WorldWideScience

Sample records for cell-penetrating peptides decreases

  1. Cell-penetrating peptides transport therapeutics into cells.

    Science.gov (United States)

    Ramsey, Joshua D; Flynn, Nicholas H

    2015-10-01

    Nearly 30years ago, certain small, relatively nontoxic peptides were discovered to be capable of traversing the cell membrane. These cell-penetrating peptides, as they are now called, have been shown to not only be capable of crossing the cell membrane themselves but can also carry many different therapeutic agents into cells, including small molecules, plasmid DNA, siRNA, therapeutic proteins, viruses, imaging agents, and other various nanoparticles. Many cell-penetrating peptides have been derived from natural proteins, but several other cell-penetrating peptides have been developed that are either chimeric or completely synthetic. How cell-penetrating peptides are internalized into cells has been a topic of debate, with some peptides seemingly entering cells through an endocytic mechanism and others by directly penetrating the cell membrane. Although the entry mechanism is still not entirely understood, it seems to be dependent on the peptide type, the peptide concentration, the cargo the peptide transports, and the cell type tested. With new intracellular disease targets being discovered, cell-penetrating peptides offer an exciting approach for delivering drugs to these intracellular targets. There are hundreds of cell-penetrating peptides being studied for drug delivery, and ongoing studies are demonstrating their success both in vitro and in vivo. PMID:26210404

  2. Cell Penetration Properties of a Highly Efficient Mini Maurocalcine Peptide

    Directory of Open Access Journals (Sweden)

    Michel De Waard

    2013-03-01

    Full Text Available Maurocalcine is a highly potent cell-penetrating peptide isolated from the Tunisian scorpion Maurus palmatus. Many cell-penetrating peptide analogues have been derived from the full-length maurocalcine by internal cysteine substitutions and sequence truncation. Herein we have further characterized the cell-penetrating properties of one such peptide, MCaUF1-9, whose sequence matches that of the hydrophobic face of maurocalcine. This peptide shows very favorable cell-penetration efficacy compared to Tat, penetratin or polyarginine. The peptide appears so specialized in cell penetration that it seems hard to improve by site directed mutagenesis. A comparative analysis of the efficacies of similar peptides isolated from other toxin members of the same family leads to the identification of hadrucalcin’s hydrophobic face as an even better CPP. Protonation of the histidine residue at position 6 renders the cell penetration of MCaUF1-9 pH-sensitive. Greater cell penetration at acidic pH suggests that MCaUF1-9 can be used to specifically target cancer cells in vivo where tumor masses grow in more acidic environments.

  3. Prediction of cell-penetrating peptides with feature selection techniques.

    Science.gov (United States)

    Tang, Hua; Su, Zhen-Dong; Wei, Huan-Huan; Chen, Wei; Lin, Hao

    2016-08-12

    Cell-penetrating peptides are a group of peptides which can transport different types of cargo molecules such as drugs across plasma membrane and have been applied in the treatment of various diseases. Thus, the accurate prediction of cell-penetrating peptides with bioinformatics methods will accelerate the development of drug delivery systems. The study aims to develop a powerful model to accurately identify cell-penetrating peptides. At first, the peptides were translated into a set of vectors with the same dimension by using dipeptide compositions. Secondly, the Analysis of Variance-based technique was used to reduce the dimension of the vector and explore the optimized features. Finally, the support vector machine was utilized to discriminate cell-penetrating peptides from non-cell-penetrating peptides. The five-fold cross-validated results showed that our proposed method could achieve an overall prediction accuracy of 83.6%. Based on the proposed model, we constructed a free webserver called C2Pred (http://lin.uestc.edu.cn/server/C2Pred). PMID:27291150

  4. Cell-penetrating peptides for drug delivery across membrane barriers

    DEFF Research Database (Denmark)

    Foged, Camilla; Nielsen, Hanne Moerck

    2008-01-01

    -penetrating peptides as transmembrane drug delivery agents, according to the recent literature, and discusses critical issues and future challenges in relation to fully understanding the fundamental principles of the cell-penetrating peptide-mediated membrane translocation of cargoes and the exploitation of their...

  5. Cationic Cell-Penetrating Peptides Are Potent Furin Inhibitors.

    Directory of Open Access Journals (Sweden)

    Bruno Ramos-Molina

    Full Text Available Cationic cell-penetrating peptides have been widely used to enhance the intracellular delivery of various types of cargoes, such as drugs and proteins. These reagents are chemically similar to the multi-basic peptides that are known to be potent proprotein convertase inhibitors. Here, we report that both HIV-1 TAT47-57 peptide and the Chariot reagent are micromolar inhibitors of furin activity in vitro. In agreement, HIV-1 TAT47-57 reduced HT1080 cell migration, thought to be mediated by proprotein convertases, by 25%. In addition, cyclic polyarginine peptides containing hydrophobic moieties which have been previously used as transfection reagents also exhibited potent furin inhibition in vitro and also inhibited intracellular convertases. Our finding that cationic cell-penetrating peptides exert potent effects on cellular convertase activity should be taken into account when biological effects are assessed.

  6. Bioportide: an emergent concept of bioactive cell-penetrating peptides

    Czech Academy of Sciences Publication Activity Database

    Howl, J.; Matou-Nasri, S.; West, D. C.; Farquhar, M.; Slaninová, Jiřina; Ostenson, C. G.; Zorko, M.; Ostlund, P.; Kumar, S.; Langel, U.; McKeating, J.; Jones, S.

    2012-01-01

    Roč. 69, č. 17 (2012), s. 2951-2966. ISSN 1420-682X Institutional research plan: CEZ:AV0Z40550506 Keywords : angiogenesis * bioportide * cell-penetrating peptide * second messenger * insulin secretion Subject RIV: CE - Biochemistry Impact factor: 5.615, year: 2012

  7. Beyond Cell Penetrating Peptides: Designed Molecular Transporters

    OpenAIRE

    Wender, Paul A.; Cooley, Christina B.; Geihe, Erika I.

    2012-01-01

    Inspired originally by peptides that traverse biological barriers, research on molecular transporters has since identified the key structural requirements that govern cellular entry, leading to new, significantly more effective and more readily available agents. These new drug delivery systems enable or enhance cellular and tissue uptake, can be targeted, and provide numerous additional advantages of significance in imaging, diagnostics and therapy.

  8. Strategies to stabilize cell penetrating peptides for in vivo applications.

    Science.gov (United States)

    Fominaya, Jesús; Bravo, Jerónimo; Rebollo, Angelita

    2015-10-01

    In the era of biomedicines and engineered carrier systems, cell penetrating peptides (CPPs) have been established as a promising tool for therapeutic application. Likewise, other therapeutic peptides, successful in vivo application of CPPs will strongly depend on peptide stability, the bottleneck for this type of biodegradable molecules. In this review, the authors describe the current knowledge of the in vivo degradation for known CPPs and the different strategies available to provide a higher resistance to metabolic degradation while preserving cell penetration efficiency. Peptide stability can be improved by different means, either modifying the structure to make it unrecognizable to proteases, or preventing access of proteolytic enzymes by applying conformation restriction or shielding strategies. PMID:26448473

  9. Prediction of cell penetrating peptides by support vector machines.

    Directory of Open Access Journals (Sweden)

    William S Sanders

    2011-07-01

    Full Text Available Cell penetrating peptides (CPPs are those peptides that can transverse cell membranes to enter cells. Once inside the cell, different CPPs can localize to different cellular components and perform different roles. Some generate pore-forming complexes resulting in the destruction of cells while others localize to various organelles. Use of machine learning methods to predict potential new CPPs will enable more rapid screening for applications such as drug delivery. We have investigated the influence of the composition of training datasets on the ability to classify peptides as cell penetrating using support vector machines (SVMs. We identified 111 known CPPs and 34 known non-penetrating peptides from the literature and commercial vendors and used several approaches to build training data sets for the classifiers. Features were calculated from the datasets using a set of basic biochemical properties combined with features from the literature determined to be relevant in the prediction of CPPs. Our results using different training datasets confirm the importance of a balanced training set with approximately equal number of positive and negative examples. The SVM based classifiers have greater classification accuracy than previously reported methods for the prediction of CPPs, and because they use primary biochemical properties of the peptides as features, these classifiers provide insight into the properties needed for cell-penetration. To confirm our SVM classifications, a subset of peptides classified as either penetrating or non-penetrating was selected for synthesis and experimental validation. Of the synthesized peptides predicted to be CPPs, 100% of these peptides were shown to be penetrating.

  10. Cell Penetrating Peptides: How Do They Do It?

    OpenAIRE

    Herce, Henry D.; Garcia, Angel E.

    2007-01-01

    Cell penetrating peptides consist of short sequences of amino acids containing a large net positive charge that are able to penetrate almost any cell, carrying with them relatively large cargoes such as proteins, oligonucleotides, and drugs. During the 10 years since their discovery, the question of how they manage to translocate across the membrane has remained unanswered. The main discussion has been centered on whether they follow an energy-independent or an energy-dependent pathway. Recen...

  11. Electrochemistry of a ferrocene-grafted cell-penetrating peptide

    International Nuclear Information System (INIS)

    A cationic cell-penetrating peptide (CPP) labeled with both a ferrocenyl (Fc) moiety and a biotin (B) was successfully synthesized and investigated by electrochemistry. This original CPP derivative noted as Fc-CPP-B could be electrochemically detected, at a micromolar concentration, at a naked gold bead electrode. The presence of a biotin tag in the Fc-CPP-B complex allowed its complexation with avidin, which was itself tethered to a thiolated self-assembled monolayer. Such an avidin-modified gold surface, characterized by atomic force microscopy (AFM), allowed the immobilization of Fc-CPP-B onto the electrode surface, which greatly enhanced its electrochemical detection. Nevertheless, under these conditions the electrogenerated ferrocenium cation could not be reduced during the backward scan, indicating its unexpected reactivity when tethered within the avidin environment. In terms of detection and redox probe regeneration the best results were obtained at a glassy carbon electrode modified with a cation-exchange polymer. Ion-exchange voltammetry, performed under these conditions, allowed the pre-concentration of the peptide at the electrode surface thanks to the net positive charge of the CPP derivative. Interestingly, the anionic character of the polymer contributed to retain the electrogenerated cation Fc+ in the film so that it could be reduced back to its original neutral form during the reverse voltammetric scans.

  12. Cell penetrating peptides: how do they do it?

    Science.gov (United States)

    Herce, Henry D; Garcia, Angel E

    2007-12-01

    Cell penetrating peptides consist of short sequences of amino acids containing a large net positive charge that are able to penetrate almost any cell, carrying with them relatively large cargoes such as proteins, oligonucleotides, and drugs. During the 10 years since their discovery, the question of how they manage to translocate across the membrane has remained unanswered. The main discussion has been centered on whether they follow an energy-independent or an energy-dependent pathway. Recently, we have discovered the possibility of an energy-independent pathway that challenges fundamental concepts associated with protein-membrane interactions (Herce and Garcia, PNAS, 104: 20805 (2007) [1]). It involves the translocation of charged residues across the hydrophobic core of the membrane and the passive diffusion of these highly charged peptides across the membrane through the formation of aqueous toroidal pores. The aim of this review is to discuss the details of the mechanism and interpret some experimental results consistent with this view. PMID:19669523

  13. Peptide Internalization Enabled by Folding: Triple Helical Cell-Penetrating Peptides

    OpenAIRE

    Shinde, Aparna; Feher, Katie M.; Hu, Chloe; Slowinska, Katarzyna

    2014-01-01

    Cell-Penetrating Peptides (CPPs) are known as efficient transporters of molecular cargo across cellular membranes. Their properties make them ideal candidates for in vivo applications. However, challenges in development of effective CPPs still exist: CPPs are often fast degraded by proteases and large concentration of CPPs required for cargo transporting can cause cytotoxicity. It was previously shown that restricting peptide flexibility can improve peptide stability against enzymatic degrada...

  14. Poly(NIPAm-AMPS) nanoparticles for targeted delivery of anti-inflammatory cell penetrating peptides

    Science.gov (United States)

    Bartlett, Rush Lloyd, II

    Inflammatory diseases such as osteoarthritis and rheumatoid arthritis cause $127.8 billion in US healthcare expenditures each year and are the cause of disability for 27% of disabled persons in the United States. Current treatment options rarely halt disease progression and often result in significant unwanted and debilitating side effects. Our laboratory has previously developed a family of cell penetrating peptides (CPPs) which inhibit the activity of mitogen activated protein kinase activate protein kinase 2 (MK2). MK2 mediates the inflammatory response by activating Tristetraprline (TTP). Once activated, TTP rapidly stabilizes AU rich regions of pro-inflammatory cytokine mRNA which allows translation of pro-inflammatory cytokines to occur. Blocking MK2 with our labs CPPs yields a decrease in inflammatory activity but CPPs by are highly non specific and prone to rapid enzymatic degradation in vivo.. In order to increase the potency of MK2 inhibiting CPPs we have developed a novel nanoparticle drug carrier composed of poly(N-isopropylacrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid). This drug carrier has been shown to have preliminary efficacy in vitro and ex vivo for suppressing pro-inflammatory cytokine production when releasing CPPs. This thesis will present progress made on three aims: Specific Aim 1) Create and validate a NIPAm based drug delivery system that mimics the binding and release previously observed between cell penetrating peptides and glycosaminoglycans. Specific Aim 2) Engineer degradability into poly(NIPAm-AMPS) nanoparticles to enable more drug to be released and qualify that system in vitro. Specific Aim 3) Validate poly(NIPAm-AMPS) nanoparticles for targeted drug delivery in an ex vivo inflammatory model. Overall we have developed a novel anionic nanoparticle system that is biocompatible and efficient at loading and releasing cell penetrating peptides to inflamed tissue. Once loaded with a CPP the nanoparticle drug complex is

  15. Cationic cell-penetrating peptides induce ceramide formation via acid sphingomyelinase: implications for uptake.

    NARCIS (Netherlands)

    Verdurmen, W.P.R.; Thanos, M.; Ruttekolk, I.R.R.; Gulbins, E.; Brock, R.E.

    2010-01-01

    Cationic cell-penetrating peptides (CPP) are receiving increasing attention as molecular transporters of membrane-impermeable molecules. Import of cationic CPP occurs both via endocytosis and - at higher peptide concentrations - in an endocytosis-independent manner via localized regions of the plasm

  16. A cell-penetrating peptide derived from human lactoferrin with conformation-dependent uptake efficiency.

    NARCIS (Netherlands)

    Duchardt, F.; Ruttekolk, I.R.R.; Verdurmen, W.P.R.; Lortat-Jacob, H.; Burck, J.; Hufnagel, H.; Fischer, R.; Heuvel, M. van den; Lowik, D.W.; Vuister, G.W.; Ulrich, A.; Waard, M. de; Brock, R.E.

    2009-01-01

    The molecular events that contribute to the cellular uptake of cell-penetrating peptides (CPP) are still a matter of intense research. Here, we report on the identification and characterization of a 22-amino acid CPP derived from the human milk protein, lactoferrin. The peptide exhibits a conformati

  17. A Cell-Penetrating Peptide with a Guanidinylethyl Amine Structure Directed to Gene Delivery

    Science.gov (United States)

    Oba, Makoto; Kato, Takuma; Furukawa, Kaori; Tanaka, Masakazu

    2016-01-01

    A peptide composed of lysine with a guanidinylethyl (GEt) amine structure in the side chain [Lys(GEt)] was developed as a cell-penetrating peptide directed to plasmid DNA (pDNA) delivery. The GEt amine adopted a diprotonated form at neutral pH, which may have led to the more efficient cellular uptake of a Lys(GEt)-peptide than an arginine-peptide at a low concentration. Lys(GEt)-peptide/pDNA complexes showed the highest transfection efficiency due to efficient endosomal escape without any cytotoxicity. Lys(GEt)-peptide may be a promising candidate as a gene delivery carrier.

  18. Enhanced cellular delivery of cell-penetrating peptide-peptide nucleic acid conjugates by photochemical internalization

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    Cell-penetrating peptides (CPPs) have been widely used for a cellular delivery of biologically relevant cargoes including antisense peptide nucleic acids (PNAs). Although chemical conjugation of PNA to a variety of CPPs significantly improves the cellular uptake of the PNAs, bioavailability...... (antisense activity) is still limited by endocytotic entrapment. We have shown that this low bioavailability can be greatly improved by combining CPP-PNA conjugate administration with a photochemical internalization technique using photosensitizers such as aluminum phthalocyanine (AlPcS(2a)) or...... cellular efficacy of CPP conjugates were evaluated by measuring luciferase activity as a result of splicing correction and was also confirmed by RT-PCR analysis of luciferase pre-mRNA....

  19. Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin and the TAT Peptide with Lipid Bilayers

    NARCIS (Netherlands)

    Yesylevskyy, Semen; Marrink, Siewert-Jan; Mark, Alan E.

    2009-01-01

    Cell-penetrating peptides (CPPs) have recently attracted much interest due to their apparent ability to penetrate cell membranes in an energy-independent manner. Here molecular-dynamics simulation techniques were used to study the interaction of two CPPs: penetratin and the TAT peptide with 1,2-Dipa

  20. Conformational analysis of Infectious bursal disease virus (IBDV derived cell penetrating peptide (CPP analogs

    Directory of Open Access Journals (Sweden)

    Vinay G. Joshi

    2013-12-01

    Full Text Available Aim: This study was designed to develop peptide analogs of Infectious Bursal Disease (IBD virus VP5 protein segment having cell penetrating ability to improve their interaction with cargo molecule (Nucleic acid without affecting the backbone conformation. Materials and Methods: IBDV VP5 protein segment designated as RATH peptide were synthesized using solid phase peptide synthesis and their solution conformation was elucidated using CD spectroscopy in polar (water and apolar (TFE solvents. Cell penetrating ability of RATH-CONH2 was observed using FITC labeled peptide internalization in to HeLa cells under fluorescent microscopy. The efficacy of RATH analog interactions with nucleic acids was evaluated using FITC labeled oligonucleotides by fluorescence spectroscopy and plasmid constructs in gel retardation assay. Results: CD spectra of RATH analogs in water and apolar trifluroethanol (TFE helped to compare their secondary structures which were almost similar with dominant beta conformations suggesting successful induction of positive charge in the analogs without affecting back bone conformation of CPP designed. Cell penetrating ability of RATH CONH2 in HeLa cell was more than 90%. The fluorescence spectroscopy and plasmid constructs in gel retardation assay demonstrated successful interaction of amide analogs with nucleic acid. Conclusion: Intentional changes made in IBDV derived peptide RATH COOH to RATH CONH2 did not showed major changes in backbone conformation and such modifications may help to improve the cationic charge in most CPPs to interact with nucleic acid. [Vet World 2013; 6(6.000: 307-312

  1. Membrane Oxidation Enables the Cytosolic Entry of Polyarginine Cell-penetrating Peptides.

    Science.gov (United States)

    Wang, Ting-Yi; Sun, Yusha; Muthukrishnan, Nandhini; Erazo-Oliveras, Alfredo; Najjar, Kristina; Pellois, Jean-Philippe

    2016-04-01

    Arginine-rich peptides can penetrate cells and consequently be used as delivery agents in various cellular applications. The activity of these reagents is often context-dependent, and the parameters that impact cell entry are not fully understood, giving rise to variability and limiting progress toward their usage. Herein, we report that the cytosolic penetration of linear polyarginine peptides is dependent on the oxidation state of the cell. In particular, we find that hypoxia and cellular antioxidants inhibit cell penetration. In contrast, oxidants promote cytosolic cell entry with an efficiency proportional to the level of reactive oxygen species generated within membranes. Moreover, an antibody that binds to oxidized lipids inhibits cell penetration, whereas extracellularly administered pure oxidized lipids enhance peptide transport into cells. Overall, these data indicate that oxidized lipids are capable of mediating the transport of polyarginine peptides across membranes. These data may also explain variability in cell-penetrating peptide performance in different experimental conditions. These new findings therefore provide new opportunities for the rational design of future cell-permeable compounds and for the optimization of delivery protocols. PMID:26888085

  2. Cell-Penetrating Ability of Peptide Hormones: Key Role of Glycosaminoglycans Clustering

    Directory of Open Access Journals (Sweden)

    Armelle Tchoumi Neree

    2015-11-01

    Full Text Available Over the last two decades, the potential usage of cell-penetrating peptides (CPPs for the intracellular delivery of various molecules has prompted the identification of novel peptidic identities. However, cytotoxic effects and unpredicted immunological responses have often limited the use of various CPP sequences in the clinic. To overcome these issues, the usage of endogenous peptides appears as an appropriate alternative approach. The hormone pituitary adenylate-cyclase-activating polypeptide (PACAP38 has been recently identified as a novel and very efficient CPP. This 38-residue polycationic peptide is a member of the secretin/glucagon/growth hormone-releasing hormone (GHRH superfamily, with which PACAP38 shares high structural and conformational homologies. In this study, we evaluated the cell-penetrating ability of cationic peptide hormones in the context of the expression of cell surface glycosaminoglycans (GAGs. Our results indicated that among all peptides evaluated, PACAP38 was unique for its potent efficiency of cellular uptake. Interestingly, the abilities of the peptides to reach the intracellular space did not correlate with their binding affinities to sulfated GAGs, but rather to their capacity to clustered heparin in vitro. This study demonstrates that the uptake efficiency of a given cationic CPP does not necessarily correlate with its affinity to sulfated GAGs and that its ability to cluster GAGs should be considered for the identification of novel peptidic sequences with potent cellular penetrating properties.

  3. Transduction of peptides and proteins into live cells by cell penetrating peptides.

    Science.gov (United States)

    Mussbach, Franziska; Franke, Martin; Zoch, Ansgar; Schaefer, Buerk; Reissmann, Siegmund

    2011-12-01

    Internalization of peptides and proteins into live cells is an essential prerequisite for studies on intracellular signal pathways, for treatment of certain microbial diseases and for signal transduction therapy, especially for cancer treatment. Cell penetrating peptides (CPPs) facilitate the transport of cargo-proteins through the cell membrane into live cells. CPPs which allow formation of non-covalent complexes with the cargo are used primarily in this study due to the relatively easy handling procedure. Efficiency of the protein uptake is estimated qualitatively by fluorescence microscopy and quantitatively by SDS-PAGE. Using the CPP cocktail JBS-Proteoducin, the intracellular concentrations of a secondary antibody and bovine serum albumin can reach the micromolar range. Internalization of antibodies allows mediation of intracellular pathways including knock down of signal transduction. The high specificity and affinity of antibodies makes them potentially more powerful than siRNA. Thus, CPPs represent a significant new possibility to study signal transduction processes in competition or in comparison to the commonly used other techniques. To estimate the highest attainable intracellular concentrations of cargo proteins, the CPPs are tested for cytotoxicity. Cell viability and membrane integrity relative to concentration of CPPs are investigated. Viability as estimated by the reductive activity of mitochondria (MTT-test) is more sensitive to higher concentrations of CPPs versus membrane integrity, as measured by the release of dead cell protease. Distinct differences in uptake efficiency and cytotoxic effects are found using six different CPPs and six different adhesion and suspension cell lines. PMID:21826709

  4. Cell-penetrating peptides; chemical modification, mechanism of uptake and formulation development

    OpenAIRE

    Ezzat, Kariem

    2012-01-01

    Gene therapy holds the promise of revolutionizing the way we treat diseases. By using recombinant DNA and oligonucleotides (ONs), gene functions can be restored, altered or silenced according to the therapeutic need. However, gene therapy approaches require the delivery of large and charged nucleic acid-based molecules to their intracellular targets across the plasma membrane, which is inherently impermeable to such molecules. In this thesis, two chemically modified cell-penetrating peptides ...

  5. The Role of Cell-Penetrating Peptide and Transferrin on Enhanced Delivery of Drug to Brain

    OpenAIRE

    Gitanjali Sharma; Sushant Lakkadwala; Amit Modgil; Jagdish Singh

    2016-01-01

    The challenge of effectively delivering therapeutic agents to brain has led to an entire field of active research devoted to overcome the blood brain barrier (BBB) and efficiently deliver drugs to brain. This review focusses on exploring the facets of a novel platform designed for the delivery of drugs to brain. The platform was constructed based on the hypothesis that a combination of receptor-targeting agent, like transferrin protein, and a cell-penetrating peptide (CPP) will enhance the de...

  6. Backbone rigidity and static presentation of guanidinium groups increases cellular uptake of arginine-rich cell-penetrating peptides.

    Science.gov (United States)

    Lättig-Tünnemann, Gisela; Prinz, Manuel; Hoffmann, Daniel; Behlke, Joachim; Palm-Apergi, Caroline; Morano, Ingo; Herce, Henry D; Cardoso, M Cristina

    2011-01-01

    In addition to endocytosis-mediated cellular uptake, hydrophilic cell-penetrating peptides are able to traverse biological membranes in a non-endocytic mode termed transduction, resulting in immediate bioavailability. Here we analysed structural requirements for the non-endocytic uptake mode of arginine-rich cell-penetrating peptides, by a combination of live-cell microscopy, molecular dynamics simulations and analytical ultracentrifugation. We demonstrate that the transduction efficiency of arginine-rich peptides increases with higher peptide structural rigidity. Consequently, cyclic arginine-rich cell-penetrating peptides showed enhanced cellular uptake kinetics relative to their linear and more flexible counterpart. We propose that guanidinium groups are forced into maximally distant positions by cyclization. This orientation increases membrane contacts leading to enhanced cell penetration. PMID:21878907

  7. Backbone rigidity and static presentation of guanidinium groups increases cellular uptake of arginine-rich cell-penetrating peptides

    OpenAIRE

    Lättig-Tünnemann, Gisela; Prinz, Manuel; Hoffmann, Daniel; Behlke, Joachim; Palm-Apergi, Caroline; Morano, Ingo; Herce, Henry D.; Cardoso, M. Cristina

    2011-01-01

    In addition to endocytosis-mediated cellular uptake, hydrophilic cell-penetrating peptides are able to traverse biological membranes in a non-endocytic mode termed transduction, resulting in immediate bioavailability. Here we analysed structural requirements for the non-endocytic uptake mode of arginine-rich cell-penetrating peptides, by a combination of live-cell microscopy, molecular dynamics simulations and analytical ultracentrifugation. We demonstrate that the transduction efficiency of ...

  8. A cell penetrating peptide-integrated and enediyne-energized fusion protein shows potent antitumor activity.

    Science.gov (United States)

    Ru, Qin; Shang, Bo-Yang; Miao, Qing-Fang; Li, Liang; Wu, Shu-Ying; Gao, Rui-Juan; Zhen, Yong-Su

    2012-11-20

    Arginine-rich peptides belong to a subclass of cell penetrating peptides that are taken up by living cells and can be detected freely diffusing inside the cytoplasm and nucleoplasm. This phenomenon has been attributed to either an endocytotic mode of uptake and a subsequent release from vesicles or a direct membrane penetration. Lidamycin is an antitumor antibiotic, which consists of an active enediyne chromophore (AE) and a noncovalently bound apoprotein (LDP). In the present study, a fusion protein (Arg)(9)-LDP composed of cell penetrating peptide (Arg)(9) and LDP was prepared by DNA recombination, and the enediyne-energized fusion protein (Arg)(9)-LDP-AE was prepared by molecular reconstitution. The data in fixed cells demonstrated that (Arg)(9)-LDP could rapidly enter cells, and the results based on fluorescence activated cell sorting indicated that the major route for (Arg)(9)-mediated cellular uptake of protein molecules was endocytosis. (Arg)(9)-LDP-AE demonstrated more potent cytotoxicity against different carcinoma cell lines than lidamycin in vitro. In the mouse hepatoma 22 model, (Arg)(9)-LDP-AE (0.3mg/kg) suppressed the tumor growth by 89.2%, whereas lidamycin (0.05 mg/kg) by 74.6%. Furthermore, in the glioma U87 xenograft model in nude mice, (Arg)(9)-LDP-AE at 0.2mg/kg suppressed tumor growth by 88.8%, compared with that of lidamycin by 62.9% at 0.05 mg/kg. No obvious toxic effects were observed in all groups during treatments. The results showed that energized fusion protein (Arg)(9)-LDP-AE was more effective than lidamycin and would be a promising candidate for glioma therapy. In addition, this approach to manufacturing fusion proteins might serve as a technology platform for the development of new cell penetrating peptides-based drugs. PMID:22982402

  9. Selective mono-radioiodination and characterization of a cell-penetrating peptide. L-Tyr-maurocalcine

    International Nuclear Information System (INIS)

    Mono-and poly-iodinated peptides form frequently during radioiodination procedures. However, the formation of a single species in its mono-iodinated form is essential for quantitative studies such as determination of tissue concentration or image quantification. Therefore, the aim of the present study was to define the optimal experimental conditions in order to exclusively obtain the mono-iodinated form of L-maurocalcine (L-MCa). L-MCa is an animal venom toxin which was shown to act as a cell-penetrating peptide. In order to apply the current direct radioiodination technique using oxidative agents including chloramine T, Iodo-Gen registered or lactoperoxidase, an analogue of this peptide containing a tyrosine residue (Tyr-L-MCa) was synthesized and was shown to fold/oxidize properly. The enzymatic approach using lactoperoxidase/H2O2 was found to be the best method for radioiodination of Tyr-L-MCa. MALDI-TOF mass spectrometry analyses were then used for identification of the chromatographic eluting components of the reaction mixtures. We observed that the production of different radioiodinated species depended upon the reaction conditions. Our results successfully described the experimental conditions of peptide radioiodination allowing the exclusive production of the mono-iodinated form with high radiochemical purity and without the need for a purification step. Mono-radioiodination of L-Tyr-MCa will be crucial for future quantitative studies, investigating the mechanism of cell penetration and in vivo biodistribution.

  10. Oligonucleotide delivery with cell surface binding and cell penetrating Peptide amphiphile nanospheres.

    Science.gov (United States)

    Mumcuoglu, Didem; Sardan, Melis; Tekinay, Turgay; Guler, Mustafa O; Tekinay, Ayse B

    2015-05-01

    A drug delivery system designed specifically for oligonucleotide therapeutics can ameliorate the problems associated with the in vivo delivery of these molecules. The internalization of free oligonucleotides is challenging, and cytotoxicity is the main obstacle for current transfection vehicles. To develop nontoxic delivery vehicles for efficient transfection of oligonucleotides, we designed a self-assembling peptide amphiphile (PA) nanosphere delivery system decorated with cell penetrating peptides (CPPs) containing multiple arginine residues (R4 and R8), and a cell surface binding peptide (KRSR), and report the efficiency of this system in delivering G-3129, a Bcl-2 antisense oligonucleotide (AON). PA/AON (peptide amphiphile/antisense oligonucleotide) complexes were characterized with regards to their size and secondary structure, and their cellular internalization efficiencies were evaluated. The effect of the number of arginine residues on the cellular internalization was investigated by both flow cytometry and confocal imaging, and the results revealed that uptake efficiency improved as the number of arginines in the sequence increased. The combined effect of cell penetration and surface binding property on the cellular internalization and its uptake mechanism was also evaluated by mixing R8-PA and KRSR-PA. R8 and R8/KRSR decorated PAs were found to drastically increase the internalization of AONs compared to nonbioactive PA control. Overall, the KRSR-decorated self-assembled PA nanospheres were demonstrated to be noncytotoxic delivery vectors with high transfection rates and may serve as a promising delivery system for AONs. PMID:25828697

  11. Selective mono-radioiodination and characterization of a cell-penetrating peptide. L-Tyr-maurocalcine

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Mitra; Bacot, Sandrine; Perret, Pascale; Riou, Laurent; Ghezzi, Catherine [Universite Joseph Fourier, Grenoble (France); INSERM U1039, Grenoble (France). Radiopharmaceutiques Biocliniques; Poillot, Cathy; Cestele, Sandrine [INSERM U836, Grenoble (France). Grenoble Inst. of Neuroscience; Universite Joseph Fourier, Grenoble (France); Desruet, Marie-Dominique [INSERM U1039, Grenoble (France). Radiopharmaceutiques Biocliniques; Couvet, Morgane; Bourgoin, Sandrine; Seve, Michel [CRI-INSERM U823, Grenoble (France). Inst. of Albert Bonniot; Universite Joseph Fourier, Grenoble (France); Waard, Michel de [INSERM U836, Grenoble (France). Grenoble Inst. of Neuroscience; Universite Joseph Fourier, Grenoble (France); Smartox Biotechnologies, Grenoble (France)

    2014-07-01

    Mono-and poly-iodinated peptides form frequently during radioiodination procedures. However, the formation of a single species in its mono-iodinated form is essential for quantitative studies such as determination of tissue concentration or image quantification. Therefore, the aim of the present study was to define the optimal experimental conditions in order to exclusively obtain the mono-iodinated form of L-maurocalcine (L-MCa). L-MCa is an animal venom toxin which was shown to act as a cell-penetrating peptide. In order to apply the current direct radioiodination technique using oxidative agents including chloramine T, Iodo-Gen {sup registered} or lactoperoxidase, an analogue of this peptide containing a tyrosine residue (Tyr-L-MCa) was synthesized and was shown to fold/oxidize properly. The enzymatic approach using lactoperoxidase/H{sub 2}O{sub 2} was found to be the best method for radioiodination of Tyr-L-MCa. MALDI-TOF mass spectrometry analyses were then used for identification of the chromatographic eluting components of the reaction mixtures. We observed that the production of different radioiodinated species depended upon the reaction conditions. Our results successfully described the experimental conditions of peptide radioiodination allowing the exclusive production of the mono-iodinated form with high radiochemical purity and without the need for a purification step. Mono-radioiodination of L-Tyr-MCa will be crucial for future quantitative studies, investigating the mechanism of cell penetration and in vivo biodistribution.

  12. Differential neuroprotective potential of CRMP2 peptide aptamers conjugated to cationic, hydrophobic, and amphipathic cell penetrating peptides

    Directory of Open Access Journals (Sweden)

    Aubin eMoutal

    2015-01-01

    Full Text Available The microtubule-associated axonal specification collapsin response mediator protein 2 (CRMP2 is a novel target for neuroprotection. A CRMP2 peptide (TAT-CBD3 conjugated to the HIV transactivator of transcription (TAT protein’s cationic cell penetrating peptide motif (CPP protected neurons in the face of toxic levels of Ca2+ influx leaked in via N-methyl-D-aspartate receptor (NMDAR hyperactivation. Here we tested whether replacing the hydrophilic TAT motif with alternative cationic (nona-arginine (R9, hydrophobic (membrane transport sequence (MTS of k-fibroblast growth factor or amphipathic (model amphipathic peptide (MAP CPPs could be superior to the neuroprotection bestowed by TAT-CBD3. In giant plasma membrane vesicles (GPMVs derived from cortical neurons, the peptides translocated across plasma membranes with similar efficiencies. Cortical neurons, acutely treated with peptides prior to a toxic glutamate challenge, demonstrated enhanced efflux of R9-CBD3 compared to others. R9-CBD3 inhibited N-methyl-D-aspartate (NMDA-evoked Ca2+ influx to a similar extent as TAT-CBD3 while MTS-CBD3 was ineffective which correlated with the ability of R9- and TAT-CBD3, but not MTS-CBD3, to block NMDAR interaction with CRMP2. Unrestricted Ca2+ influx through NMDARs leading to delayed calcium dysregulation and neuronal cell death was blocked by all peptides but MAP-CBD3. When applied acutely for 10 minutes, R9-CBD3 was more effective than TAT-CBD3 at neuroprotection while MTS- and MAP-CBD3 were ineffective. In contrast, long-term (> 24 hours treatment with MTS-CBD3 conferred neuroprotection where TAT-CBD3 failed. Neither peptide altered surface trafficking of NMDARs. Neuroprotection conferred by MTS-CBD3 peptide is likely due to its increased uptake coupled with decreased efflux when compared to TAT-CBD3. Overall, our results demonstrate that altering CPPs can bestow differential neuroprotective potential onto the CBD3 cargo.

  13. Improved cellular uptake of antisense Peptide nucleic acids by conjugation to a cell-penetrating Peptide and a lipid domain

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    peptides known as cell-penetrating peptides (CPPs) is attracting wide attention for a variety of biologically active molecules. CPP-mediated delivery is typically based on the covalent conjugation of the (therapeutic) cargo to CPPs, and is particularly relevant for the delivery of noncharged RNA...... interference agents such as peptide nucleic acids (PNAs) and morpholino oligomers. Although chemical conjugation to a variety of CPPs significantly improves the cellular uptake of PNAs, the bioavailability (and hence antisense activity) of CPP-PNA -conjugates is still highly limited by endocytotic entrapment...

  14. Delivering aminopyridine ligands into cancer cells through conjugation to the cell-penetrating peptide BP16

    OpenAIRE

    Soler Vives, Marta; González-Bártulos, Marta; Figueras, Eduard; Massaguer i Vall-llovera, Anna; Feliu Soley, Lídia; Planas i Grabuleda, Marta; Ribas Salamaña, Xavi; Costas Salgueiro, Miquel

    2016-01-01

    Peptide conjugates incorporating the red-ox active ligands Me2PyTACN or (S,S')-BPBP at the N- or the C-terminus of the cell-penetrating peptide BP16 were synthesized (PyTACN-BP16 (BP341), BP16-PyTACN (BP342), BPBP-BP16 (BP343), and BP16-BPBP (BP344)). Metal binding peptides bearing at the N-terminus the ligand, an additional Lys and a β-Ala were also prepared (PyTACN-βAK-BP16 (BP345) and BPBP-βAK-BP16 (BP346)). Moreover, taking into account the clathrin-dependent endocytic mechanism of BP16, ...

  15. Polymeric pH nanosensor with extended measurement range bearing octaarginine as cell penetrating peptide

    DEFF Research Database (Denmark)

    Ke, Peng; Sun, Honghao; Liu, Mingxing;

    2016-01-01

    A synthetic peptide octaarginine which mimics human immunodeficiency virus-1, Tat protein is used as cell penetrating moiety for new pH nanosensors which demonstrate enhanced cellular uptake and expanded measurement range from pH 3.9 to pH 7.3 by simultaneously incorporating two complemental p......H-sensitive fluorophores in a same nanoparticle. The authors believe that this triple fluorescent pH sensor provides a new tool to pH measurements that can have application in cellular uptake mechanism study and new nanomedicine design....

  16. Cell penetrating peptide delivery of splice directing oligonucleotides as a treatment for Duchenne muscular dystrophy.

    Science.gov (United States)

    Betts, Corinne A; Wood, Matthew J A

    2013-01-01

    Duchenne muscular dystrophy is a severe, X-linked muscle wasting disorder caused by the absence of an integral structural protein called dystrophin. This is caused by mutations or deletions in the dystrophin gene which disrupt the reading frame, thereby halting the production of a functional protein. A number of potential therapies have been investigated for the treatment of this disease including utrophin upregulation, 'stop-codon read through' aminoglycosides and adeno-associated virus gene replacement as well as stem cell therapy. However, the most promising treatment to date is the use of antisense oligonucleotides which cause exon skipping by binding to a specific mRNA sequence, skipping the desired exon, thereby restoring the reading frame and producing a truncated yet functional protein. The results from recent 2'OMePS and morpholino clinical trials have renewed hope for Duchenne patients; however in vivo studies in a mouse model, mdx, have revealed low systemic distribution and poor delivery of oligonucleotides to affected tissues such as the brain and heart. However a variety of cell penetrating peptides directly conjugated to antisense oligonucleotides have been shown to enhance delivery in Duchenne model systems with improved systemic distribution and greater efficacy compared to 'naked' antisense oligonucleotides. These cell penetrating peptides, combined with an optimised dose and dosing regimen, as well as thorough toxicity profile have the potential to be developed into a promising treatment which may be progressed to clinical trial. PMID:23140454

  17. Application of Cell Penetrating Peptide in Magnetic Resonance Imaging of Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Min LIU; You-Min GUO; Jun-Le YANG; Peng WANG; Lin-Yu ZHAO; Nian SHEN; Si-Cen WANG; Xiao-Juan GUO; Qi-Fei WU

    2006-01-01

    Tracking the distribution and differentiation of stem cells by high-resolution imaging techniques would have significant clinical and research implications. In this study, a model cell-penetrating peptide was used to carry gadolinium particles for magnetic resonance imaging (MRI) of mesenchymal stem cells (MSCs).MSCs were isolated from rat bone marrow and identified by osteogenic differentiation in vitro. The cellpenetrating peptide labeled with fluorescein-5-isothiocyanate (FITC) and gadolinium was synthesized by a solid-phase peptide synthesis method. Fluorescein imaging analysis confirmed that this new peptide could internalize into the cytoplasm and nucleus at room temperature, 4℃ and 37℃. Gadolinium were efficiently internalized into mesenchymal stem cells by the peptide in a time or concentration-dependent manner,resulting in intercellular shortening of longitudinal relaxation enhancements, which were obviously detected by 1.5 Tesla Magnetic Resonance Imaging. Cytotoxicity assay and flow cytometric analysis showed that the intercellular contrast medium incorporation did not affect cell viability at the tested concentrations. The in vitro experiment results suggested that the new constructed peptides could be a vector for tracking MSCs.

  18. Therapeutic Potential of Cell Penetrating Peptides (CPPs) and Cationic Polymers for Chronic Hepatitis B

    DEFF Research Database (Denmark)

    Ndeboko, Bénédicte; Lemamy, Guy Joseph; Nielsen, Peter E;

    2015-01-01

    Chronic hepatitis B virus (HBV) infection remains a major health problem worldwide. Because current anti-HBV treatments are only virostatic, there is an urgent need for development of alternative antiviral approaches. In this context, cell-penetrating peptides (CPPs) and cationic polymers, such as...... chitosan (CS), appear of particular interest as nonviral vectors due to their capacity to facilitate cellular delivery of bioactive cargoes including peptide nucleic acids (PNAs) or DNA vaccines. We have investigated the ability of a PNA conjugated to different CPPs to inhibit the replication of duck...... hepatitis B virus (DHBV), a reference model for human HBV infection. The in vivo administration of PNA-CPP conjugates to neonatal ducklings showed that they reached the liver and inhibited DHBV replication. Interestingly, our results indicated also that a modified CPP (CatLip) alone, in the absence of its...

  19. Metabolic cleavage of cell-penetrating peptides in contact with epithelial models

    DEFF Research Database (Denmark)

    Tréhin, Rachel; Nielsen, Hanne Mørck; Jahnke, Heinz-Georg;

    2004-01-01

    We assessed the metabolic degradation kinetics and cleavage patterns of some selected CPP (cell-penetrating peptides) after incubation with confluent epithelial models. Synthesis of N-terminal CF [5(6)-carboxyfluorescein]-labelled CPP, namely hCT (human calcitonin)-derived sequences, Tat(47-57) and...... penetratin(43-58), was through Fmoc (fluoren-9-ylmethoxycarbonyl) chemistry. Metabolic degradation kinetics of the tested CPP in contact with three cell-cultured epithelial models, MDCK (Madin-Darby canine kidney), Calu-3 and TR146, was evaluated by reversed-phase HPLC. Identification of the resulting...... models and the CPP. The Calu-3 model exhibited the highest proteolytic activity. The patterns of metabolic cleavage of hCT(9-32) were similar in all three models. Initial cleavage of this peptide occurred at the N-terminal domain, possibly by endopeptidase activity yielding both the N- and the C...

  20. Potent inhibition of late stages of hepadnavirus replication by a modified cell penetrating peptide

    DEFF Research Database (Denmark)

    Abdul, Fabien; Ndeboko, Bénédicte; Buronfosse, Thierry;

    2012-01-01

    Cationic cell-penetrating peptides (CPPs) and their lipid domain-conjugates (CatLip) are agents for the delivery of (uncharged) biologically active molecules into the cell. Using infection and transfection assays we surprisingly discovered that CatLip peptides were able to inhibit replication of...... particle secretion. This is the first report showing that a CPP is able to drastically block hepadnaviral release from infected cells by altering late stages of viral morphogenesis via interference with enveloped particle formation, without affecting naked nucleocapsid egress, thus giving a view inside the...... mode of inhibition. Deca-(Arg)8 may be a useful tool for elucidating the hepadnaviral secretory pathway, which is not yet fully understood. Moreover we provide the first evidence that a modified CPP displays a novel antiviral mechanism targeting another step of viral life cycle compared to what has...

  1. Effects of Tryptophan Content and Backbone Spacing on the Uptake Efficiency of Cell-Penetrating Peptides

    KAUST Repository

    Rydberg, Hanna A.

    2012-07-10

    Cell-penetrating peptides (CPPs) are able to traverse cellular membranes and deliver macromolecular cargo. Uptake occurs through both endocytotic and nonendocytotic pathways, but the molecular requirements for efficient internalization are not fully understood. Here we investigate how the presence of tryptophans and their position within an oligoarginine influence uptake mechanism and efficiency. Flow cytometry and confocal fluorescence imaging are used to estimate uptake efficiency, intracellular distribution and toxicity in Chinese hamster ovarian cells. Further, membrane leakage and lipid membrane affinity are investigated. The peptides contain eight arginine residues and one to four tryptophans, the tryptophans positioned either at the N-terminus, in the middle, or evenly distributed along the amino acid sequence. Our data show that the intracellular distribution varies among peptides with different tryptophan content and backbone spacing. Uptake efficiency is higher for the peptides with four tryptophans in the middle, or evenly distributed along the peptide sequence, than for the peptide with four tryptophans at the N-terminus. All peptides display low cytotoxicity except for the one with four tryptophans at the N-terminus, which was moderately toxic. This finding is consistent with their inability to induce efficient leakage of dye from lipid vesicles. All peptides have comparable affinities for lipid vesicles, showing that lipid binding is not a decisive parameter for uptake. Our results indicate that tryptophan content and backbone spacing can affect both the CPP uptake efficiency and the CPP uptake mechanism. The low cytotoxicity of these peptides and the possibilities of tuning their uptake mechanism are interesting from a therapeutic point of view. © 2012 American Chemical Society.

  2. Antibacterial Effects of a Cell-Penetrating Peptide Isolated from Kefir.

    Science.gov (United States)

    Miao, Jianyin; Guo, Haoxian; Chen, Feilong; Zhao, Lichao; He, Liping; Ou, Yangwen; Huang, Manman; Zhang, Yi; Guo, Baoyan; Cao, Yong; Huang, Qingrong

    2016-04-27

    Kefir is a traditional fermented milk beverage used throughout the world for centuries. A cell-penetrating peptide, F3, was isolated from kefir by Sephadex G-50 gel filtration, DEAE-52 ion exchange, and reverse-phase high-performance liquid chromatography. F3 was determined to be a low molecular weight peptide containing one leucine and one tyrosine with two phosphate radicals. This peptide displayed antimicrobial activity across a broad spectrum of organisms including several Gram-positive and Gram-negative bacteria as well as fungi, with minimal inhibitory concentration (MIC) values ranging from 125 to 500 μg/mL. Cellular penetration and accumulation of F3 were determined by confocal laser scanning microscopy. The peptide was able to penetrate the cellular membrane of Escherichia coli and Staphylococcus aureus. Changes in cell morphology were observed by scanning electron microscopy (SEM). The results indicate that peptide F3 may be a good candidate for use as an effective biological preservative in agriculture and the food industry. PMID:27003578

  3. Cell-Penetrating Peptides: A Comparative Study on Lipid Affinity and Cargo Delivery Properties

    Directory of Open Access Journals (Sweden)

    Paolo Ruzza

    2010-03-01

    Full Text Available A growing number of natural and/or synthetic peptides with cell membrane penetrating capability have been identified and described in the past years. These molecules have been considered promising tools for delivering bioactive compounds into various cell types. Although the mechanism of uptake is still unclear, it is reasonable to assume that the relative contribute of each proposed mechanism could differ for the same peptide, depending on experimental protocol and cargo molecule composition. In this work we try to connect the capability to interact with model lipid membrane and structural and chemical characteristics of CPPs in order to obtain a biophysical classification that predicts the behavior of CPP-cargo molecules in cell systems. Indeed, the binding with cell membrane is one of the primary step in the interaction of CPPs with cells, and consequently the studies on model membrane could become important for understanding peptide-membrane interaction on a molecular level, explaining how CPPs may translocate a membrane without destroying it and how this interactions come into play in shuttling CPPs via different routes with different efficiency. We analyzed by CD and fluorescence spectroscopies the binding properties of six different CPPs (kFGF, Nle54-Antp and Tat derived peptides, and oligoarginine peptides containing 6, 8 or 10 residues in absence or presence of the same cargo peptide (the 392-401pTyr396 fragment of HS1 protein. The phospholipid binding properties were correlated to the conformational and chemical characteristics of peptides, as well as to the cell penetrating properties of the CPP-cargo conjugates. Results show that even if certain physico-chemical properties (conformation, positive charge govern CPP capability to interact with the model membrane, these cannot fully explain cell-permeability properties.

  4. Visualization of the Nucleolus in Living Cells with Cell-Penetrating Fluorescent Peptides.

    Science.gov (United States)

    Martin, Robert M; Herce, Henry D; Ludwig, Anne K; Cardoso, M Cristina

    2016-01-01

    The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of ribosomal RNA synthesis and assembly of ribosomes. The nucleolus plays also a major role in nuclear organization as the largest compartment within the nucleus. The prominent structure of the nucleolus can be detected using contrast light microscopy providing an approximate localization of the nucleolus, but this approach does not allow to determine accurately the three-dimensional structure of the nucleolus in cells and tissues. Immunofluorescence staining with antibodies specific to nucleolar proteins albeit very useful is time consuming, normally antibodies recognize their epitopes only within a small range of species and is applicable only in fixed cells. Here, we present a simple method to selectively and accurately label this ubiquitous subnuclear compartment in living cells of a large range of species using a fluorescently labeled cell-penetrating peptide. PMID:27576711

  5. Plasmid DNA delivery by arginine-rich cell-penetrating peptides containing unnatural amino acids.

    Science.gov (United States)

    Kato, Takuma; Yamashita, Hiroko; Misawa, Takashi; Nishida, Koyo; Kurihara, Masaaki; Tanaka, Masakazu; Demizu, Yosuke; Oba, Makoto

    2016-06-15

    Cell-penetrating peptides (CPPs) have been developed as drug, protein, and gene delivery tools. In the present study, arginine (Arg)-rich CPPs containing unnatural amino acids were designed to deliver plasmid DNA (pDNA). The transfection ability of one of the Arg-rich CPPs examined here was more effective than that of the Arg nonapeptide, which is the most frequently used CPP. The transfection efficiencies of Arg-rich CPPs increased with longer post-incubation times and were significantly higher at 48-h and 72-h post-incubation than that of the commercially available transfection reagent TurboFect. These Arg-rich CPPs were complexed with pDNA for a long time in cells and effectively escaped from the late endosomes/lysosomes into the cytoplasm. These results will be helpful for designing novel CPPs for pDNA delivery. PMID:27132868

  6. Cell penetrating peptides improve tumor delivery of cargos through neuropilin-1-dependent extravasation.

    Science.gov (United States)

    Kadonosono, Tetsuya; Yamano, Akihiro; Goto, Toshiki; Tsubaki, Takuya; Niibori, Mizuho; Kuchimaru, Takahiro; Kizaka-Kondoh, Shinae

    2015-03-10

    Cell-penetrating peptides (CPPs), also referred to as protein transduction domains (PTDs), can mediate the cellular uptake of a wide range of macromolecules including peptides, proteins, oligonucleotides, and nanoparticles, and thus have received considerable attention as a promising method for drug delivery in vivo. Here, we report that CPP/PTDs facilitate the extravasation of fused proteins by binding to neuropilin-1 (NRP1), a vascular endothelial growth factor (VEGF) co-receptor expressed on the surface of endothelial and some tumor cells. In this study, we examined the capacity of the amphipathic and cationic CPP/PTDs, PTD-3 and TAT-PTD, respectively, to bind cells in vitro and accumulate in xenograft tumors in vivo. Notably, these functions were significantly suppressed by pre-treatment with NRP1-neutralizing Ab. Furthermore, co-injection of iRGD, a cyclic peptide known to increase NRP1-dependent vascular permeability, significantly reduced CPP/PTD tumor delivery. This data demonstrates a mechanism by which NRP1 promotes the extravasation of CPP/PTDs that may open new avenues for the development of more efficient CPP/PTD delivery systems. PMID:25592386

  7. Paramagnetic particles carried by cell-penetrating peptide tracking of bone marrow mesenchymal stem cells, a research in vitro

    International Nuclear Information System (INIS)

    The ability to track the distribution and differentiation of stem cells by high-resolution imaging techniques would have significant clinical and research implications. In this study, a model cell-penetrating peptide was used to carry gadolinium particles for magnetic resonance imaging of the mesenchymal stem cells. The mesenchymal stem cells were isolated from rat bone marrow by Percoll and identified by osteogenic differentiation in vitro. The cell-penetrating peptides labeled with fluorescein-5-isothiocyanate and gadolinium were synthesized by a solid-phase peptide synthesis method and the relaxivity of cell-penetrating peptide-gadolinium paramagnetic conjugate on 400 MHz nuclear magnetic resonance was 5.7311 ± 0.0122 mmol-1 s-1, higher than that of diethylenetriamine pentaacetic acid gadolinium (p < 0.05). Fluorescein imaging confirmed that this new peptide could internalize into the cytoplasm and nucleus. Gadolinium was efficiently internalized into mesenchymal stem cells by the peptide in a time- or concentration-dependent fashion, resulting in intercellular T1 relaxation enhancement, which was obviously detected by 1.5 T magnetic resonance imaging. Cytotoxicity assay and flow cytometric analysis showed the intercellular contrast medium incorporation did not affect cell viability and membrane potential gradient. The research in vitro suggests that the newly constructed peptides could be a vector for tracking mesenchymal stem cells

  8. Generation of GFP Native Protein for Detection of Its Intracellular Uptake by Cell-Penetrating Peptides.

    Science.gov (United States)

    Kadkhodayan, S; Sadat, S M; Irani, S; Fotouhi, F; Bolhassani, A

    2016-01-01

    Different types of lipid- and polymer-based vectors have been developed to deliver proteins into cells, but these methods showed relatively poor efficiency. Recently, a group of short, highly basic peptides known as cell-penetrating peptides (CPPs) were used to carry polypeptides and proteins into cells. In this study, expression and purification of GFP protein was performed using the prokaryotic pET expression system. We used two amphipathic CPPs (Pep-1 and CADY-2) as a novel delivery system to transfer the GFP protein into cells. The morphological features of the CPP/GFP complexes were studied by scanning electron microscopy (SEM), Zetasizer, and SDS-PAGE. The efficiency of GFP transfection using Pep-1 and CADY-2 peptides and TurboFect reagent was compared with FITC-antibody protein control delivered by these transfection vehicles in the HEK-293T cell line. SEM data confirmed formation of discrete nanoparticles with a diameter of below 300 nm. Moreover, formation of the complexes was detected using SDS-PAGE as two individual bands, indicating non-covalent interaction. The size and homogeneity of Pep-1/GFP and CADY-2/GFP complexes were dependent on the ratio of peptide/cargo formulations, and responsible for their biological efficiency. The cells transfected by Pep-1/GFP and CADY-2/GFP complexes at a molar ratio of 20 : 1 demonstrated spreading green regions using fluorescent microscopy. Flow cytometry results showed that the transfection efficiency of Pep-based nanoparticles was similar to CADY-based nanoparticles and comparable with TurboFect-protein complexes. These data open an efficient way for future therapeutic purposes. PMID:27516189

  9. Cell-Penetrating Peptides as Carriers for Oral Delivery of Biopharmaceuticals.

    Science.gov (United States)

    Kristensen, Mie; Nielsen, Hanne Mørck

    2016-02-01

    Oral delivery of biopharmaceuticals, for example peptides and proteins, constitutes a great challenge in drug delivery due to their low chemical stability and poor permeation across the intestinal mucosa, to a large extent limiting the mode of administration to injections, which is not favouring patient compliance. Nevertheless, cell-penetrating peptides (CPPs) have shown promising potential as carriers to overcome the epithelium, and this minireview highlights recent knowledge gained within the field of CPP-mediated transepithelial delivery of therapeutic peptides and proteins from the intestine. Two approaches may be pursued: co-administration of the carrier and therapeutic peptide in the form of complexes obtained by simple bulk mixing, or administration of covalent conjugates demanding more advanced production methodologies. These formulation approaches have their pros and cons, and which is to be preferred depends on the physicochemical properties of both the specific CPP and the specific cargo. In addition to the physical epithelial barrier, a metabolic barrier must be overcome in order to obtain CPP-mediated delivery of a cargo drug from the intestine, and a number of strategies have been employed to delay enzymatic degradation of the CPP. The mechanisms by which CPPs translocate across membranes are not fully understood, but possibly involve endocytosis as well as direct translocation, and the CPP-mediated transepithelial delivery of cargo drugs thus likely involves similar mechanisms for the initial membrane interaction and translocation. However, the mechanisms responsible for transcytosis of the cargo drug, if taken up by an endocytic mechanism, or direct translocation across the epithelium are so far not known. PMID:26525297

  10. Efficient Cargo Delivery into Adult Brain Tissue Using Short Cell-Penetrating Peptides.

    Directory of Open Access Journals (Sweden)

    Caghan Kizil

    Full Text Available Zebrafish brains can regenerate lost neurons upon neurogenic activity of the radial glial progenitor cells (RGCs that reside at the ventricular region. Understanding the molecular events underlying this ability is of great interest for translational studies of regenerative medicine. Therefore, functional analyses of gene function in RGCs and neurons are essential. Using cerebroventricular microinjection (CVMI, RGCs can be targeted efficiently but the penetration capacity of the injected molecules reduces dramatically in deeper parts of the brain tissue, such as the parenchymal regions that contain the neurons. In this report, we tested the penetration efficiency of five known cell-penetrating peptides (CPPs and identified two- polyR and Trans - that efficiently penetrate the brain tissue without overt toxicity in a dose-dependent manner as determined by TUNEL staining and L-Plastin immunohistochemistry. We also found that polyR peptide can help carry plasmid DNA several cell diameters into the brain tissue after a series of coupling reactions using DBCO-PEG4-maleimide-based Michael's addition and azide-mediated copper-free click reaction. Combined with the advantages of CVMI, such as rapidness, reproducibility, and ability to be used in adult animals, CPPs improve the applicability of the CVMI technique to deeper parts of the central nervous system tissues.

  11. Nanocarriers Conjugated with Cell Penetrating Peptides: New Trojan Horses by Modern Ulysses.

    Science.gov (United States)

    Zappavigna, Silvia; Misso, Gabriella; Falanga, Annarita; Perillo, Emiliana; Novellino, Ettore; Galdiero, Massimiliano; Grieco, Paolo; Caraglia, Michele; Galdiero, Stefania

    2016-01-01

    Nanomedicine has opened the way to the design of more efficient diagnostics and therapeutics. Moreover, recent literature has illustrated the use of short cationic and/or amphipathic peptides, known as cell-penetrating peptides (CPPs), for mediating advanced drug delivery. CPPs exploit their ability to enter cells and enhance the uptake of many cargoes ranging from small molecules to proteins. The distinctive properties of nanocarriers (NC) based systems provide unforeseen benefits over pure drugs for biomedical applications and constitute a challenging research field particularly focused on imaging and delivery; nonetheless, several problems have to be overcome to make them a viable option in clinic. The use of CPPs improves significantly their delivery to specific intracellular targets and thus readily contributes to their use both for effective tumor therapy and gene therapy. A key issue is related to their mechanism of uptake, because although classical CPPs enhance NCs' uptake, the entry mechanism involves the endocytic pathway, which means that the delivered material is sequestered within vesicles and only a small amount will escape from this environment and reach the desired target. In this review, we will summarize recent advances in the use of CPP for enhanced delivery of nanocarriers, nucleic acids, and drugs, we will discuss their uptake mechanisms and we will describe novel approaches to improve endosomal escape of internalized nanosystems. PMID:27087493

  12. Intracellular Target-Specific Accretion of Cell Penetrating Peptides and Bioportides: Ultrastructural and Biological Correlates.

    Science.gov (United States)

    Jones, Sarah; Uusna, Julia; Langel, Ülo; Howl, John

    2016-01-20

    Cell penetrating peptide (CPP) technologies provide a viable strategy to regulate the activities of intracellular proteins that may be intractable to other biological agents. In particular, the cationic helical domains of proteins have proven to be a reliable source of proteomimetic bioportides, CPPs that modulate the activities of intracellular proteins. In this study we have employed live cell imaging confocal microscopy to determine the precise intracellular distribution of a chemically diverse set of CPPs and bioportides. Our findings indicate that, following efficient cellular entry, peptides are usually accreted at intracellular sites rather than being freely maintained in an aqueous cytosolic environment. The binding of CPPs to proteins in a relatively stable manner provides a molecular explanation for our findings. By extension, it is probable that many bioportides influence biological processes through a dominant-negative influence upon discrete protein-protein interactions. As an example, we report that bioportides derived from the leucine-rich repeat kinase 2 discretely influence the biology and stability of this key therapeutic target in Parkinson's disease. The intracellular site-specific accretion of CPPs and bioportides can also be readily modulated by the attachment of larger cargoes or, more conveniently, short homing motifs. We conclude that site-specific intracellular targeting could be further exploited to expand the scope of CPP technologies. PMID:26623479

  13. Cellular uptake but low permeation of human calcitonin-derived cell penetrating peptides and Tat(47-57) through well-differentiated epithelial models

    DEFF Research Database (Denmark)

    Tréhin, Rachel; Krauss, Ulrike; Beck-Sickinger, Annette G;

    2004-01-01

    To investigate whether cell penetrating peptides (CPP) derived from human calcitonin (hCT) possess, in addition to cellular uptake, the capacity to deliver their cargo through epithelial barriers.......To investigate whether cell penetrating peptides (CPP) derived from human calcitonin (hCT) possess, in addition to cellular uptake, the capacity to deliver their cargo through epithelial barriers....

  14. Conjugation to the cell-penetrating peptide TAT potentiates the photodynamic effect of carboxytetramethylrhodamine.

    Directory of Open Access Journals (Sweden)

    Divyamani Srinivasan

    Full Text Available BACKGROUND: Cell-penetrating peptides (CPPs can transport macromolecular cargos into live cells. However, the cellular delivery efficiency of these reagents is often suboptimal because CPP-cargo conjugates typically remain trapped inside endosomes. Interestingly, irradiation of fluorescently labeled CPPs with light increases the release of the peptide and its cargos into the cytosol. However, the mechanism of this phenomenon is not clear. Here we investigate the molecular basis of the photo-induced endosomolytic activity of the prototypical CPPs TAT labeled to the fluorophore 5(6-carboxytetramethylrhodamine (TMR. METHODOLOGY/PRINCIPAL FINDINGS: We report that TMR-TAT acts as a photosensitizer that can destroy membranes. TMR-TAT escapes from endosomes after exposure to moderate light doses. However, this is also accompanied by loss of plasma membrane integrity, membrane blebbing, and cell-death. In addition, the peptide causes the destruction of cells when applied extracellularly and also triggers the photohemolysis of red blood cells. These photolytic and photocytotoxic effects were inhibited by hydrophobic singlet oxygen quenchers but not by hydrophilic quenchers. CONCLUSIONS/SIGNIFICANCE: Together, these results suggest that TAT can convert an innocuous fluorophore such as TMR into a potent photolytic agent. This effect involves the targeting of the fluorophore to cellular membranes and the production of singlet oxygen within the hydrophobic environment of the membranes. Our findings may be relevant for the design of reagents with photo-induced endosomolytic activity. The photocytotoxicity exhibited by TMR-TAT also suggests that CPP-chromophore conjugates could aid the development of novel Photodynamic Therapy agents.

  15. Enhancing tumor-specific intracellular delivering efficiency of cell-penetrating peptide by fusion with a peptide targeting to EGFR.

    Science.gov (United States)

    Nguyen, Long The; Yang, Xu-Zhong; Du, Xuan; Wang, Jia-Wei; Zhang, Rui; Zhao, Jian; Wang, Fu-Jun; Dong, Yang; Li, Peng-Fei

    2015-05-01

    Cell-penetrating peptides (CPPs) are well known as intracellular delivery vectors. However, unsatisfactory delivery efficiency and poor specificity are challenging barriers to CPP applications at the clinical trial stage. Here, we showed that S3, an EGFR-binding domain derived from vaccinia virus growth factor, when fused to a CPP such as HBD or TAT can substantially enhance its internalization efficiency and tumor selectivity. The uptake of S3-HBD (S3H) recombinant molecule by tumor cells was nearly 80 folds increased compared to HBD alone. By contrast, the uptake of S3H by non-neoplastic cells still remained at a low level. The specific recognition between S3 and its receptor, EGFR, as well as between HBD and heparan sulfate proteoglycans on the cell surface was essential for these improvements, suggesting a syngeneic effect between the two functional domains in conjugation. This syngeneic effect is likely similar to that of the heparin-binding epidermal growth factor, which is highly abundant particularly in metastatic tumors. The process that S3H entered cells was dependent on time, dosage, and energy, via macropinocytosis pathway. With excellent cell-penetrating efficacy and a novel tumor-targeting ability, S3H appears as a promising candidate vector for targeted anti-cancer drug delivery. PMID:25655386

  16. Applications and Challenges for Use of Cell-Penetrating Peptides as Delivery Vectors for Peptide and Protein Cargos

    Directory of Open Access Journals (Sweden)

    Mie Kristensen

    2016-01-01

    Full Text Available The hydrophilic nature of peptides and proteins renders them impermeable to cell membranes. Thus, in order to successfully deliver peptide and protein-based therapeutics across the plasma membrane or epithelial and endothelial barriers, a permeation enhancing strategy must be employed. Cell-penetrating peptides (CPPs constitute a promising tool and have shown applications for peptide and protein delivery into cells as well as across various epithelia and the blood-brain barrier (BBB. CPP-mediated delivery of peptides and proteins may be pursued via covalent conjugation of the CPP to the cargo peptide or protein or via physical complexation obtained by simple bulk-mixing of the CPP with its cargo. Both approaches have their pros and cons, and which is the better choice likely relates to the physicochemical properties of the CPP and its cargo as well as the route of administration, the specific barrier and the target cell. Besides the physical barrier, a metabolic barrier must be taken into consideration when applying peptide-based delivery vectors, such as the CPPs, and stability-enhancing strategies are commonly employed to prolong the CPP half-life. The mechanisms by which CPPs translocate cell membranes are believed to involve both endocytosis and direct translocation, but are still widely investigated and discussed. The fact that multiple factors influence the mechanisms responsible for cellular CPP internalization and the lack of sensitive methods for detection of the CPP, and in some cases the cargo, further complicates the design and conduction of conclusive mechanistic studies.

  17. Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2012-01-01

    We have explored the merits of a novel delivery strategy for the antisense oligomers based on cell penetrating peptide (CPP) conjugated to a carrier PNA with sequence complementary to part of the antisense oligomer. The effect of these carrier CPP-PNAs was evaluated by using antisense PNA targeting...... splicing correction of the mutated luciferase gene in the HeLa pLuc705 cell line, reporting cellular (nuclear) uptake of the antisense PNA via luciferase activity measurement. Carrier CPP-PNA constructs were studied in terms of construct modification (with octaarginine and/or decanoic acid) and carrier PNA...... length (to adjust binding affinity). In general, the carrier CPP-PNA constructs including the ones with decanoyl modification provided significant increase of the activity of unmodified antisense PNA as well as of antisense octaarginine-PNA conjugates. Antisense activity, and by inference cellular...

