WorldWideScience

Sample records for cell-free fetal dna

  1. Cell-free placental DNA beyond Down syndrome: Lessons learned from fetal RHD genotyping

    Thurik, F.F.

    2016-01-01

    In this thesis research is presented on cell-free fetal DNA (cffDNA), which is present in plasma and serum of pregnant women. This fetal DNA can be used for fetal genotyping, but may also give indirect information on pregnancy and pregnancy outcome. The research consists of two sections. In the

  2. Positive cell-free fetal DNA testing for trisomy 13 reveals confined placental mosaicism.

    Hall, April L; Drendel, Holli M; Verbrugge, Jennifer L; Reese, Angela M; Schumacher, Katherine L; Griffith, Christopher B; Weaver, David D; Abernathy, Mary P; Litton, Christian G; Vance, Gail H

    2013-09-01

    We report on a case in which cell-free fetal DNA was positive for trisomy 13 most likely due to confined placental mosaicism. Cell-free fetal DNA testing analyzes DNA derived from placental trophoblast cells and can lead to incorrect results that are not representative of the fetus. We sought to confirm commercial cell-free fetal DNA testing results by chorionic villus sampling and amniocentesis. These results were followed up by postnatal chromosome analysis of cord blood and placental tissue. First-trimester cell-free fetal DNA test results were positive for trisomy 13. Cytogenetic analysis of chorionic villus sampling yielded a mosaic karyotype of 47,XY,+13[10]/46,XY[12]. G-banded analysis of amniotic fluid was normal, 46,XY. Postnatal cytogenetic analysis of cord blood was normal. Karyotyping of tissues from four quadrants of the placenta demonstrated mosaicism for trisomy 13 in two of the quadrants and a normal karyotype in the other two. Our case illustrates several important aspects of this new testing methodology: that cell-free fetal DNA may not be representative of the fetal karyotype; that follow-up with diagnostic testing of chorionic villus sampling and/or amniotic fluid for abnormal test results should be performed; and that pretest counseling regarding the full benefits, limitations, and possible testing outcomes of cell-free fetal DNA screening is important.

  3. The cell-free fetal DNA fraction in maternal blood decreases after physical activity

    Schlütter, Jacob Mørup; Hatt, Lotte; Bach, Cathrine

    2014-01-01

    of cycling with a pulse-rate of 150 beats per minute. The concentrations of cffDNA (DYS14) and cfDNA (RASSF1A) were assessed using quantitative real-time polymerase chain reaction. RESULTS: The fetal fraction decreased significantly in all participants after physical activity (p decrease varying......OBJECTIVE: If noninvasive prenatal testing using next generation sequencing is to be effective for pregnant women, a cell-free fetal DNA (cffDNA) fraction above 4% is essential unless the depth of sequencing is increased. This study's objective is to determine whether physical activity has...... from 1-17 percentage points. This was due to a significant increase in the concentration of cfDNA (p physical activity. CONCLUSION: When planning the timing of noninvasive...

  4. Non-invasive prenatal diagnosis using cell-free fetal DNA technology: applications and implications.

    Hall, Alison; Bostanci, A; Wright, C F

    2010-01-01

    Cell-free fetal DNA and RNA circulating in maternal blood can be used for the early non-invasive prenatal diagnosis (NIPD) of an increasing number of genetic conditions, both for pregnancy management and to aid reproductive decision-making. Here we present a brief review of the scientific and clinical status of the technology, and an overview of key ethical, legal and social issues raised by the analysis of cell-free fetal DNA for NIPD. We suggest that the less invasive nature of the technology brings some distinctive issues into focus, such as the possibility of broader uptake of prenatal diagnosis and access to the technology directly by the consumer via the internet, which have not been emphasised in previous work in this area. We also revisit significant issues that are familiar from previous debates about prenatal testing. Since the technology seems to transect existing distinctions between screening and diagnostic tests, there are important implications for the form and process involved in obtaining informed consent or choice. This analysis forms part of the work undertaken by a multidisciplinary group of experts which made recommendations about the implementation of this technology within the UK National Health Service. Copyright 2010 S. Karger AG, Basel.

  5. Noninvasive Prenatal Diagnosis of Congenital Adrenal Hyperplasia Using Cell-Free Fetal DNA in Maternal Plasma

    Tong, Yu K.; Yuen, Tony; Jiang, Peiyong; Pina, Christian; Chan, K. C. Allen; Khattab, Ahmed; Liao, Gary J. W.; Yau, Mabel; Kim, Se-Min; Chiu, Rossa W. K.; Sun, Li; Zaidi, Mone

    2014-01-01

    Context: Congenital adrenal hyperplasia (CAH) is an autosomal recessive condition that arises from mutations in CYP21A2 gene, which encodes for the steroidogenic enzyme 21-hydroxylase. To prevent genital ambiguity in affected female fetuses, prenatal treatment with dexamethasone must begin on or before gestational week 9. Currently used chorionic villus sampling and amniocentesis provide genetic results at approximately 14 weeks of gestation at the earliest. This means that mothers who want to undergo prenatal dexamethasone treatment will be unnecessarily treating seven of eight fetuses (males and three of four unaffected females), emphasizing the desirability of earlier genetic diagnosis in utero. Objective: The objective of the study was to develop a noninvasive method for early prenatal diagnosis of fetuses at risk for CAH. Patients: Fourteen families, each with a proband affected by phenotypically classical CAH, were recruited. Design: Cell-free fetal DNA was obtained from 3.6 mL of maternal plasma. Using hybridization probes designed to capture a 6-Mb region flanking CYP21A2, targeted massively parallel sequencing (MPS) was performed to analyze genomic DNA samples from parents and proband to determine parental haplotypes. Plasma DNA from pregnant mothers also underwent targeted MPS to deduce fetal inheritance of parental haplotypes. Results: In all 14 families, the fetal CAH status was correctly deduced by targeted MPS of DNA in maternal plasma, as early as 5 weeks 6 days of gestation. Conclusions: MPS on 3.6 mL plasma from pregnant mothers could potentially provide the diagnosis of CAH, noninvasively, before the ninth week of gestation. Only affected female fetuses will thus be treated. Our strategy represents a generic approach for noninvasive prenatal testing for an array of autosomal recessive disorders. PMID:24606108

  6. Quantification of Maternal Serum Cell-Free Fetal DNA in Early-Onset Preeclampsia

    Mulan Ren

    2013-04-01

    Full Text Available The aim of this study was to determine whether the increased serum cell-free fetal DNA (cffDNA level of gravidas developed into early-onset preeclampsia (EOPE subsequently in the early second trimesters is related to prenatal screening markers. Serum was collected from 1011 gravidas. The level of cffDNA and prenatal screening markers were analyzed in 20 cases with EOPE and 20 controls. All fetuses were male. The maternal serum cffDNA level was assessed by amplification of the Y chromosome specific gene. Correlations between the variables were examined. (Logged cffDNA in EOPE (median, 3.08; interquartile range, 2.93–3.68 was higher than controls (median, 1.79; interquartile range, 1.46–2.53. The increased level of (logged cffDNA was correlated significantly with the increased human chorionic gonadotropin (HCG level (r = 0.628, p < 0.001. Significant reciprocal correlations between cffDNA and babies’ birth weight as well as gestation weeks at delivery were noted (r = −0.516, p = 0.001; r = −0.623, p < 0.001, respectively. The sensitivity and specificity of cffDNA to discriminate between the EOPE cases and the controls were 90% and 85%, respectively. CffDNA is a potential marker for EOPE, which had a significant reciprocal correlation with babies’ birth weight and gestation weeks at delivery. Moreover, it may help in indicating the underlying hypoxic condition in the placenta.

  7. Application of real-time PCR of sex-independent insertion-deletion polymorphisms to determine fetal sex using cell-free fetal DNA from maternal plasma.

    Ho, Sherry Sze Yee; Barrett, Angela; Thadani, Henna; Asibal, Cecille Laureano; Koay, Evelyn Siew-Chuan; Choolani, Mahesh

    2015-07-01

    Prenatal diagnosis of sex-linked disorders requires invasive procedures, carrying a risk of miscarriage of up to 1%. Cell-free fetal DNA (cffDNA) present in cell-free DNA (cfDNA) from maternal plasma offers a non-invasive source of fetal genetic material for analysis. Detection of Y-chromosome sequences in cfDNA indicates presence of a male fetus; in the absence of a Y-chromosome signal a female fetus is inferred. We aimed to validate the clinical utility of insertion-deletion polymorphisms (INDELs) to confirm presence of a female fetus using cffDNA. Quantitative real-time PCR (qPCR) for the Y-chromosome-specific sequence, SRY, was performed on cfDNA from 82 samples at 6-39 gestational weeks. In samples without detectable SRY, qPCRs for eight INDELs were performed on maternal genomic DNA and cfDNA. Detection of paternally inherited fetal alleles in cfDNA negative for SRY confirmed a female fetus. Fetal sex was correctly determined in 77/82 (93.9%) cfDNA samples. SRY was detected in all 39 samples from male-bearing pregnancies, and none of the 43 female-bearing pregnancies (sensitivity and specificity of SRY qPCR is therefore 100%; 95% CI 91%-100%). Paternally inherited fetal alleles were detected in 38/43 samples with no SRY signal, confirming the presence of a female fetus (INDEL assay sensitivity is therefore 88.4%; 95% CI 74.1%-95.6%). Since paternally inherited fetal INDELs were not used in women bearing male fetuses, the specificity of INDELs cannot be calculated. Five cfDNA samples were negative for both SRY and INDELS. We have validated a non-invasive prenatal test to confirm fetal sex as early as 6 gestational weeks using cffDNA from maternal plasma.

  8. The usage and current approaches of cell free fetal DNA (cffDNA as a prenatal diagnostic method in fetal aneuploidy screening

    Hülya Erbaba

    2015-12-01

    Full Text Available Prenatal diagnosis of invasive and noninvasive tests can be done in a way (NIPT, but because of the invasive methods have risks of infection and abortion, diagnosing non-invasive procedure increasing day by day. One of the widespread cell free fetal DNA in maternal blood test (cffDNA that is increasing in clinical use has been drawing attention. The incidence of aneuploidy chromosomal anomaly of the kind in which all live births; Trisomy 21 (Down Syndrome 1/800, trisomy 13 (Patau syndrome 1 /10,000, trisomy 18 (Edwards syndrome is a form of 1/6000. Because of the high mortality and morbidity, it is vital that congenital anomalies should be diagnosed in prenatal period. Aneuploidy testing for high-risk pregnant women after the 10th week of pregnancy in terms of the blood sample is taken and free fetal DNA in maternal plasma is based on the measurement of the relative amount. Knowledge of the current criteria for use by healthcare professionals in the field test will allow the exclusion of maternal and fetal risks. In this study, it is aimed to demonstrate current international approaches related to the positive and negative sides of non-invasive that is one of the prenatal diagnostic methods of cffDNA test. J Clin Exp Invest 2015; 6 (4: 414-417

  9. Non-invasive prenatal cell-free fetal DNA testing for down syndrome and other chromosomal abnormalities

    Darija Strah

    2015-12-01

    Full Text Available Background: Chorionic villus sampling and amniocentesis as definitive diagnostic procedures represent a gold standard for prenatal diagnosis of chromosomal abnormalities. The methods are invasive and lead to a miscarriage and fetal loss in approximately 0.5–1 %. Non-invasive prenatal DNA testing (NIPT is based on the analysis of cell-free fetal DNA from maternal blood. It represents a highly accurate screening test for detecting the most common fetal chromosomal abnormalities. In our study we present the results of NIPT testing in the Diagnostic Center Strah, Slovenia, over the last 3 years.Methods: In our study, 123 pregnant women from 11th to 18th week of pregnancy were included. All of them had First trimester assessment of risk for trisomy 21, done before NIPT testing.Results: 5 of total 6 high-risk NIPT cases (including 3 cases of Down syndrome and 2 cases of Klinefelter’s syndrome were confirmed by fetal karyotyping. One case–Edwards syndrome was false positive. Patau syndrome, triple X syndrome or Turner syndrome were not observed in any of the cases. Furthermore, there were no false negative cases reported. In general, NIPT testing had 100 % sensitivity (95 % confidence interval: 46.29 %–100.00 % and 98.95 % specificity (95 % confidence interval: 93.44 %–99.95 %. In determining Down syndrome alone, specificity (95 % confidence interval: 95.25 %- 100.00 % and sensitivity (95 % confidence interval: 31.00 %–100.00 % turned out to be 100 %. In 2015, the average turnaround time for analysis was 8.3 days from the day when the sample was taken. Repeated blood sampling was required in 2 cases (redraw rate = 1.6 %.Conclusions: Our results confirm that NIPT represents a fast, safe and highly accurate advanced screening test for most common chromosomal abnormalities. In current clinical practice, NIPT would significantly decrease the number of unnecessary invasive procedures and the rate of fetal

  10. New aids for the non-invasive prenatal diagnosis of achondroplasia: dysmorphic features, charts of fetal size and molecular confirmation using cell-free fetal DNA in maternal plasma

    Chitty, L. S.; Griffin, D. R.; Meaney, C.; Barrett, A.; Khalil, A.; Pajkrt, E.; Cole, T. J.

    2011-01-01

    To improve the prenatal diagnosis of achondroplasia by constructing charts of fetal size, defining frequency of sonographic features and exploring the role of non-invasive molecular diagnosis based on cell-free fetal deoxyribonucleic acid (DNA) in maternal plasma. Data on fetuses with a confirmed

  11. Evaluation of Sample Stability and Automated DNA Extraction for Fetal Sex Determination Using Cell-Free Fetal DNA in Maternal Plasma

    Elena Ordoñez

    2013-01-01

    Full Text Available Objective. The detection of paternally inherited sequences in maternal plasma, such as the SRY gene for fetal sexing or RHD for fetal blood group genotyping, is becoming part of daily routine in diagnostic laboratories. Due to the low percentage of fetal DNA, it is crucial to ensure sample stability and the efficiency of DNA extraction. We evaluated blood stability at 4°C for at least 24 hours and automated DNA extraction, for fetal sex determination in maternal plasma. Methods. A total of 158 blood samples were collected, using EDTA-K tubes, from women in their 1st trimester of pregnancy. Samples were kept at 4°C for at least 24 hours before processing. An automated DNA extraction was evaluated, and its efficiency was compared with a standard manual procedure. The SRY marker was used to quantify cfDNA by real-time PCR. Results. Although lower cfDNA amounts were obtained by automated DNA extraction (mean 107,35 GE/mL versus 259,43 GE/mL, the SRY sequence was successfully detected in all 108 samples from pregnancies with male fetuses. Conclusion. We successfully evaluated the suitability of standard blood tubes for the collection of maternal blood and assessed samples to be suitable for analysis at least 24 hours later. This would allow shipping to a central reference laboratory almost from anywhere in Europe.

  12. New aids for the non-invasive prenatal diagnosis of achondroplasia: dysmorphic features, charts of fetal size and molecular confirmation using cell-free fetal DNA in maternal plasma.

    Chitty, L S; Griffin, D R; Meaney, C; Barrett, A; Khalil, A; Pajkrt, E; Cole, T J

    2011-03-01

    To improve the prenatal diagnosis of achondroplasia by constructing charts of fetal size, defining frequency of sonographic features and exploring the role of non-invasive molecular diagnosis based on cell-free fetal deoxyribonucleic acid (DNA) in maternal plasma. Data on fetuses with a confirmed diagnosis of achondroplasia were obtained from our databases, records reviewed, sonographic features and measurements determined and charts of fetal size constructed using the LMS (lambda-mu-sigma) method and compared with charts used in normal pregnancies. Cases referred to our regional genetics laboratory for molecular diagnosis using cell-free fetal DNA were identified and results reviewed. Twenty-six cases were scanned in our unit. Fetal size charts showed that femur length was usually on or below the 3(rd) centile by 25 weeks' gestation, and always below the 3(rd) by 30 weeks. Head circumference was above the 50(th) centile, increasing to above the 95(th) when compared with normal for the majority of fetuses. The abdominal circumference was also increased but to a lesser extent. Commonly reported sonographic features were bowing of the femora, frontal bossing, short fingers, a small chest and polyhydramnios. Analysis of cell-free fetal DNA in six pregnancies confirmed the presence of the c.1138G > A mutation in the FGRF3 gene in four cases with achondroplasia, but not the two subsequently found to be growth restricted. These data should improve the accuracy of diagnosis of achondroplasia based on sonographic findings, and have implications for targeted molecular confirmation that can reliably and safely be carried out using cell-free fetal DNA. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  13. Impact of Cell-Free Fetal DNA Screening on Patients’ Choice of Invasive Procedures after a Positive California Prenatal Screen Result

    Forum T. Shah

    2014-07-01

    Full Text Available Until recently, maternal serum analyte levels paired with sonographic fetal nuchal translucency measurement was the most accurate prenatal screen available for Trisomies 18 and 21, (91% and 94% detection and false positive rates of 0.31% and 4.5% respectively. Women with positive California Prenatal Screening Program (CPSP results have the option of diagnostic testing to determine definitively if the fetus has a chromosomal abnormality. Cell-free fetal (cff- DNA screening for Trisomies 13, 18, and 21 was first offered in 2012, allowing women with positive screens to choose additional screening before diagnostic testing. Cff-DNA sensitivity rates are as high as 99.9% and 99.1%, with false positive rates of 0.4% and 0.1%, for Trisomies 18 and 21, respectively. A retrospective chart review was performed in 2012 on 500 CPSP referrals at the University of California, San Diego Thornton Hospital. Data were collected prior to and after the introduction of cff-DNA. There was a significant increase in the number of participants who chose to pursue additional testing and a decrease in the number of invasive procedures performed after cff-DNA screening was available. We conclude that as fetal aneuploidy screening improves, the number of invasive procedures will continue to decrease.

  14. Identifying mild and severe preeclampsia in asymptomatic pregnant women by levels of cell-free fetal DNA

    Jakobsen, Tanja Roien; Clausen, Frederik Banch; Rode, Line

    2013-01-01

    BACKGROUND: The objective was to investigate whether women who develop preeclampsia can be identified in a routine analysis when determining fetal RHD status at 25 weeks' gestation in combination with PAPP-A levels at the first-trimester combined risk assessment for Trisomy 21. STUDY DESIGN......-A was measured at 11 to 14 weeks. Information about pregnancy outcome and complications was obtained from the National Fetal Medicine Database, medical charts, and discharge letters. RESULTS: The odds ratio (OR) of developing severe preeclampsia given a cffDNA level above the 90th percentile compared to cff......DNA below the 90th percentile was 8.1 (95% confidence interval [CI], 2.6-25.5). The OR of developing mild preeclampsia given a cffDNA level below the 5th percentile compared to cffDNA levels above the 5th percentile was 3.6 (95% CI, 1.1-11.7). PAPP-A levels below the 5th percentile were associated with mild...

  15. Positive view and increased likely uptake of follow-up testing with analysis of cell-free fetal DNA as alternative to invasive testing among Danish pregnant women

    Miltoft, Caroline B; Rode, Line; Tabor, Ann

    2018-01-01

    AND METHODS: Unselected and high-risk women attending first-trimester screening (Rigshospitalet, Copenhagen University Hospital) were invited to fill out the questionnaire Antenatal testing for Down syndrome as an online survey. RESULTS: The survey included 203 unselected and 50 high-risk women (response...... of follow-up testing without a corresponding rise in the termination rate of affected fetuses as some women test for information only. However, both unselected and high-risk women had overwhelmingly positive views underlining attention to avoid routinization.......INTRODUCTION: The aim of this study was to investigate the attitude (view, likely uptake and preferred strategy) towards cell-free fetal DNA (cfDNA) testing among pregnant women before a first-trimester risk assessment for trisomy 21 (unselected women) and after obtaining a high risk. MATERIAL...

  16. The price of performance: a cost and performance analysis of the implementation of cell-free fetal DNA testing for Down syndrome in Ontario, Canada.

    Okun, N; Teitelbaum, M; Huang, T; Dewa, C S; Hoch, J S

    2014-04-01

    To examine the cost and performance implications of introducing cell-free fetal DNA (cffDNA) testing within modeled scenarios in a publicly funded Canadian provincial Down syndrome (DS) prenatal screening program. Two clinical algorithms were created: the first to represent the current screening program and the second to represent one that incorporates cffDNA testing. From these algorithms, eight distinct scenarios were modeled to examine: (1) the current program (no cffDNA), (2) the current program with first trimester screening (FTS) as the nuchal translucency-based primary screen (no cffDNA), (3) a program substituting current screening with primary cffDNA, (4) contingent cffDNA with current FTS performance, (5) contingent cffDNA at a fixed price to result in overall cost neutrality,(6) contingent cffDNA with an improved detection rate (DR) of FTS, (7) contingent cffDNA with higher uptake of FTS, and (8) contingent cffDNA with optimized FTS (higher uptake and improved DR). This modeling study demonstrates that introducing contingent cffDNA testing improves performance by increasing the number of cases of DS detected prenatally, and reducing the number of amniocenteses performed and concomitant iatrogenic pregnancy loss of pregnancies not affected by DS. Costs are modestly increased, although the cost per case of DS detected is decreased with contingent cffDNA testing. Contingent models of cffDNA testing can improve overall screening performance while maintaining the provision of an 11- to 13-week scan. Costs are modestly increased, but cost per prenatally detected case of DS is decreased. © 2013 John Wiley & Sons, Ltd.

  17. Fetal RHD Genotyping Using Real-Time Polymerase Chain Reaction Analysis of Cell-Free Fetal DNA in Pregnancy of RhD Negative Women in South of Iran

    Leili Moezzi

    2016-05-01

    Full Text Available Background: Maternal-fetal RhD antigen incompatibility causes approximately 50% of clinically significant alloimmunization cases. The routine use of prophylactic anti-D immunoglobulin has dramatically reduced hemolytic disease of the fetus and newborn. Recently, fetal RHD genotyping in RhD negative pregnant women has been suggested for appropriate use of anti-D immunoglobulin antenatal prophylaxis and decrease unnecessary prenatal interventions. Materials and Methods: In this prospective cohort study, in order to develop a reliable and non-invasive method for fetal RHD genotyping, cell free fetal DNA (cffDNA was extracted from maternal plasma. Real-time quantitative polymerase chain reaction (qPCR for detection of RHD exons 7, 5, 10 and intron 4 was performed and the results were compared to the serological results of cord blood cells as the gold standard method. SRY gene and hypermethylated Ras-association domain family member 1 (RASSF1A gene were used to confirm the presence of fetal DNA in male and female fetuses, respectively. Results: Out of 48 fetuses between 8 and 32 weeks (wks of gestational age (GA, we correctly diagnosed 45 cases (93.75% of RHD positive fetuses and 2 cases (4.16% of the RHD negative one. Exon 7 was amplified in one sample, while three other RHD gene sequences were not detected; the sample was classified as inconclusive, and the RhD serology result after birth showed that the fetus was RhD-negative. Conclusion: Our results showed high accuracy of the qPCR method using cffDNA for fetal RHD genotyping and implicate on the efficiency of this technique to predict the competence of anti-D immunoglobulin administration.

  18. Model-based analysis of costs and outcomes of non-invasive prenatal testing for Down's syndrome using cell free fetal DNA in the UK National Health Service.

