WorldWideScience

Sample records for cell-penetrating peptides decreases

  1. Cell Penetration Properties of a Highly Efficient Mini Maurocalcine Peptide

    Directory of Open Access Journals (Sweden)

    Michel De Waard

    2013-03-01

    Full Text Available Maurocalcine is a highly potent cell-penetrating peptide isolated from the Tunisian scorpion Maurus palmatus. Many cell-penetrating peptide analogues have been derived from the full-length maurocalcine by internal cysteine substitutions and sequence truncation. Herein we have further characterized the cell-penetrating properties of one such peptide, MCaUF1-9, whose sequence matches that of the hydrophobic face of maurocalcine. This peptide shows very favorable cell-penetration efficacy compared to Tat, penetratin or polyarginine. The peptide appears so specialized in cell penetration that it seems hard to improve by site directed mutagenesis. A comparative analysis of the efficacies of similar peptides isolated from other toxin members of the same family leads to the identification of hadrucalcin’s hydrophobic face as an even better CPP. Protonation of the histidine residue at position 6 renders the cell penetration of MCaUF1-9 pH-sensitive. Greater cell penetration at acidic pH suggests that MCaUF1-9 can be used to specifically target cancer cells in vivo where tumor masses grow in more acidic environments.

  2. Prediction of cell-penetrating peptides with feature selection techniques.

    Science.gov (United States)

    Tang, Hua; Su, Zhen-Dong; Wei, Huan-Huan; Chen, Wei; Lin, Hao

    2016-08-12

    Cell-penetrating peptides are a group of peptides which can transport different types of cargo molecules such as drugs across plasma membrane and have been applied in the treatment of various diseases. Thus, the accurate prediction of cell-penetrating peptides with bioinformatics methods will accelerate the development of drug delivery systems. The study aims to develop a powerful model to accurately identify cell-penetrating peptides. At first, the peptides were translated into a set of vectors with the same dimension by using dipeptide compositions. Secondly, the Analysis of Variance-based technique was used to reduce the dimension of the vector and explore the optimized features. Finally, the support vector machine was utilized to discriminate cell-penetrating peptides from non-cell-penetrating peptides. The five-fold cross-validated results showed that our proposed method could achieve an overall prediction accuracy of 83.6%. Based on the proposed model, we constructed a free webserver called C2Pred (http://lin.uestc.edu.cn/server/C2Pred). PMID:27291150

  3. Strategies to stabilize cell penetrating peptides for in vivo applications.

    Science.gov (United States)

    Fominaya, Jesús; Bravo, Jerónimo; Rebollo, Angelita

    2015-10-01

    In the era of biomedicines and engineered carrier systems, cell penetrating peptides (CPPs) have been established as a promising tool for therapeutic application. Likewise, other therapeutic peptides, successful in vivo application of CPPs will strongly depend on peptide stability, the bottleneck for this type of biodegradable molecules. In this review, the authors describe the current knowledge of the in vivo degradation for known CPPs and the different strategies available to provide a higher resistance to metabolic degradation while preserving cell penetration efficiency. Peptide stability can be improved by different means, either modifying the structure to make it unrecognizable to proteases, or preventing access of proteolytic enzymes by applying conformation restriction or shielding strategies. PMID:26448473

  4. Cell-penetrating peptides: breaking through to the other side.

    Science.gov (United States)

    Koren, Erez; Torchilin, Vladimir P

    2012-07-01

    Cell-penetrating peptides (CPPs) have been previously shown to be powerful transport vector tools for the intracellular delivery of a large variety of cargoes through the cell membrane. Intracellular delivery of plasmid DNA (pDNA), oligonucleotides, small interfering RNAs (siRNAs), proteins and peptides, contrast agents, drugs, as well as various nanoparticulate pharmaceutical carriers (e.g., liposomes, micelles) has been demonstrated both in vitro and in vivo. This review focuses on the peptide-based strategy for intracellular delivery of CPP-modified nanocarriers to deliver small molecule drugs or DNA. In addition, we discuss the rationales for the design of 'smart' pharmaceutical nanocarriers in which the cell-penetrating properties are hidden until triggered by exposure to appropriate environmental conditions (e.g., a particular pH, temperature, or enzyme level), applied local microwave, ultrasound, or radiofrequency radiation. PMID:22682515

  5. Prediction of cell penetrating peptides by support vector machines.

    Directory of Open Access Journals (Sweden)

    William S Sanders

    2011-07-01

    Full Text Available Cell penetrating peptides (CPPs are those peptides that can transverse cell membranes to enter cells. Once inside the cell, different CPPs can localize to different cellular components and perform different roles. Some generate pore-forming complexes resulting in the destruction of cells while others localize to various organelles. Use of machine learning methods to predict potential new CPPs will enable more rapid screening for applications such as drug delivery. We have investigated the influence of the composition of training datasets on the ability to classify peptides as cell penetrating using support vector machines (SVMs. We identified 111 known CPPs and 34 known non-penetrating peptides from the literature and commercial vendors and used several approaches to build training data sets for the classifiers. Features were calculated from the datasets using a set of basic biochemical properties combined with features from the literature determined to be relevant in the prediction of CPPs. Our results using different training datasets confirm the importance of a balanced training set with approximately equal number of positive and negative examples. The SVM based classifiers have greater classification accuracy than previously reported methods for the prediction of CPPs, and because they use primary biochemical properties of the peptides as features, these classifiers provide insight into the properties needed for cell-penetration. To confirm our SVM classifications, a subset of peptides classified as either penetrating or non-penetrating was selected for synthesis and experimental validation. Of the synthesized peptides predicted to be CPPs, 100% of these peptides were shown to be penetrating.

  6. Intracellular Delivery of Nanoparticles with Cell Penetrating Peptides.

    Science.gov (United States)

    Salzano, Giuseppina; Torchilin, Vladimir P

    2015-01-01

    The functionalization of nanoparticles (NPs) with cell penetrating peptides (CPPs) constitutes a breakthrough for the intracellular delivery of therapeutic and diagnostic payloads. In late 1998, a significant cellular uptake of a small protein from the HIV-1 virus, namely TAT peptide (TATp), was observed. Thereafter, research began on design of similarly acting peptides, and the coupling of NPs with these novel CPPs. Here, we describe recent methods used to modify the surface of NPs with CPPs and the in vitro and in vivo effects of such functionalization on the intracellular delivery of various cargos. In particular, we highlight recent advances aimed at reducing the non-selectivity of CPPs and the prevention of their enzymatic cleavage en route to target tissues. PMID:26202282

  7. Peptide Internalization Enabled by Folding: Triple Helical Cell-Penetrating Peptides

    OpenAIRE

    Shinde, Aparna; Feher, Katie M.; Hu, Chloe; Slowinska, Katarzyna

    2014-01-01

    Cell-Penetrating Peptides (CPPs) are known as efficient transporters of molecular cargo across cellular membranes. Their properties make them ideal candidates for in vivo applications. However, challenges in development of effective CPPs still exist: CPPs are often fast degraded by proteases and large concentration of CPPs required for cargo transporting can cause cytotoxicity. It was previously shown that restricting peptide flexibility can improve peptide stability against enzymatic degrada...

  8. Membrane adsorption and binding, cellular uptake and cytotoxicity of cell-penetrating peptidomimetics with α-peptide/β-peptoid backbone

    DEFF Research Database (Denmark)

    Jing, Xiaona; Yang, Mingjun; Kasimova, Marina Robertovna;

    2012-01-01

    Cell-penetrating peptides (CPPs) provide a promising approach for enhancing intracellular delivery of therapeutic biomacromolecules by increasing transport through membrane barriers. Here, proteolytically stable cell-penetrating peptidomimetics with α-peptide/β-peptoid backbone were studied...

  9. Poly(NIPAm-AMPS) nanoparticles for targeted delivery of anti-inflammatory cell penetrating peptides

    Science.gov (United States)

    Bartlett, Rush Lloyd, II

    Inflammatory diseases such as osteoarthritis and rheumatoid arthritis cause $127.8 billion in US healthcare expenditures each year and are the cause of disability for 27% of disabled persons in the United States. Current treatment options rarely halt disease progression and often result in significant unwanted and debilitating side effects. Our laboratory has previously developed a family of cell penetrating peptides (CPPs) which inhibit the activity of mitogen activated protein kinase activate protein kinase 2 (MK2). MK2 mediates the inflammatory response by activating Tristetraprline (TTP). Once activated, TTP rapidly stabilizes AU rich regions of pro-inflammatory cytokine mRNA which allows translation of pro-inflammatory cytokines to occur. Blocking MK2 with our labs CPPs yields a decrease in inflammatory activity but CPPs by are highly non specific and prone to rapid enzymatic degradation in vivo.. In order to increase the potency of MK2 inhibiting CPPs we have developed a novel nanoparticle drug carrier composed of poly(N-isopropylacrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid). This drug carrier has been shown to have preliminary efficacy in vitro and ex vivo for suppressing pro-inflammatory cytokine production when releasing CPPs. This thesis will present progress made on three aims: Specific Aim 1) Create and validate a NIPAm based drug delivery system that mimics the binding and release previously observed between cell penetrating peptides and glycosaminoglycans. Specific Aim 2) Engineer degradability into poly(NIPAm-AMPS) nanoparticles to enable more drug to be released and qualify that system in vitro. Specific Aim 3) Validate poly(NIPAm-AMPS) nanoparticles for targeted drug delivery in an ex vivo inflammatory model. Overall we have developed a novel anionic nanoparticle system that is biocompatible and efficient at loading and releasing cell penetrating peptides to inflamed tissue. Once loaded with a CPP the nanoparticle drug complex is

  10. Mitochondrial transit peptide exhibits cell penetration ability and efficiently delivers macromolecules to mitochondria.

    Science.gov (United States)

    Jain, Aastha; Chugh, Archana

    2016-09-01

    Mitochondrial malfunction under various circumstances can lead to a variety of disorders. Effective targeting of macromolecules (drugs) is important for restoration of mitochondrial function and treatment of related disorders. We have designed a novel cell-penetrating mitochondrial transit peptide (CpMTP) for delivery of macromolecules to mitochondria. Comparison between properties of cell-penetrating peptides (CPPs) and mitochondrial signal sequences enabled prediction of peptides with dual ability for cellular translocation and mitochondrial localization. Among the predicted peptides, CpMTP translocates across HeLa cells and shows successful delivery of noncovalently conjugated cargo molecules to mitochondria. CpMTP may have applications in transduction and transfection of mitochondria for therapeutics.

  11. Distinct behaviour of the homeodomain derived cell penetrating peptide penetratin in interaction with different phospholipids.

    Directory of Open Access Journals (Sweden)

    Ofelia Maniti

    Full Text Available BACKGROUND: Penetratin is a protein transduction domain derived from the homeoprotein Antennapedia. Thereby it is currently used as a cell penetrating peptide to introduce diverse molecules into eukaryotic cells, and it could also be involved in the cellular export of transcription factors. Moreover, it has been shown that it is able to act as an antimicrobial agent. The mechanisms involved in all these processes are quite controversial. METHODOLOGY/PRINCIPAL FINDINGS: In this article, we report spectroscopic, calorimetric and biochemical data on the penetratin interaction with three different phospholipids: phosphatidylcholine (PC and phosphatidylethanolamine (PE to mimic respectively the outer and the inner leaflets of the eukaryotic plasma membrane and phosphatidylglycerol (PG to mimic the bacterial membrane. We demonstrate that with PC, penetratin is able to form vesicle aggregates with no major change in membrane fluidity and presents no well defined secondary structure organization. With PE, penetratin aggregates vesicles, increases membrane rigidity and acquires an α-helical structure. With PG membranes, penetratin does not aggregate vesicles but decreases membrane fluidity and acquires a structure with both α-helical and β-sheet contributions. CONCLUSIONS/SIGNIFICANCE: These data from membrane models suggest that the different penetratin actions in eukaryotic cells (membrane translocation during export and import and on prokaryotes may result from different peptide and lipid structural arrangements. The data suggest that, for eukaryotic cell penetration, penetratin does not acquire classical secondary structure but requires a different conformation compared to that in solution.

  12. Cationic cell-penetrating peptides induce ceramide formation via acid sphingomyelinase: implications for uptake.

    NARCIS (Netherlands)

    Verdurmen, W.P.R.; Thanos, M.; Ruttekolk, I.R.R.; Gulbins, E.; Brock, R.E.

    2010-01-01

    Cationic cell-penetrating peptides (CPP) are receiving increasing attention as molecular transporters of membrane-impermeable molecules. Import of cationic CPP occurs both via endocytosis and - at higher peptide concentrations - in an endocytosis-independent manner via localized regions of the plasm

  13. A cell-penetrating peptide derived from human lactoferrin with conformation-dependent uptake efficiency.

    NARCIS (Netherlands)

    Duchardt, F.; Ruttekolk, I.R.R.; Verdurmen, W.P.R.; Lortat-Jacob, H.; Burck, J.; Hufnagel, H.; Fischer, R.; Heuvel, M. van den; Lowik, D.W.; Vuister, G.W.; Ulrich, A.; Waard, M. de; Brock, R.E.

    2009-01-01

    The molecular events that contribute to the cellular uptake of cell-penetrating peptides (CPP) are still a matter of intense research. Here, we report on the identification and characterization of a 22-amino acid CPP derived from the human milk protein, lactoferrin. The peptide exhibits a conformati

  14. Cell-penetrating antimicrobial peptides - prospectives for targeting intracellular infections

    DEFF Research Database (Denmark)

    Bahnsen, Jesper S; Franzyk, Henrik; Sayers, Edward J;

    2015-01-01

    La WT cells and analyzed by flow cytometry and confocal microscopy. Furthermore, the effects of the peptides on eukaryotic cell viability as well as their antimicrobial effect were tested. In addition, the disrupting ability of the peptides in the presence of bilayer membranes of different composition...

  15. Polymeric pH nanosensor with extended measurement range bearing octaarginine as cell penetrating peptide

    DEFF Research Database (Denmark)

    Ke, Peng; Sun, Honghao; Liu, Mingxing;

    2016-01-01

    A synthetic peptide octaarginine which mimics human immunodeficiency virus-1, Tat protein is used as cell penetrating moiety for new pH nanosensors which demonstrate enhanced cellular uptake and expanded measurement range from pH 3.9 to pH 7.3 by simultaneously incorporating two complemental pH-s...

  16. Methods to Study the Role of the Glycocalyx in the Uptake of Cell-Penetrating Peptides

    NARCIS (Netherlands)

    Schmidt, S.; Wallbrecher, R.; Kuppevelt, T.H. van; Brock, R.E.

    2015-01-01

    Cells are covered by a layer of negatively charged oligo- and polysaccharides, the glycocalyx. Cell-penetrating peptides and other drug delivery vehicles first encounter these polyanions before contacting the lipid bilayer of the plasma membrane. While a large body of data supports the notion that i

  17. Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin and the TAT Peptide with Lipid Bilayers

    NARCIS (Netherlands)

    Yesylevskyy, Semen; Marrink, Siewert-Jan; Mark, Alan E.

    2009-01-01

    Cell-penetrating peptides (CPPs) have recently attracted much interest due to their apparent ability to penetrate cell membranes in an energy-independent manner. Here molecular-dynamics simulation techniques were used to study the interaction of two CPPs: penetratin and the TAT peptide with 1,2-Dipa

  18. Conformational analysis of Infectious bursal disease virus (IBDV derived cell penetrating peptide (CPP analogs

    Directory of Open Access Journals (Sweden)

    Vinay G. Joshi

    2013-12-01

    Full Text Available Aim: This study was designed to develop peptide analogs of Infectious Bursal Disease (IBD virus VP5 protein segment having cell penetrating ability to improve their interaction with cargo molecule (Nucleic acid without affecting the backbone conformation. Materials and Methods: IBDV VP5 protein segment designated as RATH peptide were synthesized using solid phase peptide synthesis and their solution conformation was elucidated using CD spectroscopy in polar (water and apolar (TFE solvents. Cell penetrating ability of RATH-CONH2 was observed using FITC labeled peptide internalization in to HeLa cells under fluorescent microscopy. The efficacy of RATH analog interactions with nucleic acids was evaluated using FITC labeled oligonucleotides by fluorescence spectroscopy and plasmid constructs in gel retardation assay. Results: CD spectra of RATH analogs in water and apolar trifluroethanol (TFE helped to compare their secondary structures which were almost similar with dominant beta conformations suggesting successful induction of positive charge in the analogs without affecting back bone conformation of CPP designed. Cell penetrating ability of RATH CONH2 in HeLa cell was more than 90%. The fluorescence spectroscopy and plasmid constructs in gel retardation assay demonstrated successful interaction of amide analogs with nucleic acid. Conclusion: Intentional changes made in IBDV derived peptide RATH COOH to RATH CONH2 did not showed major changes in backbone conformation and such modifications may help to improve the cationic charge in most CPPs to interact with nucleic acid. [Vet World 2013; 6(6.000: 307-312

  19. Cell-Penetrating Ability of Peptide Hormones: Key Role of Glycosaminoglycans Clustering

    Directory of Open Access Journals (Sweden)

    Armelle Tchoumi Neree

    2015-11-01

    Full Text Available Over the last two decades, the potential usage of cell-penetrating peptides (CPPs for the intracellular delivery of various molecules has prompted the identification of novel peptidic identities. However, cytotoxic effects and unpredicted immunological responses have often limited the use of various CPP sequences in the clinic. To overcome these issues, the usage of endogenous peptides appears as an appropriate alternative approach. The hormone pituitary adenylate-cyclase-activating polypeptide (PACAP38 has been recently identified as a novel and very efficient CPP. This 38-residue polycationic peptide is a member of the secretin/glucagon/growth hormone-releasing hormone (GHRH superfamily, with which PACAP38 shares high structural and conformational homologies. In this study, we evaluated the cell-penetrating ability of cationic peptide hormones in the context of the expression of cell surface glycosaminoglycans (GAGs. Our results indicated that among all peptides evaluated, PACAP38 was unique for its potent efficiency of cellular uptake. Interestingly, the abilities of the peptides to reach the intracellular space did not correlate with their binding affinities to sulfated GAGs, but rather to their capacity to clustered heparin in vitro. This study demonstrates that the uptake efficiency of a given cationic CPP does not necessarily correlate with its affinity to sulfated GAGs and that its ability to cluster GAGs should be considered for the identification of novel peptidic sequences with potent cellular penetrating properties.

  20. Potent inhibition of late stages of hepadnavirus replication by a modified cell penetrating peptide

    DEFF Research Database (Denmark)

    Abdul, Fabien; Ndeboko, Bénédicte; Buronfosse, Thierry;

    2012-01-01

    of Duck Hepatitis B Virus (DHBV), a reference model for human HBV. Amongst twelve CatLip peptides we identified Deca-(Arg)8 having a particularly potent antiviral activity, leading to a drastic inhibition of viral particle secretion without detectable toxicity. Inhibition of virion secretion......Cationic cell-penetrating peptides (CPPs) and their lipid domain-conjugates (CatLip) are agents for the delivery of (uncharged) biologically active molecules into the cell. Using infection and transfection assays we surprisingly discovered that CatLip peptides were able to inhibit replication...

  1. Topical Delivery of Protein and Peptide Using Novel Cell Penetrating Peptide IMT-P8

    Science.gov (United States)

    Gautam, Ankur; Nanda, Jagpreet Singh; Samuel, Jesse S.; Kumari, Manisha; Priyanka, Priyanka; Bedi, Gursimran; Nath, Samir K.; Mittal, Garima; Khatri, Neeraj; Raghava, Gajendra Pal Singh

    2016-01-01

    Skin, being the largest organ of the body, is an important site for drug administration. However, most of the drugs have poor permeability and thus drug delivery through the skin is very challenging. In this study, we examined the transdermal delivery capability of IMT-P8, a novel cell-penetrating peptide. We generated IMT-P8-GFP and IMT-P8-KLA fusion constructs and evaluated their internalization into mouse skin after topical application. Our results demonstrate that IMT-P8 is capable of transporting green fluorescent protein (GFP) and proapoptotic peptide, KLA into the skin and also in different cell lines. Interestingly, uptake of IMT-P8-GFP was considerably higher than TAT-GFP in HeLa cells. After internalization, IMT-P8-KLA got localized to the mitochondria and caused significant cell death in HeLa cells signifying an intact biological activity. Further in vivo skin penetration experiments revealed that after topical application, IMT-P8 penetrated the stratum corneum, entered into the viable epidermis and accumulated inside the hair follicles. In addition, both IMT-P8-KLA and IMT-P8-GFP internalized into the hair follicles and dermal tissue of the skin following topical application. These results suggested that IMT-P8 could be a potential candidate to be used as a topical delivery vehicle for various cosmetic and skin disease applications. PMID:27189051

  2. Topical Delivery of Protein and Peptide Using Novel Cell Penetrating Peptide IMT-P8.

    Science.gov (United States)

    Gautam, Ankur; Nanda, Jagpreet Singh; Samuel, Jesse S; Kumari, Manisha; Priyanka, Priyanka; Bedi, Gursimran; Nath, Samir K; Mittal, Garima; Khatri, Neeraj; Raghava, Gajendra Pal Singh

    2016-01-01

    Skin, being the largest organ of the body, is an important site for drug administration. However, most of the drugs have poor permeability and thus drug delivery through the skin is very challenging. In this study, we examined the transdermal delivery capability of IMT-P8, a novel cell-penetrating peptide. We generated IMT-P8-GFP and IMT-P8-KLA fusion constructs and evaluated their internalization into mouse skin after topical application. Our results demonstrate that IMT-P8 is capable of transporting green fluorescent protein (GFP) and proapoptotic peptide, KLA into the skin and also in different cell lines. Interestingly, uptake of IMT-P8-GFP was considerably higher than TAT-GFP in HeLa cells. After internalization, IMT-P8-KLA got localized to the mitochondria and caused significant cell death in HeLa cells signifying an intact biological activity. Further in vivo skin penetration experiments revealed that after topical application, IMT-P8 penetrated the stratum corneum, entered into the viable epidermis and accumulated inside the hair follicles. In addition, both IMT-P8-KLA and IMT-P8-GFP internalized into the hair follicles and dermal tissue of the skin following topical application. These results suggested that IMT-P8 could be a potential candidate to be used as a topical delivery vehicle for various cosmetic and skin disease applications. PMID:27189051

  3. Cell-penetrating peptides; chemical modification, mechanism of uptake and formulation development

    OpenAIRE

    Ezzat, Kariem

    2012-01-01

    Gene therapy holds the promise of revolutionizing the way we treat diseases. By using recombinant DNA and oligonucleotides (ONs), gene functions can be restored, altered or silenced according to the therapeutic need. However, gene therapy approaches require the delivery of large and charged nucleic acid-based molecules to their intracellular targets across the plasma membrane, which is inherently impermeable to such molecules. In this thesis, two chemically modified cell-penetrating peptides ...

  4. Cell-penetrating TAT peptide in drug delivery systems: Proteolytic stability requirements

    Science.gov (United States)

    Koren, Erez; Apte, Anjali; Sawant, Rupa R.; Grunwald, Jacob; Torchilin, Vladimir P.

    2012-01-01

    The stability and activity of the HIV cell-penetrating TAT peptide (TATp) on the surface of TATp-modified micelles and liposomes in relation to its proteolytic cleavage was investigated. TATp moieties were attached to the surface of these nanocarriers using TATp modified with a conjugate of phosphatidyl ethanolamine with a ‘short’ PEG (PEG-PE). Following pre-incubation with trypsin, elastase, or collagenase, the proteolytic stability of TATp on the surface of these modified carriers was studied by HPLC with fluorescence detection using fluorenylmethyl chloroformate (FMOC) labeling. All tested enzymes produced a dose-dependent cleavage of TATp as shown by the presence of TATp Arg-Arg fragments. Inhibition of TATp cleavage occurred when these TATp-micelles were modified by the addition of longer PEG-PE blocks, indicating an effective shielding of TATp from proteolysis by these blocks. TATp-modified carriers were also tested for their ability to accumulate in EL-4, HeLa, and B16-F10 cells. Trypsin treatment of TATp-modified liposomes and micelles resulted in decreased uptake and cell interaction, as measured by fluorescence microscopy and fluorescence-activated cell sorting techniques. Furthermore, a decrease in the cytotoxicity of TATp-modified liposomes loaded with doxorubicin (Doxil) was observed following trypsin treatment. In conclusion, steric shielding of TATp is essential to ensure its in vivo therapeutic function. PMID:21438724

  5. Cellular uptake of antisense oligonucleotides after complexing or conjugation with cell-penetrating model peptides.

    Science.gov (United States)

    Oehlke, J; Birth, P; Klauschenz, E; Wiesner, B; Beyermann, M; Oksche, A; Bienert, M

    2002-08-01

    The uptake by mammalian cells of phosphorothioate oligonucleotides was compared with that of their respective complexes or conjugates with cationic, cell-penetrating model peptides of varying helix-forming propensity and amphipathicity. An HPLC-based protocol for the synthesis and purification of disulfide bridged conjugates in the 10-100 nmol range was developed. Confocal laser scanning microscopy (CLSM) in combination with gel-capillary electrophoresis and laser induced fluorescence detection (GCE-LIF) revealed cytoplasmic and nuclear accumulationin all cases. The uptake differences between naked oligonucleotides and their respective peptide complexes or conjugates were generally confined to one order of magnitude. No significant influence of the structural properties of the peptide components upon cellular uptake was found. Our results question the common belief that the increased biological activity of oligonucleotides after derivatization with membrane permeable peptides may be primarily due to improved membrane translocation.

  6. A cell penetrating peptide-integrated and enediyne-energized fusion protein shows potent antitumor activity.

    Science.gov (United States)

    Ru, Qin; Shang, Bo-Yang; Miao, Qing-Fang; Li, Liang; Wu, Shu-Ying; Gao, Rui-Juan; Zhen, Yong-Su

    2012-11-20

    Arginine-rich peptides belong to a subclass of cell penetrating peptides that are taken up by living cells and can be detected freely diffusing inside the cytoplasm and nucleoplasm. This phenomenon has been attributed to either an endocytotic mode of uptake and a subsequent release from vesicles or a direct membrane penetration. Lidamycin is an antitumor antibiotic, which consists of an active enediyne chromophore (AE) and a noncovalently bound apoprotein (LDP). In the present study, a fusion protein (Arg)(9)-LDP composed of cell penetrating peptide (Arg)(9) and LDP was prepared by DNA recombination, and the enediyne-energized fusion protein (Arg)(9)-LDP-AE was prepared by molecular reconstitution. The data in fixed cells demonstrated that (Arg)(9)-LDP could rapidly enter cells, and the results based on fluorescence activated cell sorting indicated that the major route for (Arg)(9)-mediated cellular uptake of protein molecules was endocytosis. (Arg)(9)-LDP-AE demonstrated more potent cytotoxicity against different carcinoma cell lines than lidamycin in vitro. In the mouse hepatoma 22 model, (Arg)(9)-LDP-AE (0.3mg/kg) suppressed the tumor growth by 89.2%, whereas lidamycin (0.05 mg/kg) by 74.6%. Furthermore, in the glioma U87 xenograft model in nude mice, (Arg)(9)-LDP-AE at 0.2mg/kg suppressed tumor growth by 88.8%, compared with that of lidamycin by 62.9% at 0.05 mg/kg. No obvious toxic effects were observed in all groups during treatments. The results showed that energized fusion protein (Arg)(9)-LDP-AE was more effective than lidamycin and would be a promising candidate for glioma therapy. In addition, this approach to manufacturing fusion proteins might serve as a technology platform for the development of new cell penetrating peptides-based drugs. PMID:22982402

  7. Oligonucleotide delivery with cell surface binding and cell penetrating Peptide amphiphile nanospheres.

    Science.gov (United States)

    Mumcuoglu, Didem; Sardan, Melis; Tekinay, Turgay; Guler, Mustafa O; Tekinay, Ayse B

    2015-05-01

    A drug delivery system designed specifically for oligonucleotide therapeutics can ameliorate the problems associated with the in vivo delivery of these molecules. The internalization of free oligonucleotides is challenging, and cytotoxicity is the main obstacle for current transfection vehicles. To develop nontoxic delivery vehicles for efficient transfection of oligonucleotides, we designed a self-assembling peptide amphiphile (PA) nanosphere delivery system decorated with cell penetrating peptides (CPPs) containing multiple arginine residues (R4 and R8), and a cell surface binding peptide (KRSR), and report the efficiency of this system in delivering G-3129, a Bcl-2 antisense oligonucleotide (AON). PA/AON (peptide amphiphile/antisense oligonucleotide) complexes were characterized with regards to their size and secondary structure, and their cellular internalization efficiencies were evaluated. The effect of the number of arginine residues on the cellular internalization was investigated by both flow cytometry and confocal imaging, and the results revealed that uptake efficiency improved as the number of arginines in the sequence increased. The combined effect of cell penetration and surface binding property on the cellular internalization and its uptake mechanism was also evaluated by mixing R8-PA and KRSR-PA. R8 and R8/KRSR decorated PAs were found to drastically increase the internalization of AONs compared to nonbioactive PA control. Overall, the KRSR-decorated self-assembled PA nanospheres were demonstrated to be noncytotoxic delivery vectors with high transfection rates and may serve as a promising delivery system for AONs. PMID:25828697

  8. Selective mono-radioiodination and characterization of a cell-penetrating peptide. L-Tyr-maurocalcine

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Mitra; Bacot, Sandrine; Perret, Pascale; Riou, Laurent; Ghezzi, Catherine [Universite Joseph Fourier, Grenoble (France); INSERM U1039, Grenoble (France). Radiopharmaceutiques Biocliniques; Poillot, Cathy; Cestele, Sandrine [INSERM U836, Grenoble (France). Grenoble Inst. of Neuroscience; Universite Joseph Fourier, Grenoble (France); Desruet, Marie-Dominique [INSERM U1039, Grenoble (France). Radiopharmaceutiques Biocliniques; Couvet, Morgane; Bourgoin, Sandrine; Seve, Michel [CRI-INSERM U823, Grenoble (France). Inst. of Albert Bonniot; Universite Joseph Fourier, Grenoble (France); Waard, Michel de [INSERM U836, Grenoble (France). Grenoble Inst. of Neuroscience; Universite Joseph Fourier, Grenoble (France); Smartox Biotechnologies, Grenoble (France)

    2014-07-01

    Mono-and poly-iodinated peptides form frequently during radioiodination procedures. However, the formation of a single species in its mono-iodinated form is essential for quantitative studies such as determination of tissue concentration or image quantification. Therefore, the aim of the present study was to define the optimal experimental conditions in order to exclusively obtain the mono-iodinated form of L-maurocalcine (L-MCa). L-MCa is an animal venom toxin which was shown to act as a cell-penetrating peptide. In order to apply the current direct radioiodination technique using oxidative agents including chloramine T, Iodo-Gen {sup registered} or lactoperoxidase, an analogue of this peptide containing a tyrosine residue (Tyr-L-MCa) was synthesized and was shown to fold/oxidize properly. The enzymatic approach using lactoperoxidase/H{sub 2}O{sub 2} was found to be the best method for radioiodination of Tyr-L-MCa. MALDI-TOF mass spectrometry analyses were then used for identification of the chromatographic eluting components of the reaction mixtures. We observed that the production of different radioiodinated species depended upon the reaction conditions. Our results successfully described the experimental conditions of peptide radioiodination allowing the exclusive production of the mono-iodinated form with high radiochemical purity and without the need for a purification step. Mono-radioiodination of L-Tyr-MCa will be crucial for future quantitative studies, investigating the mechanism of cell penetration and in vivo biodistribution.

  9. Selective mono-radioiodination and characterization of a cell-penetrating peptide. L-Tyr-maurocalcine

    International Nuclear Information System (INIS)

    Mono-and poly-iodinated peptides form frequently during radioiodination procedures. However, the formation of a single species in its mono-iodinated form is essential for quantitative studies such as determination of tissue concentration or image quantification. Therefore, the aim of the present study was to define the optimal experimental conditions in order to exclusively obtain the mono-iodinated form of L-maurocalcine (L-MCa). L-MCa is an animal venom toxin which was shown to act as a cell-penetrating peptide. In order to apply the current direct radioiodination technique using oxidative agents including chloramine T, Iodo-Gen registered or lactoperoxidase, an analogue of this peptide containing a tyrosine residue (Tyr-L-MCa) was synthesized and was shown to fold/oxidize properly. The enzymatic approach using lactoperoxidase/H2O2 was found to be the best method for radioiodination of Tyr-L-MCa. MALDI-TOF mass spectrometry analyses were then used for identification of the chromatographic eluting components of the reaction mixtures. We observed that the production of different radioiodinated species depended upon the reaction conditions. Our results successfully described the experimental conditions of peptide radioiodination allowing the exclusive production of the mono-iodinated form with high radiochemical purity and without the need for a purification step. Mono-radioiodination of L-Tyr-MCa will be crucial for future quantitative studies, investigating the mechanism of cell penetration and in vivo biodistribution.

  10. Electroporation-based delivery of cell-penetrating peptide conjugates of peptide nucleic acids for antisense inhibition of intracellular bacteria.

    Science.gov (United States)

    Ma, Sai; Schroeder, Betsy; Sun, Chen; Loufakis, Despina Nelie; Cao, Zhenning; Sriranganathan, Nammalwar; Lu, Chang

    2014-10-01

    Cell penetrating peptides (CPPs) have been used for a myriad of cellular delivery applications and were recently explored for delivery of antisense agents such as peptide nucleic acids (PNAs) for bacterial inhibition. Although these molecular systems (i.e. CPP-PNAs) have shown ability to inhibit growth of bacterial cultures in vitro, they show limited effectiveness in killing encapsulated intracellular bacteria in mammalian cells such as macrophages, presumably due to difficulty involved in the endosomal escape of the reagents. In this report, we show that electroporation delivery dramatically increases the bioavailability of CPP-PNAs to kill Salmonella enterica serovar Typhimurium LT2 inside macrophages. Electroporation delivers the molecules without involving endocytosis and greatly increases the antisense effect. The decrease in the average number of Salmonella per macrophage under a 1200 V cm(-1) and 5 ms pulse was a factor of 9 higher than that without electroporation (in an experiment with a multiplicity of infection of 2 : 1). Our results suggest that electroporation is an effective approach for a wide range of applications involving CPP-based delivery. The microfluidic format will allow convenient functional screening and testing of PNA-based reagents for antisense applications.

  11. Differential neuroprotective potential of CRMP2 peptide aptamers conjugated to cationic, hydrophobic, and amphipathic cell penetrating peptides

    Directory of Open Access Journals (Sweden)

    Aubin eMoutal

    2015-01-01

    Full Text Available The microtubule-associated axonal specification collapsin response mediator protein 2 (CRMP2 is a novel target for neuroprotection. A CRMP2 peptide (TAT-CBD3 conjugated to the HIV transactivator of transcription (TAT protein’s cationic cell penetrating peptide motif (CPP protected neurons in the face of toxic levels of Ca2+ influx leaked in via N-methyl-D-aspartate receptor (NMDAR hyperactivation. Here we tested whether replacing the hydrophilic TAT motif with alternative cationic (nona-arginine (R9, hydrophobic (membrane transport sequence (MTS of k-fibroblast growth factor or amphipathic (model amphipathic peptide (MAP CPPs could be superior to the neuroprotection bestowed by TAT-CBD3. In giant plasma membrane vesicles (GPMVs derived from cortical neurons, the peptides translocated across plasma membranes with similar efficiencies. Cortical neurons, acutely treated with peptides prior to a toxic glutamate challenge, demonstrated enhanced efflux of R9-CBD3 compared to others. R9-CBD3 inhibited N-methyl-D-aspartate (NMDA-evoked Ca2+ influx to a similar extent as TAT-CBD3 while MTS-CBD3 was ineffective which correlated with the ability of R9- and TAT-CBD3, but not MTS-CBD3, to block NMDAR interaction with CRMP2. Unrestricted Ca2+ influx through NMDARs leading to delayed calcium dysregulation and neuronal cell death was blocked by all peptides but MAP-CBD3. When applied acutely for 10 minutes, R9-CBD3 was more effective than TAT-CBD3 at neuroprotection while MTS- and MAP-CBD3 were ineffective. In contrast, long-term (> 24 hours treatment with MTS-CBD3 conferred neuroprotection where TAT-CBD3 failed. Neither peptide altered surface trafficking of NMDARs. Neuroprotection conferred by MTS-CBD3 peptide is likely due to its increased uptake coupled with decreased efflux when compared to TAT-CBD3. Overall, our results demonstrate that altering CPPs can bestow differential neuroprotective potential onto the CBD3 cargo.

  12. Therapeutic Potential of Cell Penetrating Peptides (CPPs) and Cationic Polymers for Chronic Hepatitis B

    DEFF Research Database (Denmark)

    Ndeboko, Bénédicte; Lemamy, Guy Joseph; Nielsen, Peter E;

    2015-01-01

    hepatitis B virus (DHBV), a reference model for human HBV infection. The in vivo administration of PNA-CPP conjugates to neonatal ducklings showed that they reached the liver and inhibited DHBV replication. Interestingly, our results indicated also that a modified CPP (CatLip) alone, in the absence of its......Chronic hepatitis B virus (HBV) infection remains a major health problem worldwide. Because current anti-HBV treatments are only virostatic, there is an urgent need for development of alternative antiviral approaches. In this context, cell-penetrating peptides (CPPs) and cationic polymers...

  13. Dimerization of a cell-penetrating peptide leads to enhanced cellular uptake and drug delivery

    Directory of Open Access Journals (Sweden)

    Jan Hoyer

    2012-10-01

    Full Text Available Over the past 20 years, cell-penetrating peptides (CPPs have gained tremendous interest due to their ability to deliver a variety of therapeutically active molecules that would otherwise be unable to cross the cellular membrane due to their size or hydrophilicity. Recently, we reported on the identification of a novel CPP, sC18, which is derived from the C-terminus of the 18 kDa cationic antimicrobial protein. Furthermore, we demonstrated successful application of sC18 for the delivery of functionalized cyclopentadienyl manganese tricarbonyl (cymantrene complexes to tumor cell lines, inducing high cellular toxicity. In order to increase the potential of the organometallic complexes to kill tumor cells, we were looking for a way to enhance cellular uptake. Therefore, we designed a branched dimeric variant of sC18, (sC182, which was shown to have a dramatically improved capacity to internalize into various cell lines, even primary cells, using flow cytometry and fluorescence microscopy. Cell viability assays indicated increased cytotoxicity of the dimer presumably caused by membrane leakage; however, this effect turned out to be dependent on the specific cell type. Finally, we could show that conjugation of a functionalized cymantrene with (sC182 leads to significant reduction of its IC50 value in tumor cells compared to the respective sC18 conjugate, proving that dimerization is a useful method to increase the drug-delivery potential of a cell-penetrating peptide.

  14. Cell penetrating peptide delivery of splice directing oligonucleotides as a treatment for Duchenne muscular dystrophy.

    Science.gov (United States)

    Betts, Corinne A; Wood, Matthew J A

    2013-01-01

    Duchenne muscular dystrophy is a severe, X-linked muscle wasting disorder caused by the absence of an integral structural protein called dystrophin. This is caused by mutations or deletions in the dystrophin gene which disrupt the reading frame, thereby halting the production of a functional protein. A number of potential therapies have been investigated for the treatment of this disease including utrophin upregulation, 'stop-codon read through' aminoglycosides and adeno-associated virus gene replacement as well as stem cell therapy. However, the most promising treatment to date is the use of antisense oligonucleotides which cause exon skipping by binding to a specific mRNA sequence, skipping the desired exon, thereby restoring the reading frame and producing a truncated yet functional protein. The results from recent 2'OMePS and morpholino clinical trials have renewed hope for Duchenne patients; however in vivo studies in a mouse model, mdx, have revealed low systemic distribution and poor delivery of oligonucleotides to affected tissues such as the brain and heart. However a variety of cell penetrating peptides directly conjugated to antisense oligonucleotides have been shown to enhance delivery in Duchenne model systems with improved systemic distribution and greater efficacy compared to 'naked' antisense oligonucleotides. These cell penetrating peptides, combined with an optimised dose and dosing regimen, as well as thorough toxicity profile have the potential to be developed into a promising treatment which may be progressed to clinical trial. PMID:23140454

  15. Application of Cell Penetrating Peptide in Magnetic Resonance Imaging of Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Min LIU; You-Min GUO; Jun-Le YANG; Peng WANG; Lin-Yu ZHAO; Nian SHEN; Si-Cen WANG; Xiao-Juan GUO; Qi-Fei WU

    2006-01-01

    Tracking the distribution and differentiation of stem cells by high-resolution imaging techniques would have significant clinical and research implications. In this study, a model cell-penetrating peptide was used to carry gadolinium particles for magnetic resonance imaging (MRI) of mesenchymal stem cells (MSCs).MSCs were isolated from rat bone marrow and identified by osteogenic differentiation in vitro. The cellpenetrating peptide labeled with fluorescein-5-isothiocyanate (FITC) and gadolinium was synthesized by a solid-phase peptide synthesis method. Fluorescein imaging analysis confirmed that this new peptide could internalize into the cytoplasm and nucleus at room temperature, 4℃ and 37℃. Gadolinium were efficiently internalized into mesenchymal stem cells by the peptide in a time or concentration-dependent manner,resulting in intercellular shortening of longitudinal relaxation enhancements, which were obviously detected by 1.5 Tesla Magnetic Resonance Imaging. Cytotoxicity assay and flow cytometric analysis showed that the intercellular contrast medium incorporation did not affect cell viability at the tested concentrations. The in vitro experiment results suggested that the new constructed peptides could be a vector for tracking MSCs.

  16. Metabolic cleavage of cell-penetrating peptides in contact with epithelial models

    DEFF Research Database (Denmark)

    Tréhin, Rachel; Nielsen, Hanne Mørck; Jahnke, Heinz-Georg;

    2004-01-01

    We assessed the metabolic degradation kinetics and cleavage patterns of some selected CPP (cell-penetrating peptides) after incubation with confluent epithelial models. Synthesis of N-terminal CF [5(6)-carboxyfluorescein]-labelled CPP, namely hCT (human calcitonin)-derived sequences, Tat(47-57) and...... penetratin(43-58), was through Fmoc (fluoren-9-ylmethoxycarbonyl) chemistry. Metabolic degradation kinetics of the tested CPP in contact with three cell-cultured epithelial models, MDCK (Madin-Darby canine kidney), Calu-3 and TR146, was evaluated by reversed-phase HPLC. Identification of the resulting...... models and the CPP. The Calu-3 model exhibited the highest proteolytic activity. The patterns of metabolic cleavage of hCT(9-32) were similar in all three models. Initial cleavage of this peptide occurred at the N-terminal domain, possibly by endopeptidase activity yielding both the N- and the C...

  17. Cationic cell-penetrating peptides as vehicles for siRNA delivery.

    Science.gov (United States)

    Beloor, Jagadish; Zeller, Skye; Choi, Chang Seon; Lee, Sang-Kyung; Kumar, Priti

    2015-01-01

    RNA interference mediated gene silencing has tremendous applicability in fields ranging from basic biological research to clinical therapy. However, delivery of siRNA across the cell membrane into the cytoplasm, where the RNA silencing machinery is located, is a significant hurdle in most primary cells. Cell-penetrating peptides (CPPs), peptides that possess an intrinsic ability to translocate across cell membranes, have been explored as a means to achieve cellular delivery of siRNA. Approaches using CPPs by themselves or through incorporation into other siRNA delivery platforms have been investigated with the intent of improving cytoplasmic delivery. Here, we review the utilization of CPPs for siRNA delivery with a focus on strategies developed to enhance cellular uptake, endosomal escape and cytoplasmic localization of CPP/siRNA complexes.

  18. Cell-Penetrating Peptides Selectively Cross the Blood-Brain Barrier In Vivo.

    Directory of Open Access Journals (Sweden)

    Sofie Stalmans

    Full Text Available Cell-penetrating peptides (CPPs are a group of peptides, which have the ability to cross cell membrane bilayers. CPPs themselves can exert biological activity and can be formed endogenously. Fragmentary studies demonstrate their ability to enhance transport of different cargoes across the blood-brain barrier (BBB. However, comparative, quantitative data on the BBB permeability of different CPPs are currently lacking. Therefore, the in vivo BBB transport characteristics of five chemically diverse CPPs, i.e. pVEC, SynB3, Tat 47-57, transportan 10 (TP10 and TP10-2, were determined. The results of the multiple time regression (MTR analysis revealed that CPPs show divergent BBB influx properties: Tat 47-57, SynB3, and especially pVEC showed very high unidirectional influx rates of 4.73 μl/(g × min, 5.63 μl/(g × min and 6.02 μl/(g × min, respectively, while the transportan analogs showed a negligible to low brain influx. Using capillary depletion, it was found that 80% of the influxed peptides effectively reached the brain parenchyma. Except for pVEC, all peptides showed a significant efflux out of the brain. Co-injection of pVEC with radioiodinated bovine serum albumin (BSA did not enhance the brain influx of radiodionated BSA, indicating that pVEC does not itself significantly alter the BBB properties. A saturable mechanism could not be demonstrated by co-injecting an excess dose of non-radiolabeled CPP. No significant regional differences in brain influx were observed, with the exception for pVEC, for which the regional variations were only marginal. The observed BBB influx transport properties cannot be correlated with their cell-penetrating ability, and therefore, good CPP properties do not imply efficient brain influx.

  19. Cell-Penetrating Peptides Selectively Cross the Blood-Brain Barrier In Vivo.

    Science.gov (United States)

    Stalmans, Sofie; Bracke, Nathalie; Wynendaele, Evelien; Gevaert, Bert; Peremans, Kathelijne; Burvenich, Christian; Polis, Ingeborgh; De Spiegeleer, Bart

    2015-01-01

    Cell-penetrating peptides (CPPs) are a group of peptides, which have the ability to cross cell membrane bilayers. CPPs themselves can exert biological activity and can be formed endogenously. Fragmentary studies demonstrate their ability to enhance transport of different cargoes across the blood-brain barrier (BBB). However, comparative, quantitative data on the BBB permeability of different CPPs are currently lacking. Therefore, the in vivo BBB transport characteristics of five chemically diverse CPPs, i.e. pVEC, SynB3, Tat 47-57, transportan 10 (TP10) and TP10-2, were determined. The results of the multiple time regression (MTR) analysis revealed that CPPs show divergent BBB influx properties: Tat 47-57, SynB3, and especially pVEC showed very high unidirectional influx rates of 4.73 μl/(g × min), 5.63 μl/(g × min) and 6.02 μl/(g × min), respectively, while the transportan analogs showed a negligible to low brain influx. Using capillary depletion, it was found that 80% of the influxed peptides effectively reached the brain parenchyma. Except for pVEC, all peptides showed a significant efflux out of the brain. Co-injection of pVEC with radioiodinated bovine serum albumin (BSA) did not enhance the brain influx of radiodionated BSA, indicating that pVEC does not itself significantly alter the BBB properties. A saturable mechanism could not be demonstrated by co-injecting an excess dose of non-radiolabeled CPP. No significant regional differences in brain influx were observed, with the exception for pVEC, for which the regional variations were only marginal. The observed BBB influx transport properties cannot be correlated with their cell-penetrating ability, and therefore, good CPP properties do not imply efficient brain influx.

  20. Effects of Tryptophan Content and Backbone Spacing on the Uptake Efficiency of Cell-Penetrating Peptides

    KAUST Repository

    Rydberg, Hanna A.

    2012-07-10

    Cell-penetrating peptides (CPPs) are able to traverse cellular membranes and deliver macromolecular cargo. Uptake occurs through both endocytotic and nonendocytotic pathways, but the molecular requirements for efficient internalization are not fully understood. Here we investigate how the presence of tryptophans and their position within an oligoarginine influence uptake mechanism and efficiency. Flow cytometry and confocal fluorescence imaging are used to estimate uptake efficiency, intracellular distribution and toxicity in Chinese hamster ovarian cells. Further, membrane leakage and lipid membrane affinity are investigated. The peptides contain eight arginine residues and one to four tryptophans, the tryptophans positioned either at the N-terminus, in the middle, or evenly distributed along the amino acid sequence. Our data show that the intracellular distribution varies among peptides with different tryptophan content and backbone spacing. Uptake efficiency is higher for the peptides with four tryptophans in the middle, or evenly distributed along the peptide sequence, than for the peptide with four tryptophans at the N-terminus. All peptides display low cytotoxicity except for the one with four tryptophans at the N-terminus, which was moderately toxic. This finding is consistent with their inability to induce efficient leakage of dye from lipid vesicles. All peptides have comparable affinities for lipid vesicles, showing that lipid binding is not a decisive parameter for uptake. Our results indicate that tryptophan content and backbone spacing can affect both the CPP uptake efficiency and the CPP uptake mechanism. The low cytotoxicity of these peptides and the possibilities of tuning their uptake mechanism are interesting from a therapeutic point of view. © 2012 American Chemical Society.

  1. Cell penetrating peptide-based polyplexes shelled with polysaccharide to improve stability and gene transfection

    Science.gov (United States)

    Li, Wenyu; Liu, Yajie; Du, Jianwei; Ren, Kefeng; Wang, Youxiang

    2015-04-01

    Cell-penetrating peptides (CPP) have been widely developed as a strategy to enhance cell penetrating ability and transfection. In this work, octa-arginine modified dextran gene vector with pH-sensitivity was developed via host-guest interactions. α-Cyclodextrin was modified with octa-arginine (CDR), which had excellent cell penetrating ability. Dextran was selected as a backbone and modified with azobenzene as guest units by acid-labile imine bonds (Az-I-Dex). The supramolecular polymer CDR/Az-I-Dex with high a C/A molar ratio (molar ratio of CD on CDR to Az on Az-I-Dex) was unfavorable for DNA condensation. The dextran shell of CDR/Az-I-Dex/DNA polyplexes improved the stability under physiological conditions. However, once treated with acetate buffer (pH 5.4) for 3 h, large aggregates formed rapidly due to the cleavage of the dextran shell. As expected, the vector had cell viability of 80% even when the CDR concentration increased to 100 μg mL-1. Moreover, due to the effective cellular uptake efficiency, CDR/Az-I-Dex/DNA polyplexes had 6-300 times higher transfection efficiency than CDR/DNA polyplexes. It was even higher than high molecular weight PLL-based polyplexes of HEK293 T cells. Importantly, chloroquine as an endosomal escape agent could not improve the transfection of CDR/Az-I-Dex/DNA polyplexes, which indicated that the CDR/Az-I-Dex supramolecular polymer had its own ability for endosomal escape. These results suggested that the CPP-based polyplexes shelled with polysaccharide can be promising non-viral gene delivery carriers.Cell-penetrating peptides (CPP) have been widely developed as a strategy to enhance cell penetrating ability and transfection. In this work, octa-arginine modified dextran gene vector with pH-sensitivity was developed via host-guest interactions. α-Cyclodextrin was modified with octa-arginine (CDR), which had excellent cell penetrating ability. Dextran was selected as a backbone and modified with azobenzene as guest units by acid

  2. Cell-penetrating recombinant peptides for potential use in agricultural pest control applications.

    Science.gov (United States)

    Hughes, Stephen R; Dowd, Patrick F; Johnson, Eric T

    2012-09-28

    Several important areas of interest intersect in a class of peptides characterized by their highly cationic and partly hydrophobic structure. These molecules have been called cell-penetrating peptides (CPPs) because they possess the ability to translocate across cell membranes. This ability makes these peptides attractive candidates for delivery of therapeutic compounds, especially to the interior of cells. Compounds with characteristics similar to CPPs and that, in addition, have antimicrobial properties are being investigated as antibiotics with a reduced risk of causing resistance. These CPP-like membrane-acting antimicrobial peptides (MAMPs) are α-helical amphipathic peptides that interact with and perturb cell membranes to produce their antimicrobial effects. One source of MAMPs is spider venom. Because these compounds are toxic to insects, they also show promise for development as biological agents for control of insecticide-resistant agricultural pests. Spider venom is a potential source of novel insect-specific peptide toxins. One example is the small amphipathic α-helical peptide lycotoxin-1 (Lyt-1 or LCTX) from the wolf spider (Lycosa carolinensis). One side of the α-helix has mostly hydrophilic and the other mainly hydrophobic amino acid residues. The positive charge of the hydrophilic side interacts with negatively charged prokaryotic membranes and the hydrophobic side associates with the membrane lipid bilayer to permeabilize it. Because the surface of the exoskeleton, or cuticle, of an insect is highly hydrophobic, to repel water and dirt, it would be expected that amphipathic compounds could permeabilize it. Mutagenized lycotoxin 1 peptides were produced and expressed in yeast cultures that were fed to fall armyworm (Spodoptera frugiperda) larvae to identify the most lethal mutants. Transgenic expression of spider venom toxins such as lycotoxin-1 in plants could provide durable insect resistance.

  3. Cell-Penetrating Recombinant Peptides for Potential Use in Agricultural Pest Control Applications

    Directory of Open Access Journals (Sweden)

    Eric T. Johnson

    2012-09-01

    Full Text Available Several important areas of interest intersect in a class of peptides characterized by their highly cationic and partly hydrophobic structure. These molecules have been called cell-penetrating peptides (CPPs because they possess the ability to translocate across cell membranes. This ability makes these peptides attractive candidates for delivery of therapeutic compounds, especially to the interior of cells. Compounds with characteristics similar to CPPs and that, in addition, have antimicrobial properties are being investigated as antibiotics with a reduced risk of causing resistance. These CPP-like membrane-acting antimicrobial peptides (MAMPs are α-helical amphipathic peptides that interact with and perturb cell membranes to produce their antimicrobial effects. One source of MAMPs is spider venom. Because these compounds are toxic to insects, they also show promise for development as biological agents for control of insecticide-resistant agricultural pests. Spider venom is a potential source of novel insect-specific peptide toxins. One example is the small amphipathic α-helical peptide lycotoxin-1 (Lyt-1 or LCTX from the wolf spider (Lycosa carolinensis. One side of the α-helix has mostly hydrophilic and the other mainly hydrophobic amino acid residues. The positive charge of the hydrophilic side interacts with negatively charged prokaryotic membranes and the hydrophobic side associates with the membrane lipid bilayer to permeabilize it. Because the surface of the exoskeleton, or cuticle, of an insect is highly hydrophobic, to repel water and dirt, it would be expected that amphipathic compounds could permeabilize it. Mutagenized lycotoxin 1 peptides were produced and expressed in yeast cultures that were fed to fall armyworm (Spodoptera frugiperda larvae to identify the most lethal mutants. Transgenic expression of spider venom toxins such as lycotoxin-1 in plants could provide durable insect resistance.

  4. Peptide based DNA nanocarriers incorporating a cell-penetrating peptide derived from neurturin protein and poly-L-lysine dendrons.

    Science.gov (United States)

    Rosli, Nurlina; Christie, Michelle P; Moyle, Peter M; Toth, Istvan

    2015-05-15

    Multicomponent gene delivery systems incorporating cell-penetrating peptides (CPP) from the human neurturin protein (NRTN-30, NRTN(132-161); NRTN-17, NRTN(145-161)) and a poly-l-lysine (PLL) dendron, were synthesized and characterized for plasmid DNA (pDNA) delivery. Acetylated NRTN peptides (Ac-CPP) and peptides conjugated to a PLL dendron (DEN-CPP) efficiently condensed and stabilized pDNA. Complexes between pDNA and DEN-CPP formed smaller and more stable nanoparticles. Flow cytometry experiments showed that pDNA-DEN-CPPs were taken up more efficiently into HeLa cells. There was also no significant difference between NRTN-30 and NRTN-17 for pDNA uptake, indicating that the truncated peptide alone is sufficient as a CPP for pDNA delivery.

  5. CPPsite 2.0: a repository of experimentally validated cell-penetrating peptides.

    Science.gov (United States)

    Agrawal, Piyush; Bhalla, Sherry; Usmani, Salman Sadullah; Singh, Sandeep; Chaudhary, Kumardeep; Raghava, Gajendra P S; Gautam, Ankur

    2016-01-01

    CPPsite 2.0 (http://crdd.osdd.net/raghava/cppsite/) is an updated version of manually curated database (CPPsite) of cell-penetrating peptides (CPPs). The current version holds around 1850 peptide entries, which is nearly two times than the entries in the previous version. The updated data were curated from research papers and patents published in last three years. It was observed that most of the CPPs discovered/ tested, in last three years, have diverse chemical modifications (e.g. non-natural residues, linkers, lipid moieties, etc.). We have compiled this information on chemical modifications systematically in the updated version of the database. In order to understand the structure-function relationship of these peptides, we predicted tertiary structure of CPPs, possessing both modified and natural residues, using state-of-the-art techniques. CPPsite 2.0 also maintains information about model systems (in vitro/in vivo) used for CPP evaluation and different type of cargoes (e.g. nucleic acid, protein, nanoparticles, etc.) delivered by these peptides. In order to assist a wide range of users, we developed a user-friendly responsive website, with various tools, suitable for smartphone, tablet and desktop users. In conclusion, CPPsite 2.0 provides significant improvements over the previous version in terms of data content. PMID:26586798

  6. Cell-Penetrating Peptides: A Comparative Study on Lipid Affinity and Cargo Delivery Properties

    Directory of Open Access Journals (Sweden)

    Paolo Ruzza

    2010-03-01

    Full Text Available A growing number of natural and/or synthetic peptides with cell membrane penetrating capability have been identified and described in the past years. These molecules have been considered promising tools for delivering bioactive compounds into various cell types. Although the mechanism of uptake is still unclear, it is reasonable to assume that the relative contribute of each proposed mechanism could differ for the same peptide, depending on experimental protocol and cargo molecule composition. In this work we try to connect the capability to interact with model lipid membrane and structural and chemical characteristics of CPPs in order to obtain a biophysical classification that predicts the behavior of CPP-cargo molecules in cell systems. Indeed, the binding with cell membrane is one of the primary step in the interaction of CPPs with cells, and consequently the studies on model membrane could become important for understanding peptide-membrane interaction on a molecular level, explaining how CPPs may translocate a membrane without destroying it and how this interactions come into play in shuttling CPPs via different routes with different efficiency. We analyzed by CD and fluorescence spectroscopies the binding properties of six different CPPs (kFGF, Nle54-Antp and Tat derived peptides, and oligoarginine peptides containing 6, 8 or 10 residues in absence or presence of the same cargo peptide (the 392-401pTyr396 fragment of HS1 protein. The phospholipid binding properties were correlated to the conformational and chemical characteristics of peptides, as well as to the cell penetrating properties of the CPP-cargo conjugates. Results show that even if certain physico-chemical properties (conformation, positive charge govern CPP capability to interact with the model membrane, these cannot fully explain cell-permeability properties.

  7. Visualization of the Nucleolus in Living Cells with Cell-Penetrating Fluorescent Peptides.

    Science.gov (United States)

    Martin, Robert M; Herce, Henry D; Ludwig, Anne K; Cardoso, M Cristina

    2016-01-01

    The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of ribosomal RNA synthesis and assembly of ribosomes. The nucleolus plays also a major role in nuclear organization as the largest compartment within the nucleus. The prominent structure of the nucleolus can be detected using contrast light microscopy providing an approximate localization of the nucleolus, but this approach does not allow to determine accurately the three-dimensional structure of the nucleolus in cells and tissues. Immunofluorescence staining with antibodies specific to nucleolar proteins albeit very useful is time consuming, normally antibodies recognize their epitopes only within a small range of species and is applicable only in fixed cells. Here, we present a simple method to selectively and accurately label this ubiquitous subnuclear compartment in living cells of a large range of species using a fluorescently labeled cell-penetrating peptide.

  8. Visualization of the Nucleolus in Living Cells with Cell-Penetrating Fluorescent Peptides.

    Science.gov (United States)

    Martin, Robert M; Herce, Henry D; Ludwig, Anne K; Cardoso, M Cristina

    2016-01-01

    The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of ribosomal RNA synthesis and assembly of ribosomes. The nucleolus plays also a major role in nuclear organization as the largest compartment within the nucleus. The prominent structure of the nucleolus can be detected using contrast light microscopy providing an approximate localization of the nucleolus, but this approach does not allow to determine accurately the three-dimensional structure of the nucleolus in cells and tissues. Immunofluorescence staining with antibodies specific to nucleolar proteins albeit very useful is time consuming, normally antibodies recognize their epitopes only within a small range of species and is applicable only in fixed cells. Here, we present a simple method to selectively and accurately label this ubiquitous subnuclear compartment in living cells of a large range of species using a fluorescently labeled cell-penetrating peptide. PMID:27576711

  9. Hemocompatible poly(NIPAm-MBA-AMPS) colloidal nanoparticles as carriers of anti-inflammatory cell penetrating peptides.

    Science.gov (United States)

    Bartlett, Rush L; Medow, Matthew R; Panitch, Alyssa; Seal, Brandon

    2012-04-01

    Anionic copolymer systems containing sulfated monomers have great potential for delivery of cationic therapeutics, but N-isopropylacrylamide (NIPAm) 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) copolymer nanoparticles have seen limited characterization to date with regard to physical properties relevant to loading and release of therapeutics. Characterization of polymeric nanoparticles incorporating AMPS showed an increased size and decreased thermodynamic swelling ratios of AMPS containing particles as compared to NIPAm nanoparticles lacking AMPS. Particles with increasing AMPS addition showed an increased propensity for uniformity, intraparticle colloidal stability, and drug loading capacity. Peptide encapsulated in particles was shielded from peptide degradation in serum. Particles were shown not impede blood coagulation or to cause hemolysis. This study has demonstrated that AMPS incorporation into traditional NIPAm nanoparticles presents a tunable parameter for changing particle LCST, size, swelling ratio, ζ potential, and cationic peptide loading potential. This one-pot synthesis results in a thermosensitive anionic nanoparticle system that is a potentially useful platform to deliver cationic cell penetrating peptides.

  10. Angiopep-2 and activatable cell penetrating peptide dual modified nanoparticles for enhanced tumor targeting and penetrating.

    Science.gov (United States)

    Mei, Ling; Zhang, Qianyu; Yang, Yuting; He, Qin; Gao, Huile

    2014-10-20

    Delivering chemotherapeutics by nanoparticles into tumor was influenced by at least two factors: specific targeting and highly efficient penetrating of the nanoparticles. In this study, two targeting ligands, angiopep-2 and activatable cell penetrating peptide (ACP), were functionalized onto nanoparticles for tumor targeting delivery. In this system, angiopep-2 is a ligand of low-density lipoprotein receptor-related protein-1 (LRP1) which was highly expressed on tumor cells, and the ACP was constructed by the conjugation of RRRRRRRR (R8) with EEEEEEEE through a matrix metalloproteinase-2 (MMP-2) sensitive linker, enabling the ACP with tumor microenvironment-responsive cell penetrating property. 4h incubation of ACP with MMP-2 leads to over 80% cleavage of ACP, demonstrating ACP indeed possessed MMP-2 responsive property. The constructed dual targeting nanoparticles (AnACNPs) were approximately 110 nm with a polydispersity index of 0.231. In vitro, ACP modification and angiopep-2 modification could both enhance the U-87 MG cell uptake because of the high expression of MMP-2 and LRP-1 on C6 cells. AnACNPs showed higher uptake level than the single ligand modified nanoparticles. The uptake of all particles was time- and concentration-dependent and endosomes were involved. In vivo, AnACNPs showed best tumor targeting efficiency. The distribution of AnACNPs in tumor was higher than all the other particles. After microvessel staining with anti-CD31 antibody, the fluorescent distribution demonstrated AnACNPs could distribute in the whole tumor with the highest intensity. In conclusion, a novel drug delivery system was developed for enhanced tumor dual targeting and elevated cell internalization.

  11. Paramagnetic particles carried by cell-penetrating peptide tracking of bone marrow mesenchymal stem cells, a research in vitro

    International Nuclear Information System (INIS)

    The ability to track the distribution and differentiation of stem cells by high-resolution imaging techniques would have significant clinical and research implications. In this study, a model cell-penetrating peptide was used to carry gadolinium particles for magnetic resonance imaging of the mesenchymal stem cells. The mesenchymal stem cells were isolated from rat bone marrow by Percoll and identified by osteogenic differentiation in vitro. The cell-penetrating peptides labeled with fluorescein-5-isothiocyanate and gadolinium were synthesized by a solid-phase peptide synthesis method and the relaxivity of cell-penetrating peptide-gadolinium paramagnetic conjugate on 400 MHz nuclear magnetic resonance was 5.7311 ± 0.0122 mmol-1 s-1, higher than that of diethylenetriamine pentaacetic acid gadolinium (p < 0.05). Fluorescein imaging confirmed that this new peptide could internalize into the cytoplasm and nucleus. Gadolinium was efficiently internalized into mesenchymal stem cells by the peptide in a time- or concentration-dependent fashion, resulting in intercellular T1 relaxation enhancement, which was obviously detected by 1.5 T magnetic resonance imaging. Cytotoxicity assay and flow cytometric analysis showed the intercellular contrast medium incorporation did not affect cell viability and membrane potential gradient. The research in vitro suggests that the newly constructed peptides could be a vector for tracking mesenchymal stem cells

  12. Generation of GFP Native Protein for Detection of Its Intracellular Uptake by Cell-Penetrating Peptides.

    Science.gov (United States)

    Kadkhodayan, S; Sadat, S M; Irani, S; Fotouhi, F; Bolhassani, A

    2016-01-01

    Different types of lipid- and polymer-based vectors have been developed to deliver proteins into cells, but these methods showed relatively poor efficiency. Recently, a group of short, highly basic peptides known as cell-penetrating peptides (CPPs) were used to carry polypeptides and proteins into cells. In this study, expression and purification of GFP protein was performed using the prokaryotic pET expression system. We used two amphipathic CPPs (Pep-1 and CADY-2) as a novel delivery system to transfer the GFP protein into cells. The morphological features of the CPP/GFP complexes were studied by scanning electron microscopy (SEM), Zetasizer, and SDS-PAGE. The efficiency of GFP transfection using Pep-1 and CADY-2 peptides and TurboFect reagent was compared with FITC-antibody protein control delivered by these transfection vehicles in the HEK-293T cell line. SEM data confirmed formation of discrete nanoparticles with a diameter of below 300 nm. Moreover, formation of the complexes was detected using SDS-PAGE as two individual bands, indicating non-covalent interaction. The size and homogeneity of Pep-1/GFP and CADY-2/GFP complexes were dependent on the ratio of peptide/cargo formulations, and responsible for their biological efficiency. The cells transfected by Pep-1/GFP and CADY-2/GFP complexes at a molar ratio of 20 : 1 demonstrated spreading green regions using fluorescent microscopy. Flow cytometry results showed that the transfection efficiency of Pep-based nanoparticles was similar to CADY-based nanoparticles and comparable with TurboFect-protein complexes. These data open an efficient way for future therapeutic purposes. PMID:27516189

  13. Efficient Cargo Delivery into Adult Brain Tissue Using Short Cell-Penetrating Peptides.

    Directory of Open Access Journals (Sweden)

    Caghan Kizil

    Full Text Available Zebrafish brains can regenerate lost neurons upon neurogenic activity of the radial glial progenitor cells (RGCs that reside at the ventricular region. Understanding the molecular events underlying this ability is of great interest for translational studies of regenerative medicine. Therefore, functional analyses of gene function in RGCs and neurons are essential. Using cerebroventricular microinjection (CVMI, RGCs can be targeted efficiently but the penetration capacity of the injected molecules reduces dramatically in deeper parts of the brain tissue, such as the parenchymal regions that contain the neurons. In this report, we tested the penetration efficiency of five known cell-penetrating peptides (CPPs and identified two- polyR and Trans - that efficiently penetrate the brain tissue without overt toxicity in a dose-dependent manner as determined by TUNEL staining and L-Plastin immunohistochemistry. We also found that polyR peptide can help carry plasmid DNA several cell diameters into the brain tissue after a series of coupling reactions using DBCO-PEG4-maleimide-based Michael's addition and azide-mediated copper-free click reaction. Combined with the advantages of CVMI, such as rapidness, reproducibility, and ability to be used in adult animals, CPPs improve the applicability of the CVMI technique to deeper parts of the central nervous system tissues.

  14. Comparative mechanisms of protein transduction mediated by cell-penetrating peptides in prokaryotes.

    Science.gov (United States)

    Liu, Betty Revon; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

    2015-04-01

    Bacterial and archaeal cell envelopes are complex multilayered barriers that serve to protect these microorganisms from their extremely harsh and often hostile environments. Import of exogenous proteins and nanoparticles into cells is important for biotechnological applications in prokaryotes. In this report, we demonstrate that cell-penetrating peptides (CPPs), both bacteria-expressed nona-arginine peptide (R9) and synthetic R9 (SR9), are able to deliver noncovalently associated proteins or quantum dots into four representative species of prokaryotes: cyanobacteria (Synechocystis sp. PCC 6803), bacteria (Escherichia coli DH5α and Arthrobacter ilicis D-50), and archaea (Thermus aquaticus). Although energy-dependent endocytosis is generally accepted as a hallmark that distinguishes eukaryotes from prokaryotes, cellular uptake of uncomplexed green fluorescent protein (GFP) by cyanobacteria was mediated by classical endocytosis. Mechanistic studies revealed that macropinocytosis plays a critical and major role in CPP-mediated protein transduction in all four prokaryotes. Membrane damage was not observed when cyanobacterial cells were treated with R9/GFP complexes, nor was cytotoxicity detected when bacteria or archaea were treated with SR9/QD complexes in the presence of macropinocytic inhibitors. These results indicate that the uptake of protein is not due to a compromise of membrane integrity in cyanobacteria, and that CPP can be an effective and safe carrier for membrane trafficking in prokaryotic cells. Our investigation provides important new insights into the transport of exogenous proteins and nanoparticles across the complex membrane systems of prokaryotes.