  18. Effects of Lipid Composition on the Entry of Cell-Penetrating Peptide Oligoarginine into Single Vesicles.

    Science.gov (United States)

    Sharmin, Sabrina; Islam, Md Zahidul; Karal, Mohammad Abu Sayem; Alam Shibly, Sayed Ul; Dohra, Hideo; Yamazaki, Masahito

    2016-08-01

    The cell-penetrating peptide R9, an oligoarginine comprising nine arginines, has been used to transport biological cargos into cells. However, the mechanisms underlying its translocation across membranes remain unclear. In this report, we investigated the entry of carboxyfluorescein (CF)-labeled R9 (CF-R9) into single giant unilamellar vesicles (GUVs) of various lipid compositions and the CF-R9-induced leakage of a fluorescent probe, Alexa Fluor 647 hydrazide (AF647), using a method developed recently by us. First, we investigated the interaction of CF-R9 with dioleoylphosphatidylglycerol (DOPG)/dioleoylphosphatidylcholine (DOPC) GUVs containing AF647 and small DOPG/DOPC vesicles. The fluorescence intensity of the GUV membrane due to CF-R9 (i.e., the rim intensity) increased with time to a steady-state value, and then the fluorescence intensity of the membranes of the small vesicles in the GUV lumen increased without leakage of AF647. This result indicates that CF-R9 entered the GUV lumen from the outside by translocating across the lipid membrane without forming pores through which AF647 could leak. The fraction of entry of CF-R9 at 6 min in the absence of pore formation, Pentry (6 min), increased with an increase in CF-R9 concentration, but the CF-R9 concentration in the lumen was low. We obtained similar results for dilauroyl-PG (DLPG)/ditridecanoyl-PC (DTPC) (2/8) GUVs. The values of Pentry (6 min) of CF-R9 for DLPG/DTPC (2/8) GUVs were larger than those obtained with DOPG/DOPC (2/8) GUVs at the same CF-R9 concentrations. In contrast, a high concentration of CF-R9 induced pores in DLPG/DTPC (4/6) GUVs through which CF-R9 entered the GUV lumen, so the CF-R9 concentration in the lumen was higher. However, CF-R9 could not enter DOPG/DOPC/cholesterol (2/6/4) GUVs. Analysis of the rim intensity showed that CF-R9 was located only in the outer monolayer of the DOPG/DOPC/cholesterol (2/6/4) GUVs. On the basis of analyses of these results, we discuss the elementary

  19. Cyclization of a cell-penetrating peptide via click-chemistry increases proteolytic resistance and improves drug delivery.

    Science.gov (United States)

    Reichart, Florian; Horn, Mareike; Neundorf, Ines

    2016-06-01

    In this work we report synthesis and biological evaluation of a cell-penetrating peptide (CPP), that is partly cyclized via a triazole bridge. Recently, beneficious properties have been reported for cyclized peptides concerning their metabolic stability and intracellular uptake. A CPP based on human calcitonin was used in this study, and side chain cyclization was achieved via copper catalyzed alkyne-azide click reaction. Cell viability studies in several cell-lines revealed no cytotoxic effects. Furthermore, efficient uptake in breast cancer MCF-7 cells could be determined. Moreover, preliminary studies using this novel peptide as drug transporter for daunorubicin were performed. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27197760

  20. Conjugation of a cell-penetrating peptide to parathyroid hormone affects its structure, potency, and transepithelial permeation

    DEFF Research Database (Denmark)

    Kristensen, Mie; de Groot, Anne Marit; Berthelsen, Jens;

    2015-01-01

    Delivery of therapeutic peptides and proteins by the use of cell-penetrating peptides (CPPs) as carriers has been suggested as a feasible strategy. The aim of the present study was to investigate the effect of conjugating a series of well-known CPPs to the biologically active part of parathyroid...... hormone, i.e. PTH(1-34), and to evaluate the effect with regards to secondary structure, potency in Saos-2 cells, immunogenicity, safety as well as the transepithelial permeation across monolayers by using the Caco-2 cell culture model. Further, co-administration of CPP and PTH(1-34) as an alternative to...... covalent conjugation was compared with regards to the transepithelial permeation. CPP-conjugated PTH(1-34) fusion peptides were successfully expressed in Escherichia coli and purified from inclusion bodies. No clear correlation between the degree of secondary structure of the CPP-conjugated PTH(1...

  1. Stearylated antimicrobial peptide [D]-K6L9 with cell penetrating property for efficient gene transfer.

    Science.gov (United States)

    Zhang, Wei; Song, Jingjing; Liang, Ranran; Zheng, Xin; Chen, Jianbo; Li, Guolin; Zhang, Bangzhi; Wang, Kairong; Yan, Xiang; Wang, Rui

    2013-08-01

    Stearyl-cell penetrating peptides (CPPs) have been proved to be efficient nonviral gene vectors. Due to the similarities between antimicrobial peptides and CPPs, we constructed a novel type of gene vectors by introducing stearyl moiety to the N-terminus of antimicrobial peptide [D]-K6L9. In this study, stearyl-[D]-K6L9 delivered plasmids into cells by clathrin- and caveolin-mediated endocytosis. Gratifyingly, stearyl-[D]-K6L9 exhibited high transfection efficiency and almost reached the level of Lipofectamine 2000. Taken together, the combination of the stearyl moiety with [D]-K6L9 provides a novel framework for the development of excellent nonviral gene vectors. PMID:23727033

  2. Combined effect of a peptide–morpholino oligonucleotide conjugate and a cell-penetrating peptide as an antibiotic

    OpenAIRE

    Wesolowski, Donna; Alonso, Dulce; Altman, Sidney

    2013-01-01

    A cell-penetrating peptide (CPP)–morpholino oligonucleotide (MO) conjugate (PMO) that has an antibiotic effect in culture had some contaminating CPPs in earlier preparations. The mixed conjugate had gene-specific and gene-nonspecific effects. An improved purification procedure separates the PMO from the free CPP and MO. The gene-specific effects are a result of the PMO, and the nonspecific effects are a result of the unlinked, unreacted CPP. The PMO and the CPP can be mixed together, as has b...

  3. 18F-Labeled phosphopeptide-cell-penetrating peptide dimers with enhanced cell uptake properties in human cancer cells

    International Nuclear Information System (INIS)

    Introduction: Phosphopeptides represent interesting compounds to study and elucidate cellular protein phosphorylation/dephosphorylation processes underlying various signal transduction pathways. However, studies of phosphopeptide action in cells are severely constrained by the negatively charged phosphate moiety of the phosphopeptide resulting in poor transport through the cell membrane. The following study describes the synthesis and radiopharmacological evaluation of two 18F-labeled phosphopeptide-cell-penetrating peptide dimers. The polo-like kinase-1-binding hexaphosphopeptide H-Met-Gln-Ser-pThr-Pro-Leu-OH was coupled to cell-penetrating peptides (CPPs), either sC18, a cathelicidin-derived peptide, or the human calcitonin derivative hCT(18-32)-k7. Methods: Radiolabeling was accomplished with the prosthetic group N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) using both, conventional and microfluidic-based bioconjugation of [18F]SFB to N-terminal end of phosphopeptide part of the peptide dimers. Cellular uptake studies in human cancer cell lines HT-29 and FaDu cells at 4 °C and 37 °C and small animal PET in BALB/c mice were utilized for radiopharmacological characterization. Results: Isolated radiochemical yields ranged from 2% to 4% for conventional bioconjugation with [18F]SFB. Significantly improved isolated radiochemical yields of up to 26% were achieved using microfluidic technology. Cellular uptake studies of radiolabeled phosphopeptide and phosphopeptide-CPP dimers indicate enhanced internalization of 50% ID/mg protein after 2 h for both phosphopeptide dimers compared to the phosphopeptide alone (18F-labeled peptide dimers was determined with small animal PET revealing a superior biodistribution pattern of sC18-containing peptide dimer MQSpTPL-sC18 [18F]4. Conclusion: [18F]SFB labeling of the phosphopeptide-CPP dimers using a microfluidic system leads to an improved chemoselectivity towards the N-terminal NH2 group compared to the conventional labeling

  4. The spacer arm length in cell-penetrating peptides influences chitosan/siRNA nanoparticle delivery for pulmonary inflammation treatment

    Science.gov (United States)

    Jeong, Eun Ju; Choi, Moonhwan; Lee, Jangwook; Rhim, Taiyoun; Lee, Kuen Yong

    2015-11-01

    Although chitosan and its derivatives have been frequently utilized as delivery vehicles for small interfering RNA (siRNA), it is challenging to improve the gene silencing efficiency of chitosan-based nanoparticles. In this study, we hypothesized that controlling the spacer arm length between a cell-penetrating peptide (CPP) and a nanoparticle could be critical to enhancing the cellular uptake as well as the gene silencing efficiency of conventional chitosan/siRNA nanoparticles. A peptide consisting of nine arginine units (R9) was used as a CPP, and the spacer arm length was controlled by varying the number of glycine units between the peptide (R9Gn) and the nanoparticle (n = 0, 4, and 10). Various physicochemical characteristics of R9Gn-chitosan/siRNA nanoparticles were investigated in vitro. Increasing the spacing arm length did not significantly affect the complex formation between R9Gn-chitosan and siRNA. However, R9G10-chitosan was much more effective in delivering genes both in vitro and in vivo compared with non-modified chitosan (without the peptide) and R9-chitosan (without the spacer arm). Chitosan derivatives modified with oligoarginine containing a spacer arm can be considered as potential delivery vehicles for various genes.Although chitosan and its derivatives have been frequently utilized as delivery vehicles for small interfering RNA (siRNA), it is challenging to improve the gene silencing efficiency of chitosan-based nanoparticles. In this study, we hypothesized that controlling the spacer arm length between a cell-penetrating peptide (CPP) and a nanoparticle could be critical to enhancing the cellular uptake as well as the gene silencing efficiency of conventional chitosan/siRNA nanoparticles. A peptide consisting of nine arginine units (R9) was used as a CPP, and the spacer arm length was controlled by varying the number of glycine units between the peptide (R9Gn) and the nanoparticle (n = 0, 4, and 10). Various physicochemical characteristics of

  5. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation

    International Nuclear Information System (INIS)

    Highlights: ► Reversible CPP dimerisation is a simple yet efficient strategy to improve delivery. ► Dimer formation enhances peptiplex stability, resulting in increased transfection. ► By dimerisation, the CPP EB1 even gain endosomal escape properties while lowering cytotoxicity. -- Abstract: Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes (“peptiplexes”) enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the “chelate effect” and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide dimer resulting from its stronger binding to DNA.

  6. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation

    Energy Technology Data Exchange (ETDEWEB)

    Amand, Helene L., E-mail: helene.amand@chalmers.se [Chalmers University of Technology, Department of Chemical and Biological Engineering/Physical Chemistry, SE-412 96 Gothenburg (Sweden); Norden, Bengt, E-mail: norden@chalmers.se [Chalmers University of Technology, Department of Chemical and Biological Engineering/Physical Chemistry, SE-412 96 Gothenburg (Sweden); Fant, Kristina, E-mail: kristina.fant@sp.se [Chalmers University of Technology, Department of Chemical and Biological Engineering/Physical Chemistry, SE-412 96 Gothenburg (Sweden)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Reversible CPP dimerisation is a simple yet efficient strategy to improve delivery. Black-Right-Pointing-Pointer Dimer formation enhances peptiplex stability, resulting in increased transfection. Black-Right-Pointing-Pointer By dimerisation, the CPP EB1 even gain endosomal escape properties while lowering cytotoxicity. -- Abstract: Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes ('peptiplexes') enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the 'chelate effect' and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide

  7. Relationships between Cargo, Cell Penetrating Peptides and Cell Type for Uptake of Non-Covalent Complexes into Live Cells

    Directory of Open Access Journals (Sweden)

    Andrea-Anneliese Keller

    2013-02-01

    Full Text Available Modulating signaling pathways for research and therapy requires either suppression or expression of selected genes or internalization of proteins such as enzymes, antibodies, nucleotide binding proteins or substrates including nucleoside phosphates and enzyme inhibitors. Peptides, proteins and nucleotides are transported by fusing or conjugating them to cell penetrating peptides or by formation of non-covalent complexes. The latter is often preferred because of easy handling, uptake efficiency and auto-release of cargo into the live cell. In our studies complexes are formed with labeled or readily detectable cargoes for qualitative and quantitative estimation of their internalization. Properties and behavior of adhesion and suspension vertebrate cells as well as the protozoa Leishmania tarentolae are investigated with respect to proteolytic activity, uptake efficiency, intracellular localization and cytotoxicity. Our results show that peptide stability to membrane-bound, secreted or intracellular proteases varies between different CPPs and that the suitability of individual CPPs for a particular cargo in complex formation by non-covalent interactions requires detailed studies. Cells vary in their sensitivity to increasing concentrations of CPPs. Thus, most cells can be efficiently transduced with peptides, proteins and nucleotides with intracellular concentrations in the low micromole range. For each cargo, cell type and CPP the optimal conditions must be determined separately.

  8. Cell-penetrating peptides as noninvasive transmembrane vectors for the development of novel multifunctional drug-delivery systems.

    Science.gov (United States)

    Zhang, Dongdong; Wang, Jiaxi; Xu, Donggang

    2016-05-10

    Unique characteristics, such as nontoxicity and rapid cellular internalization, allow the cell-penetrating peptides (CPPs) to transport hydrophilic macromolecules into cells, thus, enabling them to execute biological functions. However, some CPPs have limitations due to nonspecificity and easy proteolysis. To overcome such defects, the CPP amino acid sequence can be modified, replaced, and reconstructed for optimization. CPPs can also be used in combination with other drug vectors, fused with their preponderances to create novel multifunctional drug-delivery systems that increase the stability during blood circulation, and also develop novel preparations capable of targeted delivery, along with sustainable and controllable release. Further improvements in CPP structure can facilitate the penetration of macromolecules into diverse biomembrane structures, such as the blood brain barrier, gastroenteric mucosa, and skin dermis. The ability of CPP to act as transmembrane vectors improves the clinical application of some biomolecules to treat central nervous system diseases, increase oral bioavailability, and develop percutaneous-delivery dosage form. PMID:26993425

  9. Intracellular delivery of cell-penetrating peptide-transcriptional factor fusion protein and its role in selective osteogenesis

    Directory of Open Access Journals (Sweden)

    Suh JS

    2014-03-01

    Full Text Available Jin Sook Suh,1,* Jue Yeon Lee,2,* Yoon Jung Choi,1 Hyung Keun You,3 Seong-Doo Hong,4 Chong Pyoung Chung,2 Yoon Jeong Park1,2 1Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 2Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC, Seoul, 3Department of Periodontology, College of Dentistry, Wonkwang University, Iksan, 4Department of Oral Pathology, School of Dentistry, Seoul National University, Seoul, Republic of Korea *These authors contributed equally to this work Abstract: Protein-transduction technology has been attempted to deliver macromolecular materials, including protein, nucleic acids, and polymeric drugs, for either diagnosis or therapeutic purposes. Herein, fusion protein composed of an arginine-rich cell-penetrating peptide, termed low-molecular-weight protamine (LMWP, and a transcriptional coactivator with a PDZ-binding motif (TAZ protein was prepared and applied in combination with biomaterials to increase bone-forming capacity. TAZ has been recently identified as a specific osteogenic stimulating transcriptional coactivator in human mesenchymal stem cell (hMSC differentiation, while simultaneously blocking adipogenic differentiation. However, TAZ by itself cannot penetrate the cells, and thus needs a transfection tool for translocalization. The LMWP-TAZ fusion proteins were efficiently translocalized into the cytosol of hMSCs. The hMSCs treated with cell-penetrating LMWP-TAZ exhibited increased expression of osteoblastic genes and protein, producing significantly higher quantities of mineralized matrix compared to free TAZ. In contrast, adipogenic differentiation of the hMSCs was blocked by treatment of LMWP-TAZ fusion protein, as reflected by reduced marker-protein expression, adipocyte fatty acid-binding protein 2, and peroxisome proliferator-activated receptor-γ messenger ribonucleic acid levels. LMWP-TAZ was applied in

  10. Sticky water surfaces: helix-coil transitions suppressed in a cell-penetrating peptide at the air-water interface.

    Science.gov (United States)

    Schach, Denise; Globisch, Christoph; Roeters, Steven J; Woutersen, Sander; Fuchs, Adrian; Weiss, Clemens K; Backus, Ellen H G; Landfester, Katharina; Bonn, Mischa; Peter, Christine; Weidner, Tobias

    2014-12-14

    GALA is a 30 amino acid synthetic peptide consisting of a Glu-Ala-Leu-Ala repeat and is known to undergo a reversible structural transition from a disordered to an α-helical structure when changing the pH from basic to acidic values. In its helical state GALA can insert into and disintegrate lipid membranes. This effect has generated much interest in GALA as a candidate for pH triggered, targeted drug delivery. GALA also serves as a well-defined model system to understand cell penetration mechanisms and protein folding triggered by external stimuli. Structural transitions of GALA in solution have been studied extensively. However, cell penetration is an interfacial effect and potential biomedical applications of GALA would involve a variety of surfaces, e.g., nanoparticles, lipid membranes, tubing, and liquid-gas interfaces. Despite the apparent importance of interfaces in the functioning of GALA, the effect of surfaces on the reversible folding of GALA has not yet been studied. Here, we use sum frequency generation vibrational spectroscopy (SFG) to probe the structural response of GALA at the air-water interface and IR spectroscopy to follow GALA folding in bulk solution. We combine the SFG data with molecular dynamics simulations to obtain a molecular-level picture of the interaction of GALA with the air-water interface. Surprisingly, while the fully reversible structural transition was observed in solution, at the water-air interface, a large fraction of the GALA population remained helical at high pH. This "stickiness" of the air-water interface can be explained by the stabilizing interactions of hydrophobic leucine and alanine side chains with the water surface. PMID:25494788

  11. Sticky water surfaces: Helix-coil transitions suppressed in a cell-penetrating peptide at the air-water interface

    Science.gov (United States)

    Schach, Denise; Globisch, Christoph; Roeters, Steven J.; Woutersen, Sander; Fuchs, Adrian; Weiss, Clemens K.; Backus, Ellen H. G.; Landfester, Katharina; Bonn, Mischa; Peter, Christine; Weidner, Tobias

    2014-12-01

    GALA is a 30 amino acid synthetic peptide consisting of a Glu-Ala-Leu-Ala repeat and is known to undergo a reversible structural transition from a disordered to an α-helical structure when changing the pH from basic to acidic values. In its helical state GALA can insert into and disintegrate lipid membranes. This effect has generated much interest in GALA as a candidate for pH triggered, targeted drug delivery. GALA also serves as a well-defined model system to understand cell penetration mechanisms and protein folding triggered by external stimuli. Structural transitions of GALA in solution have been studied extensively. However, cell penetration is an interfacial effect and potential biomedical applications of GALA would involve a variety of surfaces, e.g., nanoparticles, lipid membranes, tubing, and liquid-gas interfaces. Despite the apparent importance of interfaces in the functioning of GALA, the effect of surfaces on the reversible folding of GALA has not yet been studied. Here, we use sum frequency generation vibrational spectroscopy (SFG) to probe the structural response of GALA at the air-water interface and IR spectroscopy to follow GALA folding in bulk solution. We combine the SFG data with molecular dynamics simulations to obtain a molecular-level picture of the interaction of GALA with the air-water interface. Surprisingly, while the fully reversible structural transition was observed in solution, at the water-air interface, a large fraction of the GALA population remained helical at high pH. This "stickiness" of the air-water interface can be explained by the stabilizing interactions of hydrophobic leucine and alanine side chains with the water surface.

  12. PREPARATION OF CHEMICAL AND PHYSICAL CONJUGATES OF SELF-ASSEMBLING NANOPARTICLES WITH CELL-PENETRATING PEPTIDE AND DOXORUBICIN

    Directory of Open Access Journals (Sweden)

    Zhadyra Sagykyzy Shagyrova

    2015-09-01

    Full Text Available Abstract: Nano-sized carriers can help to reduce toxicity and improve clinical efficacy of drugs. Virus-like particles (VLPs are biocompatible and biodegradable self-assembling nanoparticles, which show great promise as carriers for substances for targeted delivery and controlled release. Either chemical conjugation of physical incorporation without formation of covalent bonds is possible to load substances of interest into VLPs.Objectives: To produce VLPs from recombinant viral capsid protein (HBcAg and test feasibility of methods of formation of chemical and physical conjugates of VLPs with substances of pharmacological interest.Methods: Virus-like particles composed from recombinant hepatitis B core antigen (HBcAg were produced by recombinant expression in E.coli and purified by successive centrifugation through sucrose gradients. Peptide transportan 10 was synthesized and used for carbodiimide (EDC-mediated conjugation to VLPs. Doxorubicin (DOX was loaded into the nucleic acid-containing VLPs to form physical conjugate.Results: VLPs with chemically attached moieties of cell-penetrating peptide transportan 10 were produced. The conjugate was examined in SDS-PAGE to confirm presence of conjugation products. Conjugation efficiency (molar ration peptide/protein in the conjugate reaches 0.5:1 (i.e. 50% of protein chains have one attached peptide moiety. The nucleic acid-containing VLPs can be loaded with the DOX forming stable non-covalent physical conjugate.Conclusion: Recombinantly expressed VLPs allow easy attaching of small molecules making them a convenient platform to develop drug carriers.

  13. Human antimicrobial peptide histatin 5 is a cell-penetrating peptide targeting mitochondrial ATP synthesis in Leishmania.

    Science.gov (United States)

    Luque-Ortega, Juan Román; van't Hof, Wim; Veerman, Enno C I; Saugar, José M; Rivas, Luis

    2008-06-01

    Histatin 5 (Hst5) is a human salivary antimicrobial peptide that targets fungal mitochondria. In the human parasitic protozoa Leishmania, the mitochondrial ATP production is essential, as it lacks the bioenergetic switch between glycolysis and oxidative phosphorylation described in some yeasts. On these premises, Hst5 activity was assayed on both stages of its life cycle, promastigotes and amastigotes (LC(50)=7.3 and 14.4 microM, respectively). In a further step, its lethal mechanism was studied. The main conclusions drawn were as follows: 1) Hst5 causes limited and temporary damage to the plasma membrane of the parasites, as assessed by electron microscopy, depolarization, and entrance of the vital dye SYTOX Green; 2) Hst5 translocates into the cytoplasm of Leishmania in an achiral receptor-independent manner with accumulation into the mitochondrion, as shown by confocal microscopy; and 3) Hst5 produces a bioenergetic collapse of the parasite, caused essentially by the decrease of mitochondrial ATP synthesis through inhibition of F(1)F(0)-ATPase, with subsequent fast ATP exhaustion. By using the Hst5 enantiomer, it was found that the key steps of its lethal mechanism involved no chiral recognition. Hst5 thus constitutes the first leishmanicidal peptide with a defined nonstereospecific intracellular target. The prospects of its development, by its own or as a carrier molecule for other leishmanicidal molecules, into a novel anti-Leishmania drug with a preferential subcellular accumulation are discussed. PMID:18230684

  14. Design and screening of a glial cell-specific, cell penetrating peptide for therapeutic applications in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Corey Heffernan

    Full Text Available Multiple Sclerosis (MS is an autoimmune, neurodegenerative disease of the central nervous system (CNS characterized by demyelination through glial cell loss. Current and proposed therapeutic strategies to arrest demyelination and/or promote further remyelination include: (i modulation of the host immune system; and/or (ii transplantation of myelinating/stem or progenitor cells to the circulation or sites of injury. However, significant drawbacks are inherent with both approaches. Cell penetrating peptides (CPP are short amino acid sequences with an intrinsic ability to translocate across plasma membranes, and theoretically represent an attractive vector for delivery of therapeutic peptides or nanoparticles to glia to promote cell survival or remyelination. The CPPs described to date are commonly non-selective in the cell types they transduce, limiting their therapeutic application in vivo. Here, we describe a theoretical framework for design of a novel CPP sequence that selectively transduces human glial cells (excluding non-glial cell types, and conduct preliminary screens of purified, recombinant CPPs with immature and matured human oligodendrocytes and astrocytes, and two non-glial cell types. A candidate peptide, termed TD2.2, consistently transduced glial cells, was significantly more effective at transducing immature oligodendrocytes than matured progeny, and was virtually incapable of transducing two non-glial cell types: (i human neural cells and (ii human dermal fibroblasts. Time-lapse confocal microscopy confirms trafficking of TD2.2 (fused to EGFP to mature oligodendrocytes 3-6 hours after protein application in vitro. We propose selectivity of TD2.2 for glial cells represents a new therapeutic strategy for the treatment of glial-related disease, such as MS.

  15. Fusion of a Short HA2-Derived Peptide Sequence to Cell-Penetrating Peptides Improves Cytosolic Uptake, but Enhances Cytotoxic Activity

    Directory of Open Access Journals (Sweden)

    Igor Kitanovic

    2009-09-01

    Full Text Available Cell-penetrating peptides (CPP have become a widely used tool for efficient cargo delivery into cells. However, one limiting fact is their uptake by endocytosis causing the enclosure of the CPP-cargo construct within endosomes. One often used method to enhance the outflow into the cytosol is the fusion of endosome-disruptive peptide or protein sequences to CPP. But, until now, no studies exist investigating the effects of the fusion peptide to the cellular distribution, structural arrangements and cytotoxic behaviour of the CPP. In this study, we attached a short modified sequence of hemagglutinin subunit HA2 to different CPP and analysed the biologic activity of the new designed peptides. Interestingly, we observed an increased cytosolic distribution but also highly toxic activities in the micromolar range against several cell lines. Structural analysis revealed that attachment of the fusion peptide had profound implications on the whole conformation of the peptide, which might be responsible for membrane interaction and endosome disruption.

  16. Fusion of cell-penetrating peptides to thermally responsive biopolymer improves tumor accumulation of p21 peptide in a mouse model of pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Walker LR

    2014-10-01

    Full Text Available Leslie R Walker,1 Jung Su Ryu,1 Eddie Perkins,2 Lacey R McNally,3 Drazen Raucher1 1Department of Biochemistry, 2Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, USA; 3Division of Hematology and Oncology, University of Louisville, Louisville, KY, USAAbstract: Current therapies for the treatment of pancreatic cancer are limited. The limitations of this type of treatment are abundant. The majority of chemotherapeutic agents used in clinics are highly toxic to both tumor cells and normal tissues due to the lack of specificity. Resistance can develop due to overexposure of these agents. To address these issues, these agents must be made more exclusive toward the tumor site. We have developed a macromolecular carrier based on the sequence of the biopolymer elastin-like polypeptide (ELP that is able to aggregate upon reaching the externally heated tumor environment. This carrier is specific to the tumor as it only aggregates at the heated tumor site. ELP is soluble below its transition temperature but will aggregate when the temperature is raised above its transition temperature. ELP was modified by p21, a cell cycle inhibitory peptide, and the addition of Bac, a cell-penetrating peptide with nuclear localization capabilities. In this study, p21-ELP-Bac and its control, ELP-p21, were used in cell proliferation studies using the pancreatic cancer cell lines Panc-1, MiaPaca-2, and S2013. ELP-p21 had little effect on proliferation, while the half maximal inhibitory concentration of p21-ELP-Bac was ~30 µM. As translocation across the plasma membrane is a limiting step for delivery of macromolecules, these polypeptides were utilized in a pancreatic xenograft model to study the plasma clearance, biodistribution, tumor accumulation, and tumor reduction capabilities of the polypeptide with and without a cell-penetrating peptide.Keywords: elastin-like polypeptide, peptide, targeted drug delivery, macromolecule

  17. Arginine-Rich Peptides Destabilize the Plasma Membrane, Consistent with a Pore Formation Translocation Mechanism of Cell-Penetrating Peptides

    OpenAIRE

    Herce, H.D.; Garcia, A. E.; Litt, J.; Kane, R. S.; Martin, P.; Enrique, N.; Rebolledo, A.; Milesi, V.

    2009-01-01

    Recent molecular dynamics simulations (Herce and Garcia, PNAS, 104: 20805 (2007)) have suggested that the arginine-rich HIV Tat peptides might be able to translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, arginine residues play a fundamental role not only in the binding of the peptide to the surface of the membrane but also in the destabilization and nucleation of transient pores across the bilayer, despite being char...

  18. Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides.

    Science.gov (United States)

    Herce, H D; Garcia, A E; Litt, J; Kane, R S; Martin, P; Enrique, N; Rebolledo, A; Milesi, V

    2009-10-01

    Recent molecular-dynamics simulations have suggested that the arginine-rich HIV Tat peptides translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, Arg residues play a fundamental role not only in the binding of the peptide to the surface of the membrane, but also in the destabilization and nucleation of transient pores across the bilayer. Here we present a molecular-dynamics simulation of a peptide composed of nine Args (Arg-9) that shows that this peptide follows the same translocation pathway previously found for the Tat peptide. We test experimentally the hypothesis that transient pores open by measuring ionic currents across phospholipid bilayers and cell membranes through the pores induced by Arg-9 peptides. We find that Arg-9 peptides, in the presence of an electrostatic potential gradient, induce ionic currents across planar phospholipid bilayers, as well as in cultured osteosarcoma cells and human smooth muscle cells. Our results suggest that the mechanism of action of Arg-9 peptides involves the creation of transient pores in lipid bilayers and cell membranes. PMID:19804722

  19. Precise quantification of cellular uptake of cell-penetrating peptides using fluorescence-activated cell sorting and fluorescence correlation spectroscopy.

    Science.gov (United States)

    Rezgui, Rachid; Blumer, Katy; Yeoh-Tan, Gilbert; Trexler, Adam J; Magzoub, Mazin

    2016-07-01

    Cell-penetrating peptides (CPPs) have emerged as a potentially powerful tool for drug delivery due to their ability to efficiently transport a whole host of biologically active cargoes into cells. Although concerted efforts have shed some light on the cellular internalization pathways of CPPs, quantification of CPP uptake has proved problematic. Here we describe an experimental approach that combines two powerful biophysical techniques, fluorescence-activated cell sorting (FACS) and fluorescence correlation spectroscopy (FCS), to directly, accurately and precisely measure the cellular uptake of fluorescently-labeled molecules. This rapid and technically simple approach is highly versatile and can readily be applied to characterize all major CPP properties that normally require multiple assays, including amount taken up by cells (in moles/cell), uptake efficiency, internalization pathways, intracellular distribution, intracellular degradation and toxicity threshold. The FACS-FCS approach provides a means for quantifying any intracellular biochemical entity, whether expressed in the cell or introduced exogenously and transported across the plasma membrane. PMID:27033412

  20. A specific aptamer-cell penetrating peptides complex delivered siRNA efficiently and suppressed prostate tumor growth in vivo.

    Science.gov (United States)

    Diao, Yanjun; Liu, Jiayun; Ma, Yueyun; Su, Mingquan; Zhang, Hongyi; Hao, Xiaoke

    2016-05-01

    Specific and efficient delivery of siRNA into intended tumor cells remains as a challenge, even though RNAi has been exploited as a new strategy for prostate cancer therapy. This work aims to address both specificity and efficiency of SURVIVIN-siRNA delivery by constructing a therapeutic complex using combinatorial strategies. A fusion protein STD was first expressed to serve as a backbone, consisting of streptavidin, a cell-penetrating peptide called Trans-Activator of Transcription (TAT) and a double-stranded RNA binding domain. A biotinylated Prostate Specific Membrane Antigen (PSMA) specific aptamer A10 and SURVIVIN-siRNA were then linked to STD protein to form the therapeutic complex. This complex could specifically targeted PSMA(+) tumor cells. Compared to lipofectamine and A10-siRNA chimera, it demonstrated higher efficiency in delivering siRNA into target cells by 19.2% and 59.9%, and increased apoptosis by 16.8% and 26.1% respectively. Upon systemic administration, this complex also showed significant efficacy in suppressing tumor growth in athymic mice (p efficiently deliver SURVIVIN-siRNA to target cells and suppressed tumor growth in vivo, which indicates its potential to be used as a new strategy in prostate cancer therapy. PMID:26954374

  1. Recombinant expression and purification of a MAP30-cell penetrating peptide fusion protein with higher anti-tumor bioactivity.

    Science.gov (United States)

    Lv, Qiang; Yang, Xu-Zhong; Fu, Long-Yun; Lu, Yv-Ting; Lu, Yan-Hua; Zhao, Jian; Wang, Fu-Jun

    2015-07-01

    MAP30 (Momordica Antiviral Protein 30 Kd), a single-stranded type-I ribosome inactivating protein, possesses versatile biological activities including anti-tumor abilities. However, the low efficiency penetrating into tumor cells hampers the tumoricidal effect of MAP30. This paper describes MAP30 fused with a human-derived cell penetrating peptide HBD which overcome the low uptake efficiency by tumor cells and exhibits higher anti-tumor bioactivity. MAP30 gene was cloned from the genomic DNA of Momordica charantia and the recombinant plasmid pET28b-MAP30-HBD was established and transferred into Escherichia coli BL21 (DE3). The recombinant MAP30-HBD protein (rMAP30-HBD) was expressed in a soluble form after being induced by 0.5mM IPTG for 14h at 15°C. The recombinant protein was purified to greater than 95% purity with Ni-NTA affinity chromatography. The rMAP30-HBD protein not only has topological inactivation and protein translation inhibition activity but also showed significant improvements in cytotoxic activity compared to that of the rMAP30 protein without HBD in the tested tumor cell lines, and induced higher apoptosis rates in HeLa cells analyzed by Annexin V-FITC with FACS. This paper demonstrated a new method for improving MAP30 protein anti-tumor activity and might have potential applications in cancer therapy area. PMID:25797209

  2. Cell-penetrating peptides mediated protein cross-membrane delivery and its use in bacterial vector vaccine.

    Science.gov (United States)

    Ma, Jimei; Xu, Jinmei; Guan, Lingyu; Hu, Tianjian; Liu, Qin; Xiao, Jingfan; Zhang, Yuanxing

    2014-07-01

    It is an attractive strategy to develop a recombinant bacterial vector vaccine by expressing exogenous protective antigen to induce the immune response, and the main concern is how to enhance the cellular internalization of antigen produced by bacterial vector. Cell-penetrating peptides (CPPs) are short cationic/amphipathic peptides which facilitate cellular uptake of various molecular cargoes and therefore have great potentials in vector vaccine design. In this work, eleven different CPPs were fused to the C-terminus of EGFP respectively, and the resultant EGFP-CPP fusion proteins were expressed and purified to assay their cross-membrane transport in macrophage J774 A.1 cells. Among the tested CPPs, TAT showed an excellent capability to deliver the cargo protein EGFP into cytoplasm. In order to establish an efficient antigen delivery system in Escherichia coli, the EGFP-TAT synthesis circuit was combined with an in vivo inducible lysis circuit PviuA-E in E. coli to form an integrated antigen delivery system, the resultant E. coli was proved to be able to lyse upon the induction of a mimic in vivo signal and thus release intracellular EGFP-TAT intensively, which were assumed to undergo a more efficient intracellular delivery by CPP to evoke protective immune responses. Based on the established antigen delivery system, the protective antigen gene flgD from an invasive intracellular fish pathogen Edwardsiella tarda EIB202, was applied to establish an E. coli recombinant vector vaccine. This E. coli vector vaccine presented superior immune protection (RPS = 63%) under the challenge with E. tarda EIB202, suggesting that the novel antigen delivery system had great potential in bacterial vector vaccine applications. PMID:24746937

  3. Applications and Challenges for Use of Cell-Penetrating Peptides as Delivery Vectors for Peptide and Protein Cargos

    DEFF Research Database (Denmark)

    Kristensen, Mie; Birch, Ditlev; Mørck Nielsen, Hanne

    2016-01-01

    -penetrating peptides (CPPs) constitute a promising tool and have shown applications for peptide and protein delivery into cells as well as across various epithelia and the blood-brain barrier (BBB). CPP-mediated delivery of peptides and proteins may be pursued via covalent conjugation of the CPP to the cargo peptide...... or protein or via physical complexation obtained by simple bulk-mixing of the CPP with its cargo. Both approaches have their pros and cons, and which is the better choice likely relates to the physicochemical properties of the CPP and its cargo as well as the route of administration, the specific...... barrier and the target cell. Besides the physical barrier, a metabolic barrier must be taken into consideration when applying peptide-based delivery vectors, such as the CPPs, and stability-enhancing strategies are commonly employed to prolong the CPP half-life. The mechanisms by which CPPs translocate...

  4. Enhanced oral bioavailability of insulin using PLGA nanoparticles co-modified with cell-penetrating peptides and Engrailed secretion peptide (Sec).

    Science.gov (United States)

    Zhu, Siqi; Chen, Shuangxi; Gao, Yuan; Guo, Feng; Li, Fengying; Xie, Baogang; Zhou, Jianliang; Zhong, Haijun

    2016-07-01

    Biodegradable polymer nanoparticle drug carriers are an attractive strategy for oral delivery of peptide and protein drugs. However, their ability to cross the intestinal epithelium membrane is largely limited. Therefore, in the present study, cell-penetrating peptides (R8, Tat, penetratin) and a secretion peptide (Sec) with N-terminal stearylation were introduced to modify nanoparticles (NPs) on the surface to improve oral bioavailability of peptide and protein drugs. In vitro studies conducted in Caco-2 cells showed the value of the apparent permeability coefficient (Papp) of the nanoparticles co-modified with Sec and penetratin (Sec-Pen-NPs) was about two-times greater than that of the nanoparticles modified with only penetratin (Pen-NPs), while the increase of transcellular transport of nanoparticles modified together with Sec and R8 (Sec-R8-NPs), or Sec and Tat (Sec-Tat-NPs), was not significant compared with nanoparticles modified with only R8 (R8-NPs) or Tat (Tat-NPs). Using insulin as the model drug, in vivo studies performed on rats indicated that compared to Pen-NPs, the relative bioavailability of insulin for Sec-Pen-NPs was 1.71-times increased after ileal segments administration, and stronger hypoglycemic effects was also observed. Therefore, the nanoparticles co-modified with penetratin and Sec could act as attractive carriers for oral delivery of insulin. PMID:26181841

  5. Curb Challenges of the “Trojan Horse” Approach: Smart Strategies in Achieving Effective yet Safe Cell-penetrating Peptide-based Drug Delivery

    OpenAIRE

    Huang, Yongzhuo; Jiang, Yifan; Wang, Huiyuan; Wang, Jianxin; Shin, Meong Cheol; Byun, Youngro; He, Huining; Liang, Yanqin; Yang, Victor C.

    2013-01-01

    Cell-penetrating peptide (CPP)-mediated intracellular drug delivery system, often specifically termed as “the Trojan horse approach”, has become the “holy grail” in achieving effective delivery of macromolecular compounds such as proteins, DNA, siRNAs, and drug carriers. It is characterized by the unique cell- (or receptor-), temperature-, and payload-independent mechanisms, therefore offering potent means to improve poor cellular uptake of a variety of macromolecular drugs. Nevertheless, thi...

  6. Antitumor activity of tripterine via cell-penetrating peptide-coated nanostructured lipid carriers in a prostate cancer model

    Directory of Open Access Journals (Sweden)

    Yuan L

    2013-11-01

    Full Text Available Ling Yuan,1 Congyan Liu,2 Yan Chen,2 Zhenhai Zhang,2 Lei Zhou,1 Ding Qu2 1Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 2Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China Background: The purpose of this study was to evaluate the antitumor effect of cell-penetrating peptide-coated tripterine-loaded nanostructured lipid carriers (CT-NLC on prostate tumor cells in vitro and in vivo. Methods: CT-NLC were developed to improve the hydrophilicity of tripterine. The antiproliferative effects of CT-NLC, tripterine-loaded nanostructured lipid carriers (T-NLC, and free tripterine in a human prostatic carcinoma cell line (PC-3 and a mouse prostate carcinoma cell line (RM-1 were evaluated using an MTT assay. The advantage of CT-NLC over T-NLC and free tripterine with regard to antitumor activity in vivo was evaluated in a prostate tumor-bearing mouse model. The induced tumor necrosis factor-alpha and interleukin-6 cytokine content was investigated by enzyme-linked immunosorbent assay to determine the effect of CT-NLC, T-NLC, and free tripterine on immune responses. Histologic and TUNEL assays were carried out to investigate the mechanisms of tumor necrosis and apoptosis. Results: CT-NLC, T-NLC, and free tripterine showed high antiproliferative activity in a dose-dependent manner, with an IC50 of 0.60, 0.81, and 1.02 µg/mL in the PC-3 cell line and 0.41, 0.54, and 0.89 µg/mL in the RM-1 cell line after 36 hours. In vivo, the tumor inhibition rates for cyclophosphamide, high-dose (4 mg/kg and low-dose (2 mg/kg tripterine, high-dose (4 mg/kg and low-dose (2 mg/kg T-NLC, high-dose (4 mg/kg and low-dose (2 mg/kg CT-NLC were 76.51%, 37.07%, 29.53%, 63.56%, 48.25%, 72.68%, and 54.50%, respectively, showing a dose-dependent pattern. The induced tumor necrosis factor-alpha and interleukin-6 cytokine content

  7. Intercellular imaging by a polyarginine derived cell penetrating peptide labeled magnetic resonance contrast agent,diethylenetriamine pentaacetic acid gadolinium

    Institute of Scientific and Technical Information of China (English)

    GUO You-min; LIU Min; YANG Jun-le; GUO Xiao-juan; WANG Si-cen; DUAN Xiao-yi; WANG Peng

    2007-01-01

    Background The cellular plasma membrane represents a natural barrier to many exogenous molecules including magnetic resonance (MR) contrast agent. Cell penetrating peptide (CPP) is used to internalize proteins, peptides, and radionuclide. This study was undertaken to assess the value of a new intracellular MR contrast medium, CPP labeled diethylenetriamine pentaacetic acid gadolinium (Gd-DTPA) in molecular imaging in vitro. Methods Fluorescein-5-isothiocyanate (FITC) and Gd-DTPA respectively labeled with CPP (FITC-CPP, Gd-DTPA-CPP) were synthesized by the solid-phase method. Human hepatic cancer cell line-HepG2 was respectively stained by FITC-CPP and FITC to observe the uptake and intracellular distribution. HepG2 was respectively incubated with 100 nmol/ml Gd-DTPA-CPP for 0, 10, 30, 60 minutes, and imaged by MR for studying the relationship between the incubation time and T1WI signal. The cytotoxicity to NIH3T3 fibroblasts cells was measured by 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide reduction assay (MTT). Results The molecular weights of CPP labeled imaging agents, which were determined by MALDI mass spectrometry (FITC-CPP MW=2163.34, Gd-DTPA-CPP MW=2285.99), were similar to the calculated molecular weights. Confocal microscopy suggested HepG2 translocated FITC-CPP in cytoplasm and nucleus independent with the incubation temperature. MR images showed HepG2 uptaken Gd-DTPA-CPP had a higher T1 weighted imaging (T1WI) signal, and that the T1WI signal intensity was increasing in a time-dependent manner (r=0.972, P=0.001), while the signal intensity between the cells incubated by Gd-DTPA for 60 minutes and the controlled cells was not significantly different (P=0.225). By MTT, all concentrations from 50 nmol/ml to 200 nmol/ml had no significant (F=0.006, P=1.000) effect on cell viability of mouse NIH3T3 fibroblasts, compared with the control group. Conclusions The newly constructed CPP based on polyarginine can translocate cells by carrying FITC

  8. Membrane-Bound Dynamic Structure of an Arginine-Rich Cell-Penetrating Peptide, the Protein Transduction Domain of HIV TAT, from Solid-State NMR

    OpenAIRE

    Su, Yongchao; Alan J Waring; Ruchala, Piotr; Hong, Mei

    2010-01-01

    The protein transduction domain of HIV-1 TAT, TAT(48-60), is an efficient cell-penetrating peptide (CPP) that diffuses across the lipid membranes of cells despite eight cationic Arg and Lys residues. To understand its mechanism of membrane translocation against the free energy barrier, we have conducted solid-state NMR experiments to determine the site-specific conformation, dynamics, and lipid interaction of the TAT peptide in anionic lipid bilayers. We found that TAT(48-60) is a highly dyna...

  9. The cell-penetrating peptide domain from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) has anti-inflammatory activity in vitro and in vivo

    International Nuclear Information System (INIS)

    Highlights: ► HBP sequence identified from HB-EGF has cell penetration activity. ► HBP inhibits the NF-κB dependent inflammatory responses. ► HBP directly blocks phosphorylation and degradation of IκBα. ► HBP inhibits nuclear translocation of NF-κB p65 subunit. -- Abstract: A heparin-binding peptide (HBP) sequence from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified and was shown to exhibit cell penetration activity. This cell penetration induced an anti-inflammatory reaction in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. HBP penetrated the cell membrane during the 10 min treatment and reduced the LPS-induced production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cytokines (TNF-α and IL-6) in a concentration-dependent manner. Additionally, HBP inhibited the LPS-induced upregulation of cytokines, including TNF-α and IL-6, and decreased the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. HBP inhibited NF-κB-dependent inflammatory responses by directly blocking the phosphorylation and degradation of IκBα and by subsequently inhibiting the nuclear translocation of the p65 subunit of NF-κB. Taken together, this novel HBP may be potentially useful candidate for anti-inflammatory treatments and can be combined with other drugs of interest to transport attached molecules into cells.

  10. The feasibility of a targeted ultrasound contrast agent carrying genes and cell-penetrating peptides to hypoxic HUVEC

    International Nuclear Information System (INIS)

    Objective: To prepare an anti-P-selectin targeted ultrasound contrast agent carrying genes and cell-penetrating peptides (CPP) and to investigate its feasibility of delivery to hypoxic human umbilical vein endothelial cells (HUVEC). Methods: Anti-P-selectin targeted ultrasound contrast agent carrying a green fluorescent protein gene (pEGFP-N1) and CPP was prepared by mechanical vibration and carbodiimide techniques. The appearance, distribution, concentration and diameter of the ultrasound contrast agent were measured. The gene and CPP distribution on the agent was investigated using confocal laser scanning microscopy (CLSM). The efficiency of the ultrasound contrast agent to carry the gene and CPP was investigated by fluorospectrophotometry. HUVEC were cultured in vitro and hypoxic HUVEC were prepared using hydrogen peroxide (H2O2). Hypoxic HUVEC were randomly assigned targeted ultrasound contrast agents and non-targeted ultrasound contrast agents for transfection. The transfection effect of green fluorescent protein in the two groups was observed using fluorescence microscopy and flow cytometry. T-test and linear correlation analysis were used for statistical analysis. Results: The average diameter of anti-P-selectin targeted ultrasound contrast agents carrying gene and CPP was (2.15 ±0.36) μm and the concentration was (1.58 ± 0.23) × 107/ml.The results of CLSM showed that gene and CPP were distributed on the shell of the agent. The gene encapsulation efficiency was 28% (y=0.932x-0.09, r=0.993, P<0.05), and the CPP encapsulation efficiency was 25% (y=5.875x-0.81, r=0.987, P<0.05). EGFP expression was observed using fluorescence microscopy in targeted ultrasound contrast agents and non-targeted ultrasound contrast agents. The average transfection efficiencies of targeted ultrasound contrast agents and non-targeted ultrasound contrast agents were (18.74 ± 0.47) % and (15.34 ± 0.22) % after 24 h (t=10.923, P<0.001). Conclusions: The in vitro studies showed

  11. A novel strategy to improve antigen presentation for active immunotherapy in cancer. Fusion of the human papillomavirus type 16 E7 antigen to a cell penetrating peptide

    International Nuclear Information System (INIS)

    Facilitating the delivery of exogenous antigens to antigen-presenting cells, ensuing processing and presentation via the major histocompatibility complex class I and induction of an effective immune response are fundamental for an effective therapeutic cancer vaccine. In this regard, we propose the use of cell-penetrating peptides fused to a tumor antigen. To demonstrate this concept we designed a fusion protein comprising a novel cell-penetrating and immunostimulatory peptide corresponding to residues 32 to 51 of the Limulus anti-lipopolysaccharide factor protein (LALF32-51) linked to human papillomavirus 16 E7 antigen (LALF32-51-E7). In this work, we demonstrated that the immunization with LALF32-51-E7 using the TC-1 mouse model induces a potent and long-lasting anti-tumor response supported on an effective E7-specific CD8+T-cell response. The finding that therapeutic immunization with LALF32-51 or E7 alone, or an admixture of LALF32-51 and E7, does not induce significant tumor reduction indicates that covalent linkage between LALF32-51 and E7 is required for the anti-tumor effect. These results support the use of this novel cell-penetrating peptide as an efficient means for delivering therapeutic targets into cellular compartments with the induction of a cytotoxic CD8+T lymphocyte immune response. This approach is promissory for the treatment of tumors associated with the human papillomavirus 16, which is responsible for the 50% of cervical cancer cases worldwide and other malignancies. Furthermore, protein-based vaccines can circumvent the major histocompatibility complex specificity limitation associated with peptide vaccines providing a greater extent in their application

  12. Folic Acid-Targeted and Cell Penetrating Peptide-Mediated Theranostic Nanoplatform for High-Efficiency Tri-Modal Imaging-Guided Synergistic Anticancer Phototherapy.

    Science.gov (United States)

    Li, Na; Li, Tingting; Liu, Chen; Ye, Shiyi; Liang, Jiangong; Han, Heyou

    2016-05-01

    A novel nanomaterial with precisely-defined size and shape, biocompatible composition, and excellent stability, which can integrate multi modal targeted imaging and therapy into a single system for visualized therapeutics, has recently attracted significant research interest. Here, we developed a multifunctional nanoplatform based on silica-coated 4-mercaptobenzoic acid-modified gold nanorods (Au NRs) decorated with gold nanoclusters rich in the photosensitizer Ce6 (Au-Ce6 NCs). The nanoparticles also comprised folic acid and cell penetrating peptide molecules anchored on the surface, obtaining the Au@SiO2@Au-cell penetrating peptide nanocomposite. The Au-Ce6 NCs enhanced the photophysical stability, provided numerous bonding sites and offered a large surface-area and interior space to achieve a high drug loading efficiency (up to 55%). The anchored folic acid and cell penetrating peptide synergistically enhanced the efficiency of uptake of nanocomposites by HeLa cells (up to 70.7%) and improved therapeutic efficacy. The nanocomposite also has good water-solubility, excellent biocompatibility, and long-term stability against illumination and exposure to pH 3-12, thus facilitating their bioapplications in cancer theranostics. Here, the nanocomposite was established for high-resolution and noninvasive tri-modal surface-enhanced Raman spectrum/dark-field/fluorescence imaging-guided high-efficiency synergistic photodynamic/photothermal therapy of cancer. Our studies demonstrate that the multifunctional nanocomposite has the potential as a novel and sensitive contrast agent for complementary and synergistic theranostics in the clinic. PMID:27305812

  13. Synthesis of an artificial cell surface receptor that enables oligohistidine affinity tags to function as metal-dependent cell-penetrating peptides.

    Science.gov (United States)

    Boonyarattanakalin, Siwarutt; Athavankar, Sonalee; Sun, Qi; Peterson, Blake R

    2006-01-18

    Cell-penetrating peptides and proteins (CPPs) are important tools for the delivery of impermeable molecules into living mammalian cells. To enable these cells to internalize proteins fused to common oligohistidine affinity tags, we synthesized an artificial cell surface receptor comprising an N-alkyl derivative of 3beta-cholesterylamine linked to the metal chelator nitrilotriacetic acid (NTA). This synthetic receptor inserts into cellular plasma membranes, projects NTA headgroups from the cell surface, and rapidly cycles between the plasma membrane and intracellular endosomes. Jurkat lymphocytes treated with the synthetic receptor (10 microM) for 1 h displayed approximately 8,400,000 [corrected]NTA groups on the cell surface. Subsequent addition of the green fluorescent protein AcGFP fused to hexahistidine or decahistidine peptides (3 microM) and Ni(OAc)(2) (100 microM) enhanced the endocytosis of AcGFP by 150-fold (hexahistidine fusion protein) or 600-fold (decahistidine fusion protein) within 4 h at 37 degrees C. No adverse effects on cellular proliferation or morphology were observed under these conditions. By enabling common oligohistidine affinity tags to function as cell-penetrating peptides, this metal-chelating cell surface receptor provides a useful tool for studies of cellular biology [corrected] PMID:16402806

  14. Conjugation of doxorubicin to cell penetrating peptides sensitizes human breast MDA-MB 231 cancer cells to endogenous TRAIL-induced apoptosis.

    OpenAIRE

    Aroui, Sonia; Brahim, Souhir; Hamelin, Jocelyne; De Waard, Michel; Bréard, Jacqueline; Kenani, Abderraouf

    2009-01-01

    International audience Previous work from our laboratory has shown that coupling doxorubicin (Dox) to cell penetrating peptides (Dox-CPPs) is a good strategy to overcome Dox resistance in MDA-MB 231 breast cancer cells. We also reported that, in contrast to unconjugated Dox-induced cell death, the increase in apoptotic response does not involve the mitochondrial apoptotic pathway. In this study, we demonstrate that both Dox and Dox-CPPs can increase the density of the TRAIL receptors DR4 a...

  15. The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for Gram-positive bacteria over erythrocytes

    Science.gov (United States)

    Liu, Lihong; Yang, Jun; Xie, Jianping; Luo, Zhentao; Jiang, Jiang; Yang, Yi Yan; Liu, Shaomin

    2013-04-01

    Silver nanoparticles are of great interest for use as antimicrobial agents. Studies aimed at producing potent nano-silver biocides have focused on manipulation of particle size, shape, composition and surface charge. Here, we report the cell penetrating peptide catalyzed formation of antimicrobial silver nanoparticles in N,N-dimethylformamide. The novel nano-composite demonstrated a distinctly enhanced biocidal effect toward bacteria (Gram-positive Bacillus subtilis, Gram-negative Escherichia coli) and pathogenic yeast (Candida albicans), as compared to triangular and extremely small silver nanoparticles. In addition, a satisfactory biocompatibility was verified by a haemolysis test. Our results provide a paradigm in developing strategies that can maximize the silver nanoparticle application potentials while minimizing the toxic effects.Silver nanoparticles are of great interest for use as antimicrobial agents. Studies aimed at producing potent nano-silver biocides have focused on manipulation of particle size, shape, composition and surface charge. Here, we report the cell penetrating peptide catalyzed formation of antimicrobial silver nanoparticles in N,N-dimethylformamide. The novel nano-composite demonstrated a distinctly enhanced biocidal effect toward bacteria (Gram-positive Bacillus subtilis, Gram-negative Escherichia coli) and pathogenic yeast (Candida albicans), as compared to triangular and extremely small silver nanoparticles. In addition, a satisfactory biocompatibility was verified by a haemolysis test. Our results provide a paradigm in developing strategies that can maximize the silver nanoparticle application potentials while minimizing the toxic effects. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr34254a

  16. Parallel Synthesis of Cell-Penetrating Peptide Conjugates of PMO Toward Exon Skipping Enhancement in Duchenne Muscular Dystrophy

    OpenAIRE

    O'Donovan, Liz; Okamoto, Itaru; Arzumanov, Andrey A; Williams, Donna L.; Deuss, Peter; Gait, Michael J.

    2015-01-01

    We describe two new methods of parallel chemical synthesis of libraries of peptide conjugates of phosphorodiamidate morpholino oligonucleotide (PMO) cargoes on a scale suitable for cell screening prior to in vivo analysis for therapeutic development. The methods represent an extension of the SELection of PEPtide CONjugates (SELPEPCON) approach previously developed for parallel peptide-peptide nucleic acid (PNA) synthesis. However, these new methods allow for the utilization of commercial PMO ...

  17. Single-cell resolution imaging of retinal ganglion cell apoptosis in vivo using a cell-penetrating caspase-activatable peptide probe.

    Directory of Open Access Journals (Sweden)

    Xudong Qiu

    Full Text Available Peptide probes for imaging retinal ganglion cell (RGC apoptosis consist of a cell-penetrating peptide targeting moiety and a fluorophore-quencher pair flanking an effector caspase consensus sequence. Using ex vivo fluorescence imaging, we previously validated the capacity of these probes to identify apoptotic RGCs in cell culture and in an in vivo rat model of N-methyl- D-aspartate (NMDA-induced neurotoxicity. Herein, using TcapQ488, a new probe designed and synthesized for compatibility with clinically-relevant imaging instruments, and real time imaging of a live rat RGC degeneration model, we fully characterized time- and dose-dependent probe activation, signal-to-noise ratios, and probe safety profiles in vivo. Adult rats received intravitreal injections of four NMDA concentrations followed by varying TcapQ488 doses. Fluorescence fundus imaging was performed sequentially in vivo using a confocal scanning laser ophthalmoscope and individual RGCs displaying activated probe were counted and analyzed. Rats also underwent electroretinography following intravitreal injection of probe. In vivo fluorescence fundus imaging revealed distinct single-cell probe activation as an indicator of RGC apoptosis induced by intravitreal NMDA injection that corresponded to the identical cells observed in retinal flat mounts of the same eye. Peak activation of probe in vivo was detected 12 hours post probe injection. Detectable fluorescent RGCs increased with increasing NMDA concentration; sensitivity of detection generally increased with increasing TcapQ488 dose until saturating at 0.387 nmol. Electroretinography following intravitreal injections of TcapQ488 showed no significant difference compared with control injections. We optimized the signal-to-noise ratio of a caspase-activatable cell penetrating peptide probe for quantitative non-invasive detection of RGC apoptosis in vivo. Full characterization of probe performance in this setting creates an important in

  18. Parallel synthesis of cell-penetrating peptide conjugates of PMO toward exon skipping enhancement in Duchenne muscular dystrophy.

    Science.gov (United States)

    O'Donovan, Liz; Okamoto, Itaru; Arzumanov, Andrey A; Williams, Donna L; Deuss, Peter; Gait, Michael J

    2015-02-01

    We describe two new methods of parallel chemical synthesis of libraries of peptide conjugates of phosphorodiamidate morpholino oligonucleotide (PMO) cargoes on a scale suitable for cell screening prior to in vivo analysis for therapeutic development. The methods represent an extension of the SELection of PEPtide CONjugates (SELPEPCON) approach previously developed for parallel peptide-peptide nucleic acid (PNA) synthesis. However, these new methods allow for the utilization of commercial PMO as cargo with both C- and N-termini unfunctionalized. The synthetic methods involve conjugation in solution phase, followed by rapid purification via biotin-streptavidin immobilization and subsequent reductive release into solution, avoiding the need for painstaking high-performance liquid chromatography purifications. The synthesis methods were applied for screening of PMO conjugates of a 16-member library of variants of a 10-residue ApoE peptide, which was suggested for blood-brain barrier crossing. In this work the conjugate library was tested in an exon skipping assay using skeletal mouse mdx cells, a model of Duchene's muscular dystrophy where higher activity peptide-PMO conjugates were identified compared with the starting peptide-PMO. The results demonstrate the power of the parallel synthesis methods for increasing the speed of optimization of peptide sequences in conjugates of PMO for therapeutic screening. PMID:25412073

  19. Synthesis of Glycopolymer Containing Cell-Penetrating Peptides as Inducers of Recombinant Protein Expression under the Control of Lactose Operator/Repressor Systems.

    Science.gov (United States)

    Katagiri, Kei; Takasu, Akinori; Higuchi, Masahiro

    2016-05-01

    We recently reported on newly synthesized S-galactosyl oligo(Arg) conjugates to overcome the serious problem of the passage through the E. coli cell membrane. Following in vivo expression of green fluorescent protein (GFP) induced by each of the S-galactosyl (Arg)n constructs (n = 5, 6, 8) at the T5 promoter in E. coli for 18 h, we visually observed that the cultures fluoresced green light when excited with UV light. The fluorescence intensities for these cultures were greater than that found for a control culture, indicating that the peptides had induced GFP expression. In order to accomplish higher expression efficiency, we investigated the cluster effect and structural fine-tuning of new poly(2-oxazoline) containing CysArgArg as the cell-penetrating peptide (CPP) and S-galactosides when acting as inducers of recombinant protein expression under the control of lac operator/repressor systems in this article. Quantitative fluorescence intensities (calculated per molecule) also supported the observations that the cell-penetrating glyco poly(2-oxazoline)s were better inducers of GFP expression than glyco poly(2-oxazoline) containing no CPP or isopropyl β-d-thiogalactoside. Because the level of GFP expression was directly related to the number of sugar residues in each glyco poly(2-oxazoline), we propose that a cluster effect of the S-galactosides attached to the cell-penetrating poly(2-oxazoline) is responsible for how well the galactosides inhibited the lac repressor to activate the protein expression under the control of the lac operator/repressor system. A similar tendency was observed when the T7 promoter was placed upstream of the gene for an artificial extracellular matrix protein and glyco poly(2-oxazoline)s-CPP conjugates were used as inducers. To assess how the glyco poly(2-oxazoline) penetrate the cell membrane, we labeled the glyco poly(2-oxazoline) using 1-amino pyrene and directly observed the penetration process. Furthermore, we could visualize protein

  20. Cell-penetration by Co(III)cyclen-based peptide-cleaving catalysts selective for pathogenic proteins of amyloidoses.

    Science.gov (United States)

    Chei, Woo Suk; Lee, Joo-Won; Kim, Jae Bum; Suh, Junghun

    2010-07-15

    Derivatives of the Co(III) complex of 1,4,7,10-tetraazacyclododecane (cyclen) with various organic pendants have been reported as target-selective peptide-cleaving catalysts, which can be exploited as catalytic drugs. In order to provide a firm basis for the catalytic drugs based on Co(III)cyclen, the ability of the Co(III)cyclen-containing peptide-cleaving catalysts to penetrate animal cells such as mouse fibroblast NIH-3T 3 or human embryonic kidney (HEK) 293 cells is demonstrated in the present study. Since the catalysts destroy pathogenic proteins for amyloidoses, results of the present study are expected to initiate extensive efforts to obtain therapeutically safe catalytic drugs for amyloidoses such as Alzheimer's disease, type 2 diabetes mellitus, Parkinson's disease, Huntington's disease, mad cow disease, and so on. PMID:20542701

  1. An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Ding Y

    2015-10-01

    Full Text Available Yuan Ding,1,* Dan Sun,1,* Gui-Ling Wang,1 Hong-Ge Yang,1 Hai-Feng Xu,1 Jian-Hua Chen,2 Ying Xie,1,3 Zhi-Qiang Wang4 1Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 2School of Medicine, Jianghan University, Wuhan, 3State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, People’s Republic of China; 4Department of Chemistry and Biochemistry, Kent State University Geauga, Burton, OH, USA *These authors contributed equally to this work Abstract: Cell-penetrating peptides (CPPs as small molecular transporters with abilities of cell penetrating, internalization, and endosomal escape have potential prospect in drug delivery systems. However, a bottleneck hampering their application is the poor specificity for cells. By utilizing the function of hydration shell of polyethylene glycol (PEG and acid sensitivity of hydrazone bond, we constructed a kind of CPP-modified pH-sensitive PEGylated liposomes (CPPL to improve the selectivity of these peptides for tumor targeting. In CPPL, CPP was directly attached to liposome surfaces via coupling with stearate (STR to avoid the hindrance of PEG as a linker on the penetrating efficiency of CPP. A PEG derivative by conjugating PEG with STR via acid-degradable hydrazone bond (PEG2000-Hz-STR, PHS was synthesized. High-performance liquid chromatography and flow cytometry demonstrated that PHS was stable at normal neutral conditions and PEG could be completely cleaved from liposome surface to expose CPP under acidic environments in tumor. An optimal CPP density on liposomes was screened to guaranty a maximum targeting efficiency on tumor cells as well as not being captured by normal cells that consequently lead to a long circulation in blood. In vitro and in vivo studies indicated, in 4 mol% CPP of lipid modified system, that CPP exerted higher efficiency on internalizing the liposomes into

  2. Cell-penetrating peptide-doxorubicin conjugate loaded NGR-modified nanobubbles for ultrasound triggered drug delivery.

    Science.gov (United States)

    Lin, Wen; Xie, Xiangyang; Deng, Jianping; Liu, Hui; Chen, Ying; Fu, Xudong; Liu, Hong; Yang, Yang

    2016-01-01

    A new drug-targeting system for CD13(+) tumors has been developed, based on ultrasound-sensitive nanobubbles (NBs) and cell-permeable peptides (CPPs). Here, the CPP-doxorubicin conjugate (CPP-DOX) was entrapped in the asparagine-glycine-arginine (NGR) peptide modified NB (CPP-DOX/NGR-NB) and the penetration of CPP-DOX was temporally masked; local ultrasound stimulation could trigger the CPP-DOX release from NB and activate its penetration. The CPP-DOX/NGR-NBs had particle sizes of about 200 nm and drug entrapment efficiency larger than 90%. In vitro release results showed that over 85% of the encapsulated DOX or CPP-DOX would release from NBs in the presence of ultrasound, while less than 1.5% of that (30 min) without ultrasound. Cell experiments showed the higher cellular CPP-DOX uptake of CPP-DOX/NGR-NB among the various NB formulations in Human fibrosarcoma cells (HT-1080, CD13(+)). The CPP-DOX/NGR-NB with ultrasound treatment exhibited an increased cytotoxic activity than the one without ultrasound. In nude mice xenograft of HT-1080 cells, CPP-DOX/NGR-NB with ultrasound showed a higher tumor inhibition effect (3.1% of T/C%, day 24), longer median survival time (50 days) and excellent body safety compared with the normal DOX injection group. These results indicate that the constructed vesicle would be a promising drug delivery system for specific cancer treatment. PMID:26176270

  3. Targeting the EGFR/PCNA signaling suppresses tumor growth of triple-negative breast cancer cells with cell-penetrating PCNA peptides.

    Directory of Open Access Journals (Sweden)

    Yung-Luen Yu

    Full Text Available Tyrosine 211 (Y211 phosphorylation of proliferation cell nuclear antigen (PCNA coincides with pronounced cancer cell proliferation and correlates with poor survival of breast cancer patients. In epidermal growth factor receptor (EGFR tyrosine kinase inhibitor (TKI-resistant cells, both nuclear EGFR (nEGFR expression and PCNA Y211 phosphorylation are increased. Moreover, the resistance to EGFR TKI is a major clinical problem in treating EGFR-overexpressing triple-negative breast cancer (TNBC. Thus, effective treatment to combat resistance is urgently needed. Here, we show that treatment of cell-penetrating PCNA peptide (CPPP inhibits growth and induces apoptosis of human TNBC cells. The Y211F CPPP specifically targets EGFR and competes directly for PCNA tyrosine Y211 phosphorylation and prevents nEGFR from binding PCNA in vivo; it also suppresses tumor growth by sensitizing EGFR TKI resistant cells, which have enhanced nEGFR function and abrogated classical EGFR membrane signaling. Furthermore, we identify an active motif of CPPP, RFLNFF (RF6 CPPP, which is necessary and sufficient to inhibit TKI-resistant TNBC cell growth of orthotopic implanted tumor in mice. Finally, the activity of its synthetic retro-inverted derivative, D-RF6 CPPP, on an equimolar basis, is more potent than RF6 CPPP. Our study reveals a drug candidate with translational potential for the future development of safe and effective therapeutic for EGFR TKI resistance in TNBC.

  4. Cell-penetrating peptide and antibiotic combination therapy: a potential alternative to combat drug resistance in methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Randhawa, Harmandeep Kaur; Gautam, Ankur; Sharma, Minakshi; Bhatia, Rakesh; Varshney, Grish C; Raghava, Gajendra Pal Singh; Nandanwar, Hemraj

    2016-05-01

    The diverse pattern of resistance by methicillin-resistant Staphylococcus aureus (MRSA) is the major obstacle in the treatment of its infections. The key reason of resistance is the poor membrane permeability of drug molecules. Over the last decade, cell-penetrating peptides (CPPs) have emerged as efficient drug delivery vehicles and have been exploited to improve the intracellular delivery of numerous therapeutic molecules in preclinical studies. Therefore, to overcome the drug resistance, we have investigated for the first time the effects of two CPPs (P3 and P8) in combination with four antibiotics (viz. oxacillin, erythromycin, norfloxacin, and vancomycin) against MRSA strains. We found that both CPPs internalized into the MRSA efficiently at very low concentration (oxacillin, norfloxacin, and vancomycin to susceptible levels (generally <1 μg/mL) for almost all five clinical isolates. Further, the bacterial cell death was confirmed by scanning electron microscopy as well as propidium iodide uptake assay. Simultaneously, time-kill kinetics revealed the increased uptake of antibiotics. In summary, CPPs assist to restore the effectiveness of antibiotics at much lower concentration, eliminate the antibiotic toxicity, and represent the CPP-antibiotic combination therapy as a potential novel weapon to combat MRSA infections. PMID:26837216

  5. Novel cell-penetrating peptide-loaded nanobubbles synergized with ultrasound irradiation enhance EGFR siRNA delivery for triple negative Breast cancer therapy.

