual activator of PPARγ and α, and may be an alternative to PPARγ activator in managing obesity-related diabetes and hyperlipidemia.

  16. Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma.

    Science.gov (United States)

    Kuhn, Deborah J; Berkova, Zuzana; Jones, Richard J; Woessner, Richard; Bjorklund, Chad C; Ma, Wencai; Davis, R Eric; Lin, Pei; Wang, Hua; Madden, Timothy L; Wei, Caimiao; Baladandayuthapani, Veerabhadran; Wang, Michael; Thomas, Sheeba K; Shah, Jatin J; Weber, Donna M; Orlowski, Robert Z

    2012-10-18

    Proteasome inhibition with bortezomib is a validated approach to the treatment of multiple myeloma, but drug resistance often emerges and limits its utility in the retreatment setting. To begin to identify some of the mechanisms involved, we developed bortezomib-resistant myeloma cell lines that, unlike previously reported models, showed no β5 subunit mutations. Instead, up-regulation of the insulin-like growth factor (IGF)-1 axis was identified, with increased autocrine and paracrine secretion of IGF-1, leading to increased activation of the IGF-1 receptor (IGF-1R). Exogenous IGF-1 reduced cellular sensitivity to bortezomib, whereas pharmacologic or small hairpin RNA-mediated IGF-1R suppression enhanced bortezomib sensitivity in cell lines and patient samples. In vitro studies with OSI-906, a clinically relevant dual IGF-1R and insulin receptor inhibitor, showed it acted synergistically with bortezomib, and potently resensitized bortezomib-resistant cell lines and patient samples to bortezomib. Importantly, OSI-906 in combination with bortezomib also overcame bortezomib resistance in an in vivo model of myeloma. Taken together, these data support the hypothesis that signaling through the IGF-1/IGF-1R axis contributes to acquired bortezomib resistance, and provide a rationale for combining bortezomib with IGF-1R inhibitors like OSI-906 to overcome or possibly prevent the emergence of bortezomib-refractory disease in the clinic. PMID:22932796

  17. Codon 972 polymorphism in the insulin receptor substrate-1 gene, obesity, and risk of noninsulin-dependent diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Sigal, R.J.; Doria, A.; Warram, J.H.; Krolewski, A.S. [Joslin Diabetes Center, Boston, MA (United States)

    1996-04-01

    Because of the role of insulin receptor substrate-1 in insulin action, the insulin receptor substrate-1 gene is a candidate gene for noninsulin-dependent diabetes mellitus (NIDDM). Modest associations between NIDDM and a GGG-AGG single base substitution (corresponding to a glycine-arginine amino acid substitution) in codon 972 of the gene have been found, but none reached statistical significance. To examine further how large a proportion of NIDDM cases could be caused by the mutation, we performed a stratified analysis combining the results from the 6 earlier studies and those from our panel of 192 unrelated NIDDM subjects and 104 healthy controls. In addition, we looked for a possibility that the codon 972 mutation plays a role only in the presence of certain conditions. Genomic DNA samples obtained from NIDDM cases and healthy controls were genotyped using a PCR-restriction fragment length polymorphism protocol modified for genomic DNA. The GGG{r_arrow}AGG substitution was found in 5.7% of the diabetic subjects (11 of 192) and 6.9% of the controls (7 of 104). The difference between groups was not statistically significant, and it was not different from the results of other studies. The Mantel-Haenszel summary odds ratio across all studies was 1.49 (P < 0.05; 95% confidence intervals, 1.01-2.2). This summary odds ratio is consistent with a small proportion of NIDDM cases ({approximately}3%) being caused by the mutation. Exploratory subgroup analyses on our panel suggested a clustering of NIDDM, the codon 972 mutation, and overweight, raising the hypothesis that the mutation may predispose to NIDDM only in the presence of excess body weight. 9 refs., 2 tabs.

  18. Involvement of calcitonin gene-related peptide (CGRP) receptors in insulin-induced vasodilatation in mesenteric resistance blood vessels of rats.

    Science.gov (United States)

    Mimaki, Y; Kawasaki, H; Okazaki, M; Nakatsuma, A; Araki, H; Gomita, Y

    1998-04-01

    1. The vascular effect of insulin in the mesenteric resistance blood vessel and the role of calcitonin generelated peptide (CGRP)-receptor in insulin-induced vascular responsiveness were investigated in rats. 2. The mesenteric vascular beds isolated from Wistar rats were perfused with Krebs solution, and perfusion pressure was measured with a pressure transducer. In preparations contracted by perfusion with Krebs solution containing methoxamine in the presence of guanethidine, the perfusion of insulin (from 0.1 to 3000 nM) caused a concentration-dependent decrease in perfusion pressure due to vasodilatation. The pD2 value and maximum relaxation (%) were 6.94+/-0.22 and 43.9+/-5.2, respectively. 3. This vasodilator response to insulin was unaffected by 100 nM propranolol (beta-adrenoceptor antagonist) plus 100 nM atropine (muscarinic cholinoceptor antagonist), 100 microM L-NG-nitroarginine (nitric oxide synthase inhibitor), 1 microM ouabain (Na+-K+ ATPase inhibitor), or 1 microM glibenclamide (ATP sensitive K+-channel inhibitor). 4. In preparations without endothelium, perfusion of insulin produced a marked vasodilatation. The pD2 value and maximum relaxation (%) were 7.62+/-0.21 and 81.0+/-4.6, respectively, significantly greater than in preparations with intact endothelium. 5. The vasodilator responses to insulin in the preparations without endothelium were significantly inhibited by CGRP[8 37], a CGRP receptor antagonist, whereas pretreatment with capsaisin, a toxin for CGRP-containing nerves, did not affect insulin-induced vasodilatation. 6. These results suggest that insulin induces non-adrenergic, non-cholinergic and endothelium-independent vasodilatation, which is partially mediated by CGRP receptors. PMID:9605576

  19. Effects of the antitumor drug OSI-906, a dual inhibitor of IGF-1 receptor and insulin receptor, on the glycemic control, β-cell functions, and β-cell proliferation in male mice.

    Science.gov (United States)

    Shirakawa, Jun; Okuyama, Tomoko; Yoshida, Eiko; Shimizu, Mari; Horigome, Yuka; Tuno, Takayuki; Hayasaka, Moe; Abe, Shiori; Fuse, Masahiro; Togashi, Yu; Terauchi, Yasuo

    2014-06-01

    The IGF-1 receptor has become a therapeutic target for the treatment of cancer. The efficacy of OSI-906 (linstinib), a dual inhibitor of IGF-1 receptor and insulin receptor, for solid cancers has been examined in clinical trials. The effects of OSI-906, however, on the blood glucose levels and pancreatic β-cell functions have not yet been reported. We investigated the impact of OSI-906 on glycemic control, insulin secretion, β-cell mass, and β-cell proliferation in male mice. Oral administration of OSI-906 worsened glucose tolerance in a dose-dependent manner in the wild-type mice. OSI-906 at a dose equivalent to the clinical daily dose (7.5 mg/kg) transiently evoked glucose intolerance and hyperinsulinemia. Insulin receptor substrate (IRS)-2-deficient mice and mice with diet-induced obesity, both models of peripheral insulin resistance, exhibited more severe glucose intolerance after OSI-906 administration than glucokinase-haploinsufficient mice, a model of impaired insulin secretion. Phloridzin improved the hyperglycemia induced by OSI-906 in mice. In vitro, OSI-906 showed no effect on insulin secretion from isolated islets. After daily administration of OSI-906 for a week to mice, the β-cell mass and β-cell proliferation rate were significantly increased. The insulin signals in the β-cells were apparently unaffected in those mice. Taken together, the results suggest that OSI-906 could exacerbate diabetes, especially in patients with insulin resistance. On the other hand, the results suggest that the β-cell mass may expand in response to chemotherapy with this drug. PMID:24712877

  20. The insulin-like growth factor II/mannose-6-phosphate receptor is present in monkey serum.

    Science.gov (United States)

    Gelato, M C; Kiess, W; Lee, L; Malozowski, S; Rechler, M M; Nissley, P

    1988-10-01

    We recently reported that the insulin-like growth factor II (IGF-II)/mannose-6-phosphate (Man-6-P) receptor is present in fetal and postnatal rat serum and that its serum content declined dramatically postnatally between days 20 and 40 . We now provide evidence that the IGF-II/Man-6-P receptor is also present in monkey serum. Serum was gel filtered on Sephadex G-200, and the column fractions were assayed for binding of radiolabeled IGF-II. There was significant binding of [125I]IGF-II to the void volume fractions in addition to binding to the 150K and 40K carrier proteins. Binding to the void volume fractions was greatest in cord serum and decreased with age. Competitive binding studies with [125I]IGF-II and the void volume pools from monkey serum demonstrated that IGF-I competed less potently than IGF-II, and insulin did not compete. Radiolabeled IGF-I did not bind specifically to the void volume pools. Chemical cross-linking of [125I]IGF-II to aliquots of the void volume pools from monkey cord serum samples and analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of dithiothreitol demonstrated a specific band at about 240K. Western blotting using a specific antiserum (no. 3637) against rat IGF-II/Man-6-P receptor was performed on aliquots of the Sephadex G-200 void volume pools of monkey serum. A band of approximately the same size as that found with human fibroblast members (approximately 215 K without dithiothreitol) was detected. The IGF-II/Man-6-P receptor band was more intense in cord serum than in the postnatal samples. When cord serum Sephadex G-200 pools were gel filtered on Sephadex G-50 in 1 mol/L acetic acid to separate binding components from free IGF, and IGF-II was measured by RRA, approximately 20% of the circulating IGF-II was found to be associated with this IGF-II/Man-6-P receptor in monkey serum. We conclude that the IGF-II/Man-6-P receptor present in serum may be a significant carrier for IGF-II in the monkey

  1. Expression of insulin-like growth factor 1 and insulin-like growth factor 1 receptor and its intervention by interleukin-10 in experimental hepatic fibrosis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Zhong Wang; Zhi-Xin Chen; Li-Juan Zhang; Yun-Xin Chen; Dan Li; Feng-Lin Chen; Yue-Hong Huang

    2003-01-01

    AIM: To study the expression of TGF-1 and IGF-1R and its intervention by interleukin-10 in the course of experimental hepatic fibrosis. METHODS: Hepatic fibrosis was induced in rats by carbon tetrachloride intoxication and liver specimens were taken from the rats administered CCl4 with or without TL-10treatment and the animals of the control group.Immunoreactivities for insulin-like growth factor-1 (IGF-1)and IGF-1 receptor(IGF-1R) were demonstrated by immunohistochemistry, and their intensities were evaluated in different animal groups. RESULTS: The positive levels for TGF-1 and IGF-1R were increased with the development of hepatic fibrosis, with the positive signals localized in cytoplasm and/or at the piasmic membrane of hepatocytes. The positive signals of TGF-1and TGF-1R were observed more frequently (P<0.01) in the CCl4-treated group (92.0 % and 90.0 %) compared to those in the control group. The positive signals decreased significantly (P<0.05) in TL-10-treated group. The responses in IGF-1 and IGF-1R expression correlated with the time of IL-10 treatment. CONCLUSION: The expression of TGF-1 and TGF-1R immunoreactivities in liver tissue seems to be up-regulated during development of hepatic fibrosis induced by CCl4, and exogenic IL-10 inhibits the responses.

  2. Expression, receptor binding, and biophysical characterization of guinea pig insulin desB30

    DEFF Research Database (Denmark)

    Engholm, Ebbe; Hansen, Thomas Hesselhøj; Johansson, Eva;

    2015-01-01

    analytical ultracentrifugation studies confirmed that GI desB30 did not form dimers or hexamers, in contrast to human insulin. Sizeexclusion chromatography connected to inductively coupled plasma mass spectrometry revealed that GI desB30 has affinity towards several divalent metal ions. These studies did not...

  3. Nuclear receptors reverse McGarry's vicious cycle to insulin resistance

    Science.gov (United States)

    Several pathways and pathologies have been suggested as connections between obesity and diabetes, including inflammation of adipose and other tissues, toxic lipids, endoplasmic reticulum stress, and fatty liver. One specific proposal is that insulin resistance induces a vicious cycle in which hyperi...

  4. Energy expenditure, body composition and insulin response to glucose in male twins discordant for the Trp64Arg polymorphism of the beta3-adrenergic receptor gene

    DEFF Research Database (Denmark)

    Højlund, K; Christiansen, C; Bjørnsbo, K S;

    2006-01-01

    secretion could play a role. METHODS: In 10 male twin pairs discordant for the Trp64Arg polymorphism, we examined insulin response to glucose by an oral glucose tolerance test (OGTT), a frequently sampled intravenous glucose tolerance test (FSIGT), body composition by the bioimpedance method, dual-energy X......AIM: The tryptophan to arginine change in position 64 (Trp64Arg) polymorphism of the beta3-adrenergic receptor (beta3AR) gene has been associated with an increased prevalence of obesity, insulin resistance and type 2 diabetes. In this, decreased rates of energy expenditure and impaired insulin......-ray absorptiometry scanning and energy expenditure by indirect and direct calorimetry. RESULTS: Twins heterozygous for the Trp64Arg polymorphism showed significantly lower fat mass independent of the method used, and significantly lower fasting insulin and glucose concentrations compared with their homozygous wild...

  5. The Dual Amylin- and Calcitonin-Receptor Agonist KBP-042 Increases Insulin Sensitivity and Induces Weight Loss in Rats with Obesity

    DEFF Research Database (Denmark)

    Hjuler, Sara Toftegaard; Gydesen, Sofie; Andreassen, Kim Vietz;

    2016-01-01

    Objective: In this study, KBP-042, a dual amylin- and calcitonin-receptor agonist, was investigated as a treatment of obesity and insulin resistance in five different doses (0.625 μg/kg-10 μg/kg) compared with saline-treated and pair-fed controls. Methods: Rats with obesity received daily s...... combines two highly relevant features, namely weight loss and insulin sensitivity, and is thus an excellent candidate for chronic treatment of obesity and insulin resistance........c. administrations for 56 days, and glucose tolerance was assessed after one acute injection, 3 weeks of treatment, and again after 7 weeks of treatment. To assess the effect on insulin sensitivity, rats received 5 μg/kg KBP-042 for 21 days before hyperinsulinemic-euglycemic clamp. Results: KBP-042 induced a...

  6. Effect of single physical exercise at 35% VO2 max. intensity on secretion activity of pancreas β-cells and 125J-insulin binding and degradation ability by erythrocyte receptors in children with diabetes mellitus

    International Nuclear Information System (INIS)

    In this report we showed research results of effect of single physical exercise on cycloergometer at 35% VO2 max. intensity on 125J-insulin binding and degradation ability by erythrocyte receptors in children with diabetes mellitus, secreting and non-secreting endogenous insulin. Insulin secretion was evaluated by measurement of C-peptide by Biodet test (Serono) of sensitivity threshold at 0.3 μg/ml. We indicated in children non-secreting endogenous insulin (n=32) there is statistically essential lower 125J-insulin binding with erythrocyte receptor in comparison to children group with C-peptide. Physical exercise on cycloergometer at 35% VO2 max. intensity caused different reaction in range of physiological indices, like acid-base parameters, level of glucose and 125J-insulin binding and degradation. In children devoid of endogenous insulin we indicated statistically nonessential changes in 125J-insulin degradation by non-impaired erythrocytes and by hemolizate, as well. 125J-insulin binding after physical exercise increased in both groups, though change amplitude was different. Obtained research results allowed us to conclude, in children with I-type diabetes, that in dependence of impairment degree of pancreas βcells sensitivity of insulin receptor and/or number of receptors on erythrocyte surface is different

  7. The insulin-like growth factor II/mannose-6-phosphate receptor is present in fetal and maternal sheep serum.

    Science.gov (United States)

    Gelato, M C; Rutherford, C; Stark, R I; Daniel, S S

    1989-06-01

    A large mol wt binding protein for insulin-like growth factor II (IGF-II) has been described in fetal sheep serum. We now provide evidence to demonstrate that this binding protein is the IGF-II/mannose-6-phosphate (Man-6-P) receptor. Serum and plasma were gel filtered on Sephadex G-200, and the column fractions were assayed for binding of radiolabeled IGF-II. There was significant binding of [125I]IGF-II to the void volume fractions in addition to binding to the 150K and 40K carrier proteins. Binding to the void volume fractions was increased in fetal serum as well as maternal serum and dramatically decreased in the nonpregnant adult. Competitive binding studies with [125I]IGF-II and the void volume pools from fetal and maternal sheep serum demonstrated that IGF-I competed less potently than IGF-II, and insulin did not compete. There was no specific binding of [125I]IGF-I to the void volume pools of either fetal or maternal samples. Chemical cross-linking of [125I]IGF-II to aliquots of the void volume pools from fetal and maternal sheep serum samples and analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of dithiothreitol demonstrated a specific band at about 240K. Western blotting using a specific antiserum (no. 3637) against rat IGF-II/Man-6-P receptor was performed on aliquots of the Sephadex G-200 void volume pools of fetal, maternal, uterine vein, and adult sheep serum; a band of approximately 210K (without dithiothreitol) was seen. The IGF-II/Man-6-P receptor band was more intense in fetal serum than in either maternal or adult nonpregnant sheep serum. There was also increased binding of [125I]IGF-II in the 40K region of the Sephadex G-200 column fractions in the maternal serum compared to that in serum from nonpregnant adult ewes. When fetal, maternal, and adult nonpregnant sheep serum Sephadex G-200 pools were gel filtered on Sephadex G-50 in 1 mol/liter acetic acid to separate bound from free IGF, and IGF-II was

  8. Study of NSILA-s (nonsuppressible insulin-like activity soluble in acid ethanol) by a new radio-receptor assay

    International Nuclear Information System (INIS)

    The insulin-like activity nonsuppressible with insulin-antibodies (NSILA) accounts for 90% of the insulin activity of the blood plasma. A peptid, soluble in acid ethanol, was purified (NSILA-s) and specific NSILA-s receptors were found on the plasma membrane of liver cells. The specificity, kinetics, affinity and pH-optimum of NSILA-s receptors significantly differed from those of insulin-receptors. A new, highly specific radio-receptor assay was developed, applying 125I NSILA-s and liver cell membranes or lymphocytes. By this means the NSILA-s concentration of blood plasma was determined under normal and pathological (hypoglycaemizing tumours, hypopituritarism, acromegaly, anorexia nervosa, etc.) conditions. It is concluded that, 90% of the NSILA-s concentration of blood plasma is bound. In cases of hypoglycaemizing tumours increased NSILA-s activity was demonstrated both in blood serum and in the extracts of the tumour-tissue. Pharmacological doses of growth hormon (GH) increased plasma NSILA-s concentration, however, in the case of stimulation- and inhibition-tests carried out in normal patients, no unambiguous relationship could be demonstrated between plasma GH- and NSILA-s-levels. (L.E.)