  15. Nanocarriers Conjugated with Cell Penetrating Peptides: New Trojan Horses by Modern Ulysses.

    Science.gov (United States)

    Zappavigna, Silvia; Misso, Gabriella; Falanga, Annarita; Perillo, Emiliana; Novellino, Ettore; Galdiero, Massimiliano; Grieco, Paolo; Caraglia, Michele; Galdiero, Stefania

    2016-01-01

    Nanomedicine has opened the way to the design of more efficient diagnostics and therapeutics. Moreover, recent literature has illustrated the use of short cationic and/or amphipathic peptides, known as cell-penetrating peptides (CPPs), for mediating advanced drug delivery. CPPs exploit their ability to enter cells and enhance the uptake of many cargoes ranging from small molecules to proteins. The distinctive properties of nanocarriers (NC) based systems provide unforeseen benefits over pure drugs for biomedical applications and constitute a challenging research field particularly focused on imaging and delivery; nonetheless, several problems have to be overcome to make them a viable option in clinic. The use of CPPs improves significantly their delivery to specific intracellular targets and thus readily contributes to their use both for effective tumor therapy and gene therapy. A key issue is related to their mechanism of uptake, because although classical CPPs enhance NCs' uptake, the entry mechanism involves the endocytic pathway, which means that the delivered material is sequestered within vesicles and only a small amount will escape from this environment and reach the desired target. In this review, we will summarize recent advances in the use of CPP for enhanced delivery of nanocarriers, nucleic acids, and drugs, we will discuss their uptake mechanisms and we will describe novel approaches to improve endosomal escape of internalized nanosystems. PMID:27087493

  16. Cellular uptake but low permeation of human calcitonin-derived cell penetrating peptides and Tat(47-57) through well-differentiated epithelial models

    DEFF Research Database (Denmark)

    Tréhin, Rachel; Krauss, Ulrike; Beck-Sickinger, Annette G;

    2004-01-01

    To investigate whether cell penetrating peptides (CPP) derived from human calcitonin (hCT) possess, in addition to cellular uptake, the capacity to deliver their cargo through epithelial barriers.......To investigate whether cell penetrating peptides (CPP) derived from human calcitonin (hCT) possess, in addition to cellular uptake, the capacity to deliver their cargo through epithelial barriers....

  17. Development of a Cell-penetrating Peptide that Exhibits Responsive Changes in its Secondary Structure in the Cellular Environment.

    Science.gov (United States)

    Yamashita, Hiroko; Kato, Takuma; Oba, Makoto; Misawa, Takashi; Hattori, Takayuki; Ohoka, Nobumichi; Tanaka, Masakazu; Naito, Mikihiko; Kurihara, Masaaki; Demizu, Yosuke

    2016-01-01

    Cell-penetrating peptides (CPP) are received a lot of attention as an intracellular delivery tool for hydrophilic molecules such as drugs, proteins, and DNAs. We designed and synthesized nona-arginine analogues 1-5 [FAM-β-Ala-(l-Arg-l-Arg-l-Pro)3-(Gly)3-NH2 (1), FAM-β-Ala-(l-Arg-l-Arg-l-Pro(NH2))3-(Gly)3-NH2 (2), FAM-β-Ala-(l-Arg-l-Arg-l-Pro(Gu))3-(Gly)3-NH2 (3), FAM-β-Ala-(l-Arg)2-(l-Pro(Gu))2-(l-Arg)4-l-Pro(Gu)-(Gly)3-NH2 (4), and FAM-β-Ala-(l-Arg)6-(l-Pro(Gu))3-(Gly)3-NH2 (5)] containing l-proline (l-Pro) or cationic proline derivatives (l-Pro(NH2) and l-Pro(Gu)), and investigated their cell-penetrating abilities. Interestingly, only peptide 3 having the side-chain guanidinyl l-Pro(Gu) exhibited a secondary structural change in cellular environment. Specifically, peptide 3 formed a random structure in hydrophilic conditions, whereas it formed a helical structure under amphipathic conditions. Furthermore, during cellular permeability tests, peptide 3 demonstrated greater cell-penetrating activity than other peptides and effectively transported plasmid DNA into HeLa cells. Thus, l-Pro(Gu)-containing peptide 3 may be a useful candidate as a gene delivery carrier. PMID:27609319

  18. Development of a Cell-penetrating Peptide that Exhibits Responsive Changes in its Secondary Structure in the Cellular Environment

    Science.gov (United States)

    Yamashita, Hiroko; Kato, Takuma; Oba, Makoto; Misawa, Takashi; Hattori, Takayuki; Ohoka, Nobumichi; Tanaka, Masakazu; Naito, Mikihiko; Kurihara, Masaaki; Demizu, Yosuke

    2016-01-01

    Cell-penetrating peptides (CPP) are received a lot of attention as an intracellular delivery tool for hydrophilic molecules such as drugs, proteins, and DNAs. We designed and synthesized nona-arginine analogues 1–5 [FAM-β-Ala-(l-Arg-l-Arg-l-Pro)3-(Gly)3-NH2 (1), FAM-β-Ala-(l-Arg-l-Arg-l-ProNH2)3-(Gly)3-NH2 (2), FAM-β-Ala-(l-Arg-l-Arg-l-ProGu)3-(Gly)3-NH2 (3), FAM-β-Ala-(l-Arg)2-(l-ProGu)2-(l-Arg)4-l-ProGu-(Gly)3-NH2 (4), and FAM-β-Ala-(l-Arg)6-(l-ProGu)3-(Gly)3-NH2 (5)] containing l-proline (l-Pro) or cationic proline derivatives (l-ProNH2 and l-ProGu), and investigated their cell-penetrating abilities. Interestingly, only peptide 3 having the side-chain guanidinyl l-ProGu exhibited a secondary structural change in cellular environment. Specifically, peptide 3 formed a random structure in hydrophilic conditions, whereas it formed a helical structure under amphipathic conditions. Furthermore, during cellular permeability tests, peptide 3 demonstrated greater cell-penetrating activity than other peptides and effectively transported plasmid DNA into HeLa cells. Thus, l-ProGu-containing peptide 3 may be a useful candidate as a gene delivery carrier. PMID:27609319

  19. Conjugation to the cell-penetrating peptide TAT potentiates the photodynamic effect of carboxytetramethylrhodamine.

    Directory of Open Access Journals (Sweden)

    Divyamani Srinivasan

    Full Text Available BACKGROUND: Cell-penetrating peptides (CPPs can transport macromolecular cargos into live cells. However, the cellular delivery efficiency of these reagents is often suboptimal because CPP-cargo conjugates typically remain trapped inside endosomes. Interestingly, irradiation of fluorescently labeled CPPs with light increases the release of the peptide and its cargos into the cytosol. However, the mechanism of this phenomenon is not clear. Here we investigate the molecular basis of the photo-induced endosomolytic activity of the prototypical CPPs TAT labeled to the fluorophore 5(6-carboxytetramethylrhodamine (TMR. METHODOLOGY/PRINCIPAL FINDINGS: We report that TMR-TAT acts as a photosensitizer that can destroy membranes. TMR-TAT escapes from endosomes after exposure to moderate light doses. However, this is also accompanied by loss of plasma membrane integrity, membrane blebbing, and cell-death. In addition, the peptide causes the destruction of cells when applied extracellularly and also triggers the photohemolysis of red blood cells. These photolytic and photocytotoxic effects were inhibited by hydrophobic singlet oxygen quenchers but not by hydrophilic quenchers. CONCLUSIONS/SIGNIFICANCE: Together, these results suggest that TAT can convert an innocuous fluorophore such as TMR into a potent photolytic agent. This effect involves the targeting of the fluorophore to cellular membranes and the production of singlet oxygen within the hydrophobic environment of the membranes. Our findings may be relevant for the design of reagents with photo-induced endosomolytic activity. The photocytotoxicity exhibited by TMR-TAT also suggests that CPP-chromophore conjugates could aid the development of novel Photodynamic Therapy agents.

  20. Enhancing tumor-specific intracellular delivering efficiency of cell-penetrating peptide by fusion with a peptide targeting to EGFR.

    Science.gov (United States)

    Nguyen, Long The; Yang, Xu-Zhong; Du, Xuan; Wang, Jia-Wei; Zhang, Rui; Zhao, Jian; Wang, Fu-Jun; Dong, Yang; Li, Peng-Fei

    2015-05-01

    Cell-penetrating peptides (CPPs) are well known as intracellular delivery vectors. However, unsatisfactory delivery efficiency and poor specificity are challenging barriers to CPP applications at the clinical trial stage. Here, we showed that S3, an EGFR-binding domain derived from vaccinia virus growth factor, when fused to a CPP such as HBD or TAT can substantially enhance its internalization efficiency and tumor selectivity. The uptake of S3-HBD (S3H) recombinant molecule by tumor cells was nearly 80 folds increased compared to HBD alone. By contrast, the uptake of S3H by non-neoplastic cells still remained at a low level. The specific recognition between S3 and its receptor, EGFR, as well as between HBD and heparan sulfate proteoglycans on the cell surface was essential for these improvements, suggesting a syngeneic effect between the two functional domains in conjugation. This syngeneic effect is likely similar to that of the heparin-binding epidermal growth factor, which is highly abundant particularly in metastatic tumors. The process that S3H entered cells was dependent on time, dosage, and energy, via macropinocytosis pathway. With excellent cell-penetrating efficacy and a novel tumor-targeting ability, S3H appears as a promising candidate vector for targeted anti-cancer drug delivery. PMID:25655386

  1. Porous silicon-cell penetrating peptide hybrid nanocarrier for intracellular delivery of oligonucleotides.

    Science.gov (United States)

    Rytkönen, Jussi; Arukuusk, Piret; Xu, Wujun; Kurrikoff, Kaido; Langel, Ulo; Lehto, Vesa-Pekka; Närvänen, Ale

    2014-02-01

    The largest obstacle to the use of oligonucleotides as therapeutic agents is the delivery of these large and negatively charged biomolecules through cell membranes into intracellular space. Mesoporous silicon (PSi) is widely recognized as a potential material for drug delivery purposes due to its several beneficial features like large surface area and pore volume, high loading capacity, biocompatibility, and biodegradability. In the present study, PSi nanoparticles stabilized by thermal oxidation or thermal carbonization and subsequently modified by grafting aminosilanes on the surface are utilized as an oligonucleotide carrier. Splice correcting oligonucleotides (SCOs), a model oligonucleotide drug, were loaded into the positively charged PSi nanoparticles with a loading degree as high as 14.3% (w/w). Rapid loading was achieved by electrostatic interactions, with the loading efficiencies reaching 100% within 5 min. The nanoparticles were shown to deliver and release SCOs, in its biologically active form, inside cells when formulated together with cell penetrating peptides (CPP). The biological effect was monitored with splice correction assay and confocal microscopy utilizing HeLa pLuc 705 cells. Furthermore, the use of PSi carrier platform in oligonucleotide delivery did not reduce the cell viability. Additionally, the SCO-CPP complexes formed in the pores of the carrier were stabilized against proteolytic digestion. The advantageous properties of protecting and releasing the cargo and the possibility to further functionalize the carrier surface make the hybrid nanoparticles a potential system for oligonucleotide delivery.

  2. SKOV-3 cell imaging by paramagnetic particles labeled with hairpin cell-penetrating peptides

    Institute of Scientific and Technical Information of China (English)

    ZHAI Xiao-hui; LIU Min; GUO Xiao-juan; WANG Si-cen; ZHANG Hong-xia; GUO You-min

    2011-01-01

    Background The hairpin cell-penetrating peptides (hCPPs) demonstrate an interesting characteristic of conditioned activation by molecules. We hypothesized that hCPPs have the potential to selectively deliver a paramagnetic gadolinium probe into the matrix metalloproteinase 2 (MMP-2) positive human ovary adenocarcinoma cell lines,SKOV-3.Methods hCPPs were synthesized and labeled with 1,4,7,10-tetraazacyclododecane-N,N',N",N'"-tetraacetic acid gadolinium (Ⅲ) (Gd-DOTA) and fluorescein isothiocyanate (FITC) by f-moc strategy using a standard solid phase peptide synthesis protocol. MMP-2 expression and activity were demonstrated by reverse transcriptase polymerase chain reaction (RT-PCR) and zymography. Internalization and location of hCPPs in SKOV-3 cells were observed by fluorescein imaging and flow cytometery. Selective delivery of Gd-DOTA in SKOV-3 cells was observed by magnetic resonance imaging (MRI) and transmission electron microscopy (TEM).Results The uptake of hCPPs by SKOV-3 cells depended on the activity of MMP-2. T1WI signals of SKOV-3 cells treated with Gd-DOTA-hCPPs suggested the uptake of Gd-DOTA-hCPPs increased in a time- (r=0.990, P <0.01) and concentration-dependent manner (r=0.964, P <0.001), but was inhibited by a MMP-2 inhibitor. Electron-dense particles observed in the cytoplasm and nucleus by transmission electron microscopy proved the intracellular penetration of gadolinium.Conclusions hCPPs can be used as an effective vector for an MRI molecular probe to assess the activity of MMP-2.

  3. [Cell-penetrating chimeric apoptotic peptide AVPI-LMWP/DNA co-delivery system for cancer therapy].

    Science.gov (United States)

    Tan, Jiao; Wang, Ya-Ping; Wang, Hui-Xin; Liang, Jian-Ming; Zhang, Meng; Sun, Xun; Huang, Yong-Zhuo

    2014-12-01

    To develop a cell-penetrating chimeric apoptotic peptide AVPI-LMWP/DNA co-delivery system for cancer therapy, we prepared the AVPI-LMWP/pTRAIL self-assembled complexes containing a therapeutic combination of peptide drug AVPI and DNA drug TRAIL. The chimeric apoptotic peptide AVPI-LMWP was synthesized using the standard solid-phase synthesis. The cationic AVPI-LMWP could condense pTRAIL by electrostatic interaction. The physical-chemical properties of the AVPI-LMWP/pTRAIL complexes were characterized. The cellular uptake efficiency and the inhibitory activity of the AVPI-LMWP/pTRAIL complexes on tumor cell were also performed. The results showed that the AVPI-LMWP/pTRAIL complexes were successfully prepared by co-incubation. With the increase of mass ratio (AVPI-LMWP/DNA), the particle size was decreased and the zeta potential had few change. Agarose gel electrophoresis showed that AVPI-LMWP could fully bind and condense pTRAIL at a mass ratio above 15:1. Cellular uptake efficiency was improved along with the increased ratio of W(AVPI-LMWP)/WpTRAIL. The in vitro cytotoxicity experiments demonstrated that the AVPI-LMWP/pTRAIL (W:W = 20:1) complexes was significantly more effective than the pTRAIL, AVPI-LMWP alone or LMWP/pTRAIL complexes on inhibition of HeLa cell growth. Our studies indicated that the AVPI-LMWP/pTRAIL co-delivery system could deliver plasmid into HeLa cell and induce tumor cell apoptosis efficiently, which showed its potential in cancer therapy using combination of apoptoic peptide and gene drugs.

  4. Modeling the endosomal escape of cell-penetrating peptides using a transmembrane pH gradient.

    Science.gov (United States)

    Madani, Fatemeh; Abdo, Rania; Lindberg, Staffan; Hirose, Hisaaki; Futaki, Shiroh; Langel, Ulo; Gräslund, Astrid

    2013-04-01

    Cell-penetrating peptides (CPPs) can internalize into cells with covalently or non-covalently bound biologically active cargo molecules, which by themselves are not able to pass the cell membrane. Direct penetration and endocytosis are two main pathways suggested for the cellular uptake of CPPs. Cargo molecules which have entered the cell via an endocytotic pathway must be released from the endosome before degradation by enzymatic processes and endosomal acidification. Endosomal entrapment seems to be a major limitation in delivery of these molecules into the cytoplasm. Bacteriorhodopsin (BR) asymmetrically introduced into large unilamellar vesicles (LUVs) was used to induce a pH gradient across the lipid bilayer. By measuring pH outside the LUVs, we observed light-induced proton pumping mediated by BR from the outside to the inside of the LUVs, creating an acidic pH inside the LUVs, similar to the late endosomes in vivo. Here we studied the background mechanism(s) of endosomal escape. 20% negatively charged LUVs were used as model endosomes with incorporated BR into the membrane and fluorescein-labeled CPPs entrapped inside the LUVs, together with a fluorescence quencher. The translocation of different CPPs in the presence of a pH gradient across the membrane was studied. The results show that the light-induced pH gradient induced by BR facilitates vesicle membrane translocation, particularly for the intermediately hydrophobic CPPs, and much less for hydrophilic CPPs. The presence of chloroquine inside the LUVs or addition of pyrenebutyrate outside the LUVs destabilizes the vesicle membrane, resulting in significant changes of the pH gradient across the membrane.

  5. Conjugation of a cell-penetrating peptide to parathyroid hormone affects its structure, potency, and transepithelial permeation

    DEFF Research Database (Denmark)

    Kristensen, Mie; de Groot, Anne Marit; Berthelsen, Jens;

    2015-01-01

    hormone, i.e. PTH(1-34), and to evaluate the effect with regards to secondary structure, potency in Saos-2 cells, immunogenicity, safety as well as the transepithelial permeation across monolayers by using the Caco-2 cell culture model. Further, co-administration of CPP and PTH(1-34) as an alternative......Delivery of therapeutic peptides and proteins by the use of cell-penetrating peptides (CPPs) as carriers has been suggested as a feasible strategy. The aim of the present study was to investigate the effect of conjugating a series of well-known CPPs to the biologically active part of parathyroid...

  6. Effects of Lipid Composition on the Entry of Cell-Penetrating Peptide Oligoarginine into Single Vesicles.

    Science.gov (United States)

    Sharmin, Sabrina; Islam, Md Zahidul; Karal, Mohammad Abu Sayem; Alam Shibly, Sayed Ul; Dohra, Hideo; Yamazaki, Masahito

    2016-08-01

    The cell-penetrating peptide R9, an oligoarginine comprising nine arginines, has been used to transport biological cargos into cells. However, the mechanisms underlying its translocation across membranes remain unclear. In this report, we investigated the entry of carboxyfluorescein (CF)-labeled R9 (CF-R9) into single giant unilamellar vesicles (GUVs) of various lipid compositions and the CF-R9-induced leakage of a fluorescent probe, Alexa Fluor 647 hydrazide (AF647), using a method developed recently by us. First, we investigated the interaction of CF-R9 with dioleoylphosphatidylglycerol (DOPG)/dioleoylphosphatidylcholine (DOPC) GUVs containing AF647 and small DOPG/DOPC vesicles. The fluorescence intensity of the GUV membrane due to CF-R9 (i.e., the rim intensity) increased with time to a steady-state value, and then the fluorescence intensity of the membranes of the small vesicles in the GUV lumen increased without leakage of AF647. This result indicates that CF-R9 entered the GUV lumen from the outside by translocating across the lipid membrane without forming pores through which AF647 could leak. The fraction of entry of CF-R9 at 6 min in the absence of pore formation, Pentry (6 min), increased with an increase in CF-R9 concentration, but the CF-R9 concentration in the lumen was low. We obtained similar results for dilauroyl-PG (DLPG)/ditridecanoyl-PC (DTPC) (2/8) GUVs. The values of Pentry (6 min) of CF-R9 for DLPG/DTPC (2/8) GUVs were larger than those obtained with DOPG/DOPC (2/8) GUVs at the same CF-R9 concentrations. In contrast, a high concentration of CF-R9 induced pores in DLPG/DTPC (4/6) GUVs through which CF-R9 entered the GUV lumen, so the CF-R9 concentration in the lumen was higher. However, CF-R9 could not enter DOPG/DOPC/cholesterol (2/6/4) GUVs. Analysis of the rim intensity showed that CF-R9 was located only in the outer monolayer of the DOPG/DOPC/cholesterol (2/6/4) GUVs. On the basis of analyses of these results, we discuss the elementary

  7. riDOM, a cell-penetrating peptide. Interaction with DNA and heparan sulfate.

    Science.gov (United States)

    Québatte, Gabriela; Kitas, Eric; Seelig, Joachim

    2013-09-19

    DNA condensation in the presence of polycationic molecules is a well-known phenomenon exploited in gene delivery. riDOM (retro-inverso dioleoylmelittin) is a cell-penetrating peptide with excellent transporter properties for DNA. It is a chimeric molecule where ri-melittin is fused to dioleoylphosphoethanolamine. The physical-chemical properties of riDOM in solution and in the presence of DNA and heparan sulfate were investigated with spectroscopic and thermodynamic methods. Dynamic light scattering shows that riDOM in solution aggregates to well-defined nanoparticles with a diameter of ∼13 nm and a ζ-potential of 22 mV, composed of about 220-270 molecules. Binding of riDOM to DNA was studied with dynamic light scattering, ζ-potential measurements, and isothermal titration calorimetry and was compared with authentic melittin-DNA interaction. riDOM binds tightly to DNA with a microscopic binding constant of 5 × 10(7) M(-1) and a stoichiometry of 12 riDOM per 10 DNA base pairs. In the complex the DNA double strand is completely shielded by the more hydrophobic riDOM molecules. Authentic melittin binds to DNA with a much lower binding constant of 5 × 10(6) M(-1) and lower stoichiometry of 5 melittin per 10 DNA base pairs. The binding enthalpies for riDOM and melittin are small and the binding reactions are entropy-driven. Sulfated glycosaminoglycans such as heparan sulfate are also linear molecules with a negative charge. riDOM binding to heparan sulfate on cell surfaces can therefore interfere with DNA-riDOM binding. riDOM-heparan sulfate complex formation was characterized by isothermal titration calorimetry and spectroscopic methods. The binding constant of riDOM for heparan sulfate is K ≈ 2 × 10(6) M(-1). Authentic melittin has a similar binding constant but riDOM shows a 3-fold higher packing density on heparan sulfate than the distinctly smaller melittin.

  8. Stearylated antimicrobial peptide [D]-K6L9 with cell penetrating property for efficient gene transfer.

    Science.gov (United States)

    Zhang, Wei; Song, Jingjing; Liang, Ranran; Zheng, Xin; Chen, Jianbo; Li, Guolin; Zhang, Bangzhi; Wang, Kairong; Yan, Xiang; Wang, Rui

    2013-08-01

    Stearyl-cell penetrating peptides (CPPs) have been proved to be efficient nonviral gene vectors. Due to the similarities between antimicrobial peptides and CPPs, we constructed a novel type of gene vectors by introducing stearyl moiety to the N-terminus of antimicrobial peptide [D]-K6L9. In this study, stearyl-[D]-K6L9 delivered plasmids into cells by clathrin- and caveolin-mediated endocytosis. Gratifyingly, stearyl-[D]-K6L9 exhibited high transfection efficiency and almost reached the level of Lipofectamine 2000. Taken together, the combination of the stearyl moiety with [D]-K6L9 provides a novel framework for the development of excellent nonviral gene vectors. PMID:23727033

  9. Combined effect of a peptide–morpholino oligonucleotide conjugate and a cell-penetrating peptide as an antibiotic

    OpenAIRE

    Wesolowski, Donna; Alonso, Dulce; Altman, Sidney

    2013-01-01

    A cell-penetrating peptide (CPP)–morpholino oligonucleotide (MO) conjugate (PMO) that has an antibiotic effect in culture had some contaminating CPPs in earlier preparations. The mixed conjugate had gene-specific and gene-nonspecific effects. An improved purification procedure separates the PMO from the free CPP and MO. The gene-specific effects are a result of the PMO, and the nonspecific effects are a result of the unlinked, unreacted CPP. The PMO and the CPP can be mixed together, as has b...

  10. 细胞穿透肽的研究进展%Recent advances in research on cell penetrating peptides

    Institute of Scientific and Technical Information of China (English)

    李凤英; 何京; 钟海军

    2013-01-01

    细胞穿透肽(cell penetrating peptides,CPP)是一类能够通过生物膜进入细胞的短肽,它具有一些其他运载系统无法比拟的优点:低浓度条件下,可以穿过细胞膜进入细胞并且不会对膜造成明显破坏和损伤;能介导各种物质包括小分子、核酸、蛋白多肽以及纳米粒子等入胞;高效、低毒.本文就CPP的分类、与载物的连接方式、穿膜机制、应用和常用研究方法等方面进行系统的综述,并对CPP的临床应用前景进行展望.%Cell penetrating peptides (CPP) are a class of peptides of less than 35 amino acids with a remarkable capacity for membrane transportation.Compared with other delivery systems,the CPP-based system has several advantages.These peptides are able to penetrate into cells at low micromolar concentrations in vitro and in vivo without causing significant membrane damage.Furthermore,they constitute very promising tools for cellular import of various substances including small molecules,nucleic acids,proteins and nanoparticles.In this review,the categories,chemical linkage with cargoes,cellular uptake mechanism,applications and research methods of CPP are systematically summarized.The research future of CPP,especially the future of its clinical application,is also introduced.

  11. Modeling the endosomal escape of cell-penetrating peptides: transmembrane pH gradient driven translocation across phospholipid bilayers.

    Science.gov (United States)

    Magzoub, Mazin; Pramanik, Aladdin; Gräslund, Astrid

    2005-11-15

    Cell-penetrating peptides (CPPs) are able to mediate the efficient cellular uptake of a wide range of cargoes. Internalization of a number of CPPs requires uptake by endocytosis, initiated by binding to anionic cell surface heparan sulfate (HS), followed by escape from endosomes. To elucidate the endosomal escape mechanism, we have modeled the process for two CPPs: penetratin (pAntp) and the N-terminal signal peptide of the unprocessed bovine prion protein (bPrPp). Large unilamellar phospholipid vesicles (LUVs) were produced encapsulating either peptide, and an ionophore, nigericin, was used to create a transmembrane pH gradient (DeltapH(mem), inside acidic) similar to the one arising in endosomes in vivo. In the absence of DeltapH(mem), no pAntp escape from the LUVs is observed, while a fraction of bPrPp escapes. In the presence of DeltapH(mem), a significant amount of pAntp escapes and an even higher degree of bPrPp escape takes place. These results, together with the differences in kinetics of escape, indicate different escape mechanisms for the two peptides. A minimum threshold peptide concentration exists for the escape of both peptides. Coupling of the peptides to a cargo reduces the fraction escaping, while complexation with HS significantly hinders the escape. Fluorescence correlation spectroscopy results show that during the escape process the LUVs are intact. Taken together, these results suggest a model for endosomal escape of CPPs: DeltapH(mem)-mediated mechanism, following dissociation from HS of the peptides, above a minimum threshold peptide concentration, in a process that does not involve lysis of the vesicles.

  12. The spacer arm length in cell-penetrating peptides influences chitosan/siRNA nanoparticle delivery for pulmonary inflammation treatment

    Science.gov (United States)

    Jeong, Eun Ju; Choi, Moonhwan; Lee, Jangwook; Rhim, Taiyoun; Lee, Kuen Yong

    2015-11-01

    Although chitosan and its derivatives have been frequently utilized as delivery vehicles for small interfering RNA (siRNA), it is challenging to improve the gene silencing efficiency of chitosan-based nanoparticles. In this study, we hypothesized that controlling the spacer arm length between a cell-penetrating peptide (CPP) and a nanoparticle could be critical to enhancing the cellular uptake as well as the gene silencing efficiency of conventional chitosan/siRNA nanoparticles. A peptide consisting of nine arginine units (R9) was used as a CPP, and the spacer arm length was controlled by varying the number of glycine units between the peptide (R9Gn) and the nanoparticle (n = 0, 4, and 10). Various physicochemical characteristics of R9Gn-chitosan/siRNA nanoparticles were investigated in vitro. Increasing the spacing arm length did not significantly affect the complex formation between R9Gn-chitosan and siRNA. However, R9G10-chitosan was much more effective in delivering genes both in vitro and in vivo compared with non-modified chitosan (without the peptide) and R9-chitosan (without the spacer arm). Chitosan derivatives modified with oligoarginine containing a spacer arm can be considered as potential delivery vehicles for various genes.Although chitosan and its derivatives have been frequently utilized as delivery vehicles for small interfering RNA (siRNA), it is challenging to improve the gene silencing efficiency of chitosan-based nanoparticles. In this study, we hypothesized that controlling the spacer arm length between a cell-penetrating peptide (CPP) and a nanoparticle could be critical to enhancing the cellular uptake as well as the gene silencing efficiency of conventional chitosan/siRNA nanoparticles. A peptide consisting of nine arginine units (R9) was used as a CPP, and the spacer arm length was controlled by varying the number of glycine units between the peptide (R9Gn) and the nanoparticle (n = 0, 4, and 10). Various physicochemical characteristics of

  13. Enhancement of intracellular concentration and biological activity of PNA after conjugation with a cell-penetrating synthetic model peptide.

    Science.gov (United States)

    Oehlke, Johannes; Wallukat, Gerd; Wolf, Yvonne; Ehrlich, Angelika; Wiesner, Burkhard; Berger, Hartmut; Bienert, Michael

    2004-07-01

    In order to evaluate the ability of the cell-penetrating alpha-helical amphipathic model peptide KLALKLALKALKAALKLA-NH(2) (MAP) to deliver peptide nucleic acids (PNAs) into mammalian cells, MAP was covalently linked to the 12-mer PNA 5'-GGAGCAGGAAAG-3' directed against the mRNA of the nociceptin/orphanin FQ receptor. The cellular uptake of both the naked PNA and its MAP-conjugate was studied by means of capillary electrophoresis combined with laser-induced fluorescence detection, confocal laser scanning microscopy and fluorescence-activated cell sorting. Incubation with the fluorescein-labelled PNA-peptide conjugate led to three- and eightfold higher intracellular concentrations in neonatal rat cardiomyocytes and CHO cells, respectively, than found after exposure of the cells to the naked PNA. Correspondingly, pretreatment of spontaneously-beating neonatal rat cardiomyocytes with the PNA-peptide conjugate and the naked PNA slowed down the positive chronotropic effect elicited by the neuropeptide nociceptin by 10- and twofold, respectively. The main reasons for the higher bioavailability of the PNA-peptide conjugate were found to be a more rapid cellular uptake in combination with a lowered re-export and resistance against influences of serum.

  14. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation

    International Nuclear Information System (INIS)

    Highlights: ► Reversible CPP dimerisation is a simple yet efficient strategy to improve delivery. ► Dimer formation enhances peptiplex stability, resulting in increased transfection. ► By dimerisation, the CPP EB1 even gain endosomal escape properties while lowering cytotoxicity. -- Abstract: Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes (“peptiplexes”) enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the “chelate effect” and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide dimer resulting from its stronger binding to DNA.

  15. State of the Art in the Studies on Crotamine, a Cell Penetrating Peptide from South American Rattlesnake

    Directory of Open Access Journals (Sweden)

    Irina Kerkis

    2014-01-01

    Full Text Available Animal venoms comprise a naturally selected cocktail of bioactive peptides/proteins and other molecules, each of which playing a defined role thanks to the highly specific interactions with diverse molecular targets found in the prey. Research focused on isolation, structural, and functional characterizations of novel natural biologics (bioactive peptides/proteins from natural sources has a long way to go through from the basic science to clinical applications. Herein, we overview the structural and functional characteristics of the myoneurotoxin crotamine, firstly isolated from the South American rattlesnake venom. Crotamine is the first venom peptide classified as a natural cell penetrating and antimicrobial peptide (CPP and AMP with a more pronounced antifungal activity. In contrast to other known natural CPPs and AMPs, crotamine demonstrates a wide spectrum of biological activities with potential biotechnological and therapeutic values. More recent studies have demonstrated the selective in vitro anticancer activity of crotamine. In vivo, using a murine melanoma model, it was shown that crotamine delays tumor implantation, inhibits tumor cells proliferation, and also increases the survival of mice engrafted with subcutaneous melanoma. The structural and functional properties and also the possible biotechnological applications of minimized molecules derived from crotamine are also discussed.

  16. Transduction of proteins into leishmania tarentolae by formation of non-covalent complexes with cell-penetrating peptides.

    Science.gov (United States)

    Keller, Andrea-Anneliese; Breitling, Reinhard; Hemmerich, Peter; Kappe, Katarina; Braun, Maria; Wittig, Berith; Schaefer, Buerk; Lorkowski, Stefan; Reissmann, Siegmund

    2014-02-01

    Cell-penetrating peptides (CPPs) are used to transport peptides, proteins, different types of ribonucleic acids (or mimics of these molecules), and DNA into live cells, both plant and mammalian. Leishmania belongs to the class of protozoa having, in comparison to mammalian cells, a different lipid composition of the membrane, proteoglycans on the surface, and signal pathways. We investigated the uptake of two different and easily detectable proteins into the non-pathogenic strain Leishmania tarentolae. From the large number of CPPs available, six and a histone were chosen specifically for their ability to form non-covalent complexes. For Leishmania we used the enzyme β-galactosidase and fluorescent labeled bovine serum albumin as cargoes. The results are compared to similar internalization studies using mammalian cells [Mussbach et al., ]. Leishmania cells can degrade CPPs by a secreted and membrane-bound chymotrypsin-like protease. Both cargo proteins were internalized with sufficient efficiency and achieved intramolecular concentrations similar to mammalian cells. The transport efficiencies of the CPPs differed from each other, and showed a different rank order for both cargoes. The intracellular distribution of fluorescent-labeled bovine serum albumin showed highest concentrations in the nucleus and kinetoplast. Leishmania are susceptible to high concentrations of some CPPs, although comparably dissimilar to mammalian cells. MPG-peptides are more cytotoxic in Leishmania than in mammalian cells, acting as antimicrobial peptides. Our results contribute to a better understanding of molecular interactions in Leishmania cells and possibly to new treatments of leishmaniasis.

  17. Relationships between Cargo, Cell Penetrating Peptides and Cell Type for Uptake of Non-Covalent Complexes into Live Cells

    Directory of Open Access Journals (Sweden)

    Andrea-Anneliese Keller

    2013-02-01

    Full Text Available Modulating signaling pathways for research and therapy requires either suppression or expression of selected genes or internalization of proteins such as enzymes, antibodies, nucleotide binding proteins or substrates including nucleoside phosphates and enzyme inhibitors. Peptides, proteins and nucleotides are transported by fusing or conjugating them to cell penetrating peptides or by formation of non-covalent complexes. The latter is often preferred because of easy handling, uptake efficiency and auto-release of cargo into the live cell. In our studies complexes are formed with labeled or readily detectable cargoes for qualitative and quantitative estimation of their internalization. Properties and behavior of adhesion and suspension vertebrate cells as well as the protozoa Leishmania tarentolae are investigated with respect to proteolytic activity, uptake efficiency, intracellular localization and cytotoxicity. Our results show that peptide stability to membrane-bound, secreted or intracellular proteases varies between different CPPs and that the suitability of individual CPPs for a particular cargo in complex formation by non-covalent interactions requires detailed studies. Cells vary in their sensitivity to increasing concentrations of CPPs. Thus, most cells can be efficiently transduced with peptides, proteins and nucleotides with intracellular concentrations in the low micromole range. For each cargo, cell type and CPP the optimal conditions must be determined separately.

  18. Cell-Penetrating Peptide as a Means of Directing the Differentiation of Induced-Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Taku Kaitsuka

    2015-11-01

    Full Text Available Protein transduction using cell-penetrating peptides (CPPs is useful for the delivery of large protein molecules, including some transcription factors. This method is safer than gene transfection methods with a viral vector because there is no risk of genomic integration of the exogenous DNA. Recently, this method was reported as a means for the induction of induced pluripotent stem (iPS cells, directing the differentiation into specific cell types and supporting gene editing/correction. Furthermore, we developed a direct differentiation method to obtain a pancreatic lineage from mouse and human pluripotent stem cells via the protein transduction of three transcription factors, Pdx1, NeuroD, and MafA. Here, we discuss the possibility of using CPPs as a means of directing the differentiation of iPS cells and other stem cell technologies.

  19. Cell-Penetrating Peptide as a Means of Directing the Differentiation of Induced-Pluripotent Stem Cells.

    Science.gov (United States)

    Kaitsuka, Taku; Tomizawa, Kazuhito

    2015-11-06

    Protein transduction using cell-penetrating peptides (CPPs) is useful for the delivery of large protein molecules, including some transcription factors. This method is safer than gene transfection methods with a viral vector because there is no risk of genomic integration of the exogenous DNA. Recently, this method was reported as a means for the induction of induced pluripotent stem (iPS) cells, directing the differentiation into specific cell types and supporting gene editing/correction. Furthermore, we developed a direct differentiation method to obtain a pancreatic lineage from mouse and human pluripotent stem cells via the protein transduction of three transcription factors, Pdx1, NeuroD, and MafA. Here, we discuss the possibility of using CPPs as a means of directing the differentiation of iPS cells and other stem cell technologies.

  20. Intracellular delivery of cell-penetrating peptide-transcriptional factor fusion protein and its role in selective osteogenesis

    Directory of Open Access Journals (Sweden)

    Suh JS

    2014-03-01

    Full Text Available Jin Sook Suh,1,* Jue Yeon Lee,2,* Yoon Jung Choi,1 Hyung Keun You,3 Seong-Doo Hong,4 Chong Pyoung Chung,2 Yoon Jeong Park1,2 1Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 2Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC, Seoul, 3Department of Periodontology, College of Dentistry, Wonkwang University, Iksan, 4Department of Oral Pathology, School of Dentistry, Seoul National University, Seoul, Republic of Korea *These authors contributed equally to this work Abstract: Protein-transduction technology has been attempted to deliver macromolecular materials, including protein, nucleic acids, and polymeric drugs, for either diagnosis or therapeutic purposes. Herein, fusion protein composed of an arginine-rich cell-penetrating peptide, termed low-molecular-weight protamine (LMWP, and a transcriptional coactivator with a PDZ-binding motif (TAZ protein was prepared and applied in combination with biomaterials to increase bone-forming capacity. TAZ has been recently identified as a specific osteogenic stimulating transcriptional coactivator in human mesenchymal stem cell (hMSC differentiation, while simultaneously blocking adipogenic differentiation. However, TAZ by itself cannot penetrate the cells, and thus needs a transfection tool for translocalization. The LMWP-TAZ fusion proteins were efficiently translocalized into the cytosol of hMSCs. The hMSCs treated with cell-penetrating LMWP-TAZ exhibited increased expression of osteoblastic genes and protein, producing significantly higher quantities of mineralized matrix compared to free TAZ. In contrast, adipogenic differentiation of the hMSCs was blocked by treatment of LMWP-TAZ fusion protein, as reflected by reduced marker-protein expression, adipocyte fatty acid-binding protein 2, and peroxisome proliferator-activated receptor-γ messenger ribonucleic acid levels. LMWP-TAZ was applied in

  1. Thermodynamics of cell-penetrating HIV1 TAT peptide insertion into PC/PS/CHOL model bilayers through transmembrane pores: the roles of cholesterol and anionic lipids.

    Science.gov (United States)

    Hu, Yuan; Patel, Sandeep

    2016-08-10

    Efficient delivery of pharmaceutically active molecules across cellular membranes using cell penetrating peptides (CPPs), such as the cationic human immunodeficiency virus-1 trans-acting activator of transcription peptide (HIV-1 TAT), continues to attract scientific attention in drug design and disease treatment. Experimental results show that the TAT peptide is not only capable of directly penetrating the biological membrane in a passive manner, but also forming physical, membrane-spanning pores that may facilitate transport. Experiments further show that anionic lipids accelerate peptide permeation within a range of mole percentage composition. In this work, we explored the structures and translocation thermodynamics of the cationic TAT peptide across a series of DPPC/DPPS model membranes with the presence of 0-30 mol% cholesterol. We computed the potentials of the mean force by using umbrella sampling molecular dynamics simulations coupled to the Martini coarse-grained force field. We systematically investigated the roles of cholesterol and anionic lipids (membrane surface charge) in TAT peptide translocation. In qualitative agreement with experimental findings, the barrier heights were significantly reduced in the presence of anionic lipids. A toroidal hydrophilic pore was strongly suggested by membrane structure analysis. Cholesterol stabilizes the liquid-ordered (Lo) phase of membranes and increases the elastic stiffness of bilayers. Consequently, it hinders transmembrane pore formation and thus modulates solute permeability, since the liquid-ordered phase suppresses reorientation of the lipid molecules on simulation time scales. Though cholesterol contributes marginally to the total free energy associated with peptide permeation, the coordination of cholesterol to the peptide weakens more favorable peptide-lipid interactions. The addition of the anionic lipid DPPS to the neutral DPPC bilayer leads to the emergence and further enhancement of an interfacially

  2. PREPARATION OF CHEMICAL AND PHYSICAL CONJUGATES OF SELF-ASSEMBLING NANOPARTICLES WITH CELL-PENETRATING PEPTIDE AND DOXORUBICIN

    Directory of Open Access Journals (Sweden)

    Zhadyra Sagykyzy Shagyrova

    2015-09-01

    Full Text Available Abstract: Nano-sized carriers can help to reduce toxicity and improve clinical efficacy of drugs. Virus-like particles (VLPs are biocompatible and biodegradable self-assembling nanoparticles, which show great promise as carriers for substances for targeted delivery and controlled release. Either chemical conjugation of physical incorporation without formation of covalent bonds is possible to load substances of interest into VLPs.Objectives: To produce VLPs from recombinant viral capsid protein (HBcAg and test feasibility of methods of formation of chemical and physical conjugates of VLPs with substances of pharmacological interest.Methods: Virus-like particles composed from recombinant hepatitis B core antigen (HBcAg were produced by recombinant expression in E.coli and purified by successive centrifugation through sucrose gradients. Peptide transportan 10 was synthesized and used for carbodiimide (EDC-mediated conjugation to VLPs. Doxorubicin (DOX was loaded into the nucleic acid-containing VLPs to form physical conjugate.Results: VLPs with chemically attached moieties of cell-penetrating peptide transportan 10 were produced. The conjugate was examined in SDS-PAGE to confirm presence of conjugation products. Conjugation efficiency (molar ration peptide/protein in the conjugate reaches 0.5:1 (i.e. 50% of protein chains have one attached peptide moiety. The nucleic acid-containing VLPs can be loaded with the DOX forming stable non-covalent physical conjugate.Conclusion: Recombinantly expressed VLPs allow easy attaching of small molecules making them a convenient platform to develop drug carriers.

  3. Spotlight on Human LL-37, an Immunomodulatory Peptide with Promising Cell-Penetrating Properties

    Directory of Open Access Journals (Sweden)

    Marc Ferdinand Lensink

    2010-11-01

    Full Text Available Cationic antimicrobial peptides are major components of innate immunity and help control the initial steps of the infectious process. They are expressed not only by immunocytes, but also by epithelial cells. They share an amphipathic secondary structure with a polar cationic site, which explains their tropism for prokaryote membranes and their hydrophobic site contributing to the destructuration of these membranes. LL-37 is the only cationic antimicrobial peptide derived from human cathelicidin. LL-37 can also cross the plasma membrane of eukaryotic cells, probably through special domains of this membrane called lipid rafts. This transfer could be beneficial in the context of vaccination: the activation of intracellular toll-like receptors by a complex formed between CpG oligonucleotides and LL-37 could conceivably play a major role in the building of a cellular immunity involving NK cells.

  4. Human antimicrobial peptide histatin 5 is a cell-penetrating peptide targeting mitochondrial ATP synthesis in Leishmania.

    Science.gov (United States)

    Luque-Ortega, Juan Román; van't Hof, Wim; Veerman, Enno C I; Saugar, José M; Rivas, Luis

    2008-06-01

    Histatin 5 (Hst5) is a human salivary antimicrobial peptide that targets fungal mitochondria. In the human parasitic protozoa Leishmania, the mitochondrial ATP production is essential, as it lacks the bioenergetic switch between glycolysis and oxidative phosphorylation described in some yeasts. On these premises, Hst5 activity was assayed on both stages of its life cycle, promastigotes and amastigotes (LC(50)=7.3 and 14.4 microM, respectively). In a further step, its lethal mechanism was studied. The main conclusions drawn were as follows: 1) Hst5 causes limited and temporary damage to the plasma membrane of the parasites, as assessed by electron microscopy, depolarization, and entrance of the vital dye SYTOX Green; 2) Hst5 translocates into the cytoplasm of Leishmania in an achiral receptor-independent manner with accumulation into the mitochondrion, as shown by confocal microscopy; and 3) Hst5 produces a bioenergetic collapse of the parasite, caused essentially by the decrease of mitochondrial ATP synthesis through inhibition of F(1)F(0)-ATPase, with subsequent fast ATP exhaustion. By using the Hst5 enantiomer, it was found that the key steps of its lethal mechanism involved no chiral recognition. Hst5 thus constitutes the first leishmanicidal peptide with a defined nonstereospecific intracellular target. The prospects of its development, by its own or as a carrier molecule for other leishmanicidal molecules, into a novel anti-Leishmania drug with a preferential subcellular accumulation are discussed. PMID:18230684

  5. Distal phenylalanine modification for enhancing cellular delivery of fluorophores, proteins and quantum dots by cell penetrating peptides.

    Science.gov (United States)

    Sayers, E J; Cleal, K; Eissa, N G; Watson, P; Jones, A T

    2014-12-10

    For cell penetrating peptides (CPPs) to fulfil their promise as effective delivery vectors we need a better understanding of their mechanisms of cell binding and uptake. This is especially the case when they are linked to different types of cargo. Here we describe new studies based on our previous findings suggesting that, for peptide-CPP chimeras, distal hydrophobic residues upstream of the CPP sequence can have profound effects on the way they interact with cells. We studied peptides bearing an N-terminal Glycine or Phenylalanine linked via a neutral and flexible bridging group, SGSGSGSG, to three well-studied CPPs: octaarginine, penetratin and TP10. Using a combination of flow cytometry, live-cell imaging and image analysis we examined the effects of this single amino acid change on binding and uptake of Alexa488-fluorophore, bovine serum albumin and quantum dot cargoes. The influence of the glycine-phenylalanine switch for fluorophore delivery was most dramatic in TP10, increasing cellular uptake by 4.4 and 9.9 fold in non-adherent and adherent cells, respectively. Only penetratin showed effective uptake of bovine serum albumin with the phenylalanine variant showing an increase of 1.6 fold over the glycine variant. The uptake of quantum dots was most efficiently demonstrated by octaarginine, with the glycine variant increasing uptake 4.8 fold and the phenylalanine variant increasing uptake 9.5 fold over quantum dots alone. Overall the data demonstrate that hydrophobicity distal to the CPP could be utilised to enhance their capacity to bind to the cell membrane and deliver a range of macromolecules to the insides of cells.

  6. Design and screening of a glial cell-specific, cell penetrating peptide for therapeutic applications in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Corey Heffernan

    Full Text Available Multiple Sclerosis (MS is an autoimmune, neurodegenerative disease of the central nervous system (CNS characterized by demyelination through glial cell loss. Current and proposed therapeutic strategies to arrest demyelination and/or promote further remyelination include: (i modulation of the host immune system; and/or (ii transplantation of myelinating/stem or progenitor cells to the circulation or sites of injury. However, significant drawbacks are inherent with both approaches. Cell penetrating peptides (CPP are short amino acid sequences with an intrinsic ability to translocate across plasma membranes, and theoretically represent an attractive vector for delivery of therapeutic peptides or nanoparticles to glia to promote cell survival or remyelination. The CPPs described to date are commonly non-selective in the cell types they transduce, limiting their therapeutic application in vivo. Here, we describe a theoretical framework for design of a novel CPP sequence that selectively transduces human glial cells (excluding non-glial cell types, and conduct preliminary screens of purified, recombinant CPPs with immature and matured human oligodendrocytes and astrocytes, and two non-glial cell types. A candidate peptide, termed TD2.2, consistently transduced glial cells, was significantly more effective at transducing immature oligodendrocytes than matured progeny, and was virtually incapable of transducing two non-glial cell types: (i human neural cells and (ii human dermal fibroblasts. Time-lapse confocal microscopy confirms trafficking of TD2.2 (fused to EGFP to mature oligodendrocytes 3-6 hours after protein application in vitro. We propose selectivity of TD2.2 for glial cells represents a new therapeutic strategy for the treatment of glial-related disease, such as MS.

  7. Structure analysis and conformational transitions of the cell penetrating peptide transportan 10 in the membrane-bound state.

    Directory of Open Access Journals (Sweden)

    Susanne Fanghänel

    Full Text Available Structure analysis of the cell-penetrating peptide transportan 10 (TP10 revealed an exemplary range of different conformations in the membrane-bound state. The bipartite peptide (derived N-terminally from galanin and C-terminally from mastoparan was found to exhibit prominent characteristics of (i amphiphilic α-helices, (ii intrinsically disordered peptides, as well as (iii β-pleated amyloid fibrils, and these conformational states become interconverted as a function of concentration. We used a complementary approach of solid-state (19F-NMR and circular dichroism in oriented membrane samples to characterize the structural and dynamical behaviour of TP10 in its monomeric and aggregated forms. Nine different positions in the peptide were selectively substituted with either the L- or D-enantiomer of 3-(trifluoromethyl-bicyclopent-[1.1.1]-1-ylglycine (CF3-Bpg as a reporter group for (19F-NMR. Using the L-epimeric analogs, a comprehensive three-dimensional structure analysis was carried out in lipid bilayers at low peptide concentration, where TP10 is monomeric. While the N-terminal region is flexible and intrinsically unstructured within the plane of the lipid bilayer, the C-terminal α-helix is embedded in the membrane with an oblique tilt angle of ∼ 55° and in accordance with its amphiphilic profile. Incorporation of the sterically obstructive D-CF3-Bpg reporter group into the helical region leads to a local unfolding of the membrane-bound peptide. At high concentration, these helix-destabilizing C-terminal substitutions promote aggregation into immobile β-sheets, which resemble amyloid fibrils. On the other hand, the obstructive D-CF3-Bpg substitutions can be accommodated in the flexible N-terminus of TP10 where they do not promote aggregation at high concentration. The cross-talk between the two regions of TP10 thus exerts a delicate balance on its conformational switch, as the presence of the α-helix counteracts the tendency of the

  8. Fusion of cell-penetrating peptides to thermally responsive biopolymer improves tumor accumulation of p21 peptide in a mouse model of pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Walker LR

    2014-10-01

    Full Text Available Leslie R Walker,1 Jung Su Ryu,1 Eddie Perkins,2 Lacey R McNally,3 Drazen Raucher1 1Department of Biochemistry, 2Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, USA; 3Division of Hematology and Oncology, University of Louisville, Louisville, KY, USAAbstract: Current therapies for the treatment of pancreatic cancer are limited. The limitations of this type of treatment are abundant. The majority of chemotherapeutic agents used in clinics are highly toxic to both tumor cells and normal tissues due to the lack of specificity. Resistance can develop due to overexposure of these agents. To address these issues, these agents must be made more exclusive toward the tumor site. We have developed a macromolecular carrier based on the sequence of the biopolymer elastin-like polypeptide (ELP that is able to aggregate upon reaching the externally heated tumor environment. This carrier is specific to the tumor as it only aggregates at the heated tumor site. ELP is soluble below its transition temperature but will aggregate when the temperature is raised above its transition temperature. ELP was modified by p21, a cell cycle inhibitory peptide, and the addition of Bac, a cell-penetrating peptide with nuclear localization capabilities. In this study, p21-ELP-Bac and its control, ELP-p21, were used in cell proliferation studies using the pancreatic cancer cell lines Panc-1, MiaPaca-2, and S2013. ELP-p21 had little effect on proliferation, while the half maximal inhibitory concentration of p21-ELP-Bac was ~30 µM. As translocation across the plasma membrane is a limiting step for delivery of macromolecules, these polypeptides were utilized in a pancreatic xenograft model to study the plasma clearance, biodistribution, tumor accumulation, and tumor reduction capabilities of the polypeptide with and without a cell-penetrating peptide.Keywords: elastin-like polypeptide, peptide, targeted drug delivery, macromolecule

  9. Cell-penetrating peptide derived from human eosinophil cationic protein inhibits mite allergen Der p 2 induced inflammasome activation.

    Directory of Open Access Journals (Sweden)

    Sheng-Jie Yu

    Full Text Available Newly discovered cell penetration peptides derived from human eosinophil cationic proteins (CPPecp have the characteristic of cell internalization, but the effect of CPPecp on immunomodulation has not been clarified. House dust mite (HDM major allergen, Der p 2, can induce proinflammatory cytokine production which contributes to airway inflammation and allergic asthma. However, the mechanism of Der p 2 on NLRP3 inflammasome activation remains unclear. The aim of this study was to investigate the immunomodulatory effect of CPPecp on inhibition of Der p 2 induced inflammasome activation. We showed that proinflammatory cytokines IL-1β, IL-6 and IL-8 were significantly upregulated in peripheral blood mononuclear cells (PBMCs derived from HDM allergic patients after Der p 2 stimulation. Expression of NLRP3, ASC, Caspase-1, IL-1β and Caspase-1 activity was upregulated in THP-1 cells after Der p 2 stimulation. Proinflammatory cytokine production, NLRP3 inflammasome activation and caspase-1 activity were downregulated in THP-1 cells and CD14+ cells co-cultured with Der p 2 and CPPecp. The immunomodulatory effect of CPPecp was through upregulation of IFN-α production but not induction of autophagy. These results suggested Der p 2 plays an important role in NLRP3 inflammasome activation and CPPecp has the potential to be a novel anti-inflammatory agent for allergic inflammation treatment in the future.

  10. Recombinant expression and purification of a MAP30-cell penetrating peptide fusion protein with higher anti-tumor bioactivity.

    Science.gov (United States)

    Lv, Qiang; Yang, Xu-Zhong; Fu, Long-Yun; Lu, Yv-Ting; Lu, Yan-Hua; Zhao, Jian; Wang, Fu-Jun

    2015-07-01

    MAP30 (Momordica Antiviral Protein 30 Kd), a single-stranded type-I ribosome inactivating protein, possesses versatile biological activities including anti-tumor abilities. However, the low efficiency penetrating into tumor cells hampers the tumoricidal effect of MAP30. This paper describes MAP30 fused with a human-derived cell penetrating peptide HBD which overcome the low uptake efficiency by tumor cells and exhibits higher anti-tumor bioactivity. MAP30 gene was cloned from the genomic DNA of Momordica charantia and the recombinant plasmid pET28b-MAP30-HBD was established and transferred into Escherichia coli BL21 (DE3). The recombinant MAP30-HBD protein (rMAP30-HBD) was expressed in a soluble form after being induced by 0.5mM IPTG for 14h at 15°C. The recombinant protein was purified to greater than 95% purity with Ni-NTA affinity chromatography. The rMAP30-HBD protein not only has topological inactivation and protein translation inhibition activity but also showed significant improvements in cytotoxic activity compared to that of the rMAP30 protein without HBD in the tested tumor cell lines, and induced higher apoptosis rates in HeLa cells analyzed by Annexin V-FITC with FACS. This paper demonstrated a new method for improving MAP30 protein anti-tumor activity and might have potential applications in cancer therapy area.

  11. Synergistic Enhancement of Antitumor Efficacy by PEGylated Multi-walled Carbon Nanotubes Modified with Cell-Penetrating Peptide TAT

    Science.gov (United States)

    Hu, Shanshan; Wang, Tong; Pei, Xibo; Cai, He; Chen, Junyu; Zhang, Xin; Wan, Qianbing; Wang, Jian

    2016-10-01

    In the present study, a cell-penetrating peptide, the transactivating transcriptional factor (TAT) domain from HIV, was linked to PEGylated multi-walled carbon nanotubes (MWCNTs) to develop a highly effective antitumor drug delivery system. FITC was conjugated on MWCNTs-polyethylene glycol (PEG) and MWCNTs-PEG-TAT to provide fluorescence signal for tracing the cellular uptake of the nanocarrier. After loaded with an anticancer agent, doxorubicin (DOX) via π - π stacking interaction, the physicochemical characteristics, release profile and biological evaluation of the obtained nano-sized drug carrier were investigated. The DOX loaded MWCNTs-PEG and MWCNTs-PEG-TAT drug carriers both displayed appropriate particle size, excellent stability, high drug loading, and pH-dependent drug release profile. Nevertheless, compared with DOX-MWCNTs-PEG, DOX-MWCNTs-PEG-TAT showed improved cell internalization, intracellular distribution and potentiated anticancer efficacy due to the TAT-mediated membrane translocation, endosomal escape and nuclear targeting. Furthermore, the therapeutic efficacy of DOX was not compromised after being conjugated with MWCNTs-PEG-TAT and the proposed nanocarrier was also confirmed to have a good biocompatibility. In conclusion, our results suggested that the unique combination of TAT and MWCNTs as a multifunctional drug delivery system might be a powerful tool for improved anticancer drug development.

  12. Recombinant expression and purification of a MAP30-cell penetrating peptide fusion protein with higher anti-tumor bioactivity.

    Science.gov (United States)

    Lv, Qiang; Yang, Xu-Zhong; Fu, Long-Yun; Lu, Yv-Ting; Lu, Yan-Hua; Zhao, Jian; Wang, Fu-Jun

    2015-07-01

    MAP30 (Momordica Antiviral Protein 30 Kd), a single-stranded type-I ribosome inactivating protein, possesses versatile biological activities including anti-tumor abilities. However, the low efficiency penetrating into tumor cells hampers the tumoricidal effect of MAP30. This paper describes MAP30 fused with a human-derived cell penetrating peptide HBD which overcome the low uptake efficiency by tumor cells and exhibits higher anti-tumor bioactivity. MAP30 gene was cloned from the genomic DNA of Momordica charantia and the recombinant plasmid pET28b-MAP30-HBD was established and transferred into Escherichia coli BL21 (DE3). The recombinant MAP30-HBD protein (rMAP30-HBD) was expressed in a soluble form after being induced by 0.5mM IPTG for 14h at 15°C. The recombinant protein was purified to greater than 95% purity with Ni-NTA affinity chromatography. The rMAP30-HBD protein not only has topological inactivation and protein translation inhibition activity but also showed significant improvements in cytotoxic activity compared to that of the rMAP30 protein without HBD in the tested tumor cell lines, and induced higher apoptosis rates in HeLa cells analyzed by Annexin V-FITC with FACS. This paper demonstrated a new method for improving MAP30 protein anti-tumor activity and might have potential applications in cancer therapy area. PMID:25797209

  13. A novel cell penetrating peptide carrier for the delivery of nematocidal proteins drug

    Science.gov (United States)

    Kim, Jea Hyun

    Nematodes have recently become a primary source of harmful diseases to the environment that inflict harsh damages to pine trees and marine species. However, nematodes cannot be killed by normal pesticides or chemicals due to their thick outer protective layer mainly composed of collagen and cuticles. Thus, a novel approach to trigger intracellular delivery of chemicals through the layers of nematodes is required. In this study, the selection of the novel CPP was carefully progressed through protein database and serial digested fragmentation, internalization of each amino sequence was analyzed through flow cytometry and confocal microscope. As one of the most effective CPP material, JH 1.6 was compared with other major CPPs and its cellular toxicity was investigated. Furthermore, JH 1.6 was attached to various RNA, DNA, and proteins and internalization efficiency was evaluated for mammalian cells. To examine its effects on nematodes in vivo, JH 1.6 was conjugated with nematocidal protein - botulinum neurotoxin (BnT) and treated in C.elegans as a model animal. The results showed that JH 1.6 had high relative internalization rate and low cellular toxicity compared to other major CPP such as TAT and GV1001 peptides.

  14. Applications and Challenges for Use of Cell-Penetrating Peptides as Delivery Vectors for Peptide and Protein Cargos

    DEFF Research Database (Denmark)

    Kristensen, Mie; Birch, Ditlev; Mørck Nielsen, Hanne

    2016-01-01

    -penetrating peptides (CPPs) constitute a promising tool and have shown applications for peptide and protein delivery into cells as well as across various epithelia and the blood-brain barrier (BBB). CPP-mediated delivery of peptides and proteins may be pursued via covalent conjugation of the CPP to the cargo peptide...... or protein or via physical complexation obtained by simple bulk-mixing of the CPP with its cargo. Both approaches have their pros and cons, and which is the better choice likely relates to the physicochemical properties of the CPP and its cargo as well as the route of administration, the specific...... barrier and the target cell. Besides the physical barrier, a metabolic barrier must be taken into consideration when applying peptide-based delivery vectors, such as the CPPs, and stability-enhancing strategies are commonly employed to prolong the CPP half-life. The mechanisms by which CPPs translocate...

  15. Research Progress of Cell -penetrating Peptides Applied in Vaccine%穿膜肽在疫苗中应用的研究进展

    Institute of Scientific and Technical Information of China (English)

    范兴琼; 吴双林; 刘成倩; 易建中

    2012-01-01

    Since the discovery of the function of protein transduction, cell- penetrating peptides (CPP) provides a novel approach for gene therapy and vaccine development. According to recent studies on the CPP species, structure, membrane -penetrating mechanisms and relative applications, cell -penetrating peptides applied in the DNA vaccine and tumor vaccine were reviewed and prospected.%穿膜肽自发现以来,因其独特的蛋白转导功能,为基因治疗和新型疫苗的开发等开辟了新的途径。通过综述穿膜肽的种类、结构特点、作用机制及其在疫苗中的应用,为进一步研发DNA疫苗和肿瘤疫苗奠定基础。

  16. Curb Challenges of the “Trojan Horse” Approach: Smart Strategies in Achieving Effective yet Safe Cell-penetrating Peptide-based Drug Delivery

    OpenAIRE

    Huang, Yongzhuo; Jiang, Yifan; Wang, Huiyuan; Wang, Jianxin; Shin, Meong Cheol; Byun, Youngro; He, Huining; Liang, Yanqin; Yang, Victor C.

    2013-01-01

    Cell-penetrating peptide (CPP)-mediated intracellular drug delivery system, often specifically termed as “the Trojan horse approach”, has become the “holy grail” in achieving effective delivery of macromolecular compounds such as proteins, DNA, siRNAs, and drug carriers. It is characterized by the unique cell- (or receptor-), temperature-, and payload-independent mechanisms, therefore offering potent means to improve poor cellular uptake of a variety of macromolecular drugs. Nevertheless, thi...

  17. Antitumor activity of tripterine via cell-penetrating peptide-coated nanostructured lipid carriers in a prostate cancer model

    Directory of Open Access Journals (Sweden)

    Yuan L

    2013-11-01

    Full Text Available Ling Yuan,1 Congyan Liu,2 Yan Chen,2 Zhenhai Zhang,2 Lei Zhou,1 Ding Qu2 1Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 2Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China Background: The purpose of this study was to evaluate the antitumor effect of cell-penetrating peptide-coated tripterine-loaded nanostructured lipid carriers (CT-NLC on prostate tumor cells in vitro and in vivo. Methods: CT-NLC were developed to improve the hydrophilicity of tripterine. The antiproliferative effects of CT-NLC, tripterine-loaded nanostructured lipid carriers (T-NLC, and free tripterine in a human prostatic carcinoma cell line (PC-3 and a mouse prostate carcinoma cell line (RM-1 were evaluated using an MTT assay. The advantage of CT-NLC over T-NLC and free tripterine with regard to antitumor activity in vivo was evaluated in a prostate tumor-bearing mouse model. The induced tumor necrosis factor-alpha and interleukin-6 cytokine content was investigated by enzyme-linked immunosorbent assay to determine the effect of CT-NLC, T-NLC, and free tripterine on immune responses. Histologic and TUNEL assays were carried out to investigate the mechanisms of tumor necrosis and apoptosis. Results: CT-NLC, T-NLC, and free tripterine showed high antiproliferative activity in a dose-dependent manner, with an IC50 of 0.60, 0.81, and 1.02 µg/mL in the PC-3 cell line and 0.41, 0.54, and 0.89 µg/mL in the RM-1 cell line after 36 hours. In vivo, the tumor inhibition rates for cyclophosphamide, high-dose (4 mg/kg and low-dose (2 mg/kg tripterine, high-dose (4 mg/kg and low-dose (2 mg/kg T-NLC, high-dose (4 mg/kg and low-dose (2 mg/kg CT-NLC were 76.51%, 37.07%, 29.53%, 63.56%, 48.25%, 72.68%, and 54.50%, respectively, showing a dose-dependent pattern. The induced tumor necrosis factor-alpha and interleukin-6 cytokine content

  18. Region-Dependent Role of Cell-Penetrating Peptides in Insulin Absorption Across the Rat Small Intestinal Membrane.

    Science.gov (United States)

    Khafagy, El-Sayed; Iwamae, Ruisha; Kamei, Noriyasu; Takeda-Morishita, Mariko

    2015-11-01

    We have reported that the cell-penetrating peptide (CPP) penetratin acts as a potential absorption enhancer in oral insulin delivery systems and that this action occurs through noncovalent intermolecular interactions. However, the region-dependent role of CPPs in intestinal insulin absorption has not been clarified. To identify the intestinal region where CPPs have the most effect in increasing insulin absorption, the region-dependent action of penetratin was investigated using in situ closed intestinal loops in rats. The order of the insulin area under the insulin concentration-time curve (AUC) increase effect by L-penetratin was ileum > jejunum > duodenum > colon. By contrast, the AUC order after coadministration of insulin with D-penetratin was colon > duodenum ≥ jejunum and ileum. We also compared the effects of the L- and D-forms of penetratin, R8, and PenetraMax on ileal insulin absorption. Along with the CPPs used in this study, L- and D-PenetraMax produced the largest insulin AUCs. An absorption study using ilea pretreated with CPPs showed that PenetraMax had no irreversible effect on the intestinal epithelial membrane. The degradation of insulin in the presence of CPPs was assessed in rat intestinal enzymatic fluid. The half-life (t 1/2) of insulin increased from 14.5 to 23.7 and 184.7 min in the presence of L- and D-PenetraMax, respectively. These enzymatic degradation-resistant effects might contribute partly to the increased ileal absorption of insulin induced by D-PenetraMax. In conclusion, this study demonstrated that the ability of the L- and D-forms of penetratin to increase intestinal insulin absorption was maximal in the ileum and the colon, respectively, and that D-PenetraMax is a powerful but transient enhancer of oral insulin absorption.

  19. Intercellular imaging by a polyarginine derived cell penetrating peptide labeled magnetic resonance contrast agent,diethylenetriamine pentaacetic acid gadolinium

    Institute of Scientific and Technical Information of China (English)

    GUO You-min; LIU Min; YANG Jun-le; GUO Xiao-juan; WANG Si-cen; DUAN Xiao-yi; WANG Peng

    2007-01-01

    Background The cellular plasma membrane represents a natural barrier to many exogenous molecules including magnetic resonance (MR) contrast agent. Cell penetrating peptide (CPP) is used to internalize proteins, peptides, and radionuclide. This study was undertaken to assess the value of a new intracellular MR contrast medium, CPP labeled diethylenetriamine pentaacetic acid gadolinium (Gd-DTPA) in molecular imaging in vitro. Methods Fluorescein-5-isothiocyanate (FITC) and Gd-DTPA respectively labeled with CPP (FITC-CPP, Gd-DTPA-CPP) were synthesized by the solid-phase method. Human hepatic cancer cell line-HepG2 was respectively stained by FITC-CPP and FITC to observe the uptake and intracellular distribution. HepG2 was respectively incubated with 100 nmol/ml Gd-DTPA-CPP for 0, 10, 30, 60 minutes, and imaged by MR for studying the relationship between the incubation time and T1WI signal. The cytotoxicity to NIH3T3 fibroblasts cells was measured by 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide reduction assay (MTT). Results The molecular weights of CPP labeled imaging agents, which were determined by MALDI mass spectrometry (FITC-CPP MW=2163.34, Gd-DTPA-CPP MW=2285.99), were similar to the calculated molecular weights. Confocal microscopy suggested HepG2 translocated FITC-CPP in cytoplasm and nucleus independent with the incubation temperature. MR images showed HepG2 uptaken Gd-DTPA-CPP had a higher T1 weighted imaging (T1WI) signal, and that the T1WI signal intensity was increasing in a time-dependent manner (r=0.972, P=0.001), while the signal intensity between the cells incubated by Gd-DTPA for 60 minutes and the controlled cells was not significantly different (P=0.225). By MTT, all concentrations from 50 nmol/ml to 200 nmol/ml had no significant (F=0.006, P=1.000) effect on cell viability of mouse NIH3T3 fibroblasts, compared with the control group. Conclusions The newly constructed CPP based on polyarginine can translocate cells by carrying FITC

  20. Hierarchy of Specific Lipid-Peptide Interactions Produces the Activity of Cell-penetrating and Cell-permeating Peptides

    Science.gov (United States)

    Davis, Matthew; Parente, Daniel; Gordon, Vernita; Mishra, Abhijit; Schmidt, Nathan; Yang, Lihua; Coridan, Robert; Som, Abhigyan; Tew, Gregory; Wong, Gerard

    2008-03-01

    Protein transduction domains can cross cell membranes with high efficiency, even when carrying a variety of cargos, and thus has strong biotechnological potential. The molecular mechanism of entry, however, is not well understood. We use small-angle x-ray scattering (SAXS) and confocal microscopy to systematically study the interaction of the TAT and ANTP PTD with model membranes of variable composition. Their membrane transduction activity requires the presence of both PE and PS lipids in the membrane. Antimicrobial peptides (AMP's) are cationic amphiphiles that comprise a key component of innate immunity. Synthetic analogs of AMP's, such as the family of phenylene ethynylene antimicrobial oligomers (AMO's), recently demonstrated broad-spectrum antimicrobial activity, but the underlying molecular mechanism is unknown. PE lipid greatly enhances permeating activity of AMO in these membranes, showing the importance of specific lipid composition for the activity of cell-permeating peptides. Since bacterial cell membranes are richer in PE lipids than are eukaryotic cell membranes, this may indicate a mechanism for antimicrobial specificity.