    Stephen Morris

    Full Text Available Non-invasive prenatal testing (NIPT for Down's syndrome (DS using cell free fetal DNA in maternal blood has the potential to dramatically alter the way prenatal screening and diagnosis is delivered. Before NIPT can be implemented into routine practice, information is required on its costs and benefits. We investigated the costs and outcomes of NIPT for DS as contingent testing and as first-line testing compared with the current DS screening programme in the UK National Health Service.We used a pre-existing model to evaluate the costs and outcomes associated with NIPT compared with the current DS screening programme. The analysis was based on a hypothetical screening population of 10,000 pregnant women. Model inputs were taken from published sources. The main outcome measures were number of DS cases detected, number of procedure-related miscarriages and total cost.At a screening risk cut-off of 1∶150 NIPT as contingent testing detects slightly fewer DS cases, has fewer procedure-related miscarriages, and costs the same as current DS screening (around UK£280,000 at a cost of £500 per NIPT. As first-line testing NIPT detects more DS cases, has fewer procedure-related miscarriages, and is more expensive than current screening at a cost of £50 per NIPT. When NIPT uptake increases, NIPT detects more DS cases with a small increase in procedure-related miscarriages and costs.NIPT is currently available in the private sector in the UK at a price of £400-£900. If the NHS cost was at the lower end of this range then at a screening risk cut-off of 1∶150 NIPT as contingent testing would be cost neutral or cost saving compared with current DS screening. As first-line testing NIPT is likely to produce more favourable outcomes but at greater cost. Further research is needed to evaluate NIPT under real world conditions.

  19. Prenatal Cell-Free DNA Screening

    ... poses no physical risks for you or your baby. While prenatal cell-free DNA screening might cause anxiety, it might help you avoid the need for more invasive tests, treatment or monitoring during your pregnancy. Keep in mind, however, that ...

  20. Cell-free fetal DNA versus maternal serum screening for trisomy 21 in pregnant women with and without assisted reproduction technology: a prospective interventional study.

    Costa, Jean-Marc; Letourneau, Alexandra; Favre, Romain; Bidat, Laurent; Belaisch-Allart, Joelle; Jouannic, Jean-Marie; Quarello, Edwin; Senat, Marie-Victoire; Broussin, Bernard; Tsatsaris, Vassilis; Demain, Adèle; Kleinfinger, Pascale; Lohmann, Laurence; Agostini, Hélène; Bouyer, Jean; Benachi, Alexandra

    2018-03-01

    PurposeCell-free DNA (cfDNA) as a primary screening test has been available for years but few studies have addressed this option in a prospective manner. The question is of interest after reports that maternal serum screening (MSS) is less accurate for pregnancies resulting from assisted reproduction technologies (ART) than for spontaneous pregnancies (SP).MethodsA prospective interventional study was designed to address the performances of cfDNA compared with MSS in pregnancies with or without ART. Each patient was offered both MSS and cfDNA testing. The primary analysis cohort ultimately included 794 patients with a spontaneous pregnancy (SP) (n = 472) or pregnancy obtained after ART (n = 322).ResultsOverall, the false-positive rate and positive predictive value were 6.6% and 8.8% for MSS but 0% and 100% for cfDNA. MSS false-positive rate and positive predictive values were clearly poorer in the ART group (11.7% and 2.6%) than in the SP group (3.2% and 21.1%). The global rates of invasive procedures were 1.9% (15/794) with cfDNA but 8.4% (65/794) if MSS alone was proposed.ConclusioncfDNA achieved better performance than MSS in both spontaneous and ART pregnancies, thus decreasing the number of invasive procedures. Our findings suggest that cfDNA should be considered for primary screening, especially in pregnancies obtained after ART.GENETICS in MEDICINE advance online publication, 1 March 2018; doi:10.1038/gim.2018.4.

  1. Maternal smoking does not affect the amount of cell-free fetal DNA in maternal plasma during the 1st trimester of pregnancy.

    Tarquini, F; Picchiassi, E; Centra, M; Pennacchi, L; Galeone, F; Bini, V; Di Renzo, G C; Coata, G

    2015-01-01

    CffDNA, from 344 non-smoking, 38 smoking and 33 ex-smoking pregnant women at 11 (+0)-13 (+6) gestational weeks, was extracted and quantified by the multicopy DYS14, as the fetal DNA marker and using the quantitative real-time PCR 7300 detection system. The smoking habit was based on maternal self-report, confirmed by cotinine levels and male fetuses were verified by phenotype at birth. The genders of newborns were compared with DYS14-cffDNA analysis, achieving a 100% diagnostic accuracy of the test. A total of 177 non-smokers, 18 smokers and 22 ex-smoker pregnancies with male fetuses were identified by the cffDNA concentration. Results showed that smoking status was not associated with different amounts of DYS14-cffDNA (p = 0.159), suggesting the possibility of offering cffDNA testing to all pregnant women, even if they are active smokers or ex-smokers, and the test can be unadjusted for smoking status.

  2. High levels of fetal DNA are associated with increased risk of spontaneous preterm delivery

    Jakobsen, Tanja R; Clausen, Frederik B; Rode, Line

    2012-01-01

    To assess whether spontaneous preterm delivery can be predicted from the amount of cell free fetal DNA (cffDNA) as determined by routine fetal RHD genotyping at 25 weeks' gestation.......To assess whether spontaneous preterm delivery can be predicted from the amount of cell free fetal DNA (cffDNA) as determined by routine fetal RHD genotyping at 25 weeks' gestation....

  3. Stability of cell-free DNA from maternal plasma isolated following a single centrifugation step.

    Barrett, Angela N; Thadani, Henna A; Laureano-Asibal, Cecille; Ponnusamy, Sukumar; Choolani, Mahesh

    2014-12-01

    Cell-free fetal DNA can be used for prenatal testing with no procedure-related risk to the fetus. However, yield of fetal DNA is low compared with maternal cell-free DNA fragments, resulting in technical challenges for some downstream applications. To maximize the fetal fraction, careful blood processing procedures are essential. We demonstrate that fetal fraction can be preserved using a single centrifugation step followed by postage of plasma to the laboratory for further processing. Digital PCR was used to quantify copies of total, maternal, and fetal DNA present in single-spun plasma at time points over a two-week period, compared with immediately processed double-spun plasma, with storage at room temperature, 4°C, and -80°C representing different postage scenarios. There was no significant change in total, maternal, or fetal DNA copy numbers when single-spun plasma samples were stored for up to 1 week at room temperature and 2 weeks at -80°C compared with plasma processed within 4 h. Following storage at 4°C no change in composition of cell-free DNA was observed. Single-spun plasma can be transported at room temperature if the journey is expected to take one week or less; shipping on dry ice is preferable for longer journeys. © 2014 John Wiley & Sons, Ltd.

  4. Noninvasive determination of fetal rh blood group, D antigen status by cell-free DNA analysis in maternal plasma: experience in a Brazilian population.

    Chinen, Paulo Alexandre; Nardozza, Luciano Marcondes Machado; Martinhago, Ciro Dresch; Camano, Luiz; Daher, Silvia; Pares, David Baptista da Silva; Minett, Thais; Araujo Júnior, Edward; Moron, Antonio Fernandes

    2010-11-01

    We evaluated the diagnostic accuracy of Rh blood group, D antigen (RHD) fetal genotyping, using real-time polymerase chain reaction in maternal blood samples, in a racially mixed population. We performed a prospective study conducted between January 2006 and December 2007, analyzing fetal RHD genotype in the plasma of 102 D- pregnant women by real-time polymerase chain reaction, targeting exons 7 and 10 of the RHD gene. Genotype results were compared with cord blood phenotype obtained after delivery or before the first intrauterine transfusion when necessary. Most of the participants (75.5%) were under 28 weeks of pregnancy, and 87.5% had at least one relative of black ancestry. By combining amplification of two exons, the accuracy of genotyping was 98%, sensitivity was 100%, and specificity was 92%. The positive likelihood ratio was 12.5, and the negative likelihood ratio was 0. The two false-positive cases were confirmed to be pseudogene RHD by real-time polymerase chain reaction. There were no differences between the patients with positive or negative Coombs test ( P = 0.479). Determination of fetal RHD status in maternal peripheral blood was highly sensitive in this racially mixed population and was not influenced by the presence of antierythrocyte antibodies. © Thieme Medical Publishers.

  5. Pre-analytical conditions in non-invasive prenatal testing of cell-free fetal RHD.

    Frederik Banch Clausen

    Full Text Available Non-invasive prenatal testing of cell-free fetal DNA (cffDNA in maternal plasma can predict the fetal RhD type in D negative pregnant women. In Denmark, routine antenatal screening for the fetal RhD gene (RHD directs the administration of antenatal anti-D prophylaxis only to women who carry an RhD positive fetus. Prophylaxis reduces the risk of immunization that may lead to hemolytic disease of the fetus and the newborn. The reliability of predicting the fetal RhD type depends on pre-analytical factors and assay sensitivity. We evaluated the testing setup in the Capital Region of Denmark, based on data from routine antenatal RHD screening.Blood samples were drawn at gestational age 25 weeks. DNA extracted from 1 mL of plasma was analyzed for fetal RHD using a duplex method for exon 7/10. We investigated the effect of blood sample transportation time (n = 110 and ambient outdoor temperatures (n = 1539 on the levels of cffDNA and total DNA. We compared two different quantification methods, the delta Ct method and a universal standard curve. PCR pipetting was compared on two systems (n = 104.The cffDNA level was unaffected by blood sample transportation for up to 9 days and by ambient outdoor temperatures ranging from -10 °C to 28 °C during transport. The universal standard curve was applicable for cffDNA quantification. Identical levels of cffDNA were observed using the two automated PCR pipetting systems. We detected a mean of 100 fetal DNA copies/mL at a median gestational age of 25 weeks (range 10-39, n = 1317.The setup for real-time PCR-based, non-invasive prenatal testing of cffDNA in the Capital Region of Denmark is very robust. Our findings regarding the transportation of blood samples demonstrate the high stability of cffDNA. The applicability of a universal standard curve facilitates easy cffDNA quantification.

  6. Nonhomologous DNA End Joining in Cell-Free Extracts

    Sheetal Sharma

    2010-01-01

    Full Text Available Among various DNA damages, double-strand breaks (DSBs are considered as most deleterious, as they may lead to chromosomal rearrangements and cancer when unrepaired. Nonhomologous DNA end joining (NHEJ is one of the major DSB repair pathways in higher organisms. A large number of studies on NHEJ are based on in vitro systems using cell-free extracts. In this paper, we summarize the studies on NHEJ performed by various groups in different cell-free repair systems.

  7. Cell-free fetal DNA in maternal plasma and noninvasive prenatal diagnosis DNA fetal libre en el plasma materno y diagnóstico prenatal no invasivo DNA livre fetal em plasma materno e diagnóstico pré-natal não invasivo

    Ester Silveira Ramos

    2006-12-01

    Full Text Available The noninvasive nature of the detection of fetal DNA in the maternal circulation represents the greatest advantage over the conventional methods of prenatal diagnosis. The applications of this methodology involve the detection of the fetal sex, and diagnosis, intra-uterine treatment, and evaluation of the prognosis of many diseases. Fetal cells detected in the maternal circulation have also been shown to be implicated in autoimmune diseases and to represent a potential source of stem cells. On the other hand, with the introduction of a technology that detects the fetal sex as early as at 6-8 weeks of gestation, there is the possibility of early abortion based on sex selection for social purposes. This implies an ethical discussion about the question. The introduction of new noninvasive techniques of prenatal diagnosis and the knowledge of the Nursing Team regarding new methodologies can be of great benefit to the mother and her children, and can help the Genetic Counseling of the families.La naturaleza no invasiva de la investigación del DNA fetal en la circulación materna representa una ventaja importante con relación a los métodos convencionales de diagnóstico prenatal. El uso de esta metodología implica la determinación del sexo fetal y el diagnóstico, el tratamiento intra-útero y la evaluación del pronóstico en muchas enfermedades. Las células fetales detectadas en la circulación maternal también pueden ser implicadas en enfermedades autoinmunes y representar una fuente potencial de células madre. Por otra parte, con la introducción de una tecnología que detecte el sexo fetal entre 6-8 semanas de gestación, existe la posibilidad de aborto precoz basada en la selección del sexo para los propósitos sociales. Esto implica una discusión ética previa sobre este problema. La introducción de nuevas técnicas no invasivas de diagnóstico prenatal y el conocimiento del Equipo de Enfermería con respecto a las nuevas metodolog

  8. The value of cell-free DNA for molecular pathology.

    Stewart, Caitlin M; Kothari, Prachi D; Mouliere, Florent; Mair, Richard; Somnay, Saira; Benayed, Ryma; Zehir, Ahmet; Weigelt, Britta; Dawson, Sarah-Jane; Arcila, Maria E; Berger, Michael F; Tsui, Dana Wy

    2018-04-01

    Over the past decade, advances in molecular biology and genomics techniques have revolutionized the diagnosis and treatment of cancer. The technological advances in tissue profiling have also been applied to the study of cell-free nucleic acids, an area of increasing interest for molecular pathology. Cell-free nucleic acids are released from tumour cells into the surrounding body fluids and can be assayed non-invasively. The repertoire of genomic alterations in circulating tumour DNA (ctDNA) is reflective of both primary tumours and distant metastatic sites, and ctDNA can be sampled multiple times, thereby overcoming the limitations of the analysis of single biopsies. Furthermore, ctDNA can be sampled regularly to monitor response to treatment, to define the evolution of the tumour genome, and to assess the acquisition of resistance and minimal residual disease. Recently, clinical ctDNA assays have been approved for guidance of therapy, which is an exciting first step in translating cell-free nucleic acid research tests into clinical use for oncology. In this review, we discuss the advantages of cell-free nucleic acids as analytes in different body fluids, including blood plasma, urine, and cerebrospinal fluid, and their clinical applications in solid tumours and haematological malignancies. We will also discuss practical considerations for clinical deployment, such as preanalytical factors and regulatory requirements. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  9. Cell-Free DNA and Active Rejection in Kidney Allografts.

    Bloom, Roy D; Bromberg, Jonathan S; Poggio, Emilio D; Bunnapradist, Suphamai; Langone, Anthony J; Sood, Puneet; Matas, Arthur J; Mehta, Shikha; Mannon, Roslyn B; Sharfuddin, Asif; Fischbach, Bernard; Narayanan, Mohanram; Jordan, Stanley C; Cohen, David; Weir, Matthew R; Hiller, David; Prasad, Preethi; Woodward, Robert N; Grskovic, Marica; Sninsky, John J; Yee, James P; Brennan, Daniel C

    2017-07-01

    Histologic analysis of the allograft biopsy specimen is the standard method used to differentiate rejection from other injury in kidney transplants. Donor-derived cell-free DNA (dd-cfDNA) is a noninvasive test of allograft injury that may enable more frequent, quantitative, and safer assessment of allograft rejection and injury status. To investigate this possibility, we prospectively collected blood specimens at scheduled intervals and at the time of clinically indicated biopsies. In 102 kidney recipients, we measured plasma levels of dd-cfDNA and correlated the levels with allograft rejection status ascertained by histology in 107 biopsy specimens. The dd-cfDNA level discriminated between biopsy specimens showing any rejection (T cell-mediated rejection or antibody-mediated rejection [ABMR]) and controls (no rejection histologically), P rejection at a cutoff of 1.0% dd-cfDNA were 61% and 84%, respectively. The AUC for discriminating ABMR from samples without ABMR was 0.87 (95% CI, 0.75 to 0.97). Positive and negative predictive values for ABMR at a cutoff of 1.0% dd-cfDNA were 44% and 96%, respectively. Median dd-cfDNA was 2.9% (ABMR), 1.2% (T cell-mediated types ≥IB), 0.2% (T cell-mediated type IA), and 0.3% in controls ( P =0.05 for T cell-mediated rejection types ≥IB versus controls). Thus, dd-cfDNA may be used to assess allograft rejection and injury; dd-cfDNA levels rejection (T cell-mediated type ≥IB or ABMR) and levels >1% indicate a probability of active rejection. Copyright © 2017 by the American Society of Nephrology.

  10. High-resolution characterization of sequence signatures due to non-random cleavage of cell-free DNA.

    Chandrananda, Dineika; Thorne, Natalie P; Bahlo, Melanie

    2015-06-17

    High-throughput sequencing of cell-free DNA fragments found in human plasma has been used to non-invasively detect fetal aneuploidy, monitor organ transplants and investigate tumor DNA. However, many biological properties of this extracellular genetic material remain unknown. Research that further characterizes circulating DNA could substantially increase its diagnostic value by allowing the application of more sophisticated bioinformatics tools that lead to an improved signal to noise ratio in the sequencing data. In this study, we investigate various features of cell-free DNA in plasma using deep-sequencing data from two pregnant women (>70X, >50X) and compare them with matched cellular DNA. We utilize a descriptive approach to examine how the biological cleavage of cell-free DNA affects different sequence signatures such as fragment lengths, sequence motifs at fragment ends and the distribution of cleavage sites along the genome. We show that the size distributions of these cell-free DNA molecules are dependent on their autosomal and mitochondrial origin as well as the genomic location within chromosomes. DNA mapping to particular microsatellites and alpha repeat elements display unique size signatures. We show how cell-free fragments occur in clusters along the genome, localizing to nucleosomal arrays and are preferentially cleaved at linker regions by correlating the mapping locations of these fragments with ENCODE annotation of chromatin organization. Our work further demonstrates that cell-free autosomal DNA cleavage is sequence dependent. The region spanning up to 10 positions on either side of the DNA cleavage site show a consistent pattern of preference for specific nucleotides. This sequence motif is present in cleavage sites localized to nucleosomal cores and linker regions but is absent in nucleosome-free mitochondrial DNA. These background signals in cell-free DNA sequencing data stem from the non-random biological cleavage of these fragments. This

  11. Safe, accurate, prenatal diagnosis of thanatophoric dysplasia using ultrasound and free fetal DNA

    Chitty, Lyn S.; Khalil, Asma; Barrett, Angela N.; Pajkrt, Eva; Griffin, David R.; Cole, Tim J.

    2013-01-01

    To improve the prenatal diagnosis of thanatophoric dysplasia by defining the change in fetal size across gestation and the frequency of sonographic features, and developing non-invasive molecular genetic diagnosis based on cell-free fetal DNA (cffDNA) in maternal plasma. Fetuses with a confirmed

  12. An optimized rapid bisulfite conversion method with high recovery of cell-free DNA.

    Yi, Shaohua; Long, Fei; Cheng, Juanbo; Huang, Daixin

    2017-12-19

    Methylation analysis of cell-free DNA is a encouraging tool for tumor diagnosis, monitoring and prognosis. Sensitivity of methylation analysis is a very important matter due to the tiny amounts of cell-free DNA available in plasma. Most current methods of DNA methylation analysis are based on the difference of bisulfite-mediated deamination of cytosine between cytosine and 5-methylcytosine. However, the recovery of bisulfite-converted DNA based on current methods is very poor for the methylation analysis of cell-free DNA. We optimized a rapid method for the crucial steps of bisulfite conversion with high recovery of cell-free DNA. A rapid deamination step and alkaline desulfonation was combined with the purification of DNA on a silica column. The conversion efficiency and recovery of bisulfite-treated DNA was investigated by the droplet digital PCR. The optimization of the reaction results in complete cytosine conversion in 30 min at 70 °C and about 65% of recovery of bisulfite-treated cell-free DNA, which is higher than current methods. The method allows high recovery from low levels of bisulfite-treated cell-free DNA, enhancing the analysis sensitivity of methylation detection from cell-free DNA.

  13. Non-invasive aneuploidy detection using free fetal DNA and RNA in maternal plasma: recent progress and future possibilities.

    Go, A.T.; Vugt, J.M.G. van; Oudejans, C.B.

    2011-01-01

    BACKGROUND: Cell-free fetal DNA (cff DNA) and RNA can be detected in maternal plasma and used for non-invasive prenatal diagnostics. Recent technical advances have led to a drastic change in the clinical applicability and potential uses of free fetal DNA and RNA. This review summarizes the latest

  14. Fetal DNA: strategies for optimal recovery

    Legler, Tobias J.; Heermann, Klaus-Hinrich; Liu, Zhong; Soussan, Aicha Ait; van der Schoot, C. Ellen

    2008-01-01

    For fetal DNA extraction, in principle each DNA extraction method can be used; however, because most methods have been optimized for genomic DNA from leucocytes, we describe here the methods that have been optimized for the extraction of fetal DNA from maternal plasma and validated for this purpose

  15. Improving enrichment of circulating fetal DNA for genetic testing: size fractionation followed by whole gene amplification.

    Jorgez, Carolina J; Bischoff, Farideh Z

    2009-01-01

    Among the pitfalls of using cell-free fetal DNA in plasma for prenatal diagnosis is quality of the recovered DNA fragments and concomitant presence of maternal DNA (>95%). Our objective is to provide alternative methods for achieving enrichment and high-quality fetal DNA from plasma. Cell-free DNA from 31 pregnant women and 18 controls (10 males and 8 females) were size separated using agarose gel electrophoresis. DNA fragments of 100-300, 500-700 and 1,500-2,000 bp were excised and extracted, followed by whole genome amplification (WGA) of recovered fragments. Levels of beta-globin and DYS1 were measured. Distribution of beta-globin size fragments was similar among pregnant women and controls. Among control male cases, distribution of size fragments was the same for both beta-globin and DYS1. Among maternal cases confirmed to be male, the smallest size fragment (100-300 bp) accounted for nearly 50% (39.76 +/- 17.55%) of the recovered DYS1-DNA (fetal) and only 10% (10.40 +/- 6.49%) of beta-globin (total) DNA. After WGA of plasma fragments from pregnant women, DYS1 sequence amplification was best observed when using the 100-300 bp fragments as template. Combination of electrophoresis for size separation and WGA led to enriched fetal DNA from plasma. This novel combination of strategies is more likely to permit universal clinical applications of cell-free fetal DNA. Copyright 2009 S. Karger AG, Basel.

  16. Plasma Cell-Free DNA in Paediatric Lymphomas

    Mussolin, Lara; Burnelli, Roberta; Pillon, Marta; Carraro, Elisa; Farruggia, Piero; Todesco, Alessandra; Mascarin, Maurizio; Rosolen, Angelo

    2013-01-01

    Background: Extracellular circulating DNA (cfDNA) can be found in small amounts in plasma of healthy individuals. Increased levels of cfDNA have been reported in patients with cancer of breast, cervix, colon, liver and it was shown that cfDNA can originate from both tumour and non-tumour cells. Objectives: Levels of cfDNA of a large series of children with lymphoma were evaluated and analyzed in relation with clinical characteristics. Methods: plasma cfDNA levels obtained at diagnosis in 201 paediatric lymphoma patients [43 Hodgkin lymphomas (HL), 45 anaplastic large cell lymphomas (ALCL), 88 Burkitt lymphomas (BL), 17 lymphoblastic (LBL), 8 diffuse large B cell lymphoma (DLBCL)] and 15 healthy individuals were determined using a quantitative PCR assay for POLR2 gene and, in addition, for NPM-ALK fusion gene in ALCL patients. Wilcoxon rank sum test was used to compare plasma levels among different patient subgroups and controls and to analyze relationship between levels of cfDNA and clinical characteristics. Results: Levels of cfDNA in lymphoma patients were significantly higher compared with controls (p<0.0001). CfDNA was associated with median age (p=0.01) in HL, and with stage in ALCL (p=0.01). In HL patients high cfDNA levels were correlated with poor prognosis (p=0.03). In ALCL we found that most of the cfDNA (77%) was non-tumor DNA. Conclusion: level of plasma cfDNA might constitute an important non-invasive tool at diagnosis in lymphoma patients' management; in particular in patients with HL, cfDNA seems to be a promising prognostic biomarker. PMID:23678368

  17. Cell-free DNA in healthy individuals, noncancerous disease and strong prognostic value in colorectal cancer

    Spindler, Karen-Lise Garm; Appelt, Ane L; Pallisgaard, Niels

    2014-01-01

    The purpose was to investigate total cell-free DNA (cfDNA) in colorectal cancer (CRC) patients during treatment with second-line chemotherapy and in healthy controls and patients with different comorbidities. Patient treated with second-line irinotecan for metastatic CRC (n = 100), a cohort...