  9. Insulin-like growth factor receptor 1 mRNA expression as a prognostic marker in advanced non-small cell lung cancer

    DEFF Research Database (Denmark)

    Vilmar, Adam; Santoni-Rugiu, Eric; Cillas, Jesus Garcia-Fon;

    2014-01-01

    BACKGROUND: The insulin-like growth factor 1 receptor (IGF1R) has yet to be established as a biomarker in non-small cell lung cancer (NSCLC) but could prove useful in customized chemotherapy. We explored its prognostic value using both quantitative real-time reverse transcriptase polymerase chain...

  10. CNTO736, a novel glucagon-like peptide-1 receptor agonist, ameliorates insulin resistance and inhibits very low-density lipoprotein production in high-fat-fed mice

    NARCIS (Netherlands)

    Parlevliet, E.T.; Schröder-van der Elst, J.P.; Corssmit, E.P.M.; Picha, K.; O'Neil, K.; Stojanovic-Susulic, V.; Ort, T.; Havekes, L.M.; Romijn, J.A.; Pijl, H.

    2009-01-01

    CNTO736 is a glucagon-like peptide (GLP) 1 receptor agonist that incorporates a GLP-1 peptide analog linked to the Mimeti-body platform. We evaluate the potential of acute and chronic CNTO736 treatment on insulin sensitivity and very low-density lipoprotein (VLDL) metabolism. For acute studies, diet

  11. Identification of plant extracts with potential antidiabetic properties: Effect on human peroxisome proliferator-activated receptor (PPAR), adipocyte differentiation and insulin-stimulated glucose uptake

    DEFF Research Database (Denmark)

    Christensen, Kathrine Bisgaard; Minet, Ariane; Svenstrup, Henrik;

    2009-01-01

    Thiazolidinediones (TZDs) are insulin sensitizing drugs used to treat type 2 diabetes. The primary target of the TZDs is the peroxisome proliferator-activated receptor (PPAR) gamma, a key regulator of adipogenesis and glucose homeostasis. Currently prescribed TZDs are full PPARgamma agonists, and...

  12. Antibody-Mediated Targeting of siRNA Via the Human Insulin Receptor Using Avidin-Biotin Technology

    Science.gov (United States)

    Xia, Chun-Fang; Boado, Ruben J.; Pardridge, William M.

    2013-01-01

    Delivery of short interfering RNA (siRNA) to cells in culture, and in vivo, is possible with combined use of a receptor-specific monoclonal antibody (MAb) and avidin-biotin technology. In the present studies, the luciferase gene is transiently expressed in human 293 epithelial cells. The siRNA delivery system is comprised of the siRNA, mono-biotinylated on the 3′-terminus of the sense strand, and a conjugate of streptavidin (SA) and a MAb to the human insulin receptor (HIR). Exposure of cells to 3′-biotinyl-siRNA bound to the HIRMAb/SA conjugate, but not to unconjugated SA, avidin, or the HIRMAb, causes a >90% reduction in luciferase gene expression. The receptor-targeted siRNA effect is maximal at 48 hours after delivery of the siRNA to the cells, and the effect is lost by 7 days after a single application of the targeted siRNA in culture. The KI of the receptor-targeted siRNA inhibition of gene expresssion is 30.5 ± 11.7 nM, and significant inhibition is observed with siRNA concentrations as low as 3 nM. In conclusion, the combination of a receptor-specific targeting ligand, such as the HIRMAb, and avidin-biotin technology, allows for high affinity capture of the mono-biotinylated siRNA by the targeting MAb. The siRNA is effectively delivered to the cytosol of cells and knockdown of gene expression with the HIRMAb/SA delivery system is comparable to RNA interference effects obtained with cationic polyplexes. Whereas the use of cationic polyplexes in vivo is problematic, the bond between the targeting MAb and the siRNA is stable with avidin-biotin technology, and RNAi effects at distant sites such as brain are observed in vivo following an intravenous administration of the targeted siRNA. PMID:19093871

  13. Reconstitution of an insulin signaling pathway in Xenopus laevis oocytes: coexpression of a mammalian insulin receptor and three different mammalian hexose transporters.

    OpenAIRE

    Vera, J C; Rosen, O M

    1990-01-01

    We report the functional expression of the mammalian muscle-adipocyte insulin-sensitive hexose transporter in Xenopus laevis oocytes. Oocytes microinjected with RNA synthesized in vitro showed enhanced hexose transport activity compared with uninjected controls. However, like the endogenous oocyte hexose transporter, activity was stimulated only twofold by 1 microM insulin. X. laevis oocytes injected with in vitro-synthesized RNA encoding the human insulin proreceptor expressed a functionally...

  14. Expression and regulation of mRNAs for insulin-like growth factor-I receptor and LH receptor in corpora lutea

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Relationship between insulin-like growth factor-I receptor (IGF-IR) and luteinizing hormone receptor (LHR) mRNA expression as well as their regulation was determined in rat corpora lutea (CL) . In the CL of estrous cycle rat, LHR mRNA positive CL expressed high level of mRNA of IGF-IR. While the expression of LHR mRNA decreased on estrus, the CL still expressed relatively high level of IGF-IR mRNA. In pseudopregnant rat CL, the expression level of LHR mRNA was low on day 1, the most intense signals were detected on day 8, the signals of LHR mRNA became undetectable on day 14. In contrast to LHR expression, the high level of IGF-IR mRNA was observed in pseudopregnant CL of day 1, and thereafter its signals were detected from day 2 to day 14. Pregnant rat CL expressed both LHR and IGF-IR mRNAs. IGF-I stimulated LHR expression in CL. PGF2 inhibited expression of IGF-IR and LHR. PGE2 negated the inhibiting effects of PGF2. These data suggest that IGF-I may be involved in regulating CL function, and maintaining CL structure through changes in expression of its receptors. Inhibited expression of IGF-IR by PGF2 may be part of mechanisms for regression of CL.

  15. The insulin-like growth factor 1 receptor causes acquired resistance to erlotinib in lung cancer cells with the wild-type epidermal growth factor receptor.

    Science.gov (United States)

    Suda, Kenichi; Mizuuchi, Hiroshi; Sato, Katsuaki; Takemoto, Toshiki; Iwasaki, Takuya; Mitsudomi, Tetsuya

    2014-08-15

    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) therapy often provides a dramatic response in lung cancer patients with EGFR mutations. In addition, moderate clinical efficacy of the EGFR-TKI, erlotinib, has been shown in lung cancer patients with the wild-type EGFR. Numerous molecular mechanisms that cause acquired resistance to EGFR-TKIs have been identified in lung cancers with the EGFR mutations; however, few have been reported in lung cancers with the wild-type EGFR. We used H358 lung adenocarcinoma cells lacking EGFR mutations that showed modest sensitivity to erlotinib. The H358 cells acquired resistance to erlotinib via chronic exposure to the drug. The H358 erlotinib-resistant (ER) cells do not have a secondary EGFR mutation, neither MET gene amplification nor PTEN downregulation; these have been identified in lung cancers with the EGFR mutations. From comprehensive screening of receptor tyrosine kinase phosphorylation, we observed increased phosphorylation of insulin-like growth factor 1 receptor (IGF1R) in H358ER cells compared with parental H358 cells. H358ER cells responded to combined therapy with erlotinib and NVP-AEW541, an IGF1R-TKI. Our results indicate that IGF1R activation is a molecular mechanism that confers acquired resistance to erlotinib in lung cancers with the wild-type EGFR. PMID:24458568

  16. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    Science.gov (United States)

    Canelles, Sandra; Argente, Jesús; Barrios, Vicente

    2016-01-01

    ABSTRACT Insulin receptor substrate-2-deficient (IRS2−/−) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  17. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    Directory of Open Access Journals (Sweden)

    Eva Baquedano

    2016-05-01

    Full Text Available Insulin receptor substrate-2-deficient (IRS2−/− mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus.

  18. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model.

    Science.gov (United States)

    Baquedano, Eva; Burgos-Ramos, Emma; Canelles, Sandra; González-Rodríguez, Agueda; Chowen, Julie A; Argente, Jesús; Barrios, Vicente; Valverde, Angela M; Frago, Laura M

    2016-05-01

    Insulin receptor substrate-2-deficient (IRS2(-/-)) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2(-/-) mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2(-/-) mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2(-/-) mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2(-/-) mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  19. Molecular mechanism of insulin resistance

    Indian Academy of Sciences (India)

    Samir Bhattacharya; Debleena Dey; Sib Sankar Roy

    2007-03-01

    Free fatty acids are known to play a key role in promoting loss of insulin sensitivity, thereby causing insulin resistance and type 2 diabetes. However, the underlying mechanism involved is still unclear. In searching for the cause of the mechanism, it has been found that palmitate inhibits insulin receptor (IR) gene expression, leading to a reduced amount of IR protein in insulin target cells. PDK1-independent phosphorylation of PKCε causes this reduction in insulin receptor gene expression. One of the pathways through which fatty acid can induce insulin resistance in insulin target cells is suggested by these studies. We provide an overview of this important area, emphasizing the current status.

  20. Insulin Receptor Substrate-1 (IRS-1 Gly927Arg: Correlation with Gestational Diabetes Mellitus in Saudi Women

    Directory of Open Access Journals (Sweden)

    Khalid Khalaf Alharbi

    2014-01-01

    Full Text Available Pregnant women with gestational diabetes mellitus (GDM and type 2 diabetes mellitus (T2DM share a common pathophysiology associated with similar risk factors. Genetic variants used to determine the risk of developing T2DM might also be associated with the prevalence of GDM. The aim of the present study was to scrutinize the relationship between the G972R polymorphism of the insulin receptor substrate-1 (IRS-1 gene with GDM in the Saudi female population. This is a case-control study that monitored 500 Saudi women. Subjects with GDM (n=200 were compared with non-GDM (n=300 controls. We opted to evaluate rs1801278 polymorphism in the IRS1 gene, which plays a critical role in the insulin-signaling pathway. Genotyping was performed with the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP method. The frequency of the rs1801278 polymorphism was significantly higher in women with GDM than in women with non-GDM (for TT + CT versus CC: P=0.02. Additionally, there was a significant increase in the frequency of the Arg-encoding mutant allele from GDM to non-GDM (for T versus C: P=0.01. Our results suggest that the rs1801278 polymorphism in the IRS-1 gene is involved in the occurrence of GDM in the Saudi population.

  1. Expression of insulin-like growth factor Ⅱ and its receptor in hepatocellular carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Zi Rong Fan; Dong Hua Yang; Jun Cui; Han Rong Qin; Chun Chi Huang

    2001-01-01

    @@INTRODUCTION Insulin-like growth factor Ⅱ(IGF-Ⅱ) is a mitogenic peptide of 74 kD and is mostly synthesized in fetal liver tissue .IGF-Ⅱ is believed to play an important role in fetal growth and development and is involved in cellular proliferation and differentiation[1-5]. Recently ,several researchers have reported increased expression of the IGF-Ⅱgene in human hepatocellular carcinoma (HCC) and adjacent non-cancerous liver tissues [6-10].

  2. Receptor-isoform-selective insulin analogues give tissue-preferential effects

    DEFF Research Database (Denmark)

    Vienberg, Sara Gry; Bouman, Stephan D; Sørensen, Heidi;

    2011-01-01

    inducing glycogen accumulation (75%) and lipogenesis (130%) than for affecting muscle (45%). For the same blood-glucose-lowering effect upon acute intravenous dosing of mice, INS-B gave a significantly higher degree of IR phosphorylation in liver than HI. These in vitro and in vivo results indicate that...... insulin analogues with IR-isoform-preferential binding affinity are able to elicit tissue-selective biological responses, depending on IR-A/IR-B expression....

  3. Coated vesicles participate in the receptor-mediated endocytosis of insulin

    OpenAIRE

    1983-01-01

    We have purified coated vesicles from rat liver by differential ultracentrifugation. Electron micrographs of these preparations reveal only the polyhedral structures typical of coated vesicles. SDS PAGE of the coated vesicle preparation followed by Coomassie Blue staining of proteins reveals a protein composition also typical of coated vesicles. We determined that these rat liver coated vesicles possess a latent insulin binding capability. That is, little if any specific binding of 125I-insul...

  4. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion.

    Directory of Open Access Journals (Sweden)

    Yuko Nakagawa

    Full Text Available BACKGROUND: Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. METHODOLOGY/PRINCIPAL FINDINGS: The expression of the sweet taste receptor was determined by RT-PCR and immunohistochemistry. Changes in cytoplasmic Ca(2+ ([Ca(2+](c and cAMP ([cAMP](c were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca(2+](c. The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca(2+](c response. The effect of sucralose on [Ca(2+](c was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a G(q inhibitor. Sucralose also induced sustained elevation of [cAMP](c, which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. CONCLUSIONS: Sweet taste receptor is expressed in beta-cells, and activation of this receptor induces insulin secretion by Ca(2+ and cAMP-dependent mechanisms.

  5. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice

    NARCIS (Netherlands)

    Cariou, B; van Harmelen, K; Duran-Sandoval, D; van Dijk, TH; Grefhorst, A; Abdelkarim, M; Caron, S; Torpier, G; Fruchart, JC; Gonzalez, FJ; Kuipers, F; Staels, B

    2006-01-01

    The farnesoid X receptor (FXR) is a bile acid (BA)-activated nuclear receptor that plays a major role in the regulation of BA and lipid metabolism. Recently, several studies have suggested a potential role of FXR in the control of hepatic carbohydrate metabolism, but its contribution to the maintena

  6. Relaxin, its receptor (RXFP1), and insulin-like peptide 4 expression through gestation and in placenta accreta.

    Science.gov (United States)

    Goh, William; Yamamoto, Sandra Y; Thompson, Karen S; Bryant-Greenwood, Gillian D

    2013-08-01

    This study was designed to show whether placental relaxin (RLN), its receptor (RXFP1), or insulin-like peptide 4 (INSL4) might have altered expression in patients with placenta accreta. The baseline expression of their genes through gestation (n = 34) was quantitated in the placental basal plate (BP) and villous trophoblast (TR), and compared to their expression in placenta accreta (n = 6). The proteins were also immunolocalized and quantitated in the accreta tissues. The messenger RNAs (mRNAs) of matrix metalloproteinase 9, -2, and tissue inhibitors of matrix metalloproteinase (TIMP)-1 were also measured. Results demonstrated that the BP and TR expressed low levels of RLN/RXFP1 and INSL4 through gestation. In accreta, increased RLN gene and protein in BP were associated with antepartum bleeding whereas INSL4 expression decreased throughout the TR. There were no changes in mRNAs for MMPs, but TIMP-1 was increased only in the invasive TR. PMID:23302396

  7. Higher-Resolution Structure of the Human Insulin Receptor Ectodomain: Multi-Modal Inclusion of the Insert Domain.

    Science.gov (United States)

    Croll, Tristan I; Smith, Brian J; Margetts, Mai B; Whittaker, Jonathan; Weiss, Michael A; Ward, Colin W; Lawrence, Michael C

    2016-03-01

    Insulin receptor (IR) signaling is critical to controlling nutrient uptake and metabolism. However, only a low-resolution (3.8 Å) structure currently exists for the IR ectodomain, with some segments ill-defined or unmodeled due to disorder. Here, we revise this structure using new diffraction data to 3.3 Å resolution that allow improved modeling of the N-linked glycans, the first and third fibronectin type III domains, and the insert domain. A novel haptic interactive molecular dynamics strategy was used to aid fitting to low-resolution electron density maps. The resulting model provides a foundation for investigation of structural transitions in IR upon ligand binding. PMID:26853939

  8. Studies of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene in relation to insulin sensitivity among glucose tolerant caucasians

    DEFF Research Database (Denmark)

    Ek, J; Andersen, G; Urhammer, S A; Hansen, L; Carstensen, B; Borch-Johnsen, K; Drivsholm, T; Berglund, Lars Erik; Hansen, T; Lithell, H; Pedersen, O

    2001-01-01

    We examined whether the Pro12-Ala polymorphism of the human peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene was related to altered insulin sensitivity among glucose-tolerant subjects or a lower accumulated incidence or prevalence of IGT and Type II (non-insulin-dependent) dia......-insulin-dependent) diabetes mellitus among Scandinavian Caucasians.......We examined whether the Pro12-Ala polymorphism of the human peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene was related to altered insulin sensitivity among glucose-tolerant subjects or a lower accumulated incidence or prevalence of IGT and Type II (non...

  9. Partial characterization of insulin-like growth factor I in primary human lung cancers using immunohistochemical and receptor autoradiographic techniques

    International Nuclear Information System (INIS)

    We investigated primary human lung cancers resected surgically or obtained at autopsy. Included were squamous cell carcinoma (SQC) (five cases), adenocarcinoma (ADC) (six cases), large cell carcinoma (LCC) (four cases), and small cell carcinoma (SCC) (two cases). The objective of the study was to search for the presence of insulin-like growth factor I (IGF-I)-like immunoreactivity using immunohistochemical staining and for the localization of IGF-I binding sites, using in vitro quantitative receptor autoradiographic techniques. IGF-I-like immunostaining was present in all cases of SQC, ADC, and LCC, but not in cases of SCC. Strong immunostaining was observed in cases of SQC. On the other hand, ADC and LCC tissues showed a moderate or weak staining. Specific binding sites for IGF-I were present in all cases of SQC, ADC, LCC, and SCC examined. High densities of 125I-IGF-I binding sites were localized in cases of SQC and SCC. Low to high densities of the binding sites were found in LCC. Cases of ADC showed low densities of 125I-IGF-I binding sites. Specific binding obtained at a concentration of 80 pM 125I-IGF-I was competitively displaced by unlabeled IGF-I, with a 50% inhibitory concentration value of 1.84 +/- 0.31 x 10(-10) mol, whereas human insulin was much less potent in displacing the binding. This specificity profile is consistent with characteristics of IGF-I receptors. Scatchard analysis showed the presence of a single class of high affinity binding sites for IGF-I, with a Kd of approximately 1 nmol. Thus, the possibility that IGF-I may play a role in the growth of human lung cancers would have to be considered

  10. A nonsense mutation causing decreased levels of insulin receptor mRNA: Detection by a simplified technique for direct sequencing of genomic DNA amplified by the polymerase chain reaction

    International Nuclear Information System (INIS)

    Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. The authors have studied a patient with leprechaunism (leprechaun/Minn-1), a genetic syndrome associated with intrauterine growth retardation and extreme insulin resistance. Genomic DNA from the patient was amplified by the polymerase chain reaction catalyzed by Thermus aquaticus (Taq) DNA polymerase, and the amplified DNA was directly sequenced. A nonsense mutations was identified at codon 897 in exon 14 in the paternal allele of the patient's insulin receptor gene. Levels of insulin receptor mRNA are decreased to <10% of normal in Epstein-Barr virus-transformed lymphoblasts and cultured skin fibroblasts from this patient. Thus, this nonsense mutation appears to cause a decrease in the levels of insulin receptor mRNA. In addition, they have obtained indirect evidence that the patient's maternal allele of the insulin receptor gene contains a cis-acting dominant mutation that also decreases the level of mRNA, but by a different mechanism. The nucleotide sequence of the entire protein-coding domain and the sequences of the intron-exon boundaries for all 22 exons of the maternal allele were normal. Presumably, the mutation in the maternal allele maps elsewhere in the insulin receptor gene. Thus, they conclude that the patient is a compound heterozygote for two cis-acting dominant mutations in the insulin receptor gene: (i) a nonsense mutation in the paternal allel that reduces the level of insulin receptor mRNA and (ii) an as yet unidentified mutation in the maternal allele that either decreases the rate of transcription or decreases the stability of the mRNA

  11. Immunohistochemical visualization of insulin receptors in formalin-fixed bovine ovaries post mortem and in granulosa cells collected in vivo.

