WorldWideScience

Sample records for cell-like cells differentiated

  1. Neuro-muscular differentiation of adult porcine skin derived stem cell-like cells.

    Directory of Open Access Journals (Sweden)

    Dominik Lermen

    Full Text Available BACKGROUND: Due to the genetic relationship to humans, porcine stem cells are a very important model system to investigate cell differentiation, associated cell signaling pathways, and cell fate. Porcine skin derived stem cells have been isolated from mid-gestation porcine fetus recently. To our knowledge, stem cells from the skin of the adult porcine organism have not been isolated until now. Hence, to our knowledge, we here describe the isolation, expansion, characterization and differentiation of multipotent porcine skin derived stem cell-like cells (pSSCs from the adult porcine organism for the first time. METHODOLOGY/PRINCIPAL FINDINGS: pSSCs had a spindle shaped morphology similar to mesenchymal stem cells (MSCs. They could be maintained proliferatively active in vitro for more than 120 days and were able to form colonies from single cells. pSSCs expressed Sox2 and Oct3/4, both transcription factors essential to the pluripotent and self-renewing phenotypes of embryonic stem cells, which recently gained attention due to their function in inducing pluripotent stem cells. Furthermore, the expression of the progenitor marker nestin, the somatic stem cell markers Bcrp1/ABCG2, Bmi1, and Stat3 was detected by reverse transcriptase-polymerase chain reaction (RT-PCR in undifferentiated pSSCs. Flow cytometry revealed the expression of the MSC related proteins CD9, CD29, CD44 and CD105, but not CD90. After neuronal differentiation cells with a characteristic morphology of neuronal and smooth muscle-like cells were present in the cultures. Subsequent immunochemistry and flow cytometry revealed the down-regulation of nestin and the up-regulation of the neuron specific protein beta-III-tubulin and the astrocyte marker GFAP. Also, alpha-SMA expressing cells increased during differentiation suggesting the neuro-muscular differentiation of these skin derived cells. pSSCs could also be induced to differentiate into adipocyte-like cells when cultured under

  2. Epigenetic DNA Demethylation Causes Inner Ear Stem Cell Differentiation into Hair Cell-Like Cells

    Science.gov (United States)

    Zhou, Yang; Hu, Zhengqing

    2016-01-01

    The DNA methyltransferase (DNMT) inhibitor 5-azacytidine (5-aza) causes genomic demethylation to regulate gene expression. However, it remains unclear whether 5-aza affects gene expression and cell fate determination of stem cells. In this study, 5-aza was applied to mouse utricle sensory epithelia-derived progenitor cells (MUCs) to investigate whether 5-aza stimulated MUCs to become sensory hair cells. After treatment, MUCs increased expression of hair cell genes and proteins. The DNA methylation level (indicated by percentage of 5-methylcytosine) showed a 28.57% decrease after treatment, which causes significantly repressed DNMT1 protein expression and DNMT activity. Additionally, FM1-43 permeation assays indicated that the permeability of 5-aza-treated MUCs was similar to that of sensory hair cells, which may result from mechanotransduction channels. This study not only demonstrates a possible epigenetic approach to induce tissue specific stem/progenitor cells to become sensory hair cell-like cells, but also provides a cell model to epigenetically modulate stem cell fate determination. PMID:27536218

  3. Protein expression profile in the differentiation of rat bone marrow stromal cells into Schwann cell-like cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    During the last decade,increasing evidence suggested that bone marrow stromal cells(MSCs) have the potential to differentiate into neural lineages.Many studies have reported that MSCs showed morphological changes and expressed a limited number of neural proteins under experimental conditions.However,no proteomic studies on MSCs differentiated into Schwann cell-like cells have been reported.In this study,we isolated MSCs from adult Sprague-Dawley rat femur and tibia bone marrows and induced the cells in vitro under specific conditions.By using two-dimensional gel electrophoresis(2-DE),we compared the protein profiles of MSCs before and after induced differentiation.We obtained 792 protein spots in the protein profile by 2-DE,and found that 74 spots changed significantly before and after the differentiation using PDQuest software,with 43 up-regulated and 31 down-regulated.We analyzed these 74 spots by a matrix assisted laser desorption ionization-time of flight mass spectrometry(MALDI-TOF-MS) and by database searching,and found that they could be grouped into various classes,including cytoskeleton and structure proteins,growth factors,metabolic proteins,chaperone proteins,receptor proteins,cell cycle proteins,calcium binding proteins,and other proteins.These proteins also include neural and glial proteins,such as BDNF,CNTF and GFAP.The results may provide valuable proteomic information about the differentiation of MSCs into Schwann cell-like cells.

  4. Juvenile Myelomonocytic Leukemia (JMML Cells Spontaneously Differentiate into Dendritic-Cell Like Populations in vitro

    Directory of Open Access Journals (Sweden)

    Parviz Shayan

    2008-09-01

    Full Text Available Objective: Juvenile myelomonocytic leukemia (JMML is a rare myelodysplastic/ myeloproliferative malignancy of early childhood, characterized by monocytosis, hepatosplenomegaly and an aggressive clinical course. Methods: In semi-solid culture JMML progenitor cells proliferate spontaneously into colony forming units. In order to study the mechanisms of proliferation and differentiation of JMML cells we developed a suspension culture system without additional exogenous growth factor supplement. Mononuclear cells (MNC from peripheral blood, bone marrow or spleen of 14 patients with JMML and 24 controls were studied. Findings: JMML cells expressed higher levels of the proliferation marker Ki67 (median 24% [7-39%] vs a median of 3.5% in controls. 90% of JMML cells were CD68-positive (vs 35% in controls and by day 7 all JMML samples contained CD1a- positive cells. Electron microscopy demonstrated cytoplasmic vesicular structures resembling multilamellar MHC II compare­timents, which together with the expression of CD1a - support a dendritic cell (DC-phenotype. Conclusion: Differentiation into CD1a-positive DC seems to be a frequent phenomenon in cultured JMML MNC, which in vivo may contribute to clinical characteristics such as skin and organ infiltration.

  5. Resveratrol ameliorates the maturation process of β-cell-like cells obtained from an optimized differentiation protocol of human embryonic stem cells.

    Science.gov (United States)

    Pezzolla, Daniela; López-Beas, Javier; Lachaud, Christian C; Domínguez-Rodríguez, Alejandro; Smani, Tarik; Hmadcha, Abdelkrim; Soria, Bernat

    2015-01-01

    Human embryonic stem cells (hESCs) retain the extraordinary capacity to differentiate into different cell types of an adult organism, including pancreatic β-cells. For this particular lineage, although a lot of effort has been made in the last ten years to achieve an efficient and reproducible differentiation protocol, it was not until recently that this aim was roughly accomplished. Besides, several studies evidenced the impact of resveratrol (RSV) on insulin secretion, even though the mechanism by which this polyphenol potentiates glucose-stimulated insulin secretion (GSIS) is still not clear. The aim of this study was to optimize an efficient differentiation protocol that mimics in vivo pancreatic organogenesis and to investigate whether RSV may improve the final maturation step to obtain functional insulin-secreting cells. Our results indicate that treatment of hESCs (HS-181) with activin-A induced definitive endoderm differentiation as detected by the expression of SOX17 and FOXA2. Addition of retinoic acid (RA), Noggin and Cyclopamine promoted pancreatic differentiation as indicated by the expression of the early pancreatic progenitor markers ISL1, NGN3 and PDX1. Moreover, during maturation in suspension culture, differentiating cells assembled in islet-like clusters, which expressed specific endocrine markers such as PDX1, SST, GCG and INS. Similar results were confirmed with the human induced Pluripotent Stem Cell (hiPSC) line MSUH-001. Finally, differentiation protocols incorporating RSV treatment yielded numerous insulin-positive cells, induced significantly higher PDX1 expression and were able to transiently normalize glycaemia when transplanted in streptozotocin (STZ) induced diabetic mice thus promoting its survival. In conclusion, our strategy allows the efficient differentiation of hESCs into pancreatic endoderm capable of generating β-cell-like cells and demonstrates that RSV improves the maturation process. PMID:25774684

  6. Resveratrol ameliorates the maturation process of β-cell-like cells obtained from an optimized differentiation protocol of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Daniela Pezzolla

    Full Text Available Human embryonic stem cells (hESCs retain the extraordinary capacity to differentiate into different cell types of an adult organism, including pancreatic β-cells. For this particular lineage, although a lot of effort has been made in the last ten years to achieve an efficient and reproducible differentiation protocol, it was not until recently that this aim was roughly accomplished. Besides, several studies evidenced the impact of resveratrol (RSV on insulin secretion, even though the mechanism by which this polyphenol potentiates glucose-stimulated insulin secretion (GSIS is still not clear. The aim of this study was to optimize an efficient differentiation protocol that mimics in vivo pancreatic organogenesis and to investigate whether RSV may improve the final maturation step to obtain functional insulin-secreting cells. Our results indicate that treatment of hESCs (HS-181 with activin-A induced definitive endoderm differentiation as detected by the expression of SOX17 and FOXA2. Addition of retinoic acid (RA, Noggin and Cyclopamine promoted pancreatic differentiation as indicated by the expression of the early pancreatic progenitor markers ISL1, NGN3 and PDX1. Moreover, during maturation in suspension culture, differentiating cells assembled in islet-like clusters, which expressed specific endocrine markers such as PDX1, SST, GCG and INS. Similar results were confirmed with the human induced Pluripotent Stem Cell (hiPSC line MSUH-001. Finally, differentiation protocols incorporating RSV treatment yielded numerous insulin-positive cells, induced significantly higher PDX1 expression and were able to transiently normalize glycaemia when transplanted in streptozotocin (STZ induced diabetic mice thus promoting its survival. In conclusion, our strategy allows the efficient differentiation of hESCs into pancreatic endoderm capable of generating β-cell-like cells and demonstrates that RSV improves the maturation process.

  7. Stem cell-like differentiation potentials of endometrial side population cells as revealed by a newly developed in vivo endometrial stem cell assay.

    Directory of Open Access Journals (Sweden)

    Kaoru Miyazaki

    Full Text Available BACKGROUND: Endometrial stem/progenitor cells contribute to the cyclical regeneration of human endometrium throughout a woman's reproductive life. Although the candidate cell populations have been extensively studied, no consensus exists regarding which endometrial population represents the stem/progenitor cell fraction in terms of in vivo stem cell activity. We have previously reported that human endometrial side population cells (ESP, but not endometrial main population cells (EMP, exhibit stem cell-like properties, including in vivo reconstitution of endometrium-like tissues when xenotransplanted into immunodeficient mice. The reconstitution efficiency, however, was low presumably because ESP cells alone could not provide a sufficient microenvironment (niche to support their stem cell activity. The objective of this study was to establish a novel in vivo endometrial stem cell assay employing cell tracking and tissue reconstitution systems and to examine the stem cell properties of ESP through use of this assay. METHODOLOGY/PRINCIPAL FINDINGS: ESP and EMP cells isolated from whole endometrial cells were infected with lentivirus to express tandem Tomato (TdTom, a red fluorescent protein. They were mixed with unlabeled whole endometrial cells and then transplanted under the kidney capsule of ovariectomized immunodeficient mice. These mice were treated with estradiol and progesterone for eight weeks and nephrectomized. All of the grafts reconstituted endometrium-like tissues under the kidney capsules. Immunofluorescence revealed that TdTom-positive cells were significantly more abundant in the glandular, stromal, and endothelial cells of the reconstituted endometrium in mice transplanted with TdTom-labeled ESP cells than those with TdTom-labeled EMP cells. CONCLUSIONS/SIGNIFICANCE: We have established a novel in vivo endometrial stem cell assay in which multi-potential differentiation can be identified through cell tracking during in vivo

  8. Type I collagen inhibits differentiation and promotes a stem cell-like phenotype in human colorectal carcinoma cells

    OpenAIRE

    Kirkland, S. C.

    2009-01-01

    Background: Human colorectal cancer is caused by mutations and is thought to be maintained by a population of cancer stem cells. Further phenotypic changes occurring at the invasive edge suggest that colon cancer cells are also regulated by their microenvironment. Type I collagen, a promoter of the malignant phenotype in pancreatic carcinoma cells, is highly expressed at the invasive front of human colorectal cancer. Methods: This study investigates the role of type I collagen in specifying t...

  9. Effects of genetic correction on the differentiation of hair cell-like cells from iPSCs with MYO15A mutation.

    Science.gov (United States)

    Chen, J-R; Tang, Z-H; Zheng, J; Shi, H-S; Ding, J; Qian, X-D; Zhang, C; Chen, J-L; Wang, C-C; Li, L; Chen, J-Z; Yin, S-K; Shao, J-Z; Huang, T-S; Chen, P; Guan, M-X; Wang, J-F

    2016-08-01

    Deafness or hearing loss is a major issue in human health. Inner ear hair cells are the main sensory receptors responsible for hearing. Defects in hair cells are one of the major causes of deafness. A combination of induced pluripotent stem cell (iPSC) technology with genome-editing technology may provide an attractive cell-based strategy to regenerate hair cells and treat hereditary deafness in humans. Here, we report the generation of iPSCs from members of a Chinese family carrying MYO15A c.4642G>A and c.8374G>A mutations and the induction of hair cell-like cells from those iPSCs. The compound heterozygous MYO15A mutations resulted in abnormal morphology and dysfunction of the derived hair cell-like cells. We used a CRISPR/Cas9 approach to genetically correct the MYO15A mutation in the iPSCs and rescued the morphology and function of the derived hair cell-like cells. Our data demonstrate the feasibility of generating inner ear hair cells from human iPSCs and the functional rescue of gene mutation-based deafness by using genetic correction. PMID:26915297

  10. In vitro differentiation of mouse embryonic stem cells into inner ear hair cell-like cells using stromal cell conditioned medium

    OpenAIRE

    Ouji, Y; Ishizaka, S.; NAKAMURA-UCHIYAMA, F; Yoshikawa, M

    2012-01-01

    Hearing loss is mainly caused by loss of sensory hair cells (HCs) in the organ of Corti or cochlea. Although embryonic stem (ES) cells are a promising source for cell therapy, little is known about the efficient generation of HC-like cells from ES cells. In the present study, we developed a single-medium culture method for growing embryoid bodies (EBs), in which conditioned medium (CM) from cultures of ST2 stromal cells (ST2-CM) was used for 14-day cultures of 4-day EBs. At the end of the 14-...

  11. Involvement of Plant Stem Cells or Stem Cell-Like Cells in Dedifferentiation

    OpenAIRE

    Jiang, Fangwei; Feng, Zhenhua; Liu, Hailiang; Zhu, Jian

    2015-01-01

    Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to pro...

  12. SRY and OCT4 Are Required for the Acquisition of Cancer Stem Cell-Like Properties and Are Potential Differentiation Therapy Targets.

    Science.gov (United States)

    Murakami, Shigekazu; Ninomiya, Wataru; Sakamoto, Erina; Shibata, Tatsuhiro; Akiyama, Hirotada; Tashiro, Fumio

    2015-09-01

    The acquisition of stemness is a hallmark of aggressive human hepatocellular carcinoma (hHCC). The stem cell marker OCT4 is frequently expressed in HCCs, and its expression correlates with those of putative cancer stem cell (CSC) markers and CSC properties. Here, we describe a novel mechanism of CSC maintenance by SRY through OCT4. We previously reported that Sry is involved in tumor malignancy in rodent HCCs. However, the oncogenic function of SRY in hHCCs is poorly understood. Ectopic expression of SRY increased multiple stem cell factors, including OCT4 and CD13. The OCT4 promoter contained SRY-binding sites that were directly activated by SRY. In HCC-derived cells, SRY knockdown decreased OCT4 expression and cancer stem-like phenotypes such as self-renewal, chemoresistance, and tumorigenicity. Conversely, OCT4 and SRY overexpression promoted cancer stem-like phenotypes. OCT4 knockdown in SRY clones downregulated the self-renewal capacity and chemoresistance. These data suggest that SRY is involved in the maintenance of cancer stem-like characteristics through OCT4. Moreover, CSCs of HCC-derived cells differentiated into Tuj1-positive neuron-like cells by retinoic acid. Noteworthily, SRY was highly expressed in some hHCC patients. Taken together, our findings imply a novel therapeutic strategy against CSCs of hHCCs. PMID:26013162

  13. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    International Nuclear Information System (INIS)

    Highlights: ► MSC like cells were derived from hESC by a simple and reproducible method. ► Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. ► MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  14. A human memory T-cell subset with stem cell-like properties

    OpenAIRE

    Gattinoni, Luca; Lugli, Enrico; Ji, Yun; Pos, Zoltan; Paulos, Chrystal M.; Quigley, Máire F.; Almeida, Jorge R.; Gostick, Emma; Yu, Zhiya; Carpenito, Carmine; Wang, Ena; Douek, Daniel C.; Price, David A.; June, Carl H.; Marincola, Francesco M.

    2011-01-01

    Immunological memory is thought to depend upon a stem cell-like, self-renewing population of lymphocytes capable of differentiating into effector cells in response to antigen re-exposure. Here we describe a long-lived human memory T-cell population that displays enhanced self-renewal and multipotent capacity to derive central memory, effector memory and effector T cells. These cells, specific for multiple viral and self-tumor antigens, were found within a CD45RO−, CCR7+, CD45RA+, CD62L+, CD27...

  15. Multiscale molecular simulations of proteins in cell-like conditions

    Science.gov (United States)

    Samiotakis, Antonios

    Proteins are the workhorses of all living organisms, performing a broad range of functions in the crowded cellular interior. However, little is known about how proteins function in cell-like conditions since most studies focus in dilute aqueous environments. In order to address this problem we incorporated molecular simulations and coarse-grained models that capture the protein dynamics in the cellular interior. We study the macromolecular crowding effects of cell-like environments on protein Borrelia Burgdorferi VlsE (variable major protein-like sequence-expressed), an aspherical membrane protein, and the enzyme Phosphoglycerate kinase. We show that protein conformation can be significantly perturbed under crowded cell-like conditions which, in turn, can have dramatic effects to the proteins' function. In addition, we look into the effects of mutations in the folding pathways of the topologically frustrated protein apoflavodoxin while correlation with experiments is also achieved. We further developed a multiscale simulation scheme that combines the sampling efficiency of low-resolution models with the detail of all-atomistic simulations. An algorithm that reconstructs all-atomistic conformations from coarse-grained representations was developed, in addition to an energy function that accounts for chemical interference based on the Boltzamn inversion method. The multiscale simulation scheme manages to sample all-atomistic structures of the protein Trp-cage that match very well with experiments. The folding kinetic behavior of Trp-cage was also studied in the combined presence of urea denaturant and macromolecular crowding.

  16. A human memory T-cell subset with stem cell-like properties

    Science.gov (United States)

    Gattinoni, Luca; Lugli, Enrico; Ji, Yun; Pos, Zoltan; Paulos, Chrystal M.; Quigley, Máire F.; Almeida, Jorge R.; Gostick, Emma; Yu, Zhiya; Carpenito, Carmine; Wang, Ena; Douek, Daniel C.; Price, David A.; June, Carl H.; Marincola, Francesco M.; Roederer, Mario; Restifo, Nicholas P.

    2011-01-01

    Immunological memory is thought to depend upon a stem cell-like, self-renewing population of lymphocytes capable of differentiating into effector cells in response to antigen re-exposure. Here we describe a long-lived human memory T-cell population that displays enhanced self-renewal and multipotent capacity to derive central memory, effector memory and effector T cells. These cells, specific for multiple viral and self-tumor antigens, were found within a CD45RO−, CCR7+, CD45RA+, CD62L+, CD27+, CD28+ and IL-7Rα+ T-cell compartment characteristic of naïve T cells. However, they expressed increased levels of CD95, IL-2Rβ, CXCR3, and LFA-1, and exhibited numerous functional attributes distinctive of memory cells. Compared to known memory populations, these lymphocytes displayed increased proliferative capacity, more efficiently reconstituted immunodeficient hosts and mediated superior anti-tumor responses in a humanized mouse model. The identification of a human stem cell-like memory T-cell population is of direct relevance to the design of vaccines and T-cell therapies. PMID:21926977

  17. Cell-Like Equivalences and Boundaries of CAT(0) Groups

    CERN Document Server

    Guilbault, Craig

    2010-01-01

    In 2000, Croke and Kleiner showed that a CAT(0) group G can admit more than one boundary. This contrasted with the situation for word hyperbolic groups, where it was well-known that each such group admitted a unique boundary---in a very stong sense. Prior to Croke and Kleiner's discovery, it had been observed by Geoghegan and Bestvina that a weaker sort of uniquness does hold for boundaries of torsion free CAT(0) groups; in particular, any two such boundaries always have the same shape. Hence, the boundary really does carry significant information about the group itself. In an attempt to strengthen the correspondence between group and boundary, Bestvina asked whether boundaries of CAT(0) groups are unique up to cell-like equivalence. For the types of space that arise as boundaries of CAT(0) groups, this is a notion that is weaker than topological equivalence and stronger than shape equivalence. In this paper we explore the Bestvina Cell-like Equivalence Question. We describe a straightforward strategy with th...

  18. Th17 cells are long-lived and retain a stem cell-like molecular signature

    Science.gov (United States)

    Muranski, Pawel; Borman, Zachary A.; Kerkar, Sid P.; Klebanoff, Christopher A.; Ji, Yun; Sanchez-Perez, Luis; Sukumar, Madhusudhanan; Reger, Robert N.; Yu, Zhiya; Kern, Steven J.; Roychoudhuri, Rahul; Ferreyra, Gabriela A.; Shen, Wei; Durum, Scott K.; Feigenbaum, Lionel; Palmer, Douglas C.; Antony, Paul A.; Chan, Chi-Chao; Laurence, Arian; Danner, Robert L.; Gattinoni, Luca; Restifo, Nicholas P.

    2011-01-01

    Th17 cells have been described as short-lived but this view is at odds with their capacity to trigger protracted damage to normal and transformed tissues. We report that Th17 cells, despite displaying low expression of CD27 and other phenotypic markers of terminal differentiation, efficiently eradicated tumors and caused autoimmunity, were long-lived and maintained a core molecular signature resembling early memory CD8+ cells with stem cell-like properties. In addition, we found that Th17 cells had high expression of Tcf7, a direct target of the Wnt and β-catenin signaling axis, and accumulated β-catenin, a feature observed in stem cells. In vivo, Th17 cells gave rise to Th1-like effector cell progeny and also self-renewed and persisted as IL-17A-secreting cells. Multipotency was required for Th17 cell-mediated tumor eradication because effector cells deficient in IFN-γ or IL-17A had impaired activity. Thus, Th17 cells are not always short-lived and are a less-differentiated subset capable of superior persistence and functionality. PMID:22177921

  19. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    OpenAIRE

    Quanwen Liu; Yi Shen; Jiarong Chen; Jie Ding; Zihua Tang; Cui Zhang; Jianling Chen; Liang Li; Ping Chen; Jinfu Wang

    2016-01-01

    In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bund...

  20. Galiellalactone Inhibits Stem Cell-Like ALDH-Positive Prostate Cancer Cells

    OpenAIRE

    Hellsten, Rebecka; Johansson, Martin; Dahlman, Anna; Sterner, Olov; Bjartell, Anders

    2011-01-01

    Galiellalactone is a potent and specific inhibitor of STAT3 signaling which has been shown to possess growth inhibitory effects on prostate cancer cells expressing active STAT3. In this study we aimed to investigate the effect of galiellalactone on prostate cancer stem cell-like cells. We explored the expression of aldehyde dehydrogenase (ALDH) as a marker for cancer stem cell-like cells in different human prostate cancer cell lines and the effects of galiellalactone on ALDH expressing (ALDH+...

  1. CD73-mediated adenosine production promotes stem cell-like properties in mouse Tc17 cells.

    Science.gov (United States)

    Flores-Santibáñez, Felipe; Fernández, Dominique; Meza, Daniel; Tejón, Gabriela; Vargas, Leonardo; Varela-Nallar, Lorena; Arredondo, Sebastián; Guixé, Victoria; Rosemblatt, Mario; Bono, María Rosa; Sauma, Daniela

    2015-12-01

    The CD73 ectonucleotidase catalyses the hydrolysis of AMP to adenosine, an immunosuppressive molecule. Recent evidence has demonstrated that this ectonucleotidase is up-regulated in T helper type 17 cells when generated in the presence of transforming growth factor-β (TGF-β), and hence CD73 expression is related to the acquisition of immunosuppressive potential by these cells. TGF-β is also able to induce CD73 expression in CD8(+) T cells but the function of this ectonucleotidase in CD8(+) T cells is still unknown. Here, we show that Tc17 cells present high levels of the CD73 ectonucleotidase and produce adenosine; however, they do not suppress the proliferation of CD4(+) T cells. Interestingly, we report that adenosine signalling through A2A receptor favours interleukin-17 production and the expression of stem cell-associated transcription factors such as tcf-7 and lef-1 but restrains the acquisition of Tc1-related effector molecules such as interferon-γ and Granzyme B by Tc17 cells. Within the tumour microenvironment, CD73 is highly expressed in CD62L(+) CD127(+) CD8(+) T cells (memory T cells) and is down-regulated in GZMB(+) KLRG1(+) CD8(+) T cells (terminally differentiated T cells), demonstrating that CD73 is expressed in memory/naive cells and is down-regulated during differentiation. These data reveal a novel function of CD73 ectonucleotidase in arresting CD8(+) T-cell differentiation and support the idea that CD73-driven adenosine production by Tc17 cells may promote stem cell-like properties in Tc17 cells. PMID:26331349

  2. Low immunogenicity of endothelial derivatives from rat embryonic stem cell-like cells

    Institute of Scientific and Technical Information of China (English)

    Juliane Ladhoff; Michael Bader; Sabine Br(o)sel; Elke Effenberger; Dirk Westermann; Hans-Dieter Volk; Martina Seifert

    2009-01-01

    Embryonic stem cells (ESC) are suggested to be immune-privileged, but they carry the risk of uncontrolled expansion and malignancy. Upon differentiation they lose their tumor-forming capacity, but they become immunogenic by the expression of a normal set of MHC molecules. This immunogenicity might trigger rejection after application in regenerative therapies. In this study MHC expression of and immune responses to endothelial derivatives of rat embryonic stem cell-like cells (RESC) under inflammatory conditions were determined in comparison to primary rat aortic endothelial cells (ECs). Cellular as well as humoral allo-recognition was analyzed in vitro. In addition, immune reactions in vivo were assessed by allo-antibody production and determination of interferon-γ (IFNγ)-secreting allo-reactive T cells. RESC derivatives expressed low but significant levels of MHC class I, and no MHC class II. In response to IFNγ MHC class I expression was enhanced, while class II transactivator induction failed completely in these cells; MHC class II expression remained consistently absent. Functionally, the RESC derivatives showed a reduced allo-stimulatory capacity, protection against humoral allo-recognition in vitro and a slightly diminished susceptibility to cytotoxic T cell lysis. Furthermore, in vivo experiments demonstrated that these cells do not trigger host immune reactions, characterized by no allo-antibody production and no induction of allo-reactive memory T cells. Our results show that endothelial derivatives of RESC have a distinctive reduced immunogenic potency even under inflammatory conditions.

  3. Stem cell-like gene expression in ovarian cancer predicts type II subtype and prognosis.

    Directory of Open Access Journals (Sweden)

    Matthew Schwede

    Full Text Available Although ovarian cancer is often initially chemotherapy-sensitive, the vast majority of tumors eventually relapse and patients die of increasingly aggressive disease. Cancer stem cells are believed to have properties that allow them to survive therapy and may drive recurrent tumor growth. Cancer stem cells or cancer-initiating cells are a rare cell population and difficult to isolate experimentally. Genes that are expressed by stem cells may characterize a subset of less differentiated tumors and aid in prognostic classification of ovarian cancer. The purpose of this study was the genomic identification and characterization of a subtype of ovarian cancer that has stem cell-like gene expression. Using human and mouse gene signatures of embryonic, adult, or cancer stem cells, we performed an unsupervised bipartition class discovery on expression profiles from 145 serous ovarian tumors to identify a stem-like and more differentiated subgroup. Subtypes were reproducible and were further characterized in four independent, heterogeneous ovarian cancer datasets. We identified a stem-like subtype characterized by a 51-gene signature, which is significantly enriched in tumors with properties of Type II ovarian cancer; high grade, serous tumors, and poor survival. Conversely, the differentiated tumors share properties with Type I, including lower grade and mixed histological subtypes. The stem cell-like signature was prognostic within high-stage serous ovarian cancer, classifying a small subset of high-stage tumors with better prognosis, in the differentiated subtype. In multivariate models that adjusted for common clinical factors (including grade, stage, age, the subtype classification was still a significant predictor of relapse. The prognostic stem-like gene signature yields new insights into prognostic differences in ovarian cancer, provides a genomic context for defining Type I/II subtypes, and potential gene targets which following further

  4. Low calcium culture condition induces mesenchymal cell-like phenotype in normal human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Highlights: → Normal human epidermal keratinocytes serially cultured under low calcium concentration were cytokeratin and vimentin double positive cells. → The human keratinocytes expressed some epithelial stem/progenitor cell makers, mesenchymal cell markers, and markers of epithelial-mesenchymal transition. → Mesenchymal cell-like phenotype in the keratinocytes was suppressed under high-calcium condition. -- Abstract: Epithelial-mesenchymal transition (EMT) is an important cellular phenomenon in organ developments, cancer invasions, and wound healing, and many types of transformed cell lines are used for investigating for molecular mechanisms of EMT. However, there are few reports for EMT in normal human epithelial cells, which are non-transformed or non-immortalized cells, in vitro. Therefore, normal human epidermal keratinocytes (NHEK) serially cultured in low-calcium concentration medium (LCM) were used for investigating relations between differentiation and proliferation and mesenchymal-like phenotype in the present study, since long-term cultivation of NHEK is achieved in LCM. Interestingly, NHEK serially cultured in LCM consisted essentially of cytokeratin-vimentin double positive cells (98%), although the NHEK exhibited differentiation under high-calcium culture condition with 3T3 feeder layer. The vimentin expression was suppressed under high-calcium condition. These results may indicate the importance of mesenchymal-like phenotype for serially cultivation of NHEK in vitro.

  5. Mesenchymal Stem Cell-Like Cells Derived from Mouse Induced Pluripotent Stem Cells Ameliorate Diabetic Polyneuropathy in Mice

    Directory of Open Access Journals (Sweden)

    Tatsuhito Himeno

    2013-01-01

    Full Text Available Background. Although pathological involvements of diabetic polyneuropathy (DPN have been reported, no dependable treatment of DPN has been achieved. Recent studies have shown that mesenchymal stem cells (MSCs ameliorate DPN. Here we demonstrate a differentiation of induced pluripotent stem cells (iPSCs into MSC-like cells and investigate the therapeutic potential of the MSC-like cell transplantation on DPN. Research Design and Methods. For induction into MSC-like cells, GFP-expressing iPSCs were cultured with retinoic acid, followed by adherent culture for 4 months. The MSC-like cells, characterized with flow cytometry and RT-PCR analyses, were transplanted into muscles of streptozotocin-diabetic mice. Three weeks after the transplantation, neurophysiological functions were evaluated. Results. The MSC-like cells expressed MSC markers and angiogenic/neurotrophic factors. The transplanted cells resided in hindlimb muscles and peripheral nerves, and some transplanted cells expressed S100β in the nerves. Impairments of current perception thresholds, nerve conduction velocities, and plantar skin blood flow in the diabetic mice were ameliorated in limbs with the transplanted cells. The capillary number-to-muscle fiber ratios were increased in transplanted hindlimbs of diabetic mice. Conclusions. These results suggest that MSC-like cell transplantation might have therapeutic effects on DPN through secreting angiogenic/neurotrophic factors and differentiation to Schwann cell-like cells.

  6. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Felthaus, O. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Ettl, T.; Gosau, M.; Driemel, O. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Brockhoff, G. [Department of Gynecology and Obstetrics, University of Regensburg (Germany); Reck, A. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Zeitler, K. [Institute of Pathology, University of Regensburg (Germany); Hautmann, M. [Department of Radiotherapy, University of Regensburg (Germany); Reichert, T.E. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Schmalz, G. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Morsczeck, C., E-mail: christian.morsczeck@klinik.uni-regensburg.de [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany)

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  7. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    International Nuclear Information System (INIS)

    Research highlights: → Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). → Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. → Monoclonal cell lines showed reduced sensitivity for Paclitaxel. → In situ CD133+ cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. → CD133+ and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133+ cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  8. Spatial Distribution of Stem Cell-Like Keratinocytes in Dissected Compound Hair Follicles of the Dog.

    Directory of Open Access Journals (Sweden)

    Dominique J Wiener

    Full Text Available Hair cycle disturbances are common in dogs and comparable to some alopecic disorders in humans. A normal hair cycle is maintained by follicular stem cells which are predominately found in an area known as the bulge. Due to similar morphological characteristics of the bulge area in humans and dogs, the shared particularity of compound hair follicles as well as similarities in follicular biomarker expression, the dog is a promising model to study human hair cycle and stem cell disorders. To gain insight into the spatial distribution of follicular keratinocytes with stem cell potential in canine compound follicles, we microdissected hair follicles in anagen and telogen from skin samples of freshly euthanized dogs. The keratinocytes isolated from different locations were investigated for their colony forming efficiency, growth and differentiation potential as well as clonal growth. Our results indicate that i compound and single hair follicles exhibit a comparable spatial distribution pattern with respect to cells with high growth potential and stem cell-like characteristics, ii the lower isthmus (comprising the bulge harbors most cells with high growth potential in both, the anagen and the telogen hair cycle stage, iii unlike in other species, colonies with highest growth potential are rather small with an irregular perimeter and iv the keratinocytes derived from the bulbar region exhibit characteristics of actively dividing transit amplifying cells. Our results now provide the basis to conduct comparative studies of normal dogs and those with hair cycle disorders with the possibility to extend relevant findings to human patients.

  9. HAIR CELL-LIKE CELL GENERATION INDUCED BY NATURE CULTURE OF ADULT RAT AUDITORY EPITHELIUM

    Institute of Scientific and Technical Information of China (English)

    Liu Hui; Zhu Hongliang; Li Shengli; Yao Xiaobao; Wang Xiaoxia

    2006-01-01

    Objective To establish adult rat auditory epithelial cell culture and try to find precursor cells of auditory hair cells in vitro. Methods With refinement of culture media and techniques, cochlear sensory epithelial cells of adult rat were cultured. Immunocytochemistry and Bromodeoxyuridine (BrdU)labeling were used to detect properties and mitotic status of cultured cells. Results The cultured auditory epithelial cells showed a large, flat epithelial morphotype and expressed F-actin and cytokeratin, a subset of cells generated from auditory epithelium were labeled by calretinin, a specific marker of early hair cell. Conclusion Adult rat auditory epithelium can be induced to generate hair cell-like cells by nature culture, this phenomenon suggests that progenitor cells may exist in rat cochlea and they may give birth to new hair cells. Whether these progenitor cells are tissue specific stem cells is still need more study.

  10. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shin [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Hamada, Hirofumi [Laboratory of Oncology, Department of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji (Japan); Kobune, Masayoshi [Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo (Japan); Satoh, Kennichi [Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  11. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. ► Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. ► Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. ► Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. ► This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called “cancer stem cells”, within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the “stemness” of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  12. An evidence for adhesion-mediated acquisition of acute myeloid leukemic stem cell-like immaturities

    Energy Technology Data Exchange (ETDEWEB)

    Funayama, Keiji; Shimane, Miyuki; Nomura, Hitoshi [Department of Integrative Bioscience and Biomedical Engineering, Waseda University, 4-3-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Asano, Shigetaka, E-mail: asgtkmd@waseda.jp [Department of Integrative Bioscience and Biomedical Engineering, Waseda University, 4-3-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2010-02-12

    For long-term survival in vitro and in vivo of acute myeloid leukemia cells, their adhesion to bone marrow stromal cells is indispensable. However, it is still unknown if these events are uniquely induced by the leukemic stem cells. Here we show that TF-1 human leukemia cells, once they have formed a cobblestone area by adhering to mouse bone marrow-derived MS-5 cells, can acquire some leukemic stem cell like properties in association with a change in the CD44 isoform-expression pattern and with an increase in a set of related microRNAs. These findings strongly suggest that at least some leukemia cells can acquire leukemic stem cell like properties in an adhesion-mediated stochastic fashion.

  13. Aberrant DNA methylation at genes associated with a stem cell-like phenotype in cholangiocarcinoma tumors.

    Science.gov (United States)

    Sriraksa, Ruethairat; Zeller, Constanze; Dai, Wei; Siddiq, Afshan; Walley, Andrew J; Limpaiboon, Temduang; Brown, Robert

    2013-12-01

    Genetic abnormalities of cholangiocarcinoma have been widely studied; however, epigenomic changes related to cholangiocarcinogenesis have been less well characterized. We have profiled the DNA methylomes of 28 primary cholangiocarcinoma and six matched adjacent normal tissues using Infinium's HumanMethylation27 BeadChips with the aim of identifying gene sets aberrantly and epigenetically regulated in this tumor type. Using a linear model for microarray data, we identified 1610 differentially methylated autosomal CpG sites, with 809 hypermethylated (representing 603 genes) and 801 hypomethylated (representing 712 genes) in cholangiocarcinoma versus adjacent normal tissues (false-discovery rate ≤ 0.05). Gene ontology and gene set enrichment analyses identified gene sets significantly associated with hypermethylation at linked CpG sites in cholangiocarcinoma including homeobox genes and target genes of PRC2, EED, SUZ12, and histone H3 trimethylation at lysine 27. We confirmed frequent hypermethylation at the homeobox genes HOXA9 and HOXD9 by bisulfite pyrosequencing in a larger cohort of cholangiocarcinoma (n = 102). Our findings indicate a key role for hypermethylation of multiple CpG sites at genes associated with a stem cell-like phenotype as a common molecular aberration in cholangiocarcinoma. These data have implications for cholangiocarcinogenesis, as well as possible novel treatment options using histone methyltransferase inhibitors. PMID:24089088

  14. Aberrant DNA methylation at genes associated with a stem cell-like phenotype in cholangiocarcinoma tumours

    Science.gov (United States)

    Dai, Wei; Siddiq, Afshan; Walley, Andrew J; Limpaiboon, Temduang; Brown, Robert

    2013-01-01

    Genetic abnormalities of cholangiocarcinoma have been widely studied; however, epigenomic changes related to cholangiocarcinogenesis have been less well characterised. We have profiled the DNA methylomes of 28 primary cholangiocarcinoma and six matched adjacent normal tissues using Infinium’s HumanMethylation27 BeadChips with the aim of identifying gene sets aberrantly epigenetically regulated in this tumour type. Using a linear model for microarray data we identified 1610 differentially methylated autosomal CpG sites with 809 CpG sites (representing 603 genes) being hypermethylated and 801 CpG sites (representing 712 genes) being hypomethylated in cholangiocarcinoma versus adjacent normal tissues (false discovery rate ≤ 0.05). Gene ontology and gene set enrichment analyses identified gene sets significantly associated with hypermethylation at linked CpG sites in cholangiocarcinoma including homeobox genes and target genes of PRC2, EED, SUZ12 and histone H3 trimethylation at lysine 27. We confirmed frequent hypermethylation at the homeobox genes HOXA9 and HOXD9 by bisulfite pyrosequencing in a larger cohort of cholangiocarcinoma (n = 102). Our findings indicate a key role for hypermethylation of multiple CpG sites at genes associated with a stem cell-like phenotype as a common molecular aberration in cholangiocarcinoma. These data have implications for cholangiocarcinogenesis, as well as possible novel treatment options using histone methyltransferase inhibitors. PMID:24089088

  15. Bacterial-induced cell reprogramming to stem cell-like cells: new premise in host-pathogen interactions

    OpenAIRE

    Hess, Samuel; Rambukkana, Anura

    2014-01-01

    Bacterial pathogens employ a myriad of strategies to alter host tissue cell functions for bacterial advantage during infection. Recent advances revealed a fusion of infection biology with stem cell biology by demonstrating developmental reprogramming of lineage committed host glial cells to progenitor/stem cell-like cells by an intracellular bacterial pathogen Mycobacterium leprae. Acquisition of migratory and immunomodulatory properties of such reprogrammed cells provides an added advantage ...

  16. Asymmetric Wnt Pathway Signaling Facilitates Stem Cell-Like Divisions via the Nonreceptor Tyrosine Kinase FRK-1 in Caenorhabditis elegans.

    Science.gov (United States)

    Mila, Danielle; Calderon, Adriana; Baldwin, Austin T; Moore, Kelsey M; Watson, McLane; Phillips, Bryan T; Putzke, Aaron P

    2015-11-01

    Asymmetric cell division is critical during development, as it influences processes such as cell fate specification and cell migration. We have characterized FRK-1, a homolog of the mammalian Fer nonreceptor tyrosine kinase, and found it to be required for differentiation and maintenance of epithelial cell types, including the stem cell-like seam cells of the hypodermis. A genomic knockout of frk-1, allele ok760, results in severely uncoordinated larvae that arrest at the L1 stage and have an excess number of lateral hypodermal cells that appear to have lost asymmetry in the stem cell-like divisions of the seam cell lineage. frk-1(ok760) mutants show that there are excess lateral hypodermal cells that are abnormally shaped and smaller in size compared to wild type, a defect that could be rescued only in a manner dependent on the kinase activity of FRK-1. Additionally, we observed a significant change in the expression of heterochronic regulators in frk-1(ok760) mutants. However, frk-1(ok760) mutants do not express late, nonseam hypodermal GFP markers, suggesting the seam cells do not precociously differentiate as adult-hyp7 cells. Finally, our data also demonstrate a clear role for FRK-1 in seam cell proliferation, as eliminating FRK-1 during the L3-L4 transition results in supernumerary seam cell nuclei that are dependent on asymmetric Wnt signaling. Specifically, we observe aberrant POP-1 and WRM-1 localization that is dependent on the presence of FRK-1 and APR-1. Overall, our data suggest a requirement for FRK-1 in maintaining the identity and proliferation of seam cells primarily through an interaction with the asymmetric Wnt pathway. PMID:26358719

  17. Metastable primordial germ cell-like state induced from mouse embryonic stem cells by Akt activation

    International Nuclear Information System (INIS)

    Specification to primordial germ cells (PGCs) is mediated by mesoderm-induction signals during gastrulation. We found that Akt activation during in vitro mesodermal differentiation of embryonic stem cells (ESCs) generated self-renewing spheres with differentiation states between those of ESCs and PGCs. Essential regulators for PGC specification and their downstream germ cell-specific genes were expressed in the spheres, indicating that the sphere cells had commenced differentiation to the germ lineage. However, the spheres did not proceed to spermatogenesis after transplantation into testes. Sphere cell transfer to the original feeder-free ESC cultures resulted in chaotic differentiation. In contrast, when the spheres were cultured on mouse embryonic fibroblasts or in the presence of ERK-cascade and GSK3 inhibitors, reversion to the ESC-like state was observed. These results indicate that Akt signaling promotes a novel metastable and pluripotent state that is intermediate to those of ESCs and PGCs.

  18. Preparation and catalytic performance of temperature-responsive cell-like particles.

    Science.gov (United States)

    Yang, Qiufeng; Dai, Zhao; Guo, Wenjuan; Chu, Yuanyuan; Chen, Guangping

    2014-09-01

    A novel kind of cell-like particles as temperature-responsive catalysts was presented in this paper. First, uniform α-Fe₂O₃shuttle-like nanoparticles were prepared by homogeneous hydrolysis. Then, these α-Fe₂O₃particles were coated by Au nanoparticles (AuNPs), SiO₂and poly (N-isopropylacrylamide) (PNIPAM), respectively. After the removal of SiO₂layer by etching with HF solution, the cell-like particles were prepared when the α-Fe₂O₃, AuNPs, and PNIPAM were as cell nucleus, catalysts, and cell membranes, respectively. These cell-like particles showed a novel temperature-responsively catalytic performance because the PNIPAM shell could change its hydrophilicity and swelling capacity under different temperature. When the temperature was 25°C, the yield of 4-aminophenol (4-AP) from 4-nitrophenol (4-NP) by reduction of NaBH₄was about 100% in 15 min, while the yield of 4-AP was about 90.5% in 40 min. when the temperature was 40°C. PMID:25262506

  19. Combination of Acellular Nerve Graft and Schwann Cells-Like Cells for Rat Sciatic Nerve Regeneration

    Directory of Open Access Journals (Sweden)

    Songtao Gao

    2014-01-01

    Full Text Available Objective. To investigate the effect of tissue engineering nerve on repair of rat sciatic nerve defect. Methods. Forty-five rats with defective sciatic nerve were randomly divided into three groups. Rats in group A were repaired by acellular nerve grafts only. Rats in group B were repaired by tissue engineering nerve. In group C, rats were repaired by autogenous nerve grafts. After six and twelve weeks, sciatic nerve functional index (SFI, neural electrophysiology (NEP, histological and transmission electron microscope observation, recovery ratio of wet weight of gastrocnemius muscle, regenerated myelinated nerve fibers number, nerve fiber diameter, and thickness of the myelin sheath were measured to assess the effect. Results. After six and twelve weeks, the recovery ratio of SFI and wet weight of gastrocnemius muscle, NEP, and the result of regenerated myelinated nerve fibers in groups B and C were superior to that of group A (P0.05. Conclusion. The tissue engineering nerve composed of acellular allogenic nerve scaffold and Schwann cells-like cells can effectively repair the nerve defect in rats and its effect was similar to that of the autogenous nerve grafts.

  20. Evolved Colloidosomes Undergoing Cell-like Autonomous Shape Oscillations with Buckling.

    Science.gov (United States)

    Tamate, Ryota; Ueki, Takeshi; Yoshida, Ryo

    2016-04-18

    In living systems, there are many autonomous and oscillatory phenomena to sustain life, such as heart contractions and breathing. At the microscopic level, oscillatory shape deformations of cells are often observed in dynamic behaviors during cell migration and morphogenesis. In many cases, oscillatory behaviors of cells are not simplistic but complex with diverse deformations. So far, we have succeeded in developing self-oscillating polymers and gels, but complex oscillatory behaviors mimicking those of living cells have yet to be reproduced. Herein, we report a cell-like hollow sphere composed of self-oscillating microgels, that is, a colloidosome, that exhibits drastic shape oscillation in addition to swelling/deswelling oscillations driven by an oscillatory reaction. The resulting oscillatory profile waveform becomes markedly more complex than a conventional one. Especially for larger colloidosomes, multiple buckling and moving buckling points are observed to be analogous to cells. PMID:26960167

  1. Induction of neural stem cell-like cells (NSCLCs) from mouse astrocytes by Bmi1

    International Nuclear Information System (INIS)

    Recently, Bmi1 was shown to control the proliferation and self-renewal of neural stem cells (NSCs). In this study, we demonstrated the induction of NSC-like cells (NSCLCs) from mouse astrocytes by Bmi1 under NSC culture conditions. These NSCLCs exhibited the morphology and growth properties of NSCs, and expressed NSC marker genes, including nestin, CD133, and Sox2. In vitro differentiation of NSCLCs resulted in differentiated cell populations containing astrocytes, neurons, and oligodendrocytes. Following treatment with histone deacetylase inhibitors (trichostatin A and valproic acid), the potential of NSCLCs for proliferation, dedifferentiation, and self-renewal was significantly inhibited. Our data indicate that multipotent NSCLCs can be generated directly from astrocytes by the addition of Bmi1

  2. DAPT mediates atoh1 expression to induce hair cell-like cells

    Science.gov (United States)

    Ren, Hongmiao; Guo, Weiwei; Liu, Wei; Gao, Weiqiang; Xie, Dinghua; Yin, Tuanfang; Yang, Shiming; Ren, Jihao

    2016-01-01

    Hearing loss is currently an incurable degenerative disease characterized by a paucity of hair cells (HCs), which cannot be spontaneously replaced in mammals. Recent technological advancements in gene therapy and local drug delivery have shed new light for hearing loss. Atoh1, also known as Math1, Hath1, and Cath1, is a proneural basic helix-loop-helix (bHLH) transcription factor that is essential for HC differentiation. At various stages in development, Atoh1 activity is sufficient to drive HC differentiation in the cochlea. Thus, Atoh1 related gene therapy is the most promising option for HC induction. DAPT, an inhibitor of Notch signaling, enhances the expression of Atoh1 indirectly, which in turn promotes the induction of a HC fate. Here, we show that DAPT cooperates with Atoh1 to synergistically promote HC fate in ependymal cells in vitro and promote hair cell regeneration in the cultured basilar membrane (BM) which mimics the microenvironment in vivo. Taken together, our findings demonstrated that DAPT is sufficient to induce HC-like cells via enhancing of the expression of Atoh1 to inhibit the progression of HC apoptosis and to induce new HC formation.

  3. Crowded, cell-like environment induces shape changes in aspherical protein

    Science.gov (United States)

    Cheung, Margaret

    2009-03-01

    How the crowded environment inside cells affects the structures of proteins with aspherical shapes is a vital question because many proteins and protein--protein complexes in vivo adopt anisotropic shapes. Here we address this question by combining computational and experimental studies of a football-shaped protein (i.e. Borrelia burgdorferi VlsE) under crowded, cell-like conditions. The results show that macromolecular crowding affects protein-folding dynamics as well as overall protein shape. In crowded milieus, distinct conformational changes in VlsE are accompanied by secondary structure alterations that lead to exposure of a hidden antigenic region. Our work demonstrates the malleability of ``native'' proteins and implies that crowding-induced shape changes may be important for protein function and malfunction in vivo.

  4. Enrichment and Function Research of Large Cell Lung Cancer Stem Cell-like Cells

    Directory of Open Access Journals (Sweden)

    Wenke YUE

    2011-06-01

    Full Text Available Background and objective There are no universal method to recognize and screen for lung cancer stem cell markers and indicators. Commonly used methods are flow Cytometry and learning from other cancer stem cell sorting tags to sort lung cancer stem cells. But this method has low specificity screening, the workload is huge. In this study, Serum-free suspension culture was used to enrich lung cancer stem cells, and explore method for lung cancer stem cell screening. Methods Human large lung cancer cell line-L9981 was cultured in serum-free and growth factors added medium, and spheres were obtained. Then the morphological differences of sphere cells and adherent L9981 cells cultured in serum-containing mediums are observed. Cell proliferation was analyzed by Vi-cell viability analyzer; invasion ability was tested by transwell assay; and in vivo tumorigenicity of the two groups of cells was studied in nude mouse. Results Compared with adherent L9981 cells cultured in serum-containing mediums, cells cultured in serum-free medium display sphere appearance. Doubling time of adherent cells and sphere cells are (56.05±1.95 h and (33.00±1.44 h respectively; Spheroid cells had higher invasion and tumorigenicity ability, 5 times and 20 times respectively, than adherent cells. Conclusion Suspension cultured L9981 in Serum-free medium could form spheroid populations. Cells in spheres had higher ability of invasion and Tumorigenicity than adherent L9981 cells. These results indicated spheroid L9981 cells contained enriched lung cancer stem cells, and Serum-free suspension culture can be a candidate method for enriching lung cancer stem cell.

  5. Enrichment and Function Research of Large Cell Lung Cancer Stem Cell-like Cells

    OpenAIRE

    Wenke YUE; JIAO, FENG; Liu, Bin; Jiacong YOU; Zhou, Qinghua

    2011-01-01

    Background and objective There are no universal method to recognize and screen for lung cancer stem cell markers and indicators. Commonly used methods are flow Cytometry and learning from other cancer stem cell sorting tags to sort lung cancer stem cells. But this method has low specificity screening, the workload is huge. In this study, Serum-free suspension culture was used to enrich lung cancer stem cells, and explore method for lung cancer stem cell screening. Methods Human large lung can...

  6. Side population cells isolated from KATO Ⅲ human gastric cancer cell line have cancer stem cell-like characteristics

    Institute of Scientific and Technical Information of China (English)

    Jun-Jun She; Peng-Ge Zhang; Xuan Wang; Xiang-Ming Che; Zi-Ming Wang

    2012-01-01

    AIM:To investigate whether the side population (SP)cells possess cancer stem cell-like characteristics in vitro and the role of SP cells in tumorigenic process in gastric cancer.METHODS:We analyzed the presence of SP cells in different human gastric carcinoma cell lines,and then isolated and identified the SP cells from the KATO Ⅲ human gastric cancer cell line by flow cytometry.The clonogenic ability and self-renewal were evaluated by clone and sphere formation assays.The related genes were determined by reverse transcription polymerase chain reaction.To compare tumorigenic ability,SP and non-side population (NSP) cells from the KATO Ⅲ human gastric cancer cell line were subcutaneously injected into nude mice.RESULTS:SP cells from the total population accounted for 0.57% in KATO Ⅲ,1.04% in Hs-746T,and 0.02% in AGS (CRL-1739).SP cells could grow clonally and have self-renewal capability in conditioned media.The expression of ABCG2,MDRI,Bmi-1 and Oct-4 was different between SP and NSP cells.However,there was no apparent difference between SP and NSP cells when they were injected into nude mice.CONCLUSION:SP cells have some cancer stem celllike characteristics in vitro and can be used for studying the tumorigenic process in gastric cancer.

  7. Regulatory T cell reprogramming towards a Th2 cell-like lineage impairs oral tolerance and promotes food allergy

    OpenAIRE

    Rivas, Magali Noval; Burton, Oliver T.; Wise, Petra; Charbonnier, Louis-Marie; Georgiev, Peter; Oettgen, Hans C.; Rachid, Rima; Chatila, Talal

    2015-01-01

    Oral immunotherapy has had limited success in establishing tolerance in food allergy, reflecting failure to elicit an effective regulatory T (Treg) cell response. We show that disease-susceptible mice (Il4raF709) with enhanced IL-4 receptor (IL-4R) signaling exhibited STAT6-dependent impaired generation and function of mucosal allergen-specific Treg cells. This failure was associated with the acquisition by Treg cells of T helper 2 (Th2) cell-like phenotype, also found in peripheral blood all...

  8. Chemopreventive Effect of PSP Through Targeting of Prostate Cancer Stem Cell-Like Population

    OpenAIRE

    Luk, Sze-Ue; Lee, Terence Kin-Wah; Liu, Ji; Lee, Davy Tak-Wing; Chiu, Yung-Tuen; Ma, Stephanie; Ng, Irene Oi-Lin; Wong, Yong-Chuan; Chan, Franky Leung; Ling, Ming-Tat

    2011-01-01

    Recent evidence suggested that prostate cancer stem/progenitor cells (CSC) are responsible for cancer initiation as well as disease progression. Unfortunately, conventional therapies are only effective in targeting the more differentiated cancer cells and spare the CSCs. Here, we report that PSP, an active component extracted from the mushroom Turkey tail (also known as Coriolus versicolor), is effective in targeting prostate CSCs. We found that treatment of the prostate cancer cell line PC-3...

  9. Neurospheres from rat adipose-derived stem cells could be induced into functional Schwann cell-like cells in vitro

    Directory of Open Access Journals (Sweden)

    Shan Yanchang

    2008-02-01

    Full Text Available Abstract Background Schwann cells (SC which are myelin-forming cells in peripheral nervous system are very useful for the treatment of diseases of peripheral nervous system and central nervous system. However, it is difficult to obtain sufficient large number of SC for clinical use, so alternative cell systems are desired. Results Using a procedure similar to the one used for propagation of neural stem cells, we could induce rat adipose-derived stem cells (ADSC into floating neurospheres. In addition to being able to differentiate into neuronal- and glial-like cells, neurospheres could be induced to differentiate into SC-like cells. SC-like cells were bi- or tri-polar in shape and immunopositive for nestin and SC markers p75, GFAP and S-100, identical to genuine SC. We also found that SC-like cells could induce the differentiation of SH-SY5Y neuroblastoma cells efficiently, perhaps through secretion of soluble substances. We showed further that SC-like cells could form myelin structures with PC12 cell neurites in vitro. Conclusion These findings indicated that ADSC could differentiate into SC-like cells in terms of morphology, phenotype and functional capacities. SC-like cells induced from ADSC may be useful for the treatment of neurological diseases.

  10. Cigarette smoke promotes drug resistance and expansion of cancer stem cell-like side population.

    Directory of Open Access Journals (Sweden)

    Yi An

    Full Text Available It is well known that many patients continue to smoke cigarettes after being diagnosed with cancer. Although smoking cessation has typically been presumed to possess little therapeutic value for cancer, a growing body of evidence suggests that continued smoking is associated with reduced efficacy of treatment and a higher incidence of recurrence. We therefore investigated the effect of cigarette smoke condensate (CSC on drug resistance in the lung cancer and head and neck cancer cell lines A549 and UMSCC-10B, respectively. Our results showed that CSC significantly increased the cellular efflux of doxorubicin and mitoxantrone. This was accompanied by membrane localization and increased expression of the multi-drug transporter ABCG2. The induced efflux of doxorubicin was reversed upon addition of the specific ABCG2 inhibitor Fumitremorgin C, confirming the role of ABCG2. Treatment with CSC increased the concentration of phosphorylated Akt, while addition of the PI3K inhibitor LY294002 blocked doxorubicin extrusion, suggesting that Akt activation is required for CSC-induced drug efflux. In addition, CSC was found to promote resistance to doxorubicin as determined by MTS assays. This CSC-induced doxurbicin-resistance was mitigated by mecamylamine, a nicotinic acetylcholine receptor inhibitor, suggesting that nicotine is at least partially responsible for the effect of CSC. Lastly, CSC increased the size of the side population (SP, which has been linked to a cancer stem cell-like phenotype. In summary, CSC promotes chemoresistance via Akt-mediated regulation of ABCG2 activity, and may also increase the proportion of cancer stem-like cells, contributing to tumor resilience. These findings underscore the importance of smoking cessation following a diagnosis of cancer, and elucidate the mechanisms of continued smoking that may be detrimental to treatment.

  11. Control of Oxidative Stress and Generation of Induced Pluripotent Stem Cell-like Cells by Jun Dimerization Protein 2

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Shyh-Shin, E-mail: chiouss@kmu.edu.tw [Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Department of Pediatrics, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, 807 Kaohsiung 807, Taiwan (China); Wang, Sophie Sheng-Wen; Wu, Deng-Chyang [Department of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Lin, Ying-Chu [School of Dentistry, College of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Kao, Li-Pin [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung 807, Taiwan (China)

    2013-07-26

    We report here that the Jun dimerization protein 2 (JDP2) plays a critical role as a cofactor for the transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2) and MafK in the regulation of the antioxidants and production of reactive oxygen species (ROS). JDP2 associates with Nrf2 and MafK (Nrf2-MafK) to increase the transcription of antioxidant response element-dependent genes. Oxidative-stress-inducing reagent led to an increase in the intracellular accumulation of ROS and cell proliferation in Jdp2 knock-out mouse embryonic fibroblasts. In Jdp2-Cre mice mated with reporter mice, the expression of JDP2 was restricted to granule cells in the brain cerebellum. The induced pluripotent stem cells (iPSC)-like cells were generated from DAOY medulloblastoma cell by introduction of JDP2, and the defined factor OCT4. iPSC-like cells expressed stem cell-like characteristics including alkaline phosphatase activity and some stem cell markers. However, such iPSC-like cells also proliferated rapidly, became neoplastic, and potentiated cell malignancy at a later stage in SCID mice. This study suggests that medulloblastoma cells can be reprogrammed successfully by JDP2 and OCT4 to become iPSC-like cells. These cells will be helpful for studying the generation of cancer stem cells and ROS homeostasis.

  12. Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy.

    Science.gov (United States)

    Noval Rivas, Magali; Burton, Oliver T; Wise, Petra; Charbonnier, Louis-Marie; Georgiev, Peter; Oettgen, Hans C; Rachid, Rima; Chatila, Talal A

    2015-03-17

    Oral immunotherapy has had limited success in establishing tolerance in food allergy, reflecting failure to elicit an effective regulatory T (Treg) cell response. We show that disease-susceptible (Il4ra(F709)) mice with enhanced interleukin-4 receptor (IL-4R) signaling exhibited STAT6-dependent impaired generation and function of mucosal allergen-specific Treg cells. This failure was associated with the acquisition by Treg cells of a T helper 2 (Th2)-cell-like phenotype, also found in peripheral-blood allergen-specific Treg cells of food-allergic children. Selective augmentation of IL-4R signaling in Treg cells induced their reprogramming into Th2-like cells and disease susceptibility, whereas Treg-cell-lineage-specific deletion of Il4 and Il13 was protective. IL-4R signaling impaired the capacity of Treg cells to suppress mast cell activation and expansion, which in turn drove Th2 cell reprogramming of Treg cells. Interruption of Th2 cell reprogramming of Treg cells might thus provide candidate therapeutic strategies in food allergy. PMID:25769611

  13. Control of Oxidative Stress and Generation of Induced Pluripotent Stem Cell-like Cells by Jun Dimerization Protein 2

    Directory of Open Access Journals (Sweden)

    Naoto Yamaguchi

    2013-07-01

    Full Text Available We report here that the Jun dimerization protein 2 (JDP2 plays a critical role as a cofactor for the transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2 and MafK in the regulation of the antioxidants and production of reactive oxygen species (ROS. JDP2 associates with Nrf2 and MafK (Nrf2-MafK to increase the transcription of antioxidant response element-dependent genes. Oxidative-stress-inducing reagent led to an increase in the intracellular accumulation of ROS and cell proliferation in Jdp2 knock-out mouse embryonic fibroblasts. In Jdp2-Cre mice mated with reporter mice, the expression of JDP2 was restricted to granule cells in the brain cerebellum. The induced pluripotent stem cells (iPSC-like cells were generated from DAOY medulloblastoma cell by introduction of JDP2, and the defined factor OCT4. iPSC-like cells expressed stem cell-like characteristics including alkaline phosphatase activity and some stem cell markers. However, such iPSC-like cells also proliferated rapidly, became neoplastic, and potentiated cell malignancy at a later stage in SCID mice. This study suggests that medulloblastoma cells can be reprogrammed successfully by JDP2 and OCT4 to become iPSC-like cells. These cells will be helpful for studying the generation of cancer stem cells and ROS homeostasis.

  14. Control of Oxidative Stress and Generation of Induced Pluripotent Stem Cell-like Cells by Jun Dimerization Protein 2

    International Nuclear Information System (INIS)

    We report here that the Jun dimerization protein 2 (JDP2) plays a critical role as a cofactor for the transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2) and MafK in the regulation of the antioxidants and production of reactive oxygen species (ROS). JDP2 associates with Nrf2 and MafK (Nrf2-MafK) to increase the transcription of antioxidant response element-dependent genes. Oxidative-stress-inducing reagent led to an increase in the intracellular accumulation of ROS and cell proliferation in Jdp2 knock-out mouse embryonic fibroblasts. In Jdp2-Cre mice mated with reporter mice, the expression of JDP2 was restricted to granule cells in the brain cerebellum. The induced pluripotent stem cells (iPSC)-like cells were generated from DAOY medulloblastoma cell by introduction of JDP2, and the defined factor OCT4. iPSC-like cells expressed stem cell-like characteristics including alkaline phosphatase activity and some stem cell markers. However, such iPSC-like cells also proliferated rapidly, became neoplastic, and potentiated cell malignancy at a later stage in SCID mice. This study suggests that medulloblastoma cells can be reprogrammed successfully by JDP2 and OCT4 to become iPSC-like cells. These cells will be helpful for studying the generation of cancer stem cells and ROS homeostasis

  15. Research on Isolation and Clone of Embryonic Stem Cell-Like in Bovine

    Institute of Scientific and Technical Information of China (English)

    AN Li-long; YANG Qi; XIAO Mei; FENG Xiu-Liang; YANG Chun-rong; LEI An-min; GAO Zhi-min; DOU Zhong-ying; QIU Huai

    2002-01-01

    Bovine embryonic stem cell would be invaluable for researching the aspect of animal cloning, production transgenic animal and discussion of gene function in vitro. With the object of establishing an effective culture system for isolation and clone of bovine pluripotent stem cell, we cultured bovine embryos and mouse embryos including morula blastula and hatached blastula and obtained animal ICM on Primary marine embryonic fibroblast (Primary murine embryonic fibroblast, PMEF) feeder layer with tissue medium(DMEM supplemented with 15ml/100ml NBS ,0.1μmol/L Na2SeO3, 0. 1mmol/L β-mercaptoethanol, 1 000ng/ml LIF,10 ng/ml IGF, 1mmol/L necessary amino acid and 1mmol/L L-glutamine), then, we obtained mouse ICM and bovine ICM. Moreover, we isolated and cloned the 6 passage bovine ES like cells(12 cell lines) and 9 passage marine ES like cells (52 cell lines) deriving from bovine ICM and murine ICM respectively on the feeder layer of PMEF by disaggregating ICM and ES cell clones of bovine and murine into smaller clumps through digesting with 0. 125g/100ml trypsin and 0.02g/100ml EDTA and scattering with a glass needle. The pluripotency of both murine and bovine ES like cells was identified with morphological character, histochemistry identification, karyotype analysis and differentiation of ES cells in vitro or in vivo. This result showed that bovine embryonic stem cell and murine embryonic stem cell had developmental pluripotency.