    Science.gov (United States)

    Jing, Hui; Cheng, Wen; Li, Shouqiang; Wu, Bolin; Leng, Xiaoping; Xu, Shouping; Tian, Jiawei

    2016-10-01

    The lack of safe and effective gene delivery strategies remains a bottleneck for cancer gene therapy. Here, we describe the synthesis, characterization, and application of cell-penetrating peptide (CPP)-loaded nanobubbles (NBs), which are characterized by their safety, strong penetrating power and high gene loading capability for gene delivery. An epidermal growth factor receptor (EGFR)-targeted small interfering RNA (siEGFR) was transfected into triple negative breast cancer (TNBC) cells via prepared CPP-NBs synergized with ultrasound-targeted microbubble destruction (UTMD) technology. Fluorescence microscopy showed that siEGFR and CPP were loaded on the shells of the NBs. The transfection efficiency and cell proliferation levels were evaluated by FACS and MTT assays, respectively. In addition, in vivo experiments showed that the expression of EGFR mRNA and protein could be efficiently downregulated and that the growth of a xenograft tumor derived from TNBC cells could be inhibited. Our results indicate that CPP-NBs carrying siEGFR could potentially be used as a promising non-viral gene vector that can be synergized with UTMD technology for efficient TNBC therapy. PMID:27388967

  6. Efficient siRNA Delivery Using Novel Cell-Penetrating Peptide-siRNA Conjugate-Loaded Nanobubbles and Ultrasound.

    Science.gov (United States)

    Xie, Xiangyang; Lin, Wen; Li, Mingyuan; Yang, Yang; Deng, Jianping; Liu, Hui; Chen, Ying; Fu, Xudong; Liu, Hong; Yang, Yanfang

    2016-06-01

    Because of the absence of tolerable and effective carriers for in vivo delivery, the applications of small interfering RNA (siRNA) in the clinic for therapeutic purposes have been limited. In this study, development of a novel siRNA delivery system based on ultrasound-sensitive nanobubbles (NBs, nano-sized echogenic liposomes) and cell-permeable peptides (CPPs) is described. A CPP-siRNA conjugate was entrapped in an NB, (CPP-siRNA)-NB, and the penetration of CPP-siRNA was temporally masked; local ultrasound stimulation triggered the release of CPP-siRNA from the NBs and activated its penetration. Subsequent research revealed that the (CPP-siRNA)-NBs had a mean particle size of 201 ± 2.05 nm and a siRNA entrapment efficiency >85%. In vitro release results indicated that >90% of the encapsulated CPP-siRNA was released from NBs in the presence of ultrasound, whereas 1080). Additionally, after systemic administration in mice, (CPP-siRNA)-NBs accumulated in the tumor, augmented c-myc silencing and delayed tumor progression. In conclusion, the application of (CPP-siRNA)-NBs with ultrasound may constitute an approach to selective targeted delivery of siRNA. PMID:27012462

  7. Identification of a cell-penetrating peptide domain from human beta-defensin 3 and characterization of its anti-inflammatory activity

    Directory of Open Access Journals (Sweden)

    Lee JY

    2015-08-01

    sites, such as the cytoplasm or nucleus, as hBD3-3 has the ability to be used as a carrier, and suggest a potential approach to effectively treat inflammatory diseases. Keywords: human beta-defensin 3, cell-penetrating peptide, anti-inflammatory activity, lipopolysaccharide, NF-κB canonical pathway

  8. Selective Intracellular Delivery of Recombinant Arginine Deiminase (ADI) Using pH-Sensitive Cell Penetrating Peptides To Overcome ADI Resistance in Hypoxic Breast Cancer Cells.

    Science.gov (United States)

    Yeh, Tzyy-Harn; Chen, Yun-Ru; Chen, Szu-Ying; Shen, Wei-Chiang; Ann, David K; Zaro, Jennica L; Shen, Li-Jiuan

    2016-01-01

    Arginine depletion strategies, such as pegylated recombinant arginine deiminase (ADI-PEG20), offer a promising anticancer treatment. Many tumor cells have suppressed expression of a key enzyme, argininosuccinate synthetase 1 (ASS1), which converts citrulline to arginine. These tumor cells become arginine auxotrophic, as they can no longer synthesize endogenous arginine intracellularly from citrulline, and are therefore sensitive to arginine depletion therapy. However, since ADI-PEG20 only depletes extracellular arginine due to low internalization, ASS1-expressing cells are not susceptible to treatment since they can synthesize arginine intracellularly. Recent studies have found that several factors influence ASS1 expression. In this study, we evaluated the effect of hypoxia, frequently encountered in many solid tumors, on ASS1 expression and its relationship to ADI-resistance in human MDA-MB-231 breast cancer cells. It was found that MDA-MB-231 cells developed ADI resistance in hypoxic conditions with increased ASS1 expression. To restore ADI sensitivity as well as achieve tumor-selective delivery under hypoxia, we constructed a pH-sensitive cell penetrating peptide (CPP)-based delivery system to carry ADI inside cells to deplete both intra- and extracellular arginine. The delivery system was designed to activate the CPP-mediated internalization only at the mildly acidic pH (6.5-7) associated with the microenvironment of hypoxic tumors, thus achieving better selectivity toward tumor cells. The pH sensitivity of the CPP HBHAc was controlled by recombinant fusion to a histidine-glutamine (HE) oligopeptide, generating HBHAc-HE-ADI. The tumor distribution of HBHAc-HE-ADI was comparable to ADI-PEG20 in a mouse xenograft model of human breast cancer cells in vivo. In addition, HBHAc-HE-ADI showed increased in vitro cellular uptake in cells incubated in a mildly acidic pH (hypoxic conditions) compared to normal pH (normoxic conditions), which correlated with p

  9. Membrane damage as first and DNA as the secondary target for anti-candidal activity of antimicrobial peptide P7 derived from cell-penetrating peptide ppTG20 against Candida albicans.

    Science.gov (United States)

    Li, Lirong; Song, Fengxia; Sun, Jin; Tian, Xu; Xia, Shufang; Le, Guowei

    2016-06-01

    P7, a peptide analogue derived from cell-penetrating peptide ppTG20, possesses antibacterial and antitumor activities without significant hemolytic activity. In this study, we investigated the antifungal effect of P7 and its anti-Candida acting mode in Candida albicans. P7 displayed antifungal activity against the reference C. albicans (MIC = 4 μM), Aspergilla niger (MIC = 32 μM), Aspergillus flavus (MIC = 8 μM), and Trichopyton rubrum (MIC = 16 μM). The effect of P7 on the C. albicans cell membrane was examined by investigating the calcein leakage from fungal membrane models made of egg yolk l-phosphatidylcholine/ergosterol (10 : 1, w/w) liposomes. P7 showed potent leakage effects against fungal liposomes similar to Melittin-treated cells. C. albicans protoplast regeneration assay demonstrated that P7 interacted with the C. albicans plasma membrane. Flow cytometry of the plasma membrane potential and integrity of C. albicans showed that P7 caused 60.9 ± 1.8% depolarization of the membrane potential of intact C. albicans cells and caused 58.1 ± 3.2% C. albicans cell membrane damage. Confocal laser scanning microscopy demonstrated that part of FITC-P7 accumulated in the cytoplasm. DNA retardation analysis was also performed, which showed that P7 interacted with C. albicans genomic DNA after penetrating the cell membrane, completely inhibiting the migration of genomic DNA above the weight ratio (peptide : DNA) of 6. Our results indicated that the plasma membrane was the primary target, and DNA was the secondary intracellular target of the mode of action of P7 against C. albicans. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27197902

  10. Antimicrobial and cell-penetrating properties of penetratin analogs

    DEFF Research Database (Denmark)

    Bahnsen, Jesper Søborg; Franzyk, Henrik; Sandberg-Schaal, Anne;

    2013-01-01

    Cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs) show great potential as drug delivery vectors and new antibiotic drug entities, respectively. The current study deals with the properties of a variety of peptide analogs derived from the well-known CPP penetratin as well as...

  11. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid-polyethylene glycol nanoparticles improves ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Vasconcelos A

    2015-01-01

    Full Text Available Aimee Vasconcelos,1 Estefania Vega,2 Yolanda Pérez,3 María J Gómara,1 María Luisa García,2 Isabel Haro1 1Unit of Synthesis and Biomedical Applications of Peptides, Department of Biomedical Chemistry, Institute for Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC, 2Department of Physical Chemistry, Institute of Nanoscience and Nanotechnology, Faculty of Pharmacy, University of Barcelona, 3Nuclear Magnetic Resonance Unit, IQAC-CSIC, Barcelona, Spain Abstract: In this work, a peptide for ocular delivery (POD and human immunodeficiency virus transactivator were conjugated with biodegradable poly(lactic-co-glycolic acid (PGLA–polyethylene glycol (PEG-nanoparticles (NPs in an attempt to improve ocular drug bioavailability. The NPs were prepared by the solvent displacement method following two different pathways. One involved preparation of PLGA NPs followed by PEG and peptide conjugation (PLGA-NPs-PEG-peptide; the other involved self-assembly of PLGA-PEG and the PLGA-PEG-peptide copolymer followed by NP formulation. The conjugation of the PEG and the peptide was confirmed by a colorimetric test and proton nuclear magnetic resonance spectroscopy. Flurbiprofen was used as an example of an anti-inflammatory drug. The physicochemical properties of the resulting NPs (morphology, in vitro release, cell viability, and ocular tolerance were studied. In vivo anti-inflammatory efficacy was assessed in rabbit eyes after topical instillation of sodium arachidonate. Of the formulations developed, the PLGA-PEG-POD NPs were the smaller particles and exhibited greater entrapment efficiency and more sustained release. The positive charge on the surface of these NPs, due to the conjugation with the positively charged peptide, facilitated penetration into the corneal epithelium, resulting in more effective prevention of ocular inflammation. The in vitro toxicity of the NPs developed was very low; no ocular irritation

  12. Intranasal Delivery of Cell-Penetrating anti-NF-κB Peptides (Tat-NBD) Alleviates Infection-Sensitized Hypoxic-Ischemic Brain Injury

    OpenAIRE

    Yang, Dianer; Sun, Yu-Yo; Lin, Xiaoyi; Baumann, Jessica M.; Dunn, R. Scott; Lindquist, Diana M.; Kuan, Chia-Yi

    2013-01-01

    Perinatal infection aggravates neonatal hypoxic-ischemic (HI) brain injury and may interfere with therapeutic hypothermia. While the NF-κB signaling pathway has been implicated in microglia activation in infection-sensitized HI, the current therapeutic strategies rely on systemic intervention, which could impair neonatal immunity and increase the risk of severe infection. To devise a brain-targeted anti-NF-κB strategy, we examined the effects of intranasal delivery of tat-NBD peptides in two ...

  13. Comparison of mechanisms and cellular uptake of cell-penetrating peptide on different cell lines%不同细胞系对细胞穿透肽的摄取和机制比较

    Institute of Scientific and Technical Information of China (English)

    马冬旭; 齐宪荣

    2010-01-01

    细胞穿透肽(cell-penetrating peptide,CPP)作为一种潜在的药物输送高效转运载体一直得到研究者的广泛关注.本文中采用4种肿瘤细胞系(MCF-7、MDA-MB-231、C6和B16F10)分别摄取异硫氰酸荧光素(fluorescein isothiocyanate,FITC)标记的CPP,观察到CPP入胞,并具有时间和浓度的依赖性,同时发现了C6细胞对CPP的胞吐作用,其胞吐动力学符合零级方程;在低温(4℃)和内吞抑制剂存在条件下探讨了CPP入胞的机制.低温条件对CPP的入胞未产生抑制作用;肝素钠作为细胞表面硫酸糖蛋白受体抑制剂对CPP的入胞有较强抑制作用,肝素组对CPP的摄取只达到对照组的3%~10%;而氯丙嗪、氯喹和N-乙酰基-N-异丙基阿米洛利[5-(N-ethyL-N-isopropyl)-amiloride,EIPA]对CPP的入胞影响不大.本研究表明,CPP穿透细胞没有选择性,即缺乏细胞特异性,但CPP的摄取量与细胞种类有关.硫酸蛋白聚糖的吸附介导在CPP穿透细胞中发挥了重要作用.

  14. 经穿膜肽与PEG修饰的核糖体失活蛋白Gelonin抗肿瘤作用的研究%Study on cell-penetrating peptide modified and PEGylated ribosome inactive protein Gelonin

    Institute of Scientific and Technical Information of China (English)

    张娅洁; 王慧媛; 陈应之; 汤懿斯; 杨志民; 黄永焯

    2015-01-01

    Objective:To improve anti-tumor effect of Gelonin, the plant-sourced RIP is modified by chemically conjugating a cell-penetrating peptide and polyethylene glycol (PEG). Methods:Purified protein was obtained after being performed on FPLC (fast protein liquid chromatography) Superdex75 column. Cytotoxicity was detected by MTT assay. The cellular uptake by HT1080 cells was studied by using inverted fluorescence microscopy and flow cytometry. In-vivo imaging technology was utilized for investigation of the in-vivo drug distribution in the HT1080 tumor-bearing mice. Results:The modified product was purified by using gel filtration chromatergraphy. Moreover, compared with native Gelonin, the cytotoxicity of modified protein was increased, especially in HT1080, presumably due to the enhanced cellular uptake. The in-vivo imaging results suggested that drug accumulation in tumor was improved by PEGylation. Conclusion:Modified Gelonin can improve cell penetration and cytotoxicity in tumor cells. PEGylation can increase tumor accumulation of the protein drug, and thereby enhance its anti-tumor effect.%目的:通过对核糖体失活蛋白Gelonin进行化学修饰,利用穿膜肽和聚乙二醇(PEG)偶联来提高其到达肿瘤部位和进入肿瘤细胞的能力,使Gelonin更高效地发挥抑瘤作用. 方法:利用FPLC Superdex75分子筛预装柱纯化系统对所修饰的Gelonin进行纯化后,在不同细胞系测试细胞毒性;通过倒置荧光显微镜、流式细胞分析技术等对药物进入纤维肉瘤细胞HT1080的能力进行评价;采用小动物活体成像技术考察药物体系在荷瘤动物体内的分布情况. 结果:采用分子筛色谱纯化可以得到纯度相对较高的修饰产物,其毒性较无修饰的Gelonin强,且在HT1080细胞系作用最明显;细胞摄取结果显示,与未修饰的Gelonin相比,该药物体系具有更高的细胞摄取效率;动物成像结果表明,PEG5000修饰可以改变Gelonin在动物体内的分布情况,

  15. Peptides Interfering 3A Protein Dimerization Decrease FMDV Multiplication.

    Directory of Open Access Journals (Sweden)

    Mónica González-Magaldi

    Full Text Available Nonstructural protein 3A is involved in relevant functions in foot-and-mouth disease virus (FMDV replication. FMDV 3A can form homodimers and preservation of the two hydrophobic α-helices (α1 and α2 that stabilize the dimer interface is essential for virus replication. In this work, small peptides mimicking residues involved in the dimer interface were used to interfere with dimerization and thus gain insight on its biological function. The dimer interface peptides α1, α2 and that spanning the two hydrophobic α-helices, α12, impaired in vitro dimer formation of a peptide containing the two α-helices, this effect being higher with peptide α12. To assess the effect of dimer inhibition in cultured cells, the interfering peptides were N-terminally fused to a heptaarginine (R7 sequence to favor their intracellular translocation. Thus, when fused to R7, interference peptides (100 μM were able to inhibit dimerization of transiently expressed 3A, the higher inhibitions being found with peptides α1 and α12. The 3A dimerization impairment exerted by the peptides correlated with significant, specific reductions in the viral yield recovered from peptide-treated FMDV infected cells. In this case, α2 was the only peptide producing significant reductions at concentrations lower than 100 μM. Thus, dimer interface peptides constitute a tool to understand the structure-function relationship of this viral protein and point to 3A dimerization as a potential antiviral target.

  16. Peptides interfering 3A protein dimerization decrease FMDV multiplication

    OpenAIRE

    Mónica González-Magaldi; Ángela Vázquez-Calvo; de la Torre, Beatriz G; Javier Valle; David Andreu; Francisco Sobrino

    2015-01-01

    Nonstructural protein 3A is involved in relevant functions in foot-and-mouth disease virus (FMDV) replication. FMDV 3A can form homodimers and preservation of the two hydrophobic ??-helices (??1 and ??2) that stabilize the dimer interface is essential for virus replication. In this work, small peptides mimicking residues involved in the dimer interface were used to interfere with dimerization and thus gain insight on its biological function. The dimer interface peptides ??1, ??2 and that span...

  17. Liquid Crystalline Nanodispersions Functionalized with Cell-Penetrating Peptides for Topical Delivery of Short-Interfering RNAs: A Proposal for Silencing a Pro-Inflammatory Cytokine in Cutaneous Diseases.

    Science.gov (United States)

    Petrilli, R; Eloy, J O; Praça, F S G; Del Ciampo, J O; Fantini, M A C; Fonseca, M J V; Bentley, M V L B

    2016-05-01

    Short-interfering RNAs (siRNAs) are a potential strategy for the treatment of cutaneous diseases. In this context, liquid crystalline nanoparticles functionalized with specific proteins and peptide-transduction domains (PTDs), which act as penetration enhancers, are a promising carrier for siRNA delivery through the skin. Herein, hexagonal phase liquid crystal nanoparticles based on monoolein (MO) and/or oleic acid (OA) containing (or lacking) the cationic polymer polyethylenimine (PEI) and the cationic lipid oleylamine (OAM) were functionalized with the membrane transduction peptides transcriptional activator (TAT) or penetratin (PNT). These nanoparticles were complexed with siRNA and characterized by particle size, polydispersity, zeta potential, complexation efficiency and siRNA release. The formulations containing cationic agents presented positive zeta potentials, sizes on the nanometer scale, and complexed siRNAs at concentrations of 10 μM; these agents were successfully released in a heparin competition assay. Cell culture studies demonstrated that nanoparticles composed of MO:OA:PEI functionalized with TAT were the most efficient at transfecting L929 cells, and the uptake efficiency was enhanced by TAT peptide functionalization. Thereafter, the selected formulations were evaluated for in vivo skin irritation, penetration and in vivo efficacy using a chemically induced inflammatory animal model. These nanoparticles did not irritate the skin and provided higher siRNA penetration and delivery into the skin than control formulations. Additionally, efficacy studies in the animal model showed that the association of TAT with the nanodispersion provided higher suppression of tumor necrosis factor (TNF)-α. Thus, the development of liquid crystalline nanodispersions containing TAT may lead to improved topical siRNA delivery for the treatment of inflammatory skin diseases. PMID:27305826

  18. Decreased expression of natriuretic peptides associated with lipid accumulation in cardiac ventricle of obese mice

    DEFF Research Database (Denmark)

    Bartels, E.D.; Nielsen, J.M.; Bisgaard, L.S.;

    2010-01-01

    cultured cardiomyocytes and three different mouse models to examine the impact of obesity and cardiac lipid accumulation on cardiac natriuretic peptide expression. The cardiac ventricular expression of atrial natriuretic peptide (ANP) and BNP mRNA and ANP peptide was decreased 36-72% in obese ob/ob, db......% (P <0.005) depression of ANP mRNA expression in cultured HL-1 atrial myocytes. The data suggest that obesity and altered cardiac lipid metabolism are associated with reduced production of ANP and BNP in the cardiac ventricles in the setting of normal as well as impaired cardiac function.......Plasma B-type natriuretic peptide (BNP) and proBNP are established markers of cardiac dysfunction. Even though obesity increases the risk of cardiovascular disease, obese individuals have reduced plasma concentrations of natriuretic peptides. The underlying mechanism is not established. We used...

  19. Decreased outer membrane permeability protects mycobacteria from killing by ubiquitin-derived peptides.

    Science.gov (United States)

    Purdy, Georgiana E; Niederweis, Michael; Russell, David G

    2009-09-01

    Ubiquitin-derived peptides are bactericidal in vitro and contribute to the mycobactericidal activity of the lysosome. To further define interactions of ubiquitin-derived peptides with mycobacteria, we screened for mutants with increased resistance to the bactericidal activity of the synthetic ubiquitin-derived peptide Ub2. The four Ub2-resistant Mycobacterium smegmatis mutants were also resistant to the bactericidal action of other antimicrobial peptides and macrophages. Two mutants were in the mspA gene encoding the main M. smegmatis porin. Using a translocation-deficient MspA point mutant, we showed that susceptibility of M. smegmatis to Ub2 was independent of MspA channel activity. Instead, the M. smegmatis Ub2-resistant mutants shared a common phenotype of decreased cell wall permeability compared with wild-type bacteria. Expression of mspA rendered Mycobacterium tuberculosis CDC1551 more susceptible both to ubiquitin-derived peptides in vitro and to lysosomal killing in macrophages. Finally, biochemical assays designed to assess membrane integrity indicated that Ub2 treatment impairs membrane function of M. smegmatis and M. tuberculosis cells. The M. smegmatis Ub2-resistant mutants were more resistant than wild-type M. smegmatis to this damage. We conclude that Ub2 targets mycobacterial membranes and that reduced membrane permeability provides mycobacteria intrinsic resistance against antimicrobial compounds including bactericidal ubiquitin-derived peptides. PMID:19682257

  20. ApoE mimetic peptide decreases Aβ production in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Pak Daniel TS

    2010-04-01

    Full Text Available Abstract Background Apolipoprotein E (apoE is postulated to affect brain Aβ levels through multiple mechanisms--by altering amyloid precursor protein (APP processing, Aβ degradation, and Aβ clearance. We previously showed that an apoE-derived peptide containing a double repeat of the receptor-binding region was similarly effective in increasing APP processing in vivo. Here, we further examined whether peptides containing tandem repeats of the apoE receptor-binding region (amino acids 141-149 affected APP trafficking, APP processing, and Aβ production. Results We found that peptides containing a double or triple tandem repeat of the apoE receptor-binding region, LRKLRKRLL, increased cell surface APP and decreased Aβ levels in PS1-overexpressing PS70 cells and in primary neurons. This effect was potentiated by a sequential increase in the number of apoE receptor-binding domain repeats (trimer > dimer > monomer. We previously showed that the apoE dimer increased APP CTF in vivo; to determine whether the dimer also affected secreted APP or Aβ levels, we performed a single hippocampal injection of the apoE dimer in wild-type mice and analyzed its effect on APP processing. We found increased sAPPα and decreased Aβ levels at 24 hrs after treatment, suggesting that the apoE dimer may increase α-secretase cleavage. Conclusions These data suggest that small peptides consisting of tandem repeats of the apoE receptor-binding region are sufficient to alter APP trafficking and processing. The potency of these peptides increased with increasing repeats of the receptor binding domain of apoE. In addition, in vivo administration of the apoE peptide (dimer increased sAPPα and decreased Aβ levels in wild-type mice. Overall, these findings contribute to our understanding of the effects of apoE on APP processing and Aβ production both in vitro and in vivo.

  1. Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Nadai, Ryo; Kimura, Hitoshi; Nishitsuji, Kazuchika; Uchimura, Kenji; Sakai-Kato, Kumiko; Kawakami, Kohsaku; Shigenaga, Akira; Kawakami, Toru; Otaka, Akira; Hojo, Hironobu; Sakashita, Naomi; Saito, Hiroyuki

    2016-06-01

    The first step of cell membrane penetration of arginine peptides is thought to occur via electrostatic interactions between positive charges of arginine residues and negative charges of sulfated glycosaminoglycans (GAGs) on the cell surface. However, the molecular interaction of arginine peptides with GAG still remains unclear. Here, we compared the interactions of several arginine peptides of Tat, R8, and Rev and their analogues with heparin in relation to the cell membrane penetration efficiency. The high-affinity binding of arginine peptides to heparin was shown to be driven by large favorable enthalpy contributions, possibly reflecting multidentate hydrogen bondings of arginine residues with sulfate groups of heparin. Interestingly, the lysine peptides in which all arginine residues are substituted with lysine residues exhibited negligible binding enthalpy despite of their considerable binding to heparin. In CHO-K1 cells, arginine peptides exhibited a great cell-penetrating ability whereas their corresponding lysine peptides did not penetrate into cells. The degree of cell penetration of arginine peptides markedly decreased by the chlorate treatment of cells which prevents the sulfation of GAG chains. Significantly, the cell penetration efficiency of arginine peptides was found to be correlated with the favorable enthalpy of binding to heparin. These results suggest that the enthalpy-driven strong interaction with sulfated GAGs such as heparan sulfate plays a critical role in the efficient cell membrane penetration of arginine peptides. PMID:27003128

  2. Atrial natriuretic peptide decreases blood volume in intact and anephric rats

    International Nuclear Information System (INIS)

    Atrial natriuretic peptide (ANP) reportedly lowers atrial pressure and increases hematocrit, suggesting venodilation and/or decreased blood volume (BV). To examine these possibilities, rat ANP (99-126) was administered to Inactinanesthetized rats (313 +/- 9 g, +/- SE) at 0.5 μg/kg/min for 30 minutes. Urine flow increased by 0.05 ml/min (p 51Cr-RBC) decreased by 3.4 ml/kg (p < 0.001). Mean circulatory filling pressure, measured by inflating an intracardiac balloon to briefly stop the circulation, did not change. Distribution of BV between the thoracic and spanchnic organs (whole-animal freezing in liquid nitrogen) was not measurably altered. The results suggest that the decrease in CVP was related more to decreased BV than to venodilation. To investigate possible mechanisms for the decreased BV, the same dose of ANP was administered to anephric rats. MAP decreased by 8 mmHg (p < 0.001); hematocrit increased by 2.4 units (p < 0.001) and BV decreased by 1.7 ml/kg (p < 0.05). The results indicate that short-term administration of ANP decreases blood volume by causing intravascular fluid to shift into the interstitium as well as by inducing diuresis

  3. SAP(E) - A cell-penetrating polyproline helix at lipid interfaces.

    Science.gov (United States)

    Franz, Johannes; Lelle, Marco; Peneva, Kalina; Bonn, Mischa; Weidner, Tobias

    2016-09-01

    Cell-penetrating peptides (CPPs) are short membrane-permeating amino acid sequences that can be used to deliver cargoes, e.g. drugs, into cells. The mechanism for CPP internalization is still subject of ongoing research. An interesting family of CPPs is the sweet arrow peptides - SAP(E) - which are known to adopt a polyproline II helical secondary structure. SAP(E) peptides stand out among CPPs because they carry a net negative charge while most CPPs are positively charged, the latter being conducive to electrostatic interaction with generally negatively charged membranes. For SAP(E)s, an internalization mechanism has been proposed, based on polypeptide aggregation on the cell surface, followed by an endocytic uptake. However, this process has not yet been observed directly - since peptide-membrane interactions are inherently difficult to monitor on a molecular scale. Here, we use sum frequency generation (SFG) vibrational spectroscopy to investigate molecular interactions of SAP(E) with differently charged model membranes, in both mono- and bi-layer configurations. The data suggest that the initial binding mechanism is accompanied by structural changes of the peptide. Also, the peptide-model membrane interaction depends on the charge of the lipid headgroup with phosphocholine being a favorable binding site. Moreover, while direct penetration has also been observed for some CPPs, the spectroscopy reveals that for SAP(E), its interaction with model membranes remains limited to the headgroup region, and insertion into the hydrophobic core of the lipid layer does not occur. PMID:27237727

  4. Decreased outer membrane permeability protects mycobacteria from killing by ubiquitin-derived peptides

    OpenAIRE

    Purdy, Georgiana E.; Niederweis, Michael; Russell, David G.

    2009-01-01

    Ubiquitin-derived peptides are bactericidal in vitro and contribute to the mycobactericidal activity of the lysosome. To further define interactions of ubiquitin-derived peptides with mycobacteria, we screened for mutants with increased resistance to the bactericidal activity of the synthetic ubiquitin-derived peptide Ub2. The four Ub2-resistant M. smegmatis mutants were also resistant to the bactericidal action of other antimicrobial peptides and macrophages. Two mutants were in the mspA gen...

  5. Cell-penetrating superoxide dismutase attenuates oxidative stress-induced senescence by regulating the p53-p21Cip1 pathway and restores osteoblastic differentiation in human dental pulp stem cells

    Directory of Open Access Journals (Sweden)

    Park YJ

    2012-09-01

    Full Text Available Yoon Jung Choi,1,* Jue Yeon Lee,2,* Chong Pyoung Chung,2 Yoon Jeong Park,1,21Craniomaxillofacial Reconstructive Sciences, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea; 2Research Institute, Nano Intelligent Biomedical Engineering, Seoul, Republic of Korea*These authors contributed equally to this workBackground: Human dental pulp stem cells (DPSCs have potential applications in tissue regeneration because of their convenient cell harvesting procedures and multipotent capacity. However, the tissue regenerative potential of DPSCs is known to be negatively regulated by aging in long-term culture and under oxidative stress. With an aim of reducing cellular senescence and oxidative stress in DPSCs, an intracellular delivery system for superoxide dismutase 1 (SOD1 was developed. We conjugated SOD1 with a cell-penetrating peptide known as low-molecular weight protamine (LMWP, and investigated the effect of LMWP-SOD1 conjugates on hydrogen peroxide-induced cellular senescence and osteoblastic differentiation.Results: LMWP-SOD1 significantly attenuated enlarged and flattened cell morphology and increased senescence-associated β-galactosidase activity. Under the same conditions, LMWP-SOD1 abolished activation of the cell cycle regulator proteins, p53 and p21Cip1, induced by hydrogen peroxide. In addition, LMWP-SOD1 reversed the inhibition of osteoblastic differentiation and downregulation of osteogenic gene markers induced by hydrogen peroxide. However, LMWP-SOD1 could not reverse the decrease in odontogenesis caused by hydrogen peroxide.Conclusion: Overall, cell-penetrating LMWP-SOD1 conjugates are effective for attenuation of cellular senescence and reversal of osteoblastic differentiation of DPSCs caused by oxidative stress inhibition. This result suggests potential application in the field of antiaging and tissue engineering to overcome the limitations of senescent stem cells.Keywords: superoxide

  6. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease

    DEFF Research Database (Denmark)

    Weiner, H L; Lemere, C A; Maron, R;

    2000-01-01

    -Abeta antibodies of the IgG1 and IgG2b classes, and mononuclear cells in the brain expressing the anti-inflammatory cytokines interleukin-4, interleukin-10, and tumor growth factor-beta. Our results demonstrate that chronic nasal administration of Abeta peptide can induce an immune response to Abeta that decreases...

  7. Lipidized analogs of prolactin-releasing peptide decrease food intake after peripheral administration

    Czech Academy of Sciences Publication Activity Database

    Popelová, Andrea; Maletínská, Lenka; Pražienková, Veronika; Zemenová, Jana; Holubová, Martina; Mikulášková, Barbora; Železná, Blanka; Kuneš, Jaroslav

    Praha: Ústav organické chemie a biochemie AV ČR, 2016 - (Kuda, O.). s. 19 ISBN 978-80-86241-54-8. [Česká lipidomická konference /5./. 21.04.2016-22.04.2016, Praha] Institutional support: RVO:61388963 ; RVO:67985823 Keywords : prolactin-releasing peptide * lipidization * food intake Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  8. Expression,purification and cell penetrativity of fusion protein PDT/GR-ΔLBD

    Directory of Open Access Journals (Sweden)

    Fang ZHANG

    2011-01-01

    Full Text Available Objective To construct the fusion gene expression vector of penetrating peptide(PDT and the glucocorticoid receptor lack of ligand binding domain(GR-ΔLBD,and evaluate the prokaryotic expression,purification and cell penetrativity of fusion protein PDT/GR-ΔLBD.Methods The target gene fragment GR-ΔLBD was obtained from plasmid pEGFP-GR-ΔLBD by double digestion,and sub-cloned into the prokaryotic expression vector pGEX-PDT to construct the fusion gene expression vector pGEX-PDT/GR-ΔLBD.PDT/GR-ΔLBD fusion protein was obtained after the expression vector was transformed into E.coli,followed by sequential induction with IPTG,treatment with glutathione-agarose resin and elution with glutathione.SDS-PAGE was performed to determine the expression of PDT/GR-ΔLBD fusion protein,and it which was diluted into a final concentration of 0,500 and 1000nmol/L,labeled with fluorescein FITC and co-cultivated with TC-1 cells for 2 hours,and the penetrativity was observed by fluorescence microscopy.Results The successfully constructed prokaryotic expression vector pPDT/GR-ΔLBD had the capacity of expressing protein,and it was 78.6kD in molecular weight,which was consistent with the theoretical value(80kD of the fusion protein PDT/GR-ΔLBD.PDT-GR-ΔLBD,penetrating the nuclear membrane in a concentration-dependent manner,was concentrated within nuclei.Conclusion PDT/GR-ΔLBD fusion protein,with good solubility and cell penetrativity,paves the way for further research on its anti-inflammatory effects.

  9. Gastrin releasing peptide receptor expression is decreased in patients with Crohn’s disease but not in ulcerative colitis

    OpenAIRE

    ter Beek, W P; Muller, E S M; van Hogezand, R A; Biemond, I; Lamers, C B H W

    2004-01-01

    Background: Gastrin releasing peptide (GRP) and neuromedin B are bombesin (BN)-like peptides involved in regulating motility and inflammation in the gastrointestinal tract, which may be useful in treating inflammatory bowel disease (IBD). Three bombesin-like peptide receptors have been reported, but no studies have investigated their localisation in normal and inflamed human intestine.

  10. Cell penetrating recombinant Foxp3 protein enhances Treg function and ameliorates arthritis

    OpenAIRE

    Yomogida, Kentaro; Wu, Shili; Baravati, Bobby; Avendano, Camilo; Caldwell, Tom; Maniaci, Brian; Zhu, Yong; CHU, CONG-QIU

    2013-01-01

    Foxp3 is the master transcription factor for T regulatory (Treg) cell differentiation and function. This study aimed to test the therapeutic potential of cell penetrating recombinant Foxp3 protein in arthritis. Recombinant Foxp3 protein was fused to a cell penetrating polyarginine (Foxp3-11R) tag to facilitate intracellular transduction. In vitro Foxp3-11R treated CD4+ T cells showed a 50% increase in suppressive function compared with control protein treated cells. Severity of arthritis in F...

  11. CRMP-2 peptide mediated decrease of high and low voltage-activated calcium channels, attenuation of nociceptor excitability, and anti-nociception in a model of AIDS therapy-induced painful peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Piekarz Andrew D

    2012-07-01

    Full Text Available Abstract Background The ubiquity of protein-protein interactions in biological signaling offers ample opportunities for therapeutic intervention. We previously identified a peptide, designated CBD3, that suppressed inflammatory and neuropathic behavioral hypersensitivity in rodents by inhibiting the ability of collapsin response mediator protein 2 (CRMP-2 to bind to N-type voltage-activated calcium channels (CaV2.2 [Brittain et al. Nature Medicine 17:822–829 (2011]. Results and discussion Here, we utilized SPOTScan analysis to identify an optimized variation of the CBD3 peptide (CBD3A6K that bound with greater affinity to Ca2+ channels. Molecular dynamics simulations demonstrated that the CBD3A6K peptide was more stable and less prone to the unfolding observed with the parent CBD3 peptide. This mutant peptide, conjugated to the cell penetrating motif of the HIV transduction domain protein TAT, exhibited greater anti-nociception in a rodent model of AIDS therapy-induced peripheral neuropathy when compared to the parent TAT-CBD3 peptide. Remarkably, intraperitoneal administration of TAT-CBD3A6K produced none of the minor side effects (i.e. tail kinking, body contortion observed with the parent peptide. Interestingly, excitability of dissociated small diameter sensory neurons isolated from rats was also reduced by TAT-CBD3A6K peptide suggesting that suppression of excitability may be due to inhibition of T- and R-type Ca2+ channels. TAT-CBD3A6K had no effect on depolarization-evoked calcitonin gene related peptide (CGRP release compared to vehicle control. Conclusions Collectively, these results establish TAT-CBD3A6K as a peptide therapeutic with greater efficacy in an AIDS therapy-induced model of peripheral neuropathy than its parent peptide, TAT-CBD3. Structural modifications of the CBD3 scaffold peptide may result in peptides with selectivity against a particular subset of voltage-gated calcium channels resulting in a multipharmacology of

  12. Reversible activation of pH-sensitive cell penetrating peptides attached to gold surfaces†

    OpenAIRE

    Baio, Joe E.; Schach, Denise; Fuchs, Adrian V.; Schmüser, Lars; Billecke, Nils; Bubeck, Christoph; Landfester, Katharina; Bonn, Mischa; Bruns, Michael; Weiss, Clemens K.; Weidner, Tobias

    2015-01-01

    pH-sensitive viral fusion protein mimics are widely touted as a promising route towards site-specific delivery of therapeutic compounds across lipid membranes. Here, we demonstrate that a fusion protein mimic, designed to achieve a reversible, pH-driven helix-coil transition mechanism, retains its functionality when covalently bound to a surface.

  13. Formulating tumor-homing peptides as regular nanoparticles enhances receptor-mediated cell penetrability

    OpenAIRE

    Xu, Zhikun; Unzueta Elorza, Ugutz; Roldán, Mónica; Mangues, Ramón; Sánchez Chardi, Alejandro; Ferrer Miralles, Neus; Villaverde Corrales, Antonio; Vázquez Gómez, Esther

    2015-01-01

    The authors acknowledge the financial support granted to E.V. (PI12/00327) and R.M. (PI12/01861) from FIS, to E.V. (TV32013-133930) and to R.M. and A.V. (TV32013-132031) from La Marató de TV3 (416/C/2013), to A.V. from MINECO (Grant BIO2013-41019-P) and from the Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (NANOPROTHER and NANOCOMETS projects). We are grateful to the Protein Production Platform (CIBER-BBN-UAB) for protein production and purif...

  14. Cell-Penetrating, Guanidinium-Rich Oligophosphoesters: Effective and Versatile Molecular Transporters for Drug and Probe Delivery.

    Science.gov (United States)

    McKinlay, Colin J; Waymouth, Robert M; Wender, Paul A

    2016-03-16

    The design, synthesis, and biological evaluation of a new family of highly effective cell-penetrating molecular transporters, guanidinium-rich oligophosphoesters, are described. These unique transporters are synthesized in two steps, irrespective of oligomer length, by the organocatalytic ring-opening polymerization (OROP) of 5-membered cyclic phospholane monomers followed by oligomer deprotection. Varying the initiating alcohol results in a wide variety of cargo attachment strategies for releasable or nonreleasable transporter applications. Initiation of oligomerization with a fluorescent probe produces, upon deprotection, a transporter-probe conjugate that is shown to readily enter multiple cell lines in a dose-dependent manner. These new transporters are superior in cell uptake to previously studied guanidinium-rich oligocarbonates and oligoarginines, showing over 2-fold higher uptake than the former and 6-fold higher uptake than the latter. Initiation with a protected thiol gives, upon deprotection, thiol-terminated transporters which can be thiol-click conjugated to a variety of probes, drugs and other cargos as exemplified by the conjugation and delivery of the model probe fluorescein-maleimide and the medicinal agent paclitaxel (PTX) into cells. Of particular significance given that drug resistance is a major cause of chemotherapy failure, the PTX-transporter conjugate, designed to evade Pgp export and release free PTX after cell entry, shows efficacy against PTX-resistant ovarian cancer cells. Collectively this study introduces a new and highly effective class of guanidinium-rich cell-penetrating transporters and methodology for their single-step conjugation to drugs and probes, and demonstrates that the resulting drug/probe-conjugates readily enter cells, outperforming previously reported guanidinium-rich oligocarbonates and peptide transporters. PMID:26900771

  15. Cell-Penetrating Poly(disulfide) Assisted Intracellular Delivery of Mesoporous Silica Nanoparticles for Inhibition of miR-21 Function and Detection of Subsequent Therapeutic Effects.

    Science.gov (United States)

    Yu, Changmin; Qian, Linghui; Ge, Jingyan; Fu, Jiaqi; Yuan, Peiyan; Yao, Samantha C L; Yao, Shao Q

    2016-08-01

    The design of drug delivery systems capable of minimal endolysosomal trapping, controlled drug release, and real-time monitoring of drug effect is highly desirable for personalized medicine. Herein, by using mesoporous silica nanoparticles (MSNs) coated with cell-penetrating poly(disulfide)s and a fluorogenic apoptosis-detecting peptide (DEVD-AAN), we have developed a platform that could be uptaken rapidly by mammalian cells via endocytosis-independent pathways. Subsequent loading of these MSNs with small molecule inhibitors and antisense oligonucleotides resulted in intracellular release of these drugs, leading to combination inhibition of endogenous miR-21 activities which was immediately detectable by the MSN surface-coated peptide using two-photon fluorescence microscopy. PMID:27325284

  16. Selective elimination/RNAi silencing of FMRF-related peptides and their receptors decreases the locomotor activity in Drosophila melanogaster

    Czech Academy of Sciences Publication Activity Database

    Kiss, B.; Szlanka, T.; Zvara, Á.; Žurovec, Michal; Šerý, Michal; Kakaš, Štefan; Ramasz, B.; Hegedűs, Z.; Lukacsovich, T.; Puskás, L.; Fónagy, A.; Kiss, I.

    2013-01-01

    Roč. 191, SEP 15 (2013), s. 137-145. ISSN 0016-6480 Institutional support: RVO:60077344 Keywords : Drosophila melanogaster * FMRF-related peptides * G protein-coupled receptors Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.674, year: 2013 http://www.sciencedirect.com/science/article/pii/S0016648013002621

  17. Peptides that influence membrane topology

    Science.gov (United States)

    Wong, Gerard C. L.

    2014-03-01

    We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)

  18. Glucagon-like peptide-1 decreases intracerebral glucose content by activating hexokinase and changing glucose clearance during hyperglycemia

    DEFF Research Database (Denmark)

    Jensen, Michael Gejl; Egefjord, Lærke; Lerche, Susanne;

    2012-01-01

    and stroke: Although the mechanism is unclear, glucose homeostasis appears to be important. We conducted a randomized, double-blinded, placebo-controlled crossover study in nine healthy males. Positron emission tomography was used to determine the effect of GLP-1 on cerebral glucose transport and......Type 2 diabetes and hyperglycemia with the resulting increase of glucose concentrations in the brain impair the outcome of ischemic stroke, and may increase the risk of developing Alzheimer's disease (AD). Reports indicate that glucagon-like peptide-1 (GLP-1) may be neuroprotective in models of AD...... metabolism during a hyperglycemic clamp with 18fluoro-deoxy-glucose as tracer. Glucagon-like peptide-1 lowered brain glucose (P=0.023) in all regions. The cerebral metabolic rate for glucose was increased everywhere (P=0.039) but not to the same extent in all regions (P=0.022). The unidirectional glucose...

  19. Context Dependent Effects of Chimeric Peptide Morpholino Conjugates Contribute to Dystrophin Exon-skipping Efficiency

    OpenAIRE

    Yin, HaiFang; Boisguerin, Prisca; Moulton, Hong M.; Betts, Corinne; Seow, Yiqi; Boutilier, Jordan; Wang, Qingsong; Walsh, Anthony; Lebleu, Bernard; Wood, Matthew JA

    2013-01-01

    We have recently reported that cell-penetrating peptides (CPPs) and novel chimeric peptides containing CPP (referred as B peptide) and muscle-targeting peptide (referred as MSP) motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs) in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chimeric peptide configuration on the activity and tissue uptake of peptide conjugated PMOs in vivo was ...

  20. Binding and Clustering of Glycosaminoglycans: A Common Property of Mono- and Multivalent Cell-Penetrating Compounds

    OpenAIRE

    Ziegler, André; Seelig, Joachim

    2007-01-01

    Recent observations in cell culture provide evidence that negatively charged glycosaminoglycans (GAGs) at the surface of biological cells bind cationic cell-penetrating compounds (CPCs) and cluster during CPC binding, thereby contributing to their endocytotic uptake. The GAG binding and clustering occur in the low-micromolar concentration range and suggest a tight interaction between GAGs and CPCs, although the relation between binding affinity and specificity of this interaction remains to b...

  1. Cyclisation Increases the Stability of the Sea Anemone Peptide APETx2 but Decreases Its Activity at Acid-Sensing Ion Channel 3

    Directory of Open Access Journals (Sweden)

    Lachlan D. Rash

    2012-07-01

    Full Text Available APETx2 is a peptide isolated from the sea anemone Anthopleura elegantissima. It is the most potent and selective inhibitor of acid-sensing ion channel 3 (ASIC3 and it is currently in preclinical studies as a novel analgesic for the treatment of chronic inflammatory pain. As a peptide it faces many challenges in the drug development process, including the potential lack of stability often associated with therapeutic peptides. In this study we determined the susceptibility of wild-type APETx2 to trypsin and pepsin and tested the applicability of backbone cyclisation as a strategy to improve its resistance to enzymatic degradation. Cyclisation with either a six-, seven- or eight-residue linker vastly improved the protease resistance of APETx2 but substantially decreased its potency against ASIC3. This suggests that either the N- or C-terminus of APETx2 is involved in its interaction with the channel, which we confirmed by making N- and C-terminal truncations. Truncation of either terminus, but especially the N-terminus, has detrimental effects on the ability of APETx2 to inhibit ASIC3. The current work indicates that cyclisation is unlikely to be a suitable strategy for stabilising APETx2, unless linkers can be engineered that do not interfere with binding to ASIC3.

  2. An altered gp100 peptide ligand with decreased binding by TCR and CD8alpha dissects T cell cytotoxicity from production of cytokines and activation of NFAT

    Directory of Open Access Journals (Sweden)

    Niels eSchaft

    2013-09-01

    Full Text Available Altered peptide ligands (APLs provide useful tools to study T cell activation and potentially direct immune responses to improve treatment of cancer patients. To better understand and exploit APLs, we studied the relationship between APLs and T cell function in more detail. Here, we tested a broad panel of gp100(280-288 APLs with respect to T cell cytotoxicity, production of cytokines and activation of Nuclear Factor of Activated T cells (NFAT by human T cells gene-engineered with a gp100-HLA-A2-specific TCRalpha/beta. We demonstrated that gp100-specific cytotoxicity, production of cytokines, and activation of NFAT were not affected by APLs with single amino acid substitutions, except for an APL with an amino acid substitution at position 3 (APL A3, which did not elicit any T cell response. A gp100 peptide with a double amino acid mutation (APL S4S6 elicited T cell cytotoxicity and production of IFNgamma, and to a lesser extent TNFalpha, IL-4, and IL-5, but not production of IL-2 and IL-10, or activation of NFAT. Notably, TCR-mediated functions showed decreases in sensitivities for S4S6 versus gp100 wt peptide, which were minor for cytotoxicity but at least a 1000-fold more prominent for the production of cytokines. TCR-engineered T cells did not bind A3-HLA-A2, but did bind S4S6-HLA-A2 although to a lowered extent compared to wt peptide-HLA-A2. Moreover, S4S6-induced T cell function demonstrated an enhanced dependency on CD8alpha. Taken together, most gp100 APLs functioned as agonists, but A3 and S4S6 peptides acted as a null ligand and partial agonist, respectively. Our results further suggest that TCR-mediated cytotoxicity can be dissected from production of cytokines and activation of NFAT, and that the agonist potential of peptide mutants relates to the extent of binding by TCR and CD8alpha. These findings may facilitate the design of APLs to advance the study of T cell activation and their use for therapeutic applications.

  3. Selenium as an alternative peptide label - comparison to fluorophore-labelled penetratin

    DEFF Research Database (Denmark)

    Hyrup Møller, Laura; Bahnsen, Jesper Søborg; Nielsen, Hanne Mørck;

    2015-01-01

    In the present study, the impact on peptide properties of labelling peptides with the fluorophore TAMRA or the selenium (Se) containing amino acid SeMet was evaluated. Three differently labelled variants of the cell-penetrating peptide (CPP) penetratin (Pen) were synthesized, PenMSe, TAMRA...

  4. Glucagon-Like Peptide-1 Receptor Activation in the Ventral Tegmental Area Decreases the Reinforcing Efficacy of Cocaine.

    Science.gov (United States)

    Schmidt, Heath D; Mietlicki-Baase, Elizabeth G; Ige, Kelsey Y; Maurer, John J; Reiner, David J; Zimmer, Derek J; Van Nest, Duncan S; Guercio, Leonardo A; Wimmer, Mathieu E; Olivos, Diana R; De Jonghe, Bart C; Hayes, Matthew R

    2016-06-01

    Cocaine addiction continues to be a significant public health problem for which there are currently no effective FDA-approved treatments. Thus, there is a clear need to identify and develop novel pharmacotherapies for cocaine addiction. Recent evidence indicates that activation of glucagon-like peptide-1 (GLP-1) receptors in the ventral tegmental area (VTA) reduces intake of highly palatable food. As the neural circuits and neurobiological mechanisms underlying drug taking overlap to some degree with those regulating food intake, these findings suggest that activation of central GLP-1 receptors may also attenuate cocaine taking. Here, we show that intra-VTA administration of the GLP-1 receptor agonist exendin-4 (0.05 μg) significantly reduced cocaine, but not sucrose, self-administration in rats. We also demonstrate that cocaine taking is associated with elevated plasma corticosterone levels and that systemic infusion of cocaine activates GLP-1-expressing neurons in the nucleus tractus solitarius (NTS), a hindbrain nucleus that projects monosynaptically to the VTA. To determine the potential mechanisms by which cocaine activates NTS GLP-1-expressing neurons, we microinjected corticosterone (0.5 μg) directly into the hindbrain fourth ventricle. Intraventricular corticosterone attenuated cocaine self-administration and this effect was blocked in animals pretreated with the GLP-1 receptor antagonist exendin-(9-39) (10 μg) in the VTA. Finally, AAV-shRNA-mediated knockdown of VTA GLP-1 receptors was sufficient to augment cocaine self-administration. Taken together, these findings indicate that increased activation of NTS GLP-1-expressing neurons by corticosterone may represent a homeostatic response to cocaine taking, thereby reducing the reinforcing efficacy of cocaine. Therefore, central GLP-1 receptors may represent a novel target for cocaine addiction pharmacotherapies. PMID:26675243

  5. Dietary peptides from the non-digestible fraction of Phaseolus vulgaris L. decrease angiotensin II-dependent proliferation in HCT116 human colorectal cancer cells through the blockade of the renin-angiotensin system.

    Science.gov (United States)

    Luna-Vital, Diego A; Liang, Katie; González de Mejía, Elvira; Loarca-Piña, Guadalupe

    2016-05-18

    This study aimed to determine the ability of peptides present in the non-digestible fraction (NDF) of common beans to decrease angiotensin II (AngII) through the blockade of RAS and its effect on the proliferation of HCT116 human colorectal cancer cells. Pure synthesized peptides GLTSK and GEGSGA and the peptide fractions (PF) of cultivars Azufrado Higuera and Bayo Madero were used. The cells were pretreated with pure peptides, PF or AGT at their IC50 or IC25 values, in comparison with the simultaneous treatment of peptides and AGT. For western blot and microscopy analysis, 100 μM and 0.5 mg mL(-1) were used for pure peptides and PF treatments, respectively. According to the ELISA tests, GLTSK and GEGSGA decreased (p < 0.05) the conversion rate of AGT to angiotensin I (AngI) by 38 and 28%, respectively. All the peptides tested reduced (p < 0.05) the conversion rate of AngI to AngII from 38 to 50%. When the cells were pretreated with both pure peptides and PF before exposure to AGT, the effectiveness inhibiting cell proliferation was higher than the simultaneous treatment suggesting their preventive effects. GLTSK and GEGSGA interacted with the catalytic site of renin, the angiotensin-I converting enzyme, and the AngII receptor, mainly through hydrogen bonds, polar, hydrophobic and cation-π interactions according to molecular docking. Through confocal microscopy, it was determined that GLTSK and GEGSGA caused the decrease (p < 0.05) of AngII-dependent STAT3 nuclear activation in HCT116 cells by 66 and 23%, respectively. The results suggest that peptides present in the common bean NDF could potentially ameliorate the effects of RAS overexpression in colorectal cancer. PMID:27156533

  6. Peptide-enhanced oral delivery of therapeutic peptides and proteins

    DEFF Research Database (Denmark)

    Kristensen, Mie; Foged, Camilla; Berthelsen, Jens;

    2013-01-01

    such as the cell penetrating peptides (CPPs) and the tight junction modulating peptides (TJMPs), which are able to translocate across the cellular membranes in a non-disruptive way or reversibly modulate the integrity of intercellular tight junctions (TJs), respectively. However, because of the harsh...... believed that CPP-mediated translocation involves transcytosis and/or direct translocation through the epithelial cells; whereas TJMP-mediated translocation is dependent on interaction with transmembrane or peripheral TJ proteins. This review focuses on the CPPs and the TJMPs currently employed as...

  7. Interactions of Bio-Inspired Membranes with Peptides and Peptide-Mimetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael Sebastiano

    2015-08-01

    Full Text Available Via Dissipative Particle Dynamics (DPD and implicit solvent coarse-grained (CG Molecular Dynamics (MD we examine the interaction of an amphiphilic cell-penetrating peptide PMLKE and its synthetic counterpart with a bio-inspired membrane. We use the DPD technique to investigate the interaction of peptide-mimetic nanoparticles, or nanopins, with a three-component membrane. The CG MD approach is used to investigate the interaction of a cell-penetrating peptide PMLKE with single-component membrane. We observe the spontaneous binding and subsequent insertion of peptide and nanopin in the membrane by using CG MD and DPD approaches, respectively. In addition, we find that the insertion of peptide and nanopins is mainly driven by the favorable enthalpic interactions between the hydrophobic components of the peptide, or nanopin, and the membrane. Our study provides insights into the mechanism underlying the interactions of amphiphilic peptide and peptide-mimetic nanoparticles with a membrane. The result of this study can be used to guide the functional integration of peptide and peptide-mimetic nanoparticles with a cell membrane.

  8. Insulin-like growth factor-I peptides act centrally to decrease depression-like behavior of mice treated intraperitoneally with lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Park Sook-Eun

    2011-12-01

    Full Text Available Abstract Centrally administered insulin-like growth factor (IGF-I has anti-depressant activity in several rodent models, including lipopolysaccharide (LPS-induced depression. In this study we tested the ability of IGF-I and GPE (the N-terminal tri-peptide derived from IGF-I to alter depression-like behavior induced by intraperitoneal (i.p. administration of LPS in a preventive and curative manner. In the first case, IGF-I (1 μg or GPE (5 μg was administered i.c.v. to CD-1 mice followed 30 min later by 330 μg/kg body weight i.p. LPS. In the second case, 830 μg/kg body weight LPS was given 24 h prior to either IGF-I or GPE. When administered i.p., LPS induced full-blown sickness assessed as a loss of body weight, decrease in food intake and sickness behavior. None of these indices were affected by IGF-I or GPE. LPS also induced depression-like behavior; assessed as an increased duration of immobility in the tail suspension and forced swim tests. When administered before or after LPS, IGF-I and GPE abrogated the LPS response; attenuating induction of depression-like behaviors and blocking preexistent depression-like behaviors. Similar to previous work with IGF-I, GPE decreased brain expression of cytokines in response to LPS although unlike IGF-I, GPE did not induce the expression of brain-derived neurotrophic factor (BDNF. LPS induced expression of tryptophan dioxygenases, IDO1, IDO2 and TDO2, but expression of these enzymes was not altered by GPE. Thus, both IGF-I and GPE elicit specific improvement in depression-like behavior independent of sickness, an action that could be due to their anti-inflammatory properties.

  9. Biofunctionalized nanoparticles with pH-responsive and cell penetrating blocks for gene delivery

    Science.gov (United States)

    Gaspar, V. M.; Marques, J. G.; Sousa, F.; Louro, R. O.; Queiroz, J. A.; Correia, I. J.

    2013-07-01

    Bridging the gap between nanoparticulate delivery systems and translational gene therapy is a long sought after requirement in nanomedicine-based applications. However, recent developments regarding nanoparticle functionalization have brought forward the ability to synthesize materials with biofunctional moieties that mimic the evolved features of viral particles. Herein we report the versatile conjugation of both cell penetrating arginine and pH-responsive histidine moieties into the chitosan polymeric backbone, to improve the physicochemical characteristics of the native material. Amino acid coupling was confirmed by 2D TOCSY NMR and Fourier transform infrared spectroscopy. The synthesized chitosan-histidine-arginine (CH-H-R) polymer complexed plasmid DNA biopharmaceuticals, and spontaneously assembled into stable 105 nm nanoparticles with spherical morphology and positive surface charge. The functionalized delivery systems were efficiently internalized into the intracellular compartment, and exhibited remarkably higher transfection efficiency than unmodified chitosan without causing any cytotoxic effect. Additional findings regarding intracellular trafficking events reveal their preferential escape from degradative lysosomal pathways and nuclear localization. Overall, this assembly of nanocarriers with bioinspired moieties provides the foundations for the design of efficient and customizable materials for cancer gene therapy.

  10. Biofunctionalized nanoparticles with pH-responsive and cell penetrating blocks for gene delivery

    International Nuclear Information System (INIS)

    Bridging the gap between nanoparticulate delivery systems and translational gene therapy is a long sought after requirement in nanomedicine-based applications. However, recent developments regarding nanoparticle functionalization have brought forward the ability to synthesize materials with biofunctional moieties that mimic the evolved features of viral particles. Herein we report the versatile conjugation of both cell penetrating arginine and pH-responsive histidine moieties into the chitosan polymeric backbone, to improve the physicochemical characteristics of the native material. Amino acid coupling was confirmed by 2D TOCSY NMR and Fourier transform infrared spectroscopy. The synthesized chitosan–histidine–arginine (CH–H–R) polymer complexed plasmid DNA biopharmaceuticals, and spontaneously assembled into stable 105 nm nanoparticles with spherical morphology and positive surface charge. The functionalized delivery systems were efficiently internalized into the intracellular compartment, and exhibited remarkably higher transfection efficiency than unmodified chitosan without causing any cytotoxic effect. Additional findings regarding intracellular trafficking events reveal their preferential escape from degradative lysosomal pathways and nuclear localization. Overall, this assembly of nanocarriers with bioinspired moieties provides the foundations for the design of efficient and customizable materials for cancer gene therapy. (paper)

  11. Vitamin B12 Conjugation of Peptide-YY3–36 Decreases Food Intake Compared to Native Peptide-YY3–36 Upon Subcutaneous Administration in Male Rats

    OpenAIRE

    Henry, Kelly E.; Elfers, Clinton T.; Burke, Rachael M.; Chepurny, Oleg G.; HOLZ, GEORGE G.; Blevins, James E.; Roth, Christian L.; Doyle, Robert P.

    2015-01-01

    Challenges to peptide-based therapies include rapid clearance, ready degradation by hydrolysis/proteolysis, and poor intestinal uptake and/or a need for blood brain barrier transport. This work evaluates the efficacy of conjugation of vitamin B12 (B12) on sc administered peptide tyrosine tyrosine (PYY)3–36 function. In the current experiments, a B12-PYY3–36 conjugate was tested against native PYY3–36, and an inactive conjugate B12-PYYC36 (null control) in vitro and in vivo. In vitro experimen...

  12. Decreased Caffeine-Induced Locomotor Activity via Microinjection of CART Peptide into the Nucleus Accumbens Is Linked to Inhibition of the pCaMKIIa-D3R Interaction.

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    Full Text Available The purpose of this study was to characterize the inhibitory modulation of cocaine- and amphetamine-regulated transcript (CART peptides, particularly with respect to the function of the D3 dopamine receptor (D3R, which is activated by its interaction with phosphorylated CaMKIIα (pCaMKIIα in the nucleus accumbens (NAc. After repeated oral administration of caffeine (30 mg/kg for five days, microinjection of CART peptide (0.08 μM/0.5 μl/hemisphere into the NAc affected locomotor behavior. The pCaMKIIα-D3R interaction, D3R phosphorylation and cAMP/PKA/phosphorylated CREB (pCREB signaling pathway activity were measured in NAc tissues, and Ca2+ influx and pCaMKIIα levels were measured in cultured NAc neurons. We found that CART attenuated the caffeine-mediated enhancement of depolarization-induced Ca2+ influx and CaMKIIα phosphorylation in cultured NAc neurons. Repeated microinjection of CART peptides into the NAc decreased the caffeine-induced enhancement of Ca2+ channels activity, pCaMKIIα levels, the pCaMKIIα-D3R interaction, D3R phosphorylation, cAMP levels, PKA activity and pCREB levels in the NAc. Furthermore, behavioral sensitization was observed in rats that received five-day administration of caffeine following microinjection of saline but not in rats that were treated with caffeine following microinjection of CART peptide. These results suggest that caffeine-induced CREB phosphorylation in the NAc was ameliorated by CART peptide due to its inhibition of D3R phosphorylation. These effects of CART peptides may play a compensatory role by inhibiting locomotor behavior in rats.

  13. Decreased Caffeine-Induced Locomotor Activity via Microinjection of CART Peptide into the Nucleus Accumbens Is Linked to Inhibition of the pCaMKIIa-D3R Interaction.

    Science.gov (United States)

    Fu, Qiang; Zhou, Xiaoyan; Dong, Yun; Huang, Yonghong; Yang, Jianhua; Oh, Ki-Wan; Hu, Zhenzhen

    2016-01-01

    The purpose of this study was to characterize the inhibitory modulation of cocaine- and amphetamine-regulated transcript (CART) peptides, particularly with respect to the function of the D3 dopamine receptor (D3R), which is activated by its interaction with phosphorylated CaMKIIα (pCaMKIIα) in the nucleus accumbens (NAc). After repeated oral administration of caffeine (30 mg/kg) for five days, microinjection of CART peptide (0.08 μM/0.5 μl/hemisphere) into the NAc affected locomotor behavior. The pCaMKIIα-D3R interaction, D3R phosphorylation and cAMP/PKA/phosphorylated CREB (pCREB) signaling pathway activity were measured in NAc tissues, and Ca2+ influx and pCaMKIIα levels were measured in cultured NAc neurons. We found that CART attenuated the caffeine-mediated enhancement of depolarization-induced Ca2+ influx and CaMKIIα phosphorylation in cultured NAc neurons. Repeated microinjection of CART peptides into the NAc decreased the caffeine-induced enhancement of Ca2+ channels activity, pCaMKIIα levels, the pCaMKIIα-D3R interaction, D3R phosphorylation, cAMP levels, PKA activity and pCREB levels in the NAc. Furthermore, behavioral sensitization was observed in rats that received five-day administration of caffeine following microinjection of saline but not in rats that were treated with caffeine following microinjection of CART peptide. These results suggest that caffeine-induced CREB phosphorylation in the NAc was ameliorated by CART peptide due to its inhibition of D3R phosphorylation. These effects of CART peptides may play a compensatory role by inhibiting locomotor behavior in rats. PMID:27404570

  14. The antiarrhythmic peptide analog rotigaptide (ZP123) stimulates gap junction intercellular communication in human osteoblasts and prevents decrease in femoral trabecular bone strength in ovariectomized rats

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne;

    2005-01-01

    this study was to examine whether antiarrhythmic peptides, which are small peptides increasing gap junctional conductivity, show specific binding to osteoblasts and investigate the effect of the stable analog rotigaptide (ZP123) on gap junctional intercellular communication in vitro and on bone mass...... and strength in vivo. Cell coupling and calcium signaling were assessed in vitro on human, primary, osteoblastic cells. In vivo effects of rotigaptide on bone strength and density were determined 4 wk after ovariectomy in rats treated with either vehicle, sc injection twice daily (300 nmol per......]AAP10 could not be shown. Studies of the effects of rotigaptide on propagation of intercellular calcium waves and cell-to-cell coupling demonstrated that 10 nM rotigaptide produced a small increase in intercellular communication during physiological conditions (+4.5+/-1.6% vs. vehicle; P...

  15. Decrease in formalin-inactivated respiratory syncytial virus (FI-RSV enhanced disease with RSV G glycoprotein peptide immunization in BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Gertrud U Rey

    Full Text Available Respiratory syncytial virus (RSV is a high priority target for vaccine development. One concern in RSV vaccine development is that a non-live virus vaccine would predispose for enhanced disease similar to that seen with the formalin inactivated RSV (FI-RSV vaccine. Since a mAb specific to RSV G protein can reduce pulmonary inflammation and eosinophilia seen after RSV infection of FI-RSV vaccinated mice, we hypothesized that RSV G peptides that induce antibodies with similar reactivity may limit enhanced disease after subunit or other non-live RSV vaccines. In support of this hypothesis, we show that FI-RSV vaccinated mice administered RSV G peptide vaccines had a significant reduction in enhanced disease after RSV challenge. These data support the importance of RSV G during infection to RSV disease pathogenesis and suggest that use of appropriately designed G peptide vaccines to reduce the risk of enhanced disease with non-live RSV vaccines merits further study.

  16. Mechanisms of the antifungal action of marine metagenome-derived peptide, MMGP1, against Candida albicans.

    Directory of Open Access Journals (Sweden)

    Muthuirulan Pushpanathan

    Full Text Available BACKGROUND: Development of resistant variants to existing antifungal drugs continues to be the serious problem in Candida albicans-induced fungal pathogenesis, which has a considerable impact on animal and human health. Identification and characterization of newer drugs against C. albicans is, therefore, essential. MMGP1 is a direct cell-penetrating peptide recently identified from marine metagenome, which was found to possess potent antifungal activity against C. albicans. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the mechanism of antifungal action of MMGP1 against C. albicans. Agarose gel shift assay found the peptide to be having a remarkable DNA-binding ability. The modification of the absorption spectra and fluorescence quenching of the tryptophyl residue correspond to the stacking between indole ring and nucleotide bases. The formation of peptide-DNA complexes was confirmed by fluorescence quenching of SYTO 9 probe. The interaction of peptide with plasmid DNA afforded protection of DNA from enzymatic degradation by DNase I. In vitro transcription of mouse β-actin gene in the presence of peptide led to a decrease in the level of mRNA synthesis. The C. albicans treated with MMGP1 showed strong inhibition of biosynthetic incorporation of uridine analog 5-ethynyluridine (EU into nascent RNA, suggesting the peptide's role in the inhibition of macromolecular synthesis. Furthermore, the peptide also induces endogenous accumulation of reactive oxygen species (ROS in C. albicans. MMGP1 supplemented with glutathione showed an increased viability of C. albicans cells. The hyper-produced ROS by MMGP1 leads to increased levels of protein carbonyls and thiobarbituric acid reactive substances and it also causes dissipation of mitochondrial membrane potential and DNA fragmentation in C. albicans cells. CONCLUSION: And Significance: Therefore, the antifungal activity of MMGP1 could be attributed to its binding with DNA, causing

  17. Di-tyrosine cross-link decreases the collisional cross-section of aβ peptide dimers and trimers in the gas phase: an ion mobility study.

    Directory of Open Access Journals (Sweden)

    Ewa Sitkiewicz

    Full Text Available Oligomeric forms of Aβ peptide are most likely the main synaptotoxic and neurotoxic agent in Alzheimer's disease. Toxicity of various Aβ oligomeric forms has been confirmed in vivo and also in vitro. However, in vitro preparations were found to be orders of magnitude less toxic than oligomers obtained from in vivo sources. This difference can be explained by the presence of a covalent cross-link, which would stabilize the oligomer. In the present work, we have characterized the structural properties of Aβ dimers and trimers stabilized by di- and tri-tyrosine cross-links. Using ion mobility mass spectrometry we have compared the collisional cross-section of non-cross-linked and cross-linked species. We have found that the presence of cross-links does not generate new unique forms but rather shifts the equilibrium towards more compact oligomer types that can also be detected for non-cross-linked peptide. In consequence, more extended forms, probable precursors of off-pathway oligomeric species, become relatively destabilized in cross-linked oligomers and the pathway of oligomer evolution becomes redirected towards fibrillar structures.

  18. Photoinduced apoptosis using a peptide carrying a photosensitizer.

    Science.gov (United States)

    Watanabe, Kazunori; Fujiwara, Hayato; Kitamatsu, Mizuki; Ohtsuki, Takashi

    2016-07-01

    A novel molecule, TatBim-Alexa, consisting of the HIV1 Tat cell-penetrating peptide, the Bim apoptosis-inducing peptide, and Alexa Fluor 546 was synthesized for photoinducion of apoptosis. The Alexa Fluor 546 was used as a photosensitizer and covalently attached at the C-terminus of TatBim peptide by the thiol-maleimide reaction. Photo-dependent cytosolic internalization of TatBim-Alexa and photo-dependent apoptosis using TatBim-Alexa were demonstrated in several kinds of mammalian cells including human cancer cell lines. PMID:27165853

  19. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels

    DEFF Research Database (Denmark)

    Reddy, I A; Pino, J A; Weikop, P;

    2016-01-01

    Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine...... actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from the...... ventral tegmental area to the LS and express the DA transporter (DAT). Cocaine acts by altering DA bioavailability by targeting the DAT. Therefore, GLP-1R signaling might exert effects on DAT to account for its regulation of cocaine-induced behaviors. We show that the GLP-1R is highly expressed within the...