  18. Controls to validate plasma samples for cell free DNA quantification

    Pallisgaard, Niels; Spindler, Karen-Lise Garm; Andersen, Rikke Fredslund

    2015-01-01

    , are diverging due to methodological differences with lack of standardisation and definition of sensitivity. The new biological information has not yet come into routine use. The present study presents external standardisation by spiking with non-human DNA fragments to control for loss of DNA during sample...... preparation and measurement. It also suggests a method to control for admixture of DNA from normal lymphocytes by utilizing the unique immunoglobulin gene rearrangement in the B-cells. The results show that this approach improves the quality of the analysis and lowers the risk of falsely increased values...

  19. Cell-Free DNA in Metastatic Colorectal Cancer

    Spindler, Karen-Lise G.; Boysen, Anders K.; Pallisgard, Niels

    2017-01-01

    -analysis of the prognostic value of total cfDNA in patients with metastatic colorectal cancer (mCRC) treated with chemotherapy. In addition, we report on the overall performance of cfDNA as source for KRAS mutation detection. MATERIALS AND METHODS: A systematic literature search of PubMed and Embase was performed by two......BACKGROUND: Circulating DNA can be detected and quantified in the blood of cancer patients and used for detection of tumor-specific genetic alterations. The clinical utility has been intensively investigated for the past 10 years. The majority of reports focus on analyzing the clinical potential...

  20. Elevated levels of cell-free circulating DNA in patients with acute dengue virus infection.

    Tran Thi Ngoc Ha

    Full Text Available BACKGROUND: Apoptosis is thought to play a role in the pathogenesis of severe dengue and the release of cell-free DNA into the circulatory system in several medical conditions. Therefore, we investigated circulating DNA as a potential biomarker for severe dengue. METHODS AND FINDINGS: A direct fluorometric degradation assay using PicoGreen was performed to quantify cell-free DNA from patient plasma. Circulating DNA levels were significantly higher in patients with dengue virus infection than with other febrile illnesses and healthy controls. Remarkably, the increase of DNA levels correlated with the severity of dengue. Additionally, multivariate logistic regression analysis showed that circulating DNA levels independently correlated with dengue shock syndrome. CONCLUSIONS: Circulating DNA levels were increased in dengue patients and correlated with dengue severity. Additional studies are required to show the benefits of this biomarker in early dengue diagnosis and for the prognosis of shock complication.

  1. Cell-free DNA, inflammation, and the initiation of spontaneous term labor.

    Herrera, Christina A; Stoerker, Jay; Carlquist, John; Stoddard, Gregory J; Jackson, Marc; Esplin, Sean; Rose, Nancy C

    2017-11-01

    Hypomethylated cell-free DNA from senescent placental trophoblasts may be involved in the activation of the inflammatory cascade to initiate labor. To determine the changes in cell-free DNA concentrations, the methylation ratio, and inflammatory markers between women in labor at term vs women without labor. In this prospective cohort study, eligible participants carried a nonanomalous singleton fetus. Women with major medical comorbidity, preterm labor, progesterone use, aneuploidy, infectious disease, vaginal bleeding, abdominal trauma, or invasive procedures during the pregnancy were excluded. Maternal blood samples were collected at 28 weeks, 36 weeks, and at admission for delivery. Total cell-free DNA concentration, methylation ratio, and interleukin-6 were analyzed. The primary outcome was the difference in methylation ratio in women with labor vs without labor. Secondary outcomes included the longitudinal changes in these biomarkers corresponding to labor status. A total of 55 women were included; 20 presented in labor on admission and 35 presented without labor. Women in labor had significantly greater methylation ratio (P = .001) and interleukin-6 (P < .001) on admission for delivery than women without labor. After we controlled for body mass index and maternal age, methylation ratio (adjusted relative risk, 1.38; 95% confidence interval, 1.13 to 1.68) and interleukin-6 (adjusted relative risk, 1.12, 95% confidence interval, 1.07 to 1.17) remained greater in women presenting in labor. Total cell-free DNA was not significantly different in women with labor compared with women without. Longitudinally, total cell-free DNA (P < .001 in labor, P = .002 without labor) and interleukin-6 (P < .001 in labor, P = .01 without labor) increased significantly across gestation in both groups. The methylation ratio increased significantly in women with labor from 36 weeks to delivery (P = .02). Spontaneous labor at term is associated with a greater cell-free DNA

  2. Rapid Detection of Cell-Free Mycobacterium tuberculosis DNA in Tuberculous Pleural Effusion.

    Che, Nanying; Yang, Xinting; Liu, Zichen; Li, Kun; Chen, Xiaoyou

    2017-05-01

    Tuberculous pleurisy is one of the most common types of extrapulmonary tuberculosis, but its diagnosis remains difficult. In this study, we report for the first time on the detection of cell-free Mycobacterium tuberculosis DNA in pleural effusion and an evaluation of a newly developed molecular assay for the detection of cell-free Mycobacterium tuberculosis DNA. A total of 78 patients with pleural effusion, 60 patients with tuberculous pleurisy, and 18 patients with alternative diseases were included in this study. Mycobacterial culture, the Xpert MTB/RIF assay, the adenosine deaminase assay, the T-SPOT.TB assay, and the cell-free Mycobacterium tuberculosis DNA assay were performed on all the pleural effusion samples. The cell-free Mycobacterium tuberculosis DNA assay and adenosine deaminase assay showed significantly higher sensitivities of 75.0% and 68.3%, respectively, than mycobacterial culture and the Xpert MTB/RIF assay, which had sensitivities of 26.7% and 20.0%, respectively ( P pleural effusion showed the highest sensitivity of 95.0% but the lowest specificity of 38.9%. The cell-free Mycobacterium tuberculosis DNA assay detected as few as 1.25 copies of IS 6110 per ml of pleural effusion and showed good accordance of the results between repeated tests ( r = 0.978, P = 2.84 × 10 -10 ). These data suggest that the cell-free Mycobacterium tuberculosis DNA assay is a rapid and accurate molecular test which provides direct evidence of Mycobacterium tuberculosis etiology. Copyright © 2017 American Society for Microbiology.

  3. Value of urinary topoisomerase-IIA cell-free DNA for diagnosis of bladder cancer.

    Kim, Ye-Hwan; Yan, Chunri; Lee, Il-Seok; Piao, Xuan-Mei; Byun, Young Joon; Jeong, Pildu; Kim, Won Tae; Yun, Seok-Joong; Kim, Wun-Jae

    2016-03-01

    Topoisomerase-II alpha (TopoIIA ), a DNA gyrase isoform that plays an important role in the cell cycle, is present in normal tissues and various human cancers, and can show altered expression in both. The aim of the current study was to examine the value of urinary TopoIIA cell-free DNA as a noninvasive diagnosis of bladder cancer (BC). Two patient cohorts were examined. Cohort 1 (73 BC patients and seven controls) provided bladder tissue samples, whereas cohort 2 (83 BC patients, 54 nonmalignant hematuric patients, and 61 normal controls) provided urine samples. Real-time quantitative polymerase chain reaction was used to measure expression of TopoIIA mRNA in tissues and TopoIIA cell-free DNA in urine samples. The results showed that expression of TopoIIA mRNA in BC tissues was significantly higher than that in noncancer control tissues (pbladder cancer (MIBC) when compared with nonmuscle invasive bladder cancer (NMIBC) (p=0.002). Receiver operating characteristics (ROC) curve analysis was performed to examine the sensitivity/specificity of urinary TopoIIA cell-free DNA for diagnosing BC, NMIBC, and MIBC. The areas under the ROC curve for BC, NMIBC, and MIBC were 0.741, 0.701, and 0.838, respectively. In summary, the results of this study provide evidence that cell-free TopoIIA DNA may be a potential biomarker for BC.

  4. An Economic Analysis of Cell-Free DNA Non-Invasive Prenatal Testing in the US General Pregnancy Population.

    Peter Benn

    Full Text Available Analyze the economic value of replacing conventional fetal aneuploidy screening approaches with non-invasive prenatal testing (NIPT in the general pregnancy population.Using decision-analysis modeling, we compared conventional screening to NIPT with cell-free DNA (cfDNA analysis in the annual US pregnancy population. Sensitivity and specificity for fetal aneuploidies, trisomy 21, trisomy 18, trisomy 13, and monosomy X, were estimated using published data and modeling of both first- and second trimester screening. Costs were assigned for each prenatal test component and for an affected birth. The overall cost to the healthcare system considered screening costs, the number of aneuploid cases detected, invasive procedures performed, procedure-related euploid losses, and affected pregnancies averted. Sensitivity analyses evaluated the effect of variation in parameters. Costs were reported in 2014 US Dollars.Replacing conventional screening with NIPT would reduce healthcare costs if it can be provided for $744 or less in the general pregnancy population. The most influential variables were timing of screening entry, screening costs, and pregnancy termination rates. Of the 13,176 affected pregnancies undergoing screening, NIPT detected 96.5% (12,717/13,176 of cases, compared with 85.9% (11,314/13,176 by conventional approaches. NIPT reduced invasive procedures by 60.0%, with NIPT and conventional methods resulting in 24,596 and 61,430 invasive procedures, respectively. The number of procedure-related euploid fetal losses was reduced by 73.5% (194/264 in the general screening population.Based on our analysis, universal application of NIPT would increase fetal aneuploidy detection rates and can be economically justified. Offering this testing to all pregnant women is associated with substantial prenatal healthcare benefits.

  5. Increased cell-free DNA concentrations in patients with obstructive sleep apnea.

    Shin, Chol; Kim, Jin K; Kim, Je H; Jung, Ki H; Cho, Kyung J; Lee, Chang K; Lee, Seung G

    2008-12-01

    Blood concentrations of cell-free DNA, which is considered to be released during apoptosis, are elevated under some pathological conditions such as cardiovascular disease and cancer. The association between obstructive sleep apnea (OSA) and cell-free DNA concentrations has not been reported so far. The purpose of the present study was to examine the association between OSA and plasma DNA concentrations. A case-control study was conducted using a total of 164 men aged 39-67 years, who were free of coronary heart disease and cancer. Laboratory-based overnight polysomnography was performed for all participants. On the basis of polysomnography, patients with an apnea-hypopnea index (AHI) = 5-30 events/h were defined as having mild-moderate OSA (n = 33) and those with >30 events/h were defined as having severe OSA (n = 49). All 82 controls had AHI DNA concentrations from all participants were analyzed for the beta-globin gene using fluorescence-based real-time polymerase chain reaction. Patients with severe OSA had significantly higher plasma DNA concentrations than persons with mild-moderate OSA and those without OSA (P DNA concentration (P DNA concentrations (>8 microg/L) had approximately fourfold higher odds of OSA than those with low DNA levels. Further data are warranted to confirm the association for men and to evaluate the association for women.

  6. Cell-free DNA in a three-dimensional spheroid cell culture model

    Aucamp, Janine; Calitz, Carlemi; Bronkhorst, Abel J.

    2017-01-01

    Background Investigating the biological functions of cell-free DNA (cfDNA) is limited by the interference of vast numbers of putative sources and causes of DNA release into circulation. Utilization of three-dimensional (3D) spheroid cell cultures, models with characteristics closer to the in vivo...... cultures can serve as effective, simplified in vivo-simulating “closed-circuit” models since putative sources of cfDNA are limited to only the targeted cells. In addition, cfDNA can also serve as an alternative or auxiliary marker for tracking spheroid growth, development and culture stability. Biological...... significance 3D cell cultures can be used to translate “closed-circuit” in vitro model research into data that is relevant for in vivo studies and clinical applications. In turn, the utilization of cfDNA during 3D culture research can optimize sample collection without affecting the stability of the growth...

  7. Cell-Free DNA in Metastatic Colorectal Cancer: A Systematic Review and Meta-Analysis.

    Spindler, Karen-Lise G; Boysen, Anders K; Pallisgård, Niels; Johansen, Julia S; Tabernero, Josep; Sørensen, Morten M; Jensen, Benny V; Hansen, Torben F; Sefrioui, David; Andersen, Rikke F; Brandslund, Ivan; Jakobsen, Anders

    2017-09-01

    Circulating DNA can be detected and quantified in the blood of cancer patients and used for detection of tumor-specific genetic alterations. The clinical utility has been intensively investigated for the past 10 years. The majority of reports focus on analyzing the clinical potential of tumor-specific mutations, whereas the use of total cell-free DNA (cfDNA) quantification is somehow controversial and sparsely described in the literature, but holds important clinical information in itself. The purpose of the present report was to present a systematic review and meta-analysis of the prognostic value of total cfDNA in patients with metastatic colorectal cancer (mCRC) treated with chemotherapy. In addition, we report on the overall performance of cfDNA as source for KRAS mutation detection. A systematic literature search of PubMed and Embase was performed by two independent investigators. Eligibility criteria were (a) total cfDNA analysis, (b) mCRC, and (c) prognostic value during palliative treatment. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were followed, and meta-analysis applied on both aggregate data extraction and individual patients' data. Ten eligible cohorts were identified, including a total of 1,076 patients. Seven studies used quantitative polymerase chain reaction methods, two BEAMing [beads, emulsification, amplification, and magnetics] technology, and one study digital droplet polymerase chain reaction. The baseline levels of cfDNA was similar in the presented studies, and all studies reported a clear prognostic value in favor of patients with lowest levels of baseline cfDNA. A meta-analysis revealed a combined estimate of favorable overall survival hazard ratio (HR) in patients with levels below the median cfDNA (HR = 2.39, 95% confidence interval 2.03-2.82, p  meta-analysis. Reliable prognostic markers could help to guide patients and treating physicians regarding the relevance and choice of

  8. Pre-Analytical Conditions in Non-Invasive Prenatal Testing of Cell-Free Fetal RHD

    Clausen, Frederik Banch; Jakobsen, Tanja Roien; Rieneck, Klaus

    2013-01-01

    D positive fetus. Prophylaxis reduces the risk of immunization that may lead to hemolytic disease of the fetus and the newborn. The reliability of predicting the fetal RhD type depends on pre-analytical factors and assay sensitivity. We evaluated the testing setup in the Capital Region of Denmark, based...

  9. Investigation of cell-free DNA in canine plasma and its relation to disease.

    Burnett, Deborah L; Cave, Nicholas J; Gedye, Kristene R; Bridges, Janis P

    2016-09-01

    DNA is released from dying cells during apoptosis and necrosis. This cell-free DNA (cfDNA) diffuses into the plasma where it can be measured. In humans, an increase in cfDNA correlates with disease severity and prognosis. It was hypothesized that when DNA in canine plasma was measured by emission fluorometry without prior DNA extraction, the concentration of cfDNA would increase with disease severity. The diseased population consisted of 97 client-owned dogs. The clinically normal population consisted of nine client-owned dogs presenting for 'wellness screens', and 15 colony-owned Harrier Hounds. Plasma cfDNA was measured by fluorometry without prior DNA extraction. The effects of ex vivo storage conditions were evaluated in plasma from two clinically normal dogs. In all other dogs, plasma was separated within two hours of collection. The association between the cfDNA concentration in hospitalized dogs and a variety of clinical, clinicopathological and outcome variables was tested. The concentration of cfDNA was reliably measured when plasma was separated within two hours of blood collection. The diseased dogs had significantly higher cfDNA than clinically normal dogs (P Dogs that did not survive to discharge had significantly higher cfDNA concentrations than survivors (P = 0.02). Conclusions/Clinical Importance: The concentration of cfDNA in the plasma of diseased dogs is associated with disease severity and prognosis. Measurement of canine cfDNA could be a useful non-specific disease indicator and prognostic tool.

  10. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors.

    Adalsteinsson, Viktor A; Ha, Gavin; Freeman, Samuel S; Choudhury, Atish D; Stover, Daniel G; Parsons, Heather A; Gydush, Gregory; Reed, Sarah C; Rotem, Denisse; Rhoades, Justin; Loginov, Denis; Livitz, Dimitri; Rosebrock, Daniel; Leshchiner, Ignaty; Kim, Jaegil; Stewart, Chip; Rosenberg, Mara; Francis, Joshua M; Zhang, Cheng-Zhong; Cohen, Ofir; Oh, Coyin; Ding, Huiming; Polak, Paz; Lloyd, Max; Mahmud, Sairah; Helvie, Karla; Merrill, Margaret S; Santiago, Rebecca A; O'Connor, Edward P; Jeong, Seong H; Leeson, Rachel; Barry, Rachel M; Kramkowski, Joseph F; Zhang, Zhenwei; Polacek, Laura; Lohr, Jens G; Schleicher, Molly; Lipscomb, Emily; Saltzman, Andrea; Oliver, Nelly M; Marini, Lori; Waks, Adrienne G; Harshman, Lauren C; Tolaney, Sara M; Van Allen, Eliezer M; Winer, Eric P; Lin, Nancy U; Nakabayashi, Mari; Taplin, Mary-Ellen; Johannessen, Cory M; Garraway, Levi A; Golub, Todd R; Boehm, Jesse S; Wagle, Nikhil; Getz, Gad; Love, J Christopher; Meyerson, Matthew

    2017-11-06

    Whole-exome sequencing of cell-free DNA (cfDNA) could enable comprehensive profiling of tumors from blood but the genome-wide concordance between cfDNA and tumor biopsies is uncertain. Here we report ichorCNA, software that quantifies tumor content in cfDNA from 0.1× coverage whole-genome sequencing data without prior knowledge of tumor mutations. We apply ichorCNA to 1439 blood samples from 520 patients with metastatic prostate or breast cancers. In the earliest tested sample for each patient, 34% of patients have ≥10% tumor-derived cfDNA, sufficient for standard coverage whole-exome sequencing. Using whole-exome sequencing, we validate the concordance of clonal somatic mutations (88%), copy number alterations (80%), mutational signatures, and neoantigens between cfDNA and matched tumor biopsies from 41 patients with ≥10% cfDNA tumor content. In summary, we provide methods to identify patients eligible for comprehensive cfDNA profiling, revealing its applicability to many patients, and demonstrate high concordance of cfDNA and metastatic tumor whole-exome sequencing.

  11. Urinary Cell-Free DNA Quantification as Non-Invasive Biomarker in Patients with Bladder Cancer.

    Brisuda, Antonin; Pazourkova, Eva; Soukup, Viktor; Horinek, Ales; Hrbáček, Jan; Capoun, Otakar; Svobodova, Iveta; Pospisilova, Sarka; Korabecna, Marie; Mares, Jaroslav; Hanuš, Tomáš; Babjuk, Marek

    2016-01-01

    Concentration of urinary cell-free DNA (ucfDNA) belongs to potential bladder cancer markers, but the reported results are inconsistent due to the use of various non-standardised methodologies. The aim of the study was to standardise the methodology for ucfDNA quantification as a potential non-invasive tumour biomarker. In total, 66 patients and 34 controls were enrolled into the study. Volumes of each urine portion (V) were recorded and ucfDNA concentrations (c) were measured using real-time PCR. Total amounts (TA) of ucfDNA were calculated and compared between patients and controls. Diagnostic accuracy of the TA of ucfDNA was determined. The calculation of TA of ucfDNA in the second urine portion was the most appropriate approach to ucfDNA quantification, as there was logarithmic dependence between the volume and the concentration of a urine portion (p = 0.0001). Using this methodology, we were able to discriminate between bladder cancer patients and subjects without bladder tumours (p = 0.0002) with area under the ROC curve of 0.725. Positive and negative predictive value of the test was 90 and 45%, respectively. Quantification of ucf DNA according to our modified method could provide a potential non-invasive biomarker for diagnosis of patients with bladder cancer. © 2015 S. Karger AG, Basel.

  12. Quantification of transplant-derived circulating cell-free DNA in absence of a donor genotype.

    Sharon, Eilon; Shi, Hao; Kharbanda, Sandhya; Koh, Winston; Martin, Lance R; Khush, Kiran K; Valantine, Hannah; Pritchard, Jonathan K; De Vlaminck, Iwijn

    2017-08-01

    Quantification of cell-free DNA (cfDNA) in circulating blood derived from a transplanted organ is a powerful approach to monitoring post-transplant injury. Genome transplant dynamics (GTD) quantifies donor-derived cfDNA (dd-cfDNA) by taking advantage of single-nucleotide polymorphisms (SNPs) distributed across the genome to discriminate donor and recipient DNA molecules. In its current implementation, GTD requires genotyping of both the transplant recipient and donor. However, in practice, donor genotype information is often unavailable. Here, we address this issue by developing an algorithm that estimates dd-cfDNA levels in the absence of a donor genotype. Our algorithm predicts heart and lung allograft rejection with an accuracy that is similar to conventional GTD. We furthermore refined the algorithm to handle closely related recipients and donors, a scenario that is common in bone marrow and kidney transplantation. We show that it is possible to estimate dd-cfDNA in bone marrow transplant patients that are unrelated or that are siblings of the donors, using a hidden Markov model (HMM) of identity-by-descent (IBD) states along the genome. Last, we demonstrate that comparing dd-cfDNA to the proportion of donor DNA in white blood cells can differentiate between relapse and the onset of graft-versus-host disease (GVHD). These methods alleviate some of the barriers to the implementation of GTD, which will further widen its clinical application.

  13. Quantification of transplant-derived circulating cell-free DNA in absence of a donor genotype.

    Eilon Sharon

    2017-08-01

    Full Text Available Quantification of cell-free DNA (cfDNA in circulating blood derived from a transplanted organ is a powerful approach to monitoring post-transplant injury. Genome transplant dynamics (GTD quantifies donor-derived cfDNA (dd-cfDNA by taking advantage of single-nucleotide polymorphisms (SNPs distributed across the genome to discriminate donor and recipient DNA molecules. In its current implementation, GTD requires genotyping of both the transplant recipient and donor. However, in practice, donor genotype information is often unavailable. Here, we address this issue by developing an algorithm that estimates dd-cfDNA levels in the absence of a donor genotype. Our algorithm predicts heart and lung allograft rejection with an accuracy that is similar to conventional GTD. We furthermore refined the algorithm to handle closely related recipients and donors, a scenario that is common in bone marrow and kidney transplantation. We show that it is possible to estimate dd-cfDNA in bone marrow transplant patients that are unrelated or that are siblings of the donors, using a hidden Markov model (HMM of identity-by-descent (IBD states along the genome. Last, we demonstrate that comparing dd-cfDNA to the proportion of donor DNA in white blood cells can differentiate between relapse and the onset of graft-versus-host disease (GVHD. These methods alleviate some of the barriers to the implementation of GTD, which will further widen its clinical application.

  14. Direct quantification of cell-free, circulating DNA from unpurified plasma.

    Breitbach, Sarah; Tug, Suzan; Helmig, Susanne; Zahn, Daniela; Kubiak, Thomas; Michal, Matthias; Gori, Tommaso; Ehlert, Tobias; Beiter, Thomas; Simon, Perikles

    2014-01-01

    Cell-free DNA (cfDNA) in body tissues or fluids is extensively investigated in clinical medicine and other research fields. In this article we provide a direct quantitative real-time PCR (qPCR) as a sensitive tool for the measurement of cfDNA from plasma without previous DNA extraction, which is known to be accompanied by a reduction of DNA yield. The primer sets were designed to amplify a 90 and 222 bp multi-locus L1PA2 sequence. In the first module, cfDNA concentrations in unpurified plasma were compared to cfDNA concentrations in the eluate and the flow-through of the QIAamp DNA Blood Mini Kit and in the eluate of a phenol-chloroform isoamyl (PCI) based DNA extraction, to elucidate the DNA losses during extraction. The analyses revealed 2.79-fold higher cfDNA concentrations in unpurified plasma compared to the eluate of the QIAamp DNA Blood Mini Kit, while 36.7% of the total cfDNA were found in the flow-through. The PCI procedure only performed well on samples with high cfDNA concentrations, showing 87.4% of the concentrations measured in plasma. The DNA integrity strongly depended on the sample treatment. Further qualitative analyses indicated differing fractions of cfDNA fragment lengths in the eluate of both extraction methods. In the second module, cfDNA concentrations in the plasma of 74 coronary heart disease patients were compared to cfDNA concentrations of 74 healthy controls, using the direct L1PA2 qPCR for cfDNA quantification. The patient collective showed significantly higher cfDNA levels (mean (SD) 20.1 (23.8) ng/ml; range 5.1-183.0 ng/ml) compared to the healthy controls (9.7 (4.2) ng/ml; range 1.6-23.7 ng/ml). With our direct qPCR, we recommend a simple, economic and sensitive procedure for the quantification of cfDNA concentrations from plasma that might find broad applicability, if cfDNA became an established marker in the assessment of pathophysiological conditions.