  16. Reduced TET2 function leads to T-cell lymphoma with follicular helper T-cell-like features in mice

    International Nuclear Information System (INIS)

    TET2 (Ten Eleven Translocation 2) is a dioxygenase that converts methylcytosine (mC) to hydroxymethylcytosine (hmC). TET2 loss-of-function mutations are highly frequent in subtypes of T-cell lymphoma that harbor follicular helper T (Tfh)-cell-like features, such as angioimmunoblastic T-cell lymphoma (30–83%) or peripheral T-cell lymphoma, not otherwise specified (10–49%), as well as myeloid malignancies. Here, we show that middle-aged Tet2 knockdown (Tet2gt/gt) mice exhibit Tfh-like cell overproduction in the spleen compared with control mice. The Tet2 knockdown mice eventually develop T-cell lymphoma with Tfh-like features after a long latency (median 67 weeks). Transcriptome analysis revealed that these lymphoma cells had Tfh-like gene expression patterns when compared with splenic CD4-positive cells of wild-type mice. The lymphoma cells showed lower hmC densities around the transcription start site (TSS) and higher mC densities at the regions of the TSS, gene body and CpG islands. These epigenetic changes, seen in Tet2 insufficiency-triggered lymphoma, possibly contributed to predated outgrowth of Tfh-like cells and subsequent lymphomagenesis. The mouse model described here suggests that TET2 mutations play a major role in the development of T-cell lymphoma with Tfh-like features in humans

  17. Nitric oxide induces cancer stem cell-like phenotypes in human lung cancer cells.

    Science.gov (United States)

    Yongsanguanchai, Nuttida; Pongrakhananon, Varisa; Mutirangura, Apiwat; Rojanasakul, Yon; Chanvorachote, Pithi

    2015-01-15

    Even though tremendous advances have been made in the treatment of cancers during the past decades, the success rate among patients with cancer is still dismal, largely because of problems associated with chemo/radioresistance and relapse. Emerging evidence has indicated that cancer stem cells (CSCs) are behind the resistance and recurrence problems, but our understanding of their regulation is limited. Rapid reversible changes of CSC-like cells within tumors may result from the effect of biological mediators found in the tumor microenvironment. Here we show how nitric oxide (NO), a key cellular modulator whose level is elevated in many tumors, affects CSC-like phenotypes of human non-small cell lung carcinoma H292 and H460 cells. Exposure of NO gradually altered the cell morphology toward mesenchymal stem-like shape. NO exposure promoted CSC-like phenotype, indicated by increased expression of known CSC markers, CD133 and ALDH1A1, in the exposed cells. These effects of NO on stemness were reversible after cessation of the NO treatment for 7 days. Furthermore, such effect was reproducible using another NO donor, S-nitroso-N-acetylpenicillamine. Importantly, inhibition of NO by the known NO scavenger 2-(4-carboxy-phenyl)-4,4,5,5 tetramethylimidazoline-1-oxy-3-oxide strongly inhibited CSC-like aggressive cellular behavior and marker expression. Last, we unveiled the underlying mechanism of NO action through the activation of caveolin-1 (Cav-1), which is upregulated by NO and is responsible for the aggressive behavior of the cells, including anoikis resistance, anchorage-independent cell growth, and increased cell migration and invasion. These findings indicate a novel role of NO in CSC regulation and its importance in aggressive cancer behaviors through Cav-1 upregulation. PMID:25411331

  18. Identification of subpopulations in mesenchymal stem cell-like cultures from human umbilical cord

    Directory of Open Access Journals (Sweden)

    Majore Ingrida

    2009-03-01

    Full Text Available Abstract Background A variety of cell types can be identified in the adherent fraction of bone marrow mononuclear cells including more primitive and embryonic-like stem cells, mesenchymal stem cells (MSC, lineage-committed progenitors as well as mature cells such as osteoblasts and fibroblasts. Different methods are described for the isolation of single bone marrow stem cell subpopulations – beginning from ordinary size sieving, long term cultivation under specific conditions to FACS-based approaches. Besides bone marrow-derived subpopulations, also other tissues including human umbilical cord (UC have been recently suggested to provide a potential source for MSC. Although of clinical importance, these UC-derived MSC populations remain to be characterized. It was thus the aim of the present study to identify possible subpopulations in cultures of MSC-like cells obtained from UC. We used counterflow centrifugal elutriation (CCE as a novel strategy to successfully address this question. Results UC-derived primary cells were separated by CCE and revealed differentially-sized populations in the fractions. Thus, a subpopulation with an average diameter of about 11 μm and a small flat cell body was compared to a large sized subpopulation of about 19 μm average diameter. Flow cytometric analysis revealed the expression of certain MSC stem cell markers including CD44, CD73, CD90 and CD105, respectively, although these markers were expressed at higher levels in the small-sized population. Moreover, this small-sized subpopulation exhibited a higher proliferative capacity as compared to the total UC-derived primary cultures and the large-sized cells and demonstrated a reduced amount of aging cells. Conclusion Using the CCE technique, we were the first to demonstrate a subpopulation of small-sized UC-derived primary cells carrying MSC-like characteristics according to the presence of various mesenchymal stem cell markers. This is also supported by the

  19. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    OpenAIRE

    Narumol Bhummaphan; Pithi Chanvorachote

    2015-01-01

    As cancer stem cells (CSCs) contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent ...

  20. Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties

    OpenAIRE

    Rodrigues, Jennifer C.; Gonzalez, Guido C.; Zhang, Lei; Ibrahim, George; Kelly, John J.; Gustafson, Michael P.; Yi LIN; Dietz, Allan B.; Forsyth, Peter A; Yong, V. Wee; Parney, Ian F.

    2009-01-01

    Glioblastoma patients are immunosuppressed, yet glioblastomas are highly infiltrated by monocytes/macrophages. Myeloid-derived suppressor cells (MDSC; immunosuppressive myeloid cells including monocytes) have been identified in other cancers and correlate with tumor burden. We hypothesized that glioblastoma exposure causes normal monocytes to assume an MDSC-like phenotype and that MDSC are increased in glioblastoma patients. Healthy donor human CD14+ monocytes were cultured with human gliobla...

  1. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Narumol Bhummaphan

    2015-01-01

    Full Text Available As cancer stem cells (CSCs contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent growth and survival of the cancer cells. Importantly, gigantol significantly reduced the ability of the cancer cells to form tumor spheroids, a critical hallmark of CSCs. Concomitantly, the treatment of the compound was shown to reduce well-known lung CSCs markers, including CD133 and ALDH1A1. Moreover, we revealed that gigantol decreased stemness in the cancer cells by suppressing the activation of protein kinase B (Akt signal which in turn decreased the cellular levels of pluripotency and self-renewal factors Oct4 and Nanog. In conclusion, gigantol possesses CSCs suppressing activity which may facilitate the development of this compound for therapeutic approaches by targeting CSCs.

  2. Primary cardiac diffuse large B-cell lymphoma with activated B-cell-like phenotype

    Directory of Open Access Journals (Sweden)

    Vijaya Gadage

    2011-01-01

    Full Text Available Primary cardiac lymphoma (PCL is a rare and fatal disorder. It may often mimic other common cardiac tumors like cardiac myxoma because of similarities in the clinical presentation. We report a case of PCL of diffuse large B-cell type, in a 38-year-old, immunocompetent male who presented with superior vena cava syndrome that was excised as a myxoma. Histology revealed a large cell population diffusely and strongly expressing CD45, CD20, MUM1/IRF4 and FOXP1 hinting at an activated B-cell (ABC-like phenotype. After four cycles of Rituximab with CHOP (cyclophosphamide, hydroxydaunorubicin, Oncovin, and prednisolone the tumor regressed completely but the patient had a relapse and subsequently succumbed to the disease confirming the aggressive nature. The aggressive behavior of PCL may be possibly linked to its ABC-like origin.

  3. Evidence that high-migration drug-surviving MOLT4 leukemia cells exhibit cancer stem cell-like properties.

    Science.gov (United States)

    Huang, Xiaoxing; Xiong, Meng; Jin, Yujie; Deng, Chaohua; Xu, Hui; An, Changqing; Hao, Ling; Yang, Xiangyong; Deng, Xinzhou; Tu, Zhenbo; Li, Xinran; Xiao, Ruijing; Zhang, Qiuping

    2016-07-01

    Leukemia represents a spectrum of hematological malignancies threatening human health. Resistance to treatments and metastasis of leukemia are the main causes of death in patients. Leukemia stem cells (LSCs) are the initiating cells of leukemia as well as the main source of drug resistance, invasion and metastasis. Consequently, eliminating LSCs is a prerequisite to eradicate leukemia. Preliminary studies in our laboratory have shown that chemokines and their related receptors play an important role in the drug resistance and metastasis of leukemic cells. In this study, we obtained high migration drug-surviving (short term) MOLT4 cells (hMDSCs-MOLT4) with treatment of doxorubicin (DOX) after Transwell assay. Then we detected stem cell-associated molecular markers on hMDSCs-MOLT4 cells and the parental MOLT4 cells by FCM, QPCR, western blotting, H&E staining and immunohisto-chemistry experimental techniques in vitro and in vivo. Moreover, we explored its impact on drug resistance and tumor formation. Then we found that compared with the parental MOLT4 cells, the mRNA expression levels of stem cell-related factors Sox2, Oct4, C-myc, Klf4, Nanog, Bmi-1, CXCR4 are increased in hMDSCs-MOLT4 cells, together with the protein expression levels of Sox2, Oct4, Klf4, Nanog, CXCR4 and CD34. Our results indicated that hMDSCs-MOLT4 cells exhibited strong drug resistance and certain cancer stem cell-like characteristics. It is the first indication that the targeting stemness factors such as Sox2, Oct4, Klf4, Nanog and CXCR4 may represent plausible options for eliminating T-ALL stem-like cells. The present findings shed light on the relationship between drug-tolerant leukemic cells and cancer stem cells. PMID:27210806

  4. Chemopreventive effect of PSP through targeting of prostate cancer stem cell-like population.

    Science.gov (United States)

    Luk, Sze-Ue; Lee, Terence Kin-Wah; Liu, Ji; Lee, Davy Tak-Wing; Chiu, Yung-Tuen; Ma, Stephanie; Ng, Irene Oi-Lin; Wong, Yong-Chuan; Chan, Franky Leung; Ling, Ming-Tat

    2011-01-01

    Recent evidence suggested that prostate cancer stem/progenitor cells (CSC) are responsible for cancer initiation as well as disease progression. Unfortunately, conventional therapies are only effective in targeting the more differentiated cancer cells and spare the CSCs. Here, we report that PSP, an active component extracted from the mushroom Turkey tail (also known as Coriolus versicolor), is effective in targeting prostate CSCs. We found that treatment of the prostate cancer cell line PC-3 with PSP led to the down-regulation of CSC markers (CD133 and CD44) in a time and dose-dependent manner. Meanwhile, PSP treatment not only suppressed the ability of PC-3 cells to form prostaspheres under non-adherent culture conditions, but also inhibited their tumorigenicity in vivo, further proving that PSP can suppress prostate CSC properties. To investigate if the anti-CSC effect of PSP may lead to prostate cancer chemoprevention, transgenic mice (TgMAP) that spontaneously develop prostate tumors were orally fed with PSP for 20 weeks. Whereas 100% of the mice that fed with water only developed prostate tumors at the end of experiment, no tumors could be found in any of the mice fed with PSP, suggesting that PSP treatment can completely inhibit prostate tumor formation. Our results not only demonstrated the intriguing anti-CSC effect of PSP, but also revealed, for the first time, the surprising chemopreventive property of oral PSP consumption against prostate cancer. PMID:21603625

  5. Preliminary screening and identification of stem cell-like sphere clones in a gallbladder cancer cell line GBC-SD*

    Institute of Scientific and Technical Information of China (English)

    Bao-bing YIN; Shuang-jie WU; Hua-jie ZONG; Bao-jin MA; Duan CAI

    2011-01-01

    This paper aims to screen and identify sphere clone cells with characteristics similar to cancer stem cellsin human gallbladder cancer cell line GBC-SD. GBC-SD cells were cultured in a serum-free culture medium with different concentrations of the chemotherapeutic drug cisplatin for generating sphere clones. The mRNA expressions of stem cell-related genes CD133, OCT-4, Nanog, and drug resistance genes ABCG2 and MDR-1 in sphere clones were detected by quantitative real-time polymerase chain reaction (PCR). Stem cell markers were also analyzed by flow cytometry and immunofluorescent staining. Different amounts of sphere clones were injected into nude mice to test their abilities to form tumors. Sphere clones were formed in serum-free culture medium containing cisplatin (30 pmol/L).Flow cytometry results demonstrated that the sphere clones expressed high levels of stem cell markers CD133+ (97.6%) and CD44+ (77.9%) and low levels of CD24+ (2.3%). These clones also overexpressed the drug resistance genes ABCG2 and MDR-1. Quantitative real-time PCR showed that sphere clones expressed stem cell genes Nanog and OCT-4 284 and 266 times, respectively, more than those in the original GBC-SD cells. Immunofluorescent staining showed that sphere clones overexpressed OCT-4, Nanog, and SOX-2, and Iow expressed MUG1 and vimentin. Tumor formation experiments showed that 1 x 103 sphere clone cells could induce much larger tumors in nude mice than 1 x 105 GBC-SD cells. In conclusion, sphere clones of gallbladder cancer with stem cell-like characteristics can be obtained using suspension cultures of GBC-SD cells in serum-free culture medium containing cisplatin.

  6. The Co-Injection of Somatic Cells with Embryonic Stem Cells Affects Teratoma Formation and the Properties of Teratoma-Derived Stem Cell-Like Cells

    OpenAIRE

    Gong, Seung Pyo; Kim, Boyun; Kwon, Hyo Sook; Yang, Woo Sub; Jeong, Jae-Wook; Ahn, Jiyeon; Lim, Jeong Mook

    2014-01-01

    The aim of this study was to assess the biological reactions triggered by stem cell transplantation related to phenotypic alteration, host-to-cell response, chromosomal stability, transcriptional alteration, and stem cell-like cell re-expansion. B6CBAF1 mouse embryonic stem cells (ESCs) were injected subcutaneously into homologous or heterologous (B6D2F1) recipients, and heterologous injections were performed with or without co-injection of B6D2F1 fetal fibroblasts. All homologous injections ...

  7. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression

    Directory of Open Access Journals (Sweden)

    Lundeberg Joakim

    2006-04-01

    Full Text Available Abstract Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox. These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin.

  8. Caulobacter chromosome in vivo configuration matches model predictions for a supercoiled polymer in a cell-like confinement

    DEFF Research Database (Denmark)

    Hong, Sun-Hae; Toro, Esteban; Mortensen, Kim; de la Rosa, Mario A. Díaz; Doniach, Sebastian; Shapiro, Lucy; Spakowitz, Andrew J.; McAdams, Harley H.

    2013-01-01

    the contour length, and cell-to-cell distribution of the interloci distance r is a universal function of r/n0.22 with broad cell-to-cell variability. For DNA segments greater than about 300 kb, the mean interloci distances scale as n, in agreement with previous observations. The 0.22 value of the......We measured the distance between fluorescent-labeled DNA loci of various interloci contour lengths in Caulobacter crescentus swarmer cells to determine the in vivo configuration of the chromosome. For DNA segments less than about 300 kb, the mean interloci distances, 〈r〉, scale as n0.22, where n is...... scaling exponent for short DNA segments is consistent with theoretical predictions for a branched DNA polymer structure. Predictions from Brownian dynamics simulations of the packing of supercoiled DNA polymers in an elongated cell-like confinement are also consistent with a branched DNA structure, and...

  9. A paired comparison between glioblastoma "stem cells" and differentiated cells.

    Science.gov (United States)

    Schneider, Matthias; Ströbele, Stephanie; Nonnenmacher, Lisa; Siegelin, Markus D; Tepper, Melanie; Stroh, Sebastien; Hasslacher, Sebastian; Enzenmüller, Stefanie; Strauss, Gudrun; Baumann, Bernd; Karpel-Massler, Georg; Westhoff, Mike-Andrew; Debatin, Klaus-Michael; Halatsch, Marc-Eric

    2016-04-01

    Cancer stem cells (CSC) have been postulated to be responsible for the key features of a malignancy and its maintenances, as well as therapy resistance, while differentiated cells are believed to make up the rapidly growing tumour bulk. It is therefore important to understand the characteristics of those two distinct cell populations in order to devise treatment strategies which effectively target both cohorts, in particular with respect to cancers, such as glioblastoma. Glioblastoma is the most common primary brain tumour in adults, with a mean patient survival of 12-15 months. Importantly, therapeutic improvements have not been forthcoming in the last decade. In this study we compare key features of three pairs of glioblastoma cell populations, each pair consisting of stem cell-like and differentiated cells derived from an individual patient. Our data suggest that while growth rates and expression of key survival- and apoptosis-mediating proteins are more similar according to differentiation status than genetic similarity, we found no intrinsic differences in response to standard therapeutic interventions, namely exposure to radiation or the alkylating agent temozolomide. Interestingly, we could demonstrate that both stem cell-like and differentiated cells possess the ability to form stem cell-containing tumours in immunocompromised mice and that differentiated cells could potentially be dedifferentiated to potential stem cells. Taken together our data suggest that the differences between tumour stem cell and differentiated cell are particular fluent in glioblastoma. PMID:26519239

  10. Lin28B is an oncofetal circulating cancer stem cell-like marker associated with recurrence of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Shu-Wen Cheng

    Full Text Available By using an expressed sequence tag bioinformatic algorithm, we identified that Lin28 homolog B (Lin28B may have an oncofetal expression pattern which may facilitate detecting cancer cells in adults. It is also reported to be a potential marker for cancer stem cells. Therefore, we sought to verify oncofetal-stemness characters of Lin28B and test its potential as a circulating cancer stem cell-like marker in adult HCC patients. Lin28B mRNA was examined in a panel of fetal tissue, adult tissue and tumors. Lin28B was over-expressed or knocked down in HepG2 cells to evaluate its potential as a stem cell-like marker. RT-qPCR for Lin28B was performed in the peripheral blood mononuclear cells from patients with HCC receiving surgery (n=96 and non-HCC controls (n=60 and analyzed its clinical significance. Lin28B showed an oncofetal expression pattern. Its overexpression could upregulate stemness markers (OCT4, Nanog and SOX2 and enhance tumorsphere formation in vitro. Lin28B knockdown had opposite effects. Circulating Lin28B was detected in peripheral blood mononuclear cells in 3 cases (5% of non-HCC controls and 32 cases (33.3% of HCC patients. In HCC patients, circulating Lin28B was associated with high tumor grade (P=0.046, large size (P=0.005, high AJCC stage (P=0.044 and BCLC stage (P=0.017. Circulating Lin28B was significantly associated with decreased recurrence-free survival (P<0.001. Circulating Lin28B separated early stage HCC into 2 recurrence-free survival curves (P=0.003. In multivariate analysis, circulating Lin28B was an independent variable associated with early recurrence (P=0.045 and recurrence in early stage HCC (P=0.006. In conclusion, the oncofetal gene Lin28B is a potential oncofetal cancer-stem-cell-like circulating tumor cell marker that correlates with HCC recurrence after hepatectomy. Circulating Lin28B could refine early AJCC stages. Our finding supports the possible use of a TNMC (C for circulating tumor cells staging system

  11. Lin28B is an oncofetal circulating cancer stem cell-like marker associated with recurrence of hepatocellular carcinoma.

    Science.gov (United States)

    Cheng, Shu-Wen; Tsai, Hung-Wen; Lin, Yih-Jyh; Cheng, Pin-Nan; Chang, Yu-Chung; Yen, Chia-Jui; Huang, Hsuan-Pang; Chuang, Yun-Pei; Chang, Ting-Tsung; Lee, Chung-Ta; Chao, Anning; Chou, Cheng-Yang; Chan, Shih-Huang; Chow, Nan-Haw; Ho, Chung-Liang

    2013-01-01

    By using an expressed sequence tag bioinformatic algorithm, we identified that Lin28 homolog B (Lin28B) may have an oncofetal expression pattern which may facilitate detecting cancer cells in adults. It is also reported to be a potential marker for cancer stem cells. Therefore, we sought to verify oncofetal-stemness characters of Lin28B and test its potential as a circulating cancer stem cell-like marker in adult HCC patients. Lin28B mRNA was examined in a panel of fetal tissue, adult tissue and tumors. Lin28B was over-expressed or knocked down in HepG2 cells to evaluate its potential as a stem cell-like marker. RT-qPCR for Lin28B was performed in the peripheral blood mononuclear cells from patients with HCC receiving surgery (n=96) and non-HCC controls (n=60) and analyzed its clinical significance. Lin28B showed an oncofetal expression pattern. Its overexpression could upregulate stemness markers (OCT4, Nanog and SOX2) and enhance tumorsphere formation in vitro. Lin28B knockdown had opposite effects. Circulating Lin28B was detected in peripheral blood mononuclear cells in 3 cases (5%) of non-HCC controls and 32 cases (33.3%) of HCC patients. In HCC patients, circulating Lin28B was associated with high tumor grade (P=0.046), large size (P=0.005), high AJCC stage (P=0.044) and BCLC stage (P=0.017). Circulating Lin28B was significantly associated with decreased recurrence-free survival (P<0.001). Circulating Lin28B separated early stage HCC into 2 recurrence-free survival curves (P=0.003). In multivariate analysis, circulating Lin28B was an independent variable associated with early recurrence (P=0.045) and recurrence in early stage HCC (P=0.006). In conclusion, the oncofetal gene Lin28B is a potential oncofetal cancer-stem-cell-like circulating tumor cell marker that correlates with HCC recurrence after hepatectomy. Circulating Lin28B could refine early AJCC stages. Our finding supports the possible use of a TNMC (C for circulating tumor cells) staging system in HCC

  12. Genistein-Inhibited Cancer Stem Cell-Like Properties and Reduced Chemoresistance of Gastric Cancer

    OpenAIRE

    Weifeng Huang; Chunpeng Wan; Qicong Luo; Zhengjie Huang; Qi Luo

    2014-01-01

    Genistein, the predominant isoflavone found in soy products, has exerted its anticarcinogenic effect in many different tumor types in vitro and in vivo. Accumulating evidence in recent years has strongly indicated the existence of cancer stem cells in gastric cancer. Here, we showed that low doses of genistein (15 µM), extracted from Millettia nitida Benth var hirsutissima Z Wei, inhibit tumor cell self-renewal in two types of gastric cancer cells by colony formation assay and tumor sphere f...

  13. Lin28a is a putative factor in regulating cancer stem cell-like properties in side population cells of oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, S.; Tanaka, J.; Okada, S.; Isobe, T.; Yamamoto, G.; Yasuhara, R.; Irie, T.; Akiyama, C.; Kohno, Y.; Tachikawa, T.; Mishima, K., E-mail: mishima-k@dent.showa-u.ac.jp

    2013-05-01

    Cancer stem cells (CSCs) are among the target cells of cancer therapy because they are uniquely involved in both cancer progression and sensitivity to chemotherapeutic agents. We identified side population (SP) cells, which are known to be an enriched population of CSC, in five oral squamous cell carcinoma (OSCC) cells (SCC9, SCC25, TOSCC7, TOSCC17, and TOSCC23). The percentages of SP cells ranged from 0% to 3.3%, with TOSCC23 cells showing the highest percentages of SP cells (3.3% of the total cell population). The SP cells isolated from TOSCC23 cells also showed greater cell proliferation and invasion compared to non-SP (MP) cells. Therefore, our initial findings suggested that SP cells were enriched for CSC-like cells. Furthermore, DNA microarray analysis revealed that the expression of cell proliferation-related and anti-apoptotic genes was greater in SP cells compared to MP cells. We focused on Lin28a, which showed the highest expression (approximately 22-fold) among the upregulated genes. The overexpression of Lin28a in TOSCC23 cells increased their proliferation, colony formation, and invasion. These findings suggest that Lin28a is an appropriate CSC target molecule for OSCC treatment - Highlights: ► Lin28a is a SP cell-specific factor in oral squamous cell carcinoma (OSCC) cells. ► SP cells in OSCC cells show cancer stem cell-like properties. ► Lin28a regulates OSCC proliferative and invasive activities.

  14. Lin28a is a putative factor in regulating cancer stem cell-like properties in side population cells of oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Cancer stem cells (CSCs) are among the target cells of cancer therapy because they are uniquely involved in both cancer progression and sensitivity to chemotherapeutic agents. We identified side population (SP) cells, which are known to be an enriched population of CSC, in five oral squamous cell carcinoma (OSCC) cells (SCC9, SCC25, TOSCC7, TOSCC17, and TOSCC23). The percentages of SP cells ranged from 0% to 3.3%, with TOSCC23 cells showing the highest percentages of SP cells (3.3% of the total cell population). The SP cells isolated from TOSCC23 cells also showed greater cell proliferation and invasion compared to non-SP (MP) cells. Therefore, our initial findings suggested that SP cells were enriched for CSC-like cells. Furthermore, DNA microarray analysis revealed that the expression of cell proliferation-related and anti-apoptotic genes was greater in SP cells compared to MP cells. We focused on Lin28a, which showed the highest expression (approximately 22-fold) among the upregulated genes. The overexpression of Lin28a in TOSCC23 cells increased their proliferation, colony formation, and invasion. These findings suggest that Lin28a is an appropriate CSC target molecule for OSCC treatment - Highlights: ► Lin28a is a SP cell-specific factor in oral squamous cell carcinoma (OSCC) cells. ► SP cells in OSCC cells show cancer stem cell-like properties. ► Lin28a regulates OSCC proliferative and invasive activities

  15. Association between cancer stem cell-like properties and epithelial-to-mesenchymal transition in primary and secondary cancer cells.

    Science.gov (United States)

    Lim, Wonbong; Kim, Hye-Eun; Kim, Young; Na, Risu; Li, Xiaojie; Jeon, Sangmi; Choi, Hongran; Kim, Okjoon

    2016-09-01

    One of the theories on cancer stem cells (CSCs) states that these cells initiate most tumors and give rise to more-or-less differentiated tumor cells. Genetic signatures of CSCs are thought to predict tumor recurrence and metastases, thus, supporting the notion that CSCs may be metastatic precursors and induce epithelial-to-mesenchymal transition (EMT). In this study, we tried to examine the association between CSCs and EMT (using specific markers) in the mucoepidermoid carcinoma cell line YD15 and its derivative cell line YD15M (lymph node metastasis). Relative protein expression levels were analyzed by western blotting, flow cytometry, and immunofluorescence assays. In addition, cell cycle assay and aldehyde dehydrogenase (ALDH) activity assay were carried out. Under growth conditions, YD15M cells formed irregular spherical colonies consistent with a stem cell phenotype. YD15M cells demonstrated the low expression of E-cadherin and β-catenin but high expression of vimentin than that in YD15 cells. In the metastatic cells (YD15M), the coexpression of vimentin and CD133 was detected. Weak proliferation based on cell cycle analysis and decreased PCNA expression was also observed. In addition, expression levels of ALDHA1, OCT4, and NANOG (CSC-like properties) were significantly increased in YD15M cells. Taken together, these findings should help to elucidate the interplay between EMT and CSC-like properties during metastasis and may provide useful information for the development of a novel classification system and therapeutic strategies against head and neck cancer. PMID:27315437

  16. PDGF, NT-3 and IGF-2 in combination induced transdifferentiation of muscle-derived stem cells into Schwann cell-like cells.

    Directory of Open Access Journals (Sweden)

    Yi Tang

    Full Text Available Muscle-derived stem cells (MDSCs are multipotent stem cells with a remarkable long-term self-renewal and regeneration capacity. Here, we show that postnatal MDSCs could be transdifferentiated into Schwann cell-like cells upon the combined treatment of three neurotrophic factors (PDGF, NT-3 and IGF-2. The transdifferentiation of MDSCs was initially induced by Schwann cell (SC conditioned medium. MDSCs adopted a spindle-like morphology similar to SCs after the transdifferentiation. Immunocytochemistry and immunoblot showed clearly that the SC markers S100, GFAP and p75 were expressed highly only after the transdifferentiation. Flow cytometry assay showed that the portion of S100 expressed cells was more than 60 percent and over one fourth of the transdifferentiated cells expressed all the three SC markers, indicating an efficient transdifferentiation. We then tested neurotrophic factors in the conditioned medium and found it was PDGF, NT-3 and IGF-2 in combination that conducted the transdifferentiation. Our findings demonstrate that it is possible to use specific neurotrophic factors to transdifferentiate MDSCs into Schwann cell-like cells, which might be therapeutically useful for clinical applications.

  17. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions

    Science.gov (United States)

    Parodi, Alessandro; Quattrocchi, Nicoletta; van de Ven, Anne L.; Chiappini, Ciro; Evangelopoulos, Michael; Martinez, Jonathan O.; Brown, Brandon S.; Khaled, Sm Z.; Yazdi, Iman K.; Enzo, Maria Vittoria; Isenhart, Lucas; Ferrari, Mauro; Tasciotti, Ennio

    2013-01-01

    The therapeutic efficacy of systemic drug-delivery vehicles depends on their ability to evade the immune system, cross the biological barriers of the body and localize at target tissues. White blood cells of the immune system--known as leukocytes--possess all of these properties and exert their targeting ability through cellular membrane interactions. Here, we show that nanoporous silicon particles can successfully perform all these actions when they are coated with cellular membranes purified from leukocytes. These hybrid particles, called leukolike vectors, can avoid being cleared by the immune system. Furthermore, they can communicate with endothelial cells through receptor-ligand interactions, and transport and release a payload across an inflamed reconstructed endothelium. Moreover, leukolike vectors retained their functions when injected in vivo, showing enhanced circulation time and improved accumulation in a tumour.

  18. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation

    OpenAIRE

    Le Rolle, Anne-France; Chiu, Thang K.; Zeng, Zhaoshi; Shia, Jinru; Weiser, Martin R; Paty, Philip B.; Chiu, Vi K

    2016-01-01

    Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut ) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer i...

  19. Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells

    OpenAIRE

    Buchholz Thomas A; Lacerda Lara; Xu Wei; Robertson Fredika; Ueno Naoto T; Lucci Anthony; Landis Melissa D; Rodriguez Angel A; Li Li; Cohen Evan; Gao Hui; Krishnamurthy Savitri; Zhang Xiaomei; Debeb Bisrat G; Cristofanilli Massimo

    2010-01-01

    Abstract Background Since the first suggestion of prospectively identifiable cancer stem cells in solid tumors, efforts have been made to characterize reported cancer stem cell surrogates in existing cancer cell lines, and cell lines rich with these surrogates have been used to screen for cancer stem cell targeted agents. Although 293T cells were derived from human embryonic kidney, transplantation of these cells into the mammary fat pad yields aggressive tumors that self-renew as evidenced b...

  20. A cancer-favoring oncolytic vaccinia virus shows enhanced suppression of stem-cell like colon cancer

    Science.gov (United States)

    Yoo, So Young; Bang, Seo Young; Jeong, Su-Nam; Kang, Dae Hwan; Heo, Jeong

    2016-01-01

    Stem cell-like colon cancer cells (SCCs) pose a major challenge in colon cancer treatment because of their resistance to chemotherapy and radiotherapy. Oncolytic virus-based therapy has shown promising results in uncured cancer patients; however, its effects on SCCs are not well studied yet. Here, we engineered a cancer-favoring oncolytic vaccinia virus (CVV) as a potent biotherapeutic and investigated its therapeutic efficacy in terms of killing SCCs. CVV is an evolved Wyeth strain vaccinia virus (EVV) lacking the viral thymidine kinase. SCC models were established using human or mouse colon cancer spheres, which continuously expressed stemness markers. The cancer-favoring characteristics and different cytotoxic pathways for killing cancer cells successfully overrode general drug resistance, thereby killing colon cancer cells regardless of the presence of SCCs. Subcutaneously injected HT29 spheres showed lower growth in CVV-treated models than in 5-Fu-treated models. Intraperitoneally injected CT26 spheres induced tumor masses in the abdominal region. CVV-treated groups showed higher survival rates and smaller tumor mass formation, compared to 5-Fu-treated groups. Interestingly, the combined treatment of CVV with 5-Fu showed improved survival rates and complete suppression of tumor mass. The CVV developed in this study, thus, effectively suppresses SCCs, which can be synergistically enhanced by simultaneous treatment with the anticancer drug 5-Fu. Our novel CVV is highly advantageous as a next-generation therapeutic for treating colon cancer. PMID:26918725

  1. Patterning Stem Cell Differentiation

    OpenAIRE

    Vunjak-Novakovic, Gordana

    2008-01-01

    Regulation of cell differentiation and assembly remains a fundamental question in developmental biology. Now, a report from the Chen laboratory (Ruiz and Chen, 2008) describes an approach that represents a major step toward a more profound understanding of the geometric-force control of stem cell differentiation.

  2. Different sensitivity of germinal center B cell-like diffuse large B cell lymphoma cells towards ibrutinib treatment

    OpenAIRE

    Zheng, Xiaohui; Ding, Ning; Song, Yuqin; Feng, Lixia; Zhu, Jun

    2014-01-01

    Background Although rituximab in the combination of CHOP chemotherapy has been widely used as the standard treatment for several kinds of B-cell non-Hodgkin lymphoma (B-NHL), a great number of B-NHL patients treated with this immunotherapy still develop primary and secondary resistance. Recently Bruton’s tyrosine kinase (Btk) inhibitor ibrutinib showed promising therapeutic effect in relapsed/refractory CLL and B-cell NHL, which provided essential alternatives for these patients. Methods The ...

  3. The Deubiquitinase USP28 Stabilizes LSD1 and Confers Stem-Cell-like Traits to Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yadi Wu

    2013-10-01

    Full Text Available LSD1 is a critical chromatin modulator that controls cellular pluripotency and differentiation through the demethylation of H3K4me1/2. Overexpression of LSD1 has been observed in many types of tumors and is correlated with its oncogenic effects in tumorigenesis. However, the mechanism leading to LSD1 upregulation in tumors remains unclear. Using an unbiased siRNA screening against all the human deubiquitinases, we identified USP28 as a bona fide deubiquitinase of LSD1. USP28 interacted with and stabilized LSD1 via deubiquitination. USP28 overexpression correlated with LSD1 upregulation in multiple cancer cell lines and breast tumor samples. Knockdown of USP28 resulted in LSD1 destabilization, leading to the suppression of cancer stem cell (CSC-like characteristics in vitro and inhibition of tumorigenicity in vivo, which can be rescued by ectopic LSD1 expression. Our study reveals a critical mechanism underlying the epigenetic regulation by USP28 and provides another treatment approach against breast cancer.

  4. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Genz, Berit [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany); Thomas, Maria [Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart (Germany); Pützer, Brigitte M. [Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock (Germany); Siatkowski, Marcin; Fuellen, Georg [Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock (Germany); Vollmar, Brigitte [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany); Abshagen, Kerstin, E-mail: kerstin.abshagen@uni-rostock.de [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany)

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  5. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    International Nuclear Information System (INIS)

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells

  6. Doublecortin-like kinase 1 exhibits cancer stem cell-like characteristics in a human colon cancer cell line

    Institute of Scientific and Technical Information of China (English)

    Lianna Li; Charles F.Bellows

    2013-01-01

    Objective:Colon cancer stem cells (CSCs) are implicated in colorectal cancer carcinogenesis,metastasis,and therapeutic resistance.The identification of these cells could help to develop novel therapeutic strategies.Doublecortin-like kinase 1 (DCLK1) has been viewed as a marker for gastrointestinal stem cells that fuel the self-renewal process,however others view them as a marker of Tuft cells or as an enteroendocrine subtype.The purpose of this study was to use a colon cancer cell line to identify and characterize the stem-like characteristics of the DCLK1+ cell population.Methods:To enrich stem-like cells,HCT116 cells (derived from colon adenocarcinomas) were cultured using serum-free media to form spheres under both normal oxygen and hypoxia condition.DCLK1 transcript expression in the adherent parental cells and spheroids was quantified using quantitative real time reverse transcription-polymerase chain reaction [(q)RT-PCR].DCLK1 protein expression was determined using flow cytometry.Self-renewal capability from adherent parental cells and spheroids was determined using extreme limiting dilution analysis (ELDA).Results:Under both normal oxygen and hypoxia condition,the adherent parental cells were composed of cells that express low levels of DCLK1.However,spheroids exhibited an increased frequency of cells expressing DCLK1 on both mRNA and protein levels.Cells derived from spheroids also possess stronger self-renewal capability.Conclusions:The higher fraction of DCLK1+ cells exhibited by spheroids and hypoxia reflects the stemlike characteristics of these cells.DCLK1 may represent an ideal marker to study and develop effective strategies to overcome chemo-resistance and relapse of colon cancer.

  7. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells.

    Science.gov (United States)

    Mathews Griner, Lesley A; Guha, Rajarshi; Shinn, Paul; Young, Ryan M; Keller, Jonathan M; Liu, Dongbo; Goldlust, Ian S; Yasgar, Adam; McKnight, Crystal; Boxer, Matthew B; Duveau, Damien Y; Jiang, Jian-Kang; Michael, Sam; Mierzwa, Tim; Huang, Wenwei; Walsh, Martin J; Mott, Bryan T; Patel, Paresma; Leister, William; Maloney, David J; Leclair, Christopher A; Rai, Ganesha; Jadhav, Ajit; Peyser, Brian D; Austin, Christopher P; Martin, Scott E; Simeonov, Anton; Ferrer, Marc; Staudt, Louis M; Thomas, Craig J

    2014-02-11

    The clinical development of drug combinations is typically achieved through trial-and-error or via insight gained through a detailed molecular understanding of dysregulated signaling pathways in a specific cancer type. Unbiased small-molecule combination (matrix) screening represents a high-throughput means to explore hundreds and even thousands of drug-drug pairs for potential investigation and translation. Here, we describe a high-throughput screening platform capable of testing compounds in pairwise matrix blocks for the rapid and systematic identification of synergistic, additive, and antagonistic drug combinations. We use this platform to define potential therapeutic combinations for the activated B-cell-like subtype (ABC) of diffuse large B-cell lymphoma (DLBCL). We identify drugs with synergy, additivity, and antagonism with the Bruton's tyrosine kinase inhibitor ibrutinib, which targets the chronic active B-cell receptor signaling that characterizes ABC DLBCL. Ibrutinib interacted favorably with a wide range of compounds, including inhibitors of the PI3K-AKT-mammalian target of rapamycin signaling cascade, other B-cell receptor pathway inhibitors, Bcl-2 family inhibitors, and several components of chemotherapy that is the standard of care for DLBCL. PMID:24469833

  8. Stem Cells Antigen-1 Enriches for a Cancer Stem Cell-Like Subpopulation in Mouse Gastric Cancer.

    Science.gov (United States)

    Park, Jun Won; Park, Jung Min; Park, Dong Min; Kim, Dae-Yong; Kim, Hark Kyun

    2016-05-01

    There is a strong need to identify markers to enrich gastric cancer stem cells (CSCs). However, CSC enrichment markers for mouse gastric cancers have not yet been determined. In our previous study, we generated primary mouse gastric cancer cell line NCC-S1 (S1) established from a Villin-cre;Smad4(F/F) ;Trp53(F/F) ;Cdh1(F/wt) mouse and its metastatic variant cell line NCC-S1M (S1M). Interestingly, S1M cells exhibited CSC-like features, such as increased tumorigenic potential and chemoresistance. By comparing gene expression profiles between S1 and S1M cells, we identified Stem Cells Antigen-1 (Sca-1) as a cell surface marker, which was mostly upregulated in S1M. Sca-1 was upregulated in tumorspheres from S1 cells or after cisplatin treatment in S1 cells. Immunofluorescence (IF) analysis showed that approximately 7% of cancer cells exhibited positivity for Sca-1 in primary mouse gastric cancer tissues. An in vivo-limiting dilution assay showed that Sca-1(high) mouse gastric cancer cells demonstrated increased tumorigenicity compared with Sca-1(negative) cells. The Sca-1 expression was downregulated by TGF-β pathway activation and Wnt pathway inhibition in mouse gastric cancer cells. Sca-1(high) cells showed relatively low TGF-β reporter activity and high TCF/LEF1 reporter activity compared with Sca-1(negative) cells. A chromatin immunoprecipitation analysis demonstrated that Sca-1 was a β-catenin/LEF1 target gene. Sca-1(high) allografts were more resistant to cisplatin/fluorouracil chemotherapy than Sca-1(negative) allografts, and overexpressed Bcl-xL. Eighty-five mouse genes overexpressed in Sca-1(high) S1 cells compared with Sca-1(negative) cells clustered 123 pretreatment gastric cancer patient samples according to survival following chemotherapy. Taken together, Sca-1 is a novel CSC enrichment marker that mediates TGF-β and Wnt/β-catenin signaling in mouse gastric cancer. Stem Cells 2016;34:1177-1187. PMID:26869189

  9. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Dominik [Research Group Molecular Neuro-Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg (Germany); Daniel, Volker; Sadeghi, Mahmoud; Opelz, Gerhard [Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg (Germany); Naujokat, Cord, E-mail: cord.naujokat@med.uni-heidelberg.de [Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg (Germany)

    2010-04-16

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity of P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.

  10. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    International Nuclear Information System (INIS)

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity of P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.

  11. Breast cancer stem cell-like cells are more sensitive to ionizing radiation than non-stem cells: role of ATM.

    Directory of Open Access Journals (Sweden)

    Seog-Young Kim

    Full Text Available There are contradictory observations about the different radiosensitivities of cancer stem cells and cancer non-stem cells. To resolve these contradictory observations, we studied radiosensitivities by employing breast cancer stem cell (CSC-like MDA-MB231 and MDA-MB453 cells as well as their corresponding non-stem cells. CSC-like cells proliferate without differentiating and have characteristics of tumor-initiating cells [1]. These cells were exposed to γ-rays (1.25-8.75 Gy and survival curves were determined by colony formation. A final slope, D(0, of the survival curve for each cell line was determined to measure radiosensitivity. The D(0 of CSC-like and non-stem MDA-MB-453 cells were 1.16 Gy and 1.55 Gy, respectively. Similar results were observed in MDA-MB-231 cells (0.94 Gy vs. 1.56 Gy. After determination of radiosensitivity, we investigated intrinsic cellular determinants which influence radiosensitivity including cell cycle distribution, free-radical scavengers and DNA repair. We observed that even though cell cycle status and antioxidant content may contribute to differential radiosensitivity, differential DNA repair capacity may be a greater determinant of radiosensitivity. Unlike non-stem cells, CSC-like cells have little/no sublethal damage repair, a low intracellular level of ataxia telangiectasia mutated (ATM and delay of γ-H2AX foci removal (DNA strand break repair. These results suggest that low DNA repair capacity is responsible for the high radiosensitivity of these CSC-like cells.

  12. Human testis-derived embryonic stem cell-like cells are not pluripotent, but possess potential of mesenchymal progenitors

    NARCIS (Netherlands)

    J.V. Chikhovskaya; M.J. Jonker; A. Meissner; T.M. Breit; S. Repping; A.M.M. van Pelt

    2012-01-01

    BACKGROUND Spontaneous in vitro transition of undifferentiated spermatogonia into the pluripotent cell state has been achieved using neonatal and adult mouse testis tissue. In an effort to establish an analogous source of human patient-specific pluripotent stem cells, several research groups have de

  13. The Deubiquitinase USP28 Stabilizes LSD1 and Confers Stem-cell-like Traits to Breast Cancer Cells

    OpenAIRE

    2013-01-01

    LSD1 is a critical chromatin modulator controlling cellular pluripotency and differentiation through the demethylation of H3K4me1/2. Overexpression of LSD1 has been observed in many types of tumors and is correlated with its oncogenic effects in tumorigenesis. However, the mechanism leading to LSD1 upregulation in tumors remains unclear. Using an unbiased siRNA screening against all the human deubiquitinases, we identified USP28 as a bona fide deubiquitinase of LSD1. USP28 interacted with and...

  14. Anchorage-independent growth of Ewing sarcoma cells under serum-free conditions is not associated with stem-cell like phenotype and function.

    Science.gov (United States)

    Leuchte, Katharina; Altvater, Bianca; Hoffschlag, Simeon; Potratz, Jenny; Meltzer, Jutta; Clemens, Dagmar; Luecke, Andrea; Hardes, Jendrik; Dirksen, Uta; Juergens, Heribert; Kailayangiri, Sareetha; Rossig, Claudia

    2014-08-01

    Novel treatment strategies for Ewing sarcoma aim to eliminate residual tumor cells that have maintained the capacity to reinitiate tumor growth after intensive conventional therapy. Preclinical models that more closely mimic in vivo tumor growth than standard monolayer cultures are needed. Sphere formation under anchorage-independent, serum-free conditions has been proposed to enrich for cells with tumor-initiating, stem cell-like properties in various solid cancers. In the present study, we assessed the phenotype and functional stem cell characteristics of Ewing sarcoma spheres. Spheres were generated under serum-free culture conditions from four Ewing sarcoma cell lines and four relapse tumor biopsies. Standard monolayer cultures were established as controls. Median levels of surface expression of the Ewing sarcoma marker CD99 as well as the supposed stem cell marker CD133 and the neural crest marker CD57 were comparable between spheres and monolayers. Ewing sarcoma spheres from individual tumors failed to continuously self-renew by secondary sphere formation. They contained variable proportions of side populations (SPs). Sphere culture did not enhance the in vivo tumorigenicity of Ewing sarcoma cells in a murine xenograft model. We conclude that sphere formation under serum-free conditions is not a reliable tool to enrich for cells with stem cell characteristics in Ewing sarcoma. By mimicking the anchorage-independent, multicellular growth of Ewing sarcoma micrometastases, in vitro sphere growth may still add value as a preclinical tool to evaluate the efficacy of novel therapeutics. PMID:24927333

  15. Insights into the Molecular Pathogenesis of Activated B-Cell-like Diffuse Large B-Cell Lymphoma and Its Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Georg Lenz

    2015-05-01

    Full Text Available Within the last couple of years, the understanding of the molecular mechanisms that drive the pathogenesis of diffuse large B-cell lymphoma (DLBCL has significantly improved. Large-scale gene expression profiling studies have led to the discovery of several molecularly defined subtypes that are characterized by specific oncogene addictions and significant differences in their outcome. Next generation sequencing efforts combined with RNA interference screens frequently identify crucial oncogenes that lead to constitutive activation of various signaling pathways that drive lymphomagenesis. This review summarizes our current understanding of the molecular pathogenesis of the activated B-cell-like (ABC DLBCL subtype that is characterized by poor prognosis. A special emphasis is put on findings that might impact therapeutic strategies of affected patients.

  16. Insights into the Molecular Pathogenesis of Activated B-Cell-like Diffuse Large B-Cell Lymphoma and Its Therapeutic Implications

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Georg [Translational Oncology, Department of Medicine A, Albert-Schweitzer Campus 1, University Hospital Münster, 48149 Münster (Germany); Cluster of Excellence EXC 1003, Cells in Motion, 48149 Münster (Germany)

    2015-05-22

    Within the last couple of years, the understanding of the molecular mechanisms that drive the pathogenesis of diffuse large B-cell lymphoma (DLBCL) has significantly improved. Large-scale gene expression profiling studies have led to the discovery of several molecularly defined subtypes that are characterized by specific oncogene addictions and significant differences in their outcome. Next generation sequencing efforts combined with RNA interference screens frequently identify crucial oncogenes that lead to constitutive activation of various signaling pathways that drive lymphomagenesis. This review summarizes our current understanding of the molecular pathogenesis of the activated B-cell-like (ABC) DLBCL subtype that is characterized by poor prognosis. A special emphasis is put on findings that might impact therapeutic strategies of affected patients.

  17. The characteristics of Ishikawa endometrial cancer cells are modified by substrate topography with cell-like features and the polymer surface

    Directory of Open Access Journals (Sweden)

    Tan LH

    2015-08-01

    those on a flat pST surface. This method, which provided substrates in vitro with cell-like features, enabled the study of effects of topographies that are similar to those experienced by cells in vivo. The observations establish that such a physical environment has an effect on cancer cell behavior independent of the characteristics of the substrate. The results support the concept that the physical topography of a cell’s environment may modulate crucial oncological signaling pathways; this suggests the possibility of cancer therapies that target pathways associated with the response to mechanical stimuli. Keywords: surface characteristics, cell culture platforms, physical microenvironment, cell response, drug targets, mechanical forces

  18. CD95 maintains stem cell-like and non-classical EMT programs in primary human glioblastoma cells.

    Science.gov (United States)

    Drachsler, M; Kleber, S; Mateos, A; Volk, K; Mohr, N; Chen, S; Cirovic, B; Tüttenberg, J; Gieffers, C; Sykora, J; Wirtz, C R; Mueller, W; Synowitz, M; Martin-Villalba, A

    2016-01-01

    Glioblastoma (GBM) is one of the most aggressive types of cancer with limited therapeutic options and unfavorable prognosis. Stemness and non-classical epithelial-to-mesenchymal transition (ncEMT) features underlie the switch from normal to neoplastic states as well as resistance of tumor clones to current therapies. Therefore, identification of ligand/receptor systems maintaining this privileged state is needed to devise efficient cancer therapies. In this study, we show that the expression of CD95 associates with stemness and EMT features in GBM tumors and cells and serves as a prognostic biomarker. CD95 expression increases in tumors and with tumor relapse as compared with non-tumor tissue. Recruitment of the activating PI3K subunit, p85, to CD95 death domain is required for maintenance of EMT-related transcripts. A combination of the current GBM therapy, temozolomide, with a CD95 inhibitor dramatically abrogates tumor sphere formation. This study molecularly dissects the role of CD95 in GBM cells and contributes the rational for CD95 inhibition as a GBM therapy. PMID:27124583

  19. Simultaneous Expression of Cancer Stem Cell-Like Properties and Cancer-Associated Fibroblast-Like Properties in a Primary Culture of Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Mami; Inoue, Takahiro; Shirai, Takuma; Takamatsu, Kazuhiko; Kunihiro, Shiori; Ishii, Hirokazu [Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047 (Japan); Nishikata, Takahito, E-mail: nisikata@konan-u.ac.jp [Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047 (Japan); Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe 650-0047 (Japan)

    2014-07-31

    The importance of cancer-associated fibroblasts (CAFs) in cancer biology has been recently highlighted owing to their critical roles in cancer growth, progression, metastasis, and therapeutic resistance. We have previously established a primary culture of breast cancer cells, which showed epithelial-mesenchymal transition and cancer stem cell-like properties. In this study, we found that the primary culture also showed CAF-like properties. For example, hypoxia inducible factor 1α (HIF1A) and its downstream genes, nuclear factor-kappa B2 (NF-κB2) and BCL2/adenovirus E1B 19 kd-interacting protein 3 (BNIP3), and many enzymes involved in glycolysis, such as GAPDH, LDH, PGAM1, and PKM2, were highly overexpressed in the primary culture. Moreover, media conditioned with the primary culture cells enhanced the growth of breast cancer cells. Similar to previous CAF studies, this enhancement suggested to be occurred through fibroblast growth factor signaling. This MCKH primary culture cell, which showed simultaneous expression of tumorigenic and CAF properties, offers a unique experimental system for studying the biology of CAFs.

  20. Simultaneous Expression of Cancer Stem Cell-Like Properties and Cancer-Associated Fibroblast-Like Properties in a Primary Culture of Breast Cancer Cells

    International Nuclear Information System (INIS)

    The importance of cancer-associated fibroblasts (CAFs) in cancer biology has been recently highlighted owing to their critical roles in cancer growth, progression, metastasis, and therapeutic resistance. We have previously established a primary culture of breast cancer cells, which showed epithelial-mesenchymal transition and cancer stem cell-like properties. In this study, we found that the primary culture also showed CAF-like properties. For example, hypoxia inducible factor 1α (HIF1A) and its downstream genes, nuclear factor-kappa B2 (NF-κB2) and BCL2/adenovirus E1B 19 kd-interacting protein 3 (BNIP3), and many enzymes involved in glycolysis, such as GAPDH, LDH, PGAM1, and PKM2, were highly overexpressed in the primary culture. Moreover, media conditioned with the primary culture cells enhanced the growth of breast cancer cells. Similar to previous CAF studies, this enhancement suggested to be occurred through fibroblast growth factor signaling. This MCKH primary culture cell, which showed simultaneous expression of tumorigenic and CAF properties, offers a unique experimental system for studying the biology of CAFs

  1. Mitotic phosphorylation of SOX2 mediated by Aurora kinase A is critical for the stem-cell like cell maintenance in PA-1 cells.

    Science.gov (United States)

    Qi, Dandan; Wang, Qianqian; Yu, Min; Lan, Rongfeng; Li, Shuiming; Lu, Fei

    2016-08-01

    Transcription factor SOX2 is multiple phosphorylated. However, the kinase and the timing regulating SOX2 phosphorylation remains poorly understood. Here we reported mitotic phosphorylation of SOX2 by Aurora kinase A (AURKA). AURKA inhibitors (VX680, Aurora kinase Inhibitor I) but not PLK1 inhibitors (BI2536, CBB2001) eliminate the mitotic phosphorylation of SOX2. Consistently, siRNA inhibition of AURKA can eliminate mitotic SOX2 phosphorylation. Ser220 and Ser251 are two sites that identified for mitotic phosphorylation on SOX2. Moreover, SOX2 mutants (S220A and S251A) can promote SOX2 induced OCT4 re-expression in differentiated cells. These findings reveal a novel regulation mechanism of SOX2 phosphorylation mediated by AURKA in mitosis and its function in stem cell pluripotency maintenance in cancer cells. PMID:27249336

  2. FLT3 mutations in early T-cell precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors.

    Directory of Open Access Journals (Sweden)

    Martin Neumann

    Full Text Available Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL has been identified as high-risk subgroup of acute T-lymphoblastic leukemia (T-ALL with a high rate of FLT3-mutations in adults. To unravel the underlying pathomechanisms and the clinical course we assessed molecular alterations and clinical characteristics in a large cohort of ETP-ALL (n = 68 in comparison to non-ETP T-ALL adult patients. Interestingly, we found a high rate of FLT3-mutations in ETP-ALL samples (n = 24, 35%. Furthermore, FLT3 mutated ETP-ALL was characterized by a specific immunophenotype (CD2+/CD5-/CD13+/CD33-, a distinct gene expression pattern (aberrant expression of IGFBP7, WT1, GATA3 and mutational status (absence of NOTCH1 mutations and a low frequency, 21%, of clonal TCR rearrangements. The observed low GATA3 expression and high WT1 expression in combination with lack of NOTCH1 mutations and a low rate of TCR rearrangements point to a leukemic transformation at the pluripotent prothymocyte stage in FLT3 mutated ETP-ALL. The clinical outcome in ETP-ALL patients was poor, but encouraging in those patients with allogeneic stem cell transplantation (3-year OS: 74%. To further explore the efficacy of targeted therapies, we demonstrate that T-ALL cell lines transfected with FLT3 expression constructs were particularly sensitive to tyrosine kinase inhibitors. In conclusion, FLT3 mutated ETP-ALL defines a molecular distinct stem cell like leukemic subtype. These data warrant clinical studies with the implementation of FLT3 inhibitors in addition to early allogeneic stem cell transplantation for this high risk subgroup.

  3. Is buffer a good proxy for a crowded cell-like environment? A comparative NMR study of calmodulin side-chain dynamics in buffer and E. coli lysate.

    Directory of Open Access Journals (Sweden)

    Michael P Latham

    Full Text Available Biophysical studies of protein structure and dynamics are typically performed in a highly controlled manner involving only the protein(s of interest. Comparatively fewer such studies have been carried out in the context of a cellular environment that typically involves many biomolecules, ions and metabolites. Recently, solution NMR spectroscopy, focusing primarily on backbone amide groups as reporters, has emerged as a powerful technique for investigating protein structure and dynamics in vivo and in crowded "cell-like" environments. Here we extend these studies through a comparative analysis of Ile, Leu, Val and Met methyl side-chain motions in apo, Ca(2+-bound and Ca(2+, peptide-bound calmodulin dissolved in aqueous buffer or in E. coli lysate. Deuterium spin relaxation experiments, sensitive to pico- to nano-second time-scale processes and Carr-Purcell-Meiboom-Gill relaxation dispersion experiments, reporting on millisecond dynamics, have been recorded. Both similarities and differences in motional properties are noted for calmodulin dissolved in buffer or in lysate. These results emphasize that while significant insights can be obtained through detailed "test-tube" studies, experiments performed under conditions that are "cell-like" are critical for obtaining a comprehensive understanding of protein motion in vivo and therefore for elucidating the relation between motion and function.

  4. Level of Notch activation determines the effect on growth and stem cell-like features in glioblastoma multiforme neurosphere cultures

    DEFF Research Database (Denmark)

    Kristoffersen, Karina; Villingshøj, Mette; Poulsen, Hans Skovgaard; Stockhausen, Marie-Thérése

    2013-01-01

    Brain cancer stem-like cells (bCSC) are cancer cells with neural stem cell (NSC)-like properties found in glioblastoma multiforme (GBM) and they are assigned a central role in tumor initiation, progression and relapse. The Notch pathway is important for maintenance and cell fate decisions in the...... normal NSC population. Notch signaling is often deregulated in GBM and recent results suggest that this pathway plays a significant role in bCSC as well. We therefore wished to further elucidate the role of Notch activation in GBM-derived bCSC....

  5. Demethylating agent, 5-azacytidine, reverses differentiation of embryonic stem cells

    International Nuclear Information System (INIS)

    The de novo methylation activity is essential for embryonic development as well as embryonic stem (ES) cell differentiation, where the intensive and extensive DNA methylation was detected. In this study, we investigated the effects of a demethylating agent, 5-azacytidine (5-AzaC), on differentiated ES cells in order to study the possibility of reversing the differentiation process. We first induced differentiation of ES cells by forming embryoid bodies, and then the cells were treated with 5-AzaC. The cells showed some undifferentiated features such as stem cell-like morphology with unclear cell-to-cell boundary and proliferative responsiveness to LIF. Moreover, 5-AzaC increased the expressions of ES specific markers, SSEA-1, and alkaline phosphatase activity as well as ES specific genes, Oct4, Nanog, and Sox2. We also found that 5-AzaC demethylated the promoter region of H19 gene, a typical methylated gene during embryonic differentiation. These results indicate that 5-AzaC reverses differentiation state of ES cells through its DNA demethylating activity to differentiation related genes

  6. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Hoei-Hansen, Christina E; Wirkner, Ute;

    2004-01-01

    their stoichiometry on progression into embryonic carcinoma. We compared the CIS expression profile with patterns reported in embryonic stem cells (ESCs), which revealed a substantial overlap that may be as high as 50%. We also demonstrated an over-representation of expressed genes in regions of 17q and......Carcinoma in situ (CIS) is the common precursor of histologically heterogeneous testicular germ cell tumors (TGCTs), which in recent decades have markedly increased and now are the most common malignancy of young men. Using genome-wide gene expression profiling, we identified >200 genes highly...

  7. Inhibition of MEK and GSK3 supports ES cell-like domed colony formation from avian and reptile embryos.

    Science.gov (United States)

    Nakanoh, Shota; Okazaki, Kenji; Agata, Kiyokazu

    2013-07-01

    As amniotes diversified, mammals may have modified mechanisms of cellular pluripotency along with the acquisition of a placenta. What then defined pluripotent states in the ancestral amniotes? To study the evolutionary background of pluripotency in amniotes, we tested the effects of extracellular effectors on primary culture cells from avian and reptile embryos in serum-free medium. When treated with a combination of a MEK inhibitor and a GSK3 inhibitor (2i condition), chicken early embryos formed domed colonies (DCs), which were morphologically indistinguishable from the colonies formed by mouse and rat naïve embryonic stem cells. However, no DCs formed when cells from further-developed embryos were cultured in the 2i condition, indicating that there is a clear boundary of DC-forming ability at around the stage of primitive streak elongation. Quail embryos at the blastoderm and cleavage stages also formed DCs in the 2i condition, which is consistent with the notion that the appearance of DCs corresponds with the presence of pluripotent cells in embryos. Gecko blastoderms also formed DCs in the 2i condition, but gastrulas did not. ERK activation by bFGF caused an effect opposite to that of the 2i condition, namely, it dispersed colonies of cells even from early embryos in all species examined. These results suggest that the regulation of pluripotency by FGF/ERK signaling may date back at least to the common ancestor of mammals, birds, and reptiles. However, gene expression analysis indicated the possibility that mammalian pluripotency transcription factors function differently in non-mammalian amniotes. PMID:23829214

  8. The role of additive neurogenesis and synaptic plasticity in a hippocampal memory model with grid-cell like input.

    Directory of Open Access Journals (Sweden)

    Peter A Appleby

    Full Text Available Recently, we presented a study of adult neurogenesis in a simplified hippocampal memory model. The network was required to encode and decode memory patterns despite changing input statistics. We showed that additive neurogenesis was a more effective adaptation strategy compared to neuronal turnover and conventional synaptic plasticity as it allowed the network to respond to changes in the input statistics while preserving representations of earlier environments. Here we extend our model to include realistic, spatially driven input firing patterns in the form of grid cells in the entorhinal cortex. We compare network performance across a sequence of spatial environments using three distinct adaptation strategies: conventional synaptic plasticity, where the network is of fixed size but the connectivity is plastic; neuronal turnover, where the network is of fixed size but units in the network may die and be replaced; and additive neurogenesis, where the network starts out with fewer initial units but grows over time. We confirm that additive neurogenesis is a superior adaptation strategy when using realistic, spatially structured input patterns. We then show that a more biologically plausible neurogenesis rule that incorporates cell death and enhanced plasticity of new granule cells has an overall performance significantly better than any one of the three individual strategies operating alone. This adaptation rule can be tailored to maximise performance of the network when operating as either a short- or long-term memory store. We also examine the time course of adult neurogenesis over the lifetime of an animal raised under different hypothetical rearing conditions. These growth profiles have several distinct features that form a theoretical prediction that could be tested experimentally. Finally, we show that place cells can emerge and refine in a realistic manner in our model as a direct result of the sparsification performed by the dentate gyrus

  9. The ubiquitin ligase Nedd4 regulates craniofacial development by promoting cranial neural crest cell survival and stem-cell like properties.

    Science.gov (United States)

    Wiszniak, Sophie; Kabbara, Samuela; Lumb, Rachael; Scherer, Michaela; Secker, Genevieve; Harvey, Natasha; Kumar, Sharad; Schwarz, Quenten

    2013-11-15

    The integration of multiple morphogenic signalling pathways and transcription factor networks is essential to mediate neural crest (NC) cell induction, delamination, survival, stem-cell properties, fate choice and differentiation. Although the transcriptional control of NC development is well documented in mammals, the role of post-transcriptional modifications, and in particular ubiquitination, has not been explored. Here we report an essential role for the ubiquitin ligase Nedd4 in cranial NC cell development. Our analysis of Nedd4(-/-) embryos identified profound deficiency of cranial NC cells in the absence of structural defects in the neural tube. Nedd4 is expressed in migrating cranial NC cells and was found to positively regulate expression of the NC transcription factors Sox9, Sox10 and FoxD3. We found that in the absence of these factors, a subset of cranial NC cells undergo apoptosis. In accordance with a lack of cranial NC cells, Nedd4(-/-) embryos have deficiency of the trigeminal ganglia, NC derived bone and malformation of the craniofacial skeleton. Our analyses therefore uncover an essential role for Nedd4 in a subset of cranial NC cells and highlight E3 ubiquitin ligases as a likely point of convergence for multiple NC signalling pathways and transcription factor networks. PMID:24080509

  10. Hedistin: A novel antimicrobial peptide containing bromotryptophan constitutively expressed in the NK cells-like of the marine annelid, Nereis diversicolor.

    Science.gov (United States)

    Tasiemski, Aurélie; Schikorski, David; Le Marrec-Croq, Françoise; Pontoire-Van Camp, Christelle; Boidin-Wichlacz, Céline; Sautière, Pierre-Eric

    2007-01-01

    A novel antimicrobial peptide, named hedistin was identified from the coelomocytes of Nereis diversicolor. Hedistin shows no obvious similarities with other known peptides and constitutes the first antimicrobial peptide containing bromotryptophans demonstrated in annelids. cDNA and mass spectrometry analysis revealed that, upon bacteria challenge, this peptide is secreted following processing of a precursor containing a signal peptide and prosequences. Hedistin was shown to possess an activity against a large spectrum of bacteria including the methicillin resistant Staphylococcus aureus and Vibrio alginolyticus. The gene was demonstrated to be constitutively and exclusively expressed in circulating NK cells like known to play an important role in the immunity of the sand worm. These data contrast with those observed in another annelid, the leech, in which genes coding for antimicrobial peptides are upregulated in a specific tissue and peptides are rapidly released into the hemolymph after septic injury. PMID:17210178

  11. Carbonic anhydrase IX induction defines a heterogeneous cancer cell response to hypoxia and mediates stem cell-like properties and sensitivity to HDAC inhibition.