  20. Mechanism of cellular uptake of HIV-TAT peptide & effects of TAT-SOD against ultraviolet induced skin damage

    OpenAIRE

    Chen, Xiaochao

    2013-01-01

    TAT peptide is one of the best-characterised cell penetrating peptides (CPPs) derived from the transactivator of transcription protein from the human immunodeficiency virus 1 (HIV-1). TAT peptide is able to cross the cell membrane and deliver various biomolecules into cells with low immunogenicity and no toxicity. However, the exact mechanism of internalization still remains a subject of controversy. Lamellar neutron scattering was used to determine the location of TAT pepti...

  1. Decreased glycation and structural protection properties of γ-glutamyl-S-allyl-cysteine peptide isolated from fresh garlic scales (Allium sativum L.).

    Science.gov (United States)

    Tan, Dehong; Zhang, Yao; Chen, Lulu; Liu, Ling; Zhang, Xuan; Wu, Zhaoxia; Bai, Bing; Ji, Shujuan

    2015-01-01

    The antiglycative effect of γ-glutamyl-S-allyl-cysteine (GSAC) peptide isolated from fresh garlic scales was investigated in the bovine serum albumin (BSA)/glucose system. GSAC inhibited the increase of fluorescence intensity at about 440 nm in a concentration-dependent manner and reduced reacted free lysine side chains by 10.9%, 24.7% and 37.7%, as the GSAC concentrations increased from 0.1 to 2.5 mg mL(-1). Glycation-specific decline in BSA α-helix content (from 61.3% to 55.6%) and increase in β-sheet (from 2.1% to 5.4%) were prevented by GSAC (2.5 mg mL(-1)) in vitro, implying its stabilisation effect. GSAC treatment (2.5 mg mL(-1)) suppressed protein crosslinking to form polymers. Additionally, GSAC (10, 40, and 160 μg mL(-1)) showed radical-scavenging and metal-chelating capacities. In conclusion, GSAC has an antiglycative effect, which may involve its radical-scavenging and metal-chelating capacities. PMID:25631559

  2. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels.

    Science.gov (United States)

    Reddy, I A; Pino, J A; Weikop, P; Osses, N; Sørensen, G; Bering, T; Valle, C; Bluett, R J; Erreger, K; Wortwein, G; Reyes, J G; Graham, D; Stanwood, G D; Hackett, T A; Patel, S; Fink-Jensen, A; Torres, G E; Galli, A

    2016-01-01

    Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from the ventral tegmental area to the LS and express the DA transporter (DAT). Cocaine acts by altering DA bioavailability by targeting the DAT. Therefore, GLP-1R signaling might exert effects on DAT to account for its regulation of cocaine-induced behaviors. We show that the GLP-1R is highly expressed within the LS. GLP-1, in LS slices, significantly enhances DAT surface expression and DAT function. Exenatide (Ex-4), a long-lasting synthetic analog of GLP-1 abolished cocaine-induced elevation of DA. Interestingly, acute administration of Ex-4 reduces septal expression of the retrograde messenger 2-arachidonylglycerol (2-AG), as well as a product of its presynaptic degradation, arachidonic acid (AA). Notably, AA reduces septal DAT function pointing to AA as a novel regulator of central DA homeostasis. We further show that AA oxidation product γ-ketoaldehyde (γ-KA) forms adducts with the DAT and reduces DAT plasma membrane expression and function. These results support a mechanism in which postsynaptic septal GLP-1R activation regulates 2-AG levels to alter presynaptic DA homeostasis and cocaine actions through AA. PMID:27187231

  3. Peptide conjugates for chromosomal gene targeting by triplex-forming oligonucleotides

    OpenAIRE

    Rogers, Faye A.; Manoharan, Muthiah; Rabinovitch, Peter; Ward, David C.; Glazer, Peter M.

    2004-01-01

    Triplex-forming oligonucleotides (TFOs) are DNA-binding molecules, which offer the potential to selectively modulate gene expression. However, the biological activity of TFOs as potential antigene compounds has been limited by cellular uptake. Here, we investigate the effect of cell-penetrating peptides on the biological activity of TFOs as measured in an assay for gene-targeted mutagenesis. Using the transport peptide derived from the third helix of the homeodomain of antennapedia (Antp), we...

  4. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  5. L655,240, acting as a competitive BACE1 inhibitor,efficiently decreases β-amyloid peptide production in HEK293-APPswe cells

    Institute of Scientific and Technical Information of China (English)

    Qin LU; Wu-yan CHEN; Zhi-yuan ZHU; Jing CHEN; Ye-chun XU; Morakot KAEWPET; Vatcharin RUKACHAISIRIKUL; Li-li CHEN; Xu SHEN

    2012-01-01

    Aim: To identify a small molecule L655,240 as a novel β-secretase (BACE1) inhibitor and to investigate its effects on β-amyloid (Aβ)generation in vitro.Methods: Fluorescence resonance energy transfer (FRET) was used to characterize the inhibitory effect of L655,240 on BACE1.Surface plasmon resonance (SPR) technology-based assay was performed to study the binding affinity of L655,240 for BACE1.The selectivity of L655,240 toward BACE1 over other aspartic proteases was determined with enzymatic assay.The effects of L655,240 on Aβ40,Aβ42,and sAPPβ production were studied in HEK293 cells stably expressing APP695 Swedish mutantK595N/M596L (HEK293-APPswe cells).The activities of BACE1,ν-secretase and α-secretase were assayed,and both the mRNA and protein levels of APP and BACE1 were evaluated using real-time PCR (RT-PCR) and Western blot analysis.Results: L655,240 was determined to be a competitive,selective BACE1 inhibitor (IC50=4.47±1.37 μmol/L),which bound to BACE1 directly (KD=17.9±0.72 μmol/L).L655,240 effectively reduced Aβ40,Aβ42,and sAPPβ production by inhibiting BACE1 without affecting the activities of y-secretase and α-secretase in HEK293-APPswe cells.L655,240 has no effect on APP and BACE1 mRNA or protein levels in HEK293-APPswe cells.Conclusion: The small molecule L655,240 is a novel BACE1 inhibitor that can effectively decreases Aβ production in vitro,thereby highlighting its therapeutic potential for the treatment of Alzheimer's disease.

  6. Membrane interaction and secondary structure of de novo designed arginine-and tryptophan peptides with dual function

    KAUST Repository

    Rydberg, Hanna A.

    2012-10-01

    Cell-penetrating peptides and antimicrobial peptides are two classes of positively charged membrane active peptides with several properties in common. The challenge is to combine knowledge about the membrane interaction mechanisms and structural properties of the two classes to design peptides with membrane-specific actions, useful either as transporters of cargo or as antibacterial substances. Membrane active peptides are commonly rich in arginine and tryptophan. We have previously designed a series of arg/trp peptides and investigated how the position and number of tryptophans affect cellular uptake. Here we explore the antimicrobial properties and the interaction with lipid model membranes of these peptides, using minimal inhibitory concentrations assay (MIC), circular dichroism (CD) and linear dichroism (LD). The results show that the arg/trp peptides inhibit the growth of the two gram positive strains Staphylococcus aureus and Staphylococcus pyogenes, with some individual variations depending on the position of the tryptophans. No inhibition of the gram negative strains Proteus mirabilis or Pseudomonas aeruginosa was noticed. CD indicated that when bound to lipid vesicles one of the peptides forms an α-helical like structure, whereas the other five exhibited rather random coiled structures. LD indicated that all six peptides were somehow aligned parallel with the membrane surface. Our results do not reveal any obvious connection between membrane interaction and antimicrobial effect for the studied peptides. By contrast cell-penetrating properties can be coupled to both the secondary structure and the degree of order of the peptides. © 2012 Elsevier Inc.

  7. Quantification of pharmaceutical peptides using selenium as an elemental detection label

    DEFF Research Database (Denmark)

    Møller, Laura Hyrup; Gabel-Jensen, Charlotte; Franzyk, Henrik; Bahnsen, Jesper Søborg; Stürup, Stefan; Gammelgaard, Bente

    2014-01-01

    The aim of the present work was to demonstrate how selenium labelling of a synthetic cell-penetrating peptide may be employed in evaluation of stability and quantitative estimation of cellular uptake by inductively coupled plasma mass spectrometry (ICP-MS). Two analogues of the cell-penetrating p...... by liquid chromatography (LC)-ICP-MS. The selenium-labelled peptides were investigated by cell uptake studies in HeLa WT cells. The stability of the peptides was monitored in water, cell medium and during cell uptake studies. Total uptake of selenium was quantified by flow injection (FI...... was observed during cell uptake studies. The major degradation products were determined by LC-electrospray ionization mass spectrometry (ESI-MS). The labelling method in combination with FI-ICP-MS, LC-ICP-MS and LC-ESI-MS techniques provided detailed information on the fate of penetratin in cellular...

  8. Current status of multiple antigen-presenting peptide vaccine systems: Application of organic and inorganic nanoparticles

    Directory of Open Access Journals (Sweden)

    Taguchi Hiroaki

    2011-08-01

    Full Text Available Abstract Many studies are currently investigating the development of safe and effective vaccines to prevent various infectious diseases. Multiple antigen-presenting peptide vaccine systems have been developed to avoid the adverse effects associated with conventional vaccines (i.e., live-attenuated, killed or inactivated pathogens, carrier proteins and cytotoxic adjuvants. Recently, two main approaches have been used to develop multiple antigen-presenting peptide vaccine systems: (1 the addition of functional components, e.g., T-cell epitopes, cell-penetrating peptides, and lipophilic moieties; and (2 synthetic approaches using size-defined nanomaterials, e.g., self-assembling peptides, non-peptidic dendrimers, and gold nanoparticles, as antigen-displaying platforms. This review summarizes the recent experimental studies directed to the development of multiple antigen-presenting peptide vaccine systems.

  9. Peptide conjugates containing chlorambucil or tetradentate aminopyridine ligands for anticancer treatment

    OpenAIRE

    Soler Vives, Marta

    2015-01-01

    Nowadays, the search for new drugs against cancer is one of the major goals to improve the quality of life of patients. The development of more selective treatments against cancer cells may lead to a significant reduction of the side-effects, being one of the most important topics in current research. In this regard, cell-penetrating peptides (CPPs) have been described to efficiently transport therapeutic molecules across the cell membrane. Furthermore, some metal complexes based on platinum ...

  10. Functional recovery of human cells harbouring the mitochondrial DNA mutation MERRF A8344G via peptide-mediated mitochondrial delivery.

    Science.gov (United States)

    Chang, Jui-Chih; Liu, Ko-Hung; Li, Yu-Chi; Kou, Shou-Jen; Wei, Yau-Huei; Chuang, Chieh-Sen; Hsieh, Mingli; Liu, Chin-San

    2013-01-01

    We explored the feasibility of mitochondrial therapy using the cell-penetrating peptide Pep-1 to transfer mitochondrial DNA (mtDNA) between cells and rescue a cybrid cell model of the mitochondrial disease myoclonic epilepsy with ragged-red fibres (MERRF) syndrome. Pep-1-conjugated wild-type mitochondria isolated from parent cybrid cells incorporating a mitochondria-specific tag were used as donors for mitochondrial delivery into MERRF cybrid cells (MitoB2) and mtDNA-depleted Rho-zero cells (Mitoρ°). Forty-eight hours later, translocation of Pep-1-labelled mitochondria into the mitochondrial regions of MitoB2 and Mitoρ° host cells was observed (delivery efficiencies of 77.48 and 82.96%, respectively). These internalized mitochondria were maintained for at least 15 days in both cell types and were accompanied by mitochondrial function recovery and cell survival by preventing mitochondria-dependent cell death. Mitochondrial homeostasis analyses showed that peptide-mediated mitochondrial delivery (PMD) also increased mitochondrial biogenesis in both cell types, but through distinct regulatory pathways involving mitochondrial dynamics. Dramatic decreases in mitofusin-2 (MFN2) and dynamin-related protein 1/fission 1 were observed in MitoB2 cells, while Mitoρ° cells showed a significant increase in optic atrophy 1 and MFN2. These findings suggest that PMD can be used as a potential therapeutic intervention for mitochondrial disorders. PMID:23006856

  11. Peptide dendrimers

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Šebestík, Jaroslav; Ježek, Jan

    2005-01-01

    Roč. 11, - (2005), 757-788. ISSN 1075-2617 R&D Projects: GA ČR(CZ) GA203/03/1362 Institutional research plan: CEZ:AV0Z40550506 Keywords : multiple antigen peptides * peptide dendrimers * synthetic vaccine * multipleantigenic peptides Subject RIV: CC - Organic Chemistry Impact factor: 1.803, year: 2005

  12. Alanine scan and (2)H NMR analysis of the membrane-active peptide BP100 point to a distinct carpet mechanism of action.

    Science.gov (United States)

    Zamora-Carreras, Héctor; Strandberg, Erik; Mühlhäuser, Philipp; Bürck, Jochen; Wadhwani, Parvesh; Jiménez, M Ángeles; Bruix, Marta; Ulrich, Anne S

    2016-06-01

    The short membrane-active peptide BP100 [KKLFKKILKYL-NH2] is known as an effective antimicrobial and cell penetrating agent. For a functional alanine scan each of the 11 amino acids was replaced with deuterated Ala-d3, one at a time. MIC assays showed that a substitution of Lys did not affect the antimicrobial activity, but it decreased when a hydrophobic residue was replaced. In most cases, a reduction in hydrophobicity led to a decrease in hemolysis, and some peptide analogues had an improved therapeutic index. Circular dichroism showed that BP100 folds as an amphiphilic α-helix in a bilayer. Its alignment was determined from (2)H NMR in oriented membranes of different composition. The azimuthal rotation angle was the same under all conditions, but the average helix tilt angle and the dynamical behavior of the peptide varied in a systematic manner. In POPC/POPG bilayers, with a negative spontaneous curvature, the peptide was found to lie flat on the bilayer surface, and with little wobble. In DMPC/DMPG, with a positive spontaneous curvature, BP100 at higher concentrations became tilted obliquely into the membrane, with the uncharged C-terminus inserted more deeply into the lipid bilayer, experiencing significant fluctuations in tilt angle. In DMPC/DMPG/lyso-MPC, with a pronounced positive spontaneous curvature, the helix tilted even further and became even more mobile. The 11-mer BP100 is obviously too short to form transmembrane pores. We conclude that BP100 operates via a carpet mechanism, whereby the C-terminus gets inserted into the hydrophobic core of the bilayer, which leads to membrane perturbation and induces transient permeability. PMID:26975251

  13. Biological activity of Tat (47-58) peptide on human pathogenic fungi

    International Nuclear Information System (INIS)

    Tat (47-58) peptide, a positively charged Arginine-rich peptide derived from HIV-1 regulatory protein Tat, is known for a peptidic delivery factor as a cell-penetrating peptide on mammalian cells. In this study, antifungal effect and its mode of action of Tat peptide were investigated on fungal cells. The results indicate that Tat peptide exhibits antifungal activity against pathogenic fungal cells without hemolytic effect on human erythrocytes. To understand the mechanism(s) of Tat peptide, the cellular distribution of the peptide was investigated. Tat peptide internalized in the fungal cells without any damage to cell membrane when examined using an artificial liposome (PC/cholesterol; 10:1, w/w). Moreover, flow cytometry analysis exhibited the uptake of Tat peptide by energy- and salt-independent pathway, and confocal scanning microscopy displayed that this peptide accumulated in the nucleus of fungal cells rapidly without any impediment by time or temperature, which generally influence on the viral infections. After penetration into the nuclear, the peptide affected the process of cell cycle of Candida albicans through the arrest at G1 phase

  14. IKK NBD peptide inhibits LPS induced pulmonary inflammation and alters sphingolipid metabolism in a murine model.

    Science.gov (United States)

    von Bismarck, Philipp; Winoto-Morbach, Supandi; Herzberg, Mona; Uhlig, Ulrike; Schütze, Stefan; Lucius, Ralph; Krause, Martin F

    2012-06-01

    Airway epithelial NF-κB is a key regulator of host defence in bacterial infections and has recently evolved as a target for therapeutical approaches. Evidence is accumulating that ceramide, generated by acid sphingomyelinase (aSMase), and sphingosine-1-phosphate (S1-P) are important mediators in host defence as well as in pathologic processes of acute lung injury. Little is known about the regulatory mechanisms of pulmonary sphingolipid metabolism in bacterial infections of the lung. The objective of this study was to evaluate the influence of NF-κB on sphingolipid metabolism in Pseudomonas aeruginosa LPS-induced pulmonary inflammation. In a murine acute lung injury model with intranasal Pseudomonas aeruginosa LPS we investigated TNF-α, KC (murine IL-8), IL-6, MCP-1 and neutrophilic infiltration next to aSMase activity and ceramide and S1-P lung tissue concentrations. Airway epithelial NF-κB was inhibited by topically applied IKK NBD, a cell penetrating NEMO binding peptide. This treatment resulted in significantly reduced inflammation and suppression of aSMase activity along with decreased ceramide and S1-P tissue concentrations down to levels observed in healthy animals. In conclusion our results confirm that changes in sphingolipid metabolim due to Pseudomonas aeruginosa LPS inhalation are regulated by NF-κB translocation. This confirms the critical role of airway epithelial NF-κB pathway for the inflammatory response to bacterial pathogens and underlines the impact of sphingolipids in inflammatory host defence mechanisms. PMID:22469869

  15. Oriented Circular Dichroism: A Method to Characterize Membrane-Active Peptides in Oriented Lipid Bilayers.

    Science.gov (United States)

    Bürck, Jochen; Wadhwani, Parvesh; Fanghänel, Susanne; Ulrich, Anne S

    2016-02-16

    transition dipole. Compared to conventional CD, OCD data are not only collected in the biologically relevant environment of a highly hydrated planar lipid bilayer (whose composition can be varied at will), but in addition it provides information about the tilt angle of the polypeptide in the membrane. It is the method of choice for screening numerous different conditions, such as peptide concentration, lipid composition, membrane additives, pH, temperature, and sample hydration. All these factors have been found to affect the peptide alignment in membrane, while having little or no influence on conformation. In many cases, the observed realignment could be related to biological action, such as pore formation by antimicrobial and cell-penetrating peptides, or to binding events of transmembrane segments of integral membrane proteins. Likewise, any lipid-induced conversion from α-helix to β-sheeted conformation is readily picked up by OCD and has been interpreted in terms of protein instability or amyloid-formation. PMID:26756718

  16. Dysferlin-peptides reallocate mutated dysferlin thereby restoring function.

    Directory of Open Access Journals (Sweden)

    Verena Schoewel

    Full Text Available Mutations in the dysferlin gene cause the most frequent adult-onset limb girdle muscular dystrophy, LGMD2B. There is no therapy. Dysferlin is a membrane protein comprised of seven, beta-sheet enriched, C2 domains and is involved in Ca(2+dependent sarcolemmal repair after minute wounding. On the protein level, point mutations in DYSF lead to misfolding, aggregation within the endoplasmic reticulum, and amyloidogenesis. We aimed to restore functionality by relocating mutant dysferlin. Therefore, we designed short peptides derived from dysferlin itself and labeled them to the cell penetrating peptide TAT. By tracking fluorescently labeled short peptides we show that these dysferlin-peptides localize in the endoplasmic reticulum. There, they are capable of reducing unfolded protein response stress. We demonstrate that the mutant dysferlin regains function in membrane repair in primary human myotubes derived from patients' myoblasts by the laser wounding assay and a novel technique to investigate membrane repair: the interventional atomic force microscopy. Mutant dysferlin abuts to the sarcolemma after peptide treatment. The peptide-mediated approach has not been taken before in the field of muscular dystrophies. Our results could redirect treatment efforts for this condition.

  17. Dysferlin-peptides reallocate mutated dysferlin thereby restoring function.

    Science.gov (United States)

    Schoewel, Verena; Marg, Andreas; Kunz, Severine; Overkamp, Tim; Carrazedo, Romy Siegert; Zacharias, Ute; Daniel, Peter T; Spuler, Simone

    2012-01-01

    Mutations in the dysferlin gene cause the most frequent adult-onset limb girdle muscular dystrophy, LGMD2B. There is no therapy. Dysferlin is a membrane protein comprised of seven, beta-sheet enriched, C2 domains and is involved in Ca(2+)dependent sarcolemmal repair after minute wounding. On the protein level, point mutations in DYSF lead to misfolding, aggregation within the endoplasmic reticulum, and amyloidogenesis. We aimed to restore functionality by relocating mutant dysferlin. Therefore, we designed short peptides derived from dysferlin itself and labeled them to the cell penetrating peptide TAT. By tracking fluorescently labeled short peptides we show that these dysferlin-peptides localize in the endoplasmic reticulum. There, they are capable of reducing unfolded protein response stress. We demonstrate that the mutant dysferlin regains function in membrane repair in primary human myotubes derived from patients' myoblasts by the laser wounding assay and a novel technique to investigate membrane repair: the interventional atomic force microscopy. Mutant dysferlin abuts to the sarcolemma after peptide treatment. The peptide-mediated approach has not been taken before in the field of muscular dystrophies. Our results could redirect treatment efforts for this condition. PMID:23185377

  18. Intracellular trafficking of superparamagnetic iron oxide nanoparticles conjugated with TAT peptide: 3-dimensional electron tomography analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Baiju G.; Fukuda, Takahiro; Mizuki, Toru; Hanajiri, Tatsuro [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Maekawa, Toru, E-mail: maekawa@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer We study the intracellular localisation of TAT-SPIONs using 3-D electron tomography. Black-Right-Pointing-Pointer 3-D images of TAT-SPIONs in a cell are clearly shown. Black-Right-Pointing-Pointer Release of TAT-SPIONs from endocytic vesicles into the cytoplasm is clearly shown. -- Abstract: Internalisation of nanoparticles conjugated with cell penetrating peptides is a promising approach to various drug delivery applications. Cell penetrating peptides such as transactivating transcriptional activator (TAT) peptides derived from HIV-1 proteins are effective intracellular delivery vectors for a wide range of nanoparticles and pharmaceutical agents thanks to their amicable ability to enter cells and minimum cytotoxicity. Although different mechanisms of intracellular uptake and localisation have been proposed for TAT conjugated nanoparticles, it is necessary to visualise the particles on a 3-D plane in order to investigate the actual intracellular uptake and localisation. Here, we study the intracellular localisation and trafficking of TAT peptide conjugated superparamagnetic ion oxide nanoparticles (TAT-SPIONs) using 3-D electron tomography. 3-D tomograms clearly show the location of TAT-SPIONs in a cell and their slow release from the endocytic vesicles into the cytoplasm. The present methodology may well be utilised for further investigations of the behaviours of nanoparticles in cells and eventually for the development of nano drug delivery systems.

  19. Inhibiting α-synuclein oligomerization by stable cell-penetrating β-synuclein fragments recovers phenotype of Parkinson's disease model flies.

    Directory of Open Access Journals (Sweden)

    Ronit Shaltiel-Karyo

    Full Text Available The intracellular oligomerization of α-synuclein is associated with Parkinson's disease and appears to be an important target for disease-modifying treatment. Yet, to date, there is no specific inhibitor for this aggregation process. Using unbiased systematic peptide array analysis, we identified molecular interaction domains within the β-synuclein polypeptide that specifically binds α-synuclein. Adding such peptide fragments to α-synuclein significantly reduced both amyloid fibrils and soluble oligomer formation in vitro. A retro-inverso analogue of the best peptide inhibitor was designed to develop the identified molecular recognition module into a drug candidate. While this peptide shows indistinguishable activity as compared to the native peptide, it is stable in mouse serum and penetrates α-synuclein over-expressing cells. The interaction interface between the D-amino acid peptide and α-synuclein was mapped by Nuclear Magnetic Resonance spectroscopy. Finally, administering the retro-inverso peptide to a Drosophila model expressing mutant A53T α-synuclein in the nervous system, resulted in a significant recovery of the behavioral abnormalities of the treated flies and in a significant reduction in α-synuclein accumulation in the brains of the flies. The engineered retro-inverso peptide can serve as a lead for developing a novel class of therapeutic agents to treat Parkinson's disease.

  20. Doxorubicin in TAT peptide-modified multifunctional immunoliposomes demonstrates increased activity against both drug-sensitive and drug-resistant ovarian cancer models

    OpenAIRE

    Apte, Anjali; Koren, Erez; Koshkaryev, Alexander; Torchilin, Vladimir P.

    2013-01-01

    Multidrug resistance (MDR) is a hallmark of cancer cells and a crucial factor in chemotherapy failure, cancer reappearance, and patient deterioration. We have previously described the physicochemical characteristics and the in vitro anticancer properties of a multifunctional doxorubicin-loaded liposomal formulation. Lipodox®, a commercially available PEGylated liposomal doxorubicin, was made multifunctional by surface-decorating with a cell-penetrating peptide, TATp, conjugated to PEG1000-PE,...

  1. 来自穿膜肽的新肽的抗菌活性及抑菌机制%Antibacterial activity and mechanisms of a new peptide derived from cell-penetrating peptide

    Institute of Scientific and Technical Information of China (English)

    李莉蓉; 施用晖; 乐国伟

    2013-01-01

    [目的]研究基于穿膜肽和抗菌肽构效关系改造获得的新肽P7的抗菌活性及其对大肠杆菌(E.coli)的抑菌机制.[方法]微量稀释法和溶血实验分析P7的抑菌活性及其对正常细胞的细胞毒性;采用膜荧光探针、流式细胞术和扫描电镜分析P7对E.coli膜通透性、膜完整性的影响和细胞超微结构变化;通过激光共聚焦分析P7在E.coli细胞中的定位;凝胶阻滞实验测定P7与E.coli基因组DNA结合能力.[结果]P7比母肽显示更强的抑菌活性,最低抑菌浓度范围为4-32 μmol/L,且在作用浓度范围内具有较弱的溶血活性.P7可以增加E.coli外膜和内膜的通透性,使E.coli细胞膜的完整性和细胞表面结构受损.同时P7可以穿过E.coli细胞膜在细胞质聚集并与基因组DNA结合.[结论]P7通过增加E.coli内外膜通透性,穿过细胞膜与胞内DNA结合发挥抑菌活性.

  2. Urinary Peptide Levels in Patients with Chronic Renal Failure

    Directory of Open Access Journals (Sweden)

    Mungli Prakash

    2010-10-01

    Full Text Available Introduction: Peptide levels in urine are found to be decreased in renal failure. In the current study urinary peptide levels were determined in chronic renal failure (CRF patients. Method: 86 CRF patients and 80 healthy controls were selected for the study. Urinary proteins and peptide levels were determined by spectrophotometer based Lowry and Bradford methods. Urinary creatinine levels were determined by clinical chemistry analyzer. Results: There was significant decrease in urinary peptide levels in CRF patients and Urinary % peptides were significantly decreased in CRF patients as compared to healthy controls. Urinary % peptides correlated negatively with proteinuria. Conclusion: we have found decrease in urinary peptides and % urinary peptides in CRF patients and possibly measurement of % urinary peptides may possibly serve as better indicator in early detection of impairment in renal function.

  3. Cell-penetrable mouse forkhead box protein 3 alleviates experimental arthritis in mice by up-regulating regulatory T cells.

    Science.gov (United States)

    Liu, Xia; Ji, Baoju; Sun, Mengyi; Wu, Weijiang; Huang, Lili; Sun, Aihua; Zong, Yangyong; Xia, Sheng; Shi, Liyun; Qian, Hui; Xu, Wenrong; Shao, Qixiang

    2015-07-01

    Regulatory T cells (T(regs)) have potential applications in clinical disease therapy, such as autoimmune diseases and transplant rejection. However, their numbers are limited. Forkhead box protein 3 (FoxP3) is a key transcription factor that controls T(reg) development and function. Here, we generated a cell-permeable fusion protein, protein transduction domain (PTD)-conjugated mouse FoxP3 protein (PTD-mFoxP3), and evaluated whether PTD-mFoxp3 can alleviate rheumatoid arthritis (RA) in the collagen-induced arthritis (CIA) mouse model. As expected, PTD-mFoxP3 was transduced into cells effectively, and inhibited T cell activation and attenuated the cell proliferation. It decreased interleukin (IL) 2 and interferon (IFN)-γ expression, and increased IL-10 expression in activated CD4(+)CD25(-) T cells. PTD-mFoxP3-transduced CD4(+)CD25(-) T cells attenuated proliferation of activated CD4(+)CD25(-) T cells. In addition, PTD-mFoxP3 blocked the Th17 differentiation programme in vitro and down-regulated IL-17 production from T cells by modulating induction and levels of retinoid-related orphan receptor gamma t (RORγt). Intra-articular delivery of PTD-mFoxP3 delayed disease incidence remarkably and alleviated autoimmune symptoms of CIA mice. Moreover, protective effects of PTD-mFoxP3 were associated with regulating the balance of T helper type 17 (Th17) and T(regs). These results suggest that PTD-mFoxP3 may be a candidate for RA therapy. PMID:25809415

  4. Guanidinium-rich, glycerol-derived oligocarbonates: a new class of cell-penetrating molecular transporters that complex, deliver, and release siRNA.

    Science.gov (United States)

    Wender, Paul A; Huttner, Melanie A; Staveness, Daryl; Vargas, Jessica R; Xu, Adele F

    2015-03-01

    A highly versatile and step-economical route to a new class of guanidinium-rich molecular transporters and evaluation of their ability to complex, deliver, and release siRNA are described. These new drug/probe delivery systems are prepared in only two steps, irrespective of length or composition, using an organocatalytic ring-opening co-oligomerization of glycerol-derived cyclic carbonate monomers incorporating either protected guanidine or lipid side chains. The resultant amphipathic co-oligomers are highly effective vehicles for siRNA delivery, providing an excellent level of target protein suppression (>85%). These new oligocarbonates are nontoxic at levels required for cell penetration and can be tuned for particle size. Relative to the previously reported methyl(trimethylene)carbonate (MTC) scaffold, the ether linkage at C2 in the new transporters markedly enhances the stability of the siRNA/co-oligomer complexes. Both hybrid co-oligomers, containing a mixture of glycerol- and MTC-derived monomers, and co-oligomers containing only glycerol monomers are found to provide tunable control over siRNA complex stability. On the basis of a glycerol and CO2 backbone, these new co-oligomers represent a rapidly tunable and biocompatible siRNA delivery system that is highly effective in suppressing target protein synthesis. PMID:25588140

  5. Synthesis and In Vitro Evaluation of Amphiphilic Peptides and Their Nanostructured Conjugates

    Directory of Open Access Journals (Sweden)

    Samaneh Mohammadi

    2015-03-01

    Full Text Available Purpose: Breast cancer is the second leading cancer type among people of advanced countries. Various methods have been used for cancer treatment such as chemotherapy and radiotherapy. In the present study we have designed and synthesized a new group of drug delivery systems (DDS containing a new class of Cell Penetrating Peptides (CPPs named Peptide Amphiphiles (PAs. Methods: Two PAs and anionic peptides were synthesized using solid phase peptide synthesis (SPPS, namely [KW]4, [KW]5, E4 and E8. Then nano-peptides were synthesized by non-covalent binding between PAs and poly anions as [KW]4-E4, [KW]4-E8, [KW]5-E4 and [KW]5-E8. Results: Flow cytometry studies showed that increased chain length of PAs with a higher ratio between hydrophobicity and net charge results in increased intracellular uptake by MCF7 cells after 2h incubation. Moreover, nano-peptides showed greater intracellular uptake compared to PAs. Anti-proliferative assay revealed that by increasing chain length of PAs, the toxicity effect on MCF7 cells is reduced, however nano-peptides did not show significant toxicity on MCF7 cells even at high concentration levels. Conclusion: These data suggest that due to the lack of toxicity effect at high concentration levels and also high cellular uptake, nano-peptides are more suitable carrier compared to PAs for drug delivery.

  6. Constructing bioactive peptides with pH-dependent activities

    OpenAIRE

    Tu, Zhigang; Volk, Melanie; Shah, Khushali; Clerkin, Kevin; Liang, Jun F.

    2009-01-01

    Many bioactive peptides are featured by their arginine and lysine rich contents. In this study, lysine and arginine residues in lytic peptides were selectively replaced by histidines. Although resulted histidine-containing lytic peptides had decreased activity, they did show pH-dependent cytotoxicity. The activity of the constructed histidine-containing lytic peptides increased 2 ~ 8 times as the solution pH changed from of 7.4 to 5.5. More importantly, these histidine-containing peptides mai...

  7. Cell penetration to nanofibrous scaffolds

    Czech Academy of Sciences Publication Activity Database

    Rampichová, Michala; Buzgo, Matej; Chvojka, J.; Prosecká, Eva; Kofroňová, Olga; Amler, Evžen

    2014-01-01

    Roč. 8, č. 1 (2014), s. 36-41. ISSN 1933-6918 Grant ostatní: GA UK(CZ) 384311; GA UK(CZ) 626012; GA UK(CZ) 270513; GA UK(CZ) 330611; GA UK(CZ) 648112; GA MZd(CZ) NT12156; GA MŠk(CZ) project IPv6 Institutional support: RVO:68378041 ; RVO:61388971 Keywords : fibrous scaffold * mesenchymal stem cell s * Forcespinning (R) Subject RIV: FP - Other Medical Disciplines Impact factor: 4.505, year: 2014

  8. In silico rationally designed of a Peptide-mimic pharmacologic low mass predicted chemorecored poly-druggable-structure for the possible potentiating of the efficient delivery of gene constructs through for the internalization successes in experimental therapy of muscular dystrophies.

    OpenAIRE

    Ioannis Grigoriadis

    2015-01-01

    Poor cellular delivery and low bioavailability of novel potent therapeutic molecules continue to remain the bottleneck of modern cancer and gene therapy. Cell-penetrating peptides have provided immense opportunities for the intracellular delivery of bioactive cargos and have led to the first exciting successes in experimental therapy of muscular dystrophies. The arsenal of tools for oligonucleotide delivery has dramatically expanded in the last decade enabling harnessing of cell-surface recep...

  9. Antibacterial activity of novel cationic peptides against clinical isolates of multi-drug resistant Staphylococcus pseudintermedius from infected dogs.

    Science.gov (United States)

    Mohamed, Mohamed F; Hammac, G Kenitra; Guptill, Lynn; Seleem, Mohamed N

    2014-01-01

    Staphylococcus pseudintermedius is a major cause of skin and soft tissue infections in companion animals and has zoonotic potential. Additionally, methicillin-resistant S. pseudintermedius (MRSP) has emerged with resistance to virtually all classes of antimicrobials. Thus, novel treatment options with new modes of action are required. Here, we investigated the antimicrobial activity of six synthetic short peptides against clinical isolates of methicillin-susceptible and MRSP isolated from infected dogs. All six peptides demonstrated potent anti-staphylococcal activity regardless of existing resistance phenotype. The most effective peptides were RRIKA (with modified C terminus to increase amphipathicity and hydrophobicity) and WR-12 (α-helical peptide consisting exclusively of arginine and tryptophan) with minimum inhibitory concentration50 (MIC50) of 1 µM and MIC90 of 2 µM. RR (short anti-inflammatory peptide) and IK8 "D isoform" demonstrated good antimicrobial activity with MIC50 of 4 µM and MIC90 of 8 µM. Penetratin and (KFF)3K (two cell penetrating peptides) were the least effective with MIC50 of 8 µM and MIC90 of 16 µM. Killing kinetics revealed a major advantage of peptides over conventional antibiotics, demonstrating potent bactericidal activity within minutes. Studies with propidium iodide and transmission electron microscopy revealed that peptides damaged the bacterial membrane leading to leakage of cytoplasmic contents and consequently, cell death. A potent synergistic increase in the antibacterial effect of the cell penetrating peptide (KFF)3K was noticed when combined with other peptides and with antibiotics. In addition, all peptides displayed synergistic interactions when combined together. Furthermore, peptides demonstrated good therapeutic indices with minimal toxicity toward mammalian cells. Resistance to peptides did not evolve after 10 passages of S. pseudintermedius at sub-inhibitory concentration. However, the MICs of amikacin and

  10. Action of the multifunctional peptide BP100 on native biomembranes examined by solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Misiewicz, Julia [Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (Germany); Afonin, Sergii; Grage, Stephan L.; Berg, Jonas van den; Strandberg, Erik; Wadhwani, Parvesh [Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2) (Germany); Ulrich, Anne S., E-mail: anne.ulrich@kit.edu [Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (Germany)

    2015-04-15

    Membrane composition is a key factor that regulates the destructive activity of antimicrobial peptides and the non-leaky permeation of cell penetrating peptides in vivo. Hence, the choice of model membrane is a crucial aspect in NMR studies and should reflect the biological situation as closely as possible. Here, we explore the structure and dynamics of the short multifunctional peptide BP100 using a multinuclear solid-state NMR approach. The membrane alignment and mobility of this 11 amino acid peptide was studied in various synthetic lipid bilayers with different net charge, fluidity, and thickness, as well as in native biomembranes harvested from prokaryotic and eukaryotic cells. {sup 19}F-NMR provided the high sensitivity and lack of natural abundance background that are necessary to observe a labelled peptide even in protoplast membranes from Micrococcus luteus and in erythrocyte ghosts. Six selectively {sup 19}F-labeled BP100 analogues gave remarkably similar spectra in all of the macroscopically oriented membrane systems, which were studied under quasi-native conditions of ambient temperature and full hydration. This similarity suggests that BP100 has the same surface-bound helical structure and high mobility in the different biomembranes and model membranes alike, independent of charge, thickness or cholesterol content of the system. {sup 31}P-NMR spectra of the phospholipid components did not indicate any bilayer perturbation, so the formation of toroidal wormholes or micellarization can be excluded as a mechanism of its antimicrobial or cell penetrating action. However, {sup 2}H-NMR analysis of the acyl chain order parameter profiles showed that BP100 leads to considerable membrane thinning and thereby local destabilization.

  11. Chemical Methods for Peptide and Protein Production

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    2013-04-01

    Full Text Available Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported a-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  12. pACC1 peptide loaded chitosan nanoparticles induces apoptosis via reduced fatty acid synthesis in MDA-MB-231 cells

    Science.gov (United States)

    Kaliaperumal, Jagatheesh; Hari, Natarajan; Pavankumar, Padarthi; Elangovan, Namasivayam

    2016-06-01

    The development of formulations with therapeutic peptides has been restricted to poor cell penetration and in this attempt; we developed pACC1 peptide loaded chitosan nanoparticles. The prepared nanoparticles were characterized with FT-IR, XRD, SEM and TEM. In addition, the suitable formulation was evaluated for hemocompatibility, plasma stability and embryo toxicity using Danio rerio embryo model. The results showed that pACC1 peptide loaded chitosan nanoparticles were compatible with plasma. They possess sustained release pattern and also found to be safe up to 300 mg/L in embryo toxicity tests. Cytotoxicity assays with MDA-MB-231 cell lines suggested that, pACC1 peptide loaded chitosan nanoparticles were capable of enhanced cellular penetration and reduced palmitic acid content, which was confirmed by H1 NMR. Hence, these nanoparticles could be employed as excellent adjuvant therapeutics while treating solid tumors with multi-drug resistance.

  13. Smart silver nanoparticles: borrowing selectivity from conjugated polymers or antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Lihong Liu

    2014-06-01

    Full Text Available Silver nanoparticles (AgNPs as novel antimicrobial agents are gaining tremendous exploration in various medical fields due to their broad spectrum activity, efficacy and low cost. The major problem associated with the AgNPs treatment is their narrow therapeutic window. To address this inherent shortcoming, significant efforts have been dedicated to reduce AgNPs cell toxicity and improve their therapeutic index. In this brief review, the emphasis would be placed on development of the combined mechanisms which can enhance the antimicrobial action of AgNPs, arising from investigating the biological differences between microbial and mammalian cells. Using one of our selected antimicrobial cell penetration peptide conjugated AgNPs as an example, we demonstrated that antimicrobial peptides (AMPs anchored AgNPs produced enhanced antimicrobial activities, possibly through multimodal mechanisms including selective binding to microorganisms and producing the intracellularly controlled Ag+ release, thus, improving the therapeutic index of AgNPs.

  14. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen;

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2, wh...

  15. Urinary Peptide Levels in Patients with Chronic Renal Failure

    OpenAIRE

    Mungli Prakash; Phani, Nagaraj M; Kavya R; Supriya M

    2010-01-01

    Introduction: Peptide levels in urine are found to be decreased in renal failure. In the current study urinary peptide levels were determined in chronic renal failure (CRF) patients. Method: 86 CRF patients and 80 healthy controls were selected for the study. Urinary proteins and peptide levels were determined by spectrophotometer based Lowry and Bradford methods. Urinary creatinine levels were determined by clinical chemistry analyzer. Results: There was significant decrease in urinary pepti...

  16. Delivery of siRNA Complexed with Palmitoylated α-Peptide/β-Peptoid Cell-Penetrating Peptidomimetics: Membrane Interaction and Structural Characterization of a Lipid-Based Nanocarrier System

    DEFF Research Database (Denmark)

    Jing, Xiaona; Foged, Camilla; Martin-Bertelsen, Birte;

    2016-01-01

    for delivery of small interfering RNA (siRNA) to the cytosol by incorporation of a palmitoylated peptidomimetic construct into a cationic lipid-based nanocarrier system. The optimal construct was selected on the basis of the effect of palmitoylation and the influence of the length of the...... peptidomimetic on the interaction with model membranes and the cellular uptake. Palmitoylation enhanced the peptidomimetic adsorption to supported lipid bilayers as studied by ellipsometry. However, both palmitoylation and increased peptidomimetic chain length were found to be beneficial in the cellular uptake...... studies using fluorophore-labeled analogues. Thus, the longer palmitoylated peptidomimetic was chosen for further formulation of siRNA in a dioleoylphosphatidylethanolamine/cholesteryl hemisuccinate (DOPE/CHEMS) nanocarrier system, and the resulting nanoparticles were found to mediate efficient gene...

  17. Dual Myostatin and Dystrophin Exon Skipping by Morpholino Nucleic Acid Oligomers Conjugated to a Cell-penetrating Peptide Is a Promising Therapeutic Strategy for the Treatment of Duchenne Muscular Dystrophy

    OpenAIRE

    Malerba, Alberto; Kang, Jagjeet K; Mcclorey, Graham; Saleh, Amer F.; Popplewell, Linda; Gait, Michael J.; Wood, Matthew JA; Dickson, George

    2012-01-01

    The knockdown of myostatin, a negative regulator of skeletal muscle mass may have important implications in disease conditions accompanied by muscle mass loss like cancer, HIV/AIDS, sarcopenia, muscle atrophy, and Duchenne muscular dystrophy (DMD). In DMD patients, where major muscle loss has occurred due to a lack of dystrophin, the therapeutic restoration of dystrophin expression alone in older patients may not be sufficient to restore the functionality of the muscles. We recently demonstra...

  18. Designing of peptides with desired half-life in intestine-like environment

    KAUST Repository

    Sharma, Arun

    2014-08-20

    Background: In past, a number of peptides have been reported to possess highly diverse properties ranging from cell penetrating, tumor homing, anticancer, anti-hypertensive, antiviral to antimicrobials. Owing to their excellent specificity, low-toxicity, rich chemical diversity and availability from natural sources, FDA has successfully approved a number of peptide-based drugs and several are in various stages of drug development. Though peptides are proven good drug candidates, their usage is still hindered mainly because of their high susceptibility towards proteases degradation. We have developed an in silico method to predict the half-life of peptides in intestine-like environment and to design better peptides having optimized physicochemical properties and half-life.Results: In this study, we have used 10mer (HL10) and 16mer (HL16) peptides dataset to develop prediction models for peptide half-life in intestine-like environment. First, SVM based models were developed on HL10 dataset which achieved maximum correlation R/R2 of 0.57/0.32, 0.68/0.46, and 0.69/0.47 using amino acid, dipeptide and tripeptide composition, respectively. Secondly, models developed on HL16 dataset showed maximum R/R2 of 0.91/0.82, 0.90/0.39, and 0.90/0.31 using amino acid, dipeptide and tripeptide composition, respectively. Furthermore, models that were developed on selected features, achieved a correlation (R) of 0.70 and 0.98 on HL10 and HL16 dataset, respectively. Preliminary analysis suggests the role of charged residue and amino acid size in peptide half-life/stability. Based on above models, we have developed a web server named HLP (Half Life Prediction), for predicting and designing peptides with desired half-life. The web server provides three facilities; i) half-life prediction, ii) physicochemical properties calculation and iii) designing mutant peptides.Conclusion: In summary, this study describes a web server \\'HLP\\' that has been developed for assisting scientific

  19. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined.......To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  20. Antiviral activity of α-helical stapled peptides designed from the HIV-1 capsid dimerization domain

    Directory of Open Access Journals (Sweden)

    Cowburn David

    2011-05-01

    Full Text Available Abstract Background The C-terminal domain (CTD of HIV-1 capsid (CA, like full-length CA, forms dimers in solution and CTD dimerization is a major driving force in Gag assembly and maturation. Mutations of the residues at the CTD dimer interface impair virus assembly and render the virus non-infectious. Therefore, the CTD represents a potential target for designing anti-HIV-1 drugs. Results Due to the pivotal role of the dimer interface, we reasoned that peptides from the α-helical region of the dimer interface might be effective as decoys to prevent CTD dimer formation. However, these small peptides do not have any structure in solution and they do not penetrate cells. Therefore, we used the hydrocarbon stapling technique to stabilize the α-helical structure and confirmed by confocal microscopy that this modification also made these peptides cell-penetrating. We also confirmed by using isothermal titration calorimetry (ITC, sedimentation equilibrium and NMR that these peptides indeed disrupt dimer formation. In in vitro assembly assays, the peptides inhibited mature-like virus particle formation and specifically inhibited HIV-1 production in cell-based assays. These peptides also showed potent antiviral activity against a large panel of laboratory-adapted and primary isolates, including viral strains resistant to inhibitors of reverse transcriptase and protease. Conclusions These preliminary data serve as the foundation for designing small, stable, α-helical peptides and small-molecule inhibitors targeted against the CTD dimer interface. The observation that relatively weak CA binders, such as NYAD-201 and NYAD-202, showed specificity and are able to disrupt the CTD dimer is encouraging for further exploration of a much broader class of antiviral compounds targeting CA. We cannot exclude the possibility that the CA-based peptides described here could elicit additional effects on virus replication not directly linked to their ability to bind

  1. How Membrane-Active Peptides Get into Lipid Membranes.

    Science.gov (United States)

    Sani, Marc-Antoine; Separovic, Frances

    2016-06-21

    The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular

  2. Taurine Boosts Cellular Uptake of Small D-Peptides for Enzyme-Instructed Intracellular Molecular Self-Assembly.

    Science.gov (United States)

    Zhou, Jie; Du, Xuewen; Li, Jie; Yamagata, Natsuko; Xu, Bing

    2015-08-19

    Due to their biostability, D-peptides are emerging as an important molecular platform for biomedical applications. Being proteolytically resistant, D-peptides lack interactions with endogenous transporters and hardly enter cells. Here we show that taurine, a natural amino acid, drastically boosts the cellular uptake of small D-peptides in mammalian cells by >10-fold, from 118 μM (without conjugating taurine) to >1.6 mM (after conjugating taurine). The uptake of a large amount of the ester conjugate of taurine and D-peptide allows intracellular esterase to trigger intracellular self-assembly of the D-peptide derivative, further enhancing their cellular accumulation. The study on the mechanism of the uptake reveals that the conjugates enter cells via both dynamin-dependent endocytosis and macropinocytosis, but likely not relying on taurine transporters. Differing fundamentally from the positively charged cell-penetrating peptides, the biocompatibility, stability, and simplicity of the enzyme-cleavable taurine motif promise new ways to promote the uptake of bioactive molecules for countering the action of efflux pump and contributing to intracellular molecular self-assembly. PMID:26235707

  3. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  4. Peptider holder krabben rask

    DEFF Research Database (Denmark)

    Buchmann, Kurt

    Antimikrobielle Peptider har hos mere primitive dyr en vigtig funktion i organismernes immunforsvar Udgivelsesdato: 1. februar......Antimikrobielle Peptider har hos mere primitive dyr en vigtig funktion i organismernes immunforsvar Udgivelsesdato: 1. februar...

  5. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  6. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  7. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  8. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  9. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  10. Decreasing relative risk premium

    DEFF Research Database (Denmark)

    Hansen, Frank

    2007-01-01

    such that the corresponding relative risk premium is a decreasing function of present wealth, and we determine the set of associated utility functions. We find a new characterization of risk vulnerability and determine a large set of utility functions, closed under summation and composition, which are...... both risk vulnerable and have decreasing relative risk premium. We finally introduce the notion of partial risk neutral preferences on binary lotteries and show that partial risk neutrality is equivalent to preferences with decreasing relative risk premium...

  11. Decreasing Relative Risk Premium

    DEFF Research Database (Denmark)

    Hansen, Frank

    We consider the risk premium demanded by a decision maker with wealth x in order to be indifferent between obtaining a new level of wealth y1 with certainty, or to participate in a lottery which either results in unchanged present wealth or a level of wealth y2 > y1. We define the relative risk...... premium as the quotient between the risk premium and the increase in wealth y1–x which the decision maker puts on the line by choosing the lottery in place of receiving y1 with certainty. We study preferences such that the relative risk premium is a decreasing function of present wealth, and we determine....... Decreasing relative risk premium in the small implies decreasing relative risk premium in the large, and decreasing relative risk premium everywhere implies risk aversion. We finally show that preferences with decreasing relative risk premium may be equivalently expressed in terms of certain preferences on...

  12. [Plant signaling peptides. Cysteine-rich peptides].

    Science.gov (United States)

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation. PMID:26281357

  13. Integration of antimicrobial peptides with gold nanoparticles as unique non-viral vectors for gene delivery to mesenchymal stem cells with antibacterial activity.

    Science.gov (United States)

    Peng, Li-Hua; Huang, Yan-Fen; Zhang, Chen-Zhen; Niu, Jie; Chen, Ying; Chu, Yang; Jiang, Zhi-Hong; Gao, Jian-Qing; Mao, Zheng-Wei

    2016-10-01

    Gold nanoparticles (AuNPs) have emerged as attractive non-viral gene vectors. However their application in regenerative medicine is still limited partially due to a lack of an intrinsic capacity to transfect difficult-to-transfect cells such as primary cells or stem cells. In current study, we report the synthesis of antimicrobial peptide conjugated cationic AuNPs (AuNPs@PEP) as highly efficient carriers for gene delivery to stem cells with antibacterial ability. The AuNPs@PEP integrate the advantages of cationic AuNPs and antibacterial peptides: the presence of cationic AuNPs can effectively condense DNA and the antimicrobial peptides are essential for the cellular & nucleus entry enhancement to achieve high transfection efficiency and antibacterial ability. As a result, antimicrobial peptides conjugated AuNPs significantly promoted the gene transfection efficiency in rat mesenchymal stem cells than pristine AuNPs, with a similar extent to those expressed by TAT (a well-known cell-penetrating peptide) modified AuNPs. More interestingly, the combinational system has better antibacterial ability than free antimicrobial peptides in vitro and in vivo, possibly due to the high density of peptides on the surface of AuNPs. Finally we present the concept-proving results that AuPs@PEP can be used as a carrier for in vivo gene activation in tissue regeneration, suggesting its potential as a multifunctional system with both gene delivery and antibacterial abilities in clinic. PMID:27376562

  14. In vitro efficient transfection by CM₁₈-Tat₁₁ hybrid peptide: a new tool for gene-delivery applications.

    Directory of Open Access Journals (Sweden)

    Fabrizio Salomone

    Full Text Available Cell penetrating peptides (CPPs are actively researched as non-viral molecular carriers for the controlled delivery of nucleic acids into cells, but widespread application is severely hampered by their trapping into endosomes. Here we show that the recently introduced endosomolytic CM18-Tat11 hybrid peptide (KWKLFKKIGAVLKVLTTG-YGRKKRRQRRR, residues 1-7 of Cecropin-A, 2-12 of Melittin, and 47-57 of HIV-1 Tat protein can be exploited to obtain a self-assembled peptide-DNA vector which maintains the CM18-Tat11 ability to enter cells and destabilize vesicular membranes, concomitantly yielding high DNA transfection efficiency with no detectable cytotoxic effects. Different peptide-DNA stoichiometric ratios were tested to optimize vector size, charge, and stability characteristics. The transfection efficiency of selected candidates is quantitatively investigated by the luciferase-reporter assay. Vector intracellular trafficking is monitored in real time and in live cells by confocal microscopy. In particular, fluorescence resonant energy transfer (FRET between suitably-labeled peptide and DNA modules was exploited to monitor complex disassembly during endocytosis, and this process is correlated to transfection timing and efficiency. We argue that these results can open the way to the rational design and application of CM18-Tat11-based systems for gene-delivery purposes.

  15. In Vitro Efficient Transfection by CM18-Tat11 Hybrid Peptide: A New Tool for Gene-Delivery Applications

    Science.gov (United States)

    Salomone, Fabrizio; Cardarelli, Francesco; Signore, Giovanni; Boccardi, Claudia; Beltram, Fabio

    2013-01-01

    Cell penetrating peptides (CPPs) are actively researched as non-viral molecular carriers for the controlled delivery of nucleic acids into cells, but widespread application is severely hampered by their trapping into endosomes. Here we show that the recently introduced endosomolytic CM18-Tat11 hybrid peptide (KWKLFKKIGAVLKVLTTG-YGRKKRRQRRR, residues 1-7 of Cecropin-A, 2-12 of Melittin, and 47-57 of HIV-1 Tat protein) can be exploited to obtain a self-assembled peptide-DNA vector which maintains the CM18-Tat11 ability to enter cells and destabilize vesicular membranes, concomitantly yielding high DNA transfection efficiency with no detectable cytotoxic effects. Different peptide-DNA stoichiometric ratios were tested to optimize vector size, charge, and stability characteristics. The transfection efficiency of selected candidates is quantitatively investigated by the luciferase-reporter assay. Vector intracellular trafficking is monitored in real time and in live cells by confocal microscopy. In particular, fluorescence resonant energy transfer (FRET) between suitably-labeled peptide and DNA modules was exploited to monitor complex disassembly during endocytosis, and this process is correlated to transfection timing and efficiency. We argue that these results can open the way to the rational design and application of CM18-Tat11–based systems for gene-delivery purposes. PMID:23922923

  16. Can Money Laundering Decrease?

    OpenAIRE

    Brigitte Unger

    2013-01-01

    After two decades of research on money laundering, it seems time to look at what we know and what progress has been made in research. One simple question is whether we know if money laundering has increased, stayed constant, or decreased over these years. This article shows that over the last two decades, money laundering could hardly have decreased. This is largely because the concept of money laundering has broadened. However, there are also some hints that traditional areas of laundering s...

  17. Plant signalling peptides

    OpenAIRE

    Wiśniewska, Justyna; Trejgell, Alina; Tretyn, Andrzej

    2003-01-01

    Biochemical and genetic studies have identified peptides that play crucial roles in plant growth and development, including defence mechanisms in response to wounding by pests, the control of cell division and expansion, and pollen self-incompatibility. The first two signalling peptides to be described in plants were tomato systemin and phytosulfokine (PSK). There is also biochemical evidence that natriuretic peptide-like molecules, immunologically-relatedt o those found ...

  18. Critical Evaluation and Compilation of Physicochemical Determinants and Membrane Interactions of MMGP1 Antifungal Peptide.

    Science.gov (United States)

    Pushpanathan, Muthuirulan; Pooja, Sharma; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2016-05-01

    A growing issue of pathogen resistance to antibiotics has fostered the development of innovative approaches for novel drug development. Here, we report the physicochemical and biological properties of an antifungal peptide, MMGP1, based on computational analysis. Computation of physicochemical properties has revealed that the natural biological activities of MMGP1 are coordinated by its intrinsic properties such as net positive charge (+5.04), amphipathicity, high hydrophobicity, low hydrophobic moment, and higher isoelectric point (11.915). Prediction of aggregation hot spots in MMGP1 had revealed the presence of potentially aggregation-prone segments that can nucleate in vivo aggregation (on the membrane), whereas no aggregating regions were predicted for in vitro aggregation (in solutions) of MMGP1. This ability of MMGP1 to form oligomeric aggregates on membrane further substantiates its direct-cell penetrating potency. Monte Carlo simulation of the interactions of MMGP1 in the aqueous phase and different membrane environments revealed that increasing the proportion of acidic lipids on membrane had led to increase in the peptide helicity. Furthermore, the peptide adopts energetically favorable transmembrane configuration, by inserting peptide loop and helix termini into the membrane containing >60% of anionic lipids. The charged lipid-based insertion of MMGP1 into membrane might be responsible for the selectivity of peptide toward fungal cells. Additionally, MMGP1 possessed DNA-binding property. Computational docking has identified DNA-binding residues (TRP3, SER4, MET7, ARG8, PHE10, ALA11, GLY20, THR21, ARG22, MET23, TRP34, and LYS36) in MMGP1 crucial for its DNA-binding property. Furthermore, computational mutation analysis revealed that aromatic amino acids are crucial for in vivo aggregation, membrane insertion, and DNA-binding property of MMGP1. These data provide new insight into the molecular determinants of MMGP1 antifungal activity and also serves as

  19. Polycyclic peptide therapeutics.

    Science.gov (United States)

    Baeriswyl, Vanessa; Heinis, Christian

    2013-03-01

    Owing to their excellent binding properties, high stability, and low off-target toxicity, polycyclic peptides are an attractive molecule format for the development of therapeutics. Currently, only a handful of polycyclic peptides are used in the clinic; examples include the antibiotic vancomycin, the anticancer drugs actinomycin D and romidepsin, and the analgesic agent ziconotide. All clinically used polycyclic peptide drugs are derived from natural sources, such as soil bacteria in the case of vancomycin, actinomycin D and romidepsin, or the venom of a fish-hunting coil snail in the case of ziconotide. Unfortunately, nature provides peptide macrocyclic ligands for only a small fraction of therapeutic targets. For the generation of ligands of targets of choice, researchers have inserted artificial binding sites into natural polycyclic peptide scaffolds, such as cystine knot proteins, using rational design or directed evolution approaches. More recently, large combinatorial libraries of genetically encoded bicyclic peptides have been generated de novo and screened by phage display. In this Minireview, the properties of existing polycyclic peptide drugs are discussed and related to their interesting molecular architectures. Furthermore, technologies that allow the development of unnatural polycyclic peptide ligands are discussed. Recent application of these technologies has generated promising results, suggesting that polycyclic peptide therapeutics could potentially be developed for a broad range of diseases. PMID:23355488

  20. Decreasing serial cost sharing

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Østerdal, Lars Peter Raahave

    2009-01-01

    The increasing serial cost sharing rule of Moulin and Shenker (Econometrica 60:1009-1037, 1992) and the decreasing serial rule of de Frutos (J Econ Theory 79:245-275, 1998) are known by their intuitive appeal and striking incentive properties. An axiomatic characterization of the increasing serial...

  1. Decreasing Serial Cost Sharing

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Østerdal, Lars Peter

    The increasing serial cost sharing rule of Moulin and Shenker [Econometrica 60 (1992) 1009] and the decreasing serial rule of de Frutos [Journal of Economic Theory 79 (1998) 245] have attracted attention due to their intuitive appeal and striking incentive properties. An axiomatic characterization...

  2. Insulin C-peptide test

    Science.gov (United States)

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin produced by the body and insulin injected ...

  3. Human C-peptide. Pt. 1

    International Nuclear Information System (INIS)

    Synthetic human C-peptide bearing a tyrosine group at its amino end is labelled with 125iodine using chloramin T or hydrogen peroxide and lactoperoxidase. The results of the two methods are compared. Antiserum to synthetic human C-peptide (without tyrosine), which was partially coupled to rabbit albumin, is raised in guinea pigs and goats. Goats show to be superior to guinea pips concerning antibody production. The so-called 'hook effect' phenomenon is observed when setting up the standard curves for the radioimmunoassay. Monotonically decreasing standard curves are obtained on dilution of antiserum with a high antibody titer which was produced by repeated immunization in goats. Free C-peptide and C-peptide bound to antiserum are separated using the anion exchange resin amberlite. Using this separation technique we excluded unspecific binding of labelled C-peptide to protein fractions in serum of diabetics. The sensitivity of our radioimmunoassay is approx. 0.3 ng C-peptide/ml serum. Intra- and interassay variability are below 10%. Human proinsulin is the only substance found to crossreact with the antiserum. (orig.)

  4. N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis

    International Nuclear Information System (INIS)

    A peptide derived from the N-terminus of the unprocessed bovine prion protein (bPrPp), incorporating the hydrophobic signal sequence (residues 1-24) and a basic domain (KKRPKP, residues 25-30), internalizes into mammalian cells, even when coupled to a sizeable cargo, and therefore functions as a cell-penetrating peptide (CPP). Confocal microscopy and co-localization studies indicate that the internalization of bPrPp is mainly through macropinocytosis, a fluid-phase endocytosis process, initiated by binding to cell-surface proteoglycans. Electron microscopy studies show internalized bPrPp-DNA-gold complexes residing in endosomal vesicles. bPrPp induces expression of a complexed luciferase-encoding DNA plasmid, demonstrating the peptide's ability to transport the cargo across the endosomal membrane and into the cytosol and nucleus. The novel CPP activity of the unprocessed N-terminal domain of PrP could be important for the retrotranslocation of partly processed PrP and for PrP trafficking inside or between cells, with implications for the infectivity associated with prion diseases

  5. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from a...

  6. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.; Jørgensen, M.; Larsson, C.; Buchardt, O.; Stanly, C.J.; Norden, B.; Nielsen, P.E.; Ørum, H.

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields.......Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  7. Oxidative stress can alter the antigenicity of immunodominant peptides

    DEFF Research Database (Denmark)

    Weiskopf, Daniela; Schwanninger, Angelika; Weinberger, Birgit; Almanzar, Giovanni; Parson, Walther; Buus, Søren; Lindner, Herbert; Grubeck-Loebenstein, Beatrix

    2010-01-01

    APCs operate frequently under oxidative stress induced by aging, tissue damage, pathogens, or inflammatory responses. Phagocytic cells produce peroxides and free-radical species that facilitate pathogen clearance and can in the case of APCs, also lead to oxidative modifications of antigenic...... proteins and peptides. Little information is available presently about the consequences of such modifications on the immune response. To model oxidative modification of an immunodominant antigenic peptide, we oxidized the methionine residue of the human CMV pp65(495-503) (NLVPMVATV) peptide. Such...... modifications of an antigenic peptide can affect MHC binding or TCR recognition. Using binding and dissociation assays, we demonstrate that oxidative modification of the CMVpp65(495-503) peptide leads to a decreased binding of the pMHC complex to the TCR, whereas binding of the peptide to the MHC class I...

  8. Interaction of antimicrobial peptides with lipid membranes

    International Nuclear Information System (INIS)

    temperature decreased with increasing peptide concentration. At low alamethicin concentrations, both Im3m and Pn3m formed and coexisted with the hexagonal phase. As the concentration of the peptide increased, the amount of hexagonal phase and Im3m decreased, until only Pn3m remained. Same epitaxial relationships were observed as for POPE with melittin. Lipopolysaccharides (LPS), strains R595 and R60 and their ''endotoxic principle'' lipid A, were studied. Longer sugar-chain LPS R60 and lipid A form cubic phases and LPS R595 lamellar phases at the employed water content around 95%. Melittin induced several lamellar phases and a hexagonal phase in all LPS varieties. (orig.)

  9. Interaction of antimicrobial peptides with lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hanulova, Maria

    2008-12-15

    temperature decreased with increasing peptide concentration. At low alamethicin concentrations, both Im3m and Pn3m formed and coexisted with the hexagonal phase. As the concentration of the peptide increased, the amount of hexagonal phase and Im3m decreased, until only Pn3m remained. Same epitaxial relationships were observed as for POPE with melittin. Lipopolysaccharides (LPS), strains R595 and R60 and their ''endotoxic principle'' lipid A, were studied. Longer sugar-chain LPS R60 and lipid A form cubic phases and LPS R595 lamellar phases at the employed water content around 95%. Melittin induced several lamellar phases and a hexagonal phase in all LPS varieties. (orig.)

  10. Dimension decreasing of featurespace

    Czech Academy of Sciences Publication Activity Database

    Klimešová, Dana; Ocelíková, E.; Zolotová, I.

    Košice: TU Košice, 2008 - (Vokorokos,, L.), s. 49-53 ISBN 978-80-553-0066-5. [International Conference on Applied Electrical Engineering and Informatics 2008. Athens (GR), 08.09.2008-11.09.2008] Institutional research plan: CEZ:AV0Z10750506 Keywords : decision * feature space * dimension reduction * Karhunen - Loeve transformation * principal component method Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2008/ZOI/klimesova-dimension decreasing of featurespace.pdf

  11. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    Introduction: A frightening increase in the number of isolated multidrug resistant bacterial strains linked to the decline in novel antimicrobial drugs entering the market is a great cause for concern. Cationic antimicrobial peptides (AMPs) have lately been introduced as a potential new class of...... antimicrobial drugs, and computational methods utilizing molecular descriptors can significantly accelerate the development of new peptide drug candidates. Areas covered: This paper gives a broad overview of peptide and amino-acid scale descriptors available for AMP modeling and highlights which of these are...

  12. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.;

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  13. Developing a Dissociative Nanocontainer for Peptide Drug Delivery

    Directory of Open Access Journals (Sweden)

    Patrick Kelly

    2015-10-01

    Full Text Available The potency, selectivity, and decreased side effects of bioactive peptides have propelled these agents to the forefront of pharmacological research. Peptides are especially promising for the treatment of neurological disorders and pain. However, delivery of peptide therapeutics often requires invasive techniques, which is a major obstacle to their widespread application. We have developed a tailored peptide drug delivery system in which the viral capsid of P22 bacteriophage is modified to serve as a tunable nanocontainer for the packaging and controlled release of bioactive peptides. Recent efforts have demonstrated that P22 nanocontainers can effectively encapsulate analgesic peptides and translocate them across blood-brain-barrier (BBB models. However, release of encapsulated peptides at their target site remains a challenge. Here a Ring Opening Metathesis Polymerization (ROMP reaction is applied to trigger P22 nanocontainer disassembly under physiological conditions. Specifically, the ROMP substrate norbornene (5-Norbornene-2-carboxylic acid is conjugated to the exterior of a loaded P22 nanocontainer and Grubbs II Catalyst is used to trigger the polymerization reaction leading to nanocontainer disassembly. Our results demonstrate initial attempts to characterize the ROMP-triggered release of cargo peptides from P22 nanocontainers. This work provides proof-of-concept for the construction of a triggerable peptide drug delivery system using viral nanocontainers.

  14. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    ErkkiRuoslahti

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular “zip code” of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  15. Introduction to Peptide Synthesis

    OpenAIRE

    Stawikowski, Maciej; Fields, Gregg B.

    2002-01-01

    A number of synthetic peptides are significant commercial or pharmaceutical products, ranging from the dipeptide sugar-substitute aspartame to clinically used hormones, such as oxytocin, adrenocorticotropic hormone, and calcitonin. This unit provides an overview of the field of synthetic peptides and proteins. It discusses selecting the solid support and common coupling reagents. Additional information is provided regarding common side reactions and synthesizing modified residues.

  16. Cell surface binding and uptake of arginine- and lysine-rich penetratin peptides in absence and presence of proteoglycans

    KAUST Repository

    Åmand, Helene L.