  15. Aberrant methylation of cell-free circulating DNA in plasma predicts poor outcome in diffuse large B cell lymphoma

    Sommer Kristensen, Lasse; Hansen, Jakob Werner; Kristensen, Søren Sommer

    2016-01-01

    BACKGROUND: The prognostic value of aberrant DNA methylation of cell-free circulating DNA in plasma has not previously been evaluated in diffuse large B cell lymphoma (DLBCL). The aim of this study was to investigate if aberrant promoter DNA methylation can be detected in plasma from DLBCL patients...

  16. Preanalytical blood sample workup for cell-free DNA analysis using Droplet Digital PCR for future molecular cancer diagnostics

    van Ginkel, Joost H.; van den Broek, Daan A.; van Kuik, Joyce; Linders, Dorothé; de Weger, Roel; Willems, Stefan M.; Huibers, Manon M.H.

    2017-01-01

    In current molecular cancer diagnostics, using blood samples of cancer patients for the detection of genetic alterations in plasma (cell-free) circulating tumor DNA (ctDNA) is an emerging practice. Since ctDNA levels in blood are low, highly sensitive Droplet Digital PCR (ddPCR) can be used for

  17. Plasma cell-free mitochondrial DNA declines in response to prolonged moderate aerobic exercise.

    Shockett, Penny E; Khanal, Januka; Sitaula, Alina; Oglesby, Christopher; Meachum, William A; Castracane, V Daniel; Kraemer, Robert R

    2016-01-01

    Increased plasma cell-free mitochondrial DNA (cf-mDNA), a damage-associated molecular pattern (DAMP) produced by cellular injury, contributes to neutrophil activation/inflammation in trauma patients and arises in cancer and autoimmunity. To further understand relationships between cf-mDNA released by tissue injury, inflammation, and health benefits of exercise, we examined cf-mDNA response to prolonged moderate aerobic exercise. Seven healthy moderately trained young men (age = 22.4 ± 1.2) completed a treadmill exercise trial for 90 min at 60% VO2 max and a resting control trial. Blood was sampled immediately prior to exercise (0 min = baseline), during (+18, +54 min), immediately after (+90 min), and after recovery (R40). Plasma was analyzed for cf-mDNA, IL-6, and lactate. A significant difference in cf-mDNA response was observed between exercise and control trials, with cf-mDNA levels reduced during exercise at +54 and +90 (with or without plasma volume shift correction). Declines in cf-mDNA were accompanied by increased lactate and followed by an increase in IL-6, suggesting a temporal association with muscle stress and inflammatory processes. Our novel finding of cf-mDNA decline with prolonged moderate treadmill exercise provides evidence for increased clearance from or reduced release of cf-mDNA into the blood with prolonged exercise. These studies contrast with previous investigations involving exhaustive short-term treadmill exercise, in which no change in cf-mDNA levels were reported, and contribute to our understanding of differences between exercise- and trauma-induced inflammation. We propose that transient declines in cf-mDNA may induce health benefits, by reducing systemic inflammation. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  18. Nucleotide-excision repair of DNA in cell-free extracts of the yeast Saccharomyces cerevisiae

    Wang, Z.; Wu, X.; Friedberg, E.C.

    1993-01-01

    A wide spectrum of DNA lesions are repaired by the nucleotide-excision repair (NER) pathway in both eukaryotic and prokaryotic cells. We have developed a cell-free system in Saccharomyces cerevisiae that supports NER. NER was monitored by measuring repair synthesis in DNA treated with cisplatin or with UV radiation. Repair synthesis in vitro was defective in extracts of rad1, rad2, and rad10 mutant cells, all of which have mutations in genes whose products are known to be required for NER in vivo. Additionally, repair synthesis was complemented by mixing different mutant extracts, or by adding purified Rad1 or Rad10 protein to rad1 or rad10 mutant extracts, respectively. The latter observation demonstrates that the Rad1 and Rad10 proteins directly participate in the biochemical pathway of NER. NER supported by nuclear extracts requires ATP and Mg 2+ and is stimulated by polyethylene glycol and by small amounts of whole cell extract containing overexpressed Rad2 protein. The nuclear extracts also contain base-excision repair activity that is present at wild-type levels in rad mutant extracts. This cell-free system is expected to facilitate studies on the biochemical pathway of NER in S. cerevisiae

  19. Circulating cell-free DNA and circulating tumor cells, the "liquid biopsies" in ovarian cancer.

    Cheng, Xianliang; Zhang, Lei; Chen, Yajuan; Qing, Chen

    2017-11-13

    Limited understanding of ovarian cancer (OC) genome portrait has hindered the therapeutic advances. The serial monitoring of tumor genotypes is becoming increasingly attainable with circulating cell-free DNA (cf-DNA) and circulating tumor cells (CTCs) emerging as "liquid biopsies". They represent non-invasive biomarkers and are viable, as they can be isolated from human plasma, serum and other body fluids. Molecular characterization of circulating tumor DNA (ct-DNA) and CTCs offer unique potentials to better understand the biology of metastasis and resistance to therapies. The liquid biopsies may also give innovative insights into the process of rapid and accurate identification, resistant genetic alterations and a real time monitoring of treatment responses. In addition, liquid biopsies are shedding light on elucidating signal pathways involved in invasiveness and metastasis competence; but the detection and molecular characterization of ct-DNA and CTCs are still challenging, since they are rare, and the amount of available samples are very limited. This review will focus on the clinical potential of ct-DNA and CTCs in both the early and advanced diagnosis, prognosis, and in the identification of resistance mutations in OC.

  20. Clinical utility of circulating cell-free DNA in advanced colorectal cancer.

    Allan A Lima Pereira

    Full Text Available Circulating cell-free DNA (cfDNA isolated from the plasma of cancer patients (pts has been shown to reflect the genomic mutation profile of the tumor. However, physician and patient assessment of clinical utility of these assays in patients with metastatic colorectal cancer (mCRC has not been previously described.Patients were prospectively consented to a prospective genomic matching protocol (Assessment of Targeted Therapies Against Colorectal Cancer [ATTACC], with collection of blood for cfDNA extraction and sequencing of a 54-gene panel in a CLIA-certified lab. Formalin-fixed, paraffin-embedded (FFPE tissue from prior resections or biopsies underwent 50-gene sequencing. Results from both assays were returned to the treating physicians for patient care and clinical trial selection. Follow-up surveys of treating physicians and chart reviews assessed clinical utility.128 mCRC pts were enrolled between 6/2014 and 1/2015. Results were returned in median of 13 and 26 days for cfDNA and FFPE sequencing, respectively. With cfDNA sequencing, 78% (100/128 of samples had a detectable somatic genomic alteration. 50% of cfDNA cases had potentially actionable alterations, and 60% of these could be genomically matched to at least one clinical trial in our institution. 50% (15/30 of these pts enrolled onto an identified matched trial. Physicians reported that the cfDNA testing improved the quality of care they could provide in 73% of the cases, and that 89% of pts reported greater satisfaction with the efforts to personalize experimental therapeutic agents.cfDNA sequencing can provide timely information on potentially actionable mutations and amplifications, thereby facilitating clinical trial enrollment and improving the perceived quality of care.

  1. Cell-free DNA levels and correlation to stage and outcome following treatment of locally advanced rectal cancer.

    Boysen, Anders Kindberg; Wettergren, Yvonne; Sorensen, Boe Sandahl; Taflin, Helena; Gustavson, Bengt; Spindler, Karen-Lise Garm

    2017-11-01

    Accurate staging of rectal cancer remains essential for optimal patient selection for combined modality treatment, including radiotherapy, chemotherapy and surgery. We aimed at examining the correlation of cell free DNA with the pathologic stage and subsequent risk of recurrence for patients with locally advanced rectal cancer undergoing preoperative chemoradiation. We examined 75 patients with locally advanced rectal cancer receiving preoperative chemoradiation. Blood samples for translational use were drawn prior to rectal surgery. The level of cell free DNA was quantified by digital droplet PCR and expressed as copy number of beta 2 microglobulin. We found a median level of cell free DNA in the AJCC stages I-III of 3100, 8300, and 10,700 copies/mL respectively. For patients with 12 sampled lymph nodes or above, the median level of cell free DNA were 2400 copies/mL and 4400 copies/mL (p = 0.04) for node negative and node positive disease respectively. The median follow-up was 39 months and 11 recurrences were detected (15%). The median level for patients with recurrent disease was 13,000 copies/mL compared to 5200 copies/mL for non-recurrent patients (p = 0.08). We have demonstrated a correlation between the level of total cell free DNA and the pathologic stage and nodal involvement. Furthermore, we have found a trend towards a correlation with the risk of recurrence following resection of localized rectal cancer.

  2. Role of fetal DNA in preeclampsia (review).

    Konečná, Barbora; Vlková, Barbora; Celec, Peter

    2015-02-01

    Preeclampsia is an autoimmune disorder characterized by hypertension. It begins with abnormal cytotrophoblast apoptosis, which leads to inflammation and an increase in the levels of anti-angiogenic factors followed by the disruption of the angiogenic status. Increased levels of fetal DNA and RNA coming from the placenta, one of the most commonly affected organs in pregnancies complicated by preeclampsia, have been found in pregnant women with the condition. However, it remains unknown as to whether this is a cause or a consequence of preeclampsia. Few studies have been carried out on preeclampsia in which an animal model of preeclampsia was induced by an injection of different types of DNA that are mimic fetal DNA and provoke inflammation through Toll-like receptor 9 (TLR9) or cyclic guanosine monophosphate-adenosine monophosphate (cGAMP). The specific mechanisms involved in the development of preeclampsia are not yet fully understood. It is hypothesized that the presence of different fragments of fetal DNA in maternal plasma may cause for the development of preeclampsia. The function of DNase during preeclampsia also remains unresolved. Studies have suggested that its activity is decreased or the DNA is protected against its effects. Further research is required to uncover the pathogenesis of preeclampsia and focus more on the condition of patients with the condition.

  3. Transcriptional blockages in a cell-free system by sequence-selective DNA alkylating agents.

    Ferguson, L R; Liu, A P; Denny, W A; Cullinane, C; Talarico, T; Phillips, D R

    2000-04-14

    There is considerable interest in DNA sequence-selective DNA-binding drugs as potential inhibitors of gene expression. Five compounds with distinctly different base pair specificities were compared in their effects on the formation and elongation of the transcription complex from the lac UV5 promoter in a cell-free system. All were tested at drug levels which killed 90% of cells in a clonogenic survival assay. Cisplatin, a selective alkylator at purine residues, inhibited transcription, decreasing the full-length transcript, and causing blockage at a number of GG or AG sequences, making it probable that intrastrand crosslinks are the blocking lesions. A cyclopropylindoline known to be an A-specific alkylator also inhibited transcription, with blocks at adenines. The aniline mustard chlorambucil, that targets primarily G but also A sequences, was also effective in blocking the formation of full-length transcripts. It produced transcription blocks either at, or one base prior to, AA or GG sequences, suggesting that intrastrand crosslinks could again be involved. The non-alkylating DNA minor groove binder Hoechst 33342 (a bisbenzimidazole) blocked formation of the full-length transcript, but without creating specific blockage sites. A bisbenzimidazole-linked aniline mustard analogue was a more effective transcription inhibitor than either chlorambucil or Hoechst 33342, with different blockage sites occurring immediately as compared with 2 h after incubation. The blockages were either immediately prior to AA or GG residues, or four to five base pairs prior to such sites, a pattern not predicted from in vitro DNA-binding studies. Minor groove DNA-binding ligands are of particular interest as inhibitors of gene expression, since they have the potential ability to bind selectively to long sequences of DNA. The results suggest that the bisbenzimidazole-linked mustard does cause alkylation and transcription blockage at novel DNA sites. in addition to sites characteristic of

  4. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology.

    Breitbach, Sarah; Tug, Suzan; Simon, Perikles

    2012-07-01

    The phenomenon of circulating cell-free DNA (cfDNA) concentrations is of importance for many biomedical disciplines including the field of exercise physiology. Increases of cfDNA due to exercise are described to be a potential hallmark for the overtraining syndrome and might be related to, or trigger adaptations of, immune function induced by strenuous exercise. At the same time, exercise provides a practicable model for studying the phenomenon of cfDNA that is described to be of pathophysiological relevance for different topics in clinical medicine like autoimmune diseases and cancer. In this review, we are summarizing the current knowledge of exercise-based acute and chronic alterations in cfDNA levels and their physiological significance. The effects of acute exercise on cfDNA concentrations have been investigated in resistance exercises and in continuous, stepwise and interval endurance exercises of different durations. cfDNA concentrations peaked immediately after acute exercise and showed a rapid return to baseline levels. Typical markers of skeletal muscle damage (creatine kinase, uric acid, C-reactive protein) show delayed kinetics compared with the cfDNA peak response. Exercise parameters such as intensity, duration or average energy expenditure do not explain the extent of increasing cfDNA concentrations after strenuous exercise. This could be due to complex processes inside the human organism during and after physical activity. Therefore, we hypothesize composite effects of different physiological stress parameters that come along with exercise to be responsible for increasing cfDNA concentrations. We suggest that due to acute stress, cfDNA levels increase rapidly by a spontaneous active or passive release mechanism that is not yet known. As a result of the rapid and parallel increase of cfDNA and lactate in an incremental treadmill test leading to exhaustion within 15-20 minutes, it is unlikely that cfDNA is released into the plasma by typical necrosis

  5. Prognostic importance of cell-free DNA in chemotherapy resistant ovarian cancer treated with bevacizumab

    Steffensen, Karina Dahl; Madsen, Christine Vestergaard; Andersen, Rikke Fredslund

    2014-01-01

    of EOC in combination with chemotherapy. However, only a minor subgroup will benefit from the treatment and there is an obvious need for new markers to select such patients. The purpose of this study was to investigate the effect of single-agent bevacizumab in multiresistant EOC and the importance......-agent bevacizumab treatment in multiresistant EOC appears to be a valuable treatment option with acceptable side-effects. Cell-free DNA showed independent prognostic importance in patients treated with bevacizumab and could be applied as an adjunct for treatment selection.......AIM: Treatment of multiresistant epithelial ovarian cancer (EOC) is palliative and patients who have become resistant after multiple lines of chemotherapy often have an unmet need for further and less toxic treatment. Anti-angiogenic therapy has attracted considerable attention in the treatment...

  6. Tumor Cell-Free DNA Copy Number Instability Predicts Therapeutic Response to Immunotherapy.

    Weiss, Glen J; Beck, Julia; Braun, Donald P; Bornemann-Kolatzki, Kristen; Barilla, Heather; Cubello, Rhiannon; Quan, Walter; Sangal, Ashish; Khemka, Vivek; Waypa, Jordan; Mitchell, William M; Urnovitz, Howard; Schütz, Ekkehard

    2017-09-01

    Purpose: Chromosomal instability is a fundamental property of cancer, which can be quantified by next-generation sequencing (NGS) from plasma/serum-derived cell-free DNA (cfDNA). We hypothesized that cfDNA could be used as a real-time surrogate for imaging analysis of disease status as a function of response to immunotherapy and as a more reliable tool than tumor biomarkers. Experimental Design: Plasma cfDNA sequences from 56 patients with diverse advanced cancers were prospectively collected and analyzed in a single-blind study for copy number variations, expressed as a quantitative chromosomal number instability (CNI) score versus 126 noncancer controls in a training set of 23 and a blinded validation set of 33. Tumor biomarker concentrations and a surrogate marker for T regulatory cells (Tregs) were comparatively analyzed. Results: Elevated CNI scores were observed in 51 of 56 patients prior to therapy. The blinded validation cohort provided an overall prediction accuracy of 83% (25/30) and a positive predictive value of CNI score for progression of 92% (11/12). The combination of CNI score before cycle (Cy) 2 and 3 yielded a correct prediction for progression in all 13 patients. The CNI score also correctly identified cases of pseudo-tumor progression from hyperprogression. Before Cy2 and Cy3, there was no significant correlation for protein tumor markers, total cfDNA, or surrogate Tregs. Conclusions: Chromosomal instability quantification in plasma cfDNA can serve as an early indicator of response to immunotherapy. The method has the potential to reduce health care costs and disease burden for cancer patients following further validation. Clin Cancer Res; 23(17); 5074-81. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. The role of total cell-free DNA in predicting outcomes among trauma patients in the intensive care unit

    Gögenur, Mikail; Burcharth, Jakob; Gögenur, Ismail

    2017-01-01

    searched Pubmed, Embase, Scopus and the Cochrane Central Register for Controlled Trials and reference lists of relevant articles for studies that assessed the prognostic value of cell-free DNA detection in trauma patients in the intensive care unit. Outcomes of interest included survival, posttraumatic...

  8. Fetal hemoglobin is much less prone to DNA cleavage compared to the adult protein

    Sandeep Chakane

    2017-08-01

    Full Text Available Hemoglobin (Hb is well protected inside the red blood cells (RBCs. Upon hemolysis and when free in circulation, Hb can be involved in a range of radical generating reactions and may thereby attack several different biomolecules. In this study, we have examined the potential damaging effects of cell-free Hb on plasmid DNA (pDNA. Hb induced cleavage of supercoiled pDNA (sc pDNA which was proportional to the concentration of Hb applied. Almost 70% of sc pDNA was converted to open circular or linear DNA using 10 µM of Hb in 12 h. Hb can be present in several different forms. The oxy (HbO2 and met forms are most reactive, while the carboxy-protein shows only low hydrolytic activity. Hemoglobin A (HbA could easily induce complete pDNA cleavage while fetal hemoglobin (HbF was three-fold less reactive. By inserting, a redox active cysteine residue on the surface of the alpha chain of HbF by site-directed mutagenesis, the DNA cleavage reaction was enhanced by 82%. Reactive oxygen species were not directly involved in the reaction since addition of superoxide dismutase and catalase did not prevent pDNA cleavage. The reactivity of Hb with pDNA can rather be associated with the formation of protein based radicals. Keywords: Adult hemoglobin, Fetal hemoglobin, Supercoiled plasmid DNA, DNA cleavage, Cysteine, Protein radicals

  9. Cell-free mitochondrial DNA copy number variation in head and neck squamous cell carcinoma: A study of non-invasive biomarker from Northeast India.

    Kumar, Manish; Srivastava, Shilpee; Singh, Seram Anil; Das, Anup Kumar; Das, Ganesh Chandra; Dhar, Bishal; Ghosh, Sankar Kumar; Mondal, Rosy

    2017-10-01

    Head and neck squamous cell carcinoma is the most commonly diagnosed cancer worldwide. The lifestyle, food habits, and customary practices manifest the Northeast Indian population toward higher susceptibility to develop head and neck squamous cell carcinoma. Here, we have investigated the association of smoke and smokeless tobacco, and alcohol with copy number variation of cell-free mitochondrial DNA and cell-free nuclear DNA in cases and controls. Cell-free DNA from plasma was isolated from 50 head and neck squamous cell carcinoma cases and 50 controls with informed written consent using QIAamp Circulating Nucleic Acid Kit. Real-time polymerase chain reaction was done for copy number variation in cell-free mitochondrial DNA and cell-free nuclear DNA. Receiver operating characteristic curve analysis was performed to evaluate the diagnostic application between the two study groups using clinicopathological parameters. The levels of cell-free nuclear DNA and cell-free mitochondrial DNA of cases in association with smoke and smokeless tobacco, alcohol with smoking (p squamous cell carcinoma cases and controls, we distinguished cell-free mitochondrial DNA (cutoff: 19.84 raw Ct; sensitivity: 84%; specificity: 100%; p < 0.001) and cell-free nuclear DNA (cutoff: 463,282 genomic equivalent/mL; sensitivity: 53%; specificity: 87%; p < 0.001). The copy number variation in cases (cell-free nuclear DNA: 5451.66 genomic equivalent/mL and cell-free mitochondrial DNA: 29,103,476.15 genomic equivalent/mL) and controls (cell-free nuclear DNA: 1650.9 genomic equivalent/mL and cell-free mitochondrial DNA: 9,189,312.54 genomic equivalent/mL), respectively. Our result indicates that the cell-free mitochondrial DNA content is highly associated with smoke and smokeless tobacco, betel quid chewing, and alcohol which shows greater promises, holding the key characteristics of diagnostic biomarkers, that is, minimal invasiveness, high specificity, and sensitivity.

  10. Genome-wide DNA Methylation Profiling of Cell-Free Serum DNA in Esophageal Adenocarcinoma and Barrett Esophagus

    Rihong Zhai

    2012-01-01

    Full Text Available Aberrant DNA methylation (DNAm is a feature of most types of cancers. Genome-wide DNAm profiling has been performed successfully on tumor tissue DNA samples. However, the invasive procedure limits the utility of tumor tissue for epidemiological studies. While recent data indicate that cell-free circulating DNAm (cfDNAm profiles reflect DNAm status in corresponding tumor tissues, no studies have examined the association of cfDNAm with cancer or precursors on a genome-wide scale. The objective of this pilot study was to evaluate the putative significance of genome-wide cfDNAm profiles in esophageal adenocarcinoma (EA and Barrett esophagus (BE, EA precursor. We performed genome-wide DNAm profiling in EA tissue DNA (n = 8 and matched serum DNA (n = 8, in serum DNA of BE (n = 10, and in healthy controls (n = 10 using the Infinium HumanMethylation27 BeadChip that covers 27,578 CpG loci in 14,495 genes. We found that cfDNAm profiles were highly correlated to DNAm profiles in matched tumor tissue DNA (r = 0.92 in patients with EA. We selected the most differentially methylated loci to perform hierarchical clustering analysis. We found that 911 loci can discriminate perfectly between EA and control samples, 554 loci can separate EA from BE samples, and 46 loci can distinguish BE from control samples. These results suggest that genome-wide cfDNAm profiles are highly consistent with DNAm profiles detected in corresponding tumor tissues. Differential cfDNAm profiling may be a useful approach for the noninvasive screening of EA and EA premalignant lesions.

  11. Optimised 'on demand' protein arraying from DNA by cell free expression with the 'DNA to Protein Array' (DAPA) technology.