    Science.gov (United States)

    Ledaki, Ioanna; McIntyre, Alan; Wigfield, Simon; Buffa, Francesca; McGowan, Simon; Baban, Dilair; Li, Ji-Liang; Harris, Adrian L

    2015-08-14

    Carbonic anhydrase IX (CAIX) is strongly induced by hypoxia and its overexpression is associated with poor therapeutic outcome in cancer. Here, we report that hypoxia promotes tumour heterogeneity through the epigenetic regulation of CAIX. Based on hypoxic CAIX expression we identify and characterize two distinct populations of tumour cells, one that has inducible expression of CAIX and one that does not. The CAIX+ve population is enriched with cells expressing cancer stem cell markers and which have high self-renewal capacity. We show that differential CAIX expression is due to differences in chromatin structure. To further investigate the relationship between chromatin organization and hypoxic induction of CAIX expression we investigated the effect of JQ1 an inhibitor of BET bromodomain proteins and A366 a selective inhibitor of the H3K9 methyltransferase G9a/GLP. We identified that these drugs were able to modulate hypoxic CAIX expression induction. This further highlights the role of epigenetic modification in adaption to hypoxia and also in regulation of heterogeneity of cells within tumours. Interestingly, we identified that the two subpopulations show a differential sensitivity to HDAC inhibitors, NaBu or SAHA, with the CAIX positive showing greater sensitivity to treatment. We propose that drugs modulating chromatin regulation of expression may be used to reduce heterogeneity induced by hypoxia and could in combination have significant clinical consequences. PMID:26305601

  12. Facile moldless fabrication of disk-shaped and reed blood cell-like microparticles using photopolymerization of tripropylene glycol diacrylate

    Science.gov (United States)

    Choi, Jongchul; Won, June; Song, Simon

    2014-12-01

    A facile method for the moldless fabrication of 2- or 3-dimensional microparticles is proposed by using a photopolymerization technique. Using only a monomer solution of tripropylene glycol diacrylate, a film mask and standard UV lithography equipment, we were able to fabricate microparticles of various shapes, such as disks, dimpled disks similar in shape to red blood cells, and slender gourd shapes, unlike previous moldless fabrication techniques requiring expensive and/or sophisticated equipment. The simple method could produce more than one million particles in a single batch, indicating that it can be applied to the mass production of polymer microparticles. Analyses of scanning electron micrographs and optical micrographs of the microparticles indicated that their size distribution was highly monodisperse. Detailed fabrication processes and statistics on the microparticle sizes are given in this paper.

  13. Facile moldless fabrication of disk-shaped and reed blood cell-like microparticles using photopolymerization of tripropylene glycol diacrylate

    International Nuclear Information System (INIS)

    A facile method for the moldless fabrication of 2- or 3-dimensional microparticles is proposed by using a photopolymerization technique. Using only a monomer solution of tripropylene glycol diacrylate, a film mask and standard UV lithography equipment, we were able to fabricate microparticles of various shapes, such as disks, dimpled disks similar in shape to red blood cells, and slender gourd shapes, unlike previous moldless fabrication techniques requiring expensive and/or sophisticated equipment. The simple method could produce more than one million particles in a single batch, indicating that it can be applied to the mass production of polymer microparticles. Analyses of scanning electron micrographs and optical micrographs of the microparticles indicated that their size distribution was highly monodisperse. Detailed fabrication processes and statistics on the microparticle sizes are given in this paper. (technical note)

  14. Dedifferentiation of patient-derived glioblastoma multiforme cell lines results in a cancer stem cell-like state with mitogen-independent growth.

    Science.gov (United States)

    Olmez, Inan; Shen, Wangzhen; McDonald, Hayes; Ozpolat, Bulent

    2015-06-01

    Emerging evidence shows that glioblastoma multiforme (GBM) originates from cancer stem cells (CSCs). Characterization of CSC-specific signalling pathways would help identify new therapeutic targets and perhaps lead to the development of more efficient therapies selectively targeting CSCs. Here; we successfully dedifferentiated two patient-derived GBM cell lines into CSC-like cells (induced glioma stem cells, iGSCs) through expression of Oct4, Sox2 and Nanog transcription factors. Transformed cells exhibited significant suppression of epidermal growth factor receptor and its downstream pathways. Compared with parental GBM cells, iGSCs formed large neurospheres even in the absence of exogenous mitogens; they exhibited significant sensitivity to salinomycin and chemoresistance to temozolomide. Further characterization of iGSCs revealed induction of NOTCH1 and Wnt/β-catenin signalling and expression of CD133, CD44 and ALDH1A1. Our results indicate that iGSCs may help us understand CSC physiology and lead to development of potential therapeutic interventions aimed at differentiating tumour cells to render them more sensitive to chemotherapy or other standard agents. PMID:25787115

  15. S100A4 influences cancer stem cell-like properties of MGC803 gastric cancer cells by regulating GDF15 expression.

    Science.gov (United States)

    Guo, Junfu; Bian, Yue; Wang, Yu; Chen, Lisha; Yu, Aiwen; Sun, Xiuju

    2016-08-01

    Many studies have revealed that S100A4 is involved in cancer progression by affecting a variety of biological functions. Our previous study showed that S100A4 influences many biological properties of gastric cancer cells; however, the underlying mechanisms are far from clear. In this study, we used cDNA microarray analysis to investigate the global alterations in gene expression in MGC803 gastric cancer cells after siRNA-mediated S100A4 inhibition. Among the total genes investigated, 179 differentially expressed genes (38 upregulated and 141 downregulated) were detected in S100A4-siRNA transfected MGC803 cells compared with NC-siRNA transfected cells. We focused on the GDF15 gene, which was significantly downregulated after S100A4 inhibition. ChIP studies showed that the S100A4 protein binds to the GDF15 promoter, implicating S100A4 in GDF15 regulation at the transcriptional level. GDF15 overexpression promoted CSC-like properties of MGC803 cells, such as spheroid and soft-agar colony forming abilities. S100A4 inhibition suppressed the CSC-like properties of the cells, whereas, GV141-GDF15 vector transfection reversed these effects. Our results suggest that S100A4 influences the CSC-like properties of MGC803 gastric cancer cells by regulating GDF15 expression. PMID:27278086

  16. Annexin A1 is involved in the acquisition and maintenance of a stem cell-like/aggressive phenotype in prostate cancer cells with acquired resistance to zoledronic acid.

    Science.gov (United States)

    Bizzarro, Valentina; Belvedere, Raffaella; Milone, Maria Rita; Pucci, Biagio; Lombardi, Rita; Bruzzese, Francesca; Popolo, Ada; Parente, Luca; Budillon, Alfredo; Petrella, Antonello

    2015-09-22

    In this study, we have characterized the role of annexin A1 (ANXA1) in the acquisition and maintenance of stem-like/aggressive features in prostate cancer (PCa) cells comparing zoledronic acid (ZA)-resistant DU145R80 with their parental DU145 cells. ANXA1 is over-expressed in DU145R80 cells and its down-regulation abolishes their resistance to ZA. Moreover, ANXA1 induces DU145 and DU145R80 invasiveness acting through formyl peptide receptors (FPRs). Also, ANXA1 knockdown is able to inhibit epithelial to mesenchymal transition (EMT) and to reduce focal adhesion kinase (FAK) and metalloproteases (MMP)-2/9 expression in PCa cells. DU145R80 show a cancer stem cell (CSC)-like signature with a high expression of CSC markers including CD44, CD133, NANOG, Snail, Oct4 and ALDH7A1 and CSC-related genes as STAT3. Interestingly, ANXA1 knockdown induces these cells to revert from a putative prostate CSC to a more differentiated phenotype resembling DU145 PCa cell signature. Similar results are obtained concerning some drug resistance-related genes such as ATP Binding Cassette G2 (ABCG2) and Lung Resistant Protein (LRP). Our study provides new insights on the role of ANXA1 protein in PCa onset and progression. PMID:26312765

  17. Differential PAX3 functions in normal skin melanocytes and melanoma cells

    International Nuclear Information System (INIS)

    Highlights: → PAX3 retains embryonic roles in adult melanocytes and melanoma cells. → Promotes 'stem' cell-like phenotype via NES and SOX9 in both cells types. → Regulates melanoma and melanocyte migration through MCAM and CSPG4. → PAX3 regulates melanoma but not melanocyte proliferation via TPD52. → Regulates melanoma cell (but not melanocyte) survival via BCL2L1 and PTEN. -- Abstract: The PAX3 transcription factor is the key regulator of melanocyte development during embryogenesis and is also frequently found in melanoma cells. While PAX3 is known to regulate melanocyte differentiation, survival, proliferation and migration during development, it is not clear if its function is maintained in adult melanocytes and melanoma cells. To clarify this we have assessed which genes are targeted by PAX3 in these cells. We show here that similar to its roles in development, PAX3 regulates complex differentiation networks in both melanoma cells and melanocytes, in order to maintain cells as 'stem' cell-like (via NES and SOX9). We show also that mediators of migration (MCAM and CSPG4) are common to both cell types but more so in melanoma cells. By contrast, PAX3-mediated regulation of melanoma cell proliferation (through TPD52) and survival (via BCL2L1 and PTEN) differs from that in melanocytes. These results suggest that by controlling cell proliferation, survival and migration as well as maintaining a less differentiated 'stem' cell like phenotype, PAX3 may contribute to melanoma development and progression.

  18. EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells

    OpenAIRE

    Tellez, Carmen S.; Juri, Daniel E.; Do, Kieu; Bernauer, Amanda M.; Thomas, Cindy L.; Damiani, Leah A.; Tessema, Mathewos; Leng, Shuguang; Belinsky, Steven A.

    2011-01-01

    Epithelial mesenchymal transition (EMT) is strongly associated with cancer progression, but its potential role during premalignant development has not been studied. Here we show that a four-week exposure of immortalized human bronchial epithelial cells (HBECs) to tobacco carcinogens can induce a persistent, irreversible, and multifaceted dedifferentiation program marked by EMT and the emergence of stem cell-like properties. EMT induction was epigenetically driven, initially by chromatin remod...

  19. p300- and Myc-mediated regulation of glioblastoma multiforme cell differentiation

    OpenAIRE

    Panicker, Sreejith P.; Raychaudhuri, Baisakhi; Sharma, Pankaj; Tipps, Russell; Mazumdar, Tapati; Mal, Asoke K.; Palomo, Juan M.; Vogelbaum, Michael A.; Haque, S. Jaharul

    2010-01-01

    Tumorigenic potential of glioblastoma multiforme (GBM) cells is, in part, attributable to their undifferentiated (neural stem cell-like) phenotype. Astrocytic differentiation of GBM cells is associated with transcriptional induction of Glial Fibrillary Acidic Protein (GFAP) and repression of Nestin, whereas the reciprocal transcription program operates in undifferentiated GBM cells. The molecular mechanisms underlying the regulation of these transcription programs remain elusive. Here, we sho...

  20. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH{sup +}/CD133{sup +} stem cell-like human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Li, E-mail: lin.796@osu.edu [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States); Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Fuchs, James; Li, Chenglong [Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Olson, Veronica [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States); Bekaii-Saab, Tanios [Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States); Lin, Jiayuh, E-mail: lin.674@osu.edu [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. Black-Right-Pointing-Pointer STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. Black-Right-Pointing-Pointer Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. Black-Right-Pointing-Pointer STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. Black-Right-Pointing-Pointer Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existence of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH{sup +}/CD133{sup +}). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced with lower

  1. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH+/CD133+ stem cell-like human colon cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. ► STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. ► Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. ► STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. ► Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existence of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH+/CD133+). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced with lower IC50 in colon cancer stem-like cells. In summary, our results indicate that STAT3 is a novel therapeutic target in colon cancer stem

  2. EGFR kinase promotes acquisition of stem cell-like properties: a potential therapeutic target in head and neck squamous cell carcinoma stem cells.

    Directory of Open Access Journals (Sweden)

    Eric L Abhold

    Full Text Available Members of the EGFR/ErbB family of tyrosine kinases are found to be highly expressed and deregulated in many cancers, including head and neck squamous cell carcinoma (HNSCC. The ErbB family, including EGFR, has been demonstrated to play key roles in metastasis, tumorigenesis, cell proliferation, and drug resistance. Recently, these characteristics have been linked to a small subpopulation of cells classified as cancer stem cells (CSCs which are believed to be responsible for tumor initiation and maintenance. In this study, we investigated the possible role of EGFR as a regulator of "stemness" in HNSCC cells. Activation of EGFR by the addition of EGF ligand or ectopic expression of EGFR in two established HNSCC cell lines (UMSCC-22B and HN-1 resulted in the induction of CD44, BMI-1, Oct-4, NANOG, CXCR4, and SDF-1. Activation of EGFR also resulted in increased tumorsphere formation, a characteristic ability of cancer stem cells. Conversely, treatment with the EGFR kinase inhibitor, Gefinitib (Iressa, resulted in decreased expression of the aforementioned genes, and loss of tumorsphere-forming ability. Similar trends were observed in a 99.9% CD44 positive stem cell culture derived from a fresh HNSCC tumor, confirming our findings for the cell lines. Additionally, we found that these putative cancer stem cells, when treated with Gefitinib, possessed a lower capacity to invade and became more sensitive to cisplatin-induced death in vitro. These results suggest that EGFR plays critical roles in the survival, maintenance, and function of cancer stem cells. Drugs that target EGFR, perhaps administered in combination with conventional chemotherapy, might be an effective treatment for HNSCC.

  3. Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Chen Guojun

    2013-01-01

    Full Text Available Abstract Background Stem cell therapy is a promising treatment for cerebral palsy, which refers to a category of brain diseases that are associated with chronic motor disability in children. Autologous MSCs may be a better cell source and have been studied for the treatment of cerebral palsy because of their functions in tissue repair and the regulation of immunological processes. Methods To assess neural stem cell–like (NSC-like cells derived from autologous marrow mesenchymal stem cells as a novel treatment for patients with moderate-to-severe cerebral palsy, a total of 60 cerebral palsy patients were enrolled in this open-label, non-randomised, observer-blinded controlled clinical study with a 6-months follow-up. For the transplantation group, a total of 30 cerebral palsy patients received an autologous NSC-like cells transplantation (1-2 × 107 cells into the subarachnoid cavity and rehabilitation treatments whereas 30 patients in the control group only received rehabilitation treatment. Results We recorded the gross motor function measurement scores, language quotients, and adverse events up to 6 months post-treatment. The gross motor function measurement scores in the transplantation group were significantly higher at month 3 (the score increase was 42.6, 95% CI: 9.8–75.3, P=.011 and month 6 (the score increase was 58.6, 95% CI: 25.8–91.4, P=.001 post-treatment compared with the baseline scores. The increase in the Gross Motor Function Measurement scores in the control group was not significant. The increases in the language quotients at months 1, 3, and 6 post-treatment were not statistically significant when compared with the baseline quotients in both groups. All the 60 patients survived, and none of the patients experienced serious adverse events or complications. Conclusion Our results indicated that NSC-like cells are safe and effective for the treatment of motor deficits related to cerebral palsy. Further randomised clinical

  4. Red-blood-cell-like BSA/Zn3(PO4)2 hybrid particles: Preparation and application to adsorption of heavy metal ions

    Science.gov (United States)

    Zhang, Baoliang; Li, Peitao; Zhang, Hepeng; Li, Xiangjie; Tian, Lei; Wang, Hai; Chen, Xin; Ali, Nisar; Ali, Zafar; Zhang, Qiuyu

    2016-03-01

    A novel kind of red-blood-cell-like bovine serum albumin (BSA)/Zn3(PO4)2 hybrid particle is prepared at room temperature by a facile and rapid one-step method based on coordination between BSA and zinc ion. The morphology of the monodisperse hybrid particle shows oblate spheroidal type with a one sided single hole on the surface. The hybrid particle is constructed with BSA/Zn3(PO4)2 nanoplates of 35 nm thick. The average particle size of hybrid particle is 2.3 μm, and its BET specific surface area is 146.64 cm2/g. To clarify the evolution of BSA/Zn3(PO4)2 hybrid particle, SEM and elemental analysis as a function of particle growth time are investigated. The formation mechanism of BSA/Zn3(PO4)2 hybrid particle, which can be described as crystallization, coordination and self-assembly process, is illustrated in detail. The as-prepared BSA/Zn3(PO4)2 hybrid particle is used for adsorption of Cu2+. The hybrid particle displayed excellent adsorption properties on Cu2+. The adsorption efficiency of BSA/Zn3(PO4)2 hybrid particles at 5 min and 30 min are 86.33% and 98.9%, respectively. The maximum adsorption capacity is 6.85 mg/g. Thus, this kind of novel adsorbent shows potential application value in ultra-fast and highly efficient removal of Cu2+.

  5. Differentiation of early germ cells from human skin-derived stem cells without exogenous gene integration.

    Science.gov (United States)

    Ge, Wei; Ma, Hua-Gang; Cheng, Shun-Feng; Sun, Yuan-Chao; Sun, Li-Lan; Sun, Xiao-Feng; Li, Lan; Dyce, Paul; Li, Julang; Shi, Qing-Hua; Shen, Wei

    2015-01-01

    Infertility has long been a difficult issue for many couples. The successful differentiation of germ cells and live progeny from pluripotent stem cells brings new hope to the couples suffering with infertility. Here we successfully isolated human fetus skin-derived stem cells (hfSDSCs) from fetus skin tissue and demonstrated that hfSDSCs can be differentiated into early human germ cell-like cells (hGCLCs). These cells express human germ cell markers DAZL and VASA. Moreover, these pluripotent stem cell-derived hGCLCs are free of exogenous gene integration. When hfSDSCs were differentiated in porcine follicle fluid (PFF) conditioned media, which has been shown to promote the differentiation of mouse and porcine SDSCs into oocyte-like cells (OLCs), we observed some vesicular structures formed from hfSDSCs. Moreover, when hfSDSCs were cultured with specific conditioned media, we observed punctate and elongated SCP3 staining foci, indicating the initiation of meiosis. Ploidy analysis and fluorescent in situ hybridization (FISH) analysis indicated that a small percentage of putative 1N populations formed from hfSDSCs when compared with positive controls. In conclusion, our data here, for the first time, demonstrated that hfSDSCs possess the differentiation potential into germ lines, and they may differentiate both male and female hGCLCs in vitro under appropriate conditions. PMID:26347377

  6. Cell-cell interactions promote mammary epithelial cell differentiation

    OpenAIRE

    1985-01-01

    Mammary epithelium differentiates in a stromal milieu of adipocytes and fibroblasts. To investigate cell-cell interactions that may influence mammary epithelial cell differentiation, we developed a co-culture system of murine mammary epithelium and adipocytes and other fibroblasts. Insofar as caseins are specific molecular markers of mammary epithelial differentiation, rat anti-mouse casein monoclonal antibodies were raised against the three major mouse casein components to study this interac...

  7. CCL21 Facilitates Chemoresistance and Cancer Stem Cell-Like Properties of Colorectal Cancer Cells through AKT/GSK-3β/Snail Signals

    Directory of Open Access Journals (Sweden)

    Lin-Lin Lu

    2016-01-01

    Full Text Available Some evidence indicated that chemoresistance associates with the acquisition of cancer stem-like properties. Recent studies suggested that chemokines can promote the chemoresistance and stem cell properties in various cancer cells, while the underling mechanism is still not completely illustrated. In our study, we found that CCL21 can upregulate the expression of P-glycoprotein (P-gp and stem cell property markers such as Bmi-1, Nanog, and OCT-4 in colorectal cancer (CRC HCT116 cells and then improve the cell survival rate and mammosphere formation. Our results suggested that Snail was crucial for CCL21-mediated chemoresistance and cancer stem cell property in CRC cells. Further, we observed that CCL21 treatment increased the protein but not mRNA levels of Snail, which suggested that CCL21 upregulates Snail via posttranscriptional ways. The downstream signals AKT/GSK-3β mediated CCL21 induced the upregulation of Snail due to the fact that CCL21 treatment can obviously phosphorylate both AKT and GSK-3β. The inhibitor of PI3K/Akt, LY294002 significantly abolished CCL21 induced chemoresistance and mammosphere formation of HCT116 cells. Collectively, our results in the present study revealed that CCL21 can facilitate chemoresistance and stem cell property of CRC cells via the upregulation of P-gp, Bmi-1, Nanog, and OCT-4 through AKT/GSK-3β/Snail signals, which suggested a potential therapeutic approach to CRC patients.

  8. CCL21 Facilitates Chemoresistance and Cancer Stem Cell-Like Properties of Colorectal Cancer Cells through AKT/GSK-3β/Snail Signals.

    Science.gov (United States)

    Lu, Lin-Lin; Chen, Xiao-Hui; Zhang, Ge; Liu, Zong-Cai; Wu, Nong; Wang, Hao; Qi, Yi-Fei; Wang, Hong-Sheng; Cai, Shao Hui; Du, Jun

    2016-01-01

    Some evidence indicated that chemoresistance associates with the acquisition of cancer stem-like properties. Recent studies suggested that chemokines can promote the chemoresistance and stem cell properties in various cancer cells, while the underling mechanism is still not completely illustrated. In our study, we found that CCL21 can upregulate the expression of P-glycoprotein (P-gp) and stem cell property markers such as Bmi-1, Nanog, and OCT-4 in colorectal cancer (CRC) HCT116 cells and then improve the cell survival rate and mammosphere formation. Our results suggested that Snail was crucial for CCL21-mediated chemoresistance and cancer stem cell property in CRC cells. Further, we observed that CCL21 treatment increased the protein but not mRNA levels of Snail, which suggested that CCL21 upregulates Snail via posttranscriptional ways. The downstream signals AKT/GSK-3β mediated CCL21 induced the upregulation of Snail due to the fact that CCL21 treatment can obviously phosphorylate both AKT and GSK-3β. The inhibitor of PI3K/Akt, LY294002 significantly abolished CCL21 induced chemoresistance and mammosphere formation of HCT116 cells. Collectively, our results in the present study revealed that CCL21 can facilitate chemoresistance and stem cell property of CRC cells via the upregulation of P-gp, Bmi-1, Nanog, and OCT-4 through AKT/GSK-3β/Snail signals, which suggested a potential therapeutic approach to CRC patients. PMID:27057280

  9. Retroviral-infection increases tumorigenic potential of MDA-MB-231 breast carcinoma cells by expanding an aldehyde dehydrogenase (ALDH1 positive stem-cell like population

    Directory of Open Access Journals (Sweden)

    Lauren J. Wegman-Points

    2014-01-01

    Full Text Available Retroviral transformation has been associated with pro-proliferative oncogenic signaling in human cells. The current study demonstrates that transduction of human breast carcinoma cells (MDA-MB231 with LXSN and QCXIP retroviral vectors causes significant increases in growth rate, clonogenic fraction, and aldehyde dehydrogenase-1 positive cells (ALDH1+, which is associated with increased steady-state levels of cancer stem cell populations. Furthermore, this retroviral-induced enhancement of cancer cell growth in vitro was also accompanied by a significant increase in xenograft tumor growth rate in vivo. The retroviral induced increases in cancer cell growth rate were partially inhibited by treatment with 100 U/ml polyethylene glycol-conjugated-(PEG-superoxide dismutase and/or PEG-catalase. These results show that retroviral infection of MDA-MB231 human breast cancer cells is capable of enhancing cell proliferation and cancer stem cell populations as well as suggesting that modulation of reactive oxygen species-induced pro-survival signaling pathways may be involved in these effects.

  10. TMPRSS4 induces cancer stem cell-like properties in lung cancer cells and correlates with ALDH expression in NSCLC patients.

    Science.gov (United States)

    de Aberasturi, Arrate L; Redrado, Miriam; Villalba, Maria; Larzabal, Leyre; Pajares, Maria J; Garcia, Javier; Evans, Stephanie R; Garcia-Ros, David; Bodegas, Maria Elena; Lopez, Lissett; Montuenga, Luis; Calvo, Alfonso

    2016-01-28

    Metastasis involves a series of changes in cancer cells that promote their escape from the primary tumor and colonization to a new organ. This process is related to the transition from an epithelial to a mesenchymal phenotype (EMT). Recently, some authors have shown that migratory cells with an EMT phenotype share properties of cancer stem cells (CSCs), which allow them to form a new tumor mass. The type II transmembrane serine protease TMPRSS4 is highly expressed in some solid tumors, promotes metastasis and confers EMT features to cancer cells. We hypothesized that TMPRSS4 could also provide CSC properties. Overexpression of TMPRSS4 reduces E-cadherin and induces N-cadherin and vimentin in A549 lung cancer cells, supporting an EMT phenotype. These changes are accompanied by enhanced migration, invasion and tumorigenicity in vivo. TMPRSS4 expression was highly increased in a panel of lung cancer cells cultured as tumorspheres (a typical assay to enrich for CSCs). H358 and H441 cells with knocked-down TMPRSS4 levels were significantly less able to form primary and secondary tumorspheres than control cells. Moreover, they showed a lower proportion of ALDH+ cells (examined by FACS analysis) and lower expression of some CSC markers than controls. A549 cells overexpressing TMPRSS4 conferred the opposite phenotype and were also more sensitive to the CSC-targeted drug salinomycin than control cells, but were more resistant to regular chemotherapeutic drugs (cisplatin, gemcitabine and 5-fluorouracil). Analysis of 70 NSCLC samples from patients revealed a very significant correlation between TMPRSS4 expression and CSC markers ALDH (p = 0.0018) and OCT4 (p = 0.0004), suggesting that TMPRSS4 is associated with a CSC phenotype in patients' tumors. These results show that TMPRSS4, in addition to inducing EMT, can also promote CSC features in lung cancer; therefore, CSC-targeting drugs could be an appropriate treatment for TMPRSS4+ tumors. PMID:26546046

  11. Membrane Type 1 Matrix Metalloproteinase induces an epithelial to mesenchymal transition and cancer stem cell-like properties in SCC9 cells

    International Nuclear Information System (INIS)

    Tissue invasion and metastasis are acquired abilities of cancer and related to the death in oral squamous cell carcinoma (OSCC). Emerging observations indicate that the epithelial-to-mesenchymal transition (EMT) is associated with tumor progression and the generation of cells with cancer stem cells (CSCs) properties. Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) is a cell surface proteinase, which is involved in degrading extracellular matrix components that can promote tumor invasion and cell migration. In the current study, we utilized SCC9 cells stably transfected with an empty vector (SCC9-N) or a vector encoding human MT1-MMP (SCC9-M) to study the role of MT1-MMP in EMT development. Upon up-regulation of MT1-MMP, SCC9-M cells underwent EMT, in which they presented a fibroblast-like phenotype and had a decreased expression of epithelial markers (E-cadherin, cytokeratin18 and β-catenin) and an increased expression of mesenchymal markers (vimentin and fibronectin). We further demonstrated that MT1-MMP-induced morphologic changes increased the level of Twist and ZEB, and were dependent on repressing the transcription of E-cadherin. These activities resulted in low adhesive, high invasive abilities of the SCC9-M cells. Furthermore, MT1-MMP-induced transformed cells exhibited cancer stem cell (CSC)-like characteristics, such as low proliferation, self-renewal ability, resistance to chemotherapeutic drugs and apoptosis, and expression of CSCs surface markers. In conclusion, our study indicates that overexpression of MT1-MMP induces EMT and results in the acquisition of CSC-like properties in SCC9 cells. Our growing understanding of the mechanism regulating EMT may provide new targets against invasion and metastasis in OSCC

  12. HTR8/SVneo Cells Display Trophoblast Progenitor Cell-Like Characteristics Indicative of Self-Renewal, Repopulation Activity, and Expression of “Stemness-” Associated Transcription Factors

    Directory of Open Access Journals (Sweden)

    Maja Weber

    2013-01-01

    Full Text Available Introduction. JEG3 is a choriocarcinoma—and HTR8/SVneo a transformed extravillous trophoblast—cell line often used to model the physiologically invasive extravillous trophoblast. Past studies suggest that these cell lines possess some stem or progenitor cell characteristics. Aim was to study whether these cells fulfill minimum criteria used to identify stem-like (progenitor cells. In summary, we found that the expression profile of HTR8/SVneo (CDX2+, NOTCH1+, SOX2+, NANOG+, and OCT- is distinct from JEG3 (CDX2+ and NOTCH1+ as seen only in human-serum blocked immunocytochemistry. This correlates with HTR8/SVneo’s self-renewal capacities, as made visible via spheroid formation and multi-passagability in hanging drops protocols paralleling those used to maintain embryoid bodies. JEG3 displayed only low propensity to form and reform spheroids. HTR8/SVneo spheroids migrated to cover and seemingly repopulate human chorionic villi during confrontation cultures with placental explants in hanging drops. We conclude that HTR8/SVneo spheroid cells possess progenitor cell traits that are probably attained through corruption of “stemness-” associated transcription factor networks. Furthermore, trophoblastic cells are highly prone to unspecific binding, which is resistant to conventional blocking methods, but which can be alleviated through blockage with human serum.

  13. Minimal model for stem-cell differentiation

    Science.gov (United States)

    Goto, Yusuke; Kaneko, Kunihiko

    2013-09-01

    To explain the differentiation of stem cells in terms of dynamical systems theory, models of interacting cells with intracellular protein expression dynamics are analyzed and simulated. Simulations were carried out for all possible protein expression networks consisting of two genes under cell-cell interactions mediated by the diffusion of a protein. Networks that show cell differentiation are extracted and two forms of symmetric differentiation based on Turing's mechanism and asymmetric differentiation are identified. In the latter network, the intracellular protein levels show oscillatory dynamics at a single-cell level, while cell-to-cell synchronicity of the oscillation is lost with an increase in the number of cells. Differentiation to a fixed-point-type behavior follows with a further increase in the number of cells. The cell type with oscillatory dynamics corresponds to a stem cell that can both proliferate and differentiate, while the latter fixed-point type only proliferates. This differentiation is analyzed as a saddle-node bifurcation on an invariant circle, while the number ratio of each cell type is shown to be robust against perturbations due to self-consistent determination of the effective bifurcation parameter as a result of the cell-cell interaction. Complex cell differentiation is designed by combing these simple two-gene networks. The generality of the present differentiation mechanism, as well as its biological relevance, is discussed.

  14. Minimal model for stem-cell differentiation.

    Science.gov (United States)

    Goto, Yusuke; Kaneko, Kunihiko

    2013-09-01

    To explain the differentiation of stem cells in terms of dynamical systems theory, models of interacting cells with intracellular protein expression dynamics are analyzed and simulated. Simulations were carried out for all possible protein expression networks consisting of two genes under cell-cell interactions mediated by the diffusion of a protein. Networks that show cell differentiation are extracted and two forms of symmetric differentiation based on Turing's mechanism and asymmetric differentiation are identified. In the latter network, the intracellular protein levels show oscillatory dynamics at a single-cell level, while cell-to-cell synchronicity of the oscillation is lost with an increase in the number of cells. Differentiation to a fixed-point-type behavior follows with a further increase in the number of cells. The cell type with oscillatory dynamics corresponds to a stem cell that can both proliferate and differentiate, while the latter fixed-point type only proliferates. This differentiation is analyzed as a saddle-node bifurcation on an invariant circle, while the number ratio of each cell type is shown to be robust against perturbations due to self-consistent determination of the effective bifurcation parameter as a result of the cell-cell interaction. Complex cell differentiation is designed by combing these simple two-gene networks. The generality of the present differentiation mechanism, as well as its biological relevance, is discussed. PMID:24125305

  15. Myocardin Overexpression Is Sufficient for Promoting the Development of a Mature Smooth Muscle Cell-Like Phenotype from Human Embryonic Stem Cells

    OpenAIRE

    Linda Raphel; Amarnath Talasila; Christine Cheung; Sanjay Sinha

    2012-01-01

    BACKGROUND: Myocardin is thought to have a key role in smooth muscle cell (SMC) development by acting on CArG-dependent genes. However, it is unclear whether myocardin-induced SMC maturation and increases in agonist-induced calcium signalling are also associated with increases in the expression of non-CArG-dependent SMC-specific genes. Moreover, it is unknown whether myocardin promotes SMC development from human embryonic stem cells. METHODOLOGY/PRINCIPAL: Findings The effects of adenoviral-m...

  16. G9a is essential for EMT-mediated metastasis and maintenance of cancer stem cell-like characters in head and neck squamous cell carcinoma

    OpenAIRE

    Shuli LIU; Ye, Dongxia; Guo, Wenzheng; Yu, Wenwen; He, Yue; Hu, Jingzhou; Wang, Yanan; Zhang, Ling; Liao, Yueling; Song, Hongyong; Zhong, Shuangshuang; Xu, Dongliang; Yin, Huijing; Sun, Beibei; Wang, Xiaofei

    2015-01-01

    Head and neck squamous cell carcinoma (HNSCC) is a particularly aggressive cancer with poor prognosis, largely due to lymph node metastasis and local recurrence. Emerging evidence suggests that epithelial-to-mesenchymal transition (EMT) is important for cancer metastasis, and correlated with increased cancer stem cells (CSCs) characteristics. However, the mechanisms underlying metastasis to lymph nodes in HNSCC is poorly defined. In this study, we show that E-cadherin repression correlates wi...

  17. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Stefania Bruno

    2016-01-01

    Full Text Available Human liver stem cells (HLSCs are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs, and dendritic cells (DCs in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2 and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs, HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  18. Differential PAX3 functions in normal skin melanocytes and melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Medic, Sandra [School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, WA (Australia); Rizos, Helen [Westmead Institute for Cancer Research and Melanoma Institute of Australia, University of Sydney at Westmead Millennium Institute, Westmead, NSW (Australia); Ziman, Mel, E-mail: m.ziman@ecu.edu.au [School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, WA (Australia); School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA (Australia)

    2011-08-12

    Highlights: {yields} PAX3 retains embryonic roles in adult melanocytes and melanoma cells. {yields} Promotes 'stem' cell-like phenotype via NES and SOX9 in both cells types. {yields} Regulates melanoma and melanocyte migration through MCAM and CSPG4. {yields} PAX3 regulates melanoma but not melanocyte proliferation via TPD52. {yields} Regulates melanoma cell (but not melanocyte) survival via BCL2L1 and PTEN. -- Abstract: The PAX3 transcription factor is the key regulator of melanocyte development during embryogenesis and is also frequently found in melanoma cells. While PAX3 is known to regulate melanocyte differentiation, survival, proliferation and migration during development, it is not clear if its function is maintained in adult melanocytes and melanoma cells. To clarify this we have assessed which genes are targeted by PAX3 in these cells. We show here that similar to its roles in development, PAX3 regulates complex differentiation networks in both melanoma cells and melanocytes, in order to maintain cells as 'stem' cell-like (via NES and SOX9). We show also that mediators of migration (MCAM and CSPG4) are common to both cell types but more so in melanoma cells. By contrast, PAX3-mediated regulation of melanoma cell proliferation (through TPD52) and survival (via BCL2L1 and PTEN) differs from that in melanocytes. These results suggest that by controlling cell proliferation, survival and migration as well as maintaining a less differentiated 'stem' cell like phenotype, PAX3 may contribute to melanoma development and progression.

  19. Human Dental Pulp-Derived Cells Produce Bone-Like Tissue and Exhibit Bone Cell-Like Responsiveness to Mechanical Loading

    DEFF Research Database (Denmark)

    Kraft, David Christian Evar; Melsen, Birte; Bindslev, Dorthe Arenholt

    2010-01-01

    characterize cell lines from human 3rd molar dental pulp tissue to determine whether human dental pulp-derived cells (DPCs) are osteogenic and responsive to mechanical loading by pulsating fluid flow (PFF) in vitro. Methods: Human DPCs used for this study were characterized by measuring proliferation...... remodeling in vivo, and therefore provide a promising new tool for regenerative dentistry, for example mineralized tissue engineering to restore bone defects in relation to periodontitis, periimplantatis and orofacial surgery. Experiments in progress have proven that DPCSs are also useful for assessing the...

  20. Pluripotency and differentiation of cells from human testicular sperm extraction: An investigation of cell stemness.

    Science.gov (United States)

    Sadeghian-Nodoushan, Fatemeh; Aflatoonian, Reza; Borzouie, Zahra; Akyash, Fatemeh; Fesahat, Farzaneh; Soleimani, Mehrdad; Aghajanpour, Samaneh; Moore, Harry D; Aflatoonian, Behrouz

    2016-04-01

    Human male germ-line stem cells (hmGSCs) and human testis-derived embryonic stem cell-like (htESC-like) cells are claimed to be in vitro pluripotent counterparts of spermatogonial stem cells (SSCs), but the origin and pluripotency of human testis-derived cell cultures are still under debate. The aim of this study was to generate putative pluripotent stem cells in vitro from human testicular sperm-extracted (TESE) samples of infertile men, and to assess their pluripotency and capacity to differentiate. TESE samples were minced, enzymatically disaggregated and dispersed into single-cell or cluster suspensions, and then cultured. Initially, cell clusters resembled those described for hmGSCs and htESC-like cells, and were positive for markers such as OCT4/POU5F1, NANOG, and TRA-2-54. Prolonged propagation of cell clusters expressing pluripotency markers did not thrive; instead, the cells that emerged possessed characteristics of mesenchymal stromal cells (MSCs) such as STRO-1, CD105/EGLN1, CD13/ANPEP, SOX9, vimentin, and fibronectin. KIT, SOX2, and CD44 were not expressed by these MSCs. The multipotential differentiation capacity of these cells was confirmed using Oil Red-O and Alizarin Red staining after induction with specific culture conditions. It is therefore concluded that pluripotent stem cells could not be derived using the conditions previously reported to be successful for TESE samples. PMID:27077675

  1. Hedgehog pathway is involved in nitidine chloride induced inhibition of epithelial-mesenchymal transition and cancer stem cells-like properties in breast cancer cells

    OpenAIRE

    Sun, Mingjuan; Zhang, Ning; Wang, Xiaolong; Li, Yaming; Qi, Wenwen; Zhang, Hanwen; Li, Zengjun; Yang, Qifeng

    2016-01-01

    Background The complications of clinical metastatic disease are responsible for the majority of breast cancer related deaths, and fewer therapies substantially prolong survival. Nitidine chloride (NC), a natural polyphenolic compound, has been shown to exhibit potent anticancer effects in many cancer types, including breast cancer. The epithelial-mesenchymal transition (EMT) and the acquisition of cancer stem cells (CSCs)-like properties emerge as critical steps in the metastasis of human can...

  2. Differentiation into Endoderm Lineage: Pancreatic differentiation from Embryonic Stem Cells

    OpenAIRE

    Lee, Dong Hyeon; Chung, Hyung Min

    2011-01-01

    The endoderm gives rise to digestive and respiratory tracts, thyroid, liver, and pancreas. Representative disease of endoderm lineages is type 1 diabetes resulting from destruction of the insulin-producing β cells. Generation of functional β cells from human embryonic stem (ES) cells in vitro can be practical, renewable cell source for replacement cell therapy for type 1 diabetes. It has been achieved by progressive instructive differentiation through each of the developmental stages. In this...

  3. Regulating cell differentiation at different layers

    Institute of Scientific and Technical Information of China (English)

    Jiarui Wu

    2011-01-01

    Cell differentiation is a basic behavior in the developmental process of multi-cellular organisms,through which various cell types are generated from one embryonic cell for further building different tissues and organs of animals or plants.It is estimated that there are more than two hundred cell types in a human body.To understand the molecular mechanisms of cell differentiation,researchers usually focus on a question how particular genes are selectively expressed during the differentiation process.However,more and more evidence indicates that the regulation of cell differentiation is far beyond simply controlling the expression of genetic program,which is supported by the collection of four research articles in this issue that the regulation of cell differentiation involves various factors at different layers,including epigenetics,metabolism and cell-cell interaction.

  4. Neural differentiation of human embryonic stem cells

    OpenAIRE

    Dhara, Sujoy K.; Stice, Steven L.

    2008-01-01

    Availability of human embryonic stem cells (hESC) has enhanced human neural differentiation research. The derivation of neural progenitor (NP) cells from hESC facilitates the integration of human embryonic development through the generation of neuronal subtypes and supporting glial cells. These cells will likely lead to new and novel drug screening and cell therapy uses. This review will discuss the current status of derivation, maintenance and further differentiation of NP cells with special...

  5. FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell lymphomas

    DEFF Research Database (Denmark)

    Brown, P J; Wong, K K; Felce, S L;

    2016-01-01

    )-treated DLBCL patients (n=150), reduced HLA-DRA (<90% frequency) expression correlated with inferior overall survival (P=0.0003) and progression-free survival (P=0.0012) and with non-GCB subtype stratified by the Hans, Choi or Visco-Young algorithms (all P<0.01). In non-GCB DLBCL cases with <90% HLA-DRA, there......, including human leukocyte antigen DR alpha chain (HLA-DRA), were inversely correlated with FOXP1 transcript expression (P<0.05). FOXP1 knockdown in ABC-DLBCL cells led to increased cell-surface expression of HLA-DRA and CD74. In R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone...... was an inverse correlation with the frequency (P=0.0456) and intensity (P=0.0349) of FOXP1 expression. We propose that FOXP1 represents a novel regulator of genes targeted by the class II MHC transactivator CIITA (MHC II and CD74) and therapeutically targeting the FOXP1 pathway may improve antigen...

  6. STEM CELLS: Differentiated cells in a back-up role

    OpenAIRE

    Desai, Tushar J.; Krasnow, Mark A.

    2013-01-01

    Two independent studies show that, if push comes to shove, differentiated cells of the stomach and lung can act as adult stem cells generating various cell types of the tissue, including a pool of stem cells.

  7. 具有基底细胞样免疫表型的三阴性乳腺癌临床病理分析%Clinicopathological Analysis of Triple-negative Breast Cancer with Basal Cell-like Phenotype

    Institute of Scientific and Technical Information of China (English)

    张升瑞; 王星; 孙洁; 宦大为; 王翠芳

    2012-01-01

    Objective To detect the expression of triple-negative breast cancels (TNBCs) with the basal cell-like phenotype, to explore whether TNBCs have the basal cell-like phenotype, and to study the clinicopathological features and Ki67,p53 expressions differences between basal cell-like and non-basal cell-like TNBCs. Methods Immunohistochemical staining was used to detect the protein expressions of CK5/6,CK14,EGFR,Ki67 and P53 in 42 cases of triple-negative breast invasive carcinoma. We studied the relationship among the expression of basal cell-like phenotvpe.clinieopathological features and the expressions of Ki67 and P53. Results Twenty four cases expressed one or several basal cell-like phenotype markers (CK5/6,CK14,EGFR),accounting for 57.1% of the 42 triple negative breast patients,while CK14 was not solely expressed. Eighteen cases (42.9%) did not express CK5/6.CK14 or EGFR. Twenty four TNBCs with basal cell-like phenotype had similar morphological characteristic and nuclear levels,including grade III (22 cases) and grade II (2 cases). And Ki67 was expressed in 22 out of 24 cases. The breast cancer cells nuclear levels of 18 non-basal cell-like cases snowed grade III (3 cases) and grade I (15 cases).grade II (15 cases),and Ki67 was expressed in 8 out of 18 cases. The difference in nuclear level and Ki67 expression between basal-like and non-basal-like TNBCs was statistically significant (P < 0.01). Conclusion Basal cell-like phenotype of TNBCs is a breast cancer with a unique phenotype and morphological characteristics. Characteristic morphological changes and clinical use of CK5/6, EGFR and Ki67 marked by immunohistochemical staining had practical significance in the diagnosis and prognosis of such lesions.%目的 分析三阴性乳腺癌中基底细胞样免疫表型的表达情况,探讨具有或不具有基底细胞样免疫表型的三阴性乳腺癌在临床病理特征和Ki67、P53表达等方面的差异.方法 用免疫组化方法观察42例

  8. Glioblastoma Stem Cells Respond to Differentiation Cues but Fail to Undergo Commitment and Terminal Cell-Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Helena Carén

    2015-11-01

    Full Text Available Glioblastoma (GBM is an aggressive brain tumor whose growth is driven by stem cell-like cells. BMP signaling triggers cell-cycle exit and differentiation of GBM stem cells (GSCs and, therefore, might have therapeutic value. However, the epigenetic mechanisms that accompany differentiation remain poorly defined. It is also unclear whether cell-cycle arrest is terminal. Here we find only a subset of GSC cultures exhibit astrocyte differentiation in response to BMP. Although overtly differentiated non-cycling astrocytes are generated, they remain vulnerable to cell-cycle re-entry and fail to appropriately reconfigure DNA methylation patterns. Chromatin accessibility mapping identified loci that failed to alter in response to BMP and these were enriched in SOX transcription factor-binding motifs. SOX transcription factors, therefore, may limit differentiation commitment. A similar propensity for cell-cycle re-entry and de-differentiation was observed in GSC-derived oligodendrocyte-like cells. These findings highlight significant obstacles to BMP-induced differentiation as therapy for GBM.

  9. Apc bridges Wnt/{beta}-catenin and BMP signaling during osteoblast differentiation of KS483 cells

    Energy Technology Data Exchange (ETDEWEB)

    Miclea, Razvan L., E-mail: R.L.Miclea@lumc.nl [Department of Pediatrics, Leiden University Medical Centre (LUMC), Leiden (Netherlands); Horst, Geertje van der, E-mail: G.van_der_Horst@lumc.nl [Department of Urology, LUMC, Leiden (Netherlands); Robanus-Maandag, Els C., E-mail: E.C.Robanus@lumc.nl [Department of Human Genetics, LUMC, Leiden (Netherlands); Loewik, Clemens W.G.M., E-mail: C.W.G.M.Lowik@lumc.nl [Department of Endocrinology and Metabolic Diseases, LUMC, Leiden (Netherlands); Oostdijk, Wilma, E-mail: W.Oostdijk@lumc.nl [Department of Pediatrics, Leiden University Medical Centre (LUMC), Leiden (Netherlands); Wit, Jan M., E-mail: J.M.Wit@lumc.nl [Department of Pediatrics, Leiden University Medical Centre (LUMC), Leiden (Netherlands); Karperien, Marcel, E-mail: H.B.J.Karperien@tnw.utwente.nl [MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Zuidhorst Room ZH 144, Drienerlolaan 5, 7522 NB Enschede (Netherlands)

    2011-06-10

    The canonical Wnt signaling pathway influences the differentiation of mesenchymal cell lineages in a quantitative and qualitative fashion depending on the dose of {beta}-catenin signaling. Adenomatous polyposis coli (Apc) is the critical intracellular regulator of {beta}-catenin turnover. To better understand the molecular mechanisms underlying the role of Apc in regulating the differentiation capacity of skeletal progenitor cells, we have knocked down Apc in the murine mesenchymal stem cell-like KS483 cells by stable expression of Apc-specific small interfering RNA. In routine culture, KSFrt-Apc{sub si} cells displayed a mesenchymal-like spindle shape morphology, exhibited markedly decreased proliferation and increased apoptosis. Apc knockdown resulted in upregulation of the Wnt/{beta}-catenin and the BMP/Smad signaling pathways, but osteogenic differentiation was completely inhibited. This effect could be rescued by adding high concentrations of BMP-7 to the differentiation medium. Furthermore, KSFrt-Apc{sub si} cells showed no potential to differentiate into chondrocytes or adipocytes. These results demonstrate that Apc is essential for the proliferation, survival and differentiation of KS483 cells. Apc knockdown blocks the osteogenic differentiation of skeletal progenitor cells, a process that can be overruled by high BMP signaling.

  10. Apc bridges Wnt/β-catenin and BMP signaling during osteoblast differentiation of KS483 cells

    International Nuclear Information System (INIS)

    The canonical Wnt signaling pathway influences the differentiation of mesenchymal cell lineages in a quantitative and qualitative fashion depending on the dose of β-catenin signaling. Adenomatous polyposis coli (Apc) is the critical intracellular regulator of β-catenin turnover. To better understand the molecular mechanisms underlying the role of Apc in regulating the differentiation capacity of skeletal progenitor cells, we have knocked down Apc in the murine mesenchymal stem cell-like KS483 cells by stable expression of Apc-specific small interfering RNA. In routine culture, KSFrt-Apcsi cells displayed a mesenchymal-like spindle shape morphology, exhibited markedly decreased proliferation and increased apoptosis. Apc knockdown resulted in upregulation of the Wnt/β-catenin and the BMP/Smad signaling pathways, but osteogenic differentiation was completely inhibited. This effect could be rescued by adding high concentrations of BMP-7 to the differentiation medium. Furthermore, KSFrt-Apcsi cells showed no potential to differentiate into chondrocytes or adipocytes. These results demonstrate that Apc is essential for the proliferation, survival and differentiation of KS483 cells. Apc knockdown blocks the osteogenic differentiation of skeletal progenitor cells, a process that can be overruled by high BMP signaling.

  11. Functional heterogeneity within the CD44 high human breast cancer stem cell-like compartment reveals a gene signature predictive of distant metastasis

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Terp, Mikkel Green; Christensen, Anne G;

    2012-01-01

    stem cell features such as tumor-initiating capacity in vivo, mammosphere formation and resistance to standard chemotherapy. This complements previous findings using oncogene-transformed normal mammary cells showing that only cell clones with a mesenchymal phenotype exhibit cancer stem cell features...... in cohorts of estrogen receptor-negative human breast cancers. These findings strongly favor functional heterogeneity in the breast cancer cell compartment and hold promise for further refinements of prognostic marker profiling. Our work confirms that, in addition to cancer stem cells with...

  12. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    OpenAIRE

    Stefania Bruno; Cristina Grange; Marta Tapparo; Chiara Pasquino; Renato Romagnoli; Ennia Dametto; Antonio Amoroso; Ciro Tetta; Giovanni Camussi

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell co...

  13. Cell Division, Differentiation and Dynamic Clustering

    CERN Document Server

    Kaneko, K; Kaneko, Kunihiko; Yomo, Tetsuya

    1993-01-01

    A novel mechanism for cell differentiation is proposed, based on the dynamic clustering in a globally coupled chaotic system. A simple model with metabolic reaction, active transport of chemicals from media, and cell division is found to show three successive stages with the growth of the number of cells; coherent growth, dynamic clustering, and fixed cell differentiation. At the last stage, disparity in activities, germ line segregation, somatic cell differentiation, and homeochaotic stability against external perturbation are found. Our results, in consistency with the experiments of the preceding paper, imply that cell differentiation can occur without a spatial pattern. From dynamical systems viewpoint, the new concept of ``open chaos" is proposed, as a novel and general scenario for systems with growing numbers of elements, also seen in economics and sociology.A

  14. Stem cell differentiation and human liver disease

    Institute of Scientific and Technical Information of China (English)

    Wen-Li Zhou; Claire N Medine; Liang Zhu; David C Hay

    2012-01-01

    Human stem cells are scalable cell populations capable of cellular differentiation.This makes them a very attractive in vitro cellular resource and in theory provides unlimited amounts of primary cells.Such an approach has the potential to improve our understanding of human biology and treating disease.In the future it may be possible to deploy novel stem cell-based approaches to treat human liver diseases.In recent years,efficient hepatic differentiation from human stem cells has been achieved by several research groups including our own.In this review we provide an overview of the field and discuss the future potential and limitations of stem cell technology.

  15. Differentiation of human embryonic stem cells into insulin- secreting cells

    OpenAIRE

    S Mollamohammadi; Massumi, M.; H Jafary; Baharvand, H.

    2006-01-01

    Introduction: Type I diabetes mellitus is caused by autoimmune destruction of the insulin-producing β-cells. A new potential method for curing the disease is transplantation of differentiated insulin- secreting cells from human embryonic stem cells. Methods: Human embryonic stem cell lines (Royan H1) were used to produce embryoid bodies. Differentiation carried out by growth factor-mediated selection of nestin positive cells. In final stage, these cells were expanded in the presence of bFGF, ...

  16. Inhibition of the JAK2/STAT3 pathway in ovarian cancer results in the loss of cancer stem cell-like characteristics and a reduced tumor burden

    International Nuclear Information System (INIS)

    Current treatment of ovarian cancer patients with chemotherapy leaves behind a residual tumor which results in recurrent ovarian cancer within a short time frame. We have previously demonstrated that a single short-term treatment of ovarian cancer cells with chemotherapy in vitro resulted in a cancer stem cell (CSC)-like enriched residual population which generated significantly greater tumor burden compared to the tumor burden generated by control untreated cells. In this report we looked at the mechanisms of the enrichment of CSC-like residual cells in response to paclitaxel treatment. The mechanism of survival of paclitaxel-treated residual cells at a growth inhibitory concentration of 50% (GI50) was determined on isolated tumor cells from the ascites of recurrent ovarian cancer patients and HEY ovarian cancer cell line by in vitro assays and in a mouse xenograft model. Treatment of isolated tumor cells from the ascites of ovarian cancer patients and HEY ovarian cancer cell line with paclitaxel resulted in a CSC-like residual population which coincided with the activation of Janus activated kinase 2 (JAK2) and signal transducer and activation of transcription 3 (STAT3) pathway in paclitaxel surviving cells. Both paclitaxel-induced JAK2/STAT3 activation and CSC-like characteristics were inhibited by a low dose JAK2-specific small molecule inhibitor CYT387 (1 μM) in vitro. Subsequent, in vivo transplantation of paclitaxel and CYT387-treated HEY cells in mice resulted in a significantly reduced tumor burden compared to that seen with paclitaxel only-treated transplanted cells. In vitro analysis of tumor xenografts at protein and mRNA levels demonstrated a loss of CSC-like markers and CA125 expression in paclitaxel and CYT387-treated cell-derived xenografts, compared to paclitaxel only-treated cell-derived xenografts. These results were consistent with significantly reduced activation of JAK2 and STAT3 in paclitaxel and CYT387-treated cell-derived xenografts

  17. In vitro differentiation of porcine aortic vascular precursor cells to endothelial and vascular smooth muscle cells.

    Science.gov (United States)

    Zaniboni, Andrea; Bernardini, Chiara; Bertocchi, Martina; Zannoni, Augusta; Bianchi, Francesca; Avallone, Giancarlo; Mangano, Chiara; Sarli, Giuseppe; Calzà, Laura; Bacci, Maria Laura; Forni, Monica

    2015-09-01

    Recent findings suggest that progenitor and multipotent mesenchymal stromal cells (MSCs) are associated with vascular niches. Cells displaying mesenchymal properties and differentiating to whole components of a functional blood vessel, including endothelial and smooth muscle cells, can be defined as vascular stem cells (VSCs). Recently, we isolated a population of porcine aortic vascular precursor cells (pAVPCs), which have MSC- and pericyte-like properties. The aim of the present work was to investigate whether pAVPCs possess VSC-like properties and assess their differentiation potential toward endothelial and smooth muscle lineages. pAVPCs, maintained in a specific pericyte growth medium, were cultured in high-glucose DMEM + 10% FBS (long-term medium, LTM) or in human endothelial serum-free medium + 5% FBS and 50 ng/ml of hVEGF (endothelial differentiation medium, EDM). After 21 days of culture in LTM, pAVPCs showed an elongated fibroblast-like morphology, and they seem to organize in cord-like structures. qPCR analysis of smooth muscle markers [α-smooth muscle actin (α-SMA), calponin, and smooth muscle myosin (SMM) heavy chain] showed a significant increment of the transcripts, and immunofluorescence analysis confirmed the presence of α-SMA and SMM proteins. After 21 days of culture in EDM, pAVPCs displayed an endothelial cell-like morphology and revealed the upregulation of the expression of endothelial markers (CD31, vascular endothelial-cadherin, von Willebrand factor, and endothelial nitric oxide synthase) showing the CD31-typical pattern. In conclusion, pAVPCs could be defined as a VSC-like population considering that, if they are maintained in a specific pericyte medium, they express MSC markers, and they have, in addition to the classical mesenchymal trilineage differentiation potential, the capacity to differentiate in vitro toward the smooth muscle and the endothelial cell phenotypes. PMID:26135800

  18. DNA repair in murine embryonic stem cells and differentiated cells

    International Nuclear Information System (INIS)

    Embryonic stem (ES) cells are rapidly proliferating, self-renewing cells that have the capacity to differentiate into all three germ layers to form the embryo proper. Since these cells are critical for embryo formation, they must have robust prophylactic mechanisms to ensure that their genomic integrity is preserved. Indeed, several studies have suggested that ES cells are hypersensitive to DNA damaging agents and readily undergo apoptosis to eliminate damaged cells from the population. Other evidence suggests that DNA damage can cause premature differentiation in these cells. Several laboratories have also begun to investigate the role of DNA repair in the maintenance of ES cell genomic integrity. It does appear that ES cells differ in their capacity to repair damaged DNA compared to differentiated cells. This minireview focuses on repair mechanisms ES cells may use to help preserve genomic integrity and compares available data regarding these mechanisms with those utilized by differentiated cells

  19. Differentiation of immortal cells inhibits telomerase activity.

    OpenAIRE

    Sharma, H W; Sokoloski, J A; Perez, J.R.; Maltese, J Y; Sartorelli, A C; Stein, C A; Nichols, G; Khaled, Z.; Telang, N T; Narayanan, R.

    1995-01-01

    Telomerase, a ribonucleic acid-protein complex, adds hexameric repeats of 5'-TTAGGG-3' to the ends of mammalian chromosomal DNA (telomeres) to compensate for the progressive loss that occurs with successive rounds of DNA replication. Although somatic cells do not express telomerase, germ cells and immortalized cells, including neoplastic cells, express this activity. To determine whether the phenotypic differentiation of immortalized cells is linked to the regulation of telomerase activity, t...

  20. Involvement of miRNAs in the differentiation of human glioblastoma multiforme stem-like cells.

    Directory of Open Access Journals (Sweden)

    Beatriz Aldaz

    Full Text Available Glioblastoma multiforme (GBM-initiating cells (GICs represent a tumor subpopulation with neural stem cell-like properties that is responsible for the development, progression and therapeutic resistance of human GBM. We have recently shown that blockade of NFκB pathway promotes terminal differentiation and senescence of GICs both in vitro and in vivo, indicating that induction of differentiation may be a potential therapeutic strategy for GBM. MicroRNAs have been implicated in the pathogenesis of GBM, but a high-throughput analysis of their role in GIC differentiation has not been reported. We have established human GIC cell lines that can be efficiently differentiated into cells expressing astrocytic and neuronal lineage markers. Using this in vitro system, a microarray-based high-throughput analysis to determine global expression changes of microRNAs during differentiation of GICs was performed. A number of changes in the levels of microRNAs were detected in differentiating GICs, including over-expression of hsa-miR-21, hsa-miR-29a, hsa-miR-29b, hsa-miR-221 and hsa-miR-222, and down-regulation of hsa-miR-93 and hsa-miR-106a. Functional studies showed that miR-21 over-expression in GICs induced comparable cell differentiation features and targeted SPRY1 mRNA, which encodes for a negative regulator of neural stem-cell differentiation. In addition, miR-221 and miR-222 inhibition in differentiated cells restored the expression of stem cell markers while reducing differentiation markers. Finally, miR-29a and miR-29b targeted MCL1 mRNA in GICs and increased apoptosis. Our study uncovers the microRNA dynamic expression changes occurring during differentiation of GICs, and identifies miR-21 and miR-221/222 as key regulators of this process.

  1. Involvement of miRNAs in the Differentiation of Human Glioblastoma Multiforme Stem-Like Cells

    Science.gov (United States)

    Aldaz, Beatriz; Sagardoy, Ainara; Nogueira, Lorena; Guruceaga, Elizabeth; Grande, Lara; Huse, Jason T.; Aznar, Maria A.; Díez-Valle, Ricardo; Tejada-Solís, Sonia; Alonso, Marta M.; Fernandez-Luna, Jose L.

    2013-01-01

    Glioblastoma multiforme (GBM)-initiating cells (GICs) represent a tumor subpopulation with neural stem cell-like properties that is responsible for the development, progression and therapeutic resistance of human GBM. We have recently shown that blockade of NFκB pathway promotes terminal differentiation and senescence of GICs both in vitro and in vivo, indicating that induction of differentiation may be a potential therapeutic strategy for GBM. MicroRNAs have been implicated in the pathogenesis of GBM, but a high-throughput analysis of their role in GIC differentiation has not been reported. We have established human GIC cell lines that can be efficiently differentiated into cells expressing astrocytic and neuronal lineage markers. Using this in vitro system, a microarray-based high-throughput analysis to determine global expression changes of microRNAs during differentiation of GICs was performed. A number of changes in the levels of microRNAs were detected in differentiating GICs, including over-expression of hsa-miR-21, hsa-miR-29a, hsa-miR-29b, hsa-miR-221 and hsa-miR-222, and down-regulation of hsa-miR-93 and hsa-miR-106a. Functional studies showed that miR-21 over-expression in GICs induced comparable cell differentiation features and targeted SPRY1 mRNA, which encodes for a negative regulator of neural stem-cell differentiation. In addition, miR-221 and miR-222 inhibition in differentiated cells restored the expression of stem cell markers while reducing differentiation markers. Finally, miR-29a and miR-29b targeted MCL1 mRNA in GICs and increased apoptosis. Our study uncovers the microRNA dynamic expression changes occurring during differentiation of GICs, and identifies miR-21 and miR-221/222 as key regulators of this process. PMID:24155920

  2. A Structured Population Model of Cell Differentiation

    CERN Document Server

    Doumic, Marie; Perthame, Benoit; Zubelli, Jorge P

    2010-01-01

    We introduce and analyze several aspects of a new model for cell differentiation. It assumes that differentiation of progenitor cells is a continuous process. From the mathematical point of view, it is based on partial differential equations of transport type. Specifically, it consists of a structured population equation with a nonlinear feedback loop. This models the signaling process due to cytokines, which regulate the differentiation and proliferation process. We compare the continuous model to its discrete counterpart, a multi-compartmental model of a discrete collection of cell subpopulations recently proposed by Marciniak-Czochra et al. in 2009 to investigate the dynamics of the hematopoietic system. We obtain uniform bounds for the solutions, characterize steady state solutions, and analyze their linearized stability. We show how persistence or extinction might occur according to values of parameters that characterize the stem cells self-renewal. We also perform numerical simulations and discuss the q...

  3. Control of differentiation of melanoma cells

    International Nuclear Information System (INIS)

    To develop the method to induce the appearance of differentiation in amelanotic melanoma, experimental control of differentiation in B-16 melanoma cells of mice was discussed. Human melanoma cells and yellow melanin pigment cells useful for a fundamental study of radiotherapy for cancer were cultured and were differentiated into some lines. Melanotic B-16 cells and amelanotic B-16 cells were irradiated with thermal neutron (neutron: 2.7 x 1012, γ-dose: 32.3 rad) after they were cultured in culture solution containing 10 γ/ml of 10B-dopa for 13 hours. A fine structure 5 hours after the irradiation in one of 5 experimental cases showed aggregated disintegration of melanin pigment particles, markedly deformed and fragmentized nucleus, and structural changes in cell membrane. (Tsunoda, M.)

  4. Cell proliferation and differentiation in chemical leukemogenesis

    Science.gov (United States)

    Irons, R. D.; Stillman, W. S.; Clarkson, T. W. (Principal Investigator)

    1993-01-01

    In tissues such as bone marrow with normally high rates of cell division, proliferation is tightly coordinated with cell differentiation. Survival, proliferation and differentiation of early hematopoietic progenitor cells depend on the growth factors, interleukin 3 (IL-3) and/or granulocyte-macrophage colony stimulating factor (GM-CSF) and their synergism with other cytokines. We provide evidence that a characteristic shared by a diverse group of compounds with demonstrated leukemogenic potential is the ability to act synergistically with GM-CSF. This results in an increase in recruitment of a resting population of hematopoietic progenitor cells normally unresponsive to the cytokine and a twofold increase in the size of the proliferating cell population normally regarded to be at risk of transformation in leukemogenesis. These findings support the possibility that transient alterations in hematopoietic progenitor cell differentiation may be an important factor in the early stages of development of leukemia secondary to chemical or drug exposure.

  5. Hepatic Differentiation from Human Ips Cells Using M15 Cells.

    Science.gov (United States)

    Umeda, Kahoko; Shiraki, Nobuaki; Kume, Shoen

    2016-01-01

    Here, we describe a procedure of human iPS cells differentiation into the definitive endoderm, further into albumin-expressing and albumin-secreting hepatocyte, using M15, a mesonephros- derived cell line. Approximately 90 % of human iPS cells differentiated into SOX17-positive definitive endoderm then approximately 50 % of cells became albumin-positive cells, and secreted ALB protein. This M15 feeder system for endoderm and hepatic differentiation is a simple and efficient method, and useful for elucidating molecular mechanisms for hepatic fate decision, and could represent an attractive approach for a surrogate cell source for pharmaceutical studies. PMID:25417065

  6. Isolation and differentiation of neural stem/progenitor cells from fetal rat dorsal root ganglia

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    To find a promising alternative to neurons or schwann cells (SCs) for peripheral nerve repair applications,this study sought to isolate stem cells from fetal rat dorsal root ganglion (DRG) explants.Molecular expression analysis confirmed neural stem cell characteristics of DRG-derived neurospheres in terms of expressing neural stem cell-specific genes and a set of well-defined genes related to stem cell niches and glial fate decision.Under the influence of neurotrophic factors,bFGF and NGF,the neurospheres gave rise to neurofilament-expressing neurons and S100-expressing Schwann cell-like cells by different pathways.This study suggests that a subpopulation of stem cells that reside in DRGs is the progenitor of neurons and glia,which could directly induce the differentiation toward neurons,or SCs.