    2012-11-01

    Cell surface proteoglycans (PGs) appear to promote uptake of arginine-rich cell-penetrating peptides (CPPs), but their exact functions are unclear. To address if there is specificity in the interactions of arginines and PGs leading to improved internalization, we used flow cytometry to examine uptake in relation to cell surface binding for penetratin and two arginine/lysine substituted variants (PenArg and PenLys) in wildtype CHO-K1 and PG-deficient A745 cells. All peptides were more efficiently internalized into CHO-K1 than into A745, but their cell surface binding was independent of cell type. Thus, PGs promote internalization of cationic peptides, irrespective of the chemical nature of their positive charges. Uptake of each peptide was linearly dependent on its cell surface binding, and affinity is thus important for efficiency. However, the gradients of these linear dependencies varied significantly. Thus each peptide\\'s ability to stimulate uptake once bound to the cell surface is reliant on formation of specific uptake-promoting interactions. Heparin affinity chromatography and clustering experiments showed that penetratin and PenArg binding to sulfated sugars is stabilized by hydrophobic interactions and result in clustering, whereas PenLys only interacts through electrostatic attraction. This may have implications for the molecular mechanisms behind arginine-specific uptake stimulation as penetratin and PenArg are more efficiently internalized than PenLys upon interaction with PGs. However, PenArg is also least affected by removal of PGs. This indicates that an increased arginine content not only improve PG-dependent uptake but also that PenArg is more adaptable as it can use several portals of entry into the cell. © 2012 Elsevier B.V.

  17. Antimicrobial Peptides from Plants

    Science.gov (United States)

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  18. Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    James P. Tam

    2015-11-01

    Full Text Available Plant antimicrobial peptides (AMPs have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic, lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.

  19. Electromembrane extraction of peptides.

    Science.gov (United States)

    Balchen, Marte; Reubsaet, Léon; Pedersen-Bjergaard, Stig

    2008-06-20

    Rapid extraction of eight different peptides using electromembrane extraction (EME) was demonstrated for the first time. During an extraction time of 5 min, the model peptides migrated from a 500 microL aqueous acidic sample solution, through a thin supported liquid membrane (SLM) of an organic liquid sustained in the pores in the wall of a porous hollow fiber, and into a 25 microL aqueous acidic acceptor solution present inside the lumen of the hollow fiber. The driving force of the extraction was a 50 V potential sustained across the SLM, with the positive electrode in the sample and the negative electrode in the acceptor solution. The nature and the composition of the SLM were highly important for the EME process, and a mixture of 1-octanol and 15% di(2-ethylhexyl) phosphate was found to work properly. Using 1mM HCl as background electrolyte in the sample and 100 mM HCl in the acceptor solution, and agitation at 1050 rpm, enrichment up to 11 times was achieved. Recoveries were found to be dependent on the structure of the peptide, indicating that the polarity and the number of ionized groups were important parameters affecting the extraction efficiency. The experimental findings suggested that electromembrane extraction of peptides is possible and may be a valuable tool for future extraction of peptides. PMID:18479691

  20. Synthetic antibiofilm peptides.

    Science.gov (United States)

    de la Fuente-Núñez, César; Cardoso, Marlon Henrique; de Souza Cândido, Elizabete; Franco, Octavio Luiz; Hancock, Robert E W

    2016-05-01

    Bacteria predominantly exist as multicellular aggregates known as biofilms that are associated with at least two thirds of all infections and exhibit increased adaptive resistance to conventional antibiotic therapies. Therefore, biofilms are major contributors to the global health problem of antibiotic resistance, and novel approaches to counter them are urgently needed. Small molecules of the innate immune system called host defense peptides (HDPs) have emerged as promising templates for the design of potent, broad-spectrum antibiofilm agents. Here, we review recent developments in the new field of synthetic antibiofilm peptides, including mechanistic insights, synergistic interactions with available antibiotics, and their potential as novel antimicrobials against persistent infections caused by biofilms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26724202

  1. Apolipoprotein E mimetic peptide protects against diffuse brain injur y

    Institute of Scientific and Technical Information of China (English)

    Yaning Zhao; Jianmin Li; Qiqun Tang; Junling Gao; Changxiang Chen; Liwei Jing; Pan Zhang; Shuxing Li

    2014-01-01

    Apolipoprotein E plays a crucial role in inhibiting chronic neurodegenerative processes. Howev-er, its impact on neurological function following diffuse brain injury is still unclear. This study was designed to evaluate the therapeutic effects and mechanisms of action of apolipoprotein E mimetic peptide on diffuse brain injury. Apolipoprotein E mimetic peptide was administered into the caudal vein of rats with diffuse brain injury before and after injury. We found that apo-lipoprotein E mimetic peptide signiifcantly decreased the number of apoptotic neurons, reduced extracellular signal-regulated kinase1/2 phosphorylation, down-regulated Bax and cytochrome c expression, decreased malondialdehyde content, and increased superoxide dismutase activity in a dose-dependent manner. These experimental ifndings demonstrate that apolipoprotein E mimetic peptide improves learning and memory function and protects against diffuse brain injury-induced apoptosis by inhibiting the extracellular signal-regulated kinase1/2-Bax mito-chondrial apoptotic pathway.

  2. Biomimetic peptide nanosensors.

    Science.gov (United States)

    Cui, Yue; Kim, Sang N; Naik, Rajesh R; McAlpine, Michael C

    2012-05-15

    The development of a miniaturized sensing platform tailored for sensitive and selective detection of a variety of biochemical analytes could offer transformative fundamental and technological opportunities. Due to their high surface-to-volume ratios, nanoscale materials are extremely sensitive sensors. Likewise, peptides represent robust substrates for selective recognition due to the potential for broad chemical diversity within their relatively compact size. Here we explore the possibilities of linking peptides to nanosensors for the selective detection of biochemical targets. Such systems raise a number of interesting fundamental challenges: What are the peptide sequences, and how can rational design be used to derive selective binders? What nanomaterials should be used, and what are some strategies for assembling hybrid nanosensors? What role does molecular modeling play in elucidating response mechanisms? What is the resulting performance of these sensors, in terms of sensitivity, selectivity, and response time? What are some potential applications? This Account will highlight our early attempts to address these research challenges. Specifically, we use natural peptide sequences or sequences identified from phage display as capture elements. The sensors are based on a variety of nanomaterials including nanowires, graphene, and carbon nanotubes. We couple peptides to the nanomaterial surfaces via traditional surface functionalization methods or self-assembly. Molecular modeling provides detailed insights into the hybrid nanostructure, as well as the sensor detection mechanisms. The peptide nanosensors can distinguish chemically camouflaged mixtures of vapors and detect chemical warfare agents with sensitivities as low as parts-per-billion levels. Finally, we anticipate future uses of this technology in biomedicine: for example, devices based on these sensors could detect disease from the molecular components in human breath. Overall, these results provide a

  3. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  4. Cationic Antimicrobial Peptide Cytotoxicity

    OpenAIRE

    Laverty, Garry; Gilmore, Brendan

    2014-01-01

    Fluorescence microscopy serves as a valuable tool for assessing the structural integrity and viability of eukaryotic cells. Through the use of calcein AM and the DNA stain 4,6-diamidino-2 phenylindole (DAPI), cell viability and membrane integrity can be qualified. Our group has previously shown the ultra-short cationic antimicrobial peptide H-OOWW-NH2; the amphibian derived 27-mer peptide Maximin-4and the ultra-short lipopeptide C12-OOWW-NH2 to be effective against a range of bacterial biofil...

  5. A DJ-1 Based Peptide Attenuates Dopaminergic Degeneration in Mice Models of Parkinson's Disease via Enhancing Nrf2.

    Directory of Open Access Journals (Sweden)

    Nirit Lev

    Full Text Available Drugs currently used for treating Parkinson's disease patients provide symptomatic relief without altering the neurodegenerative process. Our aim was to examine the possibility of using DJ-1 (PARK7, as a novel therapeutic target for Parkinson's disease. We designed a short peptide, named ND-13. This peptide consists of a 13 amino acids segment of the DJ-1-protein attached to 7 amino acids derived from TAT, a cell penetrating protein. We examined the effects of ND-13 using in vitro and in vivo experimental models of Parkinson's disease. We demonstrated that ND-13 protects cultured cells against oxidative and neurotoxic insults, reduced reactive oxygen species accumulation, activated the protective erythroid-2 related factor 2 system and increased cell survival. ND-13 robustly attenuated dopaminergic system dysfunction and in improved the behavioral outcome in the 6-hydroxydopamine mouse model of Parkinson's disease, both in wild type and in DJ-1 knockout mice. Moreover, ND-13 restored dopamine content in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model. These findings validate DJ-1 as a promising therapeutic target in Parkinson's disease and identify a novel peptide with clinical potential, which may be significant for a broader range of neurological diseases, possibly with an important impact for the neurosciences.

  6. Calpastatin exon 1B-derived peptide, a selective inhibitor of calpain: enhancing cell permeability by conjugation with penetratin.

    Science.gov (United States)

    Gil-Parrado, Shirley; Assfalg-Machleidt, Irmgard; Fiorino, Ferdinando; Deluca, Dominga; Pfeiler, Dietmar; Schaschke, Norbert; Moroder, Luis; Machleidt, Werner

    2003-03-01

    The ubiquitous calpains, mu- and m-calpain, have been implicated in essential physiological processes and various pathologies. Cell-permeable specific inhibitors are important tools to elucidate the roles of calpains in cultivated cells and animal models. The synthetic N-acetylated 27-mer peptide derived from exon B of the inhibitory domain 1 of human calpastatin (CP1B) is unique as a potent and highly selective reversible calpain inhibitor, but is poorly cell-permeant. By addition of N-terminal cysteine residues we have generated a disulfide-conjugated CP1B with the cell-penetrating 16-mer peptide penetratin derived from the third helix of the Antennapedia homeodomain protein. The inhibitory potency and selectivity of CP1B for calpain versus cathepsin B and L, caspase 3 and the proteasome was not affected by the conjugation with penetratin. The conjugate was shown to efficiently penetrate into living LCLC 103H cells, since it prevents ionomycin-induced calpain activation at 200-fold lower concentration than the non-conjugated inhibitor and is able to reduce calpain-triggered apoptosis of these cells. Penetratin-conjugated CP1B seems to be a promising alternative to the widely used cell-permeable peptide aldehydes (e.g. calpain inhibitor 1) which inhibit the lysosomal cathepsins and partially the proteasome as well or even better than the calpains. PMID:12715890

  7. Conformational changes in Sindbis virions resulting from exposure to low pH and interactions with cells suggest that cell penetration may occur at the cell surface in the absence of membrane fusion

    International Nuclear Information System (INIS)

    Alphaviruses have the ability to induce cell-cell fusion after exposure to acid pH. This observation has served as an article of proof that these membrane-containing viruses infect cells by fusion of the virus membrane with a host cell membrane upon exposure to acid pH after incorporation into a cell endosome. We have investigated the requirements for the induction of virus-mediated, low pH-induced cell-cell fusion and cell-virus fusion. We have correlated the pH requirements for this process to structural changes they produce in the virus by electron cryo-microscopy. We found that exposure to acid pH was required to establish conditions for membrane fusion but that membrane fusion did not occur until return to neutral pH. Electron cryo-microscopy revealed dramatic changes in the structure of the virion as it was moved to acid pH and then returned to neutral pH. None of these treatments resulted in the disassembly of the virus protein icosahedral shell that is a requisite for the process of virus membrane-cell membrane fusion. The appearance of a prominent protruding structure upon exposure to acid pH and its disappearance upon return to neutral pH suggested that the production of a 'pore'-like structure at the fivefold axis may facilitate cell penetration as has been proposed for polio (J. Virol. 74 (2000) 1342) and human rhino virus (Mol. Cell 10 (2002) 317). This transient structural change also provided an explanation for how membrane fusion occurs after return to neutral pH. Examination of virus-cell complexes at neutral pH supported the contention that infection occurs at the cell surface at neutral pH by the production of a virus structure that breaches the plasma membrane bilayer. These data suggest an alternative route of infection for Sindbis virus that occurs by a process that does not involve membrane fusion and does not require disassembly of the virus protein shell

  8. In silico approach for predicting toxicity of peptides and proteins.

    Directory of Open Access Journals (Sweden)

    Sudheer Gupta

    Full Text Available BACKGROUND: Over the past few decades, scientific research has been focused on developing peptide/protein-based therapies to treat various diseases. With the several advantages over small molecules, including high specificity, high penetration, ease of manufacturing, peptides have emerged as promising therapeutic molecules against many diseases. However, one of the bottlenecks in peptide/protein-based therapy is their toxicity. Therefore, in the present study, we developed in silico models for predicting toxicity of peptides and proteins. DESCRIPTION: We obtained toxic peptides having 35 or fewer residues from various databases for developing prediction models. Non-toxic or random peptides were obtained from SwissProt and TrEMBL. It was observed that certain residues like Cys, His, Asn, and Pro are abundant as well as preferred at various positions in toxic peptides. We developed models based on machine learning technique and quantitative matrix using various properties of peptides for predicting toxicity of peptides. The performance of dipeptide-based model in terms of accuracy was 94.50% with MCC 0.88. In addition, various motifs were extracted from the toxic peptides and this information was combined with dipeptide-based model for developing a hybrid model. In order to evaluate the over-optimization of the best model based on dipeptide composition, we evaluated its performance on independent datasets and achieved accuracy around 90%. Based on above study, a web server, ToxinPred has been developed, which would be helpful in predicting (i toxicity or non-toxicity of peptides, (ii minimum mutations in peptides for increasing or decreasing their toxicity, and (iii toxic regions in proteins. CONCLUSION: ToxinPred is a unique in silico method of its kind, which will be useful in predicting toxicity of peptides/proteins. In addition, it will be useful in designing least toxic peptides and discovering toxic regions in proteins. We hope that the

  9. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac p...... competent endocrine cells. The structurally related atrial natriuretic peptide will be mentioned where appropriate, whereas C-type natriuretic peptide will not be considered as a cardiac peptide of relevance in mammalian physiology....... characterized. An ongoing characterization of the molecular heterogeneity will help appreciate the biosynthetic capacity of the endocrine heart and could introduce new diagnostic possibilities. Notably, different biosynthetic products may not be equal markers of the same pathophysiological processes. An...... inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  10. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...... inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...... competent endocrine cells. The structurally related atrial natriuretic peptide will be mentioned where appropriate, whereas C-type natriuretic peptide will not be considered as a cardiac peptide of relevance in mammalian physiology....

  11. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    Science.gov (United States)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  12. Blocking protein phosphatase 2A signaling prevents endothelial-to-mesenchymal transition and renal fibrosis: a peptide-based drug therapy

    Science.gov (United States)

    Deng, Yuanjun; Guo, Yanyan; Liu, Ping; Zeng, Rui; Ning, Yong; Pei, Guangchang; Li, Yueqiang; Chen, Meixue; Guo, Shuiming; Li, Xiaoqing; Han, Min; Xu, Gang

    2016-01-01

    Endothelial-to-mesenchymal transition (EndMT) contributes to the emergence of fibroblasts and plays a significant role in renal interstitial fibrosis. Protein phosphatase 2A (PP2A) is a major serine/threonine protein phosphatase in eukaryotic cells and regulates many signaling pathways. However, the significance of PP2A in EndMT is poorly understood. In present study, the role of PP2A in EndMT was evaluated. We demonstrated that PP2A activated in endothelial cells (EC) during their EndMT phenotype acquisition and in the mouse model of obstructive nephropathy (i.e., UUO). Inhibition of PP2A activity by its specific inhibitor prevented EC undergoing EndMT. Importantly, PP2A activation was dependent on tyrosine nitration at 127 in the catalytic subunit of PP2A (PP2Ac). Our renal-protective strategy was to block tyrosine127 nitration to inhibit PP2A activation by using a mimic peptide derived from PP2Ac conjugating a cell penetrating peptide (CPP: TAT), termed TAT-Y127WT. Pretreatment withTAT-Y127WT was able to prevent TGF-β1-induced EndMT. Administration of the peptide to UUO mice significantly ameliorated renal EndMT level, with preserved density of peritubular capillaries and reduction in extracellular matrix deposition. Taken together, these results suggest that inhibiting PP2Ac nitration using a mimic peptide is a potential preventive strategy for EndMT in renal fibrosis.

  13. Peptide iodination on phenylalanine residues

    International Nuclear Information System (INIS)

    Peptide labelling with radioactive isotopes is always a compromise between peptide chemistry, labelling chemistry, and biological receptor tolerance. Therefore new ways for isotope introduction are always useful. The present contribution describes the introduction of iodine isotopes onto synthetic polypeptides by means of the Gattermann/ Sandmeyer reactions. Peptides containing the nitrophenylalanyl residue are reduced to the corresponding aminophenylalanyl, diazolized to the diazonium phenylalanyl peptide and converted to the iodophenylalanyl peptide in the presence of copper. Two examples are presented: angiotensin II and enkephalin. In both cases, the iodophenylalanyl residue is well accepted by the biological target. (author). 13 refs.; 4 figs

  14. Radiolabelled peptides for oncological diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Boerman, Otto C.; Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Queen Mary University of London, Centre for Molecular Oncology, Barts Cancer Institute, London (United Kingdom)

    2012-02-15

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The {sup 111}In-labelled somatostatin analogue octreotide (OctreoScan trademark) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours. (orig.)

  15. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  16. Antimicrobial peptides in crustaceans

    OpenAIRE

    RD Rosa; MA Barracco

    2010-01-01

    Crustaceans are a large and diverse invertebrate animal group that mounts a complex and efficient innate immune response against a variety of microorganisms. The crustacean immune system is primarily related to cellular responses and the production and release of important immune effectors into the hemolymph. Antimicrobial proteins and/or peptides (AMPs) are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, 15 distinct AMP fam...

  17. [Brain natriuretic peptide].

    Science.gov (United States)

    La Villa, G; Lazzeri, C; Fronzaroli, C; Franchi, F; Gentilini, P

    1995-01-01

    Brain natriuretic peptide (BNP) is a cardiac hormone with a spectrum of activities quite similar to those of atrial natriuretic peptide (ANP), including diuretic, natriuretic, hypotensive and smooth muscle relaxant activities. These effects are due to the stimulation of guanylate cyclase-linked natriuretic peptide receptors, leading to an increase in cyclic GMP concentration in target cells. BNP has a lower affinity than ANP for C (clearance) receptors, and is less susceptible to degradation by neutral endopeptidase-24.11, resulting in a longer half-life. In the kidney, BNP increases the glomerular filtration rate and inhibits sodium reabsorption in the distal tubule. It also inhibits the release of renin and aldosterone. Unlike ANP, produced by the atria, BNP is mainly synthesized and released into circulation by the left ventricle and is therefore influenced by stimuli involving this cardiac chamber, such as an increase in arterial pressure, left ventricular hypertrophy and dilation. Plasma BNP levels are very low in healthy subjects, and respond modestly, although significantly to physiological stimuli such as changes in posture or sodium intake. In contrast, plasma BNP concentrations increase in disease states such as cirrhosis with ascites, hypertension, chronic renal failure, acute myocardial infarction and congestive heart failure. In the latter condition, plasma BNP concentration is a reliable prognostic index. Evidence obtained by administering BNP to healthy subjects and hypertensive patients suggests that BNP, at physiological and pathophysiological plasma concentrations, markedly influences cardiovascular homeostasis, mainly due to its effects on sodium excretion and the renin-aldosterone axis. PMID:8718658

  18. Immature transformed rat islet beta-cells differentially express C-peptides derived from the genes coding for insulin I and II as well as a transfected human insulin gene

    DEFF Research Database (Denmark)

    Blume, N; Petersen, J S; Andersen, L C;

    1992-01-01

    Synthetic peptides representing unique sequences in rat proinsulin C-peptide I and II were used to generate highly specific antisera, which, when applied on sections of normal rat pancreas, confirm a homogeneous coexpression of the two C-peptides in all islet beta-cells. Insulin gene expression is...... insulin-producing cells showed highly differential expression at the cellular level of the three proinsulin C-peptide immunoreactivities, as follows: C-peptide I greater than human C-peptide greater than C-peptide II. The fractions of cells expressing human C-peptide and C-peptide II decreased in time and...... species of proinsulin-C-peptide immunoreactivity but still at high levels. However, rat C-peptide II and human C-peptide were often colocalized, even in later passages. In situ hybridization studies combined with the immunocytochemical data suggest that the differential expression occurs at the level of...

  19. Multifunctional PEGylated 2C5-Immunoliposomes Containing pH-sensitive Bonds and TAT Peptide for Enhanced Tumor Cell Internalization and Cytotoxicity

    OpenAIRE

    Koren, Erez; Apte, Anjali; Jani, Ankur; Torchilin, Vladimir P.

    2011-01-01

    pH-sensitive PEGylated (with PEG-PE) long-circulating liposomes (HSPC:cholesterol and Doxil®), modified with cell-penetrating TAT peptide (TATp) moieties and cancer-specific mAb 2C5 were prepared. A degradable pH-sensitive hydrazone bond between a long shielding PEG chains and PE (PEG2k-Hz-PE) was introduced. TATp was conjugated with a short PEG1k-PE spacer and mAb 2C5 was attached to a long PEG chain (2C5-PEG3.4k-PE). The “shielding” effect of TATp by long PEG chains was investigated using t...

  20. Cellular Uptake and Photo-Cytotoxicity of a Gadolinium(III-DOTA-Naphthalimide Complex “Clicked” to a Lipidated Tat Peptide

    Directory of Open Access Journals (Sweden)

    William I. O’Malley

    2016-02-01

    Full Text Available A new bifunctional macrocyclic chelator featuring a conjugatable alkynyl-naphthalimide fluorophore pendant group has been prepared and its Gd(III complex coupled to a cell-penetrating lipidated azido-Tat peptide derivative using Cu(I-catalysed “click” chemistry. The resulting fluorescent conjugate is able to enter CAL-33 tongue squamous carcinoma cells, as revealed by confocal microscopy, producing a very modest anti-proliferative effect (IC50 = 93 µM. Due to the photo-reactivity of the naphthalimide moiety, however, the conjugate’s cytotoxicity is significantly enhanced (IC50 = 16 µM upon brief low-power UV-A irradiation.

  1. Oxidation of proline decreases immunoreactivity and alters structure of barley prolamin.

    Science.gov (United States)

    Huang, Xin; Sontag-Strohm, Tuula; Stoddard, Frederick L; Kato, Yoji

    2017-01-01

    Elimination of celiac-toxic prolamin peptides and proteins is essential for Triticeae products to be gluten-free. Instead of enzymatic hydrolysis, in this study we investigated metal-catalyzed oxidation of two model peptides, QQPFP, and PQPQLPY, together with a hordein isolate from barley (Hordeum vulgare L.). We established a multiple reaction monitoring (MRM) LC-MS method to detect and quantify proline oxidation fragments. In addition to fragmentation, aggregation and side chain modifications were identified, including free thiol loss, carbonyl formation, and dityrosine formation. The immunoreactivity of the oxidized hordein isolate was considerably decreased in all metal-catalyzed oxidation systems. Cleavage of peptides or protein fragments at the numerous proline residues partially accounts for the decrease. Metal-catalyzed oxidation can thus be used in the modification and elimination of celiac-toxic peptides and proteins. PMID:27507515

  2. Accurate Peptide Fragment Mass Analysis: Multiplexed Peptide Identification and Quantification

    OpenAIRE

    Weisbrod, Chad R.; Eng, Jimmy K.; Hoopmann, Michael R.; Baker, Tahmina; Bruce, James E.

    2012-01-01

    FT All Reaction Monitoring (FT-ARM) is a novel approach for the identification and quantification of peptides that relies upon the selectivity of high mass accuracy data and the specificity of peptide fragmentation patterns. An FT-ARM experiment involves continuous, data-independent, high mass accuracy MS/MS acquisition spanning a defined m/z range. Custom software was developed to search peptides against the multiplexed fragmentation spectra by comparing theoretical or empirical fragment ion...

  3. CXCR4-antagonist Peptide R-liposomes for combined therapy against lung metastasis.

    Science.gov (United States)

    Ieranò, Caterina; Portella, Luigi; Lusa, Sara; Salzano, Giuseppina; D'Alterio, Crescenzo; Napolitano, Maria; Buoncervello, Maria; Macchia, Daniele; Spada, Massimo; Barbieri, Antonio; Luciano, Antonio; Barone, Maria Vittoria; Gabriele, Lucia; Caraglia, Michele; Arra, Claudio; De Rosa, Giuseppe; Scala, Stefania

    2016-03-31

    The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide R were developed (PL-Peptide R). In vitro PL-Peptide R efficiently inhibited CXCR4-dependent migration and in vivo it significantly reduced lung metastases and increased overall survival in B16-CXCR4 injected C57BL/6 mice. To evaluate if PL-Peptide R could also be a drug delivery system for CXCR4 expressing tumors, the PL-Peptide R was loaded with doxorubicin (DOX) (PL-Peptide R-DOX). PL-Peptide R-DOX efficiently delivered DOX to CXCR4 expressing cell lines with a consequent decrease in the DOX IC50 efficient dose. In vivo, B16-CXCR4 injected C57BL/6 mice treated with PL-Peptide R-DOX developed fewer lung metastases compared to PL-DOX treated mice. This work provides the proof-of-concept to prevent metastasis by using combined nanomedicine. PMID:26983756

  4. NCAM Mimetic Peptides: An Update

    DEFF Research Database (Denmark)

    Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    pharmacological tools interfering with NCAM functions. Recent progress in our understanding of the structural basis of NCAM-mediated cell adhesion and signaling has allowed a structure-based design of NCAM mimetic peptides. Using this approach a number of peptides termed P2, P1-B, P-3-DE and P-3-G, whose...... sequences contain one or several NCAM homophilic binding sites involved in NCAM binding to itself, have been identified. By means of NMR titration analysis and molecular modeling a number of peptides derived from NCAM and targeting NCAM heterophilic ligands such as the fibroblast growth factor receptor and...... heparan sulfate proteoglycans (HSPG) have been identified. The FGL, dekaCAM, FRM/EncaminA, BCL, EncaminC and EncaminE peptides all target the FGF receptor whereas the heparin binding peptide HBP targets HSPG. Moreover, a number of NCAM binding peptides have been identified employing screening of...

  5. A genomic approach highlights common and diverse effects and determinants of susceptibility on the yeast Saccharomyces cerevisiae exposed to distinct antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Muñoz Alberto

    2010-11-01

    Full Text Available Abstract Background The mechanism of action of antimicrobial peptides (AMP was initially correlated with peptide membrane permeation properties. However, recent evidences indicate that action of a number of AMP is more complex and involves specific interactions at cell envelopes or with intracellular targets. In this study, a genomic approach was undertaken on the model yeast Saccharomyces cerevisiae to characterize the antifungal effect of two unrelated AMP. Results Two differentiated peptides were used: the synthetic cell-penetrating PAF26 and the natural cytolytic melittin. Transcriptomic analyses demonstrated distinctive gene expression changes for each peptide. Quantitative RT-PCR confirmed differential expression of selected genes. Gene Ontology (GO annotation of differential gene lists showed that the unique significant terms shared by treatment with both peptides were related to the cell wall (CW. Assays with mutants lacking CW-related genes including those of MAPK signaling pathways revealed genes having influence on sensitivity to peptides. Fluorescence microscopy and flow cytometry demonstrated PAF26 interaction with cells and internalization that correlated with cell killing in sensitive CW-defective mutants such as Δecm33 or Δssd1. GO annotation also showed differential responses between peptides, which included ribosomal biogenesis, ARG genes from the metabolism of amino groups (specifically induced by PAF26, or the reaction to unfolded protein stress. Susceptibility of deletion mutants confirmed the involvement of these processes. Specifically, mutants lacking ARG genes from the metabolism of arginine pathway were markedly more resistant to PAF26 and had a functional CW. In the deletant in the arginosuccinate synthetase (ARG1 gene, PAF26 interaction occurred normally, thus uncoupling peptide interaction from cell killing. The previously described involvement of the glycosphingolipid gene IPT1 was extended to the peptides studied

  6. Cellular penetration and nuclear importation properties of 111In-labeled and 123I-labeled HIV-1 tat peptide immunoconjugates in BT-474 human breast cancer cells

    International Nuclear Information System (INIS)

    Introduction: Our objective was to compare the cell penetration and nuclear importation properties of 111In-labeled and 123I-labeled immunoconjugates (ICs) composed of 16-mer peptides (GRKKRRQRRRPPQGYG) derived from HIV-1 transactivator of transcription (tat) protein and anti-mouse IgG (mIgG) in BT-474 breast cancer (BC) cells. Methods: [111In]tat ICs were constructed by site-specific conjugation of tat peptides to NaIO4--oxidized carbohydrates in the Fc domain of diethylenetriaminepentaacetic-acid-modified anti-mIgG antibodies. Immunoreactivity against mIgG was assessed in a competition assay. The kinetics of the accumulation of [111In]anti-mIgG-tat IC and [123I]anti-mIgG-tat ICs in BT-474 cells and the elimination of radioactivity from cells, cytoplasm or nuclei were determined. The effects of excess tat peptides or NH4Cl (an inhibitor of endosomal acidification) on cellular uptake and nuclear importation of [111In]anti-mIgG-tat were measured. Results: [111In]anti-mIgG-tat was >97% radiochemically pure and exhibited preserved immunoreactivity with mIgG epitopes. [123I]Anti-mIgG-tat penetrated BT-474 cells more rapidly than [111In]anti-mIgG-tat ICs and achieved a 1.5-fold to a 2-fold higher uptake in cells and nuclei. Cell penetration and nuclear uptake of [111In]anti-mIgG-tat were inhibited by excess tat peptides and NH4Cl. Elimination of radioactivity from BT-474 cells and nuclei was more rapid and complete for 123I-labeled than for 111In-labeled anti-mIgG-tat ICs. Conclusion: Tat peptides derived from HIV-1 tat protein promoted the penetration and nuclear uptake of radioactivity following the incubation of 111In-labeled and 123I-labeled anti-mIgG antibodies with BT-474 human BC cells. 111In-labeled tat ICs are feasible for inserting radionuclides into cancer cells with potential for targeting intracellular and, particularly, nuclear epitopes for imaging and/or radiotherapeutic applications

  7. The PeptideAtlas Project

    OpenAIRE

    Deutsch, Eric W.

    2010-01-01

    PeptideAtlas is a multi-species compendium of peptides observed with tandem mass spectrometry methods. Raw mass spectrometer output files are collected from the community and reprocessed through a uniform analysis and validation pipeline that continues to advance. The results are loaded into a database and the information derived from the raw data is returned to the community via several web-based data exploration tools. The PeptideAtlas resource is useful for experiment planning, improving g...

  8. Human Antimicrobial Peptides and Proteins

    OpenAIRE

    Guangshun Wang

    2014-01-01

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified ...

  9. Improving Peptide Applications Using Nanotechnology.

    Science.gov (United States)

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology. PMID:26279082

  10. Polyclonal Peptide Antisera.

    Science.gov (United States)

    Pihl, Tina H; Illigen, Kristin E; Houen, Gunnar

    2015-01-01

    Polyclonal antibodies are relatively easy to produce and may supplement monoclonal antibodies for some applications or even have some advantages. The choice of species for production of (peptide) antisera is based on practical considerations, including availability of immunogen (vaccine) and animals. Two major factors govern the production of antisera: the nature of adaptive immune responses, which take place over days/weeks and ethical guidelines for animal welfare. Here, simple procedures for immunization of mice, rabbits, sheep, goats, pigs, horses, and chickens are presented. PMID:26424267

  11. Effect of Gastrointestinal Protease Digestion on Bioactivity of Marine Peptides

    DEFF Research Database (Denmark)

    Jensen, Ida-Johanne; Andersen, Lisa Lystbæk; Ossum, Carlo Gunnar; Jakobsen, Greta; De Gobba, Christian; Farvin, Sabeena; Johansson, Inez; Hoffmann, Else; Oddny Elvevoll, Edel; Jessen, Flemming; Nielsen, Henrik Hauch

    2014-01-01

    executed without concerning subsequent digestion after intake and the aim of this work was hence to investigate how the in vitro antioxidative, antihypertensive and caspase activating activities of peptides are affected by digestion with gastrointestinal (GI) proteases. Five different fish protein...... hydrolysates were chosen to study the effect of in vitro digestion on bioactivity. The protein concentration decreased in all samples during digestion and the molecular weight distribution of the peptides shifted towards lower values. Thus, in vitro digestion with GI proteases resulted in a further degradation...... of the peptides obtained by hydrolysis. The antihypertensive effect increased in all samples after digestion with GI proteases whereas the antioxidative capacity decreased. The effect on the caspase activity depended on the proteases used in the preparation of hydrolysates. In conclusion, the caspase...

  12. A multiple reaction monitoring (MRM method to detect Bcr-Abl kinase activity in CML using a peptide biosensor.

    Directory of Open Access Journals (Sweden)

    Tzu-Yi Yang

    Full Text Available The protein kinase Bcr-Abl plays a major role in the pathogenesis of chronic myelogenous leukemia (CML, and is the target of the breakthrough drug imatinib (Gleevec™. While most patients respond well to imatinib, approximately 30% never achieve remission or develop resistance within 1-5 years of starting imatinib treatment. Evidence from clinical studies suggests that achieving at least 50% inhibition of a patient's Bcr-Abl kinase activity (relative to their level at diagnosis is associated with improved patient outcomes, including reduced occurrence of resistance and longer maintenance of remission. Accordingly, sensitive assays for detecting Bcr-Abl kinase activity compatible with small amounts of patient material are desirable as potential companion diagnostics for imatinib. Here we report the detection of Bcr-Abl activity and inhibition by imatinib in the human CML cell line K562 using a cell-penetrating peptide biosensor and multiple reaction monitoring (MRM on a triple quadrupole mass spectrometer. MRM enabled reproducible, selective detection of the peptide biosensor at fmol levels from aliquots of cell lysate equivalent to ~15,000 cells. This degree of sensitivity will facilitate the miniaturization of the entire assay procedure down to cell numbers approaching 15,000, making it practical for translational applications in patient cells in which the limited amount of available patient material often presents a major challenge.

  13. Photosensitizer and polycationic peptide-labeled streptavidin as a nano-carrier for light-controlled protein transduction.

    Science.gov (United States)

    Minamihata, Kosuke; Maeda, Yasukazu; Yamaguchi, Satoshi; Ishihara, Wataru; Ishiwatari, Akira; Takamori, Satoshi; Yamahira, Shinya; Nagamune, Teruyuki

    2015-12-01

    Transductions of exogenous proteins into cells enable the precise study of the effect of the transduced proteins on cellular functions. Accordingly, the protein transduction technique, which can control the release of proteins into the cytosol with certainty and high-throughput, is highly desired in various research fields. In this study, streptavidin (SA) labeled with a photosensitizer and cell-permeable peptides (CPP) was proposed as a nano-carrier for light-controlled protein transduction. SA was modified with biotinylated oligo-arginine peptides (Rpep), which were functionalized with Alexa Fluor 546 (AF546), to achieve cell penetrating and endosomal escape functionalities. The SA-Rpep complex was efficiently internalized into living HeLa cells corresponding to the length and the modification number of Rpep. SA conjugated with more than three equimolar AF546-modified Rpep consisting of fifteen arginine residues was achieved to diffuse throughout the cytosol without cytotoxicity by irradiation of the excitation light for AF546. The optimized nano-carrier was confirmed to transduce a biotinylated model cargo protein, enhanced green fluorescent protein fused with thioredoxin (tEGFP) into the cytosol at the light-irradiated area. The results provided proof-of-principle that SA possessing multiple AF546-modified Rpep has the potential to be a versatile and facile carrier for light-controlled protein transduction into the cytosol of mammalian cells. PMID:25935501

  14. In silico panning for a non-competitive peptide inhibitor

    Directory of Open Access Journals (Sweden)

    Ikebukuro Kazunori

    2007-01-01

    Full Text Available Abstract Background Peptide ligands have tremendous therapeutic potential as efficacious drugs. Currently, more than 40 peptides are available in the market for a drug. However, since costly and time-consuming synthesis procedures represent a problem for high-throughput screening, novel procedures to reduce the time and labor involved in screening peptide ligands are required. We propose the novel approach of 'in silico panning' which consists of a two-stage screening, involving affinity selection by docking simulation and evolution of the peptide ligand using genetic algorithms (GAs. In silico panning was successfully applied to the selection of peptide inhibitor for water-soluble quinoprotein glucose dehydrogenase (PQQGDH. Results The evolution of peptide ligands for a target enzyme was achieved by combining a docking simulation with evolution of the peptide ligand using genetic algorithms (GAs, which mimic Darwinian evolution. Designation of the target area as next to the substrate-binding site of the enzyme in the docking simulation enabled the selection of a non-competitive inhibitor. In all, four rounds of selection were carried out on the computer; the distribution of the docking energy decreased gradually for each generation and improvements in the docking energy were observed over the four rounds of selection. One of the top three selected peptides with the lowest docking energy, 'SERG' showed an inhibitory effect with Ki value of 20 μM. PQQGDH activity, in terms of the Vmax value, was 3-fold lower than that of the wild-type enzyme in the presence of this peptide. The mechanism of the SERG blockage of the enzyme was identified as non-competitive inhibition. We confirmed the specific binding of the peptide, and its equilibrium dissociation constant (KD value was calculated as 60 μM by surface plasmon resonance (SPR analysis. Conclusion We demonstrate an effective methodology of in silico panning for the selection of a non

  15. Phytosulfokine peptide signalling.

    Science.gov (United States)

    Sauter, Margret

    2015-08-01

    Phytosulfokine (PSK) belongs to the group of plant peptide growth factors. It is a disulfated pentapeptide encoded by precursor genes that are ubiquitously present in higher plants, suggestive of universal functions. Processing of the preproprotein involves sulfonylation by a tyrosylprotein sulfotransferase in the trans-golgi and proteolytic cleavage in the apoplast. The secreted peptide is perceived at the cell surface by a membrane-bound receptor kinase of the leucine-rich repeat family. The PSK receptor PSKR1 from Arabidopsis thaliana is an active kinase and has guanylate cyclase activity resulting in dual-signal outputs. Receptor activity is regulated by calmodulin. While PSK may be an autocrine growth factor, it also acts non-cell autonomously by promoting growth of cells that are receptor-deficient. In planta, PSK has multiple functions. It promotes cell growth, acts in the quiescent centre cells of the root apical meristem, contributes to funicular pollen tube guidance, and differentially alters immune responses depending on the pathogen. It has been suggested that PSK integrates growth and defence signals to balance the competing metabolic costs of these responses. This review summarizes our current understanding of PSK synthesis, signalling, and activity. PMID:25754406

  16. Radioimmunoassay for C-peptide in diabetic children

    International Nuclear Information System (INIS)

    Direct insulin radioimmunoassay (RIA) studies in a diabetic are no longer meaningful once insulin therapy has been instituted. For this reason, use is made of RIA for blood C-peptide, a proinsulin component reflecting endogenous insulin secretion independently of insulin therapy. The paper reports experience with C-peptide RIA studies carried out on blood from 273 diabetic children of normal body weight and 11.3 years average age, as well as 31 healthy children (control group). Diabetes duration ranged from 7 days to 14 years. The basic level of C-peptide in diabetic children is lower than that of healthy ones. Glucose stimulation produces C-peptide elevation in healthy but not in diabetic children. Glucagon stimulation produced a further rise of blood C-peptide in the healthy children. Diabetics showed very modest response to glucagon stimulation. C-peptide secretion in diabetic children proved to be inversely proportional to the duration of the diabetes. These findings in children with diabetes mellitus indicated their insulin secretion by beta cells of the pancreatic islets of Langerhans to be substantially decreased and unresponsive to glucose and glucagon stimulation. 3 figs, 1 tab

  17. Discovery of 12-mer peptides that bind to wood lignin.

    Science.gov (United States)

    Yamaguchi, Asako; Isozaki, Katsuhiro; Nakamura, Masaharu; Takaya, Hikaru; Watanabe, Takashi

    2016-01-01

    Lignin, an abundant terrestrial polymer, is the only large-volume renewable feedstock composed of an aromatic skeleton. Lignin has been used mostly as an energy source during paper production; however, recent interest in replacing fossil fuels with renewable resources has highlighted its potential value in providing aromatic chemicals. Highly selective degradation of lignin is pivotal for industrial production of paper, biofuels, chemicals, and materials. However, few studies have examined natural and synthetic molecular components recognizing the heterogeneous aromatic polymer. Here, we report the first identification of lignin-binding peptides possessing characteristic sequences using a phage display technique. The consensus sequence HFPSP was found in several lignin-binding peptides, and the outer amino acid sequence affected the binding affinity of the peptides. Substitution of phenylalanine7 with Ile in the lignin-binding peptide C416 (HFPSPIFQRHSH) decreased the affinity of the peptide for softwood lignin without changing its affinity for hardwood lignin, indicating that C416 recognised structural differences between the lignins. Circular dichroism spectroscopy demonstrated that this peptide adopted a highly flexible random coil structure, allowing key residues to be appropriately arranged in relation to the binding site in lignin. These results provide a useful platform for designing synthetic and biological catalysts selectively bind to lignin. PMID:26903196

  18. Urinary Peptides in Rett Syndrome.

    Science.gov (United States)

    Solaas, K. M.; Skjeldal, O.; Gardner, M. L. G.; Kase, B. F.; Reichelt, K. L.

    2002-01-01

    A study found a significantly higher level of peptides in the urine of 53 girls with Rett syndrome compared with controls. The elevation was similar to that in 35 girls with infantile autism. Levels of peptides were lower in girls with classic Rett syndrome than those with congenital Rett syndrome. (Contains references.) (Author/CR)

  19. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte; Wengel, Jesper

    2013-01-01

    Although peptide-oligonucleotide conjugates (POCs) are well-known for nucleic acids delivery and therapy, reports on internal attachment of peptides to oligonucleotides are limited in number. To develop a convenient route for preparation of internally labeled POCs with improved biomedical...

  20. Solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Jensen, Knud Jørgen

    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  1. Radiolabelled peptides for oncological diagnosis.

    NARCIS (Netherlands)

    Laverman, P.; Sosabowski, J.K.; Boerman, O.C.; Oyen, W.J.G.

    2012-01-01

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of resea

  2. Oligomer Formation of Toxic and Functional Amyloid Peptides Studied with Atomistic Simulations.

    Science.gov (United States)

    Carballo-Pacheco, Martín; Ismail, Ahmed E; Strodel, Birgit

    2015-07-30

    Amyloids are associated with diseases, including Alzheimer's, as well as functional roles such as storage of peptide hormones. It is still unclear what differences exist between aberrant and functional amyloids. However, it is known that soluble oligomers formed during amyloid aggregation are more toxic than the final fibrils. Here, we perform molecular dynamics simulations to study the aggregation of the amyloid-β peptide Aβ25-35, associated with Alzheimer's disease, and two functional amyloid-forming tachykinin peptides: kassinin and neuromedin K. Although the three peptides have similar primary sequences, tachykinin peptides, in contrast to Aβ25-35, form nontoxic amyloids. Our simulations reveal that the charge of the C-terminus is essential to controlling the aggregation process. In particular, when the kassinin C-terminus is not amidated, the aggregation kinetics decreases considerably. In addition, we observe that the monomeric peptides in extended conformations aggregate faster than those in collapsed hairpin-like conformations. PMID:26130191

  3. The structural determinants of insulin-like peptide 3 activity

    Directory of Open Access Journals (Sweden)

    Ross AD Bathgate

    2012-02-01

    Full Text Available INSL3 is a hormone and/or paracrine factor which is a member of the relaxin peptide family. It has key roles as a fertility regulator in both males and females. The receptor for INSL3 is the leucine rich repeat (LRR containing G-protein coupled receptor 8 (LGR8 which is now known as relaxin family peptide receptor 2 (RXFP2. Receptor activation by INSL3 involves binding to the LRRs in the large ectodomain of RXFP2 by residues within the B-chain of INSL3 as well as an interaction with the transmembrane exoloops of the receptor. Although the binding to the LRRs is well characterized the features of the peptide and receptor involved in the exoloop interaction are currently unknown. This study was designed to determine the key INSL3 determinants for RXFP2 activation. A chimeric peptide approach was first utilized to demonstrate that the A-chain is critical for receptor activation. Replacement of the INSL3 A-chain with that from the related peptides INSL5 and INSL6 resulted in complete loss of activity despite only minor changes in binding affinity. Subsequent replacement of specific A-chain residues with those from the INSL5 peptide highlighted that the N-terminus of the A-chain of INSL3 is critical for its activity. Remarkably, replacement of the entire N-terminus with four or five alanine residues resulted in peptides with near native activity suggesting that specific residues are not necessary for activity. Additionally removal of two amino acids at the C-terminus of the A-chain and mutation of Lys-8 in the B-chain also resulted in minor decreases in peptide activity. Therefore we have demonstrated that the activity of the INSL3 peptide is driven predominantly by residues 5-9 in the A-chain, with minor additional contributions from the two C-terminal A-chain residues and Lys-8 in the B-chain. Using this new knowledge, we were able to produce a truncated INSL3 peptide structure which retained native activity, despite having 14 fewer residues than

  4. Conus venom peptide pharmacology.

    Science.gov (United States)

    Lewis, Richard J; Dutertre, Sébastien; Vetter, Irina; Christie, MacDonald J

    2012-04-01

    Conopeptides are a diverse group of recently evolved venom peptides used for prey capture and/or defense. Each species of cone snails produces in excess of 1000 conopeptides, with those pharmacologically characterized (≈ 0.1%) targeting a diverse range of membrane proteins typically with high potency and specificity. The majority of conopeptides inhibit voltage- or ligand-gated ion channels, providing valuable research tools for the dissection of the role played by specific ion channels in excitable cells. It is noteworthy that many of these targets are found to be expressed in pain pathways, with several conopeptides having entered the clinic as potential treatments for pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one now marketed for intrathecal treatment of severe pain [ziconotide (Prialt)]. This review discusses the diversity, pharmacology, structure-activity relationships, and therapeutic potential of cone snail venom peptide families acting at voltage-gated ion channels (ω-, μ-, μO-, δ-, ι-, and κ-conotoxins), ligand-gated ion channels (α-conotoxins, σ-conotoxin, ikot-ikot, and conantokins), G-protein-coupled receptors (ρ-conopeptides, conopressins, and contulakins), and neurotransmitter transporters (χ-conopeptides), with expanded discussion on the clinical potential of sodium and calcium channel inhibitors and α-conotoxins. Expanding the discovery of new bioactives using proteomic/transcriptomic approaches combined with high-throughput platforms and better defining conopeptide structure-activity relationships using relevant membrane protein crystal structures are expected to grow the already significant impact conopeptides have had as both research probes and leads to new therapies. PMID:22407615

  5. INDUCEMENT OF ANTITUMOR-IMMUNITY BY DC ACTIVATED BY HSP70-H22 TUMOR ANTIGEN PEPTIDE

    Institute of Scientific and Technical Information of China (English)

    冯作化; 黄波; 张桂梅; 李东; 王洪涛

    2003-01-01

    Objective: To investigate the feasibility of decreasing the dosage of tumor antigen peptides by dendritic cell (DC)-presenting and the characteristics of modification of DC by heat shock protein (Hsp70) and antigen peptides. Methods: Peptides were bound to Hsp70 and used to modify DC in vitro. The metabolism of the modified DC and the cytokines secreted by the modified DC were determined. The activation of lymphocytes by the modified DC and Hsp70-H22 peptides was tested. The cytotoxicity of the activated lymphocytes to H22 tumor cells was analyzed. The inhibitory effect of tumor in mice by the injection of DC and Hsp70-H22 peptides was tested. Results: 0.15μg of H22 peptides bound with Hsp70 could make 2×105 DC mature. 4×103 matured DC could activate 2×106 lymphocytes. The same amount of lymphocytes could be activated to produce similar cytotoxicity to tumor cells by either DC modified by 0.003μg of peptides bound with Hsp70 or by direct stimulation with 0.15μg of peptides bound with Hsp70. The dosage of peptides could be reduced by about 50 folds if the modified DC was used for injection instead of Hsp70-peptides. Peptides from normal hepatocytes, bound with Hsp70, could not make DC mature, nor activate lymphocytes through DC. Conclusion: The dosage of Hsp70-H22 peptides can be reduced significantly by DC-presenting to activate lymphocytes. Peptides from normal cells could not activate lymphocytes by either Hsp70-presenting or DC-presenting and they have little chance to induce autoimmunity.

  6. Synthesis and evaluation of amphiphilic peptides as nanostructures and drug delivery tools

    Science.gov (United States)

    Sayeh, Naser Ali

    conjugates although one limitation lies in the effort of controlling the rate of drug release. The encapsulated or complexed drugs tend to be released rapidly (before reaching the target site) and in the dendrimer--drug conjugates, it is the chemical linkage that controls the drug release. Thus, future studies in this field are urgently required to create more efficient and stable biomaterials. Peptides are considered as efficient vectors for achieving optimal cellular uptake. The potential use of peptides as drug delivery vectors received much attention by the discovery of several cell-penetrating peptides (CPPs). The first CPPs discovered in 1988, that were sequences from HIV-1 encoded TAT protein, TAT (48--60), and penetrated very efficiently through cell membranes of cultured mammalian cells. CPPs are a class of diverse peptides, typically with 8--25 amino acids, and unlike most peptides, they can cross the cellular membrane with more efficiency. CPPs have also shown to undergo self-assembly and generate nanostructures. The generation of self-assembled peptides and nanostructures occur through various types of interactions between functional groups of amino acid residues, such as electrostatic, hydrophobic, and hydrogen bonding. Appropriate design and functionalization of peptides are critical for generating nanostructures. Chemically CPPs are classified into two major groups: linear and cyclic peptides. It has been previously reported that linear peptides containing hydrophilic and hydrophobic amino acids could act as membrane protein stabilizers. These compounds are short hydrophilic or amphiphilic peptides that have positively charged amino acids, such as arginine, lysine or histidine, which can interact with the negative charge phospholipids layer on the cell membrane and translocate the cargo into the cells. Conjugation to cationic linear CPPs, such as TAT, penetratin, or oligoarginine efficiently improves the cellular uptake of large hydrophilic molecules, but the

  7. Complex zero strip decreasing operators

    OpenAIRE

    Cardon, David A.

    2013-01-01

    In this paper we study the effect of linear differential operators coming from the Laguerre-Polya class that act on functions in the extended Laguerre-Polya class with zeros in a horizontal strip in the complex plane. These operator decrease the size of the strip containing the zeros.

  8. Radiopharmaceutical development of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Fani, Melpomeni; Maecke, Helmut R. [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany)

    2012-02-15

    Receptor targeting with radiolabelled peptides has become very important in nuclear medicine and oncology in the past few years. The overexpression of many peptide receptors in numerous cancers, compared to their relatively low density in physiological organs, represents the molecular basis for in vivo imaging and targeted radionuclide therapy with radiolabelled peptide-based probes. The prototypes are analogs of somatostatin which are routinely used in the clinic. More recent developments include somatostatin analogs with a broader receptor subtype profile or with antagonistic properties. Many other peptide families such as bombesin, cholecystokinin/gastrin, glucagon-like peptide-1 (GLP-1)/exendin, arginine-glycine-aspartic acid (RGD) etc. have been explored during the last few years and quite a number of potential radiolabelled probes have been derived from them. On the other hand, a variety of strategies and optimized protocols for efficient labelling of peptides with clinically relevant radionuclides such as {sup 99m}Tc, M{sup 3+} radiometals ({sup 111}In, {sup 86/90}Y, {sup 177}Lu, {sup 67/68}Ga), {sup 64/67}Cu, {sup 18}F or radioisotopes of iodine have been developed. The labelling approaches include direct labelling, the use of bifunctional chelators or prosthetic groups. The choice of the labelling approach is driven by the nature and the chemical properties of the radionuclide. Additionally, chemical strategies, including modification of the amino acid sequence and introduction of linkers/spacers with different characteristics, have been explored for the improvement of the overall performance of the radiopeptides, e.g. metabolic stability and pharmacokinetics. Herein, we discuss the development of peptides as radiopharmaceuticals starting from the choice of the labelling method and the conditions to the design and optimization of the peptide probe, as well as some recent developments, focusing on a selected list of peptide families, including somatostatin

  9. Peptide primary messengers in plants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The peptide primary messengers regulate embryonic development,cell growth and many other activities in animal cells. But recent evidence verified that peptide primary messengers are also involved in plant defense responses, the recognition between pollen and stigma and keep the balance between cell proliferation and differentiations in shoot apical meristems. Those results suggest that plants may actually make wide use of peptide primary messengers, both in embryonic development and late life when they rally their cells to defend against pathogens and insect pests. The recent advance in those aspects is reviewed.

  10. Screening of TACE Peptide Inhibitors from Phage Display Peptide Library

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To obtain the recombinant tumor necrosis factor-α converting enzyme (TACE) ectodomain and use it as a selective molecule for the screening of TACE peptide inhibitors, the cDNA coding catalytic domain (T800) and full-length ectodomain (T1300) of TACE were amplified by RTPCR, and the expression plasmids were constructed by inserting T800 and T1300 into plasmid pET28a and pET-28c respectively. The recombinant T800 and T1300 were induced by IPTG, and SDSPAGE and Western blotting analysis results revealed that T800 and T1300 were highly expressed in the form of inclusion body. After Ni2+-NTA resin affinity chromatography, the recombinant proteins were used in the screening of TACE-binding peptides from phage display peptide library respectively. After 4 rounds of biopanning, the positive phage clones were analyzed by ELISA, competitive inhibition assay and DNA sequencing. A common amino acid sequence (TRWLVYFSRPYLVAT) was found and synthesized. The synthetic peptide could inhibit the TNF-α release from LPS-stimulated human peripheral blood mononuclear cells (PBMC) up to 60.3 %. FACS analysis revealed that the peptide mediated the accumulation of TNF-α on the cell surface. These results demonstrate that the TACE-binding peptide is an effective antagonist of TACE.

  11. Decreasing incidence rates of bacteremia

    DEFF Research Database (Denmark)

    Nielsen, Stig Lønberg; Pedersen, C; Jensen, T G;

    2014-01-01

    BACKGROUND: Numerous studies have shown that the incidence rate of bacteremia has been increasing over time. However, few studies have distinguished between community-acquired, healthcare-associated and nosocomial bacteremia. METHODS: We conducted a population-based study among adults with first......-acquired, 50.0 for healthcare-associated and 66.7 for nosocomial bacteremia. During 2000-2008, the overall incidence rate decreased by 23.3% from 254.1 to 198.8 (3.3% annually, p < .001), the incidence rate of community-acquired bacteremia decreased by 25.6% from 119.0 to 93.8 (3.7% annually, p < .001) and the...... incidence rate of nosocomial bacteremia decreased by 28.9% from 82.2 to 56.0 (4.2% annually, p < .001). The incidence rate of healthcare-associated bacteremia remained stable. The most common microorganisms were Escherichia coli (28.3%), Staphylococcus aureus (12.3%), coagulase-negative staphylococci (10...

  12. The Equine PeptideAtlas

    DEFF Research Database (Denmark)

    Bundgaard, Louise; Jacobsen, Stine; Sorensen, Mette A.;

    2014-01-01

    Progress in MS-based methods for veterinary research and diagnostics is lagging behind compared to the human research, and proteome data of domestic animals is still not well represented in open source data repositories. This is particularly true for the equine species. Here we present a first...... current release comprises 24 131 distinct peptides representing 2636 canonical proteins observed at false discovery rates of 0.2% at the peptide level and 1.4% at the protein level. Data from the Equine PeptideAtlas are available for experimental planning, validation of new datasets, and as a proteomic...... data mining resource. The advantages of the Equine PeptideAtlas are demonstrated by examples of mining the contents for information on potential and well-known equine acute phase proteins, which have extensive general interest in the veterinary clinic. The extracted information will support further...

  13. Peptide nanostructures in biomedical technology.

    Science.gov (United States)

    Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik

    2016-09-01

    Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. PMID:26846352

  14. Production and characterization of peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies are...... powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors such as......, including solid-phase peptide-carrier conjugation and peptide-carrier conjugation in solution. Upon immunization, adjuvants such as Al(OH)(3) are added together with the immunogenic peptide-carrier conjugate, which usually leads to high-titred antisera. Following immunization and peptide antibody...

  15. Peptide and protein loading into porous silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Prestidge, C.A.; Barnes, T.J.; Mierczynska-Vasilev, A.; Kempson, I.; Peddie, F. [Ian Wark Research Institute, University of South Australia, Mawson Lakes (Australia); Barnett, C. [Medica Ltd, Malvern, Worcestershire, UK WR14 3SZ (United Kingdom)

    2008-02-15

    The influence of peptide/protein size and hydrophobicity on the physical and chemical aspects of loading within porous silicon (pSi) wafer samples has been determined using Atomic Force Microscopy (AFM) and Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS). Both Gramicidin A (a small hydrophobic peptide) and Papain (a larger hydrophilic protein) were observed (ToF-SIMS) to penetrate across the entire pSi layer, even at low loading levels. AFM surface imaging of pSi wafers during peptide/protein loading showed that surface roughness increased with Papain loading, but decreased with Gramicidin A loading. For Papain, the loading methodology was also found to influence loading efficiency. These differences indicate more pronounced surface adsorption of Papain. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Brain natriuretic peptide and optimal management of heart failure

    Institute of Scientific and Technical Information of China (English)

    LI Nan; WANG Jian-an

    2005-01-01

    Aside from the important role of brain natriuretic peptide (BNP) in diagnosis, and differential diagnosis of heart failure, this biological peptide has proved to be an independent surrogate marker of rehospitalization and death of the fatal disease.Several randomized clinical trials demonstrated that drugs such as beta blocker, angiotensin converting enzyme inhibitor, spironolactone and amiodarone have beneficial effects in decreasing circulating BNP level during the management of chronic heart failure. The optimization of clinical decision-making appeals for a representative surrogate marker for heart failure prognosis. The serial point-of-care assessments of BNP concentration provide a therapeutic goal of clinical multi-therapy and an objective guidance for optimal treatment of heart failure. Nevertheless new questions and problems in this area remain to be clarified. On the basis of current research advances, this article gives an overview of BNP peptide and its property and role in the management of heart failure.

  17. Gigahertz nanomechanical oscillators based on ions inside cyclic peptide nanotubes: a continuum study

    Science.gov (United States)

    Sadeghi, F.; Ansari, R.; Darvizeh, M.

    2016-08-01

    The present work aims to investigate the mechanical oscillatory behavior of ions, and in particular {Li+, Na+, Rb+} and {Cl-} ions, inside a cyclo[(- d-Ala- l-Ala)4-] peptide nanotube using the continuum approximation along with the 6-12 Lennard-Jones (LJ) potential function. Assuming that each peptide unit is comprised of an inner and an outer tube, the van der Waals (vdW) potential energy and interaction force between an ion and a cyclic peptide nanotube (CPN) are determined analytically. With respect to the present formulations, a detailed parametric study is conducted on the vdW potential energy and interaction force distributions by varying the number of peptide units. Employing the conservation of mechanical energy principle, a novel expression for precise evaluation of oscillation frequency is introduced. To verify the accuracy of the proposed frequency expression, the results obtained from energy equation are compared with the ones predicted through solving the equation of motion numerically. The effects of number of peptide units and initial conditions including initial separation distance and velocity on the oscillatory behavior of various ions inside CPNs are explored. Among the considered ions, {Cl-} ion is found to generate the highest frequency. According to the potential energy profile, one oscillatory zone for one peptide unit and different oscillatory zones for more than one peptide unit are observed. Numerical results indicate that optimal frequency decreases with increasing the number of peptide units and almost remains unchanged when the number of peptide units exceeds four.

  18. HLA-DMA polymorphisms differentially affect MHC class II peptide loading.

    Science.gov (United States)

    Álvaro-Benito, Miguel; Wieczorek, Marek; Sticht, Jana; Kipar, Claudia; Freund, Christian

    2015-01-15

    During the adaptive immune response, MHCII proteins display antigenic peptides on the cell surface of APCs for CD4(+) T cell surveillance. HLA-DM, a nonclassical MHCII protein, acts as a peptide exchange catalyst for MHCII, editing the peptide repertoire. Although they map to the same gene locus, MHCII proteins exhibit a high degree of polymorphism, whereas only low variability has been observed for HLA-DM. As HLA-DM activity directly favors immunodominant peptide presentation, polymorphisms in HLA-DM (DMA or DMB chain) might well be a contributing risk factor for autoimmunity and immune disorders. Our systematic comparison of DMA*0103/DMB*0101 (DMA-G155A and DMA-R184H) with DMA*0101/DMB*0101 in terms of catalyzed peptide exchange and dissociation, as well as direct interaction with several HLA-DR/peptide complexes, reveals an attenuated catalytic activity of DMA*0103/DMB*0101. The G155A substitution dominates the catalytic behavior of DMA*0103/DMB*0101 by decreasing peptide release velocity. Preloaded peptide-MHCII complexes exhibit ∼2-fold increase in half-life in the presence of DMA*0103/DMB*0101 when compared with DMA*0101/DMB*0101. We show that this effect leads to a greater persistence of autoimmunity-related Ags in the presence of high-affinity competitor peptide. Our study therefore reveals that HLA-DM polymorphic residues have a considerable impact on HLA-DM catalytic activity. PMID:25505276

  19. Radioprotective effects of panaxatroil on opioid peptides and immune functions in male rats

    International Nuclear Information System (INIS)

    The present study was designed by ip panaxatroil (5 mg.0.2 ml·d x 14 d) 24 h before and after 5 Gy whole-body X-irradiation in male rats to observe the radioprotective effects of panaxatroil on opioid peptides and immune functions. The results showed that the hypothalamic opioid peptide contents and the immune parameters of thymus and spleen cells and decreased 14 d after irradiation, while hypothalamic opioid peptide contents approached the control level and all immune parameters decreased in irradiation plus panaxatroil group but higher than that in control group. The above results suggest that panaxatroil may alleviate the decrease of hypothalamic opioid peptide contents and immune parameters of thymus and spleen cells, and have radioprotective effects

  20. Peptide-Mediated Tumor Targeting by a Degradable Nano Gene Delivery Vector Based on Pluronic-Modified Polyethylenimine

    Science.gov (United States)

    Wu, Zhaoyong; Zhan, Shuyu; Fan, Wei; Ding, Xueying; Wu, Xin; Zhang, Wei; Fu, Yinghua; Huang, Yueyan; Huang, Xuan; Chen, Rubing; Li, Mingjuan; Xu, Ningyin; Zheng, Yongxia; Ding, Baoyue

    2016-03-01

    Polyethylenimine (PEI) is considered to be a promising non-viral gene delivery vector. To solve the toxicity versus efficacy and tumor-targeting challenges of PEI used as gene delivery vector, we constructed a novel non-viral vector DR5-TAT-modified Pluronic-PEI (Pluronic-PEI-DR5-TAT), which was based on the attachment of low-molecular-weight polyethylenimine (LMW-PEI) to the amphiphilic polymer Pluronic to prepare Pluronic-modified LMW-PEI (Pluronic-PEI). This was then conjugated to a multifunctional peptide containing a cell-penetrating peptide (TAT) and a synthetic peptide that would bind to DR5—a receptor that is overexpressed in cancer cells. The vector showed controlled degradation, favorable DNA condensation and protection performance. The Pluronic-PEI-DR5-TAT/DNA complexes at an N/P ratio of 15:1 were spherical nanoparticles of 122 ± 11.6 nm and a zeta potential of about 22 ± 2.8 mV. In vitro biological characterization results indicated that Pluronic-PEI-DR5-TAT/DNA complexes had a higher specificity for the DR5 receptor and were taken up more efficiently by tumor cells than normal cells, compared to complexes formed with PEI 25 kDa or Pluronic-PEI. Thus, the novel complexes showed much lower cytotoxicity to normal cells and higher gene transfection efficiency in tumor cells than that exhibited by PEI 25 kDa and Pluronic-PEI. In summary, our novel, degradable non-viral tumor-targeting vector is a promising candidate for use in gene therapy.

  1. Peptide-Mediated Tumor Targeting by a Degradable Nano Gene Delivery Vector Based on Pluronic-Modified Polyethylenimine.

    Science.gov (United States)

    Wu, Zhaoyong; Zhan, Shuyu; Fan, Wei; Ding, Xueying; Wu, Xin; Zhang, Wei; Fu, Yinghua; Huang, Yueyan; Huang, Xuan; Chen, Rubing; Li, Mingjuan; Xu, Ningyin; Zheng, Yongxia; Ding, Baoyue

    2016-12-01

    Polyethylenimine (PEI) is considered to be a promising non-viral gene delivery vector. To solve the toxicity versus efficacy and tumor-targeting challenges of PEI used as gene delivery vector, we constructed a novel non-viral vector DR5-TAT-modified Pluronic-PEI (Pluronic-PEI-DR5-TAT), which was based on the attachment of low-molecular-weight polyethylenimine (LMW-PEI) to the amphiphilic polymer Pluronic to prepare Pluronic-modified LMW-PEI (Pluronic-PEI). This was then conjugated to a multifunctional peptide containing a cell-penetrating peptide (TAT) and a synthetic peptide that would bind to DR5-a receptor that is overexpressed in cancer cells. The vector showed controlled degradation, favorable DNA condensation and protection performance. The Pluronic-PEI-DR5-TAT/DNA complexes at an N/P ratio of 15:1 were spherical nanoparticles of 122 ± 11.6 nm and a zeta potential of about 22 ± 2.8 mV. In vitro biological characterization results indicated that Pluronic-PEI-DR5-TAT/DNA complexes had a higher specificity for the DR5 receptor and were taken up more efficiently by tumor cells than normal cells, compared to complexes formed with PEI 25 kDa or Pluronic-PEI. Thus, the novel complexes showed much lower cytotoxicity to normal cells and higher gene transfection efficiency in tumor cells than that exhibited by PEI 25 kDa and Pluronic-PEI. In summary, our novel, degradable non-viral tumor-targeting vector is a promising candidate for use in gene therapy. PMID:26932761

  2. Targeting cancer with peptide aptamers

    OpenAIRE

    Seigneuric, Renaud; Gobbo, Jessica; Colas, Pierre; Garrido, Carmen

    2011-01-01

    A major endeavour in cancer chemotherapy is to develop agents that specifically target a biomolecule of interest. There are two main classes of targeting agents: small molecules and biologics. Among biologics (e.g.: antibodies), DNA, RNA but also peptide aptamers are relatively recent agents. Peptide aptamers are seldom described but represent attractive agents that can inhibit a growing panel of oncotargets including Heat Shock Proteins. Potential pitfalls and coming challenges towards succe...

  3. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets

    Directory of Open Access Journals (Sweden)

    GiuseppeBiagini

    2014-04-01

    Full Text Available Various ketogenic diet (KD therapies, including classic KD, medium chain triglyceride administration, low glycemic index treatment, and a modified Atkins diet, have been suggested as useful in patients affected by pharmacoresistant epilepsy. A common goal of these approaches is to achieve an adequate decrease in the plasma glucose level combined with ketogenesis, in order to mimic the metabolic state of fasting. Although several metabolic hypotheses have been advanced to explain the anticonvulsant effect of KDs, including changes in the plasma levels of ketone bodies, polyunsaturated fatty acids, and brain pH, direct modulation of neurotransmitter release, especially purinergic (i.e., adenosine and γ-aminobutyric acidergic neurotransmission, was also postulated. Neuropeptides and peptide hormones are potent modulators of synaptic activity, and their levels are regulated by metabolic states. This is the case for neuroactive peptides such as neuropeptide Y, galanin, cholecystokinin and peptide hormones such as leptin, adiponectin, and growth hormone-releasing peptides (GHRPs. In particular, the GHRP ghrelin and its related peptide des-acyl ghrelin are well-known controllers of energy homeostasis, food intake, and lipid metabolism. Notably, ghrelin has also been shown to regulate the neuronal excitability and epileptic activation of neuronal networks. Several lines of evidence suggest that GHRPs are upregulated in response to starvation and, particularly, in patients affected by anorexia and cachexia, all conditions in which also ketone bodies are upregulated. Moreover, starvation and anorexia nervosa are accompanied by changes in other peptide hormones such as adiponectin, which has received less attention. Adipocytokines such as adiponectin have also been involved in modulating epileptic activity. Thus, neuroactive peptides whose plasma levels and activity change in the presence of ketogenesis might be potential candidates for elucidating the

  4. Manufacturing of peptides exhibiting biological activity

    OpenAIRE

    Zambrowicz, Aleksandra; Timmer, Monika; Polanowski, Antoni; Lubec, Gert; Trziszka, Tadeusz

    2012-01-01

    Numerous studies have shown that food proteins may be a source of bioactive peptides. Those peptides are encrypted in the protein sequence. They stay inactive within the parental protein until release by proteolytic enzymes (Mine and Kovacs-Nolan in Worlds Poult Sci J 62(1):87–95, 2006; Hartman and Miesel in Curr Opin Biotechnol 18:163–169, 2007). Once released the bioactive peptides exhibit several biofunctionalities and may serve therapeutic roles in body systems. Opioid peptides, peptides ...