    Schmidt, Ronny; Cook, Elizabeth A; Kastelic, Damjana; Taussig, Michael J; Stoevesandt, Oda

    2013-08-02

    We have previously described a protein arraying process based on cell free expression from DNA template arrays (DNA Array to Protein Array, DAPA). Here, we have investigated the influence of different array support coatings (Ni-NTA, Epoxy, 3D-Epoxy and Polyethylene glycol methacrylate (PEGMA)). Their optimal combination yields an increased amount of detected protein and an optimised spot morphology on the resulting protein array compared to the previously published protocol. The specificity of protein capture was improved using a tag-specific capture antibody on a protein repellent surface coating. The conditions for protein expression were optimised to yield the maximum amount of protein or the best detection results using specific monoclonal antibodies or a scaffold binder against the expressed targets. The optimised DAPA system was able to increase by threefold the expression of a representative model protein while conserving recognition by a specific antibody. The amount of expressed protein in DAPA was comparable to those of classically spotted protein arrays. Reaction conditions can be tailored to suit the application of interest. DAPA represents a cost effective, easy and convenient way of producing protein arrays on demand. The reported work is expected to facilitate the application of DAPA for personalized medicine and screening purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Increased Plasma Cell-Free DNA Level during HTNV Infection: Correlation with Disease Severity and Virus Load

    Jing Yi

    2014-07-01

    Full Text Available Cell-free DNA (cf-DNA in blood represents a promising DNA damage response triggered by virus infection or trauma, tumor, etc. Hantavirus primarily causes two diseases: haemorrhagic fever with renal syndrome (HFRS and Hantavirus cardiopulmonary syndrome (HCPS, depending on different Hantavirus species. The aim of this study was to evaluate plasma cf-DNA levels in acute phase of HFRS, and to correlate plasma cf-DNA with disease severity and plasma Hanttan virus (HTNV load. We observed the appearance of cf-DNA in 166 plasma samples from 76 HFRS patients: the plasma cf-DNA levels peaked at the hypotensive stage of HFRS, and then decreased gradually. Until the diuretic stage, there was no significant difference in plasma cf-DNA level between patients and the healthy control. Exclusively in the febrile/hypotensive stage, the plasma cf-DNA levels of severe/critical patients were higher than those of the mild/moderate group. Moreover, the plasma cf-DNA value in the early stage of HFRS was correlated with HTNV load and disease severity. In most of the patients, plasma cf-DNA displayed a low-molecular weight appearance, corresponding to the size of apoptotic DNA. In conclusion, the plasma cf-DNA levels were dynamically elevated during HFRS, and correlated with disease severity, which suggests that plasma cf-DNA may be a potential biomarker for the pathogenesis and prognosis of HFRS.

  13. Cell-free DNA: A Neglected Source for Antibiotic Resistance Genes Spreading from WWTPs.

    Zhang, Yan; Li, Aolin; Dai, Tianjiao; Li, Feifei; Xie, Hui; Chen, Lujun; Wen, Donghui

    2018-01-02

    Cell-associated ARGs in wastewater treatment plants (WWTPs) has been concerned, however, cell-free ARGs in WWTPs was rarely studied. In this study, the abundances of four representative ARGs, sulII, tetC, bla PSE-1 , and ermB, in a large municipal WWTP were investigated in both cell-associated and cell-free fractions. Cell-associated ARGs was the dominant ARGs fraction in the raw wastewater. After biological treatment, sludge settling, membrane filtration, and disinfection, cell-associated ARGs were substantially reduced, though the ratios of ARG/16S rRNA gene were increased with disinfection. Cell-free ARGs persisted in the WWTP with a removal of 0.36 log to 2.68 logs, which was much lower than the removal of cell-associated ARGs (3.21 logs to 4.14 logs). Therefore, the abundance ratio of cell-free ARGs to cell-associated ARGs increased from 0.04-1.59% to 2.00-1895.08% along the treatment processes. After 25-day-storage, cell-free ARGs in both biological effluent and disinfection effluent increased by 0.14 log to 1.99 logs and 0.12 log to 1.77 logs respectively, reflecting the persistence and low decay rate of cell-free ARGs in the discharge water. Therefore, cell-free ARGs might be a kind of important but previously neglected pollutant from WWTPs, which added potential risks to the effluent receiving environments.

  14. Preanalytical blood sample workup for cell-free DNA analysis using Droplet Digital PCR for future molecular cancer diagnostics.

    van Ginkel, Joost H; van den Broek, Daan A; van Kuik, Joyce; Linders, Dorothé; de Weger, Roel; Willems, Stefan M; Huibers, Manon M H

    2017-10-01

    In current molecular cancer diagnostics, using blood samples of cancer patients for the detection of genetic alterations in plasma (cell-free) circulating tumor DNA (ctDNA) is an emerging practice. Since ctDNA levels in blood are low, highly sensitive Droplet Digital PCR (ddPCR) can be used for detecting rare mutational targets. In order to perform ddPCR on blood samples, a standardized procedure for processing and analyzing blood samples is necessary to facilitate implementation into clinical practice. Therefore, we assessed the technical sample workup procedure for ddPCR on blood plasma samples. Blood samples from healthy individuals, as well as lung cancer patients were analyzed. We compared different methods and protocols for sample collection, storage, centrifugation, isolation, and quantification. Cell-free DNA (cfDNA) concentrations of several wild-type targets and BRAF and EGFR-mutant ctDNA concentrations quantified by ddPCR were primary outcome measurements. Highest cfDNA concentrations were measured in blood collected in serum tubes. No significant differences in cfDNA concentrations were detected between various time points of up to 24 h until centrifugation. Highest cfDNA concentrations were detected after DNA isolation with the Quick cfDNA Serum & Plasma Kit, while plasma isolation using the QIAamp Circulating Nucleic Acid Kit yielded the most consistent results. DdPCR results on cfDNA are highly dependent on multiple factors during preanalytical sample workup, which need to be addressed during the development of this diagnostic tool for cancer diagnostics in the future. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  15. Cell free expression of hif1α and p21 in maternal peripheral blood as a marker for preeclampsia and fetal growth restriction.

    Osnat Ashur-Fabian

    Full Text Available Preeclampsia, a severe unpredictable complication of pregnancy, occurs in 6% of pregnancies, usually in the second or third trimester. The specific etiology of preeclampsia remains unclear, although the pathophysiological hallmark of this condition appears to be an inadequate blood supply to the placenta. As a result of the impaired placental blood flow, intrauterine growth restriction (IUGR and consequential fetal oxidative stress may occur. Consistent with this view, pregnancies complicated by preeclampsia and IUGR are characterized by up-regulation of key transcriptional regulators of the hypoxic response including, hif1α and as well as p53 and its target genes. Recently, the presence of circulating cell-free fetal RNA has been documented in maternal plasma. We speculated that pregnancies complicated by preeclampsia and IUGR, will be associated with an abnormal expression of p53 and/or hif1α related genes in the maternal plasma. Maternal plasma from 113 singleton pregnancies (72 normal and 41 complicated pregnancies and 19 twins (9 normal and 10 complicated pregnancies were collected and cell free RNA was extracted. The expression of 18 genes was measured by one step real-time RT-PCR and was analyzed for prevalence of positive/negative expression levels. Results indicate that, among the genes examined, cell free plasma expressions of p21 and hif1α were more prevalent in pregnancies complicated by hypoxia and/or IUGR (p<0.001. To conclude, we present in this manuscript data to support the association between two possible surrogate markers of hypoxia and common complications of pregnancy. More work is needed in order to implement these findings in clinical practice.

  16. Quantitative analysis of plasma cell-free DNA and its DNA integrity in patients with metastatic prostate cancer using ALU sequence

    Fawzy, A.; Sweify, K.M.; Nofal, N.; El-Fayoumy, H.M.

    2016-01-01

    Background: Prostate cancer (PC) is the most common cancer affecting men, it accounts for 29% of all male cancer and 11% of all male cancer related death. DNA is normally released from an apoptotic source which generates small fragments of cell-free DNA, whereas cancer patients have cell-free circulating DNA that originated from necrosis, autophagy, or mitotic catastrophe, which produce large fragments. Aim of work: Differentiate the cell free DNA levels (cfDNA) and its integrity in prostate cancer patients and control group composed of benign prostate hyperplasia (BPH) and healthy persons. Methodology: cf-DNA levels were quantified by real-time PCR amplification in prostate cancer patients ( n = 50), (BPH) benign prostate hyperplasia ( n = 25) and healthy controls ( n = 30) using two sets of ALU gene (product size of 115 bp and 247-bp) and its integrity was calculated as a ratio of qPCR results of 247 bp ALU over 115 bp ALU. Results: Highly significant levels of cf-DNA and its integrity in PC patients compared to BPH. Twenty-eight (56%) patients with prostate cancer had bone metastasis. ALU115 qpcr is superior to the other markers in discriminating metastatic patients with a sensitivity of 96.4% and a specificity of 86.4% and (AUC = 0.981) Conclusion: ALU115 qpcr could be used as a valuable biomarker helping in identifying high risk patients, indicating early spread of tumor cells as a potential seed for future metastases

  17. Cell-Free DNA-Based Non-invasive Prenatal Screening for Common Aneuploidies in a Canadian Province: A Cost-Effectiveness Analysis.

    Nshimyumukiza, Léon; Beaumont, Jean-Alexandre; Duplantie, Julie; Langlois, Sylvie; Little, Julian; Audibert, François; McCabe, Christopher; Gekas, Jean; Giguère, Yves; Gagné, Christian; Reinharz, Daniel; Rousseau, François

    2018-01-01

    Yearly, 450 000 pregnant Canadians are eligible for voluntary prenatal screening for trisomy 21. Different screening strategies select approximately 4% of women for invasive fetal chromosome testing. Non-invasive prenatal testing (NIPT) using maternal blood cell-free DNA could reduce those invasive procedures but is expensive. This study evaluated the cost-effectiveness of NIPT strategies compared with conventional strategies. This study used a decision analytic model to estimate the cost-effectiveness of 13 prenatal screening strategies for fetal aneuploidies: six frequently used strategies, universal NIPT, and six strategies incorporating NIPT as a second-tier test. The study considered a virtual cohort of pregnant women of similar size and age as women in Quebec. Model data were obtained from published sources and government databases. The study predicted the number of chromosomal anomalies detected (trisomies 21, 13, and 18), invasive procedures and euploid fetal losses, direct costs, and incremental cost-effectiveness ratios. Of the 13 strategies compared, eight identified fewer cases at a higher cost than at least one of the remaining five strategies. Integrated serum screening with conditional NIPT had the lowest cost, and the cost per case detected was $63 139, with a 90% reduction of invasive procedures. The number of cases identified was improved with four other screening strategies, but with increasing of incremental costs per case (from $61 623 to $1 553 615). Results remained robust, except when NIPT costs and risk cut-offs varied. NIPT as a second-tier test for high-risk women is likely to be cost-effective as compared with screening algorithms not involving NIPT. Copyright © 2018 The Society of Obstetricians and Gynaecologists of Canada/La Société des obstétriciens et gynécologues du Canada. Published by Elsevier Inc. All rights reserved.

  18. Comparison of first-tier cell-free DNA screening for common aneuploidies with conventional publically funded screening.

    Langlois, Sylvie; Johnson, JoAnn; Audibert, François; Gekas, Jean; Forest, Jean-Claude; Caron, André; Harrington, Keli; Pastuck, Melanie; Meddour, Hasna; Tétu, Amélie; Little, Julian; Rousseau, François

    2017-12-01

    This study evaluates the impact of offering cell-free DNA (cfDNA) screening as a first-tier test for trisomies 21 and 18. This is a prospective study of pregnant women undergoing conventional prenatal screening who were offered cfDNA screening in the first trimester with clinical outcomes obtained on all pregnancies. A total of 1198 pregnant women were recruited. The detection rate of trisomy 21 with standard screening was 83% with a false positive rate (FPR) of 5.5% compared with 100% detection and 0% FPR for cfDNA screening. The FPR of cfDNA screening for trisomies 18 and 13 was 0.09% for each. Two percent of women underwent an invasive diagnostic procedure based on screening or ultrasound findings; without the cfDNA screening, it could have been as high as 6.8%. Amongst the 640 women with negative cfDNA results and a nuchal translucency (NT) ultrasound, only 3 had an NT greater or equal to 3.5 mm: one had a normal outcome and two lost their pregnancy before 20 weeks. cfDNA screening has the potential to be a highly effective first-tier screening approach leading to a significant reduction of invasive diagnostic procedures. For women with a negative cfDNA screening result, NT measurement has limited clinical utility. © 2017 John Wiley & Sons, Ltd.

  19. Quantification of circulating cell-free DNA in the serum of patients with obstructive sleep apnea-hypopnea syndrome.

    Ye, Liang; Ma, Guan-Hua; Chen, Ling; Li, Min; Liu, Jia-Lin; Yang, Kun; Li, Qing-Yun; Li, Ning; Wan, Huan-Ying

    2010-12-01

    Serum cell-free DNA concentrations have been reported to increase in many acute diseases as well as in some chronic conditions such as cancer and autoimmune diseases. The aim of this study was to examine whether serum DNA concentrations were elevated in patients with obstructive sleep apnea-hypopnea syndrome (OSAHS). The effects of nasal continuous positive airway pressure (nCPAP) on serum DNA were also investigated. One hundred twenty-seven people diagnosed with OSAHS by polysomnography (PSG) were admitted into the OSAHS group, and 52 subjects without OSAHS were recruited for the control group. The OSAHS group was further divided into mild, moderate, and severe OSAHS subgroups based on their apnea-hypopnea index (AHI) during sleep. Ten patients with moderate and severe OSAHS were treated with nCPAP. Serum DNA, interleukin-6 (IL-6), and malonaldehyde (MDA) concentrations were measured and were found to be significantly higher in patients with moderate and severe OSAHS groups than those in the mild OSAHS and control groups (p DNA correlated positively with AHI, oxygen desaturation index (ODI), IL-6, and MDA, and negatively correlated with minimal oxygen saturation (miniSaO(2)) (all p DNA concentrations. After 6 months of nCPAP therapy, serum concentrations of DNA, IL-6, and MDA were significantly decreased (p DNA in patients with OSAHS was positively correlated with disease severity. Serum DNA may become an important parameter for monitoring the severity of OSAHS and effectiveness of therapy.

  20. Simultaneous quantitative assessment of circulating cell-free mitochondrial and nuclear DNA by multiplex real-time PCR

    Peng Xia

    2009-01-01

    Full Text Available Quantification of circulating nucleic acids in plasma and serum could be used as a non-invasive diagnostic tool for monitoring a wide variety of diseases and conditions. We describe here a rapid, simple and accurate multiplex real-time PCR method for direct synchronized analysis of circulating cell-free (ccf mitochondrial (mtDNA and nuclear (nDNA DNA in plasma and serum samples. The method is based on one-step multiplex real-time PCR using a FAM-labeled MGB probe and primers to amplify the mtDNA sequence of the ATP 8 gene, and a VIC-labeled MGB probe and primers to amplify the nDNA sequence of the glycerinaldehyde-3-phosphate-dehydrogenase (GAPDH gene, in plasma and serum samples simultaneously. The efficiencies of the multiplex assays were measured in serial dilutions. Based on the simulation of the PCR reaction kinetics, the relative quantities of ccf mtDNA were calculated using a very simple equation. Using our optimised real-time PCR conditions, close to 100% efficiency was obtained from the two assays. The two assays performed in the dilution series showed very good and reproducible correlation to each other. This optimised multiplex real-time PCR protocol can be widely used for synchronized quantification of mtDNA and nDNA in different samples, with a very high rate of efficiency.

  1. Current controversies in prenatal diagnosis 2: Cell-free DNA prenatal screening should be used to identify all chromosome abnormalities.

    Chitty, Lyn S; Hudgins, Louanne; Norton, Mary E

    2018-02-01

    Noninvasive prenatal testing (NIPT) using cell-free DNA (cfDNA) from maternal serum has been clinically available since 2011. This technology has revolutionized our ability to screen for the common aneuploidies trisomy 21 (Down syndrome), trisomy 18, and trisomy 13. More recently, clinical laboratories have offered screening for other chromosome abnormalities including sex chromosome abnormalities and copy number variants (CNV) without little published data on the sensitivity, specificity, and positive predictive value. In this debate, the pros and cons of performing prenatal screening via cfDNA for all chromosome abnormalities is discussed. At the time of the debate in 2017, the general consensus was that the literature does not yet support using this technology to screen for all chromosome abnormalities and that education is key for both providers and the patients so that the decision-making process is as informed as possible. © 2018 John Wiley & Sons, Ltd.

  2. Detection and Quantification of Male-Specific Fetal DNA in the Serum of Pregnant Cynomolgus Monkeys (Macaca fascicularis)

    Yasmin, Lubna; Takano, Jun-ichiro; Nagai, Yasushi; Otsuki, Junko; Sankai, Tadashi

    2015-01-01

    Because of their developmental similarities to humans, nonhuman primates are often used as a model to study fetal development for potential clinical applications in humans. The detection of fetal DNA in maternal plasma or serum offers a source of fetal genetic material for prenatal diagnosis. However, no such data have been reported for cynomolgus monkeys (Macaca fascicularis), an important model in biomedical research. We have developed a specific, highly sensitive PCR system for detecting and quantifying male-specific fetal DNA in pregnant cynomolgus monkeys. We used multiplex quantitative real-time PCR to analyze cell-free DNA in maternal blood serum obtained from 46 pregnant monkeys at gestational weeks 5, 12, and 22. The presence of SRY gene and DYS14 Y chromosomal sequences was determined in 28 monkeys with male-bearing pregnancies. According to confirmation of fetal sex at birth, the probe and primers for detecting the Y chromosomal regions at each time point revealed 100% specificity of the PCR test and no false-positive or false-negative results. Increased levels of the SRY-specific sequences (mean, 4706 copies/mL serum DNA; range, 1731 to 12,625) and DYS14-specific sequences (mean, 54,814 copies/mL serum DNA; range, 4175–131,250 copies) were detected at week 22. The SRY- and DYS14-specific probes appear to be an effective combination of markers in a multiplex PCR system. To our knowledge, this report is the first to describe the detection of cell-free DNA in cynomolgus monkeys. PMID:25730760

  3. Analysis of human blood plasma cell-free DNA fragment size distribution using EvaGreen chemistry based droplet digital PCR assays.

    Fernando, M Rohan; Jiang, Chao; Krzyzanowski, Gary D; Ryan, Wayne L

    2018-04-12

    Plasma cell-free DNA (cfDNA) fragment size distribution provides important information required for diagnostic assay development. We have developed and optimized droplet digital PCR (ddPCR) assays that quantify short and long DNA fragments. These assays were used to analyze plasma cfDNA fragment size distribution in human blood. Assays were designed to amplify 76,135, 490 and 905 base pair fragments of human β-actin gene. These assays were used for fragment size analysis of plasma cell-free, exosome and apoptotic body DNA obtained from normal and pregnant donors. The relative percentages for 76, 135, 490 and 905 bp fragments from non-pregnant plasma and exosome DNA were 100%, 39%, 18%, 5.6% and 100%, 40%, 18%,3.3%, respectively. The relative percentages for pregnant plasma and exosome DNA were 100%, 34%, 14%, 23%, and 100%, 30%, 12%, 18%, respectively. The relative percentages for non-pregnant plasma pellet (obtained after 2nd centrifugation step) were 100%, 100%, 87% and 83%, respectively. Non-pregnant Plasma cell-free and exosome DNA share a unique fragment distribution pattern which is different from pregnant donor plasma and exosome DNA fragment distribution indicating the effect of physiological status on cfDNA fragment size distribution. Fragment distribution pattern for plasma pellet that includes apoptotic bodies and nuclear DNA was greatly different from plasma cell-free and exosome DNA. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Quantitative cell-free DNA, KRAS, and BRAF mutations in plasma from patients with metastatic colorectal cancer during treatment with cetuximab and irinotecan

    Spindler, Karen-Lise Garm; Pallisgaard, Niels; Vogelius, Ivan Storgaard

    2012-01-01

    The present study investigated the levels of circulating cell-free DNA (cfDNA) in plasma from patients with metastatic colorectal cancer (mCRC) in relation to third-line treatment with cetuximab and irinotecan and the quantitative relationship of cfDNA with tumor-specific mutations in plasma....

  5. Counting molecules in cell-free DNA and single cells RNA

    Karlsson, Kasper

    2016-01-01

    The field of Molecular Biology got started in earnest with the discovery of the molecular structure of DNA. This lead to a surge of interest into the relationships between DNA, RNA and proteins, and to the development of fundamental tools for manipulating those substances, such as cutting, ligating, amplifying, visualizing and size-selecting DNA. With these tools at hand it was possible to begin sequencing DNA, a process that took a leap forward in 2005 with the advent of Next Generation Sequ...

  6. Circulating, cell-free DNA as a marker for exercise load in intermittent sports

    Haller, Nils; Helmig, Susanne; Taenny, Pascal; Petry, Julian; Schmidt, Sebastian; Simon, Perikles

    2018-01-01

    Background Attempts to establish a biomarker reflecting individual player load in intermittent sports such as football have failed so far. Increases in circulating DNA (cfDNA) have been demonstrated in various endurance sports settings. While it has been proposed that cfDNA could be a suitable marker for player load in intermittent sports, the effects on cfDNA of repeated sprinting as an essential feature in intermittent sports are unknown. For the first time, we assessed both alterations of ...

  7. SNPase-ARMS qPCR: Ultrasensitive Mutation-Based Detection of Cell-Free Tumor DNA in Melanoma Patients.

    Julia Stadler

    Full Text Available Cell-free circulating tumor DNA in the plasma of cancer patients has become a common point of interest as indicator of therapy options and treatment response in clinical cancer research. Especially patient- and tumor-specific single nucleotide variants that accurately distinguish tumor DNA from wild type DNA are promising targets. The reliable detection and quantification of these single-base DNA variants is technically challenging. Currently, a variety of techniques is applied, with no apparent "gold standard". Here we present a novel qPCR protocol that meets the conditions of extreme sensitivity and specificity that are required for detection and quantification of tumor DNA. By consecutive application of two polymerases, one of them designed for extreme base-specificity, the method reaches unprecedented sensitivity and specificity. Three qPCR assays were tested with spike-in experiments, specific for point mutations BRAF V600E, PTEN T167A and NRAS Q61L of melanoma cell lines. It was possible to detect down to one copy of tumor DNA per reaction (Poisson distribution, at a background of up to 200 000 wild type DNAs. To prove its clinical applicability, the method was successfully tested on a small cohort of BRAF V600E positive melanoma patients.

  8. A pilot study on the use of cerebrospinal fluid cell-free DNA in intramedullary spinal ependymoma.

    Connolly, Ian David; Li, Yingmei; Pan, Wenying; Johnson, Eli; You, Linya; Vogel, Hannes; Ratliff, John; Hayden Gephart, Melanie

    2017-10-01

    Cerebrospinal fluid (CSF) represents a promising source of cell-free DNA (cfDNA) for tumors of the central nervous system. A CSF-based liquid biopsy may obviate the need for riskier tissue biopsies and serve as a means for monitoring tumor recurrence or response to therapy. Spinal ependymomas most commonly occur in adults, and aggressive resection must be delicately balanced with the risk of injury to adjacent normal tissue. In patients with subtotal resection, recurrence commonly occurs. A CSF-based liquid biopsy matched to the patient's spinal ependymoma mutation profile has potential to be more sensitive then surveillance MRI, but the utility has not been well characterized for tumors of the spinal cord. In this study, we collected matched blood, tumor, and CSF samples from three adult patients with WHO grade II intramedullary spinal ependymoma. We performed whole exome sequencing on matched tumor and normal DNA to design Droplet Digital™ PCR (ddPCR) probes for tumor and wild-type mutations. We then interrogated CSF samples for tumor-derived cfDNA by performing ddPCR on extracted cfDNA. Tumor cfDNA was not reliably detected in the CSF of our cohort. Anatomic sequestration and low grade of intramedullary spinal cord tumors likely limits the role of CSF liquid biopsy.

  9. Determining the role of mother race in neonatal outcome of trisomies 21, 18 and 13 using cell free DNA analysis

    Najmie Saadati

    2016-12-01

    Full Text Available To determine the role of mother race in neonatal outcome of trisomies 21, 18 and 13 using cell free DNA (cf-DNA analysis. All women administered for a sonographic imaging at their 10-22 weeks’ gestation which were qualified for cf-DNA testing were suggested for increasing aneuploidy risk, between March 1, 2015 to March 30 , 2016. The cf-DNA analysis was conducted after women received genetic counseling in a specialty laboratory. The results were validated by amniocentesis. A total of 1992 women were screened using cf-DNA analysis. The participants were 1631 Non Arabs (Fars, Kurd, and Lor and 361 Arabs. The fetus risk for trisomy 21 in the Arab women of Arab race was two as much as Non Arab race, but trisomies 18 and 13 in women of Non Arab race were more than Arab race. The role of mother race (such as Arab and Non Arab in neonatal outcome is very important.