  7. Aberrantly expressed miR-582-3p maintains lung cancer stem cell-like traits by activating Wnt/β-catenin signalling

    OpenAIRE

    Fang, Lishan; Cai, Junchao; Chen, Baixue; Wu, Shanshan; Li, Rong; Xu, Xiaonan; Yang, Yi; Guan, Hongyu; Zhu, Xun; Zhang, Le; Yuan, Jie; Wu, Jueheng; Li, Mengfeng

    2015-01-01

    Cancer stem cells (CSCs) are involved in tumorigenesis, tumour recurrence and therapy resistance and Wnt signalling is essential for the development of the biological traits of CSCs. In non-small cell lung carcinoma (NSCLC), unlike in colon cancer, mutations in β-catenin and APC genes are uncommon; thus, the mechanism underlying the constitutive activation of Wnt signalling in NSCLC remains unclear. Here we report that miR-582-3p expression correlates with the overall- and recurrence-free-sur...

  8. Osteogenic Differentiation of Dental Follicle Stem Cells

    Directory of Open Access Journals (Sweden)

    Giorgio Mori, Andrea Ballini, Claudia Carbone, Angela Oranger, Giacomina Brunetti, Adriana Di Benedetto, Biagio Rapone, Stefania Cantore, Mariasevera Di Comite, Silvia Colucci, Maria Grano, Felice R. Grassi

    2012-01-01

    Full Text Available Background: Stem cells are defined as clonogenic cells capable of self-renewal and multi-lineage differentiation. A population of these cells has been identified in human Dental Follicle (DF.Dental Follicle Stem Cells (DFSCs were found in pediatric unerupted wisdom teeth and have been shown to differentiate, under particular conditions, into various cell types of the mesenchymal tissues.Aim: The aim of this study was to investigate if cells isolated from DF show stem features, differentiate toward osteoblastic phenotype and express osteoblastic markers.Methods: We studied the immunophenotype of DFSCs by flow cytometric analysis, the osteoblastic markers of differentiated DFSCs were assayed by histochemical methods and real-time PCR.Results: We demonstrated that DFSCs expressed a heterogeneous assortment of makers associated with stemness. Moreover DFSCs differentiated into osteoblast-like cells, producing mineralized matrix nodules and expressed the typical osteoblastic markers, Alkaline Phosphatase (ALP and Collagen I (Coll I.Conclusion: This study suggests that DFSCs may provide a cell source for tissue engineering of bone.

  9. Helicobacter pylori upregulates Nanog and Oct4 via Wnt/β-catenin signaling pathway to promote cancer stem cell-like properties in human gastric cancer.

    Science.gov (United States)

    Yong, Xin; Tang, Bo; Xiao, Yu-Feng; Xie, Rui; Qin, Yong; Luo, Gang; Hu, Chang-Jiang; Dong, Hui; Yang, Shi-Ming

    2016-05-01

    Helicobacter pylori (H. pylori) infection is considered a major risk factor for gastric cancer. CagA behaves as a major bacterial oncoprotein playing a key role in H. pylori-induced tumorigenesis. Cancer stem cells (CSCs) are believed to possess the ability to initiate tumorigenesis and promote progression. Although studies have suggested that cancer cells can exhibit CSC-like properties in the tumor microenvironment, it remains unclear whether H. pylori infection could induce the emergence of CSC-like properties in gastric cancer cells and, the underlying mechanism. Here, gastric cancer cells were co-cultured with a CagA-positive H. pylori strain or a CagA isogenic mutant strain. We found that H. pylori-infected gastric cancer cells exhibited CSC-like properties, including an increased expression of CSC specific surface markers CD44 and Lgr5, as well as that of Nanog, Oct4 and c-myc, which are known pluripotency genes, and an increased capacity for self-renewal, whereas these properties were not observed in the CagA isogenic mutant strain-infected cells. Further studies revealed that H. pylori activated Wnt/β-catenin signaling pathway in a CagA-dependent manner and that the activation of this pathway was dependent upon CagA-positive H. pylori-mediated phosphorylation of β-catenin at the C-terminal Ser675 and Ser552 residues in a c-met- and/or Akt-dependent manner. We further demonstrated that this activation was responsible for H. pylori-induced CSC-like properties. Moreover, we found the promoter activity of Nanog and Oct4 were upregulated, and β-catenin was observed to bind to these promoters during H. pylori infection, while a Wnt/β-catenin inhibitor suppressed promoter activity and binding. Taken together, these results suggest that H. pylori upregulates Nanog and Oct4 via Wnt/β-catenin signaling pathway to promote CSC-like properties in gastric cancer cells. PMID:26940070

  10. Loss of CCR7 expression on CD56(bright NK cells is associated with a CD56(dimCD16⁺ NK cell-like phenotype and correlates with HIV viral load.

    Directory of Open Access Journals (Sweden)

    Henoch S Hong

    Full Text Available NK cells are pivotal sentinels of the innate immune system and distinct subpopulations in peripheral blood have been described. A number of studies addressed HIV-induced alterations of NK cell phenotype and functionality mainly focusing on CD56(dimCD16⁺ and CD56⁻CD16⁺ NK cells. However, the impact of HIV-infection on CD56(bright NK cells is less well understood. Here we report a rise of CD56(bright NK cells in HIV-infected individuals, which lack CCR7-expression and strongly correlate with HIV viral load. CCR7⁻CD56(bright NK cells were characterized by increased cytolytic potential, higher activation states and a more differentiated phenotype. These cells thus acquired a number of features of CD56(dimCD16⁺ NK cells. Furthermore, CD56(bright NK cells from HIV patients exhibited higher degranulation levels compared to uninfected individuals. Thus, chronic HIV-infection is associated with a phenotypic and functional shift of CD56(bright NK cells, which provides a novel aspect of HIV-associated pathogenesis within the NK cell compartment.

  11. RETINOIDS REGULATE STEM CELL DIFFERENTIATION

    OpenAIRE

    Gudas, Lorraine J.; Wagner, John A.

    2011-01-01

    Retinoids are ubiquitous signaling molecules that influence nearly every cell type, exert profound effects on development, and complement cancer chemotherapeutic regimens. All-trans retinoic acid (RA) and other active retinoids are generated from vitamin A (retinol), but key aspects of the signaling pathways required to produce active retinoids remain unclear. Retinoids generated by one cell type can affect nearby cells, so retinoids also function in intercellular communication. RA induces di...

  12. Aberrantly expressed miR-582-3p maintains lung cancer stem cell-like traits by activating Wnt/β-catenin signalling.

    Science.gov (United States)

    Fang, Lishan; Cai, Junchao; Chen, Baixue; Wu, Shanshan; Li, Rong; Xu, Xiaonan; Yang, Yi; Guan, Hongyu; Zhu, Xun; Zhang, Le; Yuan, Jie; Wu, Jueheng; Li, Mengfeng

    2015-01-01

    Cancer stem cells (CSCs) are involved in tumorigenesis, tumour recurrence and therapy resistance and Wnt signalling is essential for the development of the biological traits of CSCs. In non-small cell lung carcinoma (NSCLC), unlike in colon cancer, mutations in β-catenin and APC genes are uncommon; thus, the mechanism underlying the constitutive activation of Wnt signalling in NSCLC remains unclear. Here we report that miR-582-3p expression correlates with the overall- and recurrence-free-survival of NSCLC patients, and miR-582-3p has an activating effect on Wnt/β-catenin signalling. miR-582-3p overexpression simultaneously targets multiple negative regulators of the Wnt/β-catenin pathway, namely, AXIN2, DKK3 and SFRP1. Consequently, miR-582-3p promotes CSC traits of NSCLC cells in vitro and tumorigenesis and tumour recurrence in vivo. Antagonizing miR-582-3p potently inhibits tumour initiation and progression in xenografted animal models. These findings suggest that miR-582-3p mediates the constitutive activation of Wnt/β-catenin signalling, likely serving as a potential therapeutic target for NSCLC. PMID:26468775

  13. Molecular probes for imaging cell growth and cell differentiation

    International Nuclear Information System (INIS)

    This paper summarizes PET/SPECT probes for the in vivo imaging of cell behavior such as cell growth, differentiation, migration, adhesion, angiogenesis, and apoptosis. These probes may be indispensable for the fundamental research of regenerative medicine. (author)

  14. Pou2f3/Skn-1a Is Necessary for the Generation or Differentiation of Solitary Chemosensory Cells in the Anterior Nasal Cavity

    OpenAIRE

    Ohmoto, Makoto; Yamaguchi, Tatsuya; YAMASHITA, Junpei; Bachmanov, Alexander A.; Hirota, Junji; Matsumoto, Ichiro

    2013-01-01

    Solitary chemosensory cells in the non-neuronal epithelium of the anterior nasal cavity have bitter taste cell-like molecular characteristics and are involved in the detection of noxious substances. Here, we demonstrate that Pou2f3/Skn-1a, which is necessary for generation of sweet, umami, and bitter taste cells, is also necessary for the generation or differentiation of solitary chemosensory cells.

  15. Cell culture models for study of differentiated adipose cells

    OpenAIRE

    Clynes, Martin

    2014-01-01

    Adipose cells are an important source of mesenchymal stem cells and are important for direct use in research on lipid metabolism and obesity. In addition to use of primary cultures, there is increasing interest in other sources of larger numbers of cells, using approaches including induced pluripotent stem cell differentiation and viral immortalisation.

  16. Lymphatic Endothelial Differentiation in Pulmonary Lymphangioleiomyomatosis Cells

    OpenAIRE

    Davis, Jennifer M.; Hyjek, Elizabeth; Husain, Aliya N.; Shen, Le; Jones, Jennifer; Schuger, Lucia A.

    2013-01-01

    Pulmonary lymphangioleiomyomatosis (LAM) is a rare, low-grade neoplasm affecting almost exclusively women of childbearing age. LAM belongs to the family of perivascular epithelioid cell tumors, characterized by spindle and epithelioid cells with smooth muscle and melanocytic differentiation. LAM cells infiltrate the lungs, producing multiple, bilateral lesions rich in lymphatic channels and forming cysts, leading to respiratory insufficiency. Here we used antibodies against four lymphatic end...

  17. Directed hepatic differentiation from embryonic stem cells

    OpenAIRE

    Chen, Xuesong; Zeng, Fanyi

    2011-01-01

    The liver is the largest internal organ in mammals, and is important for the maintenance of normal physiological functions of other tissues and organs. Hepatitis, cirrhosis, liver cancer and other chronic liver diseases are serious threats to human health, and these problems are compounded by a scarcity of liver donors for transplantation therapies. Directed differentiation of embryonic stem cells to liver cells is a promising strategy for obtaining hepatocytes that can be used for cell trans...

  18. Lymphatic endothelial differentiation in pulmonary lymphangioleiomyomatosis cells.

    Science.gov (United States)

    Davis, Jennifer M; Hyjek, Elizabeth; Husain, Aliya N; Shen, Le; Jones, Jennifer; Schuger, Lucia A

    2013-08-01

    Pulmonary lymphangioleiomyomatosis (LAM) is a rare, low-grade neoplasm affecting almost exclusively women of childbearing age. LAM belongs to the family of perivascular epithelioid cell tumors, characterized by spindle and epithelioid cells with smooth muscle and melanocytic differentiation. LAM cells infiltrate the lungs, producing multiple, bilateral lesions rich in lymphatic channels and forming cysts, leading to respiratory insufficiency. Here we used antibodies against four lymphatic endothelial markers-podoplanin (detected by D2-40), prospero homeobox 1 (PROX1), vascular endothelial growth factor receptor 3 (VEGFR-3), and lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1)-to determine whether LAM cells show lymphatic differentiation. Twelve of 12 diagnostic biopsy specimens (early-stage LAM) and 19 of 19 explants (late-stage LAM) showed immunopositivity for D2-40 in most neoplastic cells. PROX1, VEGFR-3, and LYVE1 immunoreactivity varied from scarce in the early stage to abundant in the late stage. Lymphatic endothelial, smooth muscle, and melanocytic markers were partially co-localized. These findings indicate that lymphatic endothelial differentiation is a feature of LAM and provide evidence of a previously unidentified third lineage of differentiation in this neoplasm. This study has implications for the histological diagnosis of LAM, the origin of the neoplastic cells, and potential future treatment with drugs targeting lymphangiogenesis. PMID:23609227

  19. Multipotent adult germ-line stem cells, like other pluripotent stem cells, can be killed by cytotoxic T lymphocytes despite low expression of major histocompatibility complex class I molecules

    Directory of Open Access Journals (Sweden)

    Nayernia Karim

    2009-08-01

    and if specific activated CTLs are present. Our results show that the adaptive immune system has in principle the capacity to kill pluripotent and teratoma forming stem cells. This finding might help to develop new strategies to increase the safety of future transplantations of in vitro differentiated cells by exploiting a selective immune response against contaminating undifferentiated cells. Reviewers This article was reviewed by Bhagirath Singh, Etienne Joly and Lutz Walter.

  20. Signaling involved in stem cell reprogramming and differentiation

    Institute of Scientific and Technical Information of China (English)

    Shihori; Tanabe

    2015-01-01

    Stem cell differentiation is regulated by multiple signaling events. Recent technical advances have reve-aled that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell pro-gramming are of major interest in stem cell research. The signaling mechanisms involved in regulating stem cell reprogramming and differentiation are the subject of intense study in the field of life sciences. In this review,the molecular interactions and signaling pathways related to stem cell differentiation are discussed.

  1. Stem cell regulation: Implications when differentiated cells regulate symmetric stem cell division.

    Science.gov (United States)

    Høyem, Marte Rørvik; Måløy, Frode; Jakobsen, Per; Brandsdal, Bjørn Olav

    2015-09-01

    We use a mathematical model to show that if symmetric stem cell division is regulated by differentiated cells, then changes in the population dynamics of the differentiated cells can lead to changes in the population dynamics of the stem cells. More precisely, the relative fitness of the stem cells can be affected by modifying the death rate of the differentiated cells. This result is interesting because stem cells are less sensitive than differentiated cells to environmental factors, such as medical therapy. Our result implies that stem cells can be manipulated indirectly by medical treatments that target the differentiated cells. PMID:25997796

  2. Transcriptome changes during intestinal cell differentiation

    DEFF Research Database (Denmark)

    Tadjali, Mehrdad; Seidelin, Jakob B; Olsen, Jørgen Lillelund;

    2002-01-01

    The expression of 18149 genes have been analysed during the differentiation of the human intestinal cell line Caco-2. cDNA probes from undifferentiated and differentiated Caco-2 cells were separately hybridised to EST DNAs spotted in an array on a nylon membrane. A remarkable change in the...... a general down-regulation of genes in the low abundance class. Similar results were found using mouse small intestinal crypt and villus cells, suggesting that the phenomenon also occurs in the intestine in vivo. The expression data were subsequently used in a search for markers for subsets of...... epithelial cells by performing reverse transcriptase-polymerase chain reaction on RNA extracted from laser dissected intestinal crypt and villi. In a screen of eight transcripts one - SART3 - was identified as a marker for human colonic crypts....

  3. Neuronal Differentiation of Human Mesenchymal Stem Cells Using Exosomes Derived from Differentiating Neuronal Cells

    OpenAIRE

    Takeda, Yuji S.; Qiaobing Xu

    2015-01-01

    Exosomes deliver functional proteins and genetic materials to neighboring cells, and have potential applications for tissue regeneration. One possible mechanism of exosome-promoted tissue regeneration is through the delivery of microRNA (miRNA). In this study, we hypothesized that exosomes derived from neuronal progenitor cells contain miRNAs that promote neuronal differentiation. We treated mesenchymal stem cells (MSCs) daily with exosomes derived from PC12 cells, a neuronal cell line, for 1...

  4. Overexpression of Hath1 induces production of hair cell-like cells in greater epithelial ridge cell cultures from postnatal rat cochlea%Hath1基因诱导新生大鼠大上皮嵴细胞形成毛细胞样细胞

    Institute of Scientific and Technical Information of China (English)

    张媛; 胡吟燕; 郭维; 翟所强

    2008-01-01

    Objective To investigate the effect of Hath1(human atonal homolog 1)overexpression on greater epithelial ridge (GER) cells from postnatal rat cochlea in vitro.Methods GER cells were isolated by using a combinatorial approach of enzymatic digestion and mechanical separation from P1 rat cochlear.The GER cell cultures were infected by adenovirus containing Hath1 and enhanced green fluorescent protein(ad-Hath1-EGFP),while transfecting EGFP(ad-EGFP) was as controls.Immunostaining were performed at different time points after adenovirus infection.Resuits Some of the infected GER cells became myosin Ⅶa-positive following ad-Hathl-EGFP infection.The earliest time point to see induction of hair cell differentiation(hair cell marker expression)by ad-Hath1 was 5 days post-infection.In contrast,infection of the GER sheet cultures with ad-EGFP control virus did not show any myosin Ⅶa-positive cells at 3-12 days post-infection in all cultures examined.Conclusions GER cells may potentially serve as hair cell progenitors and they are capable of difierentiating hair cell-like cells when forced to express Hath1.%目的 探讨Hathl(human atonal homolog 1)基因对大鼠耳蜗大上皮嵴(greater epithelialridge,GER)细胞的诱导分化作用.方法 取出牛后1 d大鼠耳蜗,利用酶消化和机械分离相结合的方法分离出GER细胞,并行体外培养.以腺病毒为载体,对GER细胞培养物进行Hath1基因和增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)基因(ad-Hath1-EGFP)的转染,单纯转染EGFP(ad-EGFP)作为对照组,对感染后不同灭数的标本行毛细胞特异性标记物myosin Ⅶa免疫组化染色鉴定.结果 ad-Hathl-EGFP组中的GER细胞中出现了myosin Ⅶa和EGFP双标记细胞,并且从感染后第5天开始出现myosin Ⅶa阳性细胞,随后阳性细胞的数量有所增加,但增加不明显;而ad-EGFP组感染后3~12 d的GER标本均未见myosin Ⅶa阳性细胞.结论 GER细胞可能是耳

  5. Differential white cell count by centrifugal microfluidics.

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    2010-07-01

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generation of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.

  6. Neuroendocrine differentiation of prostate cancer cells

    Czech Academy of Sciences Publication Activity Database

    Pernicová, Zuzana; Lincová, Eva; Staršíchová, Andrea; Kozubík, Alois; Souček, Karel

    Budapest, 2008. s. 194. [ISAC XXIV International Congress, Cytometry in the Age of Systems Biology. 17.05.2008-21.05.2008, Budapest] R&D Projects: GA ČR(CZ) GA204/07/0834 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : neuroendocrine differentiation * neuroendocrine-like cells * prostate cancer Subject RIV: BO - Biophysics

  7. GATA2 regulates dendritic cell differentiation.

    Science.gov (United States)

    Onodera, Koichi; Fujiwara, Tohru; Onishi, Yasushi; Itoh-Nakadai, Ari; Okitsu, Yoko; Fukuhara, Noriko; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2016-07-28

    Dendritic cells (DCs) are critical immune response regulators; however, the mechanism of DC differentiation is not fully understood. Heterozygous germ line GATA2 mutations induce GATA2-deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia/acute myeloid leukemia, and a profoundly reduced DC population, which is associated with increased susceptibility to viral infections, impaired phagocytosis, and decreased cytokine production. To define the role of GATA2 in DC differentiation and function, we studied Gata2 conditional knockout and haploinsufficient mice. Gata2 conditional deficiency significantly reduced the DC count, whereas Gata2 haploinsufficiency did not affect this population. GATA2 was required for the in vitro generation of DCs from Lin(-)Sca-1(+)Kit(+) cells, common myeloid-restricted progenitors, and common dendritic cell precursors, but not common lymphoid-restricted progenitors or granulocyte-macrophage progenitors, suggesting that GATA2 functions in the myeloid pathway of DC differentiation. Moreover, expression profiling demonstrated reduced expression of myeloid-related genes, including mafb, and increased expression of T-lymphocyte-related genes, including Gata3 and Tcf7, in Gata2-deficient DC progenitors. In addition, GATA2 was found to bind an enhancer element 190-kb downstream region of Gata3, and a reporter assay exhibited significantly reduced luciferase activity after adding this enhancer region to the Gata3 promoter, which was recovered by GATA sequence deletion within Gata3 +190. These results suggest that GATA2 plays an important role in cell-fate specification toward the myeloid vs T-lymphocyte lineage by regulating lineage-specific transcription factors in DC progenitors, thereby contributing to DC differentiation. PMID:27259979

  8. Differentiation of glioblastoma multiforme stem-like cells leads to downregulation of EGFR and EGFRvIII and decreased tumorigenic and stem-like cell potential

    DEFF Research Database (Denmark)

    Stockhausen, Marie-Thérése; Kristoffersen, Karina; Stobbe, Louise;

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common and devastating primary brain tumor among adults. Despite recent treatment progress, most patients succumb to their disease within 2 years of diagnosis. Current research has highlighted the importance of a subpopulation of cells, assigned brain...... cancer stem-like cells (bCSC), to play a pivotal role in GBM malignancy. bCSC are identified by their resemblance to normal neural stem cells (NSC), and it is speculated that the bCSC have to be targeted in order to improve treatment outcome for GBM patients. One hallmark of GBM is aberrant expression......, differentiation is induced. Furthermore, we show that differentiation leads to decreased tumorigenic and stem cell-like potential of the neurosphere cultures and that by specifically inhibiting EGFR signaling it is possible to target the bCSC population. Our results suggest that differentiation therapy, possibly...

  9. Proteomic cornerstones of hematopoietic stem cell differentiation

    DEFF Research Database (Denmark)

    Klimmeck, Daniel; Hansson, Jenny; Raffel, Simon;

    2012-01-01

    Regenerative tissues such as the skin epidermis, the intestinal mucosa or the hematopoietic system are organized in a hierarchical manner with stem cells building the top of this hierarchy. Somatic stem cells harbor the highest self-renewal activity and generate a series of multipotent progenitors...... which differentiate into lineage committed progenitors and subsequently mature cells. In this report, we applied an in-depth quantitative proteomic approach to analyze and compare the full proteomes of ex vivo isolated and FACS-sorted populations highly enriched for either multipotent hematopoietic stem....../progenitor cells (HSPCs, Lin(neg)Sca-1(+)c-Kit(+)) or myeloid committed precursors (Lin(neg)Sca-1(-)c-Kit(+)). By employing stable isotope dimethyl labeling and high-resolution mass spectrometry, more than 5,000 proteins were quantified. From biological triplicate experiments subjected to rigorous statistical...

  10. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    Science.gov (United States)

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  11. Signaling involved in stem cell reprogramming and differentiation

    OpenAIRE

    Tanabe, Shihori

    2015-01-01

    Stem cell differentiation is regulated by multiple signaling events. Recent technical advances have revealed that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell programming are of major interest in stem cell research. The signaling mechanisms involved in regulating stem cell reprogramming and differentiation are the subject of intense study in the field of life sciences. In this review, the molecular interactions and signaling pathways related to s...

  12. BASAL CELL CARCINOMA WITH ECCRINE DIFFERENTIATION: A RARE ENTITY

    Directory of Open Access Journals (Sweden)

    Divvya

    2014-05-01

    Full Text Available Basal cell carcinoma preferentially occurs in the face where the surgical excision with adequate margin is curative. Sometimes basal cell carcinoma is also reported rarely in other sites especially associated with basal cell carcinoma syndrome. The histological variants are Nodular basal cell carcinoma, Keratotic basal cell carcinoma, Adenoid basal cell carcinoma, Basal cell carcinoma with sebaceous differentiation. Of these variants, Basal cell carcinoma with eccrine differentiation is practically very rare.

  13. Differentiation of Bone Marrow Mesenchymal Cells to Neural Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To explore the possibility and condition of differentiation of bone marrow mesenchymal cells (BMSCs) to neural cells in vitro, BMSCs from whole bone marrow of rats were cultured. The BMSCs of passage 3 were identified with immunocytochemical staining of CD44 ( + ), CD71 ( + )and CD45(-). There were type Ⅰ and type Ⅱ cells in BMSCs. Type Ⅰ BMSCs were spindleshaped and strong positive in immunocytochemical staining of CD44 and CD71, whereas flat and big type Ⅱ BMSCs were lightly stained. The BMSCs of same passage were induced to differentiate into neural cells by β-mercaptoethanol (BME). After induction by BME, the type Ⅰ BMSCs withdrew to form neuron-like round soma and axon-like and dendrite-like processes, and were stained positively for neurofilament (NF). The type Ⅱ BMSCs did not change in the BME medium and were negatively or slightly stained of NF.

  14. Estradiol Receptors Regulate Differential Connexin 43 Expression in F98 and C6 Glioma Cell Lines.

    Directory of Open Access Journals (Sweden)

    Zahra Moinfar

    Full Text Available Glioma is the most common malignant primary brain tumour with male preponderance and poor prognosis. Glioma cells express variable amounts of connexin 43 (Cx43 and estrogen receptors (ERs. Both, Cx43 and ERs, play important roles in cell proliferation and migration. Therefore, we investigated the effects of 17-ß estradiol (E2 on Cx43 expression in two glioma cell lines with variable native expression of Cx43.F98 and C6 rat glioma cells were cultured for 24 h in the presence of 10 nM or 100 nM E2, and the E2-antagonist, Fulvestrant. An MTT assay was performed to evaluate cell viability. ERα, ERβ and Cx43 protein expressions were analysed by western blotting and Cx43 mRNA expression was analysed by real-time polymerase chain reaction. To quantify cell migration, an exclusive zone migration assay was used. Functional coupling of cells via gap junctions was examined using whole-cell patch-clamp technique.E2 reduced Cx43 expression in C6 cells, but increased Cx43 expression in F98 cultures. These effects were mediated via ERs. Moreover, E2 promoted C6 cell migration, but it did not affect F98 cell migration. The expression level of ERα was found to be high in C6, but low in F98 cells. ERβ was exclusively expressed in C6 cells. In addition, E2 treatment induced a significant decrease of ERβ in C6 cultures, while it decreased ERα expression in F98 glioma cells.These findings show that E2 differentially modulates Cx43 expression in F98 and C6 glioma cells, likely due to the differential expression of ERs in each of these cell lines. Our findings point to the molecular mechanisms that might contribute to the gender-specific differences in the malignancy of glioma and could have implications for therapeutic strategies against glioma.

  15. Effect of leukemia inhibitory factor on embryonic stem cell differentiation: implications for supporting neuronal differentiation

    Institute of Scientific and Technical Information of China (English)

    Zhao HE; Jing-jing LI; Chang-hong ZHEN; Lin-ying FENG; Xiao-yan DING

    2006-01-01

    Aim: Leukemia inhibitory factor (LIF), a pleiotropic cytokine, has been used extensively in the maintenance of mouse embryonic stem cell pluripotency. In this current work, we examined the effect of the LIF signaling pathway in embryonic stem (ES) cell differentiation to a neural fate. Methods: In the presence of LIF (1000 U/mL), the production of neuronal cells derived from embryoid bodies (EB)was tested under various culture conditions. Inhibition of the LIF pathway was examined with specific inhibitors. The effects of cell apoptosis and proliferation on neural differentiation were examined. ES cell differentiation into three-gem layers was compared. Results: Under various culture conditions, neuronal differentiation was increased in the presence of LIF. Blocking the LIF-activated STAT3signaling pathway with specific inhibitors abolished the neuronal differentiation of ES cells, whereas inhibition of the LIF-activated MEK signaling pathway impaired the differentiation of ES cells toward a glial fate. LIF suppressed cell apoptosis and promoted cell proliferation during ES cell differentiation. LIF inhibited the differentiation of ES cells to both mesoderm and extraembryonic endoderm fates, but enhanced the determination of neural progenitors. Conclusion:These results suggest that LIF plays a positive role during the differentiation of ES cells into neuronal cells.

  16. Probing stem cell differentiation using atomic force microscopy

    Science.gov (United States)

    Liang, Xiaobin; Shi, Xuetao; Ostrovidov, Serge; Wu, Hongkai; Nakajima, Ken

    2016-03-01

    A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  17. A simple tool to improve pluripotent stem cell differentiation

    OpenAIRE

    Chetty, Sundari; Pagliuca, Felicia Walton; Honore, Christian; Kweudjeu, Anastasie; Rezania, Alireza; Melton, Douglas A.

    2013-01-01

    We develop a method to overcome previously documented restrictions on the differentiation propensities of pluripotent stem cells. Culturing pluripotent stem cells in dimethylsulfoxide (DMSO) activates the retinoblastoma protein, increases the proportion of cells in the early G1 phase of the cell cycle, and subsequently improves their competency for directed differentiation into multiple lineages in more than 25 stem cell lines. DMSO treatment also promotes terminal differentiation into functi...

  18. Neuroendocrine differentiation of prostate cancer cells

    Czech Academy of Sciences Publication Activity Database

    Souček, Karel; Pernicová, Zuzana; Lincová, Eva; Staršíchová, Andrea; Kozubík, Alois

    2008-01-01

    Roč. 102, č. 5 (2008), s. 393. ISSN 0009-2770. [Mezioborové setkání mladých biologů, biochemiků a chemiků. Konference Sigma-Aldrich /8./. 10.06.2008-13.06.2008, Devět skal - Žďárské vrchy] R&D Projects: GA ČR(CZ) GA204/07/0834; GA ČR(CZ) GA310/07/0961 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : neuroendocrine differentiation * prostate cancer * neuroendocrine-like cells Subject RIV: BO - Biophysics

  19. 人大细胞肺癌干细胞样细胞的富集及其功能研究%Enrichment and Function Research of Large Cell Lung Cancer Stem Cell-like Cells

    Institute of Scientific and Technical Information of China (English)

    月文科; 焦锋; 刘彬; 尤嘉琮; 周清华

    2011-01-01

    Background and objective There are no universal method to recognize and screen for lung cancer stem cell markers and indicators.Commonly used methods are flow Cytometry and learning from other cancer stem cell sorting tags to sort lung cancer stem cells.But this method has low specificity screening, the workload is huge.In this study, Serum-free suspension culture was used to enrich lung cancer stem cells, and explore method for lung cancer stem cell screening.Methods Human large lung cancer cell line-L9981 was cultured in serum-free and growth factors added medium, and spheres were obtained.Then the morphological differences of sphere cells and adherent L9981 cells cultured in serum-containing mediums are observed.Cell proliferation was analyzed by Vi-cell viability analyzer; invasion ability was tested by transwell assay; and in vivo tumorigenicity of the two groups of cells was studied in nude mouse.Results Compared with adherent L9981 cells cultured in serum-containing mediums, cells cultured in serum-free medium display sphere appearance.Doubling time of adherent cells and sphere cells are (56.05±1.95) h and (33.00±1.44) h respectively; Spheroid cells had higher invasion and tumorigenicity ability, 5 times and 20 times respectively, than adherent cells.Conclusion Suspension cultured L9981 in Serum-free medium could form spheroid populations.Cells in spheres had higher ability of invasion and Tumorigenicity than adherent L9981 cells.These results indicated spheroid L9981 cells contained enriched lung cancer stem cells, and Serum-free suspension culture can be a candidate method for enriching lung cancer stem cell.%背景与目的 目前国内外还没有确切的、得到公认的肺癌干细胞的筛选标记分子、指标和方法,常用方法 为通过流式细胞技术,借鉴其他肿瘤干细胞分选标记来分选肺癌干细胞,但其筛选特异性低、工作量巨大.本研究采用无血清悬浮培养法富集肺癌干细胞,对

  20. Identification of Biological Characteristics of Mesenchymal Stem Cell-like Cells from Laryngeal Mucos in Beagle%比格犬会厌黏膜来源干细胞的分离培养与生物学特性鉴定

    Institute of Scientific and Technical Information of China (English)

    梁媛媛; 韩鹏; 杨润琴; 刘阳; 邓志宏

    2013-01-01

    isolated cells expressed the marker CD29 of mesenchymal stem cells,but not CD34.After being cultured in inducing medias,the isolated cells could differentiate into adipocytes and osteoblasts.Conclusions:Mesenchymal stem cell-like cells existed in laryngeal mucosa of beagle,and these cells may be useful for the research of laryngeal keloid and laryngeal tissueen gineering.

  1. Differentiation potential of the fetal rat liver-derived cells.

    OpenAIRE

    Zygmunt Pojda; Jerzy Moraczewski; Tomasz Oldak; Marzena Jastrzewska; Agnieszka Gajkowska; Iwona Grabowska; Eugeniusz K Machaj

    2005-01-01

    Mesenchymal stem cells derived from bone marrow or several fetal tissues can be expanded and differentiated into other cell lines. The fetal liver is the source of early hematopoietic cells and also, as a fetal tissue, may be considered as a source of pluripotent stem cells. The differentiation potential of fetal rat liver cells have been examined. Freshly isolated liver cells from 14-d fetuses were cultured in Dulbecco medium supplemented with 10% FCS. The plastic-adherent cells were then pa...

  2. Soft matrix supports osteogenic differentiation of human dental follicle cells

    Energy Technology Data Exchange (ETDEWEB)

    Viale-Bouroncle, Sandra; Voellner, Florian [Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Regensburg (Germany); Moehl, Christoph; Kuepper, Kevin [Institute of Complex Systems, ICS7: Biomechanics, Forschungszentrum Juelich, Juelich (Germany); Brockhoff, Gero [Department of Gynecology and Obstetrics, University of Regensburg (Germany); Reichert, Torsten E. [Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg (Germany); Schmalz, Gottfried [Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Regensburg (Germany); Morsczeck, Christian, E-mail: christian.morsczeck@klinik.uni-regensburg.de [Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Regensburg (Germany)

    2011-07-08

    Highlights: {yields} Rigid stiffness supports osteogenic differentiation in mesenchymal stem cells (MSCs). {yields} Our study examined stiffness and differentiation of dental follicle cells (DFCs). {yields} Soft ECMs have a superior capacity to support the osteogenic differentiation of DFCs. {yields} DFCs and MSCs react contrarily to soft and rigid surface stiffness. -- Abstract: The differentiation of stem cells can be directed by the grade of stiffness of the developed tissue cells. For example a rigid extracellular matrix supports the osteogenic differentiation in bone marrow derived mesenchymal stem cells (MSCs). However, less is known about the relation of extracellular matrix stiffness and cell differentiation of ectomesenchymal dental precursor cells. Our study examined for the first time the influence of the surface stiffness on the proliferation and osteogenic differentiation of human dental follicle cells (DFCs). Cell proliferation of DFCs was only slightly decreased on cell culture surfaces with a bone-like stiffness. The osteogenic differentiation in DFCs could only be initiated with a dexamethasone based differentiation medium after using varying stiffness. Here, the softest surface improved the induction of osteogenic differentiation in comparison to that with the highest stiffness. In conclusion, different to bone marrow derived MSCs, soft ECMs have a superior capacity to support the osteogenic differentiation of DFCs.

  3. Soft matrix supports osteogenic differentiation of human dental follicle cells

    International Nuclear Information System (INIS)

    Highlights: → Rigid stiffness supports osteogenic differentiation in mesenchymal stem cells (MSCs). → Our study examined stiffness and differentiation of dental follicle cells (DFCs). → Soft ECMs have a superior capacity to support the osteogenic differentiation of DFCs. → DFCs and MSCs react contrarily to soft and rigid surface stiffness. -- Abstract: The differentiation of stem cells can be directed by the grade of stiffness of the developed tissue cells. For example a rigid extracellular matrix supports the osteogenic differentiation in bone marrow derived mesenchymal stem cells (MSCs). However, less is known about the relation of extracellular matrix stiffness and cell differentiation of ectomesenchymal dental precursor cells. Our study examined for the first time the influence of the surface stiffness on the proliferation and osteogenic differentiation of human dental follicle cells (DFCs). Cell proliferation of DFCs was only slightly decreased on cell culture surfaces with a bone-like stiffness. The osteogenic differentiation in DFCs could only be initiated with a dexamethasone based differentiation medium after using varying stiffness. Here, the softest surface improved the induction of osteogenic differentiation in comparison to that with the highest stiffness. In conclusion, different to bone marrow derived MSCs, soft ECMs have a superior capacity to support the osteogenic differentiation of DFCs.

  4. Differentiating intratumoral melanocytes from Langerhans cells in nonmelanocytic pigmented skin tumors in vivo by label-free third-harmonic generation microscopy

    Science.gov (United States)

    Weng, Wei-Hung; Liao, Yi-Hua; Tsai, Ming-Rung; Wei, Ming-Liang; Huang, Hsin-Yi; Sun, Chi-Kuang

    2016-07-01

    Morphology and distribution of melanocytes are critical imaging information for the diagnosis of melanocytic lesions. However, how to image intratumoral melanocytes noninvasively in pigmented skin tumors is seldom investigated. Third-harmonic generation (THG) is shown to be enhanced by melanin, whereas high accuracy has been demonstrated using THG microscopy for in vivo differential diagnosis of nonmelanocytic pigmented skin tumors. It is thus desirable to investigate if label-free THG microscopy was capable to in vivo identify intratumoral melanocytes. In this study, histopathological correlations of label-free THG images with the immunohistochemical images stained with human melanoma black (HMB)-45 and cluster of differentiation 1a (CD1a) were made. The correlation results indicated that the intratumoral THG-bright dendritic-cell-like signals were endogenously derived from melanocytes rather than Langerhans cells (LCs). The consistency between THG-bright dendritic-cell-like signals and HMB-45 melanocyte staining showed a kappa coefficient of 0.807, 84.6% sensitivity, and 95% specificity. In contrast, a kappa coefficient of -0.37, 21.7% sensitivity, and 30% specificity were noted between the THG-bright dendritic-cell-like signals and CD1a staining for LCs. Our study indicates the capability of noninvasive label-free THG microscopy to differentiate intratumoral melanocytes from LCs, which is not feasible in previous in vivo label-free clinical-imaging modalities.

  5. B cells help alloreactive T cells differentiate into memory T cells1

    OpenAIRE

    Ng, Yue-Harn; Oberbarnscheidt, Martin H.; Chandramoorthy, Harish Chinna Konda; Hoffman, Rosemary; Chalasani, Geetha

    2010-01-01

    B cells are recognized as effector cells in allograft rejection that are dependent upon T cell help to produce alloantibodies causing graft injury. It is not known if B cells can also help T cells differentiate into memory cells in the alloimmune response. We found that in B cell-deficient hosts, differentiation of alloreactive T cells into effectors was intact whereas their development into memory T cells was impaired. To test if B cell help for T cells was required for their continued diffe...

  6. Accumulation of differentiating intestinal stem cell progenies drives tumorigenesis

    OpenAIRE

    Zhai, Zongzhao; Kondo, Shu; Ha, Nati; Boquete, Jean-Philippe; Brunner, Michael; Ueda, Ryu; Lemaitre, Bruno

    2015-01-01

    Stem cell self-renewal and differentiation are coordinated to maintain tissue homeostasis and prevent cancer. Mutations causing stem cell proliferation are traditionally the focus of cancer studies. However, the contribution of the differentiating stem cell progenies in tumorigenesis is poorly characterized. Here we report that loss of the SOX transcription factor, Sox21a, blocks the differentiation programme of enteroblast (EB), the intestinal stem cell progeny in the adult Drosophila midgut...

  7. PEM fuel cell modeling using differential evolution

    International Nuclear Information System (INIS)

    This paper develops a differential-evolution-based solution for the problem of proton exchange membrane fuel cell stack modeling. The problem is analytically intractable and computationally hard. The present paper produces results that outperform state-of-the-art approaches on three performance metrics: solution quality corresponding to a given cost, cost of finding a solution of a given quality, and frequency of producing an optimal or near-optimal solution. -- Highlights: ► Provides a new solution approach to the PEMFC modeling problem which is an optimization problem of great practical importance. ► The present method provides solutions that are better than those produced by the best-known approaches in the literature. ► The present method outperforms the state-of-the-art approach on three performance metrics.

  8. Cellular Adjuvant Properties, Direct Cytotoxicity of Re-differentiated Vα24 Invariant NKT-like Cells from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Shuichi Kitayama

    2016-02-01

    Full Text Available Vα24 invariant natural killer T (iNKT cells are a subset of T lymphocytes implicated in the regulation of broad immune responses. They recognize lipid antigens presented by CD1d on antigen-presenting cells and induce both innate and adaptive immune responses, which enhance effective immunity against cancer. Conversely, reduced iNKT cell numbers and function have been observed in many patients with cancer. To recover these numbers, we reprogrammed human iNKT cells to pluripotency and then re-differentiated them into regenerated iNKT cells in vitro through an IL-7/IL-15-based optimized cytokine combination. The re-differentiated iNKT cells showed proliferation and IFN-γ production in response to α-galactosylceramide, induced dendritic cell maturation and downstream activation of both cytotoxic T lymphocytes and NK cells, and exhibited NKG2D- and DNAM-1-mediated NK cell-like cytotoxicity against cancer cell lines. The immunological features of re-differentiated iNKT cells and their unlimited availability from induced pluripotent stem cells offer a potentially effective immunotherapy against cancer.

  9. Cellular Adjuvant Properties, Direct Cytotoxicity of Re-differentiated Vα24 Invariant NKT-like Cells from Human Induced Pluripotent Stem Cells

    Science.gov (United States)

    Kitayama, Shuichi; Zhang, Rong; Liu, Tian-Yi; Ueda, Norihiro; Iriguchi, Shoichi; Yasui, Yutaka; Kawai, Yohei; Tatsumi, Minako; Hirai, Norihito; Mizoro, Yasutaka; Iwama, Tatsuaki; Watanabe, Akira; Nakanishi, Mahito; Kuzushima, Kiyotaka; Uemura, Yasushi; Kaneko, Shin

    2016-01-01

    Summary Vα24 invariant natural killer T (iNKT) cells are a subset of T lymphocytes implicated in the regulation of broad immune responses. They recognize lipid antigens presented by CD1d on antigen-presenting cells and induce both innate and adaptive immune responses, which enhance effective immunity against cancer. Conversely, reduced iNKT cell numbers and function have been observed in many patients with cancer. To recover these numbers, we reprogrammed human iNKT cells to pluripotency and then re-differentiated them into regenerated iNKT cells in vitro through an IL-7/IL-15-based optimized cytokine combination. The re-differentiated iNKT cells showed proliferation and IFN-γ production in response to α-galactosylceramide, induced dendritic cell maturation and downstream activation of both cytotoxic T lymphocytes and NK cells, and exhibited NKG2D- and DNAM-1-mediated NK cell-like cytotoxicity against cancer cell lines. The immunological features of re-differentiated iNKT cells and their unlimited availability from induced pluripotent stem cells offer a potentially effective immunotherapy against cancer. PMID:26862702

  10. Downregulation of rRNA transcription triggers cell differentiation.

    Directory of Open Access Journals (Sweden)

    Yuki Hayashi

    Full Text Available Responding to various stimuli is indispensable for the maintenance of homeostasis. The downregulation of ribosomal RNA (rRNA transcription is one of the mechanisms involved in the response to stimuli by various cellular processes, such as cell cycle arrest and apoptosis. Cell differentiation is caused by intra- and extracellular stimuli and is associated with the downregulation of rRNA transcription as well as reduced cell growth. The downregulation of rRNA transcription during differentiation is considered to contribute to reduced cell growth. However, the downregulation of rRNA transcription can induce various cellular processes; therefore, it may positively regulate cell differentiation. To test this possibility, we specifically downregulated rRNA transcription using actinomycin D or a siRNA for Pol I-specific transcription factor IA (TIF-IA in HL-60 and THP-1 cells, both of which have differentiation potential. The inhibition of rRNA transcription induced cell differentiation in both cell lines, which was demonstrated by the expression of the common differentiation marker CD11b. Furthermore, TIF-IA knockdown in an ex vivo culture of mouse hematopoietic stem cells increased the percentage of myeloid cells and reduced the percentage of immature cells. We also evaluated whether differentiation was induced via the inhibition of cell cycle progression because rRNA transcription is tightly coupled to cell growth. We found that cell cycle arrest without affecting rRNA transcription did not induce differentiation. To the best of our knowledge, our results demonstrate the first time that the downregulation of rRNA levels could be a trigger for the induction of differentiation in mammalian cells. Furthermore, this phenomenon was not simply a reflection of cell cycle arrest. Our results provide a novel insight into the relationship between rRNA transcription and cell differentiation.

  11. Proteomic analysis of osteogenic differentiation of dental follicle precursor cells

    DEFF Research Database (Denmark)

    Morsczeck, Christian; Petersen, Jørgen; Völlner, Florian;

    2009-01-01

    Recently, there has been an increased interest in unravelling the molecular mechanisms and cellular pathways controlling the differentiation and proliferation of human stem cell lines. Proteome analysis has proven to be an effective approach to comprehensive analysis of the regulatory network of...... after osteogenic differentiation. We also identified regulatory proteins, such as the transcription factors TP53 and Sp-1, associated with the differentiation process. Further studies will investigate the impact of identified regulatory proteins for cell proliferation and osteogenic differentiation in...... differentiation. In the present study we applied 2-DE combined with capillary-LC-MS/MS analysis to profile differentially regulated proteins upon differentiation of dental follicle precursor cells (DFPCs). Out of 115 differentially regulated proteins, glutamine synthetase, lysosomal proteinase cathepsin B...

  12. Human invariant NKT cell subsets differentially promote differentiation, antibody production, and T cell stimulation by B cells in vitro.

    OpenAIRE

    O'Reilly, Vincent

    2013-01-01

    PUBLISHED Invariant NK T (iNKT) cells can provide help for B cell activation and Ab production. Because B cells are also capable of cytokine production, Ag presentation, and T cell activation, we hypothesized that iNKT cells will also influence these activities. Furthermore, subsets of iNKT cells based on CD4 and CD8 expression that have distinct functional activities may differentially affect B cell functions. We investigated the effects of coculturing expanded human CD4(+), CD8α(+), and ...

  13. MicroRNA-100-5p indirectly modulates the expression of Il6, Ptgs1/2 and Tlr4 mRNA in the mouse follicular dendritic cell-like cell line, FL-Y

    OpenAIRE

    Aungier, Susan; Ohmori, Hitoshi; Clinton, Mike; Mabbott, Neil

    2014-01-01

    Follicular dendritic cells (FDC) are important stromal cells within the B-cell follicles and germinal centres (GC) of secondary lymphoid tissues. FDC trap and retain native antigens on their surfaces in the form of immune complexes that they display to B cells, in order to select those cells with the highest antigen affinity. MicroRNAs are short, non-coding RNAs that are approximately 18–25 nucleotides in length that regulate gene expression at the post-transcriptional level by repressing the...

  14. Pathways in pluripotency and differentiation of embryonic cells

    OpenAIRE

    du Puy, L.

    2010-01-01

    Pluripotency - the potential to differentiate into derivatives of the three embryonic germ layers endoderm, ectoderm and mesoderm - is the main characteristic of embryonic stem (ES) cells. ES cells are derived from the inner cell mass (ICM) of a pre-implantation blastocyst and can self-renew indefinitely in culture. Because of their differentiation capabilities, ES cells can potentially be used in cell-based therapies in human medicine as well as for toxicology screening and drug testing. Mor...

  15. Phenazopyridine induces and synchronizes neuronal differentiation of embryonic stem cells.

    Science.gov (United States)

    Suter, David M; Preynat-Seauve, Olivier; Tirefort, Diderik; Feki, Anis; Krause, Karl-Heinz

    2009-09-01

    Embryonic stem (ES) cells are powerful tools to understand mechanisms of neuronal differentiation and to engineer neurons for in vitro studies and cell therapy. We developed a screening approach to identify small organic molecules driving neuronal differentiation of ES cells. For this purpose, we used a lentivector carrying a dual luciferase reporter system to engineer an ES cell line which allowed us to screen for small organic molecules enhancing neuronal differentiation. One of them, phenazopyridine, was further analysed in human ES cells. Phenazopyridine: (i) enhanced neuronal differentiation, (ii) increased cell survival, (iii) decreased the amount of non-neuronal and undifferentiated cells and (iv) synchronized the cellular differentiation state. Phenazopyridine allowed the development of a differentiation protocol compatible with the generation of clinical grade neural precursors, which were able differentiate into different neuronal subtypes, astrocytes and oligodendrocytes. In summary, we describe a powerful approach to identify small molecules directing stem cell differentiation. This led to the establishment of a new application for an old drug and the development of a novel clinical grade protocol for neuronal differentiation of ES cells. PMID:20196783

  16. Differential Effects of Tacrolimus versus Sirolimus on the Proliferation, Activation and Differentiation of Human B Cells

    OpenAIRE

    Traitanon, Opas; Mathew, James M.; La Monica, Giovanna; Xu, Luting; Mas, Valeria; Gallon, Lorenzo

    2015-01-01

    The direct effect of immunosuppressive drugs calcineurin inhibitor (Tacrolimus, TAC) and mTOR inhibitor (Sirolimus, SRL) on B cell activation, differentiation and proliferation is not well documented. Purified human B cells from healthy volunteers were stimulated through the B Cell Receptor with Anti-IgM + anti-CD40 + IL21 in the absence / presence of TAC or SRL. A variety of parameters of B cell activity including activation, differentiation, cytokine productions and proliferation were monit...

  17. The concept of radiation-enhanced stem cell differentiation

    International Nuclear Information System (INIS)

    Efficient stem cell differentiation is considered to be the holy grail of regenerative medicine. Pursuing the most productive method of directed differentiation has been the subject of numerous studies, resulting in the development of many effective protocols. However, the necessity for further improvement in differentiation efficiency remains. This review contains a description of molecular processes underlying the response of stem cells to ionizing radiation, indicating its potential application in differentiation procedures. In the first part, the radiation-induced damage response in various types of stem cells is described. Second, the role of the p53 protein in embryonic and adult stem cells is highlighted. Last, the hypothesis on the mitochondrial involvement in stem cell development including its response to ionizing radiation is presented. In summary, despite the many threats of ionizing radiation concerning genomic instability, subjecting cells to the appropriate dosage of ionizing radiation may become a useful method for enhancing directed differentiation in certain stem cell types

  18. A Truncated form of CD200 (CD200S) Expressed on Glioma Cells Prolonged Survival in a Rat Glioma Model by Induction of a Dendritic Cell-Like Phenotype in Tumor-Associated Macrophages12

    Science.gov (United States)

    Kobayashi, Kana; Yano, Hajime; Umakoshi, Akihiro; Matsumoto, Shirabe; Mise, Ayano; Funahashi, Yu; Ueno, Yoshitomo; Kamei, Yoshiaki; Takada, Yasutsugu; Kumon, Yoshiaki; Ohnishi, Takanori; Tanaka, Junya

    2016-01-01

    CD200 induces immunosuppression in myeloid cells expressing its receptor CD200R, which may have consequences for tumor immunity. We found that human carcinoma tissues express not only full-length CD200 (CD200L) but also its truncated form, CD200S. Although CD200S is reported to antagonize the immunosuppressive actions of CD200L, the role of CD200S in tumor immunity has never been investigated. We established rat C6 glioma cell lines that expressed either CD200L or CD200S; the original C6 cell line did not express CD200 molecules. The cell lines showed no significant differences in growth. Upon transplantation into the neonatal Wistar rat forebrain parenchyma, rats transplanted with C6-CD200S cells survived for a significantly longer period than those transplanted with the original C6 and C6-CD200L cells. The C6-CD200S tumors were smaller than the C6-CD200L or C6-original tumors, and many apoptotic cells were found in the tumor cell aggregates. Tumor-associated macrophages (TAMs) in C6-CD200S tumors displayed dendritic cell (DC)-like morphology with multiple processes and CD86 expression. Furthermore, CD3+, CD4+ or CD8+ cells were more frequently found in C6-CD200S tumors, and the expression of DC markers, granzyme, and perforin was increased in C6-CD200S tumors. Isolated TAMs from original C6 tumors were co-cultured with C6-CD200S cells and showed increased expression of DC markers. These results suggest that CD200S activates TAMs to become DC-like antigen presenting cells, leading to the activation of CD8+ cytotoxic T lymphocytes, which induce apoptotic elimination of tumor cells. The findings on CD200S action may provide a novel therapeutic modality for the treatment of carcinomas. PMID:27108386

  19. A Truncated form of CD200 (CD200S Expressed on Glioma Cells Prolonged Survival in a Rat Glioma Model by Induction of a Dendritic Cell-Like Phenotype in Tumor-Associated Macrophages

    Directory of Open Access Journals (Sweden)

    Kana Kobayashi

    2016-04-01

    Full Text Available CD200 induces immunosuppression in myeloid cells expressing its receptor CD200R, which may have consequences for tumor immunity. We found that human carcinoma tissues express not only full-length CD200 (CD200L but also its truncated form, CD200S. Although CD200S is reported to antagonize the immunosuppressive actions of CD200L, the role of CD200S in tumor immunity has never been investigated. We established rat C6 glioma cell lines that expressed either CD200L or CD200S; the original C6 cell line did not express CD200 molecules. The cell lines showed no significant differences in growth. Upon transplantation into the neonatal Wistar rat forebrain parenchyma, rats transplanted with C6-CD200S cells survived for a significantly longer period than those transplanted with the original C6 and C6-CD200L cells. The C6-CD200S tumors were smaller than the C6-CD200L or C6-original tumors, and many apoptotic cells were found in the tumor cell aggregates. Tumor-associated macrophages (TAMs in C6-CD200S tumors displayed dendritic cell (DC-like morphology with multiple processes and CD86 expression. Furthermore, CD3+, CD4+ or CD8+ cells were more frequently found in C6-CD200S tumors, and the expression of DC markers, granzyme, and perforin was increased in C6-CD200S tumors. Isolated TAMs from original C6 tumors were co-cultured with C6-CD200S cells and showed increased expression of DC markers. These results suggest that CD200S activates TAMs to become DC-like antigen presenting cells, leading to the activation of CD8+ cytotoxic T lymphocytes, which induce apoptotic elimination of tumor cells. The findings on CD200S action may provide a novel therapeutic modality for the treatment of carcinomas.

  20. Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division.

    NARCIS (Netherlands)

    Giebel, B.; Zhang, T.; Beckmann, J.; Spanholtz, J.; Wernet, P.; Ho, A.; Punzel, M.

    2006-01-01

    It is often predicted that stem cells divide asymmetrically, creating a daughter cell that maintains the stem-cell capacity, and 1 daughter cell committed to differentiation. While asymmetric stem-cell divisions have been proven to occur in model organisms (eg, in Drosophila), it remains illusive wh

  1. Non-genetic heterogeneity, criticality and cell differentiation

    International Nuclear Information System (INIS)

    The different cell types in a living organism acquire their identity through the process of cell differentiation in which multipotent progenitor cells differentiate into distinct cell types. Experimental evidence and analysis of large-scale microarray data establish the key role played by a two-gene motif in cell differentiation in a number of cell systems. The two genes express transcription factors which repress each other's expression and autoactivate their own production. A number of theoretical models have recently been proposed based on the two-gene motif to provide a physical understanding of how cell differentiation occurs. In this paper, we study a simple model of cell differentiation which assumes no cooperativity in the regulation of gene expression by the transcription factors. The latter repress each other's activity directly through DNA binding and indirectly through the formation of heterodimers. We specifically investigate how deterministic processes combined with stochasticity contribute in bringing about cell differentiation. The deterministic dynamics of our model give rise to a supercritical pitchfork bifurcation from an undifferentiated stable steady state to two differentiated stable steady states. The stochastic dynamics of our model are studied using the approaches based on the Langevin equations and the linear noise approximation. The simulation results provide a new physical understanding of recent experimental observations. We further propose experimental measurements of quantities like the variance and the lag-1 autocorrelation function in protein fluctuations as the early signatures of an approaching bifurcation point in the cell differentiation process. (paper)

  2. BASAL CELL CARCINOMA WITH ECCRINE DIFFERENTIATION: A RARE ENTITY

    OpenAIRE

    Divvya; Rehana; Viswanathan; Krishnaswamy; Anvar Ali

    2014-01-01

    Basal cell carcinoma preferentially occurs in the face where the surgical excision with adequate margin is curative. Sometimes basal cell carcinoma is also reported rarely in other sites especially associated with basal cell carcinoma syndrome. The histological variants are Nodular basal cell carcinoma, Keratotic basal cell carcinoma, Adenoid basal cell carcinoma, Basal cell carcinoma with sebaceous differentiation. Of these variants, Basal cell carcinoma with eccrine differen...

  3. Cell-cell and cell-stromal interactions in differentiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Medina, D.; Huberman, E.

    1987-01-01

    Differentiation and proliferation of tumor cells can be modulated by direct cell contact and by diffusable macromolecules produced by stromal cells. The expression of specific functions of stromal, as well as epithelial cells can be influenced by specific inducers that can modulate synthesis and secretion of growth factors, extracellular matrix molecules and cell surface molecules. The end result of such alterations of stromal cell function is a decrease in proliferation and/or increase in differentiative properties of the tumor cell. The important factors in normal prostate gland differentiation are not well defined, whereas a variety of molecules have been defined in mammary gland and hematopoetic growth and differentiation. It is important to recognize that the induction of differentiation in epithelial systems does not automatically signify an alteration in tumorigenesis, much less prove the importance of cell-cell interactions in differentiation of epithelial tumors. Although there are reports of regression of tumors in strong embryonic fields or in regenerating fields and isolated reports of non-neural epithelial tumors converting to benign growth when placed in heterotypic cellular interactions, what is desperately needed is convincing evidence in well-documented model systems that specific induction of differentiated function in epithelial tumors occurs and that the phenomenon operates under the same fundamental laws that regulate cell differentiation in normal development. Until such results can be demonstrated and accepted widely, the concept of differentiation therapy will only be applicable to specialized cases like hematopoetic tumors and teratocarcinomas. To simply demonstrate that an inducer generates a differentiated response in a tumor cell population is not sufficient to argue that growth and tumorigenicity will be compromised. 96 refs.

  4. Specific differentiation of mesenchymal stem cells by small molecules

    OpenAIRE

    Song, Heesang; Chang, Woochul; Song, Byeong-Wook; Hwang, Ki-Chul

    2011-01-01

    Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells harboring multi-lineage differentiation potential and immunosuppressive properties that make them an attractive candidate for biological cell-based regenerative medicine. In addition to its undoubted clinical interest, controlling the fate and behaviors of MSCs is a crucial prerequisite for their therapeutic applications in regenerative medicine. Stem cell differentiation and modulation of functional activities are generally c...

  5. Cytokine signaling in the differentiation of innate effector cells

    OpenAIRE

    Huang, Hua; Li, Yapeng; Qi, Xiaopeng

    2013-01-01

    Innate effector cells, including innate effector cells of myeloid and lymphoid lineages, are crucial components of various types of immune responses. Bone marrow progenitors differentiate into many subsets of innate effector cells after receiving instructional signals often provided by cytokines. Signal transducer and activator of transcription (STATs) have been shown to be essential in the differentiation of various types of innate effector cells. In this review, we focus specifically on the...

  6. The transcriptional landscape of alpha beta T cell differentiation

    NARCIS (Netherlands)

    Mingueneau, Michael; Kreslavsky, Taras; Gray, Daniel; Heng, Tracy; Cruse, Richard; Ericson, Jeffrey; Bendall, Sean; Spitzer, Matt; Nolan, Garry; Kobayashi, Koichi; von Boehmer, Harald; Mathis, Diane; Benoist, Christophe; Best, Adam J.; Knell, Jamie; Goldrath, Ananda; Jojic, Vladimir; Koller, Daphne; Shay, Tal; Regev, Aviv; Cohen, Nadia; Brennan, Patrick; Brenner, Michael; Kim, Francis; Rao, Tata Nageswara; Wagers, Amy; Heng, Tracy; Ericson, Jeffrey; Rothamel, Katherine; Ortiz-Lopez, Adriana; Mathis, Diane; Bezman, Natalie A.; Sun, Joseph C.; Min-Oo, Gundula; Kim, Charlie C.; Lanier, Lewis L.; Miller, Jennifer; Brown, Brian; Merad, Miriam; Gautier, Emmanuel L.; Jakubzick, Claudia; Randolph, Gwendalyn J.; Monach, Paul; Blair, David A.; Dustin, Michael L.; Shinton, Susan A.; Hardy, Richard R.; Laidlaw, David; Collins, Jim; Gazit, Roi; Rossi, Derrick J.; Malhotra, Nidhi; Sylvia, Katelyn; Kang, Joonsoo; Kreslavsky, Taras; Fletcher, Anne; Elpek, Kutlu; Bellemare-Pelletier, Angelique; Malhotra, Deepali; Turley, Shannon

    2013-01-01

    The differentiation of abT cells from thymic precursors is a complex process essential for adaptive immunity. Here we exploited the breadth of expression data sets from the Immunological Genome Project to analyze how the differentiation of thymic precursors gives rise to mature T cell transcriptomes

  7. RESEARCH OF DIFFERENTIATED XYLEM CELLS BASED ON FRACTAL DIMENSION

    OpenAIRE

    Enhua Xi; Guangjie Zhao

    2011-01-01

    This study considers the fractal characteristics of differentiated xylem cells of the fast-growing Populus×euramericana cv. ‘74 /76’ during the active phase by the method of differential box-counting fractal dimension. The fractal characteristics of differentiated xylem cells as well as the relationship between fractal dimension and tissues proportion were considered. Results showed that the fractal dimensions of cross sections were larger than those of tangential sections. Fractal dimension ...

  8. Electrical Property Characterization of Neural Stem Cells in Differentiation

    Science.gov (United States)

    Sun, He; Chen, Deyong; Li, Zhaohui; Fan, Beiyuan; George, Julian; Xue, Chengcheng; Cui, Zhanfeng; Wang, Junbo

    2016-01-01

    Electrical property characterization of stem cells could be utilized as a potential label-free biophysical approach to evaluate the differentiation process. However, there has been a lack of technology or tools that can quantify the intrinsic cellular electrical markers (e.g., specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm)) for a large amount of stem cells or differentiated cells. In this paper, a microfluidic platform enabling the high-throughput quantification of Cspecific membrane and σcytoplasm from hundreds of single neural stem cells undergoing differentiation was developed to explore the feasibility to characterize the neural stem cell differentiation process without biochemical staining. Experimental quantification using biochemical markers (e.g., Nestin, Tubulin and GFAP) of neural stem cells confirmed the initiation of the differentiation process featured with gradual loss in cellular stemness and increased cell markers for neurons and glial cells. The recorded electrical properties of neural stem cells undergoing differentiation showed distinctive and unique patterns: 1) in the suspension culture before inducing differentiation, a large distribution and difference in σcytoplasm among individual neural stem cells was noticed, which indicated heterogeneity that may result from the nature of suspension culture of neurospheres; and 2) during the differentiation in adhering monolayer culture, significant changes and a large difference in Cspecific membrane were located indicating different expressions of membrane proteins during the differentiation process, and a small distribution difference in σcytoplasm was less significant that indicated the relatively consistent properties of cytoplasm during the culture. In summary, significant differences in Cspecific membrane and σcytoplasm were observed during the neural stem cell differentiation process, which may potentially be used as label-free biophysical markers

  9. Early specification of dopaminergic phenotype during ES cell differentiation

    Directory of Open Access Journals (Sweden)

    Li Meng

    2007-07-01

    Full Text Available Abstract Background Understanding how lineage choices are made during embryonic stem (ES cell differentiation is critical for harnessing strategies for controlled production of therapeutic somatic cell types for cell transplantation and pharmaceutical drug screens. The in vitro generation of dopaminergic neurons, the type of cells lost in Parkinson's disease patients' brains, requires the inductive molecules sonic hedgehog and FGF8, or an unknown stromal cell derived inducing activity (SDIA. However, the exact identity of the responding cells and the timing of inductive activity that specify a dopaminergic fate in neural stem/progenitors still remain elusive. Results Using ES cells carrying a neuroepithelial cell specific vital reporter (Sox1-GFP and FACS purification of Sox1-GFP neural progenitors, we have investigated the temporal aspect of SDIA mediated dopaminergic neuron specification during ES cell differentiation. Our results establish that SDIA induces a dopaminergic neuron fate in nascent neural stem or progenitor cells at, or prior to, Sox1 expression and does not appear to have further instructive role or neurotrophic activity during late neuronal differentiation of neural precursors. Furthermore, we show that dopaminergic neurons could be produced efficiently in a monolayer differentiation paradigm independent of SDIA activity or exogenous signalling molecules. In this case, the competence for dopaminergic neuron differentiation is also established at the level of Sox1 expression. Conclusion Dopaminergic neurons are specified early during mouse ES cell differentiation. The subtype specification seems to be tightly linked with the acquisition of a pan neuroectoderm fate.