  1. The feasibility of a targeted ultrasound contrast agent carrying genes and cell-penetrating peptides to hypoxic HUVEC

    International Nuclear Information System (INIS)

    Objective: To prepare an anti-P-selectin targeted ultrasound contrast agent carrying genes and cell-penetrating peptides (CPP) and to investigate its feasibility of delivery to hypoxic human umbilical vein endothelial cells (HUVEC). Methods: Anti-P-selectin targeted ultrasound contrast agent carrying a green fluorescent protein gene (pEGFP-N1) and CPP was prepared by mechanical vibration and carbodiimide techniques. The appearance, distribution, concentration and diameter of the ultrasound contrast agent were measured. The gene and CPP distribution on the agent was investigated using confocal laser scanning microscopy (CLSM). The efficiency of the ultrasound contrast agent to carry the gene and CPP was investigated by fluorospectrophotometry. HUVEC were cultured in vitro and hypoxic HUVEC were prepared using hydrogen peroxide (H2O2). Hypoxic HUVEC were randomly assigned targeted ultrasound contrast agents and non-targeted ultrasound contrast agents for transfection. The transfection effect of green fluorescent protein in the two groups was observed using fluorescence microscopy and flow cytometry. T-test and linear correlation analysis were used for statistical analysis. Results: The average diameter of anti-P-selectin targeted ultrasound contrast agents carrying gene and CPP was (2.15 ±0.36) μm and the concentration was (1.58 ± 0.23) × 107/ml.The results of CLSM showed that gene and CPP were distributed on the shell of the agent. The gene encapsulation efficiency was 28% (y=0.932x-0.09, r=0.993, P<0.05), and the CPP encapsulation efficiency was 25% (y=5.875x-0.81, r=0.987, P<0.05). EGFP expression was observed using fluorescence microscopy in targeted ultrasound contrast agents and non-targeted ultrasound contrast agents. The average transfection efficiencies of targeted ultrasound contrast agents and non-targeted ultrasound contrast agents were (18.74 ± 0.47) % and (15.34 ± 0.22) % after 24 h (t=10.923, P<0.001). Conclusions: The in vitro studies showed

  2. Quantification of Cell-Penetrating Peptide Associated with Polymeric Nanoparticles Using Isobaric-Tagging and MALDI-TOF MS/MS

    Science.gov (United States)

    Chiu, Jasper Z. S.; Tucker, Ian G.; McDowell, Arlene

    2016-11-01

    High sensitivity quantification of the putative cell-penetrating peptide di-arginine-histidine (RRH) associated with poly (ethyl-cyanoacrylate) (PECA) nanoparticles was achieved without analyte separation, using a novel application of isobaric-tagging and high matrix-assisted laser desorption/ionization coupled to time-of-flight (MALDI-TOF) mass spectrometry. Isobaric-tagging reaction equilibrium was reached after 5 min, with 90% or greater RRH peptide successfully isobaric-tagged after 60 min. The accuracy was greater than 90%, which indicates good reliability of using isobaric-tagged RRH as an internal standard for RRH quantification. The sample intra- and inter-spot coefficients of variations were less than 11%, which indicate good repeatability. The majority of RRH peptides in the nanoparticle formulation were physically associated with the nanoparticles (46.6%), whereas only a small fraction remained unassociated (13.7%). The unrecovered RRH peptide (~40%) was assumed to be covalently associated with PECA nanoparticles.

  3. Folic Acid-Targeted and Cell Penetrating Peptide-Mediated Theranostic Nanoplatform for High-Efficiency Tri-Modal Imaging-Guided Synergistic Anticancer Phototherapy.

    Science.gov (United States)

    Li, Na; Li, Tingting; Liu, Chen; Ye, Shiyi; Liang, Jiangong; Han, Heyou

    2016-05-01

    A novel nanomaterial with precisely-defined size and shape, biocompatible composition, and excellent stability, which can integrate multi modal targeted imaging and therapy into a single system for visualized therapeutics, has recently attracted significant research interest. Here, we developed a multifunctional nanoplatform based on silica-coated 4-mercaptobenzoic acid-modified gold nanorods (Au NRs) decorated with gold nanoclusters rich in the photosensitizer Ce6 (Au-Ce6 NCs). The nanoparticles also comprised folic acid and cell penetrating peptide molecules anchored on the surface, obtaining the Au@SiO2@Au-cell penetrating peptide nanocomposite. The Au-Ce6 NCs enhanced the photophysical stability, provided numerous bonding sites and offered a large surface-area and interior space to achieve a high drug loading efficiency (up to 55%). The anchored folic acid and cell penetrating peptide synergistically enhanced the efficiency of uptake of nanocomposites by HeLa cells (up to 70.7%) and improved therapeutic efficacy. The nanocomposite also has good water-solubility, excellent biocompatibility, and long-term stability against illumination and exposure to pH 3-12, thus facilitating their bioapplications in cancer theranostics. Here, the nanocomposite was established for high-resolution and noninvasive tri-modal surface-enhanced Raman spectrum/dark-field/fluorescence imaging-guided high-efficiency synergistic photodynamic/photothermal therapy of cancer. Our studies demonstrate that the multifunctional nanocomposite has the potential as a novel and sensitive contrast agent for complementary and synergistic theranostics in the clinic. PMID:27305812

  4. Conjugation of doxorubicin to cell penetrating peptides sensitizes human breast MDA-MB 231 cancer cells to endogenous TRAIL-induced apoptosis.

    OpenAIRE

    Aroui, Sonia; Brahim, Souhir; Hamelin, Jocelyne; De Waard, Michel; Bréard, Jacqueline; Kenani, Abderraouf

    2009-01-01

    International audience Previous work from our laboratory has shown that coupling doxorubicin (Dox) to cell penetrating peptides (Dox-CPPs) is a good strategy to overcome Dox resistance in MDA-MB 231 breast cancer cells. We also reported that, in contrast to unconjugated Dox-induced cell death, the increase in apoptotic response does not involve the mitochondrial apoptotic pathway. In this study, we demonstrate that both Dox and Dox-CPPs can increase the density of the TRAIL receptors DR4 a...

  5. Parallel Synthesis of Cell-Penetrating Peptide Conjugates of PMO Toward Exon Skipping Enhancement in Duchenne Muscular Dystrophy

    OpenAIRE

    O'Donovan, Liz; Okamoto, Itaru; Arzumanov, Andrey A; Williams, Donna L.; Deuss, Peter; Gait, Michael J.

    2015-01-01

    We describe two new methods of parallel chemical synthesis of libraries of peptide conjugates of phosphorodiamidate morpholino oligonucleotide (PMO) cargoes on a scale suitable for cell screening prior to in vivo analysis for therapeutic development. The methods represent an extension of the SELection of PEPtide CONjugates (SELPEPCON) approach previously developed for parallel peptide-peptide nucleic acid (PNA) synthesis. However, these new methods allow for the utilization of commercial PMO ...

  6. Single-cell resolution imaging of retinal ganglion cell apoptosis in vivo using a cell-penetrating caspase-activatable peptide probe.

    Directory of Open Access Journals (Sweden)

    Xudong Qiu

    Full Text Available Peptide probes for imaging retinal ganglion cell (RGC apoptosis consist of a cell-penetrating peptide targeting moiety and a fluorophore-quencher pair flanking an effector caspase consensus sequence. Using ex vivo fluorescence imaging, we previously validated the capacity of these probes to identify apoptotic RGCs in cell culture and in an in vivo rat model of N-methyl- D-aspartate (NMDA-induced neurotoxicity. Herein, using TcapQ488, a new probe designed and synthesized for compatibility with clinically-relevant imaging instruments, and real time imaging of a live rat RGC degeneration model, we fully characterized time- and dose-dependent probe activation, signal-to-noise ratios, and probe safety profiles in vivo. Adult rats received intravitreal injections of four NMDA concentrations followed by varying TcapQ488 doses. Fluorescence fundus imaging was performed sequentially in vivo using a confocal scanning laser ophthalmoscope and individual RGCs displaying activated probe were counted and analyzed. Rats also underwent electroretinography following intravitreal injection of probe. In vivo fluorescence fundus imaging revealed distinct single-cell probe activation as an indicator of RGC apoptosis induced by intravitreal NMDA injection that corresponded to the identical cells observed in retinal flat mounts of the same eye. Peak activation of probe in vivo was detected 12 hours post probe injection. Detectable fluorescent RGCs increased with increasing NMDA concentration; sensitivity of detection generally increased with increasing TcapQ488 dose until saturating at 0.387 nmol. Electroretinography following intravitreal injections of TcapQ488 showed no significant difference compared with control injections. We optimized the signal-to-noise ratio of a caspase-activatable cell penetrating peptide probe for quantitative non-invasive detection of RGC apoptosis in vivo. Full characterization of probe performance in this setting creates an important in

  7. Two functional motifs define the interaction, internalization and toxicity of the cell-penetrating antifungal peptide PAF26 on fungal cells.

    Directory of Open Access Journals (Sweden)

    Alberto Muñoz

    Full Text Available The synthetic, cell penetrating hexapeptide PAF26 (RKKWFW is antifungal at low micromolar concentrations and has been proposed as a model for cationic, cell-penetrating antifungal peptides. Its short amino acid sequence facilitates the analysis of its structure-activity relationships using the fungal models Neurospora crassa and Saccharomyces cerevisiae, and human and plant pathogens Aspergillus fumigatus and Penicillium digitatum, respectively. Previously, PAF26 at low fungicidal concentrations was shown to be endocytically internalized, accumulated in vacuoles and then actively transported into the cytoplasm where it exerts its antifungal activity. In the present study, two PAF26 derivatives, PAF95 (AAAWFW and PAF96 (RKKAAA, were designed to characterize the roles of the N-terminal cationic and the C-terminal hydrophobic motifs in PAF26's mode-of-action. PAF95 and PAF96 exhibited substantially reduced antifungal activity against all the fungi analyzed. PAF96 localized to fungal cell envelopes and was not internalized by the fungi. In contrast, PAF95 was taken up into vacuoles of N. crassa, wherein it accumulated and was trapped without toxic effects. Also, the PAF26 resistant Δarg1 strain of S. cerevisiae exhibited increased PAF26 accumulation in vacuoles. Live-cell imaging of GFP-labelled nuclei in A. fumigatus showed that transport of PAF26 from the vacuole to the cytoplasm was followed by nuclear breakdown and dissolution. This work demonstrates that the amphipathic PAF26 possesses two distinct motifs that allow three stages in its antifungal action to be defined: (i its interaction with the cell envelope; (ii its internalization and transport to vacuoles mediated by the aromatic hydrophobic domain; and (iii its transport from vacuoles to the cytoplasm. Significantly, cationic residues in PAF26 are important not only for the electrostatic attraction and interaction with the fungal cell but also for transport from the vacuole to the

  8. The cell-penetrating peptide domain from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) has anti-inflammatory activity in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jue-Yeon; Seo, Yoo-Na; Park, Hyun-Jung [Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Park, Yoon-Jeong, E-mail: parkyj@snu.ac.kr [Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Department of Dental Regenerative Biotechnology, Dental Research Institute and School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Chung, Chong-Pyoung, E-mail: ccpperio@snu.ac.kr [Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Department of Periodontology, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer HBP sequence identified from HB-EGF has cell penetration activity. Black-Right-Pointing-Pointer HBP inhibits the NF-{kappa}B dependent inflammatory responses. Black-Right-Pointing-Pointer HBP directly blocks phosphorylation and degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer HBP inhibits nuclear translocation of NF-{kappa}B p65 subunit. -- Abstract: A heparin-binding peptide (HBP) sequence from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified and was shown to exhibit cell penetration activity. This cell penetration induced an anti-inflammatory reaction in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. HBP penetrated the cell membrane during the 10 min treatment and reduced the LPS-induced production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cytokines (TNF-{alpha} and IL-6) in a concentration-dependent manner. Additionally, HBP inhibited the LPS-induced upregulation of cytokines, including TNF-{alpha} and IL-6, and decreased the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. HBP inhibited NF-{kappa}B-dependent inflammatory responses by directly blocking the phosphorylation and degradation of I{kappa}B{alpha} and by subsequently inhibiting the nuclear translocation of the p65 subunit of NF-{kappa}B. Taken together, this novel HBP may be potentially useful candidate for anti-inflammatory treatments and can be combined with other drugs of interest to transport attached molecules into cells.

  9. A novel cell-penetrating peptide derived from WT1 enhances p53 activity, induces cell senescence and displays antimelanoma activity in xeno- and syngeneic systems☆

    Science.gov (United States)

    Massaoka, Mariana H.; Matsuo, Alisson L.; Figueiredo, Carlos R.; Girola, Natalia; Faria, Camyla F.; Azevedo, Ricardo A.; Travassos, Luiz R.

    2014-01-01

    The Wilms tumor protein 1 (WT1) transcription factor has been associated in malignant melanoma with cell survival and metastasis, thus emerging as a candidate for targeted therapy. A lysine–arginine rich peptide, WT1-pTj, derived from the ZF domain of WT1 was evaluated as an antitumor agent against A2058 human melanoma cells and B16F10-Nex2 syngeneic murine melanoma. Peptide WT1-pTj quickly penetrated human melanoma cells and induced senescence, recognized by increased SA-β-galactosidase activity, enhanced transcriptional activity of p53, and induction of the cell cycle inhibitors p21 and p27. Moreover, the peptide bound to p53 and competed with WT1 protein for binding to p53. WT1-pTj treatment led to sustained cell growth suppression, abrogation of clonogenicity and G2/M cell cycle arrest. Notably, in vivo studies showed that WT1-pTj inhibited both the metastases and subcutaneous growth of murine melanoma in syngeneic mice, and prolonged the survival of nude mice challenged with human melanoma cells. The 27-amino acid cell-penetrating WT1-derived peptide, depends on C3 and H16 for effective antimelanoma activity, inhibits proliferation of WT1-expressing human tumor cell lines, and may have an effective role in the treatment of WT1-expressing malignancies. PMID:24490140

  10. A novel cell-penetrating peptide derived from WT1 enhances p53 activity, induces cell senescence and displays antimelanoma activity in xeno- and syngeneic systems

    Directory of Open Access Journals (Sweden)

    Mariana H. Massaoka

    2014-01-01

    Full Text Available The Wilms tumor protein 1 (WT1 transcription factor has been associated in malignant melanoma with cell survival and metastasis, thus emerging as a candidate for targeted therapy. A lysine–arginine rich peptide, WT1-pTj, derived from the ZF domain of WT1 was evaluated as an antitumor agent against A2058 human melanoma cells and B16F10-Nex2 syngeneic murine melanoma. Peptide WT1-pTj quickly penetrated human melanoma cells and induced senescence, recognized by increased SA-β-galactosidase activity, enhanced transcriptional activity of p53, and induction of the cell cycle inhibitors p21 and p27. Moreover, the peptide bound to p53 and competed with WT1 protein for binding to p53. WT1-pTj treatment led to sustained cell growth suppression, abrogation of clonogenicity and G2/M cell cycle arrest. Notably, in vivo studies showed that WT1-pTj inhibited both the metastases and subcutaneous growth of murine melanoma in syngeneic mice, and prolonged the survival of nude mice challenged with human melanoma cells. The 27-amino acid cell-penetrating WT1-derived peptide, depends on C3 and H16 for effective antimelanoma activity, inhibits proliferation of WT1-expressing human tumor cell lines, and may have an effective role in the treatment of WT1-expressing malignancies.

  11. Structural Elucidation of the Cell-Penetrating Penetratin Peptide in Model Membranes at the Atomic Level: Probing Hydrophobic Interactions in the Blood-Brain Barrier.

    Science.gov (United States)

    Bera, Swapna; Kar, Rajiv K; Mondal, Susanta; Pahan, Kalipada; Bhunia, Anirban

    2016-09-01

    Cell-penetrating peptides (CPPs) have shown promise in nonpermeable therapeutic drug delivery, because of their ability to transport a variety of cargo molecules across the cell membranes and their noncytotoxicity. Drosophila antennapedia homeodomain-derived CPP penetratin (RQIKIWFQNRRMKWKK), being rich in positively charged residues, has been increasingly used as a potential drug carrier for various purposes. Penetratin can breach the tight endothelial network known as the blood-brain barrier (BBB), permitting treatment of several neurodegenerative maladies, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. However, a detailed structural understanding of penetratin and its mechanism of action is lacking. This study defines structural features of the penetratin-derived peptide, DK17 (DRQIKIWFQNRRMKWKK), in several model membranes and describes a membrane-induced conformational transition of the DK17 peptide in these environments. A series of biophysical experiments, including high-resolution nuclear magnetic resonance spectroscopy, provides the three-dimensional structure of DK17 in different membranes mimicking the BBB or total brain lipid extract. Molecular dynamics simulations support the experimental results showing preferential binding of DK17 to particular lipids at atomic resolution. The peptide conserves the structure of the subdomain spanning residues Ile6-Arg11, despite considerable conformational variation in different membrane models. In vivo data suggest that the wild type, not a mutated sequence, enters the central nervous system. Together, these data highlight important structural and functional attributes of DK17 that could be utilized in drug delivery for neurodegenerative disorders. PMID:27532224

  12. Parallel synthesis of cell-penetrating peptide conjugates of PMO toward exon skipping enhancement in Duchenne muscular dystrophy.

    Science.gov (United States)

    O'Donovan, Liz; Okamoto, Itaru; Arzumanov, Andrey A; Williams, Donna L; Deuss, Peter; Gait, Michael J

    2015-02-01

    We describe two new methods of parallel chemical synthesis of libraries of peptide conjugates of phosphorodiamidate morpholino oligonucleotide (PMO) cargoes on a scale suitable for cell screening prior to in vivo analysis for therapeutic development. The methods represent an extension of the SELection of PEPtide CONjugates (SELPEPCON) approach previously developed for parallel peptide-peptide nucleic acid (PNA) synthesis. However, these new methods allow for the utilization of commercial PMO as cargo with both C- and N-termini unfunctionalized. The synthetic methods involve conjugation in solution phase, followed by rapid purification via biotin-streptavidin immobilization and subsequent reductive release into solution, avoiding the need for painstaking high-performance liquid chromatography purifications. The synthesis methods were applied for screening of PMO conjugates of a 16-member library of variants of a 10-residue ApoE peptide, which was suggested for blood-brain barrier crossing. In this work the conjugate library was tested in an exon skipping assay using skeletal mouse mdx cells, a model of Duchene's muscular dystrophy where higher activity peptide-PMO conjugates were identified compared with the starting peptide-PMO. The results demonstrate the power of the parallel synthesis methods for increasing the speed of optimization of peptide sequences in conjugates of PMO for therapeutic screening. PMID:25412073

  13. Parallel Synthesis of Cell-Penetrating Peptide Conjugates of PMO Toward Exon Skipping Enhancement in Duchenne Muscular Dystrophy

    NARCIS (Netherlands)

    O'Donovan, Liz; Okamoto, Itaru; Arzumanov, Andrey A.; Williams, Donna L.; Deuss, Peter; Gait, Michael J.

    2015-01-01

    We describe two new methods of parallel chemical synthesis of libraries of peptide conjugates of phosphorodiamidate morpholino oligonucleotide (PMO) cargoes on a scale suitable for cell screening prior to in vivo analysis for therapeutic development. The methods represent an extension of the SELecti

  14. Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells.

    Science.gov (United States)

    Liu, Betty R; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

    2016-01-01

    Cell-penetrating peptides (CPPs) have been shown to deliver cargos, including protein, DNA, RNA, and nanomaterials, in fully active forms into live cells. Most of the CPP sequences in use today are based on non-native proteins that may be immunogenic. Here we demonstrate that the L5a CPP (RRWQW) from bovine lactoferricin (LFcin), stably and noncovalently complexed with plasmid DNA and prepared at an optimal nitrogen/phosphate ratio of 12, is able to efficiently enter into human lung cancer A549 cells. The L5a CPP delivered a plasmid containing the enhanced green fluorescent protein (EGFP) coding sequence that was subsequently expressed in cells, as revealed by real-time PCR and fluorescent microscopy at the mRNA and protein levels, respectively. Treatment with calcium chloride increased the level of gene expression, without affecting CPP-mediated transfection efficiency. Zeta-potential analysis revealed that positively electrostatic interactions of CPP/DNA complexes correlated with CPP-mediated transport. The L5a and L5a/DNA complexes were not cytotoxic. This biomimetic LFcin L5a represents one of the shortest effective CPPs and could be a promising lead peptide with less immunogenic for DNA delivery in gene therapy.

  15. Cell-penetration by Co(III)cyclen-based peptide-cleaving catalysts selective for pathogenic proteins of amyloidoses.

    Science.gov (United States)

    Chei, Woo Suk; Lee, Joo-Won; Kim, Jae Bum; Suh, Junghun

    2010-07-15

    Derivatives of the Co(III) complex of 1,4,7,10-tetraazacyclododecane (cyclen) with various organic pendants have been reported as target-selective peptide-cleaving catalysts, which can be exploited as catalytic drugs. In order to provide a firm basis for the catalytic drugs based on Co(III)cyclen, the ability of the Co(III)cyclen-containing peptide-cleaving catalysts to penetrate animal cells such as mouse fibroblast NIH-3T 3 or human embryonic kidney (HEK) 293 cells is demonstrated in the present study. Since the catalysts destroy pathogenic proteins for amyloidoses, results of the present study are expected to initiate extensive efforts to obtain therapeutically safe catalytic drugs for amyloidoses such as Alzheimer's disease, type 2 diabetes mellitus, Parkinson's disease, Huntington's disease, mad cow disease, and so on. PMID:20542701

  16. An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Ding Y

    2015-10-01

    Full Text Available Yuan Ding,1,* Dan Sun,1,* Gui-Ling Wang,1 Hong-Ge Yang,1 Hai-Feng Xu,1 Jian-Hua Chen,2 Ying Xie,1,3 Zhi-Qiang Wang4 1Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 2School of Medicine, Jianghan University, Wuhan, 3State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, People’s Republic of China; 4Department of Chemistry and Biochemistry, Kent State University Geauga, Burton, OH, USA *These authors contributed equally to this work Abstract: Cell-penetrating peptides (CPPs as small molecular transporters with abilities of cell penetrating, internalization, and endosomal escape have potential prospect in drug delivery systems. However, a bottleneck hampering their application is the poor specificity for cells. By utilizing the function of hydration shell of polyethylene glycol (PEG and acid sensitivity of hydrazone bond, we constructed a kind of CPP-modified pH-sensitive PEGylated liposomes (CPPL to improve the selectivity of these peptides for tumor targeting. In CPPL, CPP was directly attached to liposome surfaces via coupling with stearate (STR to avoid the hindrance of PEG as a linker on the penetrating efficiency of CPP. A PEG derivative by conjugating PEG with STR via acid-degradable hydrazone bond (PEG2000-Hz-STR, PHS was synthesized. High-performance liquid chromatography and flow cytometry demonstrated that PHS was stable at normal neutral conditions and PEG could be completely cleaved from liposome surface to expose CPP under acidic environments in tumor. An optimal CPP density on liposomes was screened to guaranty a maximum targeting efficiency on tumor cells as well as not being captured by normal cells that consequently lead to a long circulation in blood. In vitro and in vivo studies indicated, in 4 mol% CPP of lipid modified system, that CPP exerted higher efficiency on internalizing the liposomes into

  17. Cell-penetrating peptide-doxorubicin conjugate loaded NGR-modified nanobubbles for ultrasound triggered drug delivery.

    Science.gov (United States)

    Lin, Wen; Xie, Xiangyang; Deng, Jianping; Liu, Hui; Chen, Ying; Fu, Xudong; Liu, Hong; Yang, Yang

    2016-01-01

    A new drug-targeting system for CD13(+) tumors has been developed, based on ultrasound-sensitive nanobubbles (NBs) and cell-permeable peptides (CPPs). Here, the CPP-doxorubicin conjugate (CPP-DOX) was entrapped in the asparagine-glycine-arginine (NGR) peptide modified NB (CPP-DOX/NGR-NB) and the penetration of CPP-DOX was temporally masked; local ultrasound stimulation could trigger the CPP-DOX release from NB and activate its penetration. The CPP-DOX/NGR-NBs had particle sizes of about 200 nm and drug entrapment efficiency larger than 90%. In vitro release results showed that over 85% of the encapsulated DOX or CPP-DOX would release from NBs in the presence of ultrasound, while less than 1.5% of that (30 min) without ultrasound. Cell experiments showed the higher cellular CPP-DOX uptake of CPP-DOX/NGR-NB among the various NB formulations in Human fibrosarcoma cells (HT-1080, CD13(+)). The CPP-DOX/NGR-NB with ultrasound treatment exhibited an increased cytotoxic activity than the one without ultrasound. In nude mice xenograft of HT-1080 cells, CPP-DOX/NGR-NB with ultrasound showed a higher tumor inhibition effect (3.1% of T/C%, day 24), longer median survival time (50 days) and excellent body safety compared with the normal DOX injection group. These results indicate that the constructed vesicle would be a promising drug delivery system for specific cancer treatment.

  18. Targeting the EGFR/PCNA signaling suppresses tumor growth of triple-negative breast cancer cells with cell-penetrating PCNA peptides.

    Directory of Open Access Journals (Sweden)

    Yung-Luen Yu

    Full Text Available Tyrosine 211 (Y211 phosphorylation of proliferation cell nuclear antigen (PCNA coincides with pronounced cancer cell proliferation and correlates with poor survival of breast cancer patients. In epidermal growth factor receptor (EGFR tyrosine kinase inhibitor (TKI-resistant cells, both nuclear EGFR (nEGFR expression and PCNA Y211 phosphorylation are increased. Moreover, the resistance to EGFR TKI is a major clinical problem in treating EGFR-overexpressing triple-negative breast cancer (TNBC. Thus, effective treatment to combat resistance is urgently needed. Here, we show that treatment of cell-penetrating PCNA peptide (CPPP inhibits growth and induces apoptosis of human TNBC cells. The Y211F CPPP specifically targets EGFR and competes directly for PCNA tyrosine Y211 phosphorylation and prevents nEGFR from binding PCNA in vivo; it also suppresses tumor growth by sensitizing EGFR TKI resistant cells, which have enhanced nEGFR function and abrogated classical EGFR membrane signaling. Furthermore, we identify an active motif of CPPP, RFLNFF (RF6 CPPP, which is necessary and sufficient to inhibit TKI-resistant TNBC cell growth of orthotopic implanted tumor in mice. Finally, the activity of its synthetic retro-inverted derivative, D-RF6 CPPP, on an equimolar basis, is more potent than RF6 CPPP. Our study reveals a drug candidate with translational potential for the future development of safe and effective therapeutic for EGFR TKI resistance in TNBC.

  19. Novel cell-penetrating peptide-loaded nanobubbles synergized with ultrasound irradiation enhance EGFR siRNA delivery for triple negative Breast cancer therapy.

    Science.gov (United States)

    Jing, Hui; Cheng, Wen; Li, Shouqiang; Wu, Bolin; Leng, Xiaoping; Xu, Shouping; Tian, Jiawei

    2016-10-01

    The lack of safe and effective gene delivery strategies remains a bottleneck for cancer gene therapy. Here, we describe the synthesis, characterization, and application of cell-penetrating peptide (CPP)-loaded nanobubbles (NBs), which are characterized by their safety, strong penetrating power and high gene loading capability for gene delivery. An epidermal growth factor receptor (EGFR)-targeted small interfering RNA (siEGFR) was transfected into triple negative breast cancer (TNBC) cells via prepared CPP-NBs synergized with ultrasound-targeted microbubble destruction (UTMD) technology. Fluorescence microscopy showed that siEGFR and CPP were loaded on the shells of the NBs. The transfection efficiency and cell proliferation levels were evaluated by FACS and MTT assays, respectively. In addition, in vivo experiments showed that the expression of EGFR mRNA and protein could be efficiently downregulated and that the growth of a xenograft tumor derived from TNBC cells could be inhibited. Our results indicate that CPP-NBs carrying siEGFR could potentially be used as a promising non-viral gene vector that can be synergized with UTMD technology for efficient TNBC therapy. PMID:27388967

  20. Functional study of p38 mitogen-activated protein kinase based on cell-penetrating peptide delivery system

    Institute of Scientific and Technical Information of China (English)

    Liping Yang; Yongming Yao; Zhiyong Sheng; Xiaomei Zhu; Yong Jiang

    2009-01-01

    Objective p38 Mitogen-activated protein kinase (MAPK) is a crossing center of various pathways. In this study, protein transduction system based on human immunodeficiency virus (HIV)-1 transactivator of transcription (TAT), which is an efficient delivery peptide of the foreign proteins into cells, was employed to study p38 MAPK functions in eukaryotic cells. Methods p38 And its dominant negative form, p38AF, were constructed into pET-His-TAT vector correctly to verify that the recombinant plasmids were well-founded through restriction enzyme digestion and DNA sequencing. The two proteins, His-TAT-p38 and His-TAT-p38AF, were expressed and purified in Escherichia coli by SDS-PAGE. Then they were incubated with ECV304 cells respectively and readily transduced into cells in a time-dependent and dose-dependent manner. The cells were stimulated by sorbitol. Activating transcription factor (ATF) 2 phosphorylation level was checked using Western blot to assess the activity of endogenous p38. Results Compared with controls, it was found that His-TAT-p38 increased the level ofATF2 phosphorylation in sorbitol-stimulated ECV304 cells, while His-TAT-p38AF inhibited it, indicating p38 MAPK protein delivery system based on TAT was constructed successfully. TAT-p38 and its dominant negative form possessed high biological activity after transduction into ECV304 cells by TAT protein delivery system. The results showed that p38AF fused with TAT could inhibit the transduction of endogenous p38 signal pathway in part, and other pathway might regulate p38 phosphorylation. Conclusions Our study provides a novel pathway to inhibit p38 signal pathway and establish a new method to study p38 function.

  1. Identification of a cell-penetrating peptide domain from human beta-defensin 3 and characterization of its anti-inflammatory activity

    Directory of Open Access Journals (Sweden)

    Lee JY

    2015-08-01

    sites, such as the cytoplasm or nucleus, as hBD3-3 has the ability to be used as a carrier, and suggest a potential approach to effectively treat inflammatory diseases. Keywords: human beta-defensin 3, cell-penetrating peptide, anti-inflammatory activity, lipopolysaccharide, NF-κB canonical pathway

  2. Prolongation of life in rats with malignant glioma by intranasal siRNA/drug codelivery to the brain with cell-penetrating peptide-modified micelles.

    Science.gov (United States)

    Kanazawa, Takanori; Morisaki, Kazuki; Suzuki, Shohei; Takashima, Yuuki

    2014-05-01

    New therapeutic strategies are required to develop candidate drugs and ensure efficient delivery of these drugs to the brain and the central nervous system (CNS). Small interfering RNA (siRNA)-based therapies have been investigated as potential novel approaches for the treatment of brain disorders. Previously, we showed that Tat, a cell-penetrating peptide derived from HIV-Tat, and the modified block copolymers (MPEG-PCL-Tat) can form stable complexes with siRNA or can be loaded with an anticancer drug and efficiently deliver the drugs to the brain tissue via intranasal delivery. In this study, to develop a novel, efficient, and safe therapeutic strategy for managing brain disorders, we used MPEG-PCL-Tat micelles with a nose-to-brain delivery system to investigate its therapeutic effects on a rat model of malignant glioma using siRNA with a Raf-1 (siRaf-1)/camptothecin (CPT) codelivery system. MPEG-PCL-Tat and CPT-loaded MPEG-PCL-Tat can form a stable complex with siRNA with a particle size from 60 to 200 nm and a positive charge at N/P ratios up to 5. Additionally, MPEG-PCL-Tat/siRaf-1 and CPT-loaded MPEG-PCL-Tat/siRaf-1 have fostered cell death in rat glioma cells after the high cellular uptake of siRaf-1/drug by the MPEG-PCL-Tat carrier. Furthermore, compared to the unloaded MPEG-PCL-Tat/siRaf-1 complex, a CPT-loaded MPEG-PCL-Tat/siRaf-1 complex achieved the high therapeutic effect because of the additive effects of CPT and siRaf-1. These results indicate that drug/siRNA codelivery using MPEG-PCL-Tat nanomicelles with nose-to-brain delivery is an excellent therapeutic approach for brain and CNS diseases.

  3. Membrane damage as first and DNA as the secondary target for anti-candidal activity of antimicrobial peptide P7 derived from cell-penetrating peptide ppTG20 against Candida albicans.

    Science.gov (United States)

    Li, Lirong; Song, Fengxia; Sun, Jin; Tian, Xu; Xia, Shufang; Le, Guowei

    2016-06-01

    P7, a peptide analogue derived from cell-penetrating peptide ppTG20, possesses antibacterial and antitumor activities without significant hemolytic activity. In this study, we investigated the antifungal effect of P7 and its anti-Candida acting mode in Candida albicans. P7 displayed antifungal activity against the reference C. albicans (MIC = 4 μM), Aspergilla niger (MIC = 32 μM), Aspergillus flavus (MIC = 8 μM), and Trichopyton rubrum (MIC = 16 μM). The effect of P7 on the C. albicans cell membrane was examined by investigating the calcein leakage from fungal membrane models made of egg yolk l-phosphatidylcholine/ergosterol (10 : 1, w/w) liposomes. P7 showed potent leakage effects against fungal liposomes similar to Melittin-treated cells. C. albicans protoplast regeneration assay demonstrated that P7 interacted with the C. albicans plasma membrane. Flow cytometry of the plasma membrane potential and integrity of C. albicans showed that P7 caused 60.9 ± 1.8% depolarization of the membrane potential of intact C. albicans cells and caused 58.1 ± 3.2% C. albicans cell membrane damage. Confocal laser scanning microscopy demonstrated that part of FITC-P7 accumulated in the cytoplasm. DNA retardation analysis was also performed, which showed that P7 interacted with C. albicans genomic DNA after penetrating the cell membrane, completely inhibiting the migration of genomic DNA above the weight ratio (peptide : DNA) of 6. Our results indicated that the plasma membrane was the primary target, and DNA was the secondary intracellular target of the mode of action of P7 against C. albicans. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27197902

  4. Antimicrobial and cell-penetrating properties of penetratin analogs

    DEFF Research Database (Denmark)

    Bahnsen, Jesper Søborg; Franzyk, Henrik; Sandberg-Schaal, Anne;

    2013-01-01

    Cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs) show great potential as drug delivery vectors and new antibiotic drug entities, respectively. The current study deals with the properties of a variety of peptide analogs derived from the well-known CPP penetratin as well as...

  5. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid-polyethylene glycol nanoparticles improves ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Vasconcelos A

    2015-01-01

    Full Text Available Aimee Vasconcelos,1 Estefania Vega,2 Yolanda Pérez,3 María J Gómara,1 María Luisa García,2 Isabel Haro1 1Unit of Synthesis and Biomedical Applications of Peptides, Department of Biomedical Chemistry, Institute for Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC, 2Department of Physical Chemistry, Institute of Nanoscience and Nanotechnology, Faculty of Pharmacy, University of Barcelona, 3Nuclear Magnetic Resonance Unit, IQAC-CSIC, Barcelona, Spain Abstract: In this work, a peptide for ocular delivery (POD and human immunodeficiency virus transactivator were conjugated with biodegradable poly(lactic-co-glycolic acid (PGLA–polyethylene glycol (PEG-nanoparticles (NPs in an attempt to improve ocular drug bioavailability. The NPs were prepared by the solvent displacement method following two different pathways. One involved preparation of PLGA NPs followed by PEG and peptide conjugation (PLGA-NPs-PEG-peptide; the other involved self-assembly of PLGA-PEG and the PLGA-PEG-peptide copolymer followed by NP formulation. The conjugation of the PEG and the peptide was confirmed by a colorimetric test and proton nuclear magnetic resonance spectroscopy. Flurbiprofen was used as an example of an anti-inflammatory drug. The physicochemical properties of the resulting NPs (morphology, in vitro release, cell viability, and ocular tolerance were studied. In vivo anti-inflammatory efficacy was assessed in rabbit eyes after topical instillation of sodium arachidonate. Of the formulations developed, the PLGA-PEG-POD NPs were the smaller particles and exhibited greater entrapment efficiency and more sustained release. The positive charge on the surface of these NPs, due to the conjugation with the positively charged peptide, facilitated penetration into the corneal epithelium, resulting in more effective prevention of ocular inflammation. The in vitro toxicity of the NPs developed was very low; no ocular irritation

  6. Intranasal Delivery of Cell-Penetrating anti-NF-κB Peptides (Tat-NBD) Alleviates Infection-Sensitized Hypoxic-Ischemic Brain Injury

    OpenAIRE

    Yang, Dianer; Sun, Yu-Yo; Lin, Xiaoyi; Baumann, Jessica M.; Dunn, R. Scott; Lindquist, Diana M.; Kuan, Chia-Yi

    2013-01-01

    Perinatal infection aggravates neonatal hypoxic-ischemic (HI) brain injury and may interfere with therapeutic hypothermia. While the NF-κB signaling pathway has been implicated in microglia activation in infection-sensitized HI, the current therapeutic strategies rely on systemic intervention, which could impair neonatal immunity and increase the risk of severe infection. To devise a brain-targeted anti-NF-κB strategy, we examined the effects of intranasal delivery of tat-NBD peptides in two ...

  7. Development of an antisense RNA delivery system using conjugates of the MS2 bacteriophage capsids and HIV-1 TAT cell-penetrating peptide.

    Science.gov (United States)

    Wei, Baojun; Wei, Yuxiang; Zhang, Kuo; Wang, Jing; Xu, Ruihuan; Zhan, Sien; Lin, Guigao; Wang, Wei; Liu, Min; Wang, Lunan; Zhang, Rui; Li, Jinming

    2009-05-01

    RNA-based therapeutic strategies are used widely due to their highly specific mode of action. However, the major obstacle in any RNA-based therapy is cellular delivery and stability in the cells. The self-assembly of the MS2 bacteriophage capsids has been used to develop virus-like particles (VLPs) for drug delivery. In this study, we utilized the heterobifunctional crosslinker, sulfosuccinimidyl-4-(p-maleimidophenyl)-butyrate (sulfo-SMPB), to conjugate the human immunodeficiency virus-1 (HIV-1) Tat peptide and MS2 VLPs; the antisense RNA against the 5'-untranslated region (UTR) and the internal ribosome entry site (IRES) of the hepatitis C virus (HCV) was packaged into these particles by using a two-plasmid coexpression system. The MS2 VLPs conjugated with the Tat peptide were then transferred into Huh-7 cells containing an HCV reporter system. The packaged antisense RNA showed an inhibitory effect on the translation of HCV. This paper describes our initial results with this system using the Tat peptide. PMID:18823738

  8. Comparison of mechanisms and cellular uptake of cell-penetrating peptide on different cell lines%不同细胞系对细胞穿透肽的摄取和机制比较

    Institute of Scientific and Technical Information of China (English)

    马冬旭; 齐宪荣

    2010-01-01

    细胞穿透肽(cell-penetrating peptide,CPP)作为一种潜在的药物输送高效转运载体一直得到研究者的广泛关注.本文中采用4种肿瘤细胞系(MCF-7、MDA-MB-231、C6和B16F10)分别摄取异硫氰酸荧光素(fluorescein isothiocyanate,FITC)标记的CPP,观察到CPP入胞,并具有时间和浓度的依赖性,同时发现了C6细胞对CPP的胞吐作用,其胞吐动力学符合零级方程;在低温(4℃)和内吞抑制剂存在条件下探讨了CPP入胞的机制.低温条件对CPP的入胞未产生抑制作用;肝素钠作为细胞表面硫酸糖蛋白受体抑制剂对CPP的入胞有较强抑制作用,肝素组对CPP的摄取只达到对照组的3%~10%;而氯丙嗪、氯喹和N-乙酰基-N-异丙基阿米洛利[5-(N-ethyL-N-isopropyl)-amiloride,EIPA]对CPP的入胞影响不大.本研究表明,CPP穿透细胞没有选择性,即缺乏细胞特异性,但CPP的摄取量与细胞种类有关.硫酸蛋白聚糖的吸附介导在CPP穿透细胞中发挥了重要作用.

  9. 经穿膜肽与PEG修饰的核糖体失活蛋白Gelonin抗肿瘤作用的研究%Study on cell-penetrating peptide modified and PEGylated ribosome inactive protein Gelonin

    Institute of Scientific and Technical Information of China (English)

    张娅洁; 王慧媛; 陈应之; 汤懿斯; 杨志民; 黄永焯

    2015-01-01

    Objective:To improve anti-tumor effect of Gelonin, the plant-sourced RIP is modified by chemically conjugating a cell-penetrating peptide and polyethylene glycol (PEG). Methods:Purified protein was obtained after being performed on FPLC (fast protein liquid chromatography) Superdex75 column. Cytotoxicity was detected by MTT assay. The cellular uptake by HT1080 cells was studied by using inverted fluorescence microscopy and flow cytometry. In-vivo imaging technology was utilized for investigation of the in-vivo drug distribution in the HT1080 tumor-bearing mice. Results:The modified product was purified by using gel filtration chromatergraphy. Moreover, compared with native Gelonin, the cytotoxicity of modified protein was increased, especially in HT1080, presumably due to the enhanced cellular uptake. The in-vivo imaging results suggested that drug accumulation in tumor was improved by PEGylation. Conclusion:Modified Gelonin can improve cell penetration and cytotoxicity in tumor cells. PEGylation can increase tumor accumulation of the protein drug, and thereby enhance its anti-tumor effect.%目的:通过对核糖体失活蛋白Gelonin进行化学修饰,利用穿膜肽和聚乙二醇(PEG)偶联来提高其到达肿瘤部位和进入肿瘤细胞的能力,使Gelonin更高效地发挥抑瘤作用. 方法:利用FPLC Superdex75分子筛预装柱纯化系统对所修饰的Gelonin进行纯化后,在不同细胞系测试细胞毒性;通过倒置荧光显微镜、流式细胞分析技术等对药物进入纤维肉瘤细胞HT1080的能力进行评价;采用小动物活体成像技术考察药物体系在荷瘤动物体内的分布情况. 结果:采用分子筛色谱纯化可以得到纯度相对较高的修饰产物,其毒性较无修饰的Gelonin强,且在HT1080细胞系作用最明显;细胞摄取结果显示,与未修饰的Gelonin相比,该药物体系具有更高的细胞摄取效率;动物成像结果表明,PEG5000修饰可以改变Gelonin在动物体内的分布情况,

  10. Peptides Interfering 3A Protein Dimerization Decrease FMDV Multiplication.

    Directory of Open Access Journals (Sweden)

    Mónica González-Magaldi

    Full Text Available Nonstructural protein 3A is involved in relevant functions in foot-and-mouth disease virus (FMDV replication. FMDV 3A can form homodimers and preservation of the two hydrophobic α-helices (α1 and α2 that stabilize the dimer interface is essential for virus replication. In this work, small peptides mimicking residues involved in the dimer interface were used to interfere with dimerization and thus gain insight on its biological function. The dimer interface peptides α1, α2 and that spanning the two hydrophobic α-helices, α12, impaired in vitro dimer formation of a peptide containing the two α-helices, this effect being higher with peptide α12. To assess the effect of dimer inhibition in cultured cells, the interfering peptides were N-terminally fused to a heptaarginine (R7 sequence to favor their intracellular translocation. Thus, when fused to R7, interference peptides (100 μM were able to inhibit dimerization of transiently expressed 3A, the higher inhibitions being found with peptides α1 and α12. The 3A dimerization impairment exerted by the peptides correlated with significant, specific reductions in the viral yield recovered from peptide-treated FMDV infected cells. In this case, α2 was the only peptide producing significant reductions at concentrations lower than 100 μM. Thus, dimer interface peptides constitute a tool to understand the structure-function relationship of this viral protein and point to 3A dimerization as a potential antiviral target.

  11. Cell-Penetrating Peptides—Mechanisms of Cellular Uptake and Generation of Delivery Systems

    Directory of Open Access Journals (Sweden)

    Sara Trabulo

    2010-03-01

    Full Text Available The successful clinical application of nucleic acid-based therapeutic strategies has been limited by the poor delivery efficiency achieved by existing vectors. The development of alternative delivery systems for improved biological activity is, therefore, mandatory. Since the seminal observations two decades ago that the Tat protein, and derived peptides, can translocate across biological membranes, cell-penetrating peptides (CPPs have been considered one of the most promising tools to improve non-invasive cellular delivery of therapeutic molecules. Despite extensive research on the use of CPPs for this purpose, the exact mechanisms underlying their cellular uptake and that of peptide conjugates remain controversial. Over the last years, our research group has been focused on the S413-PV cell-penetrating peptide, a prototype of this class of peptides that results from the combination of 13-amino-acid cell penetrating sequence derived from the Dermaseptin S4 peptide with the SV40 large T antigen nuclear localization signal. By performing an extensive biophysical and biochemical characterization of this peptide and its analogs, we have gained important insights into the mechanisms governing the interaction of CPPs with cells and their translocation across biological membranes. More recently, we have started to explore this peptide for the intracellular delivery of nucleic acids (plasmid DNA, siRNA and oligonucleotides. In this review we discuss the current knowledge of the mechanisms responsible for the cellular uptake of cell-penetrating peptides, including the S413-PV peptide, and the potential of peptide-based formulations to mediate nucleic acid delivery.

  12. Peptides interfering 3A protein dimerization decrease FMDV multiplication

    OpenAIRE

    Mónica González-Magaldi; Ángela Vázquez-Calvo; de la Torre, Beatriz G; Javier Valle; David Andreu; Francisco Sobrino

    2015-01-01

    Nonstructural protein 3A is involved in relevant functions in foot-and-mouth disease virus (FMDV) replication. FMDV 3A can form homodimers and preservation of the two hydrophobic ??-helices (??1 and ??2) that stabilize the dimer interface is essential for virus replication. In this work, small peptides mimicking residues involved in the dimer interface were used to interfere with dimerization and thus gain insight on its biological function. The dimer interface peptides ??1, ??2 and that span...

  13. Liquid Crystalline Nanodispersions Functionalized with Cell-Penetrating Peptides for Topical Delivery of Short-Interfering RNAs: A Proposal for Silencing a Pro-Inflammatory Cytokine in Cutaneous Diseases.

    Science.gov (United States)

    Petrilli, R; Eloy, J O; Praça, F S G; Del Ciampo, J O; Fantini, M A C; Fonseca, M J V; Bentley, M V L B

    2016-05-01

    Short-interfering RNAs (siRNAs) are a potential strategy for the treatment of cutaneous diseases. In this context, liquid crystalline nanoparticles functionalized with specific proteins and peptide-transduction domains (PTDs), which act as penetration enhancers, are a promising carrier for siRNA delivery through the skin. Herein, hexagonal phase liquid crystal nanoparticles based on monoolein (MO) and/or oleic acid (OA) containing (or lacking) the cationic polymer polyethylenimine (PEI) and the cationic lipid oleylamine (OAM) were functionalized with the membrane transduction peptides transcriptional activator (TAT) or penetratin (PNT). These nanoparticles were complexed with siRNA and characterized by particle size, polydispersity, zeta potential, complexation efficiency and siRNA release. The formulations containing cationic agents presented positive zeta potentials, sizes on the nanometer scale, and complexed siRNAs at concentrations of 10 μM; these agents were successfully released in a heparin competition assay. Cell culture studies demonstrated that nanoparticles composed of MO:OA:PEI functionalized with TAT were the most efficient at transfecting L929 cells, and the uptake efficiency was enhanced by TAT peptide functionalization. Thereafter, the selected formulations were evaluated for in vivo skin irritation, penetration and in vivo efficacy using a chemically induced inflammatory animal model. These nanoparticles did not irritate the skin and provided higher siRNA penetration and delivery into the skin than control formulations. Additionally, efficacy studies in the animal model showed that the association of TAT with the nanodispersion provided higher suppression of tumor necrosis factor (TNF)-α. Thus, the development of liquid crystalline nanodispersions containing TAT may lead to improved topical siRNA delivery for the treatment of inflammatory skin diseases. PMID:27305826

  14. Decreased expression of natriuretic peptides associated with lipid accumulation in cardiac ventricle of obese mice

    DEFF Research Database (Denmark)

    Bartels, E.D.; Nielsen, J.M.; Bisgaard, L.S.;

    2010-01-01

    -actin) and natriuretic peptide receptor genes were not consistently altered by obesity across the three mouse models. In contrast, cardiac ventricular triglycerides were similarly increased by 60-115% in all three obese mouse models and incubation with oleic acid caused triglyceride accumulation and an approximately 35......Plasma B-type natriuretic peptide (BNP) and proBNP are established markers of cardiac dysfunction. Even though obesity increases the risk of cardiovascular disease, obese individuals have reduced plasma concentrations of natriuretic peptides. The underlying mechanism is not established. We used...... cultured cardiomyocytes and three different mouse models to examine the impact of obesity and cardiac lipid accumulation on cardiac natriuretic peptide expression. The cardiac ventricular expression of atrial natriuretic peptide (ANP) and BNP mRNA and ANP peptide was decreased 36-72% in obese ob/ob, db...

  15. 穿膜肽引导的体外表达转录因子蛋白Sox2进入红鳍东方鲀精巢细胞系%Intracellular delivery of the expressed fusion protein Sox2 with cell penetrating peptides to cultured Takifugu rupies spermary cells

    Institute of Scientific and Technical Information of China (English)

    杨秀霞; 侯雪宁; 徐彬; 郝萧; 姜国建; 樊廷俊

    2014-01-01

    为了探索适用于体外培养的鱼细胞外源基因转入方法,本研究通过构建红鳍东方鲀(Takifugu rubripes)转录因子Sox2的重组表达载体 pET32a(+)-Sox2-11R-6His,诱导表达并纯化得到了 C末端连接多聚精氨酸(11R)的重组蛋白Sox2-11R-6His,以其与红鳍东方鲀精巢细胞系细胞共孵育12 h后,光镜观察结合Western Blot检测发现重组蛋白进入细胞的效率与浓度呈剂量依赖关系且最佳孵育浓度为8μg/mL,当重组蛋白质量浓度达到10μg/mL 时,表现出明显的细胞毒性。对外源蛋白进行免疫荧光标记定位,发现重组蛋白分布于细胞质,部分进入到细胞核中。证明了穿膜肽11R可以有效运载转录因子重组蛋白至红鳍东方鲀的细胞系细胞中。本研究旨在将广泛应用于哺乳动物的细胞基因递送载体穿膜肽应用于鱼类细胞系细胞。%Research on exogenous gene function in cultured cell line cells is guaranteed by two biological processes, efficient gene transduction and errorless gene expression. Fish cells are not easy for exogenous gene transduction and expression depending on the gene delivery method used and the transgene promoter. Cell penetrating peptides (CPPs), such as the CPP of the human immunodeficiency virus type 1 TAT protein, poly-arginine (6–12 residues), and the CPP derived from flock house virus (FHV), are short cationic and/or amphipathic peptides that are able to transport various biological compounds such as peptides, proteins, and oligonucleotides into mammalian cells to modulate biological activities inside cells. Although it has been shown that CPPs can mediate efficient delivery into a wide variety of mam-malian cell types, the transduction of proteins to cultured fish cells is considered more challenging. In this work, the Sox2 gene from Takifugu rupies genomic DNA was cloned and subsequent expression was carried out in Escherichia coli in the form of recombinant proteins by introducing cell

  16. Cell-penetrating peptides for drug delivery across membrane barriers

    DEFF Research Database (Denmark)

    Foged, Camilla; Nielsen, Hanne Moerck

    2008-01-01

    , proteins and colloidal carriers such as liposomes and polymeric nanoparticles. Their ability to cross biological membranes in a non-disruptive way without apparent toxicity is highly desired for increasing drug bioavailability. This review provides an overview of the application of cell...

  17. Decreased outer membrane permeability protects mycobacteria from killing by ubiquitin-derived peptides.

    Science.gov (United States)

    Purdy, Georgiana E; Niederweis, Michael; Russell, David G

    2009-09-01

    Ubiquitin-derived peptides are bactericidal in vitro and contribute to the mycobactericidal activity of the lysosome. To further define interactions of ubiquitin-derived peptides with mycobacteria, we screened for mutants with increased resistance to the bactericidal activity of the synthetic ubiquitin-derived peptide Ub2. The four Ub2-resistant Mycobacterium smegmatis mutants were also resistant to the bactericidal action of other antimicrobial peptides and macrophages. Two mutants were in the mspA gene encoding the main M. smegmatis porin. Using a translocation-deficient MspA point mutant, we showed that susceptibility of M. smegmatis to Ub2 was independent of MspA channel activity. Instead, the M. smegmatis Ub2-resistant mutants shared a common phenotype of decreased cell wall permeability compared with wild-type bacteria. Expression of mspA rendered Mycobacterium tuberculosis CDC1551 more susceptible both to ubiquitin-derived peptides in vitro and to lysosomal killing in macrophages. Finally, biochemical assays designed to assess membrane integrity indicated that Ub2 treatment impairs membrane function of M. smegmatis and M. tuberculosis cells. The M. smegmatis Ub2-resistant mutants were more resistant than wild-type M. smegmatis to this damage. We conclude that Ub2 targets mycobacterial membranes and that reduced membrane permeability provides mycobacteria intrinsic resistance against antimicrobial compounds including bactericidal ubiquitin-derived peptides. PMID:19682257

  18. ApoE mimetic peptide decreases Aβ production in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Pak Daniel TS

    2010-04-01

    Full Text Available Abstract Background Apolipoprotein E (apoE is postulated to affect brain Aβ levels through multiple mechanisms--by altering amyloid precursor protein (APP processing, Aβ degradation, and Aβ clearance. We previously showed that an apoE-derived peptide containing a double repeat of the receptor-binding region was similarly effective in increasing APP processing in vivo. Here, we further examined whether peptides containing tandem repeats of the apoE receptor-binding region (amino acids 141-149 affected APP trafficking, APP processing, and Aβ production. Results We found that peptides containing a double or triple tandem repeat of the apoE receptor-binding region, LRKLRKRLL, increased cell surface APP and decreased Aβ levels in PS1-overexpressing PS70 cells and in primary neurons. This effect was potentiated by a sequential increase in the number of apoE receptor-binding domain repeats (trimer > dimer > monomer. We previously showed that the apoE dimer increased APP CTF in vivo; to determine whether the dimer also affected secreted APP or Aβ levels, we performed a single hippocampal injection of the apoE dimer in wild-type mice and analyzed its effect on APP processing. We found increased sAPPα and decreased Aβ levels at 24 hrs after treatment, suggesting that the apoE dimer may increase α-secretase cleavage. Conclusions These data suggest that small peptides consisting of tandem repeats of the apoE receptor-binding region are sufficient to alter APP trafficking and processing. The potency of these peptides increased with increasing repeats of the receptor binding domain of apoE. In addition, in vivo administration of the apoE peptide (dimer increased sAPPα and decreased Aβ levels in wild-type mice. Overall, these findings contribute to our understanding of the effects of apoE on APP processing and Aβ production both in vitro and in vivo.

  19. Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Nadai, Ryo; Kimura, Hitoshi; Nishitsuji, Kazuchika; Uchimura, Kenji; Sakai-Kato, Kumiko; Kawakami, Kohsaku; Shigenaga, Akira; Kawakami, Toru; Otaka, Akira; Hojo, Hironobu; Sakashita, Naomi; Saito, Hiroyuki

    2016-06-01

    The first step of cell membrane penetration of arginine peptides is thought to occur via electrostatic interactions between positive charges of arginine residues and negative charges of sulfated glycosaminoglycans (GAGs) on the cell surface. However, the molecular interaction of arginine peptides with GAG still remains unclear. Here, we compared the interactions of several arginine peptides of Tat, R8, and Rev and their analogues with heparin in relation to the cell membrane penetration efficiency. The high-affinity binding of arginine peptides to heparin was shown to be driven by large favorable enthalpy contributions, possibly reflecting multidentate hydrogen bondings of arginine residues with sulfate groups of heparin. Interestingly, the lysine peptides in which all arginine residues are substituted with lysine residues exhibited negligible binding enthalpy despite of their considerable binding to heparin. In CHO-K1 cells, arginine peptides exhibited a great cell-penetrating ability whereas their corresponding lysine peptides did not penetrate into cells. The degree of cell penetration of arginine peptides markedly decreased by the chlorate treatment of cells which prevents the sulfation of GAG chains. Significantly, the cell penetration efficiency of arginine peptides was found to be correlated with the favorable enthalpy of binding to heparin. These results suggest that the enthalpy-driven strong interaction with sulfated GAGs such as heparan sulfate plays a critical role in the efficient cell membrane penetration of arginine peptides.

  20. Peptide YY and glucagon-like peptide-1 contribute to decreased food intake after Roux-en-Y gastric bypass surgery

    DEFF Research Database (Denmark)

    Svane, M S; Jørgensen, N B; Bojsen-Møller, K N;

    2016-01-01

    BACKGROUND/OBJECTIVES: Exaggerated postprandial secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) may explain appetite reduction and weight loss after Roux-en-Y gastric bypass (RYGB), but causality has not been established. We hypothesized that food intake decreases after surgery...

  1. SAP(E) - A cell-penetrating polyproline helix at lipid interfaces.

    Science.gov (United States)

    Franz, Johannes; Lelle, Marco; Peneva, Kalina; Bonn, Mischa; Weidner, Tobias

    2016-09-01

    Cell-penetrating peptides (CPPs) are short membrane-permeating amino acid sequences that can be used to deliver cargoes, e.g. drugs, into cells. The mechanism for CPP internalization is still subject of ongoing research. An interesting family of CPPs is the sweet arrow peptides - SAP(E) - which are known to adopt a polyproline II helical secondary structure. SAP(E) peptides stand out among CPPs because they carry a net negative charge while most CPPs are positively charged, the latter being conducive to electrostatic interaction with generally negatively charged membranes. For SAP(E)s, an internalization mechanism has been proposed, based on polypeptide aggregation on the cell surface, followed by an endocytic uptake. However, this process has not yet been observed directly - since peptide-membrane interactions are inherently difficult to monitor on a molecular scale. Here, we use sum frequency generation (SFG) vibrational spectroscopy to investigate molecular interactions of SAP(E) with differently charged model membranes, in both mono- and bi-layer configurations. The data suggest that the initial binding mechanism is accompanied by structural changes of the peptide. Also, the peptide-model membrane interaction depends on the charge of the lipid headgroup with phosphocholine being a favorable binding site. Moreover, while direct penetration has also been observed for some CPPs, the spectroscopy reveals that for SAP(E), its interaction with model membranes remains limited to the headgroup region, and insertion into the hydrophobic core of the lipid layer does not occur.

  2. SAP(E) - A cell-penetrating polyproline helix at lipid interfaces.

    Science.gov (United States)

    Franz, Johannes; Lelle, Marco; Peneva, Kalina; Bonn, Mischa; Weidner, Tobias

    2016-09-01

    Cell-penetrating peptides (CPPs) are short membrane-permeating amino acid sequences that can be used to deliver cargoes, e.g. drugs, into cells. The mechanism for CPP internalization is still subject of ongoing research. An interesting family of CPPs is the sweet arrow peptides - SAP(E) - which are known to adopt a polyproline II helical secondary structure. SAP(E) peptides stand out among CPPs because they carry a net negative charge while most CPPs are positively charged, the latter being conducive to electrostatic interaction with generally negatively charged membranes. For SAP(E)s, an internalization mechanism has been proposed, based on polypeptide aggregation on the cell surface, followed by an endocytic uptake. However, this process has not yet been observed directly - since peptide-membrane interactions are inherently difficult to monitor on a molecular scale. Here, we use sum frequency generation (SFG) vibrational spectroscopy to investigate molecular interactions of SAP(E) with differently charged model membranes, in both mono- and bi-layer configurations. The data suggest that the initial binding mechanism is accompanied by structural changes of the peptide. Also, the peptide-model membrane interaction depends on the charge of the lipid headgroup with phosphocholine being a favorable binding site. Moreover, while direct penetration has also been observed for some CPPs, the spectroscopy reveals that for SAP(E), its interaction with model membranes remains limited to the headgroup region, and insertion into the hydrophobic core of the lipid layer does not occur. PMID:27237727

  3. Decreased outer membrane permeability protects mycobacteria from killing by ubiquitin-derived peptides

    OpenAIRE

    Purdy, Georgiana E.; Niederweis, Michael; Russell, David G.

    2009-01-01

    Ubiquitin-derived peptides are bactericidal in vitro and contribute to the mycobactericidal activity of the lysosome. To further define interactions of ubiquitin-derived peptides with mycobacteria, we screened for mutants with increased resistance to the bactericidal activity of the synthetic ubiquitin-derived peptide Ub2. The four Ub2-resistant M. smegmatis mutants were also resistant to the bactericidal action of other antimicrobial peptides and macrophages. Two mutants were in the mspA gen...

  4. Cell-penetrating superoxide dismutase attenuates oxidative stress-induced senescence by regulating the p53-p21Cip1 pathway and restores osteoblastic differentiation in human dental pulp stem cells

    Directory of Open Access Journals (Sweden)

    Park YJ

    2012-09-01

    Full Text Available Yoon Jung Choi,1,* Jue Yeon Lee,2,* Chong Pyoung Chung,2 Yoon Jeong Park,1,21Craniomaxillofacial Reconstructive Sciences, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea; 2Research Institute, Nano Intelligent Biomedical Engineering, Seoul, Republic of Korea*These authors contributed equally to this workBackground: Human dental pulp stem cells (DPSCs have potential applications in tissue regeneration because of their convenient cell harvesting procedures and multipotent capacity. However, the tissue regenerative potential of DPSCs is known to be negatively regulated by aging in long-term culture and under oxidative stress. With an aim of reducing cellular senescence and oxidative stress in DPSCs, an intracellular delivery system for superoxide dismutase 1 (SOD1 was developed. We conjugated SOD1 with a cell-penetrating peptide known as low-molecular weight protamine (LMWP, and investigated the effect of LMWP-SOD1 conjugates on hydrogen peroxide-induced cellular senescence and osteoblastic differentiation.Results: LMWP-SOD1 significantly attenuated enlarged and flattened cell morphology and increased senescence-associated β-galactosidase activity. Under the same conditions, LMWP-SOD1 abolished activation of the cell cycle regulator proteins, p53 and p21Cip1, induced by hydrogen peroxide. In addition, LMWP-SOD1 reversed the inhibition of osteoblastic differentiation and downregulation of osteogenic gene markers induced by hydrogen peroxide. However, LMWP-SOD1 could not reverse the decrease in odontogenesis caused by hydrogen peroxide.Conclusion: Overall, cell-penetrating LMWP-SOD1 conjugates are effective for attenuation of cellular senescence and reversal of osteoblastic differentiation of DPSCs caused by oxidative stress inhibition. This result suggests potential application in the field of antiaging and tissue engineering to overcome the limitations of senescent stem cells.Keywords: superoxide

  5. Cell-penetrating compounds preferentially bind glycosaminoglycans over plasma membrane lipids in a charge density- and stereochemistry-dependent manner.

    Science.gov (United States)

    Prevette, Lisa E; Benish, Nicolas C; Schoenecker, Amber R; Braden, Kristin J

    2015-12-01

    Cell-penetrating compounds (CPCs) are often conjugated to drugs and genes to facilitate cellular uptake. We hypothesize that the electrostatic interaction between the positively charged amines of the cell-penetrating compounds and the negatively charged glycosaminoglycans (GAGs) extending from cell surfaces is the initiating step in the internalization process. The interactions of generation 5 PAMAM dendrimer, Tat peptide and 25 kDa linear PEI with four different GAGs have been studied using isothermal titration calorimetry to elucidate structure-function relationships that could lead to improved drug and gene delivery methods to a wide variety of cell types. Detailed thermodynamic analysis has determined that CPC-GAG binding constants range from 8.7×10(3) to 2.4×10(6)M(-1) and that affinity is dependent upon GAG charge density and stereochemistry and CPC molecular weight. The effect of GAG composition on affinity is likely due to hydrogen bonding between CPC amines and amides and GAG hydroxyl and amine groups. These results were compared to the association of CPCs with lipid vesicles of varying composition as model plasma membranes to finally clarify the relative importance of each cell surface component in initial cell recognition. CPC-lipid affinity increases with anionic lipid content, but GAG affinity is higher for all cell-penetrating compounds, confirming the role these heterogeneous polysaccharides play in cellular association and clustering.

  6. Endosomolytic Nano-Polyplex Platform Technology for Cytosolic Peptide Delivery To Inhibit Pathological Vasoconstriction.

    Science.gov (United States)

    Evans, Brian C; Hocking, Kyle M; Kilchrist, Kameron V; Wise, Eric S; Brophy, Colleen M; Duvall, Craig L

    2015-06-23

    A platform technology has been developed and tested for delivery of intracellular-acting peptides through electrostatically complexed nanoparticles, or nano-polyplexes, formulated from an anionic endosomolytic polymer and cationic therapeutic peptides. This delivery platform has been initially tested and optimized for delivery of two unique vasoactive peptides, a phosphomimetic of heat shock protein 20 and an inhibitor of MAPKAP kinase II, to prevent pathological vasoconstriction (i.e., vasospasm) in human vascular tissue. These peptides inhibit vasoconstriction and promote vasorelaxation by modulating actin dynamics in vascular smooth muscle cells. Formulating these peptides into nano-polyplexes significantly enhances peptide uptake and retention, facilitates cytosolic delivery through a pH-dependent endosomal escape mechanism, and enhances peptide bioactivity in vitro as measured by inhibition of F-actin stress fiber formation. In comparison to treatment with the free peptides, which were endowed with cell-penetrating sequences, the nano-polyplexes significantly increased vasorelaxation, inhibited vasoconstriction, and decreased F-actin formation in the human saphenous vein ex vivo. These results suggest that these formulations have significant potential for treatment of conditions such as cerebral vasospasm following subarachnoid hemorrhage. Furthermore, because many therapeutic peptides include cationic cell-penetrating segments, this simple and modular platform technology may have broad applicability as a cost-effective approach for enhancing the efficacy of cytosolically active peptides.

  7. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease

    DEFF Research Database (Denmark)

    Weiner, H L; Lemere, C A; Maron, R;

    2000-01-01

    -implicated proteins can induce antigen-specific anti-inflammatory immune responses in mucosal lymphoid tissue which then act systemically. We hypothesized that chronic mucosal administration of Abeta peptide might induce an anti-inflammatory process in AD brain tissue that could beneficially affect......Progressive cerebral deposition of amyloid-beta (Abeta) peptide, an early and essential feature of Alzheimer's disease (AD), is accompanied by an inflammatory reaction marked by microgliosis, astrocytosis, and the release of proinflammatory cytokines. Mucosal administration of disease......-Abeta antibodies of the IgG1 and IgG2b classes, and mononuclear cells in the brain expressing the anti-inflammatory cytokines interleukin-4, interleukin-10, and tumor growth factor-beta. Our results demonstrate that chronic nasal administration of Abeta peptide can induce an immune response to Abeta that decreases...

  8. Enhanced cellular delivery of cell-penetrating peptide-peptide nucleic acid conjugates by photochemical internalization

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    )) or tetraphenylporphyrin tetrasulfonic acid (TPPS). Cellular uptake of the PNA conjugates were evaluated by using a sensitive cellular method with HeLa pLuc705 cells based on the splicing correction of luciferase gene by targeting antisense oligonucleotides to a cryptic splice site of the mutated luciferase gene....... The cellular efficacy of CPP conjugates were evaluated by measuring luciferase activity as a result of splicing correction and was also confirmed by RT-PCR analysis of luciferase pre-mRNA....

  9. Discovery and characterization of a new cell-penetrating protein.

    Science.gov (United States)

    Simeon, Rudo L; Chamoun, Ana Maria; McMillin, Thomas; Chen, Zhilei

    2013-12-20

    We describe a new cell-penetrating protein, B1, capable of delivering conjugated proteins and nucleic acids into mammalian cells. B1 is a 244-amino-acid product of a single-base frameshift in the gene encoding enhanced green fluorescent protein (eGFP). The molecule has a net positive charge of 43 and a very high charge-to-mass ratio of 1.5. eGFP-fused B1 potently penetrates both adherent and suspension cells with >80% of cells taking up the protein when exposed to concentrations as low as 1 μM. The protein was found to cluster in the paranuclear region of TZM-bl cells. Most importantly, we show that B1 not only facilitates cellular uptake but allows biomolecular cargo to reach sites of biological relevance. For example, baby hamster kidney cells underwent DNA recombination when exposed to B1-tagged Cre recombinase at protein concentrations as low as 2.5 μM, indicating potent nuclear delivery of functional protein cargos. Additionally, B1 delivers noncovalently conjugated RNA and DNA across the cell membrane to cytosolic and nuclear sites accessible to the cellular translation and transcription machinery, as gauged by detection of encoded reporter functions, with efficiency comparable to commercially available cationic lipid reagents. B1 appears to utilize cell-surface glycans and multiple competing endocytic pathways to enter and traffic through cells. These studies provide both a new tool for intracellular delivery of biomolecules and insights that could aid in the design of more effective cell penetrating proteins.

  10. Cell penetrable humanized-VH/V(H)H that inhibit RNA dependent RNA polymerase (NS5B) of HCV.

    Science.gov (United States)

    Thueng-in, Kanyarat; Thanongsaksrikul, Jeeraphong; Srimanote, Potjanee; Bangphoomi, Kunan; Poungpair, Ornnuthchar; Maneewatch, Santi; Choowongkomon, Kiattawee; Chaicumpa, Wanpen

    2012-01-01

    NS5B is pivotal RNA dependent RNA polymerase (RdRp) of HCV and NS5B function interfering halts the virus infective cycle. This work aimed to produce cell penetrable humanized single domain antibodies (SdAb; VH/V(H)H) that interfere with the RdRp activity. Recombinant NS5BΔ55 of genotype 3a HCV with de novo RNA synthetic activity was produced and used in phage biopanning for selecting phage clones that displayed NS5BΔ55 bound VH/V(H)H from a humanized-camel VH/V(H)H display library. VH/V(H)H from E. coli transfected with four selected phage clones inhibited RdRp activity when tested by ELISA inhibition using 3'di-cytidylate 25 nucleotide directed in vitro RNA synthesis. Deduced amino acid sequences of two clones showed V(H)H hallmark and were designated V(H)H6 and V(H)H24; other clones were conventional VH, designated VH9 and VH13. All VH/V(H)H were linked molecularly to a cell penetrating peptide, penetratin. The cell penetrable VH9, VH13, V(H)H6 and V(H)H24 added to culture of Huh7 cells transfected with JHF-1 RNA of genotype 2a HCV reduced the amounts of RNA intracellularly and in culture medium implying that they inhibited the virus replication. VH/V(H)H mimotopes matched with residues scattered on the polymerase fingers, palm and thumb which were likely juxtaposed to form conformational epitopes. Molecular docking revealed that the antibodies covered the RdRp catalytic groove. The transbodies await further studies for in vivo role in inhibiting HCV replication.

  11. Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety.