    Science.gov (United States)

    Bossaert, P; De Cock, H; Leroy, J L M R; De Campeneere, S; Bols, P E J; Filliers, M; Opsomer, G

    2010-06-01

    Insulin is crucial for granulosa cell (GC) function, follicle growth and ovulation in cows; low insulin levels increase the risk for anoestrus. Apart from insulin concentration, alterations in the insulin receptor (IR) density on GC may affect follicular growth and steroidogenesis. Data about the IR protein distribution in the bovine follicle are scarce. Therefore, we aimed to develop a quantifiable staining method for IR protein on histological sections of bovine follicles in different developmental stages, and to apply this technique on GC obtained in living cows. In a first experiment, bovine ovaries were collected post mortem, formalin fixed, routinely processed, and stained with monoclonal murine IR-antibodies, peroxidase-labeled goat anti-mouse antibodies, and substrate chromogen. Based on their diameter, follicles were morphologically classified as small antral (SAF; n = 141), dominant (DF; n=28) or subordinate (SF; n=8); DF and SF were further classified as healthy or atretic based on the ratio of estrogen and progesterone concentrations in their follicular fluid. Using specialized software, the proportion of pixels displaying a positive staining signal was computed as a measure for IR density in three selected follicular regions: GC, theca (T) and stroma (STR). Results were analyzed in an ANOVA model with follicle type, region and health status as fixed factors. In SAF, DF, and SF, IR density was notably higher in GC than T or STR; the latter two displayed very low or no IR presence. The IR density in SAF was stronger than in DF and tended to be stronger than in SF. Staining intensity was not altered in atretic compared to healthy follicles. In corpus luteum, cumulus-oocyte complexes and pre-antral follicles, no IR could be detected. In a second experiment, GC samples were collected from 20 live cows on 30 and 70 d post partum by transvaginal follicular fluid aspiration, projected on glass slides, and stained using the protocol described above. Most

  12. Analysis of the insulin receptor gene in noninsulin-dependent diabetes mellitus by denaturing gradient gel blots: A clinical research center study

    Energy Technology Data Exchange (ETDEWEB)

    Magre, J.; Goldfine, A.B.; Warram, J.H. [Harvard Medical School, Boston, MA (United States)] [and others

    1995-06-01

    We have used a new technique of denaturing gradient gel blotting to determine the prevalence of alterations in the intracellular domain of the insulin receptor in normal individuals and subjects with non-insulin-dependent diabetes mellitus (NIDDM). This method detects DNA sequence differences as restriction fragment melting polymorphisms (RFMP) and is sensitive to changes in sequence at both restriction sites and within the fragments themselves. Using restriction digests with AluI, HaeIII, HinfI, RsaI, Sau3A, and Sau96, 12 RFMPs were found to localize to the region of the {beta}-subunit of the insulin receptor gene. Using exon-specific probes, these RFMPs could be localized to specific regions surrounding individual exons, including exons, 14, 15, 16, 18, 20, and 22. In general, linkage disequilibrium between polymorphisms was inversely related to their distance in the gene structure, although there was a {open_quotes}hot spot{close_quotes} for recombination between exons 19 and 20. No difference in melting temperatures or allele frequency was observed between NIDDM patients and controls. These data indicate that the region of the insulin receptor gene coding for the intracellular portion of the {beta}-subunit is highly polymorphic and that polymorphisms surrounding specific exons can be identified by denaturing gradient gel blotting, but there is no evidence that variation at this locus contributes to NIDDM susceptibility in most individuals. 36 refs., 3 figs., 3 tabs.

  13. Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice

    OpenAIRE

    Mavalli, Mahendra D.; DiGirolamo, Douglas J.; Fan, Yong; Riddle, Ryan C.; Campbell, Kenneth S.; van Groen, Thomas; Frank, Stuart J.; Sperling, Mark A.; Esser, Karyn A; Bamman, Marcas M; Clemens, Thomas L.

    2010-01-01

    Skeletal muscle development, nutrient uptake, and nutrient utilization is largely coordinated by growth hormone (GH) and its downstream effectors, in particular, IGF-1. However, it is not clear which effects of GH on skeletal muscle are direct and which are secondary to GH-induced IGF-1 expression. Thus, we generated mice lacking either GH receptor (GHR) or IGF-1 receptor (IGF-1R) specifically in skeletal muscle. Both exhibited impaired skeletal muscle development characterized by reductions ...

  14. Glucagon-like Peptide-1 Increases β-Cell Glucose Competence and Proliferation by Translational Induction of Insulin-like Growth Factor-1 Receptor Expression*

    OpenAIRE

    Cornu, Marion; Modi, Honey; Kawamori, Dan; Kulkarni, Rohit N.; Joffraud, Magali; Thorens, Bernard

    2010-01-01

    Glucagon-like peptide-1 (GLP-1) protects β-cells against apoptosis, increases their glucose competence, and induces their proliferation. We previously demonstrated that the anti-apoptotic effect was mediated by an increase in insulin-like growth factor-1 receptor (IGF-1R) expression and signaling, which was dependent on autocrine secretion of insulin-like growth factor 2 (IGF-2). Here, we further investigated how GLP-1 induces IGF-1R expression and whether the IGF-2/IGF-1R autocrine loop is a...

  15. Endoplasmic Reticulum Stress-Induced Activation of Activating Transcription Factor 6 Decreases Insulin Gene Expression via Up-Regulation of Orphan Nuclear Receptor Small Heterodimer Partner

    OpenAIRE

    Seo, Hye-Young; Kim, Yong Deuk; Lee, Kyeong-Min; Min, Ae-Kyung; Kim, Mi-Kyung; Kim, Hye-Soon; Won, Kyu-Chang; Park, Joong-Yeol; Lee, Ki-Up; Choi, Hueng-Sik; Park, Keun-Gyu; Lee, In-Kyu

    2008-01-01

    The highly developed endoplasmic reticulum (ER) structure of pancreatic β-cells is a key factor in β-cell function. Here we examined whether ER stress-induced activation of activating transcription factor (ATF)-6 impairs insulin gene expression via up-regulation of the orphan nuclear receptor small heterodimer partner (SHP; NR0B2), which has been shown to play a role in β-cell dysfunction. We examined whether ER stress decreases insulin gene expression, and this process is mediated by ATF6. A...

  16. Deficiency in type 1 insulin-like growth factor receptor in mice protects against oxygen-induced lung injury

    Directory of Open Access Journals (Sweden)

    Flejou Jean-François

    2005-04-01

    Full Text Available Abstract Background Cellular responses to aging and oxidative stress are regulated by type 1 insulin-like growth factor receptor (IGF-1R. Oxidant injury, which is implicated in the pathophysiology of a number of respiratory diseases, acutely upregulates IGF-1R expression in the lung. This led us to suspect that reduction of IGF-1R levels in lung tissue could prevent deleterious effects of oxygen exposure. Methods Since IGF-1R null mutant mice die at birth from respiratory failure, we generated compound heterozygous mice harboring a hypomorphic (Igf-1rneo and a knockout (Igf-1r- receptor allele. These IGF-1Rneo/- mice, strongly deficient in IGF-1R, were subjected to hyperoxia and analyzed for survival time, ventilatory control, pulmonary histopathology, morphometry, lung edema and vascular permeability. Results Strikingly, after 72 h of exposure to 90% O2, IGF-1Rneo/- mice had a significantly better survival rate during recovery than IGF-1R+/+ mice (77% versus 53%, P neo/- mice which developed conspicuously less edema and vascular extravasation than controls. Also, hyperoxia-induced abnormal pattern of breathing which precipitated respiratory failure was elicited less frequently in the IGF-1Rneo/- mice. Conclusion Together, these data demonstrate that a decrease in IGF-1R signaling in mice protects against oxidant-induced lung injury.

  17. Expression and regulation of mRNAs for insulin-like growth factor-I receptor and LH receptor in corpora lutea

    Institute of Scientific and Technical Information of China (English)

    罗文祥; 祝诚

    2000-01-01

    Relationship between insulin-like growth factor-l receptor (IGF-IR) and luteinizing hormone receptor (LHR) mRNA expression as well as their regulation was determined in rat corpora lutea (CL) . In the CL of estrous cycle rat, LHR mRNA positive CL expressed high level of mRNA of IGF-IR. While the expression of LHR mRNA decreased on estrus, the CL still expressed relatively high level of IGF-IR mRNA. In pseudopregnant rat CL, the expression level of LHR mRNA was low on day 1, the most intense signals were detected on day 8, the signals of LHR mRNA became undetectable on day 14. In contrast to LHR expression, the high level of IGF-IR mRNA was observed in pseudopregnant CL of day 1, and thereafter its signals were detected from day 2 to day 14. Pregnant rat CL expressed both LHR and IGF-IR mRNAs. IGF-I stimulated LHR expression in CL. PGF2ainhibited expression of IGF-IR and LHR. PGE2 negated the inhibiting effects of PGF2α. These data suggest that IGF-I may be involved in regulating CL function, and maintai

  18. Exercise-induced changes in expression and activity of proteins involved in insulin signal transduction in skeletal muscle: Differential effects on insulin-receptor substrates 1 and 2

    OpenAIRE

    Chibalin, Alexander V; Yu, Mei; Ryder, Jeffrey W.; Song, Xiao Mei; Galuska, Dana; Krook, Anna; Wallberg-Henriksson, Harriet; Juleen R. Zierath

    2000-01-01

    Level of physical activity is linked to improved glucose homeostasis. We determined whether exercise alters the expression and/or activity of proteins involved in insulin-signal transduction in skeletal muscle. Wistar rats swam 6 h per day for 1 or 5 days. Epitrochlearis muscles were excised 16 h after the last exercise bout, and were incubated with or without insulin (120 nM). Insulin-stimulated glucose transport increased 30% and 50% after 1 and 5 days of exercise, respectively. Glycogen co...

  19. Dietary modulation of erythrocyte insulin receptor interaction and the regulation of adipose tissue pyruvate dehydrogenase enzyme activity in growing rats; a mechanism of action of dietary fiber in metabolism

    International Nuclear Information System (INIS)

    The metabolic effects of graded cellulose (a dietary fiber) intake were studied at minimal (10%) and maximal (20%) protein levels in male weanling Sprague Dawley rats. The hypothesis was tested that the hypoglycemic effect of high fiber diets is partly mediated through increased tissue sensitivity to insulin at the cell receptor level. Erythrocyte insulin receptor interaction (IRI) and percent insulin stimulation of adipose tissue pyruvate dehydrogenase (PDH) activity (PDS) were used as indices of tissue sensitivity to insulin. IRI was determined by a standardized radioceptor assay PDS by the rate of oxidation of 1-14C-pyruvate to 14CO2 in epidymal fat pads and serum insulin levels by radioimmunoassay. In both protein groups, the addition of fiber in the diet resulted in a significant (P 125I-insulin binding (SIB) was higher in the 20% protein groups while in the fiber-free group, a higher SIB was observed in the 10% protein group

  20. A superactive insulin: [B10-aspartic acid]insulin(human).

    OpenAIRE

    Schwartz, G P; Burke, G. T.; Katsoyannis, P G

    1987-01-01

    The genetic basis for a case of familial hyperproinsulinemia has been elucidated recently. It involves a single point mutation in the proinsulin gene resulting in the substitution of aspartic acid for histidine-10 of the B chain of insulin. We have synthesized a human insulin analogue, [AspB10]insulin, corresponding to the mutant proinsulin and evaluated its biological activity. [AspB10]Insulin displayed a binding affinity to insulin receptors in rat liver plasma membranes that was 534 +/- 14...

  1. Drosophila Longevity Assurance Conferred by Reduced Insulin Receptor Substrate Chico Partially Requires d4eBP.

    Directory of Open Access Journals (Sweden)

    Hua Bai

    Full Text Available Mutations of the insulin/IGF signaling (IIS pathway extend Drosophila lifespan. Based on genetic epistasis analyses, this longevity assurance is attributed to downstream effects of the FOXO transcription factor. However, as reported FOXO accounts for only a portion of the observed longevity benefit, suggesting there are additional outputs of IIS to mediate aging. One candidate is target of rapamycin complex 1 (TORC1. Reduced TORC1 activity is reported to slow aging, whereas reduced IIS is reported to repress TORC1 activity. The eukaryotic translation initiation factor 4E binding protein (4E-BP is repressed by TORC1, and activated 4E-BP is reported to increase Drosophila lifespan. Here we use genetic epistasis analyses to test whether longevity assurance mutants of chico, the Drosophila insulin receptor substrate homolog, require Drosophila d4eBP to slow aging. In chico heterozygotes, which are robustly long-lived, d4eBP is required but not sufficient to slow aging. Remarkably, d4eBP is not required or sufficient for chico homozygotes to extend longevity. Likewise, chico heterozygote females partially require d4eBP to preserve age-dependent locomotion, and both chico genotypes require d4eBP to improve stress-resistance. Reproduction and most measures of growth affected by either chico genotype are always independent of d4eBP. In females, chico heterozygotes paradoxically produce more rather than less phosphorylated 4E-BP (p4E-BP. Altered IRS function within the IIS pathway of Drosophila appears to have partial, conditional capacity to regulate aging through an unconventional interaction with 4E-BP.

  2. Evaluation of protein undernourishment on the condylar process of the Wistar rat mandible correlation with insulin receptor expression

    Directory of Open Access Journals (Sweden)

    Marcelo Arthur CAVALLI

    2015-04-01

    Full Text Available The mandible condylar process cartilage (CP of Wistar rats is a secondary cartilage and acts as a mandibular growth site. This phenomenon depends on adequate proteins intake and hormone actions, including insulin. Objectives The present study evaluated the morphological aspects and the expression of the insulin receptor (IR in the cartilage of the condylar process (CP of rats subjected to protein undernourishment. Material and Methods The nourished group received a 20% casein diet, while the undernourished group (U received a 5% casein diet. The re-nourished groups, R and RR, were used to assess the effects of re-nutrition during puberty and adulthood, respectively. CPs were processed and stained with picro-sirius red, safranin-O and azocarmine. Scanning electron microscopy and immunohistochemistry were also performed. Results The area of the CP cartilage and the number of cells in the chondroblastic layer decreased in the U group, as did the thickness of the CP layer in the joint and hypertrophic layer. Renourishment during the pubertal stage, but not during the adult phase, restored these parameters. The cell number was restored when re-nutrition occurred in the pubertal stage, but not in the adult phase. The extracellular matrix also decreased in the U group, but was restored by re-nutrition during the pubertal stage and further increased in the adult phase. IR expression was observed in all CPs, being higher in the chondroblastic and hypertrophic cartilage layers. The lowest expression was found in the U and RR groups. Conclusions Protein malnutrition altered the cellularity, the area, and the fibrous cartilage complex, as well as the expression of the IRs.

  3. Limited impact on glucose homeostasis of leptin receptor deletion from insulin- or proglucagon-expressing cells

    Directory of Open Access Journals (Sweden)

    Helen Soedling

    2015-09-01

    Conclusions/interpretation: The use here of a highly selective Cre recombinase indicates that leptin signalling plays a relatively minor, age- and sex-dependent role in the control of β cell function in the mouse. No in vivo role for leptin receptors on α cells, nor in other proglucagon-expressing cells, was detected in this study.

  4. Blockade of tumor necrosis factor (TNF) receptor type 1-mediated TNF-alpha signaling protected Wistar rats from diet-induced obesity and insulin resistance.

    Science.gov (United States)

    Liang, Huifang; Yin, Bingjiao; Zhang, Hailong; Zhang, Shu; Zeng, Qingling; Wang, Jing; Jiang, Xiaodan; Yuan, Li; Wang, Cong-Yi; Li, Zhuoya

    2008-06-01

    TNF-alpha plays an important role in the pathogenesis of obesity and insulin resistance in which the effect of TNF-alpha signaling via TNF receptor type 1 (TNFR1) largely remains controversial. To delineate the role of TNFR1-mediated TNF-alpha signaling in the pathogenesis of this disorder, a TNFR1 blocking peptide-Fc fusion protein (TNFR1BP-Fc) was used for the present study. Wistar rats were fed a high-fat/high-sucrose (HFS) diet for 16 wk until obesity and insulin resistance developed. In comparison with increased body weight and fat weight, enlarged adipocytes, and hypertriglyceridemia in the obese state, the subsequent 4-wk treatment with TNFR1BP-Fc resulted in significant weight loss characterized by decreased fat pad weight and adipocyte size and reduced plasma triglycerides. Furthermore, obesity-induced insulin resistance, including hyperinsulinemia, elevated C-peptide, higher degree of hyperglycemia after glucose challenge, and less hypoglycemic response to insulin, was markedly improved, and the compensatory hyperplasia and hypertrophy of pancreatic islets were reduced. Interestingly, treatment with TNFR1BP-Fc markedly suppressed systemic TNF-alpha release and its local expression in pancreatic islets and muscle and adipose tissues. In addition, blockage of TNFR1-mediated TNF-alpha signaling in obese rats significantly enhanced tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) in the muscle and fat tissues. Our results strongly suggest a pivotal role for TNFR1-mediated TNF-alpha signaling in the pathogenesis of obesity and insulin resistance. Thus, TNFR1BP-Fc may be a good candidate for the treatment of this disease. PMID:18339717

  5. Obesidad, inflamación e insulino-resistencia: papel de los ligandos del receptor gp 130 Obesity, inflammation and insulin resistance: role of gp 130 receptor ligands

    Directory of Open Access Journals (Sweden)

    B. Marcos-Gómez

    2008-08-01

    like C-reactive protein. In this context, some cytokines of the interleukin-6 (IL-6 family have been involved in the inflammatory processes associated to obesity. In addition to IL-6, the IL-6 cytokine family includes IL-11, ciliary neurotrophic factor (cntf, cardiotrophin-1 (CT-1, cardiotrophin-like cytokine (CLC, leukemia inhibitory factor (LIF y Oncostatin M (OsM. These proteins are also known as gp130 cytokines because all of them exert their action via the glycoprotein 130 (gp130 as a common transducer protein within their functional receptor complexes. However, their role in obesity and related disorders is controversial; thus, whereas some studies have described the involvement of gp130 cytokines in the development of obesity and its related cluster of pathophysiologic conditions like insulin-resistance, fatty liver and cardiovascular diseases, other trials have proposed the gp130 receptor ligands as therapeutic targets in the treatment of obesity and its related disorders. In fact, CNTF treatment has demonstrated to be effective in the reduction of body weight, by promoting the inhibition of food intake and the activation of the energy expenditure, together with an improvement of insulin sensitivity. This review analyzes the potential therapeutic role of some of the gp130 ligands in obesity and related diseases.

  6. PPAR-γ activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Hyo-Sup Kim

    Full Text Available BACKGROUND: It has been reported that peroxisome proliferator-activated receptor (PPAR-γ and their synthetic ligands have direct effects on pancreatic β-cells. We investigated whether PPAR-γ activation stimulates insulin secretion through the up-regulation of GPR40 in pancreatic β-cells. METHODS: Rat insulinoma INS-1 cells and primary rat islets were treated with rosiglitazone (RGZ and/or adenoviral PPAR-γ overexpression. OLETF rats were treated with RGZ. RESULTS: PPAR-γ activation with RGZ and/or adenoviral PPAR-γ overexpression increased free fatty acid (FFA receptor GPR40 expression, and increased insulin secretion and intracellular calcium mobilization, and was blocked by the PLC inhibitors, GPR40 RNA interference, and GLUT2 RNA interference. As a downstream signaling pathway of intracellular calcium mobilization, the phosphorylated levels of CaMKII and CREB, and the downstream IRS-2 and phospho-Akt were significantly increased. Despite of insulin receptor RNA interference, the levels of IRS-2 and phospho-Akt was still maintained with PPAR-γ activation. In addition, the β-cell specific gene expression, including Pdx-1 and FoxA2, increased in a GPR40- and GLUT2-dependent manner. The levels of GPR40, phosphorylated CaMKII and CREB, and β-cell specific genes induced by RGZ were blocked by GW9662, a PPAR-γ antagonist. Finally, PPAR-γ activation up-regulated β-cell gene expressions through FoxO1 nuclear exclusion, independent of the insulin signaling pathway. Based on immunohistochemical staining, the GLUT2, IRS-2, Pdx-1, and GPR40 were more strongly expressed in islets from RGZ-treated OLETF rats compared to control islets. CONCLUSION: These observations suggest that PPAR-γ activation with RGZ and/or adenoviral overexpression increased intracellular calcium mobilization, insulin secretion, and β-cell gene expression through GPR40 and GLUT2 gene up-regulation.

  7. β-Cell deletion of Nr4a1 and Nr4a3 nuclear receptors impedes mitochondrial respiration and insulin secretion.

    Science.gov (United States)

    Reynolds, Merrick S; Hancock, Chad R; Ray, Jason D; Kener, Kyle B; Draney, Carrie; Garland, Kevin; Hardman, Jeremy; Bikman, Benjamin T; Tessem, Jeffery S

    2016-07-01

    β-Cell insulin secretion is dependent on proper mitochondrial function. Various studies have clearly shown that the Nr4a family of orphan nuclear receptors is essential for fuel utilization and mitochondrial function in liver, muscle, and adipose. Previously, we have demonstrated that overexpression of Nr4a1 or Nr4a3 is sufficient to induce proliferation of pancreatic β-cells. In this study, we examined whether Nr4a expression impacts pancreatic β-cell mitochondrial function. Here, we show that β-cell mitochondrial respiration is dependent on the nuclear receptors Nr4a1 and Nr4a3. Mitochondrial respiration in permeabilized cells was significantly decreased in β-cells lacking Nr4a1 or Nr4a3. Furthermore, respiration rates of intact cells deficient for Nr4a1 or Nr4a3 in the presence of 16 mM glucose resulted in decreased glucose mediated oxygen consumption. Consistent with this reduction in respiration, a significant decrease in glucose-stimulated insulin secretion rates is observed with deletion of Nr4a1 or Nr4a3. Interestingly, the changes in respiration and insulin secretion occur without a reduction in mitochondrial content, suggesting decreased mitochondrial function. We establish that knockdown of Nr4a1 and Nr4a3 results in decreased expression of the mitochondrial dehydrogenase subunits Idh3g and Sdhb. We demonstrate that loss of Nr4a1 and Nr4a3 impedes production of ATP and ultimately inhibits glucose-stimulated insulin secretion. These data demonstrate for the first time that the orphan nuclear receptors Nr4a1 and Nr4a3 are critical for β-cell mitochondrial function and insulin secretion. PMID:27221116

  8. Adipogenesis and insulin sensitivity in obesity are regulated by retinoid-related orphan receptor gamma

    OpenAIRE

    Meissburger, Bettina; Ukropec, Jozef; Roeder, Eva; Beaton, Nigel; Geiger, Matthias; Teupser, Daniel; Civan, Burcak; Langhans, Wolfgang; Nawroth, Peter P.; Gasperikova, Daniela; Rudofsky, Gottfried; Wolfrum, Christian

    2011-01-01

    Obesity is a well-known risk factor for the development of secondary complications such as type 2 diabetes. However, only a part of the obese population develops secondary metabolic disorders. Here, we identify the transcription factor retinoid-related orphan receptor gamma (RORγ) as a negative regulator of adipocyte differentiation through expression of its newly identified target gene matrix metalloproteinase 3. In vivo differentiation of adipocyte progenitor cells from Rorγ-deficient mice ...

  9. Characterization of Inhibitory Anti-insulin-like Growth Factor Receptor Antibodies with Different Epitope Specificity and Ligand-blocking Properties: IMPLICATIONS FOR MECHANISM OF ACTION IN VIVOS⃞

    OpenAIRE

    Doern, Adam; Cao, Xianjun; Sereno, Arlene; Reyes, Christopher L.; Altshuler, Angelina; Huang, Flora; Hession, Cathy; Flavier, Albert; Favis, Michael; Tran, Hon; Ailor, Eric; Levesque, Melissa; MURPHY, TRACEY; Berquist, Lisa; Tamraz, Susan

    2009-01-01

    Therapeutic antibodies directed against the type 1 insulin-like growth factor receptor (IGF-1R) have recently gained significant momentum in the clinic because of preliminary data generated in human patients with cancer. These antibodies inhibit ligand-mediated activation of IGF-1R and the resulting down-stream signaling cascade. Here we generated a panel of antibodies against IGF-1R and screened them for their ability to block the binding of both IGF-1 and IGF-2 at es...

  10. Assembly of splicing complexes on exon 11 of the human insulin receptor gene does not correlate with splicing efficiency in-vitro

    OpenAIRE

    Caples Matt; Evans Lui-Guojing; Webster Nicholas JG; Erker Laura; Chew Shern L

    2004-01-01

    Abstract Background Incorporation of exon 11 of the insulin receptor gene is both developmentally and hormonally-regulated. Previously, we have shown the presence of enhancer and silencer elements that modulate the incorporation of the small 36-nucleotide exon. In this study, we investigated the role of inherent splice site strength in the alternative splicing decision and whether recognition of the splice sites is the major determinant of exon incorporation. Results We found that mutation of...

  11. Fluorescent-Antibody Targeting of Insulin-Like Growth Factor-1 Receptor Visualizes Metastatic Human Colon Cancer in Orthotopic Mouse Models

    OpenAIRE

    Park, Jeong Youp; Murakami, Takashi; Lee, Jin Young; Zhang, Yong; Hoffman, Robert M; Bouvet, Michael

    2016-01-01

    Fluorescent-antibody targeting of metastatic cancer has been demonstrated by our laboratory to enable tumor visualization and effective fluorescence-guided surgery. The goal of the present study was to determine whether insulin-like growth factor-1 receptor (IGF-1R) antibodies, conjugated with bright fluorophores, could enable visualization of metastatic colon cancer in orthotopic nude mouse models. IGF-1R antibody (clone 24–31) was conjugated with 550 nm, 650 nm or PEGylated 650 nm fluoropho...

  12. Regulation of cyclooxygenase-2 (COX-2) expression in human pancreatic carcinoma cells by the insulin-like growth factor-I receptor (IGF-IR) system

    OpenAIRE

    STOELTZING, OLIVER; Liu, Wenbiao; Fan, Fan; Wagner, Christine; Stengel, Kathrin; Somcio, Ray J.; Reinmuth, Niels; Parikh, Alexander A; Hicklin, Daniel J.; Ellis, Lee M.

    2007-01-01

    Both the insulin-like growth factor-I receptor (IGF-IR) and cyclooxygenase-2 (COX-2) are frequently overexpressed in pancreatic cancer. We hypothesized that IGF-IR is directly involved in induction of COX-2 and sought to investigate signaling pathways mediating this effect. Pancreatic cancer cells (L3.6pl) were stably transfected with a dominant-negative receptor (IGF-IR DN) construct or empty vector (pcDNA). Cells were stimulated with IGF-I to determine activated signaling intermediates and ...

  13. Mechanism for insulin-like peptide 5 distinguishing the homologous relaxin family peptide receptor 3 and 4.

    Science.gov (United States)

    Hu, Meng-Jun; Shao, Xiao-Xia; Wang, Jia-Hui; Wei, Dian; Guo, Yu-Qi; Liu, Ya-Li; Xu, Zeng-Guang; Guo, Zhan-Yun

    2016-01-01

    The relaxin family peptides play a variety of biological functions by activating four G protein-coupled receptors, RXFP1-4. Among them, insulin-like peptide 5 (INSL5) and relaxin-3 share the highest sequence homology, but they have distinct receptor preference: INSL5 can activate RXFP4 only, while relaxin-3 can activate RXFP3, RXFP4, and RXFP1. Previous studies suggest that the A-chain is responsible for their different selectivity for RXFP1. However, the mechanism by which INSL5 distinguishes the homologous RXFP4 and RXFP3 remains unknown. In the present work, we chemically evolved INSL5 in vitro to a strong agonist of both RXFP4 and RXFP3 through replacement of its five B-chain residues with the corresponding residues of relaxin-3. We identified four determinants (B2Glu, B9Leu, B17Tyr, and a rigid B-chain C-terminus) on INSL5 that are responsible for its inactivity at RXFP3. In reverse experiments, we grafted these determinants onto a chimeric R3/I5 peptide, which contains the B-chain of relaxin-3 and the A-chain of INSL5, and retains full activation potency at RXFP3 and RXFP4. All resultant R3/I5 mutants retained high activation potency towards RXFP4, but most displayed significantly decreased or even abolished activation potency towards RXFP3, confirming the role of these four INSL5 determinants in distinguishing RXFP4 from RXFP3. PMID:27404393

  14. Tyrosine kinase of insulin-like growth factor receptor as target for novel treatment and prevention strategies of colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Michael H(o)pfner; Andreas P Sutter; Alexander Huether; Viola Baradari; Hans Scherübl

    2006-01-01

    AIM: To investigate the antineoplastic potency of the novel insulin-like growth factor 1 receptor (IGF-1R) tyrosine kinase inhibitor (TKI) NVP-AEW541 in cell lines and primary cell cultures of human colorectal cancer (CRC).METHODS: Cells of primary colorectal carcinomas were from 8 patients. Immunostaining and crystal violet staining were used for analysis of growth factor receptor protein expression and detection of cell number changes,respectively. Cytotoxicity was determined by measuring the release of the cytoplasmic enzyme lactate dehydrogenase (LDH). The proportion of apoptotic cells was determined by quantifying the percentage of sub-G1(hypodiploid) cells. Cell cycle status reflected by the DNA content of the nuclei was detected by flow cytometry.RESULTS: NVP-AEW541 dose-dependently inhibited the proliferation of colorectal carcinoma cell lines and primary cell cultures by inducing apoptosis and cell cycle arrest. Apoptosis was characterized by caspase-3 activation and nuclear degradation. Cell cycle was arrested at the G1/S checkpoint. The NVP-AEW541-mediated cell cycle-related signaling involved the inactivation of Akt and extracellular signal-regulated kinase (ERK) 1/2, the upregulation of the cyclin-dependent kinase inhibitors p21Waf1/CIP1 and p27Kip1, and the downregulation of the cell cycle promoter cyclin D1. Moreover, BAX was upregulated during NVP-AEW541-induced apoptosis, whereas Bcl-2 was downregulated. Measurement of LDH release showed that the antineoplastic effect of NVP-AEW541 was not due to general cytotoxicity of the compound.However, augmented antineoplastic effects were observed in combination treatments of NVP-AEW541 with either 5-FU, or the EGFR-antibody cetuximab, or the HMG-CoA-reductase inhibitor fluvastatin.CONCLUSION: IGF-1R-TK inhibition is a promising novel approach for either mono- or combination treatment strategies of colorectal carcinoma and even for CRC chemoprevention.

  15. The serum insulin-like growth factor-II/mannose-6-phosphate receptor in normal and diabetic pregnancy.

    Science.gov (United States)

    Gelato, M C; Rutherford, C; San-Roman, G; Shmoys, S; Monheit, A

    1993-08-01

    The extracellular domain of the insulin-like growth factor-II/mannose-6-phosphate (IGF-II/Man-6-P) receptor is present in the circulation of several species including man. The purpose of the present study was to establish whether this truncated receptor is present in higher concentrations in fetal sera compared with adult sera and whether the metabolic status of the individual alters serum concentrations of this protein. Nondiabetic and diabetic pregnant women were studied throughout gestation, and at term fetal cord sera were obtained. Levels of IGF-I increased throughout pregnancy in normal and diabetic women. IGF-II levels significantly increased during the third trimester in both groups and levels of IGF-I and IGF-II were significantly elevated in fetal cord samples from diabetic women only. Serum samples were gel-filtered on Sephadex G-200, and column fractions were assayed for binding of radiolabeled IGF-II and IGF-I. There was specific binding (SB) of IGF-II in the void volume fractions in all samples examined. Normal women had 3% +/- 0.5% SB, whereas in cord sera SB was 5% +/- 0.7% and in pregnant sera 10% +/- 2%. There was no difference in SB in fetal cord or pregnant samples from normal and diabetic women. In addition, there was a peak of binding activity of both IGF-I and -II in gamma-globulin and postalbumin fractions of the columns in pregnant and nonpregnant women, but only in postalbumin fractions in fetal cord samples.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8345808

  16. The Clinical Significance of the Insulin-Like Growth Factor-1 Receptor Polymorphism in Non-Small-Cell Lung Cancer with Epidermal Growth Factor Receptor Mutation.

    Science.gov (United States)

    Liu, Tu-Chen; Hsieh, Ming-Ju; Liu, Ming-Che; Chiang, Whei-Ling; Tsao, Thomas Chang-Yao; Yang, Shun-Fa

    2016-01-01

    The insulin-like growth factor 1 (IGF1) signaling pathway mediates multiple cancer cell biological processes. IGF1 receptor (IGF1R) expression has been used as a reporter of the clinical significance of non-small-cell lung carcinoma (NSCLC). However, the association between IGF1R genetic variants and the clinical utility of NSCLC positive for epidermal growth factor receptor (EGFR) mutation is not clear. The current study investigated the association between the IGF1R genetic variants, the occurrence of EGFR mutations, and clinicopathological characteristics in NSCLC patients. A total of 452 participants, including 362 adenocarcinoma lung cancer and 90 squamous cell carcinoma lung cancer patients, were selected for analysis of IGF1R genetic variants (rs7166348, rs2229765, and rs8038415) using real-time polymerase chain reaction (PCR)genotyping. The results indicated that GA + AA genotypes of IGF1R rs2229765 were significantly associated with EGFR mutation in female lung adenocarcinoma patients (odds ratio (OR) = 0.39, 95% confidence interval (CI) = 0.17-0.87). Moreover, The GA + AA genotype IGF1R rs2229765 was significantly associated with EGFR L858R mutation (p = 0.02) but not with the exon 19 in-frame deletion. Furthermore, among patients without EGFR mutation, those who have at least one polymorphic A allele of IGF1R rs7166348 have an increased incidence of lymph node metastasis when compared with those patients homozygous for GG (OR, 2.75; 95% CI, 1.20-2.31). Our results showed that IGF1R genetic variants are related to EGFR mutation in female lung adenocarcinoma patients and may be a predictive factor for tumor lymph node metastasis in Taiwanese patients with NSCLC. PMID:27213344

  17. Mammary tumors that become independent of the type I insulin-like growth factor receptor express elevated levels of platelet-derived growth factor receptors

    Directory of Open Access Journals (Sweden)

    Campbell Craig I

    2011-11-01

    Full Text Available Abstract Background Targeted therapies are becoming an essential part of breast cancer treatment and agents targeting the type I insulin-like growth factor receptor (IGF-IR are currently being investigated in clinical trials. One of the limitations of targeted therapies is the development of resistant variants and these variants typically present with unique gene expression patterns and characteristics compared to the original tumor. Results MTB-IGFIR transgenic mice, with inducible overexpression of the IGF-IR were used to model mammary tumors that develop resistance to IGF-IR targeting agents. IGF-IR independent mammary tumors, previously shown to possess characteristics associated with EMT, were found to express elevated levels of PDGFRα and PDGFRβ. Furthermore, these receptors were shown to be inversely expressed with the IGF-IR in this model. Using cell lines derived from IGF-IR-independent mammary tumors (from MTB-IGFIR mice, it was demonstrated that PDGFRα and to a lesser extent PDGFRβ was important for cell migration and invasion as RNAi knockdown of PDGFRα alone or PDGFRα and PDGFRβ in combination, significantly decreased tumor cell migration in Boyden chamber assays and suppressed cell migration in scratch wound assays. Somewhat surprisingly, concomitant knockdown of PDGFRα and PDGFRβ resulted in a modest increase in cell proliferation and a decrease in apoptosis. Conclusion During IGF-IR independence, PDGFRs are upregulated and function to enhance tumor cell motility. These results demonstrate a novel interaction between the IGF-IR and PDGFRs and highlight an important, therapeutically relevant pathway, for tumor cell migration and invasion.