  10. Differentiation of embryonic stem cells into corneal epithelium

    Institute of Scientific and Technical Information of China (English)

    WANG Zhichong; LIU Jingbo; GE Jian; HUANG Bing; GAO Qianying; LIU Bingqian; WANG Linghua; YU Ling; FAN Zhigang; LU Xiaoming

    2005-01-01

    Our project was to determine whether embryonic stem (ES) cells could be induced to differentiate into corneal epithelia by superficial corneoscleral limbal stroma. To achieve this goal, ES-GFP cell line D3 was pre-induced by retinoic acid (RA). The pre-induced cells were seeded on deepithelialized superficial corneoscleral slices (SCSS) to form a monolayer, and divided into three groups. Group 1 was cultured and passaged in vitro for direct detection. Group 2 was exposed to air-liquid interfaces for 10 days and implanted into the subcutaneous layer of nude mice for 2 weeks for further induction in vivo. Group 3 was cultured in vitro without any inducing factors for control. There were no teratomas found in nude mice which were implanted with differentiated ES cells after two weeks. The differentiated cells showed an appearance of epithelia both in vitro and in vivo. Expression of CK3, P63 and PCNA was detected by immunohistochemical staining in the differentiated cells in group 1 and 2. Microvillis and zonula occludens were observed on the surface of the differentiated cells under an electron microscope. In the control group, ES cells differentiated freely without any inducing factors. Most cells were shed and formed a neuronal dendrite-like structure, and a minority of cells appeared polymorphic. These results demonstrate that ES cells can differentiate into corneal epithelia on the surface of SCSS under the controlled condition. Differentiated ES cells could be used as epithelial seeding cells for the reconstruction of ocular surface and corneal tissue engineering in the future.

  11. Pathological Consequence of Misguided Dendritic Cell Differentiation in Histiocytic Diseases

    OpenAIRE

    Berres, Marie-Luise; Allen, Carl E.; Merad, Miriam

    2013-01-01

    Histiocytic disorders represent a group of complex pathologies characterized by the accumulation of histiocytes, an old term for tissue-resident macrophages and dendritic cells. Langerhans cell histiocytosis is the most frequent of histiocytosis in humans and has been thought to arise from the abnormal accumulation of epidermal dendritic cells called Langerhans cells. In this chapter, we discuss the origin and differentiation of Langerhans cells and dendritic cells and present accumulated evi...

  12. Gene expression analysis of PTEN positive glioblastoma stem cells identifies DUB3 and Wee1 modulation in a cell differentiation model.

    Directory of Open Access Journals (Sweden)

    Stefano Forte

    Full Text Available The term astrocytoma defines a quite heterogeneous group of neoplastic diseases that collectively represent the most frequent brain tumors in humans. Among them, glioblastoma multiforme represents the most malignant form and its associated prognosis is one of the poorest among tumors of the central nervous system. It has been demonstrated that a small population of tumor cells, isolated from the brain neoplastic tissue, can reproduce the parental tumor when transplanted in immunodeficient mouse. These tumor initiating cells are supposed to be involved in cancer development and progression and possess stem cell-like features; like their normal counterpart, these cells remain quiescent until they are committed to differentiation. Many studies have shown that the role of the tumor suppressor protein PTEN in cell cycle progression is fundamental for tumor dynamics: in low grade gliomas, PTEN contributes to maintain cells in G1 while the loss of its activity is frequently observed in high grade gliomas. The mechanisms underlying the above described PTEN activity have been studied in many tumors, but those involved in the maintenance of tumor initiating cells quiescence remain to be investigated in more detail. The aim of the present study is to shed light on the role of PTEN pathway on cell cycle regulation in Glioblastoma stem cells, through a cell differentiation model. Our results suggest the existence of a molecular mechanism, that involves DUB3 and WEE1 gene products in the regulation of Cdc25a, as functional effector of the PTEN/Akt pathway.

  13. The concept of radiation-enhanced stem cell differentiation

    Directory of Open Access Journals (Sweden)

    Mieloch Adam A.

    2015-09-01

    Full Text Available Background. Efficient stem cell differentiation is considered to be the holy grail of regenerative medicine. Pursuing the most productive method of directed differentiation has been the subject of numerous studies, resulting in the development of many effective protocols. However, the necessity for further improvement in differentiation efficiency remains. This review contains a description of molecular processes underlying the response of stem cells to ionizing radiation, indicating its potential application in differentiation procedures. In the first part, the radiation-induced damage response in various types of stem cells is described. Second, the role of the p53 protein in embryonic and adult stem cells is highlighted. Last, the hypothesis on the mitochondrial involvement in stem cell development including its response to ionizing radiation is presented.

  14. Alpha-adrenergic blocker mediated osteoblastic stem cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Jung [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Lee, Jue Yeon [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Lee, Seung Jin [Department of Industrial Pharmacy, College of Pharmacy, Ewha Womans University, Seoul (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Chung, Chong-Pyoung [Department of Periodontology, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Park, Yoon Jeong, E-mail: parkyj@snu.ac.kr [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Doxazocin directly up-regulated bone metabolism at a low dose. Black-Right-Pointing-Pointer Doxazocin induced osteoblastic stem cell differentiation without affecting cell proliferation. Black-Right-Pointing-Pointer This osteogenic stem cell differentiation is mediated by ERK-signal dependent pathway. -- Abstract: Recent researches have indicated a role for antihypertensive drugs including alpha- or beta-blockers in the prevention of bone loss. Some epidemiological studies reported the protective effects of those agents on fracture risk. However, there is limited information on the association with those agents especially at the mechanism of action. In the present study, we investigated the effects of doxazosin, an alpha-blocker that is clinically used for the treatment of benign prostatic hyperplasia (BPH) along with antihypertensive medication, on the osteogenic stem cell differentiation. We found that doxazosin increased osteogenic differentiation of human mesenchymal stem cells, detected by Alizarin red S staining and calcein. Doxazosin not only induced expression of alkaline phosphatase, type I collagen, osteopontin, and osteocalcin, it also resulted in increased phosphorylation of extracellular signal-regulated kinase (ERK1/2), a MAP kinase involved in osteoblastic differentiation. Treatment with U0126, a MAP kinase inhibitor, significantly blocked doxazosin-induced osteoblastic differentiation. Unrelated to activation of osteogenic differentiation by doxazosin, we found that there were no significant changes in adipogenic differentiation or in the expression of adipose-specific genes, including peroxisome proliferator-activated receptor {gamma}, aP2, or LPL. In this report, we suggest that doxazosin has the ability to increase osteogenic cell differentiation via ERK1/2 activation in osteogenic differentiation of adult stem cells, which supports the protective effects of antihypertensive drug on fracture risk and

  15. Distinct differentiation characteristics of individual human embryonic stem cell lines

    Directory of Open Access Journals (Sweden)

    Knuutila Sakari

    2006-08-01

    Full Text Available Abstract Background Individual differences between human embryonic stem cell (hESC lines are poorly understood. Here, we describe the derivation of five hESC lines (called FES 21, 22, 29, 30 and 61 from frozen-thawed human embryos and compare their individual differentiation characteristic. Results The cell lines were cultured either on human or mouse feeder cells. The cells grew significantly faster and could be passaged enzymatically only on mouse feeders. However, this was found to lead to chromosomal instability after prolonged culture. All hESC lines expressed the established markers of pluripotent cells as well as several primordial germ cell (PGC marker genes in a uniform manner. However, the cell lines showed distinct features in their spontaneous differentiation patterns. The embryoid body (EB formation frequency of FES 30 cell line was significantly lower than that of other lines and cells within the EBs differentiated less readily. Likewise, teratomas derived from FES 30 cells were constantly cystic and showed only minor solid tissue formation with a monotonous differentiation pattern as compared with the other lines. Conclusion hESC lines may differ substantially in their differentiation properties although they appear similar in the undifferentiated state.

  16. Role of calcium in differentiation of murine erythroleukemia cells

    Institute of Scientific and Technical Information of China (English)

    ZHUDAN; NONGGAOHE; 等

    1993-01-01

    Calcium plays a crucial role in the normal and abnomal cell metabolism.The role of calcium in the differentiation process of murine erythroleukemia cells(MELC)remains controversial.Here,based upon quantitative measurement of fluorescence in single cells,a method was developed to investigate the intracellular free calcium[Ca2+]i concentration and DNA contents simultaneously,by employing the fluorescent probe,fluo-3 acetoxymethyl ester and DNA dye Hoechst 33342.During MELC differentiation.[Ca2+]i concentration incresed.We also demonstrated that calcium ionophore,A23187,enhanced the HMB-induced MELC differentiation,while verapamil,an inhibitor of calcuim uptake,slightly reduced differentiation.These results suggested that an increase in the [Ca2+]i level was an essential step in HMBA-induced MELC differentiation.

  17. Granulosa cell proliferation differentiation and its role in follicular development

    Institute of Scientific and Technical Information of China (English)

    LU Cuiling; YANG Wei; HU Zhaoyuan; LIU Yixun

    2005-01-01

    Granuiosa cells (GCs) are the most important cells in the ovary that undergo serious changes morphologically and physiologically during the processes of follicular proliferation, differentiation, ovulation, lutenization and atresia. Oocyte (OC) directs GC proliferation and differentiation, while GCs influence OC maturation. Many ovarian factors are involved in the regulation of these processes via different molecular mechanisms and signal pathways. P38MAPK can selectively regulate steroidogenesis in GCs controlled by FSH; Transcript factors LRH-1 and DAX-1 play an important role in this process; FSH induces GC prolfferation and differentiation by stimulating PCNA and StAR expression and steroidogenesis. Activated ERK1/2 signal pathway may be involved in the FSH-regulated GC proliferation and differentiation. Therefore, GC is an ideal model for studying cell proliferation, differentiation and interaction,as well as signal transduction. This review briefly summarizes the latest data in the literature, including the results achieved in our laboratory.

  18. Pathways in pluripotency and differentiation of embryonic cells

    NARCIS (Netherlands)

    du Puy, L.

    2010-01-01

    Pluripotency - the potential to differentiate into derivatives of the three embryonic germ layers endoderm, ectoderm and mesoderm - is the main characteristic of embryonic stem (ES) cells. ES cells are derived from the inner cell mass (ICM) of a pre-implantation blastocyst and can self-renew indefin

  19. Directed differentiation of rhesus monkey ES cells into pancreatic cell phenotypes

    OpenAIRE

    Nauert Brian; Andrews Laura; Kuo Hung-Chih; Lester Linda B; Wolf Don P

    2004-01-01

    Abstract Embryonic stem cells (ES) can self-replicate and differentiate into all cell types including insulin-producing, beta-like cells and could, therefore, be used to treat diabetes mellitus. To date, results of stem cell differentiation into beta cells have been debated, largely due to difficulties in defining the identity of a beta cell. We have recently differentiated non-human primate (rhesus) embryonic stem (rES) cell lines into insulin producing, beta-like cells with the beta cell gr...

  20. The organelle of differentiation in embryos: the cell state splitter.

    Science.gov (United States)

    Gordon, Natalie K; Gordon, Richard

    2016-01-01

    The cell state splitter is a membraneless organelle at the apical end of each epithelial cell in a developing embryo. It consists of a microfilament ring and an intermediate filament ring subtending a microtubule mat. The microtubules and microfilament ring are in mechanical opposition as in a tensegrity structure. The cell state splitter is bistable, perturbations causing it to contract or expand radially. The intermediate filament ring provides metastability against small perturbations. Once this snap-through organelle is triggered, it initiates signal transduction to the nucleus, which changes gene expression in one of two readied manners, causing its cell to undergo a step of determination and subsequent differentiation. The cell state splitter also triggers the cell state splitters of adjacent cells to respond, resulting in a differentiation wave. Embryogenesis may be represented then as a bifurcating differentiation tree, each edge representing one cell type. In combination with the differentiation waves they propagate, cell state splitters explain the spatiotemporal course of differentiation in the developing embryo. This review is excerpted from and elaborates on "Embryogenesis Explained" (World Scientific Publishing, Singapore, 2016). PMID:26965444

  1. Lactobacilli Differentially Activate Natural Killer Cells

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    bacteria on regulatory functions of NK-cells. Here, we have investigated how human gut flora-derived non-pathogenic lactobacilli affect NK cells in vitro, by measuring proliferation and IFN-gamma production of human peripheral blood NK cells upon bacterial stimulation. CD3-CD56+ NK cells were isolated from...... buffy coats by negative isolation using non-NK lineage specific antibodies and magnetic beads. NK cells were incubated with 10 microg/ml UV-inactivated bacteria for four days. Proliferation was assessed by incorporation of radioactive thymidine into NK cell DNA and cytokine concentrations were...... determined by ELISA. Co-incubation of NK cells and a Lactobacillus acidophilus strain caused increased proliferation of the NK cells and induced IFN-gamma production. The proliferative response was further enhanced in the presence of autologous monocytes, probably because cytokines, secreted by monocytes...

  2. Improvement of Cell Survival During Human Pluripotent Stem Cell Definitive Endoderm Differentiation.

    Science.gov (United States)

    Wang, Han; Luo, Xie; Yao, Li; Lehman, Donna M; Wang, Pei

    2015-11-01

    Definitive endoderm (DE) is a vital precursor for internal organs such as liver and pancreas. Efficient protocol to differentiate human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) to DE is essential for regenerative medicine and for modeling diseases; yet, poor cell survival during DE differentiation remains unsolved. In this study, our use of B27 supplement in modified differentiation protocols has led to a substantial improvement. We used an SOX17-enhanced green fluorescent protein (eGFP) reporter hESC line to compare and modify established DE differentiation protocols. Both total live cell numbers and the percentages of eGFP-positive cells were used to assess differentiation efficiency. Among tested protocols, three modified protocols with serum-free B27 supplement were developed to generate a high number of DE cells. Massive cell death was avoided during DE differentiation and the percentage of DE cells remained high. When the resulting DE cells were further differentiated toward the pancreatic lineage, the expression of pancreatic-specific markers was significantly increased. Similar high DE differentiation efficiency was observed in H1 hESCs and iPSCs through the modified protocols. In B27 components, bovine serum albumin was found to facilitate DE differentiation and cell survival. Using our modified DE differentiation protocols, satisfactory quantities of quality DE can be produced as primary material for further endoderm lineage differentiation. PMID:26132288

  3. WBC (White Blood Cell) Differential Count

    Science.gov (United States)

    ... and does not endorse non-AACC products and services. Advertising & Sponsorship: Policy | Opportunities PLEASE NOTE: Your web browser does not have JavaScript enabled. Unless you enable Javascript , your ability ... WBC Differential Share this page: Was this page helpful? ...

  4. Differentiation potential of the fetal rat liver-derived cells.

    Directory of Open Access Journals (Sweden)

    Zygmunt Pojda

    2005-12-01

    Full Text Available Mesenchymal stem cells derived from bone marrow or several fetal tissues can be expanded and differentiated into other cell lines. The fetal liver is the source of early hematopoietic cells and also, as a fetal tissue, may be considered as a source of pluripotent stem cells. The differentiation potential of fetal rat liver cells have been examined. Freshly isolated liver cells from 14-d fetuses were cultured in Dulbecco medium supplemented with 10% FCS. The plastic-adherent cells were then passaged up to 10 times. Freshly isolated cells and cells from every passage were cultured in hematopoiesis-promoting environment that consists of methylcelulose supplemented with FCS, rat IL-3, human IL-6 and Epo. Parallely these cells were incubated in co-culture with rat muscle satellite cells (Dulbecco medium with 10% FCS and 10% HS to examine their myogenic potential. Culture in methylcelulose resulted in a high number of GM and Mix colonies in case of freshly isolated liver cells and the number of colonies decreased according to the number of passages. In case of cells from 4th passage, there ware no hematopoietic colonies in culture. In contrast--freshly isolated cells were not able to fuse with rat satellite cells and form the myotubes. This ability appeared in plastic-adherent cells just from the second passage and increases to 5th passage. The cells from every next passage up to 10th when co-cultured with satellite cells participated in myotube formation at the same high level. This result may suggest that in the 14-d rat liver there exist at least two subpopulations of cells: the non-adherent hematopoietic cell population, and the population of plastic-adherent cells capable of differentiating into myotubes. Since the attempts to redifferentiate hematopoietic subpopulation into myopoiesis, or myopoietic subpopulation into hematopoiesis failed, it may be concluded that at least under our experimental conditions the fetal liver cells do not reveal the

  5. In Vitro Differentiation and Maturation of Human Embryonic Stem Cell into Multipotent Cells

    OpenAIRE

    Amer Mahmood; Claudio Napoli; Abdullah Aldahmash

    2011-01-01

    Human embryonic stem cells (hESCs), which have the potential to generate virtually any differentiated progeny, are an attractive cell source for transplantation therapy, regenerative medicine, and tissue engineering. To realize this potential, it is essential to be able to control ESC differentiation and to direct the development of these cells along specific pathways. Basic science in the field of embryonic development, stem cell differentiation, and tissue engineering has offered important ...

  6. Effects of substrate stiffness and cell-cell contact on mesenchymal stem cell differentiation.

    Science.gov (United States)

    Mao, Angelo S; Shin, Jae-Won; Mooney, David J

    2016-08-01

    The mechanical properties of the microenvironment and direct contact-mediated cell-cell interactions are two variables known to be important in the determination of stem cell differentiation fate, but little is known about the interplay of these cues. Here, we use a micropatterning approach on polyacrylamide gels of tunable stiffnesses to study how homotypic cell-cell contacts and mechanical stiffness affect different stages of osteogenesis of mesenchymal stem cells (MSCs). Nuclear localization of transcription factors associated with osteogenesis depended on substrate stiffness and was independent of the degree of cell-cell contact. However, expression of alkaline phosphatase, an early protein marker for osteogenesis, increased only in cells with both direct contact with neighboring cells and adhesion to stiffer substrates. Finally, mature osteogenesis, as assessed by calcium deposition, was low in micropatterned cells, even on stiff substrates and in multicellular clusters. These results indicate that substrate stiffness and the presence of neighboring cells regulate osteogenesis in MSCs. PMID:27203745

  7. Mesenchymal cell differentiation during lymph node organogenesis

    OpenAIRE

    Brendolan, Andrea; Caamaño, Jorge H.

    2012-01-01

    Secondary lymphoid tissues such as lymph nodes are essential for the interactions between antigen presenting cells and lymphocytes that result in adaptive immune responses that protect the host against invading pathogens. The specialized architecture of these organs facilitates the cognate interactions between antigen-loaded dendritic cells and lymphocytes expressing their specific receptor as well as B–T cell interactions that are at the core of long lasting adaptive immune responses. Lymph ...

  8. Phosphatidylinositol 3-kinase inhibitors block differentiation of skeletal muscle cells.

    Science.gov (United States)

    Kaliman, P; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1996-08-01

    Skeletal muscle differentiation involves myoblast alignment, elongation, and fusion into multinucleate myotubes, together with the induction of regulatory and structural muscle-specific genes. Here we show that two phosphatidylinositol 3-kinase inhibitors, LY294002 and wortmannin, blocked an essential step in the differentiation of two skeletal muscle cell models. Both inhibitors abolished the capacity of L6E9 myoblasts to form myotubes, without affecting myoblast proliferation, elongation, or alignment. Myogenic events like the induction of myogenin and of glucose carrier GLUT4 were also blocked and myoblasts could not exit the cell cycle, as measured by the lack of mRNA induction of p21 cyclin-dependent kinase inhibitor. Overexpresssion of MyoD in 10T1/2 cells was not sufficient to bypass the myogenic differentiation blockade by LY294002. Upon serum withdrawal, 10T1/2-MyoD cells formed myotubes and showed increased levels of myogenin and p21. In contrast, LY294002-treated cells exhibited none of these myogenic characteristics and maintained high levels of Id, a negative regulator of myogenesis. These data indicate that whereas phosphatidylinositol 3-kinase is not indispensable for cell proliferation or in the initial events of myoblast differentiation, i.e. elongation and alignment, it appears to be essential for terminal differentiation of muscle cells. PMID:8702591

  9. Influence of Porcine Intervertebral Disc Matrix on Stem Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Hans-Lothar Fuchsbauer

    2011-08-01

    Full Text Available For back disorders, cell therapy is one approach for a real regeneration of a degenerated nucleus pulposus. Human mesenchymal stem cells (hMSC could be differentiated into nucleus pulposus (NP-like cells and used for cell therapy. Therefore it is necessary to find a suitable biocompatible matrix, which supports differentiation. It could be shown that a differentiation of hMSC in a microbial transglutaminase cross-linked gelatin matrix is possible, but resulted in a more chondrocyte-like cell type. The addition of porcine NP extract to the gelatin matrix caused a differentiation closer to the desired NP cell phenotype. This concludes that a hydrogel containing NP extract without any other supplements could be suitable for differentiation of hMSCs into NP cells. The NP extract itself can be cross-linked by transglutaminase to build a hydrogel free of NP atypical substrates. As shown by side-specific biotinylation, the NP extract contains molecules with free glutamine and lysine residues available for the transglutaminase.

  10. Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy

    Directory of Open Access Journals (Sweden)

    Pham Phuc V

    2011-12-01

    Full Text Available Abstract Background Breast cancer stem cells (BCSCs are the source of breast tumors. Compared with other cancer cells, cancer stem cells show high resistance to both chemotherapy and radiotherapy. Targeting of BCSCs is thus a potentially promising and effective strategy for breast cancer treatment. Differentiation therapy represents one type of cancer stem-cell-targeting therapy, aimed at attacking the stemness of cancer stem cells, thus reducing their chemo- and radioresistance. In a previous study, we showed that down-regulation of CD44 sensitized BCSCs to the anti-tumor agent doxorubicin. This study aimed to determine if CD44 knockdown caused BCSCs to differentiate into breast cancer non-stem cells (non-BCSCs. Methods We isolated a breast cancer cell population (CD44+CD24- cells from primary cultures of malignant breast tumors. These cells were sorted into four sub-populations based on their expression of CD44 and CD24 surface markers. CD44 knockdown in the BCSC population was achieved using small hairpin RNA lentivirus particles. The differentiated status of CD44 knock-down BCSCs was evaluated on the basis of changes in CD44+CD24- phenotype, tumorigenesis in NOD/SCID mice, and gene expression in relation to renewal status, metastasis, and cell cycle in comparison with BCSCs and non-BCSCs. Results Knockdown of CD44 caused BCSCs to differentiate into non-BCSCs with lower tumorigenic potential, and altered the cell cycle and expression profiles of some stem cell-related genes, making them more similar to those seen in non-BCSCs. Conclusions Knockdown of CD44 is an effective strategy for attacking the stemness of BCSCs, resulting in a loss of stemness and an increase in susceptibility to chemotherapy or radiation. The results of this study highlight a potential new strategy for breast cancer treatment through the targeting of BCSCs.

  11. Differential Effects of Tacrolimus versus Sirolimus on the Proliferation, Activation and Differentiation of Human B Cells.

    Directory of Open Access Journals (Sweden)

    Opas Traitanon

    Full Text Available The direct effect of immunosuppressive drugs calcineurin inhibitor (Tacrolimus, TAC and mTOR inhibitor (Sirolimus, SRL on B cell activation, differentiation and proliferation is not well documented. Purified human B cells from healthy volunteers were stimulated through the B Cell Receptor with Anti-IgM + anti-CD40 + IL21 in the absence / presence of TAC or SRL. A variety of parameters of B cell activity including activation, differentiation, cytokine productions and proliferation were monitored by flow cytometry. SRL at clinically relevant concentrations (6 ng/ml profoundly inhibited CD19(+ B cell proliferation compared to controls whereas TAC at similar concentrations had a minimal effect. CD27(+ memory B cells were affected more by SRL than naïve CD27- B cells. SRL effectively blocked B cell differentiation into plasma cells (CD19(+CD138(+ and Blimp1(+/Pax5(low cells even at low dose (2 ng/ml, and totally eliminated them at 6 ng/ml. SRL decreased absolute B cell counts, but the residual responding cells acquired an activated phenotype (CD25(+/CD69(+ and increased the expression of HLA-DR. SRL-treated stimulated B cells on a per cell basis were able to enhance the proliferation of allogeneic CD4(+CD25(- T cells and induce a shift toward the Th1 phenotype. Thus, SRL and TAC have different effects on B lymphocytes. These data may provide insights into the clinical use of these two agents in recipients of solid organ transplants.

  12. Differential expression of genes involved in the epigenetic regulation of cell identity in normal human mammary cell commitment and differentiation

    Directory of Open Access Journals (Sweden)

    Danila Coradini

    2014-10-01

    Full Text Available The establishment and maintenance of mammary epithelial cell identity depends on the activity of a group of proteins, collectively called maintenance proteins, that act as epigenetic regulators of gene transcription through DNA methylation, histone modification, and chromatin remodeling. Increasing evidence indicates that dysregulation of these crucial proteins may disrupt epithelial cell integrity and trigger breast tumor initiation. Therefore, we explored in silico the expression pattern of a panel of 369 genes known to be involved in the establishment and maintenance of epithelial cell identity and mammary gland remodeling in cell subpopulations isolated from normal human mammary tissue and selectively enriched in their content of bipotent progenitors, committed luminal progenitors, and differentiated myoepithelial or differentiated luminal cells. The results indicated that, compared to bipotent cells, differentiated myoepithelial and luminal subpopulations were both characterized by the differential expression of 4 genes involved in cell identity maintenance: CBX6 and PCGF2, encoding proteins belonging to the Polycomb group, and SMARCD3 and SMARCE1, encoding proteins belonging to the Trithorax group. In addition to these common genes, the myoepithelial phenotype was associated with the differential expression of HDAC1, which encodes histone deacetylase 1, whereas the luminal phenotype was associated with the differential expression of SMARCA4 and HAT1, which encode a Trithorax protein and histone acetylase 1, respectively. The luminal compartment was further characterized by the overexpression of ALDH1A3 and GATA3, and the down-regulation of NOTCH4 and CCNB1, with the latter suggesting a block in cell cycle progression at the G2 phase. In contrast, myoepithelial differentiation was associated with the overexpression of MYC and the down-regulation of CCNE1, with the latter suggesting a block in cell cycle progression at the G1 phase.

  13. Cell Fate and Differentiation of Bone Marrow Mesenchymal Stem Cells

    Science.gov (United States)

    Jimi, Eijiro

    2016-01-01

    Osteoblasts and bone marrow adipocytes originate from bone marrow mesenchymal stem cells (BMMSCs) and there appears to be a reciprocal relationship between adipogenesis and osteoblastogenesis. Alterations in the balance between adipogenesis and osteoblastogenesis in BMMSCs wherein adipogenesis is increased relative to osteoblastogenesis are associated with decreased bone quality and quantity. Several proteins have been reported to regulate this reciprocal relationship but the exact nature of the signals regulating the balance between osteoblast and adipocyte formation within the bone marrow space remains to be determined. In this review, we focus on the role of Transducin-Like Enhancer of Split 3 (TLE3), which was recently reported to regulate the balance between osteoblast and adipocyte formation from BMMSCs. We also discuss evidence implicating canonical Wnt signalling, which plays important roles in both adipogenesis and osteoblastogenesis, in regulating TLE3 expression. Currently, there is demand for new effective therapies that target the stimulation of osteoblast differentiation to enhance bone formation. We speculate that reducing TLE3 expression or activity in BMMSCs could be a useful approach towards increasing osteoblast numbers and reducing adipogenesis in the bone marrow environment. PMID:27298623

  14. Differentiation of neuron-like cells from mouse parthenogenetic embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    Xingrong Yan; Liwen Li; Fulin Chen; Yanhong Yang; Wei Liu; Wenxin Geng; Huichong Du; Jihong Cui; Xin Xie; Jinlian Hua; Shumin Yu

    2013-01-01

    Parthenogenetic embryonic stem cells have pluripotent differentiation potentials, akin to fertilized embryo-derived embryonic stem cells. The aim of this study was to compare the neuronal differentiation potential of parthenogenetic and fertilized embryo-derived embryonic stem cells. Before differentiation, karyotype analysis was performed, with normal karyotypes detected in both parthenogenetic and fertilized embryo-derived embryonic stem cells. Sex chromosomes were identified as XX. Immunocytochemistry and quantitative real-time PCR detected high expression of the pluripotent gene, Oct4, at both the mRNA and protein levels, indicating pluripotent differentiation potential of the two embryonic stem cell subtypes. Embryonic stem cells were induced with retinoic acid to form embryoid bodies, and then dispersed into single cells. Single cells were differentiated in N2 differentiation medium for 9 days. Immunocytochemistry showed parthenogenetic and fertilized embryo-derived embryonic stem cells both express the neuronal cell markers nestin, βIII-tubulin and myelin basic protein. Quantitative real-time PCR found expression of neurogenesis related genes (Sox-1, Nestin, GABA, Pax6, Zic5 and Pitx1) in both types of embryonic stem cells, and Oct4 expression was significantly decreased. Nestin and Pax6 expression in parthenogenetic embryonic stem cells was significantly higher than that in fertilized embryo-derived embryonic stem cells. Thus, our experimental findings indicate that parthenogenetic embryonic stem cells have stronger neuronal differentiation potential than fertilized embryo-derived embryonic stem cells.

  15. Tinospora cordifolia Induces Differentiation and Senescence Pathways in Neuroblastoma Cells.

    Science.gov (United States)

    Mishra, Rachana; Kaur, Gurcharan

    2015-08-01

    Children diagnosed with neuroblastomas often suffer from severe side as well as late effects of conventional treatments like chemotherapy and radiotherapy. Recent advances in understanding of molecular pathways involved in cellular differentiation and apoptosis have helped in the development of new therapeutic approach based on differentiation-based therapy of malignant tumours. Natural medicines with their holistic therapeutic approach are known to selectively eliminate cancer cells thus provide a better substitute for the conventional treatment modes. The current study was aimed to investigate the anti-cancer potential of aqueous ethanolic extract of Tinospora cordifolia (TCE) using IMR-32 human neuroblastoma cell line as a model system. TCE is highly recommended in Ayurveda for its general body and metal health-promoting properties. TCE treatment was seen to arrest the majority of cells in G0/G1 phase and modulated the expression of DNA clamp sliding protein (PCNA) and cyclin D1. Further, TCE-treated cells showed differentiation as revealed by their morphology and the expression of neuronal cell specific differentiation markers NF200, MAP-2 and NeuN in neuroblastoma cells. The differentiated phenotype was associated with induction of senescence and pro-apoptosis pathways by enhancing expression of senescence marker mortalin and Rel A subunit of nuclear factor kappa beta (NFkB) along with decreased expression of anti-apoptotic marker, Bcl-xl. TCE exhibited anti-metastatic activity and significantly reduced cell migration in the scratched area along with downregulation of neural cell adhesion molecule (NCAM) polysialylation and secretion of matrix metalloproteinases (MMPs). Our data suggest that crude extract or active phytochemicals from this plant may be a potential candidate for differentiation-based therapy of malignant neuroblastoma cells. PMID:25280667

  16. The Preliminary Experimental Study of Induced Differentiation of Embryonic Stem Cells into Corneal Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Ling Yu; Jian Ge; Zhichong Wang; Bing Huang; Keming Yu; Chongde Long; Xigu Chen

    2001-01-01

    Purpose:To study preliminarily induced differentiation of embryonic stem cells intocorneal epithelial cells in vitro.Methods: Murine embryonic stem cells were co-cultured with Rabbit limbal cornealepithelial cells in Transwell system to induce differentiation. Mophological andimmunohistochemical examination were implemented.Results: The induced cells from embryonic stem cells have an epithelial appearance.The cells formed a network and were confluent into film gradually after beingco-cultured with rabbit limbal corneal epithelial cells for 24 ~ 96 hours. The cells rangedmosaic structure and localized together with clear rim. Most of the cells showedpolygonal appearance. Transmission electron microscope showed lots of microvilli on thesurface of induced cells and tight junctions between them. These epithelial-like cellsexpressed the corneal epithelial cell specific marker cytokeratin3/cytokeratinl2.Conclusion: The potential mechanism of the differentiation of murine embryonic stemcells into corneal epithelial cells induced by limbal corneal epithelial cell-derivedinducing activity is to be further verified.

  17. Silicon Micropore based Electromechanical Transducer to Differentiate Tumor Cells

    Science.gov (United States)

    Ali, Waqas; Raza, Muhammad U.; Khanzada, Raja R.; Kim, Young-Tae; Iqbal, Samir M.

    2015-03-01

    Solid-state micropores have been used before to differentiate cancer cells from normal cells using size-based filtering. Tumor cells differ from normal ones not only in size but also in physical properties like elasticity, shape, motility etc. Tumor cells show different physical attributes depending on the stage and type of cancer. We report a micropore based electromechanical transducer that differentiated cancer cells based on their mechanophysical properties. The device was interfaced with a high-speed patch-clamp measurement system that biased the ionic solution across the silicon-based membrane. The bias resulted in the flow of ionic current. Electrical pulses were generated when cells passed through. Different cells depicted characteristic pulses. Translocation profiles of cells that were either small or were more elastic and flexible caused electrical pulses shorter in widths and amplitudes whereas cells with larger size or lesser elasticity/flexibility showed deeper and wider pulses. Three non-small cell lung cancer (NSCLC) cell lines NCI-H1155, A549 and NCI-H460 were successfully differentiated. NCI-H1155, due to their comparatively smaller size, were found quickest in translocating through. The solid-sate micropore based electromechanical transducer could process the whole blood sample of cancer patient without any pre-processing requirements and is ideal for point-of-care applications. Support Acknowledged from NSF through ECCS-1201878.

  18. Differentiation of stem cells upon deprivation of exogenous FGF2

    DEFF Research Database (Denmark)

    Kjartansdóttir, Kristín Rós; Gabrielsen, Anette; Reda, Ahmed;

    2012-01-01

    fibroblast growth factor 2 (FGF2) is supporting spontaneous differentiation of hESCs cultured on human foreskin fibroblast (hFF) monolayers towards germ cell lineage. Additionally to depriving the hESCs of exogenous FGF2, cells were stimulated with all-trans retinoic acid (ATRA). To get a more comprehensive...

  19. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Özcan;

    2011-01-01

    Standard cell culture plastic was surface modified by passive adsorption or covalent attachment of interleukin (IL)-4 and investigated for its ability to induce differentiation of human monocytes into mature dendritic cells, a process dose-dependently regulated by IL-4. Covalent attachment of IL-4...

  20. Phosphorylation dynamics during early differentiation of human embryonic stem cells

    DEFF Research Database (Denmark)

    Van Hoof, Dennis; Muñoz, Javier; Braam, Stefan R;

    2009-01-01

    Pluripotent stem cells self-renew indefinitely and possess characteristic protein-protein networks that remodel during differentiation. How this occurs is poorly understood. Using quantitative mass spectrometry, we analyzed the (phospho)proteome of human embryonic stem cells (hESCs) during...

  1. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Ozcan;

    2011-01-01

    Standard cell culture plastic was surface modified by passive adsorption or covalent attachment of interleukin (IL)-4 and investigated for its ability to induce differentiation of human monocytes into mature dendritic cells, a process dose-dependently regulated by IL-4. Covalent attachment of IL-...

  2. Somatic mutation and cell differentiation in neoplastic transformation

    Energy Technology Data Exchange (ETDEWEB)

    Huberman, E.; Collart, F.R.

    1987-01-01

    In brief, the authors suggest that tumor formation may result from continuous expression of growth facilitating genes that, as a result of irreversible changes during the initiation step, are placed under the control of genes expressed during normal differentiation. Thus, to understand carcinogenesis, we must decipher the processes that lead to the acquisition of a mature phenotype in both normal and tumor cells and characterize the growth dependency of tumor cells to inducers of cell differentiation. Furthermore, the growth of a variety of tumors may be controlled through the use of inducers of maturation that activate genes located beyond the gene that is altered during tumor initiation. 22 refs., 3 figs.

  3. Somatic mutation and cell differentiation in neoplastic transformation

    International Nuclear Information System (INIS)

    In brief, the authors suggest that tumor formation may result from continuous expression of growth facilitating genes that, as a result of irreversible changes during the initiation step, are placed under the control of genes expressed during normal differentiation. Thus, to understand carcinogenesis, we must decipher the processes that lead to the acquisition of a mature phenotype in both normal and tumor cells and characterize the growth dependency of tumor cells to inducers of cell differentiation. Furthermore, the growth of a variety of tumors may be controlled through the use of inducers of maturation that activate genes located beyond the gene that is altered during tumor initiation. 22 refs., 3 figs

  4. Evaluation of a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay (Keystone Sym)

    Science.gov (United States)

    Our goal is to establish an in vitro model system to evaluate chemical effects using a single stem cell culture technique that would improve throughput and provide quantitative markers of differentiation and cell number. To this end, we have used an adherent cell differentiation ...

  5. Differential migration and proliferation of geometrical ensembles of cell clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Girish; Chen, Bo; Co, Carlos C.; Ho, Chia-Chi, E-mail: hocc@email.uc.edu

    2011-06-10

    Differential cell migration and growth drives the organization of specific tissue forms and plays a critical role in embryonic development, tissue morphogenesis, and tumor invasion. Localized gradients of soluble factors and extracellular matrix have been shown to modulate cell migration and proliferation. Here we show that in addition to these factors, initial tissue geometry can feedback to generate differential proliferation, cell polarity, and migration patterns. We apply layer by layer polyelectrolyte assembly to confine multicellular organization and subsequently release cells to demonstrate the spatial patterns of cell migration and growth. The cell shapes, spreading areas, and cell-cell contacts are influenced strongly by the confining geometry. Cells within geometric ensembles are morphologically polarized. Symmetry breaking was observed for cells on the circular pattern and cells migrate toward the corners and in the direction parallel to the longest dimension of the geometric shapes. This migration pattern is disrupted when actomyosin based tension was inhibited. Cells near the edge or corner of geometric shapes proliferate while cells within do not. Regions of higher rate of cell migration corresponded to regions of concentrated growth. These findings demonstrate that multicellular organization can result in spatial patterns of migration and proliferation.

  6. Isolation and in vitro differentiation of human erythroid precursor cells.

    Science.gov (United States)

    Kim, H C; Marks, P A; Rifking, R A; Maniatis, G M; Bank, A

    1976-05-01

    There is decreased beta-globin production in beta-thalassemic reticulocytes and nucleated erythroid cells. In this study, we have examined whether unbalanced globin synthesis is expressed at all stages of human erythroid cell maturation. In order to determine the pattern of globin synthesis in early erythroid cells during erythroid cell maturation, an in vitro culture system using human bone marrow erythroid precursor cells has been developed. Early erythroid precursor cells (proerythroblasts and basophilic erythroblasts) have been isolated from nonthalassemic and thalassemic human bone marrows by lysing more mature erythroid cells, using complement and a rabbit antiserum prepared against normal human red cells. In the presence of erythropoietin, differentiation and proliferation of erythroid cells in demonstrable in liquid suspension culture for 24-48 hr, as determined by morphological criteria and by an increase in globin synthesis. The ratio of alpha- to beta-globin chain synthesis in nonthalassemic cells in approximately 1 at all stages of erythroid cell differentiation during culture. In cells from four patients with homozygous beta- thalassemia there is decreased beta-globin synthesis compared to alpha-globin synthesis, both in early erythroid precursor cells and during their maturation in culture. These findings indicate that unbalanced globin chain synthesis is expressed at all stages of red cell maturation in homozygous beta-thalassemia. PMID:1260133

  7. Directed neuronal differentiation of human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Noggle Scott A

    2003-10-01

    Full Text Available Abstract Background We have developed a culture system for the efficient and directed differentiation of human embryonic stem cells (HESCs to neural precursors and neurons. HESC were maintained by manual passaging and were differentiated to a morphologically distinct OCT-4+/SSEA-4- monolayer cell type prior to the derivation of embryoid bodies. Embryoid bodies were grown in suspension in serum free conditions, in the presence of 50% conditioned medium from the human hepatocarcinoma cell line HepG2 (MedII. Results A neural precursor population was observed within HESC derived serum free embryoid bodies cultured in MedII conditioned medium, around 7–10 days after derivation. The neural precursors were organized into rosettes comprised of a central cavity surrounded by ring of cells, 4 to 8 cells in width. The central cells within rosettes were proliferating, as indicated by the presence of condensed mitotic chromosomes and by phosphoHistone H3 immunostaining. When plated and maintained in adherent culture, the rosettes of neural precursors were surrounded by large interwoven networks of neurites. Immunostaining demonstrated the expression of nestin in rosettes and associated non-neuronal cell types, and a radial expression of Map-2 in rosettes. Differentiated neurons expressed the markers Map-2 and Neurofilament H, and a subpopulation of the neurons expressed tyrosine hydroxylase, a marker for dopaminergic neurons. Conclusion This novel directed differentiation approach led to the efficient derivation of neuronal cultures from HESCs, including the differentiation of tyrosine hydroxylase expressing neurons. HESC were morphologically differentiated to a monolayer OCT-4+ cell type, which was used to derive embryoid bodies directly into serum free conditions. Exposure to the MedII conditioned medium enhanced the derivation of neural precursors, the first example of the effect of this conditioned medium on HESC.

  8. Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation

    Directory of Open Access Journals (Sweden)

    Qiaoli Gu

    2012-01-01

    Full Text Available Background: Curcumin is a phenolic natural product isolated from the rhizome of Curcuma longa (turmeric and has effects on bone health and fat formation. The bone marrow mesenchymal stem cells (MSCs are multipotent cells capable of differentiating into osteoblasts and adipocytes. Osteoblast differentiation of MSCs can be a result of upregulation of heme oxygenase (HO-1 expression. Curcumin can potently induce HO-1 expression. Objective: The present study describes the effects of curcumin on rat MSC (rMSCs differentiation into osteoblasts and adipocytes. Materials and Methods: Rat bone marrow MSCs were isolated and treated with or without curcumin. Osteoblast differentiation was confirmed and determined by alkaline phosphatase (ALP activity, mineralized nodule formation, the expression of Runx2 (runt-related transcription factor 2 and osteocalcin. Adipocyte differentiation was determined by Oil red O staining and the expression of peroxisome proliferator-activated receptor-γ 2 (PPARγ2 and CCAAT/enhancer-binding protein (C/EBP α. Results: Curcumin increased ALP activity and osteoblast-specific mRNA expression of Runx2 and osteocalcin when rMSCs were cultured in osteogenic medium. In contrast, curcumin decreased adipocyte differentiation and inhibited adipocyte-specific mRNA expression of PPARγ2 and C/EBPα when rMSCs were cultured in adipogenic medium. HO-1 expression was increased during osteogenic differentiation of rMSCs. Conclusions: These findings demonstrate that curcumin can promote osteogenic differentiation of rMSCs and inhibit adipocyte formation. The effect of curcumin on osteogenic differentiation of rMSCs is correlated with HO-1 expression.

  9. Culture, characterization and differentiation of cells from buffalo (Bubalus bubalis) amnion

    OpenAIRE

    Mann, A.; Yadav, R.P.; Singh, J; KUMAR, D; Singh, B.; P.S. Yadav

    2012-01-01

    Stem cells present an important tool in livestock assisted reproduction and veterinary therapeutic field such as tissue engineering. We report for the first time isolation of pluripotent stem cell-like cells expressing pluripotency markers (alkaline phospahatase, OCT-4, NANOG and SOX-2) from the amnion of water buffalo (Bubalus bubalis). The cells showed no apparent abnormalities in their chromosomal profiles before and after cryopreservation. The cytochemical staining revealed that pluripote...

  10. Osteogenic differentiation of human dental papilla mesenchymal cells

    International Nuclear Information System (INIS)

    We isolated dental papilla from impacted human molar and proliferated adherent fibroblastic cells after collagenase treatment of the papilla. The cells were negative for hematopoietic markers but positive for CD29, CD44, CD90, CD105, and CD166. When the cells were further cultured in the presence of β-glycerophosphate, ascorbic acid, and dexamethasone for 14 days, mineralized areas together with osteogenic differentiation evidenced by high alkaline phosphatase activity and osteocalcin contents were observed. The differentiation was confirmed at both protein and gene expression levels. The cells can also be cryopreserved and, after thawing, could show in vivo bone-forming capability. These results indicate that mesenchymal type cells localize in dental papilla and that the cells can be culture expanded/utilized for bone tissue engineering

  11. Lack of vimentin impairs endothelial differentiation of embryonic stem cells.

    Science.gov (United States)

    Boraas, Liana C; Ahsan, Tabassum

    2016-01-01

    The cytoskeletal filament vimentin is inherent to the endothelial phenotype and is critical for the proper function of endothelial cells in adult mice. It is unclear, however, if the presence of vimentin is necessary during differentiation to the endothelial phenotype. Here we evaluated gene and protein expression of differentiating wild type embryonic stem cells (WT ESCs) and vimentin knockout embryonic stem cells (VIM -/- ESCs) using embryoid bodies (EBs) formed from both cell types. Over seven days of differentiation VIM -/- EBs had altered morphology compared to WT EBs, with a rippled outer surface and a smaller size due to decreased proliferation. Gene expression of pluripotency markers decreased similarly for EBs of both cell types; however, VIM -/- EBs had impaired differentiation towards the endothelial phenotype. This was quantified with decreased expression of markers along the specification pathway, specifically the early mesodermal marker Brachy-T, the lateral plate mesodermal marker FLK1, and the endothelial-specific markers TIE2, PECAM, and VE-CADHERIN. Taken together, these results indicate that the absence of vimentin impairs spontaneous differentiation of ESCs to the endothelial phenotype in vitro. PMID:27480130

  12. Equine Induced Pluripotent Stem Cells have a Reduced Tendon Differentiation Capacity Compared to Embryonic Stem Cells

    OpenAIRE

    Bavin, Emma P.; Smith, Olivia; Arabella E. G. Baird; Lawrence C. Smith; Guest, Deborah J

    2015-01-01

    Tendon injuries occur commonly in horses and their repair through scar tissue formation predisposes horses to a high rate of re-injury. Pluripotent stem cells may provide a cell replacement therapy to improve tendon tissue regeneration and lower the frequency of re-injury. We have previously demonstrated that equine embryonic stem cells (ESCs) differentiate into the tendon cell lineage upon injection into the damaged horse tendon and can differentiate into functional tendon cells in vitro to ...

  13. Equine induced pluripotent stem cells have a reduced tendon differentiation capacity compared to embryonic stem cells

    OpenAIRE

    Emma Patricia Bavin; Olivia eSmith; Arabella E. G. Baird; Lawrence C. Smith; Guest, Deborah J

    2015-01-01

    Tendon injuries occur commonly in horses and their repair through scar tissue formation predisposes horses to a high rate of re-injury. Pluripotent stem cells may provide a cell replacement therapy to improve tendon tissue regeneration and lower the frequency of re-injury. We have previously demonstrated that equine embryonic stem cells (ESCs) differentiate into the tendon cell lineage upon injection into the damaged horse tendon and can differentiate into functional tendon cells in vitro to ...

  14. Lignin Induces ES Cells to Differentiate into Neuroectodermal Cells through Mediation of the Wnt Signaling Pathway

    OpenAIRE

    Inoue, Yu; Hasegawa, Seiji; Yamada, Takaaki; Date, Yasushi; MIZUTANI, Hiroshi; Nakata, Satoru; Akamatsu, Hirohiko

    2013-01-01

    Embryonic stem cells (ES cells) are characterized by their pluripotency and infinite proliferation potential. Ever since ES cells were first established in 1981, there have been a growing number of studies aimed at clinical applications of ES cells. In recent years, various types of differentiation inducement systems using ES cells have been established. Further studies have been conducted to utilize differentiation inducement systems in the field of regenerative medicine. For cellular treatm...

  15. Stem Cells from Human-Exfoliated Deciduous Teeth Can Differentiate into Dopaminergic Neuron-Like Cells

    OpenAIRE

    Wang, Jinsong; Wang, Xuan; Sun, Zuoli; Wang, Xiaomin; Yang, Hui; Shi, Songtao; Wang, Songlin

    2010-01-01

    Stem cells from human exfoliated deciduous teeth (SHED) have been identified as a novel population of postnatal stem cells capable of differentiating into neural cells, odontogenic cells, and adipocytes. SHED were reported to differentiate into neural cells based on cellular morphology and the expression of early neuronal markers when cultured under neural inductive conditions. This study therefore investigated the therapeutic efficacy of SHED in alleviating Parkinson's disease (PD) in a rat ...

  16. Differential expression of cell adhesion genes

    DEFF Research Database (Denmark)

    Stein, Wilfred D; Litman, Thomas; Fojo, Tito;

    2005-01-01

    It is well known that tumors arising from tissues such as kidney, pancreas, liver and stomach are particularly refractory to treatment. Searching for new anticancer drugs using cells in culture has yielded some effective therapies, but these refractory tumors remain intractable. Studies that...... survival might, therefore, act through such a matrix-to-cell suppression of apoptosis. Indeed, correlative mining of gene expression and patient survival databases suggests that poor survival in patients with metastatic cancer correlates highly with tumor expression of a common theme: the genes involved in...

  17. Differentiation patterns of mouse embryonic stem cells and induced pluripotent stem cells into neurons.

    Science.gov (United States)

    Nakamura, Mai; Kamishibahara, Yu; Kitazawa, Ayako; Kawaguchi, Hideo; Shimizu, Norio

    2016-05-01

    Mouse embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have the ability to differentiate in vitro into various cell lineages including neurons. The differentiation of these cells into neurons has potential applications in regenerative medicine. Previously, we reported that a chick dorsal root ganglion (DRG)-conditioned medium (CM) promoted the differentiation of mouse ES and iPS cells into neurons. Here, we used real-time PCR to investigate the differentiation patterns of ES and iPS cells into neurons when DRG-CM was added. DRG-CM promoted the expression levels of βIII-tubulin gene (a marker of postmitotic neurons) in ES and iPS cells. ES cells differentiated into neurons faster than iPS cells, and the maximum peaks of gene expression involved in motor, sensory, and dopaminergic neurons were different. Rho kinase (ROCK) inhibitors could be very valuable at numerous stages in the production and use of stem cells in basic research and eventual cell-based therapies. Thus, we investigated whether the addition of a ROCK inhibitor Y-27632 and DRG-CM on the basis of the differentiation patterns promotes the neuronal differentiation of ES cells. When the ROCK inhibitor was added to the culture medium at the initial stages of cultivation, it stimulated the neuronal differentiation of ES cells more strongly than that stimulated by DRG-CM. Moreover, the combination of the ROCK inhibitor and DRG-CM promoted the neuronal differentiation of ES cells when the ROCK inhibitor was added to the culture medium at day 3. The ROCK inhibitor may be useful for promoting neuronal differentiation of ES cells. PMID:25354731

  18. Downregulation of rRNA Transcription Triggers Cell Differentiation

    OpenAIRE

    Yuki Hayashi; Takao Kuroda; Hiroyuki Kishimoto; Changshan Wang; Atsushi Iwama; Keiji Kimura

    2014-01-01

    Responding to various stimuli is indispensable for the maintenance of homeostasis. The downregulation of ribosomal RNA (rRNA) transcription is one of the mechanisms involved in the response to stimuli by various cellular processes, such as cell cycle arrest and apoptosis. Cell differentiation is caused by intra- and extracellular stimuli and is associated with the downregulation of rRNA transcription as well as reduced cell growth. The downregulation of rRNA transcription during differentiati...

  19. Auxin regulates distal stem cell differentiation in Arabidopsis roots

    OpenAIRE

    Ding, Zhaojun; Friml, Jiří

    2010-01-01

    The stem cell niche in the root meristem is critical for the development of the plant root system. The plant hormone auxin acts as a versatile trigger in many developmental processes, including the regulation of root growth, but its role in the control of the stem cell activity remains largely unclear. Here we show that local auxin levels, determined by biosynthesis and intercellular transport, mediate maintenance or differentiation of distal stem cells in the Arabidopsis thaliana roots. Gene...

  20. Cholesterol esterification during differentiation of mouse erythroleukemia (Friend) cells

    OpenAIRE

    Maria Franca Mulas; Antonella Mandas; Claudia Abete; Sandra Dessì; Alessandra Mocali; Francesco Paoletti

    2011-01-01

    Cholesterol is an essential constituent of all mammalian cell membranes, and its availability is therefore a prerequisite for cellular growth and other functions. Several lines of evidence are now indicating an association between alterations of cholesterol homeostasis and cell cycle progression. However, the role of cholesterol in cell differentiation is still largely unknown. To begin to address this issue, in this study we examined changes in cholesterol metabolism and in the mRNA levels o...

  1. Sertoli Cell Differentiation in Pubertal Boars

    Science.gov (United States)

    Meishan boars experience puberty at a younger age than crossbred (BX) boars in association with earlier cessation of Sertoli cell proliferation and smaller post pubertal testicular size. The current study defined changes in expression, assessed by immunohistochemistry, of anti-Mullerian hormone (AMH...

  2. Advances and challenges in the differentiation of pluripotent stem cells into pancreatic β cells

    Institute of Scientific and Technical Information of China (English)

    Essam M Abdelalim; Mohamed M Emara

    2015-01-01

    Pluripotent stem cells (PSCs) are able to differentiate intoseveral cell types, including pancreatic β cells. Differentiationof pancreatic β cells depends on certain transcriptionfactors, which function in a coordinated way duringpancreas development. The existing protocols for in vitrodifferentiation produce pancreatic β cells, which are nothighly responsive to glucose stimulation except after theirtransplantation into immune-compromised mice and allowingseveral weeks for further differentiation to ensurethe maturation of these cells in vivo . Thus, although thesubstantial improvement that has been made for the differentiationof induced PSCs and embryonic stem cellstoward pancreatic β cells, several challenges still hinderingtheir full generation. Here, we summarize recent advancesin the differentiation of PSCs into pancreatic β cells anddiscuss the challenges facing their differentiation as wellas the different applications of these potential PSC-derivedβ cells.

  3. Effects of ionizing radiation on differentiation of murine bone marrow cells into mast cells

    International Nuclear Information System (INIS)

    Mast cells, immune effector cells produced from bone marrow cells, play a major role in immunoglobulin E–mediated allergic responses. Ionizing radiation affects the functions of mast cells, which are involved in radiation-induced tissue damage. However, whether ionizing radiation affects the differential induction of mast cells is unknown. Here we investigated whether bone marrow cells of X-irradiated mice differentiated into mast cells. To induce mast cells, bone marrow cells from X-irradiated and unirradiated mice were cultured in the presence of cytokines required for mast cell induction. Although irradiation at 0.5 Gy and 2 Gy decreased the number of bone marrow cells 1 day post-irradiation, the cultured bone marrow cells of X-irradiated and unirradiated mice both expressed mast cell–related cell-surface antigens. However, the percentage of mast cells in the irradiated group was lower than in the unirradiated group. Similar decreases in the percentage of mast cells induced in the presence of X-irradiation were observed 10 days post irradiation, although the number of bone marrow cells in irradiated mice had recovered by this time. Analysis of mast cell function showed that degranulation of mast cells after immunoglobulin E–mediated allergen recognition was significantly higher in the X-irradiated group compared with in the unirradiated group. In conclusion, bone marrow cells of X-irradiated mice differentiated into mast cells, but ionizing radiation affected the differentiation efficiency and function of mast cells. (author)

  4. 5-azacytidine promotes terminal differentiation of hepatic progenitor cells.

    Science.gov (United States)

    He, Yun; Cui, Jiejie; He, Tongchuan; Bi, Yang

    2015-08-01

    5-azacytidine (5-azaC) is known to induce cardiomyocyte differentiation. However, its function in hepatocyte differentiation is unclear. The present study investigated the in vitro capability of 5-azaC to promote maturation and differentiation of mouse embryonic hepatic progenitor cells, with the aim of developing an approach for improving hepatic differentiation. Mouse embryonic hepatic progenitor cells (HP14.5 cells) were treated with 5-azaC at concentrations from 0 to 20 μmol/l, in addition to hepatocyte induction culture medium. Hepatocyte induction medium induces HP14.5 cell differentiation. 5-azaC may enhance the albumin promotor-driven Gaussia luciferase (ALB-GLuc) activity in induced HP14.5 cells. In the present study 2 μmol/l was found to be the optimum concentration with which to achieve this. The expression of hepatocyte-associated factors was not significantly different between the group treated with 5-azaC alone and the control group. The mRNA levels of ALB; cytokeratin 18 (CK18); tyrosine aminotransferase (TAT); and cytochrome p450, family 1, member A1 (CYP1A1); in addition to the protein levels of ALB, CK18 and uridine diphosphate glucuronyltransferase 1A (UGT1A) in the induced group with 5-azaC, were higher than those in the induced group without 5-azaC, although no significant differences were detected in expression of the hepatic stem cell markers, DLK and α-fetoprotein, between the two groups. Treatment with 5-azaC alone did not affect glycogen synthesis or indocyanine green (ICG) metabolic function in HP14.5 cells, although it significantly increased ICG uptake and periodic acid-Schiff-positive cell numbers amongst HP14.5 cells. Therefore, the present study demonstrated that treatment with 5-azaC alone exerted no effects on the maturation and differentiation of HP14.5 cells. However, 5-azaC exhibited a synergistic effect on the terminal differentiation of induced hepatic progenitor cells in association with a hepatic induction medium. PMID

  5. Mechanisms of dealing with DNA damage in terminally differentiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Fortini, P. [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy); Dogliotti, E., E-mail: eugenia.dogliotti@iss.it [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy)

    2010-03-01

    To protect genomic integrity living cells that are continuously exposed to DNA-damaging insults are equipped with an efficient defence mechanism termed the DNA damage response. Its function is to eliminate DNA damage through DNA repair and to remove damaged cells by apoptosis. The DNA damage response has been investigated mainly in proliferating cells, in which the cell cycle machinery is integrated with the DNA damage signalling. The current knowledge of the mechanisms of DNA repair, DNA damage signalling and cell death of post-mitotic cells that have undergone irreversible cell cycle withdrawal will be reviewed. Evidence will be provided that the protection of the genome integrity in terminally differentiated cells is achieved by different strategies than in proliferating cells.

  6. Chronology of endocrine differentiation and beta-cell neogenesis [Review].

    Science.gov (United States)

    Miyatsuka, Takeshi

    2016-03-31

    Diabetes is a chronic and incurable disease, which results from absolute or relative insulin insufficiency. Therefore, pancreatic beta cells, which are the only type of cell that expresses insulin, is considered to be a potential target for the cure of diabetes. Although the findings regarding beta-cell neogenesis during pancreas development have been exploited to induce insulin-producing cells from non-beta cells, there are still many hurdles towards generating fully functional beta cells that can produce high levels of insulin and respond to physiological signals. To overcome these problems, a solid understanding of pancreas development and beta-cell formation is required, and several mouse models have been developed to reveal the unique features of each endocrine cell type at distinct developmental time points. Here I review our understanding of pancreas development and endocrine differentiation focusing on recent progresses in improving temporal cell labeling in vivo. PMID:26615757

  7. RESEARCH OF DIFFERENTIATED XYLEM CELLS BASED ON FRACTAL DIMENSION

    Directory of Open Access Journals (Sweden)

    Enhua Xi

    2011-06-01

    Full Text Available This study considers the fractal characteristics of differentiated xylem cells of the fast-growing Populus×euramericana cv. ‘74 /76’ during the active phase by the method of differential box-counting fractal dimension. The fractal characteristics of differentiated xylem cells as well as the relationship between fractal dimension and tissues proportion were considered. Results showed that the fractal dimensions of cross sections were larger than those of tangential sections. Fractal dimension of cross sections had a remarkable negative correlation with the ratio of vessel element, significant positive correlations with the proportion of wood fiber and the proportion of parenchyma. The correlation of fractal dimension with wood fiber proportion was more significant than that with parenchyma proportion. The results were also verified by replacement of the tissues in the cross section. It was observed that fractal characteristics of the wood microstructure were very much related to the proportions of different tissues of the xylem cells.

  8. Globular adiponectin induces differentiation and fusion of skeletal muscle cells

    Institute of Scientific and Technical Information of China (English)

    Tania Fiaschi; Domenico Cirelli; Giuseppina Comito; Stefania Gelmini; Giampietro Ramponi; Maria Serio; Paola Chiarugi

    2009-01-01

    The growing interest in skeletal muscle regeneration is associated with the opening of new therapeutic strategies for muscle injury after trauma, as well as several muscular degenerative pathologies, including dystrophies, muscu-lar atrophy, and cachexia. Studies focused on the ability of extracellular factors to promote myogenesis are therefore highly promising. We now report that an adipocyte-derived factor, globular adiponectin (gAd), is able to induce mus-cle gene expression and cell differentiation, gAd, besides its well-known ability to regulate several metabolic func-tions in muscle, including glucose uptake and consumption and fatty acid catabolism, is able to block cell cycle entry of myoblasts, to induce the expression of specific skeletal muscle markers such as myosin heavy chain or eaveolin-3, as well as to provoke cell fusion into multinucleated syneytia and, finally, muscle fibre formation, gAd exerts its pro-differentiative activity through redox-dependent activation of p38, Akt and 5'-AMP-activated protein kinase path-ways. Interestingly, differentiating myoblasts are autocrine for adiponectiu, and the mimicking of pro-inflammatory settings or exposure to oxidative stress strongly increases the production of the hormone from differentiating cells. These data suggest a novel function of adiponectin, directly coordinating the myogenic differentiation program and serving an autocrine function during skeletal myogenesis.

  9. Cell cycle-dependent differentiation dynamics balances growth and endocrine differentiation in the pancreas

    DEFF Research Database (Denmark)

    Kim, Yung Hae; Larsen, Hjalte List; Rué, Paul;

    2015-01-01

    Organogenesis relies on the spatiotemporal balancing of differentiation and proliferation driven by an expanding pool of progenitor cells. In the mouse pancreas, lineage tracing at the population level has shown that the expanding pancreas progenitors can initially give rise to all endocrine...

  10. MicroRNA in cell differentiation and development

    Institute of Scientific and Technical Information of China (English)

    SHI Yi; JIN YouXin

    2009-01-01

    The regulation of gene expression by microRNAs (miRNAs) Is a recently discovered pattern of gene regulation in animals and plants. MiRNAs have been implicated in various aspects of animal develop-ment and cell differentiation, such as early embryonic development, neuronal development, muscle development, and lymphocyte development, by the analysis of genetic deletions of individual miRNAs in mammals. These studies show that miRNAs are key regulators in animal development and are po-tential causes of human diseases. Here we review some recent discoveries about the functions of miRNAs in cell differentiation and development.

  11. MicroRNA in cell differentiation and development

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The regulation of gene expression by microRNAs(miRNAs) is a recently discovered pattern of gene regulation in animals and plants.MiRNAs have been implicated in various aspects of animal development and cell differentiation,such as early embryonic development,neuronal development,muscle development,and lymphocyte development,by the analysis of genetic deletions of individual miRNAs in mammals.These studies show that miRNAs are key regulators in animal development and are potential causes of human diseases.Here we review some recent discoveries about the functions of miRNAs in cell differentiation and development.

  12. A simulation model for stem cells differentiation into specialized cells of non-connective tissues.

    Science.gov (United States)

    Pisu, Massimo; Concas, Alessandro; Fadda, Sarah; Cincotti, Alberto; Cao, Giacomo

    2008-10-01

    A novel mathematical model to simulate stem cells differentiation into specialized cells of non-connective tissues is proposed. The model is based upon material balances for growth factors coupled with a mass-structured population balance describing cell growth, proliferation and differentiation. The proposed model is written in a general form and it may be used to simulate a generic cell differentiation pathway during in vitro cultivation when specific growth factors are used. Literature experimental data concerning the differentiation of central nervous stem cells into astrocytes are successfully compared with model results, thus demonstrating the validity of the proposed model as well as its predictive capability. Finally, sensitivity analysis of model parameters is also performed in order to clarify what mechanisms most strongly influence differentiation and cell types distribution. PMID:18667361

  13. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells

    DEFF Research Database (Denmark)

    Re, Angela; Workman, Christopher; Waldron, Levi;

    2014-01-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression...... changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein...... interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two...

  14. The TrkAIII oncoprotein inhibits mitochondrial free radical ROS-induced death of SH-SY5Y neuroblastoma cells by augmenting SOD2 expression and activity at the mitochondria, within the context of a tumour stem cell-like phenotype.

    Directory of Open Access Journals (Sweden)

    Pierdomenico Ruggeri

    Full Text Available The developmental and stress-regulated alternative TrkAIII splice variant of the NGF receptor TrkA is expressed by advanced stage human neuroblastomas (NBs, correlates with worse outcome in high TrkA expressing unfavourable tumours and exhibits oncogenic activity in NB models. In the present study, we report that constitutive TrkAIII expression in human SH-SY5Y NB cells inhibits Rotenone, Paraquat and LY83583-induced mitochondrial free radical reactive oxygen species (ROS-mediated death by stimulating SOD2 expression, increasing mitochondrial SOD2 activity and attenuating mitochondrial free radical ROS production, in association with increased mitochondrial capacity to produce H2O2, within the context of a more tumour stem cell-like phenotype. This effect can be reversed by the specific TrkA tyrosine kinase inhibitor GW441756, by the multi-kinase TrkA inhibitors K252a, CEP-701 and Gö6976, which inhibit SOD2 expression, and by siRNA knockdown of SOD2 expression, which restores the sensitivity of TrkAIII expressing SH-SY5Y cells to Rotenone, Paraquat and LY83583-induced mitochondrial free radical ROS production and ROS-mediated death. The data implicate the novel TrkAIII/SOD2 axis in promoting NB resistance to mitochondrial free radical-mediated death and staminality, and suggest that the combined use of TrkAIII and/or SOD2 inhibitors together with agents that induce mitochondrial free radical ROS-mediated death could provide a therapeutic advantage that may also target the stem cell niche in high TrkA expressing unfavourable NB.