  5. Peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  6. Antimicrobial peptides in annelids

    Directory of Open Access Journals (Sweden)

    A Tasiemski

    2008-06-01

    Full Text Available Gene encoded antimicrobial peptides (AMPs are widely distributed among living organisms including plants, invertebrates and vertebrates. They constitute important effectors of the innate immune response by exerting multiple roles as mediators of inflammation with impact on epithelial and inflammatory cells influencing diverse processes such as cytokine release, cell proliferation, angiogenesis, wound healing, chemotaxis and immune induction. In invertebrates, most of the data describe the characterization and/or the function of AMPs in the numerically and economically most representative group which are arthropods. Annelids are among the first coelomates and are therefore of special phylogenetic interest. Compared to other invertebrate groups, data on annelid’s immunity reveal heavier emphasis on the cellular than on the humoral response suggesting that immune defense of annelids seems to be principally developed as cellular immunity.This paper gives an overview of the variety of AMPs identified in the three classes of annelids, i.e. polychaetes, oligochaetes and achaetes. Their functions, when they have been studied, in the humoral or cellular response of annelids are also mentioned.

  7. Kinins and peptide receptors.

    Science.gov (United States)

    Regoli, Domenico; Gobeil, Fernand

    2016-04-01

    This paper is divided into two sections: the first contains the essential elements of the opening lecture presented by Pr. Regoli to the 2015 International Kinin Symposium in S. Paulo, Brazil on June 28th and the second is the celebration of Dr. Regoli's 60 years of research on vasoactive peptides. The cardiovascular homeostasis derives from a balance of two systems, the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS). The biologically active effector entity of RAS is angiotensin receptor-1 (AT-1R), and that of KKS is bradykinin B2 receptor (B2R). The first mediates vasoconstriction, the second is the most potent and efficient vasodilator. Thanks to its complex and multi-functional mechanism of action, involving nitric oxide (NO), prostacyclin and endothelial hyperpolarizing factor (EDHF). B2R is instrumental for the supply of blood, oxygen and nutrition to tissues. KKS is present on the vascular endothelium and functions as an autacoid playing major roles in cardiovascular diseases (CVDs) and diabetes. KKS exerts a paramount role in the prevention of thrombosis and atherosclerosis. Such knowledge emphasizes the already prominent value of the ACE-inhibitors (ACEIs) for the treatment of CVDs and diabetes. Indeed, the ACEIs, thanks to their double action (block of the RAS and potentiation of the KKS) are the ideal agents for a rational treatment of these diseases. PMID:26408609

  8. Antimicrobial peptides in crustaceans

    Directory of Open Access Journals (Sweden)

    RD Rosa

    2010-11-01

    Full Text Available Crustaceans are a large and diverse invertebrate animal group that mounts a complex and efficient innate immune response against a variety of microorganisms. The crustacean immune system is primarily related to cellular responses and the production and release of important immune effectors into the hemolymph. Antimicrobial proteins and/or peptides (AMPs are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, 15 distinct AMP families are currently recognized, although the great majority (14 families comes from members of the order Decapoda. Crustacean AMPs are generally cationic, gene-encoded molecules that are mainly produced by circulating immune-competent cells (hemocytes or are derived from unrelated proteins primarily involved in other biological functions. In this review, we tentatively classified the crustacean AMPs into four main groups based on their amino acid composition, structural features and multi-functionality. We also attempted to summarize the current knowledge on their implication both in an efficient response to microbial infections and in crustacean survival.

  9. Material Binding Peptides for Nanotechnology

    Directory of Open Access Journals (Sweden)

    Urartu Ozgur Safak Seker

    2011-02-01

    Full Text Available Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past decade to select material-specific peptides. Screening and selection of such phage displayed material binding peptides has attracted great interest, in particular because of their use in nanotechnology. Phage display selected peptides are either synthesized independently or expressed on phage coat protein. Selected phage particles are subsequently utilized in the synthesis of nanoparticles, in the assembly of nanostructures on inorganic surfaces, and oriented protein immobilization as fusion partners of proteins. In this paper, we present an overview on the research conducted on this area. In this review we not only focus on the selection process, but also on molecular binding characterization and utilization of peptides as molecular linkers, molecular assemblers and material synthesizers.

  10. Collagen-like antimicrobial peptides.

    Science.gov (United States)

    Masuda, Ryo; Kudo, Masakazu; Dazai, Yui; Mima, Takehiko; Koide, Takaki

    2016-11-01

    Combinatorial library composed of rigid rod-like peptides with a triple-helical scaffold was constructed. The component peptides were designed to have various combinations of basic and neutral (or hydrophobic) amino acid residues based on collagen-like (Gly-Pro-Yaa)-repeating sequences, inspired from the basic and amphiphilic nature of naturally occurring antimicrobial peptides. Screening of the peptide pools resulted in identification of antimicrobial peptides. A structure-activity relationship study revealed that the position of Arg-cluster at N-terminus and cystine knots at C-terminus in the triple helix significantly contributed to the antimicrobial activity. The most potent peptide RO-A showed activity against Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. In addition, Escherichia coli exposed to RO-A resulted in abnormal elongation of the cells. RO-A was also shown to have remarkable stability in human serum and low cytotoxicity to mammalian cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 453-459, 2016. PMID:27271210

  11. Photoperiod Regulates vgf-Derived Peptide Processing in Siberian Hamsters.

    Directory of Open Access Journals (Sweden)

    Barbara Noli

    Full Text Available VGF mRNA is induced in specific hypothalamic areas of the Siberian hamster upon exposure to short photoperiods, which is associated with a seasonal decrease in appetite and weight loss. Processing of VGF generates multiple bioactive peptides, so the objective of this study was to determine the profile of the VGF-derived peptides in the brain, pituitary and plasma from Siberian hamsters, and to establish whether differential processing might occur in the short day lean state versus long day fat. Antisera against short sequences at the C- or N- termini of proVGF, as well as against NERP-1, TPGH and TLQP peptides, were used for analyses of tissues, and both immunohistochemistry and enzyme linked immunosorbent assay (ELISA coupled with high-performance liquid (HPLC or gel chromatography were carried out. VGF peptide immunoreactivity was found within cortex cholinergic perikarya, in multiple hypothalamic nuclei, including those containing vasopressin, and in pituitary gonadotrophs. ELISA revealed that exposure to short day photoperiod led to a down-regulation of VGF immunoreactivity in the cortex, and a less pronounced decrease in the hypothalamus and pituitary, while the plasma VGF levels were not affected by the photoperiod. HPLC and gel chromatography both confirmed the presence of multiple VGF-derived peptides in these tissues, while gel chromatography showed the presence of the VGF precursor in all tissues tested except for the cortex. These observations are consistent with the view that VGF-derived peptides have pleiotropic actions related to changing photoperiod, possibly by regulating cholinergic systems in the cortex, vasopressin hypothalamic pathways, and the reproductive axis.

  12. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Hong; Lee, Ik Hwan; Nam, Seung Taek; Hong, Ji; Zhang, Peng [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of); Hwang, Jae Sam [Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon 441-707 (Korea, Republic of); Seok, Heon [Department of Biomedical Engineering, Jungwon University, Goesan, Chungcheongbukdo 367-700 (Korea, Republic of); Choi, Hyemin; Lee, Dong Gun [School of Life Sciences, KNU Creative Bioresearch Group (BK21 Plus Program), College of Natural Sciences, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu 702-701 (Korea, Republic of); Kim, Jae Il [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kim, Ho, E-mail: hokim@daejin.ac.kr [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of)

    2014-06-06

    Highlights: • 11-mer peptide Lumbricusin, a defensin like peptide, is isolated from earthworm. • We here demonstrated that Lumbricusin has neurotropic and neuroprotective effects. • p27 degradation by Lumbricusin mediates effects of Lumbricusin on neuronal cells. - Abstract: We recently isolated a polypeptide from the earthworm Lumbricus terrestris that is structurally similar to defensin, a well-known antibacterial peptide. An 11-mer antibacterial peptide (NH{sub 2}-RNRRWCIDQQA), designated Lumbricusin, was synthesized based on the amino acid sequence of the isolated polypeptide. Since we previously reported that CopA3, a dung beetle peptide, enhanced neuronal cell proliferation, we here examined whether Lumbricusin exerted neurotropic and/or neuroprotective effects. Lumbricusin treatment induced a time-dependent increase (∼51%) in the proliferation of human neuroblastoma SH-SY5Y cells. Lumbricusin also significantly inhibited the apoptosis and decreased viability induced by treatment with 6-hydroxy dopamine, a Parkinson’s disease-mimicking agent. Immunoblot analyses revealed that Lumbricusin treatment increased ubiquitination of p27{sup Kip1} protein, a negative regulator of cell-cycle progression, in SH-SY5Y cells, and markedly promoted its degradation. Notably, adenoviral-mediated over-expression of p27{sup Kip1} significantly blocked the antiapoptotic effect of Lumbricusin in 6-hydroxy dopamine-treated SH-SY5Y cells. These results suggest that promotion of p27{sup Kip1} degradation may be the main mechanism underlying the neuroprotective and neurotropic effects of Lumbricusin.

  13. Bronchial hyperresponsiveness decreases through childhood.

    Science.gov (United States)

    Riiser, Amund; Hovland, Vegard; Mowinckel, Petter; Carlsen, Kai-Håkon; Carlsen, Karin Lødrup

    2012-02-01

    Limited knowledge exists about development of bronchial hyperresponsiveness (BHR) through adolescence. We aimed to assess changes in and risk factors for BHR in adolescence. From a Norwegian birth cohort 517 subjects underwent clinical examinations, structured interviews and methacholine challenges at age 10 and 16. BHR was divided into four categories: no BHR (cumulative methacholine dose required to reduce FEV(1) by 20% (PD(20)) >16 μmol), borderline BHR (PD(20) ≤16 and >8 μmol), mild to moderate BHR (PD(20) ≤8 and >1 μmol), and severe BHR (PD(20) ≤ 1 μmol). Logistic regression analysis was used to assess risk factors and possible confounders. The number of children with PD(20) ≤ 8 decreased from 172 (33%) to 79 (15%) from age 10-16 (p 25% change) of gender, active rhinitis, active asthma, height, FEV(1)/FVC, or allergic sensitization. BHR decreased overall in severity through adolescence, was stable for the majority of children and only a minority (8%) had increased BHR from age 10 to 16. Mild to moderate and severe BHR at age 10 were major risk factors for PD(20) ≤ 8 at 16 years and not modified by asthma or body size. PMID:22015380

  14. Price of forest chips decreasing

    International Nuclear Information System (INIS)

    Use of forest chips was studied in 1999 in the national Puuenergia (Wood Energy) research program. Wood combusting heating plants were questioned about are the main reasons restricting the increment of the use of forest chips. Heating plants, which did not use forest chips at all or which used less than 250 m3 (625 bulk- m3) in 1999 were excluded. The main restrictions for additional use of forest chips were: too high price of forest chips; lack of suppliers and/or uncertainty of deliveries; technical problems of reception and processing of forest chips; insufficiency of boiler output especially in winter; and unsatisfactory quality of chips. The price of forest chips becomes relatively high because wood biomass used for production of forest chips has to be collected from wide area. Heavy equipment has to be used even though small fragments of wood are processed, which increases the price of chips. It is essential for forest chips that the costs can be pressed down because competition with fossil fuels, peat and industrial wood residues is hard. Low market price leads to the situation in which forest owner gets no price of the raw material, the entrepreneurs operate at the limit of profitability and renovation of machinery is difficult, and forest chips suppliers have to sell the chips at prime costs. Price of forest chips has decreased significantly during the past decade. Nominal price of forest chips is now lower than two decades ago. The real price of chips has decreased even more than the nominal price, 35% during the past decade and 20% during the last five years. Chips, made of small diameter wood, are expensive because the price includes the felling costs and harvesting is carried out at thinning lots. Price is especially high if chips are made of delimbed small diameter wood due to increased the work and reduced amount of chips. The price of logging residue chips is most profitable because cutting does not cause additional costs. Recovery of chips is

  15. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Directory of Open Access Journals (Sweden)

    Veronika Mäde

    2014-05-01

    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  16. Hyperhomocysteinemia decreases bone blood flow

    Directory of Open Access Journals (Sweden)

    Neetu Tyagi

    2011-01-01

    Full Text Available Neetu Tyagi*, Thomas P Vacek*, John T Fleming, Jonathan C Vacek, Suresh C TyagiDepartment of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA *These authors have equal authorshipAbstract: Elevated plasma levels of homocysteine (Hcy, known as hyperhomocysteinemia (HHcy, are associated with osteoporosis. A decrease in bone blood flow is a potential cause of compromised bone mechanical properties. Therefore, we hypothesized that HHcy decreases bone blood flow and biomechanical properties. To test this hypothesis, male Sprague–Dawley rats were treated with Hcy (0.67 g/L in drinking water for 8 weeks. Age-matched rats served as controls. At the end of the treatment period, the rats were anesthetized. Blood samples were collected from experimental or control rats. Biochemical turnover markers (body weight, Hcy, vitamin B12, and folate were measured. Systolic blood pressure was measured from the right carotid artery. Tibia blood flow was measured by laser Doppler flow probe. The results indicated that Hcy levels were significantly higher in the Hcy-treated group than in control rats, whereas vitamin B12 levels were lower in the Hcy-treated group compared with control rats. There was no significant difference in folate concentration and blood pressure in Hcy-treated versus control rats. The tibial blood flow index of the control group was significantly higher (0.78 ± 0.09 flow unit compared with the Hcy-treated group (0.51 ± 0.09. The tibial mass was 1.1 ± 0.1 g in the control group and 0.9 ± 0.1 in the Hcy-treated group. The tibia bone density was unchanged in Hcy-treated rats. These results suggest that Hcy causes a reduction in bone blood flow, which contributes to compromised bone biomechanical properties.Keywords: homocysteine, tibia, bone density

  17. Cellular penetration and nuclear importation properties of {sup 111}In-labeled and {sup 123}I-labeled HIV-1 tat peptide immunoconjugates in BT-474 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cornelissen, Bart [Division of Nuclear Medicine, University Health Network, Toronto, ON, M5S 3M2 (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Hu, Meiduo [Division of Nuclear Medicine, University Health Network, Toronto, ON, M5S 3M2 (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); McLarty, Kristin [Division of Nuclear Medicine, University Health Network, Toronto, ON, M5S 3M2 (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Costantini, Dan [Division of Nuclear Medicine, University Health Network, Toronto, ON, M5S 3M2 (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Reilly, Raymond M. [Division of Nuclear Medicine, University Health Network, Toronto, ON, M5S 3M2 (Canada) and Department of Medical Imaging, University of Toronto, Toronto, ON, M5S 3M2 (Canada) and Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada) and Toronto General Research Institute, University Health Network, Toronto, ON, M5S 3M2 (Canada)]. E-mail: raymond.reilly@utoronto.ca

    2007-01-15

    Introduction: Our objective was to compare the cell penetration and nuclear importation properties of {sup 111}In-labeled and {sup 123}I-labeled immunoconjugates (ICs) composed of 16-mer peptides (GRKKRRQRRRPPQGYG) derived from HIV-1 transactivator of transcription (tat) protein and anti-mouse IgG (mIgG) in BT-474 breast cancer (BC) cells. Methods: [{sup 111}In]tat ICs were constructed by site-specific conjugation of tat peptides to NaIO{sub 4} {sup -}-oxidized carbohydrates in the Fc domain of diethylenetriaminepentaacetic-acid-modified anti-mIgG antibodies. Immunoreactivity against mIgG was assessed in a competition assay. The kinetics of the accumulation of [{sup 111}In]anti-mIgG-tat IC and [{sup 123}I]anti-mIgG-tat ICs in BT-474 cells and the elimination of radioactivity from cells, cytoplasm or nuclei were determined. The effects of excess tat peptides or NH{sub 4}Cl (an inhibitor of endosomal acidification) on cellular uptake and nuclear importation of [{sup 111}In]anti-mIgG-tat were measured. Results: [{sup 111}In]anti-mIgG-tat was >97% radiochemically pure and exhibited preserved immunoreactivity with mIgG epitopes. [{sup 123}I]Anti-mIgG-tat penetrated BT-474 cells more rapidly than [{sup 111}In]anti-mIgG-tat ICs and achieved a 1.5-fold to a 2-fold higher uptake in cells and nuclei. Cell penetration and nuclear uptake of [{sup 111}In]anti-mIgG-tat were inhibited by excess tat peptides and NH{sub 4}Cl. Elimination of radioactivity from BT-474 cells and nuclei was more rapid and complete for {sup 123}I-labeled than for {sup 111}In-labeled anti-mIgG-tat ICs. Conclusion: Tat peptides derived from HIV-1 tat protein promoted the penetration and nuclear uptake of radioactivity following the incubation of {sup 111}In-labeled and {sup 123}I-labeled anti-mIgG antibodies with BT-474 human BC cells. {sup 111}In-labeled tat ICs are feasible for inserting radionuclides into cancer cells with potential for targeting intracellular and, particularly, nuclear epitopes for

  18. Perspectives and Peptides of the Next Generation

    Science.gov (United States)

    Brogden, Kim A.

    Shortly after their discovery, antimicrobial peptides from prokaryotes and eukaryotes were recognized as the next potential generation of pharmaceuticals to treat antibiotic-resistant bacterial infections and septic shock, to preserve food, or to sanitize surfaces. Initial research focused on identifying the spectrum of antimicrobial agents, determining the range of antimicrobial activities against bacterial, fungal, and viral pathogens, and assessing the antimicrobial activity of synthetic peptides versus their natural counterparts. Subsequent research then focused on the mechanisms of antimicrobial peptide activity in model membrane systems not only to identify the mechanisms of antimicrobial peptide activity in microorganisms but also to discern differences in cytotoxicity for prokaryotic and eukaryotic cells. Recent, contemporary work now focuses on current and future efforts to construct hybrid peptides, peptide congeners, stabilized peptides, peptide conjugates, and immobilized peptides for unique and specific applications to control the growth of microorganisms in vitro and in vivo.

  19. Exploration of the Medicinal Peptide Space.

    Science.gov (United States)

    Gevaert, Bert; Stalmans, Sofie; Wynendaele, Evelien; Taevernier, Lien; Bracke, Nathalie; D'Hondt, Matthias; De Spiegeleer, Bart

    2016-01-01

    The chemical properties of peptide medicines, known as the 'medicinal peptide space' is considered a multi-dimensional subset of the global peptide space, where each dimension represents a chemical descriptor. These descriptors can be linked to biofunctional, medicinal properties to varying degrees. Knowledge of this space can increase the efficiency of the peptide-drug discovery and development process, as well as advance our understanding and classification of peptide medicines. For 245 peptide drugs, already available on the market or in clinical development, multivariate dataexploration was performed using peptide relevant physicochemical descriptors, their specific peptidedrug target and their clinical use. Our retrospective analysis indicates that clusters in the medicinal peptide space are located in a relatively narrow range of the physicochemical space: dense and empty regions were found, which can be explored for the discovery of novel peptide drugs. PMID:26876881

  20. The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Kyung-Soo Hahm

    2011-09-01

    Full Text Available Over the last decade, decreasing effectiveness of conventional antimicrobial-drugs has caused serious problems due to the rapid emergence of multidrug-resistant pathogens. Furthermore, biofilms, which are microbial communities that cause serious chronic infections and dental plaque, form environments that enhance antimicrobial resistance. As a result, there is a continuous search to overcome or control such problems, which has resulted in antimicrobial peptides being considered as an alternative to conventional drugs. Antimicrobial peptides are ancient host defense effector molecules in living organisms. These peptides have been identified in diverse organisms and synthetically developed by using peptidomimic techniques. This review was conducted to demonstrate the mode of action by which antimicrobial peptides combat multidrug-resistant bacteria and prevent biofilm formation and to introduce clinical uses of these compounds for chronic disease, medical devices, and oral health. In addition, combinations of antimicrobial peptides and conventional drugs were considered due to their synergetic effects and low cost for therapeutic treatment.

  1. Synthesis and solid state NMR characterization of novel peptide/silica hybrid materials.

    Science.gov (United States)

    Werner, Mayke; Heil, Andreas; Rothermel, Niels; Breitzke, Hergen; Groszewicz, Pedro Braga; Thankamony, Aany Sofia; Gutmann, Torsten; Buntkowsky, Gerd

    2015-11-01

    The successful synthesis and solid state NMR characterization of silica-based organic-inorganic hybrid materials is presented. For this, collagen-like peptides are immobilized on carboxylate functionalized mesoporous silica (COOH/SiOx) materials. A pre-activation of the silica material with TSTU (O-(N-Succinimidyl)-N,N,N',N'-tetramethyluronium tetrafluoroborate) is performed to enable a covalent binding of the peptides to the linker. The success of the covalent immobilization is indicated by the decrease of the (13)C CP-MAS NMR signal of the TSTU moiety. A qualitative distinction between covalently bound and adsorbed peptide is feasible by (15)N CP-MAS Dynamic Nuclear Polarization (DNP). The low-field shift of the (15)N signal of the peptide's N-terminus clearly identifies it as the binding site. The DNP enhancement allows the probing of natural abundance (15)N nuclei, rendering expensive labeling of peptides unnecessary. PMID:26411982

  2. Detection of cancer cells using a peptide nanotube–folic acid modified graphene electrode

    DEFF Research Database (Denmark)

    Castillo, John J.; Svendsen, Winnie Edith; Rozlosnik, Noemi;

    2013-01-01

    This article describes the preparation of a graphene electrode modified with a new conjugate of peptide nanotubes and folic acid for the selective detection of human cervical cancer cells over-expressing folate receptors. The functionalization of peptide nanotubes with folic acid was confirmed by...... fluorescence microscopy and atomic force microscopy. The peptide nanotube–folic acid modified graphene electrode was characterized by scanning electron microscopy and cyclic voltammetry. The modification of the graphene electrode with peptide nanotube–folic acid led to an increase in the current signal. The......–folic acid modified electrode lowered the electron transfer resulting in a decrease in the measured current. A detection limit of 250 human cervical cancer cells per mL was obtained. Control experiments confirmed that the peptide nanotube–folic acid electrode specifically recognized folate receptors. The...

  3. CXCR4-antagonist Peptide R-liposomes for combined therapy against lung metastasis

    Science.gov (United States)

    Ieranò, Caterina; Portella, Luigi; Lusa, Sara; Salzano, Giuseppina; D'Alterio, Crescenzo; Napolitano, Maria; Buoncervello, Maria; Macchia, Daniele; Spada, Massimo; Barbieri, Antonio; Luciano, Antonio; Barone, Maria Vittoria; Gabriele, Lucia; Caraglia, Michele; Arra, Claudio; De Rosa, Giuseppe; Scala, Stefania

    2016-03-01

    The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide R were developed (PL-Peptide R). In vitro PL-Peptide R efficiently inhibited CXCR4-dependent migration and in vivo it significantly reduced lung metastases and increased overall survival in B16-CXCR4 injected C57BL/6 mice. To evaluate if PL-Peptide R could also be a drug delivery system for CXCR4 expressing tumors, the PL-Peptide R was loaded with doxorubicin (DOX) (PL-Peptide R-DOX). PL-Peptide R-DOX efficiently delivered DOX to CXCR4 expressing cell lines with a consequent decrease in the DOX IC50 efficient dose. In vivo, B16-CXCR4 injected C57BL/6 mice treated with PL-Peptide R-DOX developed fewer lung metastases compared to PL-DOX treated mice. This work provides the proof-of-concept to prevent metastasis by using combined nanomedicine.The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide

  4. Transforming growth factor-β1 phage model peptides isolated from a phage display 7-mer peptide library can inhibit the activity of keloid fibroblasts

    Institute of Scientific and Technical Information of China (English)

    ZONG Xian-lei; JIANG Du-yin; WANG Ji-chang; LIU Jun-li; LIU Zhen-zhong; CAI Jing-long

    2011-01-01

    Background Transforming growth factor-β1 (TGF-β1) is known to have a role in keloid formation through the activation of fibroblasts and the acceleration of collagen deposition. The objective of this current study was to isolate TGF-β1 phage model peptides from a phage display 7-mer peptide library to evaluate their therapeutic effect on inhibiting the activity of keloid fibroblasts.Methods A phage display 7-mer peptide library was screened using monoclonal anti-human TGF-β1 as the target to obtain specific phages containing ectogenous model peptides similar to TGF-β1. Enzyme-linked immunosorbent assay (ELISA) was performed to select monoclonal phages with good binding activity, which underwent DNA sequencing. MTT assay and apoptosis assessment were used to evaluate the biological effects of the phage model peptides on keloid fibroblasts. Immunofluorescence assay was employed to show the binding affinity of the model peptides on phages causing keloid fibroblasts. Quantitative real-time PCR analysis was carried out to detect the expressions of nuclear factor κB (NF-κB) mRNA, connective tissue growth factor (CTGF) mRNA and TGF-β receptor Ⅱ (TβRII) mRNA in keloid fibroblasts.Results Specific phages with good results of ELISA were beneficiated. Four phage model peptides were obtained. The data of MTT showed that TGF-β1 and one phage model peptide (No. 4) could promote keloid fibroblasts proliferation,however, three phage model peptides (No. 1-3) could inhibit keloid fibroblasts proliferation. The results of apoptosis assessment showed that the three phage model peptides could slightly induce the apoptosis in keloid fibroblasts. The data of immunofluorescence assay revealed that the model peptides on phages rather than phages could bind to keloid fibroblasts. The findings of quantitative real-time PCR analysis suggested that the expressions of NF-κB mRNA and CTGF mRNA in the three phage model peptide groups decreased, while the expression of TβRII m

  5. Effects of peptide YY on gallbladder motility

    International Nuclear Information System (INIS)

    The effects of peptide YY (PYY) on cholecystokinin-stimulated gallbladder contraction were investigated in the prairie dog model. Twelve animals underwent laparotomy with catheter placement into the gallbladder and common bile duct (vent). The gallbladder was continuously perfused with [14C]polyethylene glycol-labeled lactated Ringer at 0.03 ml/min, and vent effluent was collected at 2.5-min intervals. All animals received 20 min of intravenous infusion of cholecystokinin octapeptide (CCK-OP), 2.5 ng x kg-1 x min-1, immediately followed by 60-min infusions of either lactated Ringer (LR) or synthetic PYY, 10 or 50 ng x kg-1 x min-1. When LR was infused after CCK-OP, gallbladder filling increased by 15.4 +/- 10.5% with minimal changes in gallbladder pressure. Infusion of PYY10 resulted in a significant increase in gallbladder volume and filling with a significant decrease in intragallbladder pressure. Similar findings were noted with PYY50. These data indicate that synthetic PYY significantly augments gallbladder filling after CCK-OP-stimulated gallbladder contraction. These finding, coupled with the observation that PYY inhibits pancreatic secretion, suggest that this peptide may be the anti-CCK hormone and may have an important role in regulating biliary activity postprandially

  6. Double-Stranded Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2001-01-01

    A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker.......A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  7. Recent development of peptide self-assembly

    Institute of Scientific and Technical Information of China (English)

    Xiubo Zhao; Fang Pan; Jian R. Lu

    2008-01-01

    Amino acids are the building blocks to build peptides and proteins. Recent development in peptide synthesis has however enabled us to mimic this natural process by preparing various long and short peptides possessing different conformations and biological functions. The self-assembly of short designed peptides into molecular nanostructures is becoming a growing interest in nanobiotechnology. Self-assembled peptides exhibit several attractive features for applications in tissue regeneration, drug delivery, biological surface engineering as well as in food science, cosmetic industry and antibiotics. The aim of this review is to introduce the readers to a number of representative studies on peptide self-assembly.

  8. Antiviral active peptide from oyster

    Science.gov (United States)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  9. Radioactive labelling of peptidic hormones

    International Nuclear Information System (INIS)

    The labelling of peptidic hormones requires stability, specificity and sensitivity of the label. Introduction of a radioactive atome is one way to satisfy these criteria. Several processes have been described to prepare radioactive TRF: synthesis of the peptide with labelled aminoacids or introduction of the label into the hormone. In that approach, tritium can be substituted in the imidazole ring, via precursors activating the proper carbon. Monoiodo TRF leads essentially to tritium labelling of the 5 positions whereas monoazo TRF allows the preparation of 3H TRF labelled in the 2 positions. Di-substituted TRF leads to labelling into the 2 and 5 carbons. Labelled analogs of TRF can be prepared with labelled iodine; further developments of peptide labelling, will be presented. In particular, the homolytic scission of the C-iodine, bond by photochemical activation. The nascent carbon radical can be stabilized by a tritiated scavenger. This approach eliminates the use of heavy metal catalysts

  10. Antiviral active peptide from oyster

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster (Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10-5 kDa, 5-1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10?5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  11. 18F-Labeled proinsulin connecting peptide (C-peptide): In vivo distribution and pharmacokinetics using PET

    International Nuclear Information System (INIS)

    C-peptide, produced and released in equimolar amounts with insulin, was previously considered biologically inactive. Administration to type 1 (insulin-dependent) diabetes mellitus (DM) patients has, however, indicated that C-peptide exerts a number of beneficial effects, improving long-term complications of type 1 DM on e.g. renal and nerve function (Wahren, Am J Physiol Endocrinol Metab 278: E759, 2000). Aim: To evaluate biodistribution and regional pharmacokinetics in humans using the 18F-labeled C-peptide and positron emission tomography. Materials and Methods: Five, fasting, male IDDM patients were scanned after injection of N-4-[18F]fluorobenzoyl-C-peptide. Dynamic scans over kidneys (4 pat: 2 no-carrier-added (n.c.a.); 2 carrier C-peptide added (c.a.)) and heart (1 pat, n.c.a) and static scans (n.c.a) over body segments (2 pat), CNS and urinary bladder were performed. Plasma radioactivity was also measured. Results: PET images showed predominant distribution of radioactivity to the kidneys (renal cortex 7% of injected dose (i.d.) at peak). Distinguishable amounts of radioactivity were also observed in heart, lungs and liver, but not in CNS at late times. Low amounts were observed in what was presumed to be pancreas. Uptake in total muscle, based on concentrations in a skeletal muscle ROI at 10-75 min, could account for up to 15% i.d. Radioactivity was excreted to the urinary bladder. Time-radioactivity curves for renal cortex peaked within the first 6 min and then decreased to ca 0.01±0.002% i.d./mL at 15 min. Radioactivity peaked in the second time frame (≤ 4 min) in liver and in the first time frame (≤ 2 min) in other organs and plasma. Washout for all organs and for plasma was biphasic. The kinetics in the renal cortex were different when carrier C-peptide was co-injected. Conclusion: The main distribution to the kidneys observed here is consistent with previous findings on C-peptide's catabolism and it's documented effects on renal function. This PET

  12. 穿膜肽R6促进低分子肝素大鼠肠道吸收的研究%Intestinal Absorption Studies on Low Molecular Weight Heparin in Rats Using Cell-penetrating Peptide R6 as Absorption Enhancer

    Institute of Scientific and Technical Information of China (English)

    吕慧侠; 张振海; 孙博; 周建平

    2009-01-01

    目的 研究穿膜肽R6促进低分子肝素大鼠肠道吸收的作用.方法 以用药前后血液凝固时间的变化为指标,采用大鼠十二指肠给药的方法评价R6对低分子肝素的促吸收作用,采用肠袢法研究R6的主要促吸收部位.结果 R6作为吸收促进剂,低分子肝素十二指肠给药后凝血时间显著延长,R6在十二指肠、空肠、回肠部位均显示促吸收作用,且在回肠部位的促吸收效果最显著.结论 R6能够显著促进低分子肝素的大鼠肠道吸收.

  13. Protective Effect of Wheat Peptides against Indomethacin-Induced Oxidative Stress in IEC-6 Cells

    Directory of Open Access Journals (Sweden)

    Hong Yin

    2014-01-01

    Full Text Available Recent studies have demonstrated that wheat peptides protected rats against non-steroidal anti-inflammatory drugs-induced small intestinal epithelial cells damage, but the mechanism of action is unclear. In the present study, an indomethacin-induced oxidative stress model was used to investigate the effect of wheat peptides on the nuclear factor-κB(NF-κB-inducible nitric oxide synthase-nitric oxide signal pathway in intestinal epithelial cells-6 cells. IEC-6 cells were treated with wheat peptides (0, 125, 500 and 2000 mg/L for 24 h, followed by 90 mg/L indomethacin for 12 h. Wheat peptides significantly attenuated the indomethacin-induced decrease in superoxide dismutase and glutathione peroxidase activity. Wheat peptides at 2000 mg/L markedly decreased the expression of the NF-κB in response to indomethacin-induced oxidative stress. This study demonstrated that the addition of wheat peptides to a culture medium significantly inhibited the indomethacin-induced release of malondialdehyde and nitrogen monoxide, and increased antioxidant enzyme activity in IEC-6 cells, thereby providing a possible explanation for the protective effect proposed for wheat peptides in the prevention of indomethacin-induced oxidative stress in small intestinal epithelial cells.

  14. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    developed from a cecropin-mellitin hybrid peptide and proved effective in killing colistin resistant Gram-negative A. baumannii in vitro. The molecule was improved with regard to toxicity, as measured by hemolytic ability. Further, this peptide is capable of specifically killing non-growing cells of...... colistin resistant A. baumannii, also known as persisters. Using D. melanogaster as an in vivo efficacy model it was demonstrated that the Lantibiotic NAI- 107, currently undergoing pre-clinical studies, rescues D. melanogaster from MRSA infection with similar efficacy to last resort antimicrobial...

  15. Novel Formulations for Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2014-10-01

    Full Text Available Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  16. Peptides and the new endocrinology

    Science.gov (United States)

    Schwyzer, Robert

    1982-01-01

    The discovery of regulatory peptides common to the nervous and the endocrine systems (brain, gut, and skin) has brought about a revolution in our concepts of endocrinology and neurology. We are beginning to understand some of the complex interrelationships between soma and psyche that might, someday, be important for an integrated treatment of diseases. Examples of the actions of certain peptides in the periphery and in the central nervous system are given, and their biosynthesis and molecular anatomy as carriers for information are discussed.

  17. Natriuretic peptides and cerebral hemodynamics

    DEFF Research Database (Denmark)

    Guo, Song; Barringer, Filippa; Zois, Nora Elisabeth;

    2014-01-01

    decompensated disease. In contrast, their biological effects on the cerebral hemodynamics are poorly understood. In this mini-review, we summarize the hemodynamic effects of the natriuretic peptides with a focus on the cerebral hemodynamics. In addition, we will discuss its potential implications in diseases...... where alteration of the cerebral hemodynamics plays a role such as migraine and acute brain injury including stroke. We conclude that a possible role of the peptides is feasible as evaluated from animal and in vitro studies, but more research is needed in humans to determine the precise response on...... cerebral vessels....

  18. Covalent attachment of cyclic TAT peptides to GFP results in protein delivery into live cells with immediate bioavailability.

    Science.gov (United States)

    Nischan, Nicole; Herce, Henry D; Natale, Francesco; Bohlke, Nina; Budisa, Nediljko; Cardoso, M Cristina; Hackenberger, Christian P R

    2015-02-01

    The delivery of free molecules into the cytoplasm and nucleus by using arginine-rich cell-penetrating peptides (CPPs) has been limited to small cargoes, while large cargoes such as proteins are taken up and trapped in endocytic vesicles. Based on recent work, in which we showed that the transduction efficiency of arginine-rich CPPs can be greatly enhanced by cyclization, the aim was to use cyclic CPPs to transport full-length proteins, in this study green fluorescent protein (GFP), into the cytosol of living cells. Cyclic and linear CPP-GFP conjugates were obtained by using azido-functionalized CPPs and an alkyne-functionalized GFP. Our findings reveal that the cyclic-CPP-GFP conjugates are internalized into live cells with immediate bioavailability in the cytosol and the nucleus, whereas linear CPP analogues do not confer GFP transduction. This technology expands the application of cyclic CPPs to the efficient transport of functional full-length proteins into live cells. PMID:25521313

  19. Defeating Leishmania resistance to miltefosine (hexadecylphosphocholine) by peptide-mediated drug smuggling: a proof of mechanism for trypanosomatid chemotherapy.

    Science.gov (United States)

    Luque-Ortega, Juan Román; de la Torre, Beatriz G; Hornillos, Valentín; Bart, Jean-Mathieu; Rueda, Cristina; Navarro, Miguel; Amat-Guerri, Francisco; Acuña, A Ulises; Andreu, David; Rivas, Luis

    2012-08-10

    Miltefosine (hexadecylphosphocholine, HePC), the first orally active drug successful against leishmaniasis, is especially active on the visceral form of the disease. Resistance mechanisms are almost exclusively associated to dysfunction in HePC uptake systems. In order to evade the requirements of its cognate receptor/translocator, HePC-resistant Leishmania donovani parasites (R40 strain) were challenged with constructs consisting of an ω-thiol-functionalized HePC analogue conjugated to the cell-penetrating peptide (CPP) Tat(48-60), either through a disulfide or a thioether bond. The conjugates enter and kill both promastigote and intracellular amastigote forms of the R40 strain. Intracellular release of HePC by reduction of the disulfide-based conjugate was confirmed by means of double tagging at both the CPP (Quasar 670) and HePC (BODIPY) moieties. Scission of the conjugate, however, is not mandatory, as the metabolically more stable thioether conjugate retained substantial activity. The disulfide conjugate is highly active on the bloodstream form of Trypanosoma b. brucei, naturally resistant to HePC. Our results provide proof-of-mechanism for the use of CPP conjugates to avert drug resistance by faulty drug accumulation in parasites, as well as the possibility to extend chemotherapy into other parasites intrinsically devoid of membrane translocation systems. PMID:22609351

  20. Design and Characterization of an Acid-Activated Antimicrobial Peptide

    OpenAIRE

    Li, Lina; He, Jian; Eckert, Randal; Yarbrough, Daniel; Lux, Renate; Anderson, Maxwell; Shi, Wenyuan

    2009-01-01

    Dental caries is a microbial biofilm infection in which the metabolic activities of plaque bacteria result in a dramatic pH decrease and shift the demineralization/ remineralization equilibrium on the tooth surface towards demineralization. In addition to causing a net loss in tooth minerals creation of an acidic environment favors growth of acid enduring and acid generating species, which causes further reduction in the plaque pH. In this study we developed a prototype antimicrobial peptide ...

  1. Neuroprotective peptides related to Alzheimer's disease

    Czech Academy of Sciences Publication Activity Database

    Slaninová, Jiřina; Borovičková, Lenka; Krejčová, G.; Patočka, J.

    2004-01-01

    Roč. 10, S (2004), s. H33. ISSN 1075-2617. [Hellenic Forum on Bioactive Peptides /4./. 22.04.2004-24.04.2004, Patras-Hellas] Keywords : neuroprotective peptides * Alzheimer's disease Subject RIV: CE - Biochemistry

  2. Histidine-Containing Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2000-01-01

    Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics.......Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics....

  3. Lipoxygenase inhibitor peptides and their use

    OpenAIRE

    Schurink, M.; Boeriu, C.G.; Berkel, van, A.M.; Wichers, H.J.

    2006-01-01

    The present invention is in the field of enzyme inhibition. In particular it relates to peptide inhibitors for lipoxygenases. The lipoxygenase peptide inhibitors of have the potential to be used as therapeutic drugs as well as food preservatives.

  4. Strategic approaches to optimizing peptide ADME properties.

    Science.gov (United States)

    Di, Li

    2015-01-01

    Development of peptide drugs is challenging but also quite rewarding. Five blockbuster peptide drugs are currently on the market, and six new peptides received first marketing approval as new molecular entities in 2012. Although peptides only represent 2% of the drug market, the market is growing twice as quickly and might soon occupy a larger niche. Natural peptides typically have poor absorption, distribution, metabolism, and excretion (ADME) properties with rapid clearance, short half-life, low permeability, and sometimes low solubility. Strategies have been developed to improve peptide drugability through enhancing permeability, reducing proteolysis and renal clearance, and prolonging half-life. In vivo, in vitro, and in silico tools are available to evaluate ADME properties of peptides, and structural modification strategies are in place to improve peptide developability. PMID:25366889

  5. Rapid Detergent Removal From Peptide Samples With Ethyl Acetate For Mass Spectrometry Analysis

    OpenAIRE

    Yeung, Yee-Guide; Stanley, E. Richard

    2010-01-01

    Detergents are required for the extraction of hydrophobic proteins and for the maintenance of their solubility in solution. However, the presence of detergents in the peptide samples severely suppresses ionization in mass spectrometry (MS) analysis and decreases chromatographic resolution in LC-MS. Thus detergents must be removed for sensitive detection of peptides by MS. This unit describes a rapid protocol in which ethyl acetate extraction is used to remove octylglycoside from protease dige...

  6. C-type natriuretic peptide modulates permeability of the blood–brain barrier

    OpenAIRE

    BOHARA, Manoj; Kambe, Yuki; Nagayama, Tetsuya; TOKIMURA, Hiroshi; Arita, Kazunori; Miyata, Atsuro

    2014-01-01

    C-type natriuretic peptide (CNP) is abundant in brain and is reported to exert autocrine function in vascular cells, but its effect on blood–brain barrier (BBB) permeability has not been clarified yet. Here, we examined this effect. Transendothelial electrical resistance (TEER) of in vitro BBB model, composed of bovine brain microvascular endothelial cells and astrocytes, was significantly dose dependently decreased by CNP (1, 10, and 100 nmol/L). C-type natriuretic peptide treatment reduced ...

  7. Purification, structure and function of bioactive peptides

    OpenAIRE

    Eriste, Elo

    2004-01-01

    Peptides are vitally important molecules and many evoke cellular responses. The completion of several genome sequencing projects has revealed a number of new genes. However, as functional peptides often contain posttranslational modifications and/or occur at various lengths, it is of great importance to detect, purify and characterize novel bioactive peptides. To achieve these goals, new methods for peptide detection, isolation and functional characterization have to be d...

  8. Natriuretic Peptide Metabolism, Clearance and Degradation

    OpenAIRE

    Potter, Lincoln R.

    2011-01-01

    Atrial natriuretic peptide, B-type natriuretic peptide and C-type natriuretic peptide compose a family of three structurally related, but genetically distinct, signaling molecules that regulate the cardiovascular, skeletal, nervous, reproductive and other systems by activating transmembrane guanylyl cyclases and elevating intracellular cGMP concentrations. This review broadly discusses the general characteristics of natriuretic peptides and their cognate signaling receptors, then specifically...

  9. Milk proteins as precursors of bioactive peptides

    OpenAIRE

    Marta Dziuba; Bartłomiej Dziuba; Anna Iwaniak

    2009-01-01

    Milk proteins, a source of bioactive peptides, are the subject of numerous research studies aiming to, among others, evaluate their properties as precursors of biologically active peptides. Physiologically active peptides released from their precursors may interact with selected receptors and affect the overall condition and health of humans. By relying on the BIOPEP database of proteins and bioactive peptides, developed by the Department of Food Biochemistry at the University of Warmia and M...

  10. Folic acid-tethered Pep-1 peptide-conjugated liposomal nanocarrier for enhanced intracellular drug delivery to cancer cells: conformational characterization and in vitro cellular uptake evaluation

    Directory of Open Access Journals (Sweden)

    Kang MJ

    2013-03-01

    positive tumors with high translocation capability of the penetrating peptide–modified liposome. Keywords: liposome, folic acid, Pep-1 peptide, cell-penetrating peptide, intracellular delivery, targeted delivery

  11. Diversity of wheat anti-microbial peptides.

    Science.gov (United States)

    Egorov, Tsezi A; Odintsova, Tatyana I; Pukhalsky, Vitaliy A; Grishin, Eugene V

    2005-11-01

    From seeds of Triticum kiharae Dorof. et Migusch., 24 novel anti-microbial peptides were isolated and characterized by a combination of three-step HPLC (affinity, size-exclusion and reversed-phase) with matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and Edman degradation. Based on sequence similarity and cysteine motifs, partially sequenced peptides were assigned to 7 families: defensins, thionins, lipid-transfer proteins, hevein-like peptides, knottin-like peptides, glycine-rich peptides, and MBP-1 homologs. A novel subfamily of defensins consisting of 6 peptides and a new family of glycine-rich (8 peptides with different repeat motifs) were identified. Three 6-cysteine knottin-like peptides represented by N- and C-terminally truncated variants revealed no sequence homology to any known plant anti-microbial peptides. A new 8-cysteine hevein-like peptide and three 4-cysteine peptides homologous to MBP-1 from maize were isolated. This is the first communication on the occurrence of nearly all families of plant anti-microbial peptides in a single species. PMID:16269343

  12. Characterization of Synthetic Peptides by Mass Spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala K; Mirza, Osman; Højrup, Peter;

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI-TOF-MS and...

  13. Unsupervised Identification of Isotope-Labeled Peptides.

    Science.gov (United States)

    Goldford, Joshua E; Libourel, Igor G L

    2016-06-01

    In vivo isotopic labeling coupled with high-resolution proteomics is used to investigate primary metabolism in techniques such as stable isotope probing (protein-SIP) and peptide-based metabolic flux analysis (PMFA). Isotopic enrichment of carbon substrates and intracellular metabolism determine the distribution of isotopes within amino acids. The resulting amino acid mass distributions (AMDs) are convoluted into peptide mass distributions (PMDs) during protein synthesis. With no a priori knowledge on metabolic fluxes, the PMDs are therefore unknown. This complicates labeled peptide identification because prior knowledge on PMDs is used in all available peptide identification software. An automated framework for the identification and quantification of PMDs for nonuniformly labeled samples is therefore lacking. To unlock the potential of peptide labeling experiments for high-throughput flux analysis and other complex labeling experiments, an unsupervised peptide identification and quantification method was developed that uses discrete deconvolution of mass distributions of identified peptides to inform on the mass distributions of otherwise unidentifiable peptides. Uniformly (13)C-labeled Escherichia coli protein was used to test the developed feature reconstruction and deconvolution algorithms. The peptide identification was validated by comparing MS(2)-identified peptides to peptides identified from PMDs using unlabeled E. coli protein. Nonuniformly labeled Glycine max protein was used to demonstrate the technology on a representative sample suitable for flux analysis. Overall, automatic peptide identification and quantification were comparable or superior to manual extraction, enabling proteomics-based technology for high-throughput flux analysis studies. PMID:27145348

  14. Bioactive peptides in dairy products

    Directory of Open Access Journals (Sweden)

    Donata Marletta

    2010-01-01

    Full Text Available Bioactive peptides are specific protein fragments that have a positive impact on body functions and conditions and may ultimately influence health. Most of the biological activities are encrypted within the primary sequence of the native protein and can be released by enzymatic hydrolysis and proteolysis or by food processing. Milk is a rich source of bioactive peptides which may contribute to regulate the nervous, gastrointestinal and cardiovascular systems as well as the immune system, confirming the added value of dairy products that, in certain cases, can be considered functional foods. The main biological activities of these peptides and their bioavailability in dairy products are reviewed. The natural concentration of these biomolecules is quite low and, to date one of the main goals has been to realize products enriched with bioactive peptides that have beneficial effects on human health and proven safety. Even though several health-enhancing products have already been launched and their integration in the diet could help in the prevention of chronic diseases such as hypertension, cancer and osteoporosis, more clinical trials are required in order to develop a deeper understanding of the activity of biopeptides on the human physiological mechanisms and also to assess the efficacy of their effects in a long term view. New scientific data are also needed to support their commercialisation in compliance with current regulations.

  15. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets.

    Science.gov (United States)

    Giordano, Carmela; Marchiò, Maddalena; Timofeeva, Elena; Biagini, Giuseppe

    2014-01-01

    Various ketogenic diet (KD) therapies, including classic KD, medium chain triglyceride administration, low glycemic index treatment, and a modified Atkins diet, have been suggested as useful in patients affected by pharmacoresistant epilepsy. A common goal of these approaches is to achieve an adequate decrease in the plasma glucose level combined with ketogenesis, in order to mimic the metabolic state of fasting. Although several metabolic hypotheses have been advanced to explain the anticonvulsant effect of KDs, including changes in the plasma levels of ketone bodies, polyunsaturated fatty acids, and brain pH, direct modulation of neurotransmitter release, especially purinergic (i.e., adenosine) and γ-aminobutyric acidergic neurotransmission, was also postulated. Neuropeptides and peptide hormones are potent modulators of synaptic activity, and their levels are regulated by metabolic states. This is the case for neuroactive peptides such as neuropeptide Y, galanin, cholecystokinin, and peptide hormones such as leptin, adiponectin, and growth hormone-releasing peptides (GHRPs). In particular, the GHRP ghrelin and its related peptide des-acyl ghrelin are well-known controllers of energy homeostasis, food intake, and lipid metabolism. Notably, ghrelin has also been shown to regulate the neuronal excitability and epileptic activation of neuronal networks. Several lines of evidence suggest that GHRPs are upregulated in response to starvation and, particularly, in patients affected by anorexia and cachexia, all conditions in which also ketone bodies are upregulated. Moreover, starvation and anorexia nervosa are accompanied by changes in other peptide hormones such as adiponectin, which has received less attention. Adipocytokines such as adiponectin have also been involved in modulating epileptic activity. Thus, neuroactive peptides whose plasma levels and activity change in the presence of ketogenesis might be potential candidates for elucidating the neurohormonal

  16. Screening Method for the Discovery of Potential Bioactive Cysteine-Containing Peptides Using 3D Mass Mapping

    Science.gov (United States)

    van Oosten, Luuk N.; Pieterse, Mervin; Pinkse, Martijn W. H.; Verhaert, Peter D. E. M.

    2015-12-01

    Animal venoms and toxins are a valuable source of bioactive peptides with pharmacologic relevance as potential drug leads. A large subset of biologically active peptides discovered up till now contain disulfide bridges that enhance stability and activity. To discover new members of this class of peptides, we developed a workflow screening specifically for those peptides that contain inter- and intra-molecular disulfide bonds by means of three-dimensional (3D) mass mapping. Two intrinsic properties of the sulfur atom, (1) its relatively large negative mass defect, and (2) its isotopic composition, allow for differentiation between cysteine-containing peptides and peptides lacking sulfur. High sulfur content in a peptide decreases the normalized nominal mass defect (NMD) and increases the normalized isotopic shift (NIS). Hence in a 3D plot of mass, NIS, and NMD, peptides with sulfur appear in this plot with a distinct spatial localization compared with peptides that lack sulfur. In this study we investigated the skin secretion of two frog species; Odorrana schmackeri and Bombina variegata. Peptides from the crude skin secretions were separated by nanoflow LC, and of all eluting peptides high resolution zoom scans were acquired in order to accurately determine both monoisotopic mass and average mass. Both the NMD and the NIS were calculated from the experimental data using an in-house developed MATLAB script. Candidate peptides exhibiting a low NMD and high NIS values were selected for targeted de novo sequencing, and this resulted in the identification of several novel inter- and intra-molecular disulfide bond containing peptides.

  17. Evaluating molecular mechanical potentials for helical peptides and proteins.

    Directory of Open Access Journals (Sweden)

    Erik J Thompson

    Full Text Available Multiple variants of the AMBER all-atom force field were quantitatively evaluated with respect to their ability to accurately characterize helix-coil equilibria in explicit solvent simulations. Using a global distributed computing network, absolute conformational convergence was achieved for large ensembles of the capped A(21 and F(s helical peptides. Further assessment of these AMBER variants was conducted via simulations of a flexible 164-residue five-helix-bundle protein, apolipophorin-III, on the 100 ns timescale. Of the contemporary potentials that had not been assessed previously, the AMBER-99SB force field showed significant helix-destabilizing tendencies, with beta bridge formation occurring in helical peptides, and unfolding of apolipophorin-III occurring on the tens of nanoseconds timescale. The AMBER-03 force field, while showing adequate helical propensities for both peptides and stabilizing apolipophorin-III, (i predicts an unexpected decrease in helicity with ALA-->ARG(+ substitution, (ii lacks experimentally observed 3(10 helical content, and (iii deviates strongly from average apolipophorin-III NMR structural properties. As is observed for AMBER-99SB, AMBER-03 significantly overweighs the contribution of extended and polyproline backbone configurations to the conformational equilibrium. In contrast, the AMBER-99phi force field, which was previously shown to best reproduce experimental measurements of the helix-coil transition in model helical peptides, adequately stabilizes apolipophorin-III and yields both an average gyration radius and polar solvent exposed surface area that are in excellent agreement with the NMR ensemble.

  18. Design and characterization of an acid-activated antimicrobial peptide.

    Science.gov (United States)

    Li, Lina; He, Jian; Eckert, Randal; Yarbrough, Daniel; Lux, Renate; Anderson, Maxwell; Shi, Wenyuan

    2010-01-01

    Dental caries is a microbial biofilm infection in which the metabolic activities of plaque bacteria result in a dramatic pH decrease and shift the demineralization/remineralization equilibrium on the tooth surface towards demineralization. In addition to causing a net loss in tooth minerals, creation of an acidic environment favors growth of acid-enduring and acid-generating species, which causes further reduction in the plaque pH. In this study, we developed a prototype antimicrobial peptide capable of achieving high activity exclusively at low environmental pH to target bacterial species like Streptococcus mutans that produce acid and thrive under the low pH conditions detrimental for tooth integrity. The features of clavanin A, a naturally occurring peptide rich in histidine and phenylalanine residues with pH-dependent antimicrobial activity, served as a design basis for these prototype 'acid-activated peptides' (AAPs). Employing the major cariogenic species S. mutans as a model system, the two AAPs characterized in this study exhibited a striking pH-dependent antimicrobial activity, which correlated well with the calculated charge distribution. This type of peptide represents a potential new way to combat dental caries. PMID:19878192

  19. Vasoactive intestinal peptide and electrical activity influence neuronal survival

    International Nuclear Information System (INIS)

    Blockage of electrical activity in dissociated spinal cord cultures results in a significant loss of neurons during a critical period in development. Decreases in neuronal cell numbers and 125I-labeled tetanus toxin fixation produced by electrical blockage with tetrodotoxin (TTX) were prevented by addition of vasoactive intestinal peptide (VIP) to the nutrient medium. The most effective concentration of VIP was 0.1 nM. At higher concentrations, the survival-enhancing effect of VIP on TTX-treated cultures was attenuated. Addition of the peptide alone had no significant effect on neuronal cell counts or tetanus toxin fixation. With the same experimental conditions, two closely related peptides, PHI-27 (peptide, histidyl-isoleucine amide) and secretin, were found not to increase the number of neurons in TTX-treated cultures. Interference with VIP action by VIP antiserum resulted in neuronal losses that were not significantly different from those observed after TTX treatment. These data indicate that under conditions of electrical blockade a neurotrophic action of VIP on neuronal survival can be demonstrated

  20. Mapping the human proteome for non-redundant peptide islands.

    Science.gov (United States)

    Capone, G; De Marinis, A; Simone, S; Kusalik, A; Kanduc, D

    2008-06-01

    We describe immune-proteome structures using libraries of protein fragments that define a structural immunological alphabet. We propose and validate such an alphabet as i) composed of letters of five consecutive amino acids, pentapeptide units being sufficient minimal antigenic determinants in a protein, and ii) characterized by low-similarity to human proteins, so representing structures unknown to the host and potentially able to evoke an immune response. In this context, we have thoroughly sifted through the entire human proteome searching for non-redundant protein motifs. Here, for the first time, a complete sequence redundancy dissection of the human proteome has been conducted. The non-redundant peptide islands in the human proteome have been quantified and catalogued according to the amino acid length. The library of uniquely occurring n-peptide sequences that was obtained is characterized by a logarithmic decrease of the number of non-redundant peptides as a function of the peptide length. This library represents a highly specific catalogue of molecular protein signatures, the possible use of which in cancer/autoimmunity research is discussed, with a major focus on non-redundant dodecamer sequences. PMID:17701099

  1. Fabrication of dual responsive co-delivery system based on three-armed peptides for tumor therapy.

    Science.gov (United States)

    Chen, Si; Lei, Qi; Li, Shi-Ying; Qin, Si-Yong; Jia, Hui-Zhen; Cheng, Yin-Jia; Zhang, Xian-Zheng

    2016-06-01

    Introducing drugs into gene delivery systems to fabricate co-delivery systems for synergy therapy has become a promising strategy for tumor therapy. In this study, a dual responsive co-delivery system RHD/p53 was fabricated to enhance the antitumor efficacy with a low dose of doxorubicin (DOX). The reducible branched cationic polypeptide (RBCP), which was cross-linked via the thiol groups of two three-armed cationic peptides (CRR)2KRRC and (CHH)2KHHC, was designated as RH. Then, DOX was immobilized on RH via pH-sensitive hydrazone bonds to obtain RHD. The positively charged RHD could compress p53 plasmid to form RHD/p53 complexes. After RHD/p53 complexes accumulated in tumor sites, the ability of cell penetrating by cationic peptide (CRR)2KRRC would facilitate the cellular internalization of complexes. Then, the complexes would be trapped in endosome, and the cleavage of hydrazone bonds in the intracellular acidic endosome could lead to pH-induced release of DOX. Additionally, the ability of protonation by (CHH)2KHHC could promote the escape of complexes from endosome to cytoplasm. Due to the cleavage of disulfide bonds triggered by the high-content GSH in cytoplasm, the complexes would be degraded and released p53 for co-therapy to improve antitumor efficacy. Both in vitro and in vivo studies indicated that dual responsive co-delivery system RHD/p53 could enhance antitumor efficacy, which provides a useful strategy for co-delivery of different therapeutic agents in tumor treatment. PMID:27031930

  2. Phase I vaccination trial of SYT-SSX junction peptide in patients with disseminated synovial sarcoma

    Directory of Open Access Journals (Sweden)

    Asanuma Hiroko

    2005-01-01

    Full Text Available Abstract Background Synovial sarcoma is a high-grade malignant tumor of soft tissue, characterized by the specific chromosomal translocation t(X;18, and its resultant SYT-SSX fusion gene. Despite intensive multimodality therapy, the majority of metastatic or relapsed diseases still remain incurable, thus suggesting a need for new therapeutic options. We previously demonstrated the antigenicity of SYT-SSX gene-derived peptides by in vitro analyses. The present study was designed to evaluate in vivo immunological property of a SYT-SSX junction peptide in selected patients with synovial sarcoma. Methods A 9-mer peptide (SYT-SSX B: GYDQIMPKK spanning the SYT-SSX fusion region was synthesized. Eligible patients were those (i who have histologically and genetically confirmed, unresectable synovial sarcoma (SYT-SSX1 or SYT-SSX2 positive, (ii HLA-A*2402 positive, (iii between 20 and 70 years old, (iv ECOG performance status between 0 and 3, and (v who gave informed consent. Vaccinations with SYT-SSX B peptide (0.1 mg or 1.0 mg were given subcutaneously six times at 14-day intervals. These patients were evaluated for DTH skin test, adverse events, tumor size, tetramer staining, and peptide-specific CTL induction. Results A total of 16 vaccinations were carried out in six patients. The results were (i no serious adverse effects or DTH reactions, (ii suppression of tumor progression in one patient, (iii increases in the frequency of peptide-specific CTLs in three patients and a decrease in one patient, and (iv successful induction of peptide-specific CTLs from four patients. Conclusions Our findings indicate the safety of the SYT-SSX junction peptide in the use of vaccination and also give support to the property of the peptide to evoke in vivo immunological responses. Modification of both the peptide itself and the related protocol is required to further improve the therapeutic efficacy.

  3. ER stress affects processing of MHC class I-associated peptides

    Directory of Open Access Journals (Sweden)

    Meloche Sylvain

    2009-02-01

    Full Text Available Abstract Background Viral infection and neoplastic transformation trigger endoplasmic reticulum (ER stress. Thus, a large proportion of the cells that must be recognized by the immune system are stressed cells. Cells respond to ER stress by launching the unfolded protein response (UPR. The UPR regulates the two key processes that control major histocompatibility complex class I (MHC I-peptide presentation: protein synthesis and degradation. We therefore asked whether and how the UPR impinges on MHC I-peptide presentation. Results We evaluated the impact of the UPR on global MHC I expression and on presentation of the H2Kb-associated SIINFEKL peptide. EL4 cells stably transfected with vectors coding hen egg lysozyme (HEL-SIINFEKL protein variants were stressed with palmitate or exposed to glucose deprivation. UPR decreased surface expression of MHC I but did not affect MHC I mRNA level nor the total amount of intracellular MHC I proteins. Impaired MHC I-peptide presentation was due mainly to reduced supply of peptides owing to an inhibition of overall protein synthesis. Consequently, generation of H2Kb-SIINFEKL complexes was curtailed during ER stress, illustrating how generation of MHC I peptide ligands is tightly coupled to ongoing protein synthesis. Notably, the UPR-induced decline of MHC I-peptide presentation was more severe when the protein source of peptides was localized in the cytosol than in the ER. This difference was not due to changes in the translation rates of the precursor proteins but to increased stability of the cytosolic protein during ER stress. Conclusion Our results demonstrate that ER stress impairs MHC I-peptide presentation, and that it differentially regulates expression of ER- vs. cytosol-derived peptides. Furthermore, this work illustrates how ER stress, a typical feature of infected and malignant cells, can impinge on cues for adaptive immune recognition.

  4. Study of antimicrobial peptides by capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Tůmová, Tereza; Monincová, Lenka; Čeřovský, Václav; Kašička, Václav

    Sofia: Bulgarian Peptide Society, 2015 - (Naydenova, E.; Pajpanova, T.; Danalev, D.), s. 304-305 ISBN 978-619-90427-2-4. [Peptides 2014. European Peptide Symposium /33./. Sofia (BG), 31.08.2014-05.09.2014] R&D Projects: GA ČR(CZ) GAP206/12/0453; GA ČR(CZ) GA13-17224S Institutional support: RVO:61388963 Keywords : peptides * antimicrobial activity * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation http://bulpepsoc.info/wp-content/uploads/2015/06/PEPTIDES-2014-electronic-version.pdf

  5. Radioiodination of vasoactive intestinal peptide (VIP)

    International Nuclear Information System (INIS)

    In recent years, increasing biochemical and radiochemical research has been performed to develop radiolabelled peptides as specific ligands for tumour associated receptors. VIP, a 28-amino acid peptide containing two tyrosines and three lysines, has demonstrated that various tumour cells express significantly higher amounts of VIP-receptors and could be applied to the clinic diagnosis. For these purposes, radiohalogenation of VIP by direct and indirect method was studied. Direct labelling works well for radioiodine but is limited to dehalogenation of labelling products in vivo. Conjugate labelling methods including Boltonhunter and wood reagents were developed but introduction of such a molecule to peptides may lead to the decrease of biological activity in vivo. In order to resolve these problems, N-Succinimidyl-3-(tri-nbutylstannyl) benzoate (ATE) was elected for the radioiodination of VIP and already employed to radioiodination of IgG successfully. The in vitro stability and biological activity would be compared in these two methods. Vasoactive intestinal peptide (VIP) and human immunoglobulin (IgG) were radioiodinated by direct and indirect methods. Iodogen was employed in direct method and N-Succinimidyl-3-(tri-n-butylstannyl) benzoate (ATE) was applied as a prosthetic group in the conjugation labelling. The subject of our study was optimizing the radiohalogenation of IgG and VIP followed by separation and analysis of reaction products. The advantages and disadvantages were illustrated by comparing the in vitro stability and biological activity in these two methods. Na123I was prepared by nuclear reaction of 124Te(p, 2n)123I using cyclone-30. More than 95% of radiochemical purity, more than 95% of radionuclide purity and about 100 mCi/mL of radioactivity concentration were obtained. ATE was supplied by Dr. Pozzi and radioiodinated with iodogen and 96% of labelling efficiency was obtained. The stability of radioactive S125IB kept well in dark at 4 . Human Ig

  6. Natural and synthetic peptides with antifungal activity.

    Science.gov (United States)

    Ciociola, Tecla; Giovati, Laura; Conti, Stefania; Magliani, Walter; Santinoli, Claudia; Polonelli, Luciano

    2016-08-01

    In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections. PMID:27502155

  7. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    Science.gov (United States)

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes. PMID:27451165

  8. Identification of SNAIL1 Peptide-Based Irreversible Lysine-Specific Demethylase 1-Selective Inactivators.

    Science.gov (United States)

    Itoh, Yukihiro; Aihara, Keisuke; Mellini, Paolo; Tojo, Toshifumi; Ota, Yosuke; Tsumoto, Hiroki; Solomon, Viswas Raja; Zhan, Peng; Suzuki, Miki; Ogasawara, Daisuke; Shigenaga, Akira; Inokuma, Tsubasa; Nakagawa, Hidehiko; Miyata, Naoki; Mizukami, Tamio; Otaka, Akira; Suzuki, Takayoshi

    2016-02-25

    Inhibition of lysine-specific demethylase 1 (LSD1), a flavin-dependent histone demethylase, has recently emerged as a new strategy for treating cancer and other diseases. LSD1 interacts physically with SNAIL1, a member of the SNAIL/SCRATCH family of transcription factors. This study describes the discovery of SNAIL1 peptide-based inactivators of LSD1. We designed and prepared SNAIL1 peptides bearing a propargyl amine, hydrazine, or phenylcyclopropane moiety. Among them, peptide 3, bearing hydrazine, displayed the most potent LSD1-inhibitory activity in enzyme assays. Kinetic study and mass spectrometric analysis indicated that peptide 3 is a mechanism-based LSD1 inhibitor. Furthermore, peptides 37 and 38, which consist of cell-membrane-permeable oligoarginine conjugated with peptide 3, induced a dose-dependent increase of dimethylated Lys4 of histone H3 in HeLa cells, suggesting that they are likely to exhibit LSD1-inhibitory activity intracellularly. In addition, peptide 37 decreased the viability of HeLa cells. We believe this new approach for targeting LSD1 provides a basis for development of potent selective inhibitors and biological probes for LSD1. PMID:26700437

  9. Effect of alginate hydrogel containing polyproline-rich peptides on osteoblast differentiation

    International Nuclear Information System (INIS)

    Polyproline-rich synthetic peptides have previously been shown to induce bone formation and mineralization in vitro and to decrease bone resorption in vivo. Alginate hydrogel formulations containing these synthetic peptides (P2, P5, P6) or Emdogain® (EMD) were tested for surface coating of bone implants. In an aqueous environment, the alginate hydrogels disclosed a highly compact structure suitable for cell adhesion and proliferation. Lack of cytotoxicity of the alginate-gel coating containing peptides was tested in MC3T3-E1 cell cultures. In the present study, relative mRNA expression levels of integrin alpha 8 were induced by P5 compared to untreated alginate gel, and osteopontin mRNA levels were increased after 21 days of culture by treatment with synthetic peptides or EMD compared to control. Further, in agreement with previous results when the synthetic peptides were administered in the culture media, osteocalcin mRNA was significantly upregulated after long-term treatment with the formulated synthetic peptides compared to untreated and EMD alginate gel. These results indicate that the alginate gel is a suitable carrier for the delivery of synthetic peptides, and that the formulation is promising as biodegradable and biocompatible coating for bone implants. (paper)

  10. Pathological consequences of C-peptide deficiency ininsulin-dependent diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Ahmad Ghorbani; Reza Shafiee-Nick

    2015-01-01

    Diabetes is associated with several complicationssuch as retinopathy, nephropathy, neuropathy andcardiovascular diseases. Currently, insulin is the mainused medication for management of insulin-dependentdiabetes mellitus (type-1 diabetes). In this metabolicsyndrome, in addition to decrease of endogenous insulin,the plasma level of connecting peptide (C-peptide) is alsoreduced due to beta cell destruction. Studies in the pastdecade have shown that C-peptide is much more than abyproduct of insulin biosynthesis and possess differentbiological activities. Therefore, it may be possible thatC-peptide deficiency be involved, at least in part, in thedevelopment of different complications of diabetes. It hasbeen shown that a small level of remaining C-peptide isassociated with significant metabolic benefit. The purposeof this review is to describe beneficial effects of C-peptidereplacement on pathological features associated withinsulin-dependent diabetes. Also, experimental andclinical findings on the effects of C-peptide on wholebodyglucose utilization, adipose tissue metabolism andtissues blood flow are summarized and discussed. Thehypoglycemic, antilipolytic and vasodilator effects ofC-peptide suggest that it may contribute to fine-tuningof the tissues metabolism under different physiologic orpathologic conditions. Therefore, C-peptide replacementtogether with the classic insulin therapy may prevent,retard, or ameliorate diabetic complications in patientswith type-1 diabetes.