  18. MspI and SstI RFLPs at the human insulin receptor locus on chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Elbein, S.C.; Sorensen, L. (Univ. of Utah, Salt Lake City (USA))

    1990-01-11

    pINSR HS0.7 is a 700 bp Hind III to Sac I genomic fragment of the human insulin receptor gene which includes all of exon 17, 370 bp of 5{prime} intron, and 78 bp of 3{prime} intron. The fragment is cloned in pUC 19. It has been completely sequenced and a map of the region described. MspI detects an invariant band at 0.8 kb and bands at 0.6 kb (allele 1) or 1.7 kb (allele 2). SstI detects a band at 9.6 kb (allele 1) or 7.0 kb (allele 2). Segregation was confirmed with previously reported INSR RFLPs in 5 large pedigrees, 2 of which has 3 generations. MspI RFLP is useful in many cases were other RFLPs fail to distinguish alleles. The probe is of unique sequence and these RFLPs present no difficulties. Preliminary data suggest low levels of linkage disequilibrium with previously defined RFLPs.

  19. Orthologs of Human Disease Associated Genes and RNAi Analysis of Silencing Insulin Receptor Gene in Bombyx mori

    Directory of Open Access Journals (Sweden)

    Zan Zhang

    2014-10-01

    Full Text Available The silkworm, Bombyx mori L., is an important economic insect that has been domesticated for thousands of years to produce silk. It is our great interest to investigate the possibility of developing the B. mori as human disease model. We searched the orthologs of human disease associated genes in the B. mori by bi-directional best hits of BLAST and confirmed by searching the OrthoDB. In total, 5006 genes corresponding to 1612 kinds of human diseases had orthologs in the B. mori, among which, there are 25 genes associated with diabetes mellitus. Of these, we selected the insulin receptor gene of the B. mori (Bm-INSR to study its expression in different tissues and at different developmental stages and tissues. Quantitative PCR showed that Bm-INSR was highly expressed in the Malpighian tubules but expressed at low levels in the testis. It was highly expressed in the 3rd and 4th instar larvae, and adult. We knocked down Bm-INSR expression using RNA interference. The abundance of Bm-INSR transcripts were dramatically reduced to ~4% of the control level at 6 days after dsRNA injection and the RNAi-treated B. mori individuals showed apparent growth inhibition and malformation such as abnormal body color in black, which is the typical symptom of diabetic patients. Our results demonstrate that B. mori has potential use as an animal model for diabetic mellitus research.

  20. Activation of insulin-like growth factor 1 receptor in patients with non-small cell lung cancer.

    Science.gov (United States)

    Kim, Jin-Soo; Kim, Edward S; Liu, Diane; Lee, J Jack; Behrens, Carmen; Lippman, Scott M; Hong, Waun Ki; Wistuba, Ignacio I; Lee, Euni; Lee, Ho-Young

    2015-06-30

    According to previous reports demonstrating the implication of insulin-like growth factor receptor (IGF-1R) signaling in non-small cell lung cancer (NSCLC), in this study, the potential prognostic values of IGF-1R expression/activation were analyzed. The expression and activation of IGF-1R were evaluated in two tissue microarray (TMA) sets from NSCLC patients (N = 352 for TMA I, and N = 353 for TMA II). Alterations in IGF-1R protein or mRNA expression in NSCLC patients were evaluated using publicly available data from The Cancer Genome Atlas (TCGA). We found that membranous and cytoplasmic IGF-1R expressions were significantly associated with squamous cell carcinoma (SCC) in both of the TMAs. Analysis of the TCGA data revealed increased mRNA levels in NSCLC patients, which was significantly associated with reductions in overall survival (OS) (median survival 26.51 vs. 47.77 months, P = 0.017) and disease-free survival (median survival 17.44 vs. 37.65 months, P = 0.045) only in NSCLC patients with adenocarcinoma (ADC). These data suggest that IGF-1R is activated in patients with NSCLC, particularly those with SCC. IGF-1R mRNA expression is a potential prognostic factor in patients with NSCLC, especially those with ADC. Further studies are warranted to investigate the prognostic value of IGF-1R in NSCLC patients. PMID:25944691

  1. EXPRESSION OF IGFBP-6 IN COLORECTAL CANCER: THE RELATION WITH INSULIN-LIKE GROWTH FACTOR RECEPTOR, ADIPONECTIN LEVEL AND ITS RECEPTORS

    Directory of Open Access Journals (Sweden)

    N. V. Yunusova

    2015-01-01

    Full Text Available The aim of the study was to investigate the expression of insulin-like growth factor binding protein 6 (IGFBP-6 in cancer tissues in relation with clinical and morphological parameters, IGF-IR expression, serum adiponectin level and its receptors (AdipoR1, AdipoR2 in patients with colorectal cancer.Material and Methods. The study included 31 patients with colorectal cancer (T2–4N0–2M0. Serum adiponectin level, AdipoR1 and AdipoR2 expression were evaluated with ELISA. IGF-IR expression was evaluated in tumor tissue by flow cytometry. IGFBP-6 expression was evaluated with Western blotting.Results. The dependence of IGFBP-6 expression, AdipoR1, AdipoR2 on tumor invasion and lymph nodes status were revealed. There is no association IGFBP-6 expression, AdipoR1 and AdipoR2 expression and serum adiponectin level with metabolic syndrome. The revealed positive relationships between IGFBP-6 expression and AdipoR1 expression, between IGFBP-6 expression and AdipoR2 expression, between IGF-IR and AdipoR1 expression show cross-talk between IGF-IR and adiponectin/AdipoR1 pathways in colorectal carcinomas.

  2. Vitamin D receptor gene polymorphisms, dietary promotion of insulin resistance, and colon and rectal cancer.

    OpenAIRE

    Maureen A Murtaugh; Sweeney, Carol; Ma, Khe-Ni; Potter, John D.; Caan, Bette J.; Wolff, Roger K.; Slattery, Martha L.

    2006-01-01

    Biomarkers of individual susceptibility: field studies. Biomarker: vitamin D receptor (VDR) gene polymorphisms Effect studied: colon and rectal cancer risk. Tissue/biological material/sample size: colon, rectum. Method of analysis: genotyping of the VDR gene Study design: case-control studyStudy size: colon cancer (1,698 cases and 1,861 controls); rectal cancer (752 cases and 960 controls) Impact on outcome (including dose-response): The lowest colon cancer risk was observed with the Ff/ff Fo...

  3. Diabetes due to secretion of a structurally abnormal insulin (insulin Wakayama). Clinical and functional characteristics of [LeuA3] insulin.

    OpenAIRE

    Nanjo, K; Sanke, T; Miyano, M; Okai, K.; Sowa, R; Kondo, M.; Nishimura, S; Iwo, K; Miyamura, K; Given, B D

    1986-01-01

    We have identified a non-insulin-dependent diabetic patient with fasting hyperinsulinemia (90 microU/ml), an elevated insulin:C-peptide molar ratio (1.68; normal, 0.05-0.20), normal insulin counterregulatory hormone levels, and an adequate response to exogenously administered insulin. Insulin-binding antibodies were absent from serum, erythrocyte insulin receptor binding was normal, and greater than 90% of circulating immunoreactive insulin coeluted with 125I-labeled insulin on gel filtration...

  4. Insulin analogs and cancer

    Directory of Open Access Journals (Sweden)

    Laura eSciacca

    2012-02-01

    Full Text Available Today, insulin analogs are used in millions of diabetic patients. Insulin analogs have been developed to achieve more physiological insulin replacement in terms of time course of the effect. Modifications in the amino acid sequence of the insulin molecule change the pharmacokinetics and pharmacodynamics of the analogs in respect to human insulin. However, these changes can also modify the molecular and biological effects of the analogs. The rapid-acting insulin analogs, lispro, aspart and glulisine, have a rapid onset and shorter duration of action. The long-acting insulin analogs glargine and detemir have a protracted duration of action and a relatively smooth serum concentration profile. Insulin and its analogs may function as growth factors and therefore have a theoretical potential to promote tumor proliferation. A major question is whether analogs have an increased mitogenic activity in respect to insulin. These ligands can promote cell proliferation through many mechanisms like the prolonged stimulation of the insulin receptor, stimulation of the IGF-1 receptor (IGF-1R, prevalent activation of the ERK rather than the AKT intracellular post-receptor pathways. Studies on in vitro models indicate that short-acting analogs elicit molecular and biological effects that are similar to those of insulin. In contrast, long-acting analogs behave differently. Although not all data are homogeneous, both glargine and detemir have been found to have a decreased binding to IR but an increased binding to IGF-1R, a prevalent activation of the ERK pathway, and an increased mitogenic effect in respect to insulin. Recent retrospective epidemiological clinical studies have suggested that treatment with long-acting analogs (specifically glargine may increase the relative risk for cancer. Results are controversial and methodologically weak. Therefore prospective clinical studies are needed to evaluate the possible tumor growth-promoting effects of these insulin

  5. Effects of a Lactobacillus paracasei B21060 based synbiotic on steatosis, insulin signaling and toll-like receptor expression in rats fed a high-fat diet.

    Science.gov (United States)

    Raso, Giuseppina Mattace; Simeoli, Raffaele; Iacono, Anna; Santoro, Anna; Amero, Paola; Paciello, Orlando; Russo, Roberto; D'Agostino, Giuseppe; Di Costanzo, Margherita; Canani, Roberto Berni; Calignano, Antonio; Meli, Rosaria

    2014-01-01

    Insulin resistance (IR) has been identified as crucial pathophysiological factor in the development and progression of non-alcoholic fatty liver disease (NAFLD). Although mounting evidence suggests that perturbation of gut microflora exacerbates the severity of chronic liver diseases, therapeutic approaches using synbiotic has remained overlooked. Here, we show that a synbiotic composed by Lactobacillus paracasei B21060 plus arabinogalactan and fructo-oligosaccharides lessens NAFLD progression in a rat model of high fat feeding. IR and steatosis were induced by administration of high fat diet (HFD) for 6 weeks. Steatosis and hepatic inflammation, Toll-like receptor (TLR) pattern, glucose tolerance, insulin signaling and gut permeability were studied. Liver inflammatory markers were down-regulated in rats receiving the synbiotic, along with an increased expression of nuclear peroxisome proliferator-activated receptors and expression of downstream target genes. The synbiotic improved many aspects of IR, such as fasting response, hormonal homeostasis and glycemic control. Indeed it prevented the impairment of hepatic insulin signaling, reducing the phosphorylation of insulin receptor substrate-1 in Ser 307 and down-regulating suppressor of cytokine signaling 3. Gene expression analysis revealed that in the liver the synbiotic reduced cytokines synthesis and restored the HFD-dysregulated TLR 2, 4 and 9 mRNAs toward a physiological level of expression. The synbiotic preserved gut barrier integrity and reduced the relative amount of Gram-negative Enterobacteriales and Escherichia coli in colonic mucosa. Overall, our data indicate that the L. paracasei B21060 based synbiotic is effective in reducing the severity of liver injury and IR associated with high fat intake, suggesting its possible therapeutic/preventive clinical utilization. PMID:24314869

  6. Drosophila insulin degrading enzyme and rat skeletal muscle insulin protease cleave insulin at similar sites

    International Nuclear Information System (INIS)

    Insulin degradation is an integral part of the cellular action of insulin. Recent evidence suggests that the enzyme insulin protease is involved in the degradation of insulin in mammalian tissues. Drosophila, which has insulin-like hormones and insulin receptor homologues, also expresses an insulin degrading enzyme with properties that are very similar to those of mammalian insulin protease. In the present study, the insulin cleavage products generated by the Drosophila insulin degrading enzyme were identified and compared with the products generated by the mammalian insulin protease. Both purified enzymes were incubated with porcine insulin specifically labeled with 125I on either the A19 or B26 position, and the degradation products were analyzed by HPLC before and after sulfitolysis. Isolation and sequencing of the cleavage products indicated that both enzymes cleave the A chain of intact insulin at identical sites between residues A13 and A14 and A14 and A15. These results demonstrate that all the insulin cleavage sites generated by the Drosopohila insulin degrading enzyme are shared in common with the mammalian insulin protease. These data support the hypothesis that there is evolutionary conservation of the insulin degrading enzyme and further suggest that this enzyme plays an important role in cellular function

  7. Sustained Brown Fat Stimulation and Insulin Sensitization by a Humanized Bispecific Antibody Agonist for Fibroblast Growth Factor Receptor 1/βKlotho Complex

    Directory of Open Access Journals (Sweden)

    Ganesh Kolumam

    2015-07-01

    Full Text Available Dissipating excess calories as heat through therapeutic stimulation of brown adipose tissues (BAT has been proposed as a potential treatment for obesity-linked disorders. Here, we describe the generation of a humanized effector-less bispecific antibody that activates fibroblast growth factor receptor (FGFR 1/βKlotho complex, a common receptor for FGF21 and FGF19. Using this molecule, we show that antibody-mediated activation of FGFR1/βKlotho complex in mice induces sustained energy expenditure in BAT, browning of white adipose tissue, weight loss, and improvements in obesity-associated metabolic derangements including insulin resistance, hyperglycemia, dyslipidemia and hepatosteatosis. In mice and cynomolgus monkeys, FGFR1/βKlotho activation increased serum high-molecular-weight adiponectin, which appears to contribute over time by enhancing the amplitude of the metabolic benefits. At the same time, insulin sensitization by FGFR1/βKlotho activation occurs even before the onset of weight loss in a manner that is independent of adiponectin. Together, selective activation of FGFR1/βKlotho complex with a long acting therapeutic antibody represents an attractive approach for the treatment of type 2 diabetes and other obesity-linked disorders through enhanced energy expenditure, insulin sensitization and induction of high-molecular-weight adiponectin.

  8. Sustained Brown Fat Stimulation and Insulin Sensitization by a Humanized Bispecific Antibody Agonist for Fibroblast Growth Factor Receptor 1/βKlotho Complex

    Science.gov (United States)

    Kolumam, Ganesh; Chen, Mark Z.; Tong, Raymond; Zavala-Solorio, Jose; Kates, Lance; van Bruggen, Nicholas; Ross, Jed; Wyatt, Shelby K.; Gandham, Vineela D.; Carano, Richard A.D.; Dunshee, Diana Ronai; Wu, Ai-Luen; Haley, Benjamin; Anderson, Keith; Warming, Søren; Rairdan, Xin Y.; Lewin-Koh, Nicholas; Zhang, Yingnan; Gutierrez, Johnny; Baruch, Amos; Gelzleichter, Thomas R.; Stevens, Dale; Rajan, Sharmila; Bainbridge, Travis W.; Vernes, Jean-Michel; Meng, Y. Gloria; Ziai, James; Soriano, Robert H.; Brauer, Matthew J.; Chen, Yongmei; Stawicki, Scott; Kim, Hok Seon; Comps-Agrar, Laëtitia; Luis, Elizabeth; Spiess, Christoph; Wu, Yan; Ernst, James A.; McGuinness, Owen P.; Peterson, Andrew S.; Sonoda, Junichiro

    2015-01-01

    Dissipating excess calories as heat through therapeutic stimulation of brown adipose tissues (BAT) has been proposed as a potential treatment for obesity-linked disorders. Here, we describe the generation of a humanized effector-less bispecific antibody that activates fibroblast growth factor receptor (FGFR) 1/βKlotho complex, a common receptor for FGF21 and FGF19. Using this molecule, we show that antibody-mediated activation of FGFR1/βKlotho complex in mice induces sustained energy expenditure in BAT, browning of white adipose tissue, weight loss, and improvements in obesity-associated metabolic derangements including insulin resistance, hyperglycemia, dyslipidemia and hepatosteatosis. In mice and cynomolgus monkeys, FGFR1/βKlotho activation increased serum high-molecular-weight adiponectin, which appears to contribute over time by enhancing the amplitude of the metabolic benefits. At the same time, insulin sensitization by FGFR1/βKlotho activation occurs even before the onset of weight loss in a manner that is independent of adiponectin. Together, selective activation of FGFR1/βKlotho complex with a long acting therapeutic antibody represents an attractive approach for the treatment of type 2 diabetes and other obesity-linked disorders through enhanced energy expenditure, insulin sensitization and induction of high-molecular-weight adiponectin. PMID:26288846

  9. Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant Drosophila.

    Science.gov (United States)

    Afschar, Sonita; Toivonen, Janne M; Hoffmann, Julia Marianne; Tain, Luke Stephen; Wieser, Daniela; Finlayson, Andrew John; Driege, Yasmine; Alic, Nazif; Emran, Sahar; Stinn, Julia; Froehlich, Jenny; Piper, Matthew D; Partridge, Linda

    2016-02-01

    Lifespan of laboratory animals can be increased by genetic, pharmacological, and dietary interventions. Increased expression of genes involved in xenobiotic metabolism, together with resistance to xenobiotics, are frequent correlates of lifespan extension in the nematode worm Caenorhabditis elegans, the fruit fly Drosophila, and mice. The Green Theory of Aging suggests that this association is causal, with the ability of cells to rid themselves of lipophilic toxins limiting normal lifespan. To test this idea, we experimentally increased resistance of Drosophila to the xenobiotic dichlordiphenyltrichlorethan (DDT), by artificial selection or by transgenic expression of a gene encoding a cytochrome P450. Although both interventions increased DDT resistance, neither increased lifespan. Furthermore, dietary restriction increased lifespan without increasing xenobiotic resistance, confirming that the two traits can be uncoupled. Reduced activity of the insulin/Igf signaling (IIS) pathway increases resistance to xenobiotics and extends lifespan in Drosophila, and can also increase longevity in C. elegans, mice, and possibly humans. We identified a nuclear hormone receptor, DHR96, as an essential mediator of the increased xenobiotic resistance of IIS mutant flies. However, the IIS mutants remained long-lived in the absence of DHR96 and the xenobiotic resistance that it conferred. Thus, in Drosophila IIS mutants, increased xenobiotic resistance and enhanced longevity are not causally connected. The frequent co-occurrence of the two traits may instead have evolved because, in nature, lowered IIS can signal the presence of pathogens. It will be important to determine whether enhanced xenobiotic metabolism is also a correlated, rather than a causal, trait in long-lived mice. PMID:26787908

  10. A Drosophila Model of HPV E6-Induced Malignancy Reveals Essential Roles for Magi and the Insulin Receptor

    Science.gov (United States)

    Padash Barmchi, Mojgan; Gilbert, Mary; Thomas, Miranda; Banks, Lawrence; Zhang, Bing; Auld, Vanessa J.