  15. In vitro differentiation of murine embryonic stem cells into keratinocyte-like cells.

    Science.gov (United States)

    Haase, Ingo; Knaup, Renate; Wartenberg, Maria; Sauer, Heinrich; Hescheler, Jürgen; Mahrle, Gustav

    2007-12-01

    Embryonic stem (ES) cells are omnipotent; they can differentiate into every cell type of the body. The development of culture conditions that allow their differentiation has made it conceivable to produce large numbers of cells with lineage-specific characteristics in vitro. Here, we describe a method by which murine ES cells can be differentiated into cells with characteristics of epidermal keratinocytes. Keratinocyte-like cells were isolated from embryoid bodies and grown in culture. Potential applications of this method are the in vitro differentiation of cells of interest from ES cells of mice with lethal phenotypes during embryonic development and the production of genetically modified epidermal keratinocytes that could be used as temporary wound dressing or as carriers of genes of interest in gene therapeutic treatments. PMID:17716780

  16. Roles of Nrf2 in cell proliferation and differentiation.

    Science.gov (United States)

    Murakami, Shohei; Motohashi, Hozumi

    2015-11-01

    The Keap1-Nrf2 system plays pivotal roles in defense mechanisms by regulating cellular redox homeostasis. Nrf2 is an inducible transcription factor that activates a battery of genes encoding antioxidant proteins and phase II enzymes in response to oxidative stress and electrophilic xenobiotics. The activity of Nrf2 is regulated by Keap1, which promotes the ubiquitination and subsequent degradation of Nrf2 under normal conditions and releases the inhibited Nrf2 activity upon exposure to the stresses. Though an impressive contribution of the Keap1-Nrf2 system to the protection from exogenous and endogenous electrophilic insults has been well established, a line of evidence has suggested that the Keap1-Nrf2 system has various novel functions, particularly in cell proliferation and differentiation. Because the proliferation and differentiation of diverse cell types are often influenced and modulated by the cellular redox balance, Nrf2 has been considered to control these cellular processes by regulating the cellular levels of reactive oxygen species (ROS). In addition, analyses of the genome-wide distribution of Nrf2 have identified new sets of Nrf2 target genes whose products are involved in cell proliferation and differentiation but not necessarily in the regulation of oxidative stress. Considering the most characteristic features of Nrf2 as an inducible transcription factor, a newly emerged concept proposes that the Keap1-Nrf2 system translates environmental stresses into regulatory network signals in cell fate determination. In this review, we introduce the contribution of Nrf2 to lineage-specific differentiation, maintenance and differentiation of stem cells, and proliferation of normal and cancer cells, and we discuss how the response to fluctuating environments modulates cell behavior through the Keap1-Nrf2 system. PMID:26119783

  17. Regulation of T Cell Differentiation and Function by EZH2.

    Science.gov (United States)

    Karantanos, Theodoros; Chistofides, Anthos; Barhdan, Kankana; Li, Lequn; Boussiotis, Vassiliki A

    2016-01-01

    The enhancer of zeste homolog 2 (EZH2), one of the polycomb-group proteins, is the catalytic subunit of Polycomb-repressive complex 2 (PRC2) and induces the trimethylation of the histone H3 lysine 27 (H3K27me3) promoting epigenetic gene silencing. EZH2 contains a SET domain promoting the methyltransferase activity, while the three other protein components of PRC2, namely EED, SUZ12, and RpAp46/48, induce compaction of the chromatin permitting EZH2 enzymatic activity. Numerous studies highlight the role of this evolutionary conserved protein as a master regulator of differentiation in humans involved in the repression of the homeotic gene and the inactivation of X-chromosome. Through its effects in the epigenetic regulation of critical genes, EZH2 has been strongly linked to cell cycle progression, stem cell pluripotency, and cancer biology, being currently at the cutting edge of research. Most recently, EZH2 has been associated with hematopoietic stem cell proliferation and differentiation, thymopoiesis and lymphopoiesis. Several studies have evaluated the role of EZH2 in the regulation of T cell differentiation and plasticity as well as its implications in the development of autoimmune diseases and graft-versus-host disease (GVHD). The aim of this review is to summarize the current knowledge regarding the role of EZH2 in the regulation of the differentiation and function of T cells focusing on possible applications in various immune-mediated conditions, including autoimmune disorders and GVHD. PMID:27199994

  18. Proliferation of differentiated glial cells in the brain stem.

    Science.gov (United States)

    Barradas, P C; Cavalcante, L A

    1998-02-01

    Classical studies of macroglial proliferation in muride rodents have provided conflicting evidence concerning the proliferating capabilities of oligodendrocytes and microglia. Furthermore, little information has been obtained in other mammalian orders and very little is known about glial cell proliferation and differentiation in the subclass Metatheria although valuable knowledge may be obtained from the protracted period of central nervous system maturation in these forms. Thus, we have studied the proliferative capacity of phenotypically identified brain stem oligodendrocytes by tritiated thymidine radioautography and have compared it with known features of oligodendroglial differentiation as well as with proliferation of microglia in the opossum Didelphis marsupialis. We have detected a previously undescribed ephemeral, regionally heterogeneous proliferation of oligodendrocytes expressing the actin-binding, ensheathment-related protein 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), that is not necessarily related to the known regional and temporal heterogeneity of expression of CNPase in cell bodies. On the other hand, proliferation of microglia tagged by the binding of Griffonia simplicifolia B4 isolectin, which recognizes an alpha-D-galactosyl-bearing glycoprotein of the plasma membrane of macrophages/microglia, is known to be long lasting, showing no regional heterogeneity and being found amongst both ameboid and differentiated ramified cells, although at different rates. The functional significance of the proliferative behavior of these differentiated cells is unknown but may provide a low-grade cell renewal in the normal brain and may be augmented under pathological conditions. PMID:9686148

  19. Proliferation of differentiated glial cells in the brain stem

    Directory of Open Access Journals (Sweden)

    Barradas P.C.

    1998-01-01

    Full Text Available Classical studies of macroglial proliferation in muride rodents have provided conflicting evidence concerning the proliferating capabilities of oligodendrocytes and microglia. Furthermore, little information has been obtained in other mammalian orders and very little is known about glial cell proliferation and differentiation in the subclass Metatheria although valuable knowledge may be obtained from the protracted period of central nervous system maturation in these forms. Thus, we have studied the proliferative capacity of phenotypically identified brain stem oligodendrocytes by tritiated thymidine radioautography and have compared it with known features of oligodendroglial differentiation as well as with proliferation of microglia in the opossum Didelphis marsupialis. We have detected a previously undescribed ephemeral, regionally heterogeneous proliferation of oligodendrocytes expressing the actin-binding, ensheathment-related protein 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNPase, that is not necessarily related to the known regional and temporal heterogeneity of expression of CNPase in cell bodies. On the other hand, proliferation of microglia tagged by the binding of Griffonia simplicifolia B4 isolectin, which recognizes an alpha-D-galactosyl-bearing glycoprotein of the plasma membrane of macrophages/microglia, is known to be long lasting, showing no regional heterogeneity and being found amongst both ameboid and differentiated ramified cells, although at different rates. The functional significance of the proliferative behavior of these differentiated cells is unknown but may provide a low-grade cell renewal in the normal brain and may be augmented under pathological conditions.

  20. The uncommon roles of common gene regulatory factors in the genomes of differentiating cells

    OpenAIRE

    Davidson, Eric H.

    2014-01-01

    Viewed through the lens of comparative regulatory mechanisms in developmental processes, the article of Calero-Nieto et al (2014, this issue) is of particular interest. This work uncovers the causal combinatorial subtleties of the distinct enhancer occupancy profiles displayed by ten different transcription factors, which are expressed in common in two hematopoietic cell types, a stem cell-like precursor and primary mast cells.

  1. Pigment Cell Differentiation in Sea Urchin Blastula-Derived Primary Cell Cultures

    OpenAIRE

    Natalya V. Ageenko; Konstantin V. Kiselev; Dmitrenok, Pavel S.; Odintsova, Nelly A.

    2014-01-01

    The quinone pigments of sea urchins, specifically echinochrome and spinochromes, are known for their effective antioxidant, antibacterial, antifungal, and antitumor activities. We developed in vitro technology for inducing pigment differentiation in cell culture. The intensification of the pigment differentiation was accompanied by a simultaneous decrease in cell proliferation. The number of pigment cells was two-fold higher in the cells cultivated in the coelomic fluids of injured sea urchin...

  2. Decreased Intracellular pH Induced by Cariporide Differentially Contributes to Human Umbilical Cord-Derived Mesenchymal Stem Cells Differentiation

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2014-01-01

    Full Text Available Background/Aims: Na+/H+ exchanger 1 (NHE1 is an important regulator of intracellular pH (pHi. High pHi is required for cell proliferation and differentiation. Our previous study has proven that the pHi of mesenchymal stem cells is higher than that of normal differentiated cells and similar to tumor cells. NHE1 is highly expressed in both mesenchymal stem cells and tumor cells. Targeted inhibition of NHE1 could induce differentiation of K562 leukemia cells. In the present paper we explored whether inhibition of NHE1 could induce differentiation of mesenchymal stem cells. Methods: MSCs were obtained from human umbilical cord and both the surface phenotype and functional characteristics were analyzed. Selective NHE1 inhibitor cariporide was used to treat human umbilical cord-derived mesenchymal stem cells (hUC-MSCs. The pHi and the differentiation of hUC-MSCs were compared upon cariporide treatment. The putative signaling pathway involved was also explored. Results: The pHi of hUC-MSCs was decreased upon cariporide treatment. Cariporide up-regulated the osteogenic differentiation of hUC-MSCs while the adipogenic differentiation was not affected. For osteogenic differentiation, β-catenin expression was up-regulated upon cariporide treatment. Conclusion: Decreased pHi induced by cariporide differentially contributes to hUC-MSCs differentiation.

  3. Optical Imaging for Stem Cell Differentiation to Neuronal Lineage

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Do Won; Lee, Dong Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2012-03-15

    In regenerative medicine, the prospect of stem cell therapy hold great promise for the recovery of injured tissues and effective treatment of intractable diseases. Tracking stem cell fate provides critical information to understand and evaluate the success of stem cell therapy. The recent emergence of in vivo noninvasive molecular imaging has enabled assessment of the behavior of grafted stem cells in living subjects. In this review, we provide an overview of current optical imaging strategies based on cell or tissue specific reporter gene expression and of in vivo methods to monitor stem cell differentiation into neuronal lineages. These methods use optical reporters either regulated by neuron-specific promoters or containing neuron-specific microRNA binding sites. Both systems revealed dramatic changes in optical reporter imaging signals in cells differentiating a yeast GAL4 amplification system or an engineering-enhanced luciferase reported gene. Furthermore, we propose an advanced imaging system to monitor neuronal differentiation during neurogenesis that uses in vivo multiplexed imaging techniques capable of detecting several targets simultaneously.

  4. Optical Imaging for Stem Cell Differentiation to Neuronal Lineage

    International Nuclear Information System (INIS)

    In regenerative medicine, the prospect of stem cell therapy hold great promise for the recovery of injured tissues and effective treatment of intractable diseases. Tracking stem cell fate provides critical information to understand and evaluate the success of stem cell therapy. The recent emergence of in vivo noninvasive molecular imaging has enabled assessment of the behavior of grafted stem cells in living subjects. In this review, we provide an overview of current optical imaging strategies based on cell or tissue specific reporter gene expression and of in vivo methods to monitor stem cell differentiation into neuronal lineages. These methods use optical reporters either regulated by neuron-specific promoters or containing neuron-specific microRNA binding sites. Both systems revealed dramatic changes in optical reporter imaging signals in cells differentiating a yeast GAL4 amplification system or an engineering-enhanced luciferase reported gene. Furthermore, we propose an advanced imaging system to monitor neuronal differentiation during neurogenesis that uses in vivo multiplexed imaging techniques capable of detecting several targets simultaneously

  5. T helper cell differentiation more than just cytokines.

    Science.gov (United States)

    Zygmunt, Beata; Veldhoen, Marc

    2011-01-01

    CD4(+) T helper (T(H)) cells play a critical role in orchestrating a pleiotropy of immune activities against a large variety of pathogens. It is generally thought that this is achieved through the acquisition of highly specialized functions after activation followed by the differentiation into various functional subsets. The differentiation process of naive precursor T(H) cells into defined effector subsets is controlled by cells of the innate immune system and their complex array of effector molecules such as secreted cytokines and membrane bound costimulatory molecules. These provide a unique quantitative or qualitative signal initiating T(H) development, which is subsequently reinforced via T cell-mediated feedback signals and selective survival and proliferative cues, ultimately resulting in the predominance of a particular T cell subset. In recent years, the number of defined T(H)cell subsets has expanded and the once rigid division of labor among them has been blurred with reports of plasticity among the subsets. In this chapter, we summarize and speculate on the current knowledge of the differentiation requirements of T(H) cell lineages, with particular focus on the T(H)17 subset. PMID:21569915

  6. Cell responses to FGFR3 signalling: growth, differentiation and apoptosis

    International Nuclear Information System (INIS)

    FGFR3 is a receptor tyrosine kinase (RTK) of the FGF receptor family, known to have a negative regulatory effect on long bone growth. Fgfr3 knockout mice display longer bones and, accordingly, most germline-activating mutations in man are associated with dwarfism. Somatically, some of the same activating mutations are associated with the human cancers multiple myeloma, cervical carcinoma and carcinoma of the bladder. How signalling through FGFR3 can lead to either chondrocyte apoptosis or cancer cell proliferation is not fully understood. Although FGFR3 can be expressed as two main splice isoforms (IIIb or IIIc), there is no apparent link with specific cell responses, which may rather be associated with the cell type or its differentiation status. Depending on cell type, differential activation of STAT proteins has been observed. STAT1 phosphorylation seems to be involved in inhibition of chondrocyte proliferation while activation of the ERK pathway inhibits chondrocyte differentiation and B-cell proliferation (as in multiple myeloma). The role of FGFR3 in epithelial cancers (bladder and cervix) is not known. Some of the cell specificity may arise via modulation of signalling by crosstalk with other signalling pathways. Recently, inhibition of the ERK pathway in achondroplastic mice has provided hope for an approach to the treatment of dwarfism. Further understanding of the ability of FGFR3 to trigger different responses depending on cell type and cellular context may lead to treatments for both skeletal dysplasias and cancer

  7. Differentiation state determines neural effects on microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Muffley, Lara A., E-mail: muffley@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Pan, Shin-Chen, E-mail: pansc@mail.ncku.edu.tw [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Smith, Andria N., E-mail: gnaunderwater@gmail.com [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Ga, Maricar, E-mail: marga16@uw.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Hocking, Anne M., E-mail: ahocking@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Gibran, Nicole S., E-mail: nicoleg@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States)

    2012-10-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. Black-Right-Pointing-Pointer Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. Black-Right-Pointing-Pointer Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate

  8. Characterization and Multilineage Differentiation of Domestic and Black-Footed Cat Mesenchymal Stromal/Stem Cells from Abdominal and Subcutaneous Adipose Tissue.

    Science.gov (United States)

    Gómez, Martha C; Qin, Qian; Biancardi, Monica N; Galiguis, Jason; Dumas, Cherie; MacLean, Robert A; Wang, Guoshun; Pope, C Earle

    2015-10-01

    Transplantation of mesenchymal stem cells (MSCs) isolated from bone marrow or adipose tissue is emerging as a promising tool for cell replacement therapy and regenerative medicine in domestic and endangered animal species. Defining the differentiation capability of adipose-derived mesenchymal stromal/stem cells (AMSCs) collected from different depot sites of adipose tissue will be essential for developing strategies for cell replacement therapy. In the present study, we compared the biological characteristics of domestic cat AMSCs isolated from visceral fat of the abdominal cavity (AB) with AMSCs from subcutaneous (SQ) tissue, and the functional capability of domestic and black-footed cat (Felis nigripes) AMSCs to differentiate into other cell types. Our results showed that both domestic and black-footed cat adipose-derived stromal vascular fractions contained AMSCs. Both domestic cat AB- and SQ-AMSCs showed important clonogenic ability and the minimal MSC immunophenotype as defined by the International Society for Cellular Therapy in humans. However, domestic cat AB-AMSCs had higher percentages of cells positive for MSCs-associated cluster of differentiation (CD) markers CD90(+) and CD105(+) (92% and 80%, respectively) than those of SQ-AMSCs (77% and 58%, respectively). Although these results may suggest that AB-AMSCs may be more multipotent than SQ-AMSCs, both types of cells showed similar expression of pluripotent genes Oct-4 and Klf4, except for higher expression of Nanog than in AB-AMSCs, and equivalent in vitro multilineage differentiation. Under appropriate stimuli, the black-footed cat and both domestic cat AB- and SQ-AMSCs differentiated not only toward mesoderm cell lineages but also toward ectoderm cell lineage, such as neuron cell-like cells. Black-footed cat AMSCs had more capability to differentiate toward chondrocytes. These results suggest that the defined AMSC population (regardless of site of collection) could potentially be employed as a

  9. Role of self carriers in the immune response and tolerance. XI. Correlation of Ia expression and interleukin-1 production with delivery of immunogenic signals in vivo by hapten-modified accessory cell-like tumor lines.

    Science.gov (United States)

    Cogswell, J P; Phipps, R P; Scott, D W

    1988-06-01

    It was recently demonstrated that a lymphoid dendritic-like tumor, P388AD.2, presented hapten-modified self (HMS) in an immunogenic fashion even after injection via the normally "tolerogenic" intravenous (iv) route. To determine whether this property was unique to the P388AD.2 line, other hapten-modified tumors were administered iv and the result of their presentation was measured by changes in the number of splenic plaque-forming cells (PFC) following in vitro challenge with thymic-independent antigens. Of the six tumors tested, two (P388 and J774.5R) primed for augmented PFC responses, while four others (P388NA.10, P388D1, WEHI-231, and 70Z/3) did not. When these tumors were compared for Ia expression and production of interleukin-1 (IL-1), it was discovered that (1) all of the immunogenic tumors were Ia+ and IL-1 producing (IL-1+), although not all Ia+,IL-1+ tumors could elicit augmented PFC responses; (2) none of the tumors that were deficient in either Ia expression or IL-1 production could prime B-cell responses in vivo; and (3) the ability to augment PFC responses was proportional to the density of Ia on the immunogenic tumors. These results demonstrated that P388AD.2 was not the only tumor line capable of presenting HMS iv as an immunogen, and that the accessory cell phenotype is critical for the induction of an immunogenic response in vivo. PMID:3259475

  10. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jui Tung [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2014-12-15

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mouse embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  11. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    International Nuclear Information System (INIS)

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mouse embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  12. Differentiation of Murine Embryonic Stem Cells into Endothelial Cells

    Directory of Open Access Journals (Sweden)

    F. Fathi

    2008-01-01

    Full Text Available Objective: In this investigation Murine Embryonic Stem (ES cells were differentiatedinto endothelial cells.Materials and Methods: Murine ES cells (CCE cell line exposed to Alpha-MEM medium containing 10% FBS for 4 days. Then obtained Flk-1 (Flk-1:Vascular Endothelial Growth Factor Receptor 2 Positive cells were cultuted inEndothelial Growth Medium-2 (EGM-2 until the last day of experiment. Differentiatedcells were evaluated by immunocytochemistry, RT-PCR and Tube FormationAssays.Results: When the ES cells cultured in collagen coated dishes containingAlpha-MEM & FBS, Flk-1 positive cells were obtained. After transfering Flk-1positive cells into fibronectin coated dishes containing EGM2, the cells wereassumed a relatively uniform endothelial cell morphology and could be propagatedand expanded. Immunocytochemical and RT-PCR analysis of differentiatedcells showed that they take up acetylated low-density lipoprotein (LDL, express Flk-1, CD31 and bind the BS-l lectin. When placed in Matrigel, these MurineES cell–derived endothelial cells formed capillary-like structures characteristicof endothelial cellsConclusion: ES cell–derived endothelial cells provide a novel means to examine the mechanisms of endothelial cell development, and may open up new therapeutic strategies.

  13. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    International Nuclear Information System (INIS)

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  14. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Macoch, Mélinda; Morzadec, Claudie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes (France); Vernhet, Laurent, E-mail: laurent.vernhet@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France)

    2013-01-15

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  15. Proteomics Applied to Porcine and Human Neural Stem Cell Differentiation

    Czech Academy of Sciences Publication Activity Database

    Mairychová, Kateřina; Skalníková, Helena; Tylečková, Jiřina; Halada, Petr; Marsala, M.; Kovářová, Hana

    Liběchov : Institute of Animal Physiology and Genetics AS CR, v.v.i, 2010. s. 61-61. [Informal Proteomic Meeting 2010. 09.11.2010-10.11.2010, Liblice] R&D Projects: GA MŠk 1M0538; GA MŠk(CZ) ME10044 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z50200510 Keywords : proteomics * cell differentiation * neural stem cell s Subject RIV: FH - Neurology

  16. Zfp423 promotes adipogenic differentiation of bovine stromal vascular cells.

    Directory of Open Access Journals (Sweden)

    Yan Huang

    Full Text Available Intramuscular fat or marbling is critical for the palatability of beef. In mice, very recent studies show that adipocytes and fibroblasts share a common pool of progenitor cells, with Zinc finger protein 423 (Zfp423 as a key initiator of adipogenic differentiation. To evaluate the role of Zfp423 in intramuscular adipogenesis and marbling in beef cattle, we sampled beef muscle for separation of stromal vascular cells. These cells were immortalized with pCI neo-hEST2 and individual clones were selected by G418. A total of 288 clones (3×96 well plates were isolated and induced to adipogenesis. The presence of adipocytes was assessed by Oil-Red-O staining. Three clones with high and low adipogenic potential respectively were selected for further analyses. In addition, fibro/adipogenic progenitor cells were selected using a surface marker, platelet derived growth factor receptor (PDGFR α. The expression of Zfp423 was much higher (307.4±61.9%, P<0.05 in high adipogenic cells, while transforming growth factor (TGF-β was higher (156.1±48.7%, P<0.05 in low adipogenic cells. Following adipogenic differentiation, the expression of peroxisome proliferator-activated receptor γ (PPARγ and CCAAT/enhancer binding protein α (C/EBPα were much higher (239.4±84.1% and 310.7±138.4%, respectively, P<0.05 in high adipogenic cells. Over-expression of Zfp423 in stromal vascular cells and cloned low adipogenic cells dramatically increased their adipogenic differentiation, accompanied with the inhibition of TGF-β expression. Zfp423 knockdown by shRNA in high adipogenic cells largely prevented their adipogenic differentiation. The differential regulation of Zfp423 and TGF-β between low and high adipogenic cells is associated with the DNA methylation in their promoters. In conclusion, data show that Zfp423 is a critical regulator of adipogenesis in stromal vascular cells of bovine muscle, and Zfp423 may provide a molecular target for enhancing intramuscular

  17. Directed differentiation of rhesus monkey ES cells into pancreatic cell phenotypes

    Directory of Open Access Journals (Sweden)

    Nauert Brian

    2004-06-01

    Full Text Available Abstract Embryonic stem cells (ES can self-replicate and differentiate into all cell types including insulin-producing, beta-like cells and could, therefore, be used to treat diabetes mellitus. To date, results of stem cell differentiation into beta cells have been debated, largely due to difficulties in defining the identity of a beta cell. We have recently differentiated non-human primate (rhesus embryonic stem (rES cell lines into insulin producing, beta-like cells with the beta cell growth factor, Exendin-4 and using C-peptide as a phenotype marker. Cell development was characterized at each stage by gene and protein expression. Insulin, NKX6.1 and glucagon mRNA were expressed in stage 4 cells but not in early undifferentiated cells. We concluded that rES cells could be differentiated ex vivo to insulin producing cells. These differentiated rES cells could be used to develop a non-human primate model for evaluating cell therapy to treat diabetes. To facilitate the identification of beta-like cells and to track the cells post-transplantation, we have developed a marker gene construct: fusing the human insulin promoter (HIP to the green fluorescent protein (GFP gene. This construct was transfected into stage 3 rES derived cells and subsequent GFP expression was identified in C-peptide positive cells, thereby substantiating endogenous insulin production by rES derived cells. Using this GFP detection system, we will enrich our population of insulin producing rES derived cells and track these cells post-transplantation in the non-human primate model.

  18. Ultrastructure of neuronal-like cells differentiated from adult adipose-derived stromal cells

    Institute of Scientific and Technical Information of China (English)

    Changqing Ye; Xiaodong Yuan; Hui Liu; Yanan Cai; Ya Ou

    2010-01-01

    β-mercaptoethanol induces in vitro adult adipose-derived stromal cells (ADSCs) to differentiate into neurons. However, the ultrastructural features of the differentiated neuronal-like cells remain unknown. In the present study, inverted phase contrast microscopy was utilized to observe β-mercaptcethanol-induced differentiation of neuronal-like cells from human ADSCs, and immunocytochemistry and real-time polymerase chain reaction were employed to detect expression of a neural stem cells marker (nestin), a neuronal marker (neuron-specific enolase), and a glial marker (glial fibrillary acidic protein). In addition, ultrastructure of neuronal-like cells was observed by transmission election microscopy. Results revealed highest expression rate of nestin and neuron-specific enolase at 3 and 5 hours following induced differentiation; cells in the 5-hour induction group exhibited a neuronal-specific structure, i.e., Nissl bodies. However, when induction solution was replaced by complete culture medium after 8-hour induction, the differentiated cells reverted to the fibroblast-like morphology from day 1. These results demonstrate that β-mercaptoethanol-induced ADSCs induced differentiation into neural stem cells, followed by morphology of neuronal-like cells. However, this differentiation state was not stable.

  19. Citalopram increases the differentiation efifcacy of bone marrow mesenchymal stem cells into neuronal-like cells

    Institute of Scientific and Technical Information of China (English)

    Javad Verdi; Seyed Abdolreza Mortazavi-Tabatabaei; Shiva Sharif; Hadi Verdi; Alireza Shoae-Hassani

    2014-01-01

    Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was decreased in citalopram-treated bone marrow mesenchymal stem cells than in control cells in neurobasal medium. In addition, the cumulative population doubling level of the citalopram-treated cells was signiifcantly increased compared to that of control cells. Also BrdU incorporation was elevated in citalopram-treated cells. These ifndings suggest that citalopram can improve the neuronal-like cell differentiation of bone marrow mesenchymal stem cells by increasing cell proliferation and survival while maintaining their neuronal characteristics.

  20. Proteomes and Neural Stem Cells: cellular signalling during differentiation

    Czech Academy of Sciences Publication Activity Database

    Skalníková, Helena; Halada, Petr; Vodička, Petr; Motlík, Jan; Horning, O.; Jensen, O. N.; Gadher, S. J.; Pelech, S.; Kovářová, Hana

    Cambridge : -, 2007, s. 1-1. [BSPR-EBI Meeting: Integrative Proteomics: From Molecules to Systems,. Cambridge (GB), 25.07.2007-27.07.2007] Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z50200510 Keywords : neural stem cells * differentiation * signalling * proteome Subject RIV: EB - Genetics ; Molecular Biology

  1. Protein signaling pathways in differentiation of neural stem cells

    Czech Academy of Sciences Publication Activity Database

    Skalníková, Helena; Vodička, Petr; Pelech, S.; Motlík, Jan; Gadher, S. J.; Kovářová, Hana

    2008-01-01

    Roč. 8, - (2008), s. 4547-4559. ISSN 1615-9853 R&D Projects: GA MŠk 1M0538 Institutional research plan: CEZ:AV0Z50450515 Keywords : antibody microarray * differentiation * neural stem cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.586, year: 2008

  2. Ghrelin promotes differentiation of human embryonic stem cells into cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Jin YANG; Guo-qiang LIU; Rui WEI; Wen-fang HOU; Mei-juan GAO; Ming-xia ZHU; Hai-ning WANG; Gui-an CHEN; Tian-pei HONG

    2011-01-01

    Aim:Ghrelin is involved in regulating the differentiation of mesoderm-derived precursor cells.The aim of this study was to investigate whether ghrelin modulated the differentiation of human embryonic stem (hES) cells into cardiomyocytes and,if so,whether the effect was mediated by growth hormone secretagogue receptor 1α (GHS-R1α).Methods:Cardiomyocyte differentiation from hES cells was performed according to an embryoid body (EB)-based protocol.The cumulative percentage of beating EBs was calculated.The expression of cardiac-specific markers including cardiac troponin Ⅰ (cTnl) and α-myosin heavy chain (α-MHC) was detected using RT-PCR,real-time PCR and Western blot.The dispersed beating EBs were examined using immunofluorescent staining.Results:The percentage of beating EBs and the expression of cTnl were significantly increased after ghrelin (0.1 and 1 nmol/L) added into the differentiation medium.From 6 to 18 d of differentiation,the increased expression of cTnl and α-MHC by ghrelin (1 nmol/L)was time-dependent,and in line with the alteration of the percentages of beating EBs.Furthermore,the dispersed beating EBs were double-positively immunostained with antibodies against cTnl and α-actinin.However,blockage of GHS-R1α with its specific antagonist D-[lys3]-GHRP-6 (1 μmol/L) did not alter the effects of ghrelin on cardiomyocyte differentiation.Conclusion:Our data show that ghrelin enhances the generation of cardiomyocytes from hES cells,which is not mediated via GHS-R1α.

  3. Phenotypic plasticity within yeast colonies: differential partitioning of cell fates.

    Science.gov (United States)

    Piccirillo, Sarah; Kapros, Tamas; Honigberg, Saul M

    2016-05-01

    Across many phyla, a common aspect of multicellularity is the organization of different cell types into spatial patterns. In the budding yeast Saccharomyces cerevisiae, after diploid colonies have completed growth, they differentiate to form alternating layers of sporulating cells and feeder cells. In the current study, we found that as yeast colonies developed, the feeder cell layer was initially separated from the sporulating cell layer. Furthermore, the spatial pattern of sporulation in colonies depended on the colony's nutrient environment; in two environments in which overall colony sporulation efficiency was very similar, the pattern of feeder and sporulating cells within the colony was very different. As noted previously, under moderately suboptimal conditions for sporulation-low acetate concentration or high temperature-the number of feeder cells increases as does the dependence of sporulation on the feeder-cell transcription factor, Rlm1. Here we report that even under a condition that is completely blocked sporulation, the number of feeder cells still increased. These results suggest broader implications to our recently proposed "Differential Partitioning provides Environmental Buffering" or DPEB hypothesis. PMID:26743103

  4. Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells

    International Nuclear Information System (INIS)

    The poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice. Here we show that undifferentiated mouse ES cells treated with nicotinamide: (i) showed an 80% decrease in cell proliferation; (ii) co-expressed insulin, C-peptide and Glut-2; (iii) had values of insulin and C-peptide corresponding to 10% of normal mouse islets; (iv) released insulin and C-peptide in response to stimulatory glucose concentrations; and (v) after transplantation into diabetic mice, normalized blood glucose levels over 7 weeks. Our data indicate that nicotinamide decreases ES cell proliferation and induces differentiation into insulin-secreting cells. Both aspects are very important when thinking about cell therapy for the treatment of diabetes based on ES cells

  5. D609 induces vascular endothelial cells and marrow stromal cells differentiation into neuron-like cells

    Institute of Scientific and Technical Information of China (English)

    Nan WANG; Chun-qing DU; Shao-shan WANG; Kun XIE; Shang-li ZHANG; Jun-ying MIAO

    2004-01-01

    AIM: To investigate the effect of tricyclodecane-9-yl-xanthogenate (D609) on cell differentiation in vascular endothelial cells (VECs) and marrow stromal cells (MSCs). METHODS: Morphological changes were observed under phase contrast microscope. Electron microscope and immunostaining were used for VECs identification. The expressions of neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) were examined by immunohistochemistry. RESULTS: After 6 h of induction with D609, some VECs showed morphological changes characteristic of neurones. 9 h later, more VECs became neuron-like cells. About 30.8 % of VECs displayed positive NSE (P<0.01), while the expression of GFAP was negative. When MSCs were exposed to D609, the cells displayed neuronal morphologies, such as pyramidal cell bodies and processes formed extensive networks at 3 h. 6 h later, almost all of the cells exhibited a typical neuronal appearance, and 85.6 % of MSCs displayed intensive positive NSE, but GFAP did not express. CONCLUSION: D609 induces VECs and MSCs differentiation into neuron-like cells.

  6. Delivery of differentiation factors by mesoporous silica particles assists advanced differentiation of transplanted murine embryonic stem cells

    DEFF Research Database (Denmark)

    Garcia-Bennett, Alfonso E; Kozhevnikova, Mariya; König, Niclas;

    2013-01-01

    Stem cell transplantation holds great hope for the replacement of damaged cells in the nervous system. However, poor long-term survival after transplantation and insufficiently robust differentiation of stem cells into specialized cell types in vivo remain major obstacles for clinical application...... mesoporous nanoparticles is a potentially versatile and widely applicable strategy for efficient differentiation and functional integration of stem cell derivatives upon transplantation....

  7. Planar Cell Polarity Controls Pancreatic Beta Cell Differentiation and Glucose Homeostasis

    DEFF Research Database (Denmark)

    Cortijo, Cedric; Gouzi, Mathieu; Tissir, Fadel;

    2012-01-01

    .5 synchronously to apicobasal polarization of pancreas progenitors. Loss of function of the two PCP core components Celsr2 and Celsr3 shows that they control the differentiation of endocrine cells from polarized progenitors, with a prevalent effect on insulin-producing beta cells. This results in a decreased...... glucose clearance. Loss of Celsr2 and 3 leads to a reduction of Jun phosphorylation in progenitors, which, in turn, reduces beta cell differentiation from endocrine progenitors. These results highlight the importance of the PCP pathway in cell differentiation in vertebrates. In addition, they reveal that...

  8. Lignin Induces ES Cells to Differentiate into Neuroectodermal Cells through Mediation of the Wnt Signaling Pathway

    Science.gov (United States)

    Inoue, Yu; Hasegawa, Seiji; Yamada, Takaaki; Date, Yasushi; Mizutani, Hiroshi; Nakata, Satoru; Akamatsu, Hirohiko

    2013-01-01

    Embryonic stem cells (ES cells) are characterized by their pluripotency and infinite proliferation potential. Ever since ES cells were first established in 1981, there have been a growing number of studies aimed at clinical applications of ES cells. In recent years, various types of differentiation inducement systems using ES cells have been established. Further studies have been conducted to utilize differentiation inducement systems in the field of regenerative medicine. For cellular treatments using stem cells including ES cells, differentiation induction should be performed in a sufficient manner to obtain the intended cell lineages. Lignin is a high-molecular amorphous material that forms plants together with cellulose and hemicelluloses, in which phenylpropane fundamental units are complexly condensed. Lignin derivatives have been shown to have several bioactive functions. In spite of these findings, few studies have focused on the effects of lignin on stem cells. Our study aimed to develop a novel technology using lignin to effectively induce ES cells to differentiate into neuroectodermal cells including ocular cells and neural cells. Since lignin can be produced at a relatively low cost in large volumes, its utilization is expected for more convenient differentiation induction technologies and in the field of regenerative medicine in the future. PMID:23805217

  9. Mechanistic Contribution of Ubiquitous 15-Lipoxygenase-1 Expression Loss in Cancer Cells to Terminal Cell Differentiation Evasion

    OpenAIRE

    Moussalli, Micheline J.; Wu, Yuanqing; Zuo, Xiangsheng; Yang, Xiu L.; Wistuba, Ignacio Ivan; Raso, Maria G.; Morris, Jeffrey S.; Bowser, Jessica L.; Minna, John D.; Lotan, Reuben; SHUREIQI, IMAD

    2011-01-01

    Loss of terminal cell differentiation promotes tumorigenesis. 15-LOX-1 contributes to terminal cell differentiation in normal cells. The mechanistic significance of 15-LOX-1 expression loss in human cancers to terminal cell differentiation suppression is unknown. In a screen of 128 cancer cell lines representing more than 20 types of human cancer, we found that 15-LOX-1 mRNA expression levels were markedly lower than levels in terminally differentiated cells. Relative expression levels of 15-...

  10. Evaluation of a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay (SOT)

    Science.gov (United States)

    The Embryonic Stem Cell Test (EST) has been used to evaluate the effects of xenobiotics using three endpoints, stem cell differentiation, stem cell viability and 3T3-cell viability. Our research goal is to establish amodel system that would evaluate chemical effects using a singl...

  11. Putative intermediates in the nerve cell differentiation pathway in hydra have properties of multipotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Holstein, T.W.; David, C.N. (Univ. of Munich (Germany, F.R.))

    1990-12-01

    We have investigated the properties of nerve cell precursors in hydra by analyzing the differentiation and proliferation capacity of interstitial cells in the peduncle of Hydra oligactis, which is a region of active nerve cell differentiation. Our results indicate that about 50% of the interstitial cells in the peduncle can grow rapidly and also give rise to nematocyte precursors when transplanted into a gastric environment. If these cells were committed nerve cell precursors, one would not expect them to differentiate into nematocytes nor to proliferate apparently without limit. Therefore we conclude that cycling interstitial cells in peduncles are not intermediates in the nerve cell differentiation pathway but are stem cells. The remaining interstitial cells in the peduncle are in G1 and have the properties of committed nerve cell precursors. Thus, the interstitial cell population in the peduncle contains both stem cells and noncycling nerve precursors. The presence of stem cells in this region makes it likely that these cells are the immediate targets of signals which give rise to nerve cells.

  12. Putative intermediates in the nerve cell differentiation pathway in hydra have properties of multipotent stem cells

    International Nuclear Information System (INIS)

    We have investigated the properties of nerve cell precursors in hydra by analyzing the differentiation and proliferation capacity of interstitial cells in the peduncle of Hydra oligactis, which is a region of active nerve cell differentiation. Our results indicate that about 50% of the interstitial cells in the peduncle can grow rapidly and also give rise to nematocyte precursors when transplanted into a gastric environment. If these cells were committed nerve cell precursors, one would not expect them to differentiate into nematocytes nor to proliferate apparently without limit. Therefore we conclude that cycling interstitial cells in peduncles are not intermediates in the nerve cell differentiation pathway but are stem cells. The remaining interstitial cells in the peduncle are in G1 and have the properties of committed nerve cell precursors. Thus, the interstitial cell population in the peduncle contains both stem cells and noncycling nerve precursors. The presence of stem cells in this region makes it likely that these cells are the immediate targets of signals which give rise to nerve cells

  13. Effect of silver nanoparticles on human mesenchymal stem cell differentiation

    Directory of Open Access Journals (Sweden)

    Christina Sengstock

    2014-11-01

    Full Text Available Background: Silver nanoparticles (Ag-NP are one of the fastest growing products in nano-medicine due to their enhanced antibacterial activity at the nanoscale level. In biomedicine, hundreds of products have been coated with Ag-NP. For example, various medical devices include silver, such as surgical instruments, bone implants and wound dressings. After the degradation of these materials, or depending on the coating technique, silver in nanoparticle or ion form can be released and may come into close contact with tissues and cells. Despite incorporation of Ag-NP as an antibacterial agent in different products, the toxicological and biological effects of silver in the human body after long-term and low-concentration exposure are not well understood. In the current study, we investigated the effects of both ionic and nanoparticulate silver on the differentiation of human mesenchymal stem cells (hMSCs into adipogenic, osteogenic and chondrogenic lineages and on the secretion of the respective differentiation markers adiponectin, osteocalcin and aggrecan.Results: As shown through laser scanning microscopy, Ag-NP with a size of 80 nm (hydrodynamic diameter were taken up into hMSCs as nanoparticulate material. After 24 h of incubation, these Ag-NP were mainly found in the endo-lysosomal cell compartment as agglomerated material. Cytotoxicity was observed for differentiated or undifferentiated hMSCs treated with high silver concentrations (≥20 µg·mL−1 Ag-NP; ≥1.5 µg·mL−1 Ag+ ions but not with low-concentration treatments (≤10 µg·mL−1 Ag-NP; ≤1.0 µg·mL−1 Ag+ ions. Subtoxic concentrations of Ag-NP and Ag+ ions impaired the adipogenic and osteogenic differentiation of hMSCs in a concentration-dependent manner, whereas chondrogenic differentiation was unaffected after 21 d of incubation. In contrast to aggrecan, the inhibitory effect of adipogenic and osteogenic differentiation was confirmed by a decrease in the secretion of

  14. Chemo-mechanical control of neural stem cell differentiation

    Science.gov (United States)

    Geishecker, Emily R.

    Cellular processes such as adhesion, proliferation, and differentiation are controlled in part by cell interactions with the microenvironment. Cells can sense and respond to a variety of stimuli, including soluble and insoluble factors (such as proteins and small molecules) and externally applied mechanical stresses. Mechanical properties of the environment, such as substrate stiffness, have also been suggested to play an important role in cell processes. The roles of both biochemical and mechanical signaling in fate modification of stem cells have been explored independently. However, very few studies have been performed to study well-controlled chemo-mechanotransduction. The objective of this work is to design, synthesize, and characterize a chemo-mechanical substrate to encourage neuronal differentiation of C17.2 neural stem cells. In Chapter 2, Polyacrylamide (PA) gels of varying stiffnesses are functionalized with differing amounts of whole collagen to investigate the role of protein concentration in combination with substrate stiffness. As expected, neurons on the softest substrate were more in number and neuronal morphology than those on stiffer substrates. Neurons appeared locally aligned with an expansive network of neurites. Additional experiments would allow for statistical analysis to determine if and how collagen density impacts C17.2 differentiation in combination with substrate stiffness. Due to difficulties associated with whole protein approaches, a similar platform was developed using mixed adhesive peptides, derived from fibronectin and laminin, and is presented in Chapter 3. The matrix elasticity and peptide concentration can be individually modulated to systematically probe the effects of chemo-mechanical signaling on differentiation of C17.2 cells. Polyacrylamide gel stiffness was confirmed using rheological techniques and found to support values published by Yeung et al. [1]. Cellular growth and differentiation were assessed by cell counts

  15. PU.1 silencing leads to terminal differentiation of erythroleukemia cells

    International Nuclear Information System (INIS)

    The transcription factor PU.1 plays a central role in development and differentiation of hematopoietic cells. Evidence from PU.1 knockout mice indicates a pivotal role for PU.1 in myeloid lineage and B-lymphocyte development. In addition, PU.1 is a key player in the development of Friend erythroleukemia disease, which is characterized by proliferation and differentiation arrest of proerythrocytes. To study the role of PU.1 in erythroleukemia, we have used murine erythroleukemia cells, isolated from Friend virus-infected mice. Expression of PU.1 small interfering RNA in these cells led to significant inhibition of PU.1 levels. This was accompanied by inhibition of proliferation and restoration in the ability of the proerythroblastic cells to produce hemoglobin, i.e., reversion of the leukemic phenotype. The data suggest that overexpression of PU.1 gene is the immediate cause for maintaining the leukemic phenotype of the disease by retaining the self-renewal capacity of transformed erythroblastic cells and by blocking the terminal differentiation program towards erythrocytes

  16. Cdon, a cell surface protein, mediates oligodendrocyte differentiation and myelination.

    Science.gov (United States)

    Wang, Li-Chun; Almazan, Guillermina

    2016-06-01

    During central nervous system development, oligodendrocyte progenitors (OLPs) establish multiple branched processes and axonal contacts to initiate myelination. A complete understanding of the molecular signals implicated in cell surface interaction to initiate myelination/remyelination is currently lacking. The objective of our study was to assess whether Cdon, a cell surface protein that was shown to participate in muscle and neuron cell development, is involved in oligodendrocyte (OLG) differentiation and myelination. Here, we demonstrate that endogenous Cdon protein is expressed in OLPs, increasing in the early differentiation stages and decreasing in mature OLGs. Immunocytochemistry of endogenous Cdon showed localization on both OLG cell membranes and cellular processes exhibiting puncta- or varicosity-like structures. Cdon knockdown with siRNA decreased protein levels by 62% as well as two myelin-specific proteins, MBP and MAG. Conversely, overexpression of full-length rat Cdon increased myelin proteins in OLGs. The complexity of OLGs branching and contact point numbers with axons were also increased in Cdon overexpressing cells growing alone or in coculture with dorsal root ganglion neurons (DRGNs). Furthermore, myelination of DRGNs was decreased when OLPs were transfected with Cdon siRNA. Altogether, our results suggest that Cdon participates in OLG differentiation and myelination, most likely in the initial stages of development. GLIA 2016;64:1021-1033. PMID:26988125

  17. A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation.

    Science.gov (United States)

    Chetty, Sundari; Engquist, Elise N; Mehanna, Elie; Lui, Kathy O; Tsankov, Alexander M; Melton, Douglas A

    2015-09-28

    Driving human pluripotent stem cells (hPSCs) into specific lineages is an inefficient and challenging process. We show that a potent Src inhibitor, PP1, regulates expression of genes involved in the G1 to S phase transition of the cell cycle, activates proteins in the retinoblastoma family, and subsequently increases the differentiation propensities of hPSCs into all three germ layers. We further demonstrate that genetic suppression of Src regulates the activity of the retinoblastoma protein and enhances the differentiation potential of hPSCs across all germ layers. These positive effects extend beyond the initial germ layer specification and enable efficient differentiation at subsequent stages of differentiation. PMID:26416968

  18. TCDD exposure disrupts mammary epithelial cell differentiation and function

    OpenAIRE

    Collins, Loretta L.; Lew, Betina J.; Lawrence, B. Paige

    2009-01-01

    Mammary gland growth and differentiation during pregnancy is a developmental process that is sensitive to the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD is a widespread environmental contaminant and a potent ligand for the aryl hydrocarbon receptor (AhR). We demonstrate reduced β-casein protein induction in mouse mammary glands and in cultured SCp2 mammary epithelial cells following exposure to TCDD. SCp2 cells exposed to TCDD also show reduced cell clustering and less ...

  19. Differentiation of Effector CD4 T Cell Populations*

    OpenAIRE

    Zhu, Jinfang; Yamane, Hidehiro; Paul, William E.

    2010-01-01

    CD4 T cells play critical roles in mediating adaptive immunity to a variety of pathogens. They are also involved in autoimmunity, asthma, and allergic responses as well as in tumor immunity. During TCR activation in a particular cytokine milieu, naive CD4 T cells may differentiate into one of several lineages of T helper (Th) cells, including Th1, Th2, Th17, and iTreg, as defined by their pattern of cytokine production and function. In this review, we summarize the discovery, functions, and r...

  20. Poorly Differentiated Squamous Cell Carcinoma Arising in Tattooed Skin

    Directory of Open Access Journals (Sweden)

    Deba P. Sarma

    2010-01-01

    Full Text Available Introduction. Tattoos have increasingly become accepted by mainstream Western society. As a result, the incidence of tattoo-associated dermatoses is on the rise. The presence of a poorly differentiated squamous cell carcinoma in an old tattooed skin is of interest as it has not been previously documented. Case Presentation. A 79-year-old white homeless man of European descent presented to the dermatology clinic with a painless raised nodule on his left forearm arising in a tattooed area. A biopsy of the lesion revealed a poorly differentiated squamous cell carcinoma infiltrating into a tattoo. The lesion was completely excised and the patient remains disease-free one year later. Conclusion. All previous reports of squamous cell carcinomas arising in tattoos have been well-differentiated low-grade type or keratoacanthoma-type and are considered to be coincidental rather than related to any carcinogenic effect of the tattoo pigments. Tattoo-associated poorly differentiated invasive carcinoma appears to be extremely rare.

  1. Replicator Dynamics of of Cancer Stem Cell; Selection in the Presence of Differentiation and Plasticity

    OpenAIRE

    Kaveh, Kamran; Kohandel, Mohammad; Sivaloganathan, Siv

    2014-01-01

    Stem cells have the potential to produce lineages of non-stem cell populations (differentiated cells) via a ubiquitous hierarchal division scheme. Differentiation of a stem cell into (partially) differentiated cells can happen either symmetrically or asymmetrically. The selection dynamics of a mutant cancer stem cell should be investigated in the light of a stem cell proliferation hierarchy and presence of a non-stem cell population. By constructing a three-compartment Moran-type model compos...

  2. Bladder cancer cell in co-culture induces human stem cell differentiation to urothelial cells through paracrine FGF10 signaling

    OpenAIRE

    Chung, Seyung S.; Koh, Chester J.

    2013-01-01

    FGF10 is required for embryonic epidermal morphogenesis including brain development, lung morphogenesis, and initiation of limb bud formation. In this study, we investigated the role of FGF10 as a lead induction factor for stem cell differentiation toward urothelial cell. To this end, human multi-potent stem cell in vitro system was employed. Human amniotic fluid stem cells were co-cultured with immortalized bladder cancer lines to induce directed differentiation into urothelial cells. Urothe...

  3. Induced Differentiation of Adipose-derived Stromal Cells into Myoblasts

    Institute of Scientific and Technical Information of China (English)

    吴桂珠; 郑秀; 江忠清; 王金华; 宋岩峰

    2010-01-01

    This study aimed to induce the differentiation of isolated and purified adipose-derived stromal cells(ADSCs) into myoblasts,which may provide a new strategy for tissue engineering in patients with stress urinary incontinence(SUI).ADSCs,isolated and cultured ex vivo,were identified by flow cytometry and induced to differentiate into myoblasts in the presence of an induction solution consisting of DMEM supplemented with 5-azacytidine(5-aza),5% FBS,and 5% horse serum.Cellular morphology was observed under an i...

  4. In vitro apoptotic cell death during erythroid differentiation.

    Science.gov (United States)

    Zamai, L; Burattini, S; Luchetti, F; Canonico, B; Ferri, P; Melloni, E; Gonelli, A; Guidotti, L; Papa, S; Falcieri, E

    2004-03-01

    Erythropoiesis occurs in bone marrow and it has been shown that during in vivo erythroid differentiation some immature erythroblasts undergo apoptosis. In this regard, it is known that immature erythroblasts are FasL- and TRAIL-sensitive and can be killed by cells expressing these ligand molecules. In the present study, we have investigated the cell death phenomenon that occurs during a common unilineage model of erythroid development. Purified CD34+ human haemopoietic progenitors were cultured in vitro in the presence of SCF, IL-3 and erythropoietin. Their differentiation stages and apoptosis were followed by multiple technical approaches. Flow cytometric evaluation of surface and intracellular molecules revealed that glycophorin A appeared at day 3-4 of incubation and about 75% of viable cells co-expressed high density glycophorin A (Gly(bright)) and adult haemoglobin at day 14 of culture, indicating that this system reasonably recapitulates in vivo normal erythropoiesis. Interestingly, when mature (Gly(bright)) erythroid cells reached their higher percentages (day 14) almost half of cultured cells were apoptotic. Morphological studies indicated that the majority of dead cells contained cytoplasmic granular material typical of basophilic stage, and DNA analysis by flow cytometry and TUNEL reaction revealed nuclear fragmentation. These observations indicate that in vitro unilineage erythroid differentiation, as in vivo, is associated with apoptotic cell death of cells with characteristics of basophilic erythroblasts. We suggest that the interactions between different death receptors on immature basophilic erythroblasts with their ligands on more mature erythroblasts may contribute to induce apoptosis in vitro. PMID:15004520

  5. TCDD alters medial epithelial cell differentiation during palatogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, B.D.; Birnbaum, L.S. (National Institute of Environmental Health Sciences, Research Triangle Park, NC (USA))

    1989-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widely distributed, persistent environmental contaminant that is teratogenic in mice, where it induces hydronephrosis and cleft palate. The incidence of clefting has been shown to be dose dependent after exposure on either gestation Day (GD) 10 or 12, although the embryo is more susceptible on GD 12. TCDD-exposed palatal shelves meet but do not fuse, and programmed cell death of the medial epithelial cells is inhibited. The mechanism of action through which TCDD alters the program of medial cell development has not been examined in earlier studies, and it is not known whether the mechanism is the same regardless of the dose or developmental stage of exposure. In this study, C57BL/6N mice, a strain sensitive to TCDD, were dosed orally on GD 10 or 12 with 0, 6, 12, 24, or 30 micrograms/kg body wt, in 10 ml corn oil/kg. Embryonic palatal shelves were examined on GD 14, 15, or 16. The degree of palatal closure, epithelial surface morphology, and cellular ultrastructure, the incorporation of (3H)TdR, the expression of EGF receptors, and the binding of 125I-EGF were assessed. After exposure on GD 10 or 12, TCDD altered the differentiation pathway of the medial epithelial cells. The palatal shelves were of normal size and overall morphology, but fusion of the medial epithelia of the opposing shelves did not occur. TCDD prevented programmed cell death of the medial peridermal cells. The expression of EGF receptors by medial cells continued through Day 16 and the receptors were able to bind ligand. The medial cells differentiated into a stratified, squamous, keratinizing epithelium. The shift in phenotype to an oral-like epithelium occurred after exposure on either GD 10 or 12. At the lower dose (6 micrograms/kg), fewer cleft palates were produced, but those shelves which did respond had a fully expressed shift in differentiation.

  6. TCDD alters medial epithelial cell differentiation during palatogenesis

    International Nuclear Information System (INIS)

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widely distributed, persistent environmental contaminant that is teratogenic in mice, where it induces hydronephrosis and cleft palate. The incidence of clefting has been shown to be dose dependent after exposure on either gestation Day (GD) 10 or 12, although the embryo is more susceptible on GD 12. TCDD-exposed palatal shelves meet but do not fuse, and programmed cell death of the medial epithelial cells is inhibited. The mechanism of action through which TCDD alters the program of medial cell development has not been examined in earlier studies, and it is not known whether the mechanism is the same regardless of the dose or developmental stage of exposure. In this study, C57BL/6N mice, a strain sensitive to TCDD, were dosed orally on GD 10 or 12 with 0, 6, 12, 24, or 30 micrograms/kg body wt, in 10 ml corn oil/kg. Embryonic palatal shelves were examined on GD 14, 15, or 16. The degree of palatal closure, epithelial surface morphology, and cellular ultrastructure, the incorporation of [3H]TdR, the expression of EGF receptors, and the binding of 125I-EGF were assessed. After exposure on GD 10 or 12, TCDD altered the differentiation pathway of the medial epithelial cells. The palatal shelves were of normal size and overall morphology, but fusion of the medial epithelia of the opposing shelves did not occur. TCDD prevented programmed cell death of the medial peridermal cells. The expression of EGF receptors by medial cells continued through Day 16 and the receptors were able to bind ligand. The medial cells differentiated into a stratified, squamous, keratinizing epithelium. The shift in phenotype to an oral-like epithelium occurred after exposure on either GD 10 or 12. At the lower dose (6 micrograms/kg), fewer cleft palates were produced, but those shelves which did respond had a fully expressed shift in differentiation

  7. Understanding stem cell differentiation through self-organization theory.

    Science.gov (United States)

    Qu, K; Ortoleva, P

    2008-02-21

    The mechanism underling stem cells' key property, the ability to either divide into two replicate cells or a replicate and a differentiated daughter, still is not understood. We tested a hypothesis that stem cell asymmetric division/differentiation is spontaneously created by the coupling of processes within each daughter and the resulting biochemical feedbacks via the exchange of molecules between them during mitotic division. We developed a mathematical/biochemical model that accounts for dynamic processes accompanying division, including signaling initiation and transcriptional, translational and post-translational (TTP) reactions. Analysis of this model shows that it could explain how stem cells make the decision to divide symmetrically or asymmetrically under different microenvironmental conditions. The analysis also reveals that a stem cell can be induced externally to transition to an alternative state that does not have the potentiality to have the option to divide symmetrically or asymmetrically. With this model, we initiated a search of large databases of transcriptional regulatory network (TRN), protein-protein interaction, and cell signaling pathways. We found 12 subnetworks (motifs) that could support human stem cell asymmetric division. A prime example of the discoveries made possible by this tool, two groups of the genes in the genetic model are revealed to be strongly over-represented in a database of cancer-related genes. PMID:18076908

  8. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

    Science.gov (United States)

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-06-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. PMID:27194709

  9. Small Buccal Fat Pad Cells Have High Osteogenic Differentiation Potential.

    Science.gov (United States)

    Tsurumachi, Niina; Akita, Daisuke; Kano, Koichiro; Matsumoto, Taro; Toriumi, Taku; Kazama, Tomohiko; Oki, Yoshinao; Tamura, Yoko; Tonogi, Morio; Isokawa, Keitaro; Shimizu, Noriyoshi; Honda, Masaki

    2016-03-01

    Dedifferentiated fat (DFAT) cells derived from mature adipocytes have mesenchymal stem cells' (MSCs) characteristics. Generally, mature adipocytes are 60-110 μm in diameter; however, association between adipocyte size and dedifferentiation efficiency is still unknown. This study, therefore, investigated the dedifferentiation efficiency of adipocytes based on cell diameter. Buccal fat pad was harvested from five human donors and dissociated by collagenase digestion. After exclusion of unwanted stromal cells by centrifugation, floating adipocytes were collected and their size distribution was analyzed. The floating adipocytes were then separated into two groups depending on cell size using 40- and 100-μm nylon mesh filters: cell diameters less than 40 μm (small adipocytes: S-adipocytes) and cell diameters of 40-100 μm (large adipocytes: L-adipocytes). Finally, we evaluated the efficiency of adipocyte dedifferentiation and then characterized the resultant DFAT cells. The S-adipocytes showed a higher capacity to dedifferentiate into DFAT cells (S-DFAT cells) compared to the L-adipocytes (L-DFAT cells). The S-DFAT cells also showed a relatively higher proportion of CD146-positive cells than L-DFAT cells, and exhibited more osteogenic differentiation ability based on the alkaline phosphatase activity and amount of calcium deposition. These results suggested that the S- and L-DFAT cells had distinct characteristics, and that the higher dedifferentiation potential of S-adipocytes compared to L-adipocytes gives the former group an advantage in yielding DFAT cells. PMID:26651216

  10. Enhancement of cardiomyocyte differentiation from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Several approaches have been used to encourage the differentiation of cardiomyocytes from human embryonic stem cells.However,the differentiation efficiency is low,and appropriate culture protocols are needed to produce adequate numbers of cardiomyocytes for therapeutic cell transplantation.This study investigated the effects of serum on cardiomyocyte differentiation in suspension culture medium during embryoid body(EB) formation by human embryonic stem cells.The addition of ascorbic acid,dimethylsulfoxide and 5-aza-2’-deoxycytidine during days 5-7 at the EB-forming stage resulted in an increase in the numbers of rhythmically contracting clusters of derived cardiomyocytes.Treatment with 0.1 mmol L-1 ascorbic acid alone,or more notably in combination with 10 μmol L-1 5-aza-2’-deoxycytidine,induced the formation of beating cells within EBs.Most of the beating clusters had spontaneous contraction rates similar to those found in human adults,and their contractile ac-tivity lasted for up to 194 days.

  11. The proliferation and differentiation of stem cell journals.

    Science.gov (United States)

    Sanberg, Paul R; Borlongan, Cesar V

    2010-12-01

    As scientists position themselves in translating the therapeutic potential of stem cells from laboratory to clinical applications, publishing companies have taken this rapidly evolving field as a unique opportunity to launch new journals for dissemination of stem cell research. Over the last decade, the significant increase in the number of stem cell-based journals has created a conundrum. At stake is the pressure for these new journals to build their reputation by maintaining publication standards, while at the same time attracting a cadre of stem cell researchers to consider their journals as the publication of choice. We discuss here a prophetic path of survival for these journals which likely will closely mimic the core scientific and translational value of stem cells, namely their capacity to proliferate and differentiate into something meaningful! PMID:20694581

  12. Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer.

    Science.gov (United States)

    Hsu, Yi-Chao; Wu, Yu-Ting; Yu, Ting-Hsien; Wei, Yau-Huei

    2016-04-01

    Mesenchymal stem cells (MSCs) are characterized to have the capacity of self-renewal and the potential to differentiate into mesoderm, ectoderm-like and endoderm-like cells. MSCs hold great promise for cell therapies due to their multipotency in vitro and therapeutic advantage of hypo-immunogenicity and lower tumorigenicity. Moreover, it has been shown that MSCs can serve as a vehicle to transfer mitochondria into cells after cell transplantation. Mitochondria produce most of the energy through oxidative phosphorylation in differentiated cells. It has been increasingly clear that the switch of energy supply from glycolysis to aerobic metabolism is essential for successful differentiation of MSCs. Post-translational modifications of proteins have been established to regulate mitochondrial function and metabolic shift during MSCs differentiation. In this article, we review and provide an integrated view on the roles of different protein kinases and sirtuins in the maintenance and differentiation of MSCs. Importantly, we provide evidence to suggest that alteration in the expression of Sirt3 and Sirt5 and relative changes in the acylation levels of mitochondrial proteins might be involved in the activation of mitochondrial function and adipogenic differentiation of adipose-derived MSCs. We summarize their roles in the regulation of mitochondrial biogenesis and metabolism, oxidative responses and differentiation of MSCs. On the other hand, we discuss recent advances in the study of mitochondrial dynamics and mitochondrial transfer as well as their roles in the differentiation and therapeutic application of MSCs to improve cell function in vitro and in animal models. Accumulating evidence has substantiated that the therapeutic potential of MSCs is conferred not only by cell replacement and paracrine effects but also by transferring mitochondria into injured tissues or cells to modulate the cellular metabolism in situ. Therefore, elucidation of the underlying mechanisms

  13. mTOR and the differentiation of mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Xinxin Xiang; Jing Zhao; Geyang Xu; Yin Li; Weizhen Zhang

    2011-01-01

    The mammalian target of rapamycin (mTOR), an evolutionarily conserved serine-threonine protein kinase,belongs to the phosphoinositide 3-kinase (PI3K)-related kinase family, which contains a lipid kinase-like domain within their C-terminal region. Recent studies have revealed that mTOR as a critical intracellular molecule can sense the extracellular energy status and regulate the cell growth and proliferation in a variety of cells and tissues. This review summarizes our current understanding about the effects of mTOR on cell differentiation and tissue development, with an emphasis on the lineage determination of mesenchymal stem cells, mTOR can promote adipogenesis in white adipocytes, brown adipocytes, and muscle satellite cells, while rapamycin inhibits the adipogenic function of mTOR. mTOR signaling may function to affect osteoblast proliferation and differentiation, however, rapamycin has been reported to either inhibit or promote osteogenesis. Although the precise mechanism remains unclear, mTOR is indispensable for myogenesis. Depending on the cell type, rapamycin has been reported to inhibit, promote, or have no effect on myogenesis.

  14. Stalk cell differentiation without polyketides in the cellular slime mold.

    Science.gov (United States)

    Sato, Yukie G; Suarez, Teresa; Saito, Tamao

    2016-07-01

    Polyketides induce prestalk cell differentiation in Dictyostelium. In the double-knockout mutant of the SteelyA and B polyketide synthases, most of the pstA cells-the major part of the prestalk cells-are lost, and we show by whole mount in situ hybridization that expression of prestalk genes is also reduced. Treatment of the double-knockout mutant with the PKS inhibitor cerulenin gave a further reduction, but some pstA cells still remained in the tip region, suggesting the existence of a polyketide-independent subtype of pstA cells. The double-knockout mutant and cerulenin-treated parental Ax2 cells form fruiting bodies with fragile, single-cell layered stalks after cerulenin treatment. Our results indicate that most pstA cells are induced by polyketides, but the pstA cells at the very tip of the slug are induced in some other way. In addition, a fruiting body with a single-cell layered, vacuolated stalk can form without polyketides. PMID:27305283

  15. Snai1 represses Nanog to promote embryonic stem cell differentiation

    Directory of Open Access Journals (Sweden)

    F. Galvagni

    2015-06-01

    Full Text Available Embryonic stem cell (ESC self-renewal and pluripotency is maintained by an external signaling pathways and intrinsic regulatory networks involving ESC-specific transcriptional complexes (mainly formed by OCT3/4, Sox2 and Nanog proteins, the Polycomb repressive complex 2 (PRC2 and DNA methylation [1–8]. Among these, Nanog represents the more ESC specific factor and its repression correlates with the loss of pluripotency and ESC differentiation [9–11]. During ESC early differentiation, many development-associated genes become upregulated and although, in general, much is known about the pluripotency self-renewal circuitry, the molecular events that lead ESCs to exit from pluripotency and begin differentiation are largely unknown. Snai1 is one the most early induced genes during ESC differentiation in vitro and in vivo [12,13]. Here we show that Snai1 is able to directly repress several stemness-associated genes including Nanog. We use a ESC stable-line expressing a inducible Snai1 protein. We here show microarray analysis of embryonic stem cells (ESC expressing Snail-ER at various time points of induction with 4-OH. Data were deposited in Gene Expression Omnibus (GEO datasets under reference GSE57854 and here: http://epigenetics.hugef-research.org/data.php.