    Science.gov (United States)

    Zhu, Lin; Wang, Tao; Perche, Federico; Taigind, Anton; Torchilin, Vladimir P

    2013-10-15

    In response to the challenges of cancer chemotherapeutics, including poor physicochemical properties, low tumor targeting, insufficient tumor cell internalization/bioavailability, and side effects, we developed a unique tumor-targeted micellar drug-delivery platform. Using paclitaxel as a model therapeutic, a nanopreparation composed of a matrix metalloproteinase 2 (MMP2)-sensitive self-assembly PEG 2000-paclitaxel conjugate (as a prodrug and MMP 2-sensitive moiety), transactivating transcriptional activator peptide-PEG1000-phosphoethanolamine (PE) (a cell-penetrating enhancer), and PEG1000-PE (a nanocarrier building block) was prepared. Several major drug delivery strategies, including self-assembly, PEGylation, the enhanced permeability and retention effect, stimulus sensitivity, a cell-penetrating moiety, and the concept of prodrug, were used in design of this nanoparticle in a collaborative manner. The nanopreparation allowed superior cell internalization, cytotoxicity, tumor targeting, and antitumor efficacy in vitro and in vivo over its nonsensitive counterpart, free paclitaxel and conventional micelles. This uniquely engineered nanoparticle has potential for effective intracellular delivery of drug into cancer cells. PMID:24062440

  12.   Cell Penetrating Peptoids (CPPos: Synthesis of a Small Combinatorial Library by Using IRORI MiniKans

    Directory of Open Access Journals (Sweden)

    Dominik K. Kölmel

    2012-11-01

    Full Text Available Cell penetrating peptoids (CPPos are potent mimics of the corresponding cell penetrating peptides (CPPs. The synthesis of diverse oligomeric libraries that display a variety of backbone scaffolds and side-chain appendages are a very promising source of novel CPPos, which can be used to either target different cellular organelles or even different tissues and organs. In this study we established the submonomer-based solid phase synthesis of a “proof of principle” peptoid library in IRORI MiniKans to expand the amount for phenotypic high throughput screens of CPPos. The library consisting of tetrameric peptoids [oligo(N-alkylglycines] was established on Rink amide resin in a split and mix approach with hydrophilic and hydrophobic peptoid side chains. All CPPos of the presented library were labeled with rhodamine B to allow for the monitoring of cellular uptake by fluorescent confocal microscopy. Eventually, all the purified peptoids were subjected to live cell imaging to screen for CPPos with organelle specificity. While highly charged CPPos enter the cells by endocytosis with subsequent endosomal release, critical levels of lipophilicity allow other CPPos to specifically localize to mitochondria once a certain lipophilicity threshold is reached.

  13. Gastrin releasing peptide receptor expression is decreased in patients with Crohn’s disease but not in ulcerative colitis

    OpenAIRE

    ter Beek, W P; Muller, E S M; van Hogezand, R A; Biemond, I; Lamers, C B H W

    2004-01-01

    Background: Gastrin releasing peptide (GRP) and neuromedin B are bombesin (BN)-like peptides involved in regulating motility and inflammation in the gastrointestinal tract, which may be useful in treating inflammatory bowel disease (IBD). Three bombesin-like peptide receptors have been reported, but no studies have investigated their localisation in normal and inflamed human intestine.

  14. Cell-Penetrating, Guanidinium-Rich Oligophosphoesters: Effective and Versatile Molecular Transporters for Drug and Probe Delivery.

    Science.gov (United States)

    McKinlay, Colin J; Waymouth, Robert M; Wender, Paul A

    2016-03-16

    The design, synthesis, and biological evaluation of a new family of highly effective cell-penetrating molecular transporters, guanidinium-rich oligophosphoesters, are described. These unique transporters are synthesized in two steps, irrespective of oligomer length, by the organocatalytic ring-opening polymerization (OROP) of 5-membered cyclic phospholane monomers followed by oligomer deprotection. Varying the initiating alcohol results in a wide variety of cargo attachment strategies for releasable or nonreleasable transporter applications. Initiation of oligomerization with a fluorescent probe produces, upon deprotection, a transporter-probe conjugate that is shown to readily enter multiple cell lines in a dose-dependent manner. These new transporters are superior in cell uptake to previously studied guanidinium-rich oligocarbonates and oligoarginines, showing over 2-fold higher uptake than the former and 6-fold higher uptake than the latter. Initiation with a protected thiol gives, upon deprotection, thiol-terminated transporters which can be thiol-click conjugated to a variety of probes, drugs and other cargos as exemplified by the conjugation and delivery of the model probe fluorescein-maleimide and the medicinal agent paclitaxel (PTX) into cells. Of particular significance given that drug resistance is a major cause of chemotherapy failure, the PTX-transporter conjugate, designed to evade Pgp export and release free PTX after cell entry, shows efficacy against PTX-resistant ovarian cancer cells. Collectively this study introduces a new and highly effective class of guanidinium-rich cell-penetrating transporters and methodology for their single-step conjugation to drugs and probes, and demonstrates that the resulting drug/probe-conjugates readily enter cells, outperforming previously reported guanidinium-rich oligocarbonates and peptide transporters. PMID:26900771

  15. Formulating tumor-homing peptides as regular nanoparticles enhances receptor-mediated cell penetrability

    OpenAIRE

    Xu, Zhikun; Unzueta Elorza, Ugutz; Roldán, Mónica; Mangues, Ramón; Sánchez Chardi, Alejandro; Ferrer Miralles, Neus; Villaverde Corrales, Antonio; Vázquez Gómez, Esther

    2015-01-01

    The authors acknowledge the financial support granted to E.V. (PI12/00327) and R.M. (PI12/01861) from FIS, to E.V. (TV32013-133930) and to R.M. and A.V. (TV32013-132031) from La Marató de TV3 (416/C/2013), to A.V. from MINECO (Grant BIO2013-41019-P) and from the Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (NANOPROTHER and NANOCOMETS projects). We are grateful to the Protein Production Platform (CIBER-BBN-UAB) for protein production and purif...

  16. Quantification of pharmaceutical peptides using selenium as an elemental detection label

    DEFF Research Database (Denmark)

    Møller, Laura Hyrup; Gabel-Jensen, Charlotte; Franzyk, Henrik;

    2014-01-01

    The aim of the present work was to demonstrate how selenium labelling of a synthetic cell-penetrating peptide may be employed in evaluation of stability and quantitative estimation of cellular uptake by inductively coupled plasma mass spectrometry (ICP-MS). Two analogues of the cell-penetrating p...

  17. Cell-Penetrating Poly(disulfide) Assisted Intracellular Delivery of Mesoporous Silica Nanoparticles for Inhibition of miR-21 Function and Detection of Subsequent Therapeutic Effects.

    Science.gov (United States)

    Yu, Changmin; Qian, Linghui; Ge, Jingyan; Fu, Jiaqi; Yuan, Peiyan; Yao, Samantha C L; Yao, Shao Q

    2016-08-01

    The design of drug delivery systems capable of minimal endolysosomal trapping, controlled drug release, and real-time monitoring of drug effect is highly desirable for personalized medicine. Herein, by using mesoporous silica nanoparticles (MSNs) coated with cell-penetrating poly(disulfide)s and a fluorogenic apoptosis-detecting peptide (DEVD-AAN), we have developed a platform that could be uptaken rapidly by mammalian cells via endocytosis-independent pathways. Subsequent loading of these MSNs with small molecule inhibitors and antisense oligonucleotides resulted in intracellular release of these drugs, leading to combination inhibition of endogenous miR-21 activities which was immediately detectable by the MSN surface-coated peptide using two-photon fluorescence microscopy. PMID:27325284

  18. Peptides that influence membrane topology

    Science.gov (United States)

    Wong, Gerard C. L.

    2014-03-01

    We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)

  19. Cell Penetrable Human scFv Specific to Middle Domain of Matrix Protein-1 Protects Mice from Lethal Influenza

    Directory of Open Access Journals (Sweden)

    Fonthip Dong-din-on

    2015-01-01

    Full Text Available A new anti-influenza remedy that can tolerate the virus antigenic variation is needed. Influenza virus matrix protein-1 (M1 is highly conserved and pivotal for the virus replication cycle: virus uncoating, assembly and budding. An agent that blocks the M1 functions should be an effective anti-influenza agent. In this study, human scFv that bound to recombinant M1 middle domain (MD and native M1 of A/H5N1 was produced. Phage mimotope search and computerized molecular docking revealed that the scFv bound to the MD conformational epitope formed by juxtaposed helices 7 and 9 of the M1. The scFv was linked molecularly to a cell penetrable peptide, penetratin (PEN. The PEN-scFv (transbody, when used to treat the cells pre-infected with the heterologous clade/subclade A/H5N1 reduced the viral mRNA intracellularly and in the cell culture fluids. The transbody mitigated symptom severity and lung histopathology of the H5N1 infected mice and caused reduction of virus antigen in the tissues as well as extricated the animals from the lethal challenge in a dose dependent manner. The transbody specific to the M1 MD, either alone or in combination with the cognate human scFvs specific to other influenza virus proteins, should be an effective, safe and mutation tolerable anti-influenza agent.

  20. Improved cellular uptake of antisense Peptide nucleic acids by conjugation to a cell-penetrating Peptide and a lipid domain

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    Unaided cellular uptake of RNA interference agents such as antisense oligonucleotides and siRNA is extremely poor, and in vivo bioavailability is also limited. Thus, effective delivery strategies for such potential drugs are in high demand. Recently, a novel approach using a class of short cationic...

  1. Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2012-01-01

    splicing correction of the mutated luciferase gene in the HeLa pLuc705 cell line, reporting cellular (nuclear) uptake of the antisense PNA via luciferase activity measurement. Carrier CPP-PNA constructs were studied in terms of construct modification (with octaarginine and/or decanoic acid) and carrier PNA...... that the carrier might facilitate endosomal escape. Furthermore, 50% downregulation of luciferase expression at 60 nM siRNA was obtained using this carrier CPP-PNA delivery strategy (with CQ co-treatment) for a single stranded antisense RNA targeting normal luciferase mRNA. These results indicated that CPP...

  2. Glucagon-like peptide-1 decreases intracerebral glucose content by activating hexokinase and changing glucose clearance during hyperglycemia

    DEFF Research Database (Denmark)

    Gejl, Michael; Egefjord, Lærke; Lerche, Susanne;

    2012-01-01

    Type 2 diabetes and hyperglycemia with the resulting increase of glucose concentrations in the brain impair the outcome of ischemic stroke, and may increase the risk of developing Alzheimer's disease (AD). Reports indicate that glucagon-like peptide-1 (GLP-1) may be neuroprotective in models of AD...... in the actions of GLUT1 and glucose metabolism: GLP-1 ensures less fluctuation of brain glucose levels in response to alterations in plasma glucose, which may prove to be neuroprotective during hyperglycemia....

  3. Binding and Clustering of Glycosaminoglycans: A Common Property of Mono- and Multivalent Cell-Penetrating Compounds

    OpenAIRE

    Ziegler, André; Seelig, Joachim

    2007-01-01

    Recent observations in cell culture provide evidence that negatively charged glycosaminoglycans (GAGs) at the surface of biological cells bind cationic cell-penetrating compounds (CPCs) and cluster during CPC binding, thereby contributing to their endocytotic uptake. The GAG binding and clustering occur in the low-micromolar concentration range and suggest a tight interaction between GAGs and CPCs, although the relation between binding affinity and specificity of this interaction remains to b...

  4. Bone resorption is decreased postprandially by intestinal factors and glucagon-like peptide-2 is a possible candidate

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Hartmann, Bolette; Gottschalck, Ida B;

    2007-01-01

    OBJECTIVE: Food intake inhibits bone resorption by a mechanism thought to involve gut hormones, and the intestinotrophic glucagon-like peptide 2 (GLP-2) is a candidate because exogenous GLP-2 inhibits bone resorption in humans. The purpose of the study was to investigate patients with short......-bowel syndrome (SBS) or total gastrectomy in order to elucidate whether the signal for the meal-induced reduction of bone resorption is initiated from the stomach or the intestine. MATERIAL AND METHODS: Bone resorption was assessed from the serum concentration of collagen type I C-telopeptide cross-links (s...

  5. Egg ovotransferrin‐derived ACE inhibitory peptide IRW increases ACE2 but decreases proinflammatory genes expression in mesenteric artery of spontaneously hypertensive rats

    Science.gov (United States)

    Majumder, Kaustav; Liang, Guanxiang; Chen, Yanhong; Guan, LeLuo; Davidge, Sandra T.

    2015-01-01

    Scope Egg ovotransferrin‐derived angiotensin converting enzyme (ACE) inhibitory peptide IRW was previously shown to reduce blood pressure in spontaneously hypertensive rats through reduced vascular inflammation and increased nitric oxide‐mediated vasorelaxation. The main objective of the present study was to investigate the molecular mechanism of this peptide through transcriptome analysis by RNAseq technique. Methods and results Total RNA was extracted from kidney and mesenteric arteries; the RNAseq libraries (from untreated and IRW‐treated groups) were constructed and subjected to sequence using HiSeq 2000 system (Illumina) system. A total of 12 764 and 13 352 genes were detected in kidney and mesenteric arteries, respectively. The differentially expressed (DE) genes between untreated and IRW‐treated groups were identified and the functional analysis through ingenuity pathway analysis revealed a greater role of DE genes identified from mesenteric arteries than that of kidney in modulating various cardiovascular functions. Subsequent qPCR analysis further confirmed that IRW significantly increased the expression of ACE‐2, ABCB‐1, IRF‐8, and CDH‐1 while significantly decreased the expression ICAM‐1 and VCAM‐1 in mesenteric arteries. Conclusion Our research showed for the first time that ACE inhibitory peptide IRW could contribute to its antihypertensive activity through increased ACE2 and decreased proinflammatory genes expression. PMID:26016560

  6. Context Dependent Effects of Chimeric Peptide Morpholino Conjugates Contribute to Dystrophin Exon-skipping Efficiency

    OpenAIRE

    Yin, HaiFang; Boisguerin, Prisca; Moulton, Hong M.; Betts, Corinne; Seow, Yiqi; Boutilier, Jordan; Wang, Qingsong; Walsh, Anthony; Lebleu, Bernard; Wood, Matthew JA

    2013-01-01

    We have recently reported that cell-penetrating peptides (CPPs) and novel chimeric peptides containing CPP (referred as B peptide) and muscle-targeting peptide (referred as MSP) motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs) in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chimeric peptide configuration on the activity and tissue uptake of peptide conjugated PMOs in vivo was ...

  7. Selenium as an alternative peptide label - comparison to fluorophore-labelled penetratin

    DEFF Research Database (Denmark)

    Hyrup Møller, Laura; Bahnsen, Jesper Søborg; Nielsen, Hanne Mørck;

    2015-01-01

    In the present study, the impact on peptide properties of labelling peptides with the fluorophore TAMRA or the selenium (Se) containing amino acid SeMet was evaluated. Three differently labelled variants of the cell-penetrating peptide (CPP) penetratin (Pen) were synthesized, PenMSe, TAMRA...

  8. Cyclisation Increases the Stability of the Sea Anemone Peptide APETx2 but Decreases Its Activity at Acid-Sensing Ion Channel 3

    Directory of Open Access Journals (Sweden)

    Lachlan D. Rash

    2012-07-01

    Full Text Available APETx2 is a peptide isolated from the sea anemone Anthopleura elegantissima. It is the most potent and selective inhibitor of acid-sensing ion channel 3 (ASIC3 and it is currently in preclinical studies as a novel analgesic for the treatment of chronic inflammatory pain. As a peptide it faces many challenges in the drug development process, including the potential lack of stability often associated with therapeutic peptides. In this study we determined the susceptibility of wild-type APETx2 to trypsin and pepsin and tested the applicability of backbone cyclisation as a strategy to improve its resistance to enzymatic degradation. Cyclisation with either a six-, seven- or eight-residue linker vastly improved the protease resistance of APETx2 but substantially decreased its potency against ASIC3. This suggests that either the N- or C-terminus of APETx2 is involved in its interaction with the channel, which we confirmed by making N- and C-terminal truncations. Truncation of either terminus, but especially the N-terminus, has detrimental effects on the ability of APETx2 to inhibit ASIC3. The current work indicates that cyclisation is unlikely to be a suitable strategy for stabilising APETx2, unless linkers can be engineered that do not interfere with binding to ASIC3.

  9. An altered gp100 peptide ligand with decreased binding by TCR and CD8alpha dissects T cell cytotoxicity from production of cytokines and activation of NFAT

    Directory of Open Access Journals (Sweden)

    Niels eSchaft

    2013-09-01

    Full Text Available Altered peptide ligands (APLs provide useful tools to study T cell activation and potentially direct immune responses to improve treatment of cancer patients. To better understand and exploit APLs, we studied the relationship between APLs and T cell function in more detail. Here, we tested a broad panel of gp100(280-288 APLs with respect to T cell cytotoxicity, production of cytokines and activation of Nuclear Factor of Activated T cells (NFAT by human T cells gene-engineered with a gp100-HLA-A2-specific TCRalpha/beta. We demonstrated that gp100-specific cytotoxicity, production of cytokines, and activation of NFAT were not affected by APLs with single amino acid substitutions, except for an APL with an amino acid substitution at position 3 (APL A3, which did not elicit any T cell response. A gp100 peptide with a double amino acid mutation (APL S4S6 elicited T cell cytotoxicity and production of IFNgamma, and to a lesser extent TNFalpha, IL-4, and IL-5, but not production of IL-2 and IL-10, or activation of NFAT. Notably, TCR-mediated functions showed decreases in sensitivities for S4S6 versus gp100 wt peptide, which were minor for cytotoxicity but at least a 1000-fold more prominent for the production of cytokines. TCR-engineered T cells did not bind A3-HLA-A2, but did bind S4S6-HLA-A2 although to a lowered extent compared to wt peptide-HLA-A2. Moreover, S4S6-induced T cell function demonstrated an enhanced dependency on CD8alpha. Taken together, most gp100 APLs functioned as agonists, but A3 and S4S6 peptides acted as a null ligand and partial agonist, respectively. Our results further suggest that TCR-mediated cytotoxicity can be dissected from production of cytokines and activation of NFAT, and that the agonist potential of peptide mutants relates to the extent of binding by TCR and CD8alpha. These findings may facilitate the design of APLs to advance the study of T cell activation and their use for therapeutic applications.

  10. Glucagon-Like Peptide-1 Receptor Activation in the Ventral Tegmental Area Decreases the Reinforcing Efficacy of Cocaine.

    Science.gov (United States)

    Schmidt, Heath D; Mietlicki-Baase, Elizabeth G; Ige, Kelsey Y; Maurer, John J; Reiner, David J; Zimmer, Derek J; Van Nest, Duncan S; Guercio, Leonardo A; Wimmer, Mathieu E; Olivos, Diana R; De Jonghe, Bart C; Hayes, Matthew R

    2016-06-01

    Cocaine addiction continues to be a significant public health problem for which there are currently no effective FDA-approved treatments. Thus, there is a clear need to identify and develop novel pharmacotherapies for cocaine addiction. Recent evidence indicates that activation of glucagon-like peptide-1 (GLP-1) receptors in the ventral tegmental area (VTA) reduces intake of highly palatable food. As the neural circuits and neurobiological mechanisms underlying drug taking overlap to some degree with those regulating food intake, these findings suggest that activation of central GLP-1 receptors may also attenuate cocaine taking. Here, we show that intra-VTA administration of the GLP-1 receptor agonist exendin-4 (0.05 μg) significantly reduced cocaine, but not sucrose, self-administration in rats. We also demonstrate that cocaine taking is associated with elevated plasma corticosterone levels and that systemic infusion of cocaine activates GLP-1-expressing neurons in the nucleus tractus solitarius (NTS), a hindbrain nucleus that projects monosynaptically to the VTA. To determine the potential mechanisms by which cocaine activates NTS GLP-1-expressing neurons, we microinjected corticosterone (0.5 μg) directly into the hindbrain fourth ventricle. Intraventricular corticosterone attenuated cocaine self-administration and this effect was blocked in animals pretreated with the GLP-1 receptor antagonist exendin-(9-39) (10 μg) in the VTA. Finally, AAV-shRNA-mediated knockdown of VTA GLP-1 receptors was sufficient to augment cocaine self-administration. Taken together, these findings indicate that increased activation of NTS GLP-1-expressing neurons by corticosterone may represent a homeostatic response to cocaine taking, thereby reducing the reinforcing efficacy of cocaine. Therefore, central GLP-1 receptors may represent a novel target for cocaine addiction pharmacotherapies. PMID:26675243

  11. Effective Design of Multifunctional Peptides by Combining Compatible Functions.

    Science.gov (United States)

    Diener, Christian; Garza Ramos Martínez, Georgina; Moreno Blas, Daniel; Castillo González, David A; Corzo, Gerardo; Castro-Obregon, Susana; Del Rio, Gabriel

    2016-04-01

    Multifunctionality is a common trait of many natural proteins and peptides, yet the rules to generate such multifunctionality remain unclear. We propose that the rules defining some protein/peptide functions are compatible. To explore this hypothesis, we trained a computational method to predict cell-penetrating peptides at the sequence level and learned that antimicrobial peptides and DNA-binding proteins are compatible with the rules of our predictor. Based on this finding, we expected that designing peptides for CPP activity may render AMP and DNA-binding activities. To test this prediction, we designed peptides that embedded two independent functional domains (nuclear localization and yeast pheromone activity), linked by optimizing their composition to fit the rules characterizing cell-penetrating peptides. These peptides presented effective cell penetration, DNA-binding, pheromone and antimicrobial activities, thus confirming the effectiveness of our computational approach to design multifunctional peptides with potential therapeutic uses. Our computational implementation is available at http://bis.ifc.unam.mx/en/software/dcf.

  12. Dietary peptides from the non-digestible fraction of Phaseolus vulgaris L. decrease angiotensin II-dependent proliferation in HCT116 human colorectal cancer cells through the blockade of the renin-angiotensin system.

    Science.gov (United States)

    Luna-Vital, Diego A; Liang, Katie; González de Mejía, Elvira; Loarca-Piña, Guadalupe

    2016-05-18

    This study aimed to determine the ability of peptides present in the non-digestible fraction (NDF) of common beans to decrease angiotensin II (AngII) through the blockade of RAS and its effect on the proliferation of HCT116 human colorectal cancer cells. Pure synthesized peptides GLTSK and GEGSGA and the peptide fractions (PF) of cultivars Azufrado Higuera and Bayo Madero were used. The cells were pretreated with pure peptides, PF or AGT at their IC50 or IC25 values, in comparison with the simultaneous treatment of peptides and AGT. For western blot and microscopy analysis, 100 μM and 0.5 mg mL(-1) were used for pure peptides and PF treatments, respectively. According to the ELISA tests, GLTSK and GEGSGA decreased (p < 0.05) the conversion rate of AGT to angiotensin I (AngI) by 38 and 28%, respectively. All the peptides tested reduced (p < 0.05) the conversion rate of AngI to AngII from 38 to 50%. When the cells were pretreated with both pure peptides and PF before exposure to AGT, the effectiveness inhibiting cell proliferation was higher than the simultaneous treatment suggesting their preventive effects. GLTSK and GEGSGA interacted with the catalytic site of renin, the angiotensin-I converting enzyme, and the AngII receptor, mainly through hydrogen bonds, polar, hydrophobic and cation-π interactions according to molecular docking. Through confocal microscopy, it was determined that GLTSK and GEGSGA caused the decrease (p < 0.05) of AngII-dependent STAT3 nuclear activation in HCT116 cells by 66 and 23%, respectively. The results suggest that peptides present in the common bean NDF could potentially ameliorate the effects of RAS overexpression in colorectal cancer. PMID:27156533

  13. Interactions of Bio-Inspired Membranes with Peptides and Peptide-Mimetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael Sebastiano

    2015-08-01

    Full Text Available Via Dissipative Particle Dynamics (DPD and implicit solvent coarse-grained (CG Molecular Dynamics (MD we examine the interaction of an amphiphilic cell-penetrating peptide PMLKE and its synthetic counterpart with a bio-inspired membrane. We use the DPD technique to investigate the interaction of peptide-mimetic nanoparticles, or nanopins, with a three-component membrane. The CG MD approach is used to investigate the interaction of a cell-penetrating peptide PMLKE with single-component membrane. We observe the spontaneous binding and subsequent insertion of peptide and nanopin in the membrane by using CG MD and DPD approaches, respectively. In addition, we find that the insertion of peptide and nanopins is mainly driven by the favorable enthalpic interactions between the hydrophobic components of the peptide, or nanopin, and the membrane. Our study provides insights into the mechanism underlying the interactions of amphiphilic peptide and peptide-mimetic nanoparticles with a membrane. The result of this study can be used to guide the functional integration of peptide and peptide-mimetic nanoparticles with a cell membrane.

  14. Delivery of siRNA Complexed with Palmitoylated α-Peptide/β-Peptoid Cell-Penetrating Peptidomimetics

    DEFF Research Database (Denmark)

    Jing, Xiaona; Foged, Camilla; Martin-Bertelsen, Birte;

    2016-01-01

    for delivery of small interfering RNA (siRNA) to the cytosol by incorporation of a palmitoylated peptidomimetic construct into a cationic lipid-based nanocarrier system. The optimal construct was selected on the basis of the effect of palmitoylation and the influence of the length of the peptidomimetic...... on the interaction with model membranes and the cellular uptake. Palmitoylation enhanced the peptidomimetic adsorption to supported lipid bilayers as studied by ellipsometry. However, both palmitoylation and increased peptidomimetic chain length were found to be beneficial in the cellular uptake studies using...

  15. Biofunctionalized nanoparticles with pH-responsive and cell penetrating blocks for gene delivery

    Science.gov (United States)

    Gaspar, V. M.; Marques, J. G.; Sousa, F.; Louro, R. O.; Queiroz, J. A.; Correia, I. J.

    2013-07-01

    Bridging the gap between nanoparticulate delivery systems and translational gene therapy is a long sought after requirement in nanomedicine-based applications. However, recent developments regarding nanoparticle functionalization have brought forward the ability to synthesize materials with biofunctional moieties that mimic the evolved features of viral particles. Herein we report the versatile conjugation of both cell penetrating arginine and pH-responsive histidine moieties into the chitosan polymeric backbone, to improve the physicochemical characteristics of the native material. Amino acid coupling was confirmed by 2D TOCSY NMR and Fourier transform infrared spectroscopy. The synthesized chitosan-histidine-arginine (CH-H-R) polymer complexed plasmid DNA biopharmaceuticals, and spontaneously assembled into stable 105 nm nanoparticles with spherical morphology and positive surface charge. The functionalized delivery systems were efficiently internalized into the intracellular compartment, and exhibited remarkably higher transfection efficiency than unmodified chitosan without causing any cytotoxic effect. Additional findings regarding intracellular trafficking events reveal their preferential escape from degradative lysosomal pathways and nuclear localization. Overall, this assembly of nanocarriers with bioinspired moieties provides the foundations for the design of efficient and customizable materials for cancer gene therapy.

  16. Insulin-like growth factor-I peptides act centrally to decrease depression-like behavior of mice treated intraperitoneally with lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Park Sook-Eun

    2011-12-01

    Full Text Available Abstract Centrally administered insulin-like growth factor (IGF-I has anti-depressant activity in several rodent models, including lipopolysaccharide (LPS-induced depression. In this study we tested the ability of IGF-I and GPE (the N-terminal tri-peptide derived from IGF-I to alter depression-like behavior induced by intraperitoneal (i.p. administration of LPS in a preventive and curative manner. In the first case, IGF-I (1 μg or GPE (5 μg was administered i.c.v. to CD-1 mice followed 30 min later by 330 μg/kg body weight i.p. LPS. In the second case, 830 μg/kg body weight LPS was given 24 h prior to either IGF-I or GPE. When administered i.p., LPS induced full-blown sickness assessed as a loss of body weight, decrease in food intake and sickness behavior. None of these indices were affected by IGF-I or GPE. LPS also induced depression-like behavior; assessed as an increased duration of immobility in the tail suspension and forced swim tests. When administered before or after LPS, IGF-I and GPE abrogated the LPS response; attenuating induction of depression-like behaviors and blocking preexistent depression-like behaviors. Similar to previous work with IGF-I, GPE decreased brain expression of cytokines in response to LPS although unlike IGF-I, GPE did not induce the expression of brain-derived neurotrophic factor (BDNF. LPS induced expression of tryptophan dioxygenases, IDO1, IDO2 and TDO2, but expression of these enzymes was not altered by GPE. Thus, both IGF-I and GPE elicit specific improvement in depression-like behavior independent of sickness, an action that could be due to their anti-inflammatory properties.

  17. Bactericidal effect of bovine lactoferrin and synthetic peptide lactoferrin chimera in Streptococcus pneumoniae and the decrease in luxS gene expression by lactoferrin

    NARCIS (Netherlands)

    N. León-Sicairos; U.A. Angulo-Zamudio; J.E. Vidal; C.A. López-Torres; J.G.M. Bolscher; K. Nazmi; R. Reyes-Cortes; M. Reyes-López; M. de la Garza; A. Canizalez-Román

    2014-01-01

    Streptococcus pneumoniae (pneumococcus) is responsible for nearly one million child deaths annually. Pneumococcus causes infections such as pneumonia, otitis media, meningitis, and sepsis. The human immune system includes antibacterial peptides and proteins such as lactoferrin (LF), but its activity

  18. Matrix stiffness affects endocytic uptake of MK2-inhibitor peptides.

    Directory of Open Access Journals (Sweden)

    Jamie L Brugnano

    Full Text Available In this study, the role of substrate stiffness on the endocytic uptake of a cell-penetrating peptide was investigated. The cell-penetrating peptide, an inhibitor of mitogen-activated protein kinase activated protein kinase II (MK2, enters a primary mesothelial cell line predominantly through caveolae. Using tissue culture polystyrene and polyacrylamide gels of varying stiffness for cell culture, and flow cytometry quantification and enzyme-linked immunoassays (ELISA for uptake assays, we showed that the amount of uptake of the peptide is increased on soft substrates. Further, peptide uptake per cell increased at lower cell density. The improved uptake seen on soft substrates in vitro better correlates with in vivo functional studies where 10-100 µM concentrations of the MK2 inhibitor cell penetrating peptide demonstrated functional activity in several disease models. Additional characterization showed actin polymerization did not affect uptake, while microtubule polymerization had a profound effect on uptake. This work demonstrates that cell culture substrate stiffness can play a role in endocytic uptake, and may be an important consideration to improve correlations between in vitro and in vivo drug efficacy.

  19. Matrix stiffness affects endocytic uptake of MK2-inhibitor peptides.

    Science.gov (United States)

    Brugnano, Jamie L; Panitch, Alyssa

    2014-01-01

    In this study, the role of substrate stiffness on the endocytic uptake of a cell-penetrating peptide was investigated. The cell-penetrating peptide, an inhibitor of mitogen-activated protein kinase activated protein kinase II (MK2), enters a primary mesothelial cell line predominantly through caveolae. Using tissue culture polystyrene and polyacrylamide gels of varying stiffness for cell culture, and flow cytometry quantification and enzyme-linked immunoassays (ELISA) for uptake assays, we showed that the amount of uptake of the peptide is increased on soft substrates. Further, peptide uptake per cell increased at lower cell density. The improved uptake seen on soft substrates in vitro better correlates with in vivo functional studies where 10-100 µM concentrations of the MK2 inhibitor cell penetrating peptide demonstrated functional activity in several disease models. Additional characterization showed actin polymerization did not affect uptake, while microtubule polymerization had a profound effect on uptake. This work demonstrates that cell culture substrate stiffness can play a role in endocytic uptake, and may be an important consideration to improve correlations between in vitro and in vivo drug efficacy.

  20. Decreased Caffeine-Induced Locomotor Activity via Microinjection of CART Peptide into the Nucleus Accumbens Is Linked to Inhibition of the pCaMKIIa-D3R Interaction.

    Science.gov (United States)

    Fu, Qiang; Zhou, Xiaoyan; Dong, Yun; Huang, Yonghong; Yang, Jianhua; Oh, Ki-Wan; Hu, Zhenzhen

    2016-01-01

    The purpose of this study was to characterize the inhibitory modulation of cocaine- and amphetamine-regulated transcript (CART) peptides, particularly with respect to the function of the D3 dopamine receptor (D3R), which is activated by its interaction with phosphorylated CaMKIIα (pCaMKIIα) in the nucleus accumbens (NAc). After repeated oral administration of caffeine (30 mg/kg) for five days, microinjection of CART peptide (0.08 μM/0.5 μl/hemisphere) into the NAc affected locomotor behavior. The pCaMKIIα-D3R interaction, D3R phosphorylation and cAMP/PKA/phosphorylated CREB (pCREB) signaling pathway activity were measured in NAc tissues, and Ca2+ influx and pCaMKIIα levels were measured in cultured NAc neurons. We found that CART attenuated the caffeine-mediated enhancement of depolarization-induced Ca2+ influx and CaMKIIα phosphorylation in cultured NAc neurons. Repeated microinjection of CART peptides into the NAc decreased the caffeine-induced enhancement of Ca2+ channels activity, pCaMKIIα levels, the pCaMKIIα-D3R interaction, D3R phosphorylation, cAMP levels, PKA activity and pCREB levels in the NAc. Furthermore, behavioral sensitization was observed in rats that received five-day administration of caffeine following microinjection of saline but not in rats that were treated with caffeine following microinjection of CART peptide. These results suggest that caffeine-induced CREB phosphorylation in the NAc was ameliorated by CART peptide due to its inhibition of D3R phosphorylation. These effects of CART peptides may play a compensatory role by inhibiting locomotor behavior in rats. PMID:27404570

  1. Decreased Caffeine-Induced Locomotor Activity via Microinjection of CART Peptide into the Nucleus Accumbens Is Linked to Inhibition of the pCaMKIIa-D3R Interaction.

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    Full Text Available The purpose of this study was to characterize the inhibitory modulation of cocaine- and amphetamine-regulated transcript (CART peptides, particularly with respect to the function of the D3 dopamine receptor (D3R, which is activated by its interaction with phosphorylated CaMKIIα (pCaMKIIα in the nucleus accumbens (NAc. After repeated oral administration of caffeine (30 mg/kg for five days, microinjection of CART peptide (0.08 μM/0.5 μl/hemisphere into the NAc affected locomotor behavior. The pCaMKIIα-D3R interaction, D3R phosphorylation and cAMP/PKA/phosphorylated CREB (pCREB signaling pathway activity were measured in NAc tissues, and Ca2+ influx and pCaMKIIα levels were measured in cultured NAc neurons. We found that CART attenuated the caffeine-mediated enhancement of depolarization-induced Ca2+ influx and CaMKIIα phosphorylation in cultured NAc neurons. Repeated microinjection of CART peptides into the NAc decreased the caffeine-induced enhancement of Ca2+ channels activity, pCaMKIIα levels, the pCaMKIIα-D3R interaction, D3R phosphorylation, cAMP levels, PKA activity and pCREB levels in the NAc. Furthermore, behavioral sensitization was observed in rats that received five-day administration of caffeine following microinjection of saline but not in rats that were treated with caffeine following microinjection of CART peptide. These results suggest that caffeine-induced CREB phosphorylation in the NAc was ameliorated by CART peptide due to its inhibition of D3R phosphorylation. These effects of CART peptides may play a compensatory role by inhibiting locomotor behavior in rats.

  2. Mechanisms of the antifungal action of marine metagenome-derived peptide, MMGP1, against Candida albicans.

    Directory of Open Access Journals (Sweden)

    Muthuirulan Pushpanathan

    Full Text Available BACKGROUND: Development of resistant variants to existing antifungal drugs continues to be the serious problem in Candida albicans-induced fungal pathogenesis, which has a considerable impact on animal and human health. Identification and characterization of newer drugs against C. albicans is, therefore, essential. MMGP1 is a direct cell-penetrating peptide recently identified from marine metagenome, which was found to possess potent antifungal activity against C. albicans. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the mechanism of antifungal action of MMGP1 against C. albicans. Agarose gel shift assay found the peptide to be having a remarkable DNA-binding ability. The modification of the absorption spectra and fluorescence quenching of the tryptophyl residue correspond to the stacking between indole ring and nucleotide bases. The formation of peptide-DNA complexes was confirmed by fluorescence quenching of SYTO 9 probe. The interaction of peptide with plasmid DNA afforded protection of DNA from enzymatic degradation by DNase I. In vitro transcription of mouse β-actin gene in the presence of peptide led to a decrease in the level of mRNA synthesis. The C. albicans treated with MMGP1 showed strong inhibition of biosynthetic incorporation of uridine analog 5-ethynyluridine (EU into nascent RNA, suggesting the peptide's role in the inhibition of macromolecular synthesis. Furthermore, the peptide also induces endogenous accumulation of reactive oxygen species (ROS in C. albicans. MMGP1 supplemented with glutathione showed an increased viability of C. albicans cells. The hyper-produced ROS by MMGP1 leads to increased levels of protein carbonyls and thiobarbituric acid reactive substances and it also causes dissipation of mitochondrial membrane potential and DNA fragmentation in C. albicans cells. CONCLUSION: And Significance: Therefore, the antifungal activity of MMGP1 could be attributed to its binding with DNA, causing

  3. Decrease in formalin-inactivated respiratory syncytial virus (FI-RSV enhanced disease with RSV G glycoprotein peptide immunization in BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Gertrud U Rey

    Full Text Available Respiratory syncytial virus (RSV is a high priority target for vaccine development. One concern in RSV vaccine development is that a non-live virus vaccine would predispose for enhanced disease similar to that seen with the formalin inactivated RSV (FI-RSV vaccine. Since a mAb specific to RSV G protein can reduce pulmonary inflammation and eosinophilia seen after RSV infection of FI-RSV vaccinated mice, we hypothesized that RSV G peptides that induce antibodies with similar reactivity may limit enhanced disease after subunit or other non-live RSV vaccines. In support of this hypothesis, we show that FI-RSV vaccinated mice administered RSV G peptide vaccines had a significant reduction in enhanced disease after RSV challenge. These data support the importance of RSV G during infection to RSV disease pathogenesis and suggest that use of appropriately designed G peptide vaccines to reduce the risk of enhanced disease with non-live RSV vaccines merits further study.

  4. Dimerization of 30Kc19 protein in the presence of amphiphilic moiety and importance of Cys-57 during cell penetration.

    Science.gov (United States)

    Park, Hee Ho; Sohn, Youngsoo; Yeo, Ji Woo; Park, Ju Hyun; Lee, Hong Jai; Ryu, Jina; Rhee, Won Jong; Park, Tai Hyun

    2014-12-01

    Recently, the recombinant 30Kc19 protein, originating from silkworm hemolymph of Bombyx mori has attracted attention due to its cell-penetrating property and potential application as a protein delivery system. However, this observation of penetration across cell membrane has raised questions concerning the interaction of the protein-lipid bilayer. Here, we report a dimerization propensity of the 30Kc19 protein in the presence of amphiphilic moieties; sodium dodecyl sulfate (SDS) or phospholipid. Native PAGE showed that the 30Kc19 monomer formed a dimer when SDS or phospholipid was present. In the glutathione-S-transferase (GST) pull-down assay, supplementation of the 30Kc19 protein to mammalian cell culture medium showed dimerization and penetration; due to phospholipids at the cell membrane, the main components of the lipid bilayer. Mutagenesis was performed, and penetration was observed by 30Kc19 C76A and not 30Kc19 C57A, which meant that the presence of cysteine at position 57 (Cys-57) is involved in dimerization of the 30Kc19 at the cell membrane during penetration. We anticipate application of the native 30Kc19 protein with high cell-penetrating efficiency for delivery of cargos to various cell types. The intracellular cargo delivery using the 30Kc19 protein is a non-virus derived (e.g. TAT) delivery method, which can open up new approaches for the delivery of therapeutics in bioindustries, such as pharma- and cosmeceuticals.

  5. Di-tyrosine cross-link decreases the collisional cross-section of aβ peptide dimers and trimers in the gas phase: an ion mobility study.

    Directory of Open Access Journals (Sweden)

    Ewa Sitkiewicz

    Full Text Available Oligomeric forms of Aβ peptide are most likely the main synaptotoxic and neurotoxic agent in Alzheimer's disease. Toxicity of various Aβ oligomeric forms has been confirmed in vivo and also in vitro. However, in vitro preparations were found to be orders of magnitude less toxic than oligomers obtained from in vivo sources. This difference can be explained by the presence of a covalent cross-link, which would stabilize the oligomer. In the present work, we have characterized the structural properties of Aβ dimers and trimers stabilized by di- and tri-tyrosine cross-links. Using ion mobility mass spectrometry we have compared the collisional cross-section of non-cross-linked and cross-linked species. We have found that the presence of cross-links does not generate new unique forms but rather shifts the equilibrium towards more compact oligomer types that can also be detected for non-cross-linked peptide. In consequence, more extended forms, probable precursors of off-pathway oligomeric species, become relatively destabilized in cross-linked oligomers and the pathway of oligomer evolution becomes redirected towards fibrillar structures.

  6. Photoinduced apoptosis using a peptide carrying a photosensitizer.

    Science.gov (United States)

    Watanabe, Kazunori; Fujiwara, Hayato; Kitamatsu, Mizuki; Ohtsuki, Takashi

    2016-07-01

    A novel molecule, TatBim-Alexa, consisting of the HIV1 Tat cell-penetrating peptide, the Bim apoptosis-inducing peptide, and Alexa Fluor 546 was synthesized for photoinducion of apoptosis. The Alexa Fluor 546 was used as a photosensitizer and covalently attached at the C-terminus of TatBim peptide by the thiol-maleimide reaction. Photo-dependent cytosolic internalization of TatBim-Alexa and photo-dependent apoptosis using TatBim-Alexa were demonstrated in several kinds of mammalian cells including human cancer cell lines. PMID:27165853

  7. Mechanism of cellular uptake of HIV-TAT peptide & effects of TAT-SOD against ultraviolet induced skin damage

    OpenAIRE

    Chen, Xiaochao

    2013-01-01

    TAT peptide is one of the best-characterised cell penetrating peptides (CPPs) derived from the transactivator of transcription protein from the human immunodeficiency virus 1 (HIV-1). TAT peptide is able to cross the cell membrane and deliver various biomolecules into cells with low immunogenicity and no toxicity. However, the exact mechanism of internalization still remains a subject of controversy. Lamellar neutron scattering was used to determine the location of TAT pepti...

  8. A neuroligin-1-derived peptide stimulates phosphorylation of the NMDA receptor NR1 subunit and rescues MK-801-induced decrease in long-term potentiation and memory impairment

    DEFF Research Database (Denmark)

    Korshunova, Irina; Gjørlund, Michelle D; Jacobsen, Sylwia Owczarek;

    2015-01-01

    neurolide-1 effects on short- and long-term social and spatial memory in social recognition, Morris water-maze, and Y-maze tests. We found that subcutaneous neurolide-1 administration, restored hippocampal LTP compromised by NMDA receptor inhibitor MK-801. It counteracted MK-801-induced memory deficit...... in the water-maze and Y-maze tests after long-term treatment (24 h and 1-2 h before the test), but not after short-term exposure (1-2 h). Long-term exposure to neurolide-1 also facilitated social recognition memory. In addition, neurolide-1-induced phosphorylation of the NMDA receptor NR1 subunit on a site...... receptor phosphorylation after treatment with NL1 or a mimetic peptide, neurolide-1, was quantified by immunoblotting. Subsequently, we investigated effects of neurolide-1 on long-term potentiation (LTP) induction in hippocampal slices compromised by NMDA receptor inhibitor MK-801. Finally, we investigated...

  9. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels

    DEFF Research Database (Denmark)

    Reddy, I A; Pino, J A; Weikop, P;

    2016-01-01

    the LS. GLP-1, in LS slices, significantly enhances DAT surface expression and DAT function. Exenatide (Ex-4), a long-lasting synthetic analog of GLP-1 abolished cocaine-induced elevation of DA. Interestingly, acute administration of Ex-4 reduces septal expression of the retrograde messenger 2......Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine...... actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from...

  10. The Antitumor Peptide CIGB-552 Increases COMMD1 and Inhibits Growth of Human Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Julio R. Fernández Massó

    2013-01-01

    Full Text Available We have demonstrated that the peptide L-2 designed from an alanine scanning of the Limulus-derived LALF32-51 region is a potential candidate for the anticancer therapy and its cell-penetrating capacity is an associated useful property. By the modification in the primary structure of L-2, a second-generation peptide (CIGB-552 was developed. However, the molecular mechanism underlying its cytotoxic activity remains partially unknown. In this study, it was shown that CIGB-552 increases the levels of COMMD1, a protein involved in copper homeostasis, sodium transport, and the NF-κB signaling pathway. We found that CIGB-552 induces ubiquitination of RelA and inhibits the antiapoptotic activity regulated by NF-κB, whereas the knockdown of COMMD1 blocks this effect. We also found that CIGB-552 decreases the antioxidant capacity and induces the peroxidation of proteins and lipids in the tumor cells. Altogether, this study provides new insights into the mechanism of action of the peptide CIGB-552, which could be relevant in the design of future anticancer therapies.

  11. Peptide conjugates for chromosomal gene targeting by triplex-forming oligonucleotides

    OpenAIRE

    Rogers, Faye A.; Manoharan, Muthiah; Rabinovitch, Peter; Ward, David C.; Glazer, Peter M.

    2004-01-01

    Triplex-forming oligonucleotides (TFOs) are DNA-binding molecules, which offer the potential to selectively modulate gene expression. However, the biological activity of TFOs as potential antigene compounds has been limited by cellular uptake. Here, we investigate the effect of cell-penetrating peptides on the biological activity of TFOs as measured in an assay for gene-targeted mutagenesis. Using the transport peptide derived from the third helix of the homeodomain of antennapedia (Antp), we...

  12. The glucagon-like peptide 1 receptor agonist exendin-4 improves reference memory performance and decreases immobility in the forced swim test.

    Science.gov (United States)

    Isacson, Ruben; Nielsen, Elisabet; Dannaeus, Karin; Bertilsson, Göran; Patrone, Cesare; Zachrisson, Olof; Wikström, Lilian

    2011-01-10

    We have earlier shown that the glucagon-like peptide 1 receptor agonist exendin-4 stimulates neurogenesis in the subventricular zone and excerts anti-parkinsonian behavior. The aim of this study was to assess the effects of exendin-4 treatment on hippocampus-associated cognitive and mood-related behavior in adult rodents. To investigate potential effects of exendin-4 on hippocampal function, radial maze and forced swim test were employed. The time necessary to solve a radial maze task and the duration of immobility in the forced swim test were significantly reduced compared to respective vehicle groups if the animals had received exendin-4 during 1-2weeks before testing. In contrast to the positive control imipramine, single administration of exendin-4 1h before the challenge in the forced swim test had no effect. Immunohistochemical analysis showed that the incorporation of bromodeoxyuridine, a marker for DNA synthesis, as well as doublecortin expression was increased in the hippocampal dentate gyrus following chronic treatment with exendin-4 compared to vehicle-treated controls. The neurogenic effect of exendin-4 on hippocampus was confirmed by quantitative PCR showing an upregulation of mRNA expression for Ki-67, doublecortin and Mash-1. Since exendin-4 significantly improves hippocampus-associated behavior in adult rodents, it may be a candidate for alleviation of mood and cognitive disorders.

  13. Decreased glycation and structural protection properties of γ-glutamyl-S-allyl-cysteine peptide isolated from fresh garlic scales (Allium sativum L.).

    Science.gov (United States)

    Tan, Dehong; Zhang, Yao; Chen, Lulu; Liu, Ling; Zhang, Xuan; Wu, Zhaoxia; Bai, Bing; Ji, Shujuan

    2015-01-01

    The antiglycative effect of γ-glutamyl-S-allyl-cysteine (GSAC) peptide isolated from fresh garlic scales was investigated in the bovine serum albumin (BSA)/glucose system. GSAC inhibited the increase of fluorescence intensity at about 440 nm in a concentration-dependent manner and reduced reacted free lysine side chains by 10.9%, 24.7% and 37.7%, as the GSAC concentrations increased from 0.1 to 2.5 mg mL(-1). Glycation-specific decline in BSA α-helix content (from 61.3% to 55.6%) and increase in β-sheet (from 2.1% to 5.4%) were prevented by GSAC (2.5 mg mL(-1)) in vitro, implying its stabilisation effect. GSAC treatment (2.5 mg mL(-1)) suppressed protein crosslinking to form polymers. Additionally, GSAC (10, 40, and 160 μg mL(-1)) showed radical-scavenging and metal-chelating capacities. In conclusion, GSAC has an antiglycative effect, which may involve its radical-scavenging and metal-chelating capacities. PMID:25631559

  14. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels.

    Science.gov (United States)

    Reddy, I A; Pino, J A; Weikop, P; Osses, N; Sørensen, G; Bering, T; Valle, C; Bluett, R J; Erreger, K; Wortwein, G; Reyes, J G; Graham, D; Stanwood, G D; Hackett, T A; Patel, S; Fink-Jensen, A; Torres, G E; Galli, A

    2016-01-01

    Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from the ventral tegmental area to the LS and express the DA transporter (DAT). Cocaine acts by altering DA bioavailability by targeting the DAT. Therefore, GLP-1R signaling might exert effects on DAT to account for its regulation of cocaine-induced behaviors. We show that the GLP-1R is highly expressed within the LS. GLP-1, in LS slices, significantly enhances DAT surface expression and DAT function. Exenatide (Ex-4), a long-lasting synthetic analog of GLP-1 abolished cocaine-induced elevation of DA. Interestingly, acute administration of Ex-4 reduces septal expression of the retrograde messenger 2-arachidonylglycerol (2-AG), as well as a product of its presynaptic degradation, arachidonic acid (AA). Notably, AA reduces septal DAT function pointing to AA as a novel regulator of central DA homeostasis. We further show that AA oxidation product γ-ketoaldehyde (γ-KA) forms adducts with the DAT and reduces DAT plasma membrane expression and function. These results support a mechanism in which postsynaptic septal GLP-1R activation regulates 2-AG levels to alter presynaptic DA homeostasis and cocaine actions through AA. PMID:27187231

  15. Membrane interaction and secondary structure of de novo designed arginine-and tryptophan peptides with dual function

    KAUST Repository

    Rydberg, Hanna A.

    2012-10-01

    Cell-penetrating peptides and antimicrobial peptides are two classes of positively charged membrane active peptides with several properties in common. The challenge is to combine knowledge about the membrane interaction mechanisms and structural properties of the two classes to design peptides with membrane-specific actions, useful either as transporters of cargo or as antibacterial substances. Membrane active peptides are commonly rich in arginine and tryptophan. We have previously designed a series of arg/trp peptides and investigated how the position and number of tryptophans affect cellular uptake. Here we explore the antimicrobial properties and the interaction with lipid model membranes of these peptides, using minimal inhibitory concentrations assay (MIC), circular dichroism (CD) and linear dichroism (LD). The results show that the arg/trp peptides inhibit the growth of the two gram positive strains Staphylococcus aureus and Staphylococcus pyogenes, with some individual variations depending on the position of the tryptophans. No inhibition of the gram negative strains Proteus mirabilis or Pseudomonas aeruginosa was noticed. CD indicated that when bound to lipid vesicles one of the peptides forms an α-helical like structure, whereas the other five exhibited rather random coiled structures. LD indicated that all six peptides were somehow aligned parallel with the membrane surface. Our results do not reveal any obvious connection between membrane interaction and antimicrobial effect for the studied peptides. By contrast cell-penetrating properties can be coupled to both the secondary structure and the degree of order of the peptides. © 2012 Elsevier Inc.

  16. Membrane Thinning and Thickening Induced by Membrane-Active Amphipathic Peptides.

    Science.gov (United States)

    Grage, Stephan L; Afonin, Sergii; Kara, Sezgin; Buth, Gernot; Ulrich, Anne S

    2016-01-01

    Membrane thinning has been discussed as a fundamental mechanism by which antimicrobial peptides can perturb cellular membranes. To understand which factors play a role in this process, we compared several amphipathic peptides with different structures, sizes and functions in their influence on the lipid bilayer thickness. PGLa and magainin 2 from X. laevis were studied as typical representatives of antimicrobial cationic amphipathic α-helices. A 1:1 mixture of these peptides, which is known to possess synergistically enhanced activity, allowed us to evaluate whether and how this synergistic interaction correlates with changes in membrane thickness. Other systems investigated here include the α-helical stress-response peptide TisB from E. coli (which forms membrane-spanning dimers), as well as gramicidin S from A. migulanus (a natural antibiotic), and BP100 (designer-made antimicrobial and cell penetrating peptide). The latter two are very short, with a circular β-pleated and a compact α-helical structure, respectively. Solid-state (2)H-NMR and grazing incidence small angle X-ray scattering (GISAXS) on oriented phospholipid bilayers were used as complementary techniques to access the hydrophobic thickness as well as the bilayer-bilayer repeat distance including the water layer in between. This way, we found that magainin 2, gramicidin S, and BP100 induced membrane thinning, as expected for amphiphilic peptides residing in the polar/apolar interface of the bilayer. PGLa, on the other hand, decreased the hydrophobic thickness only at very high peptide:lipid ratios, and did not change the bilayer-bilayer repeat distance. TisB even caused an increase in the hydrophobic thickness and repeat distance. When reconstituted as a mixture, PGLa and magainin 2 showed a moderate thinning effect which was less than that of magainin 2 alone, hence their synergistically enhanced activity does not seem to correlate with a modulation of membrane thickness. Overall, the absence of

  17. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  18. L655,240, acting as a competitive BACE1 inhibitor,efficiently decreases β-amyloid peptide production in HEK293-APPswe cells

    Institute of Scientific and Technical Information of China (English)

    Qin LU; Wu-yan CHEN; Zhi-yuan ZHU; Jing CHEN; Ye-chun XU; Morakot KAEWPET; Vatcharin RUKACHAISIRIKUL; Li-li CHEN; Xu SHEN

    2012-01-01

    Aim: To identify a small molecule L655,240 as a novel β-secretase (BACE1) inhibitor and to investigate its effects on β-amyloid (Aβ)generation in vitro.Methods: Fluorescence resonance energy transfer (FRET) was used to characterize the inhibitory effect of L655,240 on BACE1.Surface plasmon resonance (SPR) technology-based assay was performed to study the binding affinity of L655,240 for BACE1.The selectivity of L655,240 toward BACE1 over other aspartic proteases was determined with enzymatic assay.The effects of L655,240 on Aβ40,Aβ42,and sAPPβ production were studied in HEK293 cells stably expressing APP695 Swedish mutantK595N/M596L (HEK293-APPswe cells).The activities of BACE1,ν-secretase and α-secretase were assayed,and both the mRNA and protein levels of APP and BACE1 were evaluated using real-time PCR (RT-PCR) and Western blot analysis.Results: L655,240 was determined to be a competitive,selective BACE1 inhibitor (IC50=4.47±1.37 μmol/L),which bound to BACE1 directly (KD=17.9±0.72 μmol/L).L655,240 effectively reduced Aβ40,Aβ42,and sAPPβ production by inhibiting BACE1 without affecting the activities of y-secretase and α-secretase in HEK293-APPswe cells.L655,240 has no effect on APP and BACE1 mRNA or protein levels in HEK293-APPswe cells.Conclusion: The small molecule L655,240 is a novel BACE1 inhibitor that can effectively decreases Aβ production in vitro,thereby highlighting its therapeutic potential for the treatment of Alzheimer's disease.

  19. Lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) blunt the response of Neuropeptide Y/Agouti-related peptide (NPY/AgRP) glucose inhibited (GI) neurons to decreased glucose.

    Science.gov (United States)

    Hao, Lihong; Sheng, Zhenyu; Potian, Joseph; Deak, Adam; Rohowsky-Kochan, Christine; Routh, Vanessa H

    2016-10-01

    A population of Neuropeptide Y (NPY) neurons which co-express Agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus (ARC) are inhibited at physiological levels of brain glucose and activated when glucose levels decline (e.g. glucose-inhibited or GI neurons). Fasting enhances the activation of NPY/AgRP-GI neurons by low glucose. In the present study we tested the hypothesis that lipopolysaccharide (LPS) inhibits the enhanced activation of NPY/AgRP-GI neurons by low glucose following a fast. Mice which express green fluorescent protein (GFP) on their NPY promoter were used to identify NPY/AgRP neurons. Fasting for 24h and LPS injection decreased blood glucose levels. As we have found previously, fasting increased c-fos expression in NPY/AgRP neurons and increased the activation of NPY/AgRP-GI neurons by decreased glucose. As we predicted, LPS blunted these effects of fasting at the 24h time point. Moreover, the inflammatory cytokine tumor necrosis factor alpha (TNFα) blocked the activation of NPY/AgRP-GI neurons by decreased glucose. These data suggest that LPS and TNFα may alter glucose and energy homeostasis, in part, due to changes in the glucose sensitivity of NPY/AgRP neurons. Interestingly, our findings also suggest that NPY/AgRP-GI neurons use a distinct mechanism to sense changes in extracellular glucose as compared to our previous studies of GI neurons in the adjacent ventromedial hypothalamic nucleus.

  20. Challenges associated with the targeted delivery of gelonin to claudin-expressing cancer cells with the use of activatable cell penetrating peptides to enhance potency

    Directory of Open Access Journals (Sweden)

    Howell Stephen B

    2011-02-01

    Full Text Available Abstract Background Treatment of tumors with macromolecular toxins directed to cytoplasmic targets requires selective endocytosis followed by release of intact toxin from the endosomal/lysosomal compartment. The latter step remains a particular challenge. Claudins 3 and 4 are tight junction proteins that are over-expressed in many types of tumors. This study utilized the C-terminal 30 amino acid fragment of C. perfringens enterotoxin (CPE, which binds to claudins 3 and 4, to deliver a toxin in the form of recombinant gelonin (rGel to the cytoplasm of the human ovarian carcinoma cell line 2008. Results CPE was fused to rGel at its N-terminal end via a flexible G4S linker. This CPE-G4S-rGel molecule was internalized into vesicles from which location it produced little cytotoxicity. To enhance release from the endosomal/lysosomal compartment a poly-arginine sequence (R9 was introduced between the CPE and the rGel. CPE-R9-rGel was 10-fold more cytotoxic but selectivity for claudin-expressing cells was lost. The addition of a poly-glutamic acid sequence (E9 through a G4S linker to R9-rGel (E9-G4S-R9-rGel largely neutralized the non-selective cell membrane penetrating activity of the R9 motif. However, introduction of CPE to the E9-G4S-R9-rGel fusion protein (CPE-E9-G4S-R9-rGel further reduced its cytotoxic effect. Treatment with the endosomolytic reagent chloroquine increased the cytotoxicity of CPE-E9-G4S-R9-rGel. Several types of linkers susceptible to cleavage by furin and endosomal cathepsin B were tested for their ability to enhance R9-rGel release but none of these modifications further enhanced the cytotoxicity of CPE-E9-G4S-R9-rGel. Conclusion We conclude that while a claudin-3 and -4 ligand serves to deliver rGel into 2008 cells the delivered molecules were entrapped in intracellular vesicles. Incorporation of R9 non-specifically increased rGel cytotoxicity and this effect could be masked by inclusion of an E9 sequence. However, the putative protease cleavable sequences tested were inadequate for release of R9-rGel from CPE-E9-G4S-R9-rGel.

  1. Peptide conjugates containing chlorambucil or tetradentate aminopyridine ligands for anticancer treatment

    OpenAIRE

    Soler Vives, Marta

    2015-01-01

    Nowadays, the search for new drugs against cancer is one of the major goals to improve the quality of life of patients. The development of more selective treatments against cancer cells may lead to a significant reduction of the side-effects, being one of the most important topics in current research. In this regard, cell-penetrating peptides (CPPs) have been described to efficiently transport therapeutic molecules across the cell membrane. Furthermore, some metal complexes based on platinum ...

  2. Current status of multiple antigen-presenting peptide vaccine systems: Application of organic and inorganic nanoparticles

    Directory of Open Access Journals (Sweden)

    Taguchi Hiroaki

    2011-08-01

    Full Text Available Abstract Many studies are currently investigating the development of safe and effective vaccines to prevent various infectious diseases. Multiple antigen-presenting peptide vaccine systems have been developed to avoid the adverse effects associated with conventional vaccines (i.e., live-attenuated, killed or inactivated pathogens, carrier proteins and cytotoxic adjuvants. Recently, two main approaches have been used to develop multiple antigen-presenting peptide vaccine systems: (1 the addition of functional components, e.g., T-cell epitopes, cell-penetrating peptides, and lipophilic moieties; and (2 synthetic approaches using size-defined nanomaterials, e.g., self-assembling peptides, non-peptidic dendrimers, and gold nanoparticles, as antigen-displaying platforms. This review summarizes the recent experimental studies directed to the development of multiple antigen-presenting peptide vaccine systems.

  3. Homozygous carriers of the G allele of rs4664447 of the glucagon gene (GCG) are characterised by decreased fasting and stimulated levels of insulin, glucagon and glucagon-like peptide (GLP)-1

    DEFF Research Database (Denmark)

    Torekov, S S; Ma, L; Grarup, N;

    2011-01-01

    The glucagon gene (GCG) encodes several hormones important for energy metabolism: glucagon, oxyntomodulin and glucagon-like peptide (GLP)-1 and -2. Variants in GCG may associate with type 2 diabetes, obesity and/or related metabolic traits.......The glucagon gene (GCG) encodes several hormones important for energy metabolism: glucagon, oxyntomodulin and glucagon-like peptide (GLP)-1 and -2. Variants in GCG may associate with type 2 diabetes, obesity and/or related metabolic traits....

  4. Peptide translocation through the plasma membrane of human cells: Can oxidative stress be exploited to gain better intracellular access?

    Science.gov (United States)

    Wang, Ting-Yi; Pellois, Jean-Philippe

    2016-01-01

    Cell-penetrating peptides (CPPs) enter cells primarily by escaping from endosomal compartments or by directly translocating across the plasma membrane. Due to their capability of permeating into the cytosolic space of the cell, CPPs are utilized for the delivery of cell-impermeable molecules. However, the fundamental mechanisms and parameters associated with the penetration of CPPs and their cargos through the lipid bilayer have not been fully determined. This in turn has hampered their usage in biotechnological or therapeutic applications. We have recently reported that the cell penetration activity of poly-arginine CPPs (PACPPs) is dependent on the oxidation status of the plasma membrane of cells. Our data support a model where the positively-charged PACPP binds negatively-charged lipids exposed on the cell surface as a result of oxidative damage. The PACPP then crosses the membrane via formation of inverted micelles with these anionic lipids. This model provides a plausible explanation for the high variability in the cell delivery efficiency of a PACPP often observed in different settings. Notably, taking into account the current literature describing the effects of lipid oxidation, our data point to a highly complex and underappreciated interplay between PACPPs and oxidized membrane species. Overall, a better understanding of oxidation-dependent cell penetration might provide a fundamental basis for development of optimal cell permeable peptides (including cyclic peptides, stapled peptides, peptoids, etc…) and of robust delivery protocols.

  5. DNA-histone complexes as ligands amplify cell penetration and nuclear targeting of anti-DNA antibodies via energy-independent mechanisms.

    Science.gov (United States)

    Zannikou, Markella; Bellou, Sofia; Eliades, Petros; Hatzioannou, Aikaterini; Mantzaris, Michael D; Carayanniotis, George; Avrameas, Stratis; Lymberi, Peggy

    2016-01-01

    We have generated three monoclonal cell-penetrating antibodies (CPAbs) from a non-immunized lupus-prone (NZB × NZW)F1 mouse that exhibited high anti-DNA serum titres. These CPAbs are polyreactive because they bind to DNA and other cellular components, and localize mainly in the nucleus of HeLa cells, albeit with a distinct nuclear labelling profile. Herein, we have examined whether DNA-histone complexes (DHC) binding to CPAbs, before cell entry, could modify the cell penetration of CPAbs or their nuclear staining properties. By applying confocal microscopy and image analysis, we found that extracellular binding of purified CPAbs to DHC significantly enhanced their subsequent cell-entry, both in terms of percentages of positively labelled cells and fluorescence intensity (internalized CPAb amount), whereas there was a variable effect on their nuclear staining profile. Internalization of CPAbs, either alone or bound to DHC, remained unaltered after the addition of endocytosis-specific inhibitors at 37° or assay performance at 4°, suggesting the involvement of energy-independent mechanisms in the internalization process. These findings assign to CPAbs a more complex pathogenetic role in systemic lupus erythematosus where both CPAbs and nuclear components are abundant.

  6. Biological activity of Tat (47-58) peptide on human pathogenic fungi

    International Nuclear Information System (INIS)

    Tat (47-58) peptide, a positively charged Arginine-rich peptide derived from HIV-1 regulatory protein Tat, is known for a peptidic delivery factor as a cell-penetrating peptide on mammalian cells. In this study, antifungal effect and its mode of action of Tat peptide were investigated on fungal cells. The results indicate that Tat peptide exhibits antifungal activity against pathogenic fungal cells without hemolytic effect on human erythrocytes. To understand the mechanism(s) of Tat peptide, the cellular distribution of the peptide was investigated. Tat peptide internalized in the fungal cells without any damage to cell membrane when examined using an artificial liposome (PC/cholesterol; 10:1, w/w). Moreover, flow cytometry analysis exhibited the uptake of Tat peptide by energy- and salt-independent pathway, and confocal scanning microscopy displayed that this peptide accumulated in the nucleus of fungal cells rapidly without any impediment by time or temperature, which generally influence on the viral infections. After penetration into the nuclear, the peptide affected the process of cell cycle of Candida albicans through the arrest at G1 phase

  7. IKK NBD peptide inhibits LPS induced pulmonary inflammation and alters sphingolipid metabolism in a murine model.

    Science.gov (United States)

    von Bismarck, Philipp; Winoto-Morbach, Supandi; Herzberg, Mona; Uhlig, Ulrike; Schütze, Stefan; Lucius, Ralph; Krause, Martin F

    2012-06-01

    Airway epithelial NF-κB is a key regulator of host defence in bacterial infections and has recently evolved as a target for therapeutical approaches. Evidence is accumulating that ceramide, generated by acid sphingomyelinase (aSMase), and sphingosine-1-phosphate (S1-P) are important mediators in host defence as well as in pathologic processes of acute lung injury. Little is known about the regulatory mechanisms of pulmonary sphingolipid metabolism in bacterial infections of the lung. The objective of this study was to evaluate the influence of NF-κB on sphingolipid metabolism in Pseudomonas aeruginosa LPS-induced pulmonary inflammation. In a murine acute lung injury model with intranasal Pseudomonas aeruginosa LPS we investigated TNF-α, KC (murine IL-8), IL-6, MCP-1 and neutrophilic infiltration next to aSMase activity and ceramide and S1-P lung tissue concentrations. Airway epithelial NF-κB was inhibited by topically applied IKK NBD, a cell penetrating NEMO binding peptide. This treatment resulted in significantly reduced inflammation and suppression of aSMase activity along with decreased ceramide and S1-P tissue concentrations down to levels observed in healthy animals. In conclusion our results confirm that changes in sphingolipid metabolim due to Pseudomonas aeruginosa LPS inhalation are regulated by NF-κB translocation. This confirms the critical role of airway epithelial NF-κB pathway for the inflammatory response to bacterial pathogens and underlines the impact of sphingolipids in inflammatory host defence mechanisms. PMID:22469869

  8. Liposome-siRNA-peptide complexes cross the blood-brain barrier and significantly decrease PrP on neuronal cells and PrP in infected cell cultures.

    Directory of Open Access Journals (Sweden)

    Bruce Pulford

    Full Text Available BACKGROUND: Recent advances toward an effective therapy for prion diseases employ RNA interference to suppress PrP(C expression and subsequent prion neuropathology, exploiting the phenomenon that disease severity and progression correlate with host PrP(C expression levels. However, delivery of lentivirus encoding PrP shRNA has demonstrated only modest efficacy in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a new siRNA delivery system incorporating a small peptide that binds siRNA and acetylcholine receptors (AchRs, acting as a molecular messenger for delivery to neurons, and cationic liposomes that protect siRNA-peptide complexes from serum degradation. CONCLUSIONS/SIGNIFICANCE: Liposome-siRNA-peptide complexes (LSPCs delivered PrP siRNA specifically to AchR-expressing cells, suppressed PrP(C expression and eliminated PrP(RES formation in vitro. LSPCs injected intravenously into mice resisted serum degradation and delivered PrP siRNA throughout the brain to AchR and PrP(C-expressing neurons. These data promote LSPCs as effective vehicles for delivery of PrP and other siRNAs specifically to neurons to treat prion and other neuropathological diseases.

  9. Dysferlin-peptides reallocate mutated dysferlin thereby restoring function.

    Directory of Open Access Journals (Sweden)

    Verena Schoewel

    Full Text Available Mutations in the dysferlin gene cause the most frequent adult-onset limb girdle muscular dystrophy, LGMD2B. There is no therapy. Dysferlin is a membrane protein comprised of seven, beta-sheet enriched, C2 domains and is involved in Ca(2+dependent sarcolemmal repair after minute wounding. On the protein level, point mutations in DYSF lead to misfolding, aggregation within the endoplasmic reticulum, and amyloidogenesis. We aimed to restore functionality by relocating mutant dysferlin. Therefore, we designed short peptides derived from dysferlin itself and labeled them to the cell penetrating peptide TAT. By tracking fluorescently labeled short peptides we show that these dysferlin-peptides localize in the endoplasmic reticulum. There, they are capable of reducing unfolded protein response stress. We demonstrate that the mutant dysferlin regains function in membrane repair in primary human myotubes derived from patients' myoblasts by the laser wounding assay and a novel technique to investigate membrane repair: the interventional atomic force microscopy. Mutant dysferlin abuts to the sarcolemma after peptide treatment. The peptide-mediated approach has not been taken before in the field of muscular dystrophies. Our results could redirect treatment efforts for this condition.