  10. Epigenetic markers in circulating cell-free DNA as prognostic markers for survival of castration-resistant prostate cancer patients.

    Hendriks, Rianne J; Dijkstra, Siebren; Smit, Frank P; Vandersmissen, Johan; Van de Voorde, Hendrik; Mulders, Peter F A; van Oort, Inge M; Van Criekinge, Wim; Schalken, Jack A

    2018-04-01

    Noninvasive biomarkers to guide personalized treatment for castration-resistant prostate cancer (CRPC) are needed. In this study, we analyzed hypermethylation patterns of two genes (GSTP1 and APC) in plasma cell-free DNA (cfDNA) of CRPC patients. The aim of this study was to analyze the cfDNA concentrations and levels of the epigenetic markers and to assess the value of these biomarkers for prognosis. In this prospective study, patients were included before starting new treatment after developing CRPC. The blood samples were collected prior to start of the treatment and at three time points thereafter. cfDNA was extracted from 1.5 mL of plasma and before performing a methylation-specific PCR, bisulfate modification was carried out. The median levels of cfDNA, GSTP1, and APC copies in the baseline samples of CRPC patients (n = 47) were higher than in controls (n = 30). In the survival analysis, the group with baseline marker levels below median had significant less PCa-related deaths (P-values Prostate Published by Wiley Periodicals, Inc.

  11. Circulating, cell-free DNA as a marker for exercise load in intermittent sports.

    Nils Haller

    Full Text Available Attempts to establish a biomarker reflecting individual player load in intermittent sports such as football have failed so far. Increases in circulating DNA (cfDNA have been demonstrated in various endurance sports settings. While it has been proposed that cfDNA could be a suitable marker for player load in intermittent sports, the effects on cfDNA of repeated sprinting as an essential feature in intermittent sports are unknown. For the first time, we assessed both alterations of cfDNA due to repeated maximal sprints and due to a professional football game.Nine participants were subjected to a standardised sprint training session with cross-over design of five maximal sprints of 40 meters with either "short" (1 minute or "long" pauses (5 minutes. Capillary cfDNA and lactate were measured after every sprint and venous cfDNA before and after each series of sprints. Moreover, capillary cfDNA and lactate values were taken in 23 professional football players before and after incremental exercise testing, during the course of a training week at rest (baseline and in all 17 enrolled players following a season game.Lactate and venous cfDNA increased more pronounced during "short" compared to "long" (1.4-fold, p = 0.032 and 1.7-fold, p = 0.016 and cfDNA correlated significantly with lactate (r = 0.69; p<0.001. Incremental exercise testing increased cfDNA 7.0-fold (p<0.001. The season game increased cfDNA 22.7-fold (p<0.0001, while lactate showed a 2.0-fold (p = 0.09 increase compared to baseline. Fold-changes in cfDNA correlated with distance covered during game (spearman's r = 0.87, p = 0.0012, while no correlation between lactate and the tracking data could be found.We show for the first time that cfDNA could be an objective marker for distance covered in elite intermittent sports. In contrast to the potential of more established blood-based markers like IL-6, CK, or CRP, cfDNA shows by far the strongest fold-change and a high correlation with a

  12. Circulating, cell-free DNA as a marker for exercise load in intermittent sports.

    Haller, Nils; Helmig, Susanne; Taenny, Pascal; Petry, Julian; Schmidt, Sebastian; Simon, Perikles

    2018-01-01

    Attempts to establish a biomarker reflecting individual player load in intermittent sports such as football have failed so far. Increases in circulating DNA (cfDNA) have been demonstrated in various endurance sports settings. While it has been proposed that cfDNA could be a suitable marker for player load in intermittent sports, the effects on cfDNA of repeated sprinting as an essential feature in intermittent sports are unknown. For the first time, we assessed both alterations of cfDNA due to repeated maximal sprints and due to a professional football game. Nine participants were subjected to a standardised sprint training session with cross-over design of five maximal sprints of 40 meters with either "short" (1 minute) or "long" pauses (5 minutes). Capillary cfDNA and lactate were measured after every sprint and venous cfDNA before and after each series of sprints. Moreover, capillary cfDNA and lactate values were taken in 23 professional football players before and after incremental exercise testing, during the course of a training week at rest (baseline) and in all 17 enrolled players following a season game. Lactate and venous cfDNA increased more pronounced during "short" compared to "long" (1.4-fold, p = 0.032 and 1.7-fold, p = 0.016) and cfDNA correlated significantly with lactate (r = 0.69; psports. In contrast to the potential of more established blood-based markers like IL-6, CK, or CRP, cfDNA shows by far the strongest fold-change and a high correlation with a particular load related aspect in professional football.

  13. Elevated levels of circulating cell-free DNA and neutrophil proteins are associated with neonatal sepsis and necrotizing enterocolitis in immature mice, pigs and infants

    Nguyen, Duc Ninh; Stensballe, Allan; Lai, Jacqueline C.Y.

    2017-01-01

    Preterm infants are highly susceptible to late-onset sepsis (LOS) and necrotizing enterocolitis (NEC), but disease pathogenesis and specific diagnostic markers are lacking. Circulating cell-free DNA (cfDNA) and immune cell-derived proteins are involved in multiple immune diseases in adults but ha...

  14. Quantification of cell-free DNA in blood plasma and DNA damage degree in lymphocytes to evaluate dysregulation of apoptosis in schizophrenia patients.

    Ershova, E S; Jestkova, E M; Chestkov, I V; Porokhovnik, L N; Izevskaya, V L; Kutsev, S I; Veiko, N N; Shmarina, G; Dolgikh, O; Kostyuk, S V

    2017-04-01

    Oxidative DNA damage has been proposed as one of the causes of schizophrenia (SZ), and post mortem data indicate a dysregulation of apoptosis in SZ patients. To evaluate apoptosis in vivo we quantified the concentration of plasma cell-free DNA (cfDNA index, determined using fluorescence), the levels of 8-oxodG in cfDNA (immunoassay) and lymphocytes (FL1-8-oxodG index, flow cytometry) of male patients with acute psychotic disorders: paranoid SZ (total N = 58), schizophreniform (N = 11) and alcohol-induced (N = 14) psychotic disorder, and 30 healthy males. CfDNA in SZ (N = 58) does not change compared with controls. In SZ patients. Elevated levels of 8-oxodG were found in cfDNA (N = 58) and lymphocytes (n = 45). The main sources of cfDNA are dying cells with oxidized DNA. Thus, the cfDNA/FL1-8-oxodG ratio shows the level of apoptosis in damaged cells. Two subgroups were identified among the SZ patients (n = 45). For SZ-1 (31%) and SZ-2 (69%) median values of cfDNA/FL1-8-oxodG index are related as 1:6 (p DNA in the patient's body tissues and may be a contributing cause of acute psychotic disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Applicability of Ion Torrent Colon and Lung sequencing panel on circulating cell-free DNA

    Demuth, Christina; Tranberg Madsen, Anne; Larsen, Anne Winther

    of targeted sequencing have been optimised for clinical use on FFPE, e.g. the Ion Torrent Colon and Lung panel. The size of DNA extracted from FFPE tissue is comparable with that from cfDNA. We therefore investigated the performance of the clinically relevant Ion Torrent Colon and Lung panel on cfDNA. Methods...... a baseline for the panel. Lastly, the panel was tested on 52 patient samples. Patient plasma samples are from a previously collected cohort of EGFR wild-type non-small cell lung cancer patients (ClinicalTrial.gov: NCT02043002) All samples were sequenced using the Ion Torrent Oncomine Solid Tumor DNA kit...... (Colon and Lung panel) from Thermo Fisher. Sample preparation was performed using the Ion Torrent Chef and sequencing was performed on the Personal Genome Machine (PGM) system. Data was analyzed using the Torrent Suite software, and variants called by Ion Reporter. Results: No somatic mutations were...

  16. Cell-free assay measuring repair DNA synthesis in human fibroblasts

    Ciarrocchi, G.; Linn, S.

    1978-01-01

    Osmotic disruption of confluent cultured human fibroblasts that have been irradiated or exposed to chemical carcinogens allows the specific measurement of repair DNA synthesis using dTTP as a precursor. Fibroblasts similarly prepared from various xeroderma pigmentosum cell lines show the deficiencies of uv-induced DNA synthesis predicted from in vivo studies, while giving normal responses to methylmethanesulfonate. A pyrimidine-dimer-specific enzyme, T4 endonuclease V, stimulated the rate of uv-induced repair synthesis with normal and xeroderma pigmentosum cell lines. This system should prove useful for identifying agents that induce DNA repair, and cells that respond abnormally to such induction. It should also be applicable to an in vitro complementation assay with repair-defective cells and proteins obtained from repair-proficient cells. Finally, by using actively growing fibroblasts and thymidine in the system, DNA replication can be measured and studied in vitro

  17. Extracellular histones, cell-free DNA, or nucleosomes: differences in immunostimulation.

    Marsman, Gerben; Zeerleder, Sacha; Luken, Brenda M

    2016-12-08

    In inflammation, extensive cell death may occur, which results in the release of chromatin components into the extracellular environment. Individually, the purified chromatin components double stranded (ds)DNA and histones have been demonstrated, both in vitro and in vivo, to display various immunostimulatory effects, for example, histones induce cytotoxicity and proinflammatory signaling through toll-like receptor (TLR)2 and 4, while DNA induces signaling through TLR9 and intracellular nucleic acid sensing mechanisms. However, DNA and histones are organized in nucleosomes in the nucleus, and evidence suggests that nucleosomes are released as such in inflammation. The cytotoxicity and proinflammatory signaling induced by nucleosomes have not been studied as extensively as the separate effects brought about by histones and dsDNA, and there appear to be some marked differences. Remarkably, little distinction between the different forms in which histones circulate has been made throughout literature. This is partly due to the limitations of existing techniques to differentiate between histones in their free or DNA-bound form. Here we review the current understanding of immunostimulation induced by extracellular histones, dsDNA and nucleosomes, and discuss the importance of techniques that in their detection differentiate between these different chromatin components.

  18. Cell Free DNA of Tumor Origin Induces a 'Metastatic' Expression Profile in HT-29 Cancer Cell Line.

    István Fűri

    Full Text Available Epithelial cells in malignant conditions release DNA into the extracellular compartment. Cell free DNA of tumor origin may act as a ligand of DNA sensing mechanisms and mediate changes in epithelial-stromal interactions.To evaluate and compare the potential autocrine and paracrine regulatory effect of normal and malignant epithelial cell-related DNA on TLR9 and STING mediated pathways in HT-29 human colorectal adenocarcinoma cells and normal fibroblasts.DNA isolated from normal and tumorous colonic epithelia of fresh frozen surgically removed tissue samples was used for 24 and 6 hour treatment of HT-29 colon carcinoma and HDF-α fibroblast cells. Whole genome mRNA expression analysis and qRT-PCR was performed for the elements/members of TLR9 signaling pathway. Immunocytochemistry was performed for epithelial markers (i.e. CK20 and E-cadherin, DNA methyltransferase 3a (DNMT3a and NFκB (for treated HDFα cells.Administration of tumor derived DNA on HT29 cells resulted in significant (p<0.05 mRNA level alteration in 118 genes (logFc≥1, p≤0.05, including overexpression of metallothionein genes (i.e. MT1H, MT1X, MT1P2, MT2A, metastasis-associated genes (i.e. TACSTD2, MACC1, MALAT1, tumor biomarker (CEACAM5, metabolic genes (i.e. INSIG1, LIPG, messenger molecule genes (i.e. DAPP, CREB3L2. Increased protein levels of CK20, E-cadherin, and DNMT3a was observed after tumor DNA treatment in HT-29 cells. Healthy DNA treatment affected mRNA expression of 613 genes (logFc≥1, p≤0.05, including increased expression of key adaptor molecules of TLR9 pathway (e.g. MYD88, IRAK2, NFκB, IL8, IL-1β, STING pathway (ADAR, IRF7, CXCL10, CASP1 and the FGF2 gene.DNA from tumorous colon epithelium, but not from the normal epithelial cells acts as a pro-metastatic factor to HT-29 cells through the overexpression of pro-metastatic genes through TLR9/MYD88 independent pathway. In contrast, DNA derived from healthy colonic epithelium induced TLR9 and STING signaling

  19. The correlation between cell-free DNA and tumour burden was estimated by PET/CT in patients with advanced NSCLC

    Nygaard, A D; Holdgaard, Paw; Spindler, K-L G

    2014-01-01

    Background:Cell-free DNA (cfDNA) circulating in the blood holds a possible prognostic value in malignant diseases. Under malignant conditions, the level of cfDNA increases but the biological mechanism remains to be fully understood. We aimed to examine the correlation between cfDNA and total tumour...... burden defined by positron emission tomography (PET) parameters.Methods:Patients with advanced non-small cell lung cancer (NSCLC) were enrolled into a prospective biomarker trial. Before treatment, plasma was extracted and the level of cfDNA was determined by qPCR. An (18)F-fluorodeoxyglucose ((18)F...... analysis. MTV>the median was associated with a significantly shorter OS (P=0.02). There was no significant difference in OS according to TLG (P=0.08).Conclusion:Cell-free DNA may not be a simple measure of tumour burden, but seems to reflect more complex mechanisms of tumour biology, making it attractive...

  20. Quantification of Cell-Free HER-2 DNA in Plasma from Breast Cancer Patients

    Sørensen, Patricia Diana; Andersen, Rikke Fredslund; Pallisgaard, Niels

    2015-01-01

    The purpose of this study was to quantify the free-circulating plasma HER-2 DNA (cfHER-2 DNA) and to assess the ability of analysis to discriminate between patients with primary breast cancer and healthy controls in order to detect metastatic recurrence in comparison with serum HER-2 protein...... and also HER-2 gene amplification. The study population consisted of 100 patients with primary breast cancer and 50 healthy female donors. An additional 22 patients with metastases were subsequently included. cfHER-2 DNA was quantified with a quantitative PCR method together with a reference gene. RESULTS......: Using a cut-off of 2.5 for the ratio of the cfHER-2 DNA/reference gene, three (of 15) tissue HER-2-positive patients had a ratio >2.5 prior to the detection of metastatic disease. In the post-metastatic/pre-chemotherapy setting, 11 (of 23) tissue HER-2-positive patients with metastases had a ratio >2...

  1. Extracellular histones, cell-free DNA, or nucleosomes: differences in immunostimulation

    Marsman, Gerben; Zeerleder, Sacha; Luken, Brenda M.

    2016-01-01

    In inflammation, extensive cell death may occur, which results in the release of chromatin components into the extracellular environment. Individually, the purified chromatin components double stranded (ds)DNA and histones have been demonstrated, both in vitro and in vivo, to display various

  2. Epigenetic regulation during fetal femur development: DNA methylation matters.

    María C de Andrés

    Full Text Available Epigenetic modifications are heritable changes in gene expression without changes in DNA sequence. DNA methylation has been implicated in the control of several cellular processes including differentiation, gene regulation, development, genomic imprinting and X-chromosome inactivation. Methylated cytosine residues at CpG dinucleotides are commonly associated with gene repression; conversely, strategic loss of methylation during development could lead to activation of lineage-specific genes. Evidence is emerging that bone development and growth are programmed; although, interestingly, bone is constantly remodelled throughout life. Using human embryonic stem cells, human fetal bone cells (HFBCs, adult chondrocytes and STRO-1(+ marrow stromal cells from human bone marrow, we have examined a spectrum of developmental stages of femur development and the role of DNA methylation therein. Using pyrosequencing methodology we analysed the status of methylation of genes implicated in bone biology; furthermore, we correlated these methylation levels with gene expression levels using qRT-PCR and protein distribution during fetal development evaluated using immunohistochemistry. We found that during fetal femur development DNA methylation inversely correlates with expression of genes including iNOS (NOS2 and COL9A1, but not catabolic genes including MMP13 and IL1B. Furthermore, significant demethylation was evident in the osteocalcin promoter between the fetal and adult developmental stages. Increased TET1 expression and decreased expression of DNA (cytosine-5--methyltransferase 1 (DNMT1 in adult chondrocytes compared to HFBCs could contribute to the loss of methylation observed during fetal development. HFBC multipotency confirms these cells to be an ideal developmental system for investigation of DNA methylation regulation. In conclusion, these findings demonstrate the role of epigenetic regulation, specifically DNA methylation, in bone development

  3. Plasma cell-free DNA and its DNA integrity as biomarker to distinguish prostate cancer from benign prostatic hyperplasia in patients with increased serum prostate-specific antigen.

    Feng, Jiang; Gang, Feng; Li, Xiao; Jin, Tang; Houbao, Huang; Yu, Cao; Guorong, Li

    2013-08-01

    To investigate whether plasma cell-free DNA (cfDNA) or its integrity could differentiate prostate cancer from benign prostate hyperplasia (BPH) in patients with serum prostate-specific antigen (PSA) ≥ 4 ng/ml. Ninety-six patients with prostate cancer and 112 patients with BPH were enrolled. cfDNA levels in plasma before prostate biopsy were quantified by real-time PCR amplification of ALU gene (product size of 115 bp), and quantitative ratio of ALU (247 bp) to ALU (115 bp) reflected the integrity of cfDNA. In patients with serum PSA ≥ 4 ng/ml, there were significant differences in plasma cfDNA or its integrity between the patients with prostate cancer (19.74 ± 4.43, 0.34 ± 0.05) and patients with BPH (7.36 ± 1.58, 0.19 ± 0.03; P Prostate cancer could be differentiated with a sensitivity of 73.2 % and a specificity of 72.7 % by cfDNA (AUC = 0.864). The integrity of cfDNA had a sensitivity of 81.7 % and a specificity of 78.8 % for the distinguishing prostate cancer from BPH (AUC = 0.910). cfDNA and its integrity could be applied to differentiate prostate cancer from BPH in patients with serum PSA ≥ 4 ng/ml.

  4. DNA interactions of monofuntional organometallic ruthenium(II) antitumor complexes in cell-free media

    Nováková, Olga; Chen, H.; Vrána, Oldřich; Rodger, A.; Sadler, P. J.; Brabec, Viktor

    2003-01-01

    Roč. 42, č. 39 (2003), s. 11544-11554 ISSN 0006-2960 R&D Projects: GA ČR GA305/02/1552; GA ČR GA305/01/0418; GA AV ČR IAA5004101; GA MŠk OC D20.002; GA MŠk OC D20.005 Institutional research plan: CEZ:AV0Z5004920 Keywords : double-helical DNA * interstrand cross-links * biophysical analysis Subject RIV: BO - Biophysics Impact factor: 3.922, year: 2003

  5. DNA interactions of dinuclear RuII arene antitumor complexes in cell-free media

    Nováková, Olga; Nazarov, A.A.; Hartinger, Ch.G.; Keppler, B.K.; Brabec, Viktor

    2009-01-01

    Roč. 77, č. 3 (2009), s. 364-374 ISSN 0006-2952 R&D Projects: GA MŠk(CZ) LC06030; GA MŠk(CZ) ME08017; GA MŠk(CZ) OC08003; GA AV ČR(CZ) 1QS500040581; GA AV ČR(CZ) KAN200200651 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : dinuclear ruthenium complex * DNA * cross-links Subject RIV: BO - Biophysics Impact factor: 4.254, year: 2009

  6. A Comparative Study for Detection of EGFR Mutations in Plasma Cell-Free DNA in Korean Clinical Diagnostic Laboratories

    Yoonjung Kim

    2018-01-01

    Full Text Available Liquid biopsies to genotype the epidermal growth factor receptor (EGFR for targeted therapy have been implemented in clinical decision-making in the field of lung cancer, but harmonization of detection methods is still scarce among clinical laboratories. We performed a pilot external quality assurance (EQA scheme to harmonize circulating tumor DNA testing among laboratories. For EQA, we created materials containing different levels of spiked cell-free DNA (cfDNA in normal plasma. The limit of detection (LOD of the cobas® EGFR Mutation Test v2 (Roche Molecular Systems was also evaluated. From November 2016 to June 2017, seven clinical diagnostic laboratories participated in the EQA program. The majority (98.94% of results obtained using the cobas assay and next-generation sequencing (NGS were acceptable. Quantitative results from the cobas assay were positively correlated with allele frequencies derived from digital droplet PCR measurements and showed good reproducibility among laboratories. The LOD of the cobas assay was 5~27 copies/mL for p.E746_A750del (exon 19 deletion, 35~70 copies/mL for p.L858R, 18~36 copies/mL for p.T790M, and 15~31 copies/mL for p.A767_V769dup (exon 20 insertion. Deep sequencing of materials (>100,000X depth of coverage resulted in detection of low-level targets present at frequencies of 0.06~0.13%. Our results indicate that the cobas assay is a reliable and rapid method for detecting EGFR mutations in plasma cfDNA. Careful interpretation is particularly important for p.T790M detection in the setting of relapse. Individual laboratories should optimize NGS performance to maximize clinical utility.

  7. Contingent first-trimester screening for aneuploidies with cell-free DNA in a Danish clinical setting

    Miltoft, Caroline Borregaard; Rode, Line; Ekelund, Charlotte Kvist

    2017-01-01

    OBJECTIVES: The primary aim was to compare the screening performance for Trisomy 21, of standard combined first trimester screening with referral to invasive testing at a cut-off at 1 in 300, with a contingent testing, consisting of referral to invasive testing at a 1 in 100 cut-off and referral...... to cell-free DNA (cfDNA) testing for a risk between 1 in 100 and 1 in 1000. METHODS: Singleton pregnant women with a combined first trimester risk ≥ 1 in 1000 were consecutively recruited from two Danish hospitals between August 2014 and May 2015. First trimester combined screening was based on maternal...... these there were 15 cases of Trisomy 21, one case of Trisomy 18 and two cases of Trisomy 13. The sensitivity for Trisomy 21 was 100% using both screening scenarios, while specificity increased significantly from 97.0% to 98.8% (p contingent approach. The sensitivity for Trisomy 21, 18 and 13...

  8. O6-methylguanine DNA methyltransferase in human fetal tissues: fetal and maternal factors

    D'Ambrosio, S.M.; Samuel, M.J.; Dutta-Choudhury, T.A.; Wani, A.A.

    1986-01-01

    O 6 -Methylguanine methyltransferase (O 6 -MT) was measured and compared in extracts of 7 human fetal tissues obtained from 21 different fetal specimens as a function of fetal age and race, and maternal smoking and drug usage. Activity was determined from the proteinase-K solubilized radioactivity transferred from the DNA to the O 6 -MT. S9 homogenates were incubated with a heat depurinated [ 3 H]-methylnitrosourea alkylated DNA. Liver exhibited the highest activity followed by kidney, lung, small intestine, large intestine, skin and brain. Each of the tissues exhibited a 3- to 5-fold level of interindividual variation of O 6 -MT. There did not appear to be any significant difference of O 6 -MT in the tissues obtained from mothers who smoked cigarettes during pregnancy. Also, fetal race and age did not appear to account for the level of variation of O 6 -MT. The fetal tissues obtained from an individual using phenobarbital and smoking exhibited 4-fold increases in O 6 -MT activity. The tissues obtained from another individual on kidney dialysis were 2- to 3-fold higher than the normal population. These data suggest that the variation in human O 6 -MT can not be explained by racial or smoking factors, but may be modulated by certain drugs

  9. DNA interactions of monofunctional organometallic osmium(II) antitumor complexes in cell-free media

    Kostrhunová, Hana; Florian, Jakub; Nováková, Olga; Peacock, A.F.A.; Sadler, P.J.; Brabec, Viktor

    2008-01-01

    Roč. 51, č. 12 (2008), s. 3635-3643 ISSN 0022-2623 R&D Projects: GA MZd(CZ) NR8562; GA AV ČR(CZ) KAN200200651; GA AV ČR(CZ) 1QS500040581; GA MŠk(CZ) LC06030; GA ČR(CZ) GA203/06/1239 Grant - others:GA AV ČR(CZ) IAA400040803; GA MŠk(CZ) ME08017; GA MŠk(CZ) OC08003 Program:IA; ME; OC Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA * osmium * cancer Subject RIV: BO - Biophysics Impact factor: 4.898, year: 2008

  10. DNA Methylation Landscapes of Human Fetal Development

    Slieker, Roderick C.; Roost, Matthias S.; van Iperen, Liesbeth; Suchiman, H. Eka D; Tobi, Elmar W.; Carlotti, Françoise; de Koning, Eelco J P; Slagboom, P. Eline; Heijmans, Bastiaan T.; Chuva de Sousa Lopes, Susana M.