  16. Gene function in early mouse embryonic stem cell differentiation

    Directory of Open Access Journals (Sweden)

    Campbell Pearl A

    2007-03-01

    Full Text Available Abstract Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5 undergoing undirected differentiation into embryoid bodies (EBs over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1, our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2 that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of m

  17. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers.

    OpenAIRE

    Itskovitz-Eldor, J.; Schuldiner, M; Karsenti, D.; Eden, A.; Yanuka, O.; Amit, M; Soreq, H; Benvenisty, N

    2000-01-01

    BACKGROUND: Embryonic stem (ES) cells are lines of cells that are isolated from blastocysts. The murine ES cells were demonstrated to be true pluripotent cells as they differentiate into all embryonic lineages. Yet, in vitro differentiation of rhesus ES cells was somewhat inconsistent and disorganized. The recent isolation of human ES cells calls for exploring their pluripotential nature. MATERIALS AND METHODS: Human ES cells were grown in suspension to induce their differentiation into embry...

  18. Expression of the chitinase family glycoprotein YKL-40 in undifferentiated, differentiated and trans-differentiated mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Daniel J Hoover

    Full Text Available The glycoprotein YKL-40 (CHI3L1 is a secreted chitinase family protein that induces angiogenesis, cell survival, and cell proliferation, and plays roles in tissue remodeling and immune regulation. It is expressed primarily in cells of mesenchymal origin, is overexpressed in numerous aggressive carcinomas and sarcomas, but is rarely expressed in normal ectodermal tissues. Bone marrow-derived mesenchymal stem cells (MSCs can be induced to differentiate into various mesenchymal tissues and trans-differentiate into some non-mesenchymal cell types. Since YKL-40 has been used as a mesenchymal marker, we followed YKL-40 expression as undifferentiated MSCs were induced to differentiate into bone, cartilage, and neural phenotypes. Undifferentiated MSCs contain significant levels of YKL-40 mRNA but do not synthesize detectable levels of YKL-40 protein. MSCs induced to differentiate into chondrocytes and osteocytes soon began to express and secrete YKL-40 protein, as do ex vivo cultured chondrocytes and primary osteocytes. In contrast, MSCs induced to trans-differentiate into neurons did not synthesize YKL-40 protein, consistent with the general absence of YKL-40 protein in normal CNS parenchyma. However, these trans-differentiated neurons retained significant levels of YKL-40 mRNA, suggesting the mechanisms which prevented YKL-40 translation in undifferentiated MSCs remained in place, and that these trans-differentiated neurons differ in at least this way from neurons derived from neuronal stem cells. Utilization of a differentiation protocol containing β-mercaptoethanol resulted in cells that expressed significant amounts of intracellular YKL-40 protein that was not secreted, which is not seen in normal cells. Thus the synthesis of YKL-40 protein is a marker for MSC differentiation into mature mesenchymal phenotypes, and the presence of untranslated YKL-40 mRNA in non-mesenchymal cells derived from MSCs reflects differences between differentiated and

  19. Citalopram increases the differentiation efficacy of bone marrow mesenchymal stem cells into neuronal-like cells

    OpenAIRE

    Verdi, Javad; Mortazavi-Tabatabaei, Seyed AbdolReza; Sharif, Shiva; Verdi, Hadi; Shoae-Hassani, Alireza

    2014-01-01

    Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was d...

  20. Radiation transformation in differentiated human cells in culture

    International Nuclear Information System (INIS)

    A tissue culture technique is described for human thyroid tissue as an approach to studying mechanisms of human radiation carcinogenesis. Normal human tissue obtained from surgery is treated in one of two ways, depending upon size of specimen. Large pieces are completely digested in trypsin/ collagenase solution to a single cell suspension. Small pieces of tissue are plated as explants following partial digestion in trypsin/collagenase solution. Following irradiation of the primary differentiated monolayers (normally 10 days after plating), the development of transformed characteristics is monitored in the subsequent subcultures. A very high level of morphological and functional differentiation is apparent in the primary cultures. Over a period of approx. 6 months, the irradiated surviving cells continue to grow in culture, unlike the unirradiated controls which senesce after 2-3 subcultures. (UK)

  1. Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay

    Science.gov (United States)

    The Embryonic Stem Cell Test (EST) is an assay which evaluates xenobiotic-induced effects using three endpoints: mouse embryonic stem cell (mESC) differentiation, mESC viability, and 3T3-cell viability. Our research goal was to develop an improved high-throughput assay by establi...

  2. Natural antibodies sustain differentiation and maturation of human dendritic cells

    OpenAIRE

    Bayry, Jagadeesh; Lacroix-Desmazes, Sébastien; Donkova-Petrini, Vladimira; Carbonneil, Cédric; Misra, Namita; Lepelletier, Yves; Delignat, Sandrine; Varambally, Sooryanarayana; Oksenhendler, Eric; Lévy, Yves; Debré, Marianne; Kazatchkine, Michel D.; Hermine, Olivier; Kaveri, Srini V.

    2004-01-01

    The differentiation and maturation of dendritic cells (DCs) is governed by various signals in the microenvironment. Monocytes and DCs circulate in peripheral blood, which contains high levels of natural antibodies (NAbs). NAbs are germ-line-encoded and occur in the absence of deliberate immunization or microbial aggression. To assess the importance of NAbs in the milieu on DC development, we examined the status of DCs in patients with X-linked agammaglobulinemia, a disease characterized by pa...

  3. Neuron-NG2 Cell Synapses: Novel Functions for Regulating NG2 Cell Proliferation and Differentiation

    Directory of Open Access Journals (Sweden)

    Qian-Kun Yang

    2013-01-01

    Full Text Available NG2 cells are a population of CNS cells that are distinct from neurons, mature oligodendrocytes, astrocytes, and microglia. These cells can be identified by their NG2 proteoglycan expression. NG2 cells have a highly branched morphology, with abundant processes radiating from the cell body, and express a complex set of voltage-gated channels, AMPA/kainate, and GABA receptors. Neurons notably form classical and nonclassical synapses with NG2 cells, which have varied characteristics and functions. Neuron-NG2 cell synapses could fine-tune NG2 cell activities, including the NG2 cell cycle, differentiation, migration, and myelination, and may be a novel potential therapeutic target for NG2 cell-related diseases, such as hypoxia-ischemia injury and periventricular leukomalacia. Furthermore, neuron-NG2 cell synapses may be correlated with the plasticity of CNS in adulthood with the synaptic contacts passing onto their progenies during proliferation, and synaptic contacts decrease rapidly upon NG2 cell differentiation. In this review, we highlight the characteristics of classical and nonclassical neuron-NG2 cell synapses, the potential functions, and the fate of synaptic contacts during proliferation and differentiation, with the emphasis on the regulation of the NG2 cell cycle by neuron-NG2 cell synapses and their potential underlying mechanisms.

  4. Regulation of germinal center B-cell differentiation.

    Science.gov (United States)

    Zhang, Yang; Garcia-Ibanez, Laura; Toellner, Kai-Michael

    2016-03-01

    Germinal centers (GC) are the main sites where antigen-activated B-cell clones expand and undergo immunoglobulin gene hypermutation and selection. Iterations of this process will lead to affinity maturation, replicating Darwinian evolution on the cellular level. GC B-cell selection can lead to four different outcomes: further expansion and evolution, apoptosis (non-selection), or output from the GC with differentiation into memory B cells or plasma cells. T-helper cells in GC have been shown to have a central role in regulating B-cell selection by sensing the density of major histocompatibility complex (MHC):peptide antigen complexes. Antigen is provided on follicular dendritic cells in the form of immune complex. Antibody on these immune complexes regulates antigen accessibility by shielding antigen from B-cell receptor access. Replacement of antibody on immune complexes by antibody generated from GC-derived plasma cell output will gradually reduce the availability of antigen. This antibody feedback can lead to a situation where a slow rise in selection stringency caused by a changing environment leads to directional evolution toward higher affinity antibody. PMID:26864101

  5. Derivation, characterization and retinal differentiation of induced pluripotent stem cells

    Indian Academy of Sciences (India)

    Subba Rao Mekala; Vasundhara Vauhini; Usha Nagarajan; Savitri Maddileti; Subhash Gaddipati; Indumathi Mariappan

    2013-03-01

    Millions of people world over suffer visual disability due to retinal dystrophies which can be age-related or a genetic disorder resulting in gradual degeneration of the retinal pigmented epithelial (RPE) cells and photoreceptors. Therefore, cell replacement therapy offers a great promise in treating such diseases. Since the adult retina does not harbour any stem cells, alternative stem cell sources like the embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer a great promise for generating different cell types of the retina. Here, we report the derivation of four iPSC lines from mouse embryonic fibroblasts (MEFs) using a cocktail of recombinant retroviruses carrying the genes for Oct4, Sox2, Klf4 and cMyc. The iPS clone MEF-4F3 was further characterized for stemness marker expression and stable reprogramming by immunocytochemistry, FACS and RT-PCR analysis. Methylation analysis of the nanog promoter confirmed the reprogrammed epigenetic state. Pluripotency was confirmed by embryoid body (EB) formation and lineage-specific marker expression. Also, upon retinal differentiation, patches of pigmented cells with typical cobble-stone phenotype similar to RPE cells are generated within 6 weeks and they expressed ZO-1 (tight junction protein), RPE65 and bestrophin (mature RPE markers) and showed phagocytic activity by the uptake of fluorescent latex beads.

  6. Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    2005-08-01

    Full Text Available DNA methylation, copy number in the genomes of three immortalized prostate epithelial, five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, PC3MLN4 were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme Hpall, followed by linker ligation, polymerase chain reaction (PCR amplification, labeling, hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5% showed differential hybridization between immortalized prostate epithelial, cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, TSPY previously observed in prostate cancer, 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, WIT-1. The majority of genes that appear to be both differentially methylated, differentially regulated between prostate epithelial, cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors.

  7. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Puente, Pilar de la, E-mail: pilardelapuentegarcia@gmail.com [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain); Ludeña, Dolores [Pathology Service, University Hospital of Salamanca, P/San Vicente 58-182, 37007 Salamanca (Spain); López, Marta; Ramos, Jennifer; Iglesias, Javier [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain)

    2013-02-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  8. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    International Nuclear Information System (INIS)

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  9. Co-culture of neuroepithelial stem cells with interstitial cells of Cajal results in neuron differentiation

    OpenAIRE

    Zhao, Bin; Liu, Wei; Wu, Rongde

    2015-01-01

    Objective: The interstitial cells of Cajal (ICCs) interact morphologically and functionally with the elements of the enteric nervous system in the digestive tract. However, direct evidence that ICCs participate in the differentiation of the enteric nervous system is lacking. In this work, we examined in co-culture experiments whether ICCs could stimulate the differentiation of neuroepithelial stem cells (NESCs) to neurons. Methods: NESCs were harvested from the neural tube of embryonic (E11.5...

  10. Delayed BMP4 exposure increases germ cell differentiation in mouse embryonic stem cells.

    Science.gov (United States)

    Talaei-Khozani, Tahereh; Zarei Fard, Nehleh; Bahmanpour, Soghra; Jaberipour, Mansoureh; Hosseini, Ahmah; Esmaeilpour, Tahereh

    2014-01-01

    Fate mapping studies have revealed that bone morphogenetic protein 4 (BMP4) signaling has a key role in segregation of primordial germ cells from proximal epiblast. Adding BMP4 to the culture media of embryonic stem (ES) cells could induce expression of germ cell markers; however, to provide a desired number of germ cells has remained a challenge. In the current study, we intended to establish an in vitro system to obtain reliable germ cells derived from ES cells. Differentiation was induced in ES cells via embryoid body (EB) and monolayer culture system. Cells were cultured with BMP4 from the beginning (++BMP4) or after 48 hours (+BMP4) of culturing for five days. The cultures were assessed for alkaline phosphatase (ALP) activity, expression of Oct4, Mvh and c-kit. In EB culture protocol, the expression of Mvh, Oct4 and ALP activity significantly increased in +BMP4 culture condition, but a significant down-regulation in the expression of germ cell markers was shown in ++BMP4 condition compared with the control group. Parallel differentiation experiments using monolayer culture system indicated the number of putative germ cells did not change. In the current study, we compared two differentiation methods (EB and monolayer) to achieve an optimal germ cell production. The EBs with a short exposure time period to BMP4, showing typical characteristics of germ cells. Therefore, our approach provides a strategy for the production of germline cells from ES cells. PMID:24969978

  11. Prion protein expression regulates embryonic stem cell pluripotency and differentiation.

    Directory of Open Access Journals (Sweden)

    Alberto Miranda

    Full Text Available Cellular prion protein (PRNP is a glycoprotein involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs. Although the physiological function of PRNP is largely unknown, its key role in prion infection has been extensively documented. This study examines the functionality of PRNP during the course of embryoid body (EB differentiation in mouse Prnp-null (KO and WT embryonic stem cell (ESC lines. The first feature observed was a new population of EBs that only appeared in the KO line after 5 days of differentiation. These EBs were characterized by their expression of several primordial germ cell (PGC markers until Day 13. In a comparative mRNA expression analysis of genes playing an important developmental role during ESC differentiation to EBs, Prnp was found to participate in the transcription of a key pluripotency marker such as Nanog. A clear switching off of this gene on Day 5 was observed in the KO line as opposed to the WT line, in which maximum Prnp and Nanog mRNA levels appeared at this time. Using a specific antibody against PRNP to block PRNP pathways, reduced Nanog expression was confirmed in the WT line. In addition, antibody-mediated inhibition of ITGB5 (integrin αvβ5 in the KO line rescued the low expression of Nanog on Day 5, suggesting the regulation of Nanog transcription by Prnp via this Itgb5. mRNA expression analysis of the PRNP-related proteins PRND (Doppel and SPRN (Shadoo, whose PRNP function is known to be redundant, revealed their incapacity to compensate for the absence of PRNP during early ESC differentiation. Our findings provide strong evidence for a relationship between Prnp and several key pluripotency genes and attribute Prnp a crucial role in regulating self-renewal/differentiation status of ESC, confirming the participation of PRNP during early embryogenesis.

  12. Differentiation of Equine Mesenchymal Stromal Cells into Cells of Neural Lineage: Potential for Clinical Applications

    Directory of Open Access Journals (Sweden)

    Claudia Cruz Villagrán

    2014-01-01

    Full Text Available Mesenchymal stromal cells (MSCs are able to differentiate into extramesodermal lineages, including neurons. Positive outcomes were obtained after transplantation of neurally induced MSCs in laboratory animals after nerve injury, but this is unknown in horses. Our objectives were to test the ability of equine MSCs to differentiate into cells of neural lineage in vitro, to assess differences in morphology and lineage-specific protein expression, and to investigate if horse age and cell passage number affected the ability to achieve differentiation. Bone marrow-derived MSCs were obtained from young and adult horses. Following demonstration of stemness, MSCs were neurally induced and microscopically assessed at different time points. Results showed that commercially available nitrogen-coated tissue culture plates supported proliferation and differentiation. Morphological changes were immediate and all the cells displayed a neural crest-like cell phenotype. Expression of neural progenitor proteins, was assessed via western blot or immunofluorescence. In our study, MSCs generated from young and middle-aged horses did not show differences in their ability to undergo differentiation. The effect of cell passage number, however, is inconsistent and further experiments are needed. Ongoing work is aimed at transdifferentiating these cells into Schwann cells for transplantation into a peripheral nerve injury model in horses.

  13. Cholesterol esterification during differentiation of mouse erythroleukemia (Friend) cells.

    Science.gov (United States)

    Mulas, Maria Franca; Mandas, Antonella; Abete, Claudia; Dessì, Sandra; Mocali, Alessandra; Paoletti, Francesco

    2011-08-31

    Cholesterol is an essential constituent of all mammalian cell membranes and its availability is therefore a prerequisite for cellular growth and other functions. Several lines of evidence are now indicating an association between alterations of cholesterol homeostasis and cell cycle progression. However, the role of cholesterol in cell differentiation is still largely unknown. To begin to address this issue, in this study we examined changes in cholesterol metabolism and in the mRNA levels of proteins involved in cholesterol import and esterification (multi-drug resistance, MDR-3) and acylCoA: cholesterol acyltransferase (ACAT) and cholesterol export (caveolin-1) in Friend virus-induced erythroleukemia cells (MELC), in the absence or in the presence of the chemical inducer of differentiation, hexamethylene bisacetamide (HMBA). FBS-stimulated growth of MELC was accompanied by an immediate elevation of cholesterol synthesis and cholesterol esterification, and by an increase in the levels of MDR-3 and ACAT mRNAs. A decrease in caveolin-1 expression was also observed. However, when MELC were treated with HMBA, the inhibition of DNA synthesis caused by HMBA treatment, was associated with a decrease in cholesterol esterification and in ACAT and MDR-3 mRNA levels and an increase in caveolin-1 mRNA. Detection of cytoplasmic neutral lipids by staining MELC with oil red O, a dye able to evidence CE but not FC, revealed that HMBA-treatment also reduced growth-stimulated accumulation of cholesterol ester to approximately the same extent as the ACAT inhibitor, SaH. Overall, these results indicate for the first time a role of cholesterol esterification and of some related genes in differentiation of erythroid cells. PMID:22184540

  14. Cholesterol esterification during differentiation of mouse erythroleukemia (Friend) cells

    Science.gov (United States)

    Mulas, Maria Franca; Mandas, Antonella; Abete, Claudia; Dessì, Sandra; Mocali, Alessandra; Paoletti, Francesco

    2011-01-01

    Cholesterol is an essential constituent of all mammalian cell membranes and its availability is therefore a prerequisite for cellular growth and other functions. Several lines of evidence are now indicating an association between alterations of cholesterol homeostasis and cell cycle progression. However, the role of cholesterol in cell differentiation is still largely unknown. To begin to address this issue, in this study we examined changes in cholesterol metabolism and in the mRNA levels of proteins involved in cholesterol import and esterification (multi-drug resistance, MDR-3) and acylCoA: cholesterol acyltransferase (ACAT) and cholesterol export (caveolin-1) in Friend virus-induced erythroleukemia cells (MELC), in the absence or in the presence of the chemical inducer of differentiation, hexamethylene bisacetamide (HMBA). FBS-stimulated growth of MELC was accompanied by an immediate elevation of cholesterol synthesis and cholesterol esterification, and by an increase in the levels of MDR-3 and ACAT mRNAs. A decrease in caveolin-1 expression was also observed. However, when MELC were treated with HMBA, the inhibition of DNA synthesis caused by HMBA treatment, was associated with a decrease in cholesterol esterification and in ACAT and MDR-3 mRNA levels and an increase in caveolin-1 mRNA. Detection of cytoplasmic neutral lipids by staining MELC with oil red O, a dye able to evidence CE but not FC, revealed that HMBA-treatment also reduced growth-stimulated accumulation of cholesterol ester to approximately the same extent as the ACAT inhibitor, SaH. Overall, these results indicate for the first time a role of cholesterol esterification and of some related genes in differentiation of erythroid cells. PMID:22184540

  15. Cholesterol esterification during differentiation of mouse erythroleukemia (Friend cells

    Directory of Open Access Journals (Sweden)

    Maria Franca Mulas

    2011-10-01

    Full Text Available Cholesterol is an essential constituent of all mammalian cell membranes, and its availability is therefore a prerequisite for cellular growth and other functions. Several lines of evidence are now indicating an association between alterations of cholesterol homeostasis and cell cycle progression. However, the role of cholesterol in cell differentiation is still largely unknown. To begin to address this issue, in this study we examined changes in cholesterol metabolism and in the mRNA levels of proteins involved in cholesterol import and esterification (multi-drug resistance, MDR-3 and acylCoA:cholesterol acyltransferase (ACAT and cholesterol export (caveolin-1 in Friend virus-induced erythroleukemia cells (MELC, in the absence or in the presence of the chemical inducer of differentiation, hexamethylene bisacetamide (HMBA. FBS-stimulated growth of MELC was accompanied by an immediate elevation of cholesterol synthesis and cholesterol esterification, and by an increase in the levels of MDR-3 and ACAT mRNAs. A decrease in caveolin-1 expression was also observed. However, when MELC were treated with HMBA, the inhibition of DNA synthesis caused by HMBA treatment, was associated with a decrease in cholesterol esterification and in ACAT and MDR-3 mRNA levels and an increase in caveolin-1 mRNA. Detection of cytoplasmic neutral lipids by staining MELC with oil red O, a dye able to evidence CE but not FC, revealed that HMBA-treatment also reduced growth-stimulated accumulation of cholesterol ester to approximately the same extent as the ACAT inhibitor, SaH. Overall, these results indicate for the first time a role of cholesterol esterification and of some related genes in differentiation of erythroid cells.

  16. Ceramide and S1P signaling in embryonic stem cell differentiation

    OpenAIRE

    Bieberich, Erhard

    2012-01-01

    Recent studies show that bioactive lipids are important regulators for stem cell survival and differentiation. The sphingolipid ceramide and its derivative, sphingosine-1-phosphate (S1P), can act synergistically on embryonic stem (ES) cell differentiation. We show here simple methods to analyze sphingolipids in differentiating ES cells and to use ceramide and S1P analogs for the guided differentiation of mouse ES cells toward neuronal and glial lineage.

  17. Potential of bursa-immigrated hematopoietic precursor cells to differentiate to functional B and T cells

    International Nuclear Information System (INIS)

    The potential of hematopoietic precursor cells, recently immigrated into the 13- and 14-day-old embryonic bursa, to migrate to the thymus and to differentiate to functional T cells was investigated. Chromosomally marked cell populations obtained from 13- and 14-day-old embryonic bursas were transferred i.v. to 780 R γ-irradiated chick embryos of equivalent age. When appropriate chimeras were examined at 4 to 12 weeks after cell transfer, donor cells were found to proliferate primarily in the bursa. Significant donor cell influx into the thymus was not detected. In correlation with these findings, Con A- and PHA-responsive T cells in thymus and spleen cell cultures of recipients remained of host origin whereas the number of anti-CIg responsive B cells of donor type increased gradually in the spleens of recipients. An initial lag period preceded the accumulation of functional donor B cells in the spleens of recipients, despite the predominant presence of dividing donor cells in the bursa. This suggests that the transferred bursal cell population required substantially longer to mature and emigrate from the bursa as functional B cells than the host cell population remaining in the irradiated bursas at time of cell transfer. The failure to detect significant influx of donor cells into the thymus and their failure to differentiate to functional T cells suggest that the recently bursa-immigrated hematopoietic stem cells of 13- and 14-day-old embryos may not be pluripotential cells, but rather cells already committed to the B cell line of differentiation

  18. Human dental pulp stem cells express many pluripotency regulators and differentiate into neuronal cells

    Institute of Scientific and Technical Information of China (English)

    Behnam Ebrahimi; Mohammad Mehdi Yaghoobi; Ali Mohammadi Kamal-abadi; Maryam Raoof

    2011-01-01

    Stem cells were isolated from human dental pulp using an optimized method, in which pulp pieces were digested by enzymes and immobilized to enhance cell outgrowth. Stem cell marker expression was detected by reverse transcription-PCR (RT-PCR), and differentiation markers were detected by real-time quantitative RT-PCR and immunocytochemistry. Results showed that dental pulp stem cells actively expressed nanog, oct4, nucleostemin slain-1, jmjd1a, jmjd2c, and cyclin D1. When stem cells were induced to differentiate into neurons, nucleostemin, nanog, and cyclin D1 expres-sion significantly decreased, whereas expression of neuronal markers, such as microtubule asso-ciated protein-2 and neurofilament-heavy, significantly increased. These results suggested that stem cells exited a pluripotent state and entered a neuronal differentiation pathway. In addition, results demonstrated that human dental pulp serves as a reservoir of stem cells that express defined stem cell markers; these cells were easily isolated and were induced to differentiate towards a desired cell lineage.

  19. miRNAs regulate stem cell self-renewal and differentiation

    OpenAIRE

    Yu, Zuoren; Li, Yuan; Fan, Huimin; Liu, Zhongmin; Pestell, Richard G.

    2012-01-01

    Stem cells undergo symmetric and asymmetric divisions to generate differentiated cells and more stem cells. The balance between self-renewal and differentiation of stem cells is controlled by transcription factors, epigenetic regulatory networks, and microRNAs (miRNAs). Herein the miRNA involvement in the regulation of stem cell self-renewal and differentiation is summarized. miRNA contribution to malignancy through regulating cancer stem cells is described. In addition, the reciprocal associ...

  20. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: Implications for myocardium regeneration

    OpenAIRE

    Condorelli, G.; Borello, U; De Angelis, L.; Latronico, M.; D. Sirabella; Coletta, M; Galli, R; Balconi, G.; Follenzi, A.; Frati, G.; M. G. Cusella De Angelis; Gioglio, L.; Amuchastegui, S.; Adorini, L; Naldini, L

    2001-01-01

    The concept of tissue-restricted differentiation of postnatal stem cells has been challenged by recent evidence showing pluripotency for hematopoietic, mesenchymal, and neural stem cells. Furthermore, rare but well documented examples exist of already differentiated cells in developing mammals that change fate and trans-differentiate into another cell type. Here, we report that endothelial cells, either freshly isolated from embryonic vessels or established as homogenous cells in culture, dif...

  1. Hypoxia Enhances Differentiation of Mouse Embryonic Stem Cells into Definitive Endoderm and Distal Lung Cells

    OpenAIRE

    Pimton, Pimchanok; Lecht, Shimon; Stabler, Collin T.; Johannes, Gregg; Schulman, Edward S.; Lelkes, Peter I.

    2014-01-01

    We investigated the effects of hypoxia on spontaneous (SP)- and activin A (AA)-induced definitive endoderm (DE) differentiation of mouse embryonic stem cells (mESCs) and their subsequent differentiation into distal pulmonary epithelial cells. SP differentiation for 6 days of mESCs toward endoderm at hypoxia of 1% O2, but not at 3% or 21% (normoxia), increased the expression of Sox17 and Foxa2 by 31- and 63-fold above maintenance culture, respectively. Treatment of mESCs with 20 ng/mL AA for 6...

  2. Differentiation of adult human bone marrow mesenchymal stem cells into Schwann-like cells in vitro

    Institute of Scientific and Technical Information of China (English)

    YANG Li-ye; ZHENG Jia-kun; WANG Chao-yang; LI Wen-yu

    2005-01-01

    Objective: To investigate the differentiative capability of adult human bone marrow mesenchymal stem cells (BMSCs) into Schwann-like cells. Methods: Bone marrows were aspirated from healthy donors and mononuclear cells were separated by Percoll lymphocytes separation liquid (1.073 g/ml) with centrifugation, cells were cultured in DMEM/F12 (1:1) medium containing 10% fetal bovine serum (FBS), 20 ng/ml epidermal growth factor (EGF) and 20 ng/ml basic fibroblast growth factor (bFGF). Cells of passage 1 were identified with immunocytochemistry. Conclusions: Bone marrow contains the stem cells with the ability of differentiating into Schwann-like cells, which may represent an alternative stem cell sources for neural transplantation.

  3. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease

    DEFF Research Database (Denmark)

    Fox, Ira J; Daley, George Q; Goldman, Steven A;

    2014-01-01

    Pluripotent stem cells (PSCs) directed to various cell fates holds promise as source material for treating numerous disorders. The availability of precisely differentiated PSC-derived cells will dramatically affect blood component and hematopoietic stem cell therapies and should facilitate......, and industry is critical for generating new stem cell-based therapies....... treatment of diabetes, some forms of liver disease and neurologic disorders, retinal diseases, and possibly heart disease. Although an unlimited supply of specific cell types is needed, other barriers must be overcome. This review of the state of cell therapies highlights important challenges. Successful...

  4. Differentiation of stem cells into insulin-producing cells under the influence of nanostructural polyoxometalates.

    Science.gov (United States)

    Bâlici, Ştefana; Şuşman, Sergiu; Rusu, Dan; Nicula, Gheorghe Zsolt; Soriţău, Olga; Rusu, Mariana; Biris, Alexandru S; Matei, Horea

    2016-03-01

    Two polyoxometalates (POMs) with W were synthesized by a two-step, self-assembling method. They were used for stimulation of mesenchymal stem cell differentiation into insulin-producing cells. The nanocompounds (tris(vanadyl)-substituted tungsto-antimonate(III) anions [POM1] and tris-butyltin-21-tungsto-9-antimonate(III) anions [POM2]) were characterized by analytical techniques, including ultraviolet-visible, Fourier transform infrared, nuclear magnetic resonance spectroscopy, and transmission electron microscopy. We found that these polyoxotungstates, with 2-4 nm diameters, did not present toxic effects at the tested concentrations. In vitro, POM1 stimulated differentiation of a greater number of dithizone-positive cells (also organized in clusters) than the second nanocompound (POM2). Based on our in vitro studies, we have concluded that both the POMs tested had significant biological activity acting as active stimuli for differentiation of stem cells into insulin-producing cells. PMID:26397720

  5. Convergence of normal stem cell and cancer stem cell developmental stage: Implication for differential therapies

    OpenAIRE

    Shengwen Calvin Li; Lee, Katherine L.; Jane Luo; Jiang F. Zhong; William G Loudon

    2011-01-01

    Increased evidence shows that normal stem cells may contribute to cancer development and progression by acting as cancer-initiating cells through their interactions with abnormal environmental elements. We postulate that normal stem cells and cancer stem cells (CSC) possess similar mechanisms of self-renewal and differentiation. CSC can be the key to the elaboration of anti-cancer-based therapy. In this article, we focus on a controversial new theme relating to CSC. Tumorigenesis may have a c...

  6. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation

    OpenAIRE

    Kashem, Sakeen W.; Igyarto, Botond Z.; Gerami-Nejad, Maryam; Kumamoto, Yosuke; Mohammed, Javed A.; Jarrett, Elizabeth; Drummond, Rebecca A.; Zurawski, Sandra M.; Zurawski, Gerard; Berman, Judith; Iwasaki, Akiko; Brown, Gordon D.; Kaplan, Daniel H.

    2015-01-01

    Candida albicans is a dimorphic fungus responsible for chronic mucocutaneous and systemic infections. Mucocutaneous immunity to C. albicans requires T helper-17 (Th17) cell differentiation that is thought to depend on recognition of filamentous C. albicans. Systemic immunity is considered T cell independent. Using a murine skin infection model, we compared T helper cell responses to yeast and filamentous C. albicans, We found that only yeast induced Th17 cell responses through a mechanism tha...

  7. Differentiation of chicken embryonic germ cells into neural stem cells in vitro

    OpenAIRE

    Wang, Juan; Pan, Xiao-hong; Du, Li-Xin

    2008-01-01

    To explore the feasibility of inducing chicken embryonic germ cells into neural stem cells in vitro. Embryoid bodies (EB) induced by retinoic acid (RA), were selected in neural stem cell-defined medium for 7 days, and the resulting morphological changes were observed. The selected cells were stained immunocytochemically with anti-nestin antibodies, and their expansion and differentiation were analyzed. Large amounts of neurosphere-like colonies were derived from embryoid bodies in the selecte...

  8. Bone marrow mesenchymal stem cells stimulate proliferation and neuronal differentiation of retinal progenitor cells.

    Directory of Open Access Journals (Sweden)

    Jing Xia

    Full Text Available During retina development, retinal progenitor cell (RPC proliferation and differentiation are regulated by complex inter- and intracellular interactions. Bone marrow mesenchymal stem cells (BMSCs are reported to express a variety of cytokines and neurotrophic factors, which have powerful trophic and protective functions for neural tissue-derived cells. Here, we show that the expanded RPC cultures treated with BMSC-derived conditioned medium (CM which was substantially enriched for bFGF and CNTF, expressed clearly increased levels of nuclear receptor TLX, an essential regulator of neural stem cell (NSC self-renewal, as well as betacellulin (BTC, an EGF-like protein described as supporting NSC expansion. The BMSC CM- or bFGF-treated RPCs also displayed an obviously enhanced proliferation capability, while BMSC CM-derived bFGF knocked down by anti-bFGF, the effect of BMSC CM on enhancing RPC proliferation was partly reversed. Under differentiation conditions, treatment with BMSC CM or CNTF markedly favoured RPC differentiation towards retinal neurons, including Brn3a-positive retinal ganglion cells (RGCs and rhodopsin-positive photoreceptors, and clearly diminished retinal glial cell differentiation. These findings demonstrate that BMSCs supported RPC proliferation and neuronal differentiation which may be partly mediated by BMSC CM-derived bFGF and CNTF, reveal potential limitations of RPC culture systems, and suggest a means for optimizing RPC cell fate determination in vitro.

  9. In vitro differentiation of human adipose-derived mesenchymal stem cells into endothelial-like cells

    Institute of Scientific and Technical Information of China (English)

    GUAN Lidong; SHI Shuangshuang; PEI Xuetao; LI Shaoqing; WANG Yunfang; YUE Huimin; LIU Daqing; HE Lijuan; BAI Cixian; YAN Fang; NAN Xue

    2006-01-01

    The neovascularization of ischemic tissue is a crucial initial step for the functional rehabilitation and wound healing. However, the short of seed cell candidate for the foundation of vascular network is still a big issue. Human adipose tissue derived mesenchymal stem cells (hADSCs), which possess multilineage potential, are capable of adipogenic, osteogenic, and chondrogenic differentiation. We examined whether this kind of stem cells could differentiate into endothelial-like cells and participate in blood vessel formation, and whether they could be used as an ideal cell source for therapeutic angiogenesis in ischemic diseases or vascularization of tissue constructs. The results showed that hADSCs, grown under appropriately induced conditions, displayed characteristics similar to those of vessel endothelium. The differentiated cells expressed endothelial cell markers CD34 and vWF, and had high metabolism of acetylated low-density lipoprotein and prostacyclin. In addition, the induced cells were able to form tube-like structures when cultured on matrigel. Our data indicated that induced hADSCs could exhibit characteristics of endothelial cells. Therefore, these cells, as a source of human endothelial cells, may find many applications in such realms as engineering blood vessels, endothelial cell transplantation for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  10. Neural differentiation of human placenta-derived mesenchymal stem cells following neural cell co-culture

    Institute of Scientific and Technical Information of China (English)

    Nailong Yang; Hongyan Zhang; Xiaojuan Sun; Lili Xu

    2011-01-01

    We induced human placenta-derived mesenchymal stem cells (hPMSCs) to differentiate into neural cells by adding chemical reagents,despite the fact that toxic chemicals induce cell shrinkage or cytoskeletal formation,which does not represent a proper cell differentiation process.The present study established a co-culture system with hPMSCs and neural cells and analyzed the influence of neural cells on hPMSC differentiation in a co-culture system.hPMSCs were isolated and purified from human full-term placenta using collagenase digestion.Fetal neural cells were co-cultured with hPMSCs for 48 hours using the Transwell co-culture system.hPMSCs co-cultured with neural cells exhibited a slender morphology with a filament.After 96 hours,hPMSCs expressed neuron-specific enolase,which suggested that co-culture of hPMSCs and neural cells induced neural differentiation of hPMSCs.

  11. Huntingtin Regulates Mammary Stem Cell Division and Differentiation

    Directory of Open Access Journals (Sweden)

    Salah Elias

    2014-04-01

    Full Text Available Little is known about the mechanisms of mitotic spindle orientation during mammary gland morphogenesis. Here, we report the presence of huntingtin, the protein mutated in Huntington’s disease, in mouse mammary basal and luminal cells throughout mammogenesis. Keratin 5-driven depletion of huntingtin results in a decreased pool and specification of basal and luminal progenitors, and altered mammary morphogenesis. Analysis of mitosis in huntingtin-depleted basal progenitors reveals mitotic spindle misorientation. In mammary cell culture, huntingtin regulates spindle orientation in a dynein-dependent manner. Huntingtin is targeted to spindle poles through its interaction with dynein and promotes the accumulation of NUMA and LGN. Huntingtin is also essential for the cortical localization of dynein, dynactin, NUMA, and LGN by regulating their kinesin 1-dependent trafficking along astral microtubules. We thus suggest that huntingtin is a component of the pathway regulating the orientation of mammary stem cell division, with potential implications for their self-renewal and differentiation properties.

  12. Huntingtin regulates mammary stem cell division and differentiation.

    Science.gov (United States)

    Elias, Salah; Thion, Morgane S; Yu, Hua; Sousa, Cristovao Marques; Lasgi, Charlène; Morin, Xavier; Humbert, Sandrine

    2014-04-01

    Little is known about the mechanisms of mitotic spindle orientation during mammary gland morphogenesis. Here, we report the presence of huntingtin, the protein mutated in Huntington's disease, in mouse mammary basal and luminal cells throughout mammogenesis. Keratin 5-driven depletion of huntingtin results in a decreased pool and specification of basal and luminal progenitors, and altered mammary morphogenesis. Analysis of mitosis in huntingtin-depleted basal progenitors reveals mitotic spindle misorientation. In mammary cell culture, huntingtin regulates spindle orientation in a dynein-dependent manner. Huntingtin is targeted to spindle poles through its interaction with dynein and promotes the accumulation of NUMA and LGN. Huntingtin is also essential for the cortical localization of dynein, dynactin, NUMA, and LGN by regulating their kinesin 1-dependent trafficking along astral microtubules. We thus suggest that huntingtin is a component of the pathway regulating the orientation of mammary stem cell division, with potential implications for their self-renewal and differentiation properties. PMID:24749073

  13. Staging and differential diagnosis of renal cell carcinoma

    International Nuclear Information System (INIS)

    The usefulness of magnetic resonance imaging (MRI) was compared with that of computed tomography (CT). Twenty-nine patients with renal cell carcinoma, 3 with angiomyolipomas and 1 with renal pelvic cancer, were examined by both MRI and CT. MRI and CT showed similar results in staging cases of renal cell carcinoma. However, MRI may be more sensitive in detecting the venous extension, metastatic adenopathy, and adjacent organ invasion. In predicting the involvement of perinephric fat, however, MRI is only marginally superior to CT. To demonstrate the usefulness of MRI in differentiating renal cell carcinoma from other renal tumors, the density of renal tumor and that of the psoas muscle were determined using a densitiometer, and the percent (%) contrast (the intensity of the renal tumor / the intensity of the psoas muscle x100) was calculated. In most patients with clear cell type renal carcinoma, the % contrast value in the T1 weighted images was about 100. In the T2 weighted images, the maximum value of the % contrast value was 50 or less in most patients. In one patient with spindle cell type (sarcomatoid type) carcinoma, the % contrast value was 109 in the T1 weighted images, but was 65 - 85, at most, in the T2 weighted images. In patients with renal angiomyolipomas, the % contrast values were calculated exclusive of the fatty components. The % contrast value of the T1 weighted images was 50 or less in all 3 patients, and that of the T2 weighted images was 50 or more in 2 patients and 21 - 38 in the others. Calculation of the % contrast value may possibly enable one to differentiate between various types of renal cell carcinoma and other renal masses. (author)

  14. Human NK cell subset functions are differentially affected by adipokines.

    Directory of Open Access Journals (Sweden)

    Lena Huebner

    Full Text Available BACKGROUND: Obesity is a risk factor for various types of infectious diseases and cancer. The increase in adipose tissue causes alterations in both adipogenesis and the production of adipocyte-secreted proteins (adipokines. Since natural killer (NK cells are the host's primary defense against virus-infected and tumor cells, we investigated how adipocyte-conditioned medium (ACM affects functions of two distinct human NK cell subsets. METHODS: Isolated human peripheral blood mononuclear cells (PBMCs were cultured with various concentrations of human and murine ACM harvested on two different days during adipogenesis and analyzed by fluorescent-activated cell sorting (FACS. RESULTS: FACS analyses showed that the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, granzyme A (GzmA and interferon (IFN-γ in NK cells was regulated in a subset-specific manner. ACM treatment altered IFN-γ expression in CD56(dim NK cells. The production of GzmA in CD56(bright NK cells was differentially affected by the distinct adipokine compositions harvested at different states of adipogenesis. Comparison of the treatment with either human or murine ACM revealed that adipokine-induced effects on NK cell expression of the leptin receptor (Ob-R, TRAIL and IFN-γ were species-specific. CONCLUSION: Considering the growing prevalence of obesity and the various disorders related to it, the present study provides further insights into the roles human NK cell subsets play in the obesity-associated state of chronic low-grade inflammation.

  15. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSC) from mouse bone marrow were shown to adopt a pancreatic endocrine phenotype in vitro and to reverse diabetes in an animal model. MSC from human bone marrow and adipose tissue represent very similar cell populations with comparable phenotypes. Adipose tissue is abundant and easily accessible and could thus also harbor cells with the potential to differentiate in insulin producing cells. We isolated human adipose tissue-derived MSC from four healthy donors. During the proliferation period, the cells expressed the stem cell markers nestin, ABCG2, SCF, Thy-1 as well as the pancreatic endocrine transcription factor Isl-1. The cells were induced to differentiate into a pancreatic endocrine phenotype by defined culture conditions within 3 days. Using quantitative PCR a down-regulation of ABCG2 and up-regulation of pancreatic developmental transcription factors Isl-1, Ipf-1, and Ngn3 were observed together with induction of the islet hormones insulin, glucagon, and somatostatin

  16. Dexamethasone facilitates erythropoiesis in murine embryonic stem cells differentiating into hematopoietic cells in vitro

    International Nuclear Information System (INIS)

    Differentiating embryonic stem (ES) cells are increasingly emerging as an important source of hematopoietic progenitors with a potential to be useful for both basic and clinical research applications. It has been suggested that dexamethasone facilitates differentiation of ES cells towards erythrocytes but the mechanism responsible for sequential expression of genes regulating this process are not well-understood. Therefore, we in vitro induced differentiation of murine ES cells towards erythropoiesis and studied the sequential expression of a set of genes during the process. We hypothesized that dexamethasone-activates its cognate nuclear receptors inducing up-regulation of erythropoietic genes such as GATA-1, Flk-1, Epo-R, and direct ES cells towards erythropoietic differentiation. ES cells were cultured in primary hematopoietic differentiation media containing methyl-cellulose, IMDM, IL-3, IL-6, and SCF to promote embryoid body (EB) formation. Total RNA of day 3, 5, and 9-old EBs was isolated for gene expression studies using RT-PCR. Cells from day 9 EBs were subjected to secondary differentiation using three different cytokines and growth factors combinations: (1) SCF, EPO, dexamethasone, and IGF; (2) SCF, IL-3, IL-6, and TPO; and (3) SCF IL-3, IL-6, TPO, and EPO. Total RNA from day 12 of secondary differentiated ES cells was isolated to study the gene expression pattern during this process. Our results demonstrate an up-regulation of GATA-1, Flk-1, HoxB-4, Epo-R, and globin genes (α-globin, βH-1 globin, β-major globin, ε -globin, and ζ-globin) in the 9-day-old EBs, whereas, RNA from 5-day-old EBs showed expression of HoxB-4, ε-globin, γ-globin, βH1-globin, and Flk-1. Three-day-old EBs showed only HoxB-4 and Flk-1 gene expression and lacked expression of all globin genes. These findings indicate that erythropoiesis-specific genes are activated later in the course of differentiation. Gene expression studies on the ES cells of secondary EB origin cultured

  17. Positive regulation of osteoclastic differentiation by growth differentiation factor 15 upregulated in osteocytic cells under hypoxia.

    Science.gov (United States)

    Hinoi, Eiichi; Ochi, Hiroki; Takarada, Takeshi; Nakatani, Eri; Iezaki, Takashi; Nakajima, Hiroko; Fujita, Hiroyuki; Takahata, Yoshifumi; Hidano, Shinya; Kobayashi, Takashi; Takeda, Shu; Yoneda, Yukio

    2012-04-01

    Osteocytes are thought to play a role as a mechanical sensor through their communication network in bone. Although osteocytes are the most abundant cells in bone, little attention has been paid to their physiological and pathological functions in skeletogenesis. Here, we have attempted to delineate the pivotal functional role of osteocytes in regulation of bone remodeling under pathological conditions. We first found markedly increased osteoclastic differentiation by conditioned media (CM) from osteocytic MLO-Y4 cells previously exposed to hypoxia in vitro. Using microarray and real-time PCR analyses, we identified growth differentiation factor 15 (GDF15) as a key candidate factor secreted from osteocytes under hypoxia. Recombinant GDF15 significantly promoted osteoclastic differentiation in a concentration-dependent manner, with concomitant facilitation of phosphorylation of both p65 and inhibitory-κB in the presence of receptor activator of nuclear factor-κB ligand. To examine the possible functional significance of GDF15 in vivo, mice were subjected to ligation of the right femoral artery as a hypoxic model. A significant increase in GDF15 expression was specifically observed in tibias of the ligated limb but not in tibias of the normally perfused limb. Under these experimental conditions, in cancellous bone of proximal tibias in the ligated limb, a significant reduction was observed in bone volume, whereas a significant increase was seen in the extent of osteoclast surface/bone surface when determined by bone histomorphometric analysis. Finally, the anti-GDF15 antibody prevented bone loss through inhibiting osteoclastic activation in tibias from mice with femoral artery ligation in vivo, in addition to suppressing osteoclastic activity enhanced by CM from osteocytes exposed to hypoxia in vitro. These findings suggest that GDF15 could play a pivotal role in the pathogenesis of bone loss relevant to hypoxia through promotion of osteoclastogenesis after

  18. Characterization of tumor cells and stem cells by differential nuclear methylation imaging

    Science.gov (United States)

    Tajbakhsh, Jian; Wawrowsky, Kolja A.; Gertych, Arkadiusz; Bar-Nur, Ori; Vishnevsky, Eugene; Lindsley, Erik H.; Farkas, Daniel L.

    2008-02-01

    DNA methylation plays a key role in cellular differentiation. Aberrant global methylation patterns are associated with several cancer types, as a result of changes in long-term activation status of up to 50% of genes, including oncogenes and tumor-suppressor genes, which are regulated by methylation and demethylation of promoter region CpG dinucleotides (CpG islands). Furthermore, DNA methylation also occurs in nonisland CpG sites (> 95% of the genome), present once per 80 dinucleotides on average. Nuclear DNA methylation increases during the course of cellular differentiation while cancer cells usually show a net loss in methylation. Given the large dynamic range in DNA methylation load, the methylation pattern of a cell can provide a valuable distinction as to its status during differentiation versus the disease state. By applying immunofluorescence, confocal microscopy and 3D image analysis we assessed the potential of differential nuclear distribution of methylated DNA to be utilized as a biomarker to characterize cells during development and when diseased. There are two major fields that may immediately benefit from this development: (1) the search for factors that contribute to pluripotency and cell fate in human embryonic stem cell expansion and differentiation, and (2) the characterization of tumor cells with regard to their heterogeneity in molecular composition and behavior. We performed topological analysis of the distribution of methylated CpG-sites (MeC) versus heterochromatin. This innovative approach revealed significant differences in colocalization patterns of MeC and heterochromatin-derived signals between undifferentiated and differentiated human embryonic stem cells, as well as untreated AtT20 mouse pituitary tumor cells compared to a subpopulation of these cells treated with 5-azacytidine for 48 hours.

  19. Comparison of odontogenic differentiation of human dental follicle cells and human dental papilla cells.

    Directory of Open Access Journals (Sweden)

    Lijuan Guo

    Full Text Available Classical tooth development theory suggests that dental papilla cells (DPCs are the precursor cells of odontoblasts, which are responsible for dentin development. However, our previous studies have indicated that dental follicle cells (DFCs can differentiate into odontoblasts. To further our understanding of tooth development, and the differences in dentinogenesis between DFCs and DPCs, the odontogenic differentiation of DFCs and DPCs was characterized in vitro and in vivo. DFCs and DPCs were individually combined with treated dentin matrix (TDM before they were subcutaneously implanted into the dorsum of mice for 8 weeks. Results showed that 12 proteins were significantly differential, and phosphoserine aminotransferase 1 (PSAT1, Isoform 2 of hypoxia-inducible factor 1-alpha (HIF1A and Isoform 1 of annexin A2 (ANXA2, were the most significantly differential proteins. These proteins are related to regulation of bone balance, angiogenesis and cell survival in an anoxic environment. Both DFCs and DPCs express odontogenic, neurogenic and peridontogenic markers. Histological examination of the harvested grafts showed that both DFCs and DPCs form pulp-dentin/cementum-periodentium-like tissues in vivo. Hence, DFCs and DPCs have similar odontogenic differentiation potential in the presence of TDM. However, differences in glucose and amino acid metabolism signal transduction and protein synthesis were observed for the two cell types. This study expands our understanding on tooth development, and provides direct evidence for the use of alternative cell sources in tooth regeneration.

  20. Stem cell proliferation and differentiation a multitype branching process model

    CERN Document Server

    Macken, Catherine A

    1988-01-01

    The body contains many cellular systems that require the continuous production of new, fully functional, differentiated cells to replace cells lacking or having limited self-renewal capabilities that die or are damaged during the lifetime of an individual. Such systems include the epidermis, the epithelial lining of the gut, and the blood. For example, erythrocytes (red blood cells) lack nuclei and thus are incapable of self-replication. They have a life span in the circulation of about 120 days. Mature granulocytes, which also lack proliferative capacity, have a much shorter life span - typically 12 hours, though this may be reduced to only two or three hours in times of serious tissue infection. Perhaps a more familiar example is the outermost layer of the skin. This layer is composed of fully mature, dead epidermal cells that must be replaced by the descendants of stem cells lodged in lower layers of the epidermis (cf. Alberts et al. , 1983). In total, to supply the normal steady-state demands of cells, an...

  1. Pigment cell differentiation in sea urchin blastula-derived primary cell cultures.

    Science.gov (United States)

    Ageenko, Natalya V; Kiselev, Konstantin V; Dmitrenok, Pavel S; Odintsova, Nelly A

    2014-07-01

    The quinone pigments of sea urchins, specifically echinochrome and spinochromes, are known for their effective antioxidant, antibacterial, antifungal, and antitumor activities. We developed in vitro technology for inducing pigment differentiation in cell culture. The intensification of the pigment differentiation was accompanied by a simultaneous decrease in cell proliferation. The number of pigment cells was two-fold higher in the cells cultivated in the coelomic fluids of injured sea urchins than in those intact. The possible roles of the specific components of the coelomic fluids in the pigment differentiation process and the quantitative measurement of the production of naphthoquinone pigments during cultivation were examined by MALDI and electrospray ionization mass spectrometry. Echinochrome A and spinochrome E were produced by the cultivated cells of the sand dollar Scaphechinus mirabilis in all tested media, while only spinochromes were found in the cultivated cells of another sea urchin, Strongylocentrotus intermedius. The expression of genes associated with the induction of pigment differentiation was increased in cells cultivated in the presence of shikimic acid, a precursor of naphthoquinone pigments. Our results should contribute to the development of new techniques in marine biotechnology, including the generation of cell cultures producing complex bioactive compounds with therapeutic potential. PMID:24979272

  2. Pigment Cell Differentiation in Sea Urchin Blastula-Derived Primary Cell Cultures

    Directory of Open Access Journals (Sweden)

    Natalya V. Ageenko

    2014-06-01

    Full Text Available The quinone pigments of sea urchins, specifically echinochrome and spinochromes, are known for their effective antioxidant, antibacterial, antifungal, and antitumor activities. We developed in vitro technology for inducing pigment differentiation in cell culture. The intensification of the pigment differentiation was accompanied by a simultaneous decrease in cell proliferation. The number of pigment cells was two-fold higher in the cells cultivated in the coelomic fluids of injured sea urchins than in those intact. The possible roles of the specific components of the coelomic fluids in the pigment differentiation process and the quantitative measurement of the production of naphthoquinone pigments during cultivation were examined by MALDI and electrospray ionization mass spectrometry. Echinochrome A and spinochrome E were produced by the cultivated cells of the sand dollar Scaphechinus mirabilis in all tested media, while only spinochromes were found in the cultivated cells of another sea urchin, Strongylocentrotus intermedius. The expression of genes associated with the induction of pigment differentiation was increased in cells cultivated in the presence of shikimic acid, a precursor of naphthoquinone pigments. Our results should contribute to the development of new techniques in marine biotechnology, including the generation of cell cultures producing complex bioactive compounds with therapeutic potential.

  3. Transient expression of Olig1 initiates the differentiation of neural stem cells into oligodendrocyte progenitor cells

    NARCIS (Netherlands)

    Balasubramaniyan, [No Value; Timmer, N; Kust, B; Boddeke, E; Copray, S

    2004-01-01

    In order to develop an efficient strategy to induce the in vitro differentiation of neural stem cells (NSCs) into oligodendrocyte progenitor cells (OPCs), NSCs were isolated from E14 mice and grown in medium containing epidermal growth factor and fibroblast growth factor (FGF). Besides supplementing

  4. Efficient Differentiation of Embryonic Stem Cells into Neurons in Glial Cell-conditioned Medium under Attaching Conditions

    Institute of Scientific and Technical Information of China (English)

    Hai-Bin TIAN; Zeng-Liang BAI; Hong WANG; Jian-Quan CHEN; Guo-Xiang CHENG

    2005-01-01

    Embryonic stem (ES) cells can differentiate into neurons in vitro, which provides hope for the treatment of some neurodegenerative diseases through cell transplantation. However, it remains a challenge to efficiently induce ES cells to differentiate into neurons. Here, we show that murine ES cells can efficiently differentiate into neurons when cultured in glial cell- conditioned medium (GCM) under attaching conditions without the formation of embryoid bodies. In comparison with murine embryonic fibroblast-conditioned medium, we found that GCM has a positive effect on limiting the generation of non-neuronal cells, such as astrocytes. In addition, compared with suspension conditions, attaching conditions delay the differentiation process of ES cells.

  5. Memory CD8+ T cell differentiation in viral infection: A cell for all seasons

    Institute of Scientific and Technical Information of China (English)

    Henry Radziewicz; Luke Uebelhoer; Bertram Bengsch; Arash Grakoui

    2007-01-01

    Chronic viral infections such as hepatitis B virus (HBV),hepatitis C virus (HCV) and human immunodeficiency virus (HIV) are major global health problems affecting more than 500 million people worldwide. Virus-specific CD8+ T cells play an important role in the course and outcome of these viral infections and it is hypothesized that altered or impaired differentiation of virusspecific CD8+ T cells contributes to the development of persistence and/or disease progression. A deeper understanding of the mechanisms responsible for functional differentiation of CD8+ T cells is essential for the generation of successful therapies aiming to strengthen the adaptive component of the immune system.

  6. Factors affecting growth, differentiation and apoptosis of osteoblastic and osteosarcoma cells

    OpenAIRE

    Li, Yan

    2008-01-01

    Osteoblasts play a fundamental role in determining bone structure and function. These cells originate from mesenchymal stem cells (MSCs) and through proliferation and differentiation develop into preosteoblasts and then into mature cells. Most of these cells undergo apoptosis before reaching their terminal differentiated stages of either osteocytes or bone lining cells. These processes, i.e. proliferation, differentiation, and apoptosis, are affected by systemic hormones and...

  7. Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Rao Mahendra S

    2008-09-01

    Full Text Available Abstract Background Interactions of cells with the extracellular matrix (ECM are critical for the establishment and maintenance of stem cell self-renewal and differentiation. However, the ECM is a complex mixture of matrix molecules; little is known about the role of ECM components in human embryonic stem cell (hESC differentiation into neural progenitors and neurons. Results A reproducible protocol was used to generate highly homogenous neural progenitors or a mixed population of neural progenitors and neurons from hESCs. This defined adherent culture system allowed us to examine the effect of ECM molecules on neural differentiation of hESCs. hESC-derived differentiating embryoid bodies were plated on Poly-D-Lysine (PDL, PDL/fibronectin, PDL/laminin, type I collagen and Matrigel, and cultured in neural differentiation medium. We found that the five substrates instructed neural progenitors followed by neuronal differentiation to differing degrees. Glia did not appear until 4 weeks later. Neural progenitor and neuronal generation and neurite outgrowth were significantly greater on laminin and laminin-rich Matrigel substrates than on other 3 substrates. Laminin stimulated hESC-derived neural progenitor expansion and neurite outgrowth in a dose-dependent manner. The laminin-induced neural progenitor expansion was partially blocked by the antibody against integrin α6 or β1 subunit. Conclusion We defined laminin as a key ECM molecule to enhance neural progenitor generation, expansion and differentiation into neurons from hESCs. The cell-laminin interactions involve α6β1 integrin receptors implicating a possible role of laminin/α6β1 integrin signaling in directed neural differentiation of hESCs. Since laminin acts in concert with other ECM molecules in vivo, evaluating cellular responses to the composition of the ECM is essential to clarify further the role of cell-matrix interactions in neural derivation of hESCs.

  8. The Effects of Environmental Factors on Smooth Muscle Cells Differentiation from Adipose-Derived Stem Cells and Esophagus Tissues Engineering

    OpenAIRE

    Wang, Fang

    2015-01-01

    Adipose-derived stem cells (ASCs) are increasingly being used for regenerative medicine and tissue engineering. Smooth muscle cells (SMCs) can be differentiated from ASCs. Oxygen is a key factor influencing the stem cell differentiation. Tissue engineered esophagus has been a preferred solution for diseased esophagus replacement. The first part involved the effect of hypoxia on differentiation. The results showed 5% hypoxia to be the optimal condition for differentiation of ASCs into contract...

  9. Cell asymmetry correction for temperature modulated differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ishikiriyama, K.; Wunderlich, B. [Tennessee Univ., Knoxville, TN (United States). Dept. of Chemistry]|[Oak Ridge National Lab., TN (United States)

    1996-12-31

    The quality of measurement of heat capacity by differential scanning calorimetry (DSC) is based on strict symmetry of the twin calorimeter, which is important for temperature-modulated DSC. Heat capacities for sapphire-filled and empty aluminium calorimeters (pans) under designed cell imbalance caused by different pan-masses were measured. In addition, positive and negative signs of asymmetry were explored by analyzing the phase-shift between temperature and heat flow for sapphire and empty runs. The phase shifts change by more than 18{degree} depending on asymmetry sign. Once the asymmetry sign is determined, the asymmetry correction for modulated DSC can be made.

  10. Differential effect of baicalein on ionizing radiation induced cell death in normal lymphocytes and lymphoma cells

    International Nuclear Information System (INIS)

    Baicalein (5,6,7-trihydroxy-2-phenyl-4H-1-benzopyran-4-one), a naturally occurring flavone, present in Indian and Chinese medicinal plants has been reported to possess potent antioxidant activity. Previous reports from our laboratory have elucidated the radical scavenging and radioprotective potential of this compound in cell free system. To investigate potential of baicalein as a radioprotector, we have studied its effect on normal lymphocytes and lymphoma cells (EL-4 cells) in presence of radiation. Baicalein protected murine splenic lymphocytes against radiation (4Gy) induced apoptosis as assessed by propidium iodide staining. It inhibited background cell death in lymphocytes whereas, baicalein induced concentration dependent cell death in EL-4 cells and did not protect against radiation induced apoptosis. Interestingly, baicalein scavenged radiation derived ROS (reactive oxygen species) in both the cell types suggesting that, it is not exhibiting differential antioxidant action. Despite scavenging radiation derived ROS, which are principal mediators of radiation induced cell death, baicalein induced cell death in EL-4 cells. To investigate the reason for this differential behavior, we investigated the effect of baicalein on pro-survival molecules viz. ERK and NF-kB. Baicalein induced phosphorylation of ERK in normal lymphocytes in a time dependent manner, but, it did not alter pERK levels in EL-4 cells. Baicalein treatment per se induced degradation of IkBα and increased nuclear accumulation of NF-kB in normal lymphocytes. Whereas, baicalein pre-treatment reduced basal NF-kB levels in EL-4 cells and it also suppressed TNF-α induced nuclear accumulation of NF-kB. This study suggests that, differential regulation of pro-survival transcription factor NF-kB may be playing a role in differential effect of baicalein in normal lymphocytes and lymphoma cells. (author)

  11. Edges of human embryonic stem cell colonies display distinct mechanical properties and differentiation potential

    OpenAIRE

    Rosowski, Kathryn A.; Mertz, Aaron F.; Samuel Norcross; Dufresne, Eric R.; Valerie Horsley

    2015-01-01

    In order to understand the mechanisms that guide cell fate decisions during early human development, we closely examined the differentiation process in adherent colonies of human embryonic stem cells (hESCs). Live imaging of the differentiation process reveals that cells on the outer edge of the undifferentiated colony begin to differentiate first and remain on the perimeter of the colony to eventually form a band of differentiation. Strikingly, this band is of constant width in all colonies,...

  12. Endothelial progenitor cell differentiation using cryopreserved, umbilical cord blood-derived mononuclear cells

    Institute of Scientific and Technical Information of China (English)

    Jun-ho JANG; Hugh C KIM; Sun-kyung KIM; Jeong-eun CHOI; Young-jin KIM; Hyun-woo LEE; Seok-yun KANG; Joon-seong PARK; Jin-hyuk CHOI; Ho-yeong LIM

    2007-01-01

    Aim: To investigate the endothelial differentiation potentiality of umbilical cord blood (UCB), we induced the differentiation of endothelial progenitor cells (EPC)from cryopreserved UCB-derived mononuclear cells (MNC). Methods: MNC from cryopreserved UCB and peripheral blood (PB) were cultured in M199 medium with endothelial cell growth supplements for 14 d. EPC were characterized by RT-PCR,flow cytometry, and immunocytochemistry analysis. The proliferation of differen-tiated EPC was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTI') assay, and vascular endothelial growth factor (VEGF) concentra-tion was measured using an ELISA kit. Characteristics of UCB-derived EPC were compared with those of PB-derived EPC. Results: A number of round-shaped cells were loosely attached to the bottom after 24 h culture, and numerous spindle-shaped cells began to appear from the round-shaped ones on d 7. Those cells expressed endothelial markers such as, Fit-1/VEGFR-1, ecNOS, VE-cadherin, yon Willebrand factor, and secreted VEGF. The patterns of endothelial markers of EPC from PB and UCB did not show striking differences. The results of the prolifera-tion and secretion of VEGF were also similar. Conclusion: We successfully cul-tured UCB cells stored at -196 ℃ into cells with the quality of endothelial cells.Those EPC could be used for angiogenic therapeutics by activating adjacent endothelial cells and enhancing angiogenesis.

  13. Current Status of Human Adipose–Derived Stem Cells: Differentiation into Hepatocyte-Like Cells

    Directory of Open Access Journals (Sweden)

    Feras Al Battah

    2011-01-01

    Full Text Available The shortage of human organ donors and the low cell quality of available liver tissues represent major obstacles for the clinical application of orthotropic liver transplantation and hepatocyte transplantation, respectively. Therefore, worldwide research groups are investigating alternative extrahepatic cell sources. Recent in vitro studies have demonstrated that mesenchymal stem cells (MSCs from various sources, including human bone marrow, adipose tissue, and umbilical cord, can be differentiated into hepatocyte-like cells when appropriate conditions are used. In particular, interest exists for human adipose–derived stems cells (hASCs as an attractive cell source for generating hepatocyte-like cells. The hASCs are multipotent MSCs that reside in adipose tissue, with the ability to self-renew and differentiate into multiple cell lineages. Moreover, these cells can secrete multiple growth factors and cytokines that exert beneficial effects on organ or tissue injury. In this review, we will not only present recent data regarding hASC biology, their isolation, and differentiation capability towards hepatocytes, but also the potential application of hASC-derived hepatocytes to study drug toxicity. Additionally, this review will discuss the therapeutic potential of hASCs as undifferentiated cells in liver regeneration.

  14. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    Full Text Available BACKGROUND: Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo. METHODOLOGY/PRINCIPAL FINDINGS: To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo. CONCLUSIONS/SIGNIFICANCE: Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  15. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation.

    Science.gov (United States)

    Nestorowa, Sonia; Hamey, Fiona K; Pijuan Sala, Blanca; Diamanti, Evangelia; Shepherd, Mairi; Laurenti, Elisa; Wilson, Nicola K; Kent, David G; Göttgens, Berthold

    2016-08-25

    Maintenance of the blood system requires balanced cell fate decisions by hematopoietic stem and progenitor cells (HSPCs). Because cell fate choices are executed at the individual cell level, new single-cell profiling technologies offer exciting possibilities for mapping the dynamic molecular changes underlying HSPC differentiation. Here, we have used single-cell RNA sequencing to profile more than 1600 single HSPCs, and deep sequencing has enabled detection of an average of 6558 protein-coding genes per cell. Index sorting, in combination with broad sorting gates, allowed us to retrospectively assign cells to 12 commonly sorted HSPC phenotypes while also capturing intermediate cells typically excluded by conventional gating. We further show that independently generated single-cell data sets can be projected onto the single-cell resolution expression map to directly compare data from multiple groups and to build and refine new hypotheses. Reconstruction of differentiation trajectories reveals dynamic expression changes associated with early lymphoid, erythroid, and granulocyte-macrophage differentiation. The latter two trajectories were characterized by common upregulation of cell cycle and oxidative phosphorylation transcriptional programs. By using external spike-in controls, we estimate absolute messenger RNA (mRNA) levels per cell, showing for the first time that despite a general reduction in total mRNA, a subset of genes shows higher expression levels in immature stem cells consistent with active maintenance of the stem-cell state. Finally, we report the development of an intuitive Web interface as a new community resource to permit visualization of gene expression in HSPCs at single-cell resolution for any gene of choice. PMID:27365425

  16. Atoh7 promotes the differentiation of retinal stem cells derived from Müller cells into retinal ganglion cells by inhibiting Notch signaling

    OpenAIRE

    Song, Wei-tao; Zhang, Xue-yong; Xia, Xiao-Bo

    2013-01-01

    Introduction Retinal Müller cells exhibit the characteristics of retinal progenitor cells, and differentiate into ganglion cells under certain conditions. However, the number of ganglion cells differentiated from retinal Müller cells falls far short of therapeutic needs. This study aimed to develop a novel protocol to promote the differentiation of retinal Müller cells into ganglion cells and explore the underlying signaling mechanisms. Methods Müller cells were isolated and purified from rat...