  11. New vasoactive peptides in cirrhosis

    DEFF Research Database (Denmark)

    Kimer, Nina; Goetze, Jens Peter; Bendtsen, Flemming;

    2014-01-01

    to haemodynamic changes in the pro-peptides copeptin, proadrenomedullin and pro-atrial natriuretic peptide (proANP) in patients with cirrhosis. MATERIALS AND METHODS: Fifty-four cirrhotic patients and 15 controls were characterized haemodynamically during a liver vein catheterization. Copeptin......, proadrenomedullin and proANP were measured in hepatic and renal veins and the femoral artery. RESULTS: We found no differences in concentrations of copeptin and proadrenomedullin between patients and controls. ProANPs were higher in cirrhotic patients, median 138 pm (25/75 percentiles 101-194) compared with....... We found no extraction of copeptin, proadrenomedullin or proANP over the liver. Copeptin correlated with portal pressure (R=0·50, P<0·001). Proadrenomedullin correlated with portal pressure (R=0·48, P<0·001) and heart rate (R=0·36, P<0·01). ProANP correlated with cardiac output (R=0·46, P<0·002) and...

  12. Structural transition in peptide nanotubes.

    Science.gov (United States)

    Amdursky, Nadav; Beker, Peter; Koren, Itai; Bank-Srour, Becky; Mishina, Elena; Semin, Sergey; Rasing, Theo; Rosenberg, Yuri; Barkay, Zahava; Gazit, Ehud; Rosenman, Gil

    2011-04-11

    Phase transitions in organic and inorganic materials are well-studied classical phenomena, where a change in the crystal space group symmetry induces a wide variation of physical properties, permitted by the crystalline symmetry in each phase. Here we observe a conformational induced transition in bioinspired peptide nanotubes (PNTs). We found that the PNTs change their original molecular assembly from a linear peptide conformation to a cyclic one, followed by a change of the nanocrystalline structure from a noncentrosymmetric hexagonal space group to a centrosymmetric orthorhombic space group. The observed transition is irreversible and induces a profound variation in the PNTs properties, from the microscopic to the macroscopic level. In this context, we follow the unique changes in the molecular, morphological, piezoelectric, second harmonic generation, and wettability properties of the PNTs. PMID:21388228

  13. Targeting diverse protein–protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Checco, James W.; Kreitler, Dale F.; Thomas, Nicole C.; Belair, David G.; Rettko, Nicholas J.; Murphy, William L.; Forest, Katrina T.; Gellman, Samuel H. (UW)

    2015-04-14

    Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. Here, we describe a strategy for designing oligomers containing both α- and β-amino acid residues ("α/β-peptides") that mimic several peptides derived from the three-helix bundle "Z-domain" scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF₁₆₅-induced proliferation of human umbilical vein endothelial cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain–mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Such reagents would be useful for diagnostic and therapeutic applications.

  14. *600781 PEPTIDE YY; PYY [OMIM

    Lifescience Database Archive (English)

    Full Text Available FIELD NO 600781 FIELD TI 600781 PEPTIDE YY; PYY FIELD TX CLONING PYY is secreted from endocrine ... acologically active PYY(3-36)) were measured in 66 lean , 18 anorectic, 63 obese, and 16 morbidly obese hum ... +/- 12.9 pg/ml, P = less than 0.05) compared with lean ... (52.4 +/- 4.6 pg/ml), obese (43.9 +/- 3.8 pg/ml), ...

  15. Antibody Peptide Based Antifungal Immunotherapy

    OpenAIRE

    Magliani, Walter; Conti, Stefania; Giovati, Laura; Zanello, Pier Paolo; Sperindè, Martina; Ciociola, Tecla; Polonelli, Luciano

    2012-01-01

    Fungal infections still represent relevant human illnesses worldwide and some are accompanied by unacceptably high mortality rates. The limited current availability of effective and safe antifungal agents makes the development of new drugs and approaches of antifungal vaccination/immunotherapy every day more needed. Among them, small antibody(Ab)-derived peptides are arousing great expectations as new potential antifungal agents. In this topic, the search path from the study of the yeast kill...

  16. Structure-Activity Relationship of Chlorotoxin-Like Peptides.

    Science.gov (United States)

    Ali, Syed Abid; Alam, Mehtab; Abbasi, Atiya; Undheim, Eivind A B; Fry, Bryan Grieg; Kalbacher, Hubert; Voelter, Wolfgang

    2016-02-01

    Animal venom (e.g., scorpion) is a rich source of various protein and peptide toxins with diverse physio-/pharmaco-logical activities, which generally exert their action via target-specific modulation of different ion channel functions. Scorpion venoms are among the most widely-known source of peptidyl neurotoxins used for callipering different ion channels, such as; Na⁺, K⁺, Ca⁺, Cl(-), etc. A new peptide of the chlorotoxin family (i.e., Bs-Tx7) has been isolated, sequenced and synthesized from scorpion Buthus sindicus (family Buthidae) venom. This peptide demonstrates 66% with chlorotoxin (ClTx) and 82% with CFTR channel inhibitor (GaTx1) sequence identities reported from Leiurus quinquestriatus hebraeus venom. The toxin has a molecular mass of 3821 Da and possesses four intra-chain disulphide bonds. Amino acid sequence analysis of Bs-Tx7 revealed the presence of a scissile peptide bond (i.e., Gly-Ile) for human MMP2, whose activity is increased in the case of tumour malignancy. The effect of hMMP2 on Bs-Tx7, or vice versa, observed using the FRET peptide substrate with methoxycoumarin (Mca)/dinitrophenyl (Dnp) as fluorophore/quencher, designed and synthesized to obtain the lowest Km value for this substrate, showed approximately a 60% increase in the activity of hMMP2 upon incubation of Bs-Tx7 with the enzyme at a micromolar concentration (4 µM), indicating the importance of this toxin in diseases associated with decreased MMP2 activity. PMID:26848686

  17. Structure-Activity Relationship of Chlorotoxin-Like Peptides

    Directory of Open Access Journals (Sweden)

    Syed Abid Ali

    2016-02-01

    Full Text Available Animal venom (e.g., scorpion is a rich source of various protein and peptide toxins with diverse physio-/pharmaco-logical activities, which generally exert their action via target-specific modulation of different ion channel functions. Scorpion venoms are among the most widely-known source of peptidyl neurotoxins used for callipering different ion channels, such as; Na+, K+, Ca+, Cl−, etc. A new peptide of the chlorotoxin family (i.e., Bs-Tx7 has been isolated, sequenced and synthesized from scorpion Buthus sindicus (family Buthidae venom. This peptide demonstrates 66% with chlorotoxin (ClTx and 82% with CFTR channel inhibitor (GaTx1 sequence identities reported from Leiurus quinquestriatus hebraeus venom. The toxin has a molecular mass of 3821 Da and possesses four intra-chain disulphide bonds. Amino acid sequence analysis of Bs-Tx7 revealed the presence of a scissile peptide bond (i.e., Gly-Ile for human MMP2, whose activity is increased in the case of tumour malignancy. The effect of hMMP2 on Bs-Tx7, or vice versa, observed using the FRET peptide substrate with methoxycoumarin (Mca/dinitrophenyl (Dnp as fluorophore/quencher, designed and synthesized to obtain the lowest Km value for this substrate, showed approximately a 60% increase in the activity of hMMP2 upon incubation of Bs-Tx7 with the enzyme at a micromolar concentration (4 µM, indicating the importance of this toxin in diseases associated with decreased MMP2 activity.

  18. Antimicrobial Peptides: Versatile Biological Properties

    Directory of Open Access Journals (Sweden)

    Muthuirulan Pushpanathan

    2013-01-01

    Full Text Available Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries.

  19. Antihypertensive Peptides from Milk Proteins

    Directory of Open Access Journals (Sweden)

    Heikki Vapaatalo

    2010-01-01

    Full Text Available Dietary proteins possess a wide range of nutritional and functional properties. They are used as a source of energy and amino acids, which are needed for growth and development. Many dietary proteins, especially milk proteins, contain physiologically active peptides encrypted in the protein sequence. These peptides may be released during gastrointestinal digestion or food processing and once liberated, cause different physiological functions. Milk-derived bioactive peptides are shown to have antihypertensive, antimicrobial, immunomodulatory, antioxidative and mineral-binding properties. During the fermentation of milk with certain lactobacilli, two interesting tripeptides Ile-Pro-Pro and Val-Pro-Pro are released from casein to the final product. These lactotripeptides have attenuated the development of hypertension in several animal models and lowered blood pressure in clinical studies. They inhibit ACE in vitro at micromolar concentrations, protect endothelial function in vitro and reduce arterial stiffness in humans. Thus, milk as a traditional food product can after certain processing serve as a functional food and carry specific health-promoting effects, providing an option to control blood pressure.

  20. Identification of novel human immunodeficiency virus type 1-inhibitory peptides based on the antimicrobial peptide database.

    Science.gov (United States)

    Wang, Guangshun; Watson, Karen M; Peterkofsky, Alan; Buckheit, Robert W

    2010-03-01

    To identify novel anti-HIV-1 peptides based on the antimicrobial peptide database (APD; http://aps.unmc.edu/AP/main.php), we have screened 30 candidates and found 11 peptides with 50% effective concentrations (EC(50)) of 1, increases in the Arg contents of amphibian maximin H5 and dermaseptin S9 peptides and the database-derived GLK-19 peptide improved the TIs. These examples demonstrate that the APD is a rich resource and a useful tool for developing novel HIV-1-inhibitory peptides. PMID:20086159

  1. Toxins and antimicrobial peptides: interactions with membranes

    Science.gov (United States)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of melittin and human cathelicidin embedded in bilayer vesicles. Collectively, our results provide clues to the functional structures of the engineered and toxic peptides and may impact the design of synthetic antibiotic peptides that can be used against the growing number of antibiotic-resistant pathogens.

  2. Predicting protein-peptide interactions from scratch

    Science.gov (United States)

    Yan, Chengfei; Xu, Xianjin; Zou, Xiaoqin; Zou lab Team

    Protein-peptide interactions play an important role in many cellular processes. The ability to predict protein-peptide complex structures is valuable for mechanistic investigation and therapeutic development. Due to the high flexibility of peptides and lack of templates for homologous modeling, predicting protein-peptide complex structures is extremely challenging. Recently, we have developed a novel docking framework for protein-peptide structure prediction. Specifically, given the sequence of a peptide and a 3D structure of the protein, initial conformations of the peptide are built through protein threading. Then, the peptide is globally and flexibly docked onto the protein using a novel iterative approach. Finally, the sampled modes are scored and ranked by a statistical potential-based energy scoring function that was derived for protein-peptide interactions from statistical mechanics principles. Our docking methodology has been tested on the Peptidb database and compared with other protein-peptide docking methods. Systematic analysis shows significantly improved results compared to the performances of the existing methods. Our method is computationally efficient and suitable for large-scale applications. Nsf CAREER Award 0953839 (XZ) NIH R01GM109980 (XZ).

  3. Construction of Lasso Peptide Fusion Proteins.

    Science.gov (United States)

    Zong, Chuhan; Maksimov, Mikhail O; Link, A James

    2016-01-15

    Lasso peptides are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) typified by an isopeptide-bonded macrocycle between the peptide N-terminus and an aspartate or glutamate side chain. The C-terminal portion of the peptide threads through the N-terminal macrocycle to give the characteristic lasso fold. Because of the inherent stability, both proteolytic and often thermal, of lasso peptides, we became interested in whether proteins could be fused to the free C-terminus of lasso peptides. Here, we demonstrate fusion of two model proteins, the artificial leucine zipper A1 and the superfolder variant of GFP, to the C-terminus of the lasso peptide astexin-1. Successful lasso cyclization of the N-terminus of these fusion proteins requires a flexible linker in between the C-terminus of the lasso peptide and the N-terminus of the protein of interest. The ability to fuse lasso peptides to a protein of interest is an important step toward phage and bacterial display systems for the high-throughput screening of lasso peptide libraries for new functions. PMID:26492187

  4. Kinetics of circulating endogenous insulin, C-peptide, and proinsulin in fasting nondiabetic man

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Tronier, B; Bülow, J B

    1987-01-01

    Plasma concentrations of insulin, C-peptide, and proinsulin were measured in different vascular beds in order to determine renal, hepatic, and systemic kinetics of the endogenous peptides in the fasting condition. Nineteen nondiabetic subjects were studied, two were normal, nine had minor vascular...... disorders, four had cirrhosis without organic kidney disease, and four had organic kidney disease with moderately decreased glomerular filtration rate. In subjects without organic kidney disease the arteriorenal venous extraction ratios of insulin, C-peptide, and proinsulin were mean 0.27, 0.20, and 0.......21, respectively (n = 14). These values were significantly reduced in kidneys with organic disease. Renal plasma clearance values of insulin, C-peptide, and proinsulin were mean 113, 87, and 90 mL/min, respectively (n = 6). Urinary clearances were substantially lower (0.8, 13, 3.5 mL/min, respectively), indicating...

  5. Selective Acylation Enhances Membrane Charge Sensitivity of the Antimicrobial Peptide Mastoparan-X

    DEFF Research Database (Denmark)

    Etzerodt, Thomas Povl; Henriksen, Jonas Rosager; Rasmussen, Palle;

    2011-01-01

    The partitioning of the wasp venom peptide mastoparan-X (MPX) into neutral and negatively charged lipid membranes has been compared with two new synthetic analogs of MPX where the Nα-terminal of MPX was acylated with propanoic acid (PA) and octanoic acid (OA). The acylation caused a considerable...... change in the membrane partitioning properties of MPX and it was found that the shorter acylation with PA gave improved affinity and selectivity toward negatively charged membranes, whereas OA decreased the selectivity. Based on these findings, we hypothesize that minor differences in the embedding and...... positioning of the peptide in the membrane caused by either PA or OA acylation play a critical role in the fine-tuning of the effective charge of the peptide and thereby the fine-tuning of the peptide's selectivity between neutral and negatively charged lipid membranes. This finding is unique compared to...

  6. Bactericidal synergy of lysostaphin in combination with antimicrobial peptides.

    Science.gov (United States)

    Desbois, A P; Coote, P J

    2011-08-01

    Drug-resistant staphylococci constitute a serious problem that urgently requires the discovery of new therapeutic agents. There has been a resurgence in interest in using lysostaphin (a specific anti-staphylococcal enzyme) as a treatment for infections caused by these important pathogens. However, bacterial resistance to lysostaphin is a problem, but the use of a combination treatment may surmount this issue. In this present study, using viable counts from suspension incubations, lysostaphin is shown to be synergistically bactericidal in combination with various conventional antimicrobial peptides, the antimicrobial protein bovine lactoferrin, a lantibiotic (nisin), and certain lipopeptides used clinically (colistin, daptomycin and polymyxin B). Combinations that act in synergy are of clinical importance as these reduce the doses of the compounds needed for effective treatments and decrease the chances of resistance being selected. The use of lysostaphin in combination with a peptide may represent a new avenue in tackling drug-resistant staphylococci. PMID:21311938

  7. Human Antimicrobial Peptides and Proteins

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2014-05-01

    Full Text Available As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32 can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized

  8. Epidermal growth factor treatment decreases mortality and is associated with improved gut integrity in sepsis

    OpenAIRE

    Clark, Jessica A.; Clark, Andrew T.; Hotchkiss, Richard S.; Buchman, Timothy G; Coopersmith, Craig M.

    2008-01-01

    Epidermal growth factor (EGF) is a cytoprotective peptide that has healing effects on the intestinal mucosa. We sought to determine whether systemic administration of EGF following the onset of sepsis improved intestinal integrity and decreased mortality. FVB/N mice were subjected to either sham laparotomy or 2×23 cecal ligation and puncture (CLP). Septic mice were further randomized to receive intraperitoneal injection of either 150 μg/kg/day EGF or 0.9% saline. Circulating EGF levels were d...

  9. Temperature-dependent loop formation kinetics in flexible peptides studied by time-resolved fluorescence spectroscopy

    Directory of Open Access Journals (Sweden)

    Harekrushna Sahoo

    2006-01-01

    Full Text Available Looping rates in short polypeptides can be determined by intramolecular fluorescence quenching of a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo by tryptophan. By this methodology, the looping rates in glycine-serine peptides with the structure Trp-(Gly-Sern-Dbo-NH2 of different lengths (n = 0–10 were determined in dependence on temperature in D2O and the activation parameters were derived. In general, the looping rate increases with decreasing peptide length, but the shortest peptide (n=0 shows exceptional behavior because its looping rate is slower than that for the next longer ones (n=1,2. The activation energies increase from 17.5 kJ mol−1 for the longest peptide (n=10 to 20.5 kJ mol−1 for the shortest one (n=0, while the pre-exponential factors (log⁡(A/s−1 range from 10.20 to 11.38. The data are interpreted in terms of an interplay between internal friction (stiffness of the biopolymer backbone and steric hindrance effects and solvent friction (viscosity-limited diffusion. For the longest peptides, the activation energies resemble more and more the value expected for solvent viscous flow. Internal friction is most important for the shortest peptides, causing a negative curvature and a smaller than ideal slope (ca. –1.1 of the double-logarithmic plots of the looping rates versus the number of peptide chain segments (N. Interestingly, the corresponding plot for the pre-exponential factors (logA versus logN shows the ideal slope (–1.5. While the looping rates can be used to assess the flexibility of peptides in a global way, it is suggested that the activation energies provide a measure of the “thermodynamic” flexibility of a peptide, while the pre-exponential factors reflect the “dynamic” flexibility.

  10. Synthesis of peptide .alpha.-thioesters

    Science.gov (United States)

    Camarero, Julio A.; Mitchell, Alexander R.; De Yoreo, James J.

    2008-08-19

    Disclosed herein is a new method for the solid phase peptide synthesis (SPPS) of C-terminal peptide .alpha. thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. The oxidation step converts the acyl-hydrazine group into a highly reactive acyl-diazene intermediate which reacts with an .alpha.-amino acid alkylthioester (H-AA-SR) to yield the corresponding peptide .alpha.-thioester in good yield. A variety of peptide thioesters, cyclic peptides and a fully functional Src homology 3 (SH3) protein domain have been successfully prepared.

  11. Prediction of twin-arginine signal peptides

    DEFF Research Database (Denmark)

    Bendtsen, Jannick Dyrløv; Nielsen, Henrik; Widdick, D.; Palmer, T.; Brunak, Søren

    2005-01-01

    publicly available method, TatP, for prediction of bacterial Tat signal peptides. Results: We have retrieved sequence data for Tat substrates in order to train a computational method for discrimination of Sec and Tat signal peptides. The TatP method is able to positively classify 91% of 35 known Tat signal...... complementary rule based prediction method. Conclusion: The method developed here is able to discriminate Tat signal peptides from cytoplasmic proteins carrying a similar motif, as well as from Sec signal peptides, with high accuracy. The method allows filtering of input sequences based on Perl syntax regular...... expressions, whereas hydrophobicity discrimination of Tat- and Sec- signal peptides is carried out by an artificial neural network. A potential cleavage site of the predicted Tat signal peptide is also reported. The TatP prediction server is available as a public web server at http://www.cbs.dtu.dk/services/TatP/....

  12. Nanoformulated cell-penetrating survivin mutant and its dual actions

    Directory of Open Access Journals (Sweden)

    Sriramoju B

    2014-07-01

    Full Text Available Bhasker Sriramoju, Rupinder K Kanwar, Jagat R Kanwar Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (NLIMBR, School of Medicine, Faculty of Health, Deakin University, Geelong, Australia Abstract: In this study, we investigated the differential actions of a dominant-negative survivin mutant (SurR9-C84A against cancerous SK-N-SH neuroblastoma cell lines and differentiated SK-N-SH neurons. In both the cases, the mutant protein displayed dual actions, where its effects were cytotoxic toward cancerous cells and proliferative toward the differentiated neurons. This can be explained by the fact that tumorous (undifferentiated SK-N-SH cells have a high endogenous survivin pool and upon treatment with mutant SuR9-C84A causes forceful survivin expression. These events significantly lowered the microtubule dynamics and stability, eventually leading to apoptosis. In the case of differentiated SK-N-SH neurons that express negligible levels of wild-type survivin, the mutant indistinguishably behaved in a wild-type fashion. It also favored cell-cycle progression, forming the chromosome-passenger complex, and stabilized the microtubule-organizing center. Therefore, mutant SurR9-C84A represents a novel therapeutic with its dual actions (cytotoxic toward tumor cells and protective and proliferative toward neuronal cells, and hence finds potential applications against a variety of neurological disorders. In this study, we also developed a novel poly(lactic-co-glycolic acid nanoparticulate formulation to surmount the hurdles associated with the delivery of SurR9-C84A, thus enhancing its effective therapeutic outcome. Keywords: survivin mutant, neurological disorders, protein therapeutics, inhibitor of apoptosis protein family, poly(lactic-co-glycolic acid

  13. Use of Galerina marginata genes and proteins for peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2016-03-01

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  14. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Thingholm, Tine E; Jensen, Ole N;

    2005-01-01

    not. Other substituted aromatic carboxylic acids were also capable of specifically reducing binding of nonphosphorylated peptides, whereas phosphoric acid reduced binding of both phosphorylated and nonphosphorylated peptides. A putative mechanism for this intriguing effect is presented....

  15. Antimicrobial Peptides in Toroidal and Cylindrical Pores

    OpenAIRE

    Mihajlovic, Maja; Lazaridis, Themis

    2010-01-01

    Antimicrobial peptides (AMPs) are small, usually cationic peptides, which permeabilize biological membranes. Their mechanism of action is still not well understood. Here we investigate the preference of alamethicin and melittin for pores of different shapes, using molecular dynamics (MD) simulations of the peptides in pre-formed toroidal and cylindrical pores. When an alamethicin hexamer is initially embedded in a cylindrical pore, at the end of the simulation the pore remains cylindrical or ...

  16. Interaction of small peptides with lipid bilayers.

    OpenAIRE

    Damodaran, K. V.; Merz, K M; Gaber, B P

    1995-01-01

    Molecular dynamics simulations of the tripeptide Ala-Phe-Ala-O-tert-butyl interacting with dimyristoylphosphatidylcholine lipid bilayers have been carried out. The lipid and aqueous environments of the peptide, the alkyl chain order, and the lipid and peptide dynamics have been investigated with use of density profiles, radial distribution functions, alkyl chain order parameter profiles, and time correlation functions. It appears that the alkyl chain region accommodates the peptides in the bi...

  17. Self-assembly of tetraphenylalanine peptides

    OpenAIRE

    Mayans Tayadella, Enric; Ballano Ballano, María Gema; Casanovas Salas, Jordi; Díaz Andrade, Angélica María; Pérez Madrigal, Maria del Mar; Estrany Coda, Francesc; Puiggalí Bellalta, Jordi; Cativiela Marín, Carlos A.; Alemán Llansó, Carlos

    2015-01-01

    Three different tetraphenylalanine (FFFF) based peptides that differ at the N- and C-termini have been synthesized by using standard procedures to study their ability to form different nanoassemblies under a variety of conditions. The FFFF peptide assembles into nanotubes that show more structural imperfections at the surface than those formed by the diphenylalanine (FF) peptide under the same conditions. Periodic DFT calculations (M06L functional) were used to propose a model that consists o...

  18. Salt-resistant short antimicrobial peptides.

    Science.gov (United States)

    Mohanram, Harini; Bhattacharjya, Surajit

    2016-05-01

    Antimicrobial peptides (AMPs) are promising leads for the development of antibiotics against drug resistant bacterial pathogens. However, in vivo applications of AMPs remain obscure due to salt and serum mediated inactivation. The high cost of chemical synthesis of AMPs also impedes potential clinical application. Consequently, short AMPs resistant toward salt and serum inactivation are desirable for the development of peptide antibiotics. In this work, we designed a 12-residue amphipathic helical peptide RR12 (R-R-L-I-R-L-I-L-R-L-L-R-amide) and two Trp containing analogs of RR12 namely RR12Wpolar (R-R-L-I-W-L-I-L-R-L-L-R-amide), and RR12Whydro (R-R-L-I-R-L-W-L-R-L-L-R-amide). Designed peptides demonstrated potent antibacterial activity; MIC ranging from 2 to 8 μM, in the presence of sodium chloride (150 mM and 300 mM). Antibacterial activity of these peptides was also detected in the presence of human serum. Designed peptides, in particular RR12 and RR12Whydro, were only poorly hemolytic. As a mode of action; these peptides demonstrated efficient permeabilization of bacterial cell membrane and lysis of cell structure. We further investigated interactions of the designed peptides with lipopolysaccharide (LPS), the major component of the outer membrane permeability barrier of Gram-negative bacteria. Designed peptides adopted helical conformations in complex with LPS. Binding of peptides with LPS has yielded dissociation the aggregated structures of LPS. Collectively, these designed peptides hold ability to be developed for salt-resistant antimicrobial compounds. Most importantly, current work provides insights for designing salt-resistant antimicrobial peptides. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 345-356, 2016. PMID:26849911

  19. Pulmonary clearance of vasoactive intestinal peptide.

    OpenAIRE

    Barrowcliffe, M P; Morice, A; Jones, J G; Sever, P S

    1986-01-01

    Vasoactive intestinal peptide causes bronchodilatation when given intravenously but is less effective in both animals and man when given by inhalation. This difference may be due to poor transit of the peptide across the bronchial epithelium. To test this hypothesis pulmonary clearance of radiolabelled vasoactive intestinal peptide was measured in Sprague Dawley rats and compared with that of pertechnetate (TcO4-) and diethylene triamine pentaacetate (DTPA). Despite a molecular weight (MW) of...

  20. Genome-based peptide fingerprint scanning

    OpenAIRE

    Giddings, Michael C.; Shah, Atul A.; Gesteland, Ray; Moore, Barry

    2002-01-01

    We have implemented a method that identifies the genomic origins of sample proteins by scanning their peptide-mass fingerprint against the theoretical translation and proteolytic digest of an entire genome. Unlike previously reported techniques, this method requires no predefined ORF or protein annotations. Fixed-size windows along the genome sequence are scored by an equation accounting for the number of matching peptides, the number of missed enzymatic cleavages in each peptide, the number ...

  1. Membrane Perturbation Induced by Interfacially Adsorbed Peptides

    OpenAIRE

    Zemel, Assaf; Ben-Shaul, Avinoam; May, Sylvio

    2004-01-01

    The structural and energetic characteristics of the interaction between interfacially adsorbed (partially inserted) α-helical, amphipathic peptides and the lipid bilayer substrate are studied using a molecular level theory of lipid chain packing in membranes. The peptides are modeled as “amphipathic cylinders” characterized by a well-defined polar angle. Assuming two-dimensional nematic order of the adsorbed peptides, the membrane perturbation free energy is evaluated using a cell-like model;...

  2. The Function and Development of Soybean Peptides

    Institute of Scientific and Technical Information of China (English)

    Yang Caiyan; Song Junmei

    2009-01-01

    Soybean peptides are small molecules hydrolyzed soy protein,from three to six amino acid composition of the peptide mixture,in 1000Da molecular weight below.Because it has a lot of good physical and chemical properties and physiological functions,in many areas has been widely used.This paper reviews the soybean peptide physical and chemical characteristics,physiological functions,technology and applications in the food industry.

  3. Antimicrobial peptides in human skin disease

    OpenAIRE

    Kenshi, Yamasaki; Richard, L. Gallo

    2007-01-01

    The skin continuously encounters microbial pathogens. To defend against this, cells of the epidermis and dermis have evolved several innate strategies to prevent infection. Antimicrobial peptides are one of the primary mechanisms used by the skin in the early stages of immune defense. In general, antimicrobial peptides have broad antibacterial activity against gram-positive and negative bacteria and also show antifungal and antiviral activity. The antimicrobial activity of most peptides occur...

  4. The indirect radioiodination of vasoactive intestinal peptide

    International Nuclear Information System (INIS)

    Objective: To seek for an effective way to acquire radiolabeled vasoactive intestinal peptide (VIP) with excellent in vivo stability. N-succinimidyl-3-iodo-125-benzoate (S125IB) came from radioiodination of N-succinimidyl-3-(tri-n-butylstannyl) benzoate (ATE) precursor and then conjugated with VIP to form 125IBA-VIP. The labelling procedure was optimized; the in vitro stability and biological activity were evaluated. Methods: 1) Radiolabeling of ATE precursor was achieved with iodogen oxidant and the influential factors were considered in this procedure. The labeling efficiency was determined by thin layer chromatography (TLC) and the purification was carried out by Sep-pak silica gel cartridge. The stability was detected by TLC after 2 h storage in dark at 4 degree C. 2) Conjugation of S125 IB and VIP. The labelling efficiency was determined with RP TLC and the purification was carried out with high performance liquid chromatography (HPLC, RP C18 column). Trichloroacetic acid (TCA) precipitation method was applied to evaluate the in vitro stability while the biological activity was determined by cell binding experiments with SGC7901 cell lines. Results: 1) S125IB experiments. The radioiodination of ATE was performed well for 5 min at 25 degree C with 10 micrograms of iodogen at suitable mole ratio (3-8:1) of ATE/Na 125I, the labelling efficiency was about 96%. The stability was kept well at 4 degree C in dark, no significant decrease of S125IB was observed. 2) The conjugation efficiency of S125IB and VIP was above 75% with TLC. HPLC showed the different retention time (tR) as follows, 125IBA-VIP: 13.3 min, S125IB: 19.6 min, VIP: 8.32 min. The stability of 125IBA-VIP was better than 125I-VIP from direct radioiodination of VIP with iodogen oxidant, only 2.85% decrease was found after 7 d at 4 degree C. The biological activity of 125IBA-VIP was kept as well as 125I-VIP under the condition of 37 degree C 60 min. Conclusions: The indirect radiolabelling procedure with

  5. Influence of the pore size of reversed phase materials on peptide purification processes.

    Science.gov (United States)

    Gétaz, David; Dogan, Nihan; Forrer, Nicola; Morbidelli, Massimo

    2011-05-20

    The influence of the pore size of a chromatographic reversed phase material on the adsorption equilibria and diffusion of two industrially relevant peptides (i.e. a small synthetic peptide and insulin) has been studied using seven different reversed phase HPLC materials having pore sizes ranging from 90 Å to 300 Å. The stationary phase pore size distribution was obtained by inverse size exclusion measurement (iSEC). The effect of the pore size on the mass transfer properties of the materials was evaluated from Van Deemter experiments. It has been shown that the lumped mass transfer coefficient increases linearly with the average pore size. The Henry coefficient and the impurity selectivity were determined in diluted conditions. The saturation capacity of the main peptides was determined in overloaded conditions using the inverse method (i.e. peak fitting). It was shown that the adsorption equilibria of the peptides on the seven materials is well described by a surface-specific adsorption isotherm. Based on this a lumped kinetic model has been developed to model the elution profile of the two peptides in overloaded conditions and to simulate the purification of the peptide from its crude mixture. It has been found that the separation of insulin from its main impurity (i.e. desamido-insulin) was not affected by the pore size. On the other hand, in the case of the synthetic peptide, it was found that the adsorption of the most significant impurity decreases with the pore size. This decrease is probably due to an increase in silanol activity with decreasing pore size. PMID:21450297

  6. C-peptide increases Na,K-ATPase expression via PKC- and MAP kinase-dependent activation of transcription factor ZEB in human renal tubular cells

    DEFF Research Database (Denmark)

    Galuska, Dana; Pirkmajer, Sergej; Barres, Romain;

    2011-01-01

    Replacement of proinsulin C-peptide in type 1 diabetes ameliorates nerve and kidney dysfunction, conditions which are associated with a decrease in Na,K-ATPase activity. We determined the molecular mechanism by which long term exposure to C-peptide stimulates Na,K-ATPase expression and activity in...

  7. The membrane interaction of amphiphilic model peptides affects phosphatidylserine headgroup and acyl chain order and dynamics. Application of the phospholipid headgroup electrometer concept to phosphatidylserine

    International Nuclear Information System (INIS)

    Deuterium nuclear magnetic resonance (2H NMR) was used to study the interaction of amphiphilic model peptides with model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine deuterated either at the β-position of the serine moiety ([2-2H]DOPS) or at the 11-position of the acyl chains ([11,11-2H2]DOPS). The peptides are derived from the sequences H-Ala-Met-Leu-Trp-Ala-OH and H-Arg-Met-Leu-Trp-Ala-OH and contain a positive charge of +1 or +2 at the amino terminus or one positive charge at each end of the molecule. Upon titration of dispersions of DOPS with the peptides, the divalent peptides show a similar extent of binding to the DOPS bilyers, which is larger than that of the single charged peptide. Under these conditions the values of the quadrupolar splitting of both [2-2H]DOPS and [11,11-2H2]DOPS are decreased, indicating that the peptides reduce the order of both the DOPS headgroup and the acyl chains. The extent of the decrease depends on the amount of peptide bound and on the position of the charged moieties in the peptide molecule. Titrations of DOPS with poly(L-lysine)100, which were included for reasons of comparison, reveal increased Δvq values. When the peptide-lipid titrations are carried out without applying a freeze-thaw procedure to achieve full equilibration, two-component 2H NMR spectra occur. The apparently limited accessibility of the lipid to the peptides under these circumstances is discussed in relation to the ability of the peptides to exhibit transbilayer movement. 2H spin-lattice relaxation time T1 measurements demonstrate a decrease of the rates of motion of both headgroup and acyl chains of DOPS in the presence of the peptides

  8. The membrane interaction of amphiphilic model peptides affects phosphatidylserine headgroup and acyl chain order and dynamics. Application of the phospholipid headgroup electrometer concept to phosphatidylserine

    Energy Technology Data Exchange (ETDEWEB)

    de Kroon, A.I.P.M.; Killian, J.A.; de Gier, J.; de Kruijff, B. (Univ. of Utrecht (Netherlands))

    1991-01-29

    Deuterium nuclear magnetic resonance ({sup 2}H NMR) was used to study the interaction of amphiphilic model peptides with model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine deuterated either at the {beta}-position of the serine moiety ((2-{sup 2}H)DOPS) or at the 11-position of the acyl chains ((11,11-{sup 2}H{sub 2})DOPS). The peptides are derived from the sequences H-Ala-Met-Leu-Trp-Ala-OH and H-Arg-Met-Leu-Trp-Ala-OH and contain a positive charge of +1 or +2 at the amino terminus or one positive charge at each end of the molecule. Upon titration of dispersions of DOPS with the peptides, the divalent peptides show a similar extent of binding to the DOPS bilyers, which is larger than that of the single charged peptide. Under these conditions the values of the quadrupolar splitting of both (2-{sup 2}H)DOPS and (11,11-{sup 2}H{sub 2})DOPS are decreased, indicating that the peptides reduce the order of both the DOPS headgroup and the acyl chains. The extent of the decrease depends on the amount of peptide bound and on the position of the charged moieties in the peptide molecule. Titrations of DOPS with poly(L-lysine){sub 100}, which were included for reasons of comparison, reveal increased {Delta}v{sub q} values. When the peptide-lipid titrations are carried out without applying a freeze-thaw procedure to achieve full equilibration, two-component {sup 2}H NMR spectra occur. The apparently limited accessibility of the lipid to the peptides under these circumstances is discussed in relation to the ability of the peptides to exhibit transbilayer movement. {sup 2}H spin-lattice relaxation time T1 measurements demonstrate a decrease of the rates of motion of both headgroup and acyl chains of DOPS in the presence of the peptides.

  9. Production of peptide antisera specific for mouse and rat proinsulin C-peptide 2

    DEFF Research Database (Denmark)

    Blume, N; Madsen, O D; Kofod, Hans;

    1990-01-01

    Mice and rats have two functional non-allelic insulin genes. By using a synthetic peptide representing a common sequence in mouse and rat C-peptide 2 as antigen, we have produced rabbit antisera specific for an epitope which is not present in mouse or rat C-peptide 1. Long-term immunization did n...

  10. Peptide Nucleic Acids Complexes of Two Peptide Nucleic Acid Strands and One

    DEFF Research Database (Denmark)

    1999-01-01

    Peptide nucleic acids and analogues of peptide nucleic acids are used to form duplex, triplex, and other structures with nucleic acids and to modify nucleic acids. The peptide nucleic acids and analogues thereof also are used to modulate protein activity through, for example, transcription arrest...

  11. Mechanism and kinetics of peptide partitioning into membranes from all-atom simulations of thermostable peptides

    OpenAIRE

    Ulmschneider, Martin B.; Doux, Jacques P F; Killian, J. Antoinette; Smith, Jeremy C.; Ulmschneider, Jakob P.

    2010-01-01

    Partitioning properties of transmembrane (TM) polypeptide segments directly determine membrane protein folding, stability, and function, and their understanding is vital for rational design of membrane active peptides. However, direct determination of water-to-bilayer transfer of TM peptides has proved difficult. Experimentally, sufficiently hydrophobic peptides tend to aggregate, while atomistic computer simulations at physiological temperatures cannot yet reach the long time scales required...

  12. Synthetic peptide vaccines: palmitoylation of peptide antigens by a thioester bond increases immunogenicity

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Tesser, G.I.;

    1997-01-01

    amide bond. It was found that these S-palmitoylated peptides were much more immunogenic than N-palmitoylated peptides and at least similar to KLH-conjugated peptides with respect to appearance and magnitude of induced antibodies (canine parvovirus) or immunocastration effect (gonadotropin...

  13. Atrial natriuretic peptides in plasma

    DEFF Research Database (Denmark)

    Goetze, Jens P; Holst Hansen, Lasse; Terzic, Dijana;

    2015-01-01

    Measurement of cardiac natriuretic peptides in plasma has gained a diagnostic role in the assessment of heart failure. Plasma measurement is though hampered by the marked instability of the hormones, which has led to the development of analyses that target N-terminal fragments from the prohormone....... These fragments are stable in plasma and represent surrogate markers of the actual natriuretic hormone. Post-translational processing of the precursors, however, is revealing itself to be a complex event with new information still being reported on proteolysis, covalent modifications, and amino acid...

  14. Glucagon-like peptide-1

    DEFF Research Database (Denmark)

    Deacon, C F; Holst, Jens Juul; Carr, R D

    1999-01-01

    Type 2 diabetes mellitus is a metabolic disease resulting in raised blood sugar which, if not satisfactorily controlled, can cause severe and often debilitating complications. Unfortunately, for many patients, the existing therapies do not give adequate control. Glucagon-like peptide-1 (GLP-1) is...... an incretin hormone which has a spectrum of activities which oppose the symptoms of diabetes. Of particular significance is the fact that these actions are glucose-dependent, meaning that the risk of severe hypoglycemia is practically eliminated. The recent elucidation of the key role of dipeptidyl...

  15. PGx: Putting Peptides to BED.

    Science.gov (United States)

    Askenazi, Manor; Ruggles, Kelly V; Fenyö, David

    2016-03-01

    Every molecular player in the cast of biology's central dogma is being sequenced and quantified with increasing ease and coverage. To bring the resulting genomic, transcriptomic, and proteomic data sets into coherence, tools must be developed that do not constrain data acquisition and analytics in any way but rather provide simple links across previously acquired data sets with minimal preprocessing and hassle. Here we present such a tool: PGx, which supports proteogenomic integration of mass spectrometry proteomics data with next-generation sequencing by mapping identified peptides onto their putative genomic coordinates. PMID:26638927

  16. A biomimetic collagen derived peptide exhibits anti-angiogenic activity in triple negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Elena V Rosca

    Full Text Available We investigated the application of a mimetic 20 amino acid peptide derived from type IV collagen for treatment of breast cancer. We showed that the peptide induced a decrease of proliferation, adhesion, and migration of endothelial and tumor cells in vitro. We also observed an inhibition of triple negative MDA-MB-231 xenograft growth by 75% relative to control when administered intraperitoneally for 27 days at 10 mg/kg. We monitored in vivo the changes in vascular properties throughout the treatment using MRI and found that the vascular volume and permeability surface area product decreased significantly. The treatment also resulted in an increase of caspase-3 activity and in a reduction of microvascular density. The multiple mode of action of this peptide, i.e., anti-angiogenic, and anti-tumorigenic, makes it a viable candidate as a therapeutic agent as a monotherapy or in combination with other compounds.

  17. Screening of specific binding peptide targeting blood vessel of human esophageal cancer in vivo in mice

    Institute of Scientific and Technical Information of China (English)

    ZHI Min; WU Kai-chun; HAO Zhi-ming; GUO Chang-cun; YAO Jia-yin

    2011-01-01

    Background Cancer of the esophagus and gastroesophageal junction remains a virulent malignancy with poor prognosis. Rapid progresses were made in chemotherapeutic agents and the development of molecular markers allowed better identification of candidates for targeted therapy. This study aimed to identify the candidate peptides used for anti-angiogenic therapy of esophageal cancer by in vivo screening C7C peptide library for peptides binding specifically to blood vessels of human esophageal cancer.Methods The phage displayed C7C peptide library was injected intravenously into mice bearing human esophageal tumor xenografts under renal capsule. After 5 rounds of screening, 13 clones were picked up individually and sequenced.During each round of screening, titers of phage recovery were calculated from tumor xenograft and control tissues.Homing of these 9 peptides to tumor vessel was detected by calculating phage titers in the tumor xenograft and control tissues (lung and spleen) after each phage was injected into mice model, and compared with the distribution of phage M13 and Ⅷ-related antigen in tumor xenograft by immunohistochemical staining. Comparisons among groups of data were made using one-way analysis of variance (ANOVA), followed by the Bonferroni multiple comparisons test.Results The number of phage recovered from tumor tissue of each round increased gradually in tumor group while decreased in control groups (P <0.01 in tumor and spleen, P <0.05 in lung). Immunohistochemical staining showed similar staining pattern with M13 antibody or Ⅷ-related antigen antibody, suggesting that phages displaying the selected peptides could home to blood vessel of human esophageal cancer. According to their DNA, 9 corresponding peptide sequences were deduced. And the homing ability to blood vessel of phages displaying the selected peptides was confirmed by comparing with their recovery in tumor and control tissues. Two motifs, YSXNXW and PXNXXN, were also obtained by

  18. Natriuretic peptides and their therapeutic potential.

    Science.gov (United States)

    Cho, Y; Somer, B G; Amatya, A

    1999-01-01

    Natriuretic peptides are a group of naturally occurring substances that act in the body to oppose the activity of the renin-angiotensin system. There are three major natriuretic peptides: atrial natriuretic peptide (ANP), which is synthesized in the atria; brain natriuretic peptide (BNP), which is synthesized in the ventricles; and C-type natriuretic peptide (CNP), which is synthesized in the brain. Both ANP and BNP are released in response to atrial and ventricular stretch, respectively, and will cause vasorelaxation, inhibition of aldosterone secretion in the adrenal cortex, and inhibition of renin secretion in the kidney. Both ANP and BNP will cause natriuresis and a reduction in intravascular volume, effects amplified by antagonism of antidiuretic hormone (ADH). The physiologic effects of CNP are different from those of ANP and BNP. CNP has a hypotensive effect, but no significant diuretic or natriuretic actions. Three natriuretic peptide receptors (NPRs) have been described that have different binding capacities for ANP, BNP, and CNP. Removal of the natriuretic peptides from the circulation is affected mainly by binding to clearance receptors and enzymatic degradation in the circulation. Increased blood levels of natriuretic peptides have been found in certain disease states, suggesting a role in the pathophysiology of those diseases, including congestive heart failure (CHF), systemic hypertension, and acute myocardial infarction. The natriuretic peptides also serve as disease markers and indicators of prognosis in various cardiovascular conditions. The natriuretic peptides have been used in the treatment of disease, with the most experience with intravenous BNP in the treatment of CHF. Another pharmacologic approach being used is the inhibition of natriuretic peptide metabolism by neutral endopeptidase (NEP) inhibitor drugs. The NEP inhibitors are currently being investigated as treatments for CHF and systemic hypertension. PMID:11720638

  19. Charge properties of peptides derived from casein affect their bioavailability and cytoprotection against H2O2-induced oxidative stress.

    Science.gov (United States)

    Wang, Bo; Xie, Ningning; Li, Bo

    2016-04-01

    The effects of charge properties of casein peptides on absorption stability, antioxidant activity, and cytoprotection were evaluated. Alcalase hydrolysates of casein were separated into 4 fractions by cation-exchange chromatography according to charge properties. After simulated digestion and Caco-2 cell transmembrane transport, we determined the total antioxidant capacity (Trolox equivalent antioxidative capacity and oxygen radical antioxidant activity) and nitrogen content of peptide fractions to estimate available antioxidant efficacy and bioavailability (BA) of peptides. Results showed that negatively charged peptide fractions had greater BA and antioxidant activities after digestion and absorption. The peptide permeates were used to test the cytoprotective effect against H2O2-induced oxidative damage in HepG-2 cells. All peptide permeates increased cell viability, elevated catalase activity, and decreased superoxide dismutase activity. However, negatively charged peptide fractions preserved cell viability to a greater degree. Therefore, the negatively charged peptides from casein may be potential antioxidants and could be used as ingredients in functional foods and dietary supplements. PMID:26851854

  20. K1K8: an Hp1404-derived antibacterial peptide.

    Science.gov (United States)

    Li, Zhongjie; Liu, Gaomin; Meng, Lanxia; Yu, Weiwei; Xu, Xiaobo; Li, Wenxin; Wu, Yingliang; Cao, Zhijian

    2016-06-01

    As an alternative class of antimicrobial agents used to overcome drug-resistant infections, antimicrobial peptides (AMPs) have recently gained significant attention. In this study, we designed an improved antimicrobial peptide, K1K8, based on the molecular template of Hp1404. Compared to the wild-type Hp1404, K1K8 showed an improved antibacterial spectrum in vitro, a lower hemolytic activity, and an enhanced serum stability. Importantly, K1K8 also decreased methicillin-resistant Staphylococcus aureus (MRSA) bacterial counts in the wounded region in a mouse skin infection model. Interestingly, K1K8 did not induce bacterial resistance or non-specific immune response reactions. Moreover, the peptide killed bacterial cells mainly by disrupting the bacterial membrane. In summary, K1K8 has the potential to be used as an improved anti-infection agent for topical use, which opens an avenue that potential anti-infection drugs may be designed and developed from the molecular templates of AMPs. PMID:26952110

  1. Protective Effect of Wheat Peptides Against Small Intestinal Damage Induced by Non-Steroidal Anti-Inlfammatory Drugs in Rats

    Institute of Scientific and Technical Information of China (English)

    YIN Hong; PAN Xing-chang; WANG Shao-kang; YANG Li-gang; SUN Gui-ju

    2014-01-01

    Non-steroidal anti-inlfammatory drugs (NSAIDs) were able to produce tissue damage and oxidative stress in animal models of small intestinal damage. In this study, the putative protective effect of wheat peptides was evaluated in a NSAID-induced small intestinal damage model in rats, different doses of wheat peptides or distilled water were administered daily by intragastric administration for 30 d until small intestinal damage was caused. Before sacriifcing, NSAIDs (aspirin and indomethacin) or physiological saline were infused into the digestive tract twice. Wheat peptides administration reduced edema and small intestinal damage, and signiifcantly decreased the level of tumor necrosis factor (TNF)-α in mucous membrane of small intestine. Oxidative stress was signiifcantly increased after NSAID infusion and was reduced by wheat peptides. Wheat peptides increased glutathione peroxidase(GSH-Px) activity in mucous membrane of small intestine. µ-Opioid receptor mRNA expression decreased more signiifcantly in wheat peptides treated rats than in the model control group. Overall, the results suggest that non-steroidal anti-inlfammatory drugs induced small intestinal damage in rats and wheat peptides administration may be an effective tool for protecting small intestinal tissue against NSAID-induced small intestinal damage and oxidative stress.

  2. Driving engineering of novel antimicrobial peptides from simulations of peptide-micelle interactions

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Langham, Allison A; Kaznessis, Yiannis N

    2006-01-01

    Simulations of antimicrobial peptides in membrane mimics can provide the high resolution, atomistic picture that is necessary to decipher which sequence and structure components are responsible for activity and toxicity. With such detailed insight, engineering new sequences that are active but non...... peptides and their interaction with membrane mimics. In this article, we discuss the promise and the challenges of widely used models and detail our recent work on peptide-micelle simulations as an attractive alternative to peptide-bilayer simulations. We detail our results with two large structural...... classes of peptides, helical and beta-sheet and demonstrate how simulations can assist in engineering of novel antimicrobials with therapeutic potential....

  3. Determination of peptide content of DOTA-peptides by metal titration and UPLC

    International Nuclear Information System (INIS)

    Radiolabelled DOTA-peptides are in use for Peptide Receptor Radionuclide Scintigraphy (PRS) and Therapy (PRRT), e.g with 177Lu-DOTA-TATE or 90Y-DOTATOC. Labelling conditions are frequently critical. Therefore, the ingredients of the reaction, e.g. radiometal (90Y and 177Lu) and DOTA-peptide should be pure and the content known. Quality control of DOTA-peptide, can be performed with various methods, most commonly by UV. There are numerous conditions in which this is hampered, e.g. impurities may also have UV-absorption. The aim of the study was to quantify content and purity of DOTA-peptide

  4. Antioxidant activity of yoghurt peptides: Part 2 – Characterisationof peptide fractions

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Baron, Caroline; Nielsen, Nina Skall; Otte, Jeanette; Jacobsen, Charlotte

    2010-01-01

    The aim of the present study was to elucidate previous findings showing that peptide fractions isolated from yoghurt had antioxidant effects. Therefore, peptides and free amino acids released during fermentation of milk were characterised. Yoghurt samples were stripped from sugars and lactic acid...... all the peptides identified contained at least one proline residue. Some of the identified peptides included the hydrophobic amino acid residues Val or Leu at the N-terminus and Pro, His or Tyr in the amino acid sequence, which is characteristic of antioxidant peptides. In addition, the yoghurt...

  5. Mathematical aspects of the kinetics of formation and degradation of linear peptide or protein aggregates.

    Science.gov (United States)

    Zhdanov, Vladimir P

    2016-08-01

    In cells, peptides and proteins are sometimes prone to aggregation. In neurons, for example, amyloid β peptides form plaques related to Alzheimer's disease (AD). The corresponding kinetic models either ignore or do not pay attention to degradation of these species. Here, the author proposes a generic kinetic model describing formation and degradation of linear aggregates. The process is assumed to occur via reversible association of monomers and attachment of monomers to or detachment from terminal parts of aggregates. Degradation of monomers is described as a first-order process. Degradation of aggregates is considered to occur at their terminal and internal parts with different rates and these steps are described by first-order equations as well. Irrespective of the choice of the values of the rate constants, the model predicts that eventually the system reaches a stable steady state with the aggregate populations rapidly decreasing with increasing size at large sizes. The corresponding steady-state size distributions of aggregates are illustrated in detail. The transient kinetics are also shown. The observation of AD appears, however, to indicate that the peptide production becomes eventually unstable, i.e., the growth of the peptide population is not properly limited. This is expected to be related to the specifics of the genetic networks controlling the peptide production. Following this line, two likely general networks with, respectively, global negative and positive feedbacks in the peptide production are briefly discussed. PMID:27132946

  6. Cloning and biological activity of an anti-tumor peptide of Tumstatin

    Institute of Scientific and Technical Information of China (English)

    WANG Shujing; LIU Yan; LIN Xuesong; FU Xue; XU Jianyong; LIU Xinghan

    2007-01-01

    To obtain an anti-tumor peptide of Tumstatin and detect its biological activity,the nucleotide sequence encoding 185-203 amino acids (19peptide) of Tumstatin was synthesized and inserted into the fusion protein vector pTYB2.After identification by sequencing and restriction endonucleases,the recombined vector was transformed into BL-21 (DE3) E.coli competent cells.Transformed E.coli BL-21 (DE3) were induced by isopropyl-β-thiogalactopyranoside (IPTG),and then expressed.By 1,4-dithiothreitol (DTT)reduction,the soluble 19peptide was obtained from a chitin affinity chromatograph.The biological activity of 19peptide was determined by 3-[4,5-dimethylthiazol-2-y1]-2,5-diphenytetrazolium bromide (MTT) assay,cell growth curve,the effect of the ascitic fluid transfevent H22 hepatoma on mice and via histopathological slices.The purified 19peptide directly inhibited proliferation and migration of murine B16 melanoma cells,SMMC-7721hepatoma carcinoma cells and human umbilical vein endothelial cells (HUVEC).The tumor inhibition rate of mice ascitic fluid transfevent H22 hepatoma was 48.46%.Histopathological slices showed that it could promote tumor tissue necrosis and decrease the density of blood vessels.With higher anti-tumor activity,19peptide has the potential to become a novel,potent anti-tumor agent.

  7. Trandermal Peptides for Large Molecule Delivery

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ A research team, led by Prof. WEN Longping from the University of Science and Technology of China under CAS,has successfully screened out a trandermal peptide, using biotechnology. The new peptide is able to deliver insulin into human body through skin, rendering an immediate therapeutic effect. The finding was published in the March 27 issue of the journal Natural Biotechnology.

  8. Protein identification by peptide mass fingerprinting

    DEFF Research Database (Denmark)

    Hjernø, Karin

    2007-01-01

      Peptide mass fingerprinting is an effective way of identifying, e.g., gel-separated proteins, by matching experimentally obtained peptide mass data against large databases. However, several factors are known to influence the quality of the resulting matches, such as proteins contaminating the...

  9. Peptide Mass Fingerprinting of Egg White Proteins

    Science.gov (United States)

    Alty, Lisa T.; LaRiviere, Frederick J.

    2016-01-01

    Use of advanced mass spectrometry techniques in the undergraduate setting has burgeoned in the past decade. However, relatively few undergraduate experiments examine the proteomics tools of protein digestion, peptide accurate mass determination, and database searching, also known as peptide mass fingerprinting. In this experiment, biochemistry…

  10. Engineered Adhesion Peptides for Improved Silicon Adsorption.

    Science.gov (United States)

    Ramakrishnan, Sathish Kumar; Jebors, Said; Martin, Marta; Cloitre, Thierry; Agarwal, Vivechana; Mehdi, Ahmad; Martinez, Jean; Subra, Gilles; Gergely, Csilla

    2015-11-01

    Engineering peptides that present selective recognition and high affinity for a material is a major challenge for assembly-driven elaboration of complex systems with wide applications in the field of biomaterials, hard-tissue regeneration, and functional materials for therapeutics. Peptide-material interactions are of vital importance in natural processes but less exploited for the design of novel systems for practical applications because of our poor understanding of mechanisms underlying these interactions. Here, we present an approach based on the synthesis of several truncated peptides issued from a silicon-specific peptide recovered via phage display technology. We use the photonic response provided by porous silicon microcavities to evaluate the binding efficiency of 14 different peptide derivatives. We identify and engineer a short peptide sequence (SLVSHMQT), revealing the highest affinity for p(+)-Si. The molecular recognition behavior of the obtained peptide fragment can be revealed through mutations allowing identification of the preferential affinity of certain amino acids toward silicon. These results constitute an advance in both the engineering of peptides that reveal recognition properties for silicon and the understanding of biomolecule-material interactions. PMID:26440047

  11. Milk proteins as precursors of bioactive peptides

    Directory of Open Access Journals (Sweden)

    Marta Dziuba

    2009-03-01

    Full Text Available Milk proteins, a source of bioactive peptides, are the subject of numerous research studies aiming to, among others, evaluate their properties as precursors of biologically active peptides. Physiologically active peptides released from their precursors may interact with selected receptors and affect the overall condition and health of humans. By relying on the BIOPEP database of proteins and bioactive peptides, developed by the Department of Food Biochemistry at the University of Warmia and Mazury in Olsztyn (www.uwm.edu.pl/biochemia, the profiles of potential activity of milk proteins were determined and the function of those proteins as bioactive peptide precursors was evaluated based on a quantitative criterion, i.e. the occurrence frequency of bioactive fragments (A. The study revealed that milk proteins are mainly a source of peptides with the following types of activity: antihypertensive (Amax = 0.225, immunomodulating (0.024, smooth muscle contracting (0.011, antioxidative (0.029, dipeptidyl peptidase IV inhibitors (0.148, opioid (0.073, opioid antagonistic (0.053, bonding and transporting metals and metal ions (0.024, antibacterial and antiviral (0.024, and antithrombotic (0.029. The enzymes capable of releasing bioactive peptides from precursor proteins were determined for every type of activity. The results of the experiment indicate that milk proteins such as lactoferrin, α-lactalbumin, β-casein and κ-casein hydrolysed by trypsin can be a relatively abundant source of biologically active peptides.

  12. Differential regulation of cell functions by CSD peptide subdomains

    OpenAIRE

    Reese, Charles; Dyer, Shanice; Perry, Beth; Bonner, Michael; Oates, James; Hofbauer, Ann; Sessa, William; Bernatchez, Pascal; Visconti, Richard P; Zhang, Jing; Hatfield, Corey M; Silver, Richard M.; Hoffman, Stanley; Tourkina, Elena

    2013-01-01

    Background In fibrotic lung diseases, expression of caveolin-1 is decreased in fibroblasts and monocytes. The effects of this deficiency are reversed by treating cells or animals with the caveolin-1 scaffolding domain peptide (CSD, amino acids 82–101 of caveolin-1) which compensates for the lack of caveolin-1. Here we compare the function of CSD subdomains (Cav-A, Cav-B, Cav-C, Cav-AB, and Cav-BC) and mutated versions of CSD (F92A and T90A/T91A/F92A). Methods Migration toward the chemokine CX...

  13. Therapeutic Potential of Human Neutrophil Peptide 1 against Experimental Tuberculosis

    OpenAIRE

    Sharma, Sudhir; Verma, Indu; Khuller, G. K.

    2001-01-01

    The therapeutic efficacy of human neutrophil peptide 1 (HNP-1) against experimental tuberculosis in mice on the basis of numbers of CFU has been examined. Mice infected with 1.5 × 104 CFU of Mycobacterium tuberculosis H37Rv and treated with different doses of HNP-1 injected subcutaneously exhibited significant clearance of bacilli from lungs, livers, and spleens. There were time- and dose-dependent decreases in the bacillary load in lungs, livers, and spleens of the HNP-1-treated animals comp...

  14. Binding of gliadin peptides to fetal chicken intestine

    International Nuclear Information System (INIS)

    Binding of gliadin peptides was investigated in intact and in homogenized fetal chicken intestine by means of competitive displacement studies with 125I-labelled PPG 12,400 (proteolysis product of gliadin, Mr 12,400). Gliadin binding was shown to be specific and calcium-dependent. Labelled gliadin can be displaced by morphine and naloxone. The specific binding of gliadin also depends on the developmental stage of the chicken intestine and decreases considerably from day 12-19 of fetal development. (author)

  15. Bi-specific splice-switching PMO oligonucleotides conjugated via a single peptide active in a mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Shabanpoor, Fazel; McClorey, Graham; Saleh, Amer F; Järver, Peter; Wood, Matthew J A; Gait, Michael J

    2015-01-01

    The potential for therapeutic application of splice-switching oligonucleotides (SSOs) to modulate pre-mRNA splicing is increasingly evident in a number of diseases. However, the primary drawback of this approach is poor cell and in vivo oligonucleotide uptake efficacy. Biological activities can be significantly enhanced through the use of synthetically conjugated cationic cell penetrating peptides (CPPs). Studies to date have focused on the delivery of a single SSO conjugated to a CPP, but here we describe the conjugation of two phosphorodiamidate morpholino oligonucleotide (PMO) SSOs to a single CPP for simultaneous delivery and pre-mRNA targeting of two separate genes, exon 23 of the Dmd gene and exon 5 of the Acvr2b gene, in a mouse model of Duchenne muscular dystrophy. Conjugations of PMOs to a single CPP were carried out through an amide bond in one case and through a triazole linkage ('click chemistry') in the other. The most active bi-specific CPP-PMOs demonstrated comparable exon skipping levels for both pre-mRNA targets when compared to individual CPP-PMO conjugates both in cell culture and in vivo in the mdx mouse model. Thus, two SSOs with different target sequences conjugated to a single CPP are biologically effective and potentially suitable for future therapeutic exploitation. PMID:25468897

  16. Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide.

    Science.gov (United States)

    Rothan, Hussin A; Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2013-11-01

    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection. PMID:24044366

  17. The Peptide Vaccine Combined with Prior Immunization of a Conventional Diphtheria-Tetanus Toxoid Vaccine Induced Amyloid β Binding Antibodies on Cynomolgus Monkeys and Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Akira Yano

    2015-01-01

    Full Text Available The reduction of brain amyloid beta (Aβ peptides by anti-Aβ antibodies is one of the possible therapies for Alzheimer’s disease. We previously reported that the Aβ peptide vaccine including the T-cell epitope of diphtheria-tetanus combined toxoid (DT induced anti-Aβ antibodies, and the prior immunization with conventional DT vaccine enhanced the immunogenicity of the peptide. Cynomolgus monkeys were given the peptide vaccine subcutaneously in combination with the prior DT vaccination. Vaccination with a similar regimen was also performed on guinea pigs. The peptide vaccine induced anti-Aβ antibodies in cynomolgus monkeys and guinea pigs without chemical adjuvants, and excessive immune responses were not observed. Those antibodies could preferentially recognize Aβ40, and Aβ42 compared to Aβ fibrils. The levels of serum anti-Aβ antibodies and plasma Aβ peptides increased in both animals and decreased the brain Aβ40 level of guinea pigs. The peptide vaccine could induce a similar binding profile of anti-Aβ antibodies in cynomolgus monkeys and guinea pigs. The peptide vaccination could be expected to reduce the brain Aβ peptides and their toxic effects via clearance of Aβ peptides by generated antibodies.

  18. Peptide nanospheres self-assembled from a modified β-annulus peptide of Sesbania mosaic virus.

    Science.gov (United States)

    Matsuura, Kazunori; Mizuguchi, Yusaku; Kimizuka, Nobuo

    2016-11-01

    A novel β-annulus peptide of Sesbania mosaic virus bearing an FKFE sequence at the C terminus was synthesized, and its self-assembling behavior in water was investigated. Dynamic light scattering and transmission electron microscopy showed that the β-annulus peptide bearing an FKFE sequence self-assembled into approximately 30 nm nanospheres in water at pH 3.8, whereas the β-annulus peptide without the FKFE sequence afforded only irregular aggregates. The peptide nanospheres possessed a definite critical aggregation concentration (CAC = 26 μM), above which the size of nanospheres were nearly unaffected by the peptide concentration. The formation of peptide nanospheres was significantly affected by pH; the peptide did not form any assemblies at pH 2.2, whereas larger aggregates were formed at pH 6.4-11.6. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 470-475, 2016. PMID:26573103

  19. Interpreting peptide mass spectra by VEMS

    DEFF Research Database (Denmark)

    Mathiesen, Rune; Lundsgaard, M.; Welinder, Karen G.;

    2003-01-01

    Most existing Mass Spectra (MS) analysis programs are automatic and provide limited opportunity for editing during the interpretation. Furthermore, they rely entirely on publicly available databases for interpretation. VEMS (Virtual Expert Mass Spectrometrist) is a program for interactive analysis...... of peptide MS/MS spectra imported in text file format. Peaks are annotated, the monoisotopic peaks retained, and the b-and y-ion series identified in an interactive manner. The called peptide sequence is searched against a local protein database for sequence identity and peptide mass. The report...... compares the calculated and the experimental mass spectrum of the called peptide. The program package includes four accessory programs. VEMStrans creates protein databases in FASTA format from EST or cDNA sequence files. VEMSdata creates a virtual peptide database from FASTA files. VEMSdist displays the...

  20. Intracellular signalling by C-peptide.

    Science.gov (United States)

    Hills, Claire E; Brunskill, Nigel J

    2008-01-01

    C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na(+)/K(+) ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes. PMID:18382618

  1. Intracellular Signalling by C-Peptide

    Directory of Open Access Journals (Sweden)

    Claire E. Hills

    2008-01-01

    Full Text Available C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na+/K+ ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes.

  2. Insights into How Cyclic Peptides Switch Conformations.

    Science.gov (United States)

    McHugh, Sean M; Rogers, Julia R; Yu, Hongtao; Lin, Yu-Shan

    2016-05-10

    Cyclic peptides have recently emerged as promising modulators of protein-protein interactions. However, it is currently highly difficult to predict the structures of cyclic peptides owing to their rugged conformational free energy landscape, which prevents sampling of all thermodynamically relevant conformations. In this article, we first investigate how a relatively flexible cyclic hexapeptide switches conformations. It is found that, although the circular geometry of small cyclic peptides of size 6-8 may require rare, coherent dihedral changes to sample a new conformation, the changes are rather local, involving simultaneous changes of ϕi and ψi or ψi and ϕi+1. The understanding of how these cyclic peptides switch conformations enables the use of metadynamics simulations with reaction coordinates specifically targeting such coupled two-dihedral changes to effectively sample cyclic peptide conformational space. PMID:27031286

  3. Radiolabeled peptides: experimental and clinical applications

    International Nuclear Information System (INIS)

    Radiolabeled receptor specific biomolecules hold unlimited potential in nuclear medicine. During the past few years much attention has been drawn to the development radiolabeled peptides for a variety of diagnostic applications, as well as for therapy of malignant tumors. Although only one peptide, In-111-DTPA-(D)-Phe1-octreotide, is available commercially for oncologic imaging, many more have been examined in humans with hematological disorders, and the early results appear to be promising. Impetus generated by these results have prompted investigators to label peptides with such radionuclides as Tc-99m, I-123, F-18, Cu-64, and Y-90. This review is intended to highlight the qualities of peptides, summarize the clinical results, and address some important issues associated with radiolabeling of highly potent peptides. While doing so, various methods of radiolabeling have been described, and their strengths and weaknesses have also been discussed. (author)

  4. Peptide-Lipid Interactions: Experiments and Applications

    Directory of Open Access Journals (Sweden)

    Massimiliano Galdiero

    2013-09-01

    Full Text Available The interactions between peptides and lipids are of fundamental importance in the functioning of numerous membrane-mediated cellular processes including antimicrobial peptide action, hormone-receptor interactions, drug bioavailability across the blood-brain barrier and viral fusion processes. Moreover, a major goal of modern biotechnology is obtaining new potent pharmaceutical agents whose biological action is dependent on the binding of peptides to lipid-bilayers. Several issues need to be addressed such as secondary structure, orientation, oligomerization and localization inside the membrane. At the same time, the structural effects which the peptides cause on the lipid bilayer are important for the interactions and need to be elucidated. The structural characterization of membrane active peptides in membranes is a harsh experimental challenge. It is in fact accepted that no single experimental technique can give a complete structural picture of the interaction, but rather a combination of different techniques is necessary.

  5. Mitochondrial N-formyl peptides cause airway contraction and lung neutrophil infiltration via formyl peptide receptor activation.

    Science.gov (United States)

    Wenceslau, Camilla Ferreira; Szasz, Theodora; McCarthy, Cameron G; Baban, Babak; NeSmith, Elizabeth; Webb, R Clinton

    2016-04-01

    Respiratory failure is a common characteristic of systemic inflammatory response syndrome (SIRS) and sepsis. Trauma and severe blood loss cause the release of endogenous molecules known as damage-associated molecular patterns (DAMPs). Mitochondrial N-formyl peptides (F-MITs) are DAMPs that share similarities with bacterial N-formylated peptides, and are potent immune system activators. Recently, we observed that hemorrhagic shock-induced increases in plasma levels of F-MITs associated with lung damage, and that antagonism of formyl peptide receptors (FPR) ameliorated hemorrhagic shock-induced lung injury in rats. Corroborating these data, in the present study, it was observed that F-MITs expression is higher in plasma samples from trauma patients with SIRS or sepsis when compared to control trauma group. Therefore, to better understand the role of F-MITs in the regulation of lung and airway function, we studied the hypothesis that F-MITs lead to airway contraction and lung inflammation. We observed that F-MITs induced concentration-dependent contraction in trachea, bronchi and bronchioles. However, pre-treatment with mast cells degranulator or FPR antagonist decreased this response. Finally, intratracheal challenge with F-MITs increased neutrophil elastase expression in lung and inducible nitric oxide synthase and cell division control protein 42 expression in all airway segments. These data suggest that F-MITs could be a putative target to treat respiratory failure in trauma patients. PMID:26923940

  6. Cathelicidin peptide sheep myeloid antimicrobial peptide-29 prevents endotoxin-induced mortality in rat models of septic shock.