    2015-01-01

    Remodelling the methylome is a hallmark of mammalian development and cell differentiation. However, current knowledge of DNA methylation dynamics in human tissue specification and organ development largely stems from the extrapolation of studies in vitro and animal models. Here, we report on the DNA

  11. The value of fluorimetry (Qubit) and spectrophotometry (NanoDrop) in the quantification of cell-free DNA (cfDNA) in malignant melanoma and prostate cancer patients.

    Ponti, Giovanni; Maccaferri, Monia; Manfredini, Marco; Kaleci, Shaniko; Mandrioli, Mauro; Pellacani, Giovanni; Ozben, Tomris; Depenni, Roberta; Bianchi, Giampaolo; Pirola, Giacomo Maria; Tomasi, Aldo

    2018-04-01

    Circulating cell-free tumor DNA (cfDNA) is of crucial interest in oncology. cfDNA constitutes a potential prognostic and therapeutic marker for different solid tumors and can be used in the diagnostic and therapeutic management of cancer patients for which nowadays there are no valid laboratory markers. In the present study, the quality and quantity of the cfDNA were assessed by different quantification procedures, in order to identify the potential applications of these techniques in the preliminary cfDNA quantification. Qubit with single (ss) and double strand (ds) DNA assay kits, NanoDrop and quantitative Real Time PCR (qPCR), were adopted to assess the cfDNA in the blood samples of 18 melanoma patients, 67 prostate cancer patients and 15 healthy controls. The quantification by NanoDrop (average value 8.48ng/μl, 95% confidence limit (CL)=7.23-9.73), Qubit ssDNA (average value 23.08ng/μl, CL=19.88-26.28), dsDNA (average value 4.32ng/μl, CL=3.52-5.12) assay kits and qPCR (average value 0.39ng/μl, CL=0.31-0.47) revealed differences among the four procedures. Qubit 2.0 ss-DNA kit gave higher cfDNA concentration values for all the samples analyzed. In detail, Qubit ssDNA assay revealed higher sensitivity in the quantification of small amounts of pure ss-DNA and ds-DNA, while NanoDrop allowed the assessment of the purity of cfDNA samples. The NanoDrop and Qubit 2.0 measurements were analyzed in order to define their correlation with qPCR cfDNA assessment, showing good correlation values with the qPCR that should be considered the "gold standard". In our proposal, the sequential combination of NanoDrop and Qubit ssDNA methods should be adopted for a cost-effective preliminary assessment of total circulating cfDNA in melanoma and prostate cancer patients, and only discordant values should undergo qPCR assessment. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Fetal and Placental DNA Stimulation of TLR9: A Mechanism Possibly Contributing to the Pro-inflammatory Events During Parturition.

    Goldfarb, Ilona Telefus; Adeli, Sharareh; Berk, Tucker; Phillippe, Mark

    2018-05-01

    While there is evidence for a relationship between cell-free fetal DNA (cffDNA) and parturition, questions remain regarding whether cffDNA could trigger a pro-inflammatory response on the pathway to parturition. We hypothesized that placental and/or fetal DNA stimulates toll-like receptor 9 (TLR9) leading to secretion of pro-inflammatory cytokines by macrophage cells. Four in vitro DNA stimulation studies were performed using RAW 264.7 mouse peritoneal macrophage cells incubated in media containing the following DNA particles: an oligodeoxynucleotide (ODN2395), intact genomic DNA (from mouse placentas, fetuses and adult liver), mouse DNA complexed with DOTAP (a cationic liposome forming compound), and telomere-depleted mouse DNA. Interleukin 6 (IL6) secretion was measured in the media by enzyme-linked immunosorbent assay; and the cell pellet was homogenized for protein content (picograms IL6/mg protein). Robust IL6 secretion was observed in response to ODN2395 (a CpG-rich TLR9 agonist), mouse DNA-DOTAP complexes, and telomere-depleted mouse DNA in concentrations of 5 to 15 μg/mL. In contrast, ODN A151 (containing telomere sequence motifs), intact genomic mouse DNA, and restriction enzyme-digested DNA had no effect on IL6 secretion. The IL6 response was significantly inhibited by chloroquine (10 μg/mL), thereby confirming the important role for TLR9 in the response by macrophage cells. DNA derived from mouse placentas and fetuses, and depleted of telomeric sequences, stimulates a robust pro-inflammatory response by macrophage cells, thereby supporting the hypothesis that cffDNA is able to stimulate an innate immune response that could trigger the onset of parturition. These findings are of clinical importance, as we search for effective treatment/prevention of preterm parturition.

  13. Cell-Free DNA, High-Mobility Group Box-1, and Procalcitonin Concentrations in Dogs With Gastric Dilatation–Volvulus Syndrome

    Roberta Troia; Massimo Giunti; Stefano Calipa; Robert Goggs

    2018-01-01

    Canine gastric dilatation–volvulus (GDV) is a life-threatening disease characterized by extensive tissue ischemia, tissue hypoperfusion, and systemic inflammation. Biomarkers that better reflect the severity of gastric necrosis and systemic inflammation would aid clinicians in the management of these patients. This study aimed to investigate the prognostic significance of cell-free DNA (cfDNA), high-mobility group box-1 (HMGB1), and procalcitonin (PCT) in dogs with GDV. Concentrations of cfDN...

  14. Quantitative characterization of pyrimidine dimer excision from UV-irradiated DNA (excision capacity) by cell-free extracts of the yeast Saccharomyces cerevisiae

    Bekker, M.L.; Kaboev, O.K.; Akhmedov, A.T.; Luchkina, L.A.

    1984-01-01

    Cell-free extracts from wild-type yeast (RAD + ) and from rad mutants belonging to the RAD3 epistatic group (rad1-1, rad2-1, rad3-1, rad4-1) contain activities catalyzing the excision of pyrimidine dimers (PD) from purified ultraviolet-irradiated DNA which was not pre-treated with exogenous UV-endonuclease. The level of these activities in cell-free extracts from rad mutants did not differ from that in wild-type extract and was close to the in vivo excision capacity of the latter calculated from the LD 37 (about 10 4 PD per haploid genome). (Auth.)

  15. "I think we've got too many tests!": Prenatal providers' reflections on ethical and clinical challenges in the practice integration of cell-free DNA screening.

    Gammon, B L; Kraft, S A; Michie, M; Allyse, M

    2016-01-01

    The recent introduction of cell-free DNA-based non-invasive prenatal screening (cfDNA screening) into clinical practice was expected to revolutionize prenatal testing. cfDNA screening for fetal aneuploidy has demonstrated higher test sensitivity and specificity for some conditions than conventional serum screening and can be conducted early in the pregnancy. However, it is not clear whether and how clinical practices are assimilating this new type of testing into their informed consent and counselling processes. Since the introduction of cfDNA screening into practice in 2011, the uptake and scope have increased dramatically. Prenatal care providers are under pressure to stay up to date with rapidly changing cfDNA screening panels, manage increasing patient demands, and keep up with changing test costs, all while attempting to use the technology responsibly and ethically. While clinical literature on cfDNA screening has shown benefits for specific patient populations, it has also identified significant misunderstandings among providers and patients alike about the power of the technology. The unique features of cfDNA screening, in comparison to established prenatal testing technologies, have implications for informed decision-making and genetic counselling that must be addressed to ensure ethical practice. This study explored the experiences of prenatal care providers at the forefront of non-invasive genetic screening in the United States to understand how this testing changes the practice of prenatal medicine. We aimed to learn how the experience of providing and offering this testing differs from established prenatal testing methodologies. These differences may necessitate changes to patient education and consent procedures to maintain ethical practice. We used the online American Congress of Obstetricians and Gynecologists Physician Directory to identify a systematic sample of five prenatal care providers in each U.S. state and the District of Columbia. Beginning

  16. Plasma mSEPT9: A Novel Circulating Cell-free DNA-Based Epigenetic Biomarker to Diagnose Hepatocellular Carcinoma

    Abderrahim Oussalah

    2018-04-01

    Full Text Available Summary: Background: Patients with cirrhosis are at high risk of hepatocellular carcinoma (HCC. The SEPT9 gene is a key regulator of cell division and tumor suppressor whose hypermethylation is associated with liver carcinogenesis. The primary aim of this study was to evaluate the diagnostic accuracy of a PCR-based assay for the analysis of SEPT9 promoter methylation in circulating cell-free DNA (mSEPT9 for diagnosing HCC among cirrhotic patients. Methods: We report two phase II biomarker studies that included cirrhotic patients with or without HCC from France (initial study and Germany (replication study. All patients received clinical and biological evaluations, and liver imaging according to current recommendations. The primary outcome was defined as the presence of HCC according to guidelines from the American Association for the Study of Liver Diseases. The diagnosis of HCC was confirmed by abdominal contrast-enhanced computed tomography scan and systematically discussed in a multidisciplinary consultation meeting. HCC-free cirrhotic patients were recruited if the screening abdominal ultrasound showed no evidence of HCC at the time of blood sampling for the mSEPT9 test and on the next visit six months later. The adjudicating physicians were blinded to patient results associated with the mSEPT9 test. Findings: We included 289 patients with cirrhosis (initial: 186; replication: 103, among whom 98 had HCC (initial: 51; replication: 47. The mSEPT9 test exhibited high diagnostic accuracy for HCC diagnosis, with an area under the receiver operating characteristic curve (AUROC of 0.944 (0.900–0.970, p < 0.0001 in the initial study (replication: 0.930 [0.862–0.971, p < 0.0001]; meta-analysis: AUROC = 0.940 [0.910–0.970, p < 0.0001], no heterogeneity: I2 = 0%, p = 0.67; and no publication bias. In multivariate logistic regression analysis, the number of positive mSEPT9 triplicates was the only independent variable significantly

  17. Validation of liquid biopsy: plasma cell-free DNA testing in clinical management of advanced non-small cell lung cancer

    Veldore,Vidya; Choughule,Anuradha; Routhu,Tejaswi; Mandloi,Nitin; Noronha,Vanita; Joshi,Amit; Dutt,Amit; Gupta,Ravi; Vedam,Ramprasad; Prabhash,Kumar

    2018-01-01

    Vidya H Veldore,1,* Anuradha Choughule,2,* Tejaswi Routhu,1 Nitin Mandloi,1 Vanita Noronha,2 Amit Joshi,2 Amit Dutt,3 Ravi Gupta,1 Ramprasad Vedam,1 Kumar Prabhash2 1MedGenome Labs Private Ltd,, Bangalore, India; 2Tata Memorial Centre, Parel, Mumbai, India; 3The Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, India *These authors contributed equally to this work Abstract: Plasma cell-free tumor DNA, or circulating tumo...

  18. Comparison of quantification algorithms for circulating cell-free DNA methylation biomarkers in blood plasma from cancer patients.

    de Vos, Luka; Gevensleben, Heidrun; Schröck, Andreas; Franzen, Alina; Kristiansen, Glen; Bootz, Friedrich; Dietrich, Dimo

    2017-01-01

    SHOX2 and SEPT9 methylation in circulating cell-free DNA (ccfDNA) in blood are established powerful and clinically valuable biomarkers for diagnosis, staging, prognosis, and monitoring of cancer patients. The aim of the present study was to evaluate different quantification algorithms (relative quantification, absolute quantification, quasi-digital PCR) with regard to their clinical performance. Methylation analyses were performed in a training cohort (141 patients with head and neck squamous cell carcinoma [HNSCC], 170 control cases) and a testing cohort (137 HNSCC cases, 102 controls). DNA was extracted from plasma samples, bisulfite-converted, and analyzed via quantitative real-time PCR. SHOX2 and SEPT9 methylations were assessed separately and as panel [mean SEPT9 / SHOX2 ] using the ΔCT method for absolute quantification and the ΔΔCT-method for relative quantification. Quasi-digital PCR was defined as the number of amplification-positive PCR replicates. The diagnostic (sensitivity, specificity, area under the curve (AUC) of the receiver operating characteristic (ROC)) and prognostic accuracy (hazard ratio (HR) from Cox regression) were evaluated. Sporadic methylation in control samples necessitated the introduction of cutoffs resulting in 61-63% sensitivity/90-92% specificity ( SEPT9 /training), 53-57% sensitivity/87-90% specificity ( SHOX2 /training), and 64-65% sensitivity/90-91% specificity (mean SEPT9 / SHOX2 /training). Results were confirmed in a testing cohort with 54-56% sensitivity/88-90% specificity ( SEPT9 /testing), 43-48% sensitivity/93-95% specificity ( SHOX2 /testing), and 49-58% sensitivity/88-94% specificity (mean SEPT9 / SHOX2 /testing). All algorithms showed comparable cutoff-independent diagnostic accuracy with largely overlapping 95% confidence intervals ( SEPT9 : AUC training  = 0.79-0.80; AUC testing  = 0.74-0.75; SHOX2 : AUC training  = 0.78-0.81, AUC testing  = 0.77-0.79; mean SEPT9 / SHOX2 : AUC training  = 0

  19. Implications of failure to achieve a result from prenatal maternal serum cell-free DNA testing: a historical cohort study.

    Chan, N; Smet, M-E; Sandow, R; da Silva Costa, F; McLennan, A

    2017-11-01

    To investigate the pregnancy outcomes in a cohort of women who failed to obtain a result in non-invasive prenatal testing (NIPT). Historical cohort study. A multicentre private practice in Sydney, Australia. Women who failed to obtain a result from NIPT (n = 131). The maternal characteristics, antenatal investigations and pregnancy outcomes for these women were compared with those who obtained a result at the same practice and to the general Australian obstetric population. Antenatal investigations: pregnancy-associated plasma protein-A (PAPP-A), free β-human chorionic gonadotrophin (β-hCG), placental growth factor (PlGF), uterine artery pulsatility index (PI), mean arterial pressure (MAP). Pregnancy outcomes: chromosomal abnormality, pre-eclampsia, gestational diabetes, small-for-gestational-age (SGA), preterm delivery. Only 1.1% of NIPT samples failed to return a result. This cohort was significantly older and had significantly increased weight compared with the general Australian obstetric population. Pregnancy outcomes were available for 94% of the cohort. There were significantly higher rates of chromosomal aneuploidies (6.5% versus 0.2%, P < 0.0001), pre-eclampsia (11% versus 1.5%, P < 0.0001) and gestational diabetes (23% versus 7.5%, P < 0.0001) compared with the general obstetric population. Rates of preterm delivery and SGA were elevated but did not reach significance. Antenatal investigations demonstrated decreased PAPP-A MoM (0.75 versus 1.14, P < 0.0001), decreased free β-hCG (0.71 versus 1.01, P < 0.0001) and increased uterine artery PI (1.79 versus 1.65, P = 0.02). Women who fail to obtain a result from NIPT are at increased risk of adverse pregnancy outcomes, in particular chromosomal aneuploidy, gestational diabetes and pre-eclampsia. None received. Women who fail to obtain a result from cell-free DNA NIPT are at increased risk of adverse pregnancy outcomes. © 2017 Royal College of Obstetricians and Gynaecologists.

  20. Low-Dose Ionizing Radiation Affects Mesenchymal Stem Cells via Extracellular Oxidized Cell-Free DNA: A Possible Mediator of Bystander Effect and Adaptive Response

    V. A. Sergeeva

    2017-01-01

    Full Text Available We have hypothesized that the adaptive response to low doses of ionizing radiation (IR is mediated by oxidized cell-free DNA (cfDNA fragments. Here, we summarize our experimental evidence for this model. Studies involving measurements of ROS, expression of the NOX (superoxide radical production, induction of apoptosis and DNA double-strand breaks, antiapoptotic gene expression and cell cycle inhibition confirm this hypothesis. We have demonstrated that treatment of mesenchymal stem cells (MSCs with low doses of IR (10 cGy leads to cell death of part of cell population and release of oxidized cfDNA. cfDNA has the ability to penetrate into the cytoplasm of other cells. Oxidized cfDNA, like low doses of IR, induces oxidative stress, ROS production, ROS-induced oxidative modifications of nuclear DNA, DNA breaks, arrest of the cell cycle, activation of DNA reparation and antioxidant response, and inhibition of apoptosis. The MSCs pretreated with low dose of irradiation or oxidized cfDNA were equally effective in induction of adaptive response to challenge further dose of radiation. Our studies suggest that oxidized cfDNA is a signaling molecule in the stress signaling that mediates radiation-induced bystander effects and that it is an important component of the development of radioadaptive responses to low doses of IR.

  1. Validation of liquid biopsy: plasma cell-free DNA testing in clinical management of advanced non-small cell lung cancer

    Veldore VH

    2018-01-01

    Full Text Available Vidya H Veldore,1,* Anuradha Choughule,2,* Tejaswi Routhu,1 Nitin Mandloi,1 Vanita Noronha,2 Amit Joshi,2 Amit Dutt,3 Ravi Gupta,1 Ramprasad Vedam,1 Kumar Prabhash2 1MedGenome Labs Private Ltd,, Bangalore, India; 2Tata Memorial Centre, Parel, Mumbai, India; 3The Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, India *These authors contributed equally to this work Abstract: Plasma cell-free tumor DNA, or circulating tumor DNA (ctDNA, from liquid biopsy is a potential source of tumor genetic material, in the absence of tissue biopsy, for EGFR testing. Our validation study reiterates the clinical utility of ctDNA next generation sequencing (NGS for EGFR mutation testing in non-small cell lung cancer (NSCLC. A total of 163 NSCLC cases were included in the validation, of which 132 patients had paired tissue biopsy and ctDNA. We chose to validate ctDNA using deep sequencing with custom designed bioinformatics methods that could detect somatic mutations at allele frequencies as low as 0.01%. Benchmarking allele specific real time PCR as one of the standard methods for tissue-based EGFR mutation testing, the ctDNA NGS test was validated on all the plasma derived cell-free DNA samples. We observed a high concordance (96.96% between tissue biopsy and ctDNA for oncogenic driver mutations in Exon 19 and Exon 21 of the EGFR gene. The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of the assay were 91.1%, 100% 100%, 95.6%, and 97%, respectively. A false negative rate of 3% was observed. A subset of mutations was also verified on droplet digital PCR. Sixteen percent EGFR mutation positivity was observed in patients where only liquid biopsy was available, thus creating options for targeted therapy. This is the first and largest study from India, demonstrating successful validation of circulating cell-free DNA as a clinically

  2. Peritoneal Cell-free DNA: an innovative method for determining acute cell damage in peritoneal membrane and for monitoring the recovery process after peritonitis.

    Virzì, Grazia Maria; Milan Manani, Sabrina; Brocca, Alessandra; Cantaluppi, Vincenzo; de Cal, Massimo; Pastori, Silvia; Tantillo, Ilaria; Zambon, Roberto; Crepaldi, Carlo; Ronco, Claudio

    2016-02-01

    Cell-free DNA (cfDNA) is present in the peritoneal effluent of stable peritoneal dialysis (PD) patients, but there are no data on cfDNA in PD patients with peritonitis. We investigated the variation of peritoneal cfDNA levels subsequent to peritonitis in PD patients. We enrolled 53 PD patients: 30 without any history of systemic inflammation or peritonitis in the last 3 months (group A) and 23 with acute peritonitis (group B). CfDNA was quantified in the peritoneal effluent. Peritoneal samples on days 1, 3, 10, 30 and until day 120 from the start of peritonitis were collected for white blood cells (WBC) count and cfDNA evaluation in group B. Quantitative analysis of cfDNA showed significantly higher levels in group B on day 1, 3, 10 and 30 compared with group A (p peritoneal cfDNA levels tended to progressively decline during follow-up of peritonitis. From this decreasing curve, we estimated that 49 days are necessary to reach the value of 51 genome equivalents (GE)/ml (75th percentile in controls) and 63 days to reach 31 GE/ml (median). Our results demonstrate that cfDNA increases in peritoneal effluent of PD patients with peritonitis and tends to progressively decline in step with peritonitis resolution and membrane repair process. Peritoneal cfDNA quantification could be an innovative method to determine acute damage and an inverse index of the repair process.

  3. Pre-analytical variables of circulating cell-free nucleosomes containing 5-methylcytosine DNA or histone modification H3K9Me3

    Rasmussen, Louise; Herzog, Marielle; Rømer, Eva

    2016-01-01

    Aim: To evaluate pre-analytical variables of circulating cell-free nucleosomes containing 5-methylcytosine DNA (5mC) or histone modification H3K9Me3 (H3K9Me3). Materials and methods: Six studies were designed to assess the possible influence of pre-analytical variables. Study 1: influence of stasis...... significantly lower levels of 5mC or H3K9Me3 compared to levels in healthy individuals. Conclusion: Levels of 5mC or H3K9Me3 appear stable in most pre-analytical settings if blood samples are stored at room temperature until centrifugation....

  4. The diagnostic value of circulating cell free DNA quantification in non-small cell lung cancer: A systematic review with meta-analysis.

    Jiang, Tao; Zhai, Changyun; Su, Chunxia; Ren, Shengxiang; Zhou, Caicun

    2016-10-01

    The aim of the current study was to assess the diagnostic value of circulating cell free DNA (cfDNA) quantification in discriminating non-small cell lung cancer (NSCLC) from healthy individuals. An electronic search was conducted on PubMed, EMBASE, Web of Science, and Cochrane Library. Eligible studies regarding to examine the diagnostic value of cfDNA in the detection of NSCLC were extracted and analyzed. We identified 15 eligible studies with a total of 2125 patients. The pooled results for quantification of cfDNA in lung cancer screening in the included studies were as follows: sensitivity, 81% (95% confidence interval (CI), 76%-84%); specificity, 85% (95% CI, 77%-91%); diagnostic odds ratio, 23.87 (95% CI, 13.37-42.61); and areas under the summary receiver operating characteristic curves were 0.89 (95% CI, 0.86-0.92). Subgroup analyses according to the time of sample collection, sample materials, test method, reference gene and cutoff value did not improve sensitivity, but specificity could be significantly improved when we only included the studies using cfDNA sample before surgery or antitumor treatment and real-time PCR to detect cfDNA and human β-actin as a reference gene. Quantification of cfDNA was a promising and effective biomarker for discriminating NSCLC from healthy individuals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Clinical experience of laboratory follow-up with noninvasive prenatal testing using cell-free DNA and positive microdeletion results in 349 cases.

    Schwartz, S; Kohan, M; Pasion, R; Papenhausen, P R; Platt, L D

    2018-02-01

    Screening via noninvasive prenatal testing (NIPT) involving the analysis of cell-free DNA (cfDNA) from plasma has become readily available to screen for chromosomal and DNA aberrations through maternal blood. This report reviews a laboratory's experience with follow-up of positive NIPT screens for microdeletions. Patients that were screened positive by NIPT for a microdeletion involving 1p, 4p, 5p, 15q, or 22q who underwent diagnostic studies by either chorionic villus sampling or amniocentesis were evaluated. The overall positive predictive value for 349 patients was 9.2%. When a microdeletion was confirmed, 39.3% of the cases had additional abnormal microarray findings. Unrelated abnormal microarray findings were detected in 11.8% of the patients in whom the screen positive microdeletion was not confirmed. Stretches of homozygosity in the microdeletion were frequently associated with a false positive cfDNA microdeletion result. Overall, this report reveals that while cfDNA analysis will screen for microdeletions, the positive predictive value is low; in our series it is 9.2%. Therefore, the patient should be counseled accordingly. Confirmatory diagnostic microarray studies are imperative because of the high percentage of false positives and the frequent additional abnormalities not delineated by cfDNA analysis. © 2018 John Wiley & Sons, Ltd.

  6. Comparison of the quantification of KRAS mutations by digital PCR and E-ice-COLD-PCR in circulating-cell-free DNA from metastatic colorectal cancer patients.

    Sefrioui, David; Mauger, Florence; Leclere, Laurence; Beaussire, Ludivine; Di Fiore, Frédéric; Deleuze, Jean-François; Sarafan-Vasseur, Nasrin; Tost, Jörg

    2017-02-01

    Circulating cell-free DNA (ccfDNA) bears great promise as biomarker for personalized medicine, but ccfDNA is present only at low levels in the plasma or serum of cancer patients. E-ice-COLD-PCR is a recently developed enrichment method to detect and identify mutations present at low-abundance in clinical samples. However, recent studies have shown the importance to accurately quantify low-abundance mutations as clinically important decisions will depend on certain mutation thresholds. The possibility for an enrichment method to accurately quantify the mutation levels remains a point of concern and might limit its clinical applicability. In the present study, we compared the quantification of KRAS mutations in ccfDNA from metastatic colorectal cancer patients by E-ice-COLD-PCR with two digital PCR approaches. For the quantification of mutations by E-ice-COLD-PCR, cell lines with known mutations diluted into WT genomic DNA were used for calibration. E-ice-COLD-PCR and the two digital PCR approaches showed the same range of the mutation level and were concordant for mutation levels below the clinical relevant threshold. E-ice-COLD-PCR can accurately detect and quantify low-abundant mutations in ccfDNA and has a shorter time to results making it compatible with the requirements of analyses in a clinical setting without the loss of quantitative accuracy. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. An Algorithm Measuring Donor Cell-Free DNA in Plasma of Cellular and Solid Organ Transplant Recipients That Does Not Require Donor or Recipient Genotyping

    Paul MK Gordon

    2016-09-01

    Full Text Available Cell-free DNA (cfDNA has significant potential in the diagnosis and monitoring of clinical conditions but accurately and easily distinguishing the relative proportion of DNA molecules in a mixture derived from two different sources (i.e. donor and recipient tissues after transplantation is challenging. In human cellular transplantation there is currently no useable method to detect in vivo engraftment and blood-based non-invasive tests for allograft rejection in solid organ transplantation are either non-specific (e.g. creatinine in kidney transplantation, liver enzymes in hepatic transplantation or absent (i.e. heart transplantation. Elevated levels of donor cfDNA have been shown to correlate with solid organ rejection but complex methodology limits implementation of this promising biomarker. We describe a cost-effective method to quantify donor cfDNA in recipient plasma using a panel of high-frequency single nucleotide polymorphisms, next-generation (semiconductor sequencing and a novel mixture model algorithm. In vitro, our method accurately and rapidly determined donor/recipient DNA admixture. For in vivo testing, donor cfDNA was serially quantified in an infant with a urea cycle disorder after receiving six daily infusions of donor liver cells. Donor cfDNA isolated from 1-2 ml of recipient plasma was detected as late as 24 weeks after infusion suggesting engraftment. The percentage of circulating donor cfDNA was also assessed in pediatric and adult heart transplant recipients undergoing routine endomyocardial biopsy with levels observed to be stable over time and generally measuring <1% in cases without moderate or severe cellular rejection. Unlike existing non-invasive methods used to define the proportion of donor cfDNA in solid organ transplant patients, our assay does not require sex mismatch, donor genotyping or whole-genome sequencing and potentially has broad application to detect cellular engraftment or allograft injury after

  8. Acute high-intensity interval exercise induces comparable levels of circulating cell-free DNA and Interleukin-6 in obese and normal-weight individuals.

    Ferrandi, Peter J; Fico, Brandon G; Whitehurst, Michael; Zourdos, Michael C; Bao, Fanchen; Dodge, Katelyn M; Rodriguez, Alexandra L; Pena, Gabriel; Huang, Chun-Jung

    2018-06-01

    Obesity is associated with lipid aggregation in adipocytes and macrophage infiltration, leading to increased oxidative stress and inflammation. Increased cell-free DNA (cfDNA) concentrations have been observed in clinical conditions of systemic inflammation. While the beneficial effects of regular physical activity on the release of circulating cfDNA still remain unknown, acute intense exercise has been shown to increase inflammatory cytokines and cfDNA concentrations in normal-weight individuals. Therefore, the primary purpose of this study was to examine the effect of acute high-intensity interval Exercise (HIIE) on plasma cfDNA and interleukin-6 (IL-6) responses in obese and normal-weight subjects. Fourteen male subjects (7 obese and 7 normal-weight) participated in an acute HIIE protocol (30 min, 4x4min @ 80% - 90% of VO 2max ) on a treadmill. Between HIIE intervals, subjects performed 3 min of active recovery at 50-60% VO 2max . Blood samples were collected prior to, immediately following exercise, and one hour into recovery for measurements of plasma cfDNA and IL-6. Our results demonstrated a significant elevation in plasma cfDNA immediately following acute HIIE in both obese and normal-weight subjects. A comparable elevation in the concentration of plasma IL-6 was also found between two groups in response to acute HIIE. Furthermore, the level of plasma cfDNA was not correlated with IL-6 either at baseline or in response to acute HIIE. These findings may support the utilization of HIIE as a time-efficient exercise protocol to understand the obesity-associated cfDNA and inflammatory responses. Published by Elsevier Inc.

  9. Pleural fluid cell-free DNA integrity index to identify cytologically negative malignant pleural effusions including mesotheliomas

    Sriram, Krishna B; Courtney, Deborah; Yang, Ian A; Bowman, Rayleen V; Fong, Kwun M; Relan, Vandana; Clarke, Belinda E; Duhig, Edwina E; Windsor, Morgan N; Matar, Kevin S; Naidoo, Rishendran; Passmore, Linda; McCaul, Elizabeth

    2012-01-01

    The diagnosis of malignant pleural effusions (MPE) is often clinically challenging, especially if the cytology is negative for malignancy. DNA integrity index has been reported to be a marker of malignancy. The aim of this study was to evaluate the utility of pleural fluid DNA integrity index in the diagnosis of MPE. We studied 75 pleural fluid and matched serum samples from consecutive subjects. Pleural fluid and serum ALU DNA repeats [115bp, 247bp and 247bp/115bp ratio (DNA integrity index)] were assessed by real-time quantitative PCR. Pleural fluid and serum mesothelin levels were quantified using ELISA. Based on clinico-pathological evaluation, 52 subjects had MPE (including 16 mesotheliomas) and 23 had benign effusions. Pleural fluid DNA integrity index was higher in MPE compared with benign effusions (1.2 vs. 0.8; p<0.001). Cytology had a sensitivity of 55% in diagnosing MPE. If cytology and pleural fluid DNA integrity index were considered together, they exhibited 81% sensitivity and 87% specificity in distinguishing benign and malignant effusions. In cytology-negative pleural effusions (35 MPE and 28 benign effusions), elevated pleural fluid DNA integrity index had an 81% positive predictive value in detecting MPEs. In the detection of mesothelioma, at a specificity of 90%, pleural fluid DNA integrity index had similar sensitivity to pleural fluid and serum mesothelin (75% each respectively). Pleural fluid DNA integrity index is a promising diagnostic biomarker for identification of MPEs, including mesothelioma. This biomarker may be particularly useful in cases of MPE where pleural aspirate cytology is negative, and could guide the decision to undertake more invasive definitive testing. A prospective validation study is being undertaken to validate our findings and test the clinical utility of this biomarker for altering clinical practice

  10. Highly sensitive detection of ESR1 mutations in cell-free DNA from patients with metastatic breast cancer using molecular barcode sequencing.

    Masunaga, Nanae; Kagara, Naofumi; Motooka, Daisuke; Nakamura, Shota; Miyake, Tomohiro; Tanei, Tomonori; Naoi, Yasuto; Shimoda, Masafumi; Shimazu, Kenzo; Kim, Seung Jin; Noguchi, Shinzaburo

    2018-01-01

    We aimed to develop a highly sensitive method to detect ESR1 mutations in cell-free DNA (cfDNA) using next-generation sequencing with molecular barcode (MB-NGS) targeting the hotspot segment (c.1600-1713). The sensitivity of MB-NGS was tested using serially diluted ESR1 mutant DNA and then cfDNA samples from 34 patients with metastatic breast cancer were analyzed with MB-NGS. The results of MB-NGS were validated in comparison with conventional NGS and droplet digital PCR (ddPCR). MB-NGS showed a higher sensitivity (0.1%) than NGS without barcode (1%) by reducing background errors. Of the cfDNA samples from 34 patients with metastatic breast cancer, NGS without barcode revealed seven mutations in six patients (17.6%) and MB-NGS revealed six additional mutations including three mutations not reported in the COSMIC database of breast cancer, resulting in total 13 ESR1 mutations in ten patients (29.4%). Regarding the three hotspot mutations, all the patients with mutations detected by MB-NGS had identical mutations detected by droplet digital PCR (ddPCR), and mutant allele frequency correlated very well between both (r = 0.850, p < 0.01). Moreover, all the patients without these mutations by MB-NGS were found to have no mutations by ddPCR. In conclusion, MB-NGS could successfully detect ESR1 mutations in cfDNA with a higher sensitivity of 0.1% than conventional NGS and was considered as clinically useful as ddPCR.

  11. DNA repair and induction of plasminogen activator in human fetal cells treated with ultraviolet light

    Ben-Ishai, R.; Sharon, R.; Rothman, M.; Miskin, R.

    1984-01-01

    We have tested human fetal fibroblasts for development associated changes in DNA repair by utilizing nucleoid sedimentation as an assay for excision repair. Among skin fibroblasts the rate of excision repair was significantly higher in non-fetal cells than in fibroblasts derived from an 8 week fetus; this was evident by a delay in both the relaxation and the restoration of DNA supercoiling in nucleoids after irradiation. Skin fibroblasts derived at 12 week gestation were more repair proficient than those derived at 8 week gestation. However, they exhibited a somewhat lower rate of repair than non-fetal cells. The same fetal and non-fetal cells were also tested for induction of the protease plasminogen activator (PA) after u.v. irradiation. Enhancement of PA was higher in skin fibroblasts derived at 8 week than in those derived at 12 week gestation and was absent in non-fetal skin fibroblasts. These results are consistent with our previous findings that in human cells u.v. light-induced PA synthesis is correlated with reduced DNA repair capacity. Excision repair and PA inducibility were found to depend on tissue of origin in addition to gestational stage, as shown for skin and lung fibroblasts from the same 12 week fetus. Lung compared to skin fibroblasts exhibited lower repair rates and produced higher levels of PA after irradiation. The sedimentation velocity of nucleoids, prepared from unirradiated fibroblasts, in neutral sucrose gradients with or without ethidium bromide, indicated the presence of DNA strand breaks in fetal cells. It is proposed that reduced DNA repair in fetal cells may result from alterations in DNA supercoiling, and that persistent DNA strand breaks enhance transcription of PA gene(s)

  12. Cell-Free DNA, High-Mobility Group Box-1, and Procalcitonin Concentrations in Dogs With Gastric Dilatation–Volvulus Syndrome

    Roberta Troia

    2018-04-01

    Full Text Available Canine gastric dilatation–volvulus (GDV is a life-threatening disease characterized by extensive tissue ischemia, tissue hypoperfusion, and systemic inflammation. Biomarkers that better reflect the severity of gastric necrosis and systemic inflammation would aid clinicians in the management of these patients. This study aimed to investigate the prognostic significance of cell-free DNA (cfDNA, high-mobility group box-1 (HMGB1, and procalcitonin (PCT in dogs with GDV. Concentrations of cfDNA, HMGB1, and PCT were measured in citrated plasma samples collected from 29 dogs with GDV at hospital admission. Additional data collected included baseline lactate concentrations, APPLEfast score, evidence of gastric necrosis, occurrence of postoperative complications, and outcome. Twenty-four healthy dogs were sampled as controls. Continuous variables between groups were compared with the Mann–Whitney U and correlations between continuous variables were assessed by calculation of Spearman’s correlation coefficient. Alpha was set at 0.05. Dogs with GDV had significantly greater concentrations of cfDNA, HMGB1, and PCT compared to controls (P = 0.0009, P = 0.004, and P = 0.009, respectively. PCT concentrations were significantly higher in non-survivors compared to survivors (P = 0.008. Dogs with gastric necrosis had significantly greater lactate concentrations compared to dogs without gastric necrosis (P = 0.0005. The APPLEfast score was not prognostic. Lactate and PCT concentrations were moderately, positively correlated (rs 0.51, P = 0.0005. Concentrations of the inflammatory biomarkers cfDNA, HMGB1, and PCT are increased in canine GDV. Only lactate and PCT concentrations were prognostic in this population of GDV dogs and were predictive of the presence of gastric necrosis and of non-survival to hospital discharge, respectively.

  13. Cell-Free DNA, High-Mobility Group Box-1, and Procalcitonin Concentrations in Dogs With Gastric Dilatation-Volvulus Syndrome.

    Troia, Roberta; Giunti, Massimo; Calipa, Stefano; Goggs, Robert

    2018-01-01

    Canine gastric dilatation-volvulus (GDV) is a life-threatening disease characterized by extensive tissue ischemia, tissue hypoperfusion, and systemic inflammation. Biomarkers that better reflect the severity of gastric necrosis and systemic inflammation would aid clinicians in the management of these patients. This study aimed to investigate the prognostic significance of cell-free DNA (cfDNA), high-mobility group box-1 (HMGB1), and procalcitonin (PCT) in dogs with GDV. Concentrations of cfDNA, HMGB1, and PCT were measured in citrated plasma samples collected from 29 dogs with GDV at hospital admission. Additional data collected included baseline lactate concentrations, APPLE fast score, evidence of gastric necrosis, occurrence of postoperative complications, and outcome. Twenty-four healthy dogs were sampled as controls. Continuous variables between groups were compared with the Mann-Whitney U and correlations between continuous variables were assessed by calculation of Spearman's correlation coefficient. Alpha was set at 0.05. Dogs with GDV had significantly greater concentrations of cfDNA, HMGB1, and PCT compared to controls ( P  = 0.0009, P  = 0.004, and P  = 0.009, respectively). PCT concentrations were significantly higher in non-survivors compared to survivors ( P  = 0.008). Dogs with gastric necrosis had significantly greater lactate concentrations compared to dogs without gastric necrosis ( P  = 0.0005). The APPLE fast score was not prognostic. Lactate and PCT concentrations were moderately, positively correlated ( r s 0.51, P  = 0.0005). Concentrations of the inflammatory biomarkers cfDNA, HMGB1, and PCT are increased in canine GDV. Only lactate and PCT concentrations were prognostic in this population of GDV dogs and were predictive of the presence of gastric necrosis and of non-survival to hospital discharge, respectively.

  14. Cell-Free DNA, High-Mobility Group Box-1, and Procalcitonin Concentrations in Dogs With Gastric Dilatation–Volvulus Syndrome

    Troia, Roberta; Giunti, Massimo; Calipa, Stefano; Goggs, Robert

    2018-01-01

    Canine gastric dilatation–volvulus (GDV) is a life-threatening disease characterized by extensive tissue ischemia, tissue hypoperfusion, and systemic inflammation. Biomarkers that better reflect the severity of gastric necrosis and systemic inflammation would aid clinicians in the management of these patients. This study aimed to investigate the prognostic significance of cell-free DNA (cfDNA), high-mobility group box-1 (HMGB1), and procalcitonin (PCT) in dogs with GDV. Concentrations of cfDNA, HMGB1, and PCT were measured in citrated plasma samples collected from 29 dogs with GDV at hospital admission. Additional data collected included baseline lactate concentrations, APPLEfast score, evidence of gastric necrosis, occurrence of postoperative complications, and outcome. Twenty-four healthy dogs were sampled as controls. Continuous variables between groups were compared with the Mann–Whitney U and correlations between continuous variables were assessed by calculation of Spearman’s correlation coefficient. Alpha was set at 0.05. Dogs with GDV had significantly greater concentrations of cfDNA, HMGB1, and PCT compared to controls (P = 0.0009, P = 0.004, and P = 0.009, respectively). PCT concentrations were significantly higher in non-survivors compared to survivors (P = 0.008). Dogs with gastric necrosis had significantly greater lactate concentrations compared to dogs without gastric necrosis (P = 0.0005). The APPLEfast score was not prognostic. Lactate and PCT concentrations were moderately, positively correlated (rs 0.51, P = 0.0005). Concentrations of the inflammatory biomarkers cfDNA, HMGB1, and PCT are increased in canine GDV. Only lactate and PCT concentrations were prognostic in this population of GDV dogs and were predictive of the presence of gastric necrosis and of non-survival to hospital discharge, respectively. PMID:29686994

  15. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients.

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-08-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  16. Minimal alteration in the ratio of circulatory fetal DNA to fetal corticotropin-releasing hormone mRNA level in preeclampsia.

    Zhong, Xiao Yan; Holzgreve, Wolfgang; Gebhardt, Stefan; Hillermann, Renate; Tofa, Kashefa Carelse; Gupta, Anurag Kumar; Huppertz, Berthold; Hahn, Sinuhe

    2006-01-01

    We have recently observed that fetal DNA and fetal corticotropin-releasing hormone (CRH) mRNA are associated with in vitro generated syncytiotrophoblast-derived microparticles, and that the ratio of fetal DNA to mRNA (CRH) varied according to whether the particles were derived by predominantly apoptotic, apo-necrotic or necrotic pathways. Hence, we examined whether these ratios varied in maternal plasma samples taken from normotensive and preeclamptic pregnancies in vivo. Maternal plasma samples were collected from 18 cases with preeclampsia and 29 normotensive term controls. Circulatory fetal CRH mRNA and DNA levels were quantified by real-time PCR and RT-PCR. Circulatory fetal mRNA and fetal DNA levels were significantly elevated in the preeclampsia study group when compared to normotensive controls. Alterations in the fetal mRNA to DNA ratio between the study and control groups were minimal, even when stratified into early (34 weeks of gestation) onset preeclampsia. Our data suggest that although circulatory fetal DNA and mRNA levels are significantly elevated in preeclampsia, the ratios in maternal plasma are not dramatically altered. Copyright 2006 S. Karger AG, Basel.

  17. Methylation status of the APC and RASSF1A promoter in cell-free circulating DNA and its prognostic role in patients with colorectal cancer.

    Matthaios, Dimitrios; Balgkouranidou, Ioanna; Karayiannakis, Anastasios; Bolanaki, Helen; Xenidis, Nikolaos; Amarantidis, Kyriakos; Chelis, Leonidas; Romanidis, Konstantinos; Chatzaki, Aikaterini; Lianidou, Evi; Trypsianis, Grigorios; Kakolyris, Stylianos

    2016-07-01

    DNA methylation is the most frequent epigenetic alteration. Using methylation-specific polymerase chain reaction (MSP), the methylation status of the adenomatous polyposis coli ( APC ) and Ras association domain family 1 isoform A ( RASSF1A ) genes was examined in cell-free circulating DNA from 155 plasma samples obtained from patients with early and advanced colorectal cancer (CRC). APC and RASSF1A hypermethylation was frequently observed in both early and advanced disease, and was significantly associated with a poorer disease outcome. The methylation status of the APC and RASSF1A promoters was investigated in cell-free DNA of patients with CRC. Using MSP, the promoter methylation status of APC and RASSF1A was examined in 155 blood samples obtained from patients with CRC, 88 of whom had operable CRC (oCRC) and 67 had metastatic CRC (mCRC). The frequency of APC methylation in patients with oCRC was 33%. Methylated APC promoter was significantly associated with older age (P=0.012), higher stage (P=0.014) and methylated RASSF1A status (P=0.050). The frequency of APC methylation in patients with mCRC was 53.7%. In these patients, APC methylation was significantly associated with methylated RASSF1A status (P=0.016). The frequency of RASSF1A methylation in patients with oCRC was 25%. Methylated RASSF1A in oCRC was significantly associated with higher stage (P=0.021). The frequency of RASSF1A methylation in mCRC was 44.8%. Methylated RASSF1A in mCRC was associated with moderate differentiation (P=0.012), high levels of carcinoembryonic antigen (P=0.023) and methylated APC status (P=0.016). Patients with an unmethylated APC gene had better survival in both early (81±5 vs. 27±4 months, PAPC . Patients with an unmethylated RASSF1A gene had better survival in both early (71±6 vs. 46±8 months, PAPC and RASSF1A promoter methylation status and survival may be indicative of a prognostic role for these genes in CRC, which requires additional testing in larger studies.

  18. [Construction of fetal mesenchymal stem cell cDNA subtractive library].

    Yang, Li; Wang, Dong-Mei; Li, Liang; Bai, Ci-Xian; Cao, Hua; Li, Ting-Yu; Pei, Xue-Tao

    2002-04-01

    To identify differentially expressed genes between fetal mesenchymal stem cell (MSC) and adult MSC, especially specified genes expressed in fetal MSC, a cDNA subtractive library of fetal MSC was constructed using suppression subtractive hybridization (SSH) technique. At first, total RNA was isolated from fetal and adult MSC. Using SMART PCR synthesis method, single-strand and double-strand cDNAs were synthesized. After Rsa I digestion, fetal MSC cDNAs were divided into two groups and ligated to adaptor 1 and adaptor 2 respectively. Results showed that the amplified library contains 890 clones. Analysis of 890 clones with PCR demonstrated that 768 clones were positive. The positive rate is 86.3%. The size of inserted fragments in these positive clones was between 0.2 - 1 kb, with an average of 400 - 600 bp. SSH is a convenient and effective method for screening differentially expressed genes. The constructed cDNA subtractive library of fetal MSC cDNA lays solid foundation for screening and cloning new and specific function related genes of fetal MSC.

  19. Rapid point-of-care testing for epidermal growth factor receptor gene mutations in patients with lung cancer using cell-free DNA from cytology specimen supernatants.

    Asaka, Shiho; Yoshizawa, Akihiko; Saito, Kazusa; Kobayashi, Yukihiro; Yamamoto, Hiroshi; Negishi, Tatsuya; Nakata, Rie; Matsuda, Kazuyuki; Yamaguchi, Akemi; Honda, Takayuki

    2018-06-01

    Epidermal growth factor receptor (EGFR) mutations are associated with responses to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small-cell lung cancer (NSCLC). Our previous study revealed a rapid point-of-care system for detecting EGFR mutations. This system analyzes cell pellets from cytology specimens using droplet-polymerase chain reaction (d-PCR), and has a reaction time of 10 min. The present study aimed to validate the performance of the EGFR d-PCR assay using cell-free DNA (cfDNA) from supernatants obtained from cytology specimens. Assay results from cfDNA supernatant analyses were compared with those from cell pellets for 90 patients who were clinically diagnosed with, or suspected of having, lung cancer (80 bronchial lavage fluid samples, nine pleural effusion samples and one spinal fluid sample). EGFR mutations were identified in 12 and 15 cases using cfDNA supernatants and cell pellets, respectively. The concordance rates between cfDNA-supernatant and cell‑pellet assay results were 96.7% [kappa coefficient (K)=0.87], 98.9% (K=0.94), 98.9% