WorldWideScience

Sample records for cell-free translation system

  1. Translation in cell-free systems

    International Nuclear Information System (INIS)

    Jagus, R.

    1987-01-01

    The simplest, unambiguous identification of a particular mRNA is the identification of its protein product. This can be established by translation of the mRNA of interest in a cell-free protein-synthesizing system. Messenger RNA protein product identification is important in the isolation of a particular mRNA species for cDNA cloning and in the identification of positive cDNA clones. The two high-activity translation systems in common use are those prepared from rabbit reticulocytes and from wheat germ. Both systems are easy to prepare, and both are available commercially. Each has advantages and disadvantages over the other and a choice between the two will depend on the type of mRNAs to be translated, the prejudices of experience, and availability. The main disadvantage of the reticulocyte system is that it requires removal of endogenous mRNA. However, this is a relatively simple procedure. The wheat germ system does not require removal of endogenous mRNA and may translate weakly initiating mRNAs more efficiently. However, ionic optima for translation in the wheat germ system are more sensitive to the nature and concentration of mRNA and may need to be determined for each template. The biggest problem with the use of the wheat germ system is its tendency to produce incomplete translation products due to premature termination

  2. Rapid acquisition and model-based analysis of cell-free transcription–translation reactions from nonmodel bacteria

    Science.gov (United States)

    Wienecke, Sarah; Ishwarbhai, Alka; Tsipa, Argyro; Aw, Rochelle; Kylilis, Nicolas; Bell, David J.; McClymont, David W.; Jensen, Kirsten; Biedendieck, Rebekka

    2018-01-01

    Native cell-free transcription–translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene expression from nonmodel microbial hosts, which can be difficult to assess through traditional in vivo approaches. One such host, Bacillus megaterium, is a giant Gram-positive bacterium with potential biotechnology applications, although many of its regulatory elements remain uncharacterized. Here, we have developed a rapid automated platform for measuring and modeling in vitro cell-free reactions and have applied this to B. megaterium to quantify a range of ribosome binding site variants and previously uncharacterized endogenous constitutive and inducible promoters. To provide quantitative models for cell-free systems, we have also applied a Bayesian approach to infer ordinary differential equation model parameters by simultaneously using time-course data from multiple experimental conditions. Using this modeling framework, we were able to infer previously unknown transcription factor binding affinities and quantify the sharing of cell-free transcription–translation resources (energy, ribosomes, RNA polymerases, nucleotides, and amino acids) using a promoter competition experiment. This allows insights into resource limiting-factors in batch cell-free synthesis mode. Our combined automated and modeling platform allows for the rapid acquisition and model-based analysis of cell-free transcription–translation data from uncharacterized microbial cell hosts, as well as resource competition within cell-free systems, which potentially can be applied to a range of cell-free synthetic biology and biotechnology applications. PMID:29666238

  3. A versatile coupled cell-free transcription-translation system based on tobacco BY-2 cell lysates.

    Science.gov (United States)

    Buntru, Matthias; Vogel, Simon; Stoff, Katrin; Spiegel, Holger; Schillberg, Stefan

    2015-05-01

    Cell-free protein synthesis is a powerful method for the high-throughput production of recombinant proteins, especially proteins that are difficult to express in living cells. Here we describe a coupled cell-free transcription-translation system based on tobacco BY-2 cell lysates (BYLs). Using a combination of fractional factorial designs and response surface models, we developed a cap-independent system that produces more than 250 μg/mL of functional enhanced yellow fluorescent protein (eYFP) and about 270 μg/mL of firefly luciferase using plasmid templates, and up to 180 μg/mL eYFP using linear templates (PCR products) in 18 h batch reactions. The BYL contains actively-translocating microsomal vesicles derived from the endoplasmic reticulum, promoting the formation of disulfide bonds, glycosylation and the cotranslational integration of membrane proteins. This was demonstrated by expressing a functional full-size antibody (∼ 150 μg/mL), the model enzyme glucose oxidase (GOx) (∼ 7.3 U/mL), and a transmembrane growth factor (∼ 25 μg/mL). Subsequent in vitro treatment of GOx with peptide-N-glycosidase F confirmed the presence of N-glycans. Our results show that the BYL can be used as a high-throughput expression and screening platform that is particularly suitable for complex and cytotoxic proteins. © 2014 Wiley Periodicals, Inc.

  4. A Continuous-Exchange Cell-Free Protein Synthesis System Based on Extracts from Cultured Insect Cells

    Science.gov (United States)

    Stech, Marlitt; Quast, Robert B.; Sachse, Rita; Schulze, Corina; Wüstenhagen, Doreen A.; Kubick, Stefan

    2014-01-01

    In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds. PMID:24804975

  5. Rapid and Scalable Characterization of CRISPR Technologies Using an E. coli Cell-Free Transcription-Translation System.

    Science.gov (United States)

    Marshall, Ryan; Maxwell, Colin S; Collins, Scott P; Jacobsen, Thomas; Luo, Michelle L; Begemann, Matthew B; Gray, Benjamin N; January, Emma; Singer, Anna; He, Yonghua; Beisel, Chase L; Noireaux, Vincent

    2018-01-04

    CRISPR-Cas systems offer versatile technologies for genome engineering, yet their implementation has been outpaced by ongoing discoveries of new Cas nucleases and anti-CRISPR proteins. Here, we present the use of E. coli cell-free transcription-translation (TXTL) systems to vastly improve the speed and scalability of CRISPR characterization and validation. TXTL can express active CRISPR machinery from added plasmids and linear DNA, and TXTL can output quantitative dynamics of DNA cleavage and gene repression-all without protein purification or live cells. We used TXTL to measure the dynamics of DNA cleavage and gene repression for single- and multi-effector CRISPR nucleases, predict gene repression strength in E. coli, determine the specificities of 24 diverse anti-CRISPR proteins, and develop a fast and scalable screen for protospacer-adjacent motifs that was successfully applied to five uncharacterized Cpf1 nucleases. These examples underscore how TXTL can facilitate the characterization and application of CRISPR technologies across their many uses. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effect of intravenous administration of d-lysergic acid diethylamide on subsequent protein synthesis in a cell-free system derived from brain.

    Science.gov (United States)

    Cosgrove, J W; Clark, B D; Brown, I R

    1981-03-01

    An initiating cell-free protein synthesis system derived from brain was utilized to demonstrate that the intravenous injection of d-lysergic acid diethylamide (LSD) to rabbits induced a transient inhibition of translation following a brief stimulatory period. Subfractionation of the brain cell-free system into postribosomal supernatant (PRS) and microsome fractions demonstrated that LSD in vivo induced alterations in both of these fractions. In addition to the overall inhibition of translation in the cell-free system, differential effects were noted, i.e., greater than average relative decreases in in vitro labeling of certain brain proteins and relative increases in others. The brain proteins of molecular weights 75K and 95K, which were increased in relative labeling under conditions of LSD-induced hyperthermia, are similar in molecular weight to two of the major "heat shock" proteins reported in tissue culture systems. Injection of LSD to rabbits at 4 degrees C prevented LSD-induced hyperthermia but behavioral effects of the drug were still apparent. The overall decrease in cell-free translation was still observed but the differential labeling effects were not. LSD appeared to influence cell-free translation in the brain at two dissociable levels: (a) an overall decrease in translation that was observed even in the absence of LSD-induced hyperthermia and (b) differential labeling effects on particular proteins that were dependent on LSD-induced hyperthermia.

  7. Preparation of ubiquitin-conjugated proteins using an insect cell-free protein synthesis system.

    Science.gov (United States)

    Suzuki, Takashi; Ezure, Toru; Ando, Eiji; Nishimura, Osamu; Utsumi, Toshihiko; Tsunasawa, Susumu

    2010-01-01

    Ubiquitination is one of the most significant posttranslational modifications (PTMs). To evaluate the ability of an insect cell-free protein synthesis system to carry out ubiquitin (Ub) conjugation to in vitro translated proteins, poly-Ub chain formation was studied in an insect cell-free protein synthesis system. Poly-Ub was generated in the presence of Ub aldehyde (UA), a de-ubiquitinating enzyme inhibitor. In vitro ubiquitination of the p53 tumor suppressor protein was also analyzed, and p53 was poly-ubiquitinated when Ub, UA, and Mdm2, an E3 Ub ligase (E3) for p53, were added to the in vitro reaction mixture. These results suggest that the insect cell-free protein synthesis system contains enzymatic activities capable of carrying out ubiquitination. CBB-detectable ubiquitinated p53 was easily purified from the insect cell-free protein synthesis system, allowing analysis of the Ub-conjugated proteins by mass spectrometry (MS). Lys 305 of p53 was identified as one of the Ub acceptor sites using this strategy. Thus, we conclude that the insect cell-free protein synthesis system is a powerful tool for studying various PTMs of eukaryotic proteins including ubiqutination presented here.

  8. Pyrrhocoricin, a proline-rich antimicrobial peptide derived from insect, inhibits the translation process in the cell-free Escherichia coli protein synthesis system.

    Science.gov (United States)

    Taniguchi, Masayuki; Ochiai, Akihito; Kondo, Hiroshi; Fukuda, Shun; Ishiyama, Yohei; Saitoh, Eiichi; Kato, Tetsuo; Tanaka, Takaaki

    2016-05-01

    Previous studies have shown that pyrrhocoricin, a proline-rich antimicrobial peptide (PrAMP), killed sensitive species in a dose-dependent manner by specifically binding to DnaK. Here, on the basis of the finding that DnaK-deficient Escherichia coli strains are susceptible to PrAMPs, we used pyrrhocoricin to investigate internal targets other than DnaK. Using conventional antibiotics (bleomycin, streptomycin, and fosfomycin) that have known modes of action, first, we validated the availability of an assay using a cell-free rapid translation system (RTS), which is an in vitro protein synthesis system based on E. coli lysate, for evaluating inhibition of protein synthesis. We found that, similarly to bleomycin and streptomycin, pyrrhocoricin inhibited GFP synthesis in RTS in a concentration-dependent manner. In addition, blockage of transcription and translation steps in RTS was individually estimated using RT-PCR after gene expression to determine mRNA products and using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to determine the amounts of GFP expressed from purified mRNA, respectively. The results demonstrated that this inhibition of GFP synthesis by pyrrhocoricin did not occur at the transcription step but rather at the translation step, in a manner similar to that of GFP synthesis by streptomycin, an inhibitor of the translation step by causing misreading of tRNA. These results suggest that RTS is a powerful assay system for determining if antimicrobial peptides inhibit protein synthesis and its transcription and/or translation steps. This is the first study to have shown that pyrrhocoricin inhibited protein synthesis by specifically repressing the translation step. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Cell-Free Protein Synthesis Enhancement from Real-Time NMR Metabolite Kinetics: Redirecting Energy Fluxes in Hybrid RRL Systems.

    Science.gov (United States)

    Panthu, Baptiste; Ohlmann, Théophile; Perrier, Johan; Schlattner, Uwe; Jalinot, Pierre; Elena-Herrmann, Bénédicte; Rautureau, Gilles J P

    2018-01-19

    A counterintuitive cell-free protein synthesis (CFPS) strategy, based on reducing the ribosomal fraction in rabbit reticulocyte lysate (RRL), triggers the development of hybrid systems composed of RRL ribosome-free supernatant complemented with ribosomes from different mammalian cell-types. Hybrid RRL systems maintain translational properties of the original ribosome cell types, and deliver protein expression levels similar to RRL. Here, we show that persistent ribosome-associated metabolic activity consuming ATP is a major obstacle for maximal protein yield. We provide a detailed picture of hybrid CFPS systems energetic metabolism based on real-time nuclear magnetic resonance (NMR) investigation of metabolites kinetics. We demonstrate that protein synthesis capacity has an upper limit at native ribosome concentration and that lower amounts of the ribosomal fraction optimize energy fluxes toward protein translation, consequently increasing CFPS yield. These results provide a rationalized strategy for further mammalian CFPS developments and reveal the potential of real-time NMR metabolism phenotyping for optimization of cell-free protein expression systems.

  10. tRNA-mediated labelling of proteins with biotin. A nonradioactive method for the detection of cell-free translation products.

    Science.gov (United States)

    Kurzchalia, T V; Wiedmann, M; Breter, H; Zimmermann, W; Bauschke, E; Rapoport, T A

    1988-03-15

    We have developed a new method for the rapid and sensitive detection of cell-free translation products. Biotinylated lysine is incorporated into newly synthesized proteins by means of lysyl-tRNA that is modified in the epsilon-position. After electrophoresis in a dodecyl sulfate gel and blotting onto nitrocellulose, the translation products can be identified by probing with streptavidin and biotinylated alkaline phosphatase, followed by incubation with a chromogenic enzyme substrate. The non-radioactive labelling by biotin approaches in its sensitivity that obtained by radioactive amino acids. The products are absolutely stable and can be rapidly identified. The new method has been tested with different mRNAs in the cell-free translation systems of wheat germ and reticulocytes. Neither the interaction of secretory proteins with the signal recognition particle nor the in vitro translocation across the endoplasmic reticulum membrane or core glycosylation of nascent polypeptides are prevented by the incorporation of biotinylated lysine residues. The results indicate that both the ribosome and the endoplasmic reticulum membrane permit the passage of polypeptides carrying bulky groups attached to the amino acids (by atomic models it was estimated that the size of the side chain of lysine changes from approximately equal to 0.8 nm to approximately equal to 2 nm after modification.

  11. Cell-Free Systems Based on CHO Cell Lysates: Optimization Strategies, Synthesis of "Difficult-to-Express" Proteins and Future Perspectives.

    Directory of Open Access Journals (Sweden)

    Lena Thoring

    Full Text Available Nowadays, biotechnological processes play a pivotal role in target protein production. In this context, Chinese Hamster Ovary (CHO cells are one of the most prominent cell lines for the expression of recombinant proteins and revealed as a safe host for nearly 40 years. Nevertheless, the major bottleneck of common in vivo protein expression platforms becomes obvious when looking at the production of so called "difficult-to-express" proteins. This class of proteins comprises in particular several ion channels and multipass membrane proteins as well as cytotoxic proteins. To enhance the production of "difficult-to-express" proteins, alternative technologies were developed, mainly based on translationally active cell lysates. These so called "cell-free" protein synthesis systems enable an efficient production of different classes of proteins. Eukaryotic cell-free systems harboring endogenous microsomal structures for the synthesis of functional membrane proteins and posttranslationally modified proteins are of particular interest for future applications. Therefore, we present current developments in cell-free protein synthesis based on translationally active CHO cell extracts, underlining the high potential of this platform. We present novel results highlighting the optimization of protein yields, the synthesis of various "difficult-to-express" proteins and the cotranslational incorporation of non-standard amino acids, which was exemplarily demonstrated by residue specific labeling of the glycoprotein Erythropoietin and the multimeric membrane protein KCSA.

  12. Gateway-compatible vectors for high-throughput protein expression in pro- and eukaryotic cell-free systems.

    Science.gov (United States)

    Gagoski, Dejan; Mureev, Sergey; Giles, Nichole; Johnston, Wayne; Dahmer-Heath, Mareike; Škalamera, Dubravka; Gonda, Thomas J; Alexandrov, Kirill

    2015-02-10

    Although numerous techniques for protein expression and production are available the pace of genome sequencing outstrips our ability to analyze the encoded proteins. To address this bottleneck, we have established a system for parallelized cloning, DNA production and cell-free expression of large numbers of proteins. This system is based on a suite of pCellFree Gateway destination vectors that utilize a Species Independent Translation Initiation Sequence (SITS) that mediates recombinant protein expression in any in vitro translation system. These vectors introduce C or N terminal EGFP and mCherry fluorescent and affinity tags, enabling direct analysis and purification of the expressed proteins. To maximize throughput and minimize the cost of protein production we combined Gateway cloning with Rolling Circle DNA Amplification. We demonstrate that as little as 0.1 ng of plasmid DNA is sufficient for template amplification and production of recombinant human protein in Leishmania tarentolae and Escherichia coli cell-free expression systems. Our experiments indicate that this approach can be applied to large gene libraries as it can be reliably performed in multi-well plates. The resulting protein expression pipeline provides a valuable new tool for applications of the post genomic era. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Efficient production and purification of functional bacteriorhodopsin with a wheat-germ cell-free system and a combination of Fos-choline and CHAPS detergents.

    Science.gov (United States)

    Genji, Takahisa; Nozawa, Akira; Tozawa, Yuzuru

    2010-10-01

    Cell-free translation is one potential approach to the production of functional transmembrane proteins. We have now examined various detergents as supplements to a wheat-germ cell-free system in order to optimize the production and subsequent purification of a functional model transmembrane protein, bacteriorhodopsin. We found that Fos-choline and CHAPS detergents counteracted each other's inhibitory effects on cell-free translation activity and thereby allowed the efficient production and subsequent purification of functional bacteriorhodopsin in high yield. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Cell-Free and In Vivo Characterization of Lux, Las, and Rpa Quorum Activation Systems in E. coli.

    Science.gov (United States)

    Halleran, Andrew D; Murray, Richard M

    2018-02-16

    Synthetic biologists have turned toward quorum systems as a path for building sophisticated microbial consortia that exhibit group decision making. Currently, however, even the most complex consortium circuits rely on only one or two quorum sensing systems, greatly restricting the available design space. High-throughput characterization of available quorum sensing systems is useful for finding compatible sets of systems that are suitable for a defined circuit architecture. Recently, cell-free systems have gained popularity as a test-bed for rapid prototyping of genetic circuitry. We take advantage of the transcription-translation cell-free system to characterize three commonly used Lux-type quorum activators, Lux, Las, and Rpa. We then compare the cell-free characterization to results obtained in vivo. We find significant genetic crosstalk in both the Las and Rpa systems and substantial signal crosstalk in Lux activation. We show that cell-free characterization predicts crosstalk observed in vivo.

  15. The free translation in the slogan

    Institute of Scientific and Technical Information of China (English)

    胡晨

    2015-01-01

    With the further development of world economy and globalization,the relationship between China and the outside world has become closer than ever before. There is no doubt that commercial advertisements play a dispensable role in forming the relationship between them. However,because the existence of cultural diference between China and Western countries,there are lots of dificulties in translating slogan in diferent cultural background. Therefore,figuring out some proper methods in free translation in slogan becomes much more important in this special era. In order to improve the quality of free translation in slogan and make contribution to explore the new market,this essay wil make research on the similarity in English and Chinese free translation in slogan which wil be expressed in the aspect of rhetoric,sentence using and structure using. At the same time,the research on the intimate link between brand and culture from the angle of intercultural have been conducted. Based on the principles of free translation in slogan to introduce the methods of free translation in slogan and try to put forward the strategies in terms of economic,products’ characters and other factors.

  16. Cell-free synthetic biology for in vitro prototype engineering.

    Science.gov (United States)

    Moore, Simon J; MacDonald, James T; Freemont, Paul S

    2017-06-15

    Cell-free transcription-translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells. © 2017 The Author(s).

  17. Tobacco BY-2 cell-free lysate: an alternative and highly-productive plant-based in vitro translation system.

    Science.gov (United States)

    Buntru, Matthias; Vogel, Simon; Spiegel, Holger; Schillberg, Stefan

    2014-05-03

    Cell-free protein synthesis is a rapid and efficient method for the production of recombinant proteins. Usage of prokaryotic cell-free extracts often leads to non-functional proteins. Eukaryotic counterparts such as wheat germ extract (WGE) and rabbit reticulocyte lysate (RLL) may improve solubility and promote the correct folding of eukaryotic multi-domain proteins that are difficult to express in bacteria. However, the preparation of WGEs is complex and time-consuming, whereas RLLs suffer from low yields. Here we report the development of a novel cell-free system based on tobacco Bright Yellow 2 (BY-2) cells harvested in the exponential growth phase. The highly-productive BY-2 lysate (BYL) can be prepared quickly within 4-5 h, compared to 4-5 d for WGE. The efficiency of the BYL was tested using three model proteins: enhanced yellow fluorescent protein (eYFP) and two versions of luciferase. The added mRNA was optimized by testing different 5' and 3' untranslated regions (UTRs). The protein yield in batch and dialysis reactions using BYL was much higher than that of a commercial Promega WGE preparation, achieving a maximum yield of 80 μg/mL of eYFP and 100 μg/mL of luciferase, compared to only 45 μg/mL of eYFP and 35 μg/mL of luciferase in WGEs. In dialysis reactions, the BYL yielded about 400 μg/mL eYFP, representing up to 50% more of the target protein than the Promega WGE, and equivalent to the amount using 5Prime WGE system. Due to the high yield and the short preparation time the BYL represents a remarkable improvement over current eukaryotic cell-free systems.

  18. Free diffusion of translation of macromolecules in solution with the rayleigh interferometer

    International Nuclear Information System (INIS)

    Leger, J.J.

    1969-01-01

    The aim of this study is to develop a rapid and accurate measurement, with the Rayleigh interferometer, of the free diffusion coefficient of translation of macromolecules in solution. After having explained the choice of a diffusion cell with laminar lateral flow, and explained the principle of the Rayleigh interferometer, a semi-automatic technique of free diffusion are then introduced. Solutions are proposed for systems composed of two or three components, such as biopolymers. The paper ends by drafting the possible treatment of recorded experimental data by means of electronic computer. (author) [fr

  19. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells.

    Science.gov (United States)

    Zhao, Fangzhou; Yu, Chien-Hung; Liu, Yi

    2017-08-21

    Codon usage biases are found in all eukaryotic and prokaryotic genomes and have been proposed to regulate different aspects of translation process. Codon optimality has been shown to regulate translation elongation speed in fungal systems, but its effect on translation elongation speed in animal systems is not clear. In this study, we used a Drosophila cell-free translation system to directly compare the velocity of mRNA translation elongation. Our results demonstrate that optimal synonymous codons speed up translation elongation while non-optimal codons slow down translation. In addition, codon usage regulates ribosome movement and stalling on mRNA during translation. Finally, we show that codon usage affects protein structure and function in vitro and in Drosophila cells. Together, these results suggest that the effect of codon usage on translation elongation speed is a conserved mechanism from fungi to animals that can affect protein folding in eukaryotic organisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Cell-free protein synthesis for structure determination by X-ray crystallography.

    Science.gov (United States)

    Watanabe, Miki; Miyazono, Ken-ichi; Tanokura, Masaru; Sawasaki, Tatsuya; Endo, Yaeta; Kobayashi, Ichizo

    2010-01-01

    Structure determination has been difficult for those proteins that are toxic to the cells and cannot be prepared in a large amount in vivo. These proteins, even when biologically very interesting, tend to be left uncharacterized in the structural genomics projects. Their cell-free synthesis can bypass the toxicity problem. Among the various cell-free systems, the wheat-germ-based system is of special interest due to the following points: (1) Because the gene is placed under a plant translational signal, its toxic expression in a bacterial host is reduced. (2) It has only little codon preference and, especially, little discrimination between methionine and selenomethionine (SeMet), which allows easy preparation of selenomethionylated proteins for crystal structure determination by SAD and MAD methods. (3) Translation is uncoupled from transcription, so that the toxicity of the translation product on DNA and its transcription, if any, can be bypassed. We have shown that the wheat-germ-based cell-free protein synthesis is useful for X-ray crystallography of one of the 4-bp cutter restriction enzymes, which are expected to be very toxic to all forms of cells retaining the genome. Our report on its structure represents the first report of structure determination by X-ray crystallography using protein overexpressed with the wheat-germ-based cell-free protein expression system. This will be a method of choice for cytotoxic proteins when its cost is not a problem. Its use will become popular when the crystal structure determination technology has evolved to require only a tiny amount of protein.

  1. Cell-Free, De Nova Synthesis of Poliovirus

    Science.gov (United States)

    Molla, Akhteruzzaman; Paul, Aniko V.; Wimmer, Eckard

    1991-12-01

    Cell-free translation of poliovirus RNA in an extract of uninfected human (HeLa) cells yielded viral proteins through proteolysis of the polyprotein. In the extract, newly synthesized proteins catalyzed poliovirus-specific RNA synthesis, and formed infectious poliovirus de novo. Newly formed virions were neutralized by type-specific antiserum, and infection of human cells with them was prevented by poliovirus receptor-specific antibodies. Poliovirus synthesis was increased nearly 70-fold when nucleoside triphosphates were added, but it was abolished in the presence of inhibitors of translation or viral genome replication. The ability to conduct cell-free synthesis of poliovirus will aid in the study of picornavirus proliferation and in the search for the control of picornaviral disease.

  2. Free Online Translators: A Comparative Assessment in Terms of Idioms and Phrasal Verbs

    OpenAIRE

    Marziyeh Taleghani; Ehsan Pazouki

    2018-01-01

    Free online translators are in fact statistical machine translators that create translator models using parallel corpora. Although it’s not a new subject and many works are reported on that in recent years, it still suffers from lots of shortcomings and has a long way ahead. While the literature on machine translators is vast, there are only a few that evaluate free online machine translators in specific terms like idioms. The aim of this paper is to evaluate and compare four free...

  3. Spore coat protein synthesis in cell-free systems from sporulating cells of Bacillus subtilis.

    Science.gov (United States)

    Nakayama, T; Munoz, L E; Sadaie, Y; Doi, R H

    1978-09-01

    Cell-free systems for protein synthesis were prepared from Bacillus subtilis 168 cells at several stages of sporulation. Immunological methods were used to determine whether spore coat protein could be synthesized in the cell-free systems prepared from sporulating cells. Spore coat protein synthesis first occurred in extracts from stage t2 cells. The proportion of spore coat protein to total proteins synthesized in the cell-free systems was 2.4 and 3.9% at stages t2 and t4, respectively. The sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis patterns of immunoprecipitates from the cell-free systems showed the complete synthesis of an apparent spore coat protein precursor (molecular weight, 25,000). A polypeptide of this weight was previously identified in studies in vivo (L.E. Munoz, Y. Sadaie, and R.H. Doi, J. Biol. Chem., in press). The synthesis in vitro of polysome-associated nascent spore coat polypeptides with varying molecular weights up to 23,000 was also detected. These results indicate that the spore coat protein may be synthesized as a precursor protein. The removal of proteases in the crude extracts by treatment with hemoglobin-Sepharose affinity techniques may be preventing the conversion of the large 25,000-dalton precursor to the 12,500-dalton mature spore coat protein.

  4. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    International Nuclear Information System (INIS)

    Lewis, Daniel D.; Villarreal, Fernando D.; Wu, Fan; Tan, Cheemeng

    2014-01-01

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  5. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Daniel D. [Integrative Genetics and Genomics, University of California Davis, Davis, CA (United States); Department of Biomedical Engineering, University of California Davis, Davis, CA (United States); Villarreal, Fernando D.; Wu, Fan; Tan, Cheemeng, E-mail: cmtan@ucdavis.edu [Department of Biomedical Engineering, University of California Davis, Davis, CA (United States)

    2014-12-09

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  6. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    Directory of Open Access Journals (Sweden)

    Daniel eLewis

    2014-12-01

    Full Text Available As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo systems, with only a few examples of prominent work done on predicting the dynamics of cell-free systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  7. Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system

    DEFF Research Database (Denmark)

    Antfolk, Maria; Kim, Soo Hyeon; Koizumi, Saori

    2017-01-01

    , an integrated system is presented that efficiently eliminates this risk by integrating label-free separation with single cell arraying of the target cell population, enabling direct on-chip tumor cell identification and enumeration. Prostate cancer cells (DU145) spiked into a sample with whole blood...... a fully integrated system for rapid label-free separation and on-chip phenotypic characterization of circulating tumor cells from peripheral venous blood in clinical practice....

  8. Free diffusion of translation of macromolecules in solution with the rayleigh interferometer; Diffusion libre de translation des macromolecules en solution, par interferometrie de rayleigh

    Energy Technology Data Exchange (ETDEWEB)

    Leger, J J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The aim of this study is to develop a rapid and accurate measurement, with the Rayleigh interferometer, of the free diffusion coefficient of translation of macromolecules in solution. After having explained the choice of a diffusion cell with laminar lateral flow, and explained the principle of the Rayleigh interferometer, a semi-automatic technique of free diffusion are then introduced. Solutions are proposed for systems composed of two or three components, such as biopolymers. The paper ends by drafting the possible treatment of recorded experimental data by means of electronic computer. (author) [French] Cette etude a ete entreprise pour mettre au point une methode precise et rapide de mesure, par interferometre de Rayleigh, du coefficient de diffusion libre de translation des macromolecules en solution. Apres avoir justifie le choix d'une cellule de diffusion a ecoulement laminaire lateral et explique le principe de l'interferometre de Rayleigh, l'auteur decrit une technique semi-automatique d'enregistrement des cliches d'interference. Il introduit ensuite les equations differentielles de diffusion libre et propose des solutions pour les systemes a deux et trois composants applicables aux biopolymeres. L'article se termine par une esquisse concernant le traitement des donnees experimentales enregistrees au moyen du calcul electronique. (auteur)

  9. Development of the EtsaTrans translation system prototype and its ...

    African Journals Online (AJOL)

    The issue of multilingualism at the University of the Free State (UFS) gained momentum with the development of the EtsaTrans translation system which is being developed according to the principles of example-based machine translation. In this article the development of the system prototype is described, and an ...

  10. Cloning-free template DNA preparation for cell-free protein synthesis via two-step PCR using versatile primer designs with short 3'-UTR.

    Science.gov (United States)

    Nomoto, Mika; Tada, Yasuomi

    2018-01-01

    Cell-free protein synthesis (CFPS) systems largely retain the endogenous translation machinery of the host organism, making them highly applicable for proteomics analysis of diverse biological processes. However, laborious and time-consuming cloning procedures hinder progress with CFPS systems. Herein, we report the development of a rapid and efficient two-step polymerase chain reaction (PCR) method to prepare linear DNA templates for a wheat germ CFPS system. We developed a novel, effective short 3'-untranslated region (3'-UTR) sequence that facilitates translation. Application of the short 3'-UTR to two-step PCR enabled the generation of various transcription templates from the same plasmid, including fusion proteins with N- or C-terminal tags, and truncated proteins. Our method supports the cloning-free expression of target proteins using an mRNA pool from biological material. The established system is a highly versatile platform for in vitro protein synthesis using wheat germ CFPS. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  11. Free Online Translators: A Comparative Assessment in Terms of Idioms and Phrasal Verbs

    Directory of Open Access Journals (Sweden)

    Marziyeh Taleghani

    2018-03-01

    Full Text Available Free online translators are in fact statistical machine translators that create translator models using parallel corpora. Although it’s not a new subject and many works are reported on that in recent years, it still suffers from lots of shortcomings and has a long way ahead. While the literature on machine translators is vast, there are only a few that evaluate free online machine translators in specific terms like idioms. The aim of this paper is to evaluate and compare four free online translators in terms of translating English idioms (including idiomatic phrasal verbs into Persian. To that end, ten chosen texts from the book “oxford word Skills: idioms and phrasal verbs” were translated by four online translators, www.bing.com, www.translate.google.com , www.freetranslation.com and www.targoman.com , and the obtained results were compared in a subjectively method based on Aryanpur English to Persian dictionary. Comparison of the results shows that www.targoman.com has a better performance in translating idioms from English to Persian and as a result, it can be the best choice if the aim is to do so.

  12. A single-cell and feeder-free culture system for monkey embryonic stem cells.

    Science.gov (United States)

    Ono, Takashi; Suzuki, Yutaka; Kato, Yosuke; Fujita, Risako; Araki, Toshihiro; Yamashita, Tomoko; Kato, Hidemasa; Torii, Ryuzo; Sato, Naoya

    2014-01-01

    Primate pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), hold great potential for research and application in regenerative medicine and drug discovery. To maximize primate PSC potential, a practical system is required for generating desired functional cells and reproducible differentiation techniques. Much progress regarding their culture systems has been reported to date; however, better methods would still be required for their practical use, particularly in industrial and clinical fields. Here we report a new single-cell and feeder-free culture system for primate PSCs, the key feature of which is an originally formulated serum-free medium containing FGF and activin. In this culture system, cynomolgus monkey ESCs can be passaged many times by single-cell dissociation with traditional trypsin treatment and can be propagated with a high proliferation rate as a monolayer without any feeder cells; further, typical PSC properties and genomic stability can be retained. In addition, it has been demonstrated that monkey ESCs maintained in the culture system can be used for various experiments such as in vitro differentiation and gene manipulation. Thus, compared with the conventional culture system, monkey ESCs grown in the aforementioned culture system can serve as a cell source with the following practical advantages: simple, stable, and easy cell maintenance; gene manipulation; cryopreservation; and desired differentiation. We propose that this culture system can serve as a reliable platform to prepare primate PSCs useful for future research and application.

  13. Cell-free synthetic biology: thinking outside the cell.

    Science.gov (United States)

    Hodgman, C Eric; Jewett, Michael C

    2012-05-01

    Cell-free synthetic biology is emerging as a powerful approach aimed to understand, harness, and expand the capabilities of natural biological systems without using intact cells. Cell-free systems bypass cell walls and remove genetic regulation to enable direct access to the inner workings of the cell. The unprecedented level of control and freedom of design, relative to in vivo systems, has inspired the rapid development of engineering foundations for cell-free systems in recent years. These efforts have led to programmed circuits, spatially organized pathways, co-activated catalytic ensembles, rational optimization of synthetic multi-enzyme pathways, and linear scalability from the micro-liter to the 100-liter scale. It is now clear that cell-free systems offer a versatile test-bed for understanding why nature's designs work the way they do and also for enabling biosynthetic routes to novel chemicals, sustainable fuels, and new classes of tunable materials. While challenges remain, the emergence of cell-free systems is poised to open the way to novel products that until now have been impractical, if not impossible, to produce by other means. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Efficient cell-free expression with the endogenous E. Coli RNA polymerase and sigma factor 70

    Directory of Open Access Journals (Sweden)

    Noireaux Vincent

    2010-06-01

    Full Text Available Abstract Background Escherichia coli cell-free expression systems use bacteriophage RNA polymerases, such as T7, to synthesize large amounts of recombinant proteins. These systems are used for many applications in biotechnology, such as proteomics. Recently, informational processes have been reconstituted in vitro with cell-free systems. These synthetic approaches, however, have been seriously limited by a lack of transcription modularity. The current available cell-free systems have been optimized to work with bacteriophage RNA polymerases, which put significant restrictions to engineer processes related to biological information. The development of efficient cell-free systems with broader transcription capabilities is required to study complex informational processes in vitro. Results In this work, an efficient cell-free expression system that uses the endogenous E. coli RNA polymerase only and sigma factor 70 for transcription was prepared. Approximately 0.75 mg/ml of Firefly luciferase and enhanced green fluorescent protein were produced in batch mode. A plasmid was optimized with different regulatory parts to increase the expression. In addition, a new eGFP was engineered that is more translatable in cell-free systems than the original eGFP. The protein production was characterized with three different adenosine triphosphate (ATP regeneration systems: creatine phosphate (CP, phosphoenolpyruvate (PEP, and 3-phosphoglyceric acid (3-PGA. The maximum protein production was obtained with 3-PGA. Preparation of the crude extract was streamlined to a simple routine procedure that takes 12 hours including cell culture. Conclusions Although it uses the endogenous E. coli transcription machinery, this cell-free system can produce active proteins in quantities comparable to bacteriophage systems. The E. coli transcription provides much more possibilities to engineer informational processes in vitro. Many E. coli promoters/operators specific to sigma

  15. Equations of motion for free-flight systems of rotating-translating bodies

    International Nuclear Information System (INIS)

    Hodapp, A.E. Jr.

    1976-09-01

    General vector differential equations of motion are developed for a system of rotating-translating, unbalanced, constant mass bodies. Complete flexibility is provided in placement of the reference coordinates within the system of bodies and in placement of body fixed axes within each body. Example cases are presented to demonstrate the ease in reduction of these equations to the equations of motion for systems of interest

  16. tmRNA-mediated trans-translation as the major ribosome rescue system in a bacterial cell

    Directory of Open Access Journals (Sweden)

    Hyouta eHimeno

    2014-04-01

    Full Text Available tmRNA (transfer messenger RNA; also known as 10Sa RNA or SsrA RNA is a small RNA molecule that is conserved among bacteria. It has structural and functional similarities to tRNA: it has an upper half of the tRNA-like structure, its 5’ end is processed by RNase P, it has typical tRNA-specific base modifications, it is aminoacylated with alanine, it binds to EF-Tu after aminoacylation and it enters the ribosome with EF-Tu and GTP. However, tmRNA lacks an anticodon, and instead it has a coding sequence for a short peptide called tag-peptide. An elaborate interplay of actions of tmRNA as both tRNA and mRNA with the help of a tmRNA-binding protein, SmpB, facilitates trans-translation, which produces a single polypeptide from two mRNA molecules. Initially alanyl-tmRNA in complex with EF-Tu and SmpB enters the vacant A-site of the stalled ribosome like aminoacyl-tRNA but without a codon-anticodon interaction, and subsequently truncated mRNA is replaced with the tag-encoding region of tmRNA. During these processes, not only tmRNA but also SmpB structurally and functionally mimics both tRNA and mRNA. Thus trans-translation rescues the stalled ribosome, thereby allowing recycling of the ribosome. Since the tag-peptide serves as a target of AAA+ proteases, the trans-translation products are preferentially degraded so that they do not accumulate in the cell. Although alternative rescue systems have recently been revealed, trans-translation is the only system that universally exists in bacteria. Furthermore, it is unique in that it employs a small RNA and that it prevents accumulation of nonfunctional proteins from truncated mRNA in the cell. It might play the major role in rescuing the stalled translation in the bacterial cell.

  17. Efficiency and fidelity of cell-free protein synthesis by transfer RNA from aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Foote, R.S.; Stulberg, M.P.

    1980-01-01

    Transfer RNAs (tRNAs) from heart, kidney, liver, and spleen of mature (10 to 12 months old) and aged (29 months old) C57BL/6 mice were tested for their ability to translate encephalomyocarditis viral RNA in a tRNA-dependent cell-free system derived from mouse ascites tumor cells. The rates of in vitro protein synthesis were compared as a function of tRNA concentration, and the fidelity of translation was examined by sodium dodecyl sulfate gel electrophoresis and isoelectric focusing of the viral polypeptides synthesized in vitro. No significant age-related differences in either the efficiency or fidelity of synthesis were discovered, indicating that alternations in tRNAs are probably not involved in the cellular aging of these tissues.

  18. In vivo and in vitro translation of the RNAs of four tobamoviruses

    DEFF Research Database (Denmark)

    Beier, H; Mundry, K W; Issinger, O G

    1980-01-01

    The RNAs from four tobamoviruses [tobacco mosaic virus(TMV) vulgare, TMV dahlemense, TMV U2, and the cowpea strain of TMV (CcTMV)] were translated in a cell-free ribosome system from reticulocytes. Among the translation products found were two polypeptides with molecular weights of 170,000 and 120...

  19. Effect of Antimalarial Drugs on Plasmodia Cell-Free Protein Synthesis

    Directory of Open Access Journals (Sweden)

    Ana Ferreras

    2002-04-01

    Full Text Available A cell-free system from Plasmodium falciparum able to translate endogenous mRNA was used to determine the effect of artemisinin, chloroquine and primaquine on the protein synthesis mechanism of the parasite. The antimalarial drugs did not inhibit the incorporation of [³H] methionine into parasite proteins even at concentrations higher than the ones found to strongly inhibit the parasite growth. Results clearly indicate that these compounds do not have a direct effect on protein synthesis activity of P. falciparum coded by endogenous mRNA.

  20. The species translation challenge-a systems biology perspective on human and rat bronchial epithelial cells.

    Science.gov (United States)

    Poussin, Carine; Mathis, Carole; Alexopoulos, Leonidas G; Messinis, Dimitris E; Dulize, Rémi H J; Belcastro, Vincenzo; Melas, Ioannis N; Sakellaropoulos, Theodore; Rhrissorrakrai, Kahn; Bilal, Erhan; Meyer, Pablo; Talikka, Marja; Boué, Stéphanie; Norel, Raquel; Rice, John J; Stolovitzky, Gustavo; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2014-01-01

    The biological responses to external cues such as drugs, chemicals, viruses and hormones, is an essential question in biomedicine and in the field of toxicology, and cannot be easily studied in humans. Thus, biomedical research has continuously relied on animal models for studying the impact of these compounds and attempted to 'translate' the results to humans. In this context, the SBV IMPROVER (Systems Biology Verification for Industrial Methodology for PROcess VErification in Research) collaborative initiative, which uses crowd-sourcing techniques to address fundamental questions in systems biology, invited scientists to deploy their own computational methodologies to make predictions on species translatability. A multi-layer systems biology dataset was generated that was comprised of phosphoproteomics, transcriptomics and cytokine data derived from normal human (NHBE) and rat (NRBE) bronchial epithelial cells exposed in parallel to more than 50 different stimuli under identical conditions. The present manuscript describes in detail the experimental settings, generation, processing and quality control analysis of the multi-layer omics dataset accessible in public repositories for further intra- and inter-species translation studies.

  1. Sodium nitrite induces acute central nervous system toxicity in guinea pigs exposed to systemic cell-free hemoglobin

    International Nuclear Information System (INIS)

    Buehler, Paul W.; Butt, Omer I.; D'Agnillo, Felice

    2011-01-01

    Highlights: → Toxicological implications associated with the use of NaNO 2 therapy to treat systemic cell-free Hb exposure are not well-defined. → Systemic Hb exposure followed by NaNO 2 infusion induces acute CNS toxicities in guinea pigs. → These CNS effects were not reproduced by the infusion of cell-free Hb or NaNO 2 alone. → NaNO 2 -mediated oxidation of cell-free Hb may play a causative role in the observed CNS changes. -- Abstract: Systemic cell-free hemoglobin (Hb) released via hemolysis disrupts vascular homeostasis, in part, through the scavenging of nitric oxide (NO). Sodium nitrite (NaNO 2 ) therapy can attenuate the hypertensive effects of Hb. However, the chemical reactivity of NaNO 2 with Hb may enhance heme- or iron-mediated toxicities. Here, we investigate the effect of NaNO 2 on the central nervous system (CNS) in guinea pigs exposed to systemic cell-free Hb. Intravascular infusion of NaNO 2 , at doses sufficient to alleviate Hb-mediated blood pressure changes, reduced the expression of occludin, but not zona occludens-1 (ZO-1) or claudin-5, in cerebral tight junctions 4 h after Hb infusion. This was accompanied by increased perivascular heme oxygenase-1 expression, neuronal iron deposition, increased astrocyte and microglial activation, and reduced expression of neuron-specific nuclear protein (NeuN). These CNS changes were not observed in animals treated with Hb or NaNO 2 alone. Taken together, these findings suggest that the use of nitrite salts to treat systemic Hb exposure may promote acute CNS toxicity.

  2. The cell-free integration of a polytopic mitochondrial membrane protein into liposomes occurs cotranslationally and in a lipid-dependent manner.

    Directory of Open Access Journals (Sweden)

    Ashley R Long

    Full Text Available The ADP/ATP Carrier (AAC is the most abundant transporter of the mitochondrial inner membrane. The central role that this transporter plays in cellular energy production highlights the importance of understanding its structure, function, and the basis of its pathologies. As a means of preparing proteoliposomes for the study of membrane proteins, several groups have explored the use of cell-free translation systems to facilitate membrane protein integration directly into preformed unilamellar vesicles without the use of surfactants. Using AAC as a model, we report for the first time the detergent-free reconstitution of a mitochondrial inner membrane protein into liposomes using a wheat germ-based in vitro translation system. Using a host of independent approaches, we demonstrate the efficient integration of AAC into vesicles with an inner membrane-mimetic lipid composition and, more importantly, that the integrated AAC is functionally active in transport. By adding liposomes at different stages of the translation reaction, we show that this direct integration is obligatorily cotranslational, and by synthesizing stable ribosome-bound nascent chain intermediates, we show that the nascent AAC polypeptide interacts with lipid vesicles while ribosome-bound. Finally, we show that the presence of the phospholipid cardiolipin in the liposomes specifically enhances AAC translation rate as well as the efficiency of vesicle association and integration. In light of these results, the possible mechanisms of liposome-assisted membrane protein integration during cell-free translation are discussed with respect to the mode of integration and the role of specific lipids.

  3. Sodium nitrite induces acute central nervous system toxicity in guinea pigs exposed to systemic cell-free hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Buehler, Paul W.; Butt, Omer I. [Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); D' Agnillo, Felice, E-mail: felice.dagnillo@fda.hhs.gov [Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2011-06-10

    Highlights: {yields} Toxicological implications associated with the use of NaNO{sub 2} therapy to treat systemic cell-free Hb exposure are not well-defined. {yields} Systemic Hb exposure followed by NaNO{sub 2} infusion induces acute CNS toxicities in guinea pigs. {yields} These CNS effects were not reproduced by the infusion of cell-free Hb or NaNO{sub 2} alone. {yields} NaNO{sub 2}-mediated oxidation of cell-free Hb may play a causative role in the observed CNS changes. -- Abstract: Systemic cell-free hemoglobin (Hb) released via hemolysis disrupts vascular homeostasis, in part, through the scavenging of nitric oxide (NO). Sodium nitrite (NaNO{sub 2}) therapy can attenuate the hypertensive effects of Hb. However, the chemical reactivity of NaNO{sub 2} with Hb may enhance heme- or iron-mediated toxicities. Here, we investigate the effect of NaNO{sub 2} on the central nervous system (CNS) in guinea pigs exposed to systemic cell-free Hb. Intravascular infusion of NaNO{sub 2}, at doses sufficient to alleviate Hb-mediated blood pressure changes, reduced the expression of occludin, but not zona occludens-1 (ZO-1) or claudin-5, in cerebral tight junctions 4 h after Hb infusion. This was accompanied by increased perivascular heme oxygenase-1 expression, neuronal iron deposition, increased astrocyte and microglial activation, and reduced expression of neuron-specific nuclear protein (NeuN). These CNS changes were not observed in animals treated with Hb or NaNO{sub 2} alone. Taken together, these findings suggest that the use of nitrite salts to treat systemic Hb exposure may promote acute CNS toxicity.

  4. Translation-coupling systems

    Science.gov (United States)

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  5. Controlling cell-free metabolism through physiochemical perturbations.

    Science.gov (United States)

    Karim, Ashty S; Heggestad, Jacob T; Crowe, Samantha A; Jewett, Michael C

    2018-01-01

    Building biosynthetic pathways and engineering metabolic reactions in cells can be time-consuming due to complexities in cellular metabolism. These complexities often convolute the combinatorial testing of biosynthetic pathway designs needed to define an optimal biosynthetic system. To simplify the optimization of biosynthetic systems, we recently reported a new cell-free framework for pathway construction and testing. In this framework, multiple crude-cell extracts are selectively enriched with individual pathway enzymes, which are then mixed to construct full biosynthetic pathways on the time scale of a day. This rapid approach to building pathways aids in the study of metabolic pathway performance by providing a unique freedom of design to modify and control biological systems for both fundamental and applied biotechnology. The goal of this work was to demonstrate the ability to probe biosynthetic pathway performance in our cell-free framework by perturbing physiochemical conditions, using n-butanol synthesis as a model. We carried out three unique case studies. First, we demonstrated the power of our cell-free approach to maximize biosynthesis yields by mapping physiochemical landscapes using a robotic liquid-handler. This allowed us to determine that NAD and CoA are the most important factors that govern cell-free n-butanol metabolism. Second, we compared metabolic profile differences between two different approaches for building pathways from enriched lysates, heterologous expression and cell-free protein synthesis. We discover that phosphate from PEP utilization, along with other physiochemical reagents, during cell-free protein synthesis-coupled, crude-lysate metabolic system operation inhibits optimal cell-free n-butanol metabolism. Third, we show that non-phosphorylated secondary energy substrates can be used to fuel cell-free protein synthesis and n-butanol biosynthesis. Taken together, our work highlights the ease of using cell-free systems to explore

  6. Increasing the fidelity of noncanonical amino acid incorporation in cell-free protein synthesis.

    Science.gov (United States)

    Gan, Qinglei; Fan, Chenguang

    2017-11-01

    Cell-free protein synthesis provides a robust platform for co-translational incorporation of noncanonical amino acid (ncAA) into proteins to facilitate biological studies and biotechnological applications. Recently, eliminating the activity of release factor 1 has been shown to increase ncAA incorporation in response to amber codons. However, this approach could promote mis-incorporation of canonical amino acids by near cognate suppression. We performed a facile protocol to remove near cognate tRNA isoacceptors of the amber codon from total tRNAs, and used the phosphoserine (Sep) incorporation system as validation. By manipulating codon usage of target genes and tRNA species introduced into the cell-free protein synthesis system, we increased the fidelity of Sep incorporation at a specific position. By removing three near cognate tRNA isoacceptors of the amber stop codon [tRNA Lys , tRNA Tyr , and tRNA Gln (CUG)] from the total tRNA, the near cognate suppression decreased by 5-fold without impairing normal protein synthesis in the cell-free protein synthesis system. Mass spectrometry analyses indicated that the fidelity of ncAA incorporation was improved. Removal of near cognate tRNA isoacceptors of the amber codon could increase ncAA incorporation fidelity towards the amber stop codon in release factor deficiency systems. We provide a general strategy to improve fidelity of ncAA incorporation towards stop, quadruplet and sense codons in cell-free protein synthesis systems. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants.

    Science.gov (United States)

    Zheng, Xuan; Dong, Shuangshuang; Zheng, Jie; Li, Duanhua; Li, Feng; Luo, Zhongli

    2014-01-01

    G-protein coupled receptors (GPCRs) are involved in regulating most of physiological actions and metabolism in the bodies, which have become most frequently addressed therapeutic targets for various disorders and diseases. Purified GPCR-based drug discoveries have become routine that approaches to structural study, novel biophysical and biochemical function analyses. However, several bottlenecks that GPCR-directed drugs need to conquer the problems including overexpression, solubilization, and purification as well as stabilization. The breakthroughs are to obtain efficient protein yield and stabilize their functional conformation which are both urgently requiring of effective protein synthesis system methods and optimal surfactants. Cell-free protein synthesis system is superior to the high yields and post-translation modifications, and early signs of self-assembly peptide detergents also emerged to superiority in purification of membrane proteins. We herein focus several predominant protein synthesis systems and surfactants involving the novel peptide detergents, and uncover the advantages of cell-free protein synthesis system with self-assembling peptide detergents in purification of functional GPCRs. This review is useful to further study in membrane proteins as well as the new drug exploration. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Control of protein synthesis in cell-free extracts of sea urchin embryos

    International Nuclear Information System (INIS)

    Hansen, L.J.; Huang, W.I.; Jagus, R.

    1986-01-01

    Although the increase in protein synthesis that occurs after fertilization of sea urchin eggs results from increased utilization of stored maternal mRNA, the underlying mechanism is unknown. The authors have prepared cell-free extracts from S.purpuratus and A.puctulata unfertilized eggs and 2-cell embryos that retain the protein synthetic differences observed in vivo. The method is based on that of Dr. Alina Lopo. 35 S methionine incorporation is linear during a 30 min incubation and is 10-20 fold higher in extracts from 2-cell embryos than unfertilized eggs. Addition of purified mRNA does not stimulate these systems, suggesting a regulatory mechanism other than mRNA masking. Addition of rabbit reticulocyte ribosomal salt wash stimulated protein synthesis in extracts from eggs but not embryos, suggesting deficiencies in translational components in unfertilized eggs. Mixing of egg and embryo lysates indicated the presence of a weak protein synthesis inhibitor in eggs. Translational control in developing sea urchin embryos thus appears to be complex, involving both stimulatory and inhibitory factors

  9. Translation of satellite tobacco necrosis virus RNA modified by (not equal to)-r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene is inhibited in a wheat germ cell-free system

    International Nuclear Information System (INIS)

    Haas, R.; Pulkrabek, P.; Takanami, Y.; Grunberger, D.

    1983-01-01

    It has been shown that (not equal to)-r-7-,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) modification of rabbit globin mRNA results in inhibition of translational initiation. In order to explore the possibility that modification of the 5' cap structure was responsible for this inhibition, the naturally non-capped mRNA from satellite tobacco necrosis virus (STNV) was reacted with BPDE and translated in a wheat germ cell-free system. The extent of modification was 1.3 and 2.9 BPDE residues/molecule. High performance liquid chromatography of the modified nucleosides from enzymatically hydrolyzed STNV RNA revealed that greater than 90% of the nucleoside adducts were substituted at the exocyclic amino group of guanosine. The translational ability of the lower and higher modified STNV, measured by incorporation of [ 14 C]amino acids into acid-precipitable polypeptides is inhibited by 55% and 63%, respectively. Polyacrylamide gel electrophoretic analyses of the translation products indicate that predominantly full-length coat proteins are synthesized but with the carcinogen-modified STNV the amount is reduced. On the other hand, 80S initiation complex formation is not inhibited as measured by binding of the BPDE-modified STNV to ribosomes and followed by glycerol gradient centrifugation. Under these conditions, aurintricarboxylic acid completely inhibits 80S initiation complex formation in the presence of either modified or native STNV. These results suggest that inhibition of in vitro translation of BPDE-modified STNV, in contrast to that of globin mRNA, is not at the level of initiation complex formation but possibly by premature termination of growing polypeptides

  10. Recombinant Nox4 cytosolic domain produced by a cell or cell-free base systems exhibits constitutive diaphorase activity

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Minh Vu Chuong, E-mail: mvchuong@yahoo.fr [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France); Zhang, Leilei [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France); Lhomme, Stanislas; Mouz, Nicolas [PX' Therapeutics, MINATEC/Batiment de Haute Technologie, Grenoble (France); Lenormand, Jean-Luc [HumProTher Laboratory, TheReX/TIMC-IMAG UMR 5525 CNRS UJF, Universite Joseph Fourier, UFR de Medecine, Domaine de la Merci, 38706 La Tronche (France); Lardy, Bernard; Morel, Francoise [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer A comparison of two bacterial cell and cell-free protein expression systems is presented. Black-Right-Pointing-Pointer Soluble and active truncated Nox4 proteins are produced. Black-Right-Pointing-Pointer Nox4 has a constitutive diaphorase activity which is independent of cytosolic factors. Black-Right-Pointing-Pointer Isoform Nox4B is unable to initiate the first electronic transfer step. Black-Right-Pointing-Pointer Findings contribute to the understanding of the mechanism of Nox4 oxidase activity. -- Abstract: The membrane protein NADPH (nicotinamide adenine dinucleotide phosphate) oxidase Nox4 constitutively generates reactive oxygen species differing from other NADPH oxidases activity, particularly in Nox2 which needs a stimulus to be active. Although the precise mechanism of production of reactive oxygen species by Nox2 is well characterized, the electronic transfer throughout Nox4 remains unclear. Our study aims to investigate the initial electronic transfer step (diaphorase activity) of the cytosolic tail of Nox4. For this purpose, we developed two different approaches to produce soluble and active truncated Nox4 proteins. We synthesized soluble recombinant proteins either by in vitro translation or by bacteria induction. While proteins obtained by bacteria induction demonstrate an activity of 4.4 {+-} 1.7 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 20.5 {+-} 2.8 nmol/min/nmol with cytochrome c, the soluble proteins produced by cell-free expression system exhibit a diaphorase activity with a turn-over of 26 {+-} 2.6 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 48 {+-} 20.2 nmol/min/nmol with cytochrome c. Furthermore, the activity of the soluble proteins is constitutive and does not need any stimulus. We also show that the cytosolic tail of the isoform Nox4B lacking the first NADPH binding site is unable to demonstrate any diaphorase activity pointing out the

  11. Absence of regulation of tumor cholesterogenesis in cell-free synthesizing systems

    International Nuclear Information System (INIS)

    Azrolan, N.; Coleman, P.S.

    1986-01-01

    In tumors, cholesterol synthesis de novo is deregulated relative to normal tissues. But no previous study has demonstrated the decontrol of tumor cholesterogenesis with cell-free cytosolic systems. They have utilized a lipid synthesizing, post-mitochondrial supernatant system (PMS), with 14 C-citrate as substrate, to characterize the cholesterogenic pathway in Morris Hepatoma 3924A and normal rat liver. The rate of cholesterogenesis in the hepatoma PMS was 6-fold higher than that in the liver system on a per cell basis. The ratio of sterol-to-fatty acid synthesis was also significantly greater in the tumor versus the liver PMS. The authors determined the steady-state carbon flux through the early intermediates of the lipogenic pathways. Whereas the liver system displayed a metabolic crossover point at the HMG-CoA reductase reaction, the hepatoma system showed no evidence of control at this rate-limiting site of sterol synthesis. Furthermore, acetyl-CoA formation from added citrate (via ATP-citrate lyase) exhibited rates of 42% and 88% in excess of that required for lipidogenesis by liver and tumor PMS systems, respectively. Clearly, a cell-free PMS system from tumor tissue displays the property of deregulated lipidogenesis, especially cholesterol biosynthesis. The authors suggest that deregulated and continuously operating cholesterogenesis would provide for an increased level of a mevalonate-derived sterol pathway intermediate proposed as a trigger for DNA synthesis and cell proliferation in tumors

  12. High yield cell-free production of integral membrane proteins without refolding or detergents.

    Science.gov (United States)

    Wuu, Jessica J; Swartz, James R

    2008-05-01

    Integral membrane proteins act as critical cellular components and are important drug targets. However, difficulties in producing membrane proteins have hampered investigations of structure and function. In vivo production systems are often limited by cell toxicity, and previous in vitro approaches have required unnatural folding pathways using detergents or lipid solutions. To overcome these limitations, we present an improved cell-free expression system which produces high yields of integral membrane proteins without the use of detergents or refolding steps. Our cell-free reaction activates an Escherichia coli-derived cell extract for transcription and translation. Purified E. coli inner membrane vesicles supply membrane-bound components and the lipid environment required for insertion and folding. Using this system, we demonstrated successful synthesis of two complex integral membrane transporters, the tetracycline pump (TetA) and mannitol permease (MtlA), in yields of 570+/-50 microg/mL and 130+/-30 microg/mL of vesicle-associated protein, respectively. These yields are up to 400 times typical in vivo concentrations. Insertion and folding of these proteins are verified by sucrose flotation, protease digestion, and activity assays. Whereas TetA incorporates efficiently into vesicle membranes with over two-thirds of the synthesized protein being inserted, MtlA yields appear to be limited by insufficient concentrations of a membrane-associated chaperone.

  13. Stem cell hype: media portrayal of therapy translation.

    Science.gov (United States)

    Kamenova, Kalina; Caulfield, Timothy

    2015-03-11

    In this Perspective, we examine the portrayal of translational stem cell research in major daily newspapers in Canada, the United States, and the United Kingdom between 2010 and 2013, focusing on how timelines for stem cell therapies were represented before and after Geron terminated its pioneering stem cell program. Our content analysis reveals that press coverage has shifted from ethical, legal, and social issues to clinical translation issues, and highly optimistic timelines were provided with no substantial change in representation over time. Scientists were the dominant voice with respect to translation timelines. The findings raise questions about the degree to which the media's overly optimistic slant fosters unrealistic expectations regarding the speed of clinical translation and highlight the ethical responsibility of stem cell researchers as public communicators. Copyright © 2015, American Association for the Advancement of Science.

  14. An in vitro system from Plasmodium falciparum active in endogenous mRNA translation

    Directory of Open Access Journals (Sweden)

    Ferreras Ana

    2000-01-01

    Full Text Available An in vitro translation system has been prepared from Plasmodium falciparum by saponin lysis of infected-erythrocytes to free parasites which were homogeneized with glass beads, centrifuged to obtain a S-30 fraction followed by Sephadex G-25 gel filtration. This treatment produced a system with very low contamination of host proteins (<1%. The system, optimized for Mg2+ and K+, translates endogenous mRNA and is active for 80 min which suggests that their protein factors and mRNA are quite stable.

  15. The species translation challenge—A systems biology perspective on human and rat bronchial epithelial cells

    Science.gov (United States)

    Poussin, Carine; Mathis, Carole; Alexopoulos, Leonidas G; Messinis, Dimitris E; Dulize, Rémi H J; Belcastro, Vincenzo; Melas, Ioannis N; Sakellaropoulos, Theodore; Rhrissorrakrai, Kahn; Bilal, Erhan; Meyer, Pablo; Talikka, Marja; Boué, Stéphanie; Norel, Raquel; Rice, John J; Stolovitzky, Gustavo; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2014-01-01

    The biological responses to external cues such as drugs, chemicals, viruses and hormones, is an essential question in biomedicine and in the field of toxicology, and cannot be easily studied in humans. Thus, biomedical research has continuously relied on animal models for studying the impact of these compounds and attempted to ‘translate’ the results to humans. In this context, the SBV IMPROVER (Systems Biology Verification for Industrial Methodology for PROcess VErification in Research) collaborative initiative, which uses crowd-sourcing techniques to address fundamental questions in systems biology, invited scientists to deploy their own computational methodologies to make predictions on species translatability. A multi-layer systems biology dataset was generated that was comprised of phosphoproteomics, transcriptomics and cytokine data derived from normal human (NHBE) and rat (NRBE) bronchial epithelial cells exposed in parallel to more than 50 different stimuli under identical conditions. The present manuscript describes in detail the experimental settings, generation, processing and quality control analysis of the multi-layer omics dataset accessible in public repositories for further intra- and inter-species translation studies. PMID:25977767

  16. What's missing? Discussing stem cell translational research in educational information on stem cell "tourism".

    Science.gov (United States)

    Master, Zubin; Zarzeczny, Amy; Rachul, Christen; Caulfield, Timothy

    2013-01-01

    Stem cell tourism is a growing industry in which patients pursue unproven stem cell therapies for a wide variety of illnesses and conditions. It is a challenging market to regulate due to a number of factors including its international, online, direct-to-consumer approach. Calls to provide education and information to patients, their families, physicians, and the general public about the risks associated with stem cell tourism are mounting. Initial studies examining the perceptions of patients who have pursued stem cell tourism indicate many are highly critical of the research and regulatory systems in their home countries and believe them to be stagnant and unresponsive to patient needs. We suggest that educational material should include an explanation of the translational research process, in addition to other aspects of stem cell tourism, as one means to help promote greater understanding and, ideally, curb patient demand for unproven stem cell interventions. The material provided must stress that strong scientific research is required in order for therapies to be safe and have a greater chance at being effective. Through an analysis of educational material on stem cell tourism and translational stem cell research from patient groups and scientific societies, we describe essential elements that should be conveyed in educational material provided to patients. Although we support the broad dissemination of educational material on stem cell translational research, we also acknowledge that education may simply not be enough to engender patient and public trust in domestic research and regulatory systems. However, promoting patient autonomy by providing good quality information to patients so they can make better informed decisions is valuable in itself, irrespective of whether it serves as an effective deterrent of stem cell tourism. © 2013 American Society of Law, Medicine & Ethics, Inc.

  17. CRISPR/Cas9-Mediated Mutagenesis of Human Pluripotent Stem Cells in Defined Xeno-Free E8 Medium.

    Science.gov (United States)

    Soh, Chew-Li; Huangfu, Danwei

    2017-01-01

    The recent advent of engineered nucleases including the CRISPR/Cas9 system has greatly facilitated genome manipulation in human pluripotent stem cells (hPSCs). In addition to facilitating hPSC-based disease studies, the application of genome engineering in hPSCs has also opened up new avenues for cell replacement therapy. To improve consistency and reproducibility of hPSC-based studies, and to meet the safety and regulatory requirements for clinical translation, it is necessary to use a defined, xeno-free cell culture system. This chapter describes protocols for CRISPR/Cas9 genome editing in an inducible Cas9 hPSC-based system, using cells cultured in chemically defined, xeno-free E8 Medium on a recombinant human vitronectin substrate. We detail procedures for the design and transfection of CRISPR guide RNAs, colony selection, and the expansion and validation of clonal mutant lines, all within this fully defined culture condition. These methods may be applied to a wide range of genome-engineering applications in hPSCs, including those that utilize different types of site-specific nucleases such as zinc finger nucleases (ZFNs) and TALENs, and form a closer step towards clinical utility of these cells.

  18. Escherichia coli cell-free protein synthesis and isotope labeling of mammalian proteins.

    Science.gov (United States)

    Terada, Takaho; Yokoyama, Shigeyuki

    2015-01-01

    This chapter describes the cell-free protein synthesis method, using an Escherichia coli cell extract. This is a cost-effective method for milligram-scale protein production and is particularly useful for the production of mammalian proteins, protein complexes, and membrane proteins that are difficult to synthesize by recombinant expression methods, using E. coli and eukaryotic cells. By adjusting the conditions of the cell-free method, zinc-binding proteins, disulfide-bonded proteins, ligand-bound proteins, etc., may also be produced. Stable isotope labeling of proteins can be accomplished by the cell-free method, simply by using stable isotope-labeled amino acid(s) in the cell-free reaction. Moreover, the cell-free protein synthesis method facilitates the avoidance of stable isotope scrambling and dilution over the recombinant expression methods and is therefore advantageous for amino acid-selective stable isotope labeling. Site-specific stable isotope labeling is also possible with a tRNA molecule specific to the UAG codon. By the cell-free protein synthesis method, coupled transcription-translation is performed from a plasmid vector or a PCR-amplified DNA fragment encoding the protein. A milligram quantity of protein can be produced with a milliliter-scale reaction solution in the dialysis mode. More than a thousand solution structures have been determined by NMR spectroscopy for uniformly labeled samples of human and mouse functional domain proteins, produced by the cell-free method. Here, we describe the practical aspects of mammalian protein production by the cell-free method for NMR spectroscopy. © 2015 Elsevier Inc. All rights reserved.

  19. In vitro Fab display: a cell-free system for IgG discovery

    Science.gov (United States)

    Stafford, Ryan L.; Matsumoto, Marissa L.; Yin, Gang; Cai, Qi; Fung, Juan Jose; Stephenson, Heather; Gill, Avinash; You, Monica; Lin, Shwu-Hwa; Wang, Willie D.; Masikat, Mary Rose; Li, Xiaofan; Penta, Kalyani; Steiner, Alex R.; Baliga, Ramesh; Murray, Christopher J.; Thanos, Christopher D.; Hallam, Trevor J.; Sato, Aaron K.

    2014-01-01

    Selection technologies such as ribosome display enable the rapid discovery of novel antibody fragments entirely in vitro. It has been assumed that the open nature of the cell-free reactions used in these technologies limits selections to single-chain protein fragments. We present a simple approach for the selection of multi-chain proteins, such as antibody Fab fragments, using ribosome display. Specifically, we show that a two-chain trastuzumab (Herceptin) Fab domain can be displayed in a format which tethers either the heavy or light chain to the ribosome while retaining functional antigen binding. Then, we constructed synthetic Fab HC and LC libraries and performed test selections against carcinoembryonic antigen (CEA) and vascular endothelial growth factor (VEGF). The Fab selection output was reformatted into full-length immunoglobulin Gs (IgGs) and directly expressed at high levels in an optimized cell-free system for immediate screening, purification and characterization. Several novel IgGs were identified using this cell-free platform that bind to purified CEA, CEA positive cells and VEGF. PMID:24586053

  20. Hydrogen exchange during cell-free incorporation of deuterated amino acids and an approach to its inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Tonelli, Marco; Singarapu, Kiran K. [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison (NMRFAM), Department of Biochemistry (United States); Makino, Shin-ichi; Sahu, Sarata C.; Matsubara, Yuko [University of Wisconsin-Madison, Center for Eukaryotic Structural Genomics (CESG), Department of Biochemistry (United States); Endo, Yaeta [Ehime University, Cell-Free Science and Technology Research Center (Japan); Kainosho, Masatsune [Tokyo Metropolitan University, Center for Priority Areas (Japan); Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison (NMRFAM), Department of Biochemistry (United States)

    2011-12-15

    Perdeuteration, selective deuteration, and stereo array isotope labeling (SAIL) are valuable strategies for NMR studies of larger proteins and membrane proteins. To minimize scrambling of the label, it is best to use cell-free methods to prepare selectively labeled proteins. However, when proteins are prepared from deuterated amino acids by cell-free translation in H{sub 2}O, exchange reactions can lead to contamination of {sup 2}H sites by {sup 1}H from the solvent. Examination of a sample of SAIL-chlorella ubiquitin prepared by Escherichia coli cell-free synthesis revealed that exchange had occurred at several residues (mainly at Gly, Ala, Asp, Asn, Glu, and Gln). We present results from a study aimed at identifying the exchanging sites and level of exchange and at testing a strategy for minimizing {sup 1}H contamination during wheat germ cell-free translation of proteins produced from deuterated amino acids by adding known inhibitors of transaminases (1 mM aminooxyacetic acid) and glutamate synthetase (0.1 mM l-methionine sulfoximine). By using a wheat germ cell-free expression system, we produced [U-{sup 2}H, {sup 15}N]-chlorella ubiquitin without and with added inhibitors, and [U-{sup 15}N]-chlorella ubiquitin as a reference to determine the extent of deuterium incorporation. We also prepared a sample of [U-{sup 13}C, {sup 15}N]-chlorella ubiquitin, for use in assigning the sites of exchange. The added inhibitors did not reduce the protein yield and were successful in blocking hydrogen exchange at C{sup {alpha}} sites, with the exception of Gly, and at C{sup {beta}} sites of Ala. We discovered, in addition, that partial exchange occurred with or without the inhibitors at certain side-chain methyl and methylene groups: Asn-H{sup {beta}}, Asp-H{sup {beta}}, Gln-H{sup {gamma}}, Glu-H{sup {gamma}}, and Lys-H{sup {epsilon}}. The side-chain labeling pattern, in particular the mixed chiral labeling resulting from partial exchange at certain sites, should be of

  1. Tail-extension following the termination codon is critical for release of the nascent chain from membrane-bound ribosomes in a reticulocyte lysate cell-free system.

    Science.gov (United States)

    Takahara, Michiyo; Sakaue, Haruka; Onishi, Yukiko; Yamagishi, Marifu; Kida, Yuichiro; Sakaguchi, Masao

    2013-01-11

    Nascent chain release from membrane-bound ribosomes by the termination codon was investigated using a cell-free translation system from rabbit supplemented with rough microsomal membrane vesicles. Chain release was extremely slow when mRNA ended with only the termination codon. Tail extension after the termination codon enhanced the release of the nascent chain. Release reached plateau levels with tail extension of 10 bases. This requirement was observed with all termination codons: TAA, TGA and TAG. Rapid release was also achieved by puromycin even in the absence of the extension. Efficient translation termination cannot be achieved in the presence of only a termination codon on the mRNA. Tail extension might be required for correct positioning of the termination codon in the ribosome and/or efficient recognition by release factors. Copyright © 2012. Published by Elsevier Inc.

  2. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response.

    Science.gov (United States)

    Hempstead, Andrew D; Isberg, Ralph R

    2015-12-08

    Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR.

  3. Co-and post-translational events in the biogenesis of pig small intestinal aminopeptidase N

    DEFF Research Database (Denmark)

    Danielsen, Erik Michael; Norén, O; Sjöström, H

    1982-01-01

    The biogenesis of pig small intestinal aminopeptidase N (EC 3. 4. 11. 2) was studied by cell-free translation of intestinal mRNA and by labelling of organ cultured intestinal explants. In cell-free translation, the primary mRNA translation product of aminopeptidase N was a polypeptide of Mr 115......,000. When translation was performed in the presence of dog pancreatic microsomes, a Mr 140,000 polypeptide was also observed. A polypeptide of Mr 115,000 was seen for the enzyme, purified from tunicamycin exposed explants. This result suggests that aminopeptidase N is co-translationally inserted...

  4. Cell-free protein synthesis: applications in proteomics and biotechnology.

    Science.gov (United States)

    He, Mingyue

    2008-01-01

    Protein production is one of the key steps in biotechnology and functional proteomics. Expression of proteins in heterologous hosts (such as in E. coli) is generally lengthy and costly. Cell-free protein synthesis is thus emerging as an attractive alternative. In addition to the simplicity and speed for protein production, cell-free expression allows generation of functional proteins that are difficult to produce by in vivo systems. Recent exploitation of cell-free systems enables novel development of technologies for rapid discovery of proteins with desirable properties from very large libraries. This article reviews the recent development in cell-free systems and their application in the large scale protein analysis.

  5. Reconstituted AIM2 inflammasome in cell-free system.

    Science.gov (United States)

    Kaneko, Naoe; Ito, Yuki; Iwasaki, Tomoyuki; Takeda, Hiroyuki; Sawasaki, Tatsuya; Migita, Kiyoshi; Agematsu, Kazunaga; Kawakami, Atsushi; Morikawa, Shinnosuke; Mokuda, Sho; Kurata, Mie; Masumoto, Junya

    2015-11-01

    Absent in melanoma 2 (AIM2) is an intracellular pattern-recognition receptor, which is a member of the PYHIN protein family, consisting of a PYD domain and an IFN-inducible nuclear localization (HIN) domain. AIM2 is reported to oligomerize with adaptor protein ASC upon sensing bacterial and viral cytosolic DNA in order to form the AIM2 inflammasome, which activates caspase-1 leading to IL-1β secretion. Dysregulation of AIM2 inflammasome is supposed to result in autoinflammatory and autoimmune diseases. Thus, the development of new targeted drugs against AIM2 inflammasome would be important for the treatment of these diseases. However, since AIM2 inflammasome is an intracellular receptor, enforced internalization of both ligands and candidate molecules is necessary for the screening of AIM2-inflammasome-targeted molecules. We developed a reconstituted AIM2 inflammasome in a cell-free system with amplified luminescent proximity homogeneous assay (Alpha). Strong Alpha signal was detected upon incubation with poly-deoxyadenylic-deoxythymidylic acid, poly(dA:dT), whereas no Alpha signal was detected upon incubation with muramyl dipeptide, one of the NLR ligands of Nod2 ligand. The interaction between AIM2 and ASC was disrupted by an anti-human ASC monoclonal antibody, CRID3, a class of diarylsulfonylurea-containing compounds, and glycyrrhizin, a substance found in liquorice root. Thus, the reconstituted AIM2 inflammasome in a cell-free system is useful for screening AIM2-inflammasome-targeted therapeutic molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Cell-free translational screening of an expression sequence tag library of Clonorchis sinensis for novel antigen discovery.

    Science.gov (United States)

    Kasi, Devi; Catherine, Christy; Lee, Seung-Won; Lee, Kyung-Ho; Kim, Yu Jung; Ro Lee, Myeong; Ju, Jung Won; Kim, Dong-Myung

    2017-05-01

    The rapidly evolving cloning and sequencing technologies have enabled understanding of genomic structure of parasite genomes, opening up new ways of combatting parasite-related diseases. To make the most of the exponentially accumulating genomic data, however, it is crucial to analyze the proteins encoded by these genomic sequences. In this study, we adopted an engineered cell-free protein synthesis system for large-scale expression screening of an expression sequence tag (EST) library of Clonorchis sinensis to identify potential antigens that can be used for diagnosis and treatment of clonorchiasis. To allow high-throughput expression and identification of individual genes comprising the library, a cell-free synthesis reaction was designed such that both the template DNA and the expressed proteins were co-immobilized on the same microbeads, leading to microbead-based linkage of the genotype and phenotype. This reaction configuration allowed streamlined expression, recovery, and analysis of proteins. This approach enabled us to identify 21 antigenic proteins. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:832-837, 2017. © 2017 American Institute of Chemical Engineers.

  7. Cell-free unnatural amino acid incorporation with alternative energy systems and linear expression templates.

    Science.gov (United States)

    Shrestha, Prashanta; Smith, Mark Thomas; Bundy, Bradley Charles

    2014-01-25

    Site-specific incorporation of unnatural amino acids (uAAs) during protein synthesis expands the proteomic code through the addition of unique residue chemistry. This field provides a unique tool to improve pharmacokinetics, cancer treatments, vaccine development, proteomics and protein engineering. The limited ability to predict the characteristics of proteins with uAA-incorporation creates a need for a low-cost system with the potential for rapid screening. Escherichia coli-based cell-free protein synthesis is a compelling platform for uAA incorporation due to the open and accessible nature of the reaction environment. However, typical cell-free systems can be expensive due to the high cost of energizing reagents. By employing alternative energy sources, we reduce the cost of uAA-incorporation in CFPS by 55%. While alternative energy systems reduce cost, the time investment to develop gene libraries can remain cumbersome. Cell-free systems allow the direct use of PCR products known as linear expression templates, thus alleviating tedious plasmid library preparations steps. We report the specific costs of CFPS with uAA incorporation, demonstrate that LETs are suitable expression templates with uAA-incorporation, and consider the substantial reduction in labor intensity using LET-based expression for CFPS uAA incorporation. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Cell-free DNA in a three-dimensional spheroid cell culture model

    DEFF Research Database (Denmark)

    Aucamp, Janine; Calitz, Carlemi; Bronkhorst, Abel J.

    2017-01-01

    Background Investigating the biological functions of cell-free DNA (cfDNA) is limited by the interference of vast numbers of putative sources and causes of DNA release into circulation. Utilization of three-dimensional (3D) spheroid cell cultures, models with characteristics closer to the in vivo...... cultures can serve as effective, simplified in vivo-simulating “closed-circuit” models since putative sources of cfDNA are limited to only the targeted cells. In addition, cfDNA can also serve as an alternative or auxiliary marker for tracking spheroid growth, development and culture stability. Biological...... significance 3D cell cultures can be used to translate “closed-circuit” in vitro model research into data that is relevant for in vivo studies and clinical applications. In turn, the utilization of cfDNA during 3D culture research can optimize sample collection without affecting the stability of the growth...

  9. Production of functional bacteriorhodopsin by an Escherichia coli cell-free protein synthesis system supplemented with steroid detergent and lipid

    OpenAIRE

    Shimono, Kazumi; Goto, Mie; Kikukawa, Takashi; Miyauchi, Seiji; Shirouzu, Mikako; Kamo, Naoki; Yokoyama, Shigeyuki

    2009-01-01

    Cell-free expression has become a highly promising tool for the efficient production of membrane proteins. In this study, we used a dialysis-based Escherichia coli cell-free system for the production of a membrane protein actively integrated into liposomes. The membrane protein was the light-driven proton pump bacteriorhodopsin, consisting of seven transmembrane α-helices. The cell-free expression system in the dialysis mode was supplemented with a combination of a detergent and a natural lip...

  10. A Robust, Cell-free Production System for On-Demand Protein Synthesis in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — We will develop a new cell-free expression system that functions after rehydrating from a freeze-dried condition. Freeze-dried powder that can be stored or...

  11. Detection of specific antibody producing cells in porcine colostrum by in ovo translation of their mRNA

    International Nuclear Information System (INIS)

    Kortbeek-Jacobs, N.; Donk, H. van der

    1978-01-01

    An improved method is described for the determination of antibody producing cells in sows colostrum. The test system comprises in ovo translation of mRNA from swine colostral cells and analysis of the translation products by radioimmunoassay with specific antibodies and antigen. (C.F.)

  12. The value of cell-free DNA for molecular pathology.

    Science.gov (United States)

    Stewart, Caitlin M; Kothari, Prachi D; Mouliere, Florent; Mair, Richard; Somnay, Saira; Benayed, Ryma; Zehir, Ahmet; Weigelt, Britta; Dawson, Sarah-Jane; Arcila, Maria E; Berger, Michael F; Tsui, Dana Wy

    2018-04-01

    Over the past decade, advances in molecular biology and genomics techniques have revolutionized the diagnosis and treatment of cancer. The technological advances in tissue profiling have also been applied to the study of cell-free nucleic acids, an area of increasing interest for molecular pathology. Cell-free nucleic acids are released from tumour cells into the surrounding body fluids and can be assayed non-invasively. The repertoire of genomic alterations in circulating tumour DNA (ctDNA) is reflective of both primary tumours and distant metastatic sites, and ctDNA can be sampled multiple times, thereby overcoming the limitations of the analysis of single biopsies. Furthermore, ctDNA can be sampled regularly to monitor response to treatment, to define the evolution of the tumour genome, and to assess the acquisition of resistance and minimal residual disease. Recently, clinical ctDNA assays have been approved for guidance of therapy, which is an exciting first step in translating cell-free nucleic acid research tests into clinical use for oncology. In this review, we discuss the advantages of cell-free nucleic acids as analytes in different body fluids, including blood plasma, urine, and cerebrospinal fluid, and their clinical applications in solid tumours and haematological malignancies. We will also discuss practical considerations for clinical deployment, such as preanalytical factors and regulatory requirements. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  13. Translational research: cells, tissues and organisms

    International Nuclear Information System (INIS)

    Chang, P.Y.

    2003-01-01

    Exposure to the complex space radiation environment poses an important health hazard for astronauts in long-term space missions. The central theme of NASA's space radiation health research effort is to acquire scientific knowledge to understand the mechanisms of particle radiation effects in biological systems and to use this knowledge to set exposure limits and to design countermeasures that will protect the astronauts. During the past few decades, a rich body of data has been developed to characterize HZE-induced biological responses both in vitro and in vivo using ground-based accelerator facilities available in a number of facilities around the world. Although much is known about particle-radiation-induced DNA damage and cell killing in cultured cell lines, recent evidence suggest that numerous other factors, such as membrane effects, altered gene expression, bystander effects and specific cell-type dependent features also play critical roles in cellular responses. Dose- and particle-dependent studies are also available for multicellular tissues and animal model systems where emerging information demonstrates complex interactions between cells including intercellular communications, activation of proteins, alterations in the microenvironment, tissue-specificity, and genetic status and these contribute in determining the consequences of HZE radiation. Due to the lack of human data, risk estimates depend on the extrapolation of experimental results in animals and cultured cell systems to man. In this presentation, selected topics reviewing particle radiation effects in cells, tissues and animal will be used to illustrate the importance of translational research and some of the limitations of such approaches

  14. Untranslated regions of diverse plant viral RNAs vary greatly in translation enhancement efficiency

    Directory of Open Access Journals (Sweden)

    Fan Qiuling

    2012-05-01

    Full Text Available Abstract Background Whole plants or plant cell cultures can serve as low cost bioreactors to produce massive amounts of a specific protein for pharmacological or industrial use. To maximize protein expression, translation of mRNA must be optimized. Many plant viral RNAs harbor extremely efficient translation enhancers. However, few of these different translation elements have been compared side-by-side. Thus, it is unclear which are the most efficient translation enhancers. Here, we compare the effects of untranslated regions (UTRs containing translation elements from six plant viruses on translation in wheat germ extract and in monocotyledenous and dicotyledenous plant cells. Results The highest expressing uncapped mRNAs contained viral UTRs harboring Barley yellow dwarf virus (BYDV-like cap-independent translation elements (BTEs. The BYDV BTE conferred the most efficient translation of a luciferase reporter in wheat germ extract and oat protoplasts, while uncapped mRNA containing the BTE from Tobacco necrosis virus-D translated most efficiently in tobacco cells. Capped mRNA containing the Tobacco mosaic virus omega sequence was the most efficient mRNA in tobacco cells. UTRs from Satellite tobacco necrosis virus, Tomato bushy stunt virus, and Crucifer-infecting tobamovirus (crTMV did not stimulate translation efficiently. mRNA with the crTMV 5′ UTR was unstable in tobacco protoplasts. Conclusions BTEs confer the highest levels of translation of uncapped mRNAs in vitro and in vivo, while the capped omega sequence is most efficient in tobacco cells. These results provide a basis for understanding mechanisms of translation enhancement, and for maximizing protein synthesis in cell-free systems, transgenic plants, or in viral expression vectors.

  15. Establishment of feeder-free culture system for human induced pluripotent stem cell on DAS nanocrystalline graphene

    Science.gov (United States)

    Lee, Hyunah; Nam, Donggyu; Choi, Jae-Kyung; Araúzo-Bravo, Marcos J.; Kwon, Soon-Yong; Zaehres, Holm; Lee, Taehee; Park, Chan Young; Kang, Hyun-Wook; Schöler, Hans R.; Kim, Jeong Beom

    2016-02-01

    The maintenance of undifferentiated human pluripotent stem cells (hPSC) under xeno-free condition requires the use of human feeder cells or extracellular matrix (ECM) coating. However, human-derived sources may cause human pathogen contamination by viral or non-viral agents to the patients. Here we demonstrate feeder-free and xeno-free culture system for hPSC expansion using diffusion assisted synthesis-grown nanocrystalline graphene (DAS-NG), a synthetic non-biological nanomaterial which completely rule out the concern of human pathogen contamination. DAS-NG exhibited advanced biocompatibilities including surface nanoroughness, oxygen containing functional groups and hydrophilicity. hPSC cultured on DAS-NG could maintain pluripotency in vitro and in vivo, and especially cell adhesion-related gene expression profile was comparable to those of cultured on feeders, while hPSC cultured without DAS-NG differentiated spontaneously with high expression of somatic cell-enriched adhesion genes. This feeder-free and xeno-free culture method using DAS-NG will facilitate the generation of clinical-grade hPSC.

  16. Coupled cell-free synthesis, segregation, and core glycosylation of a secretory protein.

    Science.gov (United States)

    Lingappa, V R; Lingappa, J R; Prasad, R; Ebner, K E; Blobel, G

    1978-05-01

    mRNA from rat mammary glands 13-15 days post partum was translated in a wheat germ cell-free system either in the absence or in the presence of ribosome-denuded membranes prepared from isolated rough microsomes of dog pancreas. Newly synthesized alpha-lactalbumin was identified by immunoprecipitation with a monospecific rabbit antiserum against rat alpha-lactalbumin and was characterized by partial amino-terminal sequence determination and by lectin affinity chromatography. In the absence of membranes a presumably unglycosylated form of alpha-lactalbumin was synthesized that bound neither to concanavalin A-Sepharose nor to Ricinus communis lectin-agarose and that contained an amino-terminal signal peptide region comprising 19 amino acid residues. In the presence of membranes a processed form was synthesized that lacked the signal peptide portion and that had an amino-terminal sequence identical to that of mature alpha-lactalbumin. Furthermore, this processed form was found to be segregated, presumably within the microsomal vesicles, because it was resistant to post-translational proteolysis. It was also found to be glycosylated, and because it bound to concanavalin A-Sepharose, from which it could be eluted specifically by alpha-methyl mannoside, but not to R. communis lectin-agarose, it was presumably core-glycosylated. Processing, segregation, and core glycosylation were observed to proceed only when membranes were present during translation and not when they were added after translation.

  17. Concise Review: Microfluidic Technology Platforms: Poised to Accelerate Development and Translation of Stem Cell-Derived Therapies

    Science.gov (United States)

    Titmarsh, Drew M.; Chen, Huaying; Glass, Nick R.; Cooper-White, Justin J.

    2014-01-01

    Stem cells are a powerful resource for producing a variety of cell types with utility in clinically associated applications, including preclinical drug screening and development, disease and developmental modeling, and regenerative medicine. Regardless of the type of stem cell, substantial barriers to clinical translation still exist and must be overcome to realize full clinical potential. These barriers span processes including cell isolation, expansion, and differentiation; purification, quality control, and therapeutic efficacy and safety; and the economic viability of bioprocesses for production of functional cell products. Microfluidic systems have been developed for a myriad of biological applications and have the intrinsic capability of controlling and interrogating the cellular microenvironment with unrivalled precision; therefore, they have particular relevance to overcoming such barriers to translation. Development of microfluidic technologies increasingly utilizes stem cells, addresses stem cell-relevant biological phenomena, and aligns capabilities with translational challenges and goals. In this concise review, we describe how microfluidic technologies can contribute to the translation of stem cell research outcomes, and we provide an update on innovative research efforts in this area. This timely convergence of stem cell translational challenges and microfluidic capabilities means that there is now an opportunity for both disciplines to benefit from increased interaction. PMID:24311699

  18. An analysis of machine translation and speech synthesis in speech-to-speech translation system

    OpenAIRE

    Hashimoto, K.; Yamagishi, J.; Byrne, W.; King, S.; Tokuda, K.

    2011-01-01

    This paper provides an analysis of the impacts of machine translation and speech synthesis on speech-to-speech translation systems. The speech-to-speech translation system consists of three components: speech recognition, machine translation and speech synthesis. Many techniques for integration of speech recognition and machine translation have been proposed. However, speech synthesis has not yet been considered. Therefore, in this paper, we focus on machine translation and speech synthesis, ...

  19. Stimulation of poliovirus RNA synthesis and virus maturation in a HeLa cell-free in vitro translation-RNA replication system by viral protein 3CDpro

    Directory of Open Access Journals (Sweden)

    Wimmer Eckard

    2005-11-01

    Full Text Available Abstract Poliovirus protein 3CDpro possesses both proteinase and RNA binding activities, which are located in the 3Cpro domain of the protein. The RNA polymerase (3Dpol domain of 3CDpro modulates these activities of the protein. We have recently shown that the level of 3CDpro in HeLa cell-free in vitro translation-RNA replication reactions is suboptimal for efficient virus production. However, the addition of either 3CDpro mRNA or of purified 3CDpro protein to in vitro reactions, programmed with viral RNA, results in a 100-fold increase in virus yield. Mutational analyses of 3CDpro indicated that RNA binding by the 3Cpro domain and the integrity of interface I in the 3Dpol domain of the protein are both required for function. The aim of these studies was to determine the exact step or steps at which 3CDpro enhances virus yield and to determine the mechanism by which this occurs. Our results suggest that the addition of extra 3CDpro to in vitro translation RNA-replication reactions results in a mild enhancement of both minus and plus strand RNA synthesis. By examining the viral particles formed in the in vitro reactions on sucrose gradients we determined that 3CDpro has only a slight stimulating effect on the synthesis of capsid precursors but it strikingly enhances the maturation of virus particles. Both the stimulation of RNA synthesis and the maturation of the virus particles are dependent on the presence of an intact RNA binding site within the 3Cpro domain of 3CDpro. In addition, the integrity of interface I in the 3Dpol domain of 3CDpro is required for efficient production of mature virus. Surprisingly, plus strand RNA synthesis and virus production in in vitro reactions, programmed with full-length transcript RNA, are not enhanced by the addition of extra 3CDpro. Our results indicate that the stimulation of RNA synthesis and virus maturation by 3CDpro in vitro is dependent on the presence of a VPg-linked RNA template.

  20. Back to basics: the untreated rabbit reticulocyte lysate as a competitive system to recapitulate cap/poly(A) synergy and the selective advantage of IRES-driven translation.

    Science.gov (United States)

    Soto Rifo, Ricardo; Ricci, Emiliano P; Décimo, Didier; Moncorgé, Olivier; Ohlmann, Théophile

    2007-01-01

    Translation of most eukaryotic mRNAs involves the synergistic action between the 5' cap structure and the 3' poly(A) tail at the initiation step. The poly(A) tail has also been shown to stimulate translation of picornavirus internal ribosome entry sites (IRES)-directed translation. These effects have been attributed principally to interactions between eIF4G and poly(A)-binding protein (PABP) but also to the participation of PABP in other steps during translation initiation. As the rabbit reticulocyte lysate (RRL) does not recapitulate this cap/poly(A) synergy, several systems based on cellular cell-free extracts have been developed to study the effects of poly(A) tail in vitro but they generally exhibit low translational efficiency. Here, we describe that the non-nuclease-treated RRL (untreated RRL) is able to recapitulate the effects of poly(A) tail on translation in vitro. In this system, translation of a capped/polyadenylated RNA was specifically inhibited by either Paip2 or poly(rA), whereas translation directed by HCV IRES remained unaffected. Moreover, cleavage of eIF4G by FMDV L protease strongly stimulated translation directed by the EMCV IRES, thus recapitulating the competitive advantage that the proteolytic processing of eIF4G confers to IRES-driven RNAs.

  1. A stromal cell free culture system generates mouse pro-T cells that can reconstitute T-cell compartments in vivo.

    Science.gov (United States)

    Gehre, Nadine; Nusser, Anja; von Muenchow, Lilly; Tussiwand, Roxane; Engdahl, Corinne; Capoferri, Giuseppina; Bosco, Nabil; Ceredig, Rhodri; Rolink, Antonius G

    2015-03-01

    T-cell lymphopenia following BM transplantation or diseases such as AIDS result in immunodeficiency. Novel approaches to ameliorate this situation are urgently required. Herein, we describe a novel stromal cell free culture system in which Lineage(-) Sca1(+)c-kit(+) BM hematopoietic progenitors very efficiently differentiate into pro-T cells. This culture system consists of plate-bound Delta-like 4 Notch ligand and the cytokines SCF and IL-7. The pro-T cells developing in these cultures express CD25, CD117, and partially CD44; express cytoplasmic CD3ε; and have their TCRβ locus partially D-J rearranged. They could be expanded for over 3 months and used to reconstitute the T-cell compartments of sublethally irradiated T-cell-deficient CD3ε(-/-) mice or lethally irradiated WT mice. Pro-T cells generated in this system could partially correct the T-cell lymphopenia of pre-Tα(-/-) mice. However, reconstituted CD3ε(-/-) mice suffered from a wasting disease that was prevented by co-injection of purified CD4(+) CD25(high) WT Treg cells. In a T-cell-sufficient or T-lymphopenic setting, the development of disease was not observed. Thus, this in vitro culture system represents a powerful tool to generate large numbers of pro-T cells for transplantation and possibly with clinical applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The 5'-poly(A leader of poxvirus mRNA confers a translational advantage that can be achieved in cells with impaired cap-dependent translation.

    Directory of Open Access Journals (Sweden)

    Pragyesh Dhungel

    2017-08-01

    Full Text Available The poly(A leader at the 5'-untranslated region (5'-UTR is an unusually striking feature of all poxvirus mRNAs transcribed after viral DNA replication (post-replicative mRNAs. These poly(A leaders are non-templated and of heterogeneous lengths; and their function during poxvirus infection remains a long-standing question. Here, we discovered that a 5'-poly(A leader conferred a selective translational advantage to mRNA in poxvirus-infected cells. A constitutive and uninterrupted 5'-poly(A leader with 12 residues was optimal. Because the most frequent lengths of the 5'-poly(A leaders are 8-12 residues, the result suggests that the poly(A leader has been evolutionarily optimized to boost poxvirus protein production. A 5'-poly(A leader also could increase protein production in the bacteriophage T7 promoter-based expression system of vaccinia virus, the prototypic member of poxviruses. Interestingly, although vaccinia virus post-replicative mRNAs do have 5'- methylated guanosine caps and can use cap-dependent translation, in vaccinia virus-infected cells, mRNA with a 5'-poly(A leader could also be efficiently translated in cells with impaired cap-dependent translation. However, the translation was not mediated through an internal ribosome entry site (IRES. These results point to a fundamental mechanism poxvirus uses to efficiently translate its post-replicative mRNAs.

  3. Quasi-greedy systems of integer translates

    DEFF Research Database (Denmark)

    Nielsen, Morten; Sikic, Hrvoje

    We consider quasi-greedy systems of integer translates in a finitely generated shift invariant subspace of L2(Rd), that is systems for which the thresholding approximation procedure is well behaved. We prove that every quasi-greedy system of integer translates is also a Riesz basis for its closed...

  4. Quasi-greedy systems of integer translates

    DEFF Research Database (Denmark)

    Nielsen, Morten; Sikic, Hrvoje

    2008-01-01

    We consider quasi-greedy systems of integer translates in a finitely generated shift-invariant subspace of L2(Rd), that is systems for which the thresholding approximation procedure is well behaved. We prove that every quasi-greedy system of integer translates is also a Riesz basis for its closed...

  5. Cell-free synthetic biology for environmental sensing and remediation.

    Science.gov (United States)

    Karig, David K

    2017-06-01

    The fields of biosensing and bioremediation leverage the phenomenal array of sensing and metabolic capabilities offered by natural microbes. Synthetic biology provides tools for transforming these fields through complex integration of natural and novel biological components to achieve sophisticated sensing, regulation, and metabolic function. However, the majority of synthetic biology efforts are conducted in living cells, and concerns over releasing genetically modified organisms constitute a key barrier to environmental applications. Cell-free protein expression systems offer a path towards leveraging synthetic biology, while preventing the spread of engineered organisms in nature. Recent efforts in the areas of cell-free approaches for sensing, regulation, and metabolic pathway implementation, as well as for preserving and deploying cell-free expression components, embody key steps towards realizing the potential of cell-free systems for environmental sensing and remediation. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  6. In vitro protein expression: an emerging alternative to cell-based approaches.

    Science.gov (United States)

    He, Mingyue

    2011-04-30

    Protein expression remains a bottleneck in the production of proteins. Owing to several advantages, cell-free translation is emerging as an alternative to cell-based methods for the generation of proteins. Recent advances have led to many novel applications of cell-free systems in biotechnology, proteomics and fundamental biological research. This special issue of New Biotechnology describes recent advances in cell-free protein expression systems and their applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Inhibition of tumor cell growth by Sigma1 ligand mediated translational repression

    International Nuclear Information System (INIS)

    Kim, Felix J.; Schrock, Joel M.; Spino, Christina M.; Marino, Jacqueline C.; Pasternak, Gavril W.

    2012-01-01

    Highlights: ► Sigma1 ligand treatment mediates decrease in tumor cell mass. ► Identification of a Sigma1 ligand with reversible translational repressor actions. ► Demonstration of a role for Sigma1 in cellular protein synthesis. -- Abstract: Treatment with sigma1 receptor (Sigma1) ligands can inhibit cell proliferation in vitro and tumor growth in vivo. However, the cellular pathways engaged in response to Sigma1 ligand treatment that contribute to these outcomes remain largely undefined. Here, we show that treatment with putative antagonists of Sigma1 decreases cell mass. This effect corresponds with repressed cap-dependent translation initiation in multiple breast and prostate cancer cell lines. Sigma1 antagonist treatment suppresses phosphorylation of translational regulator proteins p70S6K, S6, and 4E-BP1. RNAi-mediated knockdown of Sigma1 also results in translational repression, consistent with the effects of antagonist treatment. Sigma1 antagonist mediated translational repression and decreased cell size are both reversible. Together, these data reveal a role for Sigma1 in tumor cell protein synthesis, and demonstrate that small molecule Sigma1 ligands can be used as modulators of protein translation.

  8. The emerging age of cell-free synthetic biology.

    Science.gov (United States)

    Smith, Mark Thomas; Wilding, Kristen M; Hunt, Jeremy M; Bennett, Anthony M; Bundy, Bradley C

    2014-08-25

    The engineering of and mastery over biological parts has catalyzed the emergence of synthetic biology. This field has grown exponentially in the past decade. As increasingly more applications of synthetic biology are pursued, more challenges are encountered, such as delivering genetic material into cells and optimizing genetic circuits in vivo. An in vitro or cell-free approach to synthetic biology simplifies and avoids many of the pitfalls of in vivo synthetic biology. In this review, we describe some of the innate features that make cell-free systems compelling platforms for synthetic biology and discuss emerging improvements of cell-free technologies. We also select and highlight recent and emerging applications of cell-free synthetic biology. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Electronically rotated and translated field-free line generation for open bore magnetic particle imaging.

    Science.gov (United States)

    Top, Can Barış; Ilbey, Serhat; Güven, Hüseyin Emre

    2017-12-01

    We propose a coil arrangement for open bore field-free line (FFL) magnetic particle imaging (MPI) system, which is suitable for accessing the subject from the sides. The purpose of this study is twofold, to show that the FFL can be rotated and translated electronically in a volume of interest with this arrangement and to analyze the current, voltage and power requirements for a 1 T/m gradient human sized scanner for a 200 mm diameter × 200 mm height cylindrical field of view (FOV). We used split coils side by side with alternating current directions to generate a field-free line. Employing two of these coil groups, one of which is rotated 90 degrees with respect to the other, a rotating FFL was generated. We conducted numerical simulations to show the feasibility of this arrangement for three-dimensional (3D) electronical scan of the FFL. Using simulations, we obtained images of a two-dimensional (2D) in silico dot phantom for a human size scanner with system matrix-based reconstruction. Simulations showed that the FFL can be generated and rotated in one plane and can be translated in two axes, allowing for 3D imaging of a large subject with the proposed arrangement. Human sized scanner required 63-215 kW power for the selection field coils to scan the focus inside the FOV. The proposed setup is suitable for FFL MPI imaging with an open bore configuration without the need for mechanical rotation, which is preferable for clinical usage in terms of imaging time and patient access. Further studies are necessary to determine the limitations imposed by peripheral nerve stimulation, and to optimize the system parameters and the sequence design. © 2017 American Association of Physicists in Medicine.

  10. The circulating cell-free microrna profile in systemic sclerosis is distinct from both healthy controls and Systemic Lupus Erythematosus

    DEFF Research Database (Denmark)

    Steen, S. O.; Iversen, L. V.; Carlsen, A. L.

    2015-01-01

    Objective. To evaluate the expression profile of cell-free circulating microRNA (miRNA) in systemic sclerosis (SSc), healthy controls (HC), and systemic lupus erythematosus (SLE). Methods. Total RNA was purified from plasma and 45 different, mature miRNA were measured using quantitative PCR assays...

  11. Nonhomologous DNA End Joining in Cell-Free Extracts

    Directory of Open Access Journals (Sweden)

    Sheetal Sharma

    2010-01-01

    Full Text Available Among various DNA damages, double-strand breaks (DSBs are considered as most deleterious, as they may lead to chromosomal rearrangements and cancer when unrepaired. Nonhomologous DNA end joining (NHEJ is one of the major DSB repair pathways in higher organisms. A large number of studies on NHEJ are based on in vitro systems using cell-free extracts. In this paper, we summarize the studies on NHEJ performed by various groups in different cell-free repair systems.

  12. Efficient mRNA delivery with graphene oxide-polyethylenimine for generation of footprint-free human induced pluripotent stem cells.

    Science.gov (United States)

    Choi, Hye Yeon; Lee, Tae-Jin; Yang, Gwang-Mo; Oh, Jaesur; Won, Jihye; Han, Jihae; Jeong, Gun-Jae; Kim, Jongpil; Kim, Jin-Hoi; Kim, Byung-Soo; Cho, Ssang-Goo

    2016-08-10

    Clinical applications of induced pluripotent stem cells (iPSCs) require development of technologies for the production of "footprint-free" (gene integration-free) iPSCs, which avoid the potential risk of insertional mutagenesis in humans. Previously, several studies have shown that mRNA transfer can generate "footprint-free" iPSCs, but these studies did not use a delivery vehicle and thus repetitive daily transfection was required because of mRNA degradation. Here, we report an mRNA delivery system employing graphene oxide (GO)-polyethylenimine (PEI) complexes for the efficient generation of "footprint-free" iPSCs. GO-PEI complexes were found to be very effective for loading mRNA of reprogramming transcription factors and protection from mRNA degradation by RNase. Dynamic suspension cultures of GO-PEI/RNA complexes-treated cells dramatically increased the reprogramming efficiency and successfully generated rat and human iPSCs from adult adipose tissue-derived fibroblasts without repetitive daily transfection. The iPSCs showed all the hallmarks of pluripotent stem cells including expression of pluripotency genes, epigenetic reprogramming, and differentiation into the three germ layers. These results demonstrate that mRNA delivery using GO-PEI-RNA complexes can efficiently generate "footprint-free" iPSCs, which may advance the translation of iPSC technology into the clinical settings. Copyright © 2016. Published by Elsevier B.V.

  13. Cell-based therapy technology classifications and translational challenges

    Science.gov (United States)

    Mount, Natalie M.; Ward, Stephen J.; Kefalas, Panos; Hyllner, Johan

    2015-01-01

    Cell therapies offer the promise of treating and altering the course of diseases which cannot be addressed adequately by existing pharmaceuticals. Cell therapies are a diverse group across cell types and therapeutic indications and have been an active area of research for many years but are now strongly emerging through translation and towards successful commercial development and patient access. In this article, we present a description of a classification of cell therapies on the basis of their underlying technologies rather than the more commonly used classification by cell type because the regulatory path and manufacturing solutions are often similar within a technology area due to the nature of the methods used. We analyse the progress of new cell therapies towards clinical translation, examine how they are addressing the clinical, regulatory, manufacturing and reimbursement requirements, describe some of the remaining challenges and provide perspectives on how the field may progress for the future. PMID:26416686

  14. INTEGRATING MACHINE TRANSLATION AND SPEECH SYNTHESIS COMPONENT FOR ENGLISH TO DRAVIDIAN LANGUAGE SPEECH TO SPEECH TRANSLATION SYSTEM

    Directory of Open Access Journals (Sweden)

    J. SANGEETHA

    2015-02-01

    Full Text Available This paper provides an interface between the machine translation and speech synthesis system for converting English speech to Tamil text in English to Tamil speech to speech translation system. The speech translation system consists of three modules: automatic speech recognition, machine translation and text to speech synthesis. Many procedures for incorporation of speech recognition and machine translation have been projected. Still speech synthesis system has not yet been measured. In this paper, we focus on integration of machine translation and speech synthesis, and report a subjective evaluation to investigate the impact of speech synthesis, machine translation and the integration of machine translation and speech synthesis components. Here we implement a hybrid machine translation (combination of rule based and statistical machine translation and concatenative syllable based speech synthesis technique. In order to retain the naturalness and intelligibility of synthesized speech Auto Associative Neural Network (AANN prosody prediction is used in this work. The results of this system investigation demonstrate that the naturalness and intelligibility of the synthesized speech are strongly influenced by the fluency and correctness of the translated text.

  15. JavaScript DNA translator: DNA-aligned protein translations.

    Science.gov (United States)

    Perry, William L

    2002-12-01

    There are many instances in molecular biology when it is necessary to identify ORFs in a DNA sequence. While programs exist for displaying protein translations in multiple ORFs in alignment with a DNA sequence, they are often expensive, exist as add-ons to software that must be purchased, or are only compatible with a particular operating system. JavaScript DNA Translator is a shareware application written in JavaScript, a scripting language interpreted by the Netscape Communicator and Internet Explorer Web browsers, which makes it compatible with several different operating systems. While the program uses a familiar Web page interface, it requires no connection to the Internet since calculations are performed on the user's own computer. The program analyzes one or multiple DNA sequences and generates translations in up to six reading frames aligned to a DNA sequence, in addition to displaying translations as separate sequences in FASTA format. ORFs within a reading frame can also be displayed as separate sequences. Flexible formatting options are provided, including the ability to hide ORFs below a minimum size specified by the user. The program is available free of charge at the BioTechniques Software Library (www.Biotechniques.com).

  16. A GRAMMATICAL ADJUSTMENT ANALYSIS OF STATISTICAL MACHINE TRANSLATION METHOD USED BY GOOGLE TRANSLATE COMPARED TO HUMAN TRANSLATION IN TRANSLATING ENGLISH TEXT TO INDONESIAN

    Directory of Open Access Journals (Sweden)

    Eko Pujianto

    2017-04-01

    Full Text Available Google translate is a program which provides fast, free and effortless translating service. This service uses a unique method to translate. The system is called ―Statistical Machine Translation‖, the newest method in automatic translation. Machine translation (MT is an area of many kinds of different subjects of study and technique from linguistics, computers science, artificial intelligent (AI, translation theory, and statistics. SMT works by using statistical methods and mathematics to process the training data. The training data is corpus-based. It is a compilation of sentences and words of the languages (SL and TL from translation done by human. By using this method, Google let their machine discovers the rules for themselves. They do this by analyzing millions of documents that have already been translated by human translators and then generate the result based on the corpus/training data. However, questions arise when the results of the automatic translation prove to be unreliable in some extent. This paper questions the dependability of Google translate in comparison with grammatical adjustment that naturally characterizes human translators' specific advantage. The attempt is manifested through the analysis of the TL of some texts translated by the SMT. It is expected that by using the sample of TL produced by SMT we can learn the potential flaws of the translation. If such exists, the partial of more substantial undependability of SMT may open more windows to the debates of whether this service may suffice the users‘ need.

  17. Suboptimal T-cell receptor signaling compromises protein translation, ribosome biogenesis, and proliferation of mouse CD8 T cells.

    Science.gov (United States)

    Tan, Thomas C J; Knight, John; Sbarrato, Thomas; Dudek, Kate; Willis, Anne E; Zamoyska, Rose

    2017-07-25

    Global transcriptomic and proteomic analyses of T cells have been rich sources of unbiased data for understanding T-cell activation. Lack of full concordance of these datasets has illustrated that important facets of T-cell activation are controlled at the level of translation. We undertook translatome analysis of CD8 T-cell activation, combining polysome profiling and microarray analysis. We revealed that altering T-cell receptor stimulation influenced recruitment of mRNAs to heavy polysomes and translation of subsets of genes. A major pathway that was compromised, when TCR signaling was suboptimal, was linked to ribosome biogenesis, a rate-limiting factor in both cell growth and proliferation. Defective TCR signaling affected transcription and processing of ribosomal RNA precursors, as well as the translation of specific ribosomal proteins and translation factors. Mechanistically, IL-2 production was compromised in weakly stimulated T cells, affecting the abundance of Myc protein, a known regulator of ribosome biogenesis. Consequently, weakly activated T cells showed impaired production of ribosomes and a failure to maintain proliferative capacity after stimulation. We demonstrate that primary T cells respond to various environmental cues by regulating ribosome biogenesis and mRNA translation at multiple levels to sustain proliferation and differentiation.

  18. Amplified in Breast Cancer Regulates Transcription and Translation in Breast Cancer Cells.

    Science.gov (United States)

    Ochnik, Aleksandra M; Peterson, Mark S; Avdulov, Svetlana V; Oh, Annabell S; Bitterman, Peter B; Yee, Douglas

    2016-02-01

    Control of mRNA translation is fundamentally altered in cancer. Insulin-like growth factor-I (IGF-I) signaling regulates key translation mediators to modulate protein synthesis (e.g. eIF4E, 4E-BP1, mTOR, and S6K1). Importantly the Amplified in Breast Cancer (AIB1) oncogene regulates transcription and is also a downstream mediator of IGF-I signaling. To determine if AIB1 also affects mRNA translation, we conducted gain and loss of AIB1 function experiments in estrogen receptor alpha (ERα)(+) (MCF-7L) and ERα(-) (MDA-MB-231, MDA-MB-435 and LCC6) breast cancer cells. AIB1 positively regulated IGF-I-induced mRNA translation in both ERα(+) and ERα(-) cells. Formation of the eIF4E-4E-BP1 translational complex was altered in the AIB1 ERα(+) and ERα(-) knockdown cells, leading to a reduction in the eIF4E/4E-BP1 and eIF4G/4E-BP1 ratios. In basal and IGF-I stimulated MCF-7 and LCC6 cells, knockdown of AIB1 decreased the integrity of the cap-binding complex, reduced global IGF-I stimulated polyribosomal mRNA recruitment with a concomitant decrease in ten of the thirteen genes tested in polysome-bound mRNAs mapping to proliferation, cell cycle, survival, transcription, translation and ribosome biogenesis ontologies. Specifically, knockdown of AIB1 decreased ribosome-bound mRNA and steady-state protein levels of the transcription factors ERα and E2F1 in addition to reduced ribosome-bound mRNA of the ribosome biogenesis factor BYSL in a cell-line specific manner to regulate mRNA translation. The oncogenic transcription factor AIB1 has a novel role in the regulation of polyribosome recruitment and formation of the translational complex. Combinatorial therapies targeting IGF signaling and mRNA translation in AIB1 expressing breast cancers may have clinical benefit and warrants further investigation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. A two-cassette reporter system for assessing target gene translation and target gene product inclusion body formation

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a dual cassette reporter system capable of assessing target gene translation and target gene product folding. The present invention further relates to vectors and host cells comprising the dual cassette reporter system. In addition the invention relates to the use...... of the dual cassette reporter system for assessing target gene translation and target gene product folding....

  20. Model of cap-dependent translation initiation in sea urchin: a step towards the eukaryotic translation regulation network.

    Science.gov (United States)

    Bellé, Robert; Prigent, Sylvain; Siegel, Anne; Cormier, Patrick

    2010-03-01

    The large and rapid increase in the rate of protein synthesis following fertilization of the sea urchin egg has long been a paradigm of translational control, an important component of the regulation of gene expression in cells. This translational up-regulation is linked to physiological changes that occur upon fertilization and is necessary for entry into first cell division cycle. Accumulated knowledge on cap-dependent initiation of translation makes it suited and timely to start integrating the data into a system view of biological functions. Using a programming environment for system biology coupled with model validation (named Biocham), we have built an integrative model for cap-dependent initiation of translation. The model is described by abstract rules. It contains 51 reactions involved in 74 molecular complexes. The model proved to be coherent with existing knowledge by using queries based on computational tree logic (CTL) as well as Boolean simulations. The model could simulate the change in translation occurring at fertilization in the sea urchin model. It could also be coupled with an existing model designed for cell-cycle control. Therefore, the cap-dependent translation initiation model can be considered a first step towards the eukaryotic translation regulation network.

  1. Evaluation of Hindi to Punjabi Machine Translation System

    OpenAIRE

    Goyal, Vishal; Lehal, Gurpreet Singh

    2009-01-01

    Machine Translation in India is relatively young. The earliest efforts date from the late 80s and early 90s. The success of every system is judged from its evaluation experimental results. Number of machine translation systems has been started for development but to the best of author knowledge, no high quality system has been completed which can be used in real applications. Recently, Punjabi University, Patiala, India has developed Punjabi to Hindi Machine translation system with high accur...

  2. Probing the biology of cell boundary conditions through confinement of Xenopus cell-free cytoplasmic extracts.

    Science.gov (United States)

    Bermudez, Jessica G; Chen, Hui; Einstein, Lily C; Good, Matthew C

    2017-01-01

    Cell-free cytoplasmic extracts prepared from Xenopus eggs and embryos have for decades provided a biochemical system with which to interrogate complex cell biological processes in vitro. Recently, the application of microfabrication and microfluidic strategies in biology has narrowed the gap between in vitro and in vivo studies by enabling formation of cell-size compartments containing functional cytoplasm. These approaches provide numerous advantages over traditional biochemical experiments performed in a test tube. Most notably, the cell-free cytoplasm is confined using a two- or three-dimensional boundary, which mimics the natural configuration of a cell. This strategy enables characterization of the spatial organization of a cell, and the role that boundaries play in regulating intracellular assembly and function. In this review, we describe the marriage of Xenopus cell-free cytoplasm and confinement technologies to generate synthetic cell-like systems, the recent biological insights they have enabled, and the promise they hold for future scientific discovery. © 2017 Wiley Periodicals, Inc.

  3. Translational environmental biology: cell biology informing conservation.

    Science.gov (United States)

    Traylor-Knowles, Nikki; Palumbi, Stephen R

    2014-05-01

    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Cytokine-free directed differentiation of human pluripotent stem cells efficiently produces hemogenic endothelium with lymphoid potential.

    Science.gov (United States)

    Galat, Yekaterina; Dambaeva, Svetlana; Elcheva, Irina; Khanolkar, Aaruni; Beaman, Kenneth; Iannaccone, Philip M; Galat, Vasiliy

    2017-03-17

    The robust generation of human hematopoietic progenitor cells from induced or embryonic pluripotent stem cells would be beneficial for multiple areas of research, including mechanistic studies of hematopoiesis, the development of cellular therapies for autoimmune diseases, induced transplant tolerance, anticancer immunotherapies, disease modeling, and drug/toxicity screening. Over the past years, significant progress has been made in identifying effective protocols for hematopoietic differentiation from pluripotent stem cells and understanding stages of mesodermal, endothelial, and hematopoietic specification. Thus, it has been shown that variations in cytokine and inhibitory molecule treatments in the first few days of hematopoietic differentiation define primitive versus definitive potential of produced hematopoietic progenitor cells. The majority of current feeder-free, defined systems for hematopoietic induction from pluripotent stem cells include prolonged incubations with various cytokines that make the differentiation process complex and time consuming. We established that the application of Wnt agonist CHIR99021 efficiently promotes differentiation of human pluripotent stem cells in the absence of any hematopoietic cytokines to the stage of hemogenic endothelium capable of definitive hematopoiesis. The hemogenic endothelium differentiation was accomplished in an adherent, serum-free culture system by applying CHIR99021. Hemogenic endothelium progenitor cells were isolated on day 5 of differentiation and evaluated for their endothelial, myeloid, and lymphoid potential. Monolayer induction based on GSK3 inhibition, described here, yielded a large number of CD31 + CD34 + hemogenic endothelium cells. When isolated and propagated in adherent conditions, these progenitors gave rise to mature endothelium. When further cocultured with OP9 mouse stromal cells, these progenitors gave rise to various cells of myeloid lineages as well as natural killer lymphoid, T

  5. Tinkering with Translation: Protein Synthesis in Virus-Infected Cells

    Science.gov (United States)

    Walsh, Derek; Mathews, Michael B.; Mohr, Ian

    2013-01-01

    Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus. PMID:23209131

  6. N-terminally truncated GADD34 proteins are convenient translation enhancers in a human cell-derived in vitro protein synthesis system.

    Science.gov (United States)

    Mikami, Satoshi; Kobayashi, Tominari; Machida, Kodai; Masutani, Mamiko; Yokoyama, Shigeyuki; Imataka, Hiroaki

    2010-07-01

    Human cell-derived in vitro protein synthesis systems are useful for the production of recombinant proteins. Productivity can be increased by supplementation with GADD34, a protein that is difficult to express in and purify from E. coli. Deletion of the N-terminal 120 or 240 amino acids of GADD34 improves recovery of this protein from E. coli without compromising its ability to boost protein synthesis in an in vitro protein synthesis system. The use of N-terminally truncated GADD34 proteins in place of full-length GADD34 should improve the utility of human cell-based cell-free protein synthesis systems.

  7. Arraying proteins by cell-free synthesis.

    Science.gov (United States)

    He, Mingyue; Wang, Ming-Wei

    2007-10-01

    Recent advances in life science have led to great motivation for the development of protein arrays to study functions of genome-encoded proteins. While traditional cell-based methods have been commonly used for generating protein arrays, they are usually a time-consuming process with a number of technical challenges. Cell-free protein synthesis offers an attractive system for making protein arrays, not only does it rapidly converts the genetic information into functional proteins without the need for DNA cloning, but also presents a flexible environment amenable to production of folded proteins or proteins with defined modifications. Recent advancements have made it possible to rapidly generate protein arrays from PCR DNA templates through parallel on-chip protein synthesis. This article reviews current cell-free protein array technologies and their proteomic applications.

  8. Translational Control of Cell Division by Elongator

    Directory of Open Access Journals (Sweden)

    Fanelie Bauer

    2012-05-01

    Full Text Available Elongator is required for the synthesis of the mcm5s2 modification found on tRNAs recognizing AA-ending codons. In order to obtain a global picture of the role of Elongator in translation, we used reverse protein arrays to screen the fission yeast proteome for translation defects. Unexpectedly, this revealed that Elongator inactivation mainly affected three specific functional groups including proteins implicated in cell division. The absence of Elongator results in a delay in mitosis onset and cytokinesis defects. We demonstrate that the kinase Cdr2, which is a central regulator of mitosis and cytokinesis, is under translational control by Elongator due to the Lysine codon usage bias of the cdr2 coding sequence. These findings uncover a mechanism by which the codon usage, coupled to tRNA modifications, fundamentally contributes to gene expression and cellular functions.

  9. Translational Application of Microfluidics and Bioprinting for Stem Cell-Based Cartilage Repair

    Directory of Open Access Journals (Sweden)

    Silvia Lopa

    2018-01-01

    Full Text Available Cartilage defects can impair the most elementary daily activities and, if not properly treated, can lead to the complete loss of articular function. The limitations of standard treatments for cartilage repair have triggered the development of stem cell-based therapies. In this scenario, the development of efficient cell differentiation protocols and the design of proper biomaterial-based supports to deliver cells to the injury site need to be addressed through basic and applied research to fully exploit the potential of stem cells. Here, we discuss the use of microfluidics and bioprinting approaches for the translation of stem cell-based therapy for cartilage repair in clinics. In particular, we will focus on the optimization of hydrogel-based materials to mimic the articular cartilage triggered by their use as bioinks in 3D bioprinting applications, on the screening of biochemical and biophysical factors through microfluidic devices to enhance stem cell chondrogenesis, and on the use of microfluidic technology to generate implantable constructs with a complex geometry. Finally, we will describe some new bioprinting applications that pave the way to the clinical use of stem cell-based therapies, such as scaffold-free bioprinting and the development of a 3D handheld device for the in situ repair of cartilage defects.

  10. Translational Application of Microfluidics and Bioprinting for Stem Cell-Based Cartilage Repair

    Science.gov (United States)

    Mondadori, Carlotta; Mainardi, Valerio Luca; Talò, Giuseppe; Candrian, Christian; Święszkowski, Wojciech

    2018-01-01

    Cartilage defects can impair the most elementary daily activities and, if not properly treated, can lead to the complete loss of articular function. The limitations of standard treatments for cartilage repair have triggered the development of stem cell-based therapies. In this scenario, the development of efficient cell differentiation protocols and the design of proper biomaterial-based supports to deliver cells to the injury site need to be addressed through basic and applied research to fully exploit the potential of stem cells. Here, we discuss the use of microfluidics and bioprinting approaches for the translation of stem cell-based therapy for cartilage repair in clinics. In particular, we will focus on the optimization of hydrogel-based materials to mimic the articular cartilage triggered by their use as bioinks in 3D bioprinting applications, on the screening of biochemical and biophysical factors through microfluidic devices to enhance stem cell chondrogenesis, and on the use of microfluidic technology to generate implantable constructs with a complex geometry. Finally, we will describe some new bioprinting applications that pave the way to the clinical use of stem cell-based therapies, such as scaffold-free bioprinting and the development of a 3D handheld device for the in situ repair of cartilage defects. PMID:29535776

  11. Biogrid--a microfluidic device for large-scale enzyme-free dissociation of stem cell aggregates.

    Science.gov (United States)

    Wallman, Lars; Åkesson, Elisabet; Ceric, Dario; Andersson, Per Henrik; Day, Kelly; Hovatta, Outi; Falci, Scott; Laurell, Thomas; Sundström, Erik

    2011-10-07

    Culturing stem cells as free-floating aggregates in suspension facilitates large-scale production of cells in closed systems, for clinical use. To comply with GMP standards, the use of substances such as proteolytic enzymes should be avoided. Instead of enzymatic dissociation, the growing cell aggregates may be mechanically cut at passage, but available methods are not compatible with large-scale cell production and hence translation into the clinic becomes a severe bottle-neck. We have developed the Biogrid device, which consists of an array of micrometerscale knife edges, micro-fabricated in silicon, and a manifold in which the microgrid is placed across the central fluid channel. By connecting one side of the Biogrid to a syringe or a pump and the other side to the cell culture, the culture medium with suspended cell aggregates can be aspirated, forcing the aggregates through the microgrid, and ejected back to the cell culture container. Large aggregates are thereby dissociated into smaller fragments while small aggregates pass through the microgrid unaffected. As proof-of-concept, we demonstrate that the Biogrid device can be successfully used for repeated passage of human neural stem/progenitor cells cultured as so-called neurospheres, as well as for passage of suspension cultures of human embryonic stem cells. We also show that human neural stem/progenitor cells tolerate transient pressure changes far exceeding those that will occur in a fluidic system incorporating the Biogrid microgrids. Thus, by using the Biogrid device it is possible to mechanically passage large quantities of cells in suspension cultures in closed fluidic systems, without the use of proteolytic enzymes.

  12. Production of functional bacteriorhodopsin by an Escherichia coli cell-free protein synthesis system supplemented with steroid detergent and lipid.

    Science.gov (United States)

    Shimono, Kazumi; Goto, Mie; Kikukawa, Takashi; Miyauchi, Seiji; Shirouzu, Mikako; Kamo, Naoki; Yokoyama, Shigeyuki

    2009-10-01

    Cell-free expression has become a highly promising tool for the efficient production of membrane proteins. In this study, we used a dialysis-based Escherichia coli cell-free system for the production of a membrane protein actively integrated into liposomes. The membrane protein was the light-driven proton pump bacteriorhodopsin, consisting of seven transmembrane alpha-helices. The cell-free expression system in the dialysis mode was supplemented with a combination of a detergent and a natural lipid, phosphatidylcholine from egg yolk, in only the reaction mixture. By examining a variety of detergents, we found that the combination of a steroid detergent (digitonin, cholate, or CHAPS) and egg phosphatidylcholine yielded a large amount (0.3-0.7 mg/mL reaction mixture) of the fully functional bacteriorhodopsin. We also analyzed the process of functional expression in our system. The synthesized polypeptide was well protected from aggregation by the detergent-lipid mixed micelles and/or lipid disks, and was integrated into liposomes upon detergent removal by dialysis. This approach might be useful for the high yield production of functional membrane proteins.

  13. Insights to the effects of free cells on community structure of attached cells and chalcopyrite bioleaching during different stages.

    Science.gov (United States)

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2016-01-01

    The effects of free cells on community structure of attached cells and chalcopyrite bioleaching by Acidithiobacillus sp. during different stages were investigated. The attached cells of Acidithiobacillus thiooxidans owned the community advantage from 14thd to the end of bioprocess in the normal system. The community structure of attached cells was greatly influenced in the free cells-deficient systems. Compared to A. thiooxidans, the attached cells community of Acidithiobacillus ferrooxidans had a higher dependence on its free cells. Meanwhile, the analysis of key biochemical parameters revealed that the effects of free cells on chalcopyrite bioleaching in different stages were diverse, ranging from 32.8% to 64.3%. The bioleaching contribution of free cells of A. ferrooxidans in the stationary stage (8-14thd) was higher than those of A. thiooxidans, while the situation was gradually reversed in the jarosite passivation inhibited stage (26-40thd). These results may be useful in guiding chalcopyrite bioleaching. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Machine translation

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, M

    1982-04-01

    Each language has its own structure. In translating one language into another one, language attributes and grammatical interpretation must be defined in an unambiguous form. In order to parse a sentence, it is necessary to recognize its structure. A so-called context-free grammar can help in this respect for machine translation and machine-aided translation. Problems to be solved in studying machine translation are taken up in the paper, which discusses subjects for semantics and for syntactic analysis and translation software. 14 references.

  15. Cell-specific differences in the requirements for translation quality control

    DEFF Research Database (Denmark)

    Reynolds, Noah M; Ling, Jiqiang; Roy, Hervé

    2010-01-01

    Protein synthesis has an overall error rate of approximately 10(-4) for each mRNA codon translated. The fidelity of translation is mainly determined by two events: synthesis of cognate amino acid:tRNA pairs by aminoacyl-tRNA synthetases (aaRSs) and accurate selection of aminoacyl-tRNAs (aa-tRNAs)...... divergent requirements for quality control in different cell compartments and suggest that the limits of translational accuracy may be largely determined by cellular physiology....

  16. Fluorescent polymer-based post-translational differentiation and subtyping of breast cancer cells.

    Science.gov (United States)

    Scott, Michael D; Dutta, Rinku; Haldar, Manas K; Wagh, Anil; Gustad, Thomas R; Law, Benedict; Friesner, Daniel L; Mallik, Sanku

    2012-12-07

    Herein, we report the application of synthesized fluorescent, water soluble polymers for post-translational subtyping and differentiation of breast cancer cells in vitro. The fluorescence emission spectra from these polymers were modulated differently in the presence of conditioned cell culture media from various breast cancer cells. These polymers differentiate at a post-translation level possibly due to their ability to interact with extracellular enzymes that are over-expressed in cancerous conditions.

  17. Translational profiling in childhood acute lymphoblastic leukemia: no evidence for glucocorticoid regulation of mRNA translation.

    Science.gov (United States)

    Aneichyk, Tatsiana; Bindreither, Daniel; Mantinger, Christine; Grazio, Daniela; Goetsch, Katrin; Kofler, Reinhard; Rainer, Johannes

    2013-12-01

    Glucocorticoids (GCs) are natural stress induced steroid hormones causing cell cycle arrest and cell death in lymphoid tissues. Therefore they are the central component in the treatment of lymphoid malignancies, in particular childhood acute lymphoblastic leukemia (chALL). GCs act mainly via regulating gene transcription, which has been intensively studied by us and others. GC control of mRNA translation has also been reported but has never been assessed systematically. In this study we investigate the effect of GCs on mRNA translation on a genome-wide scale. Childhood T- (CCRF-CEM) and precursor B-ALL (NALM6) cells were exposed to GCs and subjected to "translational profiling", a technique combining sucrose-gradient fractionation followed by Affymetrix Exon microarray analysis of mRNA from different fractions, to assess the translational efficiency of the expressed genes. Analysis of GC regulation in ribosome-bound fractions versus transcriptional regulation revealed no significant differences, i.e., GC did not entail a significant shift between ribosomal bound and unbound mRNAs. In the present study we analyzed for the first time possible effects of GC on the translational efficiency of expressed genes in two chALL model systems employing whole genome polysome profiling. Our results did not reveal significant differences in translational efficiency of expressed genes thereby arguing against a potential widespread regulatory effect of GCs on translation at least in the investigated in vitro systems.

  18. Label-free integrative pharmacology on-target of drugs at the β2-adrenergic receptor

    Science.gov (United States)

    Ferrie, Ann M.; Sun, Haiyan; Fang, Ye

    2011-07-01

    We describe a label-free integrative pharmacology on-target (iPOT) method to assess the pharmacology of drugs at the β2-adrenergic receptor. This method combines dynamic mass redistribution (DMR) assays using an array of probe molecule-hijacked cells with similarity analysis. The whole cell DMR assays track cell system-based, ligand-directed, and kinetics-dependent biased activities of the drugs, and translates their on-target pharmacology into numerical descriptors which are subject to similarity analysis. We demonstrate that the approach establishes an effective link between the label-free pharmacology and in vivo therapeutic indications of drugs.

  19. Free energy analysis of cell spreading.

    Science.gov (United States)

    McEvoy, Eóin; Deshpande, Vikram S; McGarry, Patrick

    2017-10-01

    In this study we present a steady-state adaptation of the thermodynamically motivated stress fiber (SF) model of Vigliotti et al. (2015). We implement this steady-state formulation in a non-local finite element setting where we also consider global conservation of the total number of cytoskeletal proteins within the cell, global conservation of the number of binding integrins on the cell membrane, and adhesion limiting ligand density on the substrate surface. We present a number of simulations of cell spreading in which we consider a limited subset of the possible deformed spread-states assumed by the cell in order to examine the hypothesis that free energy minimization drives the process of cell spreading. Simulations suggest that cell spreading can be viewed as a competition between (i) decreasing cytoskeletal free energy due to strain induced assembly of cytoskeletal proteins into contractile SFs, and (ii) increasing elastic free energy due to stretching of the mechanically passive components of the cell. The computed minimum free energy spread area is shown to be lower for a cell on a compliant substrate than on a rigid substrate. Furthermore, a low substrate ligand density is found to limit cell spreading. The predicted dependence of cell spread area on substrate stiffness and ligand density is in agreement with the experiments of Engler et al. (2003). We also simulate the experiments of Théry et al. (2006), whereby initially circular cells deform and adhere to "V-shaped" and "Y-shaped" ligand patches. Analysis of a number of different spread states reveals that deformed configurations with the lowest free energy exhibit a SF distribution that corresponds to experimental observations, i.e. a high concentration of highly aligned SFs occurs along free edges, with lower SF concentrations in the interior of the cell. In summary, the results of this study suggest that cell spreading is driven by free energy minimization based on a competition between decreasing

  20. A set of ligation-independent in vitro translation vectors for eukaryotic protein production

    Directory of Open Access Journals (Sweden)

    Endo Yaeta

    2008-03-01

    Full Text Available Abstract Background The last decade has brought the renaissance of protein studies and accelerated the development of high-throughput methods in all aspects of proteomics. Presently, most protein synthesis systems exploit the capacity of living cells to translate proteins, but their application is limited by several factors. A more flexible alternative protein production method is the cell-free in vitro protein translation. Currently available in vitro translation systems are suitable for high-throughput robotic protein production, fulfilling the requirements of proteomics studies. Wheat germ extract based in vitro translation system is likely the most promising method, since numerous eukaryotic proteins can be cost-efficiently synthesized in their native folded form. Although currently available vectors for wheat embryo in vitro translation systems ensure high productivity, they do not meet the requirements of state-of-the-art proteomics. Target genes have to be inserted using restriction endonucleases and the plasmids do not encode cleavable affinity purification tags. Results We designed four ligation independent cloning (LIC vectors for wheat germ extract based in vitro protein translation. In these constructs, the RNA transcription is driven by T7 or SP6 phage polymerase and two TEV protease cleavable affinity tags can be added to aid protein purification. To evaluate our improved vectors, a plant mitogen activated protein kinase was cloned in all four constructs. Purification of this eukaryotic protein kinase demonstrated that all constructs functioned as intended: insertion of PCR fragment by LIC worked efficiently, affinity purification of translated proteins by GST-Sepharose or MagneHis particles resulted in high purity kinase, and the affinity tags could efficiently be removed under different reaction conditions. Furthermore, high in vitro kinase activity testified of proper folding of the purified protein. Conclusion Four newly

  1. Environmentally Friendly Plasma-Treated PEDOT:PSS as Electrodes for ITO-Free Perovskite Solar Cells.

    Science.gov (United States)

    Vaagensmith, Bjorn; Reza, Khan Mamun; Hasan, Md Nazmul; Elbohy, Hytham; Adhikari, Nirmal; Dubey, Ashish; Kantack, Nick; Gaml, Eman; Qiao, Qiquan

    2017-10-18

    Solution processed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) transparent electrodes (TEs) offer great potential as a low cost alternative to expensive indium tin oxide (ITO). However, strong acids are typically used for enhancing the conductivity of PEDOT:PSS TEs, which produce processing complexity and environmental issues. This work presents an environmentally friendly acid free approach to enhance the conductivity of PEDOT:PSS using a light oxygen plasma treatment, in addition to solvent blend additives and post treatments. The plasma treatment was found to significantly reduce the sheet resistance of PEDOT:PSS TEs from 85 to as low as 15 Ω sq -1 , which translates to the highest reported conductivity of 5012 S/cm for PEDOT:PSS TEs. The plasma treated PEDOT:PSS TE resulted in an ITO-free perovskite solar cell efficiency of 10.5%, which is the highest reported efficiency for ITO-free perovskite solar cells with a PEDOT:PSS electrode that excludes the use of acid treatments. This research presents the first demonstration of this technology. Moreover, the PEDOT:PSS TEs enabled better charge extraction from the perovskite solar cells and reduced hysteresis in the current density-voltage (J-V) curves.

  2. Velocity slip and translational nonequilibrium of ternary gas mixtures in free jet expansions

    International Nuclear Information System (INIS)

    Cattolica, R.J.; Gallagher, R.J.; Anderson, J.B.; Talbot, L.

    1977-05-01

    An aerodynamic isotope separation technique based on the velocity slip between gases in a rarefied flow has been proposed. To evaluate the efficiency of this separation technique, the velocity and translational temperature of the individual species in binary and ternary gas mixtures of argon and neon in helium have been studied in a low density hypersonic free jet. The velocity and temperature of the gas were determined from the Doppler shift and broadening of the fluorescence excited by an electron beam. Velocity slip and translational nonequilibrium were observed over a range of source pressures. A separation factor based on the velocity slip and temperatures was also determined. A comparison of the velocity slip, temperatures, and separation factor with the results of a Monte Carlo simulation of the flow field is presented

  3. Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells.

    Science.gov (United States)

    Yamashita, Tomoko; Miyamoto, Yuki; Bando, Yoshio; Ono, Takashi; Kobayashi, Sakurako; Doi, Ayano; Araki, Toshihiro; Kato, Yosuke; Shirakawa, Takayuki; Suzuki, Yutaka; Yamauchi, Junji; Yoshida, Shigetaka; Sato, Naoya

    2017-01-01

    Oligodendrocytes myelinate axons and form myelin sheaths in the central nervous system. The development of therapies for demyelinating diseases, including multiple sclerosis and leukodystrophies, is a challenge because the pathogenic mechanisms of disease remain poorly understood. Primate pluripotent stem cell-derived oligodendrocytes are expected to help elucidate the molecular pathogenesis of these diseases. Oligodendrocytes have been successfully differentiated from human pluripotent stem cells. However, it is challenging to prepare large amounts of oligodendrocytes over a short amount of time because of manipulation difficulties under conventional primate pluripotent stem cell culture methods. We developed a proprietary dissociated monolayer and feeder-free culture system to handle pluripotent stem cell cultures. Because the dissociated monolayer and feeder-free culture system improves the quality and growth of primate pluripotent stem cells, these cells could potentially be differentiated into any desired functional cells and consistently cultured in large-scale conditions. In the current study, oligodendrocyte progenitor cells and mature oligodendrocytes were generated within three months from monkey embryonic stem cells. The embryonic stem cell-derived oligodendrocytes exhibited in vitro myelinogenic potency with rat dorsal root ganglion neurons. Additionally, the transplanted oligodendrocyte progenitor cells differentiated into myelin basic protein-positive mature oligodendrocytes in the mouse corpus callosum. This preparative method was used for human induced pluripotent stem cells, which were also successfully differentiated into oligodendrocyte progenitor cells and mature oligodendrocytes that were capable of myelinating rat dorsal root ganglion neurons. Moreover, it was possible to freeze, thaw, and successfully re-culture the differentiating cells. These results showed that embryonic stem cells and human induced pluripotent stem cells maintained in a

  4. Imaging translation dynamics of single mRNA molecules in live cells

    NARCIS (Netherlands)

    Ruijtenberg, Suzan; Hoek, Tim A.; Yan, Xiaowei; Tanenbaum, Marvin E.

    2018-01-01

    mRNA translation is a key step in decoding the genetic information stored in DNA. Regulation of translation efficiency contributes to gene expression control and is therefore important for cell fate and function. Here, we describe a recently developed microscopy-based method that allows for

  5. Equilibria and Free Vibration of a Two-Pulley Belt-Driven System with Belt Bending Stiffness

    Directory of Open Access Journals (Sweden)

    Jieyu Ding

    2014-01-01

    Full Text Available Nonlinear equilibrium curvatures and free vibration characteristics of a two-pulley belt-driven system with belt bending stiffness and a one-way clutch are investigated. With nonlinear dynamical tension, the transverse vibrations of the translating belt spans and the rotation motions of the pulleys and the accessory shaft are coupled. Therefore, nonlinear piecewise discrete-continuous governing equations are established. Considering the bending stiffness of the translating belt spans, the belt spans are modeled as axially moving beams. The pattern of equilibria is a nontrivial solution. Furthermore, the nontrivial equilibriums of the dynamical system are numerically determined by using two different approaches. The governing equations of the vibration near the equilibrium solutions are derived by introducing a coordinate transform. The natural frequencies of the dynamical systems are studied by using the Galerkin method with various truncations and the differential and integral quadrature methods. Moreover, the convergence of the Galerkin truncation is investigated. Numerical results reveal that the study needs 16 terms after truncation in order to determine the free vibration characteristics of the pulley-belt system with the belt bending stiffness. Furthermore, the first five natural frequencies are very sensitive to the bending stiffness of the translating belt.

  6. An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins.

    Science.gov (United States)

    Singh-Blom, Amrita; Hughes, Randall A; Ellington, Andrew D

    2014-05-20

    Residue-specific incorporation of non-canonical amino acids into proteins is usually performed in vivo using amino acid auxotrophic strains and replacing the natural amino acid with an unnatural amino acid analog. Herein, we present an efficient amino acid depleted cell-free protein synthesis system that can be used to study residue-specific replacement of a natural amino acid by an unnatural amino acid analog. This system combines a simple methodology and high protein expression titers with a high-efficiency analog substitution into a target protein. To demonstrate the productivity and efficacy of a cell-free synthesis system for residue-specific incorporation of unnatural amino acids in vitro, we use this system to show that 5-fluorotryptophan and 6-fluorotryptophan substituted streptavidin retain the ability to bind biotin despite protein-wide replacement of a natural amino acid for the amino acid analog. We envisage this amino acid depleted cell-free synthesis system being an economical and convenient format for the high-throughput screening of a myriad of amino acid analogs with a variety of protein targets for the study and functional characterization of proteins substituted with unnatural amino acids when compared to the currently employed in vivo methodologies. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Dual axis translation apparatus and system for translating an optical beam and related method

    Science.gov (United States)

    Cassidy, Kelly

    1991-01-01

    A dual axis translation device and system in accordance with this invention, for translating an optical beam along both an x-axis and a y-axis which are perpendicular to one another, has a beam directing means acting on said optical beam for directing the beam along a particular path transverse to said x and y axes. An arrangement supporting said beam directing means for movement in the x and y direction within a given plane is provided. The arrangement includes a first means for translating said beam directing means along the x-axis in said given plane in order to translate the beam along said x-axis. The arrangement comprises a second means for translating said beam directing means along the y-axis in said given plane in order to translate the beam along said y-axis.

  8. Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models

    Directory of Open Access Journals (Sweden)

    Joseph A. Wayman

    2015-03-01

    Full Text Available Cell-free systems offer many advantages for the study, manipulation and modeling of metabolism compared to in vivo processes. Many of the challenges confronting genome-scale kinetic modeling can potentially be overcome in a cell-free system. For example, there is no complex transcriptional regulation to consider, transient metabolic measurements are easier to obtain, and we no longer have to consider cell growth. Thus, cell-free operation holds several significant advantages for model development, identification and validation. Theoretically, genome-scale cell-free kinetic models may be possible for industrially important organisms, such as E. coli, if a simple, tractable framework for integrating allosteric regulation with enzyme kinetics can be formulated. Toward this unmet need, we present an effective biochemical network modeling framework for building dynamic cell-free metabolic models. The key innovation of our approach is the integration of simple effective rules encoding complex allosteric regulation with traditional kinetic pathway modeling. We tested our approach by modeling the time evolution of several hypothetical cell-free metabolic networks. We found that simple effective rules, when integrated with traditional enzyme kinetic expressions, captured complex allosteric patterns such as ultrasensitivity or non-competitive inhibition in the absence of mechanistic information. Second, when integrated into network models, these rules captured classic regulatory patterns such as product-induced feedback inhibition. Lastly, we showed, at least for the network architectures considered here, that we could simultaneously estimate kinetic parameters and allosteric connectivity from synthetic data starting from an unbiased collection of possible allosteric structures using particle swarm optimization. However, when starting with an initial population that was heavily enriched with incorrect structures, our particle swarm approach could converge

  9. Golgi structure formation, function, and post-translational modifications in mammalian cells.

    Science.gov (United States)

    Huang, Shijiao; Wang, Yanzhuang

    2017-01-01

    The Golgi apparatus is a central membrane organelle for trafficking and post-translational modifications of proteins and lipids in cells. In mammalian cells, it is organized in the form of stacks of tightly aligned flattened cisternae, and dozens of stacks are often linked laterally into a ribbon-like structure located in the perinuclear region of the cell. Proper Golgi functionality requires an intact architecture, yet Golgi structure is dynamically regulated during the cell cycle and under disease conditions. In this review, we summarize our current understanding of the relationship between Golgi structure formation, function, and regulation, with focus on how post-translational modifications including phosphorylation and ubiquitination regulate Golgi structure and on how Golgi unstacking affects its functions, in particular, protein trafficking, glycosylation, and sorting in mammalian cells.

  10. Applications of cell-free protein synthesis in synthetic biology: Interfacing bio-machinery with synthetic environments.

    Science.gov (United States)

    Lee, Kyung-Ho; Kim, Dong-Myung

    2013-11-01

    Synthetic biology is built on the synthesis, engineering, and assembly of biological parts. Proteins are the first components considered for the construction of systems with designed biological functions because proteins carry out most of the biological functions and chemical reactions inside cells. Protein synthesis is considered to comprise the most basic levels of the hierarchical structure of synthetic biology. Cell-free protein synthesis has emerged as a powerful technology that can potentially transform the concept of bioprocesses. With the ability to harness the synthetic power of biology without many of the constraints of cell-based systems, cell-free protein synthesis enables the rapid creation of protein molecules from diverse sources of genetic information. Cell-free protein synthesis is virtually free from the intrinsic constraints of cell-based methods and offers greater flexibility in system design and manipulability of biological synthetic machinery. Among its potential applications, cell-free protein synthesis can be combined with various man-made devices for rapid functional analysis of genomic sequences. This review covers recent efforts to integrate cell-free protein synthesis with various reaction devices and analytical platforms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Translation system engineering in Escherichia coli enhances non-canonical amino acid incorporation into proteins.

    Science.gov (United States)

    Gan, Rui; Perez, Jessica G; Carlson, Erik D; Ntai, Ioanna; Isaacs, Farren J; Kelleher, Neil L; Jewett, Michael C

    2017-05-01

    The ability to site-specifically incorporate non-canonical amino acids (ncAAs) into proteins has made possible the study of protein structure and function in fundamentally new ways, as well as the bio synthesis of unnatural polymers. However, the task of site-specifically incorporating multiple ncAAs into proteins with high purity and yield continues to present a challenge. At the heart of this challenge lies the lower efficiency of engineered orthogonal translation system components compared to their natural counterparts (e.g., translation elements that specifically use a ncAA and do not interact with the cell's natural translation apparatus). Here, we show that evolving and tuning expression levels of multiple components of an engineered translation system together as a whole enhances ncAA incorporation efficiency. Specifically, we increase protein yield when incorporating multiple p-azido-phenylalanine(pAzF) residues into proteins by (i) evolving the Methanocaldococcus jannaschii p-azido-phenylalanyl-tRNA synthetase anti-codon binding domain, (ii) evolving the elongation factor Tu amino acid-binding pocket, and (iii) tuning the expression of evolved translation machinery components in a single vector. Use of the evolved translation machinery in a genomically recoded organism lacking release factor one enabled enhanced multi-site ncAA incorporation into proteins. We anticipate that our approach to orthogonal translation system development will accelerate and expand our ability to site-specifically incorporate multiple ncAAs into proteins and biopolymers, advancing new horizons for synthetic and chemical biotechnology. Biotechnol. Bioeng. 2017;114: 1074-1086. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Translational recognition of the 5'-terminal 7-methylguanosine of globin messenger RNA as a function of ionic strength.

    Science.gov (United States)

    Chu, L Y; Rhoads, R E

    1978-06-13

    The translation of rabbit globin mRNA in cell-free systems derived from either wheat germ or rabbit reticulocyte was studied in the presence of various analogues of the methylated 5' terminus (cap) as a function of ionic strength. Inhibition by these analogues was strongly enhanced by increasing concentrations of KCl, K(OAc), Na(OAc), or NH4(OAc). At appropriate concentrations of K(OAc), both cell-free systems were equally sensitive to inhibition by m7GTP. At 50 mM K(OAc), the reticulocyte system was not sensitive to m7GMP or m7GTP, but at higher concentrations up to 200 mM K(OAc), both nucleotides caused strong inhibition. The compound in m7G5'ppp5'Am was inhibitory at all concentrations of K(OAc) ranging from 50 to 200 mM, although more strongly so at the higher concentrations. Over the same range of nucleotide concentrations, the compounds GMP, GTP, and G5'ppp5'Am were not inhibitors. The mobility on sodium dodecyl sulfate-polyacrylamide electrophoresis of the translation product was that of globin at all K(OAc) concentrations in the presence of m7GTP. Globin mRNA from which the terminal m7GTP group had been removed by chemical treatment (periodate-cyclohexylamine-alkaline phosphatase) or enzymatic treatment (tobacco acid pyrophosphatase-alkaline phosphatase) was translated less efficiently than untreated globin mRNA at higher K(OAc) concentrations, but retained appreciable activity at low K(OAc) concentrations.

  13. Fuel cell system with interconnect

    Science.gov (United States)

    Goettler, Richard; Liu, Zhien

    2017-12-12

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  14. On Literal Translation of English Idioms

    Science.gov (United States)

    Chen, Linli

    2009-01-01

    There are six translation tactics in translating English idioms into Chinese: literal translation, compensatory translation, free translation, explanational translation, borrowing, integrated approach. Each tactic should be reasonably employed in the process of translating, so as to keep the flavor of the original English idioms as well as to…

  15. Differential control of the cholesterol biosynthetic pathway in tumor versus liver: evidence for decontrolled tumor cholesterogenesis in a cell-free system

    International Nuclear Information System (INIS)

    Azrolan, N.

    1987-01-01

    Cholesterol biosynthesis was characterized in cell-free post-mitochondrial supernatant (PMS) systems prepared from both normal rat liver and Morris hepatoma 3924A. Per cell, the rate of cholesterol synthesis from either 14 C-citrate of 14 -acetate in the hepatoma system was 9-fold greater than that observed in the liver system. Furthermore, the ratio of sterol-to-fatty acid synthesis rates from 14 C-citrate was more than 3-fold greater in the tumor than in the normal liver system. Incubations using radiolabeled acetate and mevalonate have demonstrated the loss of a normally rate-limiting control site within the early portion of the cholesterol biosynthetic pathway in the tumor system. Upon analysis of the steady-state levels of early lipogenic intermediates, the specific site of decontrol in the tumor was identified as the 3-hydroxy-3-methylglutaryl-CoA → mevalonate site of this pathway. In contrast, this reaction appeared to retain its rate-limiting properties in the cell-free system from normal liver

  16. Effect of intravenous administration of D-lysergic acid diethylamide on initiation of protein synthesis in a cell-free system derived from brain.

    Science.gov (United States)

    Cosgrove, J W; Brown, I R

    1984-05-01

    An initiating cell-free protein synthesis system derived from brain was utilized to demonstrate that the intravenous injection of D-lysergic acid diethylamide (LSD) to rabbits resulted in a lesion at the initiation stage of brain protein synthesis. Three inhibitors of initiation, edeine, poly(I), and aurintricarboxylic acid were used to demonstrate a reduction in initiation-dependent amino acid incorporation in the brain cell-free system. One hour after LSD injection, there was also a measurable decrease in the formation of 40S and 80S initiation complexes in vitro, using either [35S]methionine or [35S]Met-tRNAf. Analysis of the methionine pool size after LSD administration indicated there was no change in methionine levels. Analysis of the formation of initiation complexes in the brain cell-free protein synthesis system prepared 6 h after LSD administration indicated that there was a return to control levels at this time. The effects of LSD on steps in the initiation process are thus reversible.

  17. Cell-free DNA levels and correlation to stage and outcome following treatment of locally advanced rectal cancer.

    Science.gov (United States)

    Boysen, Anders Kindberg; Wettergren, Yvonne; Sorensen, Boe Sandahl; Taflin, Helena; Gustavson, Bengt; Spindler, Karen-Lise Garm

    2017-11-01

    Accurate staging of rectal cancer remains essential for optimal patient selection for combined modality treatment, including radiotherapy, chemotherapy and surgery. We aimed at examining the correlation of cell free DNA with the pathologic stage and subsequent risk of recurrence for patients with locally advanced rectal cancer undergoing preoperative chemoradiation. We examined 75 patients with locally advanced rectal cancer receiving preoperative chemoradiation. Blood samples for translational use were drawn prior to rectal surgery. The level of cell free DNA was quantified by digital droplet PCR and expressed as copy number of beta 2 microglobulin. We found a median level of cell free DNA in the AJCC stages I-III of 3100, 8300, and 10,700 copies/mL respectively. For patients with 12 sampled lymph nodes or above, the median level of cell free DNA were 2400 copies/mL and 4400 copies/mL (p = 0.04) for node negative and node positive disease respectively. The median follow-up was 39 months and 11 recurrences were detected (15%). The median level for patients with recurrent disease was 13,000 copies/mL compared to 5200 copies/mL for non-recurrent patients (p = 0.08). We have demonstrated a correlation between the level of total cell free DNA and the pathologic stage and nodal involvement. Furthermore, we have found a trend towards a correlation with the risk of recurrence following resection of localized rectal cancer.

  18. The ICNP BaT - from translation tool to translation web service.

    Science.gov (United States)

    Schrader, Ulrich

    2009-01-01

    The ICNP BaT has been developed as a web application to support the collaborative translation of different versions of the ICNP into different languages. A prototype of a web service is described that could reuse the translations in the database of the ICNP BaT to provide automatic translations of nursing content based on the ICNP terminology globally. The translation web service is based on a service-oriented architecture making it easy to interoperate with different applications. Such a global translation server would free individual institutions from the maintenance costs of realizing their own translation services.

  19. Validation of cell-free culture using scanning electron microscopy (SEM) and gene expression studies.

    Science.gov (United States)

    Yang, R; Elankumaran, Y; Hijjawi, N; Ryan, U

    2015-06-01

    A cell-free culture system for Cryptosporidium parvum was analysed using scanning electron microscopy (SEM) to characterise life cycle stages and compare gene expression in cell-free culture and cell culture using HCT-8 cells. Cryptosporidium parvum samples were harvested at 2 h, 8 h, 14 h, 26 h, 50 h, 74 h, 98 h, 122 h and 170 h, chemically fixed and specimens were observed using a Zeiss 1555 scanning electron microscope. The presence of sporozoites, trophozoites and type I merozoites were identified by SEM. Gene expression in cell culture and cell-free culture was studied using reverse transcriptase quantitative PCR (RT-qPCR) of the sporozoite surface antigen protein (cp15), the glycoprotein 900 (gp900), the Cryptosporidium oocyst wall protein (COWP) and 18S ribosomal RNA (rRNA) genes in both cell free and conventional cell culture. In cell culture, cp15 expression peaked at 74 h, gp900 expression peaked at 74 h and 98 h and COWP expression peaked at 50 h. In cell-free culture, CP15 expression peaked at 98 h, gp900 expression peaked at 74 h and COWP expression peaked at 122 h. The present study is the first to compare gene expression of C. parvum in cell culture and cell-free culture and to characterise life cycle stages of C. parvum in cell-free culture using SEM. Findings from this study showed that gene expression patterns in cell culture and cell-free culture were similar but in cell-free culture, gene expression was delayed for CP15 and COWP in cell free culture compared with the cell culture system and was lower. Although three life cycle stageswere conclusively identified, improvements in SEM methodology should lead to the detection of more life cycle stages. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Translational Cellular Research on the International Space Station

    Science.gov (United States)

    Love, John; Cooley, Vic

    2016-01-01

    The emerging field of Translational Research aims to coalesce interdisciplinary findings from basic science for biomedical applications. To complement spaceflight research using human subjects, translational studies can be designed to address aspects of space-related human health risks and help develop countermeasures to prevent or mitigate them, with therapeutical benefits for analogous conditions experienced on Earth. Translational research with cells and model organisms is being conducted onboard the International Space Station (ISS) in connection with various human systems impacted by spaceflight, such as the cardiovascular, musculoskeletal, and immune systems. Examples of recent cell-based translational investigations on the ISS include the following. The JAXA investigation Cell Mechanosensing seeks to identify gravity sensors in skeletal muscle cells to develop muscle atrophy countermeasures by analyzing tension fluctuations in the plasma membrane, which changes the expression of key proteins and genes. Earth applications of this study include therapeutic approaches for some forms of muscular dystrophy, which appear to parallel aspects of muscle wasting in space. Spheroids is an ESA investigation examining the system of endothelial cells lining the inner surface of all blood vessels in terms of vessel formation, cellular proliferation, and programmed cell death, because injury to the endothelium has been implicated as underpinning various cardiovascular and musculoskeletal problems arising during spaceflight. Since endothelial cells are involved in the functional integrity of the vascular wall, this research has applications to Earth diseases such as atherosclerosis, diabetes, and hypertension. The goal of the T-Cell Activation in Aging NASA investigation is to understand human immune system depression in microgravity by identifying gene expression patterns of candidate molecular regulators, which will provide further insight into factors that may play a

  1. Adiabatic translation factors in slow ion-atom collisions

    International Nuclear Information System (INIS)

    Vaaben, J.; Taulbjerg, K.

    1981-01-01

    The general properties of translation factors in slow atomic collisions are discussed. It is emphasised that an acceptable form of translation factors must be conceptually consistent with the basic underlying assumption of the molecular model; i.e. translation factors must relax adiabatically at intermediate and small internuclear separations. A simple physical argument is applied to derive a general parameter-free expression for the translation factor pertinent to an electron in a two-centre Coulomb field. Within the present approach the adiabatic translation factor is considered to be a property of the two-centre field independently of the molecular state under consideration. The generalisation to many-electron systems is therefore readily made. (author)

  2. Development of the Multilingual Collaboration System for Farmers of Several Counntries (1) : Application of Basic Terminology Translation Dictionary

    OpenAIRE

    Lee, Kang Oh; Nakaji, Kei; Nada, Yoichi

    2004-01-01

    In order to share agricultural information through the Internet, the multilingual collaboratioin system of agricultural productioni was developed for farmers of many countries. The basic terminology translationi dictionary was developed by using several open source programs and free software to translate the basic terminology of multilingual collaboration system. The basic terminology translationi dictionaru was composed of about 4200 terms in Japanese, Korean and English including 2700 horti...

  3. ILLC-UvA translation system for EMNLP-WMT 2011

    NARCIS (Netherlands)

    Khalilov, M.; Sima'an, K.

    2011-01-01

    In this paper we describe the Institute for Logic, Language and Computation (University of Amsterdam) phrase-based statistical machine translation system for Englishto- German translation proposed within the EMNLP-WMT 2011 shared task. The main novelty of the submitted system is a syntaxdriven

  4. The role of baculovirus apoptotic suppressors in AcMNPV-mediated translation arrest in Ld652Y cells

    International Nuclear Information System (INIS)

    Thiem, Suzanne M.; Chejanovsky, Nor

    2004-01-01

    Infecting the insect cell line IPLB-Ld652Y with the baculovirus Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV) results in global translation arrest, which correlates with the presence of the AcMNPV apoptotic suppressor, p35. In this study, we investigated the role of apoptotic suppression on AcMNPV-induced translation arrest. Infecting cells with AcMNPV bearing nonfunctional mutant p35 did not result in global translation arrest. In contrast, global translation arrest was observed in cells infected with AcMNPV in which p35 was replaced with Opiap, Cpiap, or p49, baculovirus apoptotic suppressors that block apoptosis by different mechanisms than p35. These results indicated that suppressing apoptosis triggered translation arrest in AcMNPV-infected Ld652Y cells. Experiments using the DNA synthesis inhibitor aphidicolin and temperature shift experiments, using the AcMNPV replication mutants ts8 and ts8Δp35, indicated that translation arrest initiated during the early phase of infection, but events during the late phase were required for global translation arrest. Peptide caspase inhibitors could not substitute for baculovirus apoptotic suppressors to induce translation arrest in Ld652Y cells infected with a p35-null virus. However, if the p35-null-AcMNPV also carried hrf-1, a novel baculovirus host range gene, progeny virus was produced and treatment with peptide caspase inhibitors enhanced translation of a late viral gene transcript. Together, these results indicate that translation arrest in AcMNPV-infected Ld652Y cells is due to the anti-apoptotic function of p35, but suggests that rather than simply preventing caspase activation, its activity enhances signaling to a separate translation arrest pathway, possibly by stimulating the late stages of the baculovirus infection cycle

  5. Scaling Up ITO-free solar cells

    DEFF Research Database (Denmark)

    Galagan, Yulia; Coenen, Erica W. C.; Zimmermann, Birger

    2014-01-01

    Indium-tin-oxide-free (ITO-free) polymer solar cells with composite electrodes containing current-collecting grids and a semitransparent poly(3,4-ethylenedioxythiophene):polystyrenesulfonate) (PEDOT:PSS) conductor are demonstrated. The up-scaling of the length of the solar cell from 1 to 6 cm...... resistances. The performance of ITO-free organic solar cells with different dimensions and different electrode resistances are evaluated for different light intensities. The current generation and electric potential distribution are found to not be uniformly distributed in large-area devices at simulated 1...

  6. Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells

    DEFF Research Database (Denmark)

    Guzzi, Nicola; Cieśla, Maciej; Ngoc, Phuong Cao Thi

    2018-01-01

    early embryogenesis. Mechanistically, the Ψ "writer" PUS7 modifies and activates a novel network of tRNA-derived small fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translation regulation, leading to increased protein...... biosynthesis and defective germ layer specification. Remarkably, dysregulation of this posttranscriptional regulatory circuitry impairs hematopoietic stem cell commitment and is common to aggressive subtypes of human myelodysplastic syndromes. Our findings unveil a critical function of Ψ in directing...

  7. Community dynamics of attached and free cells and the effects of attached cells on chalcopyrite bioleaching by Acidithiobacillus sp.

    Science.gov (United States)

    Yang, Hailin; Feng, Shoushuai; Xin, Yu; Wang, Wu

    2014-02-01

    The community dynamics of attached and free cells of Acidithiobacillus sp. were investigated and compared during chalcopyrite bioleaching process. In the mixed strains system, Acidithiobacillus ferrooxidans was the dominant species at the early stage while Acidithiobacillus thiooxidans owned competitive advantage from the middle stage to the end of bioprocess. Meanwhile, compared to A. ferrooxidans, more significant effects of attached cells on free biomass with A. thiooxidans were shown in either the pure or mixed strains systems. Moreover, the effects of attached cells on key chemical parameters were also studied in different adsorption-deficient systems. Consistently, the greatest reduction of key chemical ion was shown with A. thiooxidans and the loss of bioleaching efficiency was high to 50.5%. These results all demonstrated the bioleaching function of attached cells was more efficient than the free cells, especially with A. thiooxidans. These notable results would help us to further understand the chalcopyrite bioleaching. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Asymptotic forms for the energy of force-free magnetic field ion figurations of translational symmetry

    Science.gov (United States)

    Sturrock, P. A.; Antiochos, S. K.; Klinchuk, J. A.; Roumeliotis, G.

    1994-01-01

    It is known from computer calculations that if a force-free magnetic field configuration is stressed progressively by footpoint displacements, the configuration expands and approaches the open configuration with the same surface flux distribution and the energy of the field increases progressively. For configurations of translationalsymmetry, it has been found empirically that the energy tends asymptotically to a certain functional form. It is here shown that analysis of a simple model of the asymptotic form of force-free fields of translational symmetry leads to and therefore justifies this functional form. According to this model, the field evolves in a well-behaved manner with no indication of instability or loss of equilibrium.

  9. Pathophysiological consequences of hemolysis. Role of cell-free hemoglobin

    Directory of Open Access Journals (Sweden)

    Tomasz Misztal

    2011-09-01

    Full Text Available Abundant hemolysis is associated with a number of inherent and acquired diseases including sickle-cell disease (SCD, polycythemia, paroxysmal nocturnal hemoglobinuria (PNH and drug-induced hemolytic anemia. Despite different etiopathology of hemolytic diseases, many concomitant symptoms are comparable and include e.g. hypertension, hemoglobinuria and hypercoagulation state. Studies in the last years have shown a growing list of mechanisms lying at the basis of those symptoms, in particular irreversible reaction between cell-free hemoglobin (Hb and nitric oxide (NO – endogenous vasorelaxant and anti-thrombotic agent. Saturation of protective physiological cell-free Hb-scavenging mechanisms results in accumulation of Hb in plasma and hemoglobinemia. Extensive hemoglobinemia subsequently leads to hemoglobinuria, which may cause kidney damage and development of Fanconi syndrome. A severe problem in patients with SCD and PNH is pulmonary and systemic hypertension. It may lead to circulation failure, including stroke, and it is related to abolition of NO bioavailability for vascular smooth muscle cells. Thrombotic events are the major cause of death in SCD and PNH. It ensues from lack of platelet inhibition evoked by Hb-mediated NO scavenging. A serious complication that affects patients with excessive hemolysis is erectile dysfunction. Also direct cytotoxic, prooxidant and proinflammatory effects of cell-free hemoglobin and heme compose the clinical picture of hemolytic diseases. The pathophysiological role of plasma Hb, mechanisms of its elimination, and direct and indirect (via NO scavenging deleterious effects of cell-free Hb are presented in detail in this review. Understanding the critical role of hemolysis and cell-free Hb is important in the perspective of treating patients with hemolytic diseases and to design new effective therapies in future.

  10. Dynamic expression of the translational machinery during Bacillus subtilis life cycle at a single cell level.

    Directory of Open Access Journals (Sweden)

    Alex Rosenberg

    Full Text Available The ability of bacteria to responsively regulate the expression of translation components is crucial for rapid adaptation to fluctuating environments. Utilizing Bacillus subtilis (B. subtilis as a model organism, we followed the dynamics of the translational machinery at a single cell resolution during growth and differentiation. By comprehensive monitoring the activity of the major rrn promoters and ribosomal protein production, we revealed diverse dynamics between cells grown in rich and poor medium, with the most prominent dissimilarities exhibited during deep stationary phase. Further, the variability pattern of translational activity varied among the cells, being affected by nutrient availability. We have monitored for the first time translational dynamics during the developmental process of sporulation within the two distinct cellular compartments of forespore and mother-cell. Our study uncovers a transient forespore specific increase in expression of translational components. Finally, the contribution of each rrn promoter throughout the bacterium life cycle was found to be relatively constant, implying that differential expression is not the main purpose for the existence of multiple rrn genes. Instead, we propose that coordination of the rrn operons serves as a strategy to rapidly fine tune translational activities in a synchronized fashion to achieve an optimal translation level for a given condition.

  11. The evolution and practical application of machine translation system (1)

    Science.gov (United States)

    Tominaga, Isao; Sato, Masayuki

    This paper describes a development, practical applicatioin, problem of a system, evaluation of practical system, and development trend of machine translation. Most recent system contains next four problems. 1) the vagueness of a text, 2) a difference of the definition of the terminology between different language, 3) the preparing of a large-scale translation dictionary, 4) the development of a software for the logical inference. Machine translation system is already used practically in many industry fields. However, many problems are not solved. The implementation of an ideal system will be after 15 years. Also, this paper described seven evaluation items detailedly. This English abstract was made by Mu system.

  12. Immunohistochemical localization of translationally controlled tumor protein in the mouse digestive system.

    Science.gov (United States)

    Sheverdin, Vadim; Jung, Jiwon; Lee, Kyunglim

    2013-09-01

    Translationally controlled tumor protein (TCTP) is a housekeeping protein, highly conserved among various species. It plays a major role in cell differentiation, growth, proliferation, apoptosis and carcinogenesis. Studies reported so far on TCTP expression in different digestive organs have not led to any understanding of the role of TCTP in digestion, so we localized TCTP in organs of the mouse digestive system employing immunohistochemical techniques. Translationally controlled tumor protein was found expressed in all organs studied: tongue, salivary glands, esophagus, stomach, small and large intestines, liver and pancreas. The expression of TCTP was found to be predominant in epithelia and neurons of myenteric nerve ganglia; high in serous glands (parotid, submandibular, gastric, intestinal crypts, pancreatic acini) and in neurons of myenteric nerve ganglia, and moderate to low in epithelia. In epithelia, expression of TCTP varied depending on its type and location. In enteric neurons, TCTP was predominantly expressed in the processes. Translationally controlled tumor protein expression in the liver followed porto-central gradient with higher expression in pericentral hepatocytes. In the pancreas, TCTP was expressed in both acini and islet cells. Our finding of nearly universal localization and expression of TCTP in mouse digestive organs points to the hitherto unrecognized functional importance of TCTP in the digestive system and suggests the need for further studies of the possible role of TCTP in the proliferation, secretion, absorption and neural regulation of the digestive process and its importance in the physiology and pathology of digestive process. © 2013 Anatomical Society.

  13. ADAPTING HYBRID MACHINE TRANSLATION TECHNIQUES FOR CROSS-LANGUAGE TEXT RETRIEVAL SYSTEM

    Directory of Open Access Journals (Sweden)

    P. ISWARYA

    2017-03-01

    Full Text Available This research work aims in developing Tamil to English Cross - language text retrieval system using hybrid machine translation approach. The hybrid machine translation system is a combination of rule based and statistical based approaches. In an existing word by word translation system there are lot of issues and some of them are ambiguity, Out-of-Vocabulary words, word inflections, and improper sentence structure. To handle these issues, proposed architecture is designed in such a way that, it contains Improved Part-of-Speech tagger, machine learning based morphological analyser, collocation based word sense disambiguation procedure, semantic dictionary, and tense markers with gerund ending rules, and two pass transliteration algorithm. From the experimental results it is clear that the proposed Tamil Query based translation system achieves significantly better translation quality over existing system, and reaches 95.88% of monolingual performance.

  14. Machine translation with minimal reliance on parallel resources

    CERN Document Server

    Tambouratzis, George; Sofianopoulos, Sokratis

    2017-01-01

    This book provides a unified view on a new methodology for Machine Translation (MT). This methodology extracts information from widely available resources (extensive monolingual corpora) while only assuming the existence of a very limited parallel corpus, thus having a unique starting point to Statistical Machine Translation (SMT). In this book, a detailed presentation of the methodology principles and system architecture is followed by a series of experiments, where the proposed system is compared to other MT systems using a set of established metrics including BLEU, NIST, Meteor and TER. Additionally, a free-to-use code is available, that allows the creation of new MT systems. The volume is addressed to both language professionals and researchers. Prerequisites for the readers are very limited and include a basic understanding of the machine translation as well as of the basic tools of natural language processing.

  15. Scaling up ITO-Free solar cells

    NARCIS (Netherlands)

    Galagan, Y.O.; Coenen, E.W.C.; Zimmermann, B.; Slooff, L.H.; Verhees, W.J.H.; Veenstra, S.C.; Kroon, J.M.; Jørgensen, M.; Krebs, F.C.; Andriessen, H.A.J.M.

    2014-01-01

    Indium-tin-oxide-free (ITO-free) polymer solar cells with composite electrodes containing current-collecting grids and a semitransparent poly(3,4-ethylenedioxythiophene):polystyrenesulfonate) (PEDOT:PSS) conductor are demonstrated. The up-scaling of the length of the solar cell from 1 to 6 cm and

  16. CCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translation

    International Nuclear Information System (INIS)

    Murooka, Thomas T.; Rahbar, Ramtin; Fish, Eleanor N.

    2009-01-01

    The proliferative capacity of cancer cells is regulated by factors intrinsic to cancer cells and by secreted factors in the microenvironment. Here, we investigated the proto-oncogenic potential of the chemokine receptor, CCR5, in MCF-7 breast cancer cell lines. At physiological levels, CCL5, a ligand for CCR5, enhanced MCF-7.CCR5 proliferation. Treatment with the mTOR inhibitor, rapamycin, inhibited this CCL5-inducible proliferation. Because mTOR directly modulates mRNA translation, we investigated whether CCL5 activation of CCR5 leads to increased translation. CCL5 induced the formation of the eIF4F translation initiation complex through an mTOR-dependent process. Indeed, CCL5 initiated mRNA translation, shown by an increase in high-molecular-weight polysomes. Specifically, we show that CCL5 mediated a rapid up-regulation of protein expression for cyclin D1, c-Myc and Dad-1, without affecting their mRNA levels. Taken together, we describe a mechanism by which CCL5 influences translation of rapamycin-sensitive mRNAs, thereby providing CCR5-positive breast cancer cells with a proliferative advantage.

  17. The early career researcher's toolkit:translating tissue engineering, regenerative medicine and cell therapy products

    OpenAIRE

    Rafiq, Qasim A.; Ortega, Ilida; Jenkins, Stuart I.; Wilson, Samantha L.; Patel, Asha K.; Barnes, Amanda L.; Adams, Christopher F.; Delcassian, Derfogail; Smith, David

    2015-01-01

    Although the importance of translation for the development of tissue engineering, regenerative medicine and cell-based therapies is widely recognized, the process of translation is less well understood. This is particularly the case among some early career researchers who may not appreciate the intricacies of translational research or make decisions early in development which later hinders effective translation. Based on our own research and experiences as early career researchers involved in...

  18. Repression of protein translation and mTOR signaling by proteasome inhibitor in colon cancer cells

    International Nuclear Information System (INIS)

    Wu, William Ka Kei; Volta, Viviana; Cho, Chi Hin; Wu, Ya Chun; Li, Hai Tao; Yu, Le; Li, Zhi Jie; Sung, Joseph Jao Yiu

    2009-01-01

    Protein homeostasis relies on a balance between protein synthesis and protein degradation. The ubiquitin-proteasome system is a major catabolic pathway for protein degradation. In this respect, proteasome inhibition has been used therapeutically for the treatment of cancer. Whether inhibition of protein degradation by proteasome inhibitor can repress protein translation via a negative feedback mechanism, however, is unknown. In this study, proteasome inhibitor MG-132 lowered the proliferation of colon cancer cells HT-29 and SW1116. In this connection, MG-132 reduced the phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448 and Ser2481 and the phosphorylation of its downstream targets 4E-BP1 and p70/p85 S6 kinases. Further analysis revealed that MG-132 inhibited protein translation as evidenced by the reductions of 35 S-methionine incorporation and polysomes/80S ratio. Knockdown of raptor, a structural component of mTOR complex 1, mimicked the anti-proliferative effect of MG-132. To conclude, we demonstrate that the inhibition of protein degradation by proteasome inhibitor represses mTOR signaling and protein translation in colon cancer cells.

  19. Machine Translation Using Constraint-Based Synchronous Grammar

    Institute of Scientific and Technical Information of China (English)

    WONG Fai; DONG Mingchui; HU Dongcheng

    2006-01-01

    A synchronous grammar based on the formalism of context-free grammar was developed by generalizing the first component of production that models the source text. Unlike other synchronous grammars,the grammar allows multiple target productions to be associated to a single production rule which can be used to guide a parser to infer different possible translational equivalences for a recognized input string according to the feature constraints of symbols in the pattern. An extended generalized LR algorithm was adapted to the parsing of the proposed formalism to analyze the syntactic structure of a language. The grammar was used as the basis for building a machine translation system for Portuguese to Chinese translation. The empirical results show that the grammar is more expressive when modeling the translational equivalences of parallel texts for machine translation and grammar rewriting applications.

  20. Regenerative endodontics: barriers and strategies for clinical translation.

    Science.gov (United States)

    Mao, Jeremy J; Kim, Sahng G; Zhou, Jian; Ye, Ling; Cho, Shoko; Suzuki, Takahiro; Fu, Susan Y; Yang, Rujing; Zhou, Xuedong

    2012-07-01

    Regenerative endodontics has encountered substantial challenges toward clinical translation. The adoption by the American Dental Association of evoked pulp bleeding in immature permanent teeth is an important step for regenerative endodontics. However, there is no regenerative therapy for most endodontic diseases. Simple recapitulation of cell therapy and tissue engineering strategies that are under development for other organ systems has not led to clinical translation in regeneration endodontics. Recent work using novel biomaterial scaffolds and growth factors that orchestrate the homing of host endogenous cells represents a departure from traditional cell transplantation approaches and may accelerate clinical translation. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Dengue virus-induced regulation of the host cell translational machinery

    Directory of Open Access Journals (Sweden)

    C.S.A. Villas-Bôas

    2009-11-01

    Full Text Available Dengue virus (DV-induced changes in the host cell protein synthesis machinery are not well understood. We investigated the transcriptional changes related to initiation of protein synthesis. The human hepatoma cell line, HepG2, was infected with DV serotype 2 for 1 h at a multiplicity of infection of one. RNA was extracted after 6, 24 and 48 h. Microarray results showed that 36.5% of the translation factors related to initiation of protein synthesis had significant differential expression (Z-score ≥ ±2.0. Confirmation was obtained by quantitative real-time reverse transcription-PCR. Of the genes involved in the activation of mRNA for cap-dependent translation (eIF4 factors, eIF4A, eIF4G1 and eIF4B were up-regulated while the negative regulator of translation eIF4E-BP3 was down-regulated. This activation was transient since at 24 h post-infection levels were not significantly different from control cells. However, at 48 h post-infection, eIF4A, eIF4E, eIF4G1, eIF4G3, eIF4B, and eIF4E-BP3 were down-regulated, suggesting that cap-dependent translation could be inhibited during the progression of infection. To test this hypothesis, phosphorylation of p70S6K and 4E-BP1, which induce cap-dependent protein synthesis, was assayed. Both proteins remained phosphorylated when assayed at 6 h after infection, while infection induced dephosphorylation of p70S6K and 4E-BP1 at 24 and 48 h of infection, respectively. Taken together, these results provide biological evidence suggesting that in HepG2 cells DV sustains activation of the cap-dependent machinery at early stages of infection, but progression of infection switches protein synthesis to a cap-independent process.

  2. Cell-free expression and stable isotope labelling strategies for membrane proteins

    International Nuclear Information System (INIS)

    Sobhanifar, Solmaz; Reckel, Sina; Junge, Friederike; Schwarz, Daniel; Kai, Lei; Karbyshev, Mikhail; Loehr, Frank; Bernhard, Frank; Doetsch, Volker

    2010-01-01

    Membrane proteins are highly underrepresented in the structural data-base and remain one of the most challenging targets for functional and structural elucidation. Their roles in transport and cellular communication, furthermore, often make over-expression toxic to their host, and their hydrophobicity and structural complexity make isolation and reconstitution a complicated task, especially in cases where proteins are targeted to inclusion bodies. The development of cell-free expression systems provides a very interesting alternative to cell-based systems, since it circumvents many problems such as toxicity or necessity for the transportation of the synthesized protein to the membrane, and constitutes the only system that allows for direct production of membrane proteins in membrane-mimetic environments which may be suitable for liquid state NMR measurements. The unique advantages of the cell-free expression system, including strong expression yields as well as the direct incorporation of almost any combination of amino acids with very little metabolic scrambling, has allowed for the development of a wide-array of isotope labelling techniques which facilitate structural investigations of proteins whose spectral congestion and broad line-widths may have earlier rendered them beyond the scope of NMR. Here we explore various labelling strategies in conjunction with cell-free developments, with a particular focus on α-helical transmembrane proteins which benefit most from such methods.

  3. Dynamic imaging of cell-free and cell-associated viral capture in mature dendritic cells.

    Science.gov (United States)

    Izquierdo-Useros, Nuria; Esteban, Olga; Rodriguez-Plata, Maria T; Erkizia, Itziar; Prado, Julia G; Blanco, Julià; García-Parajo, Maria F; Martinez-Picado, Javier

    2011-12-01

    Dendritic cells (DCs) capture human immunodeficiency virus (HIV) through a non-fusogenic mechanism that enables viral transmission to CD4(+) T cells, contributing to in vivo viral dissemination. Although previous studies have provided important clues to cell-free viral capture by mature DCs (mDCs), dynamic and kinetic insight on this process is still missing. Here, we used three-dimensional video microscopy and single-particle tracking approaches to dynamically dissect both cell-free and cell-associated viral capture by living mDCs. We show that cell-free virus capture by mDCs operates through three sequential phases: virus binding through specific determinants expressed in the viral particle, polarized or directional movements toward concrete regions of the cell membrane and virus accumulation in a sac-like structure where trapped viral particles display a hindered diffusive behavior. Moreover, real-time imaging of cell-associated viral transfer to mDCs showed a similar dynamics to that exhibited by cell-free virus endocytosis leading to viral accumulation in compartments. However, cell-associated HIV type 1 transfer to mDCs was the most effective pathway, boosted throughout enhanced cellular contacts with infected CD4(+) T cells. Our results suggest that in lymphoid tissues, mDC viral uptake could occur either by encountering cell-free or cell-associated virus produced by infected cells generating the perfect scenario to promote HIV pathogenesis and impact disease progression. © 2011 John Wiley & Sons A/S.

  4. Development of serum-free media for lepidopteran insect cell lines.

    Science.gov (United States)

    Agathos, Spiros N

    2007-01-01

    Lepidopteran insect cell culture technology has progressed to the point of becoming an essential part of one of the most successful eukaryotic expression systems and is increasingly used industrially on a large scale. Therefore, there is a constant need for convenient and low-cost culture media capable of supporting good insect cell growth and ensuring high yield of baculovirus as well as the strong expression of recombinant proteins. Vertebrate sera or invertebrate hemolymph were essential supplements in first-generation insect cell media. These supplements, however, are cumbersome and expensive for routine large-scale culture; thus, their use is now circumvented by substituting the essential growth factors present in these supplements with serum-free substances. Such non-serum supplements are typically of non-animal origin and include protein hydrolysates, lipid emulsions, and specialized substances (e.g., surfactants and shear damage protecting chemicals). These supplements need to complement the defined, synthetic basal medium to ensure that the fundamental nutritional needs of the cells are satisfied. Although there is a significant number of proprietary serum-free and low-protein or protein-free media on the market, the lack of information concerning their detailed composition is a drawback in their adoption for different applications, including their adaptation to the metabolic and kinetic analysis and monitoring of a given insect cell based bioprocess. Hence, there is wide appeal for formulating serum-free media based on a rational assessment of the metabolic requirements of the lepidopteran cells during both the growth and the production phases. Techniques such as statistical experimental design and genetic algorithms adapted to the cellular behavior and the bioreactor operation mode (batch, fed-batch, or perfusion) permit the formulation of versatile serum- and protein-free media. These techniques are illustrated with recent developments of serum-free

  5. Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma.

    Science.gov (United States)

    Ambrosio, Maria R; Rocca, Bruno J; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T; Tripodi, Sergio A; Tosi, Piero

    2015-01-01

    Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis.

  6. Dry storage systems with free convection air cooling

    International Nuclear Information System (INIS)

    Kioes, S.R.

    1980-01-01

    Several design principles to remove heat from the spent fuel by free air convection are illustrated and described. The key safety considerations were felt to be: loss of coolant is impossible as the passive system uses air as a coolant; overheating is precluded because as the temperatures of the containers rises the coolant flow rate increases; mass of the storage building provides a large heat sink and therefore a rapid temperature rise is impossible; and lack of any active external support requirements makes the cooling process less likely to equipment or operator failures. An example of this type of storage already exists. The German HTGR is operated with spherical graphite fuel elements which are stored in canister and in storage cells. The concept is a double cooling system with free convection inside the cells and heat exchange via two side walls of the cell to the ambient air in the cooling ducts. Technical description of the TN 1300 cask is also presented

  7. Defined Essential 8™ Medium and Vitronectin Efficiently Support Scalable Xeno-Free Expansion of Human Induced Pluripotent Stem Cells in Stirred Microcarrier Culture Systems

    Science.gov (United States)

    Badenes, Sara M.; Fernandes, Tiago G.; Cordeiro, Cláudia S. M.; Boucher, Shayne; Kuninger, David; Vemuri, Mohan C.; Diogo, Maria Margarida; Cabral, Joaquim M. S.

    2016-01-01

    Human induced pluripotent stem (hiPS) cell culture using Essential 8™ xeno-free medium and the defined xeno-free matrix vitronectin was successfully implemented under adherent conditions. This matrix was able to support hiPS cell expansion either in coated plates or on polystyrene-coated microcarriers, while maintaining hiPS cell functionality and pluripotency. Importantly, scale-up of the microcarrier-based system was accomplished using a 50 mL spinner flask, under dynamic conditions. A three-level factorial design experiment was performed to identify optimal conditions in terms of a) initial cell density b) agitation speed, and c) to maximize cell yield in spinner flask cultures. A maximum cell yield of 3.5 is achieved by inoculating 55,000 cells/cm2 of microcarrier surface area and using 44 rpm, which generates a cell density of 1.4x106 cells/mL after 10 days of culture. After dynamic culture, hiPS cells maintained their typical morphology upon re-plating, exhibited pluripotency-associated marker expression as well as tri-lineage differentiation capability, which was verified by inducing their spontaneous differentiation through embryoid body formation, and subsequent downstream differentiation to specific lineages such as neural and cardiac fates was successfully accomplished. In conclusion, a scalable, robust and cost-effective xeno-free culture system was successfully developed and implemented for the scale-up production of hiPS cells. PMID:26999816

  8. Cut-free LK quasi-polynomially simulates resolution

    OpenAIRE

    Arai, Noriko

    1998-01-01

    In this paper, the relative efficiency of two propositional systems is studied: resolution and cut-free LK in DAG. We give an upper bound for translation of resolution refutation to cut-free LK proofs. The best upper bound known was 2.

  9. Extensive gene-specific translational reprogramming in a model of B cell differentiation and Abl-dependent transformation.

    Directory of Open Access Journals (Sweden)

    Jamie G Bates

    Full Text Available To what extent might the regulation of translation contribute to differentiation programs, or to the molecular pathogenesis of cancer? Pre-B cells transformed with the viral oncogene v-Abl are suspended in an immortalized, cycling state that mimics leukemias with a BCR-ABL1 translocation, such as Chronic Myelogenous Leukemia (CML and Acute Lymphoblastic Leukemia (ALL. Inhibition of the oncogenic Abl kinase with imatinib reverses transformation, allowing progression to the next stage of B cell development. We employed a genome-wide polysome profiling assay called Gradient Encoding to investigate the extent and potential contribution of translational regulation to transformation and differentiation in v-Abl-transformed pre-B cells. Over half of the significantly translationally regulated genes did not change significantly at the level of mRNA abundance, revealing biology that might have been missed by measuring changes in transcript abundance alone. We found extensive, gene-specific changes in translation affecting genes with known roles in B cell signaling and differentiation, cancerous transformation, and cytoskeletal reorganization potentially affecting adhesion. These results highlight a major role for gene-specific translational regulation in remodeling the gene expression program in differentiation and malignant transformation.

  10. Free-electron laser system with Raman amplifier outcoupling

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J.

    1988-05-03

    A free-electron laser system is described comprising: a free-electron laser pump beam generator producing a high-power optical output beam in a vacuum environement; a Raman amplifier cell located in the path of the output beam from the pump beam generator; means for generating and introducing a Stokes seed beam into the Raman amplifier cell, a pair of gaseous windows through which the output beam enters and leaves the Raman amplifier cell, each window having a stream of gas moving continuously in a direction generally perpendicular to the beam; and a mirror positioned in the path of the output beam from the Raman amplifier, the mirror functioning to reflect and further direct the output beam, but not the unwanted spectral components.

  11. Novel polysome messages and changes in translational activity appear after induction of adipogenesis in 3T3-L1 cells

    Directory of Open Access Journals (Sweden)

    Fromm-Dornieden Carolin

    2012-03-01

    Full Text Available Abstract Background Control of translation allows for rapid adaptation of the cell to stimuli, rather than the slower transcriptional control. We presume that translational control is an essential process in the control of adipogenesis, especially in the first hours after hormonal stimulation. 3T3-L1 preadipocytes were cultured to confluency and adipogenesis was induced by standard protocols using a hormonal cocktail. Cells were harvested before and 6 hours after hormonal induction. mRNAs attached to ribosomes (polysomal mRNAs were separated from unbound mRNAs by velocity sedimentation. Pools of polysomal and unbound mRNA fractions were analyzed by microarray analysis. Changes in relative abundance in unbound and polysomal mRNA pools were calculated to detect putative changes in translational activity. Changes of expression levels of selected genes were verified by qPCR and Western blotting. Results We identified 43 genes that shifted towards the polysomal fraction (up-regulated and 2 genes that shifted towards free mRNA fraction (down-regulated. Interestingly, we found Ghrelin to be down-regulated. Up-regulated genes comprise factors that are nucleic acid binding (eIF4B, HSF1, IRF6, MYC, POLR2a, RPL18, RPL27a, RPL6, RPL7a, RPS18, RPSa, TSC22d3, form part of ribosomes (RPL18, RPL27a, RPL6, RPL7a, RPS18, RPSa, act on the regulation of translation (eIF4B or transcription (HSF1, IRF6, MYC, TSC22d3. Others act as chaperones (BAG3, HSPA8, HSP90ab1 or in other metabolic or signals transducing processes. Conclusions We conclude that a moderate reorganisation of the functionality of the ribosomal machinery and translational activity are very important steps for growth and gene expression control in the initial phase of adipogenesis.

  12. Nat1 promotes translation of specific proteins that induce differentiation of mouse embryonic stem cells.

    Science.gov (United States)

    Sugiyama, Hayami; Takahashi, Kazutoshi; Yamamoto, Takuya; Iwasaki, Mio; Narita, Megumi; Nakamura, Masahiro; Rand, Tim A; Nakagawa, Masato; Watanabe, Akira; Yamanaka, Shinya

    2017-01-10

    Novel APOBEC1 target 1 (Nat1) (also known as "p97," "Dap5," and "Eif4g2") is a ubiquitously expressed cytoplasmic protein that is homologous to the C-terminal two thirds of eukaryotic translation initiation factor 4G (Eif4g1). We previously showed that Nat1-null mouse embryonic stem cells (mES cells) are resistant to differentiation. In the current study, we found that NAT1 and eIF4G1 share many binding proteins, such as the eukaryotic translation initiation factors eIF3 and eIF4A and ribosomal proteins. However, NAT1 did not bind to eIF4E or poly(A)-binding proteins, which are critical for cap-dependent translation initiation. In contrast, compared with eIF4G1, NAT1 preferentially interacted with eIF2, fragile X mental retardation proteins (FMR), and related proteins and especially with members of the proline-rich and coiled-coil-containing protein 2 (PRRC2) family. We also found that Nat1-null mES cells possess a transcriptional profile similar, although not identical, to the ground state, which is established in wild-type mES cells when treated with inhibitors of the ERK and glycogen synthase kinase 3 (GSK3) signaling pathways. In Nat1-null mES cells, the ERK pathway is suppressed even without inhibitors. Ribosome profiling revealed that translation of mitogen-activated protein kinase kinase kinase 3 (Map3k3) and son of sevenless homolog 1 (Sos1) is suppressed in the absence of Nat1 Forced expression of Map3k3 induced differentiation of Nat1-null mES cells. These data collectively show that Nat1 is involved in the translation of proteins that are required for cell differentiation.

  13. Evaluation of the SYSTRAN Automatic Translation System. Report No. 5.

    Science.gov (United States)

    Chaumier, Jacques; And Others

    The Commission of the European Communities has acquired an automatic translation system (SYSTRAN), which has been put into operation on an experimental basis. The system covers translation of English into French and comprises a dictionary for food science and technology containing 25,000 words or inflections and 4,500 expressions. This report…

  14. Oral epithelial cells are susceptible to cell-free and cell-associated HIV-1 infection in vitro

    International Nuclear Information System (INIS)

    Moore, Jennifer S.; Rahemtulla, Firoz; Kent, Leigh W.; Hall, Stacy D.; Ikizler, Mine R.; Wright, Peter F.; Nguyen, Huan H.; Jackson, Susan

    2003-01-01

    Epithelial cells lining the oral cavity are exposed to HIV-1 through breast-feeding and oral-genital contact. Genital secretions and breast milk of HIV-1-infected subjects contain both cell-free and cell-associated virus. To determine if oral epithelial cells can be infected with HIV-1 we exposed gingival keratinocytes and adenoid epithelial cells to cell-free virus and HIV-1-infected peripheral blood mononuclear cells and monocytes. Using primary isolates we determined that gingival keratinocytes are susceptible to HIV-1 infection via cell-free CD4-independent infection only. R5 but not X4 viral strains were capable of infecting the keratinocytes. Further, infected cells were able to release infectious virus. In addition, primary epithelial cells isolated from adenoids were also susceptible to infection; both cell-free and cell-associated virus infected these cells. These data have potential implications in the transmission of HIV-1 in the oral cavity

  15. The early career researcher's toolkit: translating tissue engineering, regenerative medicine and cell therapy products.

    Science.gov (United States)

    Rafiq, Qasim A; Ortega, Ilida; Jenkins, Stuart I; Wilson, Samantha L; Patel, Asha K; Barnes, Amanda L; Adams, Christopher F; Delcassian, Derfogail; Smith, David

    2015-11-01

    Although the importance of translation for the development of tissue engineering, regenerative medicine and cell-based therapies is widely recognized, the process of translation is less well understood. This is particularly the case among some early career researchers who may not appreciate the intricacies of translational research or make decisions early in development which later hinders effective translation. Based on our own research and experiences as early career researchers involved in tissue engineering and regenerative medicine translation, we discuss common pitfalls associated with translational research, providing practical solutions and important considerations which will aid process and product development. Suggestions range from effective project management, consideration of key manufacturing, clinical and regulatory matters and means of exploiting research for successful commercialization.

  16. β-Cell Generation: Can Rodent Studies Be Translated to Humans?

    Directory of Open Access Journals (Sweden)

    Françoise Carlotti

    2011-01-01

    Full Text Available β-cell replacement by allogeneic islet transplantation is a promising approach for patients with type 1 diabetes, but the shortage of organ donors requires new sources of β cells. Islet regeneration in vivo and generation of β-cells ex vivo followed by transplantation represent attractive therapeutic alternatives to restore the β-cell mass. In this paper, we discuss different postnatal cell types that have been envisaged as potential sources for future β-cell replacement therapy. The ultimate goal being translation to the clinic, a particular attention is given to the discrepancies between findings from studies performed in rodents (both ex vivo on primary cells and in vivo on animal models, when compared with clinical data and studies performed on human cells.

  17. Die Jehovah-getuies se New World Translation – ’n beoordeling

    OpenAIRE

    Stoker, H.G.

    2005-01-01

    This article evaluates the claim by the organisation of Jehovah's Witnesses that their translation of the Bible is the best existing translation, since it was not done from a certain religious tradition. It becomes clear that the translation does not comply with the guidelines for a tradition-free translation set by the translators themselves. These guidelines entail that it should be a modern understandable translation without archaisms; that it should be a correct translation, free of any d...

  18. DEPOT system for the creation of a translator from the COC language

    International Nuclear Information System (INIS)

    Kehnig, Kh.; Lehttsch, Yu.; Nefed'eva, L.S.; Shtiller, G.

    1976-01-01

    Approaches to the creation of specialized languages and their translators are given. The DENOT system for developing translators from various specialized languages is described. Use of the system was made to translate the STS (spectra treatment system) language into the FORTRAN language.The language of STS was realized with help of DEPOT on the BESM-6 computer. The DEROT system installed at various computer provides for simple and rapid transition from one computer to the other

  19. Diffusion is capable of translating anisotropic apoptosis initiation into a homogeneous execution of cell death.

    LENUS (Irish Health Repository)

    Huber, Heinrich J

    2010-01-01

    ABSTRACT: BACKGROUND: Apoptosis is an essential cell death process throughout the entire life span of all metazoans and its deregulation in humans has been implicated in many proliferative and degenerative diseases. Mitochondrial outer membrane permeabilisation (MOMP) and activation of effector caspases are key processes during apoptosis signalling. MOMP can be subject to spatial coordination in human cancer cells, resulting in intracellular waves of cytochrome-c release. To investigate the consequences of these spatial anisotropies in mitochondrial permeabilisation on subsequent effector caspase activation, we devised a mathematical reaction-diffusion model building on a set of partial differential equations. RESULTS: Reaction-diffusion modelling suggested that even if strong spatial anisotropies existed during mitochondrial cytochrome c release, these would be eliminated by free diffusion of the cytosolic proteins that instantiate the apoptosis execution network. Experimentally, rapid sampling of mitochondrial permeabilisation and effector caspase activity in individual HeLa cervical cancer cells confirmed predictions of the reaction-diffusion model and demonstrated that the signalling network of apoptosis execution could efficiently translate spatial anisotropies in mitochondrial permeabilisation into a homogeneous effector caspase response throughout the cytosol. Further systems modelling suggested that a more than 10,000-fold impaired diffusivity would be required to maintain spatial anisotropies as observed during mitochondrial permeabilisation until the time effector caspases become activated. CONCLUSIONS: Multi-protein diffusion efficiently contributes to eliminating spatial asynchronies which are present during the initiation of apoptosis execution and thereby ensures homogeneous apoptosis execution throughout the entire cell body. For previously reported biological scenarios in which effector caspase activity was shown to be targeted selectively to

  20. On Orbit Immuno-Based, Label-Free, White Blood Cell Counting System with MicroElectroMechanical Sensor (MEMS) Technology (OILWBCS-MEMS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences Corporation and partner, Draper Laboratory, propose to develop an on-orbit immuno-based label-free white blood cell counting system using MEMS...

  1. On Orbit Immuno-Based, Label-Free, White Blood Cell Counting System with MicroElectroMechanical Sensor (MEMS) Technology (OILWBCS-MEMS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences Corporation and our partner, Draper Laboratory, propose to develop an on orbit immuno-based, label-free, white blood cell counting system for...

  2. Mam33 promotes cytochrome c oxidase subunit I translation in Saccharomyces cerevisiae mitochondria.

    Science.gov (United States)

    Roloff, Gabrielle A; Henry, Michael F

    2015-08-15

    Three mitochondrial DNA-encoded proteins, Cox1, Cox2, and Cox3, comprise the core of the cytochrome c oxidase complex. Gene-specific translational activators ensure that these respiratory chain subunits are synthesized at the correct location and in stoichiometric ratios to prevent unassembled protein products from generating free oxygen radicals. In the yeast Saccharomyces cerevisiae, the nuclear-encoded proteins Mss51 and Pet309 specifically activate mitochondrial translation of the largest subunit, Cox1. Here we report that Mam33 is a third COX1 translational activator in yeast mitochondria. Mam33 is required for cells to adapt efficiently from fermentation to respiration. In the absence of Mam33, Cox1 translation is impaired, and cells poorly adapt to respiratory conditions because they lack basal fermentative levels of Cox1. © 2015 Roloff and Henry. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Polysome profiling of mAb producing CHO cell lines links translational control of cell proliferation and recombinant mRNA loading onto ribosomes with global and recombinant protein synthesis.

    Science.gov (United States)

    Godfrey, Charlotte L; Mead, Emma J; Daramola, Olalekan; Dunn, Sarah; Hatton, Diane; Field, Ray; Pettman, Gary; Smales, C Mark

    2017-08-01

    mRNA translation is a key process determining growth, proliferation and duration of a Chinese hamster ovary (CHO) cell culture and influences recombinant protein synthesis rate. During bioprocessing, CHO cells can experience stresses leading to reprogramming of translation and decreased global protein synthesis. Here we apply polysome profiling to determine reprogramming and translational capabilities in host and recombinant monoclonal antibody-producing (mAb) CHO cell lines during batch culture. Recombinant cell lines with the fastest cell specific growth rates were those with the highest global translational efficiency. However, total ribosomal capacity, determined from polysome profiles, did not relate to the fastest growing or highest producing mAb cell line, suggesting it is the ability to utilise available machinery that determines protein synthetic capacity. Cell lines with higher cell specific productivities tended to have elevated recombinant heavy chain transcript copy numbers, localised to the translationally active heavy polysomes. The highest titre cell line was that which sustained recombinant protein synthesis and maintained high recombinant transcript copy numbers in polysomes. Investigation of specific endogenous transcripts revealed a number that maintained or reprogrammed into heavy polysomes, identifying targets for potential cell engineering or those with 5' untranslated regions that might be utilised to enhance recombinant transcript translation. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Translation of ARAC computer codes

    International Nuclear Information System (INIS)

    Takahashi, Kunio; Chino, Masamichi; Honma, Toshimitsu; Ishikawa, Hirohiko; Kai, Michiaki; Imai, Kazuhiko; Asai, Kiyoshi

    1982-05-01

    In 1981 we have translated the famous MATHEW, ADPIC and their auxiliary computer codes for CDC 7600 computer version to FACOM M-200's. The codes consist of a part of the Atmospheric Release Advisory Capability (ARAC) system of Lawrence Livermore National Laboratory (LLNL). The MATHEW is a code for three-dimensional wind field analysis. Using observed data, it calculates the mass-consistent wind field of grid cells by a variational method. The ADPIC is a code for three-dimensional concentration prediction of gases and particulates released to the atmosphere. It calculates concentrations in grid cells by the particle-in-cell method. They are written in LLLTRAN, i.e., LLNL Fortran language and are implemented on the CDC 7600 computers of LLNL. In this report, i) the computational methods of the MATHEW/ADPIC and their auxiliary codes, ii) comparisons of the calculated results with our JAERI particle-in-cell, and gaussian plume models, iii) translation procedures from the CDC version to FACOM M-200's, are described. Under the permission of LLNL G-Division, this report is published to keep the track of the translation procedures and to serve our JAERI researchers for comparisons and references of their works. (author)

  5. Translational and rotational dynamic analysis of a superconducting levitation system

    International Nuclear Information System (INIS)

    Cansiz, A; Hull, J R; Gundogdu, Oe

    2005-01-01

    The rotational dynamics of a disc-shaped permanent magnet rotor levitated over a high temperature superconductor was studied experimentally and theoretically. The interaction between the rotor magnet and the superconductor was modelled by assuming the magnet to be a magnetic dipole and the superconductor a diamagnet. In the magnetomechanical analysis of the superconductor part, the frozen image concept was combined with the diamagnetic image, and the damping in the system was neglected. The interaction potential of the system is the combination of magnetic and gravitational potentials. From the dynamical analysis the equations of motion of the permanent magnet were stated as a function of lateral, vertical, tilt, precision and rotating angles. The vibration behaviour and correlation of the vibration of one direction with that of another were determined with a numerical calculation based on the Runge-Kutta method. The various vibrational frequencies identified were vertical, radial, tilt, precession and rotation. The tests performed for experimental verifications were translational and rotational. The permanent magnet was 'spun up' under vacuum conditions to analyse the dynamics of the free 'spin down' behaviour of the permanent magnet

  6. The Effect of Codon Mismatch on the Protein Translation System.

    Directory of Open Access Journals (Sweden)

    Dinglin Zhang

    Full Text Available Incorrect protein translation, caused by codon mismatch, is an important problem of living cells. In this work, a computational model was introduced to quantify the effects of codon mismatch and the model was used to study the protein translation of Saccharomyces cerevisiae. According to simulation results, the probability of codon mismatch will increase when the supply of amino acids is unbalanced, and the longer is the codon sequence, the larger is the probability for incorrect translation to occur, making the synthesis of long peptide chain difficult. By comparing to simulation results without codon mismatch effects taken into account, the fraction of mRNAs with bound ribosome decrease faster along the mRNAs, making the 5' ramp phenomenon more obvious. It was also found in our work that the premature mechanism resulted from codon mismatch can reduce the proportion of incorrect translation when the amino acid supply is extremely unbalanced, which is one possible source of high fidelity protein synthesis after peptidyl transfer.

  7. The Effect of Codon Mismatch on the Protein Translation System.

    Science.gov (United States)

    Zhang, Dinglin; Chen, Danfeng; Cao, Liaoran; Li, Guohui; Cheng, Hong

    2016-01-01

    Incorrect protein translation, caused by codon mismatch, is an important problem of living cells. In this work, a computational model was introduced to quantify the effects of codon mismatch and the model was used to study the protein translation of Saccharomyces cerevisiae. According to simulation results, the probability of codon mismatch will increase when the supply of amino acids is unbalanced, and the longer is the codon sequence, the larger is the probability for incorrect translation to occur, making the synthesis of long peptide chain difficult. By comparing to simulation results without codon mismatch effects taken into account, the fraction of mRNAs with bound ribosome decrease faster along the mRNAs, making the 5' ramp phenomenon more obvious. It was also found in our work that the premature mechanism resulted from codon mismatch can reduce the proportion of incorrect translation when the amino acid supply is extremely unbalanced, which is one possible source of high fidelity protein synthesis after peptidyl transfer.

  8. Overexpression of high molecular weight FGF-2 forms inhibits glioma growth by acting on cell-cycle progression and protein translation

    International Nuclear Information System (INIS)

    Lemiere, Sylvie; Azar, Rania; Belloc, Francis; Guersel, Demir; Pyronnet, Stephane; Bikfalvi, Andreas; Auguste, Patrick

    2008-01-01

    In order to clarify the role of HMW FGF-2 in glioma development and angiogenesis, we over-expressed different human FGF-2 isoforms in C6 rat glioma cell line using a tetracycline-regulated expression system. Phenotypic modifications were analyzed in vitro and compared to untransfected cells or to cells over-expressing 18 kDa FGF-2 or all FGF-2 isoforms. In particular, we demonstrate that HMW FGF-2 has unique features in inhibiting glioma cell proliferation. HMW FGF-2 expressing cells showed a cell-cycle arrest at the G2M, demonstrating a role of HMW FGF-2 in controlling the entry in mitosis. Moreover, hydroxyurea was ineffective in blocking cells at the G1S boundary when HMW FGF-2 was expressed. We also show that the HMW FGF-2 isoforms inhibit 4E-BP1 phosphorylation at critical sites restoring the translation inhibitory activity of 4E-BP1. In vivo, inhibition of tumor growth was observed when cells expressed HMW FGF-2. This indicates that HMW FGF-2 inhibits tumor growth in glioma cells by acting on cell-cycle progression and protein translation

  9. 77 FR 65049 - Privacy Act; System of Records: Translator and Interpreter Records, State-37

    Science.gov (United States)

    2012-10-24

    ... DEPARTMENT OF STATE [Public Notice 8066] Privacy Act; System of Records: Translator and... an existing system of records, Translator and Interpreter Records, State-37, pursuant to the... INFORMATION: The Department of State proposes that the current system will retain the name ``Translator and...

  10. Breaking the language barrier: machine assisted diagnosis using the medical speech translator.

    Science.gov (United States)

    Starlander, Marianne; Bouillon, Pierrette; Rayner, Manny; Chatzichrisafis, Nikos; Hockey, Beth Ann; Isahara, Hitoshi; Kanzaki, Kyoko; Nakao, Yukie; Santaholma, Marianne

    2005-01-01

    In this paper, we describe and evaluate an Open Source medical speech translation system (MedSLT) intended for safety-critical applications. The aim of this system is to eliminate the language barriers in emergency situation. It translates spoken questions from English into French, Japanese and Finnish in three medical subdomains (headache, chest pain and abdominal pain), using a vocabulary of about 250-400 words per sub-domain. The architecture is a compromise between fixed-phrase translation on one hand and complex linguistically-based systems on the other. Recognition is guided by a Context Free Grammar Language Model compiled from a general unification grammar, automatically specialised for the domain. We present an evaluation of this initial prototype that shows the advantages of this grammar-based approach for this particular translation task in term of both reliability and use.

  11. THE DEVELOPMENT OF SCREEN TRANSLATION

    OpenAIRE

    Sang Ayu Isnu Maharani

    2014-01-01

    Screen translations involve oral translation known as dubbing and revoicing. Re-voicing consists of lip-sync dubbing, free commentary, narration and voice over. The written version is called subtitle. Dubbing and subtitling are two preferred mode used in the screen translation even though various numbers of current options are available nowadays. Dubbing commenced to be used in larger countries in Europe meanwhile smaller countries apply subtitling because it is more...

  12. Recipe of the project Common Translation

    Directory of Open Access Journals (Sweden)

    Florencio Cabello Fernández-Delgado

    2013-03-01

    Full Text Available The recipe presented in this paper aims at synthetising metaphorically the methodology deployed in the project Commons Translation, an effort of distributed cooperative translation of books related to free culture and the commons carried out by university lecturers and students, as well as external collaborators. This recipe of what we call “commons-based peer translation” is inspired in the ideas of lots of cooks, and some of those ideas are extracted from the same works we translate. In this sense, two cookery books have been especially helpful: the first one is Yochai Benkler's The Wealth of Networks, a crucial recipe book about the art of commons-based peer production; the second one is Chris Kelty's Two Bits, where the anthropologist analyses thoroughly (and exquisitely the condiment characteristic of the best cooking of free software: recursion. Both works are an inspiration for our translation efforts and at the same time constituye the objects of such translation: the cooking of new communities and knowledges.

  13. Microbial fuel cell as a free-radical scavenging tool

    International Nuclear Information System (INIS)

    Koleva, Ralitza; Yemendzhiev, Hyusein; Nenov, Valentin

    2017-01-01

    Microbial fuel cells (MFCs) are known for their capability to directly convert organic substrates into electricity by the biochemical activity of specific microorganisms. Availability of a proper terminal electron acceptor is crucial for this process. Free radicals, with their one or more unpaired electrons, are extremely reducible and could be considered as electron acceptors in terms of cathodic processes in MFC. During this reduction, free radicals could be transformed in the same manner as they are transformed by antioxidants. The present study investigated this opportunity by utilization of 2,2-diphenyl-1-picrylhydrazyl (150 mmol/dm"3 methanol solution) as a free-radical molecule. During the studied process, over 90% radical neutralization was observed in less than 16 hours. The results obtained demonstrate for the first time the potential of MFC type bioelectrochemical systems to serve as a free-radical scavenging tool and to provide antioxidant and anti-radical activity. In this way, this study opens a completely new field of research and application of bio-electrochemical systems

  14. Why translation counts for mitochondria - retrograde signalling links mitochondrial protein synthesis to mitochondrial biogenesis and cell proliferation.

    Science.gov (United States)

    Battersby, Brendan J; Richter, Uwe

    2013-10-01

    Organelle biosynthesis is a key requirement for cell growth and division. The regulation of mitochondrial biosynthesis exhibits additional layers of complexity compared with that of other organelles because they contain their own genome and dedicated ribosomes. Maintaining these components requires gene expression to be coordinated between the nucleo-cytoplasmic compartment and mitochondria in order to monitor organelle homeostasis and to integrate the responses to the physiological and developmental demands of the cell. Surprisingly, the parameters that are used to monitor or count mitochondrial abundance are not known, nor are the signalling pathways. Inhibiting the translation on mito-ribosomes genetically or with antibiotics can impair cell proliferation and has been attributed to defects in aerobic energy metabolism, even though proliferating cells rely primarily on glycolysis to fuel their metabolic demands. However, a recent study indicates that mitochondrial translational stress and the rescue mechanisms that relieve this stress cause the defect in cell proliferation and occur before any impairment of oxidative phosphorylation. Therefore, the process of mitochondrial translation in itself appears to be an important checkpoint for the monitoring of mitochondrial homeostasis and might have a role in establishing mitochondrial abundance within a cell. This hypothesis article will explore the evidence supporting a role for mito-ribosomes and translation in a mitochondria-counting mechanism.

  15. Integrating cell-free biosyntheses of heme prosthetic group and apoenzyme for the synthesis of functional P450 monooxygenase.

    Science.gov (United States)

    Kwon, Yong-Chan; Oh, In-Seok; Lee, Nahum; Lee, Kyung-Ho; Yoon, Yeo Joon; Lee, Eun Yeol; Kim, Byung-Gee; Kim, Dong-Myung

    2013-04-01

    Harnessing the isolated protein synthesis machinery, cell-free protein synthesis reproduces the cellular process of decoding genetic information in artificially controlled environments. More often than not, however, generation of functional proteins requires more than simple translation of genetic sequences. For instance, many of the industrially important enzymes require non-protein prosthetic groups for biological activity. Herein, we report the complete cell-free biogenesis of a heme prosthetic group and its integration with concurrent apoenzyme synthesis for the production of functional P450 monooxygenase. Step reactions required for the syntheses of apoenzyme and the prosthetic group have been designed so that these two separate pathways take place in the same reaction mixture, being insulated from each other. Combined pathways for the synthesis of functional P450 monooxygenase were then further integrated with in situ assay reactions to enable real-time measurement of enzymatic activity during its synthesis. Copyright © 2012 Wiley Periodicals, Inc.

  16. Cell type-specific translational repression of Cyclin B during meiosis in males.

    Science.gov (United States)

    Baker, Catherine Craig; Gim, Byung Soo; Fuller, Margaret T

    2015-10-01

    The unique cell cycle dynamics of meiosis are controlled by layers of regulation imposed on core mitotic cell cycle machinery components by the program of germ cell development. Although the mechanisms that regulate Cdk1/Cyclin B activity in meiosis in oocytes have been well studied, little is known about the trans-acting factors responsible for developmental control of these factors in male gametogenesis. During meiotic prophase in Drosophila males, transcript for the core cell cycle protein Cyclin B1 (CycB) is expressed in spermatocytes, but the protein does not accumulate in spermatocytes until just before the meiotic divisions. Here, we show that two interacting proteins, Rbp4 and Fest, expressed at the onset of spermatocyte differentiation under control of the developmental program of male gametogenesis, function to direct cell type- and stage-specific repression of translation of the core G2/M cell cycle component cycB during the specialized cell cycle of male meiosis. Binding of Fest to Rbp4 requires a 31-amino acid region within Rbp4. Rbp4 and Fest are required for translational repression of cycB in immature spermatocytes, with Rbp4 binding sequences in a cell type-specific shortened form of the cycB 3' UTR. Finally, we show that Fest is required for proper execution of meiosis I. © 2015. Published by The Company of Biologists Ltd.

  17. Radio-modification by caffeine alone and in combination with phosphorothioates: in vivo and cell-free studies

    International Nuclear Information System (INIS)

    Swenberg, C.E.; Landauer, M.R.; Weiss, J.F.

    1997-01-01

    Caffeine is generally considered to result in radiosensitization by affecting the cell cycle. Data from in vivo studies, however, do not suggest sensitization; caffeine administration did not adversely affect survival of mice irradiated at doses causing hematopoietic injury, or gastrointestinal injury, or when administered in combination with phosphorothioates. For example, caffeine administration (20 mg/kg IP) in combination with the radioprotector WR-151327, S-2-(3-methyl-amino-propyl-amino)propyl-phosphoro-thioic acid. (200 mg/kg IP) resulted in a dose modification factor of 1.54 in comparison to 1.51 for WR-151327 treatment alone. In a cell-free system, the active metabolites of phosphorothiotates, i.e. free thiols and disulfides, appear to mimic polyamines and modulate enzymes involves in DNA structure and synthesis. The free thiol of WR-151327 (WR-151326) actively enhanced topoisomerase I-mediated unwinding of supercoiled plB130 DNA and super-coiling of DNA mediated by DNA gyrase (topoisomerase II). Caffeine, in general, had opposite effects on potoisomerase activities compared to WR-151326. When caffeine was added to the cell-free system together with WR-151326, the stimulatory effects of WR-151326 were suppressed. Further studies are needed in cell-free systems, cells, and animals to elucidate the potential utility of caffeine administration in combination with radiation and other therapeutic agents. (authors)

  18. Radio-modification by caffeine alone and in combination with phosphorothioates: in vivo and cell-free studies

    Energy Technology Data Exchange (ETDEWEB)

    Swenberg, C.E.; Landauer, M.R. [Armed Forces Radiobiology Research Institute, Bethesda (United States); Weiss, J.F. [Office of International Health Programs, Department of Energy, Germantown (United States)

    1997-03-01

    Caffeine is generally considered to result in radiosensitization by affecting the cell cycle. Data from in vivo studies, however, do not suggest sensitization; caffeine administration did not adversely affect survival of mice irradiated at doses causing hematopoietic injury, or gastrointestinal injury, or when administered in combination with phosphorothioates. For example, caffeine administration (20 mg/kg IP) in combination with the radioprotector WR-151327, S-2-(3-methyl-amino-propyl-amino)propyl-phosphoro-thioic acid. (200 mg/kg IP) resulted in a dose modification factor of 1.54 in comparison to 1.51 for WR-151327 treatment alone. In a cell-free system, the active metabolites of phosphorothiotates, i.e. free thiols and disulfides, appear to mimic polyamines and modulate enzymes involves in DNA structure and synthesis. The free thiol of WR-151327 (WR-151326) actively enhanced topoisomerase I-mediated unwinding of supercoiled plB130 DNA and super-coiling of DNA mediated by DNA gyrase (topoisomerase II). Caffeine, in general, had opposite effects on potoisomerase activities compared to WR-151326. When caffeine was added to the cell-free system together with WR-151326, the stimulatory effects of WR-151326 were suppressed. Further studies are needed in cell-free systems, cells, and animals to elucidate the potential utility of caffeine administration in combination with radiation and other therapeutic agents. (authors)

  19. Methodology for the analysis of transcription and translation in transcription-coupled-to-translation systems in vitro.

    Science.gov (United States)

    Castro-Roa, Daniel; Zenkin, Nikolay

    2015-09-15

    The various properties of RNA polymerase (RNAP) complexes with nucleic acids during different stages of transcription involve various types of regulation and different cross-talk with other cellular entities and with fellow RNAP molecules. The interactions of transcriptional apparatus with the translational machinery have been focused mainly in terms of outcomes of gene expression, whereas the study of the physical interaction of the ribosome and the RNAP remains obscure partly due to the lack of a system that allows such observations. In this article we will describe the methodology needed to set up a pure, transcription-coupled-to-translation system in which the translocation of the ribosome can be performed in a step-wise manner towards RNAP allowing investigation of the interactions between the two machineries at colliding and non-colliding distances. In the same time RNAP can be put in various types of states, such as paused, roadblocked, backtracked, etc. The experimental system thus allows studying the effects of the ribosome on different aspects of transcription elongation and the effects by RNAP on translation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Translation of Japanese Noun Compounds at Super-Function Based MT System

    Science.gov (United States)

    Zhao, Xin; Ren, Fuji; Kuroiwa, Shingo

    Noun compounds are frequently encountered construction in nature language processing (NLP), consisting of a sequence of two or more nouns which functions syntactically as one noun. The translation of noun compounds has become a major issue in Machine Translation (MT) due to their frequency of occurrence and high productivity. In our previous studies on Super-Function Based Machine Translation (SFBMT), we have found that noun compounds are very frequently used and difficult to be translated correctly, the overgeneration of noun compounds can be dangerous as it may introduce ambiguity in the translation. In this paper, we discuss the challenges in handling Japanese noun compounds in an SFBMT system, we present a shallow method for translating noun compounds by using a word level translation dictionary and target language monolingual corpus.

  1. Establishing a high yielding streptomyces-based cell-free protein synthesis system.

    Science.gov (United States)

    Li, Jian; Wang, He; Kwon, Yong-Chan; Jewett, Michael C

    2017-06-01

    Cell-free protein synthesis (CFPS) has emerged as a powerful platform for applied biotechnology and synthetic biology, with a range of applications in synthesizing proteins, evolving proteins, and prototyping genetic circuits. To expand the current CFPS repertoire, we report here the development and optimization of a Streptomyces-based CFPS system for the expression of GC-rich genes. By developing a streamlined crude extract preparation protocol and optimizing reaction conditions, we were able to achieve active enhanced green fluorescent protein (EGFP) yields of greater than 50 μg/mL with batch reactions lasting up to 3 h. By adopting a semi-continuous reaction format, the EGFP yield could be increased to 282 ± 8 μg/mL and the reaction time was extended to 48 h. Notably, our extract preparation procedures were robust to multiple Streptomyces lividans and Streptomyces coelicolor strains, although expression yields varied. We show that our optimized Streptomyces lividans system provides benefits when compared to an Escherichia coli-based CFPS system for increasing percent soluble protein expression for four Streptomyces-originated high GC-content genes that are involved in biosynthesis of the nonribosomal peptides tambromycin and valinomycin. Looking forward, we believe that our Streptomyces-based CFPS system will contribute significantly towards efforts to express complex natural product gene clusters (e.g., nonribosomal peptides and polyketides), providing a new avenue for obtaining and studying natural product biosynthesis pathways. Biotechnol. Bioeng. 2017;114: 1343-1353. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. A translator writing system for microcomputer high-level languages and assemblers

    Science.gov (United States)

    Collins, W. R.; Knight, J. C.; Noonan, R. E.

    1980-01-01

    In order to implement high level languages whenever possible, a translator writing system of advanced design was developed. It is intended for routine production use by many programmers working on different projects. As well as a fairly conventional parser generator, it includes a system for the rapid generation of table driven code generators. The parser generator was developed from a prototype version. The translator writing system includes various tools for the management of the source text of a compiler under construction. In addition, it supplies various default source code sections so that its output is always compilable and executable. The system thereby encourages iterative enhancement as a development methodology by ensuring an executable program from the earliest stages of a compiler development project. The translator writing system includes PASCAL/48 compiler, three assemblers, and two compilers for a subset of HAL/S.

  3. IRES-mediated translation of foot-and-mouth disease virus (FMDV) in cultured cells derived from FMDV-susceptible and -insusceptible animals.

    Science.gov (United States)

    Kanda, Takehiro; Ozawa, Makoto; Tsukiyama-Kohara, Kyoko

    2016-03-31

    Foot-and-mouth disease virus (FMDV) possess a positive sense, single stranded RNA genome. Internal ribosomal entry site (IRES) element exists within its 5' untranslated region (5'UTR) of the viral RNA. Translation of the viral RNA is initiated by internal entry of the 40S ribosome within the IRES element. This process is facilitated by cellular factors known as IRES trans-acting factors (ITAFs). Foot-and-mouth disease (FMD) is host-restricted disease for cloven-hoofed animals such as cattle and pigs, but the factors determining the host range have not been identified yet. Although, ITAFs are known to promote IRES-mediated translation, these findings were confirmed only in cells derived from FMDV-insusceptible animals so far. We evaluated and compared the IRES-mediated translation activities among cell lines derived from four different animal species using bicistronic luciferase reporter plasmid, which possesses an FMDV-IRES element between Renilla and Firefly luciferase genes. Furthermore, we analyzed the effect of the cellular factors on IRES-mediated translation by silencing the cellular factors using siRNA in both FMDV-susceptible and -insusceptible animal cells. Our data indicated that IRES-mediated translational activity was not linked to FMDV host range. ITAF45 promoted IRES-mediated translation in all cell lines, and the effects of poly-pyrimidine tract binding protein (PTB) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) were observed only in FMDV-susceptible cells. Thus, PTB and 4E-BP1 may influence the host range of FMDV. IRES-mediated translation activity of FMDV was not predictive of its host range. ITAF45 promoted IRES-mediated translation in all cells, and the effects of PTB and 4E-BP1 were observed only in FMDV-susceptible cells.

  4. SALT [System Analysis Language Translater]: A steady state and dynamic systems code

    International Nuclear Information System (INIS)

    Berry, G.; Geyer, H.

    1983-01-01

    SALT (System Analysis Language Translater) is a lumped parameter approach to system analysis which is totally modular. The modules are all precompiled and only the main program, which is generated by SALT, needs to be compiled for each unique system configuration. This is a departure from other lumped parameter codes where all models are written by MACROS and then compiled for each unique configuration, usually after all of the models are lumped together and sorted to eliminate undetermined variables. The SALT code contains a robust and sophisticated steady-sate finder (non-linear equation solver), optimization capability and enhanced GEAR integration scheme which makes use of sparsity and algebraic constraints. The SALT systems code has been used for various technologies. The code was originally developed for open-cycle magnetohydrodynamic (MHD) systems. It was easily extended to liquid metal MHD systems by simply adding the appropriate models and property libraries. Similarly, the model and property libraries were expanded to handle fuel cell systems, flue gas desulfurization systems, combined cycle gasification systems, fluidized bed combustion systems, ocean thermal energy conversion systems, geothermal systems, nuclear systems, and conventional coal-fired power plants. Obviously, the SALT systems code is extremely flexible to be able to handle all of these diverse systems. At present, the dynamic option has only been used for LMFBR nuclear power plants and geothermal power plants. However, it can easily be extended to other systems and can be used for analyzing control problems. 12 refs

  5. Dengue Virus Selectively Annexes Endoplasmic Reticulum-Associated Translation Machinery as a Strategy for Co-opting Host Cell Protein Synthesis.

    Science.gov (United States)

    Reid, David W; Campos, Rafael K; Child, Jessica R; Zheng, Tianli; Chan, Kitti Wing Ki; Bradrick, Shelton S; Vasudevan, Subhash G; Garcia-Blanco, Mariano A; Nicchitta, Christopher V

    2018-04-01

    A primary question in dengue virus (DENV) biology is the molecular strategy for recruitment of host cell protein synthesis machinery. Here, we combined cell fractionation, ribosome profiling, and transcriptome sequencing (RNA-seq) to investigate the subcellular organization of viral genome translation and replication as well as host cell translation and its response to DENV infection. We report that throughout the viral life cycle, DENV plus- and minus-strand RNAs were highly partitioned to the endoplasmic reticulum (ER), identifying the ER as the primary site of DENV translation. DENV infection was accompanied by an ER compartment-specific remodeling of translation, where ER translation capacity was subverted from host transcripts to DENV plus-strand RNA, particularly at late stages of infection. Remarkably, translation levels and patterns in the cytosol compartment were only modestly affected throughout the experimental time course of infection. Comparisons of ribosome footprinting densities of the DENV plus-strand RNA and host mRNAs indicated that DENV plus-strand RNA was only sparsely loaded with ribosomes. Combined, these observations suggest a mechanism where ER-localized translation and translational control mechanisms, likely cis encoded, are used to repurpose the ER for DENV virion production. Consistent with this view, we found ER-linked cellular stress response pathways commonly associated with viral infection, namely, the interferon response and unfolded protein response, to be only modestly activated during DENV infection. These data support a model where DENV reprograms the ER protein synthesis and processing environment to promote viral survival and replication while minimizing the activation of antiviral and proteostatic stress response pathways. IMPORTANCE DENV, a prominent human health threat with no broadly effective or specific treatment, depends on host cell translation machinery for viral replication, immune evasion, and virion biogenesis. The

  6. PERK Signal-Modulated Protein Translation Promotes the Survivability of Dengue 2 Virus-Infected Mosquito Cells and Extends Viral Replication.

    Science.gov (United States)

    Hou, Jiun-Nan; Chen, Tien-Huang; Chiang, Yi-Hsuan; Peng, Jing-Yun; Yang, Tsong-Han; Cheng, Chih-Chieh; Sofiyatun, Eny; Chiu, Cheng-Hsun; Chiang-Ni, Chuan; Chen, Wei-June

    2017-09-20

    Survival of mosquitoes from dengue virus (DENV) infection is a prerequisite of viral transmission to the host. This study aimed to see how mosquito cells can survive the infection during prosperous replication of the virus. In C6/36 cells, global protein translation was shut down after infection by DENV type 2 (DENV2). However, it returned to a normal level when infected cells were treated with an inhibitor of the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway. Based on a 7-Methylguanosine 5'-triphosphate (m7GTP) pull-down assay, the eukaryotic translation initiation factor 4F (eIF4F) complex was also identified in DENV2-infected cells. This suggests that most mosquito proteins are synthesized via canonical cap-dependent translation. When the PERK signal pathway was inhibited, both accumulation of reactive oxygen species and changes in the mitochondrial membrane potential increased. This suggested that ER stress response was alleviated through the PERK-mediated shutdown of global proteins in DENV2-infected C6/36 cells. In the meantime, the activities of caspases-9 and -3 and the apoptosis-related cell death rate increased in C6/36 cells with PERK inhibition. This reflected that the PERK-signaling pathway is involved in determining cell survival, presumably by reducing DENV2-induced ER stress. Looking at the PERK downstream target, α-subunit of eukaryotic initiation factor 2 (eIF2α), an increased phosphorylation status was only shown in infected C6/36 cells. This indicated that recruitment of ribosome binding to the mRNA 5'-cap structure could have been impaired in cap-dependent translation. It turned out that shutdown of cellular protein translation resulted in a pro-survival effect on mosquito cells in response to DENV2 infection. As synthesis of viral proteins was not affected by the PERK signal pathway, an alternate mode other than cap-dependent translation may be utilized. This finding provides insights into elucidating how the PERK signal

  7. Efficient Embedded Decoding of Neural Network Language Models in a Machine Translation System.

    Science.gov (United States)

    Zamora-Martinez, Francisco; Castro-Bleda, Maria Jose

    2018-02-22

    Neural Network Language Models (NNLMs) are a successful approach to Natural Language Processing tasks, such as Machine Translation. We introduce in this work a Statistical Machine Translation (SMT) system which fully integrates NNLMs in the decoding stage, breaking the traditional approach based on [Formula: see text]-best list rescoring. The neural net models (both language models (LMs) and translation models) are fully coupled in the decoding stage, allowing to more strongly influence the translation quality. Computational issues were solved by using a novel idea based on memorization and smoothing of the softmax constants to avoid their computation, which introduces a trade-off between LM quality and computational cost. These ideas were studied in a machine translation task with different combinations of neural networks used both as translation models and as target LMs, comparing phrase-based and [Formula: see text]-gram-based systems, showing that the integrated approach seems more promising for [Formula: see text]-gram-based systems, even with nonfull-quality NNLMs.

  8. Modulation of translation-initiation in CHO-K1 cells by rapamycin-induced heterodimerization of engineered eIF4G fusion proteins.

    Science.gov (United States)

    Schlatter, Stefan; Senn, Claudia; Fussenegger, Martin

    2003-07-20

    Translation-initiation is a predominant checkpoint in mammalian cells which controls protein synthesis and fine-tunes the flow of information from gene to protein. In eukaryotes, translation-initiation is typically initiated at a 7-methyl-guanylic acid cap posttranscriptionally linked to the 5' end of mRNAs. Alternative cap-independent translation-initiation involves 5' untranslated regions (UTR) known as internal ribosome entry sites, which adopt a particular secondary structure. Translation-initiating ribosome assembly at cap or IRES elements is mediated by a multiprotein complex of which the initiation factor 4F (eIF4F) consisting of eIF4A (helicase), eIF4E (cap-binding protein), and eIF4G is a major constituent. eIF4G is a key target of picornaviral protease 2A, which cleaves this initiation factor into eIF4G(Delta) and (Delta)eIF4G to redirect the cellular translation machinery exclusively to its own IRES-containing transcripts. We have designed a novel translation control system (TCS) for conditional as well as adjustable translation of cap- and IRES-dependent transgene mRNAs in mammalian cells. eIF4G(Delta) and (Delta)eIF4G were fused C- and N-terminally to the FK506-binding protein (FKBP) and the FKBP-rapamycin-binding domain (FRB) of the human FKBP-rapamycin-associated protein (FRAP), respectively. Rapamycin-induced heterodimerization of eIF4G(Delta)-FKBP and FRB-(Delta)eIF4G fusion proteins reconstituted a functional chimeric elongation factor 4G in a dose-dependent manner. Rigorous quantitative expression analysis of cap- and IRES-dependent SEAP- (human placental secreted alkaline phosphatase) and luc- (Photinus pyralis luciferase) encoding reporter constructs confirmed adjustable translation control and revealed increased production of desired proteins in response to dimerization-induced heterologous eIF4G in Chinese hamster ovary (CHO-K1) cells. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 210-225, 2003.

  9. Photovoltaic power generation system free of bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    2015-07-28

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The strings of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.

  10. Translation of mitochondrial proteins in digitonin-treated rat hepatocytes

    International Nuclear Information System (INIS)

    Kuzela, S.; Wielburski, A.; Nelson, B.D.

    1981-01-01

    Although it is now clear that up to 13 peptides may be encoded in mammalian mitochondrial DNA there is little agreement concerning the numbers of stable translation products detectable in these mitochondria. Part of this uncertainty is due to the low rates of labeling of mammalian mitochondrial translations products resulting from the relatively slow growth rates of mammalian cells. Indeed, it is often necessary to isolate mammalian mitochondria in order to analyze their translation products, and the isolation procedures could conceivably lead to artifacts from proteolysis or from the early release of nascent peptides. To circumvent this problem, it would be desirable to have available a mammalian system which combines the advantage of high rates of labeling of mitochondrial proteins with rapid preparation times. The authors report the novel use of digitonin-treated rat hepatocytes, which provide such a system. This preparation, which is complete in <10 min, does not carry out cytosolic protein synthesis, but labels mitochondrial translation products at rates much higher than intact cells or isolated, in vitro labeled mitochondria. (Auth.)

  11. Comparing handheld and hands-free cell phone usage behaviors while driving.

    Science.gov (United States)

    Soccolich, Susan A; Fitch, Gregory M; Perez, Miguel A; Hanowski, Richard J

    2014-01-01

    The goal of this study was to compare cell phone usage behaviors while driving across 3 types of cell phones: handheld (HH) cell phones, portable hands-free (PHF) cell phones, and integrated hands-free (IHF) cell phones. Naturalistic driving data were used to observe HH, PHF, and IHF usage behaviors in participants' own vehicles without any instructions or manipulations by researchers. In addition to naturalistic driving data, drivers provided their personal cell phone call records. Calls during driving were sampled and observed in naturalistically collected video. Calls were reviewed to identify cell phone type used for, and duration of, cell phone subtasks, non-cell phone secondary tasks, and other use behaviors. Drivers in the study self-identified as HH, PHF, or IHF users if they reported using that cell phone type at least 50% of the time. However, each sampled call was classified as HH, PHF, or IHF if the talking/listening subtask was conducted using that cell phone type, without considering the driver's self-reported group. Drivers with PHF or IHF systems also used HH cell phones (IHF group used HH cell phone in 53.2% of the interactions, PHF group used HH cell phone for 55.5% of interactions). Talking/listening on a PHF phone or an IHF phone was significantly longer than talking/listening on an HH phone (P phone call task for HH phones was significantly longer in duration than the end phone call task for PHF and IHF phones. Of all the non-cell phone-related secondary tasks, eating or drinking was found to occur significantly more often during IHF subtasks (0.58%) than in HH subtasks (0.15%). Drivers observed to reach for their cell phone mostly kept their cell phone in the cup holder (36.3%) or in their seat or lap (29.0% of interactions); however, some observed locations may have required drivers to move out of position. Hands-free cell phone technologies reduce the duration of cell phone visual-manual tasks compared to handheld cell phones. However

  12. From translational research to open technology innovation systems.

    Science.gov (United States)

    Savory, Clive; Fortune, Joyce

    2015-01-01

    The purpose of this paper is to question whether the emphasis placed within translational research on a linear model of innovation provides the most effective model for managing health technology innovation. Several alternative perspectives are presented that have potential to enhance the existing model of translational research. A case study is presented of innovation of a clinical decision support system. The paper concludes from the case study that an extending the triple helix model of technology transfer, to one based on a quadruple helix, present a basis for improving the performance translational research. A case study approach is used to help understand development of an innovative technology within a teaching hospital. The case is then used to develop and refine a model of the health technology innovation system. The paper concludes from the case study that existing models of translational research could be refined further through the development of a quadruple helix model of heath technology innovation that encompasses greater emphasis on user-led and open innovation perspectives. The paper presents several implications for future research based on the need to enhance the model of health technology innovation used to guide policy and practice. The quadruple helix model of innovation that is proposed can potentially guide alterations to the existing model of translational research in the healthcare sector. Several suggestions are made for how innovation activity can be better supported at both a policy and operational level. This paper presents a synthesis of the innovation literature applied to a theoretically important case of open innovation in the UK National Health Service. It draws in perspectives from other industrial sectors and applies them specifically to the management and organisation of innovation activities around health technology and the services in which they are embedded.

  13. I-TNT: PHONE NUMBER EXPANSION AND TRANSLATION SYSTEM FOR MANAGING INTERCONNECTIVITY ADDRESSING IN SIP PEERING

    Directory of Open Access Journals (Sweden)

    A. A. KHUDHER

    2015-02-01

    Full Text Available Voice over IP (VoIP subscribers is growing vastly in the recent years due to the ever increase in smartphones, 3G, WiFi, etc. This growth leads the VoIP service providers to peer with each other through Session Initiation Protocol (SIP peering for low/free cost of voice communication. Naturally, this growth is not without challenges, especially in phone addressing. This paper proposes an I-TNT (Infrastructure-Phone Number Translation numbering system to expand the range of the existing E.164 numbers and mapping between private and public number at the edge of the signalling path. As a result, I-TNT numbering system is successfully implemented and able to allocate the expanded phone numbers to end-users in one service provider.

  14. Serum-free media formulations are cell line-specific and require optimization for microcarrier culture.

    Science.gov (United States)

    Tan, Kah Yong; Teo, Kim Leng; Lim, Jessica F Y; Chen, Allen K L; Choolani, Mahesh; Reuveny, Shaul; Chan, Jerry; Oh, Steve Kw

    2015-08-01

    Mesenchymal stromal cells (MSCs) are being investigated as potential cell therapies for many different indications. Current methods of production rely on traditional monolayer culture on tissue-culture plastic, usually with the use of serum-supplemented growth media. However, the monolayer culturing system has scale-up limitations and may not meet the projected hundreds of billions to trillions batches of cells needed for therapy. Furthermore, serum-free medium offers several advantages over serum-supplemented medium, which may have supply and contaminant issues, leading to many serum-free medium formulations being developed. We cultured seven MSC lines in six different serum-free media and compared their growth between monolayer and microcarrier culture. We show that (i) expansion levels of MSCs in serum-free monolayer cultures may not correlate with expansion in serum-containing media; (ii) optimal culture conditions (serum-free media for monolayer or microcarrier culture) differ for each cell line; (iii) growth in static microcarrier culture does not correlate with growth in stirred spinner culture; (iv) and that early cell attachment and spreading onto microcarriers does not necessarily predict efficiency of cell expansion in agitated microcarrier culture. Current serum-free media developed for monolayer cultures of MSCs may not support MSC proliferation in microcarrier cultures. Further optimization in medium composition will be required for microcarrier suspension culture for each cell line. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  15. Protein-free transfection of CHO host cells with an IgG-fusion protein: selection and characterization of stable high producers and comparison to conventionally transfected clones.

    Science.gov (United States)

    Lattenmayer, Christine; Loeschel, Martina; Schriebl, Kornelia; Steinfellner, Willibald; Sterovsky, Thomas; Trummer, Evelyn; Vorauer-Uhl, Karola; Müller, Dethardt; Katinger, Hermann; Kunert, Renate

    2007-04-15

    In order to improve the current techniques of cell cultivation in the absence of serum, we have developed a protein-free transfection protocol for CHO cells, based on the Nucleofector technology. After starting with a heterogeneous pool of primary transfectants which express the fusion protein EpoFc, we isolated single clones and compared them with parallel clones generated by lipofection in serum-dependent cultivation. Our intensive characterization program was based on determination of specific productivity (q(p)) and analysis of genetic parameters. In two nucleofection experiments, transfection with 5 microg of DNA resulted in best productivities of the primary cell pools. After subcloning, the q(p) could be raised up to 27 pg x cells(-1) x day(-1). While the serum-dependent transfectants exhibited specific productivities up to 57 pg x cells(-1) x day(-1) in serum-dependent cultivation, a significant decrease that resulted in the range of q(p) of the protein-free transfectants was observed after switching to protein-free conditions. Investigation of genetic parameters revealed higher mRNA levels and gene copy numbers (GCN) for the protein-free adapted serum-dependent transfectants. Therefore, we assume that problems during protein-free adaptation (PFA) lead to a less efficient translation machinery after serum deprivation. We describe the generation of stable-producing recombinant CHO clones by protein-free transfection of a protein-free adapted host cell line, which reduces the risk of adverse clonal changes after PFA. The main advantage of this approach is the earlier predictability of clone behavior, which makes the generation of production clones by protein-free transfection, a viable and highly efficient strategy for recombinant cell line development. (c) 2006 Wiley Periodicals, Inc.

  16. Optimizing Immobilized Enzyme Performance in Cell-Free Environments to Produce Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Belfort, Georges [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering; Grimaldi, Joseph J. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering

    2015-01-27

    Limitations on biofuel production using cell culture (Escherichia coli, Clostridium, Saccharomyces cerevisiae, brown microalgae, blue-green algae and others) include low product (alcohol) concentrations (≤0.2 vol%) due to feedback inhibition, instability of cells, and lack of economical product recovery processes. To overcome these challenges, an alternate simplified biofuel production scheme was tested based on a cell-free immobilized enzyme system. Using this cell free system, we were able to obtain about 2.6 times higher concentrations of iso-butanol using our non-optimized system as compared with live cell systems. This process involved two steps: (i) converts acid to aldehyde using keto-acid decarboxylase (KdcA), and (ii) produces alcohol from aldehyde using alcohol dehydrogenase (ADH) with a cofactor (NADH) conversion from inexpensive formate using a third enzyme, formate dehydrogenase (FDH). To increase stability and conversion efficiency with easy separations, the first two enzymes were immobilized onto methacrylate resin. Fusion proteins of labile KdcA (fKdcA) were expressed to stabilize the covalently immobilized KdcA. Covalently immobilized ADH exhibited long-term stability and efficient conversion of aldehyde to alcohol over multiple batch cycles without fusions. High conversion rates and low protein leaching were achieved by covalent immobilization of enzymes on methacrylate resin. The complete reaction scheme was demonstrated by immobilizing both ADH and fKdcA and using FDH free in solution. The new system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.5 % (v/v). Further increases in titer will require continuous removal of the isobutanol using our novel brush membrane system that exhibits a 1.5 fold increase in the separation factor of isobutanol from water versus that obtained for commercial silicone rubber membranes. These bio-inspired brush membranes are based on the

  17. Translation techniques for distributed-shared memory programming models

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Douglas James [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The high performance computing community has experienced an explosive improvement in distributed-shared memory hardware. Driven by increasing real-world problem complexity, this explosion has ushered in vast numbers of new systems. Each new system presents new challenges to programmers and application developers. Part of the challenge is adapting to new architectures with new performance characteristics. Different vendors release systems with widely varying architectures that perform differently in different situations. Furthermore, since vendors need only provide a single performance number (total MFLOPS, typically for a single benchmark), they only have strong incentive initially to optimize the API of their choice. Consequently, only a fraction of the available APIs are well optimized on most systems. This causes issues porting and writing maintainable software, let alone issues for programmers burdened with mastering each new API as it is released. Also, programmers wishing to use a certain machine must choose their API based on the underlying hardware instead of the application. This thesis argues that a flexible, extensible translator for distributed-shared memory APIs can help address some of these issues. For example, a translator might take as input code in one API and output an equivalent program in another. Such a translator could provide instant porting for applications to new systems that do not support the application's library or language natively. While open-source APIs are abundant, they do not perform optimally everywhere. A translator would also allow performance testing using a single base code translated to a number of different APIs. Most significantly, this type of translator frees programmers to select the most appropriate API for a given application based on the application (and developer) itself instead of the underlying hardware.

  18. Translational and rotational dynamic analysis of a superconducting levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Cansiz, A [Electric-Electronic Engineering Department, Ataturk University, Erzurum (Turkey); Hull, J R [Energy Technology Division, Argonne National Laboratory, Argonne, IL (United States); Gundogdu, Oe [Mechanical Engineering Department, Ataturk University, Erzurum (Turkey)

    2005-07-01

    The rotational dynamics of a disc-shaped permanent magnet rotor levitated over a high temperature superconductor was studied experimentally and theoretically. The interaction between the rotor magnet and the superconductor was modelled by assuming the magnet to be a magnetic dipole and the superconductor a diamagnet. In the magnetomechanical analysis of the superconductor part, the frozen image concept was combined with the diamagnetic image, and the damping in the system was neglected. The interaction potential of the system is the combination of magnetic and gravitational potentials. From the dynamical analysis the equations of motion of the permanent magnet were stated as a function of lateral, vertical, tilt, precision and rotating angles. The vibration behaviour and correlation of the vibration of one direction with that of another were determined with a numerical calculation based on the Runge-Kutta method. The various vibrational frequencies identified were vertical, radial, tilt, precession and rotation. The tests performed for experimental verifications were translational and rotational. The permanent magnet was 'spun up' under vacuum conditions to analyse the dynamics of the free 'spin down' behaviour of the permanent magnet.

  19. Cell-free nucleic acids as noninvasive biomarkers for colorectal cancer detection

    KAUST Repository

    Mansour, Hicham

    2014-01-01

    Cell-free nucleic acids (CFNA) have been reported by several authors in blood, stool, and urine of patients with colorectal cancer (CRC). These genetic biomarkers can be an indication of neoplastic colorectal epithelial cells, and can thus potentially be used as noninvasive tests for the detection of the disease in CRC patients and monitor their staging, without the need to use heavier and invasive tools. In a number of test-trials, these genetic tests have shown the advantage of non-invasiveness, making them well accepted by most of the patients, without major side effects. They have also shown a promising sensitivity and specificity in the detection of malignant and premalignant neoplasms. Moreover, costs for performing such tests are very low. Several studies reported and confirmed the proof of the principle for these genetic tests for screening, diagnosis, and prognosis; the main challenge of translating this approach from research to clinical laboratory is the validation from large and long-term randomized trials to prove sustainable high sensitivity and specificity. In this paper, we present a review on the noninvasive genetics biomarkers for CRC detection described in the literature and the challenges that can be encountered for validation processes.

  20. Cell-free nucleic acids as noninvasive biomarkers for colorectal cancer detection

    KAUST Repository

    Mansour, Hicham

    2014-08-27

    Cell-free nucleic acids (CFNA) have been reported by several authors in blood, stool, and urine of patients with colorectal cancer (CRC). These genetic biomarkers can be an indication of neoplastic colorectal epithelial cells, and can thus potentially be used as noninvasive tests for the detection of the disease in CRC patients and monitor their staging, without the need to use heavier and invasive tools. In a number of test-trials, these genetic tests have shown the advantage of non-invasiveness, making them well accepted by most of the patients, without major side effects. They have also shown a promising sensitivity and specificity in the detection of malignant and premalignant neoplasms. Moreover, costs for performing such tests are very low. Several studies reported and confirmed the proof of the principle for these genetic tests for screening, diagnosis, and prognosis; the main challenge of translating this approach from research to clinical laboratory is the validation from large and long-term randomized trials to prove sustainable high sensitivity and specificity. In this paper, we present a review on the noninvasive genetics biomarkers for CRC detection described in the literature and the challenges that can be encountered for validation processes.

  1. Modifications to the translational apparatus which affect the regulation of protein synthesis in sea urchin embryos

    International Nuclear Information System (INIS)

    Scalise, F.W.

    1988-01-01

    Protein synthesis can be regulated at a number of cellular levels. I have examined how modifications to specific components of the protein synthetic machinery are involved in regulating the efficiency of initiation of translation during early sea urchin embryogenesis. It is demonstrated that Ca 2+ concentrations exceeding 500 uM cause the inhibition of protein synthesis in cell-free translation lysates prepared from sea urchin embryos. Specific changes in the state of phosphorylation of at least 8 proteins occur during this Ca 2+ -mediated repression of translation. Analysis of these proteins has indicated that, unlike mammalian systems, there is no detectable level of Ca 2+ -dependent phosphorylation of the αsubunit eIF-2. Two of the proteins which do become phosphorylated in response to Ca 2+ are calmodulin and an isoelectric form of sea urchin eIF-4D. In addition, 2 proteins which share similarities with kinases involved in the regulation of protein synthesis in mammalian cells, also become phosphorylated. I have investigated the consequences of changes in eIF-4D during sea urchin embryogenesis because it has been proposed that a polyamine-mediated conversion of lysine to hypusine in this factor may enhance translational activity. It is demonstrated that [ 3 H] spermidine-derived radioactivity is incorporated into a number of proteins when sea urchin embryos are labeled in vivo, and that the pattern of individual proteins that become labeled changes over the course of the first 30 hr of development

  2. Number of infection events per cell during HIV-1 cell-free infection.

    Science.gov (United States)

    Ito, Yusuke; Remion, Azaria; Tauzin, Alexandra; Ejima, Keisuke; Nakaoka, Shinji; Iwasa, Yoh; Iwami, Shingo; Mammano, Fabrizio

    2017-07-26

    HIV-1 accumulates changes in its genome through both recombination and mutation during the course of infection. For recombination to occur, a single cell must be infected by two HIV strains. These coinfection events were experimentally demonstrated to occur more frequently than would be expected for independent infection events and do not follow a random distribution. Previous mathematical modeling approaches demonstrated that differences in target cell susceptibility can explain the non-randomness, both in the context of direct cell-to-cell transmission, and in the context of free virus transmission (Q. Dang et al., Proc. Natl. Acad. Sci. USA 101:632-7, 2004: K. M. Law et al., Cell reports 15:2711-83, 2016). Here, we build on these notions and provide a more detailed and extensive quantitative framework. We developed a novel mathematical model explicitly considering the heterogeneity of target cells and analysed datasets of cell-free HIV-1 single and double infection experiments in cell culture. Particularly, in contrast to the previous studies, we took into account the different susceptibility of the target cells as a continuous distribution. Interestingly, we showed that the number of infection events per cell during cell-free HIV-1 infection follows a negative-binomial distribution, and our model reproduces these datasets.

  3. Setting Global Standards for Stem Cell Research and Clinical Translation: The 2016 ISSCR Guidelines

    Directory of Open Access Journals (Sweden)

    George Q. Daley

    2016-06-01

    Full Text Available The International Society for Stem Cell Research (ISSCR presents its 2016 Guidelines for Stem Cell Research and Clinical Translation (ISSCR, 2016. The 2016 guidelines reflect the revision and extension of two past sets of guidelines (ISSCR, 2006; ISSCR, 2008 to address new and emerging areas of stem cell discovery and application and evolving ethical, social, and policy challenges. These guidelines provide an integrated set of principles and best practices to drive progress in basic, translational, and clinical research. The guidelines demand rigor, oversight, and transparency in all aspects of practice, providing confidence to practitioners and public alike that stem cell science can proceed efficiently and remain responsive to public and patient interests. Here, we highlight key elements and recommendations in the guidelines and summarize the recommendations and deliberations behind them.

  4. Milk—A Nutrient System of Mammalian Evolution Promoting mTORC1-Dependent Translation

    Science.gov (United States)

    Melnik, Bodo C.

    2015-01-01

    Based on own translational research of the biochemical and hormonal effects of cow’s milk consumption in humans, this review presents milk as a signaling system of mammalian evolution that activates the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), the pivotal regulator of translation. Milk, a mammary gland-derived secretory product, is required for species-specific gene-nutrient interactions that promote appropriate growth and development of the newborn mammal. This signaling system is highly conserved and tightly controlled by the lactation genome. Milk is sufficient to activate mTORC1, the crucial regulator of protein, lipid, and nucleotide synthesis orchestrating anabolism, cell growth and proliferation. To fulfill its mTORC1-activating function, milk delivers four key metabolic messengers: (1) essential branched-chain amino acids (BCAAs); (2) glutamine; (3) palmitic acid; and (4) bioactive exosomal microRNAs, which in a synergistical fashion promote mTORC1-dependent translation. In all mammals except Neolithic humans, postnatal activation of mTORC1 by milk intake is restricted to the postnatal lactation period. It is of critical concern that persistent hyperactivation of mTORC1 is associated with aging and the development of age-related disorders such as obesity, type 2 diabetes mellitus, cancer, and neurodegenerative diseases. Persistent mTORC1 activation promotes endoplasmic reticulum (ER) stress and drives an aimless quasi-program, which promotes aging and age-related diseases. PMID:26225961

  5. Milk—A Nutrient System of Mammalian Evolution Promoting mTORC1-Dependent Translation

    Directory of Open Access Journals (Sweden)

    Bodo C. Melnik

    2015-07-01

    Full Text Available Based on own translational research of the biochemical and hormonal effects of cow’s milk consumption in humans, this review presents milk as a signaling system of mammalian evolution that activates the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1, the pivotal regulator of translation. Milk, a mammary gland-derived secretory product, is required for species-specific gene-nutrient interactions that promote appropriate growth and development of the newborn mammal. This signaling system is highly conserved and tightly controlled by the lactation genome. Milk is sufficient to activate mTORC1, the crucial regulator of protein, lipid, and nucleotide synthesis orchestrating anabolism, cell growth and proliferation. To fulfill its mTORC1-activating function, milk delivers four key metabolic messengers: (1 essential branched-chain amino acids (BCAAs; (2 glutamine; (3 palmitic acid; and (4 bioactive exosomal microRNAs, which in a synergistical fashion promote mTORC1-dependent translation. In all mammals except Neolithic humans, postnatal activation of mTORC1 by milk intake is restricted to the postnatal lactation period. It is of critical concern that persistent hyperactivation of mTORC1 is associated with aging and the development of age-related disorders such as obesity, type 2 diabetes mellitus, cancer, and neurodegenerative diseases. Persistent mTORC1 activation promotes endoplasmic reticulum (ER stress and drives an aimless quasi-program, which promotes aging and age-related diseases.

  6. Generation of hematopoietic stem cells from human embryonic stem cells using a defined, stepwise, serum-free, and serum replacement-free monolayer culture method.

    Science.gov (United States)

    Kim, So-Jung; Jung, Ji-Won; Ha, Hye-Yeong; Koo, Soo Kyung; Kim, Eung-Gook; Kim, Jung-Hyun

    2017-03-01

    Embryonic stem cells (ESCs) can be expanded infinitely in vitro and have the potential to differentiate into hematopoietic stem cells (HSCs); thus, they are considered a useful source of cells for HSC production. Although several technical in vitro methods for engineering HSCs from pluripotent stem cells have been developed, clinical application of HSCs engineered from pluripotent stem cells is restricted because of the possibility of xenogeneic contamination resulting from the use of murine materials. Human ESCs (CHA-hES15) were cultured on growth factor-reduced Matrigel-coated dishes in the mTeSR1 serum-free medium. When the cells were 70% confluent, we initiated HSC differentiation by three methods involving (1) knockout serum replacement (KSR), cytokines, TGFb1, EPO, and FLT3L; (2) KSR, cytokines, and bFGF; or (3) cytokines and bFGF. Among the three differentiation methods, the minimal number of cytokines without KSR resulted in the greatest production of HSCs. The optimized method resulted in a higher proportion of CD34 + CD43 + hematopoietic progenitor cells (HPCs) and CD34 + CD45 + HPCs compared to the other methods. In addition, the HSCs showed the potential to differentiate into multiple lineages of hematopoietic cells in vitro . In this study, we optimized a two-step, serum-free, animal protein-free, KSR-free, feeder-free, chemically defined monolayer culture method for generation of HSCs and hematopoietic stem and progenitor cells (HSPCs) from human ESCs.

  7. Measuring strand discontinuity-directed mismatch repair in yeast Saccharomyces cerevisiae by cell-free nuclear extracts.

    Science.gov (United States)

    Yuan, Fenghua; Lai, Fangfang; Gu, Liya; Zhou, Wen; El Hokayem, Jimmy; Zhang, Yanbin

    2009-05-01

    Mismatch repair corrects biosynthetic errors generated during DNA replication, whose deficiency causes a mutator phenotype and directly underlies hereditary non-polyposis colorectal cancer and sporadic cancers. Because of remarkably high conservation of the mismatch repair machinery between the budding yeast (Saccharomyces cerevisiae) and humans, the study of mismatch repair in yeast has provided tremendous insights into the mechanisms of this repair pathway in humans. In addition, yeast cells possess an unbeatable advantage over human cells in terms of the easy genetic manipulation, the availability of whole genome deletion strains, and the relatively low cost for setting up the system. Although many components of eukaryotic mismatch repair have been identified, it remains unclear if additional factors, such as DNA helicase(s) and redundant nuclease(s) besides EXO1, participate in eukaryotic mismatch repair. To facilitate the discovery of novel mismatch repair factors, we developed a straightforward in vitro cell-free repair system. Here, we describe the practical protocols for preparation of yeast cell-free nuclear extracts and DNA mismatch substrates, and the in vitro mismatch repair assay. The validity of the cell-free system was confirmed by the mismatch repair deficient yeast strain (Deltamsh2) and the complementation assay with purified yeast MSH2-MSH6.

  8. Setting global standards for stem cell research and clinical translation : The 2016 ISSCR guidelines

    NARCIS (Netherlands)

    Daley, George Q.; Hyun, Insoo; Apperley, Jane F.; Barker, Roger A.; Benvenisty, Nissim; Bredenoord, Annelien L.; Breuer, Christopher K.; Caulfield, Timothy; Cedars, Marcelle I.; Frey-Vasconcells, Joyce; Heslop, Helen E.; Jin, Ying; Lee, Richard T.; McCabe, Christopher; Munsie, Megan; Murry, Charles E.; Piantadosi, Steven; Rao, Mahendra; Rooke, Heather M.; Sipp, Douglas; Studer, Lorenz; Sugarman, Jeremy; Takahashi, Masayo; Zimmerman, Mark; Kimmelman, Jonathan

    2016-01-01

    The International Society for Stem Cell Research (ISSCR) presents its 2016 Guidelines for Stem Cell Research and Clinical Translation (ISSCR, 2016). The 2016 guidelines reflect the revision and extension of two past sets of guidelines (ISSCR, 2006; ISSCR, 2008) to address new and emerging areas of

  9. Identification and Evaluation of Medical Translator Mobile Applications Using an Adapted APPLICATIONS Scoring System.

    Science.gov (United States)

    Khander, Amrin; Farag, Sara; Chen, Katherine T

    2017-12-22

    With an increasing number of patients requiring translator services, many providers are turning to mobile applications (apps) for assistance. However, there have been no published reviews of medical translator apps. To identify and evaluate medical translator mobile apps using an adapted APPLICATIONS scoring system. A list of apps was identified from the Apple iTunes and Google Play stores, using the search term, "medical translator." Apps not found on two different searches, not in an English-based platform, not used for translation, or not functional after purchase, were excluded. The remaining apps were evaluated using an adapted APPLICATIONS scoring system, which included both objective and subjective criteria. App comprehensiveness was a weighted score defined by the number of non-English languages included in each app relative to the proportion of non-English speakers in the United States. The Apple iTunes and Google Play stores. Medical translator apps identified using the search term "medical translator." Main Outcomes and Measures: Compilation of medical translator apps for provider usage. A total of 524 apps were initially found. After applying the exclusion criteria, 20 (8.2%) apps from the Google Play store and 26 (9.2%) apps from the Apple iTunes store remained for evaluation. The highest scoring apps, Canopy Medical Translator, Universal Doctor Speaker, and Vocre Translate, scored 13.5 out of 18.7 possible points. A large proportion of apps initially found did not function as medical translator apps. Using the APPLICATIONS scoring system, we have identified and evaluated medical translator apps for providers who care for non-English speaking patients.

  10. Temperature and UV light affect the activity of marine cell-free enzymes

    Directory of Open Access Journals (Sweden)

    B. Thomson

    2017-09-01

    Full Text Available Microbial extracellular enzymatic activity (EEA is the rate-limiting step in the degradation of organic matter in the oceans. These extracellular enzymes exist in two forms: cell-bound, which are attached to the microbial cell wall, and cell-free, which are completely free of the cell. Contrary to previous understanding, cell-free extracellular enzymes make up a substantial proportion of the total marine EEA. Little is known about these abundant cell-free enzymes, including what factors control their activity once they are away from their sites (cells. Experiments were run to assess how cell-free enzymes (excluding microbes respond to ultraviolet radiation (UVR and temperature manipulations, previously suggested as potential control factors for these enzymes. The experiments were done with New Zealand coastal waters and the enzymes studied were alkaline phosphatase (APase, β-glucosidase, (BGase, and leucine aminopeptidase (LAPase. Environmentally relevant UVR (i.e. in situ UVR levels measured at our site reduced cell-free enzyme activities by up to 87 % when compared to controls, likely a consequence of photodegradation. This effect of UVR on cell-free enzymes differed depending on the UVR fraction. Ambient levels of UV radiation were shown to reduce the activity of cell-free enzymes for the first time. Elevated temperatures (15 °C increased the activity of cell-free enzymes by up to 53 % when compared to controls (10 °C, likely by enhancing the catalytic activity of the enzymes. Our results suggest the importance of both UVR and temperature as control mechanisms for cell-free enzymes. Given the projected warming ocean environment and the variable UVR light regime, it is possible that there could be major changes in the cell-free EEA and in the enzymes contribution to organic matter remineralization in the future.

  11. Translating English Technical Texts The Role of the Translator and the Challenges of Technological Facilities

    Directory of Open Access Journals (Sweden)

    Dana Rus

    2009-12-01

    Full Text Available The paper approaches the specific case of the technical discourse in the context of a modern world which facilitates and promotes a more and more refined diversification of specialized texts. Created, imposed, promoted and sustained by economic reasons, the translation of technical texts finds new challenges as it is confronted with the opportunities offered by the cyberspace. While being quick, available and free, online instant translation services prove to be essentially inappropriate for the translation of technical texts, where accuracy is a prerogative.

  12. Regulation of translation during cancer progression

    International Nuclear Information System (INIS)

    Petz, M.

    2012-01-01

    Laminin B1 (LamB1) is a main component of the extracellular matrix and is involved in the regulation of tumor cell migration and invasion of during carcinogenesis. Metastasis of carcinoma cells is crucially linked to the process of epithelial to mesenchymal transition (EMT), which allows tumor cells to acquire a more motile phenotype and to dissociate from the epithelial cell cluster of the tumor. Expression profiling of polysome-associated mRNA revealed LamB1 to be translationally upregulated upon EMT of malignant hepatocytes. The enhanced translation of LamB1 in metastatic hepatocytes proved to be regulated by an internal ribosome entry site (IRES) located within the 5’-untranslated region (UTR) of the LamB1 transcript. IRES activity was detected by employing two independent reporter systems and verified by stringent assays for the presence of cryptic promoter or splice sites. The minimal cis-acting IRES sequence of 293 nucleotides that is required for cap-independent translation was localized directly upstream of the start codon. Notably, the IRES trans-acting factor (ITAF) La was identified by RNA affinity purification as regulatory factor that interacts with LamB1 5’-UTR. This interaction was verified by RNA-immunoprecipitation in vivo, which revealed enhanced binding of La to the minimal IRES motif of LamB1 after EMT. Consistently, cytoplasmic levels of La were elevated in EMT-transformed cells and correlated with increased LamB1 protein expression. Furthermore, IRES-driven translation of LamB1 was elevated in the presence of La in vitro. Importantly, the EMT-induced cytoplasmic translocation of La was found to be triggered by platelet derived growth factor (PDGF) that is downstream of transforming growth factor (TGF)-β signaling. Together, these data demonstrate that La interacts with the LamB1 IRES in the cytoplasm, resulting in enhanced cap-independent translation of LamB1 in malignant hepatocytes that have undergone EMT. (author) [de

  13. Machine Translation as a complex system, and the phenomenon of Esperanto

    NARCIS (Netherlands)

    Gobbo, F.

    2015-01-01

    The history of machine translation and the history of Esperanto have long been connected, as they are two different ways to deal with the same problem: the problem of communication across language barriers. Language can be considered a Complex Adaptive System (CAS), and machine translation too. In

  14. THE DEVELOPMENT OF SCREEN TRANSLATION

    Directory of Open Access Journals (Sweden)

    Sang Ayu Isnu Maharani

    2014-05-01

    Full Text Available Screen translations involve oral translation known as dubbing and revoicing. Re-voicing consists of lip-sync dubbing, free commentary, narration and voice over. The written version is called subtitle. Dubbing and subtitling are two preferred mode used in the screen translation even though various numbers of current options are available nowadays. Dubbing commenced to be used in larger countries in Europe meanwhile smaller countries apply subtitling because it is more economical than dubbing. In Indonesia, the use of dubbing as well as subtitle are found.

  15. Essentials of 3D biofabrication and translation

    CERN Document Server

    Atala, Anthony

    2015-01-01

    Essentials of 3D Biofabrication and Translation discusses the techniques that are making bioprinting a viable alternative in regenerative medicine. The book runs the gamut of topics related to the subject, including hydrogels and polymers, nanotechnology, toxicity testing, and drug screening platforms, also introducing current applications in the cardiac, skeletal, and nervous systems, and organ construction. Leaders in clinical medicine and translational science provide a global perspective of the transformative nature of this field, including the use of cells, biomaterials, and macromolecules to create basic building blocks of tissues and organs, all of which are driving the field of biofabrication to transform regenerative medicine. Provides a new and versatile method to fabricating living tissue Discusses future applications for 3D bioprinting technologies, including use in the cardiac, skeletal, and nervous systems, and organ construction Describes current approaches and future challenges for translation...

  16. Controlled rotation and translation of spherical particles or living cells by surface acoustic waves.

    Science.gov (United States)

    Bernard, Ianis; Doinikov, Alexander A; Marmottant, Philippe; Rabaud, David; Poulain, Cédric; Thibault, Pierre

    2017-07-11

    We show experimental evidence of the acoustically-assisted micromanipulation of small objects like solid particles or blood cells, combining rotation and translation, using high frequency surface acoustic waves. This was obtained from the leakage in a microfluidic channel of two standing waves arranged perpendicularly in a LiNbO 3 piezoelectric substrate working at 36.3 MHz. By controlling the phase lag between the emitters, we could, in addition to translation, generate a swirling motion of the emitting surface which, in turn, led to the rapid rotation of spherical polystyrene Janus beads suspended in the channel and of human red and white blood cells up to several rounds per second. We show that these revolution velocities are compatible with a torque caused by the acoustic streaming that develops at the particles surface, like that first described by [F. Busse et al., J. Acoust. Soc. Am., 1981, 69(6), 1634-1638]. This device, based on standard interdigitated transducers (IDTs) adjusted to emit at equal frequencies, opens a way to a large range of applications since it allows the simultaneous control of the translation and rotation of hard objects, as well as the investigation of the response of cells to shear stress.

  17. Generation of thermostable Moloney murine leukemia virus reverse transcriptase variants using site saturation mutagenesis library and cell-free protein expression system.

    Science.gov (United States)

    Katano, Yuta; Li, Tongyang; Baba, Misato; Nakamura, Miyo; Ito, Masaaki; Kojima, Kenji; Takita, Teisuke; Yasukawa, Kiyoshi

    2017-12-01

    We attempted to increase the thermostability of Moloney murine leukemia virus (MMLV) reverse transcriptase (RT). The eight-site saturation mutagenesis libraries corresponding to Ala70-Arg469 in the whole MMLV RT (Thr24-Leu671), in each of which 1 out of 50 amino acid residues was replaced with other amino acid residue, were constructed. Seven-hundred and sixty eight MMLV RT clones were expressed using a cell-free protein expression system, and their thermostabilities were assessed by the temperature of thermal treatment at which they retained cDNA synthesis activity. One clone D200C was selected as the most thermostable variant. The highest temperature of thermal treatment at which D200C exhibited cDNA synthesis activity was 57ºC, which was higher than for WT (53ºC). Our results suggest that a combination of site saturation mutagenesis library and cell-free protein expression system might be useful for generation of thermostable MMLV RT in a short period of time for expression and selection.

  18. Characterization of Phospholipid Mixed Micelles by Translational Diffusion

    International Nuclear Information System (INIS)

    Chou, James J.; Baber, James L.; Bax, Ad

    2004-01-01

    The concentration dependence of the translational self diffusion rate, D s , has been measured for a range of micelle and mixed micelle systems. Use of bipolar gradient pulse pairs in the longitudinal eddy current delay experiment minimizes NOE attenuation and is found critical for optimizing sensitivity of the translational diffusion measurement of macromolecules and aggregates. For low volume fractions Φ (Φ ≤ 15% v/v) of the micelles, experimental measurement of the concentration dependence, combined with use of the D s =D o (1-3.2λΦ) relationship, yields the hydrodynamic volume. For proteins, the hydrodynamic volume, derived from D s at infinitely dilute concentration, is found to be about 2.6 times the unhydrated molecular volume. Using the data collected for hen egg white lysozyme as a reference, diffusion data for dihexanoyl phosphatidylcholine (DHPC) micelles indicate approximately 27 molecules per micelle, and a critical micelle concentration of 14 mM. Differences in translational diffusion rates for detergent and long chain phospholipids in mixed micelles are attributed to rapid exchange between free and micelle-bound detergent. This difference permits determination of the free detergent concentration, which, for a high detergent to long chain phospholipid molar ratio, is found to depend strongly on this ratio. The hydrodynamic volume of DHPC/POPC bicelles, loaded with an M2 channel peptide homolog, derived from translational diffusion, predicts a rotational correlation time that slightly exceeds the value obtained from peptide 15 N relaxation data

  19. Prenatal Cell-Free DNA Screening

    Science.gov (United States)

    ... poses no physical risks for you or your baby. While prenatal cell-free DNA screening might cause anxiety, it might help you avoid the need for more invasive tests, treatment or monitoring during your pregnancy. Keep in mind, however, that ...

  20. Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis

    Science.gov (United States)

    Onouchi, Hitoshi; Nagami, Yoko; Haraguchi, Yuhi; Nakamoto, Mari; Nishimura, Yoshiko; Sakurai, Ryoko; Nagao, Nobuhiro; Kawasaki, Daisuke; Kadokura, Yoshitomo; Naito, Satoshi

    2005-01-01

    Expression of the Arabidopsis CGS1 gene that codes for cystathionine γ-synthase is feedback regulated at the step of mRNA stability in response to S-adenosyl-L-methionine (AdoMet). A short stretch of amino acid sequence, called the MTO1 region, encoded by the first exon of CGS1 itself is involved in this regulation. Here, we demonstrate, using a cell-free system, that AdoMet induces temporal translation elongation arrest at the Ser-94 codon located immediately downstream of the MTO1 region, by analyzing a translation intermediate and performing primer extension inhibition (toeprint) analysis. This translation arrest precedes the formation of a degradation intermediate of CGS1 mRNA, which has its 5′ end points near the 5′ edge of the stalled ribosome. The position of ribosome stalling also suggests that the MTO1 region in nascent peptide resides in the ribosomal exit tunnel when translation elongation is temporarily arrested. In addition to the MTO1 region amino acid sequence, downstream Trp-93 is also important for the AdoMet-induced translation arrest. This is the first example of nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in eukaryotes. Furthermore, our data suggest that the ribosome stalls at the step of translocation rather than at the step of peptidyl transfer. PMID:16027170

  1. Equations of Motion of Free-Floating Spacecraft-Manipulator Systems: An Engineer's Tutorial

    Directory of Open Access Journals (Sweden)

    Markus Wilde

    2018-04-01

    Full Text Available The paper provides a step-by-step tutorial on the Generalized Jacobian Matrix (GJM approach for modeling and simulation of spacecraft-manipulator systems. The General Jacobian Matrix approach describes the motion of the end-effector of an underactuated manipulator system solely by the manipulator joint rotations, with the attitude and position of the base-spacecraft resulting from the manipulator motion. The coupling of the manipulator motion with the base-spacecraft are thus expressed in a generalized inertia matrix and a GJM. The focus of the paper lies on the complete analytic derivation of the generalized equations of motion of a free-floating spacecraft-manipulator system. This includes symbolic analytic expressions for all inertia property matrices of the system, including their time derivatives and joint-angle derivatives, as well as an expression for the generalized Jacobian of a generic point on any link of the spacecraft-manipulator system. The kinematics structure of the spacecraft-manipulator system is described both in terms of direction-cosine matrices and unit quaternions. An additional important contribution of this paper is to propose a new and more detailed definition for the modes of maneuvering of a spacecraft-manipulator. In particular, the two commonly used categories free-flying and free-floating are expanded by the introduction of five categories, namely floating, rotation-floating, rotation-flying, translation-flying, and flying. A fully-symbolic and a partially-symbolic option for the implementation of a numerical simulation model based on the proposed analytic approach are introduced and exemplary simulation results for a planar four-link spacecraft-manipulator system and a spatial six-link spacecraft manipulator system are presented.

  2. Speed Controls in Translating Secretory Proteins in Eukaryotes - an Evolutionary Perspective

    Science.gov (United States)

    Mahlab, Shelly; Linial, Michal

    2014-01-01

    Protein translation is the most expensive operation in dividing cells from bacteria to humans. Therefore, managing the speed and allocation of resources is subject to tight control. From bacteria to humans, clusters of relatively rare tRNA codons at the N′-terminal of mRNAs have been implicated in attenuating the process of ribosome allocation, and consequently the translation rate in a broad range of organisms. The current interpretation of “slow” tRNA codons does not distinguish between protein translations mediated by free- or endoplasmic reticulum (ER)-bound ribosomes. We demonstrate that proteins translated by free- or ER-bound ribosomes exhibit different overall properties in terms of their translation efficiency and speed in yeast, fly, plant, worm, bovine and human. We note that only secreted or membranous proteins with a Signal peptide (SP) are specified by segments of “slow” tRNA at the N′-terminal, followed by abundant codons that are considered “fast.” Such profiles apply to 3100 proteins of the human proteome that are composed of secreted and signal peptide (SP)-assisted membranous proteins. Remarkably, the bulks of the proteins (12,000), or membranous proteins lacking SP (3400), do not have such a pattern. Alternation of “fast” and “slow” codons was found also in proteins that translocate to mitochondria through transit peptides (TP). The differential clusters of tRNA adapted codons is not restricted to the N′-terminal of transcripts. Specifically, Glycosylphosphatidylinositol (GPI)-anchored proteins are unified by clusters of low adapted tRNAs codons at the C′-termini. Furthermore, selection of amino acids types and specific codons was shown as the driving force which establishes the translation demands for the secretory proteome. We postulate that “hard-coded” signals within the secretory proteome assist the steps of protein maturation and folding. Specifically, “speed control” signals for delaying the translation

  3. Netrin-1 Protects Hepatocytes Against Cell Death Through Sustained Translation During the Unfolded Protein Response.

    Science.gov (United States)

    Lahlali, Thomas; Plissonnier, Marie-Laure; Romero-López, Cristina; Michelet, Maud; Ducarouge, Benjamin; Berzal-Herranz, Alfredo; Zoulim, Fabien; Mehlen, Patrick; Parent, Romain

    2016-05-01

    Netrin-1, a multifunctional secreted protein, is up-regulated in cancer and inflammation. Netrin-1 blocks apoptosis induced by the prototypical dependence receptors deleted in colorectal carcinoma and uncoordinated phenotype-5. Although the unfolded protein response (UPR) triggers apoptosis on exposure to stress, it first attempts to restore endoplasmic reticulum homeostasis to foster cell survival. Importantly, UPR is implicated in chronic liver conditions including hepatic oncogenesis. Netrin-1's implication in cell survival on UPR in this context is unknown. Isolation of translational complexes, determination of RNA secondary structures by selective 2'-hydroxyl acylation and primer extension/dimethyl sulfate, bicistronic constructs, as well as conventional cell biology and biochemistry approaches were used on in vitro-grown hepatocytic cells, wild-type, and netrin-1 transgenic mice. HepaRG cells constitute a bona fide model for UPR studies in vitro through adequate activation of the 3 sensors of the UPR (protein kinase RNA-like endoplasmic reticulum kinase (PERK)), inositol requiring enzyme 1α (IRE1α), and activated transcription factor 6 (ATF6). The netrin-1 messenger RNA 5'-end was shown to fold into a complex double pseudoknot and bear E-loop motifs, both of which are representative hallmarks of related internal ribosome entry site regions. Cap-independent translation of netrin 5' untranslated region-driven luciferase was observed on UPR in vitro. Unlike several structurally related oncogenic transcripts (l-myc, c-myc, c-myb), netrin-1 messenger RNA was selected for translation during UPR both in human hepatocytes and in mice livers. Depletion of netrin-1 during UPR induces apoptosis, leading to cell death through an uncoordinated phenotype-5A/C-mediated involvement of protein phosphatase 2A and death-associated protein kinase 1 in vitro and in netrin transgenic mice. UPR-resistant, internal ribosome entry site-driven netrin-1 translation leads to

  4. 47 CFR 74.795 - Digital low power TV and TV translator transmission system facilities.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital low power TV and TV translator... DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.795 Digital low power TV and TV translator transmission system facilities. (a) A digital low power TV or TV translator station shall operate...

  5. Intracellular Kinases Mediate Increased Translation and Secretion of Netrin-1 from Renal Tubular Epithelial Cells

    Science.gov (United States)

    Jayakumar, Calpurnia; Mohamed, Riyaz; Ranganathan, Punithavathi Vilapakkam; Ramesh, Ganesan

    2011-01-01

    Background Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS) to determine the signaling pathways that regulate netrin-1 production in response to injury. Methods and Principal Findings Ischemia reperfusion injury of the kidney was induced in mice by clamping renal pedicle for 30 minutes. Cellular stress was induced in mouse proximal tubular epithelial cell line by treating with pervanadate, cisplatin, lipopolysaccharide, glucose or hypoxia followed by reoxygenation. Netrin-1 expression was quantified by real time RT-PCR and protein production was quantified using an ELISA kit. Cellular stress induced a large increase in netrin-1 production without increase in transcription of netrin-1 gene. Mitogen activated protein kinase, ERK mediates the drug induced netrin-1 mRNA translation increase without altering mRNA stability. Conclusion Our results suggest that netrin-1 expression is suppressed at the translational level and MAPK activation leads to rapid translation of netrin-1 mRNA in the kidney tubular epithelial cells. PMID:22046354

  6. Intracellular kinases mediate increased translation and secretion of netrin-1 from renal tubular epithelial cells.

    Directory of Open Access Journals (Sweden)

    Calpurnia Jayakumar

    Full Text Available BACKGROUND: Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS to determine the signaling pathways that regulate netrin-1 production in response to injury. METHODS AND PRINCIPAL FINDINGS: Ischemia reperfusion injury of the kidney was induced in mice by clamping renal pedicle for 30 minutes. Cellular stress was induced in mouse proximal tubular epithelial cell line by treating with pervanadate, cisplatin, lipopolysaccharide, glucose or hypoxia followed by reoxygenation. Netrin-1 expression was quantified by real time RT-PCR and protein production was quantified using an ELISA kit. Cellular stress induced a large increase in netrin-1 production without increase in transcription of netrin-1 gene. Mitogen activated protein kinase, ERK mediates the drug induced netrin-1 mRNA translation increase without altering mRNA stability. CONCLUSION: Our results suggest that netrin-1 expression is suppressed at the translational level and MAPK activation leads to rapid translation of netrin-1 mRNA in the kidney tubular epithelial cells.

  7. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Science.gov (United States)

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  8. Extracellular Matrix-Dependent Generation of Integration- and Xeno-Free iPS Cells Using a Modified mRNA Transfection Method

    Directory of Open Access Journals (Sweden)

    Kang-In Lee

    2016-01-01

    Full Text Available Human induced pluripotent stem cells (iPS cells hold great promise in the field of regenerative medicine, especially immune-compatible cell therapy. The most important safety-related issues that must be resolved before the clinical use of iPS cells include the generation of “footprint-free” and “xeno-free” iPS cells. In this study, we sought to examine whether an extracellular matrix- (ECM- based xeno-free culture system that we recently established could be used together with a microRNA-enhanced mRNA reprogramming method for the generation of clinically safe iPS cells. The notable features of this method are the use of a xeno-free/feeder-free culture system for the generation and expansion of iPS cells rather than the conventional labor-intensive culture systems using human feeder cells or human feeder-conditioned medium and the enhancement of mRNA-mediated reprogramming via the delivery of microRNAs. Strikingly, we observed the early appearance of iPS cell colonies (~11 days, substantial reprogramming efficiency (~0.2–0.3%, and a high percentage of ESC-like colonies among the total colonies (~87.5%, indicating enhanced kinetics and reprogramming efficiency. Therefore, the combined method established in this study provides a valuable platform for the generation and expansion of clinically safe (i.e., integration- and xeno-free iPS cells, facilitating immune-matched cell therapy in the near future.

  9. Vamos a Traducir los MRV (let's translate the VRM): linguistic and cultural inferences drawn from translating a verbal coding system from English into Spanish.

    Science.gov (United States)

    Caro, I; Stiles, W B

    1997-01-01

    Translating a verbal coding system from one language to another can yield unexpected insights into the process of communication in different cultures. This paper describes the problems and understandings we encountered as we translated a verbal response modes (VRM) taxonomy from English into Spanish. Standard translations of text (e.g., psychotherapeutic dialogue) systematically change the form of certain expressions, so supposedly equivalent expressions had different VRM codings in the two languages. Prominent examples of English forms whose translation had different codes in Spanish included tags, question forms, and "let's" expressions. Insofar as participants use such forms to convey nuances of their relationship, standard translations of counseling or psychotherapy sessions or other conversations may systematically misrepresent the relationship between the participants. The differences revealed in translating the VRM system point to subtle but important differences in the degrees of verbal directiveness and inclusion in English versus Spanish, which converge with other observations of differences in individualism and collectivism between Anglo and Hispanic cultures.

  10. Efficient cell-free production of olfactory receptors: detergent optimization, structure, and ligand binding analyses.

    Science.gov (United States)

    Kaiser, Liselotte; Graveland-Bikker, Johanna; Steuerwald, Dirk; Vanberghem, Mélanie; Herlihy, Kara; Zhang, Shuguang

    2008-10-14

    High-level production of membrane proteins, particularly of G protein-coupled receptors (GPCRs) in heterologous cell systems encounters a number of difficulties from their inherent hydrophobicity in their transmembrane domains, which frequently cause protein aggregation and cytotoxicity and thus reduce the protein yield. Recent advances in cell-free protein synthesis circumvent those problems to produce membrane proteins with a yield sometimes exceeding the cell-based approach. Here, we report cell-free production of a human olfactory receptor 17-4 (hOR17-4) using the wheat germ extract. Using the simple method, we also successful produced two additional olfactory receptors. To obtain soluble olfactory receptors and to increase yield, we directly added different detergents in varying concentrations to the cell-free reaction. To identify a purification buffer system that maintained the receptor in a nonaggregated form, we developed a method that uses small-volume size-exclusion column chromatography combined with rapid and sensitive dot-blot detection. Different buffer components including salt concentration, various detergents and detergent concentration, and reducing agent and its concentrations were evaluated for their ability to maintain the cell-free produced protein stable and nonaggregated. The purified olfactory receptor displays a typical a alpha-helical CD spectrum. Surface plasmon resonance measurements were used to show binding of a known ligand undecanal to hOR17-4. Our approach to produce a high yield of purified olfactory receptor is a milestone toward obtaining a large quantity of olfactory receptors for designing bionic sensors. Furthermore, this simple approach may be broadly useful not only for other classes of GPCRs but also for other membrane proteins.

  11. Cell-free protein synthesis in micro compartments: building a minimal cell from biobricks.

    Science.gov (United States)

    Jia, Haiyang; Heymann, Michael; Bernhard, Frank; Schwille, Petra; Kai, Lei

    2017-10-25

    The construction of a minimal cell that exhibits the essential characteristics of life is a great challenge in the field of synthetic biology. Assembling a minimal cell requires multidisciplinary expertise from physics, chemistry and biology. Scientists from different backgrounds tend to define the essence of 'life' differently and have thus proposed different artificial cell models possessing one or several essential features of living cells. Using the tools and methods of molecular biology, the bottom-up engineering of a minimal cell appears in reach. However, several challenges still remain. In particular, the integration of individual sub-systems that is required to achieve a self-reproducing cell model presents a complex optimization challenge. For example, multiple self-organisation and self-assembly processes have to be carefully tuned. We review advances and developments of new methods and techniques, for cell-free protein synthesis as well as micro-fabrication, for their potential to resolve challenges and to accelerate the development of minimal cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Netrin-1 Protects Hepatocytes Against Cell Death Through Sustained Translation During the Unfolded Protein ResponseSummary

    Directory of Open Access Journals (Sweden)

    Thomas Lahlali

    2016-05-01

    Full Text Available Background & Aims: Netrin-1, a multifunctional secreted protein, is up-regulated in cancer and inflammation. Netrin-1 blocks apoptosis induced by the prototypical dependence receptors deleted in colorectal carcinoma and uncoordinated phenotype-5. Although the unfolded protein response (UPR triggers apoptosis on exposure to stress, it first attempts to restore endoplasmic reticulum homeostasis to foster cell survival. Importantly, UPR is implicated in chronic liver conditions including hepatic oncogenesis. Netrin-1's implication in cell survival on UPR in this context is unknown. Methods: Isolation of translational complexes, determination of RNA secondary structures by selective 2’-hydroxyl acylation and primer extension/dimethyl sulfate, bicistronic constructs, as well as conventional cell biology and biochemistry approaches were used on in vitro–grown hepatocytic cells, wild-type, and netrin-1 transgenic mice. Results: HepaRG cells constitute a bona fide model for UPR studies in vitro through adequate activation of the 3 sensors of the UPR (protein kinase RNA–like endoplasmic reticulum kinase (PERK, inositol requiring enzyme 1α (IRE1α, and activated transcription factor 6 (ATF6. The netrin-1 messenger RNA 5'-end was shown to fold into a complex double pseudoknot and bear E-loop motifs, both of which are representative hallmarks of related internal ribosome entry site regions. Cap-independent translation of netrin 5' untranslated region–driven luciferase was observed on UPR in vitro. Unlike several structurally related oncogenic transcripts (l-myc, c-myc, c-myb, netrin-1 messenger RNA was selected for translation during UPR both in human hepatocytes and in mice livers. Depletion of netrin-1 during UPR induces apoptosis, leading to cell death through an uncoordinated phenotype-5A/C–mediated involvement of protein phosphatase 2A and death-associated protein kinase 1 in vitro and in netrin

  13. Revisiting corpus creation and analysis tools for translation tasks

    Directory of Open Access Journals (Sweden)

    Claudio Fantinuoli

    2016-06-01

    Full Text Available Many translation scholars have proposed the use of corpora to allow professional translators to produce high quality texts which read like originals. Yet, the diffusion of this methodology has been modest, one reason being the fact that software for corpora analyses have been developed with the linguist in mind, which means that they are generally complex and cumbersome, offering many advanced features, but lacking the level of usability and the specific features that meet translators’ needs. To overcome this shortcoming, we have developed TranslatorBank, a free corpus creation and analysis tool designed for translation tasks. TranslatorBank supports the creation of specialized monolingual corpora from the web; it includes a concordancer with a query system similar to a search engine; it uses basic statistical measures to indicate the reliability of results; it accesses the original documents directly for more contextual information; it includes a statistical and linguistic terminology extraction utility to extract the relevant terminology of the domain and the typical collocations of a given term. Designed to be easy and intuitive to use, the tool may help translation students as well as professionals to increase their translation quality by adhering to the specific linguistic variety of the target text corpus.

  14. Revisiting corpus creation and analysis tools for translation tasks

    Directory of Open Access Journals (Sweden)

    Claudio Fantinuoli

    2016-04-01

    Many translation scholars have proposed the use of corpora to allow professional translators to produce high quality texts which read like originals. Yet, the diffusion of this methodology has been modest, one reason being the fact that software for corpora analyses have been developed with the linguist in mind, which means that they are generally complex and cumbersome, offering many advanced features, but lacking the level of usability and the specific features that meet translators’ needs. To overcome this shortcoming, we have developed TranslatorBank, a free corpus creation and analysis tool designed for translation tasks. TranslatorBank supports the creation of specialized monolingual corpora from the web; it includes a concordancer with a query system similar to a search engine; it uses basic statistical measures to indicate the reliability of results; it accesses the original documents directly for more contextual information; it includes a statistical and linguistic terminology extraction utility to extract the relevant terminology of the domain and the typical collocations of a given term. Designed to be easy and intuitive to use, the tool may help translation students as well as professionals to increase their translation quality by adhering to the specific linguistic variety of the target text corpus.

  15. Optimization of a serum-free culture medium for mouse embryonic stem cells using design of experiments (DoE) methodology.

    Science.gov (United States)

    Knöspel, Fanny; Schindler, Rudolf K; Lübberstedt, Marc; Petzolt, Stephanie; Gerlach, Jörg C; Zeilinger, Katrin

    2010-12-01

    The in vitro culture behaviour of embryonic stem cells (ESC) is strongly influenced by the culture conditions. Current culture media for expansion of ESC contain some undefined substances. Considering potential clinical translation work with such cells, the use of defined media is desirable. We have used Design of Experiments (DoE) methods to investigate the composition of a serum-free chemically defined culture medium for expansion of mouse embryonic stem cells (mESC). Factor screening analysis according to Plackett-Burman revealed that insulin and leukaemia inhibitory factor (LIF) had a significant positive influence on the proliferation activity of the cells, while zinc and L: -cysteine reduced the cell growth. Further analysis using minimum run resolution IV (MinRes IV) design indicates that following factor adjustment LIF becomes the main factor for the survival and proliferation of mESC. In conclusion, DoE screening assays are applicable to develop and to refine culture media for stem cells and could also be employed to optimize culture media for human embryonic stem cells (hESC).

  16. Androgen signaling promotes translation of TMEFF2 in prostate cancer cells via phosphorylation of the α subunit of the translation initiation factor 2.

    Directory of Open Access Journals (Sweden)

    Ryan F Overcash

    Full Text Available The type I transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2, is expressed mainly in brain and prostate. Expression of TMEFF2 is deregulated in prostate cancer, suggesting a role in this disease, but the molecular mechanism(s involved in this effect are not clear. Although androgens promote tmeff2 transcription, androgen delivery to castrated animals carrying CWR22 xenografts increases TMEFF2 protein levels in the absence of mRNA changes, suggesting that TMEFF2 may also be post-transcriptionally regulated. Here we show that translation of TMEFF2 is regulated by androgens. Addition of physiological concentrations of dihydrotestosterone (DHT to prostate cancer cell lines increases translation of endogenous TMEFF2 or transfected TMEFF2-Luciferase fusions, and this effect requires the presence of upstream open reading frames (uORFs in the 5'-untranslated region (5'-UTR of TMEFF2. Using chemical and siRNA inhibition of the androgen receptor (AR, we show that the androgen effect on TMEFF2 translation is mediated by the AR. Importantly, DHT also promotes phosphorylation of the α subunit of the translation initiation factor 2 (eIF2α in an AR-dependent manner, paralleling the effect on TMEFF2 translation. Moreover, endoplasmic reticulum (ER stress conditions, which promote eIF2α phosphorylation, also stimulate TMEFF2 translation. These results indicate that androgen signaling promotes eIF2α phosphorylation and subsequent translation of TMEFF2 via a mechanism that requires uORFs in the 5'-UTR of TMEFF2.

  17. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology

    Directory of Open Access Journals (Sweden)

    Lihong Jiang

    2018-06-01

    Full Text Available Advances in metabolic engineering and synthetic biology have facilitated the manufacturing of many valuable-added compounds and commodity chemicals using microbial cell factories in the past decade. However, due to complexity of cellular metabolism, the optimization of metabolic pathways for maximal production represents a grand challenge and an unavoidable barrier for metabolic engineering. Recently, cell-free protein synthesis system (CFPS has been emerging as an enabling alternative to address challenges in biomanufacturing. This review summarizes the recent progresses of CFPS in rapid prototyping of biosynthetic pathways and genetic circuits (biosensors to speed up design-build-test (DBT cycles of metabolic engineering and synthetic biology. Keywords: Cell-free protein synthesis, Metabolic pathway optimization, Genetic circuits, Metabolic engineering, Synthetic biology

  18. Post-translational regulation enables robust p53 regulation.

    Science.gov (United States)

    Shin, Yong-Jun; Chen, Kai-Yuan; Sayed, Ali H; Hencey, Brandon; Shen, Xiling

    2013-08-30

    The tumor suppressor protein p53 plays important roles in DNA damage repair, cell cycle arrest and apoptosis. Due to its critical functions, the level of p53 is tightly regulated by a negative feedback mechanism to increase its tolerance towards fluctuations and disturbances. Interestingly, the p53 level is controlled by post-translational regulation rather than transcriptional regulation in this feedback mechanism. We analyzed the dynamics of this feedback to understand whether post-translational regulation provides any advantages over transcriptional regulation in regard to disturbance rejection. When a disturbance happens, even though negative feedback reduces the steady-state error, it can cause a system to become less stable and transiently overshoots, which may erroneously trigger downstream reactions. Therefore, the system needs to balance the trade-off between steady-state and transient errors. Feedback control and adaptive estimation theories revealed that post-translational regulation achieves a better trade-off than transcriptional regulation, contributing to a more steady level of p53 under the influence of noise and disturbances. Furthermore, post-translational regulation enables cells to respond more promptly to stress conditions with consistent amplitude. However, for better disturbance rejection, the p53- Mdm2 negative feedback has to pay a price of higher stochastic noise. Our analyses suggest that the p53-Mdm2 feedback favors regulatory mechanisms that provide the optimal trade-offs for dynamic control.

  19. Characterization of a translation inhibitory protein from Luffa aegyptiaca.

    Science.gov (United States)

    Ramakrishnan, S; Enghlid, J J; Bryant, H L; Xu, F J

    1989-04-28

    A protein with a molecular weight of about 30,000 was purified from the seeds of Luffa aegyptiaca. This protein inhibited cell free translation at pM concentrations. In spite of functional similarity to other ribosomal inhibitory proteins, the NH2-terminal analysis did not show any significant homology. Competitive inhibition studies indicate no immunological crossreactivity between the inhibitory protein from Luffa aegyptiaca, pokeweed antiviral protein (PAP) and recombinant ricin A chain. Chemical linkage of the protein to a monoclonal antibody reactive to transferrin receptor resulted in a highly cytotoxic conjugate.

  20. Cell-free synthesis of functional antibody fragments to provide a structural basis for antibody-antigen interaction.

    Directory of Open Access Journals (Sweden)

    Takayoshi Matsuda

    Full Text Available Growing numbers of therapeutic antibodies offer excellent treatment strategies for many diseases. Elucidation of the interaction between a potential therapeutic antibody and its target protein by structural analysis reveals the mechanism of action and offers useful information for developing rational antibody designs for improved affinity. Here, we developed a rapid, high-yield cell-free system using dialysis mode to synthesize antibody fragments for the structural analysis of antibody-antigen complexes. Optimal synthesis conditions of fragments (Fv and Fab of the anti-EGFR antibody 059-152 were rapidly determined in a day by using a 30-μl-scale unit. The concentration of supplemented disulfide isomerase, DsbC, was critical to obtaining soluble antibody fragments. The optimal conditions were directly applicable to a 9-ml-scale reaction, with linear scalable yields of more than 1 mg/ml. Analyses of purified 059-152-Fv and Fab showed that the cell-free synthesized antibody fragments were disulfide-bridged, with antigen binding activity comparable to that of clinical antibodies. Examination of the crystal structure of cell-free synthesized 059-152-Fv in complex with the extracellular domain of human EGFR revealed that the epitope of 059-152-Fv broadly covers the EGF binding surface on domain III, including residues that formed critical hydrogen bonds with EGF (Asp355EGFR, Gln384EGFR, H409EGFR, and Lys465EGFR, so that the antibody inhibited EGFR activation. We further demonstrated the application of the cell-free system to site-specific integration of non-natural amino acids for antibody engineering, which would expand the availability of therapeutic antibodies based on structural information and rational design. This cell-free system could be an ideal antibody-fragment production platform for functional and structural analysis of potential therapeutic antibodies and for engineered antibody development.

  1. Parametric study on the advantages of weather-predicted control algorithm of free cooling ventilation system

    International Nuclear Information System (INIS)

    Medved, Sašo; Babnik, Miha; Vidrih, Boris; Arkar, Ciril

    2014-01-01

    Predicted climate changes and the increased intensity of urban heat islands, as well as population aging, will increase the energy demand for the cooling of buildings in the future. However, the energy demand for cooling can be efficiently reduced by low-exergy free-cooling systems, which use natural processes, like evaporative cooling or the environmental cold of ambient air during night-time ventilation for the cooling of buildings. Unlike mechanical cooling systems, the energy for the operation of free-cooling system is needed only for the transport of the cold from the environment into the building. Because the natural cold potential is time dependent, the efficiency of free-cooling systems could be improved by introducing a weather forecast into the algorithm for the controlling. In the article, a numerical algorithm for the optimization of the operation of free-cooling systems with night-time ventilation is presented and validated on a test cell with different thermal storage capacities and during different ambient conditions. As a case study, the advantage of weather-predicted controlling is presented for a summer week for typical office room. The results show the necessity of the weather-predicted controlling of free-cooling ventilation systems for achieving the highest overall energy efficiency of such systems in comparison to mechanical cooling, better indoor comfort conditions and a decrease in the primary energy needed for cooling of the buildings. - Highlights: • Energy demand for cooling will increase due to climate changes and urban heat island • Free cooling could significantly reduce energy demand for cooling of the buildings. • Free cooling is more effective if weather prediction is included in operation control. • Weather predicted free cooling operation algorithm was validated on test cell. • Advantages of free-cooling on mechanical cooling is shown with different indicators

  2. Translation of LINE-1 DNA elements in vitro and in human cells

    International Nuclear Information System (INIS)

    Leibold, D.M.; Swergold, G.D.; Thayer, R.E.; Singer, M.F.; Fanning, T.G.; Dombroski, B.A.

    1990-01-01

    The LINE-1(L1) family of interspread DNA sequences found throughout the human genome (L1 Homo sapiens, L1Hs) includes active transposable elements. Current models for the mechanism of transposition involve reverse transcription of an RNA intermediate and utilization of element-encoded proteins. The authors report that an antiserum against the polypeptide encoded by the L1Hs 5' open reading frame (ORF1) detects, in human cells, an endogenous ORF1 protein as well as the ORG1 product of an appropriate transfecting recombinant vector. The endogenous polypeptide is most abundant in teratocarcinoma and choriocarcinoma cells, among those cell lines tested; it appears to be a single species of ∼38 kDa. In contrast, RNAs synthesized in vitro from cDNAs representing full-length, polyadenylylated cytoplasmic L1Hs RNA yield, upon in vitro translation, ORF1 products of slightly different sizes. This is consistent with the fact that the various cDNAs are different and represent transcription of different genomic L1Hs elements. In vitro studies additionally suggest that translation of ORF1 is initiated at the first AUG codon. Finally, in no case was an ORF1-ORF2 fusion protein detected

  3. Proliferation of NS0 cells in protein-free medium: the role of cell-derived proteins, known growth factors and cellular receptors.

    Science.gov (United States)

    Spens, Erika; Häggström, Lena

    2009-05-20

    NS0 cells proliferate without external supply of growth factors in protein-free media. We hypothesize that the cells produce their own factors to support proliferation. Understanding the mechanisms behind this autocrine regulation of proliferation may open for the novel approaches to improve animal cell processes. The following proteins were identified in NS0 conditioned medium (CM): cyclophilin A, cyclophilin B (CypB), cystatin C, D-dopachrome tautomerase, IL-25, isopentenyl-diphosphate delta-isomerase, macrophage migration inhibitory factor (MIF), beta(2)-microglobulin, Niemann pick type C2, secretory leukocyte protease inhibitor, thioredoxin-1, TNF-alpha, tumour protein translationally controlled 1 and ubiquitin. Further, cDNA microarray analysis indicated that the genes for IL-11, TNF receptor 6, TGF-beta receptor 1 and the IFN-gamma receptor were transcribed. CypB, IFN-alpha/beta/gamma, IL-11, IL-25, MIF, TGF-beta and TNF-alpha as well as the known growth factors EGF, IGF-I/II, IL-6, leukaemia inhibitory factor and oncostatin M (OSM) were excluded as involved in autocrine regulation of NS0 cell proliferation. The receptors for TGF-beta, IGF and OSM are however present in NS0 cell membranes since TGF-beta(1) caused cell death, and IGF-I/II and OSM improved cell growth. Even though no ligand was found, the receptor subunit gp130, active in signal transduction of the IL-6 like proteins, was shown to be essential for NS0 cells as demonstrated by siRNA gene silencing.

  4. Human Immunodeficiency Virus type-1 reverse transcriptase exists as post-translationally modified forms in virions and cells

    Directory of Open Access Journals (Sweden)

    Warrilow David

    2008-12-01

    Full Text Available Abstract Background HIV-1 reverse transcriptase (RT is a heterodimer composed of p66 and p51 subunits and is responsible for reverse transcription of the viral RNA genome into DNA. RT can be post-translationally modified in vitro which may be an important mechanism for regulating RT activity. Here we report detection of different p66 and p51 RT isoforms by 2D gel electrophoresis in virions and infected cells. Results Major isoforms of the p66 and p51 RT subunits were observed, with pI's of 8.44 and 8.31 respectively (p668.44 and p518.31. The same major isoforms were present in virions, virus-infected cell lysates and intracellular reverse transcription complexes (RTCs, and their presence in RTCs suggested that these are likely to be the forms that function in reverse transcription. Several minor RT isoforms were also observed. The observed pIs of the RT isoforms differed from the pI of theoretical unmodified RT (p668.53 and p518.60, suggesting that most of the RT protein in virions and cells is post-translationally modified. The modifications of p668.44 and p518.31 differed from each other indicating selective modification of the different RT subunits. The susceptibility of RT isoforms to phosphatase treatment suggested that some of these modifications were due to phosphorylation. Dephosphorylation, however, had no effect on in vitro RT activity associated with virions, infected cells or RTCs suggesting that the phospho-isoforms do not make a major contribution to RT activity in an in vitro assay. Conclusion The same major isoform of p66 and p51 RT is found in virions, infected cells and RTC's and both of these subunits are post-translationally modified. This post-translational modification of RT may be important for the function of RT inside the cell.

  5. Translating scientific advances to improved outcomes for children with sickle cell disease: a timely opportunity.

    Science.gov (United States)

    Raphael, Jean L; Kavanagh, Patricia L; Wang, C Jason; Mueller, Brigitta U; Zuckerman, Barry

    2011-07-01

    Despite the recent advances made in the care of children with sickle cell disease (SCD), premature mortality, especially among older children and young adults, remains a hallmark of this disease. The lack of survival gains highlights the translational gap of implementing innovations found efficacious in the controlled trial setting into routine clinical practice. Health services research (HSR) examines the most effective ways to finance, organize, and deliver high quality care in an equitable manner. To date, HSR has been underutilized as a means to improve the outcomes for children with SCD. Emerging national priorities in health care delivery, new sources of funding, and evolving electronic data collection systems for patients with SCD have provided a unique opportunity to overcome the translational gap in pediatric SCD. The purpose of this article is to provide a comprehensive HSR agenda to create patient-specific evidence of clinical effectiveness for interventions used in the routine care setting, understand the barriers faced by clinicians to providing high quality care, assess and improve the interactions of patients with the health care system, and measure the quality of care delivered to increase survival for all children and young adults with SCD. Copyright © 2011 Wiley-Liss, Inc.

  6. In Vivo Senescence in the Sbds-Deficient Murine Pancreas: Cell-Type Specific Consequences of Translation Insufficiency.

    Directory of Open Access Journals (Sweden)

    Marina E Tourlakis

    2015-06-01

    Full Text Available Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15(Ink4b and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis

  7. In Vivo Senescence in the Sbds-Deficient Murine Pancreas: Cell-Type Specific Consequences of Translation Insufficiency

    Science.gov (United States)

    Tourlakis, Marina E.; Zhang, Siyi; Ball, Heather L.; Gandhi, Rikesh; Liu, Hongrui; Zhong, Jian; Yuan, Julie S.; Guidos, Cynthia J.; Durie, Peter R.; Rommens, Johanna M.

    2015-01-01

    Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15Ink4b and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis, were determined to

  8. The scale-free dynamics of eukaryotic cells.

    Directory of Open Access Journals (Sweden)

    Miguel A Aon

    Full Text Available Temporal organization of biological processes requires massively parallel processing on a synchronized time-base. We analyzed time-series data obtained from the bioenergetic oscillatory outputs of Saccharomyces cerevisiae and isolated cardiomyocytes utilizing Relative Dispersional (RDA and Power Spectral (PSA analyses. These analyses revealed broad frequency distributions and evidence for long-term memory in the observed dynamics. Moreover RDA and PSA showed that the bioenergetic dynamics in both systems show fractal scaling over at least 3 orders of magnitude, and that this scaling obeys an inverse power law. Therefore we conclude that in S. cerevisiae and cardiomyocytes the dynamics are scale-free in vivo. Applying RDA and PSA to data generated from an in silico model of mitochondrial function indicated that in yeast and cardiomyocytes the underlying mechanisms regulating the scale-free behavior are similar. We validated this finding in vivo using single cells, and attenuating the activity of the mitochondrial inner membrane anion channel with 4-chlorodiazepam to show that the oscillation of NAD(PH and reactive oxygen species (ROS can be abated in these two evolutionarily distant species. Taken together these data strongly support our hypothesis that the generation of ROS, coupled to redox cycling, driven by cytoplasmic and mitochondrial processes, are at the core of the observed rhythmicity and scale-free dynamics. We argue that the operation of scale-free bioenergetic dynamics plays a fundamental role to integrate cellular function, while providing a framework for robust, yet flexible, responses to the environment.

  9. Translational inhibition of CTX M extended spectrum β-lactamase in clinical strains of Escherichia coli by synthetic antisense oligonucleotides partially restores sensitivity to cefotaxime.

    Directory of Open Access Journals (Sweden)

    John Benedict Readman

    2016-03-01

    Full Text Available Synthetic antisense oligomers are DNA mimics that can specifically inhibit gene expression at the translational level by ribosomal steric hindrance. They bind to their mRNA targets by Watson Crick base pairing and are resistant to degradation by both nucleases and proteases. A 25 mer phosphorodiamidate morpholino oligomer (PMO and a 13 mer polyamide (peptide nucleic acid (PNA were designed to target mRNA (positions -4 to +21, and –17 to –5 respectively close to the translational initiation site of the extended spectrum β lactamase resistance genes of CTX M group 1. These antisense oligonucleotides were found to inhibit β lactamase activity by up to 96% in a cell free translation transcription coupled system using an expression vector carrying a blaCTX-M-15 gene cloned from a clinical isolate. Despite evidence for up regulation of CTX-M gene expression, they were both found to significantly restore sensitivity to cefotaxime in E. coli AS19, an atypical cell wall permeable mutant, in a dose dependant manner (0 - 40 nM. The PMO and PNA were covalently bound to the cell penetrating peptide (KFF3K and both significantly (P<0.05 increased sensitivity to cefotaxime in a dose dependent manner (0 - 40 nM in field isolates harbouring CTX-M group 1 β-lactamases. Antisense oligonucleotides targeted to the translational initiation site and Shine Dalgarno region of blaCTX-M-15 inhibited gene expression, and when conjugated to a cell penetrating delivery vehicle, partially restored antibiotic sensitivity to both field and clinical isolates.

  10. Tubulin post-translational modifications in the primitive protist Trichomonas vaginalis.

    Science.gov (United States)

    Delgado-Viscogliosi, P; Brugerolle, G; Viscogliosi, E

    1996-01-01

    Using several specific monoclonal antibodies, we investigated the occurrence and distribution of different post-translationally modified tubulin during interphase and division of the primitive flagellated protist Trichomonas vaginalis. Immunoblotting and immunofluorescence experiments revealed that interphasic microtubular structures of T. vaginalis contained acetylated and glutamylated but non-tyrosinated and non-glycylated [Brugerolle and Adoutte, 1988: Bio Systems 21: 255-268] tubulin. Immunofluorescence studies performed on dividing cells showed that the extranuclear mitotic spindle (or paradesmosis) was acetylated and glutamylated, which contrast with the ephemeral nature of this structure. Newly formed short axostyles also contained acetylated and glutamylated tubulin suggesting that both post-translational modifications might take place very early after assembly of microtubular structures. Our results indicate that acetylation and glutamylation of tubulin appeared early in the history of eukaryotes and could reflect the occurrence of post-translational modifications of tubulin in the primitive eukaryotic cells. These cells probably had a highly ordered cross-linked microtubular cytoskeleton in which microtubules showed a low level of subunit exchange dynamics.

  11. Translation elicits a growth rate-dependent, genome-wide, differential protein production in Bacillus subtilis.

    Science.gov (United States)

    Borkowski, Olivier; Goelzer, Anne; Schaffer, Marc; Calabre, Magali; Mäder, Ulrike; Aymerich, Stéphane; Jules, Matthieu; Fromion, Vincent

    2016-05-17

    Complex regulatory programs control cell adaptation to environmental changes by setting condition-specific proteomes. In balanced growth, bacterial protein abundances depend on the dilution rate, transcript abundances and transcript-specific translation efficiencies. We revisited the current theory claiming the invariance of bacterial translation efficiency. By integrating genome-wide transcriptome datasets and datasets from a library of synthetic gfp-reporter fusions, we demonstrated that translation efficiencies in Bacillus subtilis decreased up to fourfold from slow to fast growth. The translation initiation regions elicited a growth rate-dependent, differential production of proteins without regulators, hence revealing a unique, hard-coded, growth rate-dependent mode of regulation. We combined model-based data analyses of transcript and protein abundances genome-wide and revealed that this global regulation is extensively used in B. subtilis We eventually developed a knowledge-based, three-step translation initiation model, experimentally challenged the model predictions and proposed that a growth rate-dependent drop in free ribosome abundance accounted for the differential protein production. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  12. Translational Capacity of a Cell Is Determined during Transcription Elongation via the Ccr4-Not Complex

    Directory of Open Access Journals (Sweden)

    Ishaan Gupta

    2016-05-01

    Full Text Available The current understanding of gene expression considers transcription and translation to be independent processes. Challenging this notion, we found that translation efficiency is determined during transcription elongation through the imprinting of mRNAs with Not1, the central scaffold of the Ccr4-Not complex. We determined that another subunit of the complex, Not5, defines Not1 binding to specific mRNAs, particularly those produced from ribosomal protein genes. This imprinting mechanism specifically regulates ribosomal protein gene expression, which in turn determines the translational capacity of cells. We validate our model by SILAC and polysome profiling experiments. As a proof of concept, we demonstrate that enhanced translation compensates for transcriptional elongation stress. Taken together, our data indicate that in addition to defining mRNA stability, components of the Ccr4-Not imprinting complex regulate RNA translatability, thus ensuring global gene expression homeostasis.

  13. Synthetic surface for expansion of human mesenchymal stem cells in xeno-free, chemically defined culture conditions.

    Directory of Open Access Journals (Sweden)

    Paula J Dolley-Sonneville

    Full Text Available Human mesenchymal stem cells (HMSCS possess three properties of great interest for the development of cell therapies and tissue engineering: multilineage differentiation, immunomodulation, and production of trophic factors. Efficient ex vivo expansion of hMSCs is a challenging requirement for large scale production of clinical grade cells. Low-cost, robust, scalable culture methods using chemically defined materials need to be developed to address this need. This study describes the use of a xeno-free synthetic peptide acrylate surface, the Corning® Synthemax® Surface, for culture of hMSCs in serum-free, defined medium. Cell performance on the Corning Synthemax Surface was compared to cells cultured on biological extracellular matrix (ECM coatings in xeno-free defined medium and in traditional conditions on tissue culture treated (TCT plastic in fetal bovine serum (FBS supplemented medium. Our results show successful maintenance of hMSCs on Corning Synthemax Surface for eight passages, with cell expansion rate comparable to cells cultured on ECM and significantly higher than for cells in TCT/FBS condition. Importantly, on the Corning Synthemax Surface, cells maintained elongated, spindle-like morphology, typical hMSC marker profile and in vitro multilineage differentiation potential. We believe the Corning Synthemax Surface, in combination with defined media, provides a complete synthetic, xeno-free, cell culture system for scalable production of hMSCs.

  14. The vehicle data translator V3.0 system description.

    Science.gov (United States)

    2011-05-30

    With funding and support from the USDOT RITA and direction from the FHWA Road Weather Management Program, NCAR is developing a Vehicle Data Translator (VDT) software system that incorporates vehicle-based measurements of the road and surrounding atmo...

  15. Bean Soup Translation: Flexible, Linguistically-Motivated Syntax for Machine Translation

    Science.gov (United States)

    Mehay, Dennis Nolan

    2012-01-01

    Machine translation (MT) systems attempt to translate texts from one language into another by translating words from a "source language" and rearranging them into fluent utterances in a "target language." When the two languages organize concepts in very different ways, knowledge of their general sentence structure, or…

  16. Cell-free DNA: A Neglected Source for Antibiotic Resistance Genes Spreading from WWTPs.

    Science.gov (United States)

    Zhang, Yan; Li, Aolin; Dai, Tianjiao; Li, Feifei; Xie, Hui; Chen, Lujun; Wen, Donghui

    2018-01-02

    Cell-associated ARGs in wastewater treatment plants (WWTPs) has been concerned, however, cell-free ARGs in WWTPs was rarely studied. In this study, the abundances of four representative ARGs, sulII, tetC, bla PSE-1 , and ermB, in a large municipal WWTP were investigated in both cell-associated and cell-free fractions. Cell-associated ARGs was the dominant ARGs fraction in the raw wastewater. After biological treatment, sludge settling, membrane filtration, and disinfection, cell-associated ARGs were substantially reduced, though the ratios of ARG/16S rRNA gene were increased with disinfection. Cell-free ARGs persisted in the WWTP with a removal of 0.36 log to 2.68 logs, which was much lower than the removal of cell-associated ARGs (3.21 logs to 4.14 logs). Therefore, the abundance ratio of cell-free ARGs to cell-associated ARGs increased from 0.04-1.59% to 2.00-1895.08% along the treatment processes. After 25-day-storage, cell-free ARGs in both biological effluent and disinfection effluent increased by 0.14 log to 1.99 logs and 0.12 log to 1.77 logs respectively, reflecting the persistence and low decay rate of cell-free ARGs in the discharge water. Therefore, cell-free ARGs might be a kind of important but previously neglected pollutant from WWTPs, which added potential risks to the effluent receiving environments.

  17. 4EGI-1 represses cap-dependent translation and regulates genome-wide translation in malignant pleural mesothelioma.

    Science.gov (United States)

    De, Arpita; Jacobson, Blake A; Peterson, Mark S; Jay-Dixon, Joe; Kratzke, Marian G; Sadiq, Ahad A; Patel, Manish R; Kratzke, Robert A

    2018-04-01

    Deregulation of cap-dependent translation has been implicated in the malignant transformation of numerous human tissues. 4EGI-1, a novel small-molecule inhibitor of cap-dependent translation, disrupts formation of the eukaryotic initiation factor 4F (eIF4F) complex. The effects of 4EGI-1-mediated inhibition of translation initiation in malignant pleural mesothelioma (MPM) were examined. 4EGI-1 preferentially inhibited cell viability and induced apoptosis in MPM cells compared to normal mesothelial (LP9) cells. This effect was associated with hypophosphorylation of 4E-binding protein 1 (4E-BP1) and decreased protein levels of the cancer-related genes, c-myc and osteopontin. 4EGI-1 showed enhanced cytotoxicity in combination with pemetrexed or gemcitabine. Translatome-wide polysome microarray analysis revealed a large cohort of genes that were translationally regulated upon treatment with 4EGI-1. The 4EGI-1-regulated translatome was negatively correlated to a previously published translatome regulated by eIF4E overexpression in human mammary epithelial cells, which is in agreement with the notion that 4EGI-1 inhibits the eIF4F complex. These data indicate that inhibition of the eIF4F complex by 4EGI-1 or similar translation inhibitors could be a strategy for treating mesothelioma. Genome wide translational profiling identified a large cohort of promising target genes that should be further evaluated for their potential significance in the treatment of MPM.

  18. Increased efficiency of exogenous messenger RNA translation in a Krebs ascites cell lysate.

    Science.gov (United States)

    Metafora, S; Terada, M; Dow, L W; Marks, P A; Bank, A

    1972-05-01

    Addition of a 0.5 M KCl wash fraction from rabbit reticulocyte ribosomes causes a 3- to 10-fold increase in the extent of translation of natural mRNAs by Krebs-cell lysates. In the presence of the wash fraction, 1 pmol of rabbit or mouse 10S RNA directs the incorporation of 80 pmol of leucine into rabbit globin. The addition of human 10S RNA results in the synthesis of equal amounts of human alpha and beta chains, identified by column chromatography. The stimulation by the wash fraction is almost completely dependent on added mammalian tRNA. In contrast to the wash fraction from rabbit reticulocytes, the wash fraction isolated from Krebs-cell ribosomes is inhibitory to both endogenous and exogenous mRNA translation. The stimulation by the wash fraction from rabbit ribosomes is not specific for globin mRNAs, but also increases endogenous, phage Qbeta, and viral RNA-directed protein synthesis.

  19. Vector-free and transgene-free human iPS cells differentiate into functional neurons and enhance functional recovery after ischemic stroke in mice.

    Directory of Open Access Journals (Sweden)

    Osama Mohamad

    Full Text Available Stroke is a leading cause of human death and disability in the adult population in the United States and around the world. While stroke treatment is limited, stem cell transplantation has emerged as a promising regenerative therapy to replace or repair damaged tissues and enhance functional recovery after stroke. Recently, the creation of induced pluripotent stem (iPS cells through reprogramming of somatic cells has revolutionized cell therapy by providing an unlimited source of autologous cells for transplantation. In addition, the creation of vector-free and transgene-free human iPS (hiPS cells provides a new generation of stem cells with a reduced risk of tumor formation that was associated with the random integration of viral vectors seen with previous techniques. However, the potential use of these cells in the treatment of ischemic stroke has not been explored. In the present investigation, we examined the neuronal differentiation of vector-free and transgene-free hiPS cells and the transplantation of hiPS cell-derived neural progenitor cells (hiPS-NPCs in an ischemic stroke model in mice. Vector-free hiPS cells were maintained in feeder-free and serum-free conditions and differentiated into functional neurons in vitro using a newly developed differentiation protocol. Twenty eight days after transplantation in stroke mice, hiPS-NPCs showed mature neuronal markers in vivo. No tumor formation was seen up to 12 months after transplantation. Transplantation of hiPS-NPCs restored neurovascular coupling, increased trophic support and promoted behavioral recovery after stroke. These data suggest that using vector-free and transgene-free hiPS cells in stem cell therapy are safe and efficacious in enhancing recovery after focal ischemic stroke in mice.

  20. Multimodal Translation System Using Texture-Mapped Lip-Sync Images for Video Mail and Automatic Dubbing Applications

    Science.gov (United States)

    Morishima, Shigeo; Nakamura, Satoshi

    2004-12-01

    We introduce a multimodal English-to-Japanese and Japanese-to-English translation system that also translates the speaker's speech motion by synchronizing it to the translated speech. This system also introduces both a face synthesis technique that can generate any viseme lip shape and a face tracking technique that can estimate the original position and rotation of a speaker's face in an image sequence. To retain the speaker's facial expression, we substitute only the speech organ's image with the synthesized one, which is made by a 3D wire-frame model that is adaptable to any speaker. Our approach provides translated image synthesis with an extremely small database. The tracking motion of the face from a video image is performed by template matching. In this system, the translation and rotation of the face are detected by using a 3D personal face model whose texture is captured from a video frame. We also propose a method to customize the personal face model by using our GUI tool. By combining these techniques and the translated voice synthesis technique, an automatic multimodal translation can be achieved that is suitable for video mail or automatic dubbing systems into other languages.

  1. Culture in embryonic kidney serum and xeno-free media as renal cell carcinoma and renal cell carcinoma cancer stem cells research model.

    Science.gov (United States)

    Krawczyk, Krzysztof M; Matak, Damian; Szymanski, Lukasz; Szczylik, Cezary; Porta, Camillo; Czarnecka, Anna M

    2018-04-01

    The use of fetal bovine serum hinders obtaining reproducible experimental results and should also be removed in hormone and growth factor studies. In particular hormones found in FBS act globally on cancer cell physiology and influence transcriptome and metabolome. The aim of our study was to develop a renal carcinoma serum free culture model optimized for (embryonal) renal cells in order to select the best study model for downstream auto-, para- or endocrine research. Secondary aim was to verify renal carcinoma stem cell culture for this application. In the study, we have cultured renal cell carcinoma primary tumour cell line (786-0) as well as human kidney cancer stem cells in standard 2D monolayer cultures in Roswell Park Memorial Institute Medium or Dulbecco's Modified Eagle's Medium and Complete Human Kidney Cancer Stem Cell Medium, respectively. Serum-free, animal-component free Human Embryonic Kidney 293 media were tested. Our results revealed that xeno-free embryonal renal cells optimized culture media provide a useful tool in RCC cancer biology research and at the same time enable effective growth of RCC. We propose bio-mimic RCC cell culture model with specific serum-free and xeno-free medium that promote RCC cell viability.

  2. Biological insights into the expression of translation initiation factors from recombinant CHOK1SV cell lines and their relationship to enhanced productivity.

    Science.gov (United States)

    Mead, Emma J; Masterton, Rosalyn J; Feary, Marc; Obrezanova, Olga; Zhang, Lin; Young, Robert; Smales, C Mark

    2015-12-15

    Translation initiation is on the critical pathway for the production of monoclonal antibodies (mAbs) by mammalian cells. Formation of a closed loop structure comprised of mRNA, a number of eukaryotic initiation factors (eIFs) and ribosomal proteins has been proposed to aid re-initiation of translation and therefore increase global translational efficiency. We have determined mRNA and protein levels of the key components of the closed loop, eIFs (eIF3a, eIF3b, eIF3c, eIF3h, eIF3i and eIF4G1), poly(A)-binding protein (PABP) 1 and PABP-interacting protein 1 (PAIP1), across a panel of 30 recombinant mAb-producing GS-CHOK1SV cell lines with a broad range of growth characteristics and production levels of a model recombinant mAb. We have used a multi-level statistical approach to investigate the relationship between key performance indicators (cell growth and recombinant antibody productivity) and the intracellular amounts of target translation initiation factor proteins and the mRNAs encoding them. We show that high-producing cell lines maintain amounts of the translation initiation factors involved in the formation of the closed loop mRNA, maintaining these proteins at appropriate levels to deliver enhanced recombinant protein production. We then utilize knowledge of the amounts of these factors to build predictive models for and use cluster analysis to identify, high-producing cell lines. The present study therefore defines the translation initiation factor amounts that are associated with highly productive recombinant GS-CHOK1SV cell lines that may be targets for screening highly productive cell lines or to engineer new host cell lines with the potential for enhanced recombinant antibody productivity. © 2015 Authors; published by Portland Press Limited.

  3. HoloMonitor M4: holographic imaging cytometer for real-time kinetic label-free live-cell analysis of adherent cells

    Science.gov (United States)

    Sebesta, Mikael; Egelberg, Peter J.; Langberg, Anders; Lindskov, Jens-Henrik; Alm, Kersti; Janicke, Birgit

    2016-03-01

    Live-cell imaging enables studying dynamic cellular processes that cannot be visualized in fixed-cell assays. An increasing number of scientists in academia and the pharmaceutical industry are choosing live-cell analysis over or in addition to traditional fixed-cell assays. We have developed a time-lapse label-free imaging cytometer HoloMonitorM4. HoloMonitor M4 assists researchers to overcome inherent disadvantages of fluorescent analysis, specifically effects of chemical labels or genetic modifications which can alter cellular behavior. Additionally, label-free analysis is simple and eliminates the costs associated with staining procedures. The underlying technology principle is based on digital off-axis holography. While multiple alternatives exist for this type of analysis, we prioritized our developments to achieve the following: a) All-inclusive system - hardware and sophisticated cytometric analysis software; b) Ease of use enabling utilization of instrumentation by expert- and entrylevel researchers alike; c) Validated quantitative assay end-points tracked over time such as optical path length shift, optical volume and multiple derived imaging parameters; d) Reliable digital autofocus; e) Robust long-term operation in the incubator environment; f) High throughput and walk-away capability; and finally g) Data management suitable for single- and multi-user networks. We provide examples of HoloMonitor applications of label-free cell viability measurements and monitoring of cell cycle phase distribution.

  4. Rapid Genome-wide Recruitment of RNA Polymerase II Drives Transcription, Splicing, and Translation Events during T Cell Responses

    Directory of Open Access Journals (Sweden)

    Kathrin Davari

    2017-04-01

    Full Text Available Summary: Activation of immune cells results in rapid functional changes, but how such fast changes are accomplished remains enigmatic. By combining time courses of 4sU-seq, RNA-seq, ribosome profiling (RP, and RNA polymerase II (RNA Pol II ChIP-seq during T cell activation, we illustrate genome-wide temporal dynamics for ∼10,000 genes. This approach reveals not only immediate-early and posttranscriptionally regulated genes but also coupled changes in transcription and translation for >90% of genes. Recruitment, rather than release of paused RNA Pol II, primarily mediates transcriptional changes. This coincides with a genome-wide temporary slowdown in cotranscriptional splicing, even for polyadenylated mRNAs that are localized at the chromatin. Subsequent splicing optimization correlates with increasing Ser-2 phosphorylation of the RNA Pol II carboxy-terminal domain (CTD and activation of the positive transcription elongation factor (pTEFb. Thus, rapid de novo recruitment of RNA Pol II dictates the course of events during T cell activation, particularly transcription, splicing, and consequently translation. : Davari et al. visualize global changes in RNA Pol II binding, transcription, splicing, and translation. T cells change their functional program by rapid de novo recruitment of RNA Pol II and coupled changes in transcription and translation. This coincides with fluctuations in RNA Pol II phosphorylation and a temporary reduction in cotranscriptional splicing. Keywords: RNA Pol II, cotranscriptional splicing, T cell activation, ribosome profiling, 4sU, H3K36, Ser-5 RNA Pol II, Ser-2 RNA Pol II, immune response, immediate-early genes

  5. Machine Translation

    Indian Academy of Sciences (India)

    Research Mt System Example: The 'Janus' Translating Phone Project. The Janus ... based on laptops, and simultaneous translation of two speakers in a dialogue. For more ..... The current focus in MT research is on using machine learning.

  6. Free-zone electrophoresis of animal cells. 1: Experiments on cell-cell interactions

    Science.gov (United States)

    Todd, P. W.; Hjerten, S.

    1985-01-01

    The electrophoretically migrating zones wasa monitored. The absence of fluid flows in the direction of migration permits direct measurement of electrophoretic velocities of any material. Sedimentation is orthogonal to electrokinetic motion and the effects of particle-particle interaction on electrophoretic mobility is studied by free zone electrophoresis. Fixed erythrocytes at high concentrations, mixtures of fixed erythrocytes from different animal species, and mixtures of cultured human cells were studied in low ionic strength buffers. The electrophoretic velocity of fixed erythrocytes was not altered by increasing cell concentration or by the mixing of erythrocytes from different species. When zones containing cultured human glial cells and neuroblastoma cells are permitted to interact during electrophoresis, altered migration patterns occur. It is found that cell-cell interactions depends upon cell type.

  7. ER stress inducer tunicamycin suppresses the self-renewal of glioma-initiating cell partly through inhibiting Sox2 translation.

    Science.gov (United States)

    Xing, Yang; Ge, Yuqing; Liu, Chanjuan; Zhang, Xiaobiao; Jiang, Jianhai; Wei, Yuanyan

    2016-06-14

    Glioma-initiating cells possess tumor-initiating potential and are relatively resistant to conventional chemotherapy and irradiation. Therefore, their elimination is an essential factor for the development of efficient therapy. Here, we report that endoplasmic reticulum (ER) stress inducer tunicamycin inhibits glioma-initiating cell self-renewal as determined by neurosphere formation assay. Moreover, tunicamycin decreases the efficiency of glioma-initiating cell to initiate tumor formation. Although tunicamycin induces glioma-initiating cell apoptosis, apoptosis inhibitor z-VAD-fmk only partly abrogates the reduction in glioma-initiating cell self-renewal induced by tunicamycin. Indeed, tunicamycin reduces the expression of self-renewal regulator Sox2 at translation level. Overexpression of Sox2 obviously abrogates the reduction in glioma-initiating cell self-renewal induced by tunicamycin. Taken together, tunicamycin suppresses the self-renewal and tumorigenic potential of glioma-initiating cell partly through reducing Sox2 translation. This finding provides a cue to potential effective treatment of glioblastoma through controlling stem cells.

  8. Detection of a high-molecular-weight LHRH precursor by cell-free translation of mRNA from human, rat, and mouse hypothalamus

    International Nuclear Information System (INIS)

    Curtis, A.; Szelke, M.; Fink, G.

    1986-01-01

    Large precursors have also been predicted using the immunoprecipitation technique which relies upon the identification of large immunoreactive molecules following in vitro translation of mRNA. The mRNA is presumed to represent the largest form of a nascent precursor polypeptide molecule irrespective of the number of biosynthetic cleavage steps which are necessary to liberate the active peptide. However, as has been shown for somatostatin, nonprotein modifications may be made which apparently increase molecular weight, such as glycosylation or phosphorylation of the molecule. The authors employed the immunoprecipitation technique to confirm earlier chromatographic studies that the hypothalamic decapeptide, luteinizing hormone releasing hormone (LHRH) is also synthesized by way of a large precursor form. The authors' finding show that the translation of hypothalamic mRNA produces a primary translation product with an apparent molecule weight of 28,000 which contains an amino acid sequence immunologically similar to that of biologically active LHRH. The procedure involved the incorporation of a radioactive amino acid into polypeptides synthesized by in vitro translation of hypothalamic messenger RNA. The resulting complex protein mixture was immunoprecipitated with a specific anti-LHRH serum, and the immunoprecipitate was identified by polyacrylamide gel electrophoresis and autoradiography

  9. Cell-Free Expression, Purification, and Characterization of the Functional β2-Adrenergic Receptor for Multianalyte Detection of β-Agonists.

    Science.gov (United States)

    Wang, Jian; Liu, Yuan; Zhang, Junhua; Han, Zhengzheng; Wang, Wei; Liu, Yang; Wei, Dong; Huang, Wei

    2017-11-01

    Large-scale expression of β 2 -adrenergic receptor (β 2 -AR) in functional form is necessary for establishment of receptor assays for detecting illegally abused β-adrenergic agonists (β-agonists). Cell-based heterologous expression systems have manycritical difficulties in synthesizing this membrane protein, such as low protein yields and aberrant folding. To overcome these challenges, the main objective of the present work was to synthesize large amounts of functional β 2 -AR in a cell-free system based on Escherichia coli extracts. A codon-optimized porcine β 2 -AR gene (codon adaptation index: 0.96) suitable for high expression in E. coli was synthesized and transcribed to the cell-free system, which contributed to increase the expression up to 1.1 mg/ml. After purification using Ni-affinity chromatography, the bioactivity of the purified receptor was measured by novel enzyme-linked receptor assays. It was determined that the relative affinities of the purified β 2 -AR for β-agonists in descending order were as follows: clenbuterol > salbutamol > ractopamine. Moreover, their IC 50 values were 45.99, 60.38, and 78.02 µg/liter, respectively. Although activity of the cell-free system was slightly lower than activity of systems based on insect and mammalian cells, this system should allow production of β 2 -AR in bulk amounts sufficient for the development of multianalyte screening methods for detecting β-agonist residues.

  10. AmyI-1-18, a cationic α-helical antimicrobial octadecapeptide derived from α-amylase in rice, inhibits the translation and folding processes in a protein synthesis system.

    Science.gov (United States)

    Taniguchi, Masayuki; Ochiai, Akihito; Fukuda, Shun; Sato, Teppei; Saitoh, Eiichi; Kato, Tetsuo; Tanaka, Takaaki

    2016-10-01

    In our previous study, we used a cell-free rapid translation system (RTS), which is an in vitro protein synthesis system based on Escherichia coli lysate, for evaluating the inhibition of green fluorescent protein (GFP) synthesis by pyrrhocoricin. In this study, using an RTS, we evaluated the inhibition of GFP synthesis by AmyI-1-18, an antimicrobial octadecapeptide. We found that, similarly to pyrrhocoricin, AmyI-1-18 inhibited GFP synthesis in the RTS in a concentration-dependent manner. In addition, the blockage of transcription and translation steps in the RTS was individually estimated using RT-PCR after gene expression to determine the mRNA products and using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to determine the amounts of GFP expressed from purified mRNA, respectively. The results demonstrated that the inhibition of GFP synthesis by AmyI-1-18 did not occur at the transcription step but rather at the translation step. Furthermore, we assessed the inhibition of DnaK-mediated refolding of chemically denatured luciferase by AmyI-1-18; AmyI-1-18 inhibited the protein folding activity of the ATP-dependent DnaK/DnaJ molecular chaperone system in a concentration-dependent manner. Surface plasmon resonance (SPR) analysis showed that AmyI-1-18 strongly bound to RNA with a KD value of 1.4 × 10(-8) M but not to DNA and that AmyI-1-18 specifically bound to DnaK with a KD value of 4.4 × 10(-6) M. These SPR analysis results supported the results obtained in both the RTS and the molecular chaperone system. These results demonstrated that both RNA and DnaK are most likely the target of AmyI-1-18 in the protein synthesis system. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Centrifugation-free washing: A novel approach for removing immunoglobulin A from stored red blood cells.

    Science.gov (United States)

    Vörös, Eszter; Piety, Nathaniel Z; Strachan, Briony C; Lu, Madeleine; Shevkoplyas, Sergey S

    2018-08-01

    Washed red blood cells (RBCs) are indicated for immunoglobulin A (IgA) deficient recipients. Centrifugation-based cell processors commonly used by hospital blood banks cannot consistently reduce IgA below the recommended levels, hence double washing is frequently required. Here, we describe a prototype of a simple, portable, disposable system capable of washing stored RBCs without centrifugation, while reducing IgA below 0.05 mg/dL in a single run. Samples from RBC units (n = 8, leukoreduced, 4-6 weeks storage duration) were diluted with normal saline to a hematocrit of 10%, and then washed using either the prototype washing system, or via conventional centrifugation. The efficiency of the two washing methods was quantified and compared by measuring several key in vitro quality metrics. The prototype of the washing system was able to process stored RBCs at a rate of 300 mL/hour, producing a suspension of washed RBCs with 43 ± 3% hematocrit and 86 ± 7% cell recovery. Overall, the two washing methods performed similarly for most measured parameters, lowering the concentration of free hemoglobin by >4-fold and total free protein by >10-fold. Importantly, the new washing system reduced the IgA level to 0.02 ± 0.01 mg/mL, a concentration 5-fold lower than that produced by conventional centrifugation. This proof-of-concept study showed that centrifugation may be unnecessary for washing stored RBCs. A simple, disposable, centrifugation-free washing system could be particularly useful in smaller medical facilities and resource limited settings that may lack access to centrifugation-based cell processors. © 2017 Wiley Periodicals, Inc.

  12. Roll-coating fabrication of flexible organic solar cells: comparison of fullerene and fullerene-free systems

    DEFF Research Database (Denmark)

    Liu, Kuan; Larsen-Olsen, Thue Trofod; Lin, Yuze

    2016-01-01

    Flexible organic solar cells (OSCs) based on a blend of low-bandgap polymer donor PTB7-TH and nonfullerene small molecule acceptor IEIC were fabricated via a roll-coating process under ambient atmosphere. Both an indium tin oxide (ITO)-free substrate and a flexible ITO substrate were employed...... in these inverted OSCs. OSCs with flexible ITO and ITO-free substrates exhibited power conversion efficiencies (PCEs) up to 2.26% and 1.79%, respectively, which were comparable to those of the reference devices based on fullerene acceptors under the same conditions. This is the first example for all roll......-coating fabrication procedures for flexible OSCs based on non-fullerene acceptors with the PCE exceeding 2%. The fullerene-free OSCs exhibited better dark storage stability than the fullerene-based control devices....

  13. Methods of cell purification: a critical juncture for laboratory research and translational science.

    Science.gov (United States)

    Amos, Peter J; Cagavi Bozkulak, Esra; Qyang, Yibing

    2012-01-01

    Research in cell biology and the development of translational technologies are driven by competition, public expectations, and regulatory oversight, putting these fields at a critical juncture. Success in these fields is quickly becoming dependent on the ability of researchers to identify and isolate specific cell populations from heterogeneous mixtures accurately and efficiently. Many methods for cell purification have been developed, and each has advantages and disadvantages that must be considered in light of the intended application. Current cell separation strategies make use of surface proteins, genetic expression, and physics to isolate specific cells by phenotypic traits. Cell purification is also dependent on the cellular reagents available for use and the intended application, as these factors may preclude certain mechanisms used in the processes of labeling and sorting cells. Copyright © 2011 S. Karger AG, Basel.

  14. Watch Out for the “Living Dead”: Cell-Free Enzymes and Their Fate

    Directory of Open Access Journals (Sweden)

    Federico Baltar

    2018-01-01

    Full Text Available Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs are the “gatekeepers” of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached, and dissolved (i.e., cell-free enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100% of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell’s fate. In contrast, cell-free enzymes belong to a kind of “living dead” realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go “beyond the living things,” studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles.

  15. Watch Out for the “Living Dead”: Cell-Free Enzymes and Their Fate

    Science.gov (United States)

    Baltar, Federico

    2018-01-01

    Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs) are the “gatekeepers” of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached), and dissolved (i.e., cell-free) enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100%) of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA) will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell’s fate. In contrast, cell-free enzymes belong to a kind of “living dead” realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go “beyond the living things,” studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles. PMID:29354095

  16. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis.

    Directory of Open Access Journals (Sweden)

    Nitzan Krinsky

    Full Text Available Cell-free protein synthesis (CFPS systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3 and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa. This system was able to produce 40-150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins.

  17. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis

    Science.gov (United States)

    Kaduri, Maya; Shainsky-Roitman, Janna; Goldfeder, Mor; Ivanir, Eran; Benhar, Itai; Shoham, Yuval; Schroeder, Avi

    2016-01-01

    Cell-free protein synthesis (CFPS) systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3) and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa). This system was able to produce 40–150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins. PMID:27768741

  18. Translating Research into Clinical Scale Manufacturing of Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Karen Bieback

    2010-01-01

    Full Text Available It sounds simple to obtain sufficient numbers of cells derived from fetal or adult human tissues, isolate and/or expand the stem cells, and then transplant an appropriate number of these cells into the patient at the correct location. However, translating basic research into routine therapies is a complex multistep process which necessitates product regulation. The challenge relates to managing the expected therapeutic benefits with the potential risks and to balance the fast move to clinical trials with time-consuming cautious risk assessment. This paper will focus on the definition of mesenchymal stromal cells (MSCs, and challenges and achievements in the manufacturing process enabling their use in clinical studies. It will allude to different cellular sources, special capacities of MSCs, but also to current regulations, with a special focus on accessory material of human or animal origin, like media supplements. As cellular integrity and purity, formulation and lot release testing of the final product, validation of all procedures, and quality assurance are of utmost necessity, these topics will be addressed.

  19. Translation-Memory (TM) Research

    DEFF Research Database (Denmark)

    Schjoldager, Anne Gram; Christensen, Tina Paulsen

    2010-01-01

    to be representative of the research field as a whole. Our analysis suggests that, while considerable knowledge is available about the technical side of TMs, more research is needed to understand how translators interact with TM technology and how TMs influence translators' cognitive translation processes.......  It is no exaggeration to say that the advent of translation-memory (TM) systems in the translation profession has led to drastic changes in translators' processes and workflow, and yet, though many professional translators nowadays depend on some form of TM system, this has not been the object...... of much research. Our paper attempts to find out what we know about the nature, applications and influences of TM technology, including translators' interaction with TMs, and also how we know it. An essential part of the analysis is based on a selection of empirical TM studies, which we assume...

  20. Multimodal Translation System Using Texture-Mapped Lip-Sync Images for Video Mail and Automatic Dubbing Applications

    Directory of Open Access Journals (Sweden)

    Nakamura Satoshi

    2004-01-01

    Full Text Available We introduce a multimodal English-to-Japanese and Japanese-to-English translation system that also translates the speaker's speech motion by synchronizing it to the translated speech. This system also introduces both a face synthesis technique that can generate any viseme lip shape and a face tracking technique that can estimate the original position and rotation of a speaker's face in an image sequence. To retain the speaker's facial expression, we substitute only the speech organ's image with the synthesized one, which is made by a 3D wire-frame model that is adaptable to any speaker. Our approach provides translated image synthesis with an extremely small database. The tracking motion of the face from a video image is performed by template matching. In this system, the translation and rotation of the face are detected by using a 3D personal face model whose texture is captured from a video frame. We also propose a method to customize the personal face model by using our GUI tool. By combining these techniques and the translated voice synthesis technique, an automatic multimodal translation can be achieved that is suitable for video mail or automatic dubbing systems into other languages.

  1. Mechanistic insights of the Min oscillator via cell-free reconstitution and imaging

    Science.gov (United States)

    Mizuuchi, Kiyoshi; Vecchiarelli, Anthony G.

    2018-05-01

    The MinD and MinE proteins of Escherichia coli self-organize into a standing-wave oscillator on the membrane to help align division at mid-cell. When unleashed from cellular confines, MinD and MinE form a spectrum of patterns on artificial bilayers—static amoebas, traveling waves, traveling mushrooms, and bursts with standing-wave dynamics. We recently focused our cell-free studies on bursts because their dynamics recapitulate many features of Min oscillation observed in vivo. The data unveiled a patterning mechanism largely governed by MinE regulation of MinD interaction with membrane. We proposed that the MinD to MinE ratio on the membrane acts as a toggle switch between MinE-stimulated recruitment and release of MinD from the membrane. In this review, we summarize cell-free data on the Min system and expand upon a molecular mechanism that provides a biochemical explanation as to how these two ‘simple’ proteins can form the remarkable spectrum of patterns.

  2. Cell illustrator 4.0: a computational platform for systems biology.

    Science.gov (United States)

    Nagasaki, Masao; Saito, Ayumu; Jeong, Euna; Li, Chen; Kojima, Kaname; Ikeda, Emi; Miyano, Satoru

    2011-01-01

    Cell Illustrator is a software platform for Systems Biology that uses the concept of Petri net for modeling and simulating biopathways. It is intended for biological scientists working at bench. The latest version of Cell Illustrator 4.0 uses Java Web Start technology and is enhanced with new capabilities, including: automatic graph grid layout algorithms using ontology information; tools using Cell System Markup Language (CSML) 3.0 and Cell System Ontology 3.0; parameter search module; high-performance simulation module; CSML database management system; conversion from CSML model to programming languages (FORTRAN, C, C++, Java, Python and Perl); import from SBML, CellML, and BioPAX; and, export to SVG and HTML. Cell Illustrator employs an extension of hybrid Petri net in an object-oriented style so that biopathway models can include objects such as DNA sequence, molecular density, 3D localization information, transcription with frame-shift, translation with codon table, as well as biochemical reactions.

  3. Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution.

    Science.gov (United States)

    B, Vinoth; Lai, Xin-Ji; Lin, Yu-Chih; Tu, Han-Yen; Cheng, Chau-Jern

    2018-04-13

    Digital holographic microtomography is a promising technique for three-dimensional (3D) measurement of the refractive index (RI) profiles of biological specimens. Measurement of the RI distribution of a free-floating single living cell with an isotropic superresolution had not previously been accomplished. To the best of our knowledge, this is the first study focusing on the development of an integrated dual-tomographic (IDT) imaging system for RI measurement of an unlabelled free-floating single living cell with an isotropic superresolution by combining the spatial frequencies of full-angle specimen rotation with those of beam rotation. A novel 'UFO' (unidentified flying object) like shaped coherent transfer function is obtained. The IDT imaging system does not require any complex image-processing algorithm for 3D reconstruction. The working principle was successfully demonstrated and a 3D RI profile of a single living cell, Candida rugosa, was obtained with an isotropic superresolution. This technology is expected to set a benchmark for free-floating single live sample measurements without labeling or any special sample preparations for the experiments.

  4. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    Science.gov (United States)

    Rogozhnikov, Dmitry; O'Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.

    2016-12-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.

  5. An optimized rapid bisulfite conversion method with high recovery of cell-free DNA.

    Science.gov (United States)

    Yi, Shaohua; Long, Fei; Cheng, Juanbo; Huang, Daixin

    2017-12-19

    Methylation analysis of cell-free DNA is a encouraging tool for tumor diagnosis, monitoring and prognosis. Sensitivity of methylation analysis is a very important matter due to the tiny amounts of cell-free DNA available in plasma. Most current methods of DNA methylation analysis are based on the difference of bisulfite-mediated deamination of cytosine between cytosine and 5-methylcytosine. However, the recovery of bisulfite-converted DNA based on current methods is very poor for the methylation analysis of cell-free DNA. We optimized a rapid method for the crucial steps of bisulfite conversion with high recovery of cell-free DNA. A rapid deamination step and alkaline desulfonation was combined with the purification of DNA on a silica column. The conversion efficiency and recovery of bisulfite-treated DNA was investigated by the droplet digital PCR. The optimization of the reaction results in complete cytosine conversion in 30 min at 70 °C and about 65% of recovery of bisulfite-treated cell-free DNA, which is higher than current methods. The method allows high recovery from low levels of bisulfite-treated cell-free DNA, enhancing the analysis sensitivity of methylation detection from cell-free DNA.

  6. Sociology, systems and (patient) safety: knowledge translations in healthcare policy.

    Science.gov (United States)

    Jensen, Casper Bruun

    2008-03-01

    In 2000 the American Institute of Medicine, adviser to the federal government on policy matters relating to the health of the public, published the report To Err is Human: Building a Safer Health System, which was to become a call to arms for improving patient safety across the Western world. By re-conceiving healthcare as a system, it was argued that it was possible to transform the current culture of blame, which made individuals take defensive precautions against being assigned responsibility for error - notably by not reporting adverse events, into a culture of safety. The IOM report draws on several prominent social scientists in accomplishing this re-conceptualisation. But the analyses of these authors are not immediately relevant for health policy. It requires knowledge translation to make them so. This paper analyses the process of translation. The discussion is especially pertinent due to a certain looping effect between social science research and policy concerns. The case here presented is thus doubly illustrative: exemplifying first how social science is translated into health policy and secondly how the transformation required for this to function is taken as an analytical improvement that can in turn be redeployed in social research.

  7. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy

    Science.gov (United States)

    Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert

    2010-05-01

    Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.

  8. Translation Factors Specify Cellular Metabolic State

    Directory of Open Access Journals (Sweden)

    Juan Mata

    2016-08-01

    Full Text Available In this issue of Cell Reports, Shah et al. present evidence that a subcomplex of the eIF3 translation initiation factor regulates translation of mRNAs encoding components of the mitochondrial electron transport chain and glycolytic enzymes, thus linking translational control with energy metabolism.

  9. Free vs. Faithful – Towards Identifying the Relationship between Academic and Professional Criteria for Legal Translation

    Directory of Open Access Journals (Sweden)

    Mette Hjort-Pedersen

    2016-12-01

    Full Text Available For many years translation theorists have discussed the degree of translational freedom a legal translator has in rendering the meaning of a legal source text in a translation. Some believe that in order to achieve the communicative purpose, legal translators should focus on readability and bias their translation towards the target language community. Others insist that because of the special nature of legal texts and the sometimes binding force of legal translations, translators should stay as close to the source text as possible, i.e., bias their translation towards the source language community. But what is the relationship between these ‘academic’ observations and the way professional users and producers, i.e., lawyers and translators, think of legal translation? This article examines how actors on the Danish legal translation market view translational manoeuvres that result in a more or less close relationship between a legal source text and its translation, and also the translator’s power to decide what the nature of this relationship should be and how it should manifest itself in the translation.

  10. Protein phosphatase PPM1G regulates protein translation and cell growth by dephosphorylating 4E binding protein 1 (4E-BP1).

    Science.gov (United States)

    Liu, Jianyu; Stevens, Payton D; Eshleman, Nichole E; Gao, Tianyan

    2013-08-09

    Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.

  11. Establishment of a Wheat Cell-Free Synthesized Protein Array Containing 250 Human and Mouse E3 Ubiquitin Ligases to Identify Novel Interaction between E3 Ligases and Substrate Proteins.

    Directory of Open Access Journals (Sweden)

    Hirotaka Takahashi

    Full Text Available Ubiquitination is a key post-translational modification in the regulation of numerous biological processes in eukaryotes. The primary roles of ubiquitination are thought to be the triggering of protein degradation and the regulation of signal transduction. During protein ubiquitination, substrate specificity is mainly determined by E3 ubiquitin ligase (E3. Although more than 600 genes in the human genome encode E3, the E3s of many target proteins remain unidentified owing to E3 diversity and the instability of ubiquitinated proteins in cell. We demonstrate herein a novel biochemical analysis for the identification of E3s targeting specific proteins. Using wheat cell-free protein synthesis system, a protein array containing 227 human and 23 mouse recombinant E3s was synthesized. To establish the high-throughput binding assay using AlphaScreen technology, we selected MDM2 and p53 as the model combination of E3 and its target protein. The AlphaScreen assay specifically detected the binding of p53 and MDM2 in a crude translation mixture. Then, a comprehensive binding assay using the E3 protein array was performed. Eleven of the E3s showed high binding activity, including four previously reported E3s (e.g., MDM2, MDM4, and WWP1 targeting p53. This result demonstrated the reliability of the assay. Another interactors, RNF6 and DZIP3-which there have been no report to bind p53-were found to ubiquitinate p53 in vitro. Further analysis showed that RNF6 decreased the amount of p53 in H1299 cells in E3 activity-dependent manner. These results suggest the possibility that the RNF6 ubiquitinates and degrades p53 in cells. The novel in vitro screening system established herein is a powerful tool for finding novel E3s of a target protein.

  12. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Yuqing; Zhou, Fengbiao; Chen, Hong; Cui, Chunhong; Liu, Dan [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Li, Qiuping [Zhongshan Hospital of Fudan University, Shanghai 200032 (China); Yang, Zhiyuan; Wu, Guoqiang [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Sun, Shuhui [Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Gu, Jianxin [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Institutes of Biomedical Sciences of Fudan University, Shanghai 200032 (China); Wei, Yuanyan, E-mail: yywei@fudan.edu.cn [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Jiang, Jianhai, E-mail: jianhaijiang@fudan.edu.cn [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China)

    2010-07-09

    Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was a positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.

  13. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells

    International Nuclear Information System (INIS)

    Ge, Yuqing; Zhou, Fengbiao; Chen, Hong; Cui, Chunhong; Liu, Dan; Li, Qiuping; Yang, Zhiyuan; Wu, Guoqiang; Sun, Shuhui; Gu, Jianxin; Wei, Yuanyan; Jiang, Jianhai

    2010-01-01

    Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was a positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.

  14. Translational profiling of B cells infected with the Epstein-Barr virus reveals 5' leader ribosome recruitment through upstream open reading frames.

    Science.gov (United States)

    Bencun, Maja; Klinke, Olaf; Hotz-Wagenblatt, Agnes; Klaus, Severina; Tsai, Ming-Han; Poirey, Remy; Delecluse, Henri-Jacques

    2018-04-06

    The Epstein-Barr virus (EBV) genome encodes several hundred transcripts. We have used ribosome profiling to characterize viral translation in infected cells and map new translation initiation sites. We show here that EBV transcripts are translated with highly variable efficiency, owing to variable transcription and translation rates, variable ribosome recruitment to the leader region and coverage by monosomes versus polysomes. Some transcripts were hardly translated, others mainly carried monosomes, showed ribosome accumulation in leader regions and most likely represent non-coding RNAs. A similar process was visible for a subset of lytic genes including the key transactivators BZLF1 and BRLF1 in cells infected with weakly replicating EBV strains. This suggests that ribosome trapping, particularly in the leader region, represents a new checkpoint for the repression of lytic replication. We could identify 25 upstream open reading frames (uORFs) located upstream of coding transcripts that displayed 5' leader ribosome trapping, six of which were located in the leader region shared by many latent transcripts. These uORFs repressed viral translation and are likely to play an important role in the regulation of EBV translation.

  15. Defined xenogeneic-free and hypoxic environment provides superior conditions for long-term expansion of human adipose-derived stem cells.

    Science.gov (United States)

    Yang, Sufang; Pilgaard, Linda; Chase, Lucas G; Boucher, Shayne; Vemuri, Mohan C; Fink, Trine; Zachar, Vladimir

    2012-08-01

    Development and implementation of therapeutic protocols based on stem cells or tissue-engineered products relies on methods that enable the production of substantial numbers of cells while complying with stringent quality and safety demands. In the current study, we aimed to assess the benefits of maintaining cultures of adipose-derived stem cells (ASCs) in a defined culture system devoid of xenogeneic components (xeno-free) and hypoxia over a 49-day growth period. Our data provide evidence that conditions involving StemPro mesenchymal stem cells serum-free medium (SFM) Xeno-Free and hypoxia (5% oxygen concentration) in the culture atmosphere provide a superior proliferation rate compared to a standard growth environment comprised of alpha-modified Eagle medium (A-MEM) supplemented with fetal calf serum (FCS) and ambient air (20% oxygen concentration) or that of A-MEM supplemented with FCS and hypoxia. Furthermore, a flow cytometric analysis and in vitro differentiation assays confirmed the immunophenotype stability and maintained multipotency of ASCs when expanded under xeno-free conditions and hypoxia. In conclusion, our data demonstrate that growth conditions utilizing a xeno-free and hypoxic environment not only provide an improved environment for the expansion of ASCs, but also set the stage as a culture system with the potential broad spectrum utility for regenerative medicine and tissue engineering applications.

  16. Linnaeus' restless system: translation as textual engineering in eighteenth-century botany.

    Science.gov (United States)

    Dietz, Bettina

    2016-04-01

    In this essay, translations of Linnaeus' Systema naturae into various European languages will be placed into the context of successively expanded editions of Linnaeus' writings. The ambition and intention of most translators was not only to make the Systema naturae accessible for practical botanical use by a wider readership, but also to supplement and correct it, and thus to shape it. By recruiting more users, translations made a significant contribution to keeping the Systema up to date and thus maintaining its practical value for decades. The need to incorporate countless additions and corrections into an existing text, to document their provenance, to identify inconsistencies, and to refer to relevant observations, descriptions, and illustrations in the botanical literature all helped to develop and refine techniques of textual montage. This form of textual engineering, becoming increasingly complex with each translation cycle, shaped the external appearance of new editions of the Systema, and reflected the modular architecture of a botanical system designed for expansion.

  17. Neutrophils alter the inflammatory milieu by signal-dependent translation of constitutive messenger RNAs

    Science.gov (United States)

    Lindemann, Stephan W.; Yost, Christian C.; Denis, Melvin M.; McIntyre, Thomas M.; Weyrich, Andrew S.; Zimmerman, Guy A.

    2004-05-01

    The mechanisms by which neutrophils, key effector cells of the innate immune system, express new gene products in inflammation are largely uncharacterized. We found that they rapidly translate constitutive mRNAs when activated, a previously unrecognized response. One of the proteins synthesized without a requirement for transcription is the soluble IL-6 receptor , which translocates to endothelial cells and induces a temporal switch to mononuclear leukocyte recruitment. Its synthesis is regulated by a specialized translational control pathway that is inhibited by rapamycin, a bacterial macrolide with therapeutic efficacy in transplantation, inflammatory syndromes, and neoplasia. Signal-dependent translation in activated neutrophils may be a critical mechanism for alteration of the inflammatory milieu and a therapeutic target.

  18. Compositional translation

    NARCIS (Netherlands)

    Appelo, Lisette; Janssen, Theo; Jong, de F.M.G.; Landsbergen, S.P.J.

    1994-01-01

    This book provides an in-depth review of machine translation by discussing in detail a particular method, called compositional translation, and a particular system, Rosetta, which is based on this method. The Rosetta project is a unique combination of fundamental research and large-scale

  19. Cell Therapy in Organ Transplantation: Our Experience on the Clinical Translation of Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Niloufar Safinia

    2018-02-01

    Full Text Available Solid organ transplantation is the treatment of choice for patients with end-stage organ dysfunction. Despite improvements in short-term outcome, long-term outcome is suboptimal due to the increased morbidity and mortality associated with the toxicity of immunosuppressive regimens and chronic rejection (1–5. As such, the attention of the transplant community has focused on the development of novel therapeutic strategies to achieve allograft tolerance, a state whereby the immune system of the recipient can be re-educated to accept the allograft, averting the need for long-term immunosuppression. Indeed, reports of “operational” tolerance, whereby the recipient is off all immunosuppressive drugs and maintaining good graft function, is well documented in the literature for both liver and kidney transplantations (6–8. However, this phenomenon is rare and in the setting of liver transplantation has been shown to occur late after transplantation, with the majority of patients maintained on life-long immunosupression to prevent allograft rejection (9. As such, significant research has focused on immune regulation in the context of organ transplantation with regulatory T cells (Tregs identified as cells holding considerable promise in this endeavor. This review will provide a brief introduction to human Tregs, their phenotypic and functional characterization and focuses on our experience to date at the clinical translation of Treg immunotherapy in the setting of solid organ transplantation.

  20. Application and Translation of Idioms in Chinese Advertisements

    Institute of Scientific and Technical Information of China (English)

    齐秋月

    2014-01-01

    In modern society,advertising has become more and more important and indispensable.It exists everywhere and influences everyone.There is more and more acute marketing competition today,and under this condition,the application of proper advertising language will be necessary if manufactures want to make their commodity blooming and attractive to the consumer,so this research mainly discusses the application o idioms in Chinese advertisements,and then through the analyses of some advertisements both in Chinese and English,it can be found that the methods usually used in advertisement translation are loan translation,literal translation and free translation.

  1. Gender issues in translation

    OpenAIRE

    ERGASHEVA G.I.

    2015-01-01

    The following research is done regarding gender in translation dealing specifically with the issue of the translators’ gender identity and its effect on their translations, as well as on how gender itself is translated and produced. We will try to clarify what gender is, how gender manifests itself in the system of language, and what problems translators encounter when translating or producing gender-related materials

  2. Translation of Genotype to Phenotype by a Hierarchy of Cell Subsystems.

    Science.gov (United States)

    Yu, Michael Ku; Kramer, Michael; Dutkowski, Janusz; Srivas, Rohith; Licon, Katherine; Kreisberg, Jason; Ng, Cherie T; Krogan, Nevan; Sharan, Roded; Ideker, Trey

    2016-02-24

    Accurately translating genotype to phenotype requires accounting for the functional impact of genetic variation at many biological scales. Here we present a strategy for genotype-phenotype reasoning based on existing knowledge of cellular subsystems. These subsystems and their hierarchical organization are defined by the Gene Ontology or a complementary ontology inferred directly from previously published datasets. Guided by the ontology's hierarchical structure, we organize genotype data into an "ontotype," that is, a hierarchy of perturbations representing the effects of genetic variation at multiple cellular scales. The ontotype is then interpreted using logical rules generated by machine learning to predict phenotype. This approach substantially outperforms previous, non-hierarchical methods for translating yeast genotype to cell growth phenotype, and it accurately predicts the growth outcomes of two new screens of 2,503 double gene knockouts impacting DNA repair or nuclear lumen. Ontotypes also generalize to larger knockout combinations, setting the stage for interpreting the complex genetics of disease.

  3. Nucleotide-excision repair of DNA in cell-free extracts of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Wang, Z.; Wu, X.; Friedberg, E.C.

    1993-01-01

    A wide spectrum of DNA lesions are repaired by the nucleotide-excision repair (NER) pathway in both eukaryotic and prokaryotic cells. We have developed a cell-free system in Saccharomyces cerevisiae that supports NER. NER was monitored by measuring repair synthesis in DNA treated with cisplatin or with UV radiation. Repair synthesis in vitro was defective in extracts of rad1, rad2, and rad10 mutant cells, all of which have mutations in genes whose products are known to be required for NER in vivo. Additionally, repair synthesis was complemented by mixing different mutant extracts, or by adding purified Rad1 or Rad10 protein to rad1 or rad10 mutant extracts, respectively. The latter observation demonstrates that the Rad1 and Rad10 proteins directly participate in the biochemical pathway of NER. NER supported by nuclear extracts requires ATP and Mg 2+ and is stimulated by polyethylene glycol and by small amounts of whole cell extract containing overexpressed Rad2 protein. The nuclear extracts also contain base-excision repair activity that is present at wild-type levels in rad mutant extracts. This cell-free system is expected to facilitate studies on the biochemical pathway of NER in S. cerevisiae

  4. Cell-free mitochondrial DNA copy number variation in head and neck squamous cell carcinoma: A study of non-invasive biomarker from Northeast India.

    Science.gov (United States)

    Kumar, Manish; Srivastava, Shilpee; Singh, Seram Anil; Das, Anup Kumar; Das, Ganesh Chandra; Dhar, Bishal; Ghosh, Sankar Kumar; Mondal, Rosy

    2017-10-01

    Head and neck squamous cell carcinoma is the most commonly diagnosed cancer worldwide. The lifestyle, food habits, and customary practices manifest the Northeast Indian population toward higher susceptibility to develop head and neck squamous cell carcinoma. Here, we have investigated the association of smoke and smokeless tobacco, and alcohol with copy number variation of cell-free mitochondrial DNA and cell-free nuclear DNA in cases and controls. Cell-free DNA from plasma was isolated from 50 head and neck squamous cell carcinoma cases and 50 controls with informed written consent using QIAamp Circulating Nucleic Acid Kit. Real-time polymerase chain reaction was done for copy number variation in cell-free mitochondrial DNA and cell-free nuclear DNA. Receiver operating characteristic curve analysis was performed to evaluate the diagnostic application between the two study groups using clinicopathological parameters. The levels of cell-free nuclear DNA and cell-free mitochondrial DNA of cases in association with smoke and smokeless tobacco, alcohol with smoking (p squamous cell carcinoma cases and controls, we distinguished cell-free mitochondrial DNA (cutoff: 19.84 raw Ct; sensitivity: 84%; specificity: 100%; p < 0.001) and cell-free nuclear DNA (cutoff: 463,282 genomic equivalent/mL; sensitivity: 53%; specificity: 87%; p < 0.001). The copy number variation in cases (cell-free nuclear DNA: 5451.66 genomic equivalent/mL and cell-free mitochondrial DNA: 29,103,476.15 genomic equivalent/mL) and controls (cell-free nuclear DNA: 1650.9 genomic equivalent/mL and cell-free mitochondrial DNA: 9,189,312.54 genomic equivalent/mL), respectively. Our result indicates that the cell-free mitochondrial DNA content is highly associated with smoke and smokeless tobacco, betel quid chewing, and alcohol which shows greater promises, holding the key characteristics of diagnostic biomarkers, that is, minimal invasiveness, high specificity, and sensitivity.

  5. Clinical translation of autologous cell-based tissue engineering techniques as Class III therapeutics in China: Taking cartilage tissue engineering as an example

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-04-01

    Full Text Available Autologous cell-based tissue engineering (TE techniques have been clinically approved for approximately 4 years in China, since the first cartilage TE technique was approved for clinical use by the Zhejiang Health Bureau. TE techniques offer a promising alternative to traditional transplantation surgery, and are different from those for transplanted tissues (biologics or pharmaceutical, the clinical translational procedures are unique and multitasked, and the requirements may differ from those of the target tissues. Thus, the translational procedure is still unfamiliar to most researchers and needs further improvement. This perspectives paper describes the key guidelines and regulations involved in the current translational process, and shares our translational experiences in cartilage TE to provide an example of autologous cell-based TE translation in China. Finally, we discuss the scientific and social challenges and provide some suggestions for future improvements.

  6. Mesostructured platinum-free anode and carbon-free cathode catalysts for durable proton exchange membrane fuel cells.

    Science.gov (United States)

    Cui, Xiangzhi; Shi, Jianlin; Wang, Yongxia; Chen, Yu; Zhang, Lingxia; Hua, Zile

    2014-01-01

    As one of the most important clean energy sources, proton exchange membrane fuel cells (PEMFCs) have been a topic of extensive research focus for decades. Unfortunately, several critical technique obstacles, such as the high cost of platinum electrode catalysts, performance degradation due to the CO poisoning of the platinum anode, and carbon corrosion by oxygen in the cathode, have greatly impeded its commercial development. A prototype of a single PEMFC catalyzed by a mesostructured platinum-free WO3/C anode and a mesostructured carbon-free Pt/WC cathode catalysts is reported herein. The prototype cell exhibited 93% power output of a standard PEMFC using commercial Pt/C catalysts at 50 and 70 °C, and more importantly, CO poisoning-free and carbon corrosion-resistant characters of the anode and cathode, respectively. Consequently, the prototype cell demonstrated considerably enhanced cell operation durability. The mesostructured electrode catalysts are therefore highly promising in the future development and application of PEMFCs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Translational control and differential RNA decay are key elements regulating postsegregational expression of the killer protein encoded by the parB locus of plasmid R1

    DEFF Research Database (Denmark)

    Gerdes, K; Helin, K; Christensen, O W

    1988-01-01

    The parB locus of plasmid R1, which mediates plasmid stability via postsegregational killing of plasmid-free cells, encodes two genes, hok and sok. The hok gene product is a potent cell-killing protein. The hok gene is regulated at the translational level by the sok gene-encoded repressor, a small...

  8. The paradigm of description in ethnographic translation: the translator Levi-Strauss in Tristes Tropiques

    Directory of Open Access Journals (Sweden)

    Alice Maria de Araújo Ferreira

    2014-11-01

    Full Text Available Published in 1955, Tristes Tropiques by Claude Levi-Strauss is an account of the journey that the author and ethnographer made on the American continent, especially in Brazil, in 1930. With a free poetic style not restricted by the austerity of scientific work, Levi-Strauss introduced a reflection that established a crucial rupture in ethnographic studies and in the humanities in general, or rather, the rupture of the gaze. His aim is not precisely the culture of the indigenous people in Brazil, but Levi-Strauss himself as the subject of the gaze. How may one grasp an object that changes as one gazes at it? How does the gaze affect the object while gazing, observing, analyzing, describing, and translating it? Current essay discusses what the translator does to the speech of the other when translating it. Different translation strategies from Portuguese into French proposed by Levi-Strauss in Tristes Tropiques are discussed. Conceiving ethnographic translation from the description paradigm and as an encounter of cultures (but not as replacement, the author analyzes the process performed within the gap between the gaze experience and the production of speech of such gaze to understand the value produced at the end of the axis corresponding to the ethnographic translation-description.

  9. Transformation of cooperative free energies between ligation systems of hemoglobin: resolution of the carbon monoxide binding intermediates.

    Science.gov (United States)

    Huang, Y; Ackers, G K

    1996-01-23

    A strategy has been developed for quantitatively "translating" the distributions of cooperative free energy between different oxygenation analogs of hemoglobin (Hb). The method was used to resolve the cooperative free energies of all eight carbon monoxide binding intermediates. These parameters of the FeCOHb system were determined by thermodynamic transformation of corresponding free energies obtained previously for all species of the Co/FeCO system, i.e., where cobalt-substituted hemes comprise the unligated sites [Speros, P. C., et al. (1991) Biochemistry 30, 7254-7262]. Using hybridized combinations of normal and cobalt-substituted Hb, ligation analog systems Co/FeX (X = CO, CN) were constructed and experimentally quantified. Energetics of cobalt-induced structural perturbation were determined for all species of both the "mixed metal" Co/Fe system and also the ligated Co/FeCN system. It was found that major energetic perturbations of the Co/Fe hybrid species originate from a pure cobalt substitution effect on the alpha subunits. These perturbations are transduced to the beta subunit within the same dimeric half-tetramer, resulting in alteration of the free energies for binding at the nonsubstituted (Fe) sites. Using the linkage strategy developed in this study along with the determined energetics of these couplings, the experimental assembly free energies for the Co/FeCO species were transformed into cooperative free energies of the 10 Fe/FeCO species. The resulting values were found to distribute according to predictions of a symmetry rule mechanism proposed previously [Ackers, G. K., et al. (1992) Science 255, 54-63]. Their distribution is consistent with accurate CO binding data of normal Hb [Perrella, M., et al. (1990b) Biophys. Chem. 37, 211-223] and also with accurate O2 binding data obtained under the same conditions [Chu, A. H., et al. (1984) Biochemistry 23, 604-617].

  10. The effect of small molecules on nuclear-encoded translation diseases.

    Science.gov (United States)

    Soiferman, Devorah; Ayalon, Oshrat; Weissman, Sarah; Saada, Ann

    2014-05-01

    The five complexes of the mitochondrial respiratory chain (MRC) supply most organs and tissues with ATP produced by oxidative phosphorylation (OXPHOS). Inherited mitochondrial diseases affecting OXPHOS dysfunction are heterogeneous; symptoms may present at any age and may affect a wide range of tissues, with many diseases giving rise to devastating multisystemic disorders resulting in neonatal death. Combined respiratory chain deficiency with normal complex II accounts for a third of all respiratory deficiencies; mutations in nuclear-encoded components of the mitochondrial translation machinery account for many cases. Although mutations have been identified in over 20 such genes and our understanding of the mitochondrial translation apparatus is increasing, to date no definitive cure for these disorders exists. We evaluated the effect of seven small molecules with reported therapeutic potential in fibroblasts of four patients with combined respiratory complex disorders, each harboring a known mutation in a different nuclear-encoded component of the mitochondrial translation machinery: EFTs, GFM1, MRPS22 and TRMU. Six mitochondrial parameters were screened as follows; growth in glucose-free medium, reactive oxygen species (ROS) production, ATP content, mitochondrial content, mitochondrial membrane potential and complex IV activity. It was clearly evident that each patient displayed an individual response and there was no universally beneficial compound. AICAR increased complex IV activity in GFM1 cells and increased ATP content in MRPS22 fibroblasts but was detrimental to TRMU, who benefitted from bezafibrate. Two antioxidants, ascorbate and N-acetylcysteine (NAC), significantly improved cell growth, ATP content and mitochondrial membrane potential and decreased levels of intracellular reactive oxygen species (ROS) in EFTs fibroblasts. This study presents an expanded repertoire of assays that can be performed using the microtiter screening system with a small number

  11. Advancement on Lead-Free Organic-Inorganic Halide Perovskite Solar Cells: A Review.

    Science.gov (United States)

    Sani, Faruk; Shafie, Suhaidi; Lim, Hong Ngee; Musa, Abubakar Ohinoyi

    2018-06-14

    Remarkable attention has been committed to the recently discovered cost effective and solution processable lead-free organic-inorganic halide perovskite solar cells. Recent studies have reported that, within five years, the reported efficiency has reached 9.0%, which makes them an extremely promising and fast developing candidate to compete with conventional lead-based perovskite solar cells. The major challenge associated with the conventional perovskite solar cells is the toxic nature of lead (Pb) used in the active layer of perovskite material. If lead continues to be used in fabricating solar cells, negative health impacts will result in the environment due to the toxicity of lead. Alternatively, lead free perovskite solar cells could give a safe way by substituting low-cost, abundant and non toxic material. This review focuses on formability of lead-free organic-inorganic halide perovskite, alternative metal cations candidates to replace lead (Pb), and possible substitutions of organic cations, as well as halide anions in the lead-free organic-inorganic halide perovskite architecture. Furthermore, the review gives highlights on the impact of organic cations, metal cations and inorganic anions on stability and the overall performance of lead free perovskite solar cells.

  12. Word translation entropy in translation

    DEFF Research Database (Denmark)

    Schaeffer, Moritz; Dragsted, Barbara; Hvelplund, Kristian Tangsgaard

    2016-01-01

    This study reports on an investigation into the relationship between the number of translation alternatives for a single word and eye movements on the source text. In addition, the effect of word order differences between source and target text on eye movements on the source text is studied....... In particular, the current study investigates the effect of these variables on early and late eye movement measures. Early eye movement measures are indicative of processes that are more automatic while late measures are more indicative of conscious processing. Most studies that found evidence of target...... language activation during source text reading in translation, i.e. co-activation of the two linguistic systems, employed late eye movement measures or reaction times. The current study therefore aims to investigate if and to what extent earlier eye movement measures in reading for translation show...

  13. Electron-translation effects in heavy-ion scattering

    International Nuclear Information System (INIS)

    Heinz, U.; Greiner, W.; Mueller, B.

    1981-01-01

    The origin and importance of electron-translation effects within a molecular description of electronic excitations in heavy-ion collisions is investigated. First, a fully consistent quantum-mechanical description of the scattering process is developed; the electrons are described by relativistic molecular orbitals, while the nuclear motion is approximated nonrelativistically. Leaving the quantum-mechanical level by using the semiclassical approximation for the nuclear motion, a set of coupled differential equations for the occupation amplitudes of the molecular orbitals is derived. In these coupled-channel equations the spurious asymptotic dynamical couplings are corrected for by additional matrix elements stemming from the electron translation. Hence, a molecular description of electronic excitations in heavy-ion scattering has been achieved, which is free from the spurious asymptotic couplings of the conventional perturbated stationary-state approach. The importance of electron-translation effects for continuum electrons and positrons is investigated. To this end an algorithm for the description of continuum electrons is proposed, which for the first time should allow for the calculation of angular distributions for delta electrons. Finally, the practical consequences of electron-translation effects are studied by calculating the corrected coupling matrix elements for the Pb-Cm system and comparing the corresponding K-vacancy probabilities with conventional calculations. We critically discuss conventional methods for cutting off the coupling matrix elements in coupled-channel calculations

  14. Label-free cell-cycle analysis by high-throughput quantitative phase time-stretch imaging flow cytometry

    Science.gov (United States)

    Mok, Aaron T. Y.; Lee, Kelvin C. M.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2018-02-01

    Biophysical properties of cells could complement and correlate biochemical markers to characterize a multitude of cellular states. Changes in cell size, dry mass and subcellular morphology, for instance, are relevant to cell-cycle progression which is prevalently evaluated by DNA-targeted fluorescence measurements. Quantitative-phase microscopy (QPM) is among the effective biophysical phenotyping tools that can quantify cell sizes and sub-cellular dry mass density distribution of single cells at high spatial resolution. However, limited camera frame rate and thus imaging throughput makes QPM incompatible with high-throughput flow cytometry - a gold standard in multiparametric cell-based assay. Here we present a high-throughput approach for label-free analysis of cell cycle based on quantitative-phase time-stretch imaging flow cytometry at a throughput of > 10,000 cells/s. Our time-stretch QPM system enables sub-cellular resolution even at high speed, allowing us to extract a multitude (at least 24) of single-cell biophysical phenotypes (from both amplitude and phase images). Those phenotypes can be combined to track cell-cycle progression based on a t-distributed stochastic neighbor embedding (t-SNE) algorithm. Using multivariate analysis of variance (MANOVA) discriminant analysis, cell-cycle phases can also be predicted label-free with high accuracy at >90% in G1 and G2 phase, and >80% in S phase. We anticipate that high throughput label-free cell cycle characterization could open new approaches for large-scale single-cell analysis, bringing new mechanistic insights into complex biological processes including diseases pathogenesis.

  15. Rho kinase inhibitor Y-27632 promotes the differentiation of human bone marrow mesenchymal stem cells into keratinocyte-like cells in xeno-free conditioned medium.

    Science.gov (United States)

    Li, Zhenzhen; Han, Shichao; Wang, Xingqin; Han, Fu; Zhu, Xiongxiang; Zheng, Zhao; Wang, Hongtao; Zhou, Qin; Wang, Yunchuan; Su, Linlin; Shi, Jihong; Tang, Chaowu; Hu, Dahai

    2015-03-11

    Bone marrow mesenchymal stem cells (BMSCs), which have the ability to self-renew and to differentiate into multiple cell types, have recently become a novel strategy for cell-based therapies. The differentiation of BMSCs into keratinocytes may be beneficial for patients with burns, disease, or trauma. However, the currently available cells are exposed to animal materials during their cultivation and induction. These xeno-contaminations severely limit their clinical outcomes. Previous studies have shown that the Rho kinase (ROCK) inhibitor Y-27632 can promote induction efficiency and regulate the self-renewal and differentiation of stem cells. In the present study, we attempted to establish a xeno-free system for the differentiation of BMSCs into keratinocytes and to investigate whether Y-27632 can facilitate this differentiation. BMSCs isolated from patients were cultured by using a xeno-free system and characterised by using flow cytometric analysis and adipogenic and osteogenic differentiation assays. Human primary keratinocytes were also isolated from patients. Then, the morphology, population doubling time, and β-galactosidase staining level of these cells were evaluated in the presence or absence of Y-27632 to determine the effects of Y-27632 on the state of the keratinocytes. Keratinocyte-like cells (KLCs) were detected at different time points by immunocytofluorescence analysis. Moreover, the efficiency of BMSC differentiation under different conditions was measured by quantitative real-time-polymerase chain reaction (RT-PCR) and Western blot analyses. The ROCK inhibitor Y-27632 promoted the proliferation and lifespan of human primary keratinocytes. In addition, we showed that keratinocyte-specific markers could be detected in BMSCs cultured in a xeno-free system using keratinocyte-conditioned medium (KCM) independent of the presence of Y-27632. However, the efficiency of the differentiation of BMSCs into KLCs was significantly higher in the presence of Y

  16. Evolution of taste and solitary chemoreceptor cell systems.

    Science.gov (United States)

    Finger, T E

    1997-01-01

    Vertebrates possess four distinct chemosensory systems distinguishable on the basis of structure, innervation and utilization: olfaction, taste, solitary chemoreceptor cells (SCC) and the common chemical sense (free nerve endings). Of these, taste and the SCC sense rely on secondary receptor cells situated in the epidermis and synapsing on sensory nerve fibers innervating them near their base. The SCC sense occurs in anamniote aquatic craniates, including hagfish, and may be used for feeding or predator avoidance. The sense of taste occurs only in vertebrates and is always utilized for feeding. The SCC system achieves a high degree of specialization in two teleosts: sea robins (Prionotus) and rocklings (Ciliata). In sea robins, SCCs are abundant on the three anterior fin rays of the pectoral fin which are free of fin webbing and are used in active exploration of the substrate. Behavioral and physiological studies show that this SCC system responds to feeding cues and drives feeding behavior. It is connected centrally like a somatosensory system. In contrast, the specialized SCC system of rocklings occurs on the anterior dorsal fin which actively samples the surrounding water. This system responds to mucus substances and may serve as a predator detector. The SCC system in rocklings is connected centrally like a gustatory system. Taste buds contain multiple receptor cell types, including a serotonergic Merkel-like cell. Taste receptor cells respond to nutritionally relevant substances. Due to similarities between SCCs and one type of taste receptor cell, the suggestion is made that taste buds may be compound sensory organs that include some cells related to SCCs and others related to cutaneous Merkel cells. The lack of taste buds in hagfish and their presence in all vertebrates may indicate that the phylogenetic development of taste buds coincided with the elaboration of head structures at the craniate-vertebrate transition.

  17. The Mystro system: A comprehensive translator toolkit

    Science.gov (United States)

    Collins, W. R.; Noonan, R. E.

    1985-01-01

    Mystro is a system that facilities the construction of compilers, assemblers, code generators, query interpretors, and similar programs. It provides features to encourage the use of iterative enhancement. Mystro was developed in response to the needs of NASA Langley Research Center (LaRC) and enjoys a number of advantages over similar systems. There are other programs available that can be used in building translators. These typically build parser tables, usually supply the source of a parser and parts of a lexical analyzer, but provide little or no aid for code generation. In general, only the front end of the compiler is addressed. Mystro, on the other hand, emphasizes tools for both ends of a compiler.

  18. Typologically robust statistical machine translation : Understanding and exploiting differences and similarities between languages in machine translation

    NARCIS (Netherlands)

    Daiber, J.

    2018-01-01

    Machine translation systems often incorporate modeling assumptions motivated by properties of the language pairs they initially target. When such systems are applied to language families with considerably different properties, translation quality can deteriorate. Phrase-based machine translation

  19. Glycoengineering in CHO cells: Advances in systems biology

    DEFF Research Database (Denmark)

    Tejwani, Vijay; Andersen, Mikael Rørdam; Nam, Jong Hyun

    2018-01-01

    are not well understood. A systems biology approach combining different technologies is needed for complete understanding of the molecular processes accounting for this variability and to open up new venues in cell line development. In this review, we describe several advances in genetic manipulation, modeling......For several decades, glycoprotein biologics have been successfully produced from Chinese hamster ovary (CHO) cells. The therapeutic efficacy and potency of glycoprotein biologics are often dictated by their post translational modifications, particularly glycosylation, which unlike protein synthesis....... Recently, CHO cells have also been explored for production of therapeutic glycosaminoglycans (e.g. heparin), which presents similar challenges as producing glycoproteins biologics. Approaches to controlling heterogeneity in CHO cells and directing the biosynthetic process toward desired glycoforms...

  20. Preparative scale production of functional mouse aquaporin 4 using different cell-free expression modes.

    Directory of Open Access Journals (Sweden)

    Lei Kai

    Full Text Available The continuous progress in the structural and functional characterization of aquaporins increasingly attracts attention to study their roles in certain mammalian diseases. Although several structures of aquaporins have already been solved by crystallization, the challenge of producing sufficient amounts of functional proteins still remains. CF (cell free expression has emerged in recent times as a promising alternative option in order to synthesize large quantities of membrane proteins, and the focus of this report was to evaluate the potential of this technique for the production of eukaryotic aquaporins. We have selected the mouse aquaporin 4 as a representative of mammalian aquaporins. The protein was synthesized in an E. coli extract based cell-free system with two different expression modes, and the efficiencies of two modes were compared. In both, the P-CF (cell-free membrane protein expression as precipitate mode generating initial aquaporin precipitates as well as in the D-CF (cell-free membrane protein expression in presence of detergent mode, generating directly detergent solubilized samples, we were able to obtain mg amounts of protein per ml of cell-free reaction. Purified aquaporin samples solubilized in different detergents were reconstituted into liposomes, and analyzed for the water channel activity. The calculated P(f value of proteoliposome samples isolated from the D-CF mode was 133 µm/s at 10°C, which was 5 times higher as that of the control. A reversible inhibitory effect of mercury chloride was observed, which is consistent with previous observations of in vitro reconstituted aquaporin 4. In this study, a fast and convenient protocol was established for functional expression of aquaporins, which could serve as basis for further applications such as water filtration.

  1. Using example-based machine translation to translate DVD subtitles

    DEFF Research Database (Denmark)

    Flanagan, Marian

    between Swedish and Danish and Swedish and Norwegian subtitles, with the company already reporting a successful return on their investment. The hybrid EBMT/SMT system used in the current research, on the other hand, remains within the confines of academic research, and the real potential of the system...... allotted to produce the subtitles have both decreased. Therefore, this market is recognised as a potential real-world application of MT. Recent publications have introduced Corpus-Based MT approaches to translate subtitles. An SMT system has been implemented in a Swedish subtitling company to translate...

  2. An Electronic Dictionary and Translation System for Murrinh-Patha

    Science.gov (United States)

    Seiss, Melanie; Nordlinger, Rachel

    2012-01-01

    This paper presents an electronic dictionary and translation system for the Australian language Murrinh-Patha. Its complex verbal structure makes learning Murrinh-Patha very difficult. Design learning materials or a dictionary which is easy to understand and to use also presents a challenge. This paper discusses some of the difficulties posed by…

  3. xCELLigence system for real-time label-free monitoring of growth and viability of cell lines from hematological malignancies.

    Science.gov (United States)

    Martinez-Serra, Jordi; Gutierrez, Antonio; Muñoz-Capó, Saúl; Navarro-Palou, María; Ros, Teresa; Amat, Juan Carlos; Lopez, Bernardo; Marcus, Toni F; Fueyo, Laura; Suquia, Angela G; Gines, Jordi; Rubio, Francisco; Ramos, Rafael; Besalduch, Joan

    2014-01-01

    The xCELLigence system is a new technological approach that allows the real-time cell analysis of adherent tumor cells. To date, xCELLigence has not been able to monitor the growth or cytotoxicity of nonadherent cells derived from hematological malignancies. The basis of its technology relies on the use of culture plates with gold microelectrodes located in their base. We have adapted the methodology described by others to xCELLigence, based on the pre-coating of the cell culture surface with specific substrates, some of which are known to facilitate cell adhesion in the extracellular matrix. Pre-coating of the culture plates with fibronectin, compared to laminin, collagen, or gelatin, significantly induced the adhesion of most of the leukemia/lymphoma cells assayed (Jurkat, L1236, KMH2, and K562). With a fibronectin substrate, nonadherent cells deposited in a monolayer configuration, and consequently, the cell growth and viability were robustly monitored. We further demonstrate the feasibility of xCELLigence for the real-time monitoring of the cytotoxic properties of several antineoplastic agents. In order to validate this technology, the data obtained through real-time cell analysis was compared with that obtained from using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. This provides an excellent label-free tool for the screening of drug efficacy in nonadherent cells and discriminates optimal time points for further molecular analysis of cellular events associated with treatments, reducing both time and costs.

  4. Insights into cell-free therapeutic approach: Role of stem cell "soup-ernatant".

    Science.gov (United States)

    Raik, Shalini; Kumar, Ajay; Bhattacharyya, Shalmoli

    2018-03-01

    Current advances in medicine have revolutionized the field of regenerative medicine dramatically with newly evolved therapies for repair or replacement of degenerating or injured tissues. Stem cells (SCs) can be harvested from different sources for clinical therapeutics, which include fetal tissues, umbilical cord blood, embryos, and adult tissues. SCs can be isolated and differentiated into desired lineages for tissue regeneration and cell replacement therapy. However, several loopholes need to be addressed properly before this can be extended for large-scale therapeutic application. These include a careful approach for patient safety during SC treatments and tolerance of recipients. SC treatments are associated with a number of risk factors and require successful integration and survival of transplanted cells in the desired microenvironment with concurrent tissue regeneration. Recent studies have focused on developing alternatives that can replace the cell-based therapy using paracrine factors. The development of stem "cell free" therapies can be devoted mainly to the use of soluble factors (secretome), extracellular vesicles, and mitochondrial transfer. The present review emphasizes on the paradigms related to the use of SC-based therapeutics and the potential applications of a cell-free approach as an alternative to cell-based therapy in the area of regenerative medicine. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  5. Design and exergetic analysis of a novel carbon free tri-generation system for hydrogen, power and heat production from natural gas, based on combined solid oxide fuel and electrolyser cells

    Energy Technology Data Exchange (ETDEWEB)

    Perdikaris, N.; Hofmann, Ph.; Spyrakis, S. [Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, Thermal Engineering Section, National Technical University of Athens, 9 Heroon Polytechniou Ave., Zografou, 15780 Athens (Greece); Panopoulos, K.D. [Institute for Solid Fuels Technology and Applications, Centre for Research and Technology Hellas, 4th km N.R. Ptolemais-Kozani, P.O. Box 95, 50200 Ptolemais (Greece); Kakaras, E. [Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, Thermal Engineering Section, National Technical University of Athens, 9 Heroon Polytechniou Ave., Zografou, 15780 Athens (Greece); Institute for Solid Fuels Technology and Applications, Centre for Research and Technology Hellas, 4th km N.R. Ptolemais-Kozani, P.O. Box 95, 50200 Ptolemais (Greece)

    2010-03-15

    The Solid Oxide Cells (SOCs) are able to operate in two modes: (a) the Solid Oxide Fuel Cells (SOFCs) that produce electricity and heat and (b) the Solid Oxide Electrolyser Cells (SOEC) that consume electricity and heat to electrolyse water and produce hydrogen and oxygen. The present paper presents a carbon free SOEC/SOFC combined system for the production of hydrogen, electricity and heat (tri-generation) from natural gas fuel. Hydrogen can be locally used as automobile fuel whereas the oxygen produced in the SOEC is used to combust the depleted fuel from the SOFC, which is producing electricity and heat from natural gas. In order to achieve efficient carbon capture in such a system, water steam should be used as the SOEC anode sweep gas, to allow the production of nitrogen free flue gases. The SOEC and SOFC operations were matched through modeling of all components in Aspenplus trademark. The exergetic efficiency of the proposed decentralised system is 28.25% for power generation and 18.55% for production of hydrogen. The system is (a) carbon free because it offers an almost pure pressurised CO{sub 2} stream to be driven for fixation via parallel pipelines to the natural gas feed, (b) does not require any additional water for its operation and (c) offers 26.53% of its energetic input as hot water for applications. (author)

  6. 21 CFR 862.1730 - Free tyrosine test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Free tyrosine test system. 862.1730 Section 862....1730 Free tyrosine test system. (a) Identification. A free tyrosine test system is a device intended to measure free tyrosine (an amono acid) in serum and urine. Measurements obtained by this device are used in...

  7. Single acting translational/rotational brake

    Science.gov (United States)

    Allred, Johnny W. (Inventor); Fleck, Jr., Vincent J. (Inventor)

    1996-01-01

    A brake system is provided that applies braking forces on surfaces in both the translational and rotational directions using a single acting self-contained actuator that travels with the translational mechanism. The brake engages a mechanical lock and creates a frictional force on the translational structure preventing translation while simultaneously creating a frictional torque that prevents rotation of the vertical support. The system may include serrations on the braking surfaces to provide increased braking forces.

  8. Translational control in plant antiviral immunity

    Directory of Open Access Journals (Sweden)

    João Paulo B. Machado

    Full Text Available Abstract Due to the limited coding capacity of viral genomes, plant viruses depend extensively on the host cell machinery to support the viral life cycle and, thereby, interact with a large number of host proteins during infection. Within this context, as plant viruses do not harbor translation-required components, they have developed several strategies to subvert the host protein synthesis machinery to produce rapidly and efficiently the viral proteins. As a countermeasure against infection, plants have evolved defense mechanisms that impair viral infections. Among them, the host-mediated translational suppression has been characterized as an efficient mean to restrict infection. To specifically suppress translation of viral mRNAs, plants can deploy susceptible recessive resistance genes, which encode translation initiation factors from the eIF4E and eIF4G family and are required for viral mRNA translation and multiplication. Additionally, recent evidence has demonstrated that, alternatively to the cleavage of viral RNA targets, host cells can suppress viral protein translation to silence viral RNA. Finally, a novel strategy of plant antiviral defense based on suppression of host global translation, which is mediated by the transmembrane immune receptor NIK1 (nuclear shuttle protein (NSP-Interacting Kinase1, is discussed in this review.

  9. Why Translation Is Difficult

    DEFF Research Database (Denmark)

    Carl, Michael; Schaeffer, Moritz Jonas

    2017-01-01

    The paper develops a definition of translation literality that is based on the syntactic and semantic similarity of the source and the target texts. We provide theoretical and empirical evidence that absolute literal translations are easy to produce. Based on a multilingual corpus of alternative...... translations we investigate the effects of cross-lingual syntactic and semantic distance on translation production times and find that non-literality makes from-scratch translation and post-editing difficult. We show that statistical machine translation systems encounter even more difficulties with non-literality....

  10. Generation of clinical-grade human induced pluripotent stem cells in Xeno-free conditions.

    Science.gov (United States)

    Wang, Juan; Hao, Jie; Bai, Donghui; Gu, Qi; Han, Weifang; Wang, Lei; Tan, Yuanqing; Li, Xia; Xue, Ke; Han, Pencheng; Liu, Zhengxin; Jia, Yundan; Wu, Jun; Liu, Lei; Wang, Liu; Li, Wei; Liu, Zhonghua; Zhou, Qi

    2015-11-12

    Human induced pluripotent stem cells (hiPSCs) are considered as one of the most promising seed cell sources in regenerative medicine. Now hiPSC-based clinical trials are underway. To ensure clinical safety, cells used in clinical trials or therapies should be generated under GMP conditions, and with Xeno-free culture media to avoid possible side effects like immune rejection that induced by the Xeno reagents. However, up to now there are no reports for hiPSC lines developed completely under GMP conditions using Xeno-free reagents. Clinical-grade human foreskin fibroblast (HFF) cells used as feeder cells and parental cells of the clinical-grade hiPSCs were isolated from human foreskin tissues and cultured in Xeno-free media. Clinical-grade hiPSCs were derived by integration-free Sendai virus-based reprogramming kit in Xeno-free pluriton™ reprogramming medium or X medium. Neural cells and cardiomyocytes differentiation were conducted following a series of spatial and temporal specific signals induction according to the corresponding lineage development signals. Biological safety evaluation of the clinical-grade HFF cells and hiPSCs were conducted following the guidance of the "Pharmacopoeia of the People's Republic of China, Edition 2010, Volume III". We have successfully derived several integration-free clinical-grade hiPSC lines under GMP-controlled conditions and with Xeno-free reagents culture media in line with the current guidance of international and national evaluation criteria. As for the source of hiPSCs and feeder cells, biological safety evaluation of the HFF cells have been strictly reviewed by the National Institutes for Food and Drug Control (NIFDC). The hiPSC lines are pluripotent and have passed the safety evaluation. Moreover, one of the randomly selected hiPSC lines was capable of differentiating into functional neural cells and cardiomyocytes in Xeno-free culture media. The clinical-grade hiPSC lines therefore could be valuable sources for

  11. Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation.

    Science.gov (United States)

    Faravelli, Irene; Riboldi, Giulietta; Nizzardo, Monica; Simone, Chiara; Zanetta, Chiara; Bresolin, Nereo; Comi, Giacomo P; Corti, Stefania

    2014-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by degeneration of upper and lower motor neurons. There are currently no clinically impactful treatments for this disorder. Death occurs 3-5 years after diagnosis, usually due to respiratory failure. ALS pathogenesis seems to involve several pathological mechanisms (i.e., oxidative stress, inflammation, and loss of the glial neurotrophic support, glutamate toxicity) with different contributions from environmental and genetic factors. This multifaceted combination highlights the concept that an effective therapeutic approach should counteract simultaneously different aspects: stem cell therapies are able to maintain or rescue motor neuron function and modulate toxicity in the central nervous system (CNS) at the same time, eventually representing the most comprehensive therapeutic approach for ALS. To achieve an effective cell-mediated therapy suitable for clinical applications, several issues must be addressed, including the identification of the most performing cell source, a feasible administration protocol, and the definition of therapeutic mechanisms. The method of cell delivery represents a major issue in developing cell-mediated approaches since the cells, to be effective, need to be spread across the CNS, targeting both lower and upper motor neurons. On the other hand, there is the need to define a strategy that could provide a whole distribution without being too invasive or burdened by side effects. Here, we review the recent advances regarding the therapeutic potential of stem cells for ALS with a focus on the minimally invasive strategies that could facilitate an extensive translation to their clinical application.

  12. Conjugate dynamical systems: classical analogue of the quantum energy translation

    International Nuclear Information System (INIS)

    Torres-Vega, Gabino

    2012-01-01

    An aspect of quantum mechanics that has not been fully understood is the energy shift generated by the time operator. In this study, we introduce the use of the eigensurfaces of dynamical variables and commutators in classical mechanics to study the classical analogue of the quantum translation of energy. We determine that there is a conjugate dynamical system that is conjugate to Hamilton's equations of motion, and then we generate the analogue of the time operator and use it in the translation of points along the energy direction, i.e. the classical analogue of the Pauli theorem. The theory is illustrated with a nonlinear oscillator model. (paper)

  13. Characteristics and classification of hippocampal θ rhythm induced by passive translational displacement.

    Science.gov (United States)

    Xie, Kangning; Yan, Yili; Fang, Xiaolei; Gao, Shangkai; Hong, Bo

    2012-04-25

    Theta rhythms in the hippocampus are believed to be the "metric" relating to various behavior patterns for free roaming rats. In this study, the theta rhythms were studied while rats either walked or were passively translated by a toy car on a linear track (referred to as WALK and TRANS respectively). For the similar running speeds in WALK and TRANS conditions, theta frequency and amplitude were both reduced during TRANS. Theta modulation of pyramidal cells during TRANS was reduced compared to that during WALK. Theta frequency was positively correlated with translation speed during TRANS. Theta rhythm remained apparent during TRANS and WALK after large dose of atropine sulfate (blocking the cholinergic pathway) was injected compared to still states. The present study demonstrated the patterns of theta rhythm induced by passive translation in rats and suggested that the Type I theta rhythm could occur during non-voluntary locomotion. We further argued that the perception of actual self-motion may be the underlying mechanism that initiates and modulates type I theta. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. F NMR measurement of intracellular free calcium in human red blood cells

    International Nuclear Information System (INIS)

    Gupta, R.K.; Schanne, F.A.X.

    1986-01-01

    Optical techniques for the measurement of intracellular Ca are not readily applicable to the human red cell because of the intense absorption of hemoglobin. The authors have therefore examined the use of 19 F NMR of 5,5'-difluoro-1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetra acetic acid (5FBAPTA) introduced non-disruptively by intracellular hydrolysis of the membrane-permeant acetoxymethyl ester derivative. 19 F NMR spectra of 5FBAPTA-containing erythrocytes at 188 MHz displayed two well resolved resonances corresponding to the free and Ca-bound forms of the chelator, the resonance of the free form being ten-fold larger than that of the Ca-bound form. Addition of the ionophore A23187 resulted in the disappearance of the resonance of the free anion and a quantitative increase in the intensity of the resonance of the Ca-complex. From these data, and a K/sub D/ of 708 nM for the Ca-5FBAPTA complex, the authors estimate red cell free Ca to be 70 nM, which is in the range of values obtained for other cells, despite the fact that the human red cell, which lacks intracellular organelles for storing Ca, possesses only 1 μmol total Ca/1. cells in comparison to mmols of total Ca found in other cells. The authors ability to use 19 F NMR to measure free Ca in the red blood cell paves the way for future NMR studies of red cell free Ca concentrations in human essential hypertension as well as in other diseases states in which alterations in cellular Ca homeostasis may be involved

  15. Detailed characterisation of STC-1 cells and the pGIP/Neo sub-clone suggests the incretin hormones are translationally regulated.

    Science.gov (United States)

    Gillespie, Anna L; Pan, Xiaobei; Marco-Ramell, Anna; Meharg, Caroline; Green, Brian D

    2017-10-01

    STC-1 is a heterogeneous plurihormonal cell line producing several prominent gut peptide hormones. pGIP/Neo is a genetically selected sub-clone of STC-1 with augmented levels of glucose-dependent insulinotropic peptide (GIP). Morphometric parameters, hormone concentrations, mRNA transcripts, hormone immunocytochemistry and nutrient utilisation/production of these two cell lines were compared. Proglucagon-derived peptides (Glucagon-like peptide-1 (GLP-1) and - 2(GLP-2)) were lower in sub-clone cells than progenitor cells. High Content Analysis found altered intracellular GLP-1, GIP, cholecystokinin (CCK) and peptide YY (PYY) levels and differing hormone co-localisation. The proportion pGIP/Neo cells containing GIP immunoreactivity (82%) was greater than STC-1 (65%), as were the proportion with 'GIP only', 'GLP-1+GIP' or 'GIP+PYY' immunoreactivity. Most surprisingly mRNA transcripts of the proglucagon and GIP genes were inversely correlated to the levels of their translated peptides. This strongly suggests that proglucagon and GIP are encoded on 'translationally regulated genes' - a characteristic possessed by other endocrine hormones. Metabolomic profiling revealed differences in cellular nutrient utilisation/production and that under normal culture conditions both cell lines exhibit signs of overflow metabolism. These studies provide an insight into the metabolism and properties of these valuable cells, suggesting for the first time that incretin hormone genes are translationally regulated. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Lost in Translation

    Science.gov (United States)

    Lass, Wiebke; Reusswig, Fritz

    2014-05-01

    Lost in Translation? Introducing Planetary Boundaries into Social Systems. Fritz Reusswig, Wiebke Lass Potsdam Institute for Climate Impact Research, Potsdam, Germany Identifying and quantifying planetary boundaries by interdisciplinary science efforts is a challenging task—and a risky one, as the 1972 Limits to Growth publication has shown. Even if we may be assured that scientific understanding of underlying processes of the Earth system has significantly improved since then, the challenge of translating these findings into the social systems of the planet remains crucial for any kind of action, and in many respects far more challenging. We would like to conceptualize what could also be termed a problem of coupling social and natural systems as a nested set of social translation processes, well aware of the limited applicability of the language-related translation metaphor. Societies must, first, perceive these boundaries, and they have to understand their relevance. This includes, among many other things, the organization of transdisciplinary scientific cooperation. They will then have to translate this understood perception into possible actions, i.e. strategies for different local bodies, actors, and institutional settings. This implies a lot of 'internal' translation processes, e.g. from the scientific subsystem to the mass media, the political and the economic subsystem. And it implies to develop subsystem-specific schemes of evaluation for these alternatives, e.g. convincing narratives, cost-benefit analyses, or ethical legitimacy considerations. And, finally, societies do have to translate chosen action alternatives into monitoring and evaluation schemes, e.g. for agricultural production or renewable energies. This process includes the continuation of observing and re-analyzing the planetary boundary concept itself, as a re-adjustment of these boundaries in the light of new scientific insights cannot be excluded. Taken all together, societies may well

  17. Flight Demonstration Results of an Inertial Measurement Unit and Global Positioning System Translator Telemetry System

    National Research Council Canada - National Science Library

    David, Bradford

    2001-01-01

    .... A GPS translator from the Johns Hopkins University Applied Physics Laboratory and a low-cost IMU designed by ARL from commercial off-the-shelf components were combined with a telemetry system, packaged...

  18. Rapid Detection of Cell-Free Mycobacterium tuberculosis DNA in Tuberculous Pleural Effusion.

    Science.gov (United States)

    Che, Nanying; Yang, Xinting; Liu, Zichen; Li, Kun; Chen, Xiaoyou

    2017-05-01

    Tuberculous pleurisy is one of the most common types of extrapulmonary tuberculosis, but its diagnosis remains difficult. In this study, we report for the first time on the detection of cell-free Mycobacterium tuberculosis DNA in pleural effusion and an evaluation of a newly developed molecular assay for the detection of cell-free Mycobacterium tuberculosis DNA. A total of 78 patients with pleural effusion, 60 patients with tuberculous pleurisy, and 18 patients with alternative diseases were included in this study. Mycobacterial culture, the Xpert MTB/RIF assay, the adenosine deaminase assay, the T-SPOT.TB assay, and the cell-free Mycobacterium tuberculosis DNA assay were performed on all the pleural effusion samples. The cell-free Mycobacterium tuberculosis DNA assay and adenosine deaminase assay showed significantly higher sensitivities of 75.0% and 68.3%, respectively, than mycobacterial culture and the Xpert MTB/RIF assay, which had sensitivities of 26.7% and 20.0%, respectively ( P pleural effusion showed the highest sensitivity of 95.0% but the lowest specificity of 38.9%. The cell-free Mycobacterium tuberculosis DNA assay detected as few as 1.25 copies of IS 6110 per ml of pleural effusion and showed good accordance of the results between repeated tests ( r = 0.978, P = 2.84 × 10 -10 ). These data suggest that the cell-free Mycobacterium tuberculosis DNA assay is a rapid and accurate molecular test which provides direct evidence of Mycobacterium tuberculosis etiology. Copyright © 2017 American Society for Microbiology.

  19. Content of intrinsic disorder influences the outcome of cell-free protein synthesis.

    Science.gov (United States)

    Tokmakov, Alexander A; Kurotani, Atsushi; Ikeda, Mariko; Terazawa, Yumiko; Shirouzu, Mikako; Stefanov, Vasily; Sakurai, Tetsuya; Yokoyama, Shigeyuki

    2015-09-11

    Cell-free protein synthesis is used to produce proteins with various structural traits. Recent bioinformatics analyses indicate that more than half of eukaryotic proteins possess long intrinsically disordered regions. However, no systematic study concerning the connection between intrinsic disorder and expression success of cell-free protein synthesis has been presented until now. To address this issue, we examined correlations of the experimentally observed cell-free protein expression yields with the contents of intrinsic disorder bioinformatically predicted in the expressed sequences. This analysis revealed strong relationships between intrinsic disorder and protein amenability to heterologous cell-free expression. On the one hand, elevated disorder content was associated with the increased ratio of soluble expression. On the other hand, overall propensity for detectable protein expression decreased with disorder content. We further demonstrated that these tendencies are rooted in some distinct features of intrinsically disordered regions, such as low hydrophobicity, elevated surface accessibility and high abundance of sequence motifs for proteolytic degradation, including sites of ubiquitination and PEST sequences. Our findings suggest that identification of intrinsically disordered regions in the expressed amino acid sequences can be of practical use for predicting expression success and optimizing cell-free protein synthesis.

  20. Intercellular signaling through secreted proteins induces free-energy gradient-directed cell movement.

    Science.gov (United States)

    Kravchenko-Balasha, Nataly; Shin, Young Shik; Sutherland, Alex; Levine, R D; Heath, James R

    2016-05-17

    Controlling cell migration is important in tissue engineering and medicine. Cell motility depends on factors such as nutrient concentration gradients and soluble factor signaling. In particular, cell-cell signaling can depend on cell-cell separation distance and can influence cellular arrangements in bulk cultures. Here, we seek a physical-based approach, which identifies a potential governed by cell-cell signaling that induces a directed cell-cell motion. A single-cell barcode chip (SCBC) was used to experimentally interrogate secreted proteins in hundreds of isolated glioblastoma brain cancer cell pairs and to monitor their relative motions over time. We used these trajectories to identify a range of cell-cell separation distances where the signaling was most stable. We then used a thermodynamics-motivated analysis of secreted protein levels to characterize free-energy changes for different cell-cell distances. We show that glioblastoma cell-cell movement can be described as Brownian motion biased by cell-cell potential. To demonstrate that the free-energy potential as determined by the signaling is the driver of motion, we inhibited two proteins most involved in maintaining the free-energy gradient. Following inhibition, cell pairs showed an essentially random Brownian motion, similar to the case for untreated, isolated single cells.

  1. Raman-Activated Droplet Sorting (RADS) for Label-Free High-Throughput Screening of Microalgal Single-Cells.

    Science.gov (United States)

    Wang, Xixian; Ren, Lihui; Su, Yetian; Ji, Yuetong; Liu, Yaoping; Li, Chunyu; Li, Xunrong; Zhang, Yi; Wang, Wei; Hu, Qiang; Han, Danxiang; Xu, Jian; Ma, Bo

    2017-11-21

    Raman-activated cell sorting (RACS) has attracted increasing interest, yet throughput remains one major factor limiting its broader application. Here we present an integrated Raman-activated droplet sorting (RADS) microfluidic system for functional screening of live cells in a label-free and high-throughput manner, by employing AXT-synthetic industrial microalga Haematococcus pluvialis (H. pluvialis) as a model. Raman microspectroscopy analysis of individual cells is carried out prior to their microdroplet encapsulation, which is then directly coupled to DEP-based droplet sorting. To validate the system, H. pluvialis cells containing different levels of AXT were mixed and underwent RADS. Those AXT-hyperproducing cells were sorted with an accuracy of 98.3%, an enrichment ratio of eight folds, and a throughput of ∼260 cells/min. Of the RADS-sorted cells, 92.7% remained alive and able to proliferate, which is equivalent to the unsorted cells. Thus, the RADS achieves a much higher throughput than existing RACS systems, preserves the vitality of cells, and facilitates seamless coupling with downstream manipulations such as single-cell sequencing and cultivation.

  2. Shift of microRNA profile upon glioma cell migration using patient-derived spheroids and serum-free conditions

    DEFF Research Database (Denmark)

    Munthe, Sune; Halle, Bo; Boldt, Henning B

    2017-01-01

    Glioblastoma multiforme (GBM) is the most frequent malignant primary brain tumor. A major reason for the overall median survival being only 14.6 months is migrating tumor cells left behind after surgery. Another major reason is tumor cells having a so-called cancer stem cell phenotype being...... therefore resistant towards traditional chemo- and radiotherapy. A group of novel molecular targets are microRNAs (miRNAs). MiRNAs are small non-coding RNAs exerting post-transcriptional regulation of gene expression. The aim of this study was to identify differentially expressed miRNAs in migrating GBM...... cells using serum-free stem cell conditions. We used patient-derived GBM spheroid cultures for a novel serum-free migration assay. MiRNA expression of migrating tumor cells isolated at maximum migration speed was compared with corresponding spheroids using an OpenArray Real-Time PCR System. The mi...

  3. Positive cell-free fetal DNA testing for trisomy 13 reveals confined placental mosaicism.

    Science.gov (United States)

    Hall, April L; Drendel, Holli M; Verbrugge, Jennifer L; Reese, Angela M; Schumacher, Katherine L; Griffith, Christopher B; Weaver, David D; Abernathy, Mary P; Litton, Christian G; Vance, Gail H

    2013-09-01

    We report on a case in which cell-free fetal DNA was positive for trisomy 13 most likely due to confined placental mosaicism. Cell-free fetal DNA testing analyzes DNA derived from placental trophoblast cells and can lead to incorrect results that are not representative of the fetus. We sought to confirm commercial cell-free fetal DNA testing results by chorionic villus sampling and amniocentesis. These results were followed up by postnatal chromosome analysis of cord blood and placental tissue. First-trimester cell-free fetal DNA test results were positive for trisomy 13. Cytogenetic analysis of chorionic villus sampling yielded a mosaic karyotype of 47,XY,+13[10]/46,XY[12]. G-banded analysis of amniotic fluid was normal, 46,XY. Postnatal cytogenetic analysis of cord blood was normal. Karyotyping of tissues from four quadrants of the placenta demonstrated mosaicism for trisomy 13 in two of the quadrants and a normal karyotype in the other two. Our case illustrates several important aspects of this new testing methodology: that cell-free fetal DNA may not be representative of the fetal karyotype; that follow-up with diagnostic testing of chorionic villus sampling and/or amniotic fluid for abnormal test results should be performed; and that pretest counseling regarding the full benefits, limitations, and possible testing outcomes of cell-free fetal DNA screening is important.

  4. Automatic Evaluation of Machine Translation

    DEFF Research Database (Denmark)

    Martinez, Mercedes Garcia; Koglin, Arlene; Mesa-Lao, Bartolomé

    2015-01-01

    The availability of systems capable of producing fairly accurate translations has increased the popularity of machine translation (MT). The translation industry is steadily incorporating MT in their workflows engaging the human translator to post-edit the raw MT output in order to comply with a s...

  5. PR and PP evaluation. ESFR full system case study final report (Tentative translation)

    International Nuclear Information System (INIS)

    Sagara, Hiroshi; Kawakubo, Yoko; Inoue, Naoko

    2014-01-01

    The Generation IV (GEN IV) International Forum (GIF) Proliferation Resistance and Physical Protection Working Group (PRPP WG) was established in December, 2002, as one of the crosscut groups under GIF, in order to develop a methodology for evaluating PR and PP of potential GEN IV options. The group currently consists of the experts from the U.S. national laboratories and universities, from Canada, France, Republic of Korea (ROK), Japan, the International Atomic Energy Agency (IAEA), and European Union(EU). The present report, published in Oct. 2009, was used as a supporting study for development of the evaluation methodology for proliferation resistance and physical protection of GEN IV nuclear energy systems. The present report is summarizing the case study of the PR and PP evaluation of Example Sodium Fast Reactor (ESFR), a hypothetical nuclear energy system consisting of nine main system elements, and it provides for designers the practical experience of applying the PR and PP evaluation methodology to a nuclear energy system. The development of the future nuclear fuel cycle system with sufficient PR and PP features is a crucial task in Japan, and the demonstration and explanation about its effectiveness to the domestic and international society will be required. With the usefulness the present report for such purposes, it was translated and published here as a Japanese-language edition with the concurrence of the OECD-NEA. The original report in English language can be downloaded at the OECD-NEA website. The translation was performed as closely as possible to the original, and special attention was paid to the technical term translation for consistency. Terms difficult to be translated appropriately into Japanese was written with the original English wording. Safeguards terms were translated with reference to “IAEA Safeguards Glossary 2001 Edition” (Japanese), published by the Nuclear Material Control Center Japan (NMCC). The authors are grateful to the GIF

  6. Circulating cell free DNA as a predictor of systemic lupus ...

    African Journals Online (AJOL)

    Olfat M. Hendy

    2015-07-29

    Jul 29, 2015 ... as a potential tool to predict disease activity and treatment follow up. Subjects and ... control group. Thorough clinical examination stressing on the central nervous system, vascular, ... sis/necrosis of blood and tissue cells) and, second, active metabolic ..... alternative biomarkers should be tested. There was ...

  7. Translating Oral Health-Related Quality of Life Measures: Are There Alternative Methodologies?

    Science.gov (United States)

    Brondani, Mario; He, Sarah

    2013-01-01

    Translating existing sociodental indicators to another language involves a rigorous methodology, which can be costly. Free-of-charge online translator tools are available, but have not been evaluated in the context of research involving quality of life measures. To explore the value of using online translator tools to develop oral health-related…

  8. Translational Upregulation of an Individual p21Cip1 Transcript Variant by GCN2 Regulates Cell Proliferation and Survival under Nutrient Stress.

    Directory of Open Access Journals (Sweden)

    Stacey L Lehman

    2015-06-01

    Full Text Available Multiple transcripts encode for the cell cycle inhibitor p21(Cip1. These transcripts produce identical proteins but differ in their 5' untranslated regions (UTRs. Although several stresses that induce p21 have been characterized, the mechanisms regulating the individual transcript variants and their functional significance are unknown. Here we demonstrate through (35S labeling, luciferase reporter assays, and polysome transcript profiling that activation of the Integrated Stress Response (ISR kinase GCN2 selectively upregulates the translation of a p21 transcript variant containing 5' upstream open reading frames (uORFs through phosphorylation of the eukaryotic translation initiation factor eIF2α. Mutational analysis reveals that the uORFs suppress translation under basal conditions, but promote translation under stress. Functionally, ablation of p21 ameliorates G1/S arrest and reduces cell survival in response to GCN2 activation. These findings uncover a novel mechanism of p21 post-transcriptional regulation, offer functional significance for the existence of multiple p21 transcripts, and support a key role for GCN2 in regulating the cell cycle under stress.

  9. Cell-Based Meniscus Repair and Regeneration: At the Brink of Clinical Translation?

    Science.gov (United States)

    Korpershoek, Jasmijn V.; de Windt, Tommy S.; Hagmeijer, Michella H.; Vonk, Lucienne A.; Saris, Daniel B. F.

    2017-01-01

    Background: Meniscus damage can be caused by trauma or degeneration and is therefore common among patients of all ages. Repair or regeneration of the menisci could be of great importance not only for pain relief or regaining function but also to prevent degenerative disease and osteoarthritis. Current treatment does not offer consistent long-term improvement. Although preclinical research focusing on augmentation of meniscal tear repair and regeneration after meniscectomy is encouraging, clinical translation remains difficult. Purpose: To systematically evaluate the literature on in vivo meniscus regeneration and explore the optimal cell sources and conditions for clinical translation. We aimed at thorough evaluation of current evidence as well as clarifying the challenges for future preclinical and clinical studies. Study Design: Systematic review. Methods: A search was conducted using the electronic databases of MEDLINE, Embase, and the Cochrane Collaboration. Search terms included meniscus, regeneration, and cell-based. Results: After screening 81 articles based on title and abstract, 51 articles on in vivo meniscus regeneration could be included; 2 additional articles were identified from the references. Repair and regeneration of the meniscus has been described by intra-articular injection of multipotent mesenchymal stromal (stem) cells from adipose tissue, bone marrow, synovium, or meniscus or the use of these cell types in combination with implantable or injectable scaffolds. The use of fibrochondrocytes, chondrocytes, and transfected myoblasts for meniscus repair and regeneration is limited to the combination with different scaffolds. The comparative in vitro and in vivo studies mentioned in this review indicate that the use of allogeneic cells is as successful as the use of autologous cells. In addition, the implantation or injection of cell-seeded scaffolds increased tissue regeneration and led to better structural organization compared with scaffold

  10. Cause for concern? Attitudes towards translation crowdsourcing in professional translators’ blogs

    DEFF Research Database (Denmark)

    Flanagan, Marian

    2016-01-01

    This paper seeks to identify professional translators’ attitudes towards the practice of translation crowdsourcing. The data consist of 48 professional translator blogs. A thematic analysis of their blog posts highlights three main findings: translation crowdsourcing can enhance visibility...... do not openly discuss their motives for differentiating between the various non-profit initiatives, and while there is much discussion on translation crowdsourcing for humanitarian causes, little or no attention is paid to free and open source software projects....

  11. Data sharing in stem cell translational science: policy statement by the International Stem Cell Forum Ethics Working Party.

    Science.gov (United States)

    Bredenoord, Annelien L; Mostert, Menno; Isasi, Rosario; Knoppers, Bartha M

    2015-01-01

    Data and sample sharing constitute a scientific and ethical imperative but need to be conducted in a responsible manner in order to protect individual interests as well as maintain public trust. In 2014, the Global Alliance for Genomics and Health (GA4GH) adopted a common Framework for Responsible Sharing of Genomic and Health-Related Data. The GA4GH Framework is applicable to data sharing in the stem cell field, however, interpretation is required so as to provide guidance for this specific context. In this paper, the International Stem Cell Forum Ethics Working Party discusses those principles that are specific to translational stem cell science, including engagement, data quality and safety, privacy, security and confidentiality, risk-benefit analysis and sustainability.

  12. Efficient Generation and Editing of Feeder-free IPSCs from Human Pancreatic Cells Using the CRISPR-Cas9 System.

    Science.gov (United States)

    Nandal, Anjali; Mallon, Barbara; Telugu, Bhanu P

    2017-11-08

    Embryonic and induced pluripotent stem cells can self-renew and differentiate into multiple cell types of the body. The pluripotent cells are thus coveted for research in regenerative medicine and are currently in clinical trials for eye diseases, diabetes, heart diseases, and other disorders. The potential to differentiate into specialized cell types coupled with the recent advances in genome editing technologies including the CRISPR/Cas system have provided additional opportunities for tailoring the genome of iPSC for varied applications including disease modeling, gene therapy, and biasing pathways of differentiation, to name a few. Among the available editing technologies, the CRISPR/Cas9 from Streptococcus pyogenes has emerged as a tool of choice for site-specific editing of the eukaryotic genome. The CRISPRs are easily accessible, inexpensive, and highly efficient in engineering targeted edits. The system requires a Cas9 nuclease and a guide sequence (20-mer) specific to the genomic target abutting a 3-nucleotide "NGG" protospacer-adjacent-motif (PAM) for targeting Cas9 to the desired genomic locus, alongside a universal Cas9 binding tracer RNA (together called single guide RNA or sgRNA). Here we present a step-by-step protocol for efficient generation of feeder-independent and footprint-free iPSC and describe methodologies for genome editing of iPSC using the Cas9 ribonucleoprotein (RNP) complexes. The genome editing protocol is effective and can be easily multiplexed by pre-complexing sgRNAs for more than one target with the Cas9 protein and simultaneously delivering into the cells. Finally, we describe a simplified approach for identification and characterization of iPSCs with desired edits. Taken together, the outlined strategies are expected to streamline generation and editing of iPSC for manifold applications.

  13. Cell and Gene Therapies: European View on Challenges in Translation and How to Address Them

    Directory of Open Access Journals (Sweden)

    Cécile F. Rousseau

    2018-05-01

    Full Text Available Advanced therapy medicinal products (ATMPs, i.e., cell and gene therapy products, is a rapidly evolving field of therapeutic development. A significant proportion of the products are being developed by academia or small/medium-sized enterprises (SMEs. The many challenges in translation posed by this class of products include aspects covering: manufacturing, non-clinical development plan as relevant to clinical trial, marketing authorization, and reimbursement. In this context, the term translation refers to the relevance of non-clinical data in relation to how it impacts on appropriate and efficient clinical development. In order to successfully overcome these challenges, a clear understanding of the requirements and expectations of all the stakeholders is critical. This article aims to cover the potential challenges related to such translation and suggested approaches to find solutions based on experience and learnings from the perspective of European Union. While commercial challenges have a significant impact on the ATMPs in general, it is considered outside the scope of this article. However, by adopting a strong scientific basis for translation as suggested in this article, it is likely such an approach would help rather than harm successful real world clinical use of ATMPs.

  14. Advancing System Flexibility for High Penetration Renewable Integration (Chinese Translation)

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frew, Bethany [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States)

    2015-10-01

    This is a Chinese translation of NREL/TP-6A20-64864. This report summarizes some of the issues discussed during the engagement on power system flexibility. By design, the focus is on flexibility options used in the United States. Exploration of whether and how U.S. experiences can inform Chinese energy planning will be part of the continuing project, and will benefit from the knowledge base provided by this report. We believe the initial stage of collaboration represented in this report has successfully started a process of mutual understanding, helping Chinese researchers to begin evaluating how lessons learned in other countries might translate to China's unique geographic, economic, social, and political contexts.

  15. Suppressed translation as a mechanism of initiation of CASP8 (caspase 8)-dependent apoptosis in autophagy-deficient NSCLC cells under nutrient limitation.

    Science.gov (United States)

    Allavena, Giulia; Cuomo, Francesca; Baumgartner, Georg; Bele, Tadeja; Sellgren, Alexander Yarar; Oo, Kyaw Soe; Johnson, Kaylee; Gogvadze, Vladimir; Zhivotovsky, Boris; Kaminskyy, Vitaliy O

    2018-01-01

    Macroautophagy/autophagy inhibition under stress conditions is often associated with increased cell death. We found that under nutrient limitation, activation of CASP8/caspase-8 was significantly increased in autophagy-deficient lung cancer cells, which precedes mitochondria outer membrane permeabilization (MOMP), CYCS/cytochrome c release, and activation of CASP9/caspase-9, indicating that under such conditions the activation of CASP8 is a primary event in the initiation of apoptosis as well as essential to reduce clonogenic survival of autophagy-deficient cells. Starvation leads to suppression of CFLAR proteosynthesis and accumulation of CASP8 in SQSTM1 puncta. Overexpression of CFLARs reduces CASP8 activation and apoptosis during starvation, while its silencing promotes efficient activation of CASP8 and apoptosis in autophagy-deficient U1810 lung cancer cells even under nutrient-rich conditions. Similar to starvation, inhibition of protein translation leads to efficient activation of CASP8 and cell death in autophagy-deficient lung cancer cells. Thus, here for the first time we report that suppressed translation leads to activation of CASP8-dependent apoptosis in autophagy-deficient NSCLC cells under conditions of nutrient limitation. Our data suggest that targeting translational machinery can be beneficial for elimination of autophagy-deficient cells via the CASP8-dependent apoptotic pathway.

  16. Advanced feeder-free generation of induced pluripotent stem cells directly from blood cells.

    Science.gov (United States)

    Trokovic, Ras; Weltner, Jere; Nishimura, Ken; Ohtaka, Manami; Nakanishi, Mahito; Salomaa, Veikko; Jalanko, Anu; Otonkoski, Timo; Kyttälä, Aija

    2014-12-01

    Generation of validated human induced pluripotent stem cells (iPSCs) for biobanking is essential for exploring the full potential of iPSCs in disease modeling and drug discovery. Peripheral blood mononuclear cells (PBMCs) are attractive targets for reprogramming, because blood is collected by a routine clinical procedure and is a commonly stored material in biobanks. Generation of iPSCs from blood cells has previously been reported using integrative retroviruses, episomal Sendai viruses, and DNA plasmids. However, most of the published protocols require expansion and/or activation of a specific cell population from PBMCs. We have recently collected a PBMC cohort from the Finnish population containing more than 2,000 subjects. Here we report efficient generation of iPSCs directly from PBMCs in feeder-free conditions in approximately 2 weeks. The produced iPSC clones are pluripotent and transgene-free. Together, these properties make this novel method a powerful tool for large-scale reprogramming of PBMCs and for iPSC biobanking. ©AlphaMed Press.

  17. Translation: Aids, Robots, and Automation.

    Science.gov (United States)

    Andreyewsky, Alexander

    1981-01-01

    Examines electronic aids to translation both as ways to automate it and as an approach to solve problems resulting from shortage of qualified translators. Describes the limitations of robotic MT (Machine Translation) systems, viewing MAT (Machine-Aided Translation) as the only practical solution and the best vehicle for further automation. (MES)

  18. Computer-aided translation tools

    DEFF Research Database (Denmark)

    Christensen, Tina Paulsen; Schjoldager, Anne

    2016-01-01

    in Denmark is rather high in general, but limited in the case of machine translation (MT) tools: While most TSPs use translation-memory (TM) software, often in combination with a terminology management system (TMS), only very few have implemented MT, which is criticised for its low quality output, especially......The paper reports on a questionnaire survey from 2013 of the uptake and use of computer-aided translation (CAT) tools by Danish translation service providers (TSPs) and discusses how these tools appear to have impacted on the Danish translation industry. According to our results, the uptake...

  19. Different miRNA signatures of oral and pharyngeal squamous cell carcinomas: a prospective translational study

    DEFF Research Database (Denmark)

    Lajer, C B; Nielsen, F C; Friis-Hansen, L

    2011-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs, which regulate mRNA translation/decay, and may serve as biomarkers. We characterised the expression of miRNAs in clinically sampled oral and pharyngeal squamous cell carcinoma (OSCC and PSCC) and described the influence of human papilloma virus (HPV)....

  20. Burden of Circulatory System Diseases and Ignored Barriers ofKnowledge Translation

    Directory of Open Access Journals (Sweden)

    Hamed-Basir Ghafouri

    2012-10-01

    Full Text Available Circulatory system disease raise third highest disability-adjusted life years among Iranians and ischemic cardiac diseases are main causes for such burden. Despite available evidences on risk factors of the disease, no effective intervention was implemented to control and prevent the disease. This paper non-systematically reviews available literature on the problem, solutions, and barriers of implementation of knowledge translation in Iran. It seems that there are ignored factors such as cultural and motivational issues in knowledge translation interventions but there are hopes for implementation of started projects and preparation of students as next generation of knowledge transferors.

  1. c-Myc affects mRNA translation, cell proliferation and progenitor cell function in the mammary gland

    Directory of Open Access Journals (Sweden)

    Trumpp Andreas

    2009-09-01

    Full Text Available Abstract Background The oncoprotein c-Myc has been intensely studied in breast cancer and mouse mammary tumor models, but relatively little is known about the normal physiological role of c-Myc in the mammary gland. Here we investigated functions of c-Myc during mouse mammary gland development using a conditional knockout approach. Results Generation of c-mycfl/fl mice carrying the mammary gland-specific WAPiCre transgene resulted in c-Myc loss in alveolar epithelial cells starting in mid-pregnancy. Three major phenotypes were observed in glands of mutant mice. First, c-Myc-deficient alveolar cells had a slower proliferative response at the start of pregnancy, causing a delay but not a block of alveolar development. Second, while milk composition was comparable between wild type and mutant animals, milk production was reduced in mutant glands, leading to slower pup weight-gain. Electron microscopy and polysome fractionation revealed a general decrease in translational efficiency. Furthermore, analysis of mRNA distribution along the polysome gradient demonstrated that this effect was specific for mRNAs whose protein products are involved in milk synthesis. Moreover, quantitative reverse transcription-polymerase chain reaction analysis revealed decreased levels of ribosomal RNAs and ribosomal protein-encoding mRNAs in mutant glands. Third, using the mammary transplantation technique to functionally identify alveolar progenitor cells, we observed that the mutant epithelium has a reduced ability to repopulate the gland when transplanted into NOD/SCID recipients. Conclusion We have demonstrated that c-Myc plays multiple roles in the mouse mammary gland during pregnancy and lactation. c-Myc loss delayed, but did not block proliferation and differentiation in pregnancy. During lactation, lower levels of ribosomal RNAs and proteins were present and translation was generally decreased in mutant glands. Finally, the transplantation studies suggest a role

  2. Machine vs. human translation of SNOMED CT terms.

    Science.gov (United States)

    Schulz, Stefan; Bernhardt-Melischnig, Johannes; Kreuzthaler, Markus; Daumke, Philipp; Boeker, Martin

    2013-01-01

    In the context of past and current SNOMED CT translation projects we compare three kinds of SNOMED CT translations from English to German by: (t1) professional medical translators; (t2) a free Web-based machine translation service; (t3) medical students. 500 SNOMED CT fully specified names from the (English) International release were randomly selected. Based on this, German translations t1, t2, and t3 were generated. A German and an Austrian physician rated the translations for linguistic correctness and content fidelity. Kappa for inter-rater reliability was 0.4 for linguistic correctness and 0.23 for content fidelity. Average ratings of linguistic correctness did not differ significantly between human translation scenarios. Content fidelity was rated slightly better for student translators compared to professional translators. Comparing machine to human translation, the linguistic correctness differed about 0.5 scale units in favour of the human translation and about 0.25 regarding content fidelity, equally in favour of the human translation. The results demonstrate that low-cost translation solutions of medical terms may produce surprisingly good results. Although we would not recommend low-cost translation for producing standardized preferred terms, this approach can be useful for creating additional language-specific entry terms. This may serve several important use cases. We also recommend testing this method to bootstrap a crowdsourcing process, by which term translations are gathered, improved, maintained, and rated by the user community.

  3. Label-free and live cell imaging by interferometric scattering microscopy.

    Science.gov (United States)

    Park, Jin-Sung; Lee, Il-Buem; Moon, Hyeon-Min; Joo, Jong-Hyeon; Kim, Kyoung-Hoon; Hong, Seok-Cheol; Cho, Minhaeng

    2018-03-14

    Despite recent remarkable advances in microscopic techniques, it still remains very challenging to directly observe the complex structure of cytoplasmic organelles in live cells without a fluorescent label. Here we report label-free and live-cell imaging of mammalian cell, Escherischia coli , and yeast, using interferometric scattering microscopy, which reveals the underlying structures of a variety of cytoplasmic organelles as well as the underside structure of the cells. The contact areas of the cells attached onto a glass substrate, e.g. , focal adhesions and filopodia, are clearly discernible. We also found a variety of fringe-like features in the cytoplasmic area, which may reflect the folded structures of cytoplasmic organelles. We thus anticipate that the label-free interferometric scattering microscopy can be used as a powerful tool to shed interferometric light on in vivo structures and dynamics of various intracellular phenomena.

  4. Breaking Free of Sample Size Dogma to Perform Innovative Translational Research

    Science.gov (United States)

    Bacchetti, Peter; Deeks, Steven G.; McCune, Joseph M.

    2011-01-01

    Innovative clinical and translational research is often delayed or prevented by reviewers’ expectations that any study performed in humans must be shown in advance to have high statistical power. This supposed requirement is not justifiable and is contradicted by the reality that increasing sample size produces diminishing marginal returns. Studies of new ideas often must start small (sometimes even with an N of 1) because of cost and feasibility concerns, and recent statistical work shows that small sample sizes for such research can produce more projected scientific value per dollar spent than larger sample sizes. Renouncing false dogma about sample size would remove a serious barrier to innovation and translation. PMID:21677197

  5. Serum-Free Media and the Immunoregulatory Properties of Mesenchymal Stem Cells In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Mei Wu

    2014-02-01

    Full Text Available Background: Mesenchymal stem cells are capable of self-renewal and multi-lineage differentiation. They are used extensively to treat several diseases. Traditionally, mesenchymal stem cells are cultured in serum-containing media, typically supplemented with fetal bovine serum (FBS. However, the variability of FBS is likely to skew experimental results. Although serum-free media used to expand mesenchymal stem cells has facilitated remarkable achievements, immunomodulation of these cells in under serum-free conditions is poorly understood. We hypothesized that mesenchymal stem cells expanded in serum-free media will retain powerful immunoregulatory functions in vitro and in vivo. Design and Methods: Immunosuppressive activity and the immunomodulatory cytokines produced by mesenchymal stem cells in serum-free media were characterized in vitro. Immunomodulation by serum-free mesenchymal stem cell expansion in monocrotaline-induced pulmonary hypertension was explored in vivo. Results: Similar to cells in serum-containing media, mesenchymal stem cells expanded in serum-free media inhibited proliferation and apoptosis of CD4+T cells. They also exhibited strong immunosuppressive activities and secreted high levels of immunomodulatory cytokines such as PGE2, IDO1, COX2, IL-6, and IL-1β, but not HGF. On the other hand, growth of mesenchymal stem cells in serum-free media attenuated pulmonary vascular remodeling and inhibited mRNA expression of proinflammatory cytokines TNF-α, IFN-γ, IL-6, IL-1β, and IL-18. Conclusions: Mesenchymal stem cells in serum-free media maintained powerful immunomodulatory function in vitro and in vivo; serum-free media may replace serum-containing media for basic research and clinical applications.

  6. Progress in Electrolyte-Free Fuel Cells

    International Nuclear Information System (INIS)

    Lu, Yuzheng; Zhu, Bin; Cai, Yixiao; Kim, Jung-Sik; Wang, Baoyuan; Wang, Jun; Zhang, Yaoming; Li, Junjiao

    2016-01-01

    Solid oxide fuel cell (SOFC) represents a clean electrochemical energy conversion technology with characteristics of high conversion efficiency and low emissions. It is one of the most important new energy technologies in the future. However, the manufacture of SOFCs based on the structure of anode/electrolyte/cathode is complicated and time-consuming. Thus, the cost for the entire fabrication and technology is too high to be affordable, and challenges still hinder commercialization. Recently, a novel type of electrolyte-free fuel cell (EFFC) with single component was invented, which could be the potential candidate for the next generation of advanced fuel cells. This paper briefly introduces the EFFC, working principle, performance, and advantages with updated research progress. A number of key R&D issues about EFFCs have been addressed, and future opportunities and challenges are discussed.

  7. Progress in Electrolyte-Free Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuzheng [Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy and Environment, Southeast University, Nanjing (China); Zhu, Bin, E-mail: binzhu@kth.se [Faculty of Physics and Electronic Technology, Hubei Collaborative Innovation Center for Advanced Organic Materials, Hubei University, Wuhan (China); Department of Energy Technology, Royal Institute of Technology KTH, Stockholm (Sweden); Cai, Yixiao [Ångström Laboratory, Department of Engineering Sciences, Uppsala University, Uppsala (Sweden); Kim, Jung-Sik [Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough (United Kingdom); Wang, Baoyuan [Faculty of Physics and Electronic Technology, Hubei Collaborative Innovation Center for Advanced Organic Materials, Hubei University, Wuhan (China); Department of Energy Technology, Royal Institute of Technology KTH, Stockholm (Sweden); Wang, Jun, E-mail: binzhu@kth.se; Zhang, Yaoming [Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy and Environment, Southeast University, Nanjing (China); Li, Junjiao [Nanjing Yunna Nano Technology Co., Ltd., Nanjing (China)

    2016-05-02

    Solid oxide fuel cell (SOFC) represents a clean electrochemical energy conversion technology with characteristics of high conversion efficiency and low emissions. It is one of the most important new energy technologies in the future. However, the manufacture of SOFCs based on the structure of anode/electrolyte/cathode is complicated and time-consuming. Thus, the cost for the entire fabrication and technology is too high to be affordable, and challenges still hinder commercialization. Recently, a novel type of electrolyte-free fuel cell (EFFC) with single component was invented, which could be the potential candidate for the next generation of advanced fuel cells. This paper briefly introduces the EFFC, working principle, performance, and advantages with updated research progress. A number of key R&D issues about EFFCs have been addressed, and future opportunities and challenges are discussed.

  8. An Evaluation of Output Quality of Machine Translation (Padideh Software vs. Google Translate)

    Science.gov (United States)

    Azer, Haniyeh Sadeghi; Aghayi, Mohammad Bagher

    2015-01-01

    This study aims to evaluate the translation quality of two machine translation systems in translating six different text-types, from English to Persian. The evaluation was based on criteria proposed by Van Slype (1979). The proposed model for evaluation is a black-box type, comparative and adequacy-oriented evaluation. To conduct the evaluation, a…

  9. The Impact of Machine Translation and Computer-aided Translation on Translators

    Science.gov (United States)

    Peng, Hao

    2018-03-01

    Under the context of globalization, communications between countries and cultures are becoming increasingly frequent, which make it imperative to use some techniques to help translate. This paper is to explore the influence of computer-aided translation on translators, which is derived from the field of the computer-aided translation (CAT) and machine translation (MT). Followed by an introduction to the development of machine and computer-aided translation, it then depicts the technologies practicable to translators, which are trying to analyze the demand of designing the computer-aided translation so far in translation practice, and optimize the designation of computer-aided translation techniques, and analyze its operability in translation. The findings underline the advantages and disadvantages of MT and CAT tools, and the serviceability and future development of MT and CAT technologies. Finally, this thesis probes into the impact of these new technologies on translators in hope that more translators and translation researchers can learn to use such tools to improve their productivity.

  10. Cell-free DNA, inflammation, and the initiation of spontaneous term labor.

    Science.gov (United States)

    Herrera, Christina A; Stoerker, Jay; Carlquist, John; Stoddard, Gregory J; Jackson, Marc; Esplin, Sean; Rose, Nancy C

    2017-11-01

    Hypomethylated cell-free DNA from senescent placental trophoblasts may be involved in the activation of the inflammatory cascade to initiate labor. To determine the changes in cell-free DNA concentrations, the methylation ratio, and inflammatory markers between women in labor at term vs women without labor. In this prospective cohort study, eligible participants carried a nonanomalous singleton fetus. Women with major medical comorbidity, preterm labor, progesterone use, aneuploidy, infectious disease, vaginal bleeding, abdominal trauma, or invasive procedures during the pregnancy were excluded. Maternal blood samples were collected at 28 weeks, 36 weeks, and at admission for delivery. Total cell-free DNA concentration, methylation ratio, and interleukin-6 were analyzed. The primary outcome was the difference in methylation ratio in women with labor vs without labor. Secondary outcomes included the longitudinal changes in these biomarkers corresponding to labor status. A total of 55 women were included; 20 presented in labor on admission and 35 presented without labor. Women in labor had significantly greater methylation ratio (P = .001) and interleukin-6 (P < .001) on admission for delivery than women without labor. After we controlled for body mass index and maternal age, methylation ratio (adjusted relative risk, 1.38; 95% confidence interval, 1.13 to 1.68) and interleukin-6 (adjusted relative risk, 1.12, 95% confidence interval, 1.07 to 1.17) remained greater in women presenting in labor. Total cell-free DNA was not significantly different in women with labor compared with women without. Longitudinally, total cell-free DNA (P < .001 in labor, P = .002 without labor) and interleukin-6 (P < .001 in labor, P = .01 without labor) increased significantly across gestation in both groups. The methylation ratio increased significantly in women with labor from 36 weeks to delivery (P = .02). Spontaneous labor at term is associated with a greater cell-free DNA

  11. Sign Language Translation in State Administration in Germany: Barrier Free Web Accessibility

    OpenAIRE

    Lišková, Kateřina

    2014-01-01

    The aim of this thesis is to describe Web accessibility in state administration in the Federal Republic of Germany in relation to the socio-demographic group of deaf sign language users who did not have the opportunity to gain proper knowledge of a written form of the German language. The demand of the Deaf to information in an accessible form as based on legal documents is presented in relation to the theory of translation. How translating from written texts into sign language works in pract...

  12. Transcriptional blockages in a cell-free system by sequence-selective DNA alkylating agents.

    Science.gov (United States)

    Ferguson, L R; Liu, A P; Denny, W A; Cullinane, C; Talarico, T; Phillips, D R

    2000-04-14

    There is considerable interest in DNA sequence-selective DNA-binding drugs as potential inhibitors of gene expression. Five compounds with distinctly different base pair specificities were compared in their effects on the formation and elongation of the transcription complex from the lac UV5 promoter in a cell-free system. All were tested at drug levels which killed 90% of cells in a clonogenic survival assay. Cisplatin, a selective alkylator at purine residues, inhibited transcription, decreasing the full-length transcript, and causing blockage at a number of GG or AG sequences, making it probable that intrastrand crosslinks are the blocking lesions. A cyclopropylindoline known to be an A-specific alkylator also inhibited transcription, with blocks at adenines. The aniline mustard chlorambucil, that targets primarily G but also A sequences, was also effective in blocking the formation of full-length transcripts. It produced transcription blocks either at, or one base prior to, AA or GG sequences, suggesting that intrastrand crosslinks could again be involved. The non-alkylating DNA minor groove binder Hoechst 33342 (a bisbenzimidazole) blocked formation of the full-length transcript, but without creating specific blockage sites. A bisbenzimidazole-linked aniline mustard analogue was a more effective transcription inhibitor than either chlorambucil or Hoechst 33342, with different blockage sites occurring immediately as compared with 2 h after incubation. The blockages were either immediately prior to AA or GG residues, or four to five base pairs prior to such sites, a pattern not predicted from in vitro DNA-binding studies. Minor groove DNA-binding ligands are of particular interest as inhibitors of gene expression, since they have the potential ability to bind selectively to long sequences of DNA. The results suggest that the bisbenzimidazole-linked mustard does cause alkylation and transcription blockage at novel DNA sites. in addition to sites characteristic of

  13. Investigating free radical generation in HepG2 cells using immuno-spin trapping.

    Science.gov (United States)

    Horinouchi, Yuya; Summers, Fiona A; Ehrenshaft, Marilyn; Kawazoe, Kazuyoshi; Tsuchiya, Koichiro; Tamaki, Toshiaki; Mason, Ronald P

    2014-10-01

    Oxidative stress can induce the generation of free radicals, which are believed to play an important role in both physiological and pathological processes and a number of diseases such as cancer. Therefore, it is important to identify chemicals which are capable of inducing oxidative stress. In this study, we evaluated the ability of four environmental chemicals, aniline, nitrosobenzene (NB), N,N-dimethylaniline (DMA) and N,N-dimethyl-4-nitrosoaniline (DMNA), to induce free radicals and cellular damage in the hepatoma cell line HepG2. Cytotoxicity was assessed using lactate dehydrogenase (LDH) assays and morphological changes were observed using phase contrast microscopy. Free radicals were detected by immuno-spin trapping (IST) in in-cell western experiments or in confocal microscopy experiments to determine the subcellular localization of free radical generation. DMNA induced free radical generation, LDH release and morphological changes in HepG2 cells whereas aniline, NB and DMA did not. Confocal microscopy showed that DMNA induced free radical generation mainly in the cytosol. Preincubation of HepG2 cells with N-acetylcysteine and 2,2'-dipyridyl significantly prevented free radical generation upon subsequent incubation with DMNA, whereas preincubation with apocynin and dimethyl sulfoxide did not. These results suggest that DMNA induces oxidative stress and that reactive oxygen species, metals and free radical generation play a critical role in DMNA-induced cytotoxicity. Copyright © 2014. Published by Elsevier Inc.

  14. Danish translation and validation of the International Skin Tear Advisory Panel Skin Tear Classification System

    DEFF Research Database (Denmark)

    Skiveren, J; Bermark, S; LeBlanc, K

    2015-01-01

    OBJECTIVE: The aim of this study was to translate, validate and establish reliability of the International Skin Tear Classification System in Danish. METHOD: Phase 1 of the project involved the translation of the International Skin Tear Advisory Panel (ISTAP) Skin Tear Classification System......) and social and health-care assistants (non-RN) from both primary health care and a Danish university hospital in Copenhagen. Thirty photographs, with equal representation of the three types of skin tears, were selected to test validity. The photographs chosen were those originally used for internal...... and external validation by the ISTAP group. The subjects were approached in their place of work and invited to participate in the study and to attend an educational session related to skin tears. RESULTS: The Danish translation of the ISTAP classification system was tested on 270 non-wound specialists...

  15. Engineering in translational medicine

    CERN Document Server

    2014-01-01

    This book covers a broad area of engineering research in translational medicine. Leaders in academic institutions around the world contributed focused chapters on a broad array of topics such as: cell and tissue engineering (6 chapters), genetic and protein engineering (10 chapters), nanoengineering (10 chapters), biomedical instrumentation (4 chapters), and theranostics and other novel approaches (4 chapters). Each chapter is a stand-alone review that summarizes the state-of-the-art of the specific research area. Engineering in Translational Medicine gives readers a comprehensive and in-depth overview of a broad array of related research areas, making this an excellent reference book for scientists and students both new to engineering/translational medicine and currently working in this area.

  16. Fluorescent in situ folding control for rapid optimization of cell-free membrane protein synthesis.

    Directory of Open Access Journals (Sweden)

    Annika Müller-Lucks

    Full Text Available Cell-free synthesis is an open and powerful tool for high-yield protein production in small reaction volumes predestined for high-throughput structural and functional analysis. Membrane proteins require addition of detergents for solubilization, liposomes, or nanodiscs. Hence, the number of parameters to be tested is significantly higher than with soluble proteins. Optimization is commonly done with respect to protein yield, yet without knowledge of the protein folding status. This approach contains a large inherent risk of ending up with non-functional protein. We show that fluorophore formation in C-terminal fusions with green fluorescent protein (GFP indicates the folding state of a membrane protein in situ, i.e. within the cell-free reaction mixture, as confirmed by circular dichroism (CD, proteoliposome reconstitution and functional assays. Quantification of protein yield and in-gel fluorescence intensity imply suitability of the method for membrane proteins of bacterial, protozoan, plant, and mammalian origin, representing vacuolar and plasma membrane localization, as well as intra- and extracellular positioning of the C-terminus. We conclude that GFP-fusions provide an extension to cell-free protein synthesis systems eliminating the need for experimental folding control and, thus, enabling rapid optimization towards membrane protein quality.

  17. Photofragment translational spectroscopy of three body dissociations and free radicals

    Energy Technology Data Exchange (ETDEWEB)

    North, Simon William [Univ. of California, Berkeley, CA (United States)

    1995-04-01

    This dissertation describes several three-body dissociations and the photodissociation of methyl radicals studied using photofragment translational spectroscopy. The first chapter provides an introduction to three body dissociation, examines current experimental methodology, and includes a discussion on the treatment of photofragment translational spectroscopy data arising from three-body fragmentation. The ultraviolet photodissociation of azomethane into two methyl radicals and nitrogen is discussed in chapter 2. Chapter 3 describes the photodissociation of acetone at 248 nm and 193 nm. At 248 nm the translational energy release from the initial C-C bond cleavage matches the exit barrier height and a comparison with results at 266 nm suggests that T> is invariant to the available energy. A fraction of the nascent CH3CO radicals spontaneously dissociate following rotational averaging. The T> for the second C-C bond cleavage also matches the exit barrier height. At 193 nm the experimental data can be successfully fit assuming that the dynamics are analogous to those at 248 nm. A simplified model of energy partitioning which adequately describes the experimental results is discussed. Experiments on acetyl halides provide additional evidence to support the proposed acetone dissociation mechanism. A value of 17.0±1.0 kcal/mole for the barrier height, CH3CO decomposition has been determined. The photodissociation of methyl radical at 193 nm and 212.8 nm is discussed in the chapter 5. The formation of CH2(1Al) and H (2S) was the only single photon dissociation pathway observed at both wavelengths.

  18. A deterministic method for estimating free energy genetic network landscapes with applications to cell commitment and reprogramming paths.

    Science.gov (United States)

    Olariu, Victor; Manesso, Erica; Peterson, Carsten

    2017-06-01

    Depicting developmental processes as movements in free energy genetic landscapes is an illustrative tool. However, exploring such landscapes to obtain quantitative or even qualitative predictions is hampered by the lack of free energy functions corresponding to the biochemical Michaelis-Menten or Hill rate equations for the dynamics. Being armed with energy landscapes defined by a network and its interactions would open up the possibility of swiftly identifying cell states and computing optimal paths, including those of cell reprogramming, thereby avoiding exhaustive trial-and-error simulations with rate equations for different parameter sets. It turns out that sigmoidal rate equations do have approximate free energy associations. With this replacement of rate equations, we develop a deterministic method for estimating the free energy surfaces of systems of interacting genes at different noise levels or temperatures. Once such free energy landscape estimates have been established, we adapt a shortest path algorithm to determine optimal routes in the landscapes. We explore the method on three circuits for haematopoiesis and embryonic stem cell development for commitment and reprogramming scenarios and illustrate how the method can be used to determine sequential steps for onsets of external factors, essential for efficient reprogramming.

  19. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Ayumi, E-mail: akanno@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Asahara, Shun-ichiro, E-mail: asahara@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Masuda, Katsuhisa, E-mail: katsuhisa.m.0707@gmail.com [Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142 (Japan); Matsuda, Tomokazu, E-mail: tomokazu@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Kimura-Koyanagi, Maki, E-mail: koyanagi@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Seino, Susumu, E-mail: seino@med.kobe-u.ac.jp [Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0047 (Japan); Ogawa, Wataru, E-mail: ogawa@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Kido, Yoshiaki, E-mail: kido@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142 (Japan)

    2015-03-13

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets.

  20. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    International Nuclear Information System (INIS)

    Kanno, Ayumi; Asahara, Shun-ichiro; Masuda, Katsuhisa; Matsuda, Tomokazu; Kimura-Koyanagi, Maki; Seino, Susumu; Ogawa, Wataru; Kido, Yoshiaki

    2015-01-01

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets

  1. Translation Theory 'Translated'

    DEFF Research Database (Denmark)

    Wæraas, Arild; Nielsen, Jeppe

    2016-01-01

    Translation theory has proved to be a versatile analytical lens used by scholars working from different traditions. On the basis of a systematic literature review, this study adds to our understanding of the ‘translations’ of translation theory by identifying the distinguishing features of the most...... common theoretical approaches to translation within the organization and management discipline: actor-network theory, knowledge-based theory, and Scandinavian institutionalism. Although each of these approaches already has borne much fruit in research, the literature is diverse and somewhat fragmented......, but also overlapping. We discuss the ways in which the three versions of translation theory may be combined and enrich each other so as to inform future research, thereby offering a more complete understanding of translation in and across organizational settings....

  2. Binary translation using peephole translation rules

    Science.gov (United States)

    Bansal, Sorav; Aiken, Alex

    2010-05-04

    An efficient binary translator uses peephole translation rules to directly translate executable code from one instruction set to another. In a preferred embodiment, the translation rules are generated using superoptimization techniques that enable the translator to automatically learn translation rules for translating code from the source to target instruction set architecture.

  3. Bioinspired Cell-Derived Nanovesicles versus Exosomes as Drug Delivery Systems : A Cost-Effective Alternative

    NARCIS (Netherlands)

    Goh, Wei Jiang; Zou, Shui; Ong, Wei Yi; Torta, Federico; Alexandra, Alvarez Fernandez; Schiffelers, Raymond M.; Storm, Gert; Wang, Jiong-Wei; Czarny, Bertrand M S; Pastorin, Giorgia

    2017-01-01

    Cell Derived Nanovesicles (CDNs) have been developed from the rapidly expanding field of exosomes, representing a class of bioinspired Drug Delivery Systems (DDS). However, translation to clinical applications is limited by the low yield and multi-step approach in isolating naturally secreted

  4. Bioinspired Cell-Derived Nanovesicles versus Exosomes as Drug Delivery Systems : a Cost-Effective Alternative

    NARCIS (Netherlands)

    Goh, Wei Jiang; Zou, Shui; Ong, Wei Yi; Torta, Federico; Alexandra, Alvarez Fernandez; Schiffelers, Raymond M; Storm, G; Wang, Jiong Wei; Czarny, Bertrand; Pastorin, Giorgia

    2017-01-01

    Cell Derived Nanovesicles (CDNs) have been developed from the rapidly expanding field of exosomes, representing a class of bioinspired Drug Delivery Systems (DDS). However, translation to clinical applications is limited by the low yield and multi-step approach in isolating naturally secreted

  5. Translational Science Research: Towards Better Health

    Directory of Open Access Journals (Sweden)

    Emir Festic

    2009-10-01

    health systems have also established translational research programs and at least 2 journals (Translational Medicine and the Journal of Translational Medicine are devoted to the topic. In Europe, translational research has become a centerpiece of the European Commission’s €6 billion budget for health related research, and the United Kingdom has invested £450 million over 5 years to establish translational research centers (7.In this issue of Bosnian Journal of Basic Medical Sciences, members of medical section of Bosnian and Herzegovinian-American Academy of Arts and Sciences (BHAAAS, contributed their own work and expertise to bridge the gap between basic and clinical research, between inventing the treatments and getting them used in practice, and laid down foundations for future collaborative development of translational research in Bosnia and Herzegovina, as well as in the region (8.At the first glance of this issue’s table of content, a reader will easily notice the variety and breadth of topics and themes, from medical informatics and genetics, to hematology and oncology, pulmonary and critical care medicine, orthopedics, trauma surgery and neurosurgery. However, all of the articles share common ideas of translation of knowledge, from bench to bedside and back, and individualized approach to medicine, which are the true hallmarks of the 21st century medicine.Deeper under the surface and titles, there lies our common privilege and honor to be part of a broader mission of BHAAAS: to connect with our fellow physicians and scientists, and to build bridges of cooperation with our homeland, to promote the spirit of intellectual diversity and free exchange of ideas with the strong belief that this knowledge sharing will promote betterment of health in Bosnia and Herzegovina

  6. Treatment Efficiency of Free and Nanoparticle-Loaded Mitoxantrone for Magnetic Drug Targeting in Multicellular Tumor Spheroids

    Directory of Open Access Journals (Sweden)

    Annkathrin Hornung

    2015-09-01

    Full Text Available Major problems of cancer treatment using systemic chemotherapy are severe side effects. Magnetic drug targeting (MDT employing superparamagnetic iron oxide nanoparticles (SPION loaded with chemotherapeutic agents may overcome this dilemma by increasing drug accumulation in the tumor and reducing toxic side effects in the healthy tissue. For translation of nanomedicine from bench to bedside, nanoparticle-mediated effects have to be studied carefully. In this study, we compare the effect of SPION, unloaded or loaded with the cytotoxic drug mitoxantrone (MTO with the effect of free MTO, on the viability and proliferation of HT-29 cells within three-dimensional multicellular tumor spheroids. Fluorescence microscopy and flow cytometry showed that both free MTO, as well as SPION-loaded MTO (SPIONMTO are able to penetrate into tumor spheroids and thereby kill tumor cells, whereas unloaded SPION did not affect cellular viability. Since SPIONMTO has herewith proven its effectivity also in complex multicellular tumor structures with its surrounding microenvironment, we conclude that it is a promising candidate for further use in magnetic drug targeting in vivo.

  7. Translational semantics: A discussion of the second edition of ...

    African Journals Online (AJOL)

    Translational semantics: A discussion of the second edition of Geoffrey Leech's Semantics: the Study of Meaning. N Love. Abstract. No abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.5774/11-0-106 · AJOL African Journals ...

  8. Findings of the 2010 Joint Workshop on Statistical Machine Translation and Metrics for Machine Translation

    NARCIS (Netherlands)

    Callison-Burch, C.; Koehn, P.; Monz, C.; Peterson, K.; Przybocki, M.; Zaidan, O.F.

    2010-01-01

    This paper presents the results of the WMT10 and MetricsMATR10 shared tasks, which included a translation task, a system combination task, and an evaluation task. We conducted a large-scale manual evaluation of 104 machine translation systems and 41 system combination entries. We used the ranking of

  9. Stem cell recovering effect of copper-free GHK in skin.

    Science.gov (United States)

    Choi, Hye-Ryung; Kang, Youn-A; Ryoo, Sun-Jong; Shin, Jung-Won; Na, Jung-Im; Huh, Chang-Hun; Park, Kyoung-Chan

    2012-11-01

    The peptide Gly-His-Lys (GHK) is a naturally occurring copper(II)-chelating motifs in human serum and cerebrospinal fluid. In industry, GHK (with or without copper) is used to make hair and skin care products. Copper-GHK plays a physiological role in the process of wound healing and tissue repair by stimulating collagen synthesis in fibroblasts. We also reported that copper-GHK promotes the survival of basal stem cells in the skin. However, the effects of copper-free GHK (GHK) have not been investigated well. In this study, the effects of GHK were studied using cultured normal human keratinocytes and skin equivalent (SE) models. In monolayer cultured keratinocytes, GHK increased the proliferation of keratinocytes. When GHK was added during the culture of SE models, the basal cells became more cuboidal than control model. In addition, there was linear and intense staining of α6 and β1 integrin along the basement membrane. The number of p63 and proliferating cell nuclear antigen positive cells was also significantly increased in GHK-treated SEs than in control SEs. Western blot and slide culture experiment showed that GHK increased the expression of integrin by keratinocytes. All these results showed that GHK increased the stemness and proliferative potential of epidermal basal cells, which is associated with increased expression of integrin. In conclusion, copper-free GHK showed similar effects with copper-GHK. Thus, it can be said that copper-free GHK can be used in industry to obtain the effects of copper-GHK in vivo. Further study is necessary to explore the relationship between copper-free GHK and copper-GHK. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  10. Silibinin inhibits translation initiation: implications for anticancer therapy.

    Science.gov (United States)

    Lin, Chen-Ju; Sukarieh, Rami; Pelletier, Jerry

    2009-06-01

    Silibinin is a nontoxic flavonoid reported to have anticancer properties. In this study, we show that silibinin exhibits antiproliferative activity on MCF-7 breast cancer cells. Exposure to silibinin leads to a concentration-dependent decrease in global protein synthesis associated with reduced levels of eukaryotic initiation factor 4F complex. Moreover, polysome profile analysis of silibinin-treated cells shows a decrease in polysome content and translation of cyclin D1 mRNA. Silibinin exerts its effects on translation initiation by inhibiting the mammalian target of rapamycin signaling pathway by acting upstream of TSC2. Our results show that silibinin blocks mammalian target of rapamycin signaling with a concomitant reduction in translation initiation, thus providing a possible molecular mechanism of how silibinin can inhibit growth of transformed cells.

  11. Robust and highly-efficient differentiation of functional monocytic cells from human pluripotent stem cells under serum- and feeder cell-free conditions.

    Directory of Open Access Journals (Sweden)

    Masakatsu D Yanagimachi

    Full Text Available Monocytic lineage cells (monocytes, macrophages and dendritic cells play important roles in immune responses and are involved in various pathological conditions. The development of monocytic cells from human embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs is of particular interest because it provides an unlimited cell source for clinical application and basic research on disease pathology. Although the methods for monocytic cell differentiation from ESCs/iPSCs using embryonic body or feeder co-culture systems have already been established, these methods depend on the use of xenogeneic materials and, therefore, have a relatively poor-reproducibility. Here, we established a robust and highly-efficient method to differentiate functional monocytic cells from ESCs/iPSCs under serum- and feeder cell-free conditions. This method produced 1.3 × 10(6 ± 0.3 × 10(6 floating monocytes from approximately 30 clusters of ESCs/iPSCs 5-6 times per course of differentiation. Such monocytes could be differentiated into functional macrophages and dendritic cells. This method should be useful for regenerative medicine, disease-specific iPSC studies and drug discovery.

  12. Tensegrity I. Cell structure and hierarchical systems biology

    Science.gov (United States)

    Ingber, Donald E.

    2003-01-01

    In 1993, a Commentary in this journal described how a simple mechanical model of cell structure based on tensegrity architecture can help to explain how cell shape, movement and cytoskeletal mechanics are controlled, as well as how cells sense and respond to mechanical forces (J. Cell Sci. 104, 613-627). The cellular tensegrity model can now be revisited and placed in context of new advances in our understanding of cell structure, biological networks and mechanoregulation that have been made over the past decade. Recent work provides strong evidence to support the use of tensegrity by cells, and mathematical formulations of the model predict many aspects of cell behavior. In addition, development of the tensegrity theory and its translation into mathematical terms are beginning to allow us to define the relationship between mechanics and biochemistry at the molecular level and to attack the larger problem of biological complexity. Part I of this two-part article covers the evidence for cellular tensegrity at the molecular level and describes how this building system may provide a structural basis for the hierarchical organization of living systems--from molecule to organism. Part II, which focuses on how these structural networks influence information processing networks, appears in the next issue.

  13. PKC δ Regulates Translation Initiation through PKR and eIF2 α in Response to Retinoic Acid in Acute Myeloid Leukemia Cells

    OpenAIRE

    Ozpolat, Bulent; Akar, Ugur; Tekedereli, Ibrahim; Alpay, S. Neslihan; Barria, Magaly; Gezgen, Baki; Zhang, Nianxiang; Coombes, Kevin; Kornblau, Steve; Lopez-Berestein, Gabriel

    2012-01-01

    Translation initiation and activity of eukaryotic initiation factor-alpha (eIF2 α ), the rate-limiting step of translation initiation, is often overactivated in malignant cells. Here, we investigated the regulation and role of eIF2 α in acute promyelocytic (APL) and acute myeloid leukemia (AML) cells in response to all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), the front-line therapies in APL. ATRA and ATO induce Ser-51 phosphorylation (inactivation) of eIF2 α , through the induct...

  14. Progress in Electrolyte-Free Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yuzheng eLu

    2016-05-01

    Full Text Available Solid Oxide Fuel Cell (SOFC represents a clean electrochemical energy conversion technology with characteristics of high conversion efficiency and low emissions. It is one of the most important new energy technologies in the future. However, the manufacture of SOFCs based on the structure of anode/electrolyte/cathode is complicated and time-consuming. Thus, the cost for the entire fabrication and technology is too high to be affordable and challenges still hinder commercialization. Recently, a novel type of Electrolyte -free fuel cell (EFFC with single component was invented which could be the potential candidate for the next generation of advanced fuel cells. This paper briefly introduces the EFFC, working principle, performance and advantages with updated research progress. A number of key R&D issues about EFFCs have been addressed and future opportunities and challenges are discussed.

  15. Body-on-a-chip systems for animal-free toxicity testing.

    Science.gov (United States)

    Mahler, Gretchen J; Esch, Mandy B; Stokol, Tracy; Hickman, James J; Shuler, Michael L

    2016-10-01

    Body-on-a-chip systems replicate the size relationships of organs, blood distribution and blood flow, in accordance with human physiology. When operated with tissues derived from human cell sources, these systems are capable of simulating human metabolism, including the conversion of a prodrug to its effective metabolite, as well as its subsequent therapeutic actions and toxic side-effects. The system also permits the measurement of human tissue electrical and mechanical reactions, which provide a measure of functional response. Since these devices can be operated with human tissue samples or with in vitro tissues derived from induced pluripotent stem cells (iPS), they can play a significant role in determining the success of new pharmaceuticals, without resorting to the use of animals. By providing a platform for testing in the context of human metabolism, as opposed to animal models, the systems have the potential to eliminate the use of animals in preclinical trials. This article will review progress made and work achieved as a direct result of the 2015 Lush Science Prize in support of animal-free testing. 2016 FRAME.

  16. Cell-Free Synthetic Biology Chassis for Nanocatalytic Photon-to-Hydrogen Conversion.

    Science.gov (United States)

    Wang, Peng; Chang, Angela Y; Novosad, Valentyn; Chupin, Vladimir V; Schaller, Richard D; Rozhkova, Elena A

    2017-07-25

    We report on an entirely man-made nano-bio architecture fabricated through noncovalent assembly of a cell-free expressed transmembrane proton pump and TiO 2 semiconductor nanoparticles as an efficient nanophotocatalyst for H 2 evolution. The system produces hydrogen at a turnover of about 240 μmol of H 2 (μmol protein) -1 h -1 and 17.74 mmol of H 2 (μmol protein) -1 h -1 under monochromatic green and white light, respectively, at ambient conditions, in water at neutral pH and room temperature, with methanol as a sacrificial electron donor. Robustness and flexibility of this approach allow for systemic manipulation at the nanoparticle-bio interface toward directed evolution of energy transformation materials and artificial systems.

  17. The spatial biology of transcription and translation in rapidly growing Escherichia coli

    Directory of Open Access Journals (Sweden)

    Somenath eBakshi

    2015-07-01

    Full Text Available Single-molecule fluorescence provides high resolution spatial distributions of ribosomes and RNA polymerase (RNAP in live, rapidly growing E. coli. Ribosomes are more strongly segregated from the nucleoids (chromosomal DNA than previous widefield fluorescence studies suggested. While most transcription may be co-translational, the evidence indicates that most translation occurs on free mRNA copies that have diffused from the nucleoids to a ribosome-rich region. Analysis of time-resolved images of the nucleoid spatial distribution after treatment with the transcription-halting drug rifampicin and the translation-halting drug chloramphenicol shows that both drugs cause nucleoid contraction on the 0-3 min timescale. This is consistent with the transertion hypothesis. We suggest that the longer-term (20-30 min nucleoid expansion after Rif treatment arises from conversion of 70S-polysomes to 30S and 50S subunits, which readily penetrate the nucleoids. Monte Carlo simulations of a polymer bead model built to mimic the chromosomal DNA and ribosomes (either 70S-polysomes or 30S and 50S subunits explain spatial segregation or mixing of ribosomes and nucleoids in terms of excluded volume and entropic effects alone. A comprehensive model of the transcription-translation-transertion system incorporates this new information about the spatial organization of the E. coli cytoplasm. We propose that transertion, which radially expands the nucleoids, is essential for recycling of 30S and 50S subunits from ribosome-rich regions back into the nucleoids. There they initiate co-transcriptional translation, which is an important mechanism for maintaining RNAP forward progress and protecting the nascent mRNA chain. Segregation of 70S-polysomes from the nucleoid may facilitate rapid growth by shortening the search time for ribosomes to find free mRNA concentrated outside the nucleoid and the search time for RNAP concentrated within the nucleoid to find transcription

  18. "The good into the pot, the bad into the crop!"--a new technology to free stem cells from feeder cells.

    Directory of Open Access Journals (Sweden)

    Annette Schneider

    Full Text Available A variety of embryonic and adult stem cell lines require an initial co-culturing with feeder cells for non-differentiated growth, self renewal and maintenance of pluripotency. However for many downstream ES cell applications the feeder cells have to be considered contaminations that might interfere not just with the analysis of experimental data but also with clinical application and tissue engineering approaches. Here we introduce a novel technique that allows for the selection of pure feeder-freed stem cells, following stem cell proliferation on feeder cell layers. Complete and reproducible separation of feeder and embryonic stem cells was accomplished by adaptation of an automated cell selection system that resulted in the aspiration of distinct cell colonies or fraction of colonies according to predefined physical parameters. Analyzing neuronal differentiation we demonstrated feeder-freed stem cells to exhibit differentiation potentials comparable to embryonic stem cells differentiated under standard conditions. However, embryoid body growth as well as differentiation of stem cells into cardiomyocytes was significantly enhanced in feeder-freed cells, indicating a feeder cell dependent modulation of lineage differentiation during early embryoid body development. These findings underline the necessity to separate stem and feeder cells before the initiation of in vitro differentiation. The complete separation of stem and feeder cells by this new technology results in pure stem cell populations for translational approaches. Furthermore, a more detailed analysis of the effect of feeder cells on stem cell differentiation is now possible, that might facilitate the identification and development of new optimized human or genetically modified feeder cell lines.

  19. Interface engineering for efficient fullerene-free organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shivanna, Ravichandran; Narayan, K. S., E-mail: rajaram@jncasr.ac.in, E-mail: narayan@jncasr.ac.in [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Rajaram, Sridhar, E-mail: rajaram@jncasr.ac.in, E-mail: narayan@jncasr.ac.in [International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2015-03-23

    We demonstrate the role of zinc oxide (ZnO) morphology and addition of an acceptor interlayer to achieve high efficiency fullerene-free bulk heterojunction inverted organic solar cells. Nanopatterning of the ZnO buffer layer enhances the effective light absorption in the active layer, and the insertion of a twisted perylene acceptor layer planarizes and decreases the electron extraction barrier. Along with an increase in current homogeneity, the reduced work function difference and selective transport of electrons prevent the accumulation of charges and decrease the electron-hole recombination at the interface. These factors enable an overall increase of efficiency to 4.6%, which is significant for a fullerene-free solution-processed organic solar cell.

  20. Inflammatory conditions induce IRES-dependent translation of cyp24a1.

    Directory of Open Access Journals (Sweden)

    Daniela Rübsamen

    Full Text Available Rapid alterations in protein expression are commonly regulated by adjusting translation. In addition to cap-dependent translation, which is e.g. induced by pro-proliferative signaling via the mammalian target of rapamycin (mTOR-kinase, alternative modes of translation, such as internal ribosome entry site (IRES-dependent translation, are often enhanced under stress conditions, even if cap-dependent translation is attenuated. Common stress stimuli comprise nutrient deprivation, hypoxia, but also inflammatory signals supplied by infiltrating immune cells. Yet, the impact of inflammatory microenvironments on translation in tumor cells still remains largely elusive. In the present study, we aimed at identifying translationally deregulated targets in tumor cells under inflammatory conditions. Using polysome profiling and microarray analysis, we identified cyp24a1 (1,25-dihydroxyvitamin D3 24-hydroxylase to be translationally upregulated in breast tumor cells co-cultured with conditioned medium of activated monocyte-derived macrophages (CM. Using bicistronic reporter assays, we identified and validated an IRES within the 5' untranslated region (5'UTR of cyp24a1, which enhances translation of cyp24a1 upon CM treatment. Furthermore, IRES-dependent translation of cyp24a1 by CM was sensitive to phosphatidyl-inositol-3-kinase (PI3K inhibition, while constitutive activation of Akt sufficed to induce its IRES activity. Our data provide evidence that cyp24a1 expression is translationally regulated via an IRES element, which is responsive to an inflammatory environment. Considering the negative feedback impact of cyp24a1 on the vitamin D responses, the identification of a novel, translational mechanism of cyp24a1 regulation might open new possibilities to overcome the current limitations of vitamin D as tumor therapeutic option.

  1. Common acute lymphoblastic leukemia antigen: partial characterization by in vivo labeling and isolation of its messenger RNA

    International Nuclear Information System (INIS)

    Heinsohn, S.; Kabisch, H.

    1987-01-01

    Common acute lymphoblastic leukemia (ALL) antigen (CALLA)-like proteins were detected by in vivo labeling experiments carried out with human lymphoblastoid cell line KM3 and also in cell-free translation, directed by CALLA-specific mRNA prepared from immunoadsorbed KM3 polysomes. The CALLA-like structure found in both systems shows an Mr of 95kDa. Additional CALLA-like proteins could be identified in the in vivo experiments with calculated Mrs of 40kDa in the cells and 85 and 38kDa in the culture medium. In the cell-free translation system, an additional product of Mr 80kDa could be detected

  2. MSD Recombination Method in Statistical Machine Translation

    Science.gov (United States)

    Gros, Jerneja Žganec

    2008-11-01

    Freely available tools and language resources were used to build the VoiceTRAN statistical machine translation (SMT) system. Various configuration variations of the system are presented and evaluated. The VoiceTRAN SMT system outperformed the baseline conventional rule-based MT system in all English-Slovenian in-domain test setups. To further increase the generalization capability of the translation model for lower-coverage out-of-domain test sentences, an "MSD-recombination" approach was proposed. This approach not only allows a better exploitation of conventional translation models, but also performs well in the more demanding translation direction; that is, into a highly inflectional language. Using this approach in the out-of-domain setup of the English-Slovenian JRC-ACQUIS task, we have achieved significant improvements in translation quality.

  3. Translation initiation complex eIF4F is a therapeutic target for dual mTOR kinase inhibitors in non-Hodgkin lymphoma

    Science.gov (United States)

    Stenson, Mary J.; Maurer, Matthew J.; Wellik, Linda E.; Link, Brian; Hege, Kristen; Dogan, Ahmet; Sotomayor, Eduardo; Witzig, Thomas; Gupta, Mamta

    2015-01-01

    Deregulated mRNA translation has been implicated in disease development and in part is controlled by a eukaryotic initiation complex eIF4F (composed of eIF4E, eIF4G and eIF4A). We demonstrate here that the cap bound fraction from lymphoma cells was enriched with eIF4G and eIF4E indicating that lymphoma cells exist in an activated translational state. Moreover, 77% (110/142) of diffuse large B cell lymphoma tumors expressed eIF4E and this was associated with an inferior event free survival. Over-expression of wild-type eIF4E (eIF4EWT) but not cap-mutant eIF4E (eIF4Ecap mutant) increased the activation of the eIF4F complex. Treatment with the active-site dual mTOR inhibitor CC214-1 reduced the level of the eIF4F complex by decreasing the cap bound fraction of eIF4G and increasing the levels of 4E-BP1. CC214-1 inhibited both the cap dependent and global protein translation. CC214-1 inhibited c-Myc, and cyclin D3 translation by decreasing polysomal fractions from lymphoma cells. Inhibition of eIF4E with shRNA further decreased the CC214-1 induced inhibition of the eIF4F complex, c-Myc, cyclin D3 translation, and colony formation. These studies demonstrate that the eIF4F complex is deregulated in aggressive lymphoma and that dual mTOR therapy has therapeutic potential in these patients. PMID:25839159

  4. Systems Biology for Organotypic Cell Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)

    2016-08-04

    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  5. Machine Translation and Other Translation Technologies.

    Science.gov (United States)

    Melby, Alan

    1996-01-01

    Examines the application of linguistic theory to machine translation and translator tools, discusses the use of machine translation and translator tools in the real world of translation, and addresses the impact of translation technology on conceptions of language and other issues. Findings indicate that the human mind is flexible and linguistic…

  6. PRMT1-Mediated Translation Regulation Is a Crucial Vulnerability of Cancer.

    Science.gov (United States)

    Hsu, Jessie Hao-Ru; Hubbell-Engler, Benjamin; Adelmant, Guillaume; Huang, Jialiang; Joyce, Cailin E; Vazquez, Francisca; Weir, Barbara A; Montgomery, Philip; Tsherniak, Aviad; Giacomelli, Andrew O; Perry, Jennifer A; Trowbridge, Jennifer; Fujiwara, Yuko; Cowley, Glenn S; Xie, Huafeng; Kim, Woojin; Novina, Carl D; Hahn, William C; Marto, Jarrod A; Orkin, Stuart H

    2017-09-01

    Through an shRNA screen, we identified the protein arginine methyltransferase Prmt1 as a vulnerable intervention point in murine p53/Rb-null osteosarcomas, the human counterpart of which lacks effective therapeutic options. Depletion of Prmt1 in p53-deficient cells impaired tumor initiation and maintenance in vitro and in vivo Mechanistic studies reveal that translation-associated pathways were enriched for Prmt1 downstream targets, implicating Prmt1 in translation control. In particular, loss of Prmt1 led to a decrease in arginine methylation of the translation initiation complex, thereby disrupting its assembly and inhibiting translation. p53/Rb-null cells were sensitive to p53-induced translation stress, and analysis of human cancer cell line data from Project Achilles further revealed that Prmt1 and translation-associated pathways converged on the same functional networks. We propose that targeted therapy against Prmt1 and its associated translation-related pathways offer a mechanistic rationale for treatment of osteosarcomas and other cancers that exhibit dependencies on translation stress response. Cancer Res; 77(17); 4613-25. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. Designing System Reforms: Using a Systems Approach to Translate Incident Analyses into Prevention Strategies

    Science.gov (United States)

    Goode, Natassia; Read, Gemma J. M.; van Mulken, Michelle R. H.; Clacy, Amanda; Salmon, Paul M.

    2016-01-01

    Advocates of systems thinking approaches argue that accident prevention strategies should focus on reforming the system rather than on fixing the “broken components.” However, little guidance exists on how organizations can translate incident data into prevention strategies that address the systemic causes of accidents. This article describes and evaluates a series of systems thinking prevention strategies that were designed in response to the analysis of multiple incidents. The study was undertaken in the led outdoor activity (LOA) sector in Australia, which delivers supervised or instructed outdoor activities such as canyoning, sea kayaking, rock climbing and camping. The design process involved workshops with practitioners, and focussed on incident data analyzed using Rasmussen's AcciMap technique. A series of reflection points based on the systemic causes of accidents was used to guide the design process, and the AcciMap technique was used to represent the prevention strategies and the relationships between them, leading to the creation of PreventiMaps. An evaluation of the PreventiMaps revealed that all of them incorporated the core principles of the systems thinking approach and many proposed prevention strategies for improving vertical integration across the LOA system. However, the majority failed to address the migration of work practices and the erosion of risk controls. Overall, the findings suggest that the design process was partially successful in helping practitioners to translate incident data into prevention strategies that addressed the systemic causes of accidents; refinement of the design process is required to focus practitioners more on designing monitoring and feedback mechanisms to support decisions at the higher levels of the system. PMID:28066296

  8. Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering.

    Science.gov (United States)

    Son, Dae-Yong; Kim, Seul-Gi; Seo, Ja-Young; Lee, Seon-Hee; Shin, Hyunjung; Lee, Donghwa; Park, Nam-Gyu

    2018-01-31

    Organic-inorganic halide perovskite is believed to be a potential candidate for high efficiency solar cells because power conversion efficiency (PCE) was certified to be more than 22%. Nevertheless, mismatch of PCE due to current density (J)-voltage (V) hysteresis in perovskite solar cells is an obstacle to overcome. There has been much lively debate on the origin of J-V hysteresis; however, effective methodology to solve the hysteric problem has not been developed. Here we report a universal approach for hysteresis-free perovskite solar cells via defect engineering. A severe hysteresis observed from the normal mesoscopic structure employing TiO 2 and spiro-MeOTAD is almost removed or does not exist upon doping the pure perovskites, CH 3 NH 3 PbI 3 and HC(NH 2 ) 2 PbI 3 , and the mixed cation/anion perovskites, FA 0.85 MA 0.15 PbI 2.55 Br 0.45 and FA 0.85 MA 0.1 Cs 0.05 PbI 2.7 Br 0.3 , with potassium iodide. Substantial reductions in low-frequency capacitance and bulk trap density are measured from the KI-doped perovskite, which is indicative of trap-hysteresis correlation. A series of experiments with alkali metal iodides of LiI, NaI, KI, RbI and CsI reveals that potassium ion is the right element for hysteresis-free perovskite. Theoretical studies suggest that the atomistic origin of the hysteresis of perovskite solar cells is not the migration of iodide vacancy but results from the formation of iodide Frenkel defect. Potassium ion is able to prevent the formation of Frenkel defect since K + energetically prefers the interstitial site. A complete removal of hysteresis is more pronounced at mixed perovskite system as compared to pure perovskites, which is explained by lower formation energy of K interstitial (-0.65 V for CH 3 NH 3 PbI 3 vs -1.17 V for mixed perovskite). The developed KI doping methodology is universally adapted for hysteresis-free perovskite regardless of perovskite composition and device structure.

  9. Targeting RNA transcription and translation in ovarian cancer cells with pharmacological inhibitor CDKI-73.

    Science.gov (United States)

    Lam, Frankie; Abbas, Abdullahi Y; Shao, Hao; Teo, Theodosia; Adams, Julian; Li, Peng; Bradshaw, Tracey D; Fischer, Peter M; Walsby, Elisabeth; Pepper, Chris; Chen, Yi; Ding, Jian; Wang, Shudong

    2014-09-15

    Dysregulation of cellular transcription and translation is a fundamental hallmark of cancer. As CDK9 and Mnks play pivotal roles in the regulation of RNA transcription and protein synthesis, respectively, they are important targets for drug development. We herein report the cellular mechanism of a novel CDK9 inhibitor CDKI-73 in an ovarian cancer cell line (A2780). We also used shRNA-mediated CDK9 knockdown to investigate the importance of CDK9 in the maintenance of A2780 cells. This study revealed that CDKI-73 rapidly inhibited cellular CDK9 kinase activity and down-regulated the RNAPII phosphorylation. This subsequently caused a decrease in the eIF4E phosphorylation by blocking Mnk1 kinase activity. Consistently, CDK9 shRNA was also found to down-regulate the Mnk1 expression. Both CDKI-73 and CDK9 shRNA decreased anti-apoptotic proteins Mcl-1 and Bcl-2 and induced apoptosis. The study confirmed that CDK9 is required for cell survival and that ovarian cancer may be susceptible to CDK9 inhibition strategy. The data also implied a role of CDK9 in eIF4E-mediated translational control, suggesting that CDK9 may have important implication in the Mnk-eIF4E axis, the key determinants of PI3K/Akt/mTOR- and Ras/Raf/MAPK-mediated tumorigenic activity. As such, CDK9 inhibitor drug candidate CDKI-73 should have a major impact on these pathways in human cancers.

  10. AtLa1 protein initiates IRES-dependent translation of WUSCHEL mRNA and regulates the stem cell homeostasis of Arabidopsis in response to environmental hazards.

    Science.gov (United States)

    Cui, Yuchao; Rao, Shaofei; Chang, Beibei; Wang, Xiaoshuang; Zhang, Kaidian; Hou, Xueliang; Zhu, Xueyi; Wu, Haijun; Tian, Zhaoxia; Zhao, Zhong; Yang, Chengwei; Huang, Tao

    2015-10-01

    Plant stem cells are hypersensitive to environmental hazards throughout their life cycle, but the mechanism by which plants safeguard stem cell homeostasis in response to environmental hazards is largely unknown. The homeodomain transcription factor WUSCHEL (WUS) protein maintains the stem cell pool in the shoot apical meristem of Arabidopsis. Here, we demonstrate that the translation of WUS mRNA is directed by an internal ribosomal entry site (IRES) located in the 5'-untranslated region. The AtLa1 protein, an RNA-binding factor, binds to the 5'-untranslated region and initiates the IRES-dependent translation of WUS mRNA. Knockdown of AtLa1 expression represses the WUS IRES-dependent translation and leads to the arrest of growth and development. The AtLa1 protein is mainly located in the nucleoplasm. However, environmental hazards promote the nuclear-to-cytoplasmic translocation of the AtLa1 protein, which further enhances the IRES-dependent translation of WUS mRNA. Genetic evidence indicates that the WUS protein increases the tolerance of the shoot apical meristem to environmental hazards. Based on these results, we conclude that the stem cell niche in Arabidopsis copes with environmental hazards by enhancing the IRES-dependent translation of WUS mRNA under the control of the AtLa1 protein. © 2015 John Wiley & Sons Ltd.

  11. Equivalence principle for quantum systems: dephasing and phase shift of free-falling particles

    Science.gov (United States)

    Anastopoulos, C.; Hu, B. L.

    2018-02-01

    We ask the question of how the (weak) equivalence principle established in classical gravitational physics should be reformulated and interpreted for massive quantum objects that may also have internal degrees of freedom (dof). This inquiry is necessary because even elementary concepts like a classical trajectory are not well defined in quantum physics—trajectories originating from quantum histories become viable entities only under stringent decoherence conditions. From this investigation we posit two logically and operationally distinct statements of the equivalence principle for quantum systems. Version A: the probability distribution of position for a free-falling particle is the same as the probability distribution of a free particle, modulo a mass-independent shift of its mean. Version B: any two particles with the same velocity wave-function behave identically in free fall, irrespective of their masses. Both statements apply to all quantum states, including those without a classical correspondence, and also for composite particles with quantum internal dof. We also investigate the consequences of the interaction between internal and external dof induced by free fall. For a class of initial states, we find dephasing occurs for the translational dof, namely, the suppression of the off-diagonal terms of the density matrix, in the position basis. We also find a gravitational phase shift in the reduced density matrix of the internal dof that does not depend on the particle’s mass. For classical states, the phase shift has a natural classical interpretation in terms of gravitational red-shift and special relativistic time-dilation.

  12. D-Glucosamine down-regulates HIF-1{alpha} through inhibition of protein translation in DU145 prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jee-Young; Park, Jong-Wook; Suh, Seong-Il [Chronic Disease Research Center, School of Medicine, Keimyung University, 194 Dongsan-Dong, Jung-Gu, Daegu 700-712 (Korea, Republic of); Baek, Won-Ki, E-mail: wonki@dsmc.or.kr [Chronic Disease Research Center, School of Medicine, Keimyung University, 194 Dongsan-Dong, Jung-Gu, Daegu 700-712 (Korea, Republic of)

    2009-04-24

    D-Glucosamine has been reported to inhibit proliferation of cancer cells in culture and in vivo. In this study we report a novel response to D-glucosamine involving the translation regulation of hypoxia inducible factor (HIF)-1{alpha} expression. D-Glucosamine caused a decreased expression of HIF-1{alpha} under normoxic and hypoxic conditions without affecting HIF-1{alpha} mRNA expression in DU145 prostate cancer cells. D-Glucosamine inhibited HIF-1{alpha} accumulation induced by proteasome inhibitor MG132 and prolyl hydroxylase inhibitor DMOG suggesting D-glucosamine reduces HIF-1{alpha} protein expression through proteasome-independent pathway. Metabolic labeling assays indicated that D-glucosamine inhibits translation of HIF-1{alpha} protein. In addition, D-glucosamine inhibited HIF-1{alpha} expression induced by serum stimulation in parallel with inhibition of p70S6K suggesting D-glucosamine inhibits growth factor-induced HIF-1{alpha} expression, at least in part, through p70S6K inhibition. Taken together, these results suggest that D-glucosamine inhibits HIF-1{alpha} expression through inhibiting protein translation and provide new insight into a potential mechanism of the anticancer properties of D-glucosamine.

  13. Streptomyces venezuelae TX-TL - a next generation cell-free synthetic biology tool.

    Science.gov (United States)

    Moore, Simon J; Lai, Hung-En; Needham, Hannah; Polizzi, Karen M; Freemont, Paul S

    2017-04-01

    Streptomyces venezuelae is a promising chassis in synthetic biology for fine chemical and secondary metabolite pathway engineering. The potential of S. venezuelae could be further realized by expanding its capability with the introduction of its own in vitro transcription-translation (TX-TL) system. TX-TL is a fast and expanding technology for bottom-up design of complex gene expression tools, biosensors and protein manufacturing. Herein, we introduce a S. venezuelae TX-TL platform by reporting a streamlined protocol for cell-extract preparation, demonstrating high-yield synthesis of a codon-optimized sfGFP reporter and the prototyping of a synthetic tetracycline-inducible promoter in S. venezuelae TX-TL based on the tetO-TetR repressor system. The aim of this system is to provide a host for the homologous production of exotic enzymes from Actinobacteria secondary metabolism in vitro. As an example, the authors demonstrate the soluble synthesis of a selection of enzymes (12-70 kDa) from the Streptomyces rimosus oxytetracycline pathway. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Telemedicine as a special case of machine translation.

    Science.gov (United States)

    Wołk, Krzysztof; Marasek, Krzysztof; Glinkowski, Wojciech

    2015-12-01

    Machine translation is evolving quite rapidly in terms of quality. Nowadays, we have several machine translation systems available in the web, which provide reasonable translations. However, these systems are not perfect, and their quality may decrease in some specific domains. This paper examines the effects of different training methods when it comes to Polish-English Statistical Machine Translation system used for the medical data. Numerous elements of the EMEA parallel text corpora and not related OPUS Open Subtitles project were used as the ground for creation of phrase tables and different language models including the development, tuning and testing of these translation systems. The BLEU, NIST, METEOR, and TER metrics have been used in order to evaluate the results of various systems. Our experiments deal with the systems that include POS tagging, factored phrase models, hierarchical models, syntactic taggers, and other alignment methods. We also executed a deep analysis of Polish data as preparatory work before automatized data processing such as true casing or punctuation normalization phase. Normalized metrics was used to compare results. Scores lower than 15% mean that Machine Translation engine is unable to provide satisfying quality, scores greater than 30% mean that translations should be understandable without problems and scores over 50 reflect adequate translations. The average results of Polish to English translations scores for BLEU, NIST, METEOR, and TER were relatively high and ranged from 7058 to 8272. The lowest score was 6438. The average results ranges for English to Polish translations were little lower (6758-7897). The real-life implementations of presented high quality Machine Translation Systems are anticipated in general medical practice and telemedicine. Copyright © 2015. Published by Elsevier Ltd.

  15. Depletion of eIF4G from yeast cells narrows the range of translational efficiencies genome-wide

    Directory of Open Access Journals (Sweden)

    Hinnebusch Alan G

    2011-01-01

    Full Text Available Abstract Background Eukaryotic translation initiation factor 4G (eIF4G is thought to influence the translational efficiencies of cellular mRNAs by its roles in forming an eIF4F-mRNA-PABP mRNP that is competent for attachment of the 43S preinitiation complex, and in scanning through structured 5' UTR sequences. We have tested this hypothesis by determining the effects of genetically depleting eIF4G from yeast cells on global translational efficiencies (TEs, using gene expression microarrays to measure the abundance of mRNA in polysomes relative to total mRNA for ~5900 genes. Results Although depletion of eIF4G is lethal and reduces protein synthesis by ~75%, it had small effects (less than a factor of 1.5 on the relative TE of most genes. Within these limits, however, depleting eIF4G narrowed the range of translational efficiencies genome-wide, with mRNAs of better than average TE being translated relatively worse, and mRNAs with lower than average TE being translated relatively better. Surprisingly, the fraction of mRNAs most dependent on eIF4G display an average 5' UTR length at or below the mean for all yeast genes. Conclusions This finding suggests that eIF4G is more critical for ribosome attachment to mRNAs than for scanning long, structured 5' UTRs. Our results also indicate that eIF4G, and the closed-loop mRNP it assembles with the m7 G cap- and poly(A-binding factors (eIF4E and PABP, is not essential for translation of most (if not all mRNAs but enhances the differentiation of translational efficiencies genome-wide.

  16. Flavor formation and cell physiology during the production of alcohol-free beer with immobilized Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Iersel, van M.F.M.; Dieren, van B.; Rombouts, F.M.; Abee, T.

    1999-01-01

    Production of alcohol-free beer by limited fermentation is optimally performed in a packed-bed reactor operating in downflow. This ensures a highly controllable system with optimal reactor design. In the present study, we report on changes in the physiology of immobilized yeast cells in the reactor.

  17. IRON AND FREE RADICAL OXIDATIONS IN CELL MEMBRANES

    Science.gov (United States)

    Schafer, Freya Q.; Yue Qian, Steven; Buettner, Garry R.

    2013-01-01

    Brain tissue being rich in polyunsaturated fatty acids, is very susceptible to lipid peroxidation. Iron is well known to be an important initiator of free radical oxidations. We propose that the principal route to iron-mediated lipid peroxidations is via iron-oxygen complexes rather than the reaction of iron with hydrogen peroxide, the Fenton reaction. To test this hypothesis, we enriched leukemia cells (K-562 and L1210 cells) with docosahexaenoic acid (DHA) as a model for brain tissue, increasing the amount of DHA from approximately 3 mole % to 32 mole %. These cells were then subjected to ferrous iron and dioxygen to initiate lipid peroxidation in the presence or absence of hydrogen peroxide. Lipid-derived radicals were detected using EPR spin trapping with α-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN). As expected, lipid-derived radical formation increases with increasing cellular lipid unsaturation. Experiments with Desferal demonstrate that iron is required for the formation of lipid radicals from these cells. Addition of iron to DHA-enriched L1210 cells resulted in significant amounts of radical formation; radical formation increased with increasing amount of iron. However, the exposure of cells to hydrogen peroxide before the addition of ferrous iron did not increase cellular radical formation, but actually decreased spin adduct formation. These data suggest that iron-oxygen complexes are the primary route to the initiation of biological free radical oxidations. This model proposes a mechanism to explain how catalytic iron in brain tissue can be so destructive. PMID:10872752

  18. Device-Free Indoor Activity Recognition System

    Directory of Open Access Journals (Sweden)

    Mohammed Abdulaziz Aide Al-qaness

    2016-11-01

    Full Text Available In this paper, we explore the properties of the Channel State Information (CSI of WiFi signals and present a device-free indoor activity recognition system. Our proposed system uses only one ubiquitous router access point and a laptop as a detection point, while the user is free and neither needs to wear sensors nor carry devices. The proposed system recognizes six daily activities, such as walk, crawl, fall, stand, sit, and lie. We have built the prototype with an effective feature extraction method and a fast classification algorithm. The proposed system has been evaluated in a real and complex environment in both line-of-sight (LOS and none-line-of-sight (NLOS scenarios, and the results validate the performance of the proposed system.

  19. Standardizing Umbilical Cord Mesenchymal Stromal Cells for Translation to Clinical Use: Selection of GMP-Compliant Medium and a Simplified Isolation Method

    Directory of Open Access Journals (Sweden)

    J. Robert Smith

    2016-01-01

    Full Text Available Umbilical cord derived mesenchymal stromal cells (UC-MSCs are a focus for clinical translation but standardized methods for isolation and expansion are lacking. Previously we published isolation and expansion methods for UC-MSCs which presented challenges when considering good manufacturing practices (GMP for clinical translation. Here, a new and more standardized method for isolation and expansion of UC-MSCs is described. The new method eliminates dissection of blood vessels and uses a closed-vessel dissociation following enzymatic digestion which reduces contamination risk and manipulation time. The new method produced >10 times more cells per cm of UC than our previous method. When biographical variables were compared, more UC-MSCs per gram were isolated after vaginal birth compared to Caesarian-section births, an unexpected result. UC-MSCs were expanded in medium enriched with 2%, 5%, or 10% pooled human platelet lysate (HPL eliminating the xenogeneic serum components. When the HPL concentrations were compared, media supplemented with 10% HPL had the highest growth rate, smallest cells, and the most viable cells at passage. UC-MSCs grown in 10% HPL had surface marker expression typical of MSCs, high colony forming efficiency, and could undergo trilineage differentiation. The new protocol standardizes manufacturing of UC-MSCs and enables clinical translation.

  20. A Behavior-Preserving Translation From FBD Design to C Implementation for Reactor Protection System Software

    International Nuclear Information System (INIS)

    Yoo, Junbeom; Kim, Euisub; Lee, Jangsoo

    2013-01-01

    Software safety for nuclear reactor protection systems (RPSs) is the most important requirement for the obtainment of permission for operation and export from government authorities, which is why it should be managed with well-experienced software development processes. The RPS software is typically modeled with function block diagrams (FBDs) in the design phase, and then mechanically translated into C programs in the implementation phase, which is finally compiled into executable machine codes and loaded on RPS hardware - PLC (Programmable Logic Controller). Whereas C Compilers are fully-verified COTS (Commercial Off-The-Shelf) software, translators from FBDs to C programs are provided by PLC vendors. Long-term experience, experiments and simulations have validated their correctness and function safety. This paper proposes a behavior-preserving translation from FBD design to C implementation for RPS software. It includes two sets of translation algorithms and rules as well as a prototype translator. We used an example of RPS software in a Korean nuclear power plant to demonstrate the correctness and effectiveness of the proposed translation

  1. A Behavior-Preserving Translation From FBD Design to C Implementation for Reactor Protection System Software

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Junbeom; Kim, Euisub [Konkuk Univ., Seoul (Korea, Republic of); Lee, Jangsoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-08-15

    Software safety for nuclear reactor protection systems (RPSs) is the most important requirement for the obtainment of permission for operation and export from government authorities, which is why it should be managed with well-experienced software development processes. The RPS software is typically modeled with function block diagrams (FBDs) in the design phase, and then mechanically translated into C programs in the implementation phase, which is finally compiled into executable machine codes and loaded on RPS hardware - PLC (Programmable Logic Controller). Whereas C Compilers are fully-verified COTS (Commercial Off-The-Shelf) software, translators from FBDs to C programs are provided by PLC vendors. Long-term experience, experiments and simulations have validated their correctness and function safety. This paper proposes a behavior-preserving translation from FBD design to C implementation for RPS software. It includes two sets of translation algorithms and rules as well as a prototype translator. We used an example of RPS software in a Korean nuclear power plant to demonstrate the correctness and effectiveness of the proposed translation.

  2. Targeting eukaryotic translation in mesothelioma cells with an eIF4E-specific antisense oligonucleotide.

    Directory of Open Access Journals (Sweden)

    Blake A Jacobson

    Full Text Available BACKGROUND: Aberrant cap-dependent translation is implicated in tumorigenesis in multiple tumor types including mesothelioma. In this study, disabling the eIF4F complex by targeting eIF4E with eIF4E-specific antisense oligonucleotide (4EASO is assessed as a therapy for mesothelioma. METHODS: Mesothelioma cells were transfected with 4EASO, designed to target eIF4E mRNA, or mismatch-ASO control. Cell survival was measured in mesothelioma treated with 4EASO alone or combined with either gemcitabine or pemetrexed. Levels of eIF4E, ODC, Bcl-2 and β-actin were assessed following treatment. Binding to a synthetic cap-analogue was used to study the strength of eIF4F complex activation following treatment. RESULTS: eIF4E level and the formation of eIF4F cap-complex decreased in response to 4EASO, but not mismatch control ASO, resulting in cleavage of PARP indicating apoptosis. 4EASO treatment resulted in dose dependent decrease in eIF4E levels, which corresponded to cytotoxicity of mesothelioma cells. 4EASO resulted in decreased levels of eIF4E in non-malignant LP9 cells, but this did not correspond to increased cytotoxicity. Proteins thought to be regulated by cap-dependent translation, Bcl-2 and ODC, were decreased upon treatment with 4EASO. Combination therapy of 4EASO with pemetrexed or gemcitabine further reduced cell number. CONCLUSION: 4EASO is a novel drug that causes apoptosis and selectively reduces eIF4E levels, eIF4F complex formation, and proliferation of mesothelioma cells. eIF4E knockdown results in decreased expression of anti-apoptotic and pro-growth proteins and enhances chemosensitivity.

  3. Elevated levels of cell-free circulating DNA in patients with acute dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Tran Thi Ngoc Ha

    Full Text Available BACKGROUND: Apoptosis is thought to play a role in the pathogenesis of severe dengue and the release of cell-free DNA into the circulatory system in several medical conditions. Therefore, we investigated circulating DNA as a potential biomarker for severe dengue. METHODS AND FINDINGS: A direct fluorometric degradation assay using PicoGreen was performed to quantify cell-free DNA from patient plasma. Circulating DNA levels were significantly higher in patients with dengue virus infection than with other febrile illnesses and healthy controls. Remarkably, the increase of DNA levels correlated with the severity of dengue. Additionally, multivariate logistic regression analysis showed that circulating DNA levels independently correlated with dengue shock syndrome. CONCLUSIONS: Circulating DNA levels were increased in dengue patients and correlated with dengue severity. Additional studies are required to show the benefits of this biomarker in early dengue diagnosis and for the prognosis of shock complication.

  4. Gender shift in translation from English into Arabic and all that aggro

    Directory of Open Access Journals (Sweden)

    Mohammad Ahmad Thawabteh

    2017-12-01

    Full Text Available The present article examines how English grammatical gender is handled in Arabic translation as can be illustrated in a gender-loaded English text taken from the Gulf News English website. To diversify and corroborate our argument, the text was given to a group of forty students enrolled on Translation Studies course for the academic year 2017/2018 at Sultan Qaboos University. The article shows that the translation students fall victim to several problems, most likely attributed to the linguistic reality of the masculine and feminine genders in both Arabic and English. The article reveals that three strategies in translating a gender-loaded text are employed: (1 Source Language (SL gender-free items are translated into masculine gender in Target Language (TL in view of the fact that they are contextually determined or that they are closely bound up with unequivocal patriarchal domination in the Arab culture; (2 SL gender-bound items usually observed by complex genders (i.e., the addition of a gender lexical item to a gender-free item are translated by means of explicitation whereby a that-clause or an astute feminine lexical item is utilised; and (3 the dormancy of a viable computer-aided translation (CAT strategy is called upon, very frequently, when Strategy 1 and Strategy 2 are to no avail.

  5. The Effect of Online Translators on L2 Writing in French

    Science.gov (United States)

    O'Neill, Errol Marinus

    2012-01-01

    Online translation (OT) sites such as Free Translation and Babel Fish are freely available to the general public and purport to convert inputted text, from single words to entire paragraphs, instantly from one language to another. Discussion in the literature about OT for second-language (L2) acquisition has generally focused either on the…

  6. Eigenvalues and eigenvectors of the translation matrices of spherical waves of multiple-scattering theory

    International Nuclear Information System (INIS)

    Torrini, M.

    1983-01-01

    The exponential nature of the translation matrix G of spherical free waves has been set forth in a previous paper.The explicit expression of the exponential form of the translation matrix is given here, once the eigenvectros and the eigenvalues of G have been found. In addition, the eigenproblem relative to the matrix which transforms outgoing waves scattered by a centre in a set of spherical free waves centered at a different point is solved

  7. Design, clinical translation and immunological response of biomaterials in regenerative medicine

    Science.gov (United States)

    Sadtler, Kaitlyn; Singh, Anirudha; Wolf, Matthew T.; Wang, Xiaokun; Pardoll, Drew M.; Elisseeff, Jennifer H.

    2016-07-01

    The field of regenerative medicine aims to replace tissues lost as a consequence of disease, trauma or congenital abnormalities. Biomaterials serve as scaffolds for regenerative medicine to deliver cells, provide biological signals and physical support, and mobilize endogenous cells to repair tissues. Sophisticated chemistries are used to synthesize materials that mimic and modulate native tissue microenvironments, to replace form and to elucidate structure-function relationships of cell-material interactions. The therapeutic relevance of these biomaterial properties can only be studied after clinical translation, whereby key parameters for efficacy can be defined and then used for future design. In this Review, we present the development and translation of biomaterials for two tissue engineering targets, cartilage and cornea, both of which lack the ability to self-repair. Finally, looking to the future, we discuss the role of the immune system in regeneration and the potential for biomaterial scaffolds to modulate immune signalling to create a pro-regenerative environment.

  8. Critical seeding density improves properties and translatability of self-assembling anatomically shaped knee menisci

    Science.gov (United States)

    Hadidi, Pasha; Yeh, Timothy C.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2014-01-01

    A recent development in the field of tissue engineering is the rise of all-biologic, scaffold-free engineered tissues. Since these biomaterials rely primarily upon cells, investigation of initial seeding densities constitutes a particularly relevant aim for tissue engineers. In this study, a scaffold-free method was used to create fibrocartilage in the shape of the rabbit knee meniscus. The objectives of this study were: (i) to determine the minimum seeding density, normalized by an area of 44 mm2, necessary for the self-assembling process of fibrocartilage to occur, (ii) examine relevant biomechanical properties of engineered fibrocartilage, such as tensile and compressive stiffness and strength, and their relationship to seeding density, and (iii) identify a reduced, or optimal, number of cells needed to produce this biomaterial. It was found that a decreased initial seeding density, normalized by the area of the construct, produced superior mechanical and biochemical properties. Collagen per wet weight, glycosaminoglycans per wet weight, tensile properties, and compressive properties were all significantly greater in the 5 million cells per construct group as compared to the historical 20 million cells per construct group. Scanning electron microscopy demonstrated that a lower seeding density results in a denser tissue. Additionally, the translational potential of the self-assembling process for tissue engineering was improved though this investigation, as fewer cells may be used in the future. The results of this study underscore the potential for critical seeding densities to be investigated when researching scaffold-free engineered tissues. PMID:25234157

  9. The Drosophila PNG kinase complex regulates the translation of cyclin B.

    Science.gov (United States)

    Vardy, Leah; Orr-Weaver, Terry L

    2007-01-01

    The Drosophila PAN GU (PNG) kinase complex regulates the developmental translation of cyclin B. cyclin B mRNA becomes unmasked during oogenesis independent of PNG activity, but PNG is required for translation from egg activation. We find that although polyadenylation of cyclin B augments translation, it is not essential, and a fully elongated poly(A) is not required for translation to proceed. In fact, changes in poly(A) tail length are not sufficient to account for PNG-mediated control of cyclin B translation and of the early embryonic cell cycles. We present evidence that PNG functions instead as an antagonist of PUMILIO-dependent translational repression. Our data argue that changes in poly(A) tail length are not a universal mechanism governing embryonic cell cycles, and that PNG-mediated derepression of translation is an important alternative mechanism in Drosophila.

  10. Machine Translation Effect on Communication

    DEFF Research Database (Denmark)

    Jensen, Mika Yasuoka; Bjørn, Pernille

    2011-01-01

    Intercultural collaboration facilitated by machine translation has gradually spread in various settings. Still, little is known as for the practice of machine-translation mediated communication. This paper investigates how machine translation affects intercultural communication in practice. Based...... on communication in which multilingual communication system is applied, we identify four communication types and its’ influences on stakeholders’ communication process, especially focusing on establishment and maintenance of common ground. Different from our expectation that quality of machine translation results...

  11. Notch-mediated post-translational control of Ngn3 protein stability regulates pancreatic patterning and cell fate commitment

    DEFF Research Database (Denmark)

    Qu, Xiaoling; Afelik, Solomon; Jensen, Jan Nygaard

    2013-01-01

    of ducts. On one hand, Ngn3 cell-intrinsically activates endocrine target genes; on the other, Ngn3 cell-extrinsically promotes lateral signaling via the Dll1>Notch>Hes1 pathway which substantially limits its ability to sustain endocrine formation. Prior to endocrine commitment, the Ngn3-mediated...... involves transcriptional repression as previously shown, but also incorporates a novel post-translational mechanism. In addition to its ability to promote endocrine fate, we provide evidence of a competing ability of Ngn3 in the patterning of multipotent progenitor cells in turn controlling the formation...

  12. Free tissue transfer in patients with sickle cell disease: Considerations for multi-disciplinary peri-operative management.

    Science.gov (United States)

    Cooper, Lilli; Seth, Rohit; Rhodes, Elizabeth; Alousi, Mohammed; Sivakumar, Bran

    2017-01-01

    Sickle cell disease (SCD) is an increasingly common condition in the UK. The safety of free tissue transfer in these patients is controversial, and no specific guidelines exist. The aim of this paper is to create recommendations for the plastic surgical multidisciplinary team for use in the assessment and management of SCD patients undergoing free tissue transfer and reconstruction. A literature review was performed in PubMed of 'sickle [TiAb] AND plast* adj3 surg*. Sickle cell disease is explained, as is the relative peri-operative risk in different genotypes of SCD. Acute and chronic manifestations of SCD are described by system, for consideration at pre-operative assessment and post-operative review. The evidence surrounding free tissue transfer and SCD is discussed and the outcomes in published cases summarised. An algorithm for peri-operative multi-disciplinary management is outlined and justified. Free tissue transfer theoretically carries a high risk of a crisis, due not only to long anaesthetic times, but the potential requirement for tourniquet use, and the relatively hypoxic state of the transferred tissue. This paper outlines a useful, practical algorithm to optimise the safety of free tissue transfer in patients with SCD. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. Cooling systems of the resting area in free stall dairy barn

    Science.gov (United States)

    Calegari, F.; Calamari, L.; Frazzi, E.

    2016-04-01

    A study during the summer season evaluated the effect of different cooling systems on behavioral and productive responses of Italian Friesian dairy cows kept in an experimental-free stall barn located in the Po Valley in Italy. The study involved 30 lactating dairy cows subdivided into two groups kept in two pens with external hard court paddock in each free stall. The same cooling system was applied in the feeding area in both pens. A different cooling system in the resting area was applied to the two pens: in the pen SW, the resting area was equipped with fans and misters; in the other, there was simple ventilation (SV). Breathing rate, rectal temperature, milk yield, and milk characteristics (fat, protein, and somatic cell count) were measured. Behavioral activities (standing and lying cows in the different areas, as well as the animals in the feed bunk) were recorded. Mild to moderate heat waves during the trial were observed. On average, the breathing rate was numerically greater in SV compared with SW cows (60.2 and 55.8 breath/min, respectively), and mean rectal temperature remained below 39 °C in both groups during the trial (on average 38.7 and 38.8 °C in SV and SW, respectively. During the hotter periods of the trial, the time spent lying indoor in the free stall was greater in SW (11.8 h/day) than SV (10.7 h/day). Conversely, the time spent standing indoor without feeding was greater in SV (4.3 h/day) than SW (3.8 h/day). Milk yield was slightly better maintained during hotter period in SW compared with SV and somatic cell count was also slightly greater in the former. In conclusion, the adoption of the cooling system by means of evaporative cooling also in the resting area reduces the alteration of time budget caused by heat stress.

  14. Detection of atomic scale changes in the free volume void size of three-dimensional colorectal cancer cell culture using positron annihilation lifetime spectroscopy.

    Science.gov (United States)

    Axpe, Eneko; Lopez-Euba, Tamara; Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon

    2014-01-01

    Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro.

  15. High-resolution characterization of sequence signatures due to non-random cleavage of cell-free DNA.

    Science.gov (United States)

    Chandrananda, Dineika; Thorne, Natalie P; Bahlo, Melanie

    2015-06-17

    High-throughput sequencing of cell-free DNA fragments found in human plasma has been used to non-invasively detect fetal aneuploidy, monitor organ transplants and investigate tumor DNA. However, many biological properties of this extracellular genetic material remain unknown. Research that further characterizes circulating DNA could substantially increase its diagnostic value by allowing the application of more sophisticated bioinformatics tools that lead to an improved signal to noise ratio in the sequencing data. In this study, we investigate various features of cell-free DNA in plasma using deep-sequencing data from two pregnant women (>70X, >50X) and compare them with matched cellular DNA. We utilize a descriptive approach to examine how the biological cleavage of cell-free DNA affects different sequence signatures such as fragment lengths, sequence motifs at fragment ends and the distribution of cleavage sites along the genome. We show that the size distributions of these cell-free DNA molecules are dependent on their autosomal and mitochondrial origin as well as the genomic location within chromosomes. DNA mapping to particular microsatellites and alpha repeat elements display unique size signatures. We show how cell-free fragments occur in clusters along the genome, localizing to nucleosomal arrays and are preferentially cleaved at linker regions by correlating the mapping locations of these fragments with ENCODE annotation of chromatin organization. Our work further demonstrates that cell-free autosomal DNA cleavage is sequence dependent. The region spanning up to 10 positions on either side of the DNA cleavage site show a consistent pattern of preference for specific nucleotides. This sequence motif is present in cleavage sites localized to nucleosomal cores and linker regions but is absent in nucleosome-free mitochondrial DNA. These background signals in cell-free DNA sequencing data stem from the non-random biological cleavage of these fragments. This

  16. Derivation of transgene-free human induced pluripotent stem cells from human peripheral T cells in defined culture conditions.

    Directory of Open Access Journals (Sweden)

    Yoshikazu Kishino

    Full Text Available Recently, induced pluripotent stem cells (iPSCs were established as promising cell sources for revolutionary regenerative therapies. The initial culture system used for iPSC generation needed fetal calf serum in the culture medium and mouse embryonic fibroblast as a feeder layer, both of which could possibly transfer unknown exogenous antigens and pathogens into the iPSC population. Therefore, the development of culture systems designed to minimize such potential risks has become increasingly vital for future applications of iPSCs for clinical use. On another front, although donor cell types for generating iPSCs are wide-ranging, T cells have attracted attention as unique cell sources for iPSCs generation because T cell-derived iPSCs (TiPSCs have a unique monoclonal T cell receptor genomic rearrangement that enables their differentiation into antigen-specific T cells, which can be applied to novel immunotherapies. In the present study, we generated transgene-free human TiPSCs using a combination of activated human T cells and Sendai virus under defined culture conditions. These TiPSCs expressed pluripotent markers by quantitative PCR and immunostaining, had a normal karyotype, and were capable of differentiating into cells from all three germ layers. This method of TiPSCs generation is more suitable for the therapeutic application of iPSC technology because it lowers the risks associated with the presence of undefined, animal-derived feeder cells and serum. Therefore this work will lead to establishment of safer iPSCs and extended clinical application.

  17. Adding dimension to cellular mechanotransduction: Advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling.

    Science.gov (United States)

    Friedrich, O; Schneidereit, D; Nikolaev, Y A; Nikolova-Krstevski, V; Schürmann, S; Wirth-Hücking, A; Merten, A L; Fatkin, D; Martinac, B

    2017-11-01

    Hollow organs (e.g. heart) experience pressure-induced mechanical wall stress sensed by molecular mechano-biosensors, including mechanosensitive ion channels, to translate into intracellular signaling. For direct mechanistic studies, stretch devices to apply defined extensions to cells adhered to elastomeric membranes have stimulated mechanotransduction research. However, most engineered systems only exploit unilateral cellular stretch. In addition, it is often taken for granted that stretch applied by hardware translates 1:1 to the cell membrane. However, the latter crucially depends on the tightness of the cell-substrate junction by focal adhesion complexes and is often not calibrated for. In the heart, (increased) hemodynamic volume/pressure load is associated with (increased) multiaxial wall tension, stretching individual cardiomyocytes in multiple directions. To adequately study cellular models of chronic organ distension on a cellular level, biomedical engineering faces challenges to implement multiaxial cell stretch systems that allow observing cell reactions to stretch during live-cell imaging, and to calibrate for hardware-to-cell membrane stretch translation. Here, we review mechanotransduction, cell stretch technologies from uni-to multiaxial designs in cardio-vascular research, and the importance of the stretch substrate-cell membrane junction. We also present new results using our IsoStretcher to demonstrate mechanosensitivity of Piezo1 in HEK293 cells and stretch-induced Ca 2+ entry in 3D-hydrogel-embedded cardiomyocytes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Translation Method and Computer Programme for Assisting the Same

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a translation method comprising the steps of: a translator speaking a translation of a written source text in a target language, an automatic speech recognition system converting the spoken translation into a set of phone and word hypotheses in the target language......, a machine translation system translating the written source text into a set of translations hypotheses in the target language, and an integration module combining the set of spoken word hypotheses and the set of machine translation hypotheses obtaining a text in the target language. Thereby obtaining...

  19. Detection Thresholds for Rotation and Translation Gains in 360° Video-Based Telepresence Systems.

    Science.gov (United States)

    Zhang, Jingxin; Langbehn, Eike; Krupke, Dennis; Katzakis, Nicholas; Steinicke, Frank

    2018-04-01

    Telepresence systems have the potential to overcome limits and distance constraints of the real-world by enabling people to remotely visit and interact with each other. However, current telepresence systems usually lack natural ways of supporting interaction and exploration of remote environments (REs). In particular, single webcams for capturing the RE provide only a limited illusion of spatial presence, and movement control of mobile platforms in today's telepresence systems are often restricted to simple interaction devices. One of the main challenges of telepresence systems is to allow users to explore a RE in an immersive, intuitive and natural way, e.g., by real walking in the user's local environment (LE), and thus controlling motions of the robot platform in the RE. However, the LE in which the user's motions are tracked usually provides a much smaller interaction space than the RE. In this context, redirected walking (RDW) is a very suitable approach to solve this problem. However, so far there is no previous work, which explored if and how RDW can be used in video-based 360° telepresence systems. In this article, we conducted two psychophysical experiments in which we have quantified how much humans can be unknowingly redirected on virtual paths in the RE, which are different from the physical paths that they actually walk in the LE. Experiment 1 introduces a discrimination task between local and remote translations, and in Experiment 2 we analyzed the discrimination between local and remote rotations. In Experiment 1 participants performed straightforward translations in the LE that were mapped to straightforward translations in the RE shown as 360° videos, which were manipulated by different gains. Then, participants had to estimate if the remotely perceived translation was faster or slower than the actual physically performed translation. Similarly, in Experiment 2 participants performed rotations in the LE that were mapped to the virtual rotations

  20. Influence of free fatty acids on glucose uptake in prostate cancer cells

    International Nuclear Information System (INIS)

    Andersen, Kim Francis; Divilov, Vadim; Sevak, Kuntalkumar; Koziorowski, Jacek; Lewis, Jason S.; Pillarsetty, NagaVaraKishore

    2014-01-01

    Introduction: The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-D-glucose (FDG) and acetate. Methods: Human prostate cancer cell lines (PC3, CWR22Rv1, LNCaP, and DU145) were incubated for 2 h and 24 h in glucose-containing (5.5 mM) Dulbecco’s Modified Eagle’s Medium (DMEM) with varying concentrations of the free fatty acid palmitate (0–1.0 mM). Then the cells were incubated with [ 18 F]-FDG (1 μCi/mL; 0.037 MBq/mL) in DMEM either in presence or absence of glucose and in presence of varying concentrations of palmitate for 1 h. Standardized procedures regarding cell counting and measuring for 18 F radioactivity were applied. Cell uptake studies with 14 C-1-acetate under the same conditions were performed on PC3 cells. Results: In glucose containing media there was significantly increased FDG uptake after 24 h incubation in all cell lines, except DU145, when upper physiological levels of palmitate were added. A 4-fold increase of FDG uptake in PC3 cells (15.11% vs. 3.94%/10 6 cells) was observed in media with 1.0 mM palmitate compared to media with no palmitate. The same tendency was observed in PC3 and CWR22Rv1 cells after 2 h incubation. In glucose-free media no significant differences in FDG uptake after 24 h incubation were observed. The significant differences after 2 h incubation all pointed in the direction of increased FDG uptake when palmitate was added. Acetate uptake in PC3 cells was significantly lower when palmitate was added in glucose-free DMEM. No clear tendency when comparing FDG or acetate uptake in the same media at different time points of incubation was observed. Conclusions: Our results indicate a FFA dependent metabolic boost/switch of glucose uptake in PCa, with patterns reflecting the true heterogeneity of the disease

  1. Circuitry linking the global Csr and σE-dependent cell envelope stress response systems.

    Science.gov (United States)

    Yakhnin, Helen; Aichele, Robert; Ades, Sarah E; Romeo, Tony; Babitzke, Paul

    2017-09-18

    CsrA of Escherichia coli is an RNA-binding protein that globally regulates a wide variety of cellular processes and behaviors including carbon metabolism, motility, biofilm formation, and the stringent response. CsrB and CsrC are sRNAs that sequester CsrA, thereby preventing CsrA-mRNA interaction. RpoE (σ E ) is the extracytoplasmic stress response sigma factor of E. coli Previous RNA-seq studies identified rpoE mRNA as a CsrA target. Here we explored the regulation of rpoE by CsrA and found that CsrA represses rpoE translation. Gel mobility shift, footprint and toeprint studies identified three CsrA binding sites in the rpoE leader transcript, one of which overlaps the rpoE Shine-Dalgarno (SD) sequence, while another overlaps the rpoE translation initiation codon. Coupled in vitro transcription-translation experiments showed that CsrA represses rpoE translation by binding to these sites. We further demonstrate that σ E indirectly activates transcription of csrB and csrC , leading to increased sequestration of CsrA such that repression of rpoE by CsrA is reduced. We propose that the Csr system fine-tunes the σ E -dependent cell envelope stress response. We also identified a 51 amino acid coding sequence whose stop codon overlaps the rpoE start codon, and demonstrate that rpoE is translationally coupled with this upstream open reading frame (ORF51). Loss of coupling reduces rpoE translation by more than 50%. Identification of a translationally coupled ORF upstream of rpoE suggests that this previously unannotated protein may participate in the cell envelope stress response. In keeping with existing nomenclature, we name ORF51 as rseD , resulting in an operon arrangement of rseD-rpoE-rseA-rseB-rseC IMPORTANCE CsrA posttranscriptionally represses genes required for bacterial stress responses, including the stringent response, catabolite repression, and the RpoS (σ S )-mediated general stress response. We show that CsrA represses translation of rpoE , encoding the

  2. Peptide deformylase as an antibacterial drug target: assays for detection of its inhibition in Escherichia coli cell homogenates and intact cells.

    Science.gov (United States)

    Apfel, C M; Evers, S; Hubschwerlen, C; Pirson, W; Page, M G; Keck, W

    2001-04-01

    An assay was developed to determine the activity of peptide deformylase (PDF) inhibitors under conditions as close as possible to the physiological situation. The assay principle is the detection of N-terminal [35S]methionine labeling of a protein that contains no internal methionine. If PDF is active, the deformylation of the methionine renders the peptide a substrate for methionine aminopeptidase, resulting in the removal of the N-terminal methionine label. In the presence of a PDF inhibitor, the deformylation is blocked so that the N-formylated peptide is not processed and the label is detected. Using this assay, it is possible to determine the PDF activity under near-physiological conditions in a cell-free transcription-translation system as well as in intact bacterial cells.

  3. ANALYSIS OF TRANSLATION METHODS ON HARPER LEE‟S NOVEL TO KILL A MOCKINGBIRD FROM ENGLISH INTO INDONESIAN

    Directory of Open Access Journals (Sweden)

    Rudi Hartono

    2017-04-01

    Full Text Available The goal of this research was to analyze the translation methods used in translating Harper Lee‘s Novel entitled To Kill a Mockingbird (TKM from English into Indonesian. The research method used was Descriptive Qualitative Research. This study analyzed 47 idioms, 25 metaphors, and 42 personifications. The research instrument used was translation data of idioms, metaphors, and personifications taken from the novel. The data collection technique was collecting and tabulating the data from the novel. The data analysis technique used is Interactive Model (Miles and Huberman, 1984. Based on the research it is shown that the translation methods used in translating the idioms are wordfor- word (21%, literal (36,2%, semantic (2,1%, free (12,8%, and 46,8%, used in translating the metaphors are literal (80%, semantic (4%, and free (16%, while used in translating the personifications are literal (88%, faithful (4,8%, semantic (4,8%, and communicative (2,4%.

  4. xCELLigence system for real-time label-free monitoring of growth and viability of cell lines from hematological malignancies

    Directory of Open Access Journals (Sweden)

    Martinez-Serra J

    2014-06-01

    Full Text Available Jordi Martinez-Serra,1 Antonio Gutierrez,1 Saúl Muñoz-Capó,1 María Navarro-Palou,1 Teresa Ros,1 Juan Carlos Amat,1 Bernardo Lopez,1 Toni F Marcus,1 Laura Fueyo,2 Angela G Suquia,2 Jordi Gines,3 Francisco Rubio,1 Rafael Ramos,4 Joan Besalduch11Department of Hematology, 2Department of Clinical Analysis, 3Department of Pharmacy, 4Department of Pathology, University Hospital Son Espases, Palma de Mallorca, Balearic Islands, SpainAbstract: The xCELLigence system is a new technological approach that allows the real-time cell analysis of adherent tumor cells. To date, xCELLigence has not been able to monitor the growth or cytotoxicity of nonadherent cells derived from hematological malignancies. The basis of its technology relies on the use of culture plates with gold microelectrodes located in their base. We have adapted the methodology described by others to xCELLigence, based on the pre-coating of the cell culture surface with specific substrates, some of which are known to facilitate cell adhesion in the extracellular matrix. Pre-coating of the culture plates with fibronectin, compared to laminin, collagen, or gelatin, significantly induced the adhesion of most of the leukemia/lymphoma cells assayed (Jurkat, L1236, KMH2, and K562. With a fibronectin substrate, nonadherent cells deposited in a monolayer configuration, and consequently, the cell growth and viability were robustly monitored. We further demonstrate the feasibility of xCELLigence for the real-time monitoring of the cytotoxic properties of several antineoplastic agents. In order to validate this technology, the data obtained through real-time cell analysis was compared with that obtained from using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide method. This provides an excellent label-free tool for the screening of drug efficacy in nonadherent cells and discriminates optimal time points for further molecular analysis of cellular events associated with treatments

  5. Establishment and characterization of GSA-1, a human cell line highly susceptible to apoptosis after free-fall

    International Nuclear Information System (INIS)

    Nomura, Jun; Himeda, Jyuni; Chen, Zheng; Sugaya, Shigeru; Takahashi, Shunji; Kita, Kazuko; Ichinose, Masaharu; Suzuki, Nobuo

    2002-01-01

    The induction of apoptosis by microgravity and/or gravity-changing stress is considered to be one of the important causes of cell death, although the molecular mechanisms of the apoptotic event remain unclarified. In this study, we established a cell line,GSA-1, from ethyl methanesulfonate-treated human RSa cells. GSA-1 cells were highly susceptible to apoptosis after a free-fall; 24.4% of these cells underwent apoptosis after free-fall, compared with only 6% of the RSa cells. The apoptosis of GSA-1 cells was augmented by ultraviolet (UV, principally 254-nm wavelength) irradiation before free-fall to a greater extents than those in RSa cells. The molecular mechanisms of apoptosis included p53 and Bax proteins; the expression of nuclear p53 and cytoplasmic Bax in GSA-1 cells increased at 4 h after free-fall irrespective of irradiation. In addition, the rate of removal of cyclobutane pyrimidine dimer (CPD) in UV-irradiated GSA-1 cells was higher in cells exposed to free-fall than in those under the l-G condition. Our results suggested that in GSA-1 cells, free-fall accelerates apoptosis, and that this process is associated with the accumulation of p53 and Bax, as well as CPD removal. Thus, GSA-1 cells should be useful for investigating the mechanism of cellular response, including the induction of apoptosis under gravity-changing stress. (author)

  6. Serum-free microcarrier based production of replication deficient Influenza vaccine candidate virus lacking NS1 using Vero cells

    Directory of Open Access Journals (Sweden)

    Yan Mylene L

    2011-08-01

    Full Text Available Abstract Background Influenza virus is a major health concern that has huge impacts on the human society, and vaccination remains as one of the most effective ways to mitigate this disease. Comparing the two types of commercially available Influenza vaccine, the live attenuated virus vaccine is more cross-reactive and easier to administer than the traditional inactivated vaccines. One promising live attenuated Influenza vaccine that has completed Phase I clinical trial is deltaFLU, a deletion mutant lacking the viral Nonstructural Protein 1 (NS1 gene. As a consequence of this gene deletion, this mutant virus can only propagate effectively in cells with a deficient interferon-mediated antiviral response. To demonstrate the manufacturability of this vaccine candidate, a batch bioreactor production process using adherent Vero cells on microcarriers in commercially available animal-component free, serum-free media is described. Results Five commercially available animal-component free, serum-free media (SFM were evaluated for growth of Vero cells in agitated Cytodex 1 spinner flask microcarrier cultures. EX-CELL Vero SFM achieved the highest cell concentration of 2.6 × 10^6 cells/ml, whereas other SFM achieved about 1.2 × 10^6 cells/ml. Time points for infection between the late exponential and stationary phases of cell growth had no significant effect in the final virus titres. A virus yield of 7.6 Log10 TCID50/ml was achieved using trypsin concentration of 10 μg/ml and MOI of 0.001. The Influenza vaccine production process was scaled up to a 3 liter controlled stirred tank bioreactor to achieve a cell density of 2.7 × 10^6 cells/ml and virus titre of 8.3 Log10 TCID50/ml. Finally, the bioreactor system was tested for the production of the corresponding wild type H1N1 Influenza virus, which is conventionally used in the production of inactivated vaccine. High virus titres of up to 10 Log10 TCID50/ml were achieved. Conclusions We describe for the

  7. Efficacy of a potential trivalent vaccine based on Hc fragments of botulinum toxins A, B, and E produced in a cell-free expression system.

    Science.gov (United States)

    Zichel, R; Mimran, A; Keren, A; Barnea, A; Steinberger-Levy, I; Marcus, D; Turgeman, A; Reuveny, S

    2010-05-01

    Botulinum toxins produced by the anaerobic bacterium Clostridium botulinum are the most potent biological toxins in nature. Traditionally, people at risk are immunized with a formaldehyde-inactivated toxin complex. Second generation vaccines are based on the recombinant carboxy-terminal heavy-chain (Hc) fragment of the neurotoxin. However, the materialization of this approach is challenging, mainly due to the high AT content of clostridial genes. Herein, we present an alternative strategy in which the native genes encoding Hc proteins of botulinum toxins A, B, and E were used to express the recombinant Hc fragments in a cell-free expression system. We used the unique property of this open system to introduce different combinations of chaperone systems, protein disulfide isomerase (PDI), and reducing/oxidizing environments directly to the expression reaction. Optimized expression conditions led to increased production of soluble Hc protein, which was successfully scaled up using a continuous exchange (CE) cell-free system. Hc proteins were produced at a concentration of more than 1 mg/ml and purified by one-step Ni(+) affinity chromatography. Mice immunized with three injections containing 5 microg of any of the in vitro-expressed, alum-absorbed, Hc vaccines generated a serum enzyme-linked immunosorbent assay (ELISA) titer of 10(5) against the native toxin complex, which enabled protection against a high-dose toxin challenge (10(3) to 10(6) mouse 50% lethal dose [MsLD(50)]). Finally, immunization with a trivalent HcA, HcB, and HcE vaccine protected mice against the corresponding trivalent 10(5) MsLD(50) toxin challenge. Our results together with the latest developments in scalability of the in vitro protein expression systems offer alternative routes for the preparation of botulinum vaccine.

  8. The B-domain of factor VIII reduces cell membrane attachement to host cells in serum free conditions

    DEFF Research Database (Denmark)

    Kolind, Mille Petersen; Nørby, Peder Lisby; Flintegaard, Thomas Veje

    2010-01-01

    engineered extensively throughout the years to increase the low production yields that initially were obtained from mammalian cell cultures. The scope of this work was to investigate the interaction of rFVIII with the cell membrane surface of the producing cells in serum free medium. We wondered whether...... binding of rFVIII to the cell membrane could be a factor diminishing the production yield. We studied the contribution of the rFVIII B-domain to membrane attachment by transfecting several constructs containing increasing lengths of the B-domain into cells under serum free conditions. We found that 90......% of rFVIII is attached to the cell membrane of the producing cell when the rFVIII variant contains a short B-domain (21 aa). By increasing the length of the B-domain the membrane attached fraction can be reduced to 50% of the total expressed rFVIII. Further, our studies show that the N...

  9. Concise Review: Bioprinting of Stem Cells for Transplantable Tissue Fabrication.

    Science.gov (United States)

    Leberfinger, Ashley N; Ravnic, Dino J; Dhawan, Aman; Ozbolat, Ibrahim T

    2017-10-01

    Bioprinting is a quickly progressing technology, which holds the potential to generate replacement tissues and organs. Stem cells offer several advantages over differentiated cells for use as starting materials, including the potential for autologous tissue and differentiation into multiple cell lines. The three most commonly used stem cells are embryonic, induced pluripotent, and adult stem cells. Cells are combined with various natural and synthetic materials to form bioinks, which are used to fabricate scaffold-based or scaffold-free constructs. Computer aided design technology is combined with various bioprinting modalities including droplet-, extrusion-, or laser-based bioprinting to create tissue constructs. Each bioink and modality has its own advantages and disadvantages. Various materials and techniques are combined to maximize the benefits. Researchers have been successful in bioprinting cartilage, bone, cardiac, nervous, liver, and vascular tissues. However, a major limitation to clinical translation is building large-scale vascularized constructs. Many challenges must be overcome before this technology is used routinely in a clinical setting. Stem Cells Translational Medicine 2017;6:1940-1948. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  10. Cap-independent translation mechanism of red clover necrotic mosaic virus RNA2 differs from that of RNA1 and is linked to RNA replication.

    Science.gov (United States)

    Mizumoto, Hiroyuki; Iwakawa, Hiro-Oki; Kaido, Masanori; Mise, Kazuyuki; Okuno, Tetsuro

    2006-04-01

    The genome of Red clover necrotic mosaic virus (RCNMV) in the genus Dianthovirus is divided into two RNA molecules of RNA1 and RNA2, which have no cap structure at the 5' end and no poly(A) tail at the 3' end. The 3' untranslated region (3' UTR) of RCNMV RNA1 contains an essential RNA element (3'TE-DR1), which is required for cap-independent translation. In this study, we investigated a cap-independent translational mechanism of RNA2 using a firefly luciferase (Luc) gene expression assay system in cowpea protoplasts and a cell-free lysate (BYL) prepared from evacuolated tobacco BY2 protoplasts. We were unable to detect cis-acting RNA sequences in RNA2 that can replace the function of a cap structure, such as the 3'TE-DR1 of RNA1. However, the uncapped reporter RNA2, RNA2-Luc, in which the Luc open reading frame (ORF) was inserted between the 5' UTR and the movement protein ORF, was effectively translated in the presence of p27 and p88 in protoplasts in which RNA2-Luc was replicated. Time course experiments in protoplasts showed that the translational activity of RNA2-Luc did not reflect the amount of RNA2. Mutations in cis-acting RNA replication elements of RNA2 abolished the cap-independent translational activity of RNA2-Luc, suggesting that the translational activity of RNA2-Luc is coupled to RNA replication. Our results show that the translational mechanism differs between two segmented genomic RNAs of RCNMV. We present a model in which only RNA2 that is generated de novo through the viral RNA replication machinery functions as mRNA for translation.

  11. [Plasma cell dyscrasias and renal damage].

    Science.gov (United States)

    Pasquali, Sonia; Iannuzzella, Francesco; Somenzi, Danio; Mattei, Silvia; Bovino, Achiropita; Corradini, Mattia

    2012-01-01

    Kidney damage caused by immunoglobulin free light chains in the setting of plasma cell dyscrasias is common and may involve all renal compartments, from the glomerulus to the tubulointerstitium, in a wide variety of histomorphological and clinical patterns. The knowledge of how free light chains can promote kidney injury is growing: they can cause functional changes, be processed and deposited, mediate inflammation, apoptosis and fibrosis, and obstruct nephrons. Each clone of the free light chain is unique and its primary structure and post-translation modification can determine the type of renal disease. Measurement of serum free light chain concentrations and calculation of the serum kappa/lambda ratio, together with renal biopsy, represent essential diagnostic tools. An early and correct diagnosis of renal lesions due to plasma cell dyscrasias will allow early initiation of disease-specific treatment strategies. The treatment of free light chain nephropathies is evolving and knowledge of the pathways that promote renal damage should lead to further therapeutic developments.

  12. Current Collecting Grids for ITO-Free Solar Cells

    DEFF Research Database (Denmark)

    Galagan, Yulia; Zimmermann, Birger; Coenen, Erica W. C.

    2012-01-01

    Indium-tin-oxide (ITO) free polymer solar cells prepared by ink jet printing a composite front electrode comprising silver grid lines and a semitransparent PEDOT:PSS conductor are demonstrated. The effect of grid line density is explored for a large series of devices and a careful modeling study...

  13. Translation of Lexical Stylistic Devices from English to Chinese in Com-mercial Advertisements

    Institute of Scientific and Technical Information of China (English)

    林鑫

    2014-01-01

    With rapid development of China, a growing number of foreign products are entering the Chinese market. An excel-lent translation of a product’s advertisement from English to Chinese undoubtedly contributes to its successful promotion in the Chinese market. Although the translation practice contains multiple difficulties, the translation of lexical stylistic devices is a big challenge for translators. It is not simply because lexical stylistic devices are diverse and various in form, but also because most de-vices involve linguistic and cultural differences between English and Chinese. This thesis analyzed a number of current English to Chinese translations of the devices in commercial advertisements, which mainly come from two translation scholars ’works and official websites of world-known brands. By analyzing the selected data, seven translation strategies are found to be the major translation strategies in this respect, namely literal translation, free translation, flexible translation, extended translation, adaptation translation, compensation translation and amplification translation strategies. Moreover, a number of linguistic and cultural issues which need to be considered by translators are also illustrated here.

  14. “De interpretatione recta...”: Early Modern Theories of Translation

    Directory of Open Access Journals (Sweden)

    Zaharia Oana-Alis

    2014-12-01

    Full Text Available Translation has been essential to the development of languages and cultures throughout the centuries, particularly in the early modern period when it became a cornerstone of the process of transition from Latin to vernacular productions, in such countries as France, Italy, England and Spain. This process was accompanied by a growing interest in defining the rules and features of the practice of translation. The present article aims to examine the principles that underlay the highly intertextual early modern translation theory by considering its classical sources and development. It focuses on subjects that were constantly reiterated in any discussion about translation: the debate concerning the best methods of translation, the sense-for-sense/ word-for-word dichotomy - a topos that can be traced to the discourse on translation initiated by Cicero and Horace and was further developed by the Church fathers, notably St. Jerome, and eventually inherited by both medieval and Renaissance translators. Furthermore, it looks at the differences and continuities that characterise the medieval and Renaissance discourses on translation with a focus on the transition from the medieval, free manner of translation to the humanist, philological one.

  15. Influence of free fatty acids on glucose uptake in prostate cancer cells

    DEFF Research Database (Denmark)

    Andersen, Kim Francis; Divilov, Vadim; Sevak, Kuntalkumar

    2014-01-01

    The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-d-glucose (FDG) and acetate.......The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-d-glucose (FDG) and acetate....

  16. Translational control of aberrant stress responses as a hallmark of cancer.

    Science.gov (United States)

    El-Naggar, Amal M; Sorensen, Poul H

    2018-04-01

    Altered mRNA translational control is emerging as a critical factor in cancer development and progression. Targeting specific elements of the translational machinery, such as mTORC1 or eIF4E, is emerging as a new strategy for innovative cancer therapy. While translation of most mRNAs takes place through cap-dependent mechanisms, a sub-population of cellular mRNA species, particularly stress-inducible mRNAs with highly structured 5'-UTR regions, are primarily translated through cap-independent mechanisms. Intriguingly, many of these mRNAs encode proteins that are involved in tumour cell adaptation to microenvironmental stress, and thus linked to aggressive behaviour including tumour invasion and metastasis. This necessitates a rigorous search for links between microenvironmental stress and aggressive tumour phenotypes. Under stress, cells block global protein synthesis to preserve energy while maintaining selective synthesis of proteins that support cell survival. One highly conserved mechanism to regulate protein synthesis under cell stress is to sequester mRNAs into cytosolic aggregates called stress granules (SGs), where their translation is silenced. SGs confer survival advantages and chemotherapeutic resistance to tumour cells under stress. Recently, it has been shown that genetically blocking SG formation dramatically reduces tumour invasive and metastatic capacity in vivo. Therefore, targeting SG formation might represent a potential treatment strategy to block cancer metastasis. Here, we present the critical link between selective mRNA translation, stress adaptation, SGs, and tumour progression. Further, we also explain how deciphering mechanisms of selective mRNA translation occurs under cell stress holds great promise for the identification of new targets in the treatment of cancer. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland

  17. Mapping Translation Technology Research in Translation Studies

    DEFF Research Database (Denmark)

    Schjoldager, Anne; Christensen, Tina Paulsen; Flanagan, Marian

    2017-01-01

    section aims to improve this situation by presenting new and innovative research papers that reflect on recent technological advances and their impact on the translation profession and translators from a diversity of perspectives and using a variety of methods. In Section 2, we present translation......Due to the growing uptake of translation technology in the language industry and its documented impact on the translation profession, translation students and scholars need in-depth and empirically founded knowledge of the nature and influences of translation technology (e.g. Christensen....../Schjoldager 2010, 2011; Christensen 2011). Unfortunately, the increasing professional use of translation technology has not been mirrored within translation studies (TS) by a similar increase in research projects on translation technology (Munday 2009: 15; O’Hagan 2013; Doherty 2016: 952). The current thematic...

  18. PC-assisted translation of photogrammetric papers

    Science.gov (United States)

    Güthner, Karlheinz; Peipe, Jürgen

    A PC-based system for machine translation of photogrammetric papers from the English into the German language and vice versa is described. The computer-assisted translating process is not intended to create a perfect interpretation of a text but to produce a rough rendering of the content of a paper. Starting with the original text, a continuous data flow is effected into the translated version by means of hardware (scanner, personal computer, printer) and software (OCR, translation, word processing, DTP). An essential component of the system is a photogrammetric microdictionary which is being established at present. It is based on several sources, including e.g. the ISPRS Multilingual Dictionary.

  19. Expression of the lysostaphin gene of Staphylococcus simulans in a eukaryotic system.

    OpenAIRE

    Williamson, C M; Bramley, A J; Lax, A J

    1994-01-01

    The lysostaphin gene of Staphylococcus simulans was cloned into Escherichia coli. The 5' end of the gene was modified to include a eukaryotic start codon, the Kozak expression start site consensus sequence, and an enzyme site to facilitate manipulation of the gene. Transcription of the modified gene in vitro yielded an RNA transcript which, when added to a rabbit reticulocyte cell-free translation system, directed the synthesis of several products. The largest product, migrating at approximat...

  20. Relating Structure to Efficiency in Surfactant-Free Polymer/Fullerene Nanoparticle-Based Organic Solar Cells.

    Science.gov (United States)

    Gärtner, Stefan; Clulow, Andrew J; Howard, Ian A; Gilbert, Elliot P; Burn, Paul L; Gentle, Ian R; Colsmann, Alexander

    2017-12-13

    Nanoparticle dispersions open up an ecofriendly route toward printable organic solar cells. They can be formed from a variety of organic semiconductors by using miniemulsions that employ surfactants to stabilize the nanoparticles in dispersion and to prevent aggregation. However, whenever surfactant-based nanoparticle dispersions have been used to fabricate solar cells, the reported performances remain moderate. In contrast, solar cells from nanoparticle dispersions formed by precipitation (without surfactants) can exhibit power conversion efficiencies close to those of state-of-the-art solar cells processed from blend solutions using chlorinated solvents. In this work, we use small-angle neutron scattering measurements and transient absorption spectroscopy to investigate why surfactant-free nanoparticles give rise to efficient organic solar cells. We show that surfactant-free nanoparticles comprise a uniform distribution of small semiconductor domains, similar to that of bulk-heterojunction films formed using traditional solvent processing. This observation differs from surfactant-based miniemulsion nanoparticles that typically exhibit core-shell structures. Hence, the surfactant-free nanoparticles already possess the optimum morphology for efficient energy conversion before they are assembled into the photoactive layer of a solar cell. This structural property underpins the superior performance of the solar cells containing surfactant-free nanoparticles and is an important design criterion for future nanoparticle inks.

  1. Isolation of cell-free bacterial inclusion bodies.

    Science.gov (United States)

    Rodríguez-Carmona, Escarlata; Cano-Garrido, Olivia; Seras-Franzoso, Joaquin; Villaverde, Antonio; García-Fruitós, Elena

    2010-09-17

    Bacterial inclusion bodies are submicron protein clusters usually found in recombinant bacteria that have been traditionally considered as undesirable products from protein production processes. However, being fully biocompatible, they have been recently characterized as nanoparticulate inert materials useful as scaffolds for tissue engineering, with potentially wider applicability in biomedicine and material sciences. Current protocols for inclusion body isolation from Escherichia coli usually offer between 95 to 99% of protein recovery, what in practical terms, might imply extensive bacterial cell contamination, not compatible with the use of inclusion bodies in biological interfaces. Using an appropriate combination of chemical and mechanical cell disruption methods we have established a convenient procedure for the recovery of bacterial inclusion bodies with undetectable levels of viable cell contamination, below 10⁻¹ cfu/ml, keeping the particulate organization of these aggregates regarding size and protein folding features. The application of the developed protocol allows obtaining bacterial free inclusion bodies suitable for use in mammalian cell cultures and other biological interfaces.

  2. Regulation of mRNA Translation Is a Novel Mechanism for Phthalate Toxicity.

    Directory of Open Access Journals (Sweden)

    Jun Ling

    Full Text Available Phthalates are a group of plasticizers that are widely used in many consumer products and medical devices, thus generating a huge burden to human health. Phthalates have been known to cause a number of developmental and reproductive disorders functioning as endocrine modulators. They are also involved in carcinogenesis with mechanisms less understood. To further understand the molecular mechanisms of phthalate toxicity, in this study we reported a new effect of phthalates on mRNA translation/protein synthesis, a key regulatory step of gene expression. Butyl benzyl phthalate (BBP was found to directly inhibit mRNA translation in vitro but showed a complicated pattern of affecting mRNA translation in cells. In human kidney embryonic cell (HEK-293T, BBP increased cap-dependent mRNA translation at lower concentrations but showed inhibitory effect at higher concentrations. Cap-independent translation was not affected. On the other hand, mono (2-ethylhexyl phthalate (MEHP as a major metabolite of another important phthalate di (2-ethylhexyl phthalate (DEHP inhibited both can-dependent and -independent mRNA translation in vivo. In contrast, BBP and MEHP exhibited an overall promoting effect on mRNA translation in cancer cells. Mechanistic studies identified that the level and phosphorylation of eIF4E-BP (eIF4E binding protein and the amount of eIF4GI in eIF4F complex were altered in accordance with the effect of BBP on translation. BBP was also identified to directly bind to eIF4E, providing a further mechanism underlying the regulation of mRNA by phthalate. At the cellular level BBP inhibited normal cell growth but slightly promoted cancer cells (HT29 growth. Overall, this study provides the first evidence that phthalates can directly regulate mRNA translation as a novel mechanism to mediate their biological toxicities.

  3. Translation and adaptation procedures for music therapy outcome instruments

    DEFF Research Database (Denmark)

    Ridder, Hanne Mette Ochsner; McDermott, Orii; Orrell, Martin

    2017-01-01

    With increasing occurrence of international multicentre studies, there is a need for music therapy outcome measures to become more widely available across countries. For countries where English is not the first language, translation and cross-cultural adaptation of outcome measures may be necessa...... procedural steps for the translation and adaptation of music therapy outcome instruments. OBS: 50 free online copies to share: http://www.tandfonline.com/eprint/d8TPZbkVMjzgKg7DjcmT/full......With increasing occurrence of international multicentre studies, there is a need for music therapy outcome measures to become more widely available across countries. For countries where English is not the first language, translation and cross-cultural adaptation of outcome measures may be necessary....... A literature review identified a knowledge gap regarding translation procedures of outcome measures used in music therapy research. However, a large body of translation guidelines is available in other health professions. We used the guidelines from these related fields to identify guidelines and outline...

  4. Gene- and cell-based bio-artificial pacemaker: what basic and translational lessons have we learned?

    Science.gov (United States)

    Li, R A

    2012-06-01

    Normal rhythms originate in the sino-atrial node, a specialized cardiac tissue consisting of only a few thousands of nodal pacemaker cells. Malfunction of pacemaker cells due to diseases or aging leads to rhythm generation disorders (for example, bradycardias and sick-sinus syndrome (SSS)), which often necessitate the implantation of electronic pacemakers. Although effective, electronic devices are associated with such shortcomings as limited battery life, permanent implantation of leads, lead dislodging, the lack of autonomic responses and so on. Here, various gene- and cell-based approaches, with a particular emphasis placed on the use of pluripotent stem cells and the hyperpolarization-activated cyclic nucleotide-gated-encoded pacemaker gene family, that have been pursued in the past decade to reconstruct bio-artificial pacemakers as alternatives will be discussed in relation to the basic biological insights and translational regenerative potential.

  5. Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 translation.

    Science.gov (United States)

    Chennupati, Vijaykumar; Veiga, Diogo Ft; Maslowski, Kendle M; Andina, Nicola; Tardivel, Aubry; Yu, Eric Chi-Wang; Stilinovic, Martina; Simillion, Cedric; Duchosal, Michel A; Quadroni, Manfredo; Roberts, Irene; Sankaran, Vijay G; MacDonald, H Robson; Fasel, Nicolas; Angelillo-Scherrer, Anne; Schneider, Pascal; Hoang, Trang; Allam, Ramanjaneyulu

    2018-04-02

    Ribosomal proteins (RP) regulate specific gene expression by selectively translating subsets of mRNAs. Indeed, in Diamond-Blackfan anemia and 5q- syndrome, mutations in RP genes lead to a specific defect in erythroid gene translation and cause anemia. Little is known about the molecular mechanisms of selective mRNA translation and involvement of ribosomal-associated factors in this process. Ribonuclease inhibitor 1 (RNH1) is a ubiquitously expressed protein that binds to and inhibits pancreatic-type ribonucleases. Here, we report that RNH1 binds to ribosomes and regulates erythropoiesis by controlling translation of the erythroid transcription factor GATA1. Rnh1-deficient mice die between embryonic days E8.5 and E10 due to impaired production of mature erythroid cells from progenitor cells. In Rnh1-deficient embryos, mRNA levels of Gata1 are normal, but GATA1 protein levels are decreased. At the molecular level, we found that RNH1 binds to the 40S subunit of ribosomes and facilitates polysome formation on Gata1 mRNA to confer transcript-specific translation. Further, RNH1 knockdown in human CD34+ progenitor cells decreased erythroid differentiation without affecting myelopoiesis. Our results reveal an unsuspected role for RNH1 in the control of GATA1 mRNA translation and erythropoiesis.

  6. Dutch-Flemish translation of nine pediatric item banks from the Patient-Reported Outcomes Measurement Information System (PROMIS)®.

    Science.gov (United States)

    Haverman, Lotte; Grootenhuis, Martha A; Raat, Hein; van Rossum, Marion A J; van Dulmen-den Broeder, Eline; Hoppenbrouwers, Karel; Correia, Helena; Cella, David; Roorda, Leo D; Terwee, Caroline B

    2016-03-01

    The Patient-Reported Outcomes Measurement Information System (PROMIS(®)) is a new, state-of-the-art assessment system for measuring patient-reported health and well-being of adults and children. It has the potential to be more valid, reliable, and responsive than existing PROMs. The items banks are designed to be self-reported and completed by children aged 8-18 years. The PROMIS items can be administered in short forms or through computerized adaptive testing. This paper describes the translation and cultural adaption of nine PROMIS item banks (151 items) for children in Dutch-Flemish. The translation was performed by FACITtrans using standardized PROMIS methodology and approved by the PROMIS Statistical Center. The translation included four forward translations, two back-translations, three independent reviews (at least two Dutch, one Flemish), and pretesting in 24 children from the Netherlands and Flanders. For some items, it was necessary to have separate translations for Dutch and Flemish: physical function-mobility (three items), anger (one item), pain interference (two items), and asthma impact (one item). Challenges faced in the translation process included scarcity or overabundance of possible translations, unclear item descriptions, constructs broader/smaller in the target language, difficulties in rank ordering items, differences in unit of measurement, irrelevant items, or differences in performance of activities. By addressing these challenges, acceptable translations were obtained for all items. The Dutch-Flemish PROMIS items are linguistically equivalent to the original USA version. Short forms are now available for use, and entire item banks are ready for cross-cultural validation in the Netherlands and Flanders.

  7. TRANSLATING THE NEW WORLD(S: A SEMIOTIC APPROACH TO PARROT AND OLIVIER IN AMERICA BY PETER CAREY

    Directory of Open Access Journals (Sweden)

    Luigi Gussago

    2012-12-01

    Full Text Available In his latest novel Parrot and Olivier in America (2009 the Australian-born novelist Peter Carey explores the way three seemingly incompatible civilisations translate the New World. On the one hand Olivier, the snobbish French aristocrat, struggles to understand the concept of democracy in America because he wants to translate it ‘literally’ into his own system (of behaviour, social convenience, pragmatics, etc.. On the other hand, Parrot, the British-Australian pícaro and Olivier’s “clown and secretaire”, enjoys rewriting his master’s awful calligraphy, changing some of the Frenchman’s views on America according to his whim, and deliberately acting as a bad translator. Thirdly, the American free citizen, the “Man of the Future” (p. 187: s/he uses language creatively, coining a personal idiolect as evidence of belonging to a nation at its début, where “greed might tear the land apart but still the low could climb so high” (p. 251. This paper aims at illustrating how these three entities translate other systems of values, or their loss of values, into systems with which they can identify. The theoretical framework of my study proceeds from the contributions of Yuri Lotman, the main representative of the Tartu-Moscow school of semiotics.

  8. Who translates the translation? (Retraduire les héros marginaux d'Alan Moore

    Directory of Open Access Journals (Sweden)

    Alice RAY

    2016-11-01

    Full Text Available The retranslation phenomenon is essential to the translation process. It is considered as the logical progression of this process which allows the translated literary work to regenerate in a restless cultural and language space. To a lesser extent, we can observe the same phenomenon in the translation of comics. However, this specific translation requires other competencies and a translating approach somehow different from the ones required to translate fiction literature, especially because of the presence of the visual system of drawings which is strongly bound to its own culture and the endless mutations it goes through. The comic book Watchmen (Les Gardiens, in the first French translation by Alan Moore and Dave Gibbons, is known in the whole world as the comic which had not only remodeled the vision we had of super-heroes, but had also given the comic books another voice. Watchmen was published between 1986 and 1987 in the United States and translated in French from 1987 to 1988. Fifteen years after this first translation by Jean-Patrick Manchette, Panini publishing decided to retranslate this famous comic in 2007. However, if the reviews of the first translation were laudatory, the retranslation did not enjoy a great reception from the readers or from the reviewers. This paper proposes a comparative analysis of both these translations and of their original version as well as an experiment on the readers, comic books readers or not, in order to establish why the first translation was a success and the retranslation a failure. Thus, we could withdraw the elements which allow us to understand the reception of comic translation.

  9. Regulation of protein translation initiation in response to ionizing radiation

    International Nuclear Information System (INIS)

    Trivigno, Donatella; Bornes, Laura; Huber, Stephan M; Rudner, Justine

    2013-01-01

    Proliferating tumor cells require continuous protein synthesis. De novo synthesis of most proteins is regulated through cap-dependent translation. Cellular stress such as ionizing radiation (IR) blocks cap-dependent translation resulting in shut-down of global protein translation which saves resources and energy needed for the stress response. At the same time, levels of proteins required for stress response are maintained or even increased. The study aimed to analyze the regulation of signaling pathways controlling protein translation in response to IR and the impact on Mcl-1, an anti-apoptotic and radioprotective protein, which levels rapidly decline upon IR. Protein levels and processing were analyzed by Western blot. The assembly of the translational pre-initiation complex was examined by Immunoprecipitation and pull-down experiments with 7-methyl GTP agarose. To analyze IR-induced cell death, dissipation of the mitochondrial membrane potential and DNA fragmentation were determined by flow cytometry. Protein levels of the different initiation factors were down-regulated using RNA interference approach. IR induced caspase-dependent cleavage of the translational initiation factors eIF4G1, eIF3A, and eIF4B resulting in disassembly of the cap-dependent initiation complex. In addition, DAP5-dependent initiation complex that regulates IRES-dependent translation was disassembled in response to IR. Moreover, IR resulted in dephosphorylation of 4EBP1, an inhibitor of cap-dependent translation upstream of caspase activation. However, knock-down of eIF4G1, eIF4B, DAP5, or 4EBP1 did not affect IR-induced decline of the anti-apoptotic protein Mcl-1. Our data shows that cap-dependent translation is regulated at several levels in response to IR. However, the experiments indicate that IR-induced Mcl-1 decline is not a consequence of translational inhibition in Jurkat cells

  10. Regulation of protein translation initiation in response to ionizing radiation

    Directory of Open Access Journals (Sweden)

    Trivigno Donatella

    2013-02-01

    Full Text Available Abstract Background Proliferating tumor cells require continuous protein synthesis. De novo synthesis of most proteins is regulated through cap-dependent translation. Cellular stress such as ionizing radiation (IR blocks cap-dependent translation resulting in shut-down of global protein translation which saves resources and energy needed for the stress response. At the same time, levels of proteins required for stress response are maintained or even increased. The study aimed to analyze the regulation of signaling pathways controlling protein translation in response to IR and the impact on Mcl-1, an anti-apoptotic and radioprotective protein, which levels rapidly decline upon IR. Methods Protein levels and processing were analyzed by Western blot. The assembly of the translational pre-initiation complex was examined by Immunoprecipitation and pull-down experiments with 7-methyl GTP agarose. To analyze IR-induced cell death, dissipation of the mitochondrial membrane potential and DNA fragmentation were determined by flow cytometry. Protein levels of the different initiation factors were down-regulated using RNA interference approach. Results IR induced caspase-dependent cleavage of the translational initiation factors eIF4G1, eIF3A, and eIF4B resulting in disassembly of the cap-dependent initiation complex. In addition, DAP5-dependent initiation complex that regulates IRES-dependent translation was disassembled in response to IR. Moreover, IR resulted in dephosphorylation of 4EBP1, an inhibitor of cap-dependent translation upstream of caspase activation. However, knock-down of eIF4G1, eIF4B, DAP5, or 4EBP1 did not affect IR-induced decline of the anti-apoptotic protein Mcl-1. Conclusion Our data shows that cap-dependent translation is regulated at several levels in response to IR. However, the experiments indicate that IR-induced Mcl-1 decline is not a consequence of translational inhibition in Jurkat cells.

  11. Lost in Translation? Ethical Challenges of Implementing a New Diagnostic Procedure.

    Science.gov (United States)

    Schmitz, Dagmar

    2016-01-01

    Since cell-free DNA (cfDNA) fragments of placental origin can be isolated and analyzed from the blood of pregnant women. Applications of this finding have been developed and implemented in clinical care pathways worldwide at an unprecedented pace and manner. Implementation patterns, however, exhibit considerable insufficiencies. Different "motors" of implementation processes, like the market or various regulatory institutions, can be identified at a national level. Each "motor" entails characteristic ethical challenges which are exemplified impressively by a rising number of case reports.Empirical data demonstrate that there are significant "losses" in the respective translational processes, especially when the results from clinical research are to be translated into the clinical reality of NIPT (the so called "second roadblock" (T2)). These "losses" are perceived in the fields of knowledge transfer, professional standardization and ethical debate. Recommendations of professional organizations often fail to reach general practitioners. Blindsided by the new diagnostic procedure in their clinical practice, professionals in prenatal care express their insecurities with regard to its handling. Ethical debate appears to adhere to pre-existing (and partly already proven to be insufficient) normative frameworks for prenatal testing. While all of these deficits are typical for the implementation processes of many new molecular diagnostic procedures, especially in NIPT, they show a high variability between different nations.A critical assessment of the preferred strategy of implementation against the background of already existing national ethical frameworks is indispensable, if potential adverse effects are to be diminished. The described translational losses seem to be significantly reducible by granting the translational process in roadblock T2 more time.

  12. Orthogonal translation components for the in vivo incorporation of unnatural amino acids

    Science.gov (United States)

    Schultz, Peter G.; Xie, Jianming; Zeng, Huaqiang

    2012-07-10

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate unnatural amino acids into proteins produced in eubacterial host cells such as E. coli, or in a eukaryotic host such as a yeast cell. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing unnatural amino acids, and translation systems.

  13. Sapovirus translation requires an interaction between VPg and the cap binding protein eIF4E.

    Science.gov (United States)

    Hosmillo, Myra; Chaudhry, Yasmin; Kim, Deok-Song; Goodfellow, Ian; Cho, Kyoung-Oh

    2014-11-01

    Sapoviruses of the Caliciviridae family of small RNA viruses are emerging pathogens that cause gastroenteritis in humans and animals. Molecular studies on human sapovirus have been hampered due to the lack of a cell culture system. In contrast, porcine sapovirus (PSaV) can be grown in cell culture, making it a suitable model for understanding the infectious cycle of sapoviruses and the related enteric caliciviruses. Caliciviruses are known to use a novel mechanism of protein synthesis that relies on the interaction of cellular translation initiation factors with the virus genome-encoded viral protein genome (VPg) protein, which is covalently linked to the 5' end of the viral genome. Using PSaV as a representative member of the Sapovirus genus, we characterized the role of the viral VPg protein in sapovirus translation. As observed for other caliciviruses, the PSaV genome was found to be covalently linked to VPg, and this linkage was required for the translation and the infectivity of viral RNA. The PSaV VPg protein was associated with the 4F subunit of the eukaryotic translation initiation factor (eIF4F) complex in infected cells and bound directly to the eIF4E protein. As has been previously demonstrated for feline calicivirus, a member of the Vesivirus genus, PSaV translation required eIF4E and the interaction between eIF4E and eIF4G. Overall, our study provides new insights into the novel mechanism of sapovirus translation, suggesting that sapovirus VPg can hijack the cellular translation initiation mechanism by recruiting the eIF4F complex through a direct eIF4E interaction. Sapoviruses, which are members of the Caliciviridae family, are one of the causative agents of viral gastroenteritis in humans. However, human sapovirus remains noncultivable in cell culture, hampering the ability to characterize the virus infectious cycle. Here, we show that the VPg protein from porcine sapovirus, the only cultivatable sapovirus, is essential for viral translation and

  14. Extracting histones for the specific purpose of label-free MS.

    Science.gov (United States)

    Govaert, Elisabeth; Van Steendam, Katleen; Scheerlinck, Ellen; Vossaert, Liesbeth; Meert, Paulien; Stella, Martina; Willems, Sander; De Clerck, Laura; Dhaenens, Maarten; Deforce, Dieter

    2016-12-01

    Extracting histones from cells is the first step in studies that aim to characterize histones and their post-translational modifications (hPTMs) with MS. In the last decade, label-free quantification is more frequently being used for MS-based histone characterization. However, many histone extraction protocols were not specifically designed for label-free MS. While label-free quantification has its advantages, it is also very susceptible to technical variation. Here, we adjust an established histone extraction protocol according to general label-free MS guidelines with a specific focus on minimizing sample handling. These protocols are first evaluated using SDS-PAGE. Hereafter, a selection of extraction protocols was used in a complete histone workflow for label-free MS. All protocols display nearly identical relative quantification of hPTMs. We thus show that, depending on the cell type under investigation and at the cost of some additional contaminating proteins, minimizing sample handling can be done during histone isolation. This allows analyzing bigger sample batches, leads to reduced technical variation and minimizes the chance of in vitro alterations to the hPTM snapshot. Overall, these results allow researchers to determine the best protocol depending on the resources and goal of their specific study. Data are available via ProteomeXchange with identifier PXD002885. © 2016 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A novel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors.

    Directory of Open Access Journals (Sweden)

    Akira Niwa

    Full Text Available Elucidating the in vitro differentiation of human embryonic stem (ES and induced pluripotent stem (iPS cells is important for understanding both normal and pathological hematopoietic development in vivo. For this purpose, a robust and simple hematopoietic differentiation system that can faithfully trace in vivo hematopoiesis is necessary. In this study, we established a novel serum-free monolayer culture that can trace the in vivo hematopoietic pathway from ES/iPS cells to functional definitive blood cells via mesodermal progenitors. Stepwise tuning of exogenous cytokine cocktails induced the hematopoietic mesodermal progenitors via primitive streak cells. These progenitors were then differentiated into various cell lineages depending on the hematopoietic cytokines present. Moreover, single cell deposition assay revealed that common bipotential hemoangiogenic progenitors were induced in our culture. Our system provides a new, robust, and simple method for investigating the mechanisms of mesodermal and hematopoietic differentiation.

  16. miRNA-dependent translational repression in the Drosophila ovary.

    Directory of Open Access Journals (Sweden)

    John Reich

    Full Text Available The Drosophila ovary is a tissue rich in post-transcriptional regulation of gene expression. Many of the regulatory factors are proteins identified via genetic screens. The more recent discovery of microRNAs, which in other animals and tissues appear to regulate translation of a large fraction of all mRNAs, raised the possibility that they too might act during oogenesis. However, there has been no direct demonstration of microRNA-dependent translational repression in the ovary.Here, quantitative analyses of transcript and protein levels of transgenes with or without synthetic miR-312 binding sites show that the binding sites do confer translational repression. This effect is dependent on the ability of the cells to produce microRNAs. By comparison with microRNA-dependent translational repression in other cell types, the regulated mRNAs and the protein factors that mediate repression were expected to be enriched in sponge bodies, subcellular structures with extensive similarities to the P bodies found in other cells. However, no such enrichment was observed.Our results reveal the variety of post-transcriptional regulatory mechanisms that operate in the Drosophila ovary, and have implications for the mechanisms of miRNA-dependent translational control used in the ovary.

  17. Translating Alcohol Research

    Science.gov (United States)

    Batman, Angela M.; Miles, Michael F.

    2015-01-01

    Alcohol use disorder (AUD) and its sequelae impose a major burden on the public health of the United States, and adequate long-term control of this disorder has not been achieved. Molecular and behavioral basic science research findings are providing the groundwork for understanding the mechanisms underlying AUD and have identified multiple candidate targets for ongoing clinical trials. However, the translation of basic research or clinical findings into improved therapeutic approaches for AUD must become more efficient. Translational research is a multistage process of streamlining the movement of basic biomedical research findings into clinical research and then to the clinical target populations. This process demands efficient bidirectional communication across basic, applied, and clinical science as well as with clinical practitioners. Ongoing work suggests rapid progress is being made with an evolving translational framework within the alcohol research field. This is helped by multiple interdisciplinary collaborative research structures that have been developed to advance translational work on AUD. Moreover, the integration of systems biology approaches with collaborative clinical studies may yield novel insights for future translational success. Finally, appreciation of genetic variation in pharmacological or behavioral treatment responses and optimal communication from bench to bedside and back may strengthen the success of translational research applications to AUD. PMID:26259085

  18. Reconstitution of Protein Translation of Mycobacterium Reveals Functional Conservation and Divergence with the Gram-Negative Bacterium Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Aashish Srivastava

    Full Text Available Protein translation is essential for all bacteria pathogens. It has also been a major focus of structural and functional studies and an important target of antibiotics. Here we report our attempts to biochemically reconstitute mycobacterial protein translation in vitro from purified components. This mycobacterial translation system consists of individually purified recombinant translation factors from Mycobacterium tuberculosis (M. tuberculosis, purified tRNAs and ribosomes from Mycobacterium smegmatis (M. smegmatis, and an aminoacyl-tRNA synthetase (AARS mixture from the cell-extract of M. smegmatis. We demonstrate that such mycobacterial translation system was efficient in in vitro protein synthesis, and enabled functional comparisons of translational components between the gram-positive Mycobacterium and the gram-negative E. coli. Although mycobacterial translation factors and ribosomes were highly compatible with their E. coli counterparts, M. smegmatis tRNAs were not properly charged by the E. coli AARSs to allow efficient translation of a reporter. In contrast, both E. coli and M. smegmatis tRNAs exhibited similar activity with the semi-purified M. smegmatis AARSs mixture for in vitro translation. We further demonstrated the use of both mycobacterial and E. coli translation systems as comparative in vitro assays for small-molecule antibiotics that target protein translation. While mycobacterial and E. coli translation were both inhibited at the same IC50 by the antibiotic spectinomycin, mycobacterial translation was preferentially inhibited by the antibiotic tetracycline, suggesting that there may be structural differences at the antibiotic binding sites between the ribosomes of Mycobacterium and E. coli. Our results illustrate an alternative approach for antibiotic discovery and functional studies of protein translation in mycobacteria and possibly other bacterial pathogens.

  19. Cytotoxicity of cadmium-free quantum dots and their use in cell bioimaging.

    Science.gov (United States)

    Soenen, Stefaan J; Manshian, Bella B; Aubert, Tangi; Himmelreich, Uwe; Demeester, Jo; De Smedt, Stefaan C; Hens, Zeger; Braeckmans, Kevin

    2014-06-16

    The use of quantum dots (QDots) as bright and photostable probes for long-term fluorescence imaging is gaining more interest. Thus far, (pre)clinical use of QDots remains limited, which is primarily caused by the potential toxicity of QDots. Most QDots consist of Cd2+ ions, which are known to cause high levels of toxicity. In order to overcome this problem, several strategies have been tested, such as the generation of cadmium-free QDots. In the present study, two types of cadmium-free QDots, composed of ZnSe/ZnS (QDotZnSe) and InP/ZnS (QDotInP), were studied with respect to their cytotoxicity and cellular uptake in a variety of cell types. A multiparametric cytotoxicity approach is used, where the QDots are studied with respect to cell viability, oxidative stress, cell morphology, stem cell differentiation, and neurite outgrowth. The data reveal slight differences in uptake levels for both types of QDots (maximal for QDotZnSe), but clear differences in cytotoxicity and cell functionality effects exist, with highest toxicity for QDotZnSe. Differences between cell types and between both types of QDots can be explained by the intrinsic sensitivity of certain cell types and chemical composition of the QDots. At concentrations at which no toxic effects can be observed, the functionality of the QDots for fluorescence cell visualization is evaluated, revealing that the higher brightness of QDotZnSe overcomes most of the toxicity issues compared to that of QDotInP. Comparing the results obtained with common Cd2+-containing QDots tested under identical conditions, the importance of particle functionality is demonstrated, revealing that cadmium-free QDots tested in this study are not significantly better than Cd2+-containing QDots for long-term cell imaging and that more work needs to be performed in optimizing the brightness and surface chemistry of cadmium-free QDots for them to replace currently used Cd2+-containing QDots.

  20. Polarity of translation boundaries in antiferroelectric PbZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xian-Kui, E-mail: xiankui.wei@epfl.ch [Ceramics Laboratory, EPFL–Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland); Peter Grünberg Institute and Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Research Center Jülich, 52425 Jülich (Germany); Jia, Chun-Lin [Peter Grünberg Institute and Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Research Center Jülich, 52425 Jülich (Germany); International Centre of Dielectric Research, The School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Roleder, Krystian [Institute of Physics, University of Silesia, Katowice 40007 (Poland); Setter, Nava [Ceramics Laboratory, EPFL–Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland)

    2015-02-15

    Graphical abstract: Strain-free rigid model and aberration-corrected transmission electron microscopes are used to investigate the polarity of translation boundaries in antiferroelectric PbZrO{sub 3}. - Highlights: • Domain boundaries in antiferroelectric PbZrO{sub 3} show polar and antipolar property. • The antiphase boundary can split into “sub-domains”. • Polarization reversal possibly exists inside the translation boundaries. • Thermal treatment can alter morphology and density of the translation boundaries. - Abstract: The polarity of translation boundaries (TBs) in antiferroelectric PbZrO{sub 3} is investigated. We show that previous experimentally reported polar property of R{sub III-1} type TB can be well approximated by a strain-free rigid model. Based on this, the modeling investigation suggests that there are two additional polar TBs, three antipolar-like TBs and one antipolar antiphase boundary. High-resolution scanning-transmission-electron-microscopy study reveals that the straight R{sub III-1} type TB can split into “sub-domains” with possible polarization reversal, suggesting the occurrence of ferroic orders at the TBs. In addition, dependence of morphology and density of the TBs on thermal treatments is discussed according to our results.