    Science.gov (United States)

    Giacometti, Andrea; Cirioni, Oscar; Ghiselli, Roberto; Mocchegiani, Federico; D'Amato, Giuseppina; Circo, Raffaella; Orlando, Fiorenza; Skerlavaj, Barbara; Silvestri, Carmela; Saba, Vittorio; Zanetti, Margherita; Scalise, Giorgio

    2004-01-15

    The present study was designed to investigate the antiendotoxin activity and therapeutic efficacy of sheep myeloid antimicrobial peptide (SMAP)-29, a cathelicidin-derived peptide. The in vitro ability of SMAP-29 to bind LPS from Escherichia coli 0111:B4 was determined using a sensitive limulus chromogenic assay. Two rat models of septic shock were performed: (1) rats were injected intraperitoneally with 1 mg E. coli 0111:B4 LPS and (2) intraabdominal sepsis was induced via cecal ligation and single puncture. All animals were randomized to receive parenterally isotonic sodium chloride solution, 1 mg/kg SMAP-29, 1 mg/kg polymyxin B or 20 mg/kg imipenem. The main outcome measures were: abdominal exudate and plasma bacterial growth, plasma endotoxin and tumor necrosis factor-alpha concentrations, and lethality. The in vitro study showed that SMAP-29 completely inhibited the LPS procoagulant activity at approximately 10 microM peptide concentration. The in vivo experiments showed that all compounds reduced the lethality when compared with control animals. SMAP-29 achieved a substantial decrease in endotoxin and tumor necrosis factor-alpha plasma concentrations when compared with imipenem and saline treatment and exhibited a slightly lower antimicrobial activity than imipenem. No statistically significant differences were noted between SMAP-29 and polymyxin B. SMAP-29, because of its double antiendotoxin and antimicrobial activities, could be an interesting compound for septic shock treatment. PMID:14563656

  7. Structural Basis for Antigenic Peptide Recognition and Processing by Endoplasmic Reticulum (ER) Aminopeptidase 2.

    Science.gov (United States)

    Mpakali, Anastasia; Giastas, Petros; Mathioudakis, Nikolas; Mavridis, Irene M; Saridakis, Emmanuel; Stratikos, Efstratios

    2015-10-23

    Endoplasmic reticulum (ER) aminopeptidases process antigenic peptide precursors to generate epitopes for presentation by MHC class I molecules and help shape the antigenic peptide repertoire and cytotoxic T-cell responses. To perform this function, ER aminopeptidases have to recognize and process a vast variety of peptide sequences. To understand how these enzymes recognize substrates, we determined crystal structures of ER aminopeptidase 2 (ERAP2) in complex with a substrate analogue and a peptidic product to 2.5 and 2.7 Å, respectively, and compared them to the apo-form structure determined to 3.0 Å. The peptides were found within the internal cavity of the enzyme with no direct access to the outside solvent. The substrate analogue extends away from the catalytic center toward the distal end of the internal cavity, making interactions with several shallow pockets along the path. A similar configuration was evident for the peptidic product, although decreasing electron density toward its C terminus indicated progressive disorder. Enzymatic analysis confirmed that visualized interactions can either positively or negatively impact in vitro trimming rates. Opportunistic side-chain interactions and lack of deep specificity pockets support a limited-selectivity model for antigenic peptide processing by ERAP2. In contrast to proposed models for the homologous ERAP1, no specific recognition of the peptide C terminus by ERAP2 was evident, consistent with functional differences in length selection and self-activation between these two enzymes. Our results suggest that ERAP2 selects substrates by sequestering them in its internal cavity and allowing opportunistic interactions to determine trimming rates, thus combining substrate permissiveness with sequence bias. PMID:26381406

  8. Insights into the Role of Biomineralizing Peptide Surfactants on Making Nanoemulsion-Templated Silica Nanocapsules.

    Science.gov (United States)

    Hui, Yue; Wibowo, David; Zhao, Chun-Xia

    2016-01-26

    We recently developed a novel approach for making oil-core silica-shell nanocapsules using designed bifunctional peptides (also called biomineralizing peptide surfactants) having both surface activity and biomineralization activity. Using the bifunctional peptides, oil-in-water nanoemulsion templates can be readily prepared, followed by the silicification directed exclusively onto the oil droplet surfaces and thus the formation of the silica shell. To explore their roles in the synthesis of silica nanocapsules, two bifunctional peptides, AM1 and SurSi, were systematically studied and compared. Peptide AM1, which was designed as a stimuli-responsive surfactant, demonstrated quick adsorption kinetics with a rapid decrease in the oil-water interfacial tension, thus resulting in the formation of nanoemulsions with a droplet size as small as 38 nm. Additionally, the nanoemulsions showed good stability over 4 weeks because of the formation of a histidine-Zn(2+) interfacial network. In comparison, the SurSi peptide that was designed by modularizing an AM1-like surface-active module with a highly cationic biosilicification-active module was unable to effectively reduce the oil-water interfacial tension because of its high molecular charge at neutral pH. The slow adsorption resulted in the formation of less stable nanoemulsions with a larger size (60 nm) than that of AM1. Besides, both AM1 and SurSi were found to be able to induce biomimetic silica formation. SurSi produced well-dispersed and uniform silica nanospheres in the bulk solution, whereas AM1 generated only irregular silica aggregates. Consequently, well-defined silica nanocapsules were synthesized using SurSi nanoemulsion templates, whereas silica aggregates instead of nanocapsules predominated when templating AM1 nanoemulsions. This finding indicated that the capability of peptide surfactants to form isolated silica nanospheres might play a role in the successful fabrication of silica nanocapsules. This

  9. Amyloid-β peptides time-dependent structural modifications: AFM and voltammetric characterization.

    Science.gov (United States)

    Enache, Teodor Adrian; Chiorcea-Paquim, Ana-Maria; Oliveira-Brett, Ana Maria

    2016-07-01

    The human amyloid beta (Aβ) peptides, Aβ1-40 and Aβ1-42, structural modifications, from soluble monomers to fully formed fibrils through intermediate structures, were investigated, and the results were compared with those obtained for the inverse Aβ40-1 and Aβ42-1, mutant Aβ1-40Phe(10) and Aβ1-40Nle(35), and rat Aβ1-40Rat peptide sequences. The aggregation was followed at a slow rate, in chloride free media and room temperature, and revealed to be a sequence-structure process, dependent on the physicochemical properties of each Aβ peptide isoforms, and occurring at different rates and by different pathways. The fibrilization process was investigated by atomic force microscopy (AFM), via changes in the adsorption morphology from: (i) initially random coiled structures of ∼0.6 nm height, corresponding to the Aβ peptide monomers in random coil or in α-helix conformations, to (ii) aggregates and protofibrils of 1.5-6.0 nm height and (iii) two types of fibrils, corresponding to the Aβ peptide in a β-sheet configuration. The reactivity of the carbon electrode surface was considered. The hydrophobic surface induced rapid changes of the Aβ peptide conformations, and differences between the adsorbed fibrils, formed at the carbon surface (beaded, thin, 2.0 nm height), were detected. Differential pulse voltammetry showed that, according to their primary structure, the Aβ peptides undergo oxidation in one or two steps, the first step corresponding to the tyrosine amino acids oxidation, and the second one to the histidine and methionine amino acids oxidation. The fibrilization process was electrochemically detected via the decrease of the Aβ peptide oxidation peak currents that occurred in a time dependent manner. PMID:27216391

  10. Novel Bifunctional Natriuretic Peptides as Potential Therapeutics*

    Science.gov (United States)

    Dickey, Deborah M.; Burnett, John C.; Potter, Lincoln R.

    2008-01-01

    Synthetic atrial natriuretic peptide (carperitide) and B-type natriuretic peptide (BNP; nesiritide) are used to treat congestive heart failure. However, despite beneficial cardiac unloading properties, reductions in renal perfusion pressures limit their clinical effectiveness. Recently, CD-NP, a chimeric peptide composed of C-type natriuretic peptide (CNP) fused to the C-terminal tail of Dendroaspis natriuretic peptide (DNP), was shown to be more glomerular filtration rate-enhancing than BNP in dogs. However, the molecular basis for the increased responsiveness was not determined. Here, we show that the DNP tail has a striking effect on CNP, converting it from a non-agonist to a partial agonist of natriuretic peptide receptor (NPR)-A while maintaining the ability to activate NPR-B. This effect is specific for human receptors because CD-NP was only a slightly better activator of rat NPR-A due to the promiscuous nature of CNP in this species. Interesting, the DNP tail alone had no effect on any NPR even though it is effective in vivo. To further increase the potency of CD-NP for NPR-A, we converted two different triplet sequences within the CNP ring to their corresponding residues in BNP. Both variants demonstrated increased affinity and full agonist activity for NPR-A, whereas one was as potent as any NPR-A activator known. In contrast to a previous report, we found that DNP binds the natriuretic peptide clearance receptor (NPR-C). However, none of the chimeric peptides bound NPR-C with significantly higher affinity than endogenous ligands. We suggest that bifunctional chimeric peptides represent a new generation of natriuretic peptide therapeutics. PMID:18940797

  11. Novel bifunctional natriuretic peptides as potential therapeutics.

    Science.gov (United States)

    Dickey, Deborah M; Burnett, John C; Potter, Lincoln R

    2008-12-12

    Synthetic atrial natriuretic peptide (carperitide) and B-type natriuretic peptide (BNP; nesiritide) are used to treat congestive heart failure. However, despite beneficial cardiac unloading properties, reductions in renal perfusion pressures limit their clinical effectiveness. Recently, CD-NP, a chimeric peptide composed of C-type natriuretic peptide (CNP) fused to the C-terminal tail of Dendroaspis natriuretic peptide (DNP), was shown to be more glomerular filtration rate-enhancing than BNP in dogs. However, the molecular basis for the increased responsiveness was not determined. Here, we show that the DNP tail has a striking effect on CNP, converting it from a non-agonist to a partial agonist of natriuretic peptide receptor (NPR)-A while maintaining the ability to activate NPR-B. This effect is specific for human receptors because CD-NP was only a slightly better activator of rat NPR-A due to the promiscuous nature of CNP in this species. Interesting, the DNP tail alone had no effect on any NPR even though it is effective in vivo. To further increase the potency of CD-NP for NPR-A, we converted two different triplet sequences within the CNP ring to their corresponding residues in BNP. Both variants demonstrated increased affinity and full agonist activity for NPR-A, whereas one was as potent as any NPR-A activator known. In contrast to a previous report, we found that DNP binds the natriuretic peptide clearance receptor (NPR-C). However, none of the chimeric peptides bound NPR-C with significantly higher affinity than endogenous ligands. We suggest that bifunctional chimeric peptides represent a new generation of natriuretic peptide therapeutics. PMID:18940797

  12. Modelling water molecules inside cyclic peptide nanotubes

    Science.gov (United States)

    Tiangtrong, Prangsai; Thamwattana, Ngamta; Baowan, Duangkamon

    2016-03-01

    Cyclic peptide nanotubes occur during the self-assembly process of cyclic peptides. Due to the ease of synthesis and ability to control the properties of outer surface and inner diameter by manipulating the functional side chains and the number of amino acids, cyclic peptide nanotubes have attracted much interest from many research areas. A potential application of peptide nanotubes is their use as artificial transmembrane channels for transporting ions, biomolecules and waters into cells. Here, we use the Lennard-Jones potential and a continuum approach to study the interaction of a water molecule in a cyclo[(- D-Ala- L-Ala)_4-] peptide nanotube. Assuming that each unit of a nanotube comprises an inner and an outer tube and that a water molecule is made up of a sphere of two hydrogen atoms uniformly distributed over its surface and a single oxygen atom at the centre, we determine analytically the interaction energy of the water molecule and the peptide nanotube. Using this energy, we find that, independent of the number of peptide units, the water molecule will be accepted inside the nanotube. Once inside the nanotube, we show that a water molecule prefers to be off-axis, closer to the surface of the inner nanotube. Furthermore, our study of two water molecules inside the peptide nanotube supports the finding that water molecules form an array of a 1-2-1-2 file inside peptide nanotubes. The theoretical study presented here can facilitate thorough understanding of the behaviour of water molecules inside peptide nanotubes for applications, such as artificial transmembrane channels.

  13. Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model

    International Nuclear Information System (INIS)

    Angiogenesis is the formation of neovasculature from a pre-existing vascular network. Progression of solid tumors including lung cancer is angiogenesis-dependent. We previously introduced a bioinformatics-based methodology to identify endogenous anti-angiogenic peptide sequences, and validated these predictions in vitro in human umbilical vein endothelial cell (HUVEC) proliferation and migration assays. One family of peptides with high activity is derived from the α-fibrils of type IV collagen. Based on the results from the in vitro screening, we have evaluated the ability of a 20 amino acid peptide derived from the α5 fibril of type IV collagen, pentastatin-1, to suppress vessel growth in an angioreactor-based directed in vivo angiogenesis assay (DIVAA). In addition, pentastatin-1 suppressed tumor growth with intraperitoneal peptide administration in a small cell lung cancer (SCLC) xenograft model in nude mice using the NCI-H82 human cancer cell line. Pentastatin-1 decreased the invasion of vessels into angioreactors in vivo in a dose dependent manner. The peptide also decreased the rate of tumor growth and microvascular density in vivo in a small cell lung cancer xenograft model. The peptide treatment significantly decreased the invasion of microvessels in angioreactors and the rate of tumor growth in the xenograft model, indicating potential treatment for angiogenesis-dependent disease, and for translational development as a therapeutic agent for lung cancer

  14. Appetite-modifying actions of pro-neuromedin U-derived peptides

    OpenAIRE

    Bechtold, David A.; Ivanov, Tina R.; Luckman, Simon M.

    2009-01-01

    Neuromedin U (NMU) is known to have potent actions on appetite and energy expenditure. Deletion of the NMU gene in mice leads to an obese phenotype, characterized by hyperphagia and decreased energy expenditure. Conversely, transgenic mice that overexpress proNMU exhibit reduced body weight and fat storage. Here, we show that central administration of NMU or the related peptide neuromedin S (NMS) dose-dependently decreases food intake, increases metabolic rate, and leads to significant weight...

  15. Neutralizing antibodies decrease the envelope fluidity of HIV-1

    International Nuclear Information System (INIS)

    For successful penetration of HIV-1, the formation of a fusion pore may be required in order to accumulate critical numbers of fusion-activated gp41 with the help of fluidization of the plasma membrane and viral envelope. An increase in temperature to 40 oC after viral adsorption at 25 oC enhanced the infectivity by 1.4-fold. The enhanced infectivity was inhibited by an anti-CXCR4 peptide, T140, and anti-V3 monoclonal antibodies (0.5β and 694/98-D) by post-attachment neutralization, but not by non-neutralizing antibodies (670-30D and 246-D) specific for the C5 of gp120 and cluster I of gp41, respectively. Anti-HLA-II and an anti-HTLV-I gp46 antibody, LAT27, neutralized the molecule-carrying HIV-1C-2(MT-2). The anti-V3 antibodies suppressed the fluidity of the HIV-1C-2 envelope, whereas the non-neutralizing antibodies did not. The anti-HLA-II antibody decreased the envelope fluidity of HIV-1C-2(MT-2), but not that of HIV-1C-2. Therefore, fluidity suppression by these antibodies represents an important neutralization mechanism, in addition to inhibition of viral attachment

  16. Increased kinin levels and decreased responsiveness to kinins during aging.

    Science.gov (United States)

    Pérez, Viviana; Velarde, Victoria; Acuña-Castillo, Claudio; Gómez, Christian; Nishimura, Sumiyo; Sabaj, Valeria; Walter, Robin; Sierra, Felipe

    2005-08-01

    Kinins are vasoactive peptides released from precursors called kininogens, and serum levels of both T- and K-kininogens increase dramatically as rats age. Kinin release is tightly regulated, and here we show that serum kinin levels also increase with age, from 63 +/- 16 nmol/L in young Fisher 344 rats to 398 +/- 102 nmol/L in old animals. Both K- and T-kininogens contribute sequentially to this increase, with the increase in middle-aged animals being driven primarily by K-kininogen, whereas the further augmentation in older rats occurs by increasing T-kininogen. By measuring ERK activation, we show that aorta endothelial cells from old animals are hyporesponsive to exogenous bradykinin. However, if serum kinin levels are experimentally decreased by lipopolysaccharide treatment, then the endothelial response to bradykinin is re-established. These results indicate that serum levels of kinins increase with age, whereas the responsiveness of target cells to kinins is reduced in these same animals. PMID:16127100

  17. SPAK Dependent Regulation of Peptide Transporters PEPT1 and PEPT2

    Directory of Open Access Journals (Sweden)

    Jamshed Warsi

    2014-10-01

    Full Text Available Background/Aims: SPAK (STE20-related proline/alanine-rich kinase is a powerful regulator of renal tubular ion transport and blood pressure. Moreover, SPAK contributes to the regulation of cell volume. Little is known, however, about a role of SPAK in the regulation or organic solutes. The present study thus addressed the influence of SPAK on the peptide transporters PEPT1 and PEPT2. Methods: To this end, cRNA encoding PEPT1 or PEPT2 were injected into Xenopus laevis oocytes without or with additional injection of cRNA encoding wild-type, SPAK, WNK1 insensitive inactive T233ASPAK, constitutively active T233ESPAK, and catalytically inactive D212ASPAK. Electrogenic peptide (glycine-glycine transport was determined by dual electrode voltage clamp and PEPT2 protein abundance in the cell membrane by chemiluminescence. Intestinal electrogenic peptide transport was estimated from peptide induced current in Ussing chamber experiments of jejunal segments isolated from gene targeted mice expressing SPAK resistant to WNK-dependent activation (spaktg/tg and respective wild-type mice (spak+/+. Results: In PEPT1 and in PEPT2 expressing oocytes, but not in oocytes injected with water, the dipeptide gly-gly (2 mM generated an inward current, which was significantly decreased following coexpression of SPAK. The effect of SPAK on PEPT1 was mimicked by T233ESPAK, but not by D212ASPAK or T233ASPAK. SPAK decreased maximal peptide induced current of PEPT1. Moreover, SPAK decreased carrier protein abundance in the cell membrane of PEPT2 expressing oocytes. In intestinal segments gly-gly generated a current, which was significantly higher in spaktg/tg than in spak+/+ mice. Conclusion: SPAK is a powerful regulator of peptide transporters PEPT1 and PEPT2.

  18. The novel amyloid-beta peptide aptamer inhibits intracellular amyloid-beta peptide toxicity

    Institute of Scientific and Technical Information of China (English)

    Xu Wang; Yi Yang; Mingyue Jia; Chi Ma; Mingyu Wang; Lihe Che; Yu Yang; Jiang Wu

    2013-01-01

    Amyloid β peptide binding alcohol dehydrogenase (ABAD) decoy peptide (DP) can competitively antagonize binding of amyloid β peptide to ABAD and inhibit the cytotoxic effects of amyloid β peptide. Based on peptide aptamers, the present study inserted ABAD-DP into the disulfide bond of human thioredoxin (TRX) using molecular cloning technique to construct a fusion gene that can express the TRX1-ABAD-DP-TRX2 aptamer. Moreover, adeno-associated virus was used to allow its stable expression. Immunofluorescent staining revealed the co-expression of the transduced fusion gene TRX1-ABAD-DP-TRX2 and amyloid β peptide in NIH-3T3 cells, indicating that the TRX1-ABAD-DP-TRX2 aptamer can bind amyloid β peptide within cells. In addition, cell morphology and MTT results suggested that TRX1-ABAD-DP-TRX2 attenuated amyloid β peptide-induced SH-SY5Y cell injury and improved cell viability. These findings confirmed the possibility of constructing TRX-based peptide aptamer using ABAD-DP. Moreover, TRX1-ABAD-DP-TRX2 inhibited the cytotoxic effect of amyloid β peptide.

  19. Albumin-derived peptides efficiently reduce renal uptake of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Vegt, Erik; Eek, Annemarie; Oyen, Wim J.G.; Gotthardt, Martin; Boerman, Otto C. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine (444), PO Box 9101, Nijmegen (Netherlands); Jong, Marion de [Erasmus Medical Centre, Department of Nuclear Medicine, Rotterdam (Netherlands)

    2010-02-15

    In peptide-receptor radionuclide therapy (PRRT), the maximum activity dose that can safely be administered is limited by high renal uptake and retention of radiolabelled peptides. The kidney radiation dose can be reduced by coinfusion of agents that competitively inhibit the reabsorption of radiolabelled peptides, such as positively charged amino acids, Gelofusine, or trypsinised albumin. The aim of this study was to identify more specific and potent inhibitors of the kidney reabsorption of radiolabelled peptides, based on albumin. Albumin was fragmented using cyanogen bromide and six albumin-derived peptides with different numbers of electric charges were selected and synthesised. The effect of albumin fragments (FRALB-C) and selected albumin-derived peptides on the internalisation of {sup 111}In-albumin, {sup 111}In-minigastrin, {sup 111}In-exendin and {sup 111}In-octreotide by megalin-expressing cells was assessed. In rats, the effect of Gelofusine and albumin-derived peptides on the renal uptake and biodistribution of {sup 111}In-minigastrin, {sup 111}In-exendin and {sup 111}In-octreotide was determined. FRALB-C significantly reduced the uptake of all radiolabelled peptides in vitro. The albumin-derived peptides showed different potencies in reducing the uptake of {sup 111}In-albumin, {sup 111}In-exendin and {sup 111}In-minigastrin in vitro. The most efficient albumin-derived peptide (peptide 6), was selected for in vivo testing. In rats, 5 mg of peptide 6 very efficiently inhibited the renal uptake of {sup 111}In-minigastrin, by 88%. Uptake of {sup 111}In-exendin and {sup 111}In-octreotide was reduced by 26 and 33%, respectively. The albumin-derived peptide 6 efficiently inhibited the renal reabsorption of {sup 111}In-minigastrin, {sup 111}In-exendin and {sup 111}In-octreotide and is a promising candidate for kidney protection in PRRT. (orig.)

  20. Albumin-derived peptides efficiently reduce renal uptake of radiolabelled peptides

    International Nuclear Information System (INIS)

    In peptide-receptor radionuclide therapy (PRRT), the maximum activity dose that can safely be administered is limited by high renal uptake and retention of radiolabelled peptides. The kidney radiation dose can be reduced by coinfusion of agents that competitively inhibit the reabsorption of radiolabelled peptides, such as positively charged amino acids, Gelofusine, or trypsinised albumin. The aim of this study was to identify more specific and potent inhibitors of the kidney reabsorption of radiolabelled peptides, based on albumin. Albumin was fragmented using cyanogen bromide and six albumin-derived peptides with different numbers of electric charges were selected and synthesised. The effect of albumin fragments (FRALB-C) and selected albumin-derived peptides on the internalisation of 111In-albumin, 111In-minigastrin, 111In-exendin and 111In-octreotide by megalin-expressing cells was assessed. In rats, the effect of Gelofusine and albumin-derived peptides on the renal uptake and biodistribution of 111In-minigastrin, 111In-exendin and 111In-octreotide was determined. FRALB-C significantly reduced the uptake of all radiolabelled peptides in vitro. The albumin-derived peptides showed different potencies in reducing the uptake of 111In-albumin, 111In-exendin and 111In-minigastrin in vitro. The most efficient albumin-derived peptide (peptide 6), was selected for in vivo testing. In rats, 5 mg of peptide 6 very efficiently inhibited the renal uptake of 111In-minigastrin, by 88%. Uptake of 111In-exendin and 111In-octreotide was reduced by 26 and 33%, respectively. The albumin-derived peptide 6 efficiently inhibited the renal reabsorption of 111In-minigastrin, 111In-exendin and 111In-octreotide and is a promising candidate for kidney protection in PRRT. (orig.)

  1. rapmad: Robust analysis of peptide microarray data

    Directory of Open Access Journals (Sweden)

    Rothermel Andrée

    2011-08-01

    Full Text Available Abstract Background Peptide microarrays offer an enormous potential as a screening tool for peptidomics experiments and have recently seen an increased field of application ranging from immunological studies to systems biology. By allowing the parallel analysis of thousands of peptides in a single run they are suitable for high-throughput settings. Since data characteristics of peptide microarrays differ from DNA oligonucleotide microarrays, computational methods need to be tailored to these specifications to allow a robust and automated data analysis. While follow-up experiments can ensure the specificity of results, sensitivity cannot be recovered in later steps. Providing sensitivity is thus a primary goal of data analysis procedures. To this end we created rapmad (Robust Alignment of Peptide MicroArray Data, a novel computational tool implemented in R. Results We evaluated rapmad in antibody reactivity experiments for several thousand peptide spots and compared it to two existing algorithms for the analysis of peptide microarrays. rapmad displays competitive and superior behavior to existing software solutions. Particularly, it shows substantially improved sensitivity for low intensity settings without sacrificing specificity. It thereby contributes to increasing the effectiveness of high throughput screening experiments. Conclusions rapmad allows the robust and sensitive, automated analysis of high-throughput peptide array data. The rapmad R-package as well as the data sets are available from http://www.tron-mz.de/compmed.

  2. Conus Peptides A Rich Pharmaceutical Treasure

    Institute of Scientific and Technical Information of China (English)

    Cheng-Zhong WANG; Cheng-Wu CHI

    2004-01-01

    Marine predatory cone snails (genus Conus) with over 500 species represent what is arguably the largest single genus of marine animals alive today. All Conus are venomous and utilize a complex mixture of Conus peptides to capture their preys and for other biological purposes. Each component of Conus peptides selectively targets a specific subtype of ion channels, neurotransmitter receptors or transporters.Owing to their diversity, more than 50,000 distinct active peptides are theoretically estimated in Conus venoms. These diversified toxins are generally categorized into several superfamilies and/or families based on their characteristic arrangements of cysteine residues and pharmacological actions. Some mechanisms underlying the remarkable diversity of Conus peptides have been postulated: the distinctive gene structure, gene duplication and/or allelic selection, genus speciation, and sophisticated expression pattern and posttranslational modification of these peptides. Due to their highly pharmacological potency and target selectivity, Conus peptides have attracted extensive attention with their potentials to be developed as new research tools in neuroscience field and as novel medications in clinic for pain, epilepsy and other neuropathic disorders. Several instructive lessons for our drug development could be also learnt from these neuropharmacological "expertises". Conus peptides comprise a rich resource for neuropharmacologists, and most of them await to be explored.

  3. C-Peptide and its intracellular signaling.

    Science.gov (United States)

    Hills, Claire E; Brunskill, Nigel J

    2009-01-01

    Although long believed to be inert, C-peptide has now been shown to have definite biological effects both in vitro and in vivo in diabetic animals and in patients with type 1 diabetes. These effects point to a protective action of C-peptide against the development of diabetic microvascular complications. Underpinning these observations is undisputed evidence of C-peptide binding to a variety of cell types at physiologically relevant concentrations, and the downstream stimulation of multiple cell signaling pathways and gene transcription via the activation of numerous transcription factors. These pathways affect such fundamental cellular processes as re-absorptive and/or secretory phenotype, migration, growth, and survival. Whilst the receptor remains to be identified, experimental data points strongly to the existence of a specific G-protein-coupled receptor for C-peptide. Of the cell types studied so far, kidney tubular cells express the highest number of C-peptide binding sites. Accordingly, C-peptide exerts major effects on the function of these cells, and in the context of diabetic nephropathy appears to antagonise the pathophysiological effects of major disease mediators such as TGFbeta1 and TNFalpha. Therefore, based on its cellular activity profile C-peptide appears well positioned for development as a therapeutic tool to treat microvascular complications in type 1 diabetes. PMID:20039003

  4. Novel pH-Sensitive Cyclic Peptides.

    Science.gov (United States)

    Weerakkody, Dhammika; Moshnikova, Anna; El-Sayed, Naglaa Salem; Adochite, Ramona-Cosmina; Slaybaugh, Gregory; Golijanin, Jovana; Tiwari, Rakesh K; Andreev, Oleg A; Parang, Keykavous; Reshetnyak, Yana K

    2016-01-01

    A series of cyclic peptides containing a number of tryptophan (W) and glutamic acid (E) residues were synthesized and evaluated as pH-sensitive agents for targeting of acidic tissue and pH-dependent cytoplasmic delivery of molecules. Biophysical studies revealed the molecular mechanism of peptides action and localization within the lipid bilayer of the membrane at high and low pHs. The symmetric, c[(WE)4WC], and asymmetric, c[E4W5C], cyclic peptides translocated amanitin, a polar cargo molecule of similar size, across the lipid bilayer and induced cell death in a pH- and concentration-dependent manner. Fluorescently-labelled peptides were evaluated for targeting of acidic 4T1 mammary tumors in mice. The highest tumor to muscle ratio (5.6) was established for asymmetric cyclic peptide, c[E4W5C], at 24 hours after intravenous administration. pH-insensitive cyclic peptide c[R4W5C], where glutamic acid residues (E) were replaced by positively charged arginine residues (R), did not exhibit tumor targeting. We have introduced a novel class of cyclic peptides, which can be utilized as a new pH-sensitive tool in investigation or targeting of acidic tissue. PMID:27515582

  5. Proteasome inhibitors alter levels of intracellular peptides in HEK293T and SH-SY5Y cells.

    Directory of Open Access Journals (Sweden)

    Sayani Dasgupta

    Full Text Available The proteasome cleaves intracellular proteins into peptides. Earlier studies found that treatment of human embryonic kidney 293T (HEK293T cells with epoxomicin (an irreversible proteasome inhibitor generally caused a decrease in levels of intracellular peptides. However, bortezomib (an antitumor drug and proteasome inhibitor caused an unexpected increase in the levels of most intracellular peptides in HEK293T and SH-SY5Y cells. To address this apparent paradox, quantitative peptidomics was used to study the effect of a variety of other proteasome inhibitors on peptide levels in HEK293T and SH-SY5Y cells. Inhibitors tested included carfilzomib, MG132, MG262, MLN2238, AM114, and clasto-Lactacystin β-lactone. Only MG262 caused a substantial elevation in peptide levels that was comparable to the effect of bortezomib, although carfilzomib and MLN2238 elevated the levels of some peptides. To explore off-target effects, the proteosome inhibitors were tested with various cellular peptidases. Bortezomib did not inhibit tripeptidyl peptidase 2 and only weakly inhibited cellular aminopeptidase activity, as did some of the other proteasome inhibitors. However, potent inhibitors of tripeptidyl peptidase 2 (butabindide and cellular aminopeptidases (bestatin did not substantially alter the peptidome, indicating that the increase in peptide levels due to proteasome inhibitors is not a result of peptidase inhibition. Although we cannot exclude other possibilities, we presume that the paradoxical increase in peptide levels upon treatment with bortezomib and other inhibitors is the result of allosteric effects of these compounds on the proteasome. Because intracellular peptides are likely to be functional, it is possible that some of the physiologic effects of bortezomib and carfilzomib arise from the perturbation of peptide levels inside the cell.

  6. Natriuretic peptides in cardiometabolic regulation and disease

    DEFF Research Database (Denmark)

    Zois, Nora E; Bartels, Emil D; Hunter, Ingrid; Kousholt, Birgitte S; Olsen, Lars Henning; Goetze, Jens P

    2014-01-01

    decade. Dysregulation of the natriuretic peptide system has been associated with obesity, glucose intolerance, type 2 diabetes mellitus, and essential hypertension. Moreover, the natriuretic peptides have been implicated in the protection against atherosclerosis, thrombosis, and myocardial ischaemia. All......In the 30 years since the identification of the natriuretic peptides, their involvement in regulating fluid and blood pressure has become firmly established. Data indicating a role for these hormones in lifestyle-related metabolic and cardiovascular disorders have also accumulated over the past...... role in lifestyle-related metabolic and cardiovascular disorders....

  7. Imaging tumors with peptide-based radioligands

    Energy Technology Data Exchange (ETDEWEB)

    Behr, T. M.; Gotthardt, M.; Barth, A.; Behe, M. [Philipps-University of Marburg, Dept. of Nuclear Medicine, Marburg (Germany)

    2001-06-01

    Regulatory peptides are small, readily diffusable and potent natural substances with a wide spectrum of receptor-mediated actions in humans. High affinity receptors for these peptides are (over)-expressed in many neoplasms, and these receptors may represent, therefore, new molecular targets for cancer diagnosis and therapy. This review aims to give an overview of the peptide-based radiopharmaceuticals which are presently already commercially available or which are in advanced stages of their clinical testing so that their broader availability is anticipated soon. Physiologically, these peptides bind to and act through G protein-coupled receptors in the cell membrane. Historically, somatostatin analogs are the first class of receptor binding peptides having gained clinical application. In {sup 111}In-DTPA-(D-Phe{sup 1})-octreotide is the first and only radio peptide which has obtained regulatory approval in Europe and the United States to date. Extensive clinical studies involving several thousands of patients have shown that the major clinical application of somatostatin receptor scintigraphy is the detection and the staging of gastroenteropancreatic neuroendocrine tumors (carcinoids). In these tumors, octreotide scintigraphy is superior to any other staging method. However, its sensitivity and accuracy in other, more frequent neoplasms is limited. Radiolabeled vasoactive intestinal peptide (VIP) has been shown to visualize the majority of gastrointestinal adenocarcinomas, as well as some neuroendocrine tumors, including insulinomas (the latter being often missed by somatostatin receptor scintigraphy). Due to the outstanding diagnostic accuracy of the pentagastrin test in detecting the presence, persistence, or recurrence of medullary thyroid cancer (MTC), it was postulated the expression of the corresponding (i.e. cholecystokinin (CCK-)-B) receptor type in human MTC. This receptor is also widely expressed on human small-cell lung. Indeed, {sup 111}In-labeled DTPA

  8. Decreasing residual aluminum level in drinking water

    Institute of Scientific and Technical Information of China (English)

    王志红; 崔福义

    2004-01-01

    The relativity of coagulant dosage, residual turbidity, temperature, pH etc. with residual aluminum concentration were investigated, and several important conclusions were achieved. Firstly, dosage of alum-coagulant or PAC1 influences residual aluminum concentration greatly. There is an optimal-dosage-to-aluminum, a bit less than the optimal-dosage-to-turbidity. Secondly, it proposes that decreasing residual aluminum concentration can be theoretically divided into two methods, either decreasing (even removing) the concentration of particulate aluminum component, or decreasing dissolved aluminum. In these tests there is an optimal value of residual turbidity of postprecipitation at 7.0 NTU. Thirdly, residual aluminum level will increase while water temperature goes higher. At the last, optimal pH value corresponds a minimum dissolved aluminum at a given turbidity. Data shows the optimal pH value decreases with water temperature's increasing.

  9. Peptides from milk proteins and their properties.

    Science.gov (United States)

    Kilara, Arun; Panyam, Dinakar

    2003-01-01

    This review has attempted to study the literature pertaining to peptides derived from milk proteins. Hydrolysis of milk proteins to generate peptides has been practiced for a long time and it was recognized early on in this process that the taste of hydrolyzates might hinder use of these products in food formulations. Modification of protein is necessary to form a more acceptable or utilizable product, to form a product that is less susceptible to deteriorative reactions and to form a product that is of higher nutritionall quality. Modifications may be achieved by a number of chemical and enzymatic means. This review has considered only enzymatic modification of dairy proteins. Modified proteins contain peptides and some of these peptides have been purified and their functionalities have been compared with unmodified proteins. This paper has examined the literature pertaining to improvement in functionality of enzyme-modified proteins. Improvements in solubility, emulsification, foaming and gelation were examined. There is limited information available on the sequence of the peptides necessary to improve the functional characteristics of proteins. Knowing the sequences of desirable functional peptides can lead to genetic alteration of proteins to improve functionality. Addition of synthetic peptides to intact proteins may be another way in which the functionality of proteins can be augmented. Some of the peptides in milk proteins are capable of affecting biological functions of an organism. These effects can be antimicrobial and probiotic, i.e., prevent the growth and proliferation of undesirable and pathogenic organisms, or they may promote the growth of desirable bacteria in the digestive tract of humans and animals. Peptides derived from milk protein have been shown to exert digestive and metabolic effects as well. They may also influence the immune system. These biological effects may play an important role in the development of medical foods that treat or

  10. Exploiting Protected Maleimides to Modify Oligonucleotides, Peptides and Peptide Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Clément Paris

    2015-04-01

    Full Text Available This manuscript reviews the possibilities offered by 2,5-dimethylfuran-protected maleimides. Suitably derivatized building blocks incorporating the exo Diels-Alder cycloadduct can be introduced at any position of oligonucleotides, peptide nucleic acids, peptides and peptoids, making use of standard solid-phase procedures. Maleimide deprotection takes place upon heating, which can be followed by either Michael-type or Diels-Alder click conjugation reactions. However, the one-pot procedure in which maleimide deprotection and conjugation are simultaneously carried out provides the target conjugate more quickly and, more importantly, in better yield. This procedure is compatible with conjugates involving oligonucleotides, peptides and peptide nucleic acids. A variety of cyclic peptides and oligonucleotides can be obtained from peptide and oligonucleotide precursors incorporating protected maleimides and thiols.

  11. Combined Statistical Analyses of Peptide Intensities and Peptide Occurrences Improves Identification of Significant Peptides from MS-based Proteomics Data

    Energy Technology Data Exchange (ETDEWEB)

    Webb-Robertson, Bobbie-Jo M.; McCue, Lee Ann; Waters, Katrina M.; Matzke, Melissa M.; Jacobs, Jon M.; Metz, Thomas O.; Varnum, Susan M.; Pounds, Joel G.

    2010-11-01

    Liquid chromatography-mass spectrometry-based (LC-MS) proteomics uses peak intensities of proteolytic peptides to infer the differential abundance of peptides/proteins. However, substantial run-to-run variability in peptide intensities and observations (presence/absence) of peptides makes data analysis quite challenging. The missing abundance values in LC-MS proteomics data are difficult to address with traditional imputation-based approaches because the mechanisms by which data are missing are unknown a priori. Data can be missing due to random mechanisms such as experimental error, or non-random mechanisms such as a true biological effect. We present a statistical approach that uses a test of independence known as a G-test to test the null hypothesis of independence between the number of missing values and the experimental groups. We pair the G-test results evaluating independence of missing data (IMD) with a standard analysis of variance (ANOVA) that uses only means and variances computed from the observed data. Each peptide is therefore represented by two statistical confidence metrics, one for qualitative differential observation and one for quantitative differential intensity. We use two simulated and two real LC-MS datasets to demonstrate the robustness and sensitivity of the ANOVA-IMD approach for assigning confidence to peptides with significant differential abundance among experimental groups.

  12. A Peptide & Peptide Nucleic Acid Synthesis Technology for Transporter Molecules and Theranostics - The SPPS

    OpenAIRE

    Pipkorn, Ruediger; Braun, Klaus; Wiessler, Manfred; Waldeck, Waldemar; Schrenk, Hans-Hermann; Koch, Mario; Semmler, Wolfhard; Komljenovic, Dorde

    2014-01-01

    Advances in imaging diagnostics using magnetic resonance tomography (MRT), positron emission tomography (PET) and fluorescence imaging including near infrared (NIR) imaging methods are facilitated by constant improvement of the concepts of peptide synthesis. Feasible patient-specific theranostic platforms in the personalized medicine are particularly dependent on efficient and clinically applicable peptide constructs. The role of peptides in the interrelations between the structure and functi...

  13. Collagen-like peptides and peptide-polymer conjugates in the design of assembled materials

    OpenAIRE

    Luo, Tianzhi; Kiick, Kristi L.

    2013-01-01

    Collagen is the most abundant protein in mammals, and there has been long-standing interest in understanding and controlling collagen assembly in the design of new materials. Collagen-like peptides (CLP), also known as collagen-mimetic peptides (CMP) or collagen-related peptides (CRP), have thus been widely used to elucidate collagen triple helix structure as well as to produce higher-order structures that mimic natural collagen fibers. This mini-review provides an overview of recent progress...

  14. Effect of peptide secondary structure on peptide amphiphile supramolecular structure and interactions

    OpenAIRE

    Missirlis, Dimitris; Chworos, Arkadiusz; Fu, Caroline J; Khant, Htet A.; Krogstad, Daniel V.; Tirrell, Matthew

    2011-01-01

    Bottom-up fabrication of self-assembled nanomaterials requires control over forces and interactions between building blocks. We here report on the formation and architecture of supramolecular structures constructed from two different peptide amphiphiles. Inclusion of four alanines between a 16-mer peptide and a 16-carbon long aliphatic tail resulted in a secondary structure shift of the peptide headgroups from alpha helices to beta sheets. A concomitant shift in self-assembled morphology from...

  15. A statistical approach to determining responses to individual peptides from pooled-peptide ELISpot data.

    Science.gov (United States)

    Ström, Peter; Støer, Nathalie; Borthwick, Nicola; Dong, Tao; Hanke, Tomáš; Reilly, Marie

    2016-08-01

    To investigate in detail the effect of infection or vaccination on the human immune system, ELISpot assays are used to simultaneously test the immune response to a large number of peptides of interest. Scientists commonly use "peptide pools", where, instead of an individual peptide, a test well contains a group of peptides. Since the response from a well may be due to any or many of the peptides in the pool, pooled assays usually need to be followed by confirmatory assays of a number of individual peptides. We present a statistical method that enables estimation of individual peptide responses from pool responses using the Expectation Maximization (EM) algorithm for "incomplete data". We demonstrate the accuracy and precision of these estimates in simulation studies of ELISpot plates with 90 pools of 6 or 7 peptides arranged in three dimensions and three Mock wells for the estimation of background. In analysis of real pooled data from 6 subjects in a HIV-1 vaccine trial, where 199 peptides were arranged in 80 pools if size 9 or 10, our estimates were in very good agreement with the results from individual-peptide confirmatory assays. Compared to the classical approach, we could identify almost all the same peptides with high or moderate response, with less than half the number of confirmatory tests. Our method facilitates efficient use of the information available in pooled ELISpot data to avoid or reduce the need for confirmatory testing. We provide an easy-to-use free online application for implementing the method, where on uploading two spreadsheets with the pool design and pool responses, the user obtains the estimates of the individual peptide responses. PMID:27196788

  16. Determination of peptide content and purity of DOTA-peptides by metal ion titration and UPLC. An alternative method to monitor quality of DOTA-peptides

    International Nuclear Information System (INIS)

    PRRT requires high specific activities, thus at low molar ratio between DOTA-peptide and radioactivity. Therefore, the ingredients of the reaction, including (radio)metals and DOTA-peptide must be pure and the content known. Our aim was to quantify content and purity of DOTA-peptide by a base-to-base separation of DOTA-peptide and metal-DOTA-peptide by UPLC and UV-detection. Quantification of these peaks reveals an accurate and sensitive method to quantify purity and content of DOTA-peptides. Moreover, this technique enables monitoring of the (radio)labeling process and co-introduction of impurities, including metal ions. (author)

  17. Evolution of antimicrobial peptides to self-assembled peptides for biomaterial applications.

    Science.gov (United States)

    McCloskey, Alice P; Gilmore, Brendan F; Laverty, Garry

    2014-01-01

    Biomaterial-related infections are a persistent burden on patient health, recovery, mortality and healthcare budgets. Self-assembled antimicrobial peptides have evolved from the area of antimicrobial peptides. Peptides serve as important weapons in nature, and increasingly medicine, for combating microbial infection and biofilms. Self-assembled peptides harness a "bottom-up" approach, whereby the primary peptide sequence may be modified with natural and unnatural amino acids to produce an inherently antimicrobial hydrogel. Gelation may be tailored to occur in the presence of physiological and infective indicators (e.g. pH, enzymes) and therefore allow local, targeted antimicrobial therapy at the site of infection. Peptides demonstrate inherent biocompatibility, antimicrobial activity, biodegradability and numerous functional groups. They are therefore prime candidates for the production of polymeric molecules that have the potential to be conjugated to biomaterials with precision. Non-native chemistries and functional groups are easily incorporated into the peptide backbone allowing peptide hydrogels to be tailored to specific functional requirements. This article reviews an area of increasing interest, namely self-assembled peptides and their potential therapeutic applications as innovative hydrogels and biomaterials in the prevention of biofilm-related infection. PMID:25436505

  18. From a pro-apoptotic peptide to a lytic peptide: One single residue mutation.

    Science.gov (United States)

    Zhou, Xi-Rui; Zhang, Qiang; Tian, Xi-Bo; Cao, Yi-Meng; Liu, Zhu-Qing; Fan, Ruru; Ding, Xiu-Fang; Zhu, Zhentai; Chen, Long; Luo, Shi-Zhong

    2016-08-01

    Further discovery and design of new anticancer peptides are important for the development of anticancer therapeutics, and study on the detailed acting mechanism and structure-function relationship of peptides is critical for anticancer peptide design and application. In this study, a novel anticancer peptide ZXR-1 (FKIGGFIKKLWRSKLA) derived from a known anticancer peptide mauriporin was developed, and a mutant ZXR-2 (FKIGGFIKKLWRSLLA) with only one residue difference at the 14th position (Lys→Leu) was also engineered. Replacement of the lysine with leucine made ZXR-2 more potent than ZXR-1 in general. Even with only one residue mutation, the two peptides displayed distinct anticancer modes of action. ZXR-1 could translocate into cells, target on the mitochondria and induce cell apoptosis, while ZXR-2 directly targeted on the cell membranes and caused membrane lysis. The variance in their acting mechanisms might be due to the different amphipathicity and positive charge distribution. In addition, the two Ile-Leu pairs (3-10 and 7-14) in ZXR-2 might also play a role in improving its cytotoxicity. Further study on the structure-function relationship of the two peptides may be beneficial for the design of novel anticancer peptides and peptide based therapeutics. PMID:27207743

  19. Peptide binding specificity of the chaperone calreticulin

    DEFF Research Database (Denmark)

    Sandhu, N.; Duus, K.; Jorgensen, C.S.;

    2007-01-01

    Calreticulin is a molecular chaperone with specificity for polypeptides and N-linked monoglucosylated glycans. In order to determine the specificity of polypeptide binding, the interaction of calreticulin with polypeptides was investigated using synthetic peptides of different length and composit...

  20. Charge Transport Phenomena in Peptide Molecular Junctions

    International Nuclear Information System (INIS)

    Inelastic electron tunneling spectroscopy (IETS) is a valuable in situ spectroscopic analysis technique that provides a direct portrait of the electron transport properties of a molecular species. In the past, IETS has been applied to small molecules. Using self-assembled nano electronic junctions, IETS was performed for the first time on a large polypeptide protein peptide in the phosphorylated and native form, yielding interpretable spectra. A reproducible 10-fold shift of the I/V characteristics of the peptide was observed upon phosphorylation. Phosphorylation can be utilized as a site-specific modification to alter peptide structure and thereby influence electron transport in peptide molecular junctions. It is envisioned that kinases and phosphatases may be used to create tunable systems for molecular electronics applications, such as biosensors and memory devices.

  1. Charge Transport Phenomena in Peptide Molecular Junctions

    Directory of Open Access Journals (Sweden)

    Alessandra Luchini

    2008-01-01

    Full Text Available Inelastic electron tunneling spectroscopy (IETS is a valuable in situ spectroscopic analysis technique that provides a direct portrait of the electron transport properties of a molecular species. In the past, IETS has been applied to small molecules. Using self-assembled nanoelectronic junctions, IETS was performed for the first time on a large polypeptide protein peptide in the phosphorylated and native form, yielding interpretable spectra. A reproducible 10-fold shift of the I/V characteristics of the peptide was observed upon phosphorylation. Phosphorylation can be utilized as a site-specific modification to alter peptide structure and thereby influence electron transport in peptide molecular junctions. It is envisioned that kinases and phosphatases may be used to create tunable systems for molecular electronics applications, such as biosensors and memory devices.

  2. Cell-permeable Tat-NBD peptide attenuates rat pancreatitis and acinus cell inflammation response

    Institute of Scientific and Technical Information of China (English)

    You-Ming Long; Ken Chen; Xue-Jin Liu; Wen-Rui Xie; Hui Wang

    2009-01-01

    AIM: To investigate the effects of Tat-NEMO-binding domain (NBD) peptide on taurocholate-induced pancreatitis and lipopolysaccharide (LPS)-stimulated AR42J acinus cells inflammatory response in rats. METHODS: Sodium taurocholate (5%) was used to induce the pancreatitis model. Forty-eight rats from the taurocholate group aeceuved an intravenous bolus of 13 mg/kg Tat-NBD (wild-type, WT) peptide, Tat-NBD (mutant-type, MT) peptide, NBD peptide or Tat peptide. The pancreatic histopathology was analyzed by hematoxylin staining. LPS was added to the culture medium to stimulate the AR42J cells. For pretreatment, cells were incubated with different peptides for 2 h before LPS stimulation. Expression of IL-1β and TNF-α mRNA was analyzed using a semi-quantitative reverse-transcript polymerase chain reaction (RT-PCR) method. IL-1β and TNF-α protein in culture medium were detected by enzyme linked immunosorbent assay (ELISA). NF-κB DNA-binding in pancreas was examined by electrophoretic mobility shift assays. P65 expression of AR42J was determined by Strept Actividin-Biotin Complex (SABC) method. RESULTS: Pretreatment with Tat-NBD (WT) peptide at a concentration of 13 mg/kg body wt showed beneficial effect in pancreaitis model. LPS (10 mg/L) resulted in an increase of IL-1β mRNA, IL-1β protein, TNF-α mRNA and TNF-α protein, whereas significantly inhibitory effects were observed when cells were incubated with Tat-NBD (WT). Consisting with p65 expression decrease analyzed by SABC method, NF-κB DNA-binding activity significantly decreased in Tat-NBD (WT) pretreatment group, especially at the largest dose. No significant changes were found in the control peptide group. CONCLUSION: Our result supports that active NF-κB participates in the pathogenesis of STC-induced acute pancreatitis in rats. Tat-NBD (WT) peptide has antiinflammatory effects in this model and inhibits the inflammation of acinus simulated by LPS.

  3. Inhibition of discoidin domain receptor 2-mediated lung cancer cells progression by gold nanoparticle-aptamer-assisted delivery of peptides containing transmembrane-juxtamembrane 1/2 domain

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daehwan; Yeom, Ji-Hyun; Lee, Boeun; Lee, Kangseok [Department of Life Science, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Bae, Jeehyeon, E-mail: jeehyeon@cau.ac.kr [Department of Pharmacy, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Rhee, Sangmyung, E-mail: sangmyung.rhee@cau.ac.kr [Department of Life Science, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2015-08-21

    The delivery of biologically functional peptides into mammalian cells can be a direct and effective method for cancer therapy and treatment of other diseases. Discoidin domain receptor 2 (DDR2) is a collagen-induced receptor tyrosine kinase recently identified as a novel therapeutic target in lung cancer. In this study, we report that peptides containing the functional domain of DDR2 can be efficiently delivered into lung malignant cancer cells via a gold nanoparticle-DNA aptamer conjugate (AuNP-Apt)-based system. Peptide delivery resulted in the abrogation of DDR2 activation triggered by collagen. Moreover, the peptide delivered by the AuNP-Apt system inhibited cancer cell proliferation and invasion mediated by DDR2 activation. Thus, these results suggest that peptide loaded onto AuNP-Apt conjugates can be used for the development of peptide-based biomedical applications for the treatment of DDR2-positive cancer. - Highlights: • TM-JM1/2 peptides are efficiently delivered into cells by AuNP-Apt-conjugates. • TM-JM1/2 peptides loaded onto AuNP-Apt conjugates inhibit DDR2 activation. • Inhibition of DDR2 activation by TM-JM1/2 peptides decreases tumor progression.

  4. Inhibition of discoidin domain receptor 2-mediated lung cancer cells progression by gold nanoparticle-aptamer-assisted delivery of peptides containing transmembrane-juxtamembrane 1/2 domain

    International Nuclear Information System (INIS)

    The delivery of biologically functional peptides into mammalian cells can be a direct and effective method for cancer therapy and treatment of other diseases. Discoidin domain receptor 2 (DDR2) is a collagen-induced receptor tyrosine kinase recently identified as a novel therapeutic target in lung cancer. In this study, we report that peptides containing the functional domain of DDR2 can be efficiently delivered into lung malignant cancer cells via a gold nanoparticle-DNA aptamer conjugate (AuNP-Apt)-based system. Peptide delivery resulted in the abrogation of DDR2 activation triggered by collagen. Moreover, the peptide delivered by the AuNP-Apt system inhibited cancer cell proliferation and invasion mediated by DDR2 activation. Thus, these results suggest that peptide loaded onto AuNP-Apt conjugates can be used for the development of peptide-based biomedical applications for the treatment of DDR2-positive cancer. - Highlights: • TM-JM1/2 peptides are efficiently delivered into cells by AuNP-Apt-conjugates. • TM-JM1/2 peptides loaded onto AuNP-Apt conjugates inhibit DDR2 activation. • Inhibition of DDR2 activation by TM-JM1/2 peptides decreases tumor progression

  5. STAT1, STAT3 and p38MAPK are involved in the apoptotic effect induced by a chimeric cyclic interferon-{alpha}2b peptide

    Energy Technology Data Exchange (ETDEWEB)

    Blank, Viviana C.; Pena, Clara [Institute of Biochemistry and Biophysics (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956-C1113AAD Buenos Aires (Argentina); Roguin, Leonor P., E-mail: rvroguin@qb.ffyb.uba.ar [Institute of Biochemistry and Biophysics (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956-C1113AAD Buenos Aires (Argentina)

    2010-02-15

    In the search of mimetic peptides of the interferon-{alpha}2b molecule (IFN-{alpha}2b), we have previously designed and synthesized a chimeric cyclic peptide of the IFN-{alpha}2b that inhibits WISH cell proliferation by inducing an apoptotic response. Here, we first studied the ability of this peptide to activate intracellular signaling pathways and then evaluated the participation of some signals in the induction of apoptosis. Stimulation of WISH cells with the cyclic peptide showed tyrosine phosphorylation of Jak1 and Tyk2 kinases, tyrosine and serine phosphorylation of STAT1 and STAT3 transcription factors and activation of p38 MAPK pathway, although phosphorylation levels or kinetics were in some conditions different to those obtained under IFN-{alpha}2b stimulus. JNK and p44/42 pathways were not activated by the peptide in WISH cells. We also showed that STAT1 and STAT3 downregulation by RNA interference decreased the antiproliferative activity and the amount of apoptotic cells induced by the peptide. Pharmacological inhibition of p38 MAPK also reduced the peptide growth inhibitory activity and the apoptotic effect. Thus, we demonstrated that the cyclic peptide regulates WISH cell proliferation through the activation of Jak/STAT signaling pathway. In addition, our results indicate that p38 MAPK may also be involved in cell growth regulation. This study suggests that STAT1, STAT3 and p38 MAPK would be mediating the antitumor and apoptotic response triggered by the cyclic peptide in WISH cells.

  6. Gene Transfer with Poly-Melittin Peptides

    OpenAIRE

    Chen, Chang-Po; Kim, Ji-Seon; Steenblock, Erin; Liu, Dijie; Rice, Kevin G.

    2006-01-01

    The 26 amino acid hemolytic melittin peptide was converted into a gene transfer peptide that binds to DNA and polymerized through disulfide bond formation. Melittin analogues were synthesized by addition of one to four Lys repeats at either the C or N-subterminal end along with terminal Cys residues. Melittin analogues were able to bind and polymerize on plasmids resulting in the formation of DNA condensates. In the absence of DNA, melittin analogues retained their red blood cell hemolytic po...

  7. Neuroprotective peptides related to Alzheimer's disease

    Czech Academy of Sciences Publication Activity Database

    Slaninová, Jiřina; Borovičková, Lenka; Bláha, I.; Hlaváček, Jan; Krejčová, G.; Patočka, J.

    Patras : Typorama, 2005 - (Cordopatis, P.; Manessi-Zoupa, E.; Pairas, G.), 147-154 ISBN 960-7620-31-3. [Hellenic Forum on Bioactive Peptides /4./. Patras (GR), 22.04.2004-24.04.2004] R&D Projects: GA ČR(CZ) GA305/03/1100 Institutional research plan: CEZ:AV0Z40550506 Keywords : peptides * Alzheimer's disease * humanin Subject RIV: CE - Biochemistry

  8. Bioactive peptides and proteins in disease

    OpenAIRE

    Refai, Essam

    2004-01-01

    Regulatory peptides and marker proteins are important to study in order to understand disease mechanisms. This applies of course also to our common diseases where all relationships are not yet known. Cancer and diabetes are two such complex diseases that affect hundreds of millions of people worldwide. This thesis addresses particular aspects of these two diseases, regarding one regulatory peptide (VIP, vasoactive intestinal polypeptide) that may be useful for tumor tracing ...

  9. Lucifensin, a peptide behind the maggot therapy

    Czech Academy of Sciences Publication Activity Database

    Čeřovský, Václav

    Praha : Institute of Organic Chemistry and Biochemistry AS CR, v. v. i, 2011 - (Slaninová, J.), s. 22-26 ISBN 978-80-86241-44-9. - (Collection Symposium Series. 13). [Biologically Active Peptides /12./. Praha (CZ), 27.04.2011-29.04.2011] R&D Projects: GA ČR GA203/08/0536 Institutional research plan: CEZ:AV0Z40550506 Keywords : lucifensin * maggot therapy * antimicrobial activity * peptide synthesis * disulfide bridge Subject RIV: CC - Organic Chemistry

  10. Dietary fiber, gut peptides, and adipocytokines

    OpenAIRE

    Sánchez, David; Miguel, Marta; Aleixandre, Amaya

    2012-01-01

    The consumption of dietary fiber (DF) has increased since it was related to the prevention of a range of illnesses and pathological conditions. DF can modify some gut hormones that regulate satiety and energy intake, thus also affecting lipid metabolism and energy expenditure. Among these gut hormones are ghrelin, glucagon-like peptide 1, peptide YY, and cholecystokinin. Adipose tissue is known to express and secrete a variety of products known as >adipocytokines,> which are also affected by ...

  11. From antimicrobial to anticancer peptides. A review.

    OpenAIRE

    Diana eGaspar; A. Salomé eVeiga; Miguel A.R.B. eCastanho

    2013-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms. Although AMPs have been essentially studied and developed as potential alternatives for fighting infectious diseases, their use as anticancer peptides (ACPs) in cancer therapy either alone or in combination with other conventional drugs has been regarded as a therapeutic strategy to explore. As human cancer remains a cause of high morbidity and mortality worldwide, an urgent need of new, selective...

  12. Chemical Pyrophosphorylation of Functionally Diverse Peptides

    OpenAIRE

    Marmelstein, Alan M.; Yates, Lisa M.; Conway, John H.; Fiedler, Dorothea

    2013-01-01

    A highly selective and convenient method for the synthesis of pyrophosphopeptides in solution is reported. The remarkable compatibility with functional groups (alcohol, thiol, amine, carboxylic acid) in the peptide substrates suggests that the intrinsic nucleophilicity of the phosphoserine residue is much higher than previously appreciated. Because the methodology operates in polar solvents, including water, a broad range of pyrophosphopeptides can be accessed. We envision these peptides will...

  13. Endogenous flow of amino acids in the avian ileum as influenced by increasing dietary peptide concentrations.

    Science.gov (United States)

    Ravindran, Velmurugu; Morel, Patrick C H; Rutherfurd, Shane M; Thomas, Donald V

    2009-03-01

    The aim of the present study was to establish whether feeding broiler chickens with diets containing increasing dietary peptide concentrations would cause increases in ileal endogenous amino acid flow. The flow of N and most amino acids increased quadratically (P < 0.05 to 0.001) with increasing dietary concentrations of peptides. The exceptions were the flow of threonine, serine, glycine, tyrosine and cystine, which increased linearly (P < 0.001) with dietary peptide levels. Another notable exception to the general trend was the flow of proline, which was significantly higher (P < 0.01) in birds fed the protein-free diet. The amino acid profile of endogenous protein, expressed as proportion of crude protein, indicated that the ratios of threonine, glutamic acid, proline, glycine, leucine, histidine, arginine and cystine were influenced (P < 0.05) with increasing dietary peptide concentrations. In general, compared with the protein-free diet, the ratios of threonine and arginine in endogenous protein were lower (P < 0.05) and those of glutamic acid, glycine and histidine were greater (P < 0.05) in diets with high concentrations of peptides. The ratio of proline was found to decrease (P < 0.05) with increasing dietary peptide concentrations. These changes in the amino acid profile of endogenous protein are probably reflective of changes in the output of one or more of the components of endogenous protein. Overall, the present results demonstrated that increasing dietary peptide concentrations increased the flow of endogenous amino acid flow at the terminal ileum of broiler chickens in a dose-dependent manner and also caused changes in the composition of endogenous protein. The observed changes in endogenous amino flow will influence the maintenance requirements for amino acids and also have implications for the calculation of true digestibility coefficient of feedstuffs. PMID:18662428

  14. Minimizing Postsampling Degradation of Peptides by a Thermal Benchtop Tissue Stabilization Method

    Science.gov (United States)

    Segerström, Lova; Gustavsson, Jenny

    2016-01-01

    Enzymatic degradation is a major concern in peptide analysis. Postmortem metabolism in biological samples entails considerable risk for measurements misrepresentative of true in vivo concentrations. It is therefore vital to find reliable, reproducible, and easy-to-use procedures to inhibit enzymatic activity in fresh tissues before subjecting them to qualitative and quantitative analyses. The aim of this study was to test a benchtop thermal stabilization method to optimize measurement of endogenous opioids in brain tissue. Endogenous opioid peptides are generated from precursor proteins through multiple enzymatic steps that include conversion of one bioactive peptide to another, often with a different function. Ex vivo metabolism may, therefore, lead to erroneous functional interpretations. The efficacy of heat stabilization was systematically evaluated in a number of postmortem handling procedures. Dynorphin B (DYNB), Leu-enkephalin-Arg6 (LARG), and Met-enkephalin-Arg6-Phe7 (MEAP) were measured by radioimmunoassay in rat hypothalamus, striatum (STR), and cingulate cortex (CCX). Also, simplified extraction protocols for stabilized tissue were tested. Stabilization affected all peptide levels to varying degrees compared to those prepared by standard dissection and tissue handling procedures. Stabilization increased DYNB in hypothalamus, but not STR or CCX, whereas LARG generally decreased. MEAP increased in hypothalamus after all stabilization procedures, whereas for STR and CCX, the effect was dependent on the time point for stabilization. The efficacy of stabilization allowed samples to be left for 2 hours in room temperature (20°C) without changes in peptide levels. This study shows that conductive heat transfer is an easy-to-use and efficient procedure for the preservation of the molecular composition in biological samples. Region- and peptide-specific critical steps were identified and stabilization enabled the optimization of tissue handling and opioid

  15. Tryptophan rotamer distributions in amphipathic peptides at a lipid surface.

    OpenAIRE

    Clayton, A H; Sawyer, W. H.

    1999-01-01

    The fluorescence decay of tryptophan is a sensitive indicator of its local environment within a peptide or protein. We describe the use of frequency domain fluorescence spectroscopy to determine the conformational and environmental changes associated with the interaction of single tryptophan amphipathic peptides with a phospholipid surface. The five 18-residue peptides studied are based on a class A amphipathic peptide known to associate with lipid bilayers. The peptides contain a single tryp...

  16. Stereo-separations of Peptides by Capillary Electrophoresis and Chromatography

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Afzal Hussain, Iqbal Hussain, Mohamed F. Al-Ajmi & Imran Ali ### Abstract Small peptides (di-, tri-, tetra- penta- hexa etc. and peptides) control many chemical and biological processes. The biological importance of stereomers of peptides is of great value. The stereo-separations of peptides are gaining importance in biological and medicinal sciences and pharmaceutical industries. There is a great need of experimental protocols of stereo-separations of peptides. The vario...

  17. Design, synthesis and analysis of novel SMAC-based peptides

    Czech Academy of Sciences Publication Activity Database

    Georgieva, M.; Dzimbova, T.; Sázelová, Petra; Detcheva, R.; Kašička, Václav; Pajpanova, T.

    Sofia: Bulgarian Peptide Society, 2015 - (Naydenova, E.; Pajpanova, T.; Danalev, D.), s. 178-179 ISBN 978-619-90427-2-4. [Peptides 2014. European Peptide Symposium /33./. Sofia (BG), 31.08.2014-05.09.2014] Institutional support: RVO:61388963 Keywords : peptides * analysis * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation http://bulpepsoc.info/wp-content/uploads/2015/06/PEPTIDES-2014-electronic-version.pdf

  18. Membrane manufacture for peptide separations

    KAUST Repository

    Kim, DooLi

    2016-06-07

    Nanostructured polymeric membranes are key tools in biomedical applications such as hemodialysis, protein separations, in the food industry, and drinking water supply from seawater. Despite of the success in different separation processes, membrane manufacture itself is at risk, since the most used solvents are about to be banned in many countries due to environmental and health issues. We propose for the first time the preparation of polyethersulfone membranes based on dissolution in the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DEP). We obtained a series of membranes tailored for separation of solutes with molecular weight of 30, 5, 1.3, and 1.25 kg mol-1 with respective water permeances of 140, 65, 30 and 20 Lm-2h-1bar-1. We demonstrate their superior efficiency in the separation of complex mixtures of peptides with molecular weights in the range of 800 to 3500 gmol-1. Furthermore, the thermodynamics and kinetics of phase separation leading to the pore formation in the membranes were investigated. The rheology of the solutions and the morphology of the prepared membranes were examed and compared to those of polyethersulfone in organic solvents currently used for membrane manufacture.

  19. Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects

    DEFF Research Database (Denmark)

    Vilsbøll, T; Agersø, H; Krarup, T; Holst, Jens Juul

    2003-01-01

    We have previously shown that type 2 diabetic patients have decreased plasma concentrations of glucagon-like peptide 1 (GLP-1) compared with healthy subjects after ingestion of a standard mixed meal. This decrease could be caused by differences in the metabolism of GLP-1. The objective of this st...... response seen after ingestion of a standard breakfast meal must therefore be caused by a decreased secretion of GLP-1 in type 2 diabetic patients....

  20. Relaxin family peptides and their receptors.

    Science.gov (United States)

    Bathgate, R A D; Halls, M L; van der Westhuizen, E T; Callander, G E; Kocan, M; Summers, R J

    2013-01-01

    There are seven relaxin family peptides that are all structurally related to insulin. Relaxin has many roles in female and male reproduction, as a neuropeptide in the central nervous system, as a vasodilator and cardiac stimulant in the cardiovascular system, and as an antifibrotic agent. Insulin-like peptide-3 (INSL3) has clearly defined specialist roles in male and female reproduction, relaxin-3 is primarily a neuropeptide involved in stress and metabolic control, and INSL5 is widely distributed particularly in the gastrointestinal tract. Although they are structurally related to insulin, the relaxin family peptides produce their physiological effects by activating a group of four G protein-coupled receptors (GPCRs), relaxin family peptide receptors 1-4 (RXFP1-4). Relaxin and INSL3 are the cognate ligands for RXFP1 and RXFP2, respectively, that are leucine-rich repeat containing GPCRs. RXFP1 activates a wide spectrum of signaling pathways to generate second messengers that include cAMP and nitric oxide, whereas RXFP2 activates a subset of these pathways. Relaxin-3 and INSL5 are the cognate ligands for RXFP3 and RXFP4 that are closely related to small peptide receptors that when activated inhibit cAMP production and activate MAP kinases. Although there are still many unanswered questions regarding the mode of action of relaxin family peptides, it is clear that they have important physiological roles that could be exploited for therapeutic benefit. PMID:23303914