  10. Dysferlin-peptides reallocate mutated dysferlin thereby restoring function.

    Science.gov (United States)

    Schoewel, Verena; Marg, Andreas; Kunz, Severine; Overkamp, Tim; Carrazedo, Romy Siegert; Zacharias, Ute; Daniel, Peter T; Spuler, Simone

    2012-01-01

    Mutations in the dysferlin gene cause the most frequent adult-onset limb girdle muscular dystrophy, LGMD2B. There is no therapy. Dysferlin is a membrane protein comprised of seven, beta-sheet enriched, C2 domains and is involved in Ca(2+)dependent sarcolemmal repair after minute wounding. On the protein level, point mutations in DYSF lead to misfolding, aggregation within the endoplasmic reticulum, and amyloidogenesis. We aimed to restore functionality by relocating mutant dysferlin. Therefore, we designed short peptides derived from dysferlin itself and labeled them to the cell penetrating peptide TAT. By tracking fluorescently labeled short peptides we show that these dysferlin-peptides localize in the endoplasmic reticulum. There, they are capable of reducing unfolded protein response stress. We demonstrate that the mutant dysferlin regains function in membrane repair in primary human myotubes derived from patients' myoblasts by the laser wounding assay and a novel technique to investigate membrane repair: the interventional atomic force microscopy. Mutant dysferlin abuts to the sarcolemma after peptide treatment. The peptide-mediated approach has not been taken before in the field of muscular dystrophies. Our results could redirect treatment efforts for this condition. PMID:23185377

  11. Chromogranin A-derived peptides are involved in innate immunity.

    Science.gov (United States)

    Aslam, R; Atindehou, M; Lavaux, T; Haïkel, Y; Schneider, F; Metz-Boutigue, M-H

    2012-01-01

    New endogenous antimicrobial peptides (AMPs) derived from chromogranin A (CgA) are secreted by nervous, endocrine and immune cells during stress. They display antimicrobial activities by lytic effects at micromolar range using a pore-forming mechanism against Gram-positive bacteria, filamentous fungi and yeasts. These AMPs can also penetrate quickly into neutrophils (without lytic effects), where, similarly to "cell penetrating peptides", they interact with cytoplasmic calmodulin, and induce calcium influx via Store Operated Channels therefore triggering neutrophils activation. Staphylococcus aureus and Salmonella enteritis are bacteria responsible for severe infections. We investigated here the effects of S. aureus and S. enteritis bacterial proteases on CgA-derived peptides and evaluated their antimicrobial activities. We showed that the Glu-C protease produced by S. aureus V8 induces the loss of the AMPs antibacterial activities and produces new antifungal peptides. In addition, four antimicrobial CGA-derived peptides (chromofungin, procatestatin, human/bovine catestatin) are degraded when treated with bacterial supernatants from S. aureus and S. enteritis, whereas, cateslytin, the short active form of catestatin, resists to this degradation. Finally, we demonstrate that several antimicrobial CgA-derived peptides are able to act synergistically with antibiotics against bacteria and fungi indicating their roles in innate defense.

  12. Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers

    Science.gov (United States)

    Chuah, Jo-Ann; Yoshizumi, Takeshi; Kodama, Yutaka; Numata, Keiji

    2015-01-01

    Available methods in plant genetic transformation are nuclear and plastid transformations because similar procedures have not yet been established for the mitochondria. The double membrane and small size of the organelle, in addition to its large population in cells, are major obstacles in mitochondrial transfection. Here we report the intracellular delivery of exogenous DNA localized to the mitochondria of Arabidopsis thaliana using a combination of mitochondria-targeting peptide and cell-penetrating peptide. Low concentrations of peptides were sufficient to deliver DNA into the mitochondria and expression of imported DNA reached detectable levels within a short incubation period (12 h). We found that electrostatic interaction with the cell membrane is not a critical factor for complex internalization, instead, improved intracellular penetration of mitochondria-targeted complexes significantly enhanced gene transfer efficiency. Our results delineate a simple and effective peptide-based method, as a starting point for the development of more sophisticated plant mitochondrial transfection strategies.

  13. Intracellular trafficking of superparamagnetic iron oxide nanoparticles conjugated with TAT peptide: 3-dimensional electron tomography analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Baiju G.; Fukuda, Takahiro; Mizuki, Toru; Hanajiri, Tatsuro [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Maekawa, Toru, E-mail: maekawa@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer We study the intracellular localisation of TAT-SPIONs using 3-D electron tomography. Black-Right-Pointing-Pointer 3-D images of TAT-SPIONs in a cell are clearly shown. Black-Right-Pointing-Pointer Release of TAT-SPIONs from endocytic vesicles into the cytoplasm is clearly shown. -- Abstract: Internalisation of nanoparticles conjugated with cell penetrating peptides is a promising approach to various drug delivery applications. Cell penetrating peptides such as transactivating transcriptional activator (TAT) peptides derived from HIV-1 proteins are effective intracellular delivery vectors for a wide range of nanoparticles and pharmaceutical agents thanks to their amicable ability to enter cells and minimum cytotoxicity. Although different mechanisms of intracellular uptake and localisation have been proposed for TAT conjugated nanoparticles, it is necessary to visualise the particles on a 3-D plane in order to investigate the actual intracellular uptake and localisation. Here, we study the intracellular localisation and trafficking of TAT peptide conjugated superparamagnetic ion oxide nanoparticles (TAT-SPIONs) using 3-D electron tomography. 3-D tomograms clearly show the location of TAT-SPIONs in a cell and their slow release from the endocytic vesicles into the cytoplasm. The present methodology may well be utilised for further investigations of the behaviours of nanoparticles in cells and eventually for the development of nano drug delivery systems.

  14. 来自穿膜肽的新肽的抗菌活性及抑菌机制%Antibacterial activity and mechanisms of a new peptide derived from cell-penetrating peptide

    Institute of Scientific and Technical Information of China (English)

    李莉蓉; 施用晖; 乐国伟

    2013-01-01

    [目的]研究基于穿膜肽和抗菌肽构效关系改造获得的新肽P7的抗菌活性及其对大肠杆菌(E.coli)的抑菌机制.[方法]微量稀释法和溶血实验分析P7的抑菌活性及其对正常细胞的细胞毒性;采用膜荧光探针、流式细胞术和扫描电镜分析P7对E.coli膜通透性、膜完整性的影响和细胞超微结构变化;通过激光共聚焦分析P7在E.coli细胞中的定位;凝胶阻滞实验测定P7与E.coli基因组DNA结合能力.[结果]P7比母肽显示更强的抑菌活性,最低抑菌浓度范围为4-32 μmol/L,且在作用浓度范围内具有较弱的溶血活性.P7可以增加E.coli外膜和内膜的通透性,使E.coli细胞膜的完整性和细胞表面结构受损.同时P7可以穿过E.coli细胞膜在细胞质聚集并与基因组DNA结合.[结论]P7通过增加E.coli内外膜通透性,穿过细胞膜与胞内DNA结合发挥抑菌活性.

  15. Discovery of Novel Bacterial Cell-Penetrating Phylloseptins in Defensive Skin Secretions of the South American Hylid Frogs, Phyllomedusa duellmani and Phyllomedusa coelestis.

    Science.gov (United States)

    Yang, Nan; Li, Lei; Wu, Di; Gao, Yitian; Xi, Xinping; Zhou, Mei; Wang, Lei; Chen, Tianbao; Shaw, Chris

    2016-01-01

    Phylloseptin (PS) peptides, derived from South American hylid frogs (subfamily Phyllomedusinae), have been found to have broad-spectrum antimicrobial activities and relatively low haemolytic activities. Although PS peptides have been identified from several well-known and widely-distributed species of the Phyllomedusinae, there remains merit in their study in additional, more obscure and specialised members of this taxon. Here, we report the discovery of two novel PS peptides, named PS-Du and PS-Co, which were respectively identified for the first time and isolated from the skin secretions of Phyllomedusa duellmani and Phyllomedusa coelestis. Their encoding cDNAs were cloned, from which it was possible to deduce the entire primary structures of their biosynthetic precursors. Reversed-phase high-performance liquid chromatography (RP-HPLC) and tandem mass spectrometry (MS/MS) analyses were employed to isolate and structurally-characterise respective encoded PS peptides from skin secretions. The peptides had molecular masses of 2049.7 Da (PS-Du) and 1972.8 Da (PS-Co). They shared typical N-terminal sequences and C-terminal amidation with other known phylloseptins. The two peptides exhibited growth inhibitory activity against E. coli (NCTC 10418), as a standard Gram-negative bacterium, S. aureus (NCTC 10788), as a standard Gram-positive bacterium and C. albicans (NCPF 1467), as a standard pathogenic yeast, all as planktonic cultures. Moreover, both peptides demonstrated the capability of eliminating S. aureus biofilm. PMID:27589802

  16. Urinary Peptide Levels in Patients with Chronic Renal Failure

    Directory of Open Access Journals (Sweden)

    Mungli Prakash

    2010-10-01

    Full Text Available Introduction: Peptide levels in urine are found to be decreased in renal failure. In the current study urinary peptide levels were determined in chronic renal failure (CRF patients. Method: 86 CRF patients and 80 healthy controls were selected for the study. Urinary proteins and peptide levels were determined by spectrophotometer based Lowry and Bradford methods. Urinary creatinine levels were determined by clinical chemistry analyzer. Results: There was significant decrease in urinary peptide levels in CRF patients and Urinary % peptides were significantly decreased in CRF patients as compared to healthy controls. Urinary % peptides correlated negatively with proteinuria. Conclusion: we have found decrease in urinary peptides and % urinary peptides in CRF patients and possibly measurement of % urinary peptides may possibly serve as better indicator in early detection of impairment in renal function.

  17. Synthesis and In Vitro Evaluation of Amphiphilic Peptides and Their Nanostructured Conjugates

    Directory of Open Access Journals (Sweden)

    Samaneh Mohammadi

    2015-03-01

    Full Text Available Purpose: Breast cancer is the second leading cancer type among people of advanced countries. Various methods have been used for cancer treatment such as chemotherapy and radiotherapy. In the present study we have designed and synthesized a new group of drug delivery systems (DDS containing a new class of Cell Penetrating Peptides (CPPs named Peptide Amphiphiles (PAs. Methods: Two PAs and anionic peptides were synthesized using solid phase peptide synthesis (SPPS, namely [KW]4, [KW]5, E4 and E8. Then nano-peptides were synthesized by non-covalent binding between PAs and poly anions as [KW]4-E4, [KW]4-E8, [KW]5-E4 and [KW]5-E8. Results: Flow cytometry studies showed that increased chain length of PAs with a higher ratio between hydrophobicity and net charge results in increased intracellular uptake by MCF7 cells after 2h incubation. Moreover, nano-peptides showed greater intracellular uptake compared to PAs. Anti-proliferative assay revealed that by increasing chain length of PAs, the toxicity effect on MCF7 cells is reduced, however nano-peptides did not show significant toxicity on MCF7 cells even at high concentration levels. Conclusion: These data suggest that due to the lack of toxicity effect at high concentration levels and also high cellular uptake, nano-peptides are more suitable carrier compared to PAs for drug delivery.

  18. In silico rationally designed of a Peptide-mimic pharmacologic low mass predicted chemorecored poly-druggable-structure for the possible potentiating of the efficient delivery of gene constructs through for the internalization successes in experimental therapy of muscular dystrophies.

    OpenAIRE

    Ioannis Grigoriadis

    2015-01-01

    Poor cellular delivery and low bioavailability of novel potent therapeutic molecules continue to remain the bottleneck of modern cancer and gene therapy. Cell-penetrating peptides have provided immense opportunities for the intracellular delivery of bioactive cargos and have led to the first exciting successes in experimental therapy of muscular dystrophies. The arsenal of tools for oligonucleotide delivery has dramatically expanded in the last decade enabling harnessing of cell-surface recep...

  19. Antimicrobial peptides.

    Science.gov (United States)

    Zhang, Ling-Juan; Gallo, Richard L

    2016-01-11

    Antimicrobial peptides and proteins (AMPs) are a diverse class of naturally occurring molecules that are produced as a first line of defense by all multicellular organisms. These proteins can have broad activity to directly kill bacteria, yeasts, fungi, viruses and even cancer cells. Insects and plants primarily deploy AMPs as an antibiotic to protect against potential pathogenic microbes, but microbes also produce AMPs to defend their environmental niche. In higher eukaryotic organisms, AMPs can also be referred to as 'host defense peptides', emphasizing their additional immunomodulatory activities. These activities are diverse, specific to the type of AMP, and include a variety of cytokine and growth factor-like effects that are relevant to normal immune homeostasis. In some instances, the inappropriate expression of AMPs can also induce autoimmune diseases, thus further highlighting the importance of understanding these molecules and their complex activities. This Primer will provide an update of our current understanding of AMPs. PMID:26766224

  20. Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ali Adem Bahar

    2013-11-01

    Full Text Available The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs, a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics.

  1. Antibacterial activity of novel cationic peptides against clinical isolates of multi-drug resistant Staphylococcus pseudintermedius from infected dogs.

    Directory of Open Access Journals (Sweden)

    Mohamed F Mohamed

    Full Text Available Staphylococcus pseudintermedius is a major cause of skin and soft tissue infections in companion animals and has zoonotic potential. Additionally, methicillin-resistant S. pseudintermedius (MRSP has emerged with resistance to virtually all classes of antimicrobials. Thus, novel treatment options with new modes of action are required. Here, we investigated the antimicrobial activity of six synthetic short peptides against clinical isolates of methicillin-susceptible and MRSP isolated from infected dogs. All six peptides demonstrated potent anti-staphylococcal activity regardless of existing resistance phenotype. The most effective peptides were RRIKA (with modified C terminus to increase amphipathicity and hydrophobicity and WR-12 (α-helical peptide consisting exclusively of arginine and tryptophan with minimum inhibitory concentration50 (MIC50 of 1 µM and MIC90 of 2 µM. RR (short anti-inflammatory peptide and IK8 "D isoform" demonstrated good antimicrobial activity with MIC50 of 4 µM and MIC90 of 8 µM. Penetratin and (KFF3K (two cell penetrating peptides were the least effective with MIC50 of 8 µM and MIC90 of 16 µM. Killing kinetics revealed a major advantage of peptides over conventional antibiotics, demonstrating potent bactericidal activity within minutes. Studies with propidium iodide and transmission electron microscopy revealed that peptides damaged the bacterial membrane leading to leakage of cytoplasmic contents and consequently, cell death. A potent synergistic increase in the antibacterial effect of the cell penetrating peptide (KFF3K was noticed when combined with other peptides and with antibiotics. In addition, all peptides displayed synergistic interactions when combined together. Furthermore, peptides demonstrated good therapeutic indices with minimal toxicity toward mammalian cells. Resistance to peptides did not evolve after 10 passages of S. pseudintermedius at sub-inhibitory concentration. However, the MICs of amikacin

  2. Action of the multifunctional peptide BP100 on native biomembranes examined by solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Misiewicz, Julia [Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (Germany); Afonin, Sergii; Grage, Stephan L.; Berg, Jonas van den; Strandberg, Erik; Wadhwani, Parvesh [Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2) (Germany); Ulrich, Anne S., E-mail: anne.ulrich@kit.edu [Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (Germany)

    2015-04-15

    Membrane composition is a key factor that regulates the destructive activity of antimicrobial peptides and the non-leaky permeation of cell penetrating peptides in vivo. Hence, the choice of model membrane is a crucial aspect in NMR studies and should reflect the biological situation as closely as possible. Here, we explore the structure and dynamics of the short multifunctional peptide BP100 using a multinuclear solid-state NMR approach. The membrane alignment and mobility of this 11 amino acid peptide was studied in various synthetic lipid bilayers with different net charge, fluidity, and thickness, as well as in native biomembranes harvested from prokaryotic and eukaryotic cells. {sup 19}F-NMR provided the high sensitivity and lack of natural abundance background that are necessary to observe a labelled peptide even in protoplast membranes from Micrococcus luteus and in erythrocyte ghosts. Six selectively {sup 19}F-labeled BP100 analogues gave remarkably similar spectra in all of the macroscopically oriented membrane systems, which were studied under quasi-native conditions of ambient temperature and full hydration. This similarity suggests that BP100 has the same surface-bound helical structure and high mobility in the different biomembranes and model membranes alike, independent of charge, thickness or cholesterol content of the system. {sup 31}P-NMR spectra of the phospholipid components did not indicate any bilayer perturbation, so the formation of toroidal wormholes or micellarization can be excluded as a mechanism of its antimicrobial or cell penetrating action. However, {sup 2}H-NMR analysis of the acyl chain order parameter profiles showed that BP100 leads to considerable membrane thinning and thereby local destabilization.

  3. Peptide aptamers: The versatile role of specific protein function inhibitors in plant biotechnology.

    Science.gov (United States)

    Colombo, Monica; Mizzotti, Chiara; Masiero, Simona; Kater, Martin M; Pesaresi, Paolo

    2015-11-01

    In recent years, peptide aptamers have emerged as novel molecular tools that have attracted the attention of researchers in various fields of basic and applied science, ranging from medicine to analytical chemistry. These artificial short peptides are able to specifically bind, track, and inhibit a given target molecule with high affinity, even molecules with poor immunogenicity or high toxicity, and represent a remarkable alternative to antibodies in many different applications. Their use is on the rise, driven mainly by the medical and pharmaceutical sector. Here we discuss the enormous potential of peptide aptamers in both basic and applied aspects of plant biotechnology and food safety. The different peptide aptamer selection methods available both in vivo and in vitro are introduced, and the most important possible applications in plant biotechnology are illustrated. In particular, we discuss the generation of broad-based virus resistance in crops, "reverse genetics" and aptasensors in bioassays for detecting contaminations in food and feed. Furthermore, we suggest an alternative to the transfer of peptide aptamers into plant cells via genetic transformation, based on the use of cell-penetrating peptides that overcome the limits imposed by both crop transformation and Genetically Modified Organism commercialization.

  4. pACC1 peptide loaded chitosan nanoparticles induces apoptosis via reduced fatty acid synthesis in MDA-MB-231 cells

    Science.gov (United States)

    Kaliaperumal, Jagatheesh; Hari, Natarajan; Pavankumar, Padarthi; Elangovan, Namasivayam

    2016-06-01

    The development of formulations with therapeutic peptides has been restricted to poor cell penetration and in this attempt; we developed pACC1 peptide loaded chitosan nanoparticles. The prepared nanoparticles were characterized with FT-IR, XRD, SEM and TEM. In addition, the suitable formulation was evaluated for hemocompatibility, plasma stability and embryo toxicity using Danio rerio embryo model. The results showed that pACC1 peptide loaded chitosan nanoparticles were compatible with plasma. They possess sustained release pattern and also found to be safe up to 300 mg/L in embryo toxicity tests. Cytotoxicity assays with MDA-MB-231 cell lines suggested that, pACC1 peptide loaded chitosan nanoparticles were capable of enhanced cellular penetration and reduced palmitic acid content, which was confirmed by H1 NMR. Hence, these nanoparticles could be employed as excellent adjuvant therapeutics while treating solid tumors with multi-drug resistance.

  5. Smart silver nanoparticles: borrowing selectivity from conjugated polymers or antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Lihong Liu

    2014-06-01

    Full Text Available Silver nanoparticles (AgNPs as novel antimicrobial agents are gaining tremendous exploration in various medical fields due to their broad spectrum activity, efficacy and low cost. The major problem associated with the AgNPs treatment is their narrow therapeutic window. To address this inherent shortcoming, significant efforts have been dedicated to reduce AgNPs cell toxicity and improve their therapeutic index. In this brief review, the emphasis would be placed on development of the combined mechanisms which can enhance the antimicrobial action of AgNPs, arising from investigating the biological differences between microbial and mammalian cells. Using one of our selected antimicrobial cell penetration peptide conjugated AgNPs as an example, we demonstrated that antimicrobial peptides (AMPs anchored AgNPs produced enhanced antimicrobial activities, possibly through multimodal mechanisms including selective binding to microorganisms and producing the intracellularly controlled Ag+ release, thus, improving the therapeutic index of AgNPs.

  6. Chemical Methods for Peptide and Protein Production

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    2013-04-01

    Full Text Available Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported a-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  7. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen;

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2...

  8. Delivery of siRNA Complexed with Palmitoylated α-Peptide/β-Peptoid Cell-Penetrating Peptidomimetics: Membrane Interaction and Structural Characterization of a Lipid-Based Nanocarrier System

    DEFF Research Database (Denmark)

    Jing, Xiaona; Foged, Camilla; Martin-Bertelsen, Birte;

    2016-01-01

    for delivery of small interfering RNA (siRNA) to the cytosol by incorporation of a palmitoylated peptidomimetic construct into a cationic lipid-based nanocarrier system. The optimal construct was selected on the basis of the effect of palmitoylation and the influence of the length of the peptidomimetic...... on the interaction with model membranes and the cellular uptake. Palmitoylation enhanced the peptidomimetic adsorption to supported lipid bilayers as studied by ellipsometry. However, both palmitoylation and increased peptidomimetic chain length were found to be beneficial in the cellular uptake studies using...

  9. Dual Myostatin and Dystrophin Exon Skipping by Morpholino Nucleic Acid Oligomers Conjugated to a Cell-penetrating Peptide Is a Promising Therapeutic Strategy for the Treatment of Duchenne Muscular Dystrophy

    OpenAIRE

    Malerba, Alberto; Kang, Jagjeet K; Mcclorey, Graham; Saleh, Amer F.; Popplewell, Linda; Gait, Michael J.; Wood, Matthew JA; Dickson, George

    2012-01-01

    The knockdown of myostatin, a negative regulator of skeletal muscle mass may have important implications in disease conditions accompanied by muscle mass loss like cancer, HIV/AIDS, sarcopenia, muscle atrophy, and Duchenne muscular dystrophy (DMD). In DMD patients, where major muscle loss has occurred due to a lack of dystrophin, the therapeutic restoration of dystrophin expression alone in older patients may not be sufficient to restore the functionality of the muscles. We recently demonstra...

  10. A nanotechnological, molecular-modeling, and immunological approach to study the interaction of the anti-tumorigenic peptide p28 with the p53 family of proteins.

    Science.gov (United States)

    Coppari, Emilia; Yamada, Tohru; Bizzarri, Anna Rita; Beattie, Craig W; Cannistraro, Salvatore

    2014-01-01

    p28 is an anionic, amphipathic, cell-penetrating peptide derived from the cupredoxin azurin that binds to the DNA-binding domain (DBD) of the tumor suppressor protein, p53, and induces a post-translational increase in the level of wild type and mutated p53 in a wide variety of human cancer cells. As p63 and p73, additional members of the p53 superfamily of proteins, also appear to be involved in the cellular response to cancer therapy and are reportedly required for p53-induced apoptosis, we asked whether p28 also binds to p63 and p73. Atomic force spectroscopy demonstrates that p28 forms a stable, high-affinity complex with full-length p63, the DBD of p63, and full-length p73. Exposure to p28 decreased the level of TAp63α and ΔNp63α, the truncated form of p63, in p53 wild type and mutated human breast cancer cells, respectively. p28 increased the level of TAp73α, but not ΔNp73α, in the same breast cancer cell lines. In contrast, p28 increased the level of the TA and ΔN isoforms of p63 in p53 wild type, but not in p53 mutated melanoma cells, while decreasing TA p73α in p53 wild type and mutated human melanoma cells. All changes were mirrored by an associated change in the expression of the HECT E3 ligases Itch/AIP4, AIP5, and the RING E3 ligase Pirh2, but not in the receptor for activated C kinase or the RING E3 ligases Mdm2 and Cop1. Collectively, the data suggest that molecules such as p28 bind with high affinity to the DBD of p63 and p73 and alter their expression independent of the Mdm2 and Cop1 pathways.

  11. Designing of peptides with desired half-life in intestine-like environment

    KAUST Repository

    Sharma, Arun

    2014-08-20

    Background: In past, a number of peptides have been reported to possess highly diverse properties ranging from cell penetrating, tumor homing, anticancer, anti-hypertensive, antiviral to antimicrobials. Owing to their excellent specificity, low-toxicity, rich chemical diversity and availability from natural sources, FDA has successfully approved a number of peptide-based drugs and several are in various stages of drug development. Though peptides are proven good drug candidates, their usage is still hindered mainly because of their high susceptibility towards proteases degradation. We have developed an in silico method to predict the half-life of peptides in intestine-like environment and to design better peptides having optimized physicochemical properties and half-life.Results: In this study, we have used 10mer (HL10) and 16mer (HL16) peptides dataset to develop prediction models for peptide half-life in intestine-like environment. First, SVM based models were developed on HL10 dataset which achieved maximum correlation R/R2 of 0.57/0.32, 0.68/0.46, and 0.69/0.47 using amino acid, dipeptide and tripeptide composition, respectively. Secondly, models developed on HL16 dataset showed maximum R/R2 of 0.91/0.82, 0.90/0.39, and 0.90/0.31 using amino acid, dipeptide and tripeptide composition, respectively. Furthermore, models that were developed on selected features, achieved a correlation (R) of 0.70 and 0.98 on HL10 and HL16 dataset, respectively. Preliminary analysis suggests the role of charged residue and amino acid size in peptide half-life/stability. Based on above models, we have developed a web server named HLP (Half Life Prediction), for predicting and designing peptides with desired half-life. The web server provides three facilities; i) half-life prediction, ii) physicochemical properties calculation and iii) designing mutant peptides.Conclusion: In summary, this study describes a web server \\'HLP\\' that has been developed for assisting scientific

  12. Antiviral activity of α-helical stapled peptides designed from the HIV-1 capsid dimerization domain

    Directory of Open Access Journals (Sweden)

    Cowburn David

    2011-05-01

    Full Text Available Abstract Background The C-terminal domain (CTD of HIV-1 capsid (CA, like full-length CA, forms dimers in solution and CTD dimerization is a major driving force in Gag assembly and maturation. Mutations of the residues at the CTD dimer interface impair virus assembly and render the virus non-infectious. Therefore, the CTD represents a potential target for designing anti-HIV-1 drugs. Results Due to the pivotal role of the dimer interface, we reasoned that peptides from the α-helical region of the dimer interface might be effective as decoys to prevent CTD dimer formation. However, these small peptides do not have any structure in solution and they do not penetrate cells. Therefore, we used the hydrocarbon stapling technique to stabilize the α-helical structure and confirmed by confocal microscopy that this modification also made these peptides cell-penetrating. We also confirmed by using isothermal titration calorimetry (ITC, sedimentation equilibrium and NMR that these peptides indeed disrupt dimer formation. In in vitro assembly assays, the peptides inhibited mature-like virus particle formation and specifically inhibited HIV-1 production in cell-based assays. These peptides also showed potent antiviral activity against a large panel of laboratory-adapted and primary isolates, including viral strains resistant to inhibitors of reverse transcriptase and protease. Conclusions These preliminary data serve as the foundation for designing small, stable, α-helical peptides and small-molecule inhibitors targeted against the CTD dimer interface. The observation that relatively weak CA binders, such as NYAD-201 and NYAD-202, showed specificity and are able to disrupt the CTD dimer is encouraging for further exploration of a much broader class of antiviral compounds targeting CA. We cannot exclude the possibility that the CA-based peptides described here could elicit additional effects on virus replication not directly linked to their ability to bind

  13. Topical and Targeted Delivery of siRNAs to Melanoma Cells Using a Fusion Peptide Carrier.

    Science.gov (United States)

    Ruan, Renquan; Chen, Ming; Sun, Sijie; Wei, Pengfei; Zou, Lili; Liu, Jing; Gao, Dayong; Wen, Longping; Ding, Weiping

    2016-01-01

    Topical application of siRNAs through the skin is a potentially effective strategy for the treatment of melanoma tumors. In this study, we designed a new and safe fusion peptide carrier SPACE-EGF to improve the skin and cell penetration function of the siRNAs and their targeting ability to B16 cells, such that the apoptosis of B16 cells can be induced. The results show that the carrier is stable and less toxic. The EGF motif does not affect the skin and cell penetration function of the SPACE. Because EGF can strongly bind EGFR, which is overexpressed in cancer cells, the targeting ability of the SPACE-EGF-siRNA complex is increased. In vitro experiments indicate that GAPDH siRNAs conjugated with SPACE-EGF can significantly reduce the GAPDH concentration in B16 cells, and c-Myc siRNAs can cause the gene silencing of c-Myc and thus the apoptosis of cells. In vivo experiments show that the topical application of c-Myc siRNAs delivered by SPACE-EGF through the skin can significantly inhibit the growth of melanoma tumors. This work may provide insight into the development of new transdermal drug carriers to treat a variety of skin disorders. PMID:27374619

  14. Taurine Boosts Cellular Uptake of Small D-Peptides for Enzyme-Instructed Intracellular Molecular Self-Assembly.

    Science.gov (United States)

    Zhou, Jie; Du, Xuewen; Li, Jie; Yamagata, Natsuko; Xu, Bing

    2015-08-19

    Due to their biostability, D-peptides are emerging as an important molecular platform for biomedical applications. Being proteolytically resistant, D-peptides lack interactions with endogenous transporters and hardly enter cells. Here we show that taurine, a natural amino acid, drastically boosts the cellular uptake of small D-peptides in mammalian cells by >10-fold, from 118 μM (without conjugating taurine) to >1.6 mM (after conjugating taurine). The uptake of a large amount of the ester conjugate of taurine and D-peptide allows intracellular esterase to trigger intracellular self-assembly of the D-peptide derivative, further enhancing their cellular accumulation. The study on the mechanism of the uptake reveals that the conjugates enter cells via both dynamin-dependent endocytosis and macropinocytosis, but likely not relying on taurine transporters. Differing fundamentally from the positively charged cell-penetrating peptides, the biocompatibility, stability, and simplicity of the enzyme-cleavable taurine motif promise new ways to promote the uptake of bioactive molecules for countering the action of efflux pump and contributing to intracellular molecular self-assembly. PMID:26235707

  15. Taurine Boosts Cellular Uptake of Small D-Peptides for Enzyme-Instructed Intracellular Molecular Self-Assembly.

    Science.gov (United States)

    Zhou, Jie; Du, Xuewen; Li, Jie; Yamagata, Natsuko; Xu, Bing

    2015-08-19

    Due to their biostability, D-peptides are emerging as an important molecular platform for biomedical applications. Being proteolytically resistant, D-peptides lack interactions with endogenous transporters and hardly enter cells. Here we show that taurine, a natural amino acid, drastically boosts the cellular uptake of small D-peptides in mammalian cells by >10-fold, from 118 μM (without conjugating taurine) to >1.6 mM (after conjugating taurine). The uptake of a large amount of the ester conjugate of taurine and D-peptide allows intracellular esterase to trigger intracellular self-assembly of the D-peptide derivative, further enhancing their cellular accumulation. The study on the mechanism of the uptake reveals that the conjugates enter cells via both dynamin-dependent endocytosis and macropinocytosis, but likely not relying on taurine transporters. Differing fundamentally from the positively charged cell-penetrating peptides, the biocompatibility, stability, and simplicity of the enzyme-cleavable taurine motif promise new ways to promote the uptake of bioactive molecules for countering the action of efflux pump and contributing to intracellular molecular self-assembly.

  16. How Membrane-Active Peptides Get into Lipid Membranes.

    Science.gov (United States)

    Sani, Marc-Antoine; Separovic, Frances

    2016-06-21

    The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular

  17. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  18. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  19. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  20. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  1. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  2. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  3. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  4. Avidin-biotin interaction mediated peptide assemblies as efficient gene delivery vectors for cancer therapy.

    Science.gov (United States)

    Qu, Wei; Chen, Wei-Hai; Kuang, Ying; Zeng, Xuan; Cheng, Si-Xue; Zhou, Xiang; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2013-01-01

    Gene therapy offers a bright future for the treatment of cancers. One of the research highlights focuses on smart gene delivery vectors with good biocompatibility and tumor-targeting ability. Here, a novel gene vector self-assembled through avidin-biotin interaction with optimized targeting functionality, biotinylated tumor-targeting peptide/avidin/biotinylated cell-penetrating peptide (TAC), was designed and prepared to mediate the in vitro and in vivo delivery of p53 gene. TAC exhibited efficient DNA-binding ability and low cytotoxicity. In in vitro transfection assay, TAC/p53 complexes showed higher transfection efficiency and expression amount of p53 protein in MCF-7 cells as compared with 293T and HeLa cells, primarily due to the specific recognition between tumor-targeting peptides and receptors on MCF-7 cells. Additionally, by in situ administration of TAC/p53 complexes into tumor-bearing mice, the expression of p53 gene was obviously upregulated in tumor cells, and the tumor growth was significantly suppressed. This study provides an alternative and unique strategy to assemble functionalized peptides, and the novel self-assembled vector TAC developed is a promising gene vector for cancer therapy.

  5. Buforins: histone H2A-derived antimicrobial peptides from toad stomach.

    Science.gov (United States)

    Cho, Ju Hyun; Sung, Bong Hyun; Kim, Sun Chang

    2009-08-01

    Antimicrobial peptides (AMPs) constitute an important component of the innate immune system in a variety of organisms. Buforin I is a 39-amino acid AMP that was first isolated from the stomach tissue of the Asian toad Bufo bufo gargarizans. Buforin II is a 21-amino acid peptide that is derived from buforin I and displays an even more potent antimicrobial activity than its parent AMP. Both peptides share complete sequence identity with the N-terminal region of histone H2A that interacts directly with nucleic acids. Buforin I is generated from histone H2A by pepsin-directed proteolysis in the cytoplasm of gastric gland cells. After secretion into the gastric lumen, buforin I remains adhered to the mucous biofilm that lines the stomach, thus providing a protective antimicrobial coat. Buforins, which house a helix-hinge-helix domain, kill a microorganism by entering the cell without membrane permeabilization and thus binding to nucleic acids. The proline hinge is crucial for the cell penetrating activity of buforins. Buforins also are known to possess anti-endotoxin and anticancer activities, thus making these peptides attractive reagents for pharmaceutical applications. This review describes the role of buforins in innate host defense; future research paradigms; and use of these agents as human therapeutics.

  6. Decreasing relative risk premium

    DEFF Research Database (Denmark)

    Hansen, Frank

    2007-01-01

    such that the corresponding relative risk premium is a decreasing function of present wealth, and we determine the set of associated utility functions. We find a new characterization of risk vulnerability and determine a large set of utility functions, closed under summation and composition, which are both risk vulnerable...... and have decreasing relative risk premium. We finally introduce the notion of partial risk neutral preferences on binary lotteries and show that partial risk neutrality is equivalent to preferences with decreasing relative risk premium...

  7. Integration of antimicrobial peptides with gold nanoparticles as unique non-viral vectors for gene delivery to mesenchymal stem cells with antibacterial activity.

    Science.gov (United States)

    Peng, Li-Hua; Huang, Yan-Fen; Zhang, Chen-Zhen; Niu, Jie; Chen, Ying; Chu, Yang; Jiang, Zhi-Hong; Gao, Jian-Qing; Mao, Zheng-Wei

    2016-10-01

    Gold nanoparticles (AuNPs) have emerged as attractive non-viral gene vectors. However their application in regenerative medicine is still limited partially due to a lack of an intrinsic capacity to transfect difficult-to-transfect cells such as primary cells or stem cells. In current study, we report the synthesis of antimicrobial peptide conjugated cationic AuNPs (AuNPs@PEP) as highly efficient carriers for gene delivery to stem cells with antibacterial ability. The AuNPs@PEP integrate the advantages of cationic AuNPs and antibacterial peptides: the presence of cationic AuNPs can effectively condense DNA and the antimicrobial peptides are essential for the cellular & nucleus entry enhancement to achieve high transfection efficiency and antibacterial ability. As a result, antimicrobial peptides conjugated AuNPs significantly promoted the gene transfection efficiency in rat mesenchymal stem cells than pristine AuNPs, with a similar extent to those expressed by TAT (a well-known cell-penetrating peptide) modified AuNPs. More interestingly, the combinational system has better antibacterial ability than free antimicrobial peptides in vitro and in vivo, possibly due to the high density of peptides on the surface of AuNPs. Finally we present the concept-proving results that AuPs@PEP can be used as a carrier for in vivo gene activation in tissue regeneration, suggesting its potential as a multifunctional system with both gene delivery and antibacterial abilities in clinic. PMID:27376562

  8. Cell number and transfection volume dependent peptide nucleic acid antisense activity by cationic delivery methods

    DEFF Research Database (Denmark)

    Llovera Nadal, Laia; Berthold, Peter; Nielsen, Peter E;

    2012-01-01

    Efficient intracellular delivery is essential for high activity of nucleic acids based therapeutics, including antisense agents. Several strategies have been developed and practically all rely on auxiliary transfection reagents such as cationic lipids, cationic polymers and cell penetrating...... peptides as complexing agents and carriers of the nucleic acids. However, uptake mechanisms remain rather poorly understood, and protocols always require optimization of transfection parameters. Considering that cationic transfection complexes bind to and thus may up-concentrate on the cell surface, we...... have now quantitatively compared the cellular activity (in the pLuc705 HeLa cell splice correction system) of PNA antisense oligomers using lipoplex delivery of cholesterol- and bisphosphonate-PNA conjugates, polyplex delivery via a PNA-polyethyleneimine conjugate and CPP delivery via a PNA...

  9. New dendrimer - Peptide host - Guest complexes: Towards dendrimers as peptide carriers

    DEFF Research Database (Denmark)

    Boas, Ulrik; Sontjens, S.H.M.; Jensen, Knud Jørgen;

    2002-01-01

    the NH- and CO-stretch signals of the peptide amide moieties shift towards lower wave-numbers upon complexation with the dendrimer. Spatial analysis of the complexes with NOESY spectroscopy generally shows close proximity of the N-terminal Boc group of the peptide to the peripheral adamantyl groups...... between the dendrimer outer shell tertiary amines and the C-terminal carboxylic acid of the peptide, and also through host-urea to peptide-amide hydrogen bonding. The hydrogen-bonding nature of the peptide dendrimer interactions was further confirmed by using Fourier transform IR spectroscopy, for which...... on the dendrimer host. The influence of side-chain motif on interactions with the host is analyzed by using seven different N-Boc-protected tripeptides as guests for the dendrimer, Downfield shifts of up to 1.3 ppm were observed for the guest amide NH-proton signals. These shifts decrease with increasing...

  10. In vitro efficient transfection by CM₁₈-Tat₁₁ hybrid peptide: a new tool for gene-delivery applications.

    Directory of Open Access Journals (Sweden)

    Fabrizio Salomone

    Full Text Available Cell penetrating peptides (CPPs are actively researched as non-viral molecular carriers for the controlled delivery of nucleic acids into cells, but widespread application is severely hampered by their trapping into endosomes. Here we show that the recently introduced endosomolytic CM18-Tat11 hybrid peptide (KWKLFKKIGAVLKVLTTG-YGRKKRRQRRR, residues 1-7 of Cecropin-A, 2-12 of Melittin, and 47-57 of HIV-1 Tat protein can be exploited to obtain a self-assembled peptide-DNA vector which maintains the CM18-Tat11 ability to enter cells and destabilize vesicular membranes, concomitantly yielding high DNA transfection efficiency with no detectable cytotoxic effects. Different peptide-DNA stoichiometric ratios were tested to optimize vector size, charge, and stability characteristics. The transfection efficiency of selected candidates is quantitatively investigated by the luciferase-reporter assay. Vector intracellular trafficking is monitored in real time and in live cells by confocal microscopy. In particular, fluorescence resonant energy transfer (FRET between suitably-labeled peptide and DNA modules was exploited to monitor complex disassembly during endocytosis, and this process is correlated to transfection timing and efficiency. We argue that these results can open the way to the rational design and application of CM18-Tat11-based systems for gene-delivery purposes.

  11. In Vitro Efficient Transfection by CM18-Tat11 Hybrid Peptide: A New Tool for Gene-Delivery Applications

    Science.gov (United States)

    Salomone, Fabrizio; Cardarelli, Francesco; Signore, Giovanni; Boccardi, Claudia; Beltram, Fabio

    2013-01-01

    Cell penetrating peptides (CPPs) are actively researched as non-viral molecular carriers for the controlled delivery of nucleic acids into cells, but widespread application is severely hampered by their trapping into endosomes. Here we show that the recently introduced endosomolytic CM18-Tat11 hybrid peptide (KWKLFKKIGAVLKVLTTG-YGRKKRRQRRR, residues 1-7 of Cecropin-A, 2-12 of Melittin, and 47-57 of HIV-1 Tat protein) can be exploited to obtain a self-assembled peptide-DNA vector which maintains the CM18-Tat11 ability to enter cells and destabilize vesicular membranes, concomitantly yielding high DNA transfection efficiency with no detectable cytotoxic effects. Different peptide-DNA stoichiometric ratios were tested to optimize vector size, charge, and stability characteristics. The transfection efficiency of selected candidates is quantitatively investigated by the luciferase-reporter assay. Vector intracellular trafficking is monitored in real time and in live cells by confocal microscopy. In particular, fluorescence resonant energy transfer (FRET) between suitably-labeled peptide and DNA modules was exploited to monitor complex disassembly during endocytosis, and this process is correlated to transfection timing and efficiency. We argue that these results can open the way to the rational design and application of CM18-Tat11–based systems for gene-delivery purposes. PMID:23922923

  12. A nanotechnological, molecular-modeling, and immunological approach to study the interaction of the anti-tumorigenic peptide p28 with the p53 family of proteins

    Directory of Open Access Journals (Sweden)

    Coppari E

    2014-04-01

    Full Text Available Emilia Coppari,1 Tohru Yamada,2 Anna Rita Bizzarri,1 Craig W Beattie,2 Salvatore Cannistraro1 1Biophysics and Nanoscience Centre, CNISM-DEB, Università della Tuscia, Viterbo, Italy; 2Division of Surgical Oncology, Department of Surgery, University of Illinois College of Medicine, Chicago, IL, USA Abstract: p28 is an anionic, amphipathic, cell-penetrating peptide derived from the cupredoxin azurin that binds to the DNA-binding domain (DBD of the tumor suppressor protein, p53, and induces a post-translational increase in the level of wild type and mutated p53 in a wide variety of human cancer cells. As p63 and p73, additional members of the p53 superfamily of proteins, also appear to be involved in the cellular response to cancer therapy and are reportedly required for p53-induced apoptosis, we asked whether p28 also binds to p63 and p73. Atomic force spectroscopy demonstrates that p28 forms a stable, high-affinity complex with full-length p63, the DBD of p63, and full-length p73. Exposure to p28 decreased the level of TAp63α and ΔNp63α, the truncated form of p63, in p53 wild type and mutated human breast cancer cells, respectively. p28 increased the level of TAp73α, but not ΔNp73α, in the same breast cancer cell lines. In contrast, p28 increased the level of the TA and ΔN isoforms of p63 in p53 wild type, but not in p53 mutated melanoma cells, while decreasing TA p73α in p53 wild type and mutated human melanoma cells. All changes were mirrored by an associated change in the expression of the HECT E3 ligases Itch/AIP4, AIP5, and the RING E3 ligase Pirh2, but not in the receptor for activated C kinase or the RING E3 ligases Mdm2 and Cop1. Collectively, the data suggest that molecules such as p28 bind with high affinity to the DBD of p63 and p73 and alter their expression independent of the Mdm2 and Cop1 pathways. Keywords: molecular interaction, anticancer peptide, p53 superfamily of proteins

  13. Peptides Regulate Cortical Thymocytes Differentiation, Proliferation, and Apoptosis

    Directory of Open Access Journals (Sweden)

    V. Kh. Khavinson

    2011-01-01

    Full Text Available The processes of differentiation, proliferation, and apoptosis were studied in a cell culture of human cortical thymocytes under the influence of short peptides T-32 (Glu-Asp-Ala and T-38 (Lys-Glu-Asp. Peptides T-32 and T-38 amplified cortical thymocytes differentiation towards regulatory T cells, increased their proliferative activity, and decreased the level of apoptosis. Moreover, peptides under study stimulated proliferative and antiapoptotic activity of the mature regulatory T cells.

  14. Antimicrobial peptides in human sepsis

    Directory of Open Access Journals (Sweden)

    Lukas eMartin

    2015-08-01

    Full Text Available Nearly 100 years ago, antimicrobial peptides (AMPs were identified as an important part of innate immunity. They exist in species from bacteria to mammals and can be isolated in body fluids and on surfaces constitutively or induced by inflammation. Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP 1-3 and human beta-defensins (HBDs 1-3 are some of the most important defensins in humans. Recent studies have demonstrated higher levels of HNP -1-3 and HBD-2 in sepsis. The bactericidal/permeability increasing protein (BPI attenuates local inflammatory response and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with organ failure. HNP-1-3, lactoferrin, BPI and heparin-binding protein (HBP are increased in sepsis. Human lactoferrin peptide 1-11 (hLF 1-11 possesses antimicrobial activity and modulates inflammation. The recombinant form of lactoferrin (talactoferrin alpha, TLF has been shown to decrease mortality in critically ill patients. A phase II/III study with TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote the liberation of pro-inflammatory cell components and thus augment the severity of sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors such as lipopolysaccharide (LPS. The obstacle to applying naturally occurring AMPs is their high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat septic patients effectively without causing harm. This overview focuses on natural and synthetic AMPs in human and experimental sepsis and their potential to provide significant improvements in the treatment of critically ill with severe

  15. The non-peptidic part determines the internalization mechanism and intracellular trafficking of peptide amphiphiles.

    Directory of Open Access Journals (Sweden)

    Dimitris Missirlis

    Full Text Available BACKGROUND: Peptide amphiphiles (PAs are a class of amphiphilic molecules able to self-assemble into nanomaterials that have shown efficient in vivo targeted delivery. Understanding the interactions of PAs with cells and the mechanisms of their internalization and intracellular trafficking is critical in their further development for therapeutic delivery applications. METHODOLOGY/PRINCIPAL FINDINGS: PAs of a novel, cell- and tissue-penetrating peptide were synthesized possessing two different lipophilic tail architectures and their interactions with prostate cancer cells were studied in vitro. Cell uptake of peptides was greatly enhanced post-modification. Internalization occurred via lipid-raft mediated endocytosis and was common for the two analogs studied. On the contrary, we identified the non-peptidic part as the determining factor of differences between intracellular trafficking and retention of PAs. PAs composed of di-stearyl lipid tails linked through poly(ethylene glycol to the peptide exhibited higher exocytosis rates and employed different recycling pathways compared to ones consisting of di-palmitic-coupled peptides. As a result, cell association of the former PAs decreased with time. CONCLUSIONS/SIGNIFICANCE: Control over peptide intracellular localization and retention is possible by appropriate modification with synthetic hydrophobic tails. We propose this as a strategy to design improved peptide-based delivery systems.

  16. Decreasing Relative Risk Premium

    DEFF Research Database (Denmark)

    Hansen, Frank

    We consider the risk premium demanded by a decision maker with wealth x in order to be indifferent between obtaining a new level of wealth y1 with certainty, or to participate in a lottery which either results in unchanged present wealth or a level of wealth y2 > y1. We define the relative risk...... premium as the quotient between the risk premium and the increase in wealth y1–x which the decision maker puts on the line by choosing the lottery in place of receiving y1 with certainty. We study preferences such that the relative risk premium is a decreasing function of present wealth, and we determine...... relative risk premium in the small implies decreasing relative risk premium in the large, and decreasing relative risk premium everywhere implies risk aversion. We finally show that preferences with decreasing relative risk premium may be equivalently expressed in terms of certain preferences on risky...

  17. Decreasing Serial Cost Sharing

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Østerdal, Lars Peter

    The increasing serial cost sharing rule of Moulin and Shenker [Econometrica 60 (1992) 1009] and the decreasing serial rule of de Frutos [Journal of Economic Theory 79 (1998) 245] have attracted attention due to their intuitive appeal and striking incentive properties. An axiomatic characterization...... of the increasing serial rule was provided by Moulin and Shenker [Journal of Economic Theory 64 (1994) 178]. This paper gives an axiomatic characterization of the decreasing serial rule...

  18. Decreasing serial cost sharing

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Østerdal, Lars Peter Raahave

    2009-01-01

    The increasing serial cost sharing rule of Moulin and Shenker (Econometrica 60:1009-1037, 1992) and the decreasing serial rule of de Frutos (J Econ Theory 79:245-275, 1998) are known by their intuitive appeal and striking incentive properties. An axiomatic characterization of the increasing serial...... rule was provided by Moulin and Shenker (J Econ Theory 64:178-201, 1994). This paper gives an axiomatic characterization of the decreasing serial rule....

  19. Plant signalling peptides

    OpenAIRE

    Wiśniewska, Justyna; Trejgell, Alina; Tretyn, Andrzej

    2003-01-01

    Biochemical and genetic studies have identified peptides that play crucial roles in plant growth and development, including defence mechanisms in response to wounding by pests, the control of cell division and expansion, and pollen self-incompatibility. The first two signalling peptides to be described in plants were tomato systemin and phytosulfokine (PSK). There is also biochemical evidence that natriuretic peptide-like molecules, immunologically-relatedt o those found ...

  20. Polycyclic peptide therapeutics.

    Science.gov (United States)

    Baeriswyl, Vanessa; Heinis, Christian

    2013-03-01

    Owing to their excellent binding properties, high stability, and low off-target toxicity, polycyclic peptides are an attractive molecule format for the development of therapeutics. Currently, only a handful of polycyclic peptides are used in the clinic; examples include the antibiotic vancomycin, the anticancer drugs actinomycin D and romidepsin, and the analgesic agent ziconotide. All clinically used polycyclic peptide drugs are derived from natural sources, such as soil bacteria in the case of vancomycin, actinomycin D and romidepsin, or the venom of a fish-hunting coil snail in the case of ziconotide. Unfortunately, nature provides peptide macrocyclic ligands for only a small fraction of therapeutic targets. For the generation of ligands of targets of choice, researchers have inserted artificial binding sites into natural polycyclic peptide scaffolds, such as cystine knot proteins, using rational design or directed evolution approaches. More recently, large combinatorial libraries of genetically encoded bicyclic peptides have been generated de novo and screened by phage display. In this Minireview, the properties of existing polycyclic peptide drugs are discussed and related to their interesting molecular architectures. Furthermore, technologies that allow the development of unnatural polycyclic peptide ligands are discussed. Recent application of these technologies has generated promising results, suggesting that polycyclic peptide therapeutics could potentially be developed for a broad range of diseases. PMID:23355488

  1. N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis

    International Nuclear Information System (INIS)

    A peptide derived from the N-terminus of the unprocessed bovine prion protein (bPrPp), incorporating the hydrophobic signal sequence (residues 1-24) and a basic domain (KKRPKP, residues 25-30), internalizes into mammalian cells, even when coupled to a sizeable cargo, and therefore functions as a cell-penetrating peptide (CPP). Confocal microscopy and co-localization studies indicate that the internalization of bPrPp is mainly through macropinocytosis, a fluid-phase endocytosis process, initiated by binding to cell-surface proteoglycans. Electron microscopy studies show internalized bPrPp-DNA-gold complexes residing in endosomal vesicles. bPrPp induces expression of a complexed luciferase-encoding DNA plasmid, demonstrating the peptide's ability to transport the cargo across the endosomal membrane and into the cytosol and nucleus. The novel CPP activity of the unprocessed N-terminal domain of PrP could be important for the retrotranslocation of partly processed PrP and for PrP trafficking inside or between cells, with implications for the infectivity associated with prion diseases

  2. An anti-apoptotic peptide improves survival in lethal total body irradiation.

    Science.gov (United States)

    McDunn, Jonathan E; Muenzer, Jared T; Dunne, Benjamin; Zhou, Anthony; Yuan, Kevin; Hoekzema, Andrew; Hilliard, Carolyn; Chang, Katherine C; Davis, Christopher G; McDonough, Jacquelyn; Hunt, Clayton; Grigsby, Perry; Piwnica-Worms, David; Hotchkiss, Richard S

    2009-05-15

    Cell penetrating peptides (CPPs) have been used to deliver the anti-apoptotic Bcl-xL-derived BH4 peptide to prevent injury-induced apoptosis both in vitro and in vivo. Here we demonstrate that the nuclear localization sequence (NLS) from the SV40 large T antigen has favorable properties for BH4 domain delivery to lymphocytes compared to sequences based on the HIV-1 TAT sequence. While both TAT-BH4 and NLS-BH4 protected primary human mononuclear cells from radiation-induced apoptotic cell death, TAT-BH4 caused persistent membrane damage and even cell death at the highest concentrations tested (5-10 microM) and correlated with in vivo toxicity as intravenous administration of TAT-BH4 caused rapid death. The NLS-BH4 peptide has significantly attenuated toxicity compared to TAT-BH4 and we established a dosing regimen of NLS-BH4 that conferred a significant survival advantage in a post-exposure treatment model of LD90 total body irradiation.

  3. Atomistic Molecular Simulations Suggest a Kinetic Model for Membrane Translocation by Arginine-Rich Peptides.

    Science.gov (United States)

    Sun, Delin; Forsman, Jan; Woodward, Clifford E

    2015-11-12

    Arginine-rich cell penetrating peptides (ARCPPs) are known to quickly permeate cell membranes through a non-endocytotic pathway. Potential clinical applications of this facility have prompted enormous effort, both experimental and theoretical, to better understand how ARCPPs manage to overcome the prodigious thermodynamic cost of lipid bilayer permeation by these highly charged peptides. In this work we report the results of all-atom simulations, which suggest that a kinetic (rather than thermodynamic) mechanism may explain how ARCPPs are able to achieve this. Our simulations reveal that octaarginine significantly hinders the closing of membrane pores, either individually or via aggregation in the membrane pore, while octalysine (not an ARCPP) lacks this ability. Our proposed mechanism is an alternative to current attempts to explain pore-mediated translocation of ARCPPs. It asserts that ARCPPs need not lower the equilibrium thermodynamic cost of pore formation. Instead, they can achieve rapid bilayer translocation by instead slowing down the kinetics of naturally occurring thermal pores. Linking the pore lifetime to the characteristic time for peptide diffusion out of the pore, ARCPPs are able to cooperatively permeate the membrane pore. PMID:26485313

  4. Direct translocation as major cellular uptake for CADY self-assembling peptide-based nanoparticles.

    Directory of Open Access Journals (Sweden)

    Anna Rydström

    Full Text Available Cell penetrating peptides constitute a potent approach to overcome the limitations of in vivo siRNA delivery. We recently proposed a peptide-based nanoparticle system, CADY, for efficient delivery of siRNA into numerous cell lines. CADY is a secondary amphipathic peptide that forms stable complexes with siRNA thereby improving both their cellular uptake and biological response. With the aim of understanding the cellular uptake mechanism of CADY:siRNA complexes, we have combined biochemical, confocal and electron microscopy approaches. In the present work, we provide evidence that the major route for CADY:siRNA cellular uptake involves direct translocation through the membrane but not the endosomal pathway. We have demonstrated that CADY:siRNA complexes do not colocalize with most endosomal markers and remain fully active in the presence of inhibitors of the endosomal pathway. Moreover, neither electrostatic interactions with cell surface heparan sulphates nor membrane potential are essential for CADY:siRNA cell entry. In contrast, we have shown that CADY:siRNA complexes clearly induce a transient cell membrane permeabilization, which is rapidly restored by cell membrane fluidity. Therefore, we propose that direct translocation is the major gate for cell entry of CADY:siRNA complexes. Membrane perturbation and uptake are driven mainly by the ability of CADY to interact with phospholipids within the cell membrane, followed by rapid localization of the complex in the cytoplasm, without affecting cell integrity or viability.

  5. Insulin C-peptide test

    Science.gov (United States)

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  6. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  7. Human C-peptide. Pt. 1

    International Nuclear Information System (INIS)

    Synthetic human C-peptide bearing a tyrosine group at its amino end is labelled with 125iodine using chloramin T or hydrogen peroxide and lactoperoxidase. The results of the two methods are compared. Antiserum to synthetic human C-peptide (without tyrosine), which was partially coupled to rabbit albumin, is raised in guinea pigs and goats. Goats show to be superior to guinea pips concerning antibody production. The so-called 'hook effect' phenomenon is observed when setting up the standard curves for the radioimmunoassay. Monotonically decreasing standard curves are obtained on dilution of antiserum with a high antibody titer which was produced by repeated immunization in goats. Free C-peptide and C-peptide bound to antiserum are separated using the anion exchange resin amberlite. Using this separation technique we excluded unspecific binding of labelled C-peptide to protein fractions in serum of diabetics. The sensitivity of our radioimmunoassay is approx. 0.3 ng C-peptide/ml serum. Intra- and interassay variability are below 10%. Human proinsulin is the only substance found to crossreact with the antiserum. (orig.)

  8. Effects of opioid peptides on thermoregulation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, W.G.

    1981-11-01

    In a given species, injected opioid peptides usually cause changes in temperature similar to those caused by nonpeptide opioids. The main effect in those species most studied, the cat, rat, and mouse, is an increase in the level about which body temperature is regulated; there is a coordinated change in the activity of thermoregulatory effectors such that hyperthermia is produced in both hot and cold environments. Larger doses may depress thermoregulation, thereby causing body temperature to decrease in the cold. Elicitation of different patterns of response over a range of environmental temperatures and studies with naloxone and naltrexone indicate that stimulation of a number of different receptors by both peptide and nonpeptide opioids can evoke thermoregulatory responses. ..beta..-Endorphin is readily antagonized by naloxone whereas methionine-enkephalin can act on naloxone-insensitive receptors. Moreover, synthetic peptide analogs do not necessarily evoke the same response as does the related endogenous peptide. The lack of effect of naloxone on body temperature of subjects housed at usual laboratory temperature or on pyrogen-induced increases in body temperature indicates that an action of endogenous peptides on naloxone-sensitive receptors plays little, if any, role in normal thermoregulation or in fever. However, there is some evidence that such an action may be involved in responses to restraint or ambient temperature-induced stress. Further evaluation of possible physiological roles of endogenous opioid peptides will be facilitated when specific antagonists at other types of opioid receptors become available.

  9. Interaction of antimicrobial peptides with lipid membranes

    International Nuclear Information System (INIS)

    temperature decreased with increasing peptide concentration. At low alamethicin concentrations, both Im3m and Pn3m formed and coexisted with the hexagonal phase. As the concentration of the peptide increased, the amount of hexagonal phase and Im3m decreased, until only Pn3m remained. Same epitaxial relationships were observed as for POPE with melittin. Lipopolysaccharides (LPS), strains R595 and R60 and their ''endotoxic principle'' lipid A, were studied. Longer sugar-chain LPS R60 and lipid A form cubic phases and LPS R595 lamellar phases at the employed water content around 95%. Melittin induced several lamellar phases and a hexagonal phase in all LPS varieties. (orig.)

  10. Interaction of antimicrobial peptides with lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hanulova, Maria

    2008-12-15

    temperature decreased with increasing peptide concentration. At low alamethicin concentrations, both Im3m and Pn3m formed and coexisted with the hexagonal phase. As the concentration of the peptide increased, the amount of hexagonal phase and Im3m decreased, until only Pn3m remained. Same epitaxial relationships were observed as for POPE with melittin. Lipopolysaccharides (LPS), strains R595 and R60 and their ''endotoxic principle'' lipid A, were studied. Longer sugar-chain LPS R60 and lipid A form cubic phases and LPS R595 lamellar phases at the employed water content around 95%. Melittin induced several lamellar phases and a hexagonal phase in all LPS varieties. (orig.)

  11. Stability of peptides in high-temperature aqueous solutions

    Science.gov (United States)

    Shock, Everett L.

    1992-09-01

    Estimated standard molal thermodynamic properties of aqueous dipeptides and their constituent amino acids indicate that temperature increases correspond to increased stability of peptide bonds relative to hydrolysis reactions. Pressure increases cause slight decreases in peptide bond stability, which are generally offset by greater stability caused by temperature increases along geothermal gradients. These calculations suggest that peptides, polypeptides, and proteins may survive hydrothermal alteration of organic matter depending on the rates of the hydrolysis reactions. Extremely thermophilic organisms may be able to take advantage of the decreased energy required to form peptide bonds in order to maintain structural proteins and enzymes at elevated temperatures and pressures. As the rates of hydrolysis reactions increase with increasing temperature, formation of peptide bonds may become a facile process in hydrothermal systems and deep in sedimentary basins.

  12. Peptide-functionalized magnetic nanoparticles for cancer therapy applications

    Science.gov (United States)

    Hauser, Anastasia Kruse

    Lung cancer is one of the leading causes of cancer deaths in the United States. Radiation and chemotherapy are conventional treatments, but they result in serious side effects and the probability of tumor recurrence remains high. Therefore, there is an increasing need to enhance the efficacy of conventional treatments. Magnetic nanoparticles have been previously studied for a variety of applications such as magnetic resonance imaging contrast agents, anemia treatment, magnetic cell sorting and magnetically mediated hyperthermia (MMH). In this work, dextran coated iron oxide nanoparticles were developed and functionalized with peptides to target the nanoparticles to either the extracellular matrix (ECM) of tumor tissue or to localize the nanoparticles in subcellular regions after cell uptake. The magnetic nanoparticles were utilized for a variety of applications. First, heating properties of the nanoparticles were utilized to administer hyperthermia treatments combined with chemotherapy. The nanoparticles were functionalized with peptides to target fibrinogen in the ECM and extensively characterized for their physicochemical properties, and MMH combined with chemotherapy was able to enhance the toxicity of chemotherapy. The second application of the nanoparticles was magnetically mediated energy delivery. This treatment does not result in a bulk temperature rise upon actuation of the nanoparticles by an alternating magnetic field (AMF) but rather results in intracellular damage via friction from Brownian rotation or nanoscale heating effects from Neel relaxations. The nanoparticles were functionalized with a cell penetrating peptide to facilitate cell uptake and lysosomal escape. The intracellular effects of the internalized nanoparticles alone and with activation by an AMF were evaluated. Iron concentrations in vivo are highly regulated as excess iron can catalyze the formation of the hydroxyl radical through Fenton chemistry. Although often a concern of using iron

  13. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.;

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  14. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  15. Introduction to Peptide Synthesis

    OpenAIRE

    Stawikowski, Maciej; Fields, Gregg B.

    2002-01-01

    A number of synthetic peptides are significant commercial or pharmaceutical products, ranging from the dipeptide sugar-substitute aspartame to clinically used hormones, such as oxytocin, adrenocorticotropic hormone, and calcitonin. This unit provides an overview of the field of synthetic peptides and proteins. It discusses selecting the solid support and common coupling reagents. Additional information is provided regarding common side reactions and synthesizing modified residues.

  16. Developing a Dissociative Nanocontainer for Peptide Drug Delivery

    Directory of Open Access Journals (Sweden)

    Patrick Kelly

    2015-10-01

    Full Text Available The potency, selectivity, and decreased side effects of bioactive peptides have propelled these agents to the forefront of pharmacological research. Peptides are especially promising for the treatment of neurological disorders and pain. However, delivery of peptide therapeutics often requires invasive techniques, which is a major obstacle to their widespread application. We have developed a tailored peptide drug delivery system in which the viral capsid of P22 bacteriophage is modified to serve as a tunable nanocontainer for the packaging and controlled release of bioactive peptides. Recent efforts have demonstrated that P22 nanocontainers can effectively encapsulate analgesic peptides and translocate them across blood-brain-barrier (BBB models. However, release of encapsulated peptides at their target site remains a challenge. Here a Ring Opening Metathesis Polymerization (ROMP reaction is applied to trigger P22 nanocontainer disassembly under physiological conditions. Specifically, the ROMP substrate norbornene (5-Norbornene-2-carboxylic acid is conjugated to the exterior of a loaded P22 nanocontainer and Grubbs II Catalyst is used to trigger the polymerization reaction leading to nanocontainer disassembly. Our results demonstrate initial attempts to characterize the ROMP-triggered release of cargo peptides from P22 nanocontainers. This work provides proof-of-concept for the construction of a triggerable peptide drug delivery system using viral nanocontainers.

  17. Degradable polyethylenimine derivate coupled to a bifunctional peptide R13 as a new gene-delivery vector

    Directory of Open Access Journals (Sweden)

    Liu K

    2012-02-01

    Full Text Available Kehai Liu1,2,*, Xiaoyu Wang1,*, Wei Fan1, Qing Zhu2, Jingya Yang2, Jing Gao3, Shen Gao1 1Department of Pharmaceutics, Shanghai Hospital, Second Military Medical University, 2Department of Biopharmaceutics, School of Food Science and Technology, Shanghai Ocean University, 3Department of Pharmaceutics, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China*The first two authors contributed equally to this workBackground: To solve the efficiency versus cytotoxicity and tumor-targeting problems of polyethylenimine (PEI used as a nonviral gene delivery vector, a degradable PEI derivate coupled to a bifunctional peptide R13 was developed.Methods: First, we synthesized a degradable PEI derivate by crosslinking low-molecular-weight PEI with pluronic P123, then used tumor-targeting peptide arginine-glycine-aspartate-cysteine (RGDC, in conjunction with the cell-penetrating peptide Tat (49–57, to yield a bifunctional peptide RGDC-Tat (49–57 named R13, which can improve cell selection and increase cellular uptake, and, lastly, adopted R13 to modify the PEI derivates so as to prepare a new polymeric gene vector (P123-PEI-R13. The new gene vector was characterized in terms of its chemical structure and biophysical parameters. We also investigated the specificity, cytotoxicity, and gene transfection efficiency of this vector in avß3-positive human cervical carcinoma Hela cells and murine melanoma B16 cells in vitro.Results: The vector showed controlled degradation, strong targeting specificity to avß3 receptor, and noncytotoxicity in Hela cells and B16 cells at higher doses, in contrast to PEI 25 KDa. The particle size of P123-PEI-R13/DNA complexes was around 100–250 nm, with proper zeta potential. The nanoparticles can protect plasmid DNA from being digested by DNase I at a concentration of 6 U DNase I/µg DNA. The nanoparticles were resistant to dissociation induced by 50% fetal bovine serum and 600 µg/mL sodium

  18. Cell surface binding and uptake of arginine- and lysine-rich penetratin peptides in absence and presence of proteoglycans

    KAUST Repository

    Åmand, Helene L.

    2012-11-01

    Cell surface proteoglycans (PGs) appear to promote uptake of arginine-rich cell-penetrating peptides (CPPs), but their exact functions are unclear. To address if there is specificity in the interactions of arginines and PGs leading to improved internalization, we used flow cytometry to examine uptake in relation to cell surface binding for penetratin and two arginine/lysine substituted variants (PenArg and PenLys) in wildtype CHO-K1 and PG-deficient A745 cells. All peptides were more efficiently internalized into CHO-K1 than into A745, but their cell surface binding was independent of cell type. Thus, PGs promote internalization of cationic peptides, irrespective of the chemical nature of their positive charges. Uptake of each peptide was linearly dependent on its cell surface binding, and affinity is thus important for efficiency. However, the gradients of these linear dependencies varied significantly. Thus each peptide\\'s ability to stimulate uptake once bound to the cell surface is reliant on formation of specific uptake-promoting interactions. Heparin affinity chromatography and clustering experiments showed that penetratin and PenArg binding to sulfated sugars is stabilized by hydrophobic interactions and result in clustering, whereas PenLys only interacts through electrostatic attraction. This may have implications for the molecular mechanisms behind arginine-specific uptake stimulation as penetratin and PenArg are more efficiently internalized than PenLys upon interaction with PGs. However, PenArg is also least affected by removal of PGs. This indicates that an increased arginine content not only improve PG-dependent uptake but also that PenArg is more adaptable as it can use several portals of entry into the cell. © 2012 Elsevier B.V.

  19. Development of stapled helical peptides to perturb the Cdt1-Mcm6 interaction.

    Science.gov (United States)

    Lee, Jonghan Peter; Liu, Changdong; Li, Tianlu; Zhu, Guang; Li, Xuechen

    2015-07-01

    Six all-hydrocarbon-stapled Cdt1 MBD-derived peptides have been designed and synthesized to perturb the Cdt1-Mcm6 interaction, which is involved in DNA replication. Inconsistency between the helicity of the obtained peptidomimetics and their binding affinity has been observed. The helicity of 13-amino acid stapled peptides increased, while their binding to Mcm6 was decreased. On the other hand, the 30-amino acid stapled peptides exhibited decreased helicity but increased binding affinity.

  20. Protease-activatable organometal-Peptide bioconjugates with enhanced cytotoxicity on cancer cells.

    Science.gov (United States)

    Splith, Katrin; Hu, Wanning; Schatzschneider, Ulrich; Gust, Ronald; Ott, Ingo; Onambele, Liliane A; Prokop, Aram; Neundorf, Ines

    2010-07-21

    Over the past years, numerous promising new metalorganic lead structures have been developed exhibiting highly active cytostatic properties. However, the efficiency of such chemotherapeutics in the treatment of tumors is often limited by their low therapeutic index due to their short half-life, lack of tumor selectivity, and associated side effects. Furthermore, the membrane barrier often restricts their cellular uptake by passive diffusion. In this contribution, we describe the synthesis, cellular uptake, and biologic activity of a series of cymantrene-peptide conjugates. Cymantrene CpMn(CO)(3) is a robust organometallic group, which is stable in air and water and easy to functionalize. In this work, some new cymantrene derivatives with different linkers between the half-sandwich complex and the carboxylate group were attached to the cell-penetrating peptide sC18 that should act as a transporter for the metal moiety. All conjugates were characterized for their cytotoxic activity on human breast adenocarcinoma cells (MCF-7) and human colon carcinoma cells (HT-29). We found that bioconjugates bearing two cymantrene groups were more active than the monofunctionalized ones. By the introduction of a cathepsin B cleavage site next to the organometallic group, the biologic activity could be in increased even further. Fluorescence microscopy studies and apoptosis assays gave preliminary hints on the mode of action of these systems. PMID:20586419

  1. Intracellular Generation of a Diterpene-Peptide Conjugate that Inhibits 14-3-3-Mediated Interactions.

    Science.gov (United States)

    Parvatkar, Prakash; Kato, Nobuo; Uesugi, Motonari; Sato, Shin-Ichi; Ohkanda, Junko

    2015-12-23

    Synthetic agents that disrupt intracellular protein-protein interactions (PPIs) are highly desirable for elucidating signaling networks and developing new therapeutics. However, designing cell-penetrating large molecules equipped with the many functional groups necessary for binding to large interfaces remains challenging. Here, we describe a rational strategy for the intracellular oxime ligation-mediated generation of an amphipathic bivalent inhibitor composed of a peptide and diterpene natural product, fusicoccin, which binds 14-3-3 protein with submicromolar affinity. Our results demonstrate that co-treatment of cells with small module molecules, the aldehyde-containing fusicoccin 1 and the aminooxy-containing peptide 2, generates the corresponding conjugate 3 in cells, resulting in significant cytotoxicity. In contrast, chemically synthesized 3 is not cytotoxic, likely due to its inability to penetrate cells. Compound 3, but not 1 or 2, disrupts endogenous 14-3-3/cRaf interactions, suggesting that cell death is caused by inhibition of 14-3-3 activity. These results suggest that intracellular generation of large-sized molecules may serve as a new approach for modulating PPIs.

  2. Antimicrobial Peptides from Plants

    Science.gov (United States)

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  3. Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    James P. Tam

    2015-11-01

    Full Text Available Plant antimicrobial peptides (AMPs have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic, lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.

  4. Electron transfer in peptides.

    Science.gov (United States)

    Shah, Afzal; Adhikari, Bimalendu; Martic, Sanela; Munir, Azeema; Shahzad, Suniya; Ahmad, Khurshid; Kraatz, Heinz-Bernhard

    2015-02-21

    In this review, we discuss the factors that influence electron transfer in peptides. We summarize experimental results from solution and surface studies and highlight the ongoing debate on the mechanistic aspects of this fundamental reaction. Here, we provide a balanced approach that remains unbiased and does not favor one mechanistic view over another. Support for a putative hopping mechanism in which an electron transfers in a stepwise manner is contrasted with experimental results that support electron tunneling or even some form of ballistic transfer or a pathway transfer for an electron between donor and acceptor sites. In some cases, experimental evidence suggests that a change in the electron transfer mechanism occurs as a result of donor-acceptor separation. However, this common understanding of the switch between tunneling and hopping as a function of chain length is not sufficient for explaining electron transfer in peptides. Apart from chain length, several other factors such as the extent of the secondary structure, backbone conformation, dipole orientation, the presence of special amino acids, hydrogen bonding, and the dynamic properties of a peptide also influence the rate and mode of electron transfer in peptides. Electron transfer plays a key role in physical, chemical and biological systems, so its control is a fundamental task in bioelectrochemical systems, the design of peptide based sensors and molecular junctions. Therefore, this topic is at the heart of a number of biological and technological processes and thus remains of vital interest.

  5. Electromembrane extraction of peptides.

    Science.gov (United States)

    Balchen, Marte; Reubsaet, Léon; Pedersen-Bjergaard, Stig

    2008-06-20

    Rapid extraction of eight different peptides using electromembrane extraction (EME) was demonstrated for the first time. During an extraction time of 5 min, the model peptides migrated from a 500 microL aqueous acidic sample solution, through a thin supported liquid membrane (SLM) of an organic liquid sustained in the pores in the wall of a porous hollow fiber, and into a 25 microL aqueous acidic acceptor solution present inside the lumen of the hollow fiber. The driving force of the extraction was a 50 V potential sustained across the SLM, with the positive electrode in the sample and the negative electrode in the acceptor solution. The nature and the composition of the SLM were highly important for the EME process, and a mixture of 1-octanol and 15% di(2-ethylhexyl) phosphate was found to work properly. Using 1mM HCl as background electrolyte in the sample and 100 mM HCl in the acceptor solution, and agitation at 1050 rpm, enrichment up to 11 times was achieved. Recoveries were found to be dependent on the structure of the peptide, indicating that the polarity and the number of ionized groups were important parameters affecting the extraction efficiency. The experimental findings suggested that electromembrane extraction of peptides is possible and may be a valuable tool for future extraction of peptides. PMID:18479691

  6. A DJ-1 Based Peptide Attenuates Dopaminergic Degeneration in Mice Models of Parkinson's Disease via Enhancing Nrf2.

    Directory of Open Access Journals (Sweden)

    Nirit Lev

    Full Text Available Drugs currently used for treating Parkinson's disease patients provide symptomatic relief without altering the neurodegenerative process. Our aim was to examine the possibility of using DJ-1 (PARK7, as a novel therapeutic target for Parkinson's disease. We designed a short peptide, named ND-13. This peptide consists of a 13 amino acids segment of the DJ-1-protein attached to 7 amino acids derived from TAT, a cell penetrating protein. We examined the effects of ND-13 using in vitro and in vivo experimental models of Parkinson's disease. We demonstrated that ND-13 protects cultured cells against oxidative and neurotoxic insults, reduced reactive oxygen species accumulation, activated the protective erythroid-2 related factor 2 system and increased cell survival. ND-13 robustly attenuated dopaminergic system dysfunction and in improved the behavioral outcome in the 6-hydroxydopamine mouse model of Parkinson's disease, both in wild type and in DJ-1 knockout mice. Moreover, ND-13 restored dopamine content in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model. These findings validate DJ-1 as a promising therapeutic target in Parkinson's disease and identify a novel peptide with clinical potential, which may be significant for a broader range of neurological diseases, possibly with an important impact for the neurosciences.

  7. Calpastatin exon 1B-derived peptide, a selective inhibitor of calpain: enhancing cell permeability by conjugation with penetratin.

    Science.gov (United States)

    Gil-Parrado, Shirley; Assfalg-Machleidt, Irmgard; Fiorino, Ferdinando; Deluca, Dominga; Pfeiler, Dietmar; Schaschke, Norbert; Moroder, Luis; Machleidt, Werner

    2003-03-01

    The ubiquitous calpains, mu- and m-calpain, have been implicated in essential physiological processes and various pathologies. Cell-permeable specific inhibitors are important tools to elucidate the roles of calpains in cultivated cells and animal models. The synthetic N-acetylated 27-mer peptide derived from exon B of the inhibitory domain 1 of human calpastatin (CP1B) is unique as a potent and highly selective reversible calpain inhibitor, but is poorly cell-permeant. By addition of N-terminal cysteine residues we have generated a disulfide-conjugated CP1B with the cell-penetrating 16-mer peptide penetratin derived from the third helix of the Antennapedia homeodomain protein. The inhibitory potency and selectivity of CP1B for calpain versus cathepsin B and L, caspase 3 and the proteasome was not affected by the conjugation with penetratin. The conjugate was shown to efficiently penetrate into living LCLC 103H cells, since it prevents ionomycin-induced calpain activation at 200-fold lower concentration than the non-conjugated inhibitor and is able to reduce calpain-triggered apoptosis of these cells. Penetratin-conjugated CP1B seems to be a promising alternative to the widely used cell-permeable peptide aldehydes (e.g. calpain inhibitor 1) which inhibit the lysosomal cathepsins and partially the proteasome as well or even better than the calpains. PMID:12715890

  8. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity......Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... and hence adjuvants are included to enhance and direct the immune response. Although the vaccine has been tested in ART naïve individuals, we recommend future testing of the vaccine during (early started) ART that improves immune function and to select individuals likely to benefit. Peptides representing...

  9. Synthetic antibiofilm peptides.

    Science.gov (United States)

    de la Fuente-Núñez, César; Cardoso, Marlon Henrique; de Souza Cândido, Elizabete; Franco, Octavio Luiz; Hancock, Robert E W

    2016-05-01

    Bacteria predominantly exist as multicellular aggregates known as biofilms that are associated with at least two thirds of all infections and exhibit increased adaptive resistance to conventional antibiotic therapies. Therefore, biofilms are major contributors to the global health problem of antibiotic resistance, and novel approaches to counter them are urgently needed. Small molecules of the innate immune system called host defense peptides (HDPs) have emerged as promising templates for the design of potent, broad-spectrum antibiofilm agents. Here, we review recent developments in the new field of synthetic antibiofilm peptides, including mechanistic insights, synergistic interactions with available antibiotics, and their potential as novel antimicrobials against persistent infections caused by biofilms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26724202

  10. Biomimetic peptide nanosensors.

    Science.gov (United States)

    Cui, Yue; Kim, Sang N; Naik, Rajesh R; McAlpine, Michael C

    2012-05-15

    The development of a miniaturized sensing platform tailored for sensitive and selective detection of a variety of biochemical analytes could offer transformative fundamental and technological opportunities. Due to their high surface-to-volume ratios, nanoscale materials are extremely sensitive sensors. Likewise, peptides represent robust substrates for selective recognition due to the potential for broad chemical diversity within their relatively compact size. Here we explore the possibilities of linking peptides to nanosensors for the selective detection of biochemical targets. Such systems raise a number of interesting fundamental challenges: What are the peptide sequences, and how can rational design be used to derive selective binders? What nanomaterials should be used, and what are some strategies for assembling hybrid nanosensors? What role does molecular modeling play in elucidating response mechanisms? What is the resulting performance of these sensors, in terms of sensitivity, selectivity, and response time? What are some potential applications? This Account will highlight our early attempts to address these research challenges. Specifically, we use natural peptide sequences or sequences identified from phage display as capture elements. The sensors are based on a variety of nanomaterials including nanowires, graphene, and carbon nanotubes. We couple peptides to the nanomaterial surfaces via traditional surface functionalization methods or self-assembly. Molecular modeling provides detailed insights into the hybrid nanostructure, as well as the sensor detection mechanisms. The peptide nanosensors can distinguish chemically camouflaged mixtures of vapors and detect chemical warfare agents with sensitivities as low as parts-per-billion levels. Finally, we anticipate future uses of this technology in biomedicine: for example, devices based on these sensors could detect disease from the molecular components in human breath. Overall, these results provide a

  11. Dicyclopropylmethyl peptide backbone protectant.

    Science.gov (United States)

    Carpino, Louis A; Nasr, Khaled; Abdel-Maksoud, Adel Ali; El-Faham, Ayman; Ionescu, Dumitru; Henklein, Peter; Wenschuh, Holger; Beyermann, Michael; Krause, Eberhard; Bienert, Michael

    2009-08-20

    The N-dicyclopropylmethyl (Dcpm) residue, introduced into amino acids via reaction of dicyclopropylmethanimine hydrochloride with an amino acid ester followed by sodium cyanoborohydride or triacetoxyborohydride reduction, can be used as an amide bond protectant for peptide synthesis. Examples which demonstrate the amelioration of aggregation effects include syntheses of the alanine decapeptide and the prion peptide (106-126). Avoidance of cyclization to the aminosuccinimide followed substitution of Fmoc-(Dcpm)Gly-OH for Fmoc-Gly-OH in the assembly of sequences containing the sensitive Asp-Gly unit.

  12. Invertebrate FMRFamide related peptides.

    Science.gov (United States)

    Krajniak, Kevin G

    2013-06-01

    In 1977 the neuropeptide FMRFamide was isolated from the clam, Macrocallista nimbosa. Since then several hundred FMRFamide-related peptides (FaRPs) have been isolated from invertebrate animals. Precursors to the FaRPs likely arose in the cnidarians. With the transition to a bilateral body plan FaRPs became a fixture in the invertebrate phyla. They have come to play a critical role as neurotransmitters, neuromodulators, and neurohormones. FaRPs regulate a variety of body functions including, feeding, digestion, circulation, reproduction, movement. The evolution of the molecular form and function of these omnipresent peptides will be considered.

  13. Apolipoprotein E mimetic peptide protects against diffuse brain injur y

    Institute of Scientific and Technical Information of China (English)

    Yaning Zhao; Jianmin Li; Qiqun Tang; Junling Gao; Changxiang Chen; Liwei Jing; Pan Zhang; Shuxing Li

    2014-01-01

    Apolipoprotein E plays a crucial role in inhibiting chronic neurodegenerative processes. Howev-er, its impact on neurological function following diffuse brain injury is still unclear. This study was designed to evaluate the therapeutic effects and mechanisms of action of apolipoprotein E mimetic peptide on diffuse brain injury. Apolipoprotein E mimetic peptide was administered into the caudal vein of rats with diffuse brain injury before and after injury. We found that apo-lipoprotein E mimetic peptide signiifcantly decreased the number of apoptotic neurons, reduced extracellular signal-regulated kinase1/2 phosphorylation, down-regulated Bax and cytochrome c expression, decreased malondialdehyde content, and increased superoxide dismutase activity in a dose-dependent manner. These experimental ifndings demonstrate that apolipoprotein E mimetic peptide improves learning and memory function and protects against diffuse brain injury-induced apoptosis by inhibiting the extracellular signal-regulated kinase1/2-Bax mito-chondrial apoptotic pathway.

  14. Natriuretic peptides and cerebral hemodynamics

    DEFF Research Database (Denmark)

    Guo, Song; Barringer, Filippa; Zois, Nora Elisabeth;

    2014-01-01

    Natriuretic peptides have emerged as important diagnostic and prognostic tools for cardiovascular disease. Plasma measurement of the bioactive peptides as well as precursor-derived fragments is a sensitive tool in assessing heart failure. In heart failure, the peptides are used as treatment...

  15. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    Introduction: A frightening increase in the number of isolated multidrug resistant bacterial strains linked to the decline in novel antimicrobial drugs entering the market is a great cause for concern. Cationic antimicrobial peptides (AMPs) have lately been introduced as a potential new class of ...

  16. Blocking protein phosphatase 2A signaling prevents endothelial-to-mesenchymal transition and renal fibrosis: a peptide-based drug therapy

    Science.gov (United States)

    Deng, Yuanjun; Guo, Yanyan; Liu, Ping; Zeng, Rui; Ning, Yong; Pei, Guangchang; Li, Yueqiang; Chen, Meixue; Guo, Shuiming; Li, Xiaoqing; Han, Min; Xu, Gang

    2016-01-01

    Endothelial-to-mesenchymal transition (EndMT) contributes to the emergence of fibroblasts and plays a significant role in renal interstitial fibrosis. Protein phosphatase 2A (PP2A) is a major serine/threonine protein phosphatase in eukaryotic cells and regulates many signaling pathways. However, the significance of PP2A in EndMT is poorly understood. In present study, the role of PP2A in EndMT was evaluated. We demonstrated that PP2A activated in endothelial cells (EC) during their EndMT phenotype acquisition and in the mouse model of obstructive nephropathy (i.e., UUO). Inhibition of PP2A activity by its specific inhibitor prevented EC undergoing EndMT. Importantly, PP2A activation was dependent on tyrosine nitration at 127 in the catalytic subunit of PP2A (PP2Ac). Our renal-protective strategy was to block tyrosine127 nitration to inhibit PP2A activation by using a mimic peptide derived from PP2Ac conjugating a cell penetrating peptide (CPP: TAT), termed TAT-Y127WT. Pretreatment withTAT-Y127WT was able to prevent TGF-β1-induced EndMT. Administration of the peptide to UUO mice significantly ameliorated renal EndMT level, with preserved density of peritubular capillaries and reduction in extracellular matrix deposition. Taken together, these results suggest that inhibiting PP2Ac nitration using a mimic peptide is a potential preventive strategy for EndMT in renal fibrosis.

  17. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    Science.gov (United States)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  18. Biochemical functionalization of peptide nanotubes with phage displayed peptides.

    Science.gov (United States)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering. PMID:27479451

  19. Radiolabelled peptides for oncological diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Boerman, Otto C.; Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Queen Mary University of London, Centre for Molecular Oncology, Barts Cancer Institute, London (United Kingdom)

    2012-02-15

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The {sup 111}In-labelled somatostatin analogue octreotide (OctreoScan trademark) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours. (orig.)

  20. The Use ofa Hydrophobic Binding Peptide Modified Lipid Nanocarrier Improving Tumor Distribution and Antitumor Efficacy.

    Science.gov (United States)

    Gao, Wei; Yang, Xiucong; Lin, Zhiqiang; Gao, Shanyun; He, Bing; Mei, Bong; Wang, Dan; Yuan, Lan; Zhang, Hua; Dai, Wenbing; Wang, Xueqing; Wang, Jiancheng; Zhang, Xuan; Zhang, Qiang

    2016-06-01

    In addition to showing the specific interaction between a generalized ligand and its receptor and the electrostatic effect between positive cell-penetrating peptides and negative cell membranes, our last study demonstrated the hydrophobic interactivity between a hydrophobic binding peptide (HBP) and biomembranes to be favorable in drug delivery. To yield more evidence for this new strategy and to find more effective HBPs, here we designed and established a novel nanomedicine associated with cyclosporin A (CsA) because this peptide is electrically neutral, highly hydrophobic, very stable in vivo and safe at the given dose. First, isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) studies showed a strong hydrophobic interaction between the CsA molecules and the lipid membrane. The lactate dehydrogenase release assay proved that CsA exhibited low toxicity to cell membranes. These facts encouraged us to explore the potential application of CsA as an HBP to actualize intracellular delivery of nanomedicines for tumor therapy. When conjugated to lipid nanocarriers, CsA significantly enhanced their binding with cells and,. consequently, increased the internalization of recoded nanomedicines into cells. The in vivo experiments further showed that the CsA-associated nanocarriers could achieve better delivery to tumor tissues and improve the tumor therapy of doxorubicin (DOX) compared to the nonmodified control; these findings were identical to the observations-in cell studies. In conclusion, CsA, a readily obtainable molecule with favorable characteristics, is indeed a good candidate for an HBP, and this study provides solid, novel evidence for the use of HBP-based nanocarriers as effective antitumor drug delivery systems.

  1. Cellular Uptake and Photo-Cytotoxicity of a Gadolinium(III-DOTA-Naphthalimide Complex “Clicked” to a Lipidated Tat Peptide

    Directory of Open Access Journals (Sweden)

    William I. O’Malley

    2016-02-01

    Full Text Available A new bifunctional macrocyclic chelator featuring a conjugatable alkynyl-naphthalimide fluorophore pendant group has been prepared and its Gd(III complex coupled to a cell-penetrating lipidated azido-Tat peptide derivative using Cu(I-catalysed “click” chemistry. The resulting fluorescent conjugate is able to enter CAL-33 tongue squamous carcinoma cells, as revealed by confocal microscopy, producing a very modest anti-proliferative effect (IC50 = 93 µM. Due to the photo-reactivity of the naphthalimide moiety, however, the conjugate’s cytotoxicity is significantly enhanced (IC50 = 16 µM upon brief low-power UV-A irradiation.

  2. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  3. Antimicrobial peptides in Echinoderms

    Directory of Open Access Journals (Sweden)

    C Li

    2010-05-01

    Full Text Available Antimicrobial peptides (AMPs are important immune effector molecules for invertebrates, including echinoderms, which lack a vertebrate-type adaptive immune system. Here we summarize the knowledge of such peptides in echinoderms. Strongylocins are a novel family of cysteine-rich AMPs, recently identified in the sea urchins, Strongylocentrotus droebachiensis and S. purpuratus. Although these molecules present diverse amino acid sequences, they share an identical cysteine arrangement pattern, dissimilar to other known AMPs. A family of heterodimeric AMPs, named centrocins, are also present in S. droebachiensis. Lysozymes and fragments of larger proteins, such as beta-thymocins, actin, histone 2A and filamin A have also been shown to display antimicrobial activities in echinoderms. Future studies on AMPs should be aimed in revealing how echinoderms use these AMPs in the immune response against microbial pathogens.

  4. Engineering and Characterization of Peptides and Proteins at Surfaces and Interfaces: A Case Study in Surface-Sensitive Vibrational Spectroscopy.

    Science.gov (United States)

    Ding, Bei; Jasensky, Joshua; Li, Yaoxin; Chen, Zhan

    2016-06-21

    labeling method with SFG to probe the detailed local structure and microenvironment of peptides at buried interfaces, (2) systematic research on cell membrane associated peptides and proteins including antimicrobial peptides, cell penetrating peptides, G proteins, and other membrane proteins, discussing the factors that influence interfacial peptide and protein structures such as lipid charge, membrane fluidity, and biomolecule solution concentration, and (3) in-depth discussion on solid surface immobilized antimicrobial peptides and enzymes. The effects of immobilization method, substrate surface, immobilization site on the peptide or protein, and surrounding environment are presented. Several examples leading to high impact new research are also briefly introduced: The orientation change of alamethicin detected while varying the model cell membrane potential demonstrates the feasibility to apply SFG to study ion channel protein gating mechanisms. The elucidation of peptide secondary structures at liquid crystal interfaces shows promising results that liquid crystal can detect and recognize different peptides and proteins. The method of retaining the native structure of surface immobilized peptides or proteins in air demonstrates the feasibility to protect and preserve such structures via the use of hydromimetic functionalities when there is no bulk water. We hope that readers in many different disciplines will benefit from the research progress reported in this Account on SFG studies of interfacial structure-function relationships of peptides and proteins and apply this powerful technique to study interfacial biomolecules in the future.

  5. Oxidation of proline decreases immunoreactivity and alters structure of barley prolamin.

    Science.gov (United States)

    Huang, Xin; Sontag-Strohm, Tuula; Stoddard, Frederick L; Kato, Yoji

    2017-01-01

    Elimination of celiac-toxic prolamin peptides and proteins is essential for Triticeae products to be gluten-free. Instead of enzymatic hydrolysis, in this study we investigated metal-catalyzed oxidation of two model peptides, QQPFP, and PQPQLPY, together with a hordein isolate from barley (Hordeum vulgare L.). We established a multiple reaction monitoring (MRM) LC-MS method to detect and quantify proline oxidation fragments. In addition to fragmentation, aggregation and side chain modifications were identified, including free thiol loss, carbonyl formation, and dityrosine formation. The immunoreactivity of the oxidized hordein isolate was considerably decreased in all metal-catalyzed oxidation systems. Cleavage of peptides or protein fragments at the numerous proline residues partially accounts for the decrease. Metal-catalyzed oxidation can thus be used in the modification and elimination of celiac-toxic peptides and proteins. PMID:27507515

  6. A genomic approach highlights common and diverse effects and determinants of susceptibility on the yeast Saccharomyces cerevisiae exposed to distinct antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Muñoz Alberto

    2010-11-01

    Full Text Available Abstract Background The mechanism of action of antimicrobial peptides (AMP was initially correlated with peptide membrane permeation properties. However, recent evidences indicate that action of a number of AMP is more complex and involves specific interactions at cell envelopes or with intracellular targets. In this study, a genomic approach was undertaken on the model yeast Saccharomyces cerevisiae to characterize the antifungal effect of two unrelated AMP. Results Two differentiated peptides were used: the synthetic cell-penetrating PAF26 and the natural cytolytic melittin. Transcriptomic analyses demonstrated distinctive gene expression changes for each peptide. Quantitative RT-PCR confirmed differential expression of selected genes. Gene Ontology (GO annotation of differential gene lists showed that the unique significant terms shared by treatment with both peptides were related to the cell wall (CW. Assays with mutants lacking CW-related genes including those of MAPK signaling pathways revealed genes having influence on sensitivity to peptides. Fluorescence microscopy and flow cytometry demonstrated PAF26 interaction with cells and internalization that correlated with cell killing in sensitive CW-defective mutants such as Δecm33 or Δssd1. GO annotation also showed differential responses between peptides, which included ribosomal biogenesis, ARG genes from the metabolism of amino groups (specifically induced by PAF26, or the reaction to unfolded protein stress. Susceptibility of deletion mutants confirmed the involvement of these processes. Specifically, mutants lacking ARG genes from the metabolism of arginine pathway were markedly more resistant to PAF26 and had a functional CW. In the deletant in the arginosuccinate synthetase (ARG1 gene, PAF26 interaction occurred normally, thus uncoupling peptide interaction from cell killing. The previously described involvement of the glycosphingolipid gene IPT1 was extended to the peptides studied

  7. Rationally designed interfacial peptides are efficient in vitro inhibitors of HIV-1 capsid assembly with antiviral activity.

    Directory of Open Access Journals (Sweden)

    Rebeca Bocanegra

    Full Text Available Virus capsid assembly constitutes an attractive target for the development of antiviral therapies; a few experimental inhibitors of this process for HIV-1 and other viruses have been identified by screening compounds or by selection from chemical libraries. As a different, novel approach we have undertaken the rational design of peptides that could act as competitive assembly inhibitors by mimicking capsid structural elements involved in intersubunit interfaces. Several discrete interfaces involved in formation of the mature HIV-1 capsid through polymerization of the capsid protein CA were targeted. We had previously designed a peptide, CAC1, that represents CA helix 9 (a major part of the dimerization interface and binds the CA C-terminal domain in solution. Here we have mapped the binding site of CAC1, and shown that it substantially overlaps with the CA dimerization interface. We have also rationally modified CAC1 to increase its solubility and CA-binding affinity, and designed four additional peptides that represent CA helical segments involved in other CA interfaces. We found that peptides CAC1, its derivative CAC1M, and H8 (representing CA helix 8 were able to efficiently inhibit the in vitro assembly of the mature HIV-1 capsid. Cocktails of several peptides, including CAC1 or CAC1M plus H8 or CAI (a previously discovered inhibitor of CA polymerization, or CAC1M+H8+CAI, also abolished capsid assembly, even when every peptide was used at lower, sub-inhibitory doses. To provide a preliminary proof that these designed capsid assembly inhibitors could eventually serve as lead compounds for development of anti-HIV-1 agents, they were transported into cultured cells using a cell-penetrating peptide, and tested for antiviral activity. Peptide cocktails that drastically inhibited capsid assembly in vitro were also able to efficiently inhibit HIV-1 infection ex vivo. This study validates a novel, entirely rational approach for the design of capsid

  8. CXCR4-antagonist Peptide R-liposomes for combined therapy against lung metastasis.

    Science.gov (United States)

    Ieranò, Caterina; Portella, Luigi; Lusa, Sara; Salzano, Giuseppina; D'Alterio, Crescenzo; Napolitano, Maria; Buoncervello, Maria; Macchia, Daniele; Spada, Massimo; Barbieri, Antonio; Luciano, Antonio; Barone, Maria Vittoria; Gabriele, Lucia; Caraglia, Michele; Arra, Claudio; De Rosa, Giuseppe; Scala, Stefania

    2016-03-31

    The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide R were developed (PL-Peptide R). In vitro PL-Peptide R efficiently inhibited CXCR4-dependent migration and in vivo it significantly reduced lung metastases and increased overall survival in B16-CXCR4 injected C57BL/6 mice. To evaluate if PL-Peptide R could also be a drug delivery system for CXCR4 expressing tumors, the PL-Peptide R was loaded with doxorubicin (DOX) (PL-Peptide R-DOX). PL-Peptide R-DOX efficiently delivered DOX to CXCR4 expressing cell lines with a consequent decrease in the DOX IC50 efficient dose. In vivo, B16-CXCR4 injected C57BL/6 mice treated with PL-Peptide R-DOX developed fewer lung metastases compared to PL-DOX treated mice. This work provides the proof-of-concept to prevent metastasis by using combined nanomedicine. PMID:26983756

  9. The PeptideAtlas Project

    OpenAIRE

    Deutsch, Eric W.

    2010-01-01

    PeptideAtlas is a multi-species compendium of peptides observed with tandem mass spectrometry methods. Raw mass spectrometer output files are collected from the community and reprocessed through a uniform analysis and validation pipeline that continues to advance. The results are loaded into a database and the information derived from the raw data is returned to the community via several web-based data exploration tools. The PeptideAtlas resource is useful for experiment planning, improving g...

  10. Human Antimicrobial Peptides and Proteins

    OpenAIRE

    Guangshun Wang

    2014-01-01

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified ...

  11. Topical application of superoxide dismutase mediated by HIV-TAT peptide attenuates UVB-induced damages in human skin.

    Science.gov (United States)

    Chen, Xiaochao; Liu, Shutao; Rao, Pingfan; Bradshaw, Jeremy; Weller, Richard

    2016-10-01

    The purpose of this study was to evaluate whether topical application of superoxide dismutase with cell penetrating peptide (HIV-TAT) could protect against skin damage induced by UVB irradiation in humans. The permeability through stratum corneum of large proteins linked to TAT peptide was firstly confirmed by confocal microscopy and tape stripping. Ten healthy volunteers with either Fitzpatrick skin type II or III were recruited in this clinical study. TAT-SOD (300units/cm(2)) and vehicle cream were applied on two symmetric areas of both inner upper arms 1h prior to UVB irradiation. After one hour of pretreatment, subjects received 10 incremental doses of UVB on pretreated areas. 24h later, erythema, blood flow and apoptotic cells were measured. Pretreatment with TAT-SOD 1h prior to UVB radiation promoted a mean minimal erythema dose (MED) increase of 36.6±18.4% (p=0.013skin damage in man. These biological effects of TAT-SOD are probably mediated via its free radical scavenging properties, clearly differentiating it from other physical sunscreen agents. PMID:27460952

  12. A multiple reaction monitoring (MRM method to detect Bcr-Abl kinase activity in CML using a peptide biosensor.

    Directory of Open Access Journals (Sweden)

    Tzu-Yi Yang

    Full Text Available The protein kinase Bcr-Abl plays a major role in the pathogenesis of chronic myelogenous leukemia (CML, and is the target of the breakthrough drug imatinib (Gleevec™. While most patients respond well to imatinib, approximately 30% never achieve remission or develop resistance within 1-5 years of starting imatinib treatment. Evidence from clinical studies suggests that achieving at least 50% inhibition of a patient's Bcr-Abl kinase activity (relative to their level at diagnosis is associated with improved patient outcomes, including reduced occurrence of resistance and longer maintenance of remission. Accordingly, sensitive assays for detecting Bcr-Abl kinase activity compatible with small amounts of patient material are desirable as potential companion diagnostics for imatinib. Here we report the detection of Bcr-Abl activity and inhibition by imatinib in the human CML cell line K562 using a cell-penetrating peptide biosensor and multiple reaction monitoring (MRM on a triple quadrupole mass spectrometer. MRM enabled reproducible, selective detection of the peptide biosensor at fmol levels from aliquots of cell lysate equivalent to ~15,000 cells. This degree of sensitivity will facilitate the miniaturization of the entire assay procedure down to cell numbers approaching 15,000, making it practical for translational applications in patient cells in which the limited amount of available patient material often presents a major challenge.

  13. NCAM Mimetic Peptides: An Update

    DEFF Research Database (Denmark)

    Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    sequences contain one or several NCAM homophilic binding sites involved in NCAM binding to itself, have been identified. By means of NMR titration analysis and molecular modeling a number of peptides derived from NCAM and targeting NCAM heterophilic ligands such as the fibroblast growth factor receptor...... and heparan sulfate proteoglycans (HSPG) have been identified. The FGL, dekaCAM, FRM/EncaminA, BCL, EncaminC and EncaminE peptides all target the FGF receptor whereas the heparin binding peptide HBP targets HSPG. Moreover, a number of NCAM binding peptides have been identified employing screening...

  14. Improving Peptide Applications Using Nanotechnology.

    Science.gov (United States)

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology. PMID:26279082

  15. Improving Peptide Applications Using Nanotechnology.

    Science.gov (United States)

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology.

  16. Biodiscovery of aluminum binding peptides

    Science.gov (United States)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  17. Role of leader peptide synthesis in tryptophanase operon expression in Escherichia coli K-12.

    OpenAIRE

    Stewart, V; Yanofsky, C

    1986-01-01

    We used site-directed mutagenesis to replace the Escherichia coli tryptophanase (tna) operon leader peptide start codon with AUC. This change greatly decreased the uninduced rate of tna operon expression, and it also lowered the response to inducer. We conclude that leader peptide synthesis plays an essential role in tna operon expression.

  18. Polyclonal Peptide Antisera.

    Science.gov (United States)

    Pihl, Tina H; Illigen, Kristin E; Houen, Gunnar

    2015-01-01

    Polyclonal antibodies are relatively easy to produce and may supplement monoclonal antibodies for some applications or even have some advantages. The choice of species for production of (peptide) antisera is based on practical considerations, including availability of immunogen (vaccine) and animals. Two major factors govern the production of antisera: the nature of adaptive immune responses, which take place over days/weeks and ethical guidelines for animal welfare. Here, simple procedures for immunization of mice, rabbits, sheep, goats, pigs, horses, and chickens are presented. PMID:26424267

  19. The NFL-TBS.40-63 anti-glioblastoma peptide disrupts microtubule and mitochondrial networks in the T98G glioma cell line.

    Directory of Open Access Journals (Sweden)

    Romain Rivalin

    Full Text Available Despite aggressive therapies, including combinations of surgery, radiotherapy and chemotherapy, glioblastoma remains a highly aggressive brain cancer with the worst prognosis of any central nervous system disease. We have previously identified a neurofilament-derived cell-penetrating peptide, NFL-TBS.40-63, that specifically enters by endocytosis in glioblastoma cells, where it induces microtubule destruction and inhibits cell proliferation. Here, we explore the impact of NFL-TBS.40-63 peptide on the mitochondrial network and its functions by using global cell respiration, quantitative PCR analysis of the main actors directing mitochondrial biogenesis, western blot analysis of the oxidative phosphorylation (OXPHOS subunits and confocal microscopy. We show that the internalized peptide disturbs mitochondrial and microtubule networks, interferes with mitochondrial dynamics and induces a rapid depletion of global cell respiration. This effect may be related to reduced expression of the NRF-1 transcription factor and of specific miRNAs, which may impact mitochondrial biogenesis, in regard to default mitochondrial mobility.

  20. In silico panning for a non-competitive peptide inhibitor

    Directory of Open Access Journals (Sweden)

    Ikebukuro Kazunori

    2007-01-01

    Full Text Available Abstract Background Peptide ligands have tremendous therapeutic potential as efficacious drugs. Currently, more than 40 peptides are available in the market for a drug. However, since costly and time-consuming synthesis procedures represent a problem for high-throughput screening, novel procedures to reduce the time and labor involved in screening peptide ligands are required. We propose the novel approach of 'in silico panning' which consists of a two-stage screening, involving affinity selection by docking simulation and evolution of the peptide ligand using genetic algorithms (GAs. In silico panning was successfully applied to the selection of peptide inhibitor for water-soluble quinoprotein glucose dehydrogenase (PQQGDH. Results The evolution of peptide ligands for a target enzyme was achieved by combining a docking simulation with evolution of the peptide ligand using genetic algorithms (GAs, which mimic Darwinian evolution. Designation of the target area as next to the substrate-binding site of the enzyme in the docking simulation enabled the selection of a non-competitive inhibitor. In all, four rounds of selection were carried out on the computer; the distribution of the docking energy decreased gradually for each generation and improvements in the docking energy were observed over the four rounds of selection. One of the top three selected peptides with the lowest docking energy, 'SERG' showed an inhibitory effect with Ki value of 20 μM. PQQGDH activity, in terms of the Vmax value, was 3-fold lower than that of the wild-type enzyme in the presence of this peptide. The mechanism of the SERG blockage of the enzyme was identified as non-competitive inhibition. We confirmed the specific binding of the peptide, and its equilibrium dissociation constant (KD value was calculated as 60 μM by surface plasmon resonance (SPR analysis. Conclusion We demonstrate an effective methodology of in silico panning for the selection of a non

  1. In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi.

    Science.gov (United States)

    Jaynes, J M; Burton, C A; Barr, S B; Jeffers, G W; Julian, G R; White, K L; Enright, F M; Klei, T R; Laine, R A

    1988-10-01

    Plasmodium falciparum and Trypanosoma cruzi were killed by two novel lytic peptides (SB-37 and Shiva-1) in vitro. Human erythrocytes infected with P. falciparum, and Vero cells infected with T. cruzi, were exposed to these peptides. The result, in both cases, was a significant decrease in the level of parasite infection. Furthermore, the peptides had a marked cytocidal effect on trypomastigote stages of T. cruzi in media, whereas host eukaryotic cells were unaffected by the treatments. In view of the worldwide prevalence of these protozoan diseases and the lack of completely suitable treatments, lytic peptides may provide new and unique chemotherapeutic agents for the treatment of these infections.

  2. Importance of Tryptophan in Transforming an Amphipathic Peptide into a Pseudomonas aeruginosa-Targeted Antimicrobial Peptide.

    Directory of Open Access Journals (Sweden)

    Xin Zhu

    Full Text Available Here, we found that simple substitution of amino acids in the middle position of the hydrophobic face of an amphipathic peptide RI16 with tryptophan (T9W considerably transformed into an antimicrobial peptide specifically targeting Pseudomonas aeruginosa. Minimal inhibitory concentration (MIC results demonstrated that T9W had a strong and specifically antimicrobial activity against P. aeruginosa, including antibiotic-resistant strains, but was not active against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Staphyfococcus epidermidis. Fluorescent spectroscopic assays indicated that T9W interacted with the membrane of P. aeruginosa, depolarizing the outer and the inner membrane of bacterial cells. Salt susceptibility assay showed that T9W still maintained its strong anti-pseudomonas activity in the presence of salts at physiological concentrations, and in hemolytic and MTT assays T9W also showed no toxicity against human blood cells and macrophages. In vivo assay demonstrated that T9W also displayed no toxicity to Chinese Kun Ming (KM mice. Furthermore, the strong antibiofilm activity was also observed with the peptide T9W, which decreased the percentage of biomass formation in a dose-dependent manner. Overall, these findings indicated that design of single-pathogen antimicrobial agents can be achieved by simple amino acid mutation in naturally occurring peptide sequences and this study suggested a model of optimization/design of anti-pseudomonas drugs in which the tryptophan residue was a conserved element.

  3. Radiolabelled peptides for oncological diagnosis.

    NARCIS (Netherlands)

    Laverman, P.; Sosabowski, J.K.; Boerman, O.C.; Oyen, W.J.G.

    2012-01-01

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of resea

  4. Urinary Peptides in Rett Syndrome.

    Science.gov (United States)

    Solaas, K. M.; Skjeldal, O.; Gardner, M. L. G.; Kase, B. F.; Reichelt, K. L.

    2002-01-01

    A study found a significantly higher level of peptides in the urine of 53 girls with Rett syndrome compared with controls. The elevation was similar to that in 35 girls with infantile autism. Levels of peptides were lower in girls with classic Rett syndrome than those with congenital Rett syndrome. (Contains references.) (Author/CR)

  5. Structural Characterization of Peptide Antibodies

    DEFF Research Database (Denmark)

    Chailyan, Anna; Marcatili, Paolo

    2015-01-01

    The role of proteins as very effective immunogens for the generation of antibodies is indisputable. Nevertheless, cases in which protein usage for antibody production is not feasible or convenient compelled the creation of a powerful alternative consisting of synthetic peptides. Synthetic peptide...

  6. Solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Jensen, Knud Jørgen

    2013-01-01

    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  7. Radioimmunoassay for C-peptide in diabetic children

    International Nuclear Information System (INIS)

    Direct insulin radioimmunoassay (RIA) studies in a diabetic are no longer meaningful once insulin therapy has been instituted. For this reason, use is made of RIA for blood C-peptide, a proinsulin component reflecting endogenous insulin secretion independently of insulin therapy. The paper reports experience with C-peptide RIA studies carried out on blood from 273 diabetic children of normal body weight and 11.3 years average age, as well as 31 healthy children (control group). Diabetes duration ranged from 7 days to 14 years. The basic level of C-peptide in diabetic children is lower than that of healthy ones. Glucose stimulation produces C-peptide elevation in healthy but not in diabetic children. Glucagon stimulation produced a further rise of blood C-peptide in the healthy children. Diabetics showed very modest response to glucagon stimulation. C-peptide secretion in diabetic children proved to be inversely proportional to the duration of the diabetes. These findings in children with diabetes mellitus indicated their insulin secretion by beta cells of the pancreatic islets of Langerhans to be substantially decreased and unresponsive to glucose and glucagon stimulation. 3 figs, 1 tab

  8. Immunogenicity of HLA Class I and II Double Restricted Influenza A-Derived Peptides

    DEFF Research Database (Denmark)

    Pedersen, Sara Ram; Christensen, Jan Pravsgaard; Buus, Søren;

    2016-01-01

    The aim of the present study was to identify influenza A-derived peptides which bind to both HLA class I and -II molecules and by immunization lead to both HLA class I and class II restricted immune responses. Eight influenza A-derived 9-11mer peptides with simultaneous binding to both HLA-A*02:0...... to both HLA class I and class I restricted responses, a quality which might be of potential interest for peptide-based vaccine development....... with this, peptide vaccination did not decrease virus titres in the lungs of intranasally influenza challenged mice. Our data show that HLA class I and class II double binding peptides can be identified by bioinformatics and biochemical technology. By immunization, double binding peptides can give rise...

  9. Oligomer Formation of Toxic and Functional Amyloid Peptides Studied with Atomistic Simulations.

    Science.gov (United States)

    Carballo-Pacheco, Martín; Ismail, Ahmed E; Strodel, Birgit

    2015-07-30

    Amyloids are associated with diseases, including Alzheimer's, as well as functional roles such as storage of peptide hormones. It is still unclear what differences exist between aberrant and functional amyloids. However, it is known that soluble oligomers formed during amyloid aggregation are more toxic than the final fibrils. Here, we perform molecular dynamics simulations to study the aggregation of the amyloid-β peptide Aβ25-35, associated with Alzheimer's disease, and two functional amyloid-forming tachykinin peptides: kassinin and neuromedin K. Although the three peptides have similar primary sequences, tachykinin peptides, in contrast to Aβ25-35, form nontoxic amyloids. Our simulations reveal that the charge of the C-terminus is essential to controlling the aggregation process. In particular, when the kassinin C-terminus is not amidated, the aggregation kinetics decreases considerably. In addition, we observe that the monomeric peptides in extended conformations aggregate faster than those in collapsed hairpin-like conformations. PMID:26130191

  10. Delivery and Tracking of Quantum Dot Peptide Bioconjugates in an Intact Developing Avian Brain

    Science.gov (United States)

    Agarwal, Rishabh; Domowicz, Miriam S.; Schwartz, Nancy B.; Henry, Judy; Medintz, Igor; Delehanty, James B.; Stewart, Michael H.; Susumu, Kimihiro; Huston, Alan L.; Deschamps, Jeffrey R.; Dawson, Philip E.; Palomo, Valle; Dawson, Glyn

    2016-01-01

    Luminescent semiconductor ~9.5 nm nanoparticles (quantum dots: QDs) have intrinsic physiochemical and optical properties which enable us to begin to understand the mechanisms of nanoparticle mediated chemical/drug delivery. Here, we demonstrate the ability of CdSe/ZnS core/shell QDs surface functionalized with a zwitterionic compact ligand to deliver a cell-penetrating lipopeptide to the developing chick embryo brain without any apparent toxicity. Functionalized QDs were conjugated to the palmitoylated peptide WGDap-(Palmitoyl)VKIKKP9GGH6, previously shown to uniquely facilitate endosomal escape, and microinjected into the embryonic chick spinal cord canal at embryo day 4 (E4). We were subsequently able to follow the labeling of spinal cord extension into the ventricles, migratory neuroblasts, maturing brain cells, and complex structures such as the choroid plexus. QD intensity extended throughout the brain, and peaked between E8 and E11 when fluorescence was concentrated in the choroid plexus before declining to hatching (E21/P0). We observed no abnormalities in embryonic patterning or embryo survival, and mRNA in situ hybridization confirmed that, at key developmental stages, the expression pattern of genes associated with different brain cell types (brain lipid binding protein, Sox-2, proteolipid protein and Class III-β-Tubulin) all showed a normal labeling pattern and intensity. Our findings suggest that we can use chemically modified QDs to identify and track neural stem cells as they migrate, that the choroid plexus clears these injected QDs/nanoparticles from the brain after E15, and that they can deliver drugs and peptides to the developing brain. PMID:25688887

  11. Aptamer-functionalized peptide H3CR5C as a novel nanovehicle for codelivery of fasudil and miRNA-195 targeting hepatocellular carcinoma.

    Science.gov (United States)

    Liu, Ying; Wu, Xin; Gao, Yuan; Zhang, Jigang; Zhang, Dandan; Gu, Shengying; Zhu, Guanhua; Liu, Gaolin; Li, Xiaoyu

    2016-01-01

    Liver cancer is the fifth most commonly diagnosed malignancy, of which hepatocellular carcinoma (HCC) represents the dominating histological subtype. Antiangiogenic therapy aimed at vascular endothelial growth factor (VEGF) has shown promising but deficient clinical prospects on account of vasculogenic mimicry, a highly patterned vascular channel distinguished from the endothelium-dependent blood vessel, which may function as blood supply networks occurring in aggressive tumors including HCC. In this study, we used a new cationic peptide, disulfide cross-linked stearylated polyarginine peptide modified with histidine (H3R5), as a reducible vector, cell penetrating peptide-modified aptamer (ST21) with specific binding to HCC cells to conjugate to peptide H3R5 as the targeting probe, miRNA-195 (miR195) as a powerful gene drug to inhibit VEGF, and fasudil to suppress vasculogenic mimicry by blocking ROCK2, all of which were simultaneously encapsulated in the same nanoparticles. Fasudil was loaded by ammonium sulfate-induced transmembrane electrochemical gradient and miR195 was condensed through electrostatic interaction. ST21-H3R5-polyethylene glycol (PEG) exhibited excellent loading capacities for both fasudil and miR195 with adjustable dosing ratios. Western blot analysis showed that (Fasudil)ST21-H3R5-PEGmiR195 had strong silencing activity of ROCK2 and VEGF, as compared with (Fasudil)H3R5-PEGmiR195. In vitro and in vivo experiments confirmed that ST21-modified nanoparticles showed significantly higher cellular uptake and therapeutic efficacy in tumor cells or tumor tissues than the unmodified counterparts. These findings suggest that aptamer-conjugated peptide holds great promise for delivering chemical drugs and gene drugs simultaneously to overcome HCC. PMID:27574422

  12. Aptamer-functionalized peptide H3CR5C as a novel nanovehicle for codelivery of fasudil and miRNA-195 targeting hepatocellular carcinoma

    Science.gov (United States)

    Liu, Ying; Wu, Xin; Gao, Yuan; Zhang, Jigang; Zhang, Dandan; Gu, Shengying; Zhu, Guanhua; Liu, Gaolin; Li, Xiaoyu

    2016-01-01

    Liver cancer is the fifth most commonly diagnosed malignancy, of which hepatocellular carcinoma (HCC) represents the dominating histological subtype. Antiangiogenic therapy aimed at vascular endothelial growth factor (VEGF) has shown promising but deficient clinical prospects on account of vasculogenic mimicry, a highly patterned vascular channel distinguished from the endothelium-dependent blood vessel, which may function as blood supply networks occurring in aggressive tumors including HCC. In this study, we used a new cationic peptide, disulfide cross-linked stearylated polyarginine peptide modified with histidine (H3R5), as a reducible vector, cell penetrating peptide-modified aptamer (ST21) with specific binding to HCC cells to conjugate to peptide H3R5 as the targeting probe, miRNA-195 (miR195) as a powerful gene drug to inhibit VEGF, and fasudil to suppress vasculogenic mimicry by blocking ROCK2, all of which were simultaneously encapsulated in the same nanoparticles. Fasudil was loaded by ammonium sulfate-induced transmembrane electrochemical gradient and miR195 was condensed through electrostatic interaction. ST21-H3R5-polyethylene glycol (PEG) exhibited excellent loading capacities for both fasudil and miR195 with adjustable dosing ratios. Western blot analysis showed that FasudilST21-H3R5-PEGmiR195 had strong silencing activity of ROCK2 and VEGF, as compared with FasudilH3R5-PEGmiR195. In vitro and in vivo experiments confirmed that ST21-modified nanoparticles showed significantly higher cellular uptake and therapeutic efficacy in tumor cells or tumor tissues than the unmodified counterparts. These findings suggest that aptamer-conjugated peptide holds great promise for delivering chemical drugs and gene drugs simultaneously to overcome HCC. PMID:27574422

  13. Labor Augmentation with Oxytocin Decreases Glutathione Level

    Directory of Open Access Journals (Sweden)

    Naomi Schneid-Kofman

    2009-01-01

    Full Text Available Objective. To compare oxidative stress following spontaneous vaginal delivery with that induced by Oxytocin augmented delivery. Methods. 98 women recruited prior to labor. 57 delivered spontaneously, while 41 received Oxytocin for augmentation of labor. Complicated deliveries and high-risk pregnancies were excluded. Informed consent was documented. Arterial cord blood gases, levels of Hematocrit, Hemoglobin, and Bilirubin were studied. Glutathione (GSH concentration was measured by a spectroscopic method. Plasma and red blood cell (RBC levels of Malondialdehyde indicated lipid peroxidation. RBC uptake of phenol red denoted cell penetrability. SPSS data analysis was used. Results. Cord blood GSH was significantly lower in the Oxytocin group (2.3±0.55 mM versus 2.55±0.55 mM, =.01. No differences were found in plasma or RBC levels of MDA or in uptake of Phenol red between the groups. Conclusion. Lower GSH levels following Oxytocin augmentation indicate an oxidative stress, though selected measures of oxidative stress demonstrate no cell damage.

  14. Conus venom peptide pharmacology.

    Science.gov (United States)

    Lewis, Richard J; Dutertre, Sébastien; Vetter, Irina; Christie, MacDonald J

    2012-04-01

    Conopeptides are a diverse group of recently evolved venom peptides used for prey capture and/or defense. Each species of cone snails produces in excess of 1000 conopeptides, with those pharmacologically characterized (≈ 0.1%) targeting a diverse range of membrane proteins typically with high potency and specificity. The majority of conopeptides inhibit voltage- or ligand-gated ion channels, providing valuable research tools for the dissection of the role played by specific ion channels in excitable cells. It is noteworthy that many of these targets are found to be expressed in pain pathways, with several conopeptides having entered the clinic as potential treatments for pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one now marketed for intrathecal treatment of severe pain [ziconotide (Prialt)]. This review discusses the diversity, pharmacology, structure-activity relationships, and therapeutic potential of cone snail venom peptide families acting at voltage-gated ion channels (ω-, μ-, μO-, δ-, ι-, and κ-conotoxins), ligand-gated ion channels (α-conotoxins, σ-conotoxin, ikot-ikot, and conantokins), G-protein-coupled receptors (ρ-conopeptides, conopressins, and contulakins), and neurotransmitter transporters (χ-conopeptides), with expanded discussion on the clinical potential of sodium and calcium channel inhibitors and α-conotoxins. Expanding the discovery of new bioactives using proteomic/transcriptomic approaches combined with high-throughput platforms and better defining conopeptide structure-activity relationships using relevant membrane protein crystal structures are expected to grow the already significant impact conopeptides have had as both research probes and leads to new therapies. PMID:22407615

  15. The structural determinants of insulin-like peptide 3 activity

    Directory of Open Access Journals (Sweden)

    Ross AD Bathgate

    2012-02-01

    Full Text Available INSL3 is a hormone and/or paracrine factor which is a member of the relaxin peptide family. It has key roles as a fertility regulator in both males and females. The receptor for INSL3 is the leucine rich repeat (LRR containing G-protein coupled receptor 8 (LGR8 which is now known as relaxin family peptide receptor 2 (RXFP2. Receptor activation by INSL3 involves binding to the LRRs in the large ectodomain of RXFP2 by residues within the B-chain of INSL3 as well as an interaction with the transmembrane exoloops of the receptor. Although the binding to the LRRs is well characterized the features of the peptide and receptor involved in the exoloop interaction are currently unknown. This study was designed to determine the key INSL3 determinants for RXFP2 activation. A chimeric peptide approach was first utilized to demonstrate that the A-chain is critical for receptor activation. Replacement of the INSL3 A-chain with that from the related peptides INSL5 and INSL6 resulted in complete loss of activity despite only minor changes in binding affinity. Subsequent replacement of specific A-chain residues with those from the INSL5 peptide highlighted that the N-terminus of the A-chain of INSL3 is critical for its activity. Remarkably, replacement of the entire N-terminus with four or five alanine residues resulted in peptides with near native activity suggesting that specific residues are not necessary for activity. Additionally removal of two amino acids at the C-terminus of the A-chain and mutation of Lys-8 in the B-chain also resulted in minor decreases in peptide activity. Therefore we have demonstrated that the activity of the INSL3 peptide is driven predominantly by residues 5-9 in the A-chain, with minor additional contributions from the two C-terminal A-chain residues and Lys-8 in the B-chain. Using this new knowledge, we were able to produce a truncated INSL3 peptide structure which retained native activity, despite having 14 fewer residues than

  16. Constancy and diversity in the flavivirus fusion peptide

    Science.gov (United States)

    Seligman, Stephen J

    2008-01-01

    result of a survival advantage accompanying sequence diversity (quasispecies) involving the fusion peptide. Limited clinical data with yellow fever virus suggest that the presence of fusion peptide mutants is not associated with a decreased case fatality rate. The cell-fusing related agents may have substantial differences from other flaviviruses in their mechanism of viral entry into the host cell. PMID:18275613

  17. Constancy and diversity in the flavivirus fusion peptide

    Directory of Open Access Journals (Sweden)

    Seligman Stephen J

    2008-02-01

    . The discrepancy may be the result of a survival advantage accompanying sequence diversity (quasispecies involving the fusion peptide. Limited clinical data with yellow fever virus suggest that the presence of fusion peptide mutants is not associated with a decreased case fatality rate. The cell-fusing related agents may have substantial differences from other flaviviruses in their mechanism of viral entry into the host cell.

  18. Synthesis and evaluation of amphiphilic peptides as nanostructures and drug delivery tools

    Science.gov (United States)

    Sayeh, Naser Ali

    conjugates although one limitation lies in the effort of controlling the rate of drug release. The encapsulated or complexed drugs tend to be released rapidly (before reaching the target site) and in the dendrimer--drug conjugates, it is the chemical linkage that controls the drug release. Thus, future studies in this field are urgently required to create more efficient and stable biomaterials. Peptides are considered as efficient vectors for achieving optimal cellular uptake. The potential use of peptides as drug delivery vectors received much attention by the discovery of several cell-penetrating peptides (CPPs). The first CPPs discovered in 1988, that were sequences from HIV-1 encoded TAT protein, TAT (48--60), and penetrated very efficiently through cell membranes of cultured mammalian cells. CPPs are a class of diverse peptides, typically with 8--25 amino acids, and unlike most peptides, they can cross the cellular membrane with more efficiency. CPPs have also shown to undergo self-assembly and generate nanostructures. The generation of self-assembled peptides and nanostructures occur through various types of interactions between functional groups of amino acid residues, such as electrostatic, hydrophobic, and hydrogen bonding. Appropriate design and functionalization of peptides are critical for generating nanostructures. Chemically CPPs are classified into two major groups: linear and cyclic peptides. It has been previously reported that linear peptides containing hydrophilic and hydrophobic amino acids could act as membrane protein stabilizers. These compounds are short hydrophilic or amphiphilic peptides that have positively charged amino acids, such as arginine, lysine or histidine, which can interact with the negative charge phospholipids layer on the cell membrane and translocate the cargo into the cells. Conjugation to cationic linear CPPs, such as TAT, penetratin, or oligoarginine efficiently improves the cellular uptake of large hydrophilic molecules, but the

  19. The impact of α-hydrazino acids embedded in short fluorescent peptides on peptide interactions with DNA and RNA.

    Science.gov (United States)

    Suć, Josipa; Tumir, Lidija-Marija; Glavaš-Obrovac, Ljubica; Jukić, Marijana; Piantanida, Ivo; Jerić, Ivanka

    2016-06-01

    A series of novel hydrazino-based peptidomimetics and analogues comprising N-terminal lysine and C-terminal phenanthridinyl-l-alanine were prepared. The presented results demonstrate the up to now unknown possibility to finely modulate peptide interactions with DNA/RNA by α-hydrazino group insertion and how the different positioning of two α-hydrazino groups in peptides controls binding to various double stranded and single stranded DNA and RNA. All peptidomimetics bind with 1-10 micromolar affinity to ds-DNA/RNA, whereby the binding mode is a combination of electrostatic interactions and hydrophobic interactions within DNA/RNA grooves. Insertion of the α-hydrazino group into the peptide systematically decreased its fluorimetric response to DNA/RNA binding in the order: mono-hydrazino peptide sequence. Particularly interesting was the interaction of two sequential α-hydrazino acids-peptidomimetic with poly rG, characterised by a specific strong increase of CD bands, while all other peptide/ssRNA combinations gave only a CD-band decrease. All mentioned interactions could also be reversibly controlled by adjusting the pH, due to the protonation of the fluorophore.

  20. INDUCEMENT OF ANTITUMOR-IMMUNITY BY DC ACTIVATED BY HSP70-H22 TUMOR ANTIGEN PEPTIDE

    Institute of Scientific and Technical Information of China (English)

    冯作化; 黄波; 张桂梅; 李东; 王洪涛

    2003-01-01

    Objective: To investigate the feasibility of decreasing the dosage of tumor antigen peptides by dendritic cell (DC)-presenting and the characteristics of modification of DC by heat shock protein (Hsp70) and antigen peptides. Methods: Peptides were bound to Hsp70 and used to modify DC in vitro. The metabolism of the modified DC and the cytokines secreted by the modified DC were determined. The activation of lymphocytes by the modified DC and Hsp70-H22 peptides was tested. The cytotoxicity of the activated lymphocytes to H22 tumor cells was analyzed. The inhibitory effect of tumor in mice by the injection of DC and Hsp70-H22 peptides was tested. Results: 0.15μg of H22 peptides bound with Hsp70 could make 2×105 DC mature. 4×103 matured DC could activate 2×106 lymphocytes. The same amount of lymphocytes could be activated to produce similar cytotoxicity to tumor cells by either DC modified by 0.003μg of peptides bound with Hsp70 or by direct stimulation with 0.15μg of peptides bound with Hsp70. The dosage of peptides could be reduced by about 50 folds if the modified DC was used for injection instead of Hsp70-peptides. Peptides from normal hepatocytes, bound with Hsp70, could not make DC mature, nor activate lymphocytes through DC. Conclusion: The dosage of Hsp70-H22 peptides can be reduced significantly by DC-presenting to activate lymphocytes. Peptides from normal cells could not activate lymphocytes by either Hsp70-presenting or DC-presenting and they have little chance to induce autoimmunity.

  1. Potential of phage-displayed peptide library technology to identify functional targeting peptides

    Science.gov (United States)

    Krumpe, Lauren RH; Mori, Toshiyuki

    2010-01-01

    Combinatorial peptide library technology is a valuable resource for drug discovery and development. Several peptide drugs developed through phage-displayed peptide library technology are presently in clinical trials and the authors envision that phage-displayed peptide library technology will assist in the discovery and development of many more. This review attempts to compile and summarize recent literature on targeting peptides developed through peptide library technology, with special emphasis on novel peptides with targeting capacity evaluated in vivo. PMID:20150977

  2. Decreasing incidence rates of bacteremia

    DEFF Research Database (Denmark)

    Nielsen, Stig Lønberg; Pedersen, C; Jensen, T G;

    2014-01-01

    BACKGROUND: Numerous studies have shown that the incidence rate of bacteremia has been increasing over time. However, few studies have distinguished between community-acquired, healthcare-associated and nosocomial bacteremia. METHODS: We conducted a population-based study among adults with first......-acquired, 50.0 for healthcare-associated and 66.7 for nosocomial bacteremia. During 2000-2008, the overall incidence rate decreased by 23.3% from 254.1 to 198.8 (3.3% annually, p ...) and the incidence rate of nosocomial bacteremia decreased by 28.9% from 82.2 to 56.0 (4.2% annually, p

  3. Radiopharmaceutical development of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Fani, Melpomeni; Maecke, Helmut R. [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany)

    2012-02-15

    Receptor targeting with radiolabelled peptides has become very important in nuclear medicine and oncology in the past few years. The overexpression of many peptide receptors in numerous cancers, compared to their relatively low density in physiological organs, represents the molecular basis for in vivo imaging and targeted radionuclide therapy with radiolabelled peptide-based probes. The prototypes are analogs of somatostatin which are routinely used in the clinic. More recent developments include somatostatin analogs with a broader receptor subtype profile or with antagonistic properties. Many other peptide families such as bombesin, cholecystokinin/gastrin, glucagon-like peptide-1 (GLP-1)/exendin, arginine-glycine-aspartic acid (RGD) etc. have been explored during the last few years and quite a number of potential radiolabelled probes have been derived from them. On the other hand, a variety of strategies and optimized protocols for efficient labelling of peptides with clinically relevant radionuclides such as {sup 99m}Tc, M{sup 3+} radiometals ({sup 111}In, {sup 86/90}Y, {sup 177}Lu, {sup 67/68}Ga), {sup 64/67}Cu, {sup 18}F or radioisotopes of iodine have been developed. The labelling approaches include direct labelling, the use of bifunctional chelators or prosthetic groups. The choice of the labelling approach is driven by the nature and the chemical properties of the radionuclide. Additionally, chemical strategies, including modification of the amino acid sequence and introduction of linkers/spacers with different characteristics, have been explored for the improvement of the overall performance of the radiopeptides, e.g. metabolic stability and pharmacokinetics. Herein, we discuss the development of peptides as radiopharmaceuticals starting from the choice of the labelling method and the conditions to the design and optimization of the peptide probe, as well as some recent developments, focusing on a selected list of peptide families, including somatostatin

  4. Complex zero strip decreasing operators

    OpenAIRE

    Cardon, David A.

    2013-01-01

    In this paper we study the effect of linear differential operators coming from the Laguerre-Polya class that act on functions in the extended Laguerre-Polya class with zeros in a horizontal strip in the complex plane. These operator decrease the size of the strip containing the zeros.

  5. Peptide primary messengers in plants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The peptide primary messengers regulate embryonic development,cell growth and many other activities in animal cells. But recent evidence verified that peptide primary messengers are also involved in plant defense responses, the recognition between pollen and stigma and keep the balance between cell proliferation and differentiations in shoot apical meristems. Those results suggest that plants may actually make wide use of peptide primary messengers, both in embryonic development and late life when they rally their cells to defend against pathogens and insect pests. The recent advance in those aspects is reviewed.

  6. Screening of TACE Peptide Inhibitors from Phage Display Peptide Library

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To obtain the recombinant tumor necrosis factor-α converting enzyme (TACE) ectodomain and use it as a selective molecule for the screening of TACE peptide inhibitors, the cDNA coding catalytic domain (T800) and full-length ectodomain (T1300) of TACE were amplified by RTPCR, and the expression plasmids were constructed by inserting T800 and T1300 into plasmid pET28a and pET-28c respectively. The recombinant T800 and T1300 were induced by IPTG, and SDSPAGE and Western blotting analysis results revealed that T800 and T1300 were highly expressed in the form of inclusion body. After Ni2+-NTA resin affinity chromatography, the recombinant proteins were used in the screening of TACE-binding peptides from phage display peptide library respectively. After 4 rounds of biopanning, the positive phage clones were analyzed by ELISA, competitive inhibition assay and DNA sequencing. A common amino acid sequence (TRWLVYFSRPYLVAT) was found and synthesized. The synthetic peptide could inhibit the TNF-α release from LPS-stimulated human peripheral blood mononuclear cells (PBMC) up to 60.3 %. FACS analysis revealed that the peptide mediated the accumulation of TNF-α on the cell surface. These results demonstrate that the TACE-binding peptide is an effective antagonist of TACE.

  7. Peptide-Mediated Tumor Targeting by a Degradable Nano Gene Delivery Vector Based on Pluronic-Modified Polyethylenimine

    Science.gov (United States)

    Wu, Zhaoyong; Zhan, Shuyu; Fan, Wei; Ding, Xueying; Wu, Xin; Zhang, Wei; Fu, Yinghua; Huang, Yueyan; Huang, Xuan; Chen, Rubing; Li, Mingjuan; Xu, Ningyin; Zheng, Yongxia; Ding, Baoyue

    2016-03-01

    Polyethylenimine (PEI) is considered to be a promising non-viral gene delivery vector. To solve the toxicity versus efficacy and tumor-targeting challenges of PEI used as gene delivery vector, we constructed a novel non-viral vector DR5-TAT-modified Pluronic-PEI (Pluronic-PEI-DR5-TAT), which was based on the attachment of low-molecular-weight polyethylenimine (LMW-PEI) to the amphiphilic polymer Pluronic to prepare Pluronic-modified LMW-PEI (Pluronic-PEI). This was then conjugated to a multifunctional peptide containing a cell-penetrating peptide (TAT) and a synthetic peptide that would bind to DR5—a receptor that is overexpressed in cancer cells. The vector showed controlled degradation, favorable DNA condensation and protection performance. The Pluronic-PEI-DR5-TAT/DNA complexes at an N/P ratio of 15:1 were spherical nanoparticles of 122 ± 11.6 nm and a zeta potential of about 22 ± 2.8 mV. In vitro biological characterization results indicated that Pluronic-PEI-DR5-TAT/DNA complexes had a higher specificity for the DR5 receptor and were taken up more efficiently by tumor cells than normal cells, compared to complexes formed with PEI 25 kDa or Pluronic-PEI. Thus, the novel complexes showed much lower cytotoxicity to normal cells and higher gene transfection efficiency in tumor cells than that exhibited by PEI 25 kDa and Pluronic-PEI. In summary, our novel, degradable non-viral tumor-targeting vector is a promising candidate for use in gene therapy.

  8. Peptide-Mediated Tumor Targeting by a Degradable Nano Gene Delivery Vector Based on Pluronic-Modified Polyethylenimine.

    Science.gov (United States)

    Wu, Zhaoyong; Zhan, Shuyu; Fan, Wei; Ding, Xueying; Wu, Xin; Zhang, Wei; Fu, Yinghua; Huang, Yueyan; Huang, Xuan; Chen, Rubing; Li, Mingjuan; Xu, Ningyin; Zheng, Yongxia; Ding, Baoyue

    2016-12-01

    Polyethylenimine (PEI) is considered to be a promising non-viral gene delivery vector. To solve the toxicity versus efficacy and tumor-targeting challenges of PEI used as gene delivery vector, we constructed a novel non-viral vector DR5-TAT-modified Pluronic-PEI (Pluronic-PEI-DR5-TAT), which was based on the attachment of low-molecular-weight polyethylenimine (LMW-PEI) to the amphiphilic polymer Pluronic to prepare Pluronic-modified LMW-PEI (Pluronic-PEI). This was then conjugated to a multifunctional peptide containing a cell-penetrating peptide (TAT) and a synthetic peptide that would bind to DR5-a receptor that is overexpressed in cancer cells. The vector showed controlled degradation, favorable DNA condensation and protection performance. The Pluronic-PEI-DR5-TAT/DNA complexes at an N/P ratio of 15:1 were spherical nanoparticles of 122 ± 11.6 nm and a zeta potential of about 22 ± 2.8 mV. In vitro biological characterization results indicated that Pluronic-PEI-DR5-TAT/DNA complexes had a higher specificity for the DR5 receptor and were taken up more efficiently by tumor cells than normal cells, compared to complexes formed with PEI 25 kDa or Pluronic-PEI. Thus, the novel complexes showed much lower cytotoxicity to normal cells and higher gene transfection efficiency in tumor cells than that exhibited by PEI 25 kDa and Pluronic-PEI. In summary, our novel, degradable non-viral tumor-targeting vector is a promising candidate for use in gene therapy. PMID:26932761

  9. New vasoactive peptides in cirrhosis

    DEFF Research Database (Denmark)

    Kimer, Nina; Goetze, Jens Peter; Bendtsen, Flemming;

    2014-01-01

    BACKGROUND: Patients with cirrhosis have substantial circulatory imbalance between vasoconstrictive and vasodilating forces. The study of circulatory vasoactive peptides may provide important pathophysiological information. This study aimed to assess concentrations, organ extraction and relations...

  10. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte;

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...... improve biomolecular recognition by synthetic nucleic acid analogues. Circular dichroism (CD) measurements showed no distortion of the duplex structure by the incorporated peptide chains while studies in human serum indicated superior stability of the POCs compared to LNA/DNA mixmers and unmodified DNA...

  11. Peptide nanostructures in biomedical technology.

    Science.gov (United States)

    Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik

    2016-09-01

    Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. PMID:26846352

  12. Targeting cancer with peptide aptamers

    OpenAIRE

    Seigneuric, Renaud; Gobbo, Jessica; Colas, Pierre; Garrido, Carmen

    2011-01-01

    A major endeavour in cancer chemotherapy is to develop agents that specifically target a biomolecule of interest. There are two main classes of targeting agents: small molecules and biologics. Among biologics (e.g.: antibodies), DNA, RNA but also peptide aptamers are relatively recent agents. Peptide aptamers are seldom described but represent attractive agents that can inhibit a growing panel of oncotargets including Heat Shock Proteins. Potential pitfalls and coming challenges towards succe...

  13. Peptide and protein loading into porous silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Prestidge, C.A.; Barnes, T.J.; Mierczynska-Vasilev, A.; Kempson, I.; Peddie, F. [Ian Wark Research Institute, University of South Australia, Mawson Lakes (Australia); Barnett, C. [Medica Ltd, Malvern, Worcestershire, UK WR14 3SZ (United Kingdom)

    2008-02-15

    The influence of peptide/protein size and hydrophobicity on the physical and chemical aspects of loading within porous silicon (pSi) wafer samples has been determined using Atomic Force Microscopy (AFM) and Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS). Both Gramicidin A (a small hydrophobic peptide) and Papain (a larger hydrophilic protein) were observed (ToF-SIMS) to penetrate across the entire pSi layer, even at low loading levels. AFM surface imaging of pSi wafers during peptide/protein loading showed that surface roughness increased with Papain loading, but decreased with Gramicidin A loading. For Papain, the loading methodology was also found to influence loading efficiency. These differences indicate more pronounced surface adsorption of Papain. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Brain natriuretic peptide and optimal management of heart failure

    Institute of Scientific and Technical Information of China (English)

    LI Nan; WANG Jian-an

    2005-01-01

    Aside from the important role of brain natriuretic peptide (BNP) in diagnosis, and differential diagnosis of heart failure, this biological peptide has proved to be an independent surrogate marker of rehospitalization and death of the fatal disease.Several randomized clinical trials demonstrated that drugs such as beta blocker, angiotensin converting enzyme inhibitor, spironolactone and amiodarone have beneficial effects in decreasing circulating BNP level during the management of chronic heart failure. The optimization of clinical decision-making appeals for a representative surrogate marker for heart failure prognosis. The serial point-of-care assessments of BNP concentration provide a therapeutic goal of clinical multi-therapy and an objective guidance for optimal treatment of heart failure. Nevertheless new questions and problems in this area remain to be clarified. On the basis of current research advances, this article gives an overview of BNP peptide and its property and role in the management of heart failure.

  15. A remarkably efficient azobenzene peptide for holographic information storage

    DEFF Research Database (Denmark)

    Rasmussen, P.H.; Ramanujam, P.S.; Hvilsted, S.;

    1999-01-01

    A new family of proline-based azobenzene peptides (DNO) for holographic information storage is reported.:By use of polarization holography, it was found that gratings with extraordinarily high diffraction efficiency (up to 80%) can be recorded in hundreds of milliseconds in a similar to 13-mu m......-thick film of dimer 10. This represents a decrease of the response time by more than 2 orders of magnitude when compared to that of the ornithine-based DNO dimer previously reported. Furthermore, it supports the expectation that increasing the rigidity of the peptide backbone is: crucial in the design...... of effective azobenzene peptides for optical recording. Gratings recorded in 10 can be erased-by circularly polarized light in a few-seconds. It is also noted that, unlike DNOs previously reported, 10 is soluble in common organic solvents and can be assembled by solution phase synthesis, which is mandatory...

  16. Gigahertz nanomechanical oscillators based on ions inside cyclic peptide nanotubes: a continuum study

    Science.gov (United States)

    Sadeghi, F.; Ansari, R.; Darvizeh, M.

    2016-08-01

    The present work aims to investigate the mechanical oscillatory behavior of ions, and in particular {Li+, Na+, Rb+} and {Cl-} ions, inside a cyclo[(- d-Ala- l-Ala)4-] peptide nanotube using the continuum approximation along with the 6-12 Lennard-Jones (LJ) potential function. Assuming that each peptide unit is comprised of an inner and an outer tube, the van der Waals (vdW) potential energy and interaction force between an ion and a cyclic peptide nanotube (CPN) are determined analytically. With respect to the present formulations, a detailed parametric study is conducted on the vdW potential energy and interaction force distributions by varying the number of peptide units. Employing the conservation of mechanical energy principle, a novel expression for precise evaluation of oscillation frequency is introduced. To verify the accuracy of the proposed frequency expression, the results obtained from energy equation are compared with the ones predicted through solving the equation of motion numerically. The effects of number of peptide units and initial conditions including initial separation distance and velocity on the oscillatory behavior of various ions inside CPNs are explored. Among the considered ions, {Cl-} ion is found to generate the highest frequency. According to the potential energy profile, one oscillatory zone for one peptide unit and different oscillatory zones for more than one peptide unit are observed. Numerical results indicate that optimal frequency decreases with increasing the number of peptide units and almost remains unchanged when the number of peptide units exceeds four.

  17. Peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  18. Kinins and peptide receptors.

    Science.gov (United States)

    Regoli, Domenico; Gobeil, Fernand

    2016-04-01

    This paper is divided into two sections: the first contains the essential elements of the opening lecture presented by Pr. Regoli to the 2015 International Kinin Symposium in S. Paulo, Brazil on June 28th and the second is the celebration of Dr. Regoli's 60 years of research on vasoactive peptides. The cardiovascular homeostasis derives from a balance of two systems, the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS). The biologically active effector entity of RAS is angiotensin receptor-1 (AT-1R), and that of KKS is bradykinin B2 receptor (B2R). The first mediates vasoconstriction, the second is the most potent and efficient vasodilator. Thanks to its complex and multi-functional mechanism of action, involving nitric oxide (NO), prostacyclin and endothelial hyperpolarizing factor (EDHF). B2R is instrumental for the supply of blood, oxygen and nutrition to tissues. KKS is present on the vascular endothelium and functions as an autacoid playing major roles in cardiovascular diseases (CVDs) and diabetes. KKS exerts a paramount role in the prevention of thrombosis and atherosclerosis. Such knowledge emphasizes the already prominent value of the ACE-inhibitors (ACEIs) for the treatment of CVDs and diabetes. Indeed, the ACEIs, thanks to their double action (block of the RAS and potentiation of the KKS) are the ideal agents for a rational treatment of these diseases. PMID:26408609

  19. Antimicrobial peptides in annelids

    Directory of Open Access Journals (Sweden)

    A Tasiemski

    2008-06-01

    Full Text Available Gene encoded antimicrobial peptides (AMPs are widely distributed among living organisms including plants, invertebrates and vertebrates. They constitute important effectors of the innate immune response by exerting multiple roles as mediators of inflammation with impact on epithelial and inflammatory cells influencing diverse processes such as cytokine release, cell proliferation, angiogenesis, wound healing, chemotaxis and immune induction. In invertebrates, most of the data describe the characterization and/or the function of AMPs in the numerically and economically most representative group which are arthropods. Annelids are among the first coelomates and are therefore of special phylogenetic interest. Compared to other invertebrate groups, data on annelid’s immunity reveal heavier emphasis on the cellular than on the humoral response suggesting that immune defense of annelids seems to be principally developed as cellular immunity.This paper gives an overview of the variety of AMPs identified in the three classes of annelids, i.e. polychaetes, oligochaetes and achaetes. Their functions, when they have been studied, in the humoral or cellular response of annelids are also mentioned.

  20. Antimicrobial peptides in crustaceans

    Directory of Open Access Journals (Sweden)

    RD Rosa

    2010-11-01

    Full Text Available Crustaceans are a large and diverse invertebrate animal group that mounts a complex and efficient innate immune response against a variety of microorganisms. The crustacean immune system is primarily related to cellular responses and the production and release of important immune effectors into the hemolymph. Antimicrobial proteins and/or peptides (AMPs are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, 15 distinct AMP families are currently recognized, although the great majority (14 families comes from members of the order Decapoda. Crustacean AMPs are generally cationic, gene-encoded molecules that are mainly produced by circulating immune-competent cells (hemocytes or are derived from unrelated proteins primarily involved in other biological functions. In this review, we tentatively classified the crustacean AMPs into four main groups based on their amino acid composition, structural features and multi-functionality. We also attempted to summarize the current knowledge on their implication both in an efficient response to microbial infections and in crustacean survival.

  1. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets

    Directory of Open Access Journals (Sweden)

    Carmela eGiordano

    2014-04-01

    Full Text Available Various ketogenic diet (KD therapies, including classic KD, medium chain triglyceride administration, low glycemic index treatment, and a modified Atkins diet, have been suggested as useful in patients affected by pharmacoresistant epilepsy. A common goal of these approaches is to achieve an adequate decrease in the plasma glucose level combined with ketogenesis, in order to mimic the metabolic state of fasting. Although several metabolic hypotheses have been advanced to explain the anticonvulsant effect of KDs, including changes in the plasma levels of ketone bodies, polyunsaturated fatty acids, and brain pH, direct modulation of neurotransmitter release, especially purinergic (i.e., adenosine and γ-aminobutyric acidergic neurotransmission, was also postulated. Neuropeptides and peptide hormones are potent modulators of synaptic activity, and their levels are regulated by metabolic states. This is the case for neuroactive peptides such as neuropeptide Y, galanin, cholecystokinin and peptide hormones such as leptin, adiponectin, and growth hormone-releasing peptides (GHRPs. In particular, the GHRP ghrelin and its related peptide des-acyl ghrelin are well-known controllers of energy homeostasis, food intake, and lipid metabolism. Notably, ghrelin has also been shown to regulate the neuronal excitability and epileptic activation of neuronal networks. Several lines of evidence suggest that GHRPs are upregulated in response to starvation and, particularly, in patients affected by anorexia and cachexia, all conditions in which also ketone bodies are upregulated. Moreover, starvation and anorexia nervosa are accompanied by changes in other peptide hormones such as adiponectin, which has received less attention. Adipocytokines such as adiponectin have also been involved in modulating epileptic activity. Thus, neuroactive peptides whose plasma levels and activity change in the presence of ketogenesis might be potential candidates for elucidating the

  2. Material Binding Peptides for Nanotechnology

    Directory of Open Access Journals (Sweden)

    Urartu Ozgur Safak Seker

    2011-02-01

    Full Text Available Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past decade to select material-specific peptides. Screening and selection of such phage displayed material binding peptides has attracted great interest, in particular because of their use in nanotechnology. Phage display selected peptides are either synthesized independently or expressed on phage coat protein. Selected phage particles are subsequently utilized in the synthesis of nanoparticles, in the assembly of nanostructures on inorganic surfaces, and oriented protein immobilization as fusion partners of proteins. In this paper, we present an overview on the research conducted on this area. In this review we not only focus on the selection process, but also on molecular binding characterization and utilization of peptides as molecular linkers, molecular assemblers and material synthesizers.

  3. Collagen-like antimicrobial peptides.

    Science.gov (United States)

    Masuda, Ryo; Kudo, Masakazu; Dazai, Yui; Mima, Takehiko; Koide, Takaki

    2016-11-01

    Combinatorial library composed of rigid rod-like peptides with a triple-helical scaffold was constructed. The component peptides were designed to have various combinations of basic and neutral (or hydrophobic) amino acid residues based on collagen-like (Gly-Pro-Yaa)-repeating sequences, inspired from the basic and amphiphilic nature of naturally occurring antimicrobial peptides. Screening of the peptide pools resulted in identification of antimicrobial peptides. A structure-activity relationship study revealed that the position of Arg-cluster at N-terminus and cystine knots at C-terminus in the triple helix significantly contributed to the antimicrobial activity. The most potent peptide RO-A showed activity against Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. In addition, Escherichia coli exposed to RO-A resulted in abnormal elongation of the cells. RO-A was also shown to have remarkable stability in human serum and low cytotoxicity to mammalian cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 453-459, 2016. PMID:27271210

  4. Photoperiod Regulates vgf-Derived Peptide Processing in Siberian Hamsters.

    Science.gov (United States)

    Noli, Barbara; Brancia, Carla; Pilleri, Roberta; D'Amato, Filomena; Messana, Irene; Manconi, Barbara; Ebling, Francis J P; Ferri, Gian-Luca; Cocco, Cristina

    2015-01-01

    VGF mRNA is induced in specific hypothalamic areas of the Siberian hamster upon exposure to short photoperiods, which is associated with a seasonal decrease in appetite and weight loss. Processing of VGF generates multiple bioactive peptides, so the objective of this study was to determine the profile of the VGF-derived peptides in the brain, pituitary and plasma from Siberian hamsters, and to establish whether differential processing might occur in the short day lean state versus long day fat. Antisera against short sequences at the C- or N- termini of proVGF, as well as against NERP-1, TPGH and TLQP peptides, were used for analyses of tissues, and both immunohistochemistry and enzyme linked immunosorbent assay (ELISA) coupled with high-performance liquid (HPLC) or gel chromatography were carried out. VGF peptide immunoreactivity was found within cortex cholinergic perikarya, in multiple hypothalamic nuclei, including those containing vasopressin, and in pituitary gonadotrophs. ELISA revealed that exposure to short day photoperiod led to a down-regulation of VGF immunoreactivity in the cortex, and a less pronounced decrease in the hypothalamus and pituitary, while the plasma VGF levels were not affected by the photoperiod. HPLC and gel chromatography both confirmed the presence of multiple VGF-derived peptides in these tissues, while gel chromatography showed the presence of the VGF precursor in all tissues tested except for the cortex. These observations are consistent with the view that VGF-derived peptides have pleiotropic actions related to changing photoperiod, possibly by regulating cholinergic systems in the cortex, vasopressin hypothalamic pathways, and the reproductive axis.

  5. Photoperiod Regulates vgf-Derived Peptide Processing in Siberian Hamsters.

    Directory of Open Access Journals (Sweden)

    Barbara Noli

    Full Text Available VGF mRNA is induced in specific hypothalamic areas of the Siberian hamster upon exposure to short photoperiods, which is associated with a seasonal decrease in appetite and weight loss. Processing of VGF generates multiple bioactive peptides, so the objective of this study was to determine the profile of the VGF-derived peptides in the brain, pituitary and plasma from Siberian hamsters, and to establish whether differential processing might occur in the short day lean state versus long day fat. Antisera against short sequences at the C- or N- termini of proVGF, as well as against NERP-1, TPGH and TLQP peptides, were used for analyses of tissues, and both immunohistochemistry and enzyme linked immunosorbent assay (ELISA coupled with high-performance liquid (HPLC or gel chromatography were carried out. VGF peptide immunoreactivity was found within cortex cholinergic perikarya, in multiple hypothalamic nuclei, including those containing vasopressin, and in pituitary gonadotrophs. ELISA revealed that exposure to short day photoperiod led to a down-regulation of VGF immunoreactivity in the cortex, and a less pronounced decrease in the hypothalamus and pituitary, while the plasma VGF levels were not affected by the photoperiod. HPLC and gel chromatography both confirmed the presence of multiple VGF-derived peptides in these tissues, while gel chromatography showed the presence of the VGF precursor in all tissues tested except for the cortex. These observations are consistent with the view that VGF-derived peptides have pleiotropic actions related to changing photoperiod, possibly by regulating cholinergic systems in the cortex, vasopressin hypothalamic pathways, and the reproductive axis.

  6. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Hong; Lee, Ik Hwan; Nam, Seung Taek; Hong, Ji; Zhang, Peng [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of); Hwang, Jae Sam [Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon 441-707 (Korea, Republic of); Seok, Heon [Department of Biomedical Engineering, Jungwon University, Goesan, Chungcheongbukdo 367-700 (Korea, Republic of); Choi, Hyemin; Lee, Dong Gun [School of Life Sciences, KNU Creative Bioresearch Group (BK21 Plus Program), College of Natural Sciences, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu 702-701 (Korea, Republic of); Kim, Jae Il [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kim, Ho, E-mail: hokim@daejin.ac.kr [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of)

    2014-06-06

    Highlights: • 11-mer peptide Lumbricusin, a defensin like peptide, is isolated from earthworm. • We here demonstrated that Lumbricusin has neurotropic and neuroprotective effects. • p27 degradation by Lumbricusin mediates effects of Lumbricusin on neuronal cells. - Abstract: We recently isolated a polypeptide from the earthworm Lumbricus terrestris that is structurally similar to defensin, a well-known antibacterial peptide. An 11-mer antibacterial peptide (NH{sub 2}-RNRRWCIDQQA), designated Lumbricusin, was synthesized based on the amino acid sequence of the isolated polypeptide. Since we previously reported that CopA3, a dung beetle peptide, enhanced neuronal cell proliferation, we here examined whether Lumbricusin exerted neurotropic and/or neuroprotective effects. Lumbricusin treatment induced a time-dependent increase (∼51%) in the proliferation of human neuroblastoma SH-SY5Y cells. Lumbricusin also significantly inhibited the apoptosis and decreased viability induced by treatment with 6-hydroxy dopamine, a Parkinson’s disease-mimicking agent. Immunoblot analyses revealed that Lumbricusin treatment increased ubiquitination of p27{sup Kip1} protein, a negative regulator of cell-cycle progression, in SH-SY5Y cells, and markedly promoted its degradation. Notably, adenoviral-mediated over-expression of p27{sup Kip1} significantly blocked the antiapoptotic effect of Lumbricusin in 6-hydroxy dopamine-treated SH-SY5Y cells. These results suggest that promotion of p27{sup Kip1} degradation may be the main mechanism underlying the neuroprotective and neurotropic effects of Lumbricusin.

  7. Cellular penetration and nuclear importation properties of {sup 111}In-labeled and {sup 123}I-labeled HIV-1 tat peptide immunoconjugates in BT-474 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cornelissen, Bart [Division of Nuclear Medicine, University Health Network, Toronto, ON, M5S 3M2 (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Hu, Meiduo [Division of Nuclear Medicine, University Health Network, Toronto, ON, M5S 3M2 (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); McLarty, Kristin [Division of Nuclear Medicine, University Health Network, Toronto, ON, M5S 3M2 (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Costantini, Dan [Division of Nuclear Medicine, University Health Network, Toronto, ON, M5S 3M2 (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Reilly, Raymond M. [Division of Nuclear Medicine, University Health Network, Toronto, ON, M5S 3M2 (Canada) and Department of Medical Imaging, University of Toronto, Toronto, ON, M5S 3M2 (Canada) and Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada) and Toronto General Research Institute, University Health Network, Toronto, ON, M5S 3M2 (Canada)]. E-mail: raymond.reilly@utoronto.ca

    2007-01-15

    Introduction: Our objective was to compare the cell penetration and nuclear importation properties of {sup 111}In-labeled and {sup 123}I-labeled immunoconjugates (ICs) composed of 16-mer peptides (GRKKRRQRRRPPQGYG) derived from HIV-1 transactivator of transcription (tat) protein and anti-mouse IgG (mIgG) in BT-474 breast cancer (BC) cells. Methods: [{sup 111}In]tat ICs were constructed by site-specific conjugation of tat peptides to NaIO{sub 4} {sup -}-oxidized carbohydrates in the Fc domain of diethylenetriaminepentaacetic-acid-modified anti-mIgG antibodies. Immunoreactivity against mIgG was assessed in a competition assay. The kinetics of the accumulation of [{sup 111}In]anti-mIgG-tat IC and [{sup 123}I]anti-mIgG-tat ICs in BT-474 cells and the elimination of radioactivity from cells, cytoplasm or nuclei were determined. The effects of excess tat peptides or NH{sub 4}Cl (an inhibitor of endosomal acidification) on cellular uptake and nuclear importation of [{sup 111}In]anti-mIgG-tat were measured. Results: [{sup 111}In]anti-mIgG-tat was >97% radiochemically pure and exhibited preserved immunoreactivity with mIgG epitopes. [{sup 123}I]Anti-mIgG-tat penetrated BT-474 cells more rapidly than [{sup 111}In]anti-mIgG-tat ICs and achieved a 1.5-fold to a 2-fold higher uptake in cells and nuclei. Cell penetration and nuclear uptake of [{sup 111}In]anti-mIgG-tat were inhibited by excess tat peptides and NH{sub 4}Cl. Elimination of radioactivity from BT-474 cells and nuclei was more rapid and complete for {sup 123}I-labeled than for {sup 111}In-labeled anti-mIgG-tat ICs. Conclusion: Tat peptides derived from HIV-1 tat protein promoted the penetration and nuclear uptake of radioactivity following the incubation of {sup 111}In-labeled and {sup 123}I-labeled anti-mIgG antibodies with BT-474 human BC cells. {sup 111}In-labeled tat ICs are feasible for inserting radionuclides into cancer cells with potential for targeting intracellular and, particularly, nuclear epitopes for

  8. Inhibition of the ferric uptake regulator by peptides derived from anti-FUR peptide aptamers: coupled theoretical and experimental approaches.

    Science.gov (United States)

    Cissé, Cheickna; Mathieu, Sophie V; Abeih, Mohamed B Ould; Flanagan, Lindsey; Vitale, Sylvia; Catty, Patrice; Boturyn, Didier; Michaud-Soret, Isabelle; Crouzy, Serge

    2014-12-19

    The FUR protein (ferric uptake regulator) is an iron-dependent global transcriptional regulator. Specific to bacteria, FUR is an attractive antibacterial target since virulence is correlated to iron bioavailability. Recently, four anti-FUR peptide aptamers, composed of 13 amino acid variable loops inserted into a thioredoxinA scaffold, were identified, which were able to interact with Escherichia coli FUR (EcFUR), inhibit its binding to DNA and to decrease the virulence of pathogenic E. coli in a fly infection model. The first characterization of anti-FUR linear peptides (pF1 6 to 13 amino acids) derived from the variable part of the F1 anti-FUR peptide aptamer is described herein. Theoretical and experimental approaches, in original combination, were used to study interactions of these peptides with FUR in order to understand their mechanism of inhibition. After modeling EcFUR by homology, docking with Autodock was combined with molecular dynamics simulations in implicit solvent to take into account the flexibility of the partners. All calculations were cross-checked either with other programs or with experimental data. As a result, reliable structures of EcFUR and its complex with pF1 are given and an inhibition pocket formed by the groove between the two FUR subunits is proposed. The location of the pocket was validated through experimental mutation of key EcFUR residues at the site of proposed peptide interaction. Cyclisation of pF1, mimicking the peptide constraint in F1, improved inhibition. The details of the interactions between peptide and protein were analyzed and a mechanism of inhibition of these anti-FUR molecules is proposed.

  9. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Directory of Open Access Journals (Sweden)

    Veronika Mäde

    2014-05-01

    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  10. Peptides and Food Intake

    Directory of Open Access Journals (Sweden)

    Carmen Sobrino Crespo

    2014-04-01

    Full Text Available Nutrients created by the digestion of food are proposed to active G protein coupled receptors on the luminal side of enteroendocrine cells e.g. the L-cell. This stimulates the release of gut hormones. Hormones released from the gut and adipose tissue play an important rol in the regulation of food intake and energy expenditure (1.Many circulating signals, including gut hormones, can influence the activity of the arcuate nucleus (ARC neurons directly, after passing across the median eminence. The ARC is adjacent to the median eminence, a circumventricular organ with fenestrated capillaries and hence an incomplete blood-brain barrier (2. The ARC of the hypothalamus is believed to play a crucial role in the regulation of food intake and energy homeostasis. The ARC contains two populations of neurons with opposing effect on food intake (3. Medially located orexigenic neurons (i.e those stimulating appetite express neuropeptide Y (NPY and agouti-related protein (AgRP (4-5. Anorexigenic neurons (i.e. those inhibiting appetite in the lateral ARC express alpha-melanocyte stimulating hormone (α-MSH derived from pro-opiomelanocortin (POMC and cocaine and amphetamine-regulated transcript (CART (6. The balance between activities of these neuronal circuits is critical to body weight regulation.In contrast, other peripheral signals influence the hypothalamus indirectly via afferent neuronal pathway and brainstem circuits. In this context gastrointestinal’s vagal afferents are activated by mechanoreceptors and chemoreceptors, and converge in the nucleus of the tractus solitaries (NTS of the brainstem. Neuronal projections from the NTS, in turn, carry signals to the hypotalamus (1, 7. Gut hormones also alter the activity of the ascending vagal pathway from the gut to the brainstem. In the cases of ghrelin and Peptide tyrosine tyrosine (PYY, there are evidences for both to have a direct action on the arcuate nucleus and an action via the vagus nerve a

  11. 穿膜肽R6促进低分子肝素大鼠肠道吸收的研究%Intestinal Absorption Studies on Low Molecular Weight Heparin in Rats Using Cell-penetrating Peptide R6 as Absorption Enhancer

    Institute of Scientific and Technical Information of China (English)

    吕慧侠; 张振海; 孙博; 周建平

    2009-01-01

    目的 研究穿膜肽R6促进低分子肝素大鼠肠道吸收的作用.方法 以用药前后血液凝固时间的变化为指标,采用大鼠十二指肠给药的方法评价R6对低分子肝素的促吸收作用,采用肠袢法研究R6的主要促吸收部位.结果 R6作为吸收促进剂,低分子肝素十二指肠给药后凝血时间显著延长,R6在十二指肠、空肠、回肠部位均显示促吸收作用,且在回肠部位的促吸收效果最显著.结论 R6能够显著促进低分子肝素的大鼠肠道吸收.

  12. Peptides: A new class of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Ryszard Smolarczyk

    2009-07-01

    Full Text Available Peptides are a novel class of anticancer agents embracing two distinct categories: natural antibacterial peptides, which are preferentially bound by cancer cells, and chemically synthesized peptides, which bind specifically to precise molecular targets located on the surface of tumor cells. Antibacterial peptides bind to both cell and mitochondrial membranes. Some of these peptides attach to the cell membrane, resulting in its disorganization. Other antibacterial peptides penetrate cancer cells without causing cell membrane damage, but they disrupt mitochondrial membranes. Thanks to phage and aptamer libraries, it has become possible to obtain synthetic peptides blocking or activating some target proteins found in cancer cells as well as in cells forming the tumor environment. These synthetic peptides can feature anti-angiogenic properties, block enzymes indispensable for sustained tumor growth, and reduce tumor ability to metastasize. In this review the properties of peptides belonging to both categories are discussed and attempts of their application for therapeutic purposes are outlined.

  13. Perspectives and Peptides of the Next Generation

    Science.gov (United States)

    Brogden, Kim A.

    Shortly after their discovery, antimicrobial peptides from prokaryotes and eukaryotes were recognized as the next potential generation of pharmaceuticals to treat antibiotic-resistant bacterial infections and septic shock, to preserve food, or to sanitize surfaces. Initial research focused on identifying the spectrum of antimicrobial agents, determining the range of antimicrobial activities against bacterial, fungal, and viral pathogens, and assessing the antimicrobial activity of synthetic peptides versus their natural counterparts. Subsequent research then focused on the mechanisms of antimicrobial peptide activity in model membrane systems not only to identify the mechanisms of antimicrobial peptide activity in microorganisms but also to discern differences in cytotoxicity for prokaryotic and eukaryotic cells. Recent, contemporary work now focuses on current and future efforts to construct hybrid peptides, peptide congeners, stabilized peptides, peptide conjugates, and immobilized peptides for unique and specific applications to control the growth of microorganisms in vitro and in vivo.

  14. Exploration of the Medicinal Peptide Space.

    Science.gov (United States)

    Gevaert, Bert; Stalmans, Sofie; Wynendaele, Evelien; Taevernier, Lien; Bracke, Nathalie; D'Hondt, Matthias; De Spiegeleer, Bart

    2016-01-01

    The chemical properties of peptide medicines, known as the 'medicinal peptide space' is considered a multi-dimensional subset of the global peptide space, where each dimension represents a chemical descriptor. These descriptors can be linked to biofunctional, medicinal properties to varying degrees. Knowledge of this space can increase the efficiency of the peptide-drug discovery and development process, as well as advance our understanding and classification of peptide medicines. For 245 peptide drugs, already available on the market or in clinical development, multivariate dataexploration was performed using peptide relevant physicochemical descriptors, their specific peptidedrug target and their clinical use. Our retrospective analysis indicates that clusters in the medicinal peptide space are located in a relatively narrow range of the physicochemical space: dense and empty regions were found, which can be explored for the discovery of novel peptide drugs. PMID:26876881

  15. Hyperhomocysteinemia decreases bone blood flow

    Directory of Open Access Journals (Sweden)

    Neetu T

    2011-01-01

    Full Text Available Neetu Tyagi*, Thomas P Vacek*, John T Fleming, Jonathan C Vacek, Suresh C TyagiDepartment of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA *These authors have equal authorshipAbstract: Elevated plasma levels of homocysteine (Hcy, known as hyperhomocysteinemia (HHcy, are associated with osteoporosis. A decrease in bone blood flow is a potential cause of compromised bone mechanical properties. Therefore, we hypothesized that HHcy decreases bone blood flow and biomechanical properties. To test this hypothesis, male Sprague–Dawley rats were treated with Hcy (0.67 g/L in drinking water for 8 weeks. Age-matched rats served as controls. At the end of the treatment period, the rats were anesthetized. Blood samples were collected from experimental or control rats. Biochemical turnover markers (body weight, Hcy, vitamin B12, and folate were measured. Systolic blood pressure was measured from the right carotid artery. Tibia blood flow was measured by laser Doppler flow probe. The results indicated that Hcy levels were significantly higher in the Hcy-treated group than in control rats, whereas vitamin B12 levels were lower in the Hcy-treated group compared with control rats. There was no significant difference in folate concentration and blood pressure in Hcy-treated versus control rats. The tibial blood flow index of the control group was significantly higher (0.78 ± 0.09 flow unit compared with the Hcy-treated group (0.51 ± 0.09. The tibial mass was 1.1 ± 0.1 g in the control group and 0.9 ± 0.1 in the Hcy-treated group. The tibia bone density was unchanged in Hcy-treated rats. These results suggest that Hcy causes a reduction in bone blood flow, which contributes to compromised bone biomechanical properties.Keywords: homocysteine, tibia, bone density

  16. Preparation and characterization of coacervate microcapsules for the delivery of antimicrobial oyster peptides.

    Science.gov (United States)

    Zhang, Li; Liu, Yezhou; Wu, Zhongchen; Chen, Haixu

    2009-03-01

    Oyster peptides-loaded alginate/chitosan/starch microcapsules were prepared using external gelation method and internal emulsion gelation method. The solution of oyster peptides complexes was encapsulated into the microcapsules, which endowed the microcapsules with intestine passive targeting properties. The swelling behavior, encapsulation efficiency, and release behavior of oyster peptides from the microcapsules at different pH values were investigated. The microcapsules exhibited sustained release of the peptides in intestinal medium, and the release rate could be regulated by the pH value: in simulated gastric fluid, the release rate was greatly decreased, and in simulated body fluid and intestinal fluid, the microcapsules exhibited a sustained release in 24 h with different release rates. The microspheres were characterized by Fourier transform infrared. The results suggested that the alginate/chitosan/starch microcapsules could be a suitable copolymeric carrier system for intestinal protein or peptides delivery in the intestine.

  17. The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Kyung-Soo Hahm

    2011-09-01

    Full Text Available Over the last decade, decreasing effectiveness of conventional antimicrobial-drugs has caused serious problems due to the rapid emergence of multidrug-resistant pathogens. Furthermore, biofilms, which are microbial communities that cause serious chronic infections and dental plaque, form environments that enhance antimicrobial resistance. As a result, there is a continuous search to overcome or control such problems, which has resulted in antimicrobial peptides being considered as an alternative to conventional drugs. Antimicrobial peptides are ancient host defense effector molecules in living organisms. These peptides have been identified in diverse organisms and synthetically developed by using peptidomimic techniques. This review was conducted to demonstrate the mode of action by which antimicrobial peptides combat multidrug-resistant bacteria and prevent biofilm formation and to introduce clinical uses of these compounds for chronic disease, medical devices, and oral health. In addition, combinations of antimicrobial peptides and conventional drugs were considered due to their synergetic effects and low cost for therapeutic treatment.

  18. Peptide Vaccine: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Weidang Li

    2014-07-01

    Full Text Available Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines.

  19. CXCR4-antagonist Peptide R-liposomes for combined therapy against lung metastasis

    Science.gov (United States)

    Ieranò, Caterina; Portella, Luigi; Lusa, Sara; Salzano, Giuseppina; D'Alterio, Crescenzo; Napolitano, Maria; Buoncervello, Maria; Macchia, Daniele; Spada, Massimo; Barbieri, Antonio; Luciano, Antonio; Barone, Maria Vittoria; Gabriele, Lucia; Caraglia, Michele; Arra, Claudio; De Rosa, Giuseppe; Scala, Stefania

    2016-03-01

    The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide R were developed (PL-Peptide R). In vitro PL-Peptide R efficiently inhibited CXCR4-dependent migration and in vivo it significantly reduced lung metastases and increased overall survival in B16-CXCR4 injected C57BL/6 mice. To evaluate if PL-Peptide R could also be a drug delivery system for CXCR4 expressing tumors, the PL-Peptide R was loaded with doxorubicin (DOX) (PL-Peptide R-DOX). PL-Peptide R-DOX efficiently delivered DOX to CXCR4 expressing cell lines with a consequent decrease in the DOX IC50 efficient dose. In vivo, B16-CXCR4 injected C57BL/6 mice treated with PL-Peptide R-DOX developed fewer lung metastases compared to PL-DOX treated mice. This work provides the proof-of-concept to prevent metastasis by using combined nanomedicine.The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide

  20. Transforming growth factor-β1 phage model peptides isolated from a phage display 7-mer peptide library can inhibit the activity of keloid fibroblasts

    Institute of Scientific and Technical Information of China (English)

    ZONG Xian-lei; JIANG Du-yin; WANG Ji-chang; LIU Jun-li; LIU Zhen-zhong; CAI Jing-long

    2011-01-01

    Background Transforming growth factor-β1 (TGF-β1) is known to have a role in keloid formation through the activation of fibroblasts and the acceleration of collagen deposition. The objective of this current study was to isolate TGF-β1 phage model peptides from a phage display 7-mer peptide library to evaluate their therapeutic effect on inhibiting the activity of keloid fibroblasts.Methods A phage display 7-mer peptide library was screened using monoclonal anti-human TGF-β1 as the target to obtain specific phages containing ectogenous model peptides similar to TGF-β1. Enzyme-linked immunosorbent assay (ELISA) was performed to select monoclonal phages with good binding activity, which underwent DNA sequencing. MTT assay and apoptosis assessment were used to evaluate the biological effects of the phage model peptides on keloid fibroblasts. Immunofluorescence assay was employed to show the binding affinity of the model peptides on phages causing keloid fibroblasts. Quantitative real-time PCR analysis was carried out to detect the expressions of nuclear factor κB (NF-κB) mRNA, connective tissue growth factor (CTGF) mRNA and TGF-β receptor Ⅱ (TβRII) mRNA in keloid fibroblasts.Results Specific phages with good results of ELISA were beneficiated. Four phage model peptides were obtained. The data of MTT showed that TGF-β1 and one phage model peptide (No. 4) could promote keloid fibroblasts proliferation,however, three phage model peptides (No. 1-3) could inhibit keloid fibroblasts proliferation. The results of apoptosis assessment showed that the three phage model peptides could slightly induce the apoptosis in keloid fibroblasts. The data of immunofluorescence assay revealed that the model peptides on phages rather than phages could bind to keloid fibroblasts. The findings of quantitative real-time PCR analysis suggested that the expressions of NF-κB mRNA and CTGF mRNA in the three phage model peptide groups decreased, while the expression of TβRII m

  1. Recent development of peptide self-assembly

    Institute of Scientific and Technical Information of China (English)

    Xiubo Zhao; Fang Pan; Jian R. Lu

    2008-01-01

    Amino acids are the building blocks to build peptides and proteins. Recent development in peptide synthesis has however enabled us to mimic this natural process by preparing various long and short peptides possessing different conformations and biological functions. The self-assembly of short designed peptides into molecular nanostructures is becoming a growing interest in nanobiotechnology. Self-assembled peptides exhibit several attractive features for applications in tissue regeneration, drug delivery, biological surface engineering as well as in food science, cosmetic industry and antibiotics. The aim of this review is to introduce the readers to a number of representative studies on peptide self-assembly.

  2. Effects of peptide YY on gallbladder motility

    International Nuclear Information System (INIS)

    The effects of peptide YY (PYY) on cholecystokinin-stimulated gallbladder contraction were investigated in the prairie dog model. Twelve animals underwent laparotomy with catheter placement into the gallbladder and common bile duct (vent). The gallbladder was continuously perfused with [14C]polyethylene glycol-labeled lactated Ringer at 0.03 ml/min, and vent effluent was collected at 2.5-min intervals. All animals received 20 min of intravenous infusion of cholecystokinin octapeptide (CCK-OP), 2.5 ng x kg-1 x min-1, immediately followed by 60-min infusions of either lactated Ringer (LR) or synthetic PYY, 10 or 50 ng x kg-1 x min-1. When LR was infused after CCK-OP, gallbladder filling increased by 15.4 +/- 10.5% with minimal changes in gallbladder pressure. Infusion of PYY10 resulted in a significant increase in gallbladder volume and filling with a significant decrease in intragallbladder pressure. Similar findings were noted with PYY50. These data indicate that synthetic PYY significantly augments gallbladder filling after CCK-OP-stimulated gallbladder contraction. These finding, coupled with the observation that PYY inhibits pancreatic secretion, suggest that this peptide may be the anti-CCK hormone and may have an important role in regulating biliary activity postprandially

  3. Antiviral active peptide from oyster

    Science.gov (United States)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  4. Antiviral active peptide from oyster

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster (Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10-5 kDa, 5-1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10?5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  5. Radioactive labelling of peptidic hormones

    International Nuclear Information System (INIS)

    The labelling of peptidic hormones requires stability, specificity and sensitivity of the label. Introduction of a radioactive atome is one way to satisfy these criteria. Several processes have been described to prepare radioactive TRF: synthesis of the peptide with labelled aminoacids or introduction of the label into the hormone. In that approach, tritium can be substituted in the imidazole ring, via precursors activating the proper carbon. Monoiodo TRF leads essentially to tritium labelling of the 5 positions whereas monoazo TRF allows the preparation of 3H TRF labelled in the 2 positions. Di-substituted TRF leads to labelling into the 2 and 5 carbons. Labelled analogs of TRF can be prepared with labelled iodine; further developments of peptide labelling, will be presented. In particular, the homolytic scission of the C-iodine, bond by photochemical activation. The nascent carbon radical can be stabilized by a tritiated scavenger. This approach eliminates the use of heavy metal catalysts

  6. 18F-Labeled proinsulin connecting peptide (C-peptide): In vivo distribution and pharmacokinetics using PET

    International Nuclear Information System (INIS)

    C-peptide, produced and released in equimolar amounts with insulin, was previously considered biologically inactive. Administration to type 1 (insulin-dependent) diabetes mellitus (DM) patients has, however, indicated that C-peptide exerts a number of beneficial effects, improving long-term complications of type 1 DM on e.g. renal and nerve function (Wahren, Am J Physiol Endocrinol Metab 278: E759, 2000). Aim: To evaluate biodistribution and regional pharmacokinetics in humans using the 18F-labeled C-peptide and positron emission tomography. Materials and Methods: Five, fasting, male IDDM patients were scanned after injection of N-4-[18F]fluorobenzoyl-C-peptide. Dynamic scans over kidneys (4 pat: 2 no-carrier-added (n.c.a.); 2 carrier C-peptide added (c.a.)) and heart (1 pat, n.c.a) and static scans (n.c.a) over body segments (2 pat), CNS and urinary bladder were performed. Plasma radioactivity was also measured. Results: PET images showed predominant distribution of radioactivity to the kidneys (renal cortex 7% of injected dose (i.d.) at peak). Distinguishable amounts of radioactivity were also observed in heart, lungs and liver, but not in CNS at late times. Low amounts were observed in what was presumed to be pancreas. Uptake in total muscle, based on concentrations in a skeletal muscle ROI at 10-75 min, could account for up to 15% i.d. Radioactivity was excreted to the urinary bladder. Time-radioactivity curves for renal cortex peaked within the first 6 min and then decreased to ca 0.01±0.002% i.d./mL at 15 min. Radioactivity peaked in the second time frame (≤ 4 min) in liver and in the first time frame (≤ 2 min) in other organs and plasma. Washout for all organs and for plasma was biphasic. The kinetics in the renal cortex were different when carrier C-peptide was co-injected. Conclusion: The main distribution to the kidneys observed here is consistent with previous findings on C-peptide's catabolism and it's documented effects on renal function. This PET

  7. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    is considered poor compared to medicines for lifestyle diseases. According to the WHO we could be moving towards a post-antibiotic era in which previously treatable infections become fatal. Of special importance are multidrug resistant bacteria from the ESKAPE group (Enterococcus faecium, Staphylococcus aureus...... a cecropin-mellitin hybrid peptide and proved effective in killing colistin resistant Gram-negative A. baumannii in vitro. The molecule was improved with regard to toxicity, as measured by hemolytic ability. Further, this peptide is capable of specifically killing non-growing cells of colistin resistant A...

  8. Peptides and the new endocrinology

    Science.gov (United States)

    Schwyzer, Robert

    1982-01-01

    The discovery of regulatory peptides common to the nervous and the endocrine systems (brain, gut, and skin) has brought about a revolution in our concepts of endocrinology and neurology. We are beginning to understand some of the complex interrelationships between soma and psyche that might, someday, be important for an integrated treatment of diseases. Examples of the actions of certain peptides in the periphery and in the central nervous system are given, and their biosynthesis and molecular anatomy as carriers for information are discussed.

  9. Novel Formulations for Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2014-10-01

    Full Text Available Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  10. Protective Effect of Wheat Peptides against Indomethacin-Induced Oxidative Stress in IEC-6 Cells

    Directory of Open Access Journals (Sweden)

    Hong Yin

    2014-01-01

    Full Text Available Recent studies have demonstrated that wheat peptides protected rats against non-steroidal anti-inflammatory drugs-induced small intestinal epithelial cells damage, but the mechanism of action is unclear. In the present study, an indomethacin-induced oxidative stress model was used to investigate the effect of wheat peptides on the nuclear factor-κB(NF-κB-inducible nitric oxide synthase-nitric oxide signal pathway in intestinal epithelial cells-6 cells. IEC-6 cells were treated with wheat peptides (0, 125, 500 and 2000 mg/L for 24 h, followed by 90 mg/L indomethacin for 12 h. Wheat peptides significantly attenuated the indomethacin-induced decrease in superoxide dismutase and glutathione peroxidase activity. Wheat peptides at 2000 mg/L markedly decreased the expression of the NF-κB in response to indomethacin-induced oxidative stress. This study demonstrated that the addition of wheat peptides to a culture medium significantly inhibited the indomethacin-induced release of malondialdehyde and nitrogen monoxide, and increased antioxidant enzyme activity in IEC-6 cells, thereby providing a possible explanation for the protective effect proposed for wheat peptides in the prevention of indomethacin-induced oxidative stress in small intestinal epithelial cells.

  11. An enhancer peptide for membrane-disrupting antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Zhang Hong

    2010-02-01

    Full Text Available Abstract Background NP4P is a synthetic peptide derived from a natural, non-antimicrobial peptide fragment (pro-region of nematode cecropin P4 by substitution of all acidic amino acid residues with amides (i.e., Glu → Gln, and Asp → Asn. Results In the presence of NP4P, some membrane-disrupting antimicrobial peptides (ASABF-α, polymyxin B, and nisin killed microbes at lower concentration (e.g., 10 times lower minimum bactericidal concentration for ASABF-α against Staphylococcus aureus, whereas NP4P itself was not bactericidal and did not interfere with bacterial growth at ≤ 300 μg/mL. In contrast, the activities of antimicrobial agents with a distinct mode of action (indolicidin, ampicillin, kanamycin, and enrofloxacin were unaffected. Although the membrane-disrupting activity of NP4P was slight or undetectable, ASABF-α permeabilized S. aureus membranes with enhanced efficacy in the presence of NP4P. Conclusions NP4P selectively enhanced the bactericidal activities of membrane-disrupting antimicrobial peptides by increasing the efficacy of membrane disruption against the cytoplasmic membrane.

  12. Folic acid-tethered Pep-1 peptide-conjugated liposomal nanocarrier for enhanced intracellular drug delivery to cancer cells: conformational characterization and in vitro cellular uptake evaluation

    Directory of Open Access Journals (Sweden)

    Kang MJ

    2013-03-01

    positive tumors with high translocation capability of the penetrating peptide–modified liposome. Keywords: liposome, folic acid, Pep-1 peptide, cell-penetrating peptide, intracellular delivery, targeted delivery

  13. Reverse-phase HPLC separation of hemp seed (Cannabis sativa L.) protein hydrolysate produced peptide fractions with enhanced antioxidant capacity.

    Science.gov (United States)

    Girgih, Abraham T; Udenigwe, Chibuike C; Aluko, Rotimi E

    2013-03-01

    Hemp seed protein hydrolysate (HPH) was produced through simulated gastrointestinal tract (GIT) digestion of hemp seed protein isolate followed by partial purification and separation into eight peptide fractions by reverse-phase (RP)-HPLC. The peptide fractions exhibited higher oxygen radical absorbance capacity as well as scavenging of 2,2-diphenyl-1-picrylhydrazyl, superoxide and hydroxyl radicals when compared to HPH. Radical scavenging activities of the fractionated peptides increased as content of hydrophobic amino acids or elution time was increased, with the exception of hydroxyl radical scavenging that showed decreased trend. Glutathione (GSH), HPH and the RP-HPLC peptide fractions possessed low ferric ion reducing ability but all had strong (>60 %) metal chelating activities. Inhibition of linoleic acid oxidation by some of the HPH peptide fractions was higher at 1 mg/ml when compared to that observed at 0.1 mg/ml peptide concentration. Peptide separation resulted in higher concentration of some hydrophobic amino acids (especially proline, leucine and isoleucine) in the fractions (mainly F5 and F8) when compared to HPH. The elution time-dependent increased concentrations of the hydrophobic amino acids coupled with decreased levels of positively charged amino acids may have been responsible for the significantly higher (p < 0.05) antioxidant properties observed for some of the peptide fractions when compared to the unfractionated HPH. In conclusion, the antioxidant activity of HPH after simulated GIT digestion is mainly influenced by the amino acid composition of some of its peptides.

  14. Handle region peptide and losartan decreasing the expression of subunits of nicotinamide adenine dinucleotide phosphate oxidase in celiac adipose tissue in rats neonatally treated with sodium L-glutamate%手把区域多肽及氯沙坦抑制左旋谷氨酸钠大鼠腹部脂肪组织还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶亚单位的表达

    Institute of Scientific and Technical Information of China (English)

    鄞国书; 徐冬川; 孙如琼; 林少达

    2014-01-01

    Objective To investigate the effect of handle region peptide (HRP) on insulin sensitivity,local renin-angiotensin system and subunits of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in abdominal adipose tissue in the rats neonatally treated with monosodium L-glutamate (MSG).Methods The eight-week-old MSG rats were randomly divided into MSG control group (MSG group,n =6),HRP treated group (MSG-HRP group,n =6,1.0 mg · d-1 · kg-1 with mini-pump),losartan treated group (MSG-L group,n =6,450 mg/L in drinking water) and HRP with losartan combined treated group (MSG-HRP-L group,n =6).The period of treatment is four weeks.Normal SD rats (con group,n =6) served as control.At the age of 12 weeks,insulin tolerance test was performed to evaluate the insulin sensitivity.The blood glucose ratio of 30 min to 0 min after infusion of insulin was calculated.The mRNA levels of (Pro) renin,(Pro) renin receptor ((P) RR),angiotensin type 1 receptor (AT1R) and subunits of NADPH oxidase,including p47phox and p22phox in abdominal adipose tissue were measured by realtime PCR,and the protein level of angiotensin-Ⅱ (Ang-Ⅱ) was measured by ELISA.ANOVA and LSDtest was performed to estimate difference between groups.Results The ratio of blood glucose concentration 30 min after insulin injection to the basic blood glucose concentration was calculated.The MSG group (92%± 12%) had the highest level of the ratio and had statistic difference with the Con group (66% 8%),MSG-HRP group (76% ±5%),MSG-L group (78% ±5%) and MSG-HRP-L group (75% 10%) (F =6.875,all above P < 0.05).The (pro) renin mRNA was not detected in abdominal adipose tissue.The MSG-HRP group,MSG-L group,and MSG-HRP-L group had 1.92,3.19 and 1.90 times (F=9.805,all P < 0.05) of (P) RR mRNA expression respectively and had 72%,45%,and 53% (F =14.508,all P <0.05) of AT1R mRNA expression respectively compared to the MSG group.Compared to the MSG group ((56 ± 4) ng/g protein

  15. Strategic approaches to optimizing peptide ADME properties.

    Science.gov (United States)

    Di, Li

    2015-01-01

    Development of peptide drugs is challenging but also quite rewarding. Five blockbuster peptide drugs are currently on the market, and six new peptides received first marketing approval as new molecular entities in 2012. Although peptides only represent 2% of the drug market, the market is growing twice as quickly and might soon occupy a larger niche. Natural peptides typically have poor absorption, distribution, metabolism, and excretion (ADME) properties with rapid clearance, short half-life, low permeability, and sometimes low solubility. Strategies have been developed to improve peptide drugability through enhancing permeability, reducing proteolysis and renal clearance, and prolonging half-life. In vivo, in vitro, and in silico tools are available to evaluate ADME properties of peptides, and structural modification strategies are in place to improve peptide developability. PMID:25366889

  16. Histidine-Containing Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2000-01-01

    Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics.......Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics....

  17. Lipoxygenase inhibitor peptides and their use

    OpenAIRE

    Schurink, M.; Boeriu, C.G.; Berkel, van, A.M.; Wichers, H J

    2006-01-01

    The present invention is in the field of enzyme inhibition. In particular it relates to peptide inhibitors for lipoxygenases. The lipoxygenase peptide inhibitors of have the potential to be used as therapeutic drugs as well as food preservatives.

  18. Natriuretic peptides in cardiometabolic regulation and disease

    DEFF Research Database (Denmark)

    Zois, Nora Elisabeth; Bartels, Emil Daniel; Hunter, Ingrid;

    2014-01-01

    decade. Dysregulation of the natriuretic peptide system has been associated with obesity, glucose intolerance, type 2 diabetes mellitus, and essential hypertension. Moreover, the natriuretic peptides have been implicated in the protection against atherosclerosis, thrombosis, and myocardial ischaemia. All...

  19. Design and Characterization of an Acid-Activated Antimicrobial Peptide

    OpenAIRE

    Li, Lina; He, Jian; Eckert, Randal; Yarbrough, Daniel; Lux, Renate; Anderson, Maxwell; Shi, Wenyuan

    2009-01-01

    Dental caries is a microbial biofilm infection in which the metabolic activities of plaque bacteria result in a dramatic pH decrease and shift the demineralization/ remineralization equilibrium on the tooth surface towards demineralization. In addition to causing a net loss in tooth minerals creation of an acidic environment favors growth of acid enduring and acid generating species, which causes further reduction in the plaque pH. In this study we developed a prototype antimicrobial peptide ...

  20. C-type natriuretic peptide modulates permeability of the blood–brain barrier

    OpenAIRE

    BOHARA, Manoj; Kambe, Yuki; Nagayama, Tetsuya; TOKIMURA, Hiroshi; Arita, Kazunori; Miyata, Atsuro

    2014-01-01

    C-type natriuretic peptide (CNP) is abundant in brain and is reported to exert autocrine function in vascular cells, but its effect on blood–brain barrier (BBB) permeability has not been clarified yet. Here, we examined this effect. Transendothelial electrical resistance (TEER) of in vitro BBB model, composed of bovine brain microvascular endothelial cells and astrocytes, was significantly dose dependently decreased by CNP (1, 10, and 100 nmol/L). C-type natriuretic peptide treatment reduced ...

  1. Purification, structure and function of bioactive peptides

    OpenAIRE

    Eriste, Elo

    2004-01-01

    Peptides are vitally important molecules and many evoke cellular responses. The completion of several genome sequencing projects has revealed a number of new genes. However, as functional peptides often contain posttranslational modifications and/or occur at various lengths, it is of great importance to detect, purify and characterize novel bioactive peptides. To achieve these goals, new methods for peptide detection, isolation and functional characterization have to be d...

  2. Development and use of engineered peptide deformylase in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia

    2012-01-01

    Deze thesis beschrijft het onderzoek naar potentieel van het gebruik van het peptide deformylase (PDF) in chemo enzymatische peptide synthese. PDF is geschikt voor selective N terminale deformylatie van bepaalde N-formyl-peptides zonder gelijktijdige hydrolyse van de peptide binding. Door de uitdagi

  3. Effect of agitation on the peptide fibrillization: Alzheimer's amyloid-β peptide 1-42 but not amylin and insulin fibrils can grow under quiescent conditions.

    Science.gov (United States)

    Tiiman, Ann; Noormägi, Andra; Friedemann, Merlin; Krishtal, Jekaterina; Palumaa, Peep; Tõugu, Vello

    2013-06-01

    Many peptides and proteins can form fibrillar aggregates in vitro, but only a limited number of them are forming pathological amyloid structures in vivo. We studied the fibrillization of four peptides--Alzheimer's amyloid-β (Aβ) 1-40 and 1-42, amylin and insulin. In all cases, intensive mechanical agitation of the solution initiated fast fibrillization. However, when the mixing was stopped during the fibril growth phase, the fibrillization of amylin and insulin was practically stopped, and the rate for Aβ40 substantially decreased, whereas the fibrillization of Aβ42 peptide continued to proceed with almost the same rate as in the agitated conditions. The reason for the different sensitivity of the in vitro fibrillization of these peptides towards agitation in the fibril growth phase remains elusive. PMID:23609985

  4. Interpreting peptide mass spectra by VEMS

    DEFF Research Database (Denmark)

    Mathiesen, Rune; Lundsgaard, M.; Welinder, Karen G.;

    2003-01-01

    of peptide MS/MS spectra imported in text file format. Peaks are annotated, the monoisotopic peaks retained, and the b-and y-ion series identified in an interactive manner. The called peptide sequence is searched against a local protein database for sequence identity and peptide mass. The report compares...

  5. Synthetic Procedures for Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  6. Characterization of synthetic peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala Krishna; Mirza, Osman Asghar; Højrup, Peter;

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI-TOF-MS an...

  7. Double-Stranded Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2001-01-01

    A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  8. Peptides and metallic nanoparticles for biomedical applications.

    NARCIS (Netherlands)

    Kogan, M.J.; Olmedo, I.; Hosta, L.; Guerrero, A.R.; Cruz Ricondo, L.J.; Albericio, F.

    2007-01-01

    In this review, we describe the contribution of peptides to the biomedical applications of metallic nanoparticles. We also discuss strategies for the preparation of peptide-nanoparticle conjugates and the synthesis of the peptides and metallic nanoparticles. An overview of the techniques used for th

  9. Diversity of wheat anti-microbial peptides.

    Science.gov (United States)

    Egorov, Tsezi A; Odintsova, Tatyana I; Pukhalsky, Vitaliy A; Grishin, Eugene V

    2005-11-01

    From seeds of Triticum kiharae Dorof. et Migusch., 24 novel anti-microbial peptides were isolated and characterized by a combination of three-step HPLC (affinity, size-exclusion and reversed-phase) with matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and Edman degradation. Based on sequence similarity and cysteine motifs, partially sequenced peptides were assigned to 7 families: defensins, thionins, lipid-transfer proteins, hevein-like peptides, knottin-like peptides, glycine-rich peptides, and MBP-1 homologs. A novel subfamily of defensins consisting of 6 peptides and a new family of glycine-rich (8 peptides with different repeat motifs) were identified. Three 6-cysteine knottin-like peptides represented by N- and C-terminally truncated variants revealed no sequence homology to any known plant anti-microbial peptides. A new 8-cysteine hevein-like peptide and three 4-cysteine peptides homologous to MBP-1 from maize were isolated. This is the first communication on the occurrence of nearly all families of plant anti-microbial peptides in a single species. PMID:16269343

  10. Toxins and antimicrobial peptides: interactions with membranes

    Science.gov (United States)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of peptide potency, was monitored with a sensitive fluorescence leakage assay. Detailed molecular information on peptidemembrane interactions and peptide structure was further gained through vibrational spectroscopy combined with circular dichroism. Finally, steady-state fluorescence experiments yielded insight into the local environment of native or engineered tryptophan residues in melittin and human cathelicidin embedded in bilayer vesicles. Collectively, our results provide clues to the functional structures of the engineered and toxic peptides and may impact the design of synthetic antibiotic peptides that can be used against the growing number of antibiotic-resistant pathogens.

  11. Bioactive peptides in dairy products

    Directory of Open Access Journals (Sweden)

    Donata Marletta

    2010-01-01

    Full Text Available Bioactive peptides are specific protein fragments that have a positive impact on body functions and conditions and may ultimately influence health. Most of the biological activities are encrypted within the primary sequence of the native protein and can be released by enzymatic hydrolysis and proteolysis or by food processing. Milk is a rich source of bioactive peptides which may contribute to regulate the nervous, gastrointestinal and cardiovascular systems as well as the immune system, confirming the added value of dairy products that, in certain cases, can be considered functional foods. The main biological activities of these peptides and their bioavailability in dairy products are reviewed. The natural concentration of these biomolecules is quite low and, to date one of the main goals has been to realize products enriched with bioactive peptides that have beneficial effects on human health and proven safety. Even though several health-enhancing products have already been launched and their integration in the diet could help in the prevention of chronic diseases such as hypertension, cancer and osteoporosis, more clinical trials are required in order to develop a deeper understanding of the activity of biopeptides on the human physiological mechanisms and also to assess the efficacy of their effects in a long term view. New scientific data are also needed to support their commercialisation in compliance with current regulations.

  12. Novel and Convenient Method for the Preparation of Phosphonate Peptides and Phosphonamidate Peptides

    Institute of Scientific and Technical Information of China (English)

    XU Jia-Xi; FU Nan-Yan; GAO Yuan-He; ZHNAG Qi-Han; DUAN Li-Fang

    2003-01-01

    @@ Phosphonate and phosphonamidate peptides are phosphorus analogues of natural peptides. They have been great used as stable mimetics of tetrahedral transition states as enzyme inhibitors and as haptens for catalytic antibody research in recent years. Although several methods are available for the preparation of phosphonate peptides and phosphonamidate peptides, all of them use phosphonic acid derivatives as starting materials. The overall yields from the synthesis of phosphonic acid derivatives to desired peptides are not satisfactory in most cases.

  13. Screening Method for the Discovery of Potential Bioactive Cysteine-Containing Peptides Using 3D Mass Mapping

    Science.gov (United States)

    van Oosten, Luuk N.; Pieterse, Mervin; Pinkse, Martijn W. H.; Verhaert, Peter D. E. M.

    2015-12-01

    Animal venoms and toxins are a valuable source of bioactive peptides with pharmacologic relevance as potential drug leads. A large subset of biologically active peptides discovered up till now contain disulfide bridges that enhance stability and activity. To discover new members of this class of peptides, we developed a workflow screening specifically for those peptides that contain inter- and intra-molecular disulfide bonds by means of three-dimensional (3D) mass mapping. Two intrinsic properties of the sulfur atom, (1) its relatively large negative mass defect, and (2) its isotopic composition, allow for differentiation between cysteine-containing peptides and peptides lacking sulfur. High sulfur content in a peptide decreases the normalized nominal mass defect (NMD) and increases the normalized isotopic shift (NIS). Hence in a 3D plot of mass, NIS, and NMD, peptides with sulfur appear in this plot with a distinct spatial localization compared with peptides that lack sulfur. In this study we investigated the skin secretion of two frog species; Odorrana schmackeri and Bombina variegata. Peptides from the crude skin secretions were separated by nanoflow LC, and of all eluting peptides high resolution zoom scans were acquired in order to accurately determine both monoisotopic mass and average mass. Both the NMD and the NIS were calculated from the experimental data using an in-house developed MATLAB script. Candidate peptides exhibiting a low NMD and high NIS values were selected for targeted de novo sequencing, and this resulted in the identification of several novel inter- and intra-molecular disulfide bond containing peptides.

  14. Design and characterization of an acid-activated antimicrobial peptide.

    Science.gov (United States)

    Li, Lina; He, Jian; Eckert, Randal; Yarbrough, Daniel; Lux, Renate; Anderson, Maxwell; Shi, Wenyuan

    2010-01-01

    Dental caries is a microbial biofilm infection in which the metabolic activities of plaque bacteria result in a dramatic pH decrease and shift the demineralization/remineralization equilibrium on the tooth surface towards demineralization. In addition to causing a net loss in tooth minerals, creation of an acidic environment favors growth of acid-enduring and acid-generating species, which causes further reduction in the plaque pH. In this study, we developed a prototype antimicrobial peptide capable of achieving high activity exclusively at low environmental pH to target bacterial species like Streptococcus mutans that produce acid and thrive under the low pH conditions detrimental for tooth integrity. The features of clavanin A, a naturally occurring peptide rich in histidine and phenylalanine residues with pH-dependent antimicrobial activity, served as a design basis for these prototype 'acid-activated peptides' (AAPs). Employing the major cariogenic species S. mutans as a model system, the two AAPs characterized in this study exhibited a striking pH-dependent antimicrobial activity, which correlated well with the calculated charge distribution. This type of peptide represents a potential new way to combat dental caries. PMID:19878192

  15. Peptide Characterization of Mature Fluorotic and Control Human Enamel.

    Science.gov (United States)

    Lelis, Isabel Maria Porto; Molina, Gabriela F; Souza, Cláudia; Perez, Walter B; Laure, Helen J; Rosa, José C; Gerlach, Raquel F

    2016-01-01

    Exposure to high fluoride levels during amelogenesis causes enamel fluorosis. This study aimed to determine and compare the amino acid sequences in the enamel of fluorotic and control teeth. This investigation included enamel samples obtained from erupted and non-erupted third molars with either TF grade 4-6 (n=7) fluorosis or no sign of fluorosis (controls, n=7). The samples were kept frozen at -20 °C until protein extraction. Samples were etched and processed with a cocktail of proteinase inhibitors and immediately analyzed. Matrix Assisted Laser Desorption/Ionization-Time-Of-Flight/Time-of-Flight Mass Spectrometry (MALDI-TOF/TOF) followed by MASCOT search aided the peptides analysis. The more abundant peptides bore the N-terminal amelogenin sequences WYQSIRPPYP (which is specific for the X-encoded amelogenin) and MPLPPHPGHPGYINF (which does not show sexual dimorphism) were not different in control or fluorotic enamel. There was no missing proteolytic cleavage in the fluorotic samples, which suggested that the increased amount of protein described in fluorotic enamel did not stem from the decreased ability of proteinases to cleave the proteins in humans. This study showed how to successfully obtain peptide from superficial enamel. A relatively low number of teeth was sufficient to provide good data on the actual peptides found in mature enamel.

  16. Peptide Characterization of Mature Fluorotic and Control Human Enamel.

    Science.gov (United States)

    Lelis, Isabel Maria Porto; Molina, Gabriela F; Souza, Cláudia; Perez, Walter B; Laure, Helen J; Rosa, José C; Gerlach, Raquel F

    2016-01-01

    Exposure to high fluoride levels during amelogenesis causes enamel fluorosis. This study aimed to determine and compare the amino acid sequences in the enamel of fluorotic and control teeth. This investigation included enamel samples obtained from erupted and non-erupted third molars with either TF grade 4-6 (n=7) fluorosis or no sign of fluorosis (controls, n=7). The samples were kept frozen at -20 °C until protein extraction. Samples were etched and processed with a cocktail of proteinase inhibitors and immediately analyzed. Matrix Assisted Laser Desorption/Ionization-Time-Of-Flight/Time-of-Flight Mass Spectrometry (MALDI-TOF/TOF) followed by MASCOT search aided the peptides analysis. The more abundant peptides bore the N-terminal amelogenin sequences WYQSIRPPYP (which is specific for the X-encoded amelogenin) and MPLPPHPGHPGYINF (which does not show sexual dimorphism) were not different in control or fluorotic enamel. There was no missing proteolytic cleavage in the fluorotic samples, which suggested that the increased amount of protein described in fluorotic enamel did not stem from the decreased ability of proteinases to cleave the proteins in humans. This study showed how to successfully obtain peptide from superficial enamel. A relatively low number of teeth was sufficient to provide good data on the actual peptides found in mature enamel. PMID:27007349

  17. Phase I vaccination trial of SYT-SSX junction peptide in patients with disseminated synovial sarcoma

    Directory of Open Access Journals (Sweden)

    Asanuma Hiroko

    2005-01-01

    Full Text Available Abstract Background Synovial sarcoma is a high-grade malignant tumor of soft tissue, characterized by the specific chromosomal translocation t(X;18, and its resultant SYT-SSX fusion gene. Despite intensive multimodality therapy, the majority of metastatic or relapsed diseases still remain incurable, thus suggesting a need for new therapeutic options. We previously demonstrated the antigenicity of SYT-SSX gene-derived peptides by in vitro analyses. The present study was designed to evaluate in vivo immunological property of a SYT-SSX junction peptide in selected patients with synovial sarcoma. Methods A 9-mer peptide (SYT-SSX B: GYDQIMPKK spanning the SYT-SSX fusion region was synthesized. Eligible patients were those (i who have histologically and genetically confirmed, unresectable synovial sarcoma (SYT-SSX1 or SYT-SSX2 positive, (ii HLA-A*2402 positive, (iii between 20 and 70 years old, (iv ECOG performance status between 0 and 3, and (v who gave informed consent. Vaccinations with SYT-SSX B peptide (0.1 mg or 1.0 mg were given subcutaneously six times at 14-day intervals. These patients were evaluated for DTH skin test, adverse events, tumor size, tetramer staining, and peptide-specific CTL induction. Results A total of 16 vaccinations were carried out in six patients. The results were (i no serious adverse effects or DTH reactions, (ii suppression of tumor progression in one patient, (iii increases in the frequency of peptide-specific CTLs in three patients and a decrease in one patient, and (iv successful induction of peptide-specific CTLs from four patients. Conclusions Our findings indicate the safety of the SYT-SSX junction peptide in the use of vaccination and also give support to the property of the peptide to evoke in vivo immunological responses. Modification of both the peptide itself and the related protocol is required to further improve the therapeutic efficacy.

  18. ER stress affects processing of MHC class I-associated peptides

    Directory of Open Access Journals (Sweden)

    Meloche Sylvain

    2009-02-01

    Full Text Available Abstract Background Viral infection and neoplastic transformation trigger endoplasmic reticulum (ER stress. Thus, a large proportion of the cells that must be recognized by the immune system are stressed cells. Cells respond to ER stress by launching the unfolded protein response (UPR. The UPR regulates the two key processes that control major histocompatibility complex class I (MHC I-peptide presentation: protein synthesis and degradation. We therefore asked whether and how the UPR impinges on MHC I-peptide presentation. Results We evaluated the impact of the UPR on global MHC I expression and on presentation of the H2Kb-associated SIINFEKL peptide. EL4 cells stably transfected with vectors coding hen egg lysozyme (HEL-SIINFEKL protein variants were stressed with palmitate or exposed to glucose deprivation. UPR decreased surface expression of MHC I but did not affect MHC I mRNA level nor the total amount of intracellular MHC I proteins. Impaired MHC I-peptide presentation was due mainly to reduced supply of peptides owing to an inhibition of overall protein synthesis. Consequently, generation of H2Kb-SIINFEKL complexes was curtailed during ER stress, illustrating how generation of MHC I peptide ligands is tightly coupled to ongoing protein synthesis. Notably, the UPR-induced decline of MHC I-peptide presentation was more severe when the protein source of peptides was localized in the cytosol than in the ER. This difference was not due to changes in the translation rates of the precursor proteins but to increased stability of the cytosolic protein during ER stress. Conclusion Our results demonstrate that ER stress impairs MHC I-peptide presentation, and that it differentially regulates expression of ER- vs. cytosol-derived peptides. Furthermore, this work illustrates how ER stress, a typical feature of infected and malignant cells, can impinge on cues for adaptive immune recognition.

  19. Fabrication of Odor Sensor Using Peptide

    Science.gov (United States)

    Hotokebuchi, Yuta; Hayashi, Kenshi; Toko, Kiyoshi; Chen, Ronggang; Ikezaki, Hidekazu

    We report fabrication of an odor sensor using peptides. Peptides were designed to acquire the specific reception for a target odor molecule. Au surface of the sensor electrode was coated by the designed peptide using the method of self assembled monolayers (SAMs). Functionalized Au surfaces by the peptides were confirmed by ellipsometry and cyclic voltammetry. The odorants of vanillin, phenethyl alcohol and hexanol were discriminated by QCM sensor with the peptide surface. Moreover, we verified specific interaction between amino acid (Trp) and vanillin by fluorescence assay.

  20. Computer-Aided Design of Antimicrobial Peptides

    DEFF Research Database (Denmark)

    Fjell, Christopher D.; Hancock, Robert E.W.; Jenssen, Håvard

    2010-01-01

    chemical parameters with biological activities of the peptide, using statistical methods. In this review we will discuss two different in silico strategies of computer-aided antibacterial peptide design, a linear correlation model build as an extension of traditional principal component analysis (PCA......) and a non-linear artificial neural network model. Studies on structurally diverse peptides, have concluded that the PCA derived model are able to guide the antibacterial peptide design in a meaningful way, however requiring rather a high homology between the peptides in the test-set and the in silico...

  1. Peptide-enhanced oral delivery of therapeutic peptides and proteins

    DEFF Research Database (Denmark)

    Kristensen, Mie; Foged, Camilla; Berthelsen, Jens;

    2013-01-01

    Systemic therapy upon oral delivery of biologics, such as peptide and protein drugs is limited due to their large molecular size, their low enzymatic stability and their inability to cross the intestinal epithelium. Ways to overcome the epithelial barrier include the use of peptide-based excipients...... throughout the gastrointestinal (GI) tract, chemical stability is an inherent challenge when employing amino acid-based excipients for oral delivery, and multiple approaches have been investigated to improve this. The exact mechanisms of transepithelial translocation are discussed, and it is believed...... that CPP-mediated translocation involves transcytosis and/or direct translocation through the epithelial cells; whereas TJMP-mediated translocation is dependent on interaction with transmembrane or peripheral TJ proteins. This review focuses on the CPPs and the TJMPs currently employed as excipients...

  2. Towards the MHC-peptide combinatorics.

    Science.gov (United States)

    Kangueane, P; Sakharkar, M K; Kolatkar, P R; Ren, E C

    2001-05-01

    The exponentially increased sequence information on major histocompatibility complex (MHC) alleles points to the existence of a high degree of polymorphism within them. To understand the functional consequences of MHC alleles, 36 nonredundant MHC-peptide complexes in the protein data bank (PDB) were examined. Induced fit molecular recognition patterns such as those in MHC-peptide complexes are governed by numerous rules. The 36 complexes were clustered into 19 subgroups based on allele specificity and peptide length. The subgroups were further analyzed for identifying common features in MHC-peptide binding pattern. The four major observations made during the investigation were: (1) the positional preference of peptide residues defined by percentage burial upon complex formation is shown for all the 19 subgroups and the burial profiles within entries in a given subgroup are found to be similar; (2) in class I specific 8- and 9-mer peptides, the fourth residue is consistently solvent exposed, however this observation is not consistent in class I specific 10-mer peptides; (3) an anchor-shift in positional preference is observed towards the C terminal as the peptide length increases in class II specific peptides; and (4) peptide backbone atoms are proportionately dominant at the MHC-peptide interface.

  3. Natural and synthetic peptides with antifungal activity.

    Science.gov (United States)

    Ciociola, Tecla; Giovati, Laura; Conti, Stefania; Magliani, Walter; Santinoli, Claudia; Polonelli, Luciano

    2016-08-01

    In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections. PMID:27502155

  4. Flourescent Peptide-Stabilized Silver-Nanoclusters

    DEFF Research Database (Denmark)

    Gregersen, Simon

    for instance small molecules, DNA oligomers, and proteins. Peptides are an intriguing class of biomolecular ligands, due to the large combinatorial space these provide. Furthermore, as peptides have a propensity to fold up into well-defined and somewhat rigid secondary structures, they may serve as excellent...... throughput dramatically with regards to discovery of novel ligands. Our approach employs Fmoc solid-phase peptide synthesis on a PEGA resin which allows for on-resin screening of peptide ligands which, in turn, removes the tedious and labor-intensive work-up of synthesized peptides. The method allows for on......-resin formation of peptide-stabilized Ag-NCs in a reversible manner, which makes identification of novel lead compound from combinatorial peptide libraries possible with a few simple steps. This resulted in the discovery of at least one promising candidate (P262) showing brighter emission, spectral homogeneity...

  5. A smart tumor targeting peptide-drug conjugate, pHLIP-SS-DOX: synthesis and cellular uptake on MCF-7 and MCF-7/Adr cells.

    Science.gov (United States)

    Song, Qin; Chuan, Xingxing; Chen, Binlong; He, Bing; Zhang, Hua; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang

    2016-06-01

    Doxorubicin (DOX) is a potent anticancer drug for the treatment of tumors, but the poor specificity and multi-drug resistance (MDR) on tumor cells have restricted its application. Here, a pH and reduction-responsive peptide-drug conjugate (PDC), pHLIP-SS-DOX, was synthesized to overcome these drawbacks. pH low insertion peptide (pHLIP) is a cell penetrating peptide (CPP) with pH-dependent transmembrane ability. And because of the unique cell membrane insertion pattern, it might reverse the MDR. The cellular uptake study showed that on both drug-sensitive MCF-7 and drug-resistant MCF-7/Adr cells, pHLIP-SS-DOX obviously facilitated the uptake of DOX at pH 6.0 and the uptake level on MCF-7/Adr cells was similar with that on MCF-7 cells, indicating that pHLIP-SS-DOX had the ability to target acidic tumor cells and reverse MDR. In vitro cytotoxicity study mediated by GSH-OEt demonstrated that the cytotoxic effect of pHLIP-SS-DOX was reduction responsive, with obvious cytotoxicity at pH 6.0; while it had poor cytotoxicity at pH 7.4, no matter with or without GSH-OEt pretreatment. This illustrated that pHLIP could deliver DOX into tumor cells with acidic microenvironment specifically and could not deliver drugs into normal cells with neutral microenvironment. In summary, pHLIP-SS-DOX is a promising strategy to target drugs to tumors and provides a possibility to overcome MDR.

  6. SLAP deficiency decreases dsDNA autoantibody production.

    Science.gov (United States)

    Peterson, Lisa K; Pennington, Luke F; Shaw, Laura A; Brown, Meredith; Treacy, Eric C; Friend, Samantha F; Hatlevik, Øyvind; Rubtsova, Kira; Rubtsov, Anatoly V; Dragone, Leonard L

    2014-02-01

    Src-like adaptor protein (SLAP) adapts c-Cbl, an E3 ubiquitin ligase, to activated components of the BCR signaling complex regulating BCR levels and signaling in developing B cells. Based on this function, we asked whether SLAP deficiency could decrease the threshold for tolerance and eliminate development of autoreactive B cells in two models of autoantibody production. First, we sensitized mice with a dsDNA mimetope that causes an anti-dsDNA response. Despite equivalent production of anti-peptide antibodies compared to BALB/c controls, SLAP(-/-) mice did not produce anti-dsDNA. Second, we used the 56R tolerance model. SLAP(-/-) 56R mice had decreased levels of dsDNA-reactive antibodies compared to 56R mice due to skewed light chain usage. Thus, SLAP is a critical regulator of B-cell development and function and its deficiency leads to decreased autoreactive B cells that are otherwise maintained by inefficient receptor editing or failed negative selection.

  7. Nanoformulated cell-penetrating survivin mutant and its dual actions

    Directory of Open Access Journals (Sweden)

    Sriramoju B

    2014-07-01

    Full Text Available Bhasker Sriramoju, Rupinder K Kanwar, Jagat R Kanwar Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (NLIMBR, School of Medicine, Faculty of Health, Deakin University, Geelong, Australia Abstract: In this study, we investigated the differential actions of a dominant-negative survivin mutant (SurR9-C84A against cancerous SK-N-SH neuroblastoma cell lines and differentiated SK-N-SH neurons. In both the cases, the mutant protein displayed dual actions, where its effects were cytotoxic toward cancerous cells and proliferative toward the differentiated neurons. This can be explained by the fact that tumorous (undifferentiated SK-N-SH cells have a high endogenous survivin pool and upon treatment with mutant SuR9-C84A causes forceful survivin expression. These events significantly lowered the microtubule dynamics and stability, eventually leading to apoptosis. In the case of differentiated SK-N-SH neurons that express negligible levels of wild-type survivin, the mutant indistinguishably behaved in a wild-type fashion. It also favored cell-cycle progression, forming the chromosome-passenger complex, and stabilized the microtubule-organizing center. Therefore, mutant SurR9-C84A represents a novel therapeutic with its dual actions (cytotoxic toward tumor cells and protective and proliferative toward neuronal cells, and hence finds potential applications against a variety of neurological disorders. In this study, we also developed a novel poly(lactic-co-glycolic acid nanoparticulate formulation to surmount the hurdles associated with the delivery of SurR9-C84A, thus enhancing its effective therapeutic outcome. Keywords: survivin mutant, neurological disorders, protein therapeutics, inhibitor of apoptosis protein family, poly(lactic-co-glycolic acid

  8. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions

    DEFF Research Database (Denmark)

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco;

    2016-01-01

    . In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited...... for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions...... determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide...

  9. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    Science.gov (United States)

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes. PMID:27451165

  10. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions.

    Science.gov (United States)

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco; Østergaard, Jesper

    2016-10-10

    Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins. In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative, approach to assessment of the colloidal stability of both peptide and protein formulations.

  11. Computer-aided design of peptide near infrared fluorescent probe for tumor diagnosis

    Science.gov (United States)

    Zhang, Congying; Gu, Yueqing

    2014-09-01

    Integrin αvβ3 receptors are expressed on activated endothelial cells during neovascularization to maintain tumor growth, so they become hot research tagets in cancer diagnosis. Peptides possess several attractive features when compared to protein and small molecule, such as small size and high structural compatibility with target proteins. Efficient design of high-affinity peptide ligands to Integrin αvβ3 receptors has been an important problem. Designed peptides in silico provide a valuable and high-selectivity peptide, meanwhile decrease the time of drug screening. In this study, we design peptide which can bind with integrin αvβ3 via computer, and then synthesis near infrared fluorescent probe. The characterization of this near infrared fluorescent probe was detected by UV. To investigate the tumor cell targeting of this probe, it was labeled with visible fluorescent dye Rhodamine B (RhB) for microscopy. To evaluate the targeting capability of this near infrared fluorescent probe, mice bearing integrin αvβ3 positive tumor xenografts were used. In vitro cellular experiments indicated that this probe have a clear binding affinity to αvβ3-positive tumor cells. In vivo experiments confirmed the receptor binding specificity of this probe. The peptide of computational design can bind with integrin αvβ3. Combined peptide near-infrared fluorescent probe with imaging technology use for clinical and tumor diagnosis have a greater development in future.

  12. Preventive Effects of Collagen Peptide from Deer Sinew on Bone Loss in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    He Zhang

    2014-01-01

    Full Text Available Deer sinew (DS has been used traditionally for various illnesses, and the major active constituent is collagen. In this study, we assessed the effects of collagen peptide from DS on bone loss in the ovariectomized rats. Wister female rats were randomly divided into six groups as follows: sham-operated (SHAM, ovariectomized control (OVX, OVX given 1.0 mg/kg/week nylestriol (OVX + N, OVX given 0.4 g/kg/day collagen peptide (OVX + H, OVX given 0.2 g/kg/day collagen peptide (OXV + M, and OVX given 0.1 g/kg/day collagen peptide (OXV + L, respectively. After 13 weeks of treatment, the rats were euthanized, and the effects of collagen peptide on body weight, uterine weight, bone mineral density (BMD, serum biochemical indicators, bone histomorphometry, and bone mechanics were observed. The data showed that BMD and concentration of serum hydroxyproline were significantly increased and the levels of serum calcium, phosphorus, and alkaline phosphatase were decreased. Besides, histomorphometric parameters and mechanical indicators were improved. However, collagen peptide of DS has no effect on estradiol level, body weight, and uterine weight. Therefore, these results suggest that the collagen peptide supplementation may also prevent and treat bone loss.

  13. Pathological consequences of C-peptide deficiency ininsulin-dependent diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Ahmad Ghorbani; Reza Shafiee-Nick

    2015-01-01

    Diabetes is associated with several complicationssuch as retinopathy, nephropathy, neuropathy andcardiovascular diseases. Currently, insulin is the mainused medication for management of insulin-dependentdiabetes mellitus (type-1 diabetes). In this metabolicsyndrome, in addition to decrease of endogenous insulin,the plasma level of connecting peptide (C-peptide) is alsoreduced due to beta cell destruction. Studies in the pastdecade have shown that C-peptide is much more than abyproduct of insulin biosynthesis and possess differentbiological activities. Therefore, it may be possible thatC-peptide deficiency be involved, at least in part, in thedevelopment of different complications of diabetes. It hasbeen shown that a small level of remaining C-peptide isassociated with significant metabolic benefit. The purposeof this review is to describe beneficial effects of C-peptidereplacement on pathological features associated withinsulin-dependent diabetes. Also, experimental andclinical findings on the effects of C-peptide on wholebodyglucose utilization, adipose tissue metabolism andtissues blood flow are summarized and discussed. Thehypoglycemic, antilipolytic and vasodilator effects ofC-peptide suggest that it may contribute to fine-tuningof the tissues metabolism under different physiologic orpathologic conditions. Therefore, C-peptide replacementtogether with the classic insulin therapy may prevent,retard, or ameliorate diabetic complications in patientswith type-1 diabetes.

  14. Annelid Endocrine Disruptors and a Survey of Invertebrate FMRFamide-Related Peptides.

    Science.gov (United States)

    Krajniak, Kevin G

    2005-01-01

    There is a growing body of literature describing the actions of endocrine disruptors on annelids. These pollutants cause decreases in growth and reproductive output, delay sexual maturation, and inhibit the immune system in annelids. More studies are needed to determine the mechanisms that underlie these responses. Most invertebrate endocrine disruptor research focuses on steroids. In recent years many new invertebrate peptide hormones including those related to the molluscan peptide FMRFamide have been identified. Since the storage of these peptides can be inhibited by steroids during insect metamorphosis, they may be affected by endocrine disruptors. Therefore, it is worthwhile to give a brief overview of this peptide family to those studying endocrine disruption in invertebrates with the hope that they may begin to consider these peptides in their future research. In 1977 Price and Greenberg isolated FMRFamide from the cerebral ganglia of the clam, Macrocallista nimbosa. Since then researchers have used bioassays and immunoassays to identify a large number of FMRFamide-related peptides (FaRPs) from many invertebrate phyla. Even more peptides are predicted by the FaRP genes that have been sequenced. FaRPs have a variety of functions and act as neurotransmitters, neuromodulators, or neurohormones. Each function is species and tissue specific. Most FaRP receptors are linked to a second messenger system. However, at least one is a ligand gated sodium channel. On going studies are examining FaRPs from the molecular to organismal level.

  15. Identification of SNAIL1 Peptide-Based Irreversible Lysine-Specific Demethylase 1-Selective Inactivators.

    Science.gov (United States)

    Itoh, Yukihiro; Aihara, Keisuke; Mellini, Paolo; Tojo, Toshifumi; Ota, Yosuke; Tsumoto, Hiroki; Solomon, Viswas Raja; Zhan, Peng; Suzuki, Miki; Ogasawara, Daisuke; Shigenaga, Akira; Inokuma, Tsubasa; Nakagawa, Hidehiko; Miyata, Naoki; Mizukami, Tamio; Otaka, Akira; Suzuki, Takayoshi

    2016-02-25

    Inhibition of lysine-specific demethylase 1 (LSD1), a flavin-dependent histone demethylase, has recently emerged as a new strategy for treating cancer and other diseases. LSD1 interacts physically with SNAIL1, a member of the SNAIL/SCRATCH family of transcription factors. This study describes the discovery of SNAIL1 peptide-based inactivators of LSD1. We designed and prepared SNAIL1 peptides bearing a propargyl amine, hydrazine, or phenylcyclopropane moiety. Among them, peptide 3, bearing hydrazine, displayed the most potent LSD1-inhibitory activity in enzyme assays. Kinetic study and mass spectrometric analysis indicated that peptide 3 is a mechanism-based LSD1 inhibitor. Furthermore, peptides 37 and 38, which consist of cell-membrane-permeable oligoarginine conjugated with peptide 3, induced a dose-dependent increase of dimethylated Lys4 of histone H3 in HeLa cells, suggesting that they are likely to exhibit LSD1-inhibitory activity intracellularly. In addition, peptide 37 decreased the viability of HeLa cells. We believe this new approach for targeting LSD1 provides a basis for development of potent selective inhibitors and biological probes for LSD1. PMID:26700437

  16. Antibody Peptide Based Antifungal Immunotherapy

    OpenAIRE

    Magliani, Walter; Conti, Stefania; Giovati, Laura; Zanello, Pier Paolo; Sperindè, Martina; Ciociola, Tecla; Polonelli, Luciano

    2012-01-01

    Fungal infections still represent relevant human illnesses worldwide and some are accompanied by unacceptably high mortality rates. The limited current availability of effective and safe antifungal agents makes the development of new drugs and approaches of antifungal vaccination/immunotherapy every day more needed. Among them, small antibody(Ab)-derived peptides are arousing great expectations as new potential antifungal agents. In this topic, the search path from the study of the yeast kill...

  17. Targeting diverse protein-protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold.

    Science.gov (United States)

    Checco, James W; Kreitler, Dale F; Thomas, Nicole C; Belair, David G; Rettko, Nicholas J; Murphy, William L; Forest, Katrina T; Gellman, Samuel H

    2015-04-14

    Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. Here, we describe a strategy for designing oligomers containing both α- and β-amino acid residues ("α/β-peptides") that mimic several peptides derived from the three-helix bundle "Z-domain" scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF165-induced proliferation of human umbilical vein endothelial cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain-mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Such reagents would be useful for diagnostic and therapeutic applications.

  18. Targeting diverse protein–protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Checco, James W.; Kreitler, Dale F.; Thomas, Nicole C.; Belair, David G.; Rettko, Nicholas J.; Murphy, William L.; Forest, Katrina T.; Gellman, Samuel H. (UW)

    2015-04-14

    Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. Here, we describe a strategy for designing oligomers containing both α- and β-amino acid residues ("α/β-peptides") that mimic several peptides derived from the three-helix bundle "Z-domain" scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF₁₆₅-induced proliferation of human umbilical vein endothelial cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain–mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Such reagents would be useful for diagnostic and therapeutic applications.

  19. Structure-Activity Relationship of Chlorotoxin-Like Peptides

    Directory of Open Access Journals (Sweden)

    Syed Abid Ali

    2016-02-01

    Full Text Available Animal venom (e.g., scorpion is a rich source of various protein and peptide toxins with diverse physio-/pharmaco-logical activities, which generally exert their action via target-specific modulation of different ion channel functions. Scorpion venoms are among the most widely-known source of peptidyl neurotoxins used for callipering different ion channels, such as; Na+, K+, Ca+, Cl−, etc. A new peptide of the chlorotoxin family (i.e., Bs-Tx7 has been isolated, sequenced and synthesized from scorpion Buthus sindicus (family Buthidae venom. This peptide demonstrates 66% with chlorotoxin (ClTx and 82% with CFTR channel inhibitor (GaTx1 sequence identities reported from Leiurus quinquestriatus hebraeus venom. The toxin has a molecular mass of 3821 Da and possesses four intra-chain disulphide bonds. Amino acid sequence analysis of Bs-Tx7 revealed the presence of a scissile peptide bond (i.e., Gly-Ile for human MMP2, whose activity is increased in the case of tumour malignancy. The effect of hMMP2 on Bs-Tx7, or vice versa, observed using the FRET peptide substrate with methoxycoumarin (Mca/dinitrophenyl (Dnp as fluorophore/quencher, designed and synthesized to obtain the lowest Km value for this substrate, showed approximately a 60% increase in the activity of hMMP2 upon incubation of Bs-Tx7 with the enzyme at a micromolar concentration (4 µM, indicating the importance of this toxin in diseases associated with decreased MMP2 activity.

  20. The role of food intake regulating peptides in cardiovascular regulation.

    Science.gov (United States)

    Mikulášková, B; Maletínská, L; Zicha, J; Kuneš, J

    2016-11-15

    Obesity is a risk factor that worsens cardiovascular events leading to higher morbidity and mortality. However, the exact mechanisms of relation between obesity and cardiovascular events are unclear. Nevertheless, it has been demonstrated that pharmacological therapy for obesity has great potential to improve some cardiovascular problems. Therefore, it is important to determine the common mechanisms regulating both food intake and blood pressure. Several hormones produced by peripheral tissues work together with neuropeptides involved in the regulation of both food intake and blood pressure. Anorexigenic (food intake lowering) hormones such as leptin, glucagon-like peptide-1 and cholecystokinin cooperate with α-melanocyte-stimulating hormone, cocaine- and amphetamine-regulated peptide as well as prolactin-releasing peptide. Curiously their collective actions result in increased sympathetic activity, especially in the kidney, which could be one of the factors responsible for the blood pressure increases seen in obesity. On the other hand, orexigenic (food intake enhancing) peptides, especially ghrelin released from the stomach and acting in the brain, cooperates with orexins, neuropeptide Y, melanin-concentrating hormone and galanin, which leads to decreased sympathetic activity and blood pressure. This paradox should be intensively studied in the future. Moreover, it is important to know that the hypothalamus together with the brainstem seem to be major structures in the regulation of food intake and blood pressure. Thus, the above mentioned regions might be essential brain components in the transmission of peripheral signals to the central effects. In this short review, we summarize the current information on cardiovascular effects of food intake regulating peptides.

  1. Antimicrobial Peptides: Versatile Biological Properties

    Directory of Open Access Journals (Sweden)

    Muthuirulan Pushpanathan

    2013-01-01

    Full Text Available Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries.

  2. Antihypertensive Peptides from Milk Proteins

    Directory of Open Access Journals (Sweden)

    Heikki Vapaatalo

    2010-01-01

    Full Text Available Dietary proteins possess a wide range of nutritional and functional properties. They are used as a source of energy and amino acids, which are needed for growth and development. Many dietary proteins, especially milk proteins, contain physiologically active peptides encrypted in the protein sequence. These peptides may be released during gastrointestinal digestion or food processing and once liberated, cause different physiological functions. Milk-derived bioactive peptides are shown to have antihypertensive, antimicrobial, immunomodulatory, antioxidative and mineral-binding properties. During the fermentation of milk with certain lactobacilli, two interesting tripeptides Ile-Pro-Pro and Val-Pro-Pro are released from casein to the final product. These lactotripeptides have attenuated the development of hypertension in several animal models and lowered blood pressure in clinical studies. They inhibit ACE in vitro at micromolar concentrations, protect endothelial function in vitro and reduce arterial stiffness in humans. Thus, milk as a traditional food product can after certain processing serve as a functional food and carry specific health-promoting effects, providing an option to control blood pressure.

  3. Selective Acylation Enhances Membrane Charge Sensitivity of the Antimicrobial Peptide Mastoparan-X

    DEFF Research Database (Denmark)

    Etzerodt, Thomas Povl; Henriksen, Jonas Rosager; Rasmussen, Palle;

    2011-01-01

    and positioning of the peptide in the membrane caused by either PA or OA acylation play a critical role in the fine-tuning of the effective charge of the peptide and thereby the fine-tuning of the peptide's selectivity between neutral and negatively charged lipid membranes. This finding is unique compared......The partitioning of the wasp venom peptide mastoparan-X (MPX) into neutral and negatively charged lipid membranes has been compared with two new synthetic analogs of MPX where the Nα-terminal of MPX was acylated with propanoic acid (PA) and octanoic acid (OA). The acylation caused a considerable...... change in the membrane partitioning properties of MPX and it was found that the shorter acylation with PA gave improved affinity and selectivity toward negatively charged membranes, whereas OA decreased the selectivity. Based on these findings, we hypothesize that minor differences in the embedding...

  4. Human Antimicrobial Peptides and Proteins

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2014-05-01

    Full Text Available As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32 can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized

  5. Bactericidal synergy of lysostaphin in combination with antimicrobial peptides.

    Science.gov (United States)

    Desbois, A P; Coote, P J

    2011-08-01

    Drug-resistant staphylococci constitute a serious problem that urgently requires the discovery of new therapeutic agents. There has been a resurgence in interest in using lysostaphin (a specific anti-staphylococcal enzyme) as a treatment for infections caused by these important pathogens. However, bacterial resistance to lysostaphin is a problem, but the use of a combination treatment may surmount this issue. In this present study, using viable counts from suspension incubations, lysostaphin is shown to be synergistically bactericidal in combination with various conventional antimicrobial peptides, the antimicrobial protein bovine lactoferrin, a lantibiotic (nisin), and certain lipopeptides used clinically (colistin, daptomycin and polymyxin B). Combinations that act in synergy are of clinical importance as these reduce the doses of the compounds needed for effective treatments and decrease the chances of resistance being selected. The use of lysostaphin in combination with a peptide may represent a new avenue in tackling drug-resistant staphylococci. PMID:21311938

  6. Protective Role of PEDF-Derived Synthetic Peptide Against Experimental Diabetic Nephropathy.

    Science.gov (United States)

    Ishibashi, Y; Matsui, T; Taira, J; Higashimoto, Y; Yamagishi, S

    2016-09-01

    Pigment epithelium-derived factor (PEDF) is a glycoprotein with complex neuroprotective, anti-angiogenic, and anti-inflammatory properties, all of which could potentially be exploited as a therapeutic option for vascular complications in diabetes. We have previously shown that PEDF-derived synthetic peptide, P5-3 (FIFVLRD) has a comparable ability with full PEDF protein to inhibit rat corneal neovascularization induced by chemical cauterization. However, the effects of PEDF peptide on experimental diabetic nephropathy remain unknown. To address the issue, we modified P5-3 to stabilize and administered the modified peptide (d-Lys-d-Lys-d-Lys-Gln-d-Pro-P5-3-Cys-amide, 0.2 nmol/day) or vehicle to streptozotocin-induced diabetic rats (STZ-rats) intraperitoneally by an osmotic mini pump for 2 weeks. We further examined the effects of modified peptide on human proximal tubular cells. Renal PEDF expression was decreased in STZ-rats. Although the peptide administration did not affect blood glucose or blood pressure, it decreased urinary excretion levels of 8-hydroxy-2'-deoxyguanosine, an oxidative stress marker, and reduced plasminogen activator inhibitor-1 (PAI-1) gene expression, and suppressed glomerular expansion in the diabetic kidneys. High glucose or advanced glycation end products stimulated oxidative stress generation and PAI-1 gene expression in tubular cells, all of which were significantly suppressed by 10 nM modified P5-3 peptide. Our present study suggests that PEDF-derived synthetic modified peptide could protect against experimental diabetic nephropathy and inhibit tubular cell damage under diabetes-like conditions through its anti-oxidative properties. Supplementation of modified P5-3 peptide may be a novel therapeutic strategy for diabetic nephropathy. PMID:27214310

  7. Antimicrobial Peptide LL-37 and IDR-1 Ameliorate MRSA Pneumonia in Vivo

    Directory of Open Access Journals (Sweden)

    Man Hou

    2013-09-01

    Full Text Available Background: The only human cathelicidin, LL-37, and the innate defense regulator peptide IDR-1, which have been proven to have antimicrobial activity, represent essential elements of immunity. Our previous study showed that the peptide LL-37 was protective in vitro to attenuate LTA-induced inflammatory effects. Methicillin-resistant staphylococcus aureus (MRSA causes a multitude of serious and sometimes life-threatening diseases around the globe. However, the effect of LL-37 and IDR-1 in MRSA-induced pneumonia is unknown. In the present study, we explored the potential of LL-37 and IDR-1 in ameliorating MRSA-induced pneumonia in vivo. Methods: C57BL/6 mice were randomly divided into four groups and perfused intratracheally with PBS, peptide, MRSA and MRSA plus peptide, respectively. Pulmonary tissue pathology, ELISA and quantitative RT-PCR were employed. The relative signal pathways were further explored by western blot analysis. Results: Pathological analysis of the lung tissue sections demonstrated that, when compared with the MRSA-treated group, both the LL-37 and IDR-1 could ameliorate the MRSA-induced pneumonia. The phosphorylation of JNK and Akt were markedly decreased in the peptide plus MRSA-treated group compared with the MRSA-treated group. Furthermore, both of them also reduced TNF-α and IL-6 production in the bronchoalveolar lavage fluid (BALF and serum in vivo. Conclusion: We report the first evidence of peptides inhibiting inflammation, decreasing the release of inflammatory cytokines and restoring pulmonary function in vivo. The antimicrobial peptide LL-37 and IDR-1 could ameliorate MRSA-induced pneumonia by exerting an anti-inflammatory property and attenuating pro-inflammatory cytokine release, thus providing support for the hypothesis that both innate and synthetic peptides could protect against MRSA in vivo.

  8. Temperature-dependent loop formation kinetics in flexible peptides studied by time-resolved fluorescence spectroscopy

    Directory of Open Access Journals (Sweden)

    Harekrushna Sahoo

    2006-01-01

    Full Text Available Looping rates in short polypeptides can be determined by intramolecular fluorescence quenching of a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo by tryptophan. By this methodology, the looping rates in glycine-serine peptides with the structure Trp-(Gly-Sern-Dbo-NH2 of different lengths (n = 0–10 were determined in dependence on temperature in D2O and the activation parameters were derived. In general, the looping rate increases with decreasing peptide length, but the shortest peptide (n=0 shows exceptional behavior because its looping rate is slower than that for the next longer ones (n=1,2. The activation energies increase from 17.5 kJ mol−1 for the longest peptide (n=10 to 20.5 kJ mol−1 for the shortest one (n=0, while the pre-exponential factors (log⁡(A/s−1 range from 10.20 to 11.38. The data are interpreted in terms of an interplay between internal friction (stiffness of the biopolymer backbone and steric hindrance effects and solvent friction (viscosity-limited diffusion. For the longest peptides, the activation energies resemble more and more the value expected for solvent viscous flow. Internal friction is most important for the shortest peptides, causing a negative curvature and a smaller than ideal slope (ca. –1.1 of the double-logarithmic plots of the looping rates versus the number of peptide chain segments (N. Interestingly, the corresponding plot for the pre-exponential factors (logA versus logN shows the ideal slope (–1.5. While the looping rates can be used to assess the flexibility of peptides in a global way, it is suggested that the activation energies provide a measure of the “thermodynamic” flexibility of a peptide, while the pre-exponential factors reflect the “dynamic” flexibility.

  9. Epidermal growth factor treatment decreases mortality and is associated with improved gut integrity in sepsis

    OpenAIRE

    Clark, Jessica A.; Clark, Andrew T.; Hotchkiss, Richard S.; Buchman, Timothy G; Coopersmith, Craig M.

    2008-01-01

    Epidermal growth factor (EGF) is a cytoprotective peptide that has healing effects on the intestinal mucosa. We sought to determine whether systemic administration of EGF following the onset of sepsis improved intestinal integrity and decreased mortality. FVB/N mice were subjected to either sham laparotomy or 2×23 cecal ligation and puncture (CLP). Septic mice were further randomized to receive intraperitoneal injection of either 150 μg/kg/day EGF or 0.9% saline. Circulating EGF levels were d...

  10. Molecular imaging probes derived from natural peptides.

    Science.gov (United States)

    Charron, C L; Hickey, J L; Nsiama, T K; Cruickshank, D R; Turnbull, W L; Luyt, L G

    2016-06-01

    Covering: up to the end of 2015.Peptides are naturally occurring compounds that play an important role in all living systems and are responsible for a range of essential functions. Peptide receptors have been implicated in disease states such as oncology, metabolic disorders and cardiovascular disease. Therefore, natural peptides have been exploited as diagnostic and therapeutic agents due to the unique target specificity for their endogenous receptors. This review discusses a variety of natural peptides highlighting their discovery, endogenous receptors, as well as their derivatization to create molecular imaging agents, with an emphasis on the design of radiolabelled peptides. This review also highlights methods for discovering new and novel peptides when knowledge of specific targets and endogenous ligands are not available. PMID:26911790

  11. Use of Galerina marginata genes and proteins for peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2016-03-01

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  12. Antimicrobial Peptides in Toroidal and Cylindrical Pores

    OpenAIRE

    Mihajlovic, Maja; Lazaridis, Themis

    2010-01-01

    Antimicrobial peptides (AMPs) are small, usually cationic peptides, which permeabilize biological membranes. Their mechanism of action is still not well understood. Here we investigate the preference of alamethicin and melittin for pores of different shapes, using molecular dynamics (MD) simulations of the peptides in pre-formed toroidal and cylindrical pores. When an alamethicin hexamer is initially embedded in a cylindrical pore, at the end of the simulation the pore remains cylindrical or ...

  13. Interaction of small peptides with lipid bilayers.

    OpenAIRE

    Damodaran, K. V.; Merz, K M; Gaber, B P

    1995-01-01

    Molecular dynamics simulations of the tripeptide Ala-Phe-Ala-O-tert-butyl interacting with dimyristoylphosphatidylcholine lipid bilayers have been carried out. The lipid and aqueous environments of the peptide, the alkyl chain order, and the lipid and peptide dynamics have been investigated with use of density profiles, radial distribution functions, alkyl chain order parameter profiles, and time correlation functions. It appears that the alkyl chain region accommodates the peptides in the bi...

  14. Self-assembly of tetraphenylalanine peptides

    OpenAIRE

    Mayans Tayadella, Enric; Ballano Ballano, María Gema; Casanovas Salas, Jordi; Díaz Andrade, Angélica María; Pérez Madrigal, Maria del Mar; Estrany Coda, Francesc; Puiggalí Bellalta, Jordi; Cativiela Marín, Carlos A.; Alemán Llansó, Carlos

    2015-01-01

    Three different tetraphenylalanine (FFFF) based peptides that differ at the N- and C-termini have been synthesized by using standard procedures to study their ability to form different nanoassemblies under a variety of conditions. The FFFF peptide assembles into nanotubes that show more structural imperfections at the surface than those formed by the diphenylalanine (FF) peptide under the same conditions. Periodic DFT calculations (M06L functional) were used to propose a model that consists o...

  15. Salt-resistant short antimicrobial peptides.

    Science.gov (United States)

    Mohanram, Harini; Bhattacharjya, Surajit

    2016-05-01

    Antimicrobial peptides (AMPs) are promising leads for the development of antibiotics against drug resistant bacterial pathogens. However, in vivo applications of AMPs remain obscure due to salt and serum mediated inactivation. The high cost of chemical synthesis of AMPs also impedes potential clinical application. Consequently, short AMPs resistant toward salt and serum inactivation are desirable for the development of peptide antibiotics. In this work, we designed a 12-residue amphipathic helical peptide RR12 (R-R-L-I-R-L-I-L-R-L-L-R-amide) and two Trp containing analogs of RR12 namely RR12Wpolar (R-R-L-I-W-L-I-L-R-L-L-R-amide), and RR12Whydro (R-R-L-I-R-L-W-L-R-L-L-R-amide). Designed peptides demonstrated potent antibacterial activity; MIC ranging from 2 to 8 μM, in the presence of sodium chloride (150 mM and 300 mM). Antibacterial activity of these peptides was also detected in the presence of human serum. Designed peptides, in particular RR12 and RR12Whydro, were only poorly hemolytic. As a mode of action; these peptides demonstrated efficient permeabilization of bacterial cell membrane and lysis of cell structure. We further investigated interactions of the designed peptides with lipopolysaccharide (LPS), the major component of the outer membrane permeability barrier of Gram-negative bacteria. Designed peptides adopted helical conformations in complex with LPS. Binding of peptides with LPS has yielded dissociation the aggregated structures of LPS. Collectively, these designed peptides hold ability to be developed for salt-resistant antimicrobial compounds. Most importantly, current work provides insights for designing salt-resistant antimicrobial peptides. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 345-356, 2016. PMID:26849911

  16. Genome-based peptide fingerprint scanning

    OpenAIRE

    Giddings, Michael C.; Shah, Atul A.; Gesteland, Ray; Moore, Barry

    2002-01-01

    We have implemented a method that identifies the genomic origins of sample proteins by scanning their peptide-mass fingerprint against the theoretical translation and proteolytic digest of an entire genome. Unlike previously reported techniques, this method requires no predefined ORF or protein annotations. Fixed-size windows along the genome sequence are scored by an equation accounting for the number of matching peptides, the number of missed enzymatic cleavages in each peptide, the number ...

  17. The Function and Development of Soybean Peptides

    Institute of Scientific and Technical Information of China (English)

    Yang Caiyan; Song Junmei

    2009-01-01

    Soybean peptides are small molecules hydrolyzed soy protein,from three to six amino acid composition of the peptide mixture,in 1000Da molecular weight below.Because it has a lot of good physical and chemical properties and physiological functions,in many areas has been widely used.This paper reviews the soybean peptide physical and chemical characteristics,physiological functions,technology and applications in the food industry.

  18. Insect inducible antimicrobial peptides and their applications.

    Science.gov (United States)

    Ezzati-Tabrizi, Reyhaneh; Farrokhi, Naser; Talaei-Hassanloui, Reza; Alavi, Seyed Mehdi; Hosseininaveh, Vahid

    2013-12-01

    Antimicrobial peptides (AMPs) are found as important components of the innate immune system (host defense) of all invertebrates. These peptides can be constitutively expressed or induced in response to microbial infections. Indeed, they vary in their amino acid sequences, potency and antimicrobial activity spectra. The smaller AMPs act greatly by disrupting the structure or function of microbial cell membranes. Here, the insect innate immune system with emphasis on inducible antimicrobial peptide properties against microbial invaders has been discussed.

  19. Modulation of autoimmunity with artificial peptides

    Science.gov (United States)

    La Cava, Antonio

    2010-01-01

    The loss of immune tolerance to self antigens leads to the development of autoimmune responses. Since self antigens are often multiple and/or their sequences may not be known, one approach to restore immune tolerance uses synthetic artificial peptides that interfere or compete with self peptides in the networks of cellular interactions that drive the autoimmune process. This review describes the rationale behind the use of artificial peptides in autoimmunity and their mechanisms of action. Examples of use of artificial peptides in preclinical studies and in the management of human autoimmune diseases are provided. PMID:20807590

  20. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang;

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...... pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending...... of this peptidic inhibitor, a concept different from conventional attempts at improving inhibitor affinity by reducing the entropic burden....

  1. C-peptide increases Na,K-ATPase expression via PKC- and MAP kinase-dependent activation of transcription factor ZEB in human renal tubular cells

    DEFF Research Database (Denmark)

    Galuska, Dana; Pirkmajer, Sergej; Barres, Romain;

    2011-01-01

    Replacement of proinsulin C-peptide in type 1 diabetes ameliorates nerve and kidney dysfunction, conditions which are associated with a decrease in Na,K-ATPase activity. We determined the molecular mechanism by which long term exposure to C-peptide stimulates Na,K-ATPase expression and activity in...

  2. The membrane interaction of amphiphilic model peptides affects phosphatidylserine headgroup and acyl chain order and dynamics. Application of the phospholipid headgroup electrometer concept to phosphatidylserine

    International Nuclear Information System (INIS)

    Deuterium nuclear magnetic resonance (2H NMR) was used to study the interaction of amphiphilic model peptides with model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine deuterated either at the β-position of the serine moiety ([2-2H]DOPS) or at the 11-position of the acyl chains ([11,11-2H2]DOPS). The peptides are derived from the sequences H-Ala-Met-Leu-Trp-Ala-OH and H-Arg-Met-Leu-Trp-Ala-OH and contain a positive charge of +1 or +2 at the amino terminus or one positive charge at each end of the molecule. Upon titration of dispersions of DOPS with the peptides, the divalent peptides show a similar extent of binding to the DOPS bilyers, which is larger than that of the single charged peptide. Under these conditions the values of the quadrupolar splitting of both [2-2H]DOPS and [11,11-2H2]DOPS are decreased, indicating that the peptides reduce the order of both the DOPS headgroup and the acyl chains. The extent of the decrease depends on the amount of peptide bound and on the position of the charged moieties in the peptide molecule. Titrations of DOPS with poly(L-lysine)100, which were included for reasons of comparison, reveal increased Δvq values. When the peptide-lipid titrations are carried out without applying a freeze-thaw procedure to achieve full equilibration, two-component 2H NMR spectra occur. The apparently limited accessibility of the lipid to the peptides under these circumstances is discussed in relation to the ability of the peptides to exhibit transbilayer movement. 2H spin-lattice relaxation time T1 measurements demonstrate a decrease of the rates of motion of both headgroup and acyl chains of DOPS in the presence of the peptides

  3. The membrane interaction of amphiphilic model peptides affects phosphatidylserine headgroup and acyl chain order and dynamics. Application of the phospholipid headgroup electrometer concept to phosphatidylserine

    Energy Technology Data Exchange (ETDEWEB)

    de Kroon, A.I.P.M.; Killian, J.A.; de Gier, J.; de Kruijff, B. (Univ. of Utrecht (Netherlands))

    1991-01-29

    Deuterium nuclear magnetic resonance ({sup 2}H NMR) was used to study the interaction of amphiphilic model peptides with model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine deuterated either at the {beta}-position of the serine moiety ((2-{sup 2}H)DOPS) or at the 11-position of the acyl chains ((11,11-{sup 2}H{sub 2})DOPS). The peptides are derived from the sequences H-Ala-Met-Leu-Trp-Ala-OH and H-Arg-Met-Leu-Trp-Ala-OH and contain a positive charge of +1 or +2 at the amino terminus or one positive charge at each end of the molecule. Upon titration of dispersions of DOPS with the peptides, the divalent peptides show a similar extent of binding to the DOPS bilyers, which is larger than that of the single charged peptide. Under these conditions the values of the quadrupolar splitting of both (2-{sup 2}H)DOPS and (11,11-{sup 2}H{sub 2})DOPS are decreased, indicating that the peptides reduce the order of both the DOPS headgroup and the acyl chains. The extent of the decrease depends on the amount of peptide bound and on the position of the charged moieties in the peptide molecule. Titrations of DOPS with poly(L-lysine){sub 100}, which were included for reasons of comparison, reveal increased {Delta}v{sub q} values. When the peptide-lipid titrations are carried out without applying a freeze-thaw procedure to achieve full equilibration, two-component {sup 2}H NMR spectra occur. The apparently limited accessibility of the lipid to the peptides under these circumstances is discussed in relation to the ability of the peptides to exhibit transbilayer movement. {sup 2}H spin-lattice relaxation time T1 measurements demonstrate a decrease of the rates of motion of both headgroup and acyl chains of DOPS in the presence of the peptides.

  4. Synthetic peptide vaccines: palmitoylation of peptide antigens by a thioester bond increases immunogenicity

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Tesser, G.I.;

    1997-01-01

    or an amide bond. It was found that these S-palmitoylated peptides were much more immunogenic than N-palmitoylated peptides and at least similar to KLH-conjugated peptides with respect to appearance and magnitude of induced antibodies (canine parvovirus) or immunocastration effect (gonadotropin...

  5. Driving engineering of novel antimicrobial peptides from simulations of peptide-micelle interactions

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Langham, Allison A; Kaznessis, Yiannis N

    2006-01-01

    peptides and their interaction with membrane mimics. In this article, we discuss the promise and the challenges of widely used models and detail our recent work on peptide-micelle simulations as an attractive alternative to peptide-bilayer simulations. We detail our results with two large structural...

  6. Peptide Nucleic Acids Complexes of Two Peptide Nucleic Acid Strands and One

    DEFF Research Database (Denmark)

    1999-01-01

    Peptide nucleic acids and analogues of peptide nucleic acids are used to form duplex, triplex, and other structures with nucleic acids and to modify nucleic acids. The peptide nucleic acids and analogues thereof also are used to modulate protein activity through, for example, transcription arrest...

  7. Mechanism and kinetics of peptide partitioning into membranes from all-atom simulations of thermostable peptides

    OpenAIRE

    Ulmschneider, Martin B.; Doux, Jacques P F; Killian, J. Antoinette; Smith, Jeremy C.; Ulmschneider, Jakob P.

    2010-01-01

    Partitioning properties of transmembrane (TM) polypeptide segments directly determine membrane protein folding, stability, and function, and their understanding is vital for rational design of membrane active peptides. However, direct determination of water-to-bilayer transfer of TM peptides has proved difficult. Experimentally, sufficiently hydrophobic peptides tend to aggregate, while atomistic computer simulations at physiological temperatures cannot yet reach the long time scales required...

  8. Glucagon-like peptide-1

    DEFF Research Database (Denmark)

    Deacon, C F; Holst, Jens Juul; Carr, R D

    1999-01-01

    Type 2 diabetes mellitus is a metabolic disease resulting in raised blood sugar which, if not satisfactorily controlled, can cause severe and often debilitating complications. Unfortunately, for many patients, the existing therapies do not give adequate control. Glucagon-like peptide-1 (GLP-1) is...... an incretin hormone which has a spectrum of activities which oppose the symptoms of diabetes. Of particular significance is the fact that these actions are glucose-dependent, meaning that the risk of severe hypoglycemia is practically eliminated. The recent elucidation of the key role of dipeptidyl...

  9. Atrial natriuretic peptides in plasma

    DEFF Research Database (Denmark)

    Goetze, Jens P; Holst Hansen, Lasse; Terzic, Dijana;

    2015-01-01

    Measurement of cardiac natriuretic peptides in plasma has gained a diagnostic role in the assessment of heart failure. Plasma measurement is though hampered by the marked instability of the hormones, which has led to the development of analyses that target N-terminal fragments from the prohormone....... These fragments are stable in plasma and represent surrogate markers of the actual natriuretic hormone. Post-translational processing of the precursors, however, is revealing itself to be a complex event with new information still being reported on proteolysis, covalent modifications, and amino acid...

  10. Aptamer-functionalized peptide H3CR5C as a novel nanovehicle for codelivery of fasudil and miRNA-195 targeting hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Liu Y

    2016-08-01

    Full Text Available Ying Liu,1,* Xin Wu,1,* Yuan Gao,2,* Jigang Zhang,1 Dandan Zhang,1 Shengying Gu,1 Guanhua Zhu,1 Gaolin Liu,1 Xiaoyu Li1 1Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 2Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Liver cancer is the fifth most commonly diagnosed malignancy, of which hepatocellular carcinoma (HCC represents the dominating histological subtype. Antiangiogenic therapy aimed at vascular endothelial growth factor (VEGF has shown promising but deficient clinical prospects on account of vasculogenic mimicry, a highly patterned vascular channel distinguished from the endothelium-dependent blood vessel, which may function as blood supply networks occurring in aggressive tumors including HCC. In this study, we used a new cationic peptide, disulfide cross-linked stearylated polyarginine peptide modified with histidine (H3R5, as a reducible vector, cell penetrating peptide-modified aptamer (ST21 with specific binding to HCC cells to conjugate to peptide H3R5 as the targeting probe, miRNA-195 (miR195as a powerful gene drug to inhibit VEGF, and fasudil to suppress vasculogenic mimicry by blocking ROCK2, all of which were simultaneously encapsulated in the same nanoparticles. Fasudil was loaded by ammonium sulfate-induced transmembrane electrochemical gradient and miR195 was condensed through electrostatic interaction. ST21-H3R5-polyethylene glycol (PEG exhibited excellent loading capacities for both fasudil and miR195 with adjustable dosing ratios. Western blot analysis showed that FasudilST21-H3R5-PEGmiR195 had strong silencing activity of ROCK2 and VEGF, as compared with FasudilH3R5-PEGmiR195. In vitro and in vivo experiments confirmed that ST21-modified nanoparticles showed significantly higher cellular uptake and therapeutic efficacy in tumor

  11. Screening of specific binding peptide targeting blood vessel of human esophageal cancer in vivo in mice

    Institute of Scientific and Technical Information of China (English)

    ZHI Min; WU Kai-chun; HAO Zhi-ming; GUO Chang-cun; YAO Jia-yin

    2011-01-01

    Background Cancer of the esophagus and gastroesophageal junction remains a virulent malignancy with poor prognosis. Rapid progresses were made in chemotherapeutic agents and the development of molecular markers allowed better identification of candidates for targeted therapy. This study aimed to identify the candidate peptides used for anti-angiogenic therapy of esophageal cancer by in vivo screening C7C peptide library for peptides binding specifically to blood vessels of human esophageal cancer.Methods The phage displayed C7C peptide library was injected intravenously into mice bearing human esophageal tumor xenografts under renal capsule. After 5 rounds of screening, 13 clones were picked up individually and sequenced.During each round of screening, titers of phage recovery were calculated from tumor xenograft and control tissues.Homing of these 9 peptides to tumor vessel was detected by calculating phage titers in the tumor xenograft and control tissues (lung and spleen) after each phage was injected into mice model, and compared with the distribution of phage M13 and Ⅷ-related antigen in tumor xenograft by immunohistochemical staining. Comparisons among groups of data were made using one-way analysis of variance (ANOVA), followed by the Bonferroni multiple comparisons test.Results The number of phage recovered from tumor tissue of each round increased gradually in tumor group while decreased in control groups (P <0.01 in tumor and spleen, P <0.05 in lung). Immunohistochemical staining showed similar staining pattern with M13 antibody or Ⅷ-related antigen antibody, suggesting that phages displaying the selected peptides could home to blood vessel of human esophageal cancer. According to their DNA, 9 corresponding peptide sequences were deduced. And the homing ability to blood vessel of phages displaying the selected peptides was confirmed by comparing with their recovery in tumor and control tissues. Two motifs, YSXNXW and PXNXXN, were also obtained by

  12. Azithromycin Synergizes with Cationic Antimicrobial Peptides to Exert Bactericidal and Therapeutic Activity Against Highly Multidrug-Resistant Gram-Negative Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Leo Lin

    2015-07-01

    Full Text Available Antibiotic resistance poses an increasingly grave threat to the public health. Of pressing concern, rapid spread of carbapenem-resistance among multidrug-resistant (MDR Gram-negative rods (GNR is associated with few treatment options and high mortality rates. Current antibiotic susceptibility testing guiding patient management is performed in a standardized manner, identifying minimum inhibitory concentrations (MIC in bacteriologic media, but ignoring host immune factors. Lacking activity in standard MIC testing, azithromycin (AZM, the most commonly prescribed antibiotic in the U.S., is never recommended for MDR GNR infection. Here we report a potent bactericidal action of AZM against MDR carbapenem-resistant isolates of Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. This pharmaceutical activity is associated with enhanced AZM cell penetration in eukaryotic tissue culture media and striking multi-log-fold synergies with host cathelicidin antimicrobial peptide LL-37 or the last line antibiotic colistin. Finally, AZM monotherapy exerts clear therapeutic effects in murine models of MDR GNR infection. Our results suggest that AZM, currently ignored as a treatment option, could benefit patients with MDR GNR infections, especially in combination with colistin.

  13. Bi-specific splice-switching PMO oligonucleotides conjugated via a single peptide active in a mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Shabanpoor, Fazel; McClorey, Graham; Saleh, Amer F; Järver, Peter; Wood, Matthew J A; Gait, Michael J

    2015-01-01

    The potential for therapeutic application of splice-switching oligonucleotides (SSOs) to modulate pre-mRNA splicing is increasingly evident in a number of diseases. However, the primary drawback of this approach is poor cell and in vivo oligonucleotide uptake efficacy. Biological activities can be significantly enhanced through the use of synthetically conjugated cationic cell penetrating peptides (CPPs). Studies to date have focused on the delivery of a single SSO conjugated to a CPP, but here we describe the conjugation of two phosphorodiamidate morpholino oligonucleotide (PMO) SSOs to a single CPP for simultaneous delivery and pre-mRNA targeting of two separate genes, exon 23 of the Dmd gene and exon 5 of the Acvr2b gene, in a mouse model of Duchenne muscular dystrophy. Conjugations of PMOs to a single CPP were carried out through an amide bond in one case and through a triazole linkage ('click chemistry') in the other. The most active bi-specific CPP-PMOs demonstrated comparable exon skipping levels for both pre-mRNA targets when compared to individual CPP-PMO conjugates both in cell culture and in vivo in the mdx mouse model. Thus, two SSOs with different target sequences conjugated to a single CPP are biologically effective and potentially suitable for future therapeutic exploitation. PMID:25468897

  14. A biomimetic collagen derived peptide exhibits anti-angiogenic activity in triple negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Elena V Rosca

    Full Text Available We investigated the application of a mimetic 20 amino acid peptide derived from type IV collagen for treatment of breast cancer. We showed that the peptide induced a decrease of proliferation, adhesion, and migration of endothelial and tumor cells in vitro. We also observed an inhibition of triple negative MDA-MB-231 xenograft growth by 75% relative to control when administered intraperitoneally for 27 days at 10 mg/kg. We monitored in vivo the changes in vascular properties throughout the treatment using MRI and found that the vascular volume and permeability surface area product decreased significantly. The treatment also resulted in an increase of caspase-3 activity and in a reduction of microvascular density. The multiple mode of action of this peptide, i.e., anti-angiogenic, and anti-tumorigenic, makes it a viable candidate as a therapeutic agent as a monotherapy or in combination with other compounds.

  15. Antimicrobial peptides in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    A Bogaerts

    2010-01-01

    Full Text Available The nematode Caenorhabditis elegans is one of the most successful model species for experimental research because of its sequenced genome, the versatile genetic toolkit and the straightforward breeding among others. In natural conditions however, this tiny worm is constantly surrounded by micro-organisms, simultaneously a source of indispensable nutrition and inevitable pathogens. Lacking an adaptive immune system, the worm solely relies on its innate immune defence to cope with its challenging life style. Hence C. elegans is an excellent model to gain more insight in innate immunity, which is remarkably preserved between invertebrate and vertebrate animals. The innate defence consists of receptors to detect potential pathogens, a complex network of signalling pathways and last but not least, effector molecules to abolish harmful microbes. In this review, we focus on the antimicrobial peptides, a vital subgroup of effector molecules. We summarise the current knowledge of the different families of C. elegans antimicrobial peptides, comprising NLPs, caenacins, ABFs, caenopores, and a recently discovered group with antifungal activity among which thaumatin-like proteins.

  16. Peptídeos de conformação restrita induzida pela incorporação de unidades (azalactâmicas Conformationally constrained induced peptides containing (azalactam units

    Directory of Open Access Journals (Sweden)

    Adriana Raffin Pohlmann

    1999-12-01

    Full Text Available Conformational constraint is an approach which can be used to restrict the flexibility of peptide molecules and to provide information on the topographical requirements of receptors. The incorporation of conformationally constrained units in a peptide can lead to peptide analogues that present numerous advantages such as the potentialization of the pharmacological activity and the decrease of enzymatic degradation. This review discusses the peptide analogues containing a lactam or azalactam unit in their sequences. Of particular interest has been the replacement of a dipeptide motif in a peptide that simulates a beta-turn.

  17. Charge properties of peptides derived from casein affect their bioavailability and cytoprotection against H2O2-induced oxidative stress.

    Science.gov (United States)

    Wang, Bo; Xie, Ningning; Li, Bo

    2016-04-01

    The effects of charge properties of casein peptides on absorption stability, antioxidant activity, and cytoprotection were evaluated. Alcalase hydrolysates of casein were separated into 4 fractions by cation-exchange chromatography according to charge properties. After simulated digestion and Caco-2 cell transmembrane transport, we determined the total antioxidant capacity (Trolox equivalent antioxidative capacity and oxygen radical antioxidant activity) and nitrogen content of peptide fractions to estimate available antioxidant efficacy and bioavailability (BA) of peptides. Results showed that negatively charged peptide fractions had greater BA and antioxidant activities after digestion and absorption. The peptide permeates were used to test the cytoprotective effect against H2O2-induced oxidative damage in HepG-2 cells. All peptide permeates increased cell viability, elevated catalase activity, and decreased superoxide dismutase activity. However, negatively charged peptide fractions preserved cell viability to a greater degree. Therefore, the negatively charged peptides from casein may be potential antioxidants and could be used as ingredients in functional foods and dietary supplements. PMID:26851854

  18. Immobilization of lipid vesicles on polymer support via an amphiphilic peptidic anchor: application to a membrane enzyme.

    Science.gov (United States)

    Percot, A; Zhu, X X; Lafleur, M

    2000-01-01

    To immobilize lipid vesicles on a polymer support, we have used a peptidic anchor with the following sequence: Ala-Ala-Leu-Leu-Leu-Ala-Ala-Ala-Ala-Ala-Ala-Ala-Ala-Ala-Ala-Ala-Ala-A la-Ala-Ala-Ala-Ala-Ala-Ala-Trp-Lys-Lys-Lys-Lys-Lys-Lys. This amphiphilic peptide was previously designed in our group to interact spontaneously and strongly with vesicles without perturbing their permeability. At the end of the solid-phase peptide synthesis, the peptide was left on the polymer beads and this novel polymer-peptide system was used for vesicle immobilization. It was shown that this polymer-peptide system could immobilize as much as 200 micromol of lipids per gram of dry resin. The amount of immobilized vesicles was decreased by a reduction of the proportion of the negatively charged lipids in the vesicles, indicating the importance of electrostatic interactions in the immobilization of the vesicles. The integrity of the vesicles was mostly preserved after the immobilization. This new polymer-peptide system was used easily and successfully to immobilize a membrane-bound enzyme, gamma-glutamyl transpeptidase. The activity of the membrane-bound enzyme was studied by monitoring the release of p-nitroaniline. The activity of the enzyme was still retained, even after being re-used eight times, indicating the strong immobilization of the enzyme in its active form. The polymer-peptide support could be regenerated by washing with ethanol and reused.

  19. Production of peptide antisera specific for mouse and rat proinsulin C-peptide 2

    DEFF Research Database (Denmark)

    Blume, N; Madsen, O D; Kofod, Hans;

    1990-01-01

    not seem to increase the end point titre as tested in direct ELISA. The specificity of the antiserum was determined by competitive ELISA and histochemistry on pancreas sections. Only the synthetic C-peptide 2, but not the homologous synthetic C-peptide 1 from mouse and rat competed efficiently in ELISA...... for antibody binding to the immunizing antigen. Antisera to C-peptide 2, stained islet beta-cells on mouse and rat, but not monkey pancreas sections in immunocytochemical analysis. Preabsorption to the synthetic C-peptide 2, but not the synthetic mouse and rat C-peptide 1 abolished staining. In conclusion we...

  20. Determination of peptide content of DOTA-peptides by metal titration and UPLC

    International Nuclear Information System (INIS)

    Radiolabelled DOTA-peptides are in use for Peptide Receptor Radionuclide Scintigraphy (PRS) and Therapy (PRRT), e.g with 177Lu-DOTA-TATE or 90Y-DOTATOC. Labelling conditions are frequently critical. Therefore, the ingredients of the reaction, e.g. radiometal (90Y and 177Lu) and DOTA-peptide should be pure and the content known. Quality control of DOTA-peptide, can be performed with various methods, most commonly by UV. There are numerous conditions in which this is hampered, e.g. impurities may also have UV-absorption. The aim of the study was to quantify content and purity of DOTA-peptide

  1. Protective Effect of Wheat Peptides Against Small Intestinal Damage Induced by Non-Steroidal Anti-Inlfammatory Drugs in Rats

    Institute of Scientific and Technical Information of China (English)

    YIN Hong; PAN Xing-chang; WANG Shao-kang; YANG Li-gang; SUN Gui-ju

    2014-01-01

    Non-steroidal anti-inlfammatory drugs (NSAIDs) were able to produce tissue damage and oxidative stress in animal models of small intestinal damage. In this study, the putative protective effect of wheat peptides was evaluated in a NSAID-induced small intestinal damage model in rats, different doses of wheat peptides or distilled water were administered daily by intragastric administration for 30 d until small intestinal damage was caused. Before sacriifcing, NSAIDs (aspirin and indomethacin) or physiological saline were infused into the digestive tract twice. Wheat peptides administration reduced edema and small intestinal damage, and signiifcantly decreased the level of tumor necrosis factor (TNF)-α in mucous membrane of small intestine. Oxidative stress was signiifcantly increased after NSAID infusion and was reduced by wheat peptides. Wheat peptides increased glutathione peroxidase(GSH-Px) activity in mucous membrane of small intestine. µ-Opioid receptor mRNA expression decreased more signiifcantly in wheat peptides treated rats than in the model control group. Overall, the results suggest that non-steroidal anti-inlfammatory drugs induced small intestinal damage in rats and wheat peptides administration may be an effective tool for protecting small intestinal tissue against NSAID-induced small intestinal damage and oxidative stress.

  2. Engineered Adhesion Peptides for Improved Silicon Adsorption.

    Science.gov (United States)

    Ramakrishnan, Sathish Kumar; Jebors, Said; Martin, Marta; Cloitre, Thierry; Agarwal, Vivechana; Mehdi, Ahmad; Martinez, Jean; Subra, Gilles; Gergely, Csilla

    2015-11-01

    Engineering peptides that present selective recognition and high affinity for a material is a major challenge for assembly-driven elaboration of complex systems with wide applications in the field of biomaterials, hard-tissue regeneration, and functional materials for therapeutics. Peptide-material interactions are of vital importance in natural processes but less exploited for the design of novel systems for practical applications because of our poor understanding of mechanisms underlying these interactions. Here, we present an approach based on the synthesis of several truncated peptides issued from a silicon-specific peptide recovered via phage display technology. We use the photonic response provided by porous silicon microcavities to evaluate the binding efficiency of 14 different peptide derivatives. We identify and engineer a short peptide sequence (SLVSHMQT), revealing the highest affinity for p(+)-Si. The molecular recognition behavior of the obtained peptide fragment can be revealed through mutations allowing identification of the preferential affinity of certain amino acids toward silicon. These results constitute an advance in both the engineering of peptides that reveal recognition properties for silicon and the understanding of biomolecule-material interactions.

  3. [Application on food preservative of antimicrobial peptides].

    Science.gov (United States)

    Zhao, Hongyan; Mu, Yu; Zhao, Baohua

    2009-07-01

    Antimicrobial peptides are an integral component of the innate immune system, it can counteract outer membrane pathogen such as bacteria, fungi, viruses, protozoan and so on. Owing to the sterilization and innocuity, it has the potential to be crude food preservative. In this paper the uses of antibacterial peptides in the food preservative were analyzed.

  4. Prediction of twin-arginine signal peptides

    DEFF Research Database (Denmark)

    Bendtsen, Jannick Dyrløv; Nielsen, Henrik; Widdick, D.;

    2005-01-01

    peptides and 84% of the annotated cleavage sites of these Tat signal peptides were correctly predicted. This method generates far less false positive predictions on various datasets than using simple pattern matching. Moreover, on the same datasets TatP generates less false positive predictions than...

  5. Production and characterization of peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies are...

  6. Peptide Mass Fingerprinting of Egg White Proteins

    Science.gov (United States)

    Alty, Lisa T.; LaRiviere, Frederick J.

    2016-01-01

    Use of advanced mass spectrometry techniques in the undergraduate setting has burgeoned in the past decade. However, relatively few undergraduate experiments examine the proteomics tools of protein digestion, peptide accurate mass determination, and database searching, also known as peptide mass fingerprinting. In this experiment, biochemistry…

  7. New Biodegradable Peptide-based Polymer Constructs

    NARCIS (Netherlands)

    van Dijk, M.

    2009-01-01

    Peptide-based polymers are of increasing interest, since they can be applied for a variety of purposes such as drug delivery devices, scaffolds for tissue engineering and -repair, and as novel biomaterials. Peptide-based polymers are common in nature and often exhibit special characteristics. Howeve

  8. Protein identification by peptide mass fingerprinting

    DEFF Research Database (Denmark)

    Hjernø, Karin

    2007-01-01

      Peptide mass fingerprinting is an effective way of identifying, e.g., gel-separated proteins, by matching experimentally obtained peptide mass data against large databases. However, several factors are known to influence the quality of the resulting matches, such as proteins contaminating the s...

  9. Peptidomic Identification of Serum Peptides Diagnosing Preeclampsia.

    Directory of Open Access Journals (Sweden)

    Qiaojun Wen

    Full Text Available We sought to identify serological markers capable of diagnosing preeclampsia (PE. We performed serum peptide analysis (liquid chromatography mass spectrometry of 62 unique samples from 31 PE patients and 31 healthy pregnant controls, with two-thirds used as a training set and the other third as a testing set. Differential serum peptide profiling identified 52 significant serum peptides, and a 19-peptide panel collectively discriminating PE in training sets (n = 21 PE, n = 21 control; specificity = 85.7% and sensitivity = 100% and testing sets (n = 10 PE, n = 10 control; specificity = 80% and sensitivity = 100%. The panel peptides were derived from 6 different protein precursors: 13 from fibrinogen alpha (FGA, 1 from alpha-1-antitrypsin (A1AT, 1 from apolipoprotein L1 (APO-L1, 1 from inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4, 2 from kininogen-1 (KNG1, and 1 from thymosin beta-4 (TMSB4. We concluded that serum peptides can accurately discriminate active PE. Measurement of a 19-peptide panel could be performed quickly and in a quantitative mass spectrometric platform available in clinical laboratories. This serum peptide panel quantification could provide clinical utility in predicting PE or differential diagnosis of PE from confounding chronic hypertension.

  10. B-Type allatostatins and sex peptides

    Science.gov (United States)

    In many species, mating induces a number of behavioral changes in the female. For Drosophila melanogaster, the sex peptide (SP) has been identified as the main molecular factor behind these responses. Recently, the sex peptide receptor (SPR), a GPCR activated by SP has also been characterized as res...

  11. Trandermal Peptides for Large Molecule Delivery

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ A research team, led by Prof. WEN Longping from the University of Science and Technology of China under CAS,has successfully screened out a trandermal peptide, using biotechnology. The new peptide is able to deliver insulin into human body through skin, rendering an immediate therapeutic effect. The finding was published in the March 27 issue of the journal Natural Biotechnology.

  12. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang;

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...

  13. Cloning and biological activity of an anti-tumor peptide of Tumstatin

    Institute of Scientific and Technical Information of China (English)

    WANG Shujing; LIU Yan; LIN Xuesong; FU Xue; XU Jianyong; LIU Xinghan

    2007-01-01

    To obtain an anti-tumor peptide of Tumstatin and detect its biological activity,the nucleotide sequence encoding 185-203 amino acids (19peptide) of Tumstatin was synthesized and inserted into the fusion protein vector pTYB2.After identification by sequencing and restriction endonucleases,the recombined vector was transformed into BL-21 (DE3) E.coli competent cells.Transformed E.coli BL-21 (DE3) were induced by isopropyl-β-thiogalactopyranoside (IPTG),and then expressed.By 1,4-dithiothreitol (DTT)reduction,the soluble 19peptide was obtained from a chitin affinity chromatograph.The biological activity of 19peptide was determined by 3-[4,5-dimethylthiazol-2-y1]-2,5-diphenytetrazolium bromide (MTT) assay,cell growth curve,the effect of the ascitic fluid transfevent H22 hepatoma on mice and via histopathological slices.The purified 19peptide directly inhibited proliferation and migration of murine B16 melanoma cells,SMMC-7721hepatoma carcinoma cells and human umbilical vein endothelial cells (HUVEC).The tumor inhibition rate of mice ascitic fluid transfevent H22 hepatoma was 48.46%.Histopathological slices showed that it could promote tumor tissue necrosis and decrease the density of blood vessels.With higher anti-tumor activity,19peptide has the potential to become a novel,potent anti-tumor agent.

  14. Mathematical aspects of the kinetics of formation and degradation of linear peptide or protein aggregates.

    Science.gov (United States)

    Zhdanov, Vladimir P

    2016-08-01

    In cells, peptides and proteins are sometimes prone to aggregation. In neurons, for example, amyloid β peptides form plaques related to Alzheimer's disease (AD). The corresponding kinetic models either ignore or do not pay attention to degradation of these species. Here, the author proposes a generic kinetic model describing formation and degradation of linear aggregates. The process is assumed to occur via reversible association of monomers and attachment of monomers to or detachment from terminal parts of aggregates. Degradation of monomers is described as a first-order process. Degradation of aggregates is considered to occur at their terminal and internal parts with different rates and these steps are described by first-order equations as well. Irrespective of the choice of the values of the rate constants, the model predicts that eventually the system reaches a stable steady state with the aggregate populations rapidly decreasing with increasing size at large sizes. The corresponding steady-state size distributions of aggregates are illustrated in detail. The transient kinetics are also shown. The observation of AD appears, however, to indicate that the peptide production becomes eventually unstable, i.e., the growth of the peptide population is not properly limited. This is expected to be related to the specifics of the genetic networks controlling the peptide production. Following this line, two likely general networks with, respectively, global negative and positive feedbacks in the peptide production are briefly discussed. PMID:27132946

  15. Antimicrobial peptides present in mammalian skin and gut are multifunctional defence molecules.

    Science.gov (United States)

    Metz-Boutigue, Marie-Hélène; Shooshtarizadeh, Peiman; Prevost, Gilles; Haikel, Youssef; Chich, Jean-François

    2010-01-01

    Antimicrobial peptides are major components of the innate immune defence. They are well conserved along evolution, non-toxic and they ensure potent defences against a large number of pathogens. They act by direct killing of microorganisms and they possess additional roles in the regulation of adaptive immune responses, by recruting or stimulating immune cells. Skin and gut are positioned at the interface of internal milieu and external environment. They represent a physical and chemical barrier against pathogens invasion and the antimicrobial peptides limit pathogen growth in normal conditions. During infection or injury, some of these peptides are overexpressed and disrupt microbial membranes and/or stimulate immune cell recruitment, allowing to return to homeostasis or to increase inflammation. Antimicrobial peptides expression is altered in several diseases: alpha-defensins deficiency is related with Crohn's disease and in skin, cathelicidin LL-37 and beta-defensin-2 are overexpressed in psoriasis, while in atopic dermatitis, their expression is decreased. The present review provides an up-to-date summary of the expression and the biological roles of the antimicrobial peptides found in the skin and gastrointestinal mucosa of the host, in normal and pathological conditions. The involvement of these natural antimicrobial peptides in inflammation, is also discussed.

  16. Differential regulation of cell functions by CSD peptide subdomains

    OpenAIRE

    Reese, Charles; Dyer, Shanice; Perry, Beth; Bonner, Michael; Oates, James; Hofbauer, Ann; Sessa, William; Bernatchez, Pascal; Visconti, Richard P; Zhang, Jing; Hatfield, Corey M; Silver, Richard M.; Hoffman, Stanley; Tourkina, Elena

    2013-01-01

    Background In fibrotic lung diseases, expression of caveolin-1 is decreased in fibroblasts and monocytes. The effects of this deficiency are reversed by treating cells or animals with the caveolin-1 scaffolding domain peptide (CSD, amino acids 82–101 of caveolin-1) which compensates for the lack of caveolin-1. Here we compare the function of CSD subdomains (Cav-A, Cav-B, Cav-C, Cav-AB, and Cav-BC) and mutated versions of CSD (F92A and T90A/T91A/F92A). Methods Migration toward the chemokine CX...

  17. Therapeutic Potential of Human Neutrophil Peptide 1 against Experimental Tuberculosis

    OpenAIRE

    Sharma, Sudhir; Verma, Indu; Khuller, G. K.

    2001-01-01

    The therapeutic efficacy of human neutrophil peptide 1 (HNP-1) against experimental tuberculosis in mice on the basis of numbers of CFU has been examined. Mice infected with 1.5 × 104 CFU of Mycobacterium tuberculosis H37Rv and treated with different doses of HNP-1 injected subcutaneously exhibited significant clearance of bacilli from lungs, livers, and spleens. There were time- and dose-dependent decreases in the bacillary load in lungs, livers, and spleens of the HNP-1-treated animals comp...

  18. Antioxidant activity of yoghurt peptides: Part 2 – Characterisationof peptide fractions

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Baron, Caroline; Nielsen, Nina Skall;

    2010-01-01

    The aim of the present study was to elucidate previous findings showing that peptide fractions isolated from yoghurt had antioxidant effects. Therefore, peptides and free amino acids released during fermentation of milk were characterised. Yoghurt samples were stripped from sugars and lactic acid...... antioxidant activity in these fractions.......The aim of the present study was to elucidate previous findings showing that peptide fractions isolated from yoghurt had antioxidant effects. Therefore, peptides and free amino acids released during fermentation of milk were characterised. Yoghurt samples were stripped from sugars and lactic acid...... the peptides identified contained at least one proline residue. Some of the identified peptides included the hydrophobic amino acid residues Val or Leu at the N-terminus and Pro, His or Tyr in the amino acid sequence, which is characteristic of antioxidant peptides. In addition, the yoghurt contained...

  19. Role of peptide bond in the realization of biological activity of short peptides.

    Science.gov (United States)

    Khavinson, V Kh; Tarnovskaya, S I; Lin'kova, N S; Chervyakova, N A; Nichik, T E; Elashkina, E V; Chalisova, N I

    2015-02-01

    We performed a comparative analysis of biological activity of Lys-Glu peptide and its amino acid constituents. It was established that Lys-Glu stimulated proliferation of splenic cells in organotypic culture, while the mixture of glutamic acid and lysine inhibited culture growth. Using the method of molecular docking, we showed that glutamic acid, lysine, and Lys-Glu peptide can interact with different DNA sequences. The energy of interaction and the most beneficial localization of glutamic acid, lysine, and Lys-Glu peptide in DNA molecule was calculated. We demonstrated the interaction of the peptide and amino acids with DNA along the minor groove. The energy of DNA interaction with the peptide is higher than with individual amino acids. The peptide bonds increase the interaction of Lys-Glu peptide with DNA, which potentiates the biological effect on cell proliferation in organotypic culture of splenic cells.

  20. Peptide nanospheres self-assembled from a modified β-annulus peptide of Sesbania mosaic virus.

    Science.gov (United States)

    Matsuura, Kazunori; Mizuguchi, Yusaku; Kimizuka, Nobuo

    2016-11-01

    A novel β-annulus peptide of Sesbania mosaic virus bearing an FKFE sequence at the C terminus was synthesized, and its self-assembling behavior in water was investigated. Dynamic light scattering and transmission electron microscopy showed that the β-annulus peptide bearing an FKFE sequence self-assembled into approximately 30 nm nanospheres in water at pH 3.8, whereas the β-annulus peptide without the FKFE sequence afforded only irregular aggregates. The peptide nanospheres possessed a definite critical aggregation concentration (CAC = 26 μM), above which the size of nanospheres were nearly unaffected by the peptide concentration. The formation of peptide nanospheres was significantly affected by pH; the peptide did not form any assemblies at pH 2.2, whereas larger aggregates were formed at pH 6.4-11.6. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 470-475, 2016. PMID:26573103