  17. Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    Iain C. Macaulay

    2016-02-01

    Full Text Available The transcriptional programs that govern hematopoiesis have been investigated primarily by population-level analysis of hematopoietic stem and progenitor cells, which cannot reveal the continuous nature of the differentiation process. Here we applied single-cell RNA-sequencing to a population of hematopoietic cells in zebrafish as they undergo thrombocyte lineage commitment. By reconstructing their developmental chronology computationally, we were able to place each cell along a continuum from stem cell to mature cell, refining the traditional lineage tree. The progression of cells along this continuum is characterized by a highly coordinated transcriptional program, displaying simultaneous suppression of genes involved in cell proliferation and ribosomal biogenesis as the expression of lineage specific genes increases. Within this program, there is substantial heterogeneity in the expression of the key lineage regulators. Overall, the total number of genes expressed, as well as the total mRNA content of the cell, decreases as the cells undergo lineage commitment.

  18. MicroRNA-196b promotes cell proliferation and suppress cell differentiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Donglin, E-mail: caodlgz@sina.com; Hu, Liangshan; Lei, Da; Fang, Xiaolin; Zhang, Zhihong; Wang, Ting; Lin, Maorui; Huang, Jiwei; Yang, Huawen; Zhou, Xuan; Zhong, Limei

    2015-01-30

    Highlights: • miRNA-196b increases proliferation and blocks differentiation of progenitor cell. • miRNA-196b inhibits apoptosis and increases viability of cells lines. • Forced expression of miR-196b blocks the differentiation of THP1 induced by PMA. - Abstract: MicroRNA-196b (miR-196b) is frequently amplified and aberrantly overexpressed in acute leukemias. To investigate the role of miR-196b in acute leukemias, it has been observed that forced expression of this miRNA increases proliferation and inhibits apoptosis in human cell lines. More importantly, we show that this miRNA can significantly increase the colony-forming capacity of mouse normal bone marrow progenitor cells alone, as well as partially blocking the cells from differentiation. Taken together, our studies suggest that miRNA-196b may play an essential role in the development of MLL-associated leukemias through inhibiting cell differentiation and apoptosis, while promoting cell proliferation.

  19. MicroRNA-196b promotes cell proliferation and suppress cell differentiation in vitro

    International Nuclear Information System (INIS)

    Highlights: • miRNA-196b increases proliferation and blocks differentiation of progenitor cell. • miRNA-196b inhibits apoptosis and increases viability of cells lines. • Forced expression of miR-196b blocks the differentiation of THP1 induced by PMA. - Abstract: MicroRNA-196b (miR-196b) is frequently amplified and aberrantly overexpressed in acute leukemias. To investigate the role of miR-196b in acute leukemias, it has been observed that forced expression of this miRNA increases proliferation and inhibits apoptosis in human cell lines. More importantly, we show that this miRNA can significantly increase the colony-forming capacity of mouse normal bone marrow progenitor cells alone, as well as partially blocking the cells from differentiation. Taken together, our studies suggest that miRNA-196b may play an essential role in the development of MLL-associated leukemias through inhibiting cell differentiation and apoptosis, while promoting cell proliferation

  20. Differentiation of Bone Marrow: Derived Mesenchymal Stem Cells into Hepatocyte-like Cells.

    Science.gov (United States)

    Al Ghrbawy, Nesrien M; Afify, Reham Abdel Aleem Mohamed; Dyaa, Nehal; El Sayed, Asmaa A

    2016-09-01

    Cirrhosis is the end-stage liver fibrosis, whereby normal liver architecture is disrupted by fibrotic bands, parenchymal nodules and vascular distortion. Portal hypertension and hepatocyte dysfunction are the end results and give rise to major systemic complications and premature death. Mesenchymal stem cells (MSC) have the capacity of self-renew and to give rise to cells of various lineages, so MSC can be isolated from bone marrow (BM) and induced to differentiate into hepatocyte-like cells. MSC were induced to differentiate into hepatocyte-like cells by hepatotic growth factor (HGF) and fibroblast growth factor-4 (FGF-4). Differentiated cells were examined for the expression of hepatocyte-specific markers and hepatocyte functions. MSC were isolated. Flow cytometry analysis showed that they expressed the MSC-specific markers, reverse transcriptase-polymerase chain reaction (RT-PCR) demonstrated that MSC expressed the hepatocyte-specific marker cytokeratin 18 (CK-18) following hepatocyte induction. This study demonstrates that BM-derived-MSC can differentiate into functional hepatocyte-like cells following the induction of HGF and FGF-4. MSC can serve as a favorable cell source for tissue engineering in the treatment of liver disease. PMID:27429519

  1. Pattern formation of scale cells in Lepidoptera by differential origin-dependent cell adhesion

    OpenAIRE

    Sekimura, T.; Zhu, M.; Cook, J.; Maini, P. K.

    1999-01-01

    We present a model for the formation of parallel rows of scale cells in the developing adult wing of moths and butterflies. Precursors of scale cells differentiate throughout each epithelial monolayer and migrate into rows that are roughly parallel to the body axis. Grafting experiments have revealed what appears to be a gradient of adhesivity along the wing. What is more, cell adhesivity character is maintained after grafting. Thus we suggest that it is a cell’s location prior to migration t...

  2. Differential Effects of Activated Human Renal Epithelial Cells on T-Cell Migration

    OpenAIRE

    2013-01-01

    Background Renal tubular epithelial cells (TECs) are one of the main targets of inflammatory insults during interstitial nephritis and kidney transplant rejection. While Th1 cells are know to be essential in the pathogenesis of rejection, the role of Th17 is still under debate. We hypothesize that TECs modulate the outcome of rejection process by production of distinct chemokines and cytokines that determine the attraction of different T-cell subsets. Therefore, we studied differential effect...

  3. Primary study on directed differentiation of embryonic stem cells into thyrocyte-like cells in vitro

    International Nuclear Information System (INIS)

    Objective: To investigate the feasibility of directed differentiation of embryonic stem cells (ESCs) into thyrocyte-like cells in vitro. Methods: Murine E14 ESCs were cultured in methylcellulose semisolid medium to form embryoid bodies (EBs). These EBs were transferred for further inductive culture with the stepwise addition of growth factors (TSH, insulin and KI) into the culture medium. During differentiation, cell morphology was observed through phase contrast microscopy and compared with the normal thyroid cells from mouse. The molecular markers of thyroid cells were performed by indirect immunofluorescent analysis under fluorescent microscopy. Gene expressions of thyroid specific mRNA were analyzed by RT-PCR for molecules TSH receptor (TSHR), paired box gene 8 (PAX8), sodium iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (Tg). Results: After EBs formation, on day six of further culture added with inductive factors TSH, insulin and KI, ESCs-derived cells expressed thyroid-specific genes such as PAX8, NIS, TPO, Tg and TSHR. On the 8th day, these ESCs-derived thyrocyte-like cells overexpressed TSHR, thyroid transcription factor-1 (TTF-1) whereas PAX8, thyroid transcription factor-2 (TTF-2) remained in a housekeeping level. On the 10th day, all the molecular markers (including TSHR, PAX8, NIS, TPO and Tg) were overexpressed. Morphology of these markers positive differentiated cells was similar to those normal thyroid cells. Conclusions: ESCs can differentiate into thyrocyte-like cells under certain inductive conditions and is possibly related to growth factors in vitro. This study suggests that a renewable source of thyroid follicular cells derived from ESCs holds great therapeutic potential for future cell replacement therapy in clinic. (authors)

  4. Differentiation of Human Breast-Milk Stem Cells to Neural Stem Cells and Neurons

    Directory of Open Access Journals (Sweden)

    Seyed Mojtaba Hosseini

    2014-01-01

    Full Text Available Objectives. Human breast milk contains a heterogeneous population of cells that have the potential to provide a noninvasive source of cells for cell therapy in many neurodegenerative diseases without any ethical concern. The objectives of this study were to differentiate the breast milk-derived stem cells (BMDSC toward neural stem cells and then into the neurons and neuroglia. Materials and Methods. To do this, the BMDSC were isolated from human breast milk and cultured in Dulbecco’s modified Eagle medium/F12 (DMEM/F12 containing fibroblast growth factor (bFGF. The cells were then characterized by evaluation of the embryonic and stem cell markers. Then, the cells were exposed to culture medium containing 1% B27 and 2% N2 for 7–10 days followed by medium supplemented with B27, N2, bFGF 10 µg/mL, and endothelial growth factor (EGF 20 µg/mL. Then, the sphere-forming assay was performed. The spheres were then differentiated into three neural lineages by withdrawing growth factor in the presence of 5% FBS (fetal bovine serum. The immunofluorescence was done for β-tubulin III, O4, and GFAP (glial fibrillary acidic protein. Results. The results indicated that the cells expressed both embryonic and mesenchymal stem cell (MSC markers. They also showed neurospheres formation that was nestin-positive. The cells were also differentiated into all three neural lineages. Conclusion. The BMDSC can behave in the same way with neural stem cells. They were differentiated into oligodendrocytes, and astrocytes as well as neurons.

  5. Complex Systems Analysis of Arrested Neural Cell Differentiation during Development and Analogous Cell Cycling Models in Carcinogenesis

    OpenAIRE

    Baianu, Professor I.C.; Prisecaru, M.S. V

    2004-01-01

    A new approach to the modular, complex systems analysis of nonlinear dynamics of arrested neural cell Differentiation--induced cell proliferation during organismic development and the analogous cell cycling network transformations involved in carcinogenesis is proposed. Neural tissue arrested differentiation that induces cell proliferation during perturbed development and Carcinogenesis are complex processes that involve dynamically inter-connected biomolecules in the intercellular, membrane...

  6. Differentiation of human embryonic stem cells into cells with corneal keratocyte phenotype.

    Directory of Open Access Journals (Sweden)

    Audrey A Chan

    Full Text Available Corneal transparency depends on a unique extracellular matrix secreted by stromal keratocytes, mesenchymal cells of neural crest lineage. Derivation of keratocytes from human embryonic stem (hES cells could elucidate the keratocyte developmental pathway and open a potential for cell-based therapy for corneal blindness. This study seeks to identify conditions inducing differentiation of pluripotent hES cells to the keratocyte lineage. Neural differentiation of hES cell line WA01(H1 was induced by co-culture with mouse PA6 fibroblasts. After 6 days of co-culture, hES cells expressing cell-surface NGFR protein (CD271, p75NTR were isolated by immunoaffinity adsorption, and cultured as a monolayer for one week. Keratocyte phenotype was induced by substratum-independent pellet culture in serum-free medium containing ascorbate. Gene expression, examined by quantitative RT-PCR, found hES cells co-cultured with PA6 cells for 6 days to upregulate expression of neural crest genes including NGFR, SNAI1, NTRK3, SOX9, and MSX1. Isolated NGFR-expressing cells were free of PA6 feeder cells. After expansion as a monolayer, mRNAs typifying adult stromal stem cells were detected, including BMI1, KIT, NES, NOTCH1, and SIX2. When these cells were cultured as substratum-free pellets keratocyte markers AQP1, B3GNT7, PTDGS, and ALDH3A1 were upregulated. mRNA for keratocan (KERA, a cornea-specific proteoglycan, was upregulated more than 10,000 fold. Culture medium from pellets contained high molecular weight keratocan modified with keratan sulfate, a unique molecular component of corneal stroma. These results show hES cells can be induced to differentiate into keratocytes in vitro. Pluripotent stem cells, therefore, may provide a renewable source of material for development of treatment of corneal stromal opacities.

  7. TRIM32-dependent transcription in adult neural progenitor cells regulates neuronal differentiation

    OpenAIRE

    Hillje, Anna-Lena; Pavlou, Maria Angeliki; Beckmann, Elisabeth; Worlitzer, Maik; Bahnassawy, Lamiaa; Lewejohann, Lars; Palm, Thomas; Schwamborn, Jens Christian

    2013-01-01

    In the adult mammalian brain, neural stem cells in the subventricular zone continuously generate new neurons for the olfactory bulb. Cell fate commitment in these adult neural stem cells is regulated by cell fate-determining proteins. Here, we show that the cell fate-determinant TRIM32 is upregulated during differentiation of adult neural stem cells into olfactory bulb neurons. We further demonstrate that TRIM32 is necessary for the correct induction of neuronal differentiation in these cells...

  8. Memory T cell–driven differentiation of naive cells impairs adoptive immunotherapy

    Science.gov (United States)

    Klebanoff, Christopher A.; Scott, Christopher D.; Leonardi, Anthony J.; Yamamoto, Tori N.; Cruz, Anthony C.; Ouyang, Claudia; Ramaswamy, Madhu; Roychoudhuri, Rahul; Ji, Yun; Eil, Robert L.; Sukumar, Madhusudhanan; Crompton, Joseph G.; Palmer, Douglas C.; Borman, Zachary A.; Clever, David; Thomas, Stacy K.; Patel, Shashankkumar; Yu, Zhiya; Muranski, Pawel; Liu, Hui; Wang, Ena; Marincola, Francesco M.; Gros, Alena; Gattinoni, Luca; Rosenberg, Steven A.; Siegel, Richard M.; Restifo, Nicholas P.

    2015-01-01

    Adoptive cell transfer (ACT) of purified naive, stem cell memory, and central memory T cell subsets results in superior persistence and antitumor immunity compared with ACT of populations containing more-differentiated effector memory and effector T cells. Despite a clear advantage of the less-differentiated populations, the majority of ACT trials utilize unfractionated T cell subsets. Here, we have challenged the notion that the mere presence of less-differentiated T cells in starting populations used to generate therapeutic T cells is sufficient to convey their desirable attributes. Using both mouse and human cells, we identified a T cell–T cell interaction whereby antigen-experienced subsets directly promote the phenotypic, functional, and metabolic differentiation of naive T cells. This process led to the loss of less-differentiated T cell subsets and resulted in impaired cellular persistence and tumor regression in mouse models following ACT. The T memory–induced conversion of naive T cells was mediated by a nonapoptotic Fas signal, resulting in Akt-driven cellular differentiation. Thus, induction of Fas signaling enhanced T cell differentiation and impaired antitumor immunity, while Fas signaling blockade preserved the antitumor efficacy of naive cells within mixed populations. These findings reveal that T cell subsets can synchronize their differentiation state in a process similar to quorum sensing in unicellular organisms and suggest that disruption of this quorum-like behavior among T cells has potential to enhance T cell–based immunotherapies. PMID:26657860

  9. Sarcomatoid differentiation in renal cell carcinoma: prognostic implications

    Directory of Open Access Journals (Sweden)

    Marcos F. Dall'Oglio

    2005-02-01

    Full Text Available INTRODUCTION: Renal cell carcinoma with sarcomatoid differentiation is a tumor with aggressive behavior that is poorly responsive to immunotherapy. The objective of this study is to report our experience in the treatment of 15 patients with this tumor. MATERIALS AND METHODS: We retrospectively analyzed 15 consecutive cases of renal cell carcinoma with sarcomatoid differentiation diagnosed between 1991 and 2003. The clinical presentation and the pathological stage were assessed, as were the tumor's pathological features, use of adjuvant immunotherapy and survival. The study's primary end-point was to assess survival of these individuals. RESULTS: The sample included 8 women and 7 men with mean age of 63 years (44 - 80; follow-up ranged from 1 to 100 months (mean 34. Upon presentation, 87% were symptomatic and 4 individuals had metastatic disease. Mean tumor size was 9.5 cm (4 - 24 with the following pathological stages: 7% pT1, 7% pT2, 33% pT3, and 53% pT4. The pathological features showed high-grade tumors with tumoral necrosis in 87% of the lesions and 80% of intratumoral microvascular invasion. Disease-free and cancer-specific survival rates were 40 and 46% respectively, with 2 cases responding to adjuvant immunotherapy. CONCLUSIONS: Patients with sarcomatoid tumors of the kidney have a low life expectancy, and sometimes surgical resection associated with immunotherapy can lead to a long-lasting therapeutic response.

  10. Cell differentiation mediated by co-culture of human umbilical cord blood stem cells with murine hepatic cells.

    Science.gov (United States)

    Stecklum, Maria; Wulf-Goldenberg, Annika; Purfürst, Bettina; Siegert, Antje; Keil, Marlen; Eckert, Klaus; Fichtner, Iduna

    2015-02-01

    In the present study, purified human cord blood stem cells were co-cultivated with murine hepatic alpha mouse liver 12 (AML12) cells to compare the effect on endodermal stem cell differentiation by either direct cell-cell interaction or by soluble factors in conditioned hepatic cell medium. With that approach, we want to mimic in vitro the situation of preclinical transplantation experiments using human cells in mice. Cord blood stem cells, cultivated with hepatic conditioned medium, showed a low endodermal differentiation but an increased connexin 32 (Cx32) and Cx43, and cytokeratin 8 (CK8) and CK19 expression was monitored by reverse transcription polymerase chain reaction (RT-PCR). Microarray profiling indicated that in cultivated cord blood cells, 604 genes were upregulated 2-fold, with the highest expression for epithelial CK19 and epithelial cadherin (E-cadherin). On ultrastructural level, there were no major changes in the cellular morphology, except a higher presence of phago(ly)some-like structures observed. Direct co-culture of AML12 cells with cord blood cells led to less incisive differentiation with increased sex-determining region Y-box 17 (SOX17), Cx32 and Cx43, as well as epithelial CK8 and CK19 expressions. On ultrastructural level, tight cell contacts along the plasma membranes were revealed. FACS analysis in co-cultivated cells quantified dye exchange on low level, as also proved by time relapse video-imaging of labelled cells. Modulators of gap junction formation influenced dye transfer between the co-cultured cells, whereby retinoic acid increased and 3-heptanol reduced the dye transfer. The study indicated that the cell-co-cultured model of human umbilical cord blood cells and murine AML12 cells may be a suitable approach to study some aspects of endodermal/hepatic cell differentiation induction. PMID:25270685

  11. Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro

    International Nuclear Information System (INIS)

    Embryonic stem (ES) cells which have the unlimited proliferative capacity and extensive differentiation potency can be an attractive source for kidney regeneration therapies. Recent breakthroughs in the generation of induced pluripotent stem (iPS) cells have provided with another potential source for the artificially-generated kidney. The purpose of this study is to know how to differentiate mouse ES and iPS cells into renal lineage. We used iPS cells from mouse fibroblasts by transfection of four transcription factors, namely Oct4, Sox2, c-Myc and Klf4. Real-time PCR showed that renal lineage markers were expressed in both ES and iPS cells after the induction of differentiation. It also showed that a tubular specific marker, KSP progressively increased to day 18, although the differentiation of iPS cells was slower than ES cells. The results indicated that renal lineage cells can be differentiated from both murine ES and iPS cells. Several inducing factors were tested whether they influenced on cell differentiation. In ES cells, both of GDNF and BMP7 enhanced the differentiation to metanephric mesenchyme, and Activin enhanced the differentiation of ES cells to tubular cells. Activin also enhanced the differentiation of iPS cells to tubular cells, although the enhancement was lower than in ES cells. ES and iPS cells have a potential to differentiate to renal lineage cells, and they will be an attractive resource of kidney regeneration therapy. This differentiation is enhanced by Activin in both ES and iPS cells.

  12. Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Morizane, Ryuji [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Monkawa, Toshiaki, E-mail: monkawa@sc.itc.keio.ac.jp [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Itoh, Hiroshi [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan)

    2009-12-25

    Embryonic stem (ES) cells which have the unlimited proliferative capacity and extensive differentiation potency can be an attractive source for kidney regeneration therapies. Recent breakthroughs in the generation of induced pluripotent stem (iPS) cells have provided with another potential source for the artificially-generated kidney. The purpose of this study is to know how to differentiate mouse ES and iPS cells into renal lineage. We used iPS cells from mouse fibroblasts by transfection of four transcription factors, namely Oct4, Sox2, c-Myc and Klf4. Real-time PCR showed that renal lineage markers were expressed in both ES and iPS cells after the induction of differentiation. It also showed that a tubular specific marker, KSP progressively increased to day 18, although the differentiation of iPS cells was slower than ES cells. The results indicated that renal lineage cells can be differentiated from both murine ES and iPS cells. Several inducing factors were tested whether they influenced on cell differentiation. In ES cells, both of GDNF and BMP7 enhanced the differentiation to metanephric mesenchyme, and Activin enhanced the differentiation of ES cells to tubular cells. Activin also enhanced the differentiation of iPS cells to tubular cells, although the enhancement was lower than in ES cells. ES and iPS cells have a potential to differentiate to renal lineage cells, and they will be an attractive resource of kidney regeneration therapy. This differentiation is enhanced by Activin in both ES and iPS cells.

  13. miR-21 promotes the differentiation of hair follicle-derived neural crest stem cells into Schwann cells

    Institute of Scientific and Technical Information of China (English)

    Yuxin Ni; Kaizhi Zhang; Xuejuan Liu; Tingting Yang; Baixiang Wang; Li Fu; Lan A; Yanmin Zhou

    2014-01-01

    Hair follicle-derived neural crest stem cells can be induced to differentiate into Schwann cells in vivo and in vitro. However, the underlying regulatory mechanism during cell differentiation remains poorly understood. This study isolated neural crest stem cells from human hair folli-cles and induced them to differentiate into Schwann cells. Quantitative RT-PCR showed that microRNA (miR)-21 expression was gradually increased during the differentiation of neural crest stem cells into Schwann cells. After transfection with the miR-21 agonist (agomir-21), the differentiation capacity of neural crest stem cells was enhanced. By contrast, after transfection with the miR-21 antagonist (antagomir-21), the differentiation capacity was attenuated. Further study results showed that SOX-2 was an effective target of miR-21. Without compromising SOX2 mRNA expression, miR-21 can down-regulate SOX protein expression by binding to the 3′-UTR of miR-21 mRNA. Knocking out the SOX2 gene from the neural crest stem cells significantly reversed the antagomir-21 inhibition of neural crest stem cells differentiating into Schwann cells. The results suggest that miR-21 expression was increased during the differentiation of neural crest stem cells into Schwann cells and miR-21 promoted the differentiation through down-regu-lating SOX protein expression by binding to the 3′-UTR of SOX2 mRNA.

  14. Simulation of proliferation and differentiation of cells in a stem-cell niche

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2008-10-01

    Stem-cell niches represent microscopic compartments formed of environmental cells that nurture stem cells and enable them to maintain tissue homeostasis. The spatio-temporal kinetics of proliferation and differentiation of cells in such niches depend on the specifics of the niche structure and on adhesion and communication between cells and may also be influenced by spatial constraints on cell division. We propose a generic lattice model, taking all these factors into account, and systematically illustrate their role. The model is motivated by the experimental data available for the niches located in the subventricular zone of adult mammalian brain. The general conclusions drawn from our Monte Carlo simulations are applicable to other niches as well. One of our main findings is that the kinetics under consideration are highly stochastic due to a relatively small number of cells proliferating and differentiating in a niche and the autocatalytic character of the symmetric cell division. In particular, the kinetics exhibit huge stochastic bursts especially if the adhesion between cells is taken into account. In addition, the results obtained show that despite the small number of cells present in stem-cell niches, their arrangement can be predetermined to appreciable extent provided that the adhesion of different cells is different so that they tend to segregate.

  15. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Huang, Xiaohua [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian 116044 (China); An, Yue [Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Ren, Feng [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); He, Xiaowen; Schachner, Melitta [Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ (United States); Xiao, Zhicheng, E-mail: zhicheng.xiao@monash.edu [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); Ma, Keli, E-mail: makeli666@aliyun.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Li, Yali, E-mail: yalilipaper@gmail.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Anatomy, National University of Singapore, Singapore 119078 (Singapore)

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  16. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    International Nuclear Information System (INIS)

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression

  17. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration.

    Science.gov (United States)

    Condorelli, G; Borello, U; De Angelis, L; Latronico, M; Sirabella, D; Coletta, M; Galli, R; Balconi, G; Follenzi, A; Frati, G; Cusella De Angelis, M G; Gioglio, L; Amuchastegui, S; Adorini, L; Naldini, L; Vescovi, A; Dejana, E; Cossu, G

    2001-09-11

    The concept of tissue-restricted differentiation of postnatal stem cells has been challenged by recent evidence showing pluripotency for hematopoietic, mesenchymal, and neural stem cells. Furthermore, rare but well documented examples exist of already differentiated cells in developing mammals that change fate and trans-differentiate into another cell type. Here, we report that endothelial cells, either freshly isolated from embryonic vessels or established as homogeneous cells in culture, differentiate into beating cardiomyocytes and express cardiac markers when cocultured with neonatal rat cardiomyocytes or when injected into postischemic adult mouse heart. Human umbilical vein endothelial cells also differentiate into cardiomyocytes under similar experimental conditions and transiently coexpress von Willebrand factor and sarcomeric myosin. In contrast, neural stem cells, which efficiently differentiate into skeletal muscle, differentiate into cardiomyocytes at a low rate. Fibroblast growth factor 2 and bone morphogenetic protein 4, which activate cardiac differentiation in embryonic cells, do not activate cardiogenesis in endothelial cells or stimulate trans-differentiation in coculture, suggesting that different signaling molecules are responsible for cardiac induction during embryogenesis and in successive periods of development. The fact that endothelial cells can generate cardiomyocytes sheds additional light on the plasticity of endothelial cells during development and opens perspectives for cell autologous replacement therapies. PMID:11535818

  18. [Bone and Stem Cells. The mechanism of osteogenic differentiation from mesenchymal stem cell].

    Science.gov (United States)

    Ohata, Yasuhisa; Ozono, Keiichi

    2014-04-01

    Osteoblasts and osteocytes originate from pluripotent mesenchymal stem cells. Mesenchymal stem cells commit to osteogenic lineage and differentiate into mature osteoblasts and osteocytes through osteoprogenitor cells and preosteoblasts in response to multiple stimuli. The osteoblast commitment, differentiation, and functions are governed by several transcription factors. Among these transcription factors, runt-related transcription factor 2 (Runx2) is a crucial factor in osteoblast differentiation and controls bone formation. Differentiation toward these osteogenic lineage is controlled by a multitude of cytokines including WNTs, bone morphogenetic protein (BMP) , transforming growth factor-β (TGF-β) , hedgehog, parathyroid hormone (PTH) /parathyroid hormone related protein (PTHrP) , insulin-like growth factor-1 (IGF-1) , fibroblast growth factor (FGF) , and Notch. Although regulation of Runx2 activity is a point of convergence of many of the signal transduction routes, there is also a high degree of cross-talk between these pathways. Thus, the combined action of the signal transduction pathways induced by some cytokines determines the commitment and differentiation of mesenchymal stem cells toward the osteogenic lineage. PMID:24681495

  19. Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes

    Directory of Open Access Journals (Sweden)

    F Paino

    2010-10-01

    Full Text Available Dental pulp stem cells (DPSCs are multipotent stem cells derived from neural crest and mesenchyme and have the capacity to differentiate into multiple cell lineages. It has already been demonstrated that DPSCs differentiate into melanocyte-like cells but only when cultivated in a specific melanocyte differentiating medium. In this study we have shown, for the first time, that DPSCs are capable of spontaneously differentiating into mature melanocytes, which display molecular and ultrastructural features of full development, including the expression of melanocyte specific markers and the presence of melanosomes up to the terminal stage of maturation. We have also compared the differentiating features of DPSCs grown in different culture conditions, following the timing of differentiation at molecular and cytochemical levels and found that in all culture conditions full development of these cells was obtained, although at different times. The spontaneous differentiating potential of these cells strongly suggests their possible applications in regenerative medicine.

  20. Vascular smooth muscle cell differentiation from human stem/progenitor cells.

    Science.gov (United States)

    Steinbach, Sarah K; Husain, Mansoor

    2016-05-15

    Transplantation of vascular smooth muscle cells (VSMCs) is a promising cellular therapy to promote angiogenesis and wound healing. However, VSMCs are derived from diverse embryonic sources which may influence their role in the development of vascular disease and in its therapeutic modulation. Despite progress in understanding the mechanisms of VSMC differentiation, there remains a shortage of robust methods for generating lineage-specific VSMCs from pluripotent and adult stem/progenitor cells in serum-free conditions. Here we describe a method for differentiating pluripotent stem cells, such as embryonic and induced pluripotent stem cells, as well as skin-derived precursors, into lateral plate-derived VSMCs including 'coronary-like' VSMCs and neural crest-derived VSMC, respectively. We believe this approach will have broad applications in modeling origin-specific disease vulnerability and in developing personalized cell-based vascular grafts for regenerative medicine. PMID:26678794

  1. Particle analysis and differentiation using a photovoltaic cell

    International Nuclear Information System (INIS)

    A method is proposed for the sizing and counting of fluorescent and non-fluorescent particles of various sizes on a poly-dimethylsiloxane microchip. In the proposed approach, the detection region of the microchip is illuminated by a laser, which is then incident on a power-free photovoltaic cell. As the particles (both fluorescent and non-fluorescent) pass through the detection region, they block the laser beam, causing a reduction in the output voltage of the cell. The voltage signal is interfaced to a PC and is used to determine both the size and the number of the particles. Meanwhile, the fluorescence signal generated by the fluorescent particles within the sample is detected by an avalanche photodetector and is used to differentiate between the fluorescent and non-fluorescent particles in the sample. The effectiveness of the proposed approach is demonstrated using fluorescent-labeled beads with means diameters of 5, 8 and 10 µm, respectively, and unlabeled beads with a mean diameter of 7.2 µm. The experimental results confirm that the forward scattered light signal generated by the photovoltaic cell enables both the size and the number of the particles to be reliably determined. Moreover, it is shown that the number of non-fluorescent particles within the sample can be easily determined by comparing the signals received from the photovoltaic cell and avalanche photodetector, respectively. (paper)

  2. Oscillating hydrogel based bioreactors for chondrogenic differentiation of mesenchymal stem cells

    OpenAIRE

    Neiman, Veronica Juliet

    2010-01-01

    Harnessing the differentiative potential of stem cells for use in tissue repair could be a powerful therapy for debilitating diseases. However, one of the bottlenecks of stem cell based therapeutics and tissue engineering is inefficient and homogeneous stem cell differentiation. Various physico-chemical cues such as mechanical strain, chemical components, and soluble factors have been shown to direct stem cell differentiation. This study developed a multifunctional polymer-based artificial EC...

  3. Wnt signaling pathway participates in valproic acid-induced neuronal differentiation of neural stem cells

    OpenAIRE

    Wang, Li; Liu, Yuan; Li, Sen; Zai-yun LONG; Wu, Ya-min

    2015-01-01

    Neural stem cells (NSCs) are multipotent cells that have the capacity for differentiation into the major cell types of the nervous system, i.e. neurons, astrocytes and oligodendrocytes. Valproic acid (VPA) is a widely prescribed drug for seizures and bipolar disorder in clinic. Previously, a number of researches have been shown that VPA has differential effects on growth, proliferation and differentiation in many types of cells. However, whether VPA can induce NSCs from embryonic cerebral cor...

  4. HNF-4α determines hepatic differentiation of human mesenchymal stem cells from bone marrow

    Institute of Scientific and Technical Information of China (English)

    Mong-Liang; Chen; Kuan-Der; Lee; Huei-Chun; Huang; Yue-Lin; Tsai; Yi-Chieh; Wu; Tzer-Min; Kuo; Cheng-Po; Hu; Chungming; Chang

    2010-01-01

    AIM: To investigate the differentiation status and key factors to facilitate hepatic differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). METHODS: Human MSCs derived from bone marrow were induced into hepatocyte-like cells following a previously published protocol. The differentiation status of the hepatocyte-like cells was compared with various human hepatoma cell lines. Overexpression of hepatocyte nuclear factor (HNF)-4α was mediated by adenovirus infection of these hepatocyte-like...

  5. Derivation of cochlea hair cell for in vitro expansion and characterization.

    Science.gov (United States)

    Ibnubaidah, M A; Chua, K H; Mazita, A; Azida, Z N; Aminuddin, B S; Ruszymah, B H I; Lokman, B S

    2008-07-01

    A potential cure for hearing loss would be to regenerate hair cells by stimulating cells of the damaged inner ear sensory epithelia to proliferate and differentiate into hair cells. Here, we investigated the possibility to isolate, culture-expand and characterize the cells from the cochlea membrane of adult mice. Our results showed that the cultured cells isolated from mouse cochlea membrane were heterogenous in nature. Morphologically there were epithelial like cells, hair cell like, nerve cell like and fibroblastic cells observed in the culture. The cultured cells were immunopositive for specific hair cell markers including Myosin 7a, Calretinin and Espin. PMID:19025012

  6. WEHI-3 cells inhibit adipocyte differentiation in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jing [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); Liu, Gexiu [Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong (China); Yan, Guoyao [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); He, Dongmei [Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong (China); Zhou, Ying [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); Chen, Shengting, E-mail: shengtingchen@sina.cn [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China)

    2015-06-26

    By investigating the anti-adipogenic effects of WEHI-3 cells – a murine acute myelomonocytic leukemia cell line – we sought to improve the efficiency of hematopoietic stem cell transplantation (HSCT). Analysis of Oil Red O staining and the expression of adipogenic genes, including PPARγ, C/EBPα, FAS and LPL, indicated that WEHI-3 cells significantly inhibited 3T3-L1 mouse preadipocyte cells from differentiating into adipocytes. In vivo, fat vacuoles in mice injected with WEHI-3 cells were also remarkably reduced in the murine bone marrow pimelosis model. Moreover, the key gene in the Rho signaling pathway, ROCKII, and the key gene in the Wnt signaling pathway, β-catenin, were both upregulated compared with the control group. siRNA-mediated knockdown of ROCKII and β-catenin reversed these WEHI-3-mediated anti-adipogenic effects. Taken together, these data suggest that WEHI-3 cells exert anti-adipogenic effects and that both ROCKII and β-catenin are involved in this process. - Highlights: • WEHI-3, an acute myelomonocytic leukemia cell line, inhibited 3T3-L1 preadipocyte from differentiating into adipocyte. • WEHI-3 cells can arrest 3T3-L1 cells in G0/G1 phase by secreting soluble factors and thus inhibit their proliferation. • WEHI-3 cells reduced bone marrow pimelosis in the murine model. • Both ROCKII and β-catenin were involved in the WEHI-3-mediated anti-adipogenic effects.

  7. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lee-Chuan C.; Ford, Jeffery J. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); Lee, John C. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States); Adamo, Martin L., E-mail: adamo@biochem.uthscsa.edu [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States)

    2014-07-18

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.

  8. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    International Nuclear Information System (INIS)

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects

  9. The differentiation directions of the bone marrow stromal cells under modeling microgravity

    Science.gov (United States)

    Nesterenko, Olga; Rodionova, Natalia; Katkova, Olena

    Within experiments on rats simulating microgravity by base load remove from back limbs (duration of the experiment 1,5 months) on marrow stromal cells cultures (ex vivo, in vitro) comprising osteogenic cells-predecessors, extracted from femurs, studied their peculiarities of the colony formation ablity, the cell structure, some cytological and ultra-structural characteristics and differentiation direction. It was found that that under microgravity conditions there is a decline of the stromal cells colony formation intensity, decrease of the colonies size and cells mitotic activity that indicates decrease of their growth potential. Both in control and in experiment the colonies were presented by population of low-differentiated cells, differentiated cells and mature cells. The comparative cytological and morphometric analysis have shown that the studied stromal cells in colonies have the smaller sizes, more elongated shape, and higher nucleocytoplasmic ratio. Cells composition in the experiment colonies is reliably different by the ratio of the low-differentiating to being differentiated cells; a ratio of low-differentiated to already differentiated cells; ratio of differentiated cells to total number of all cells. In comparison with control group, amount of the cells passed trough a differentiation stage and mature cells in colonies is decreased by 3 to 4 times. Among the differentiated stromal cells in colonies increasing amount of adipocytes was revealed. The analysis of electron microscope microphotographs showed that in osteogenic cells differentiated under microgravity conditions, there is a reduction of the specific volume of a granular endoplasmic reticulum, Golgi's complex and quantity of nuclei reduction that indicates depression of the specific biosyntheses process intensity in cells. The increase of lysosomes and myelinic structures quantity is linked to organelles partial reduction. Consolidation of mitochondrias is an evidence of the cells’ energy

  10. Effects of olfactory ensheathing cells on the proliferation and differentiation of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Xuewei Xie; Zhouping Tang; Feng Xu; Na Liu; Zaiwang Li; Suiqiang Zhu; Wei Wang

    2009-01-01

    BACKGROUND: Olfactory ensheathing cells can promote oriented differentiation and proliferation of neural stem cells by cell-secreted neural factors.OBJECTIVE: To observe the effect of olfactory ensheathing cells on the differentiation and proliferation of neural stem cells.DESIGN, TIME AND SETrlNG: Cytology was performed at the Department of Neurology, Tongji Medical College, Huazhong University of Science and Technology, China, from September 2007 to October 2008.MATERIALS: Mouse anti-nestin polyclonal antibody (Chemicon, USA), mouse anti-glial fibrillary acidic protein (GFAP) IgG1, mouse anti-2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) IgG1, mouse anti-Tubulin Class-Ill IgG1 (Neo Markers, USA), Avidin-labeled Cy3 (KPL, USA), and goat anti-mouse IgG1: fluorescein isothiocyanate (FITC) (Serotec, UK) were used in this study.METHODS: Tissues were isolated from the embryonic olfactory bulb and subependymal region of Wistar rats. Serum-free DMEM/F12 culture media was used for co-culture experiments. Neural stem cells were incubated in serum-free or 5% fetal bovine serum-containing DMEM/F12 as controls.MAIN OUTCOME MEASURES: After 7 days of co-culture, neural stem cells and olfactory ensheathing cells underwent immunofluorescent staining for nestin, tubulin, glial fibrillary acidic protein, and CNPase.RESULTS: Olfactory ensheathing cells promoted proliferation and differentiation of neural stem cells into neuron-like cells, astrocytes and oligodendrocytes. The proportion of neuron-like cells was 78.2%, but the proportion of neurons in 5% fetal bovine serum DMEM/F12 was 48.3%. In the serum-free DMEM/F12, neural stem cells contracted, unevenly adhered to the glassware wall, or underwent apoptosis at 7 days.CONCLUSION: Olfactory ensheathing cells promote differentiation of neural stem cells mainly into neuron-like cells, and accelerate proliferation of neural stem cells. The outcome is better compared with serum-free medium or medium containing 5% fetal bovine

  11. The nuclear pore complex acts as a master switch for nuclear and cell differentiation.

    Science.gov (United States)

    Iwamoto, Masaaki; Hiraoka, Yasushi; Haraguchi, Tokuko

    2015-01-01

    Cell differentiation is associated with the functional differentiation of the nucleus, in which alteration of the expression profiles of transcription factors occurs to destine cell fate. Nuclear transport machineries, such as importin-α, have also been reported as critical factors that induce cell differentiation. Using various fluorescence live cell imaging methods, including time-lapse imaging, FRAP analysis and live-cell imaging associated correlative light and electron microscopy (Live CLEM) of Tetrahymena, a unicellular ciliated protozoan, we have recently discovered that type switching of the NPC is the earliest detectable event of nuclear differentiation. Our studies suggest that this type switching of the NPC directs the fate of the nucleus to differentiate into either a macronucleus or a micronucleus. Our findings in this organism may provide new insights into the role of the NPC in controlling nuclear functions in general in eukaryotes, including controlling cell fate leading to cell differentiation in multicellular metazoa. PMID:26479399

  12. Lysine-specific demethylase 1 regulates differentiation onset and migration of trophoblast stem cells

    Science.gov (United States)

    Zhu, Dongmei; Hölz, Stefanie; Metzger, Eric; Pavlovic, Mihael; Jandausch, Anett; Jilg, Cordula; Galgoczy, Petra; Herz, Corinna; Moser, Markus; Metzger, Daniel; Günther, Thomas; Arnold, Sebastian J.; Schüle, Roland

    2014-01-01

    Propagation and differentiation of stem cell populations are tightly regulated to provide sufficient cell numbers for tissue formation while maintaining the stem cell pool. Embryonic parts of the mammalian placenta are generated from differentiating trophoblast stem cells (TSCs) invading the maternal decidua. Here we demonstrate that lysine-specific demethylase 1 (Lsd1) regulates differentiation onset of TSCs. Deletion of Lsd1 in mice results in the reduction of TSC number, diminished formation of trophectoderm tissues and early embryonic lethality. Lsd1-deficient TSCs display features of differentiation initiation, including alterations of cell morphology, and increased migration and invasion. We show that increased TSC motility is mediated by the premature expression of the transcription factor Ovol2 that is directly repressed by Lsd1 in undifferentiated cells. In summary, our data demonstrate that the epigenetic modifier Lsd1 functions as a gatekeeper for the differentiation onset of TSCs, whereby differentiation-associated cell migration is controlled by the transcription factor Ovol2.

  13. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells

    Institute of Scientific and Technical Information of China (English)

    Donghui Zhang; Wei Jiang; Meng Liu; Xin Sui; Xiaolei Yin; Song Chen; Yan Shi; Hongkui Deng

    2009-01-01

    Human pluripotent stem cells represent a potentially unlimited source of functional pancreatic endocrine lineage cells. Here we report a highly efficient approach to induce human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells to differentiate into mature insulin-producing cells in a chemical-defined culture system. The differentiated human ES cells obtained by this approach comprised nearly 25% insulin-positive cells as assayed by flow cytometry analysis, which released insulin/C-peptide in response to glucose stimuli in a manner comparable to that of adult human islets. Most of these insulin-producing cells co-expressed mature β cell-specific markers such as NKX6-1 and PDX1, indicating a similar gene expression pattern to adult islet β cells in vivo. In this study, we also demonstrated that EGF facilitates the expansion of PDX1-positive pancreatic progenitors. Moreover, our protocol also succeeded in efficiently inducing human iPS cells to differentiate into insulin-producing cells. Therefore, this work not only provides a new model to study the mechanism of human pancreatic specialization and maturation in vitro, but also enhances the possibility of utilizing patient-specific iPS cells for the treatment of diabetes.

  14. Msx2 alters the timing of retinal ganglion cells fate commitment and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shao-Yun, E-mail: jiangshaoyun@yahoo.com [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Tianjin 300070 (China); Wang, Jian-Tao, E-mail: wangjiantao65@hotmail.com [Eye Center, Tianjin Medical University, 64 Tongan Road, Tianjin 300070 (China); Dohney Eye Institute, Keck School of Medicine, University of Southern California, 1355 San Pablo Street, DOH 314, Los Angeles, CA 90033 (United States)

    2010-05-14

    Timing of cell fate commitment determines distinct retinal cell types, which is believed to be controlled by a tightly coordinated regulatory program of proliferation, cell cycle exit and differentiation. Although homeobox protein Msx2 could induce apoptosis of optic vesicle, it is unclear whether Msx2 regulates differentiation and cell fate commitment of retinal progenitor cells (RPCs) to retinal ganglion cells (RGCs). In this study, we show that overexpression of Msx2 transiently suppressed the expression of Cyclin D1 and blocked cell proliferation. Meanwhile, overexpression of Msx2 delayed the expression of RGC-specific differentiation markers (Math5 and Brn3b), which showed that Msx2 could affect the timing of RGCs fate commitment and differentiation by delaying the timing of cell cycle exit of retinal progenitors. These results indicate Msx2 possesses dual regulatory functions in controlling cell cycle progression of retinal RPCs and timing of RGCs differentiation.

  15. Msx2 alters the timing of retinal ganglion cells fate commitment and differentiation

    International Nuclear Information System (INIS)

    Timing of cell fate commitment determines distinct retinal cell types, which is believed to be controlled by a tightly coordinated regulatory program of proliferation, cell cycle exit and differentiation. Although homeobox protein Msx2 could induce apoptosis of optic vesicle, it is unclear whether Msx2 regulates differentiation and cell fate commitment of retinal progenitor cells (RPCs) to retinal ganglion cells (RGCs). In this study, we show that overexpression of Msx2 transiently suppressed the expression of Cyclin D1 and blocked cell proliferation. Meanwhile, overexpression of Msx2 delayed the expression of RGC-specific differentiation markers (Math5 and Brn3b), which showed that Msx2 could affect the timing of RGCs fate commitment and differentiation by delaying the timing of cell cycle exit of retinal progenitors. These results indicate Msx2 possesses dual regulatory functions in controlling cell cycle progression of retinal RPCs and timing of RGCs differentiation.

  16. Forced expression of the Oct-4 gene influences differentiation of embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By transfecting an Oct-4 expression plasmid into embryonic stem cells (ES cells), the ES-O cell line was constructed, which sustained the expression of Oct-4 gene when induced by retinoic acid. Forced expression of Oct-4 gene could not sustain the stem property of ES-O cells without the differentiation inhibiting factor LIF, but if LIF exists,forced expression of Oct-4 gene could enhance the ability to sustain the undifferentiation state and inhibit cell differentiation induced by retinoic acid. It was indicated that Oct-4 must cooperate with LIF to sustain the undifferentiation state of ES cells. During the cell differentiation, ES-O cells tend to differentiate into neural cells, suggesting that forced expression of Oct-4 gene may be in relation with the differentiation of neuroderm.

  17. Expression Profile of microRNAs Regulating Proliferation and Differentiation in Mouse Adult Cardiac Stem Cells

    OpenAIRE

    Brás-Rosário, Luis; Matsuda, Alex; Pinheiro, Ana Isabel; Gardner, Rui; Lopes, Telma; Amaral, Andreia; Gama-Carvalho, Margarida

    2013-01-01

    The identification of cardiac cells with stem cell properties changed the paradigm of the heart as a post mitotic organ. These cells proliferate and differentiate into cardiomyocytes, endothelial and vascular smooth muscle cells, providing for cardiac cell homeostasis and regeneration. microRNAs are master switches controlling proliferation and differentiation, in particular regulating stem cell biology and cardiac development. Modulation of microRNAs -regulated gene expression networks holds...

  18. Post-mitotic role of nucleostemin as a promoter of skeletal muscle cell differentiation

    OpenAIRE

    Hirai, Hiroyuki; Romanova, Liudmila; Kellner, Steven; Verma, Mayank; Rayner, Samuel; Asakura, Atsushi; Kikyo, Nobuaki

    2009-01-01

    Nucleostemin (NS) is a nucleolar protein abundantly expressed in a variety of proliferating cells and undifferentiated cells. Its known functions include cell cycle regulation and the control of pre-rRNA processing. It also has been proposed that NS has an additional role in undifferentiated cells due to its downregulation during stem cell differentiation and its upregulation during tissue regeneration. Here, however, we demonstrate that skeletal muscle cell differentiation has a unique expre...

  19. WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics

    Institute of Scientific and Technical Information of China (English)

    Isabelle Bisson; David M Prowse

    2009-01-01

    Prostate cancer cells with stem cell characteristics were identified in human prostate cancer cell lines by their abil-ity to form from single cells self-renewing prostaspheres in non-adherent cultures. Prostaspheres exhibited heteroge-neous expression of proliferation, differentiation and stem cell-associated makers CD44, ABCG2 and CD133. Treat-ment with WNT inhibitors reduced both prostasphere size and self-renewal, In contrast, addition of Wnt3a caused increased prostasphere size and self-renewal, which was associated with a significant increase in nuclear β-catenin, keratin 18, CD133 and CD44 expression. As a high proportion of LNCaP and C4-2B cancer cells express androgen receptor we determined the effect of the androgen receptor antagonist bicalutamide. Androgen receptor inhibition reduced prostasphere size and expression of PSA, but did not inhibit prostasphere formation. These effects are con-sistent with the androgen-independent self-renewal of cells with stem cell characteristics and the androgen-dependent proliferation of transit amplifying cells. As the canonical WNT signaling effector β-catenin can also associate with the androgen receptor, we propose a model for tumour propagation involving a balance between WNT and androgen re-ceptor activity. That would affect the self-renewal of a cancer cell with stem cell characteristics and drive transit am-plifying cell proliferation and differentiation. In conclusion, we provide evidence that WNT activity regulates the self-renewal of prostate cancer cells with stem cell characteristics independently of androgen receptor activity. Inhibition of WNT signaling therefore has the potential to reduce the self-renewal of prostate cancer cells with stem cell charac-teristics and improve the therapeutic outcome.

  20. Cell Signaling and Differential Protein Expression in Neuronal Differentiation of Bone Marrow Mesenchymal Stem Cells with Hypermethylated Salvador/Warts/Hippo (SWH Pathway Genes.

    Directory of Open Access Journals (Sweden)

    Hui-Hung Tzeng

    Full Text Available Human mesenchymal stem cells (MSCs modified by targeting DNA hypermethylation of genes in the Salvador/Warts/Hippo pathway were induced to differentiate into neuronal cells in vitro. The differentiated cells secreted a significant level of brain-derived neurotrophy factor (BDNF and the expression of BDNF receptor tyrosine receptor kinase B (TrkB correlated well with the secretion of BDNF. In the differentiating cells, CREB was active after the binding of growth factors to induce phosphorylation of ERK in the MAPK/ERK pathway. Downstream of phosphorylated CREB led to the functional maturation of differentiated cells and secretion of BDNF, which contributed to the sustained expression of pERK and pCREB. In summary, both PI3K/Akt and MAPK/ERK signaling pathways play important roles in the neuronal differentiation of MSCs. The main function of the PI3K/Akt pathway is to maintain cell survival during neural differentiation; whereas the role of the MAPK/ERK pathway is probably to promote the maturation of differentiated MSCs. Further, cellular levels of protein kinase C epsilon type (PKC-ε and kinesin heavy chain (KIF5B increased with time of induction, whereas the level of NME/NM23 nucleoside diphosphate kinase 1 (Nm23-H1 decreased during the time course of differentiation. The correlation between PKC-ε and TrkB suggested that there is cross-talk between PKC-ε and the PI3K/Akt signaling pathway.

  1. Efficient differentiation of human embryonic stem cells into functional cerebellar-like cells.

    Science.gov (United States)

    Erceg, Slaven; Ronaghi, Mohammad; Zipancic, Ivan; Lainez, Sergio; Roselló, Mireia Gárcia; Xiong, Chen; Moreno-Manzano, Victoria; Rodríguez-Jiménez, Fernando Javier; Planells, Rosa; Alvarez-Dolado, Manuel; Bhattacharya, Shom Shanker; Stojkovic, Miodrag

    2010-11-01

    The cerebellum has critical roles in motor and sensory learning and motor coordination. Many cerebellum-related disorders indicate cell therapy as a possible treatment of neural loss. Here we show that application of inductive signals involved in early patterning of the cerebellar region followed by application of different factors directs human embryonic stem cell differentiation into cerebellar-like cells such as granule neurons, Purkinje cells, interneuron, and glial cells. Neurons derived using our protocol showed a T-shaped polarity phenotype and express similar markers to the developed human cerebellum. Electrophysiological measurements confirmed functional electrical properties compatible with these cells. In vivo implantation of differentiated human embryonic stem cells transfected with MATH1-GFP construct into neonatal mice resulted in cell migration across the molecular and the Purkinje cell layers and settlement in the internal molecular layers. Our findings demonstrate that the universal mechanisms involved in the development of cerebellum can be efficiently recapitulated in vitro, which enables the design of new strategies for cell replacement therapy, to study early human development and pathogenesis of neurodegenerative diseases. PMID:20521974

  2. Spontaneous Differentiation of Dental Pulp stem cells on Dental polymers

    Science.gov (United States)

    Bherwani, Aneel; Suarato, Giulia; Qin, Sisi; Chang, Chung-Cheh; Akhavan, Aaron; Spiegel, Joseph; Jurukovski, Vladimir; Rafailovich, Miriam; Simon, Marcia

    2012-02-01

    Dental pulp stem cells were plated on two dentally relevant materials i.e. PMMA commonly used for denture and Titanium used for implants. In both cases, we probed for the role of surface interaction and substrate morphology. Different films of PMMA were spun cast directly onto Si wafers; PMMA fibers of different diameters were electro spun onto some of these substrates. Titanium metal was evaporated onto Si surfaces using an electron beam evaporator. In addition, on some surfaces, P4VP nanofibers were spun cast. DPSC were grown in alpha-MEM supplemented with 10% fetal bovine serum, 0.2mM L-ascorbic acid 2-phosphate, 2mm glutamine and 10mM beta-glycerol phosphate either with or without 10nM dexamethasone. After 21 days samples were examined using confocal microscopy of cells and by scanning electron microscopy (SEM) and Energy dispersive X-ray Analysis (EDAX). In the case of Titanium biomineralization was observed independent of dexamethasone, where the deposits were templated along the fibers. Minimal biomineralization was observed on flat Titanium and PMMA samples. Markers of osteogenesis and specific signaling pathways are being evaluated by RT-PCR, which are up regulated on each surface, to understand the fundamental manner in which surfaces interact with cell differentiation.

  3. Common marmoset embryonic stem cell can differentiate into cardiomyocytes

    International Nuclear Information System (INIS)

    Common marmoset monkeys have recently attracted much attention as a primate research model, and are preferred to rhesus and cynomolgus monkeys due to their small bodies, easy handling and efficient breeding. We recently reported the establishment of common marmoset embryonic stem cell (CMESC) lines that could differentiate into three germ layers. Here, we report that our CMESC can also differentiate into cardiomyocytes and investigated their characteristics. After induction, FOG-2 was expressed, followed by GATA4 and Tbx20, then Nkx2.5 and Tbx5. Spontaneous beating could be detected at days 12-15. Immunofluorescent staining and ultrastructural analyses revealed that they possessed characteristics typical of functional cardiomyocytes. They showed sinus node-like action potentials, and the beating rate was augmented by isoproterenol stimulation. The BrdU incorporation assay revealed that CMESC-derived cardiomyocytes retained a high proliferative potential for up to 24 weeks. We believe that CMESC-derived cardiomyocytes will advance preclinical studies in cardiovascular regenerative medicine

  4. Cell-Cycle-Dependent Reconfiguration of the DNA Methylome during Terminal Differentiation of Human B Cells into Plasma Cells

    Directory of Open Access Journals (Sweden)

    Gersende Caron

    2015-11-01

    Full Text Available Molecular mechanisms underlying terminal differentiation of B cells into plasma cells are major determinants of adaptive immunity but remain only partially understood. Here we present the transcriptional and epigenomic landscapes of cell subsets arising from activation of human naive B cells and differentiation into plasmablasts. Cell proliferation of activated B cells was linked to a slight decrease in DNA methylation levels, but followed by a committal step in which an S phase-synchronized differentiation switch was associated with an extensive DNA demethylation and local acquisition of 5-hydroxymethylcytosine at enhancers and genes related to plasma cell identity. Downregulation of both TGF-β1/SMAD3 signaling and p53 pathway supported this final step, allowing the emergence of a CD23-negative subpopulation in transition from B cells to plasma cells. Remarkably, hydroxymethylation of PRDM1, a gene essential for plasma cell fate, was coupled to progression in S phase, revealing an intricate connection among cell cycle, DNA (hydroxymethylation, and cell fate determination.

  5. Retinoic acid and cAMP inhibit rat hepatocellular carcinoma cell proliferation and enhance cell differentiation

    International Nuclear Information System (INIS)

    Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation [E-cadherin, connexin 26 (Cx26), and connexin 32 (Cx32)]. RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells

  6. Retinoic acid and cAMP inhibit rat hepatocellular carcinoma cell proliferation and enhance cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ionta, M. [Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas MG (Brazil); Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil); Rosa, M.C.; Almeida, R.B.; Freitas, V.M.; Rezende-Teixeira, P.; Machado-Santelli, G.M. [Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil)

    2012-05-25

    Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation [E-cadherin, connexin 26 (Cx26), and connexin 32 (Cx32)]. RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.

  7. A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation

    OpenAIRE

    Chetty, Sundari; Engquist, Elise N.; Mehanna, Elie; Lui, Kathy O.; Tsankov, Alexander M.; Douglas A Melton

    2015-01-01

    Driving human pluripotent stem cells (hPSCs) into specific lineages is an inefficient and challenging process. We show that a potent Src inhibitor, PP1, regulates expression of genes involved in the G1 to S phase transition of the cell cycle, activates proteins in the retinoblastoma family, and subsequently increases the differentiation propensities of hPSCs into all three germ layers. We further demonstrate that genetic suppression of Src regulates the activity of the retinoblastoma protein ...

  8. Proteome-wide analysis of neural stem cell differentiation to facilitate transition to cell replacement therapies

    Czech Academy of Sciences Publication Activity Database

    Žižková, Martina; Suchá, Rita; Tylečková, Jiřina; Jarkovská, Karla; Mairychová, Kateřina; Kotrčová, Eva; Marsala, M.; Gadher, S. J.; Kovářová, Hana

    2015-01-01

    Roč. 12, č. 1 (2015), s. 83-95. ISSN 1478-9450 R&D Projects: GA MŠk ED2.1.00/03.0124; GA TA ČR(CZ) TA01011466 Institutional support: RVO:67985904 Keywords : cell therapy * immunomodulation * neural stem cell differentiation * neural subpopulation * neurodegenerative disease Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.896, year: 2014

  9. Screening ToxCast™ Phase I Chemicals in a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) Assay

    Science.gov (United States)

    An Adherent Cell Differentiation and Cytotoxicity (ACDC) in vitro assay with mouse embryonic stem cells was used to screen the ToxCast Phase I chemical library for effects on cellular differentiation and cell number. The U.S. Environmental Protection Agency (EPA) established the ...

  10. Analysis of Alterations in Morphologic Characteristics of Mesenchymal Stem Cells by Mechanical Stimulation during Differentiation into Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Shokrgozar

    2010-01-01

    Full Text Available Objective: Mesenchymal stem cells (MSCs can be expanded and differentiated intomany mature cell types including smooth muscle cells (SMCs. In addition to growth factor,cyclic stretch contributes to differentiation of stem cells. Mechanical stimuli are criticalto morphological changes, development, regeneration, differentiation and pathology ofmesenchymal tissues. The aim of this study is to investigate effects of cyclic stretch withdiffering amplitudes on morphology and differentiation of mesenchymal stem cells.Materials and Methods: Mesenchymal stem cells are extracted from human bone marrow.Cells are cultured on silicone membrane and exposed to cyclic stretch by a custommade device. Cellular images are captured before and after tests. Effects of 5% and 15%uniaxial strain with 1Hz frequency and 1-8 hour durations on morphology of human mesenchymalstem cells are investigated. It is assumed that environmental factors such asmechanical loading regulate MSCs differentiation to SMCs. Fractal analysis is used toquantify alterations in cellular morphology. An image processing method with a designedcode is used for evaluation of fractal dimension parameter.Results: Results demonstrate statistically significant change in cell morphology due tomechanical stretch. By elevation of strain amplitude and number of load cycles, fractaldimensions of cell images decrease. Such decrease is equivalent to alignment of cells bymechanical stimulus. Cells are differentiated to SMCs purely by cyclic stretch. The initiationand rate of differentiation depend on mechanical conditions.Conclusion: To produce functional SMCs for engineered tissues, MSCs can be exposed to uniaxialcyclic stretch. The functionality of differentiated SMCs depends on loading conditions.

  11. Properties of Neural Crest-Like Cells Differentiated from Human Embryonic Stem Cells

    Czech Academy of Sciences Publication Activity Database

    Křivánek, J.; Švandová, Eva; Králik, J.; Hajda, S.; Fedr, Radek; Vinařský, V.; Jaroš, J.; Souček, Karel

    2014-01-01

    Roč. 60, č. 2014 (2014), s. 30-38. ISSN 0015-5500 R&D Projects: GA ČR(CZ) GAP304/11/1418 Institutional support: RVO:68081707 Keywords : stem cell differentiation * neural crest * odontogenesis Subject RIV: BO - Biophysics; ED - Physiology (UZFG-Y) Impact factor: 1.000, year: 2014

  12. Understanding Cell Shape Phenotypes Associated with Stem Cell Differentiation Induced by Topographical Cues of Nanofiber Microenvironment

    Science.gov (United States)

    Chen, Desu; Sarkar, Sumona; Losert, Wolfgang

    It is increasingly important to understand cell responses to bioinspired material structures and topographies designed to guide cell functional alterations. In this study, we investigated association between early stage cell morphological response and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) induced by poly(ɛ-caprolactone) (PCL) nanofiber scaffolds (PCL-NF). Accounting for both multi-parametric complexity and biological heterogeneity, we developed an analysis framework based on support vector machines and a multi-cell level averaging method (supercell) to determine the most pronounced cell shape features describing shape phenotypes of cells in PCL-NF compared to cells on flat PCL films. We found that smaller size and more dendritic shape were the major morphological responses of hBMSCs to PCL-NF on day 1 of cell culture. Further, we investigated the shape phenotypes of hBMSCs in PCL-NF of different fiber densities to monitor the transition between 2-D and 3-D topographies. We tracked the genotypic, phenotypic and morphological responses of hBMSCs to different fiber densities at multiple time points to identify correlations between hBMSCs differentiation and early stage morphology in PCL-NF scaffolds.

  13. Emergence of nuclear heparanase induces differentiation of human mammary cancer cells

    International Nuclear Information System (INIS)

    The study of epithelial differentiation touches upon many modern aspects of biology. The epithelium is in constant dialogue with the underlying mesenchyme to control stem cell activity, proliferation in transit-amplifying compartments, lineage commitment, terminal differentiation and, ultimately, cell death. There are spatially distinct compartments dedicated to each of these events. Recently we reported that heparanase is expressed in nucleus as well as in the cytoplasm and that nuclear heparanase seems to be related to cell differentiation. In this study, we investigated the role of nuclear heparanase in differentiation by transducing human mammary epithelial cancer cells with heparanase which was delivered specifically into nucleus. We observed that expression of nuclear heparanase allowed the cells to differentiate with the appearance of lipid droplets. This finding supports the idea that heparanase plays a novel role in epithelial cell differentiation apart from its known enzymatic function

  14. Hemopoietic stem cells preferential differentiation after transfer into lethally irradiated mice previously infected with BCG

    International Nuclear Information System (INIS)

    Following injection of bone marrow cells in lethally irradiated mice, previously infected with BCG regenerating hemopoietic cell populations differentiate along the leucocyte pathway to the detriment of erythroid lineage. Such a phenomenon persisting even if anemia of infected mice is increased by bleeding just before irradiation and reconstitution supports the hypothesis of preferential differentiation of stem cells

  15. Modulatory effects of quercetin on proliferation and differentiation of the human colorectal cell line Caco-2

    NARCIS (Netherlands)

    Dihal, A.A.; Woutersen, R.A.; Ommen, B.v.; Rietjens, I.M.C.M.; Stierum, R.H.

    2006-01-01

    The effect of the dietary flavonoid quercetin was investigated on proliferation and differentiation of the human colon cancer cell line Caco-2. Confluent Caco-2 monolayers exposed to quercetin showed a biphasic effect on cell proliferation and a decrease in cell differentiation (0.001

  16. Post-mitotic role of nucleostemin as a promoter of skeletal muscle cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Hiroyuki; Romanova, Liudmila; Kellner, Steven; Verma, Mayank; Rayner, Samuel [Stem Cell Institute, University of Minnesota, Room 2-216, MTRF, 2001 6th St. SE, Minneapolis, MN 55455 (United States); Asakura, Atsushi, E-mail: asakura@umn.edu [Stem Cell Institute, University of Minnesota, Room 2-216, MTRF, 2001 6th St. SE, Minneapolis, MN 55455 (United States); Kikyo, Nobuaki, E-mail: kikyo001@umn.edu [Stem Cell Institute, University of Minnesota, Room 2-216, MTRF, 2001 6th St. SE, Minneapolis, MN 55455 (United States)

    2010-01-01

    Nucleostemin (NS) is a nucleolar protein abundantly expressed in a variety of proliferating cells and undifferentiated cells. Its known functions include cell cycle regulation and the control of pre-rRNA processing. It also has been proposed that NS has an additional role in undifferentiated cells due to its downregulation during stem cell differentiation and its upregulation during tissue regeneration. Here, however, we demonstrate that skeletal muscle cell differentiation has a unique expression profile of NS in that it is continuously expressed during differentiation. NS was expressed at similar levels in non-proliferating muscle stem cells (satellite cells), rapidly proliferating precursor cells (myoblasts) and post-mitotic terminally differentiated cells (myotubes and myofibers). The sustained expression of NS during terminal differentiation is necessary