    2016-01-01

    Cervical cancer is one of the leading causes of cancer death in women worldwide. The causative agents of cervical cancers, high-risk human papillomaviruses (HPVs), cause cancer through the action of two oncoproteins, E6 and E7. The E6 oncoprotein cooperates with an E3 ubiquitin ligase (UBE3A) to target the p53 tumour suppressor and important polarity and junctional PDZ proteins for proteasomal degradation, activities that are believed to contribute towards malignancy. However, the causative link between degradation of PDZ proteins and E6-mediated malignancy is largely unknown. We have developed an in vivo model of HPV E6-mediated cellular transformation using the genetic model organism, Drosophila melanogaster. Co-expression of E6 and human UBE3A in wing and eye epithelia results in severe morphological abnormalities. Furthermore, E6, via its PDZ-binding motif and in cooperation with UBE3A, targets a suite of PDZ proteins that are conserved in human and Drosophila, including Magi, Dlg and Scribble. Similar to human epithelia, Drosophila Magi is a major degradation target. Magi overexpression rescues the cellular abnormalities caused by E6+UBE3A coexpression and this activity of Magi is PDZ domain-dependent. Drosophila p53 was not targeted by E6+UBE3A, and E6+UBE3A activity alone is not sufficient to induce tumorigenesis, which only occurs when E6+UBE3A are expressed in conjunction with activated/oncogenic forms of Ras or Notch. Finally, through a genetic screen we have identified the insulin receptor signaling pathway as being required for E6+UBE3A induced hyperplasia. Our results suggest a highly conserved mechanism of HPV E6 mediated cellular transformation, and establish a powerful genetic model to identify and understand the cellular mechanisms that underlie HPV E6-induced malignancy. PMID:27537218

  11. Insulin Receptor Substrate-1 Activation Mediated p53 Downregulation Protects Against Hypoxic-Ischemia in the Neonatal Brain.

    Science.gov (United States)

    Tu, Yi-Fang; Jiang, Si-Tse; Chow, Yen-Hung; Huang, Chao-Ching; Ho, Chien-Jung; Chou, Ya-Ping

    2016-08-01

    This study determined if dietary restriction (DR) protects against hypoxic-ischemia (HI) in the neonatal brain via insulin receptor substrate-1 (IRS-1)/Akt pathway-mediated downregulation of p53 in the neurovascular unit. On postnatal (P) day 7, HI was induced in rat pups grouped from P1 into normal litter size (NL, 12 pups/dam) and increased litter size (DR, 18 pups/dam). In vivo IRS-1 anti-sense oligonucleotide and IRS-1 overexpressed recombinant adenovirus were given, and neurovascular damage was assessed. In vitro models of oxygen-glucose deprivation (OGD) examined the inhibition and overexpression of IRS-1 on p53 and cell death in neurons and endothelial cells. Compared to NL pups, DR pups had significantly higher IRS-1, p-IRS-1, and pAkt levels, decreased p53, more tight junction proteins, reduced blood-brain barrier (BBB) damage after HI, and less infarct volumes at P21. Immunofluorescence revealed that IRS-1 was upregulated in the endothelial cells and neurons of DR pups. IRS-1 downregulation in DR pups reduced p-Akt, increased p53, worsened BBB damage, and increased brain injury, whereas IRS-1 overexpression in NL pups upregulated p-Akt, decreased p53, attenuated BBB damage, and decreased brain injury. In vitro, IRS-1 downregulation aggravated cell death in neurons and endothelial cells and is associated with decreased p-Akt and increased p53. In contrast, IRS-1 overexpression reduced cell death in endothelial cells with increased p-Akt and decreased p53. In conclusion, DR reduces neurovascular damage after HI in the neonatal brain through an IRS-1/Akt-mediated p53 downregulation, suggesting that IRS-1 signaling is a therapeutic target for hypoxic brain injury in neonates. PMID:26111627

  12. The Role of Type I Insulin Like Growth Factor Receptor (IGF-IR) in Adult and Childhood Acute Lymphoblastic Leukemia

    International Nuclear Information System (INIS)

    Background: Type 1 insulin like growth factor receptor (IGF-IR) is over expressed in many tumors including hematological cancers. It is a critical signaling molecule for tumor cell proliferation and survival. Data suggest that IGF-IR antibodies can effectively and specifically inhibit cancer cell growth in vitro and in vivo. Blockage of IGF-IR expression could be a promising therapeutic approach for the management of cancer patients. Aim of Work: To characterize the expression pattern of IGF-IR gene in malignant lymphoblasts of children and adults suffering from ALL in relation to clinical features at diagnosis. Patients and Methods: The expression of IGF-IR was analyzed in 60 patients with ALL, 30 childhood ALL (16 newly diagnosed and 14 in complete remission) and 30 adulthood ALL (15 newly diagnosed and 15 in complete remission) together with 20 normal age and sex matched healthy controls using a Real-Time Quantitative Reverse- Transcriptase Polymerase Chain Reaction (RTQ-PCR) to assess the possible relation, association or correlation between IGF-IR expression and ALL clinical and laboratory features at diagnosis. Results: IGF-IR was expressed in all 60 patients with ALL; the expression levels of IGF-IR were significantly higher in newly diagnosed patients than in patients in complete remission (CR) and controls (p<0.001). There were no statistically significant differences in the expression of IGF-IR between patients with different clinical and laboratory features. Conclusion: IGF-1R seems to play a crucial role in patients with ALL since it is expressed in all ALL cases (adulthood and childhood). Therefore, new therapeutic agents targeting IGF-1R may provide a better chance for those patients

  13. A Drosophila Model of HPV E6-Induced Malignancy Reveals Essential Roles for Magi and the Insulin Receptor.

    Science.gov (United States)

    Padash Barmchi, Mojgan; Gilbert, Mary; Thomas, Miranda; Banks, Lawrence; Zhang, Bing; Auld, Vanessa J

    2016-08-01

    Cervical cancer is one of the leading causes of cancer death in women worldwide. The causative agents of cervical cancers, high-risk human papillomaviruses (HPVs), cause cancer through the action of two oncoproteins, E6 and E7. The E6 oncoprotein cooperates with an E3 ubiquitin ligase (UBE3A) to target the p53 tumour suppressor and important polarity and junctional PDZ proteins for proteasomal degradation, activities that are believed to contribute towards malignancy. However, the causative link between degradation of PDZ proteins and E6-mediated malignancy is largely unknown. We have developed an in vivo model of HPV E6-mediated cellular transformation using the genetic model organism, Drosophila melanogaster. Co-expression of E6 and human UBE3A in wing and eye epithelia results in severe morphological abnormalities. Furthermore, E6, via its PDZ-binding motif and in cooperation with UBE3A, targets a suite of PDZ proteins that are conserved in human and Drosophila, including Magi, Dlg and Scribble. Similar to human epithelia, Drosophila Magi is a major degradation target. Magi overexpression rescues the cellular abnormalities caused by E6+UBE3A coexpression and this activity of Magi is PDZ domain-dependent. Drosophila p53 was not targeted by E6+UBE3A, and E6+UBE3A activity alone is not sufficient to induce tumorigenesis, which only occurs when E6+UBE3A are expressed in conjunction with activated/oncogenic forms of Ras or Notch. Finally, through a genetic screen we have identified the insulin receptor signaling pathway as being required for E6+UBE3A induced hyperplasia. Our results suggest a highly conserved mechanism of HPV E6 mediated cellular transformation, and establish a powerful genetic model to identify and understand the cellular mechanisms that underlie HPV E6-induced malignancy. PMID:27537218

  14. Co-inhibition of epidermal growth factor receptor and insulin-like growth factor receptor 1 enhances radiosensitivity in human breast cancer cells

    International Nuclear Information System (INIS)

    Over-expression of epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor (IGF-1R) have been shown to closely correlate with radioresistance of breast cancer cells. This study aimed to investigate the impact of co-inhibition of EGFR and IGF-1R on the radiosensitivity of two breast cancer cells with different profiles of EGFR and IGF-1R expression. The MCF-7 (EGFR +/−, IGF-1R +++) and MDA-MB-468 (EGFR +++, IGF-1R +++) breast cancer cell lines were used. Radiosensitizing effects were determined by colony formation assay. Apoptosis and cell cycle distribution were measured by flow cytometry. Phospho-Akt and phospho-Erk1/2 were quantified by western blot. In vivo studies were conducted using MDA-MB-468 cells xenografted in nu/nu mice. In MDA-MB-468 cells, the inhibition of IGF-1R upregulated the p-EGFR expression. Either EGFR (AG1478) or IGF-1R inhibitor (AG1024) radiosensitized MDA-MB-468 cells. In MCF-7 cells, radiosensitivity was enhanced by AG1024, but not by AG1478. Synergistical radiosensitizing effect was observed by co-inhibition of EGFR and IGF-1R only in MDA-MB-468 cells with a DMF10% of 1.90. The co-inhibition plus irradiation significantly induced more apoptosis and arrested the cells at G0/G1 phase in MDA-MB-468 cells. Only co-inhibition of EGFR and IGF-1R synergistically diminished the expression of p-Akt and p-Erk1/2 in MDA-MB-468 cells. In vivo studies further verified the radiosensitizing effects by co-inhibition of both pathways in a MDA-MB-468 xenograft model. Our data suggested that co-inhibition of EGFR and IGF-1R synergistically radiosensitized breast cancer cells with both EGFR and IGF-1R high expression. The approach may have an important therapeutic implication in the treatment of breast cancer patients with high expression of EGFR and IGF-1R

  15. Peroxisome proliferator-activated receptor gamma agonism reduces the insulin-stimulated increase in circulating interleukin-6 in growth hormone (GH) replaced GH-deficient adults

    DEFF Research Database (Denmark)

    Krag, Morten B; Rasmussen, Lars M; Hansen, Troels K;

    2008-01-01

    SUMMARY Context: Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists modify cardiovascular risk factors and inflammatory markers in patients with type 2 diabetes. Growth hormone (GH) treatment in GH-deficient (GHD) patients may cause insulin resistance and exerts ambiguous effects...... on inflammatory markers. Objective: To investigate circulating markers of inflammation and endothelial function in GH replaced GHD patients before and after 12 weeks administration of either pioglitazone 30 mg/day (N=10) or placebo (N=10) in a randomized double-blind parallel design. Methods...... significantly abrogated this insulin-stimulated increment in IL-6 levels compared to placebo (P = 0.01). Furthermore PPARgamma agonist treatment significantly lowered basal IL-4 levels (P<0.05). Conclusions: 1) IL-6 levels increase during a hyperinsulinemic clamp in GH replaced patients, 2) This increase in IL...

  16. Sex-specific effects of naturally occurring variants in the dopamine receptor D2 locus on insulin secretion and Type 2 diabetes susceptibility

    DEFF Research Database (Denmark)

    Guigas, B; de Leeuw van Weenen, J E; van Leeuwen, N;

    2014-01-01

    functional variants in the coding region of the DRD2/ANKK1 locus (rs1079597, rs6275, rs6277, rs1800497) were genotyped and analysed for Type 2 diabetes susceptibility in up to 25 000 people (8148 with Type 2 diabetes and 17687 control subjects) from two large independent Dutch cohorts and one Danish cohort......AIMS: Modulation of dopamine receptor D2 (DRD2) activity affects insulin secretion in both rodents and isolated pancreatic β-cells. We hypothesized that single nucleotide polymorphisms in the DRD2/ANKK1 locus may affect susceptibility to Type 2 diabetes in humans. METHODS: Four potentially....... In addition, 340 Dutch subjects underwent a 2-h hyperglycaemic clamp to investigate insulin secretion. Since sexual dimorphic associations related to DRD2 polymorphisms have been previously reported, we also performed a gender-stratified analysis. RESULTS: rs1800497 at the DRD2/ANKK1 locus was...

  17. Studies of relationships between variation of the human G protein-coupled receptor 40 Gene and Type 2 diabetes and insulin release

    DEFF Research Database (Denmark)

    Hamid, Y H; Vissing, H; Holst, B;

    2005-01-01

    AIMS: Recently, a novel human G protein-coupled receptor 40 (GPR40), which is predominantly expressed in pancreatic islets, was shown to mediate an amplifying effect of long-chain fatty acids on glucose-induced insulin secretion. The present aim was to examine the coding region of GPR40 for...... variation and to assess whether identified variants confer an increased risk of Type 2 diabetes or altered insulin release. METHODS: Mutation analysis was performed in 43 patients with Type 2 diabetes, 18 normal glucose-tolerant subjects, and 3 maturity-onset of diabetes in the young (MODY) X patients using...... direct sequencing. Genotyping was performed using polymerase chain reaction (PCR)-generated primer extension products analysis by high throughput chip-based mass spectrometry (MALDI-TOF). The potential impact of GPR40 mutations on [(3)H]-myo-inositol turnover was estimated in COS-7 cells after...

  18. Relationship between insulin resistance and erythrocyte insulin receptors in patients with cerebral infarction%脑梗死患者体内胰岛素抵抗和红细胞胰岛素受体的关系

    Institute of Scientific and Technical Information of China (English)

    于明; 陈罕; 赵晴; 邬英全

    2005-01-01

    死患者体内存在着胰岛素抵抗;胰岛素受体数目减少在胰岛素抵抗引发的脑梗死中起着重要作用.%BACKGROUND: Epidemiologic studies have shown an association between higher insulin levels and coronary artery disease, and metabolic studies have associated insulin resistance and compensatory hyperinsulinemia with non-insulin-dependent diabetes mellitus, hypertension, obesity,and lipid disorders.OBJECTIVE: To investigate the relationship between insulin resistance (IR) and erythrocyte insulin receptors (EIRs) in the patients with cerebral infarction (CI).DESIGN: Case-control trial.SETTING: Department of Neurology, China-Japan Union Hospital of Jilin University.PARTICIPANTS: From January 2004 to October 2004, 40 patients with CI, who were in-patients in China-Japan Union Hospital of Jilin University,were selected for the study. Meanwhile, 30 healthy doctors or nurses were recruited as normal controls.METHODS: The levels of blood glucose and serum insulin under fasting and 2-hour after oral glucose tolerance test (OGTT) were detected in the 40 patients with CI and 30 healthy doctors or nurses. Fasting blood glucose multiplied by fasting serum insulin was insulin resistance index (IRI). The number of insulin receptors and their binding affinity on every erythrocyte were determined using modified Gambhir's method. The correlation between the number of EIRs and IRI was analyzed.MAIN OUTCOME MEASURES: Comparison of CI group with controlRESULTS: Data of 40 patients with CI and 30 controls were analyzed, and under fasting and 2-hour after OGTT: The level of serum insulin under fasting and blood glucose, serum insulin at 2-hour after OGTT in CI group were higher than those in normal group [(13.30±5.15), (9.85±4.36) mU/L,(8.27±1.65), (6.32±1.37) mmol/L, (75.21±21.12), (28.26±6.31)mU/L,P < 0.01,EIRs: The number of insulin receptors with high and low affinity and maximum specific binding rate in the patients with CI were significantly less than those in normal group [20

  19. The Role of Insulin, Insulin Growth Factor, and Insulin-Degrading Enzyme in Brain Aging and Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Claude Messier

    2005-01-01

    Full Text Available Most brain insulin comes from the pancreas and is taken up by the brain by what appears to be a receptor-based carrier. Type 2 diabetes animal models associated with insulin resistance show reduced insulin brain uptake and content. Recent data point to changes in the insulin receptor cascade in obesity-related insulin resistance, suggesting that brain insulin receptors also become less sensitive to insulin, which could reduce synaptic plasticity. Insulin transport to the brain is reduced in aging and in some animal models of type 2 diabetes; brain insulin resistance may be present as well. Studies examining the effect of the hyperinsulinic clamp or intranasal insulin on cognitive function have found a small but consistent improvement in memory and changes in brain neuroelectric parameters in evoked brain potentials consistent with improved attention or memory processing. These effects appear to be due to raised brain insulin levels. Peripheral levels of Insulin Growth Factor-I (IGF-I are associated with glucose regulation and influence glucose disposal. There is some indication that reduced sensitivity to insulin or IGF-I in the brain, as observed in aging, obesity, and diabetes, decreases the clearance of Aβ amyloid. Such a decrease involves the insulin receptor cascade and can also increase amyloid toxicity. Insulin and IGF-I may modulate brain levels of insulin degrading enzyme, which would also lead to an accumulation of Aβ amyloid.

  20. Insulin Secretagogues

    Science.gov (United States)

    ... Your Body in Balance › Insulin Secretagogues Fact Sheet Insulin Secretagogues March, 2012 Download PDFs English Espanol Editors ... medicines can help you stay healthy. What are insulin secretagogues? Insulin secretagogues (pronounced seh-KREET-ah-gogs) ...

  1. Virtual Screening of Specific Insulin-Like Growth Factor 1 Receptor (IGF1R Inhibitors from the National Cancer Institute (NCI Molecular Database

    Directory of Open Access Journals (Sweden)

    Yu-Xin Li

    2012-12-01

    Full Text Available Insulin-like growth factor 1 receptor (IGF1R is an attractive drug target for cancer therapy and research on IGF1R inhibitors has had success in clinical trials. A particular challenge in the development of specific IGF1R inhibitors is interference from insulin receptor (IR, which has a nearly identical sequence. A few potent inhibitors that are selective for IGF1R have been discovered experimentally with the aid of computational methods. However, studies on the rapid identification of IGF1R-selective inhibitors using virtual screening and confidence-level inspections of ligands that show different interactions with IGF1R and IR in docking analysis are rare. In this study, we established virtual screening and binding-mode prediction workflows based on benchmark results of IGF1R and several kinase receptors with IGF1R-like structures. We used comprehensive analysis of the known complexes of IGF1R and IR with their binding ligands to screen specific IGF1R inhibitors. Using these workflows, 17 of 139,735 compounds in the NCI (National Cancer Institute database were identified as potential specific inhibitors of IGF1R. Calculations of the potential of mean force (PMF with GROMACS were further conducted for three of the identified compounds to assess their binding affinity differences towards IGF1R and IR.

  2. Insulin-like Growth Factor Receptor 1 mRNA Expression as a Prognostic Marker in Advanced Non-small Cell Lung Cancer

    DEFF Research Database (Denmark)

    Vilmar, Adam; Santoni-Rugiu, Eric; Cillas, Jesus Garcia-Fon;

    2014-01-01

    BACKGROUND: The insulin-like growth factor 1 receptor (IGF1R) has yet to be established as a biomarker in non-small cell lung cancer (NSCLC) but could prove useful in customized chemotherapy. We explored its prognostic value using both quantitative real-time reverse transcriptase polymerase chain......-points. RESULTS: Surgical tissue samples were available from 33 patients deemed inoperable. IGF1R status varied according to histopathology. Patients with tumors positive for IGF1R mRNA expression had a shorter progression-free and overall survival when compared to the negative sub-group (6.1 vs. 7.4 months, p=0...

  3. Efficacy of anti-insulin like growth factor I receptor (IGF-IR) monoclonal antibody cixutumumab in mesothelioma is highly correlated with IGF-IR sites/cell

    OpenAIRE

    Kalra, Neetu; Zhang, Jingli; Yu, Yunkai; Ho, Mitchell; Merino, Maria; Cao, Liang; Hassan, Raffit

    2012-01-01

    Insulin growth factor-I receptor (IGF-IR) is expressed in mesothelioma and therefore an attractive target for therapy. The anti-tumor activity of cixutumumab, a humanized monoclonal antibody to IGF-IR, in mesothelioma and relationship to IGF-IR expression was investigated using eight early passage tumor cells obtained from patients, nine established cell lines and an in vivo human mesothelioma tumor xenograft model. Although IGF-IR expression at the mRNA and protein level was present in all m...

  4. Impact Study: MK-0646 (Dalotuzumab), Insulin Growth Factor 1 Receptor Antibody Combined with Pemetrexed and Cisplatin in Stage IV Metastatic Non-squamous Lung Cancer

    OpenAIRE

    Huang, Chao H.; Williamson, Stephen K.; Neupane, Prakash; Taylor, Sarah A.; Allen, Ace; Smart, Nora J.; Uypeckcuat, Adelina M.; Spencer, Sarah; Wick, Jo; Smith, Holly; Van Veldhuizen, Peter J.; Kelly, Karen

    2016-01-01

    Background Insulin-like growth factor 1 receptor (IGF-1R) regulates cell growth, proliferation, and apoptosis. Adenocarcinoma and never-smokers have a higher expression of IGF-1R, which is associated with worse overall survival. Dalotuzumab-MK0646 (D) is a humanized monoclonal antibody that targets IGF-1R. Pemetrexed (P) has higher activity in non-squamous lung cancer (NSQL). We initiated a randomized phase II trial to test the combination of P and Cisplatin (C) ± D in NSQL. Methods ...

  5. Pituitary and hypothalamic insulin-like growth factor-I (IGF-I) and IGF-I receptor expression in food-deprived rats.

    Science.gov (United States)

    Olchovsky, D; Song, J; Gelato, M C; Sherwood, J; Spatola, E; Bruno, J F; Berelowitz, M

    1993-06-01

    The present study was designed to evaluate a possible role for the insulin-like growth factor-I (IGF-I) system in mediating the suppression of growth hormone (GH) secretion observed in food-deprived rats by measuring IGF-I mRNA, receptor concentration and receptor mRNA in neuroendocrine tissues (hypothalamus and pituitary). Rats were deprived of food (food-deprived) for 72 h or had free access to food (fed). Tissues were processed for measurement of steady-state levels of: (a) IGF-I and IGF-I receptor mRNA (by solution hybridization/RNase protection assay); (b) IGF-I in serum and tissue extracts (by RIA) and (c) IGF-I displaceable [125I]IGF-I binding to plasma membrane preparations. Food deprivation resulted in decreased serum and liver levels of IGF-I. Kidney IGF-I mRNA levels were reduced 80% in food-deprived rats with a concomitant increase in IGF-I receptor concentration and mRNA levels. Refeeding of food-deprived rats fully normalized these perturbations. Pituitary IGF-I content was reduced 50% in food-deprived rats while IGF-I mRNA levels were unaffected. A modest increase was seen in pituitary IGF-I receptor concentration; however, IGF-I receptor mRNA levels were not changed. Hypothalamic IGF-I mRNA content was reduced in 72 h food-deprived rats while IGF-I receptor binding capacity and mRNA were unaffected. In conclusion, IGF-I mRNA levels are decreased in liver, kidney and hypothalamus together with a reduction in plasma IGF-I in food-deprived rats but is unaffected in anterior pituitary. IGF-I receptor gene expression and binding capacity are coordinately regulated in kidney and hypothalamus, but not in the pituitary.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8349028

  6. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis.

    Directory of Open Access Journals (Sweden)

    Mian-Bo Huang

    Full Text Available BACKGROUND: The insulin-like growth factor (IGF signaling pathway has long been established as playing critical roles in skeletal muscle development. However, the underlying regulatory mechanism is poorly understood. Recently, a large family of small RNAs, named microRNAs (miRNAs, has been identified as key regulators for many developmental processes. Because miRNAs participate in the regulation of various signaling pathways, we hypothesized that miRNAs may be involved in the regulation of IGF signaling in skeletal myogenesis. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we determined that the cell-surface receptor IGF-1R is directly regulated by a muscle-specific miRNA, microRNA-133 (miR-133. A conserved and functional binding site for miR-133 was identified in the 3'untranslated region (3'UTR of IGF-1R. During differentiation of C2C12 myoblasts, IGF-1R protein, but not messenger RNA (mRNA expression, was gradually reduced, concurrent with the upregulation of miR-133. Overexpression of miR-133 in C2C12 cells significantly suppressed IGF-1R expression at the posttranscriptional level. We also demonstrated that both overexpression of miR-133 and knockdown of IGF-1R downregulated the phosphorylation of Akt, the central mediator of the PI3K/Akt signaling pathway. Furthermore, upregulation of miR-133 during C2C12 differentiation was significantly accelerated by the addition of IGF-1. Mechanistically, we found that the expression of myogenin, a myogenic transcription factor reported to transactivate miR-133, was increased by IGF-1 stimulation. CONCLUSION/SIGNIFICANCE: Our results elucidate a negative feedback circuit in which IGF-1-stimulated miR-133 in turn represses IGF-1R expression to modulate the IGF-1R signaling pathway during skeletal myogenesis. These findings also suggest that miR-133 may be a potential therapeutic target in muscle diseases.

  7. Soluble and cell-associated insulin receptor dysfunction correlates with severity of HAND in HIV-infected women.

    Directory of Open Access Journals (Sweden)

    Yamil Gerena

    Full Text Available Blood sugar metabolism abnormalities have been identified in HIV-infected individuals and associated with HIV-associated neurocognitive disorders (HAND. These abnormalities may occur as a result of chronic HIV infection, long-term use of combined antiretroviral treatment (CART, aging, genetic predisposition, or a combination of these factors, and may increase morbidity and mortality in this population.To determine if changes in soluble and cell-associated insulin receptor (IR levels, IR substrate-1 (IRS-1 levels, and IRS-1 tyrosine phosphorylation are associated with the presence and severity of HAND in a cohort of HIV-seropositive women.This is a retrospective cross-sectional study using patient database information and stored samples from 34 HIV-seropositive women and 10 controls without history of diabetes from the Hispanic-Latino Longitudinal Cohort of Women. Soluble IR subunits [sIR, ectodomain (α and full-length or intact (αβ] were assayed in plasma and CSF samples by ELISA. Membrane IR levels, IRS-1 levels, and IRS-1 tyrosine phosphorylation were analyzed in CSF white cell pellets (WCP using flow cytometry. HIV-seropositive women had significantly increased levels of intact or full-length sIR in plasma (p<0.001 and CSF (p<0.005 relative to controls. Stratified by HAND, increased levels of full-length sIR in plasma were associated with the presence (p<0.001 and severity (p<0.005 of HAND. A significant decrease in IRS-1 tyrosine-phosphorylation in the WCP was also associated with the presence (p<0.02 and severity (p<0.02 of HAND.This study provides evidence that IR secretion is increased in HIV-seropositive women, and increased IR secretion is associated with cognitive impairment in these women. Thus, IR dysfunction may have a role in the progression of HAND and could represent a biomarker for the presence and severity of HAND.

  8. RELAXIN enhances differentiation and matrix mineralization through Relaxin/insulin-like family peptide receptor 2 (Rxfp2) in MC3T3-E1 cells in vitro.

    Science.gov (United States)

    Duarte, Carolina; Kobayashi, Yukiho; Kawamoto, Tatsuo; Moriyama, Keiji

    2014-08-01

    RELAXIN (RLN) is a polypeptide hormone of the insulin-like hormone family; it facilitates birth by softening and widening the pubic symphysis and cervix in many mammals, including humans. The role of RLN in bone metabolism was recently suggested by its ability to induce osteoclastogenesis and activate osteoclast function. RLN binds to RELAXIN/INSULIN-LIKE FAMILY PEPTIDE 1 (RXFP1) and 2 (RXFP2), with varying species-specific affinities. Young men with mutated RXFP2 are at high risk for osteoporosis, as RXFP2 influences osteoblast metabolism by binding to INSULIN-LIKE PEPTIDE 3 (INSL3). However, there have been no reports on RLN function in osteoblast differentiation and mineralization or on the functionally dominant receptors for RLN in osteoblasts. We previously described Rxfp1 and 2 expression patterns in developing mouse oral components, including the maxillary and mandibular bones, Meckel's cartilage, tongue, and tooth primordia. We hypothesized that Rln/Rxfp signaling is a key mediator of skeletal development and metabolism. Here, we present the gene expression patterns of Rxfp1 and 2 in developing mouse calvarial frontal bones as determined by in situ hybridization. In addition, RLN enhanced osteoblastic differentiation and caused abnormal mineralization and extracellular matrix metabolism through Rxfp2, which was predominant over Rxfp1 in MC3T3-E1 mouse calvarial osteoblasts. Our data suggest a novel role for Rln in craniofacial skeletal development and metabolism through Rxfp2. PMID:24857857

  9. Exercise-like effects by Estrogen-related receptor-gamma in muscle do not prevent insulin resistance in db/db mice.

    Science.gov (United States)

    Badin, Pierre-Marie; Vila, Isabelle K; Sopariwala, Danesh H; Yadav, Vikas; Lorca, Sabina; Louche, Katie; Kim, Eun Ran; Tong, Qingchun; Song, Min Sup; Moro, Cedric; Narkar, Vihang A

    2016-01-01

    Dissecting exercise-mimicking pathways that can replicate the benefits of exercise in obesity and diabetes may lead to promising treatments for metabolic disorders. Muscle estrogen-related receptor gamma (ERRγ) is induced by exercise, and when over-expressed in the skeletal muscle mimics exercise by stimulating glycolytic-to-oxidative myofiber switch, mitochondrial biogenesis and angiogenesis in lean mice. The objective of this study was to test whether muscle ERRγ in obese mice mitigates weight gain and insulin resistance. To do so, ERRγ was selectively over-expressed in the skeletal muscle of obese and diabetic db/db mice. Muscle ERRγ over-expression successfully triggered glycolytic-to-oxidative myofiber switch, increased functional mitochondrial content and boosted vascular supply in the db/db mice. Despite aerobic remodeling, ERRγ surprisingly failed to improve whole-body energy expenditure, block muscle accumulation of triglycerides, toxic diacylglycerols (DAG) and ceramides or suppress muscle PKCε sarcolemmal translocation in db/db mice. Consequently, muscle ERRγ did not mitigate impaired muscle insulin signaling or insulin resistance in these mice. In conclusion, obesity and diabetes in db/db mice are not amenable to selective ERRγ-directed programming of classic exercise-like effects in the skeletal muscle. Other biochemical pathways or integrated whole-body effects of exercise may be critical for resisting diabetes and obesity. PMID:27220353

  10. Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression

    Directory of Open Access Journals (Sweden)

    Brandon H. Cline

    2015-02-01

    Full Text Available Central insulin receptor-mediated signalling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response and neuropsychiatric disorders including depression. Dicholine succinate (DS, a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naïve DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviours and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive form of GSK3 beta that was lowered by forced swimming in pharmacologically naïve animals. Thus, DS can ameliorate behavioural and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signalling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies.

  11. Nine-month follow-up of the insulin receptor signalling cascade in the brain of streptozotocin rat model of sporadic Alzheimer's disease.

    Science.gov (United States)

    Barilar, J Osmanovic; Knezovic, A; Grünblatt, E; Riederer, P; Salkovic-Petrisic, M

    2015-04-01

    Sporadic Alzheimer disease (sAD) is associated with impairment of insulin receptor (IR) signalling in the brain. Rats used to model sAD develop insulin-resistant brain state following intracerebroventricular treatment with a betacytotoxic drug streptozotocin (STZ-icv). Brain IR signalling has been explored usually at only one time point in periods ≤3 months after the STZ-icv administration. We have investigated insulin signalling in the rat hippocampus at five time points in periods ≤9 months after STZ-icv treatment. Male Wistar rats were given vehicle (control)- or STZ (3 mg/kg)-icv injection and killed 0.5, 1, 3, 6 and 9 months afterwards. Insulin-1 (Ins-1), IR, phospho- and total (p/t)-glycogen synthase kinase 3-β (GSK-3β), p/t-tau and insulin degrading enzyme (IDE) mRNA and/or protein were measured. Acute upregulation of tau and IR mRNA (p < 0.05) was followed by a pronounced downregulation of Ins-1, IR and IDE mRNA (p < 0.05) in the course of time. Acute decrement in p/t-tau and p/t-GSK-3β ratios (p < 0.05) was followed by increment in both ratios (3-6 months, p < 0.05) after which p/t-tau ratio demonstrated a steep rise and p/t-GSK-3β ratio a steep fall up to 9 months (p < 0.05). Acute decline in IDE and IR expression (p < 0.05) was followed by a slow progression of the former and a slow recovery of the latter in 3-9 months. Results indicate a biphasic pattern in time dependency of onset and progression of changes in brain insulin signalling of STZ-icv model (partly reversible acute toxicity and chronic AD-like changes) which should be considered when using this model as a tool in translational sAD research. PMID:25503661

  12. Insulin-like growth factors (IGFs) stimulate the release of alpha 1-antichymotrypsin and soluble IGF-II/mannose 6-phosphate receptor from MCF7 breast cancer cells.

    Science.gov (United States)

    Confort, C; Rochefort, H; Vignon, F

    1995-09-01

    The growth of hormone-responsive MCF7 human breast cancer cells is controlled by steroid hormones and growth factors. By metabolic labeling of cells grown in steroid- and growth factor-stripped serum conditions, we show that insulin-like growth factors (IGF-I and IGF-II) increase by approximately 5-fold the release of several proteins including cathepsin D, alpha 1-antichymotrypsin, and soluble forms of the multifunctional IGF-II/mannose 6-phosphate (M6P) receptor. Two soluble forms of IGF-II/M6P receptors were detected, one major (approximately 260 kilodaltons) and one minor (approximately 85 kilodaltons) that probably represents a proteolytic fragment of the larger soluble molecule. IGFs increased receptor release in a dose-dependent fashion with 50-60% of newly synthesized receptor released at 5-10 nM IGFs. The release of IGF-II/M6P receptors correlated with the levels of secreted cathepsin D in different human breast cancer cells or in rats stable transfectants that are constitutively expressing variable levels of human cathepsin D. IGFs had a stronger effect on IGF-II/M6P receptor release, whereas estradiol treatment preferentially enhanced the release of protease and antiprotease. We thus demonstrate that in human breast cancer cells, IGFs not only act as strong mitogens but also regulate release of alpha 1-antichymotrypsin, IGF-II/M6P-soluble receptor, and cathepsin D; three proteins that potentially regulate cell proliferation and/or invasion. PMID:7649082

  13. Molecular Characterisation of Long-Acting Insulin Analogues in Comparison with Human Insulin, IGF-1 and Insulin X10

    OpenAIRE

    Bo F Hansen; Glendorf, Tine; Hegelund, Anne C.; Lundby, Anders; Lützen, Anne; Slaaby, Rita; Stidsen, Carsten Enggaard

    2012-01-01

    Aims/Hypothesis There is controversy with respect to molecular characteristics of insulin analogues. We report a series of experiments forming a comprehensive characterisation of the long acting insulin analogues, glargine and detemir, in comparison with human insulin, IGF-1, and the super-mitogenic insulin, X10. Methods We measured binding of ligands to membrane-bound and solubilised receptors, receptor activation and mitogenicity in a number of cell types. Results Detemir and glargine each ...

  14. Molecular Mechanism of Insulin Resistance in Obesity and Type 2 Diabetes

    OpenAIRE

    Choi, Kangduk; Kim, Young-Bum

    2010-01-01

    Insulin resistance is a major risk factor for developing type 2 diabetes caused by the inability of insulin-target tissues to respond properly to insulin, and contributes to the morbidity of obesity. Insulin action involves a series of signaling cascades initiated by insulin binding to its receptor, eliciting receptor autophosphorylation and activation of the receptor tyrosine kinase, resulting in tyrosine phosphorylation of insulin receptor substrates (IRSs). Phosphorylation of IRSs leads to...

  15. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    Science.gov (United States)

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. PMID:23747407

  16. Glycemic Control and Chronic Dosing of Rhesus Monkeys with a Fusion Protein of Iduronidase and a Monoclonal Antibody Against the Human Insulin Receptor

    Science.gov (United States)

    Boado, Ruben J.; Hui, Eric Ka-Wai; Lu, Jeff Zhiqiang

    2012-01-01

    Hurler's syndrome, or mucopolysaccharidosis type I, is a lysosomal storage disorder caused by mutations in the gene encoding the lysosomal enzyme iduronidase (IDUA). The disease affects both peripheral tissues and the central nervous system (CNS). Recombinant IDUA treatment does not affect the CNS, because IDUA does not cross the blood-brain barrier (BBB). To enable BBB penetration, human IDUA was re-engineered as an IgG-IDUA fusion protein, where the IgG domain is a genetically engineered monoclonal antibody (MAb) against the human insulin receptor (HIR). The HIRMAb penetrates the brain from the blood via transport on the endogenous BBB insulin receptor and acts as a molecular Trojan horse to deliver the fused IDUA to the brain. Before human testing, the HIRMAb-IDUA fusion protein was evaluated in a 6-month weekly dosing toxicology study at doses of 0, 3, 9, and 30 mg/kg/week of the fusion protein administered to 40 rhesus monkeys. The focus of the present study is the effect of chronic high dose administration of this fusion protein on plasma glucose and long-term glycemic control. The results show that the HIRMAb has weak insulin agonist activity and causes hypoglycemia at the high dose, 30 mg/kg, after intravenous infusion in normal saline. When dextrose is added to the saline infusion solution, no hypoglycemia is observed at any dose. An intravenous glucose tolerance test performed at the end of the 6 months of chronic treatment showed no change in glucose tolerance at any dose of the HIRMAb-IDUA fusion protein. PMID:22822036

  17. Heteronuclear 2D NMR studies on an engineered insulin monomer: Assignments and characterization of the receptor-binding surface by selective 2H and 13C labeling with application to protein design

    International Nuclear Information System (INIS)

    Insulin provides an important model for the application of genetic engineering to rational protein design and has been well characterized in the crystal state. However, self-association of insulin in solution has precluded complementary 2D NMR study under physiological conditions. The authors demonstrate here that such limitations may be circumvented by the use of a monomeric analogue that contains three amino acid substitutions on the protein surface (HisB10 → Asp, ProB28 → Lys, and LysB29 → Pro); this analogue (designated DKP-insulin) retains native receptor-binding potency. Comparative 1H NMR studies of native human insulin and a series of three related analogues-(i) the singly substituted analogue [HisB10→Asp], (ii) the doubly substituted analogue [ProB28→Lys; LysB29→Pro], and (iii) DKP-insulin-demonstrate progressive reduction in concentration-dependent line-broadening in accord with the results of analytical ultracentrifugation. Extensive nonlocal interactions are observed in the NOESY spectrum of DKP-insulin, indicating that this analogue adopts a compact and stably folded structure as a monomer in overall accord with crystal models. Site-specific 2H and 13C isotopic labels are introduced by semisynthesis as probes for the structure and dynamics of the receptor-binding surface. These studies confirm and extend under physiological conditions the results of a previous 2D NMR analysis of native insulin in 20% acetic acid. Implications for the role of protein flexibility in receptor recognition are discussed with application to the design of novel insulin analogues

  18. Mathematical modeling and analysis of insulin clearance in vivo

    OpenAIRE

    Koschorreck, Markus; Gilles, Ernst Dieter

    2008-01-01

    Background Analyzing the dynamics of insulin concentration in the blood is necessary for a comprehensive understanding of the effects of insulin in vivo. Insulin removal from the blood has been addressed in many studies. The results are highly variable with respect to insulin clearance and the relative contributions of hepatic and renal insulin degradation. Results We present a dynamic mathematical model of insulin concentration in the blood and of insulin receptor activation in hepatocytes. ...

  19. Mathematical modeling and analysis of insulin clearance in vivo

    OpenAIRE

    Koschorreck, M.; Gilles, E. D.

    2008-01-01

    Background: Analyzing the dynamics of insulin concentration in the blood is necessary for a comprehensive understanding of the effects of insulin in vivo. Insulin removal from the blood has been addressed in many studies. The results are highly variable with respect to insulin clearance and the relative contributions of hepatic and renal insulin degradation. Results: We present a dynamic mathematical model of insulin concentration in the blood and of insulin receptor acti...

  20. Mathematical modeling and analysis of insulin clearance in vivo

    OpenAIRE

    Koschorreck, M.; Gilles, E.

    2008-01-01

    Background: Analyzing the dynamics of insulin concentration in the blood is necessary for a comprehensive understanding of the effects of insulin in vivo. Insulin removal from the blood has been addressed in many studies. The results are highly variable with respect to insulin clearance and the relative contributions of hepatic and renal insulin degradation. Results: We present a dynamic mathematical model of insulin concentration in the blood and of insulin receptor activation in hepatocytes...

  1. Differences in organizational structure of insulin receptor on rat adipocyte and liver plasma membranes: role of disulfide bonds.

    OpenAIRE

    Schweitzer, J B; Smith, R M; Jarett, L

    1980-01-01

    Binding of 125I-labeled insulin to rat liver and adipocyte plasma membranes has been investigated after treatment of the membranes with agents that modify disulfide bonds or sulfhydryl groups. Dithiothreitol, a disulfide-reducing agent, produced a bimodal response in adipocyte plasma membranes with dose-dependent increases in binding occurring over the range of 0-1 mM dithiothreitol; 5 mM dithiothreitol produced decreased binding. Insulin binding reached its maximal increase at 1 mM and was 3...

  2. Insulin gene mutations and diabetes

    OpenAIRE

    Nishi, Masahiro; Nanjo, Kishio

    2011-01-01

    Abstract Some mutations of the insulin gene cause hyperinsulinemia or hyperproinsulinemia. Replacement of biologically important amino acid leads to defective receptor binding, longer half‐life and hyperinsulinemia. Three mutant insulins have been identified: (i) insulin Chicago (F49L or PheB25Leu); (ii) insulin Los Angeles (F48S or PheB24Ser); (iii) and insulin Wakayama (V92L or ValA3Leu). Replacement of amino acid is necessary for proinsulin processing results in hyperproinsulinemia. Four t...

  3. Long-Term Over-Expression of Neuropeptide Y in Hypothalamic Paraventricular Nucleus Contributes to Adipose Tissue Insulin Resistance Partly via the Y5 Receptor.

    Directory of Open Access Journals (Sweden)

    Min Long

    Full Text Available Intracerebroventricular injection and overexpression of Neuropeptide Y (NPY in the paraventricular nucleus (PVN has been shown to induce obesity and glucose metabolism disorder in rodents; however, the underlying mechanisms are still unclear. The aim of this study was to investigate the mechanism contributing to glucose metabolic disturbance induced by NPY. Recombinant lentiviral NPY vectors were injected into the PVN of rats fed a high fat (HFD or low-fat diet. 8 weeks later, in vivo intravenous glucose tolerance tests and euglycemic-hyperinsulinemic clamp revealed that insulin resistance of adipose tissue were induced by NPY overexpression with or without HFD. NPY increased food intake, but did not change blood glucose, glycated hemoglobin A1c (HbA1c or lipid levels. However, NPY decreased the expression of pGSK3β, PI3K p85 and pAKTSer473 in adipose tissue of rats. In vitro, 3T3-L1 adipocytes were treated with NPY, NPY Y1 and Y5 receptor antagonists. Glucose consumption and 2-deoxy-D-[3H] glucose uptake were partly inhibited by NPY, while a decrease in PI3K-AKT pathway signaling and a decreased expression of pGSK3α and pGSK3β were observed. Nevertheless, a Y5 receptor antagonist (L-152,804 reversed the effects of NPY on glucose uptake and consumption. These data suggest that long-term over-expression of NPY in PVN contributes to the establishment of adipose tissue insulin resistance, at least partly via the Y5 Receptor.

  4. Pharmacokinetics and Brain Uptake in the Rhesus Monkey of a Fusion Protein of Arylsulfatase A and a Monoclonal Antibody Against the Human Insulin Receptor

    Science.gov (United States)

    Boado, Ruben J.; Lu, Jeff Zhiqiang; Hui, Eric K.-W.; Sumbria, Rachita K.; Pardridge, William M.

    2014-01-01

    Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder of the brain caused by mutations in the gene encoding the lysosomal sulfatase, arylsulfatase A (ASA). It is not possible to treat the brain in MLD with recombinant ASA, because the enzyme does not cross the blood-brain barrier (BBB). In the present investigation, a BBB-penetrating IgG-ASA fusion protein is engineered and expressed, where the ASA monomer is fused to the carboxyl terminus of each heavy chain of an engineered monoclonal antibody (MAb) against the human insulin receptor (HIR). The HIRMAb crosses the BBB via receptor-mediated transport on the endogenous BBB insulin receptor, and acts as a molecular Trojan horse to ferry the ASA into brain from blood. The HIRMAb-ASA is expressed in stably transfected Chinese hamster ovary cells grown in serum free medium, and purified by protein A affinity chromatography. The fusion protein retains high affinity binding to the HIR, EC50 = 0.34 ± 0.11 nM, and retains high ASA enzyme activity, 20 ± 1 units/mg. The HIRMAb-ASA fusion protein is endocytosed and triaged to the lysosomal compartment in MLD fibroblasts. The fusion protein was radio-labeled with the Bolton-Hunter reagent, and the [125I]-HIRMAb-ASA rapidly penetrates the brain in the Rhesus monkey following intravenous administration. Film and emulsion autoradiography of primate brain shows global distribution of the fusion protein throughout the monkey brain. These studies describe a new biological entity that is designed to treat the brain of humans with MLD following non-invasive, intravenous infusion of an IgG-ASA fusion protein. PMID:23192358

  5. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization

    DEFF Research Database (Denmark)

    Vinther, Tine N.; Norrman, Mathias; Strauss, Holger M.;

    2012-01-01

    An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers in...... oligomerization and insulin stability and function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer was capable of further...

  6. PET imaging of insulin-like growth factor type 1 receptor expression with a 64Cu-labeled Affibody molecule.

    Science.gov (United States)

    Su, Xinhui; Cheng, Kai; Liu, Yang; Hu, Xiang; Meng, Shuxian; Cheng, Zhen

    2015-07-01

    The insulin-like growth factor 1 receptor (IGF-1R) serves as an attractive target for cancer molecular imaging and therapy. Previous single photon emission computerized tomography (SPECT) studies showed that the IGF-1R-targeting Affibody molecules (99m)Tc-ZIGF1R:4551-GGGC, [(99m)Tc(CO)3](+)-(HE)3-ZIGF1R:4551 and (111)In-DOTA-ZIGF1R:4551 can discriminate between high and low IGF-1R-expression tumors and have the potential for patient selection for IGF-1R-targeted therapy. Compared with SPECT, positron emission tomography (PET) may improve imaging of IGF-1R-expression, because of its high sensitivity, high spatial resolution, strong quantification ability. The aim of the present study was to develop the (64)Cu-labeled NOTA-conjugated Affibody molecule ZIGF-1R:4:40 as a PET probe for imaging of IGF-1R-positive tumor. An Affibody analogue (Ac-Cys-ZIGF-1R:4:40) binding to IGF-1R was site-specifically conjugated with NOTA and labeled with (64)Cu. Binding affinity and specificity of (64)Cu-NOTA-ZIGF-1R:4:40 to IGF-1R were evaluated using human glioblastoma U87MG cells. Small-animal PET, biodistribution, and metabolic stability studies were conducted on mice bearing U87MG xenografts after the injection of (64)Cu-NOTA-ZIGF-1R:4:40 with or without co-injection of unlabeled Affibody proteins. The radiosynthesis of (64)Cu-NOTA-ZIGF-1R:4:40 was completed successfully within 60 min with a decay-corrected yield of 75 %. (64)Cu-NOTA-ZIGF-1R:4:40 bound to IGF-1R with low nanomolar affinity (K D = 28.55 ± 3.95 nM) in U87MG cells. (64)Cu-NOTA-ZIGF-1R:4:40 also displayed excellent in vitro and in vivo stability. In vivo biodistribution and PET studies demonstrated targeting of U87MG gliomas xenografts was IGF-1R specific. The tumor uptake was 5.08 ± 1.07 %ID/g, and the tumor to muscle ratio was 11.89 ± 2.16 at 24 h after injection. Small animal PET imaging studies revealed that (64)Cu-NOTA-ZIGF-1R:4:40 could clearly identify U87MG tumors with good contrast at 1-24

  7. Insulin Test

    Science.gov (United States)

    ... especially as a result of taking non-human (animal or synthetic) insulin, these can interfere with insulin testing. In this case, a C-peptide may be performed as an alternative way to evaluate insulin production. Note also that ...

  8. Cloning and characterization of an MRNA encoding an insulin receptor from the horned scarab beetle Onthophagus nigriventris (Coleoptera: scarabaeidae)

    Science.gov (United States)

    The insulin signaling pathway has been implicated in the control of insect polyphenisms for some caste-forming insects and potentially has a role in horn dimorphisms in beetles. Males of the sexually dimorphic dung beetle Onthophagus nigriventris develop a magnificent thoracic horn up to twice the l...

  9. Reversal of obesity and insulin resistance by a non-peptidic glucagon-like peptide-1 receptor agonist in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Min He

    Full Text Available BACKGROUND: Glucagon-like peptide-1 (GLP-1 is recognized as an important regulator of glucose homeostasis. Efforts to utilize GLP-1 mimetics in the treatment of diabetes have yielded clinical benefits. A major hurdle for an effective oral therapy has been the difficulty of finding a non-peptidic GLP-1 receptor (GLP-1R agonist. While its oral bioavailability still poses significant challenges, Boc5, one of the first such compounds, has demonstrated the attainment of GLP-1R agonism in diabetic mice. The present work was to investigate whether subchronic Boc5 treatment can restore glycemic control and induce sustainable weight loss in diet-induced obese (DIO mice, an animal model of human obesity and insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: DIO mice were treated three times a week with Boc5 (0.3, 1 and 3 mg for 12 weeks. Body weight, body mass index (BMI, food intake, fasting glucose, intraperitoneal glucose tolerance and insulin induced glucose clearance were monitored regularly throughout the treatment. Glucose-stimulated insulin secretion, β-cell mass, islet size, body composition, serum metabolic profiles, lipogenesis, lipolysis, adipose hypertrophy and lipid deposition in the liver and muscle were also measured after 12 weeks of dosing. Boc5 dose-dependently reduced body weight, BMI and food intake in DIO mice. These changes were associated with significant decreases in fat mass, adipocyte hypertrophy and peripheral tissue lipid accumulation. Boc5 treatment also restored glycemic control through marked improvement of insulin sensitivity and normalization of β-cell mass. Administration of Boc5 (3 mg reduced basal but enhanced insulin-mediated glucose incorporation and noradrenaline-stimulated lipolysis in isolated adipocytes from obese mice. Furthermore, circulating leptin, adiponectin, triglyceride, total cholesterol, nonesterified fatty acid and high-density lipoprotein/low-density lipoprotein ratio were normalized to various

  10. Interaction of growth hormone receptor/binding protein gene disruption and caloric restriction for insulin sensitivity and attenuated aging [v2; ref status: indexed, http://f1000r.es/5a7

    Directory of Open Access Journals (Sweden)

    Oge Arum

    2015-04-01

    Full Text Available The correlation of physiological sensitivity to insulin (vis-à-vis glycemic regulation and longevity is extensively established, creating a justifiable gerontological interest on whether insulin sensitivity is causative, or even predictive, of some or all phenotypes of slowed senescence (including longevity. The growth hormone receptor/ binding protein gene-disrupted (GHR-KO mouse is the most extensively investigated insulin-sensitive, attenuated aging model. It was reported that, in a manner divergent from similar mutants, GHR-KO mice fail to respond to caloric restriction (CR by altering their insulin sensitivity. We hypothesized that maximized insulin responsiveness is what causes GHR-KO mice to exhibit a suppressed survivorship response to dietary (including caloric restriction; and attempted to refute this hypothesis by assessing the effects of CR on GHR-KO mice for varied slow-aging-associated phenotypes. In contrast to previous reports, we found GHR-KO mice on CR to be less responsive than their ad libitum (A.L. counterparts to the hypoglycemia-inducing effects of insulin. Further, CR had negligible effects on the metabolism or cognition of GHR-KO mice. Therefore, our data suggest that the effects of CR on the insulin sensitivity of GHR-KO mice do not concur with the effects of CR on the aging of GHR-KO mice.

  11. Interaction of growth hormone receptor/binding protein gene disruption and caloric restriction for insulin sensitivity and attenuated aging [v1; ref status: indexed, http://f1000r.es/4fk

    Directory of Open Access Journals (Sweden)

    Oge Arum

    2014-10-01

    Full Text Available The correlation of physiological sensitivity to insulin (vis-à-vis glycemic regulation and longevity is extensively established, creating a justifiable gerontological interest on whether insulin sensitivity is causative, or even predictive, of some or all phenotypes of slowed senescence (including longevity. The growth hormone receptor/ binding protein gene-disrupted (GHR-KO mouse is the most extensively investigated insulin-sensitive, attenuated aging model. It was reported that, in a manner divergent from similar mutants, GHR-KO mice fail to respond to caloric restriction (CR by altering their insulin sensitivity. We hypothesized that maximized insulin responsiveness is what causes GHR-KO mice to exhibit a suppressed survivorship response to dietary (including caloric restriction; and attempted to refute this hypothesis by assessing the effects of CR on GHR-KO mice for varied slow-aging-associated phenotypes. In contrast to previous reports, we found GHR-KO mice on CR to be less responsive than their ad libitum (A.L. counterparts to the hypoglycemia-inducing effects of insulin. Further, CR had negligible effects on the metabolism or cognition of GHR-KO mice. Therefore, our data suggest that the effects of CR on the insulin sensitivity of GHR-KO mice do not concur with the effects of CR on the aging of GHR-KO mice.

  12. Distribution and levels of [125I]IGF-I, [125I]IGF-II and [125I]insulin receptor binding sites in the hippocampus of aged memory-unimpaired and -impaired rats

    International Nuclear Information System (INIS)

    The insulin-like growth factors (IGF-I and IGF-II) and insulin are localized within distinct brain regions and their respective functions are mediated by specific membrane receptors. High densities of binding sites for these growth factors are discretely and differentially distributed throughout the brain, with prominent levels localized to the hippocampal formation. IGFs and insulin, in addition to their growth promoting actions, are considered to play important roles in the development and maintenance of normal cell functions throughout life. We compared the anatomical distribution and levels of IGF and insulin receptors in young (five month) and aged (25 month) memory-impaired and memory-unimpaired male Long-Evans rats as determined in the Morris water maze task in order to determine if alterations in IGF and insulin activity may be related to the emergence of cognitive deficits in the aged memory-impaired rat. In the hippocampus, [125I]IGF-I receptors are concentrated primarily in the dentate gyrus (DG) and the CA3 sub-field while high amounts of [125I]IGF-II binding sites are localized to the pyramidal cell layer, and the granular cell layer of the DG. [125I]insulin binding sites are mostly found in the molecular layer of the DG and the CA1 sub-field. No significant differences were found in [125I]IGF-I, [125I]IGF-II or [125I]insulin binding levels in any regions or laminae of the hippocampus of young vs aged rats, and deficits in cognitive performance did not relate to altered levels of these receptors in aged memory-impaired vs aged memory-unimpaired rats. Other regions, including various cortical areas, were also examined and failed to reveal any significant differences between the three groups studied.It thus appears that IGF-I, IGF-II and insulin receptor sites are not markedly altered during the normal ageing process in the Long-Evans rat, in spite of significant learning deficits in a sub-group (memory-impaired) of aged animals. Hence, recently reported

  13. Visualising dual downregulation of insulin-like growth factor receptor-1 and vascular endothelial growth factor-A by heat shock protein 90 inhibition effect in triple negative breast cancer

    NARCIS (Netherlands)

    Terwisscha Van Scheltinga, Anton G. T.; Berghuis, Paul; Nienhuis, Hilde H.; Timmer-Bosscha, Hetty; Pot, Linda; Gaykema, Sietske B. M.; Lub-de Hooge, Marjolijn N.; Kosterink, Jos G. W.; de Vries, Elisabeth G. E.; Schroder, Carolien P.

    2014-01-01

    Purpose: Triple negative breast cancer (TNBC) is biologically characterised by heterogeneous presence of molecular pathways underlying it. Insulin-like growth factor receptor-1 (IGF-1R) expression and vascular endothelial growth factor-A (VEGF-A) have been identified as key factors in these pathways

  14. Effects of Somatic Mutations in the C-Terminus of Insulin-Like Growth Factor 1 Receptor on Activity and Signaling

    Directory of Open Access Journals (Sweden)

    Barbara P. Craddock

    2012-01-01

    Full Text Available The insulin-like growth factor I receptor (IGF1R is overexpressed in several forms of human cancer, and it has emerged as an important target for anticancer drug design. Cancer genome sequencing efforts have recently identified three somatic mutations in IGF1R: A1374V, a deletion of S1278 in the C-terminal tail region of the receptor, and M1255I in the C-terminal lobe of the kinase catalytic domain. The possible effects of these mutations on IGF1R activity and biological function have not previously been tested. Here, we tested the effects of the mutations on the in vitro biochemical activity of IGF1R and on major IGF1R signaling pathways in mammalian cells. While the mutations do not affect the intrinsic tyrosine kinase activity of the receptor, we demonstrate that the basal (unstimulated levels of MAP kinase and Akt activation are increased in the mutants (relative to wild-type IGF1R. We hypothesize that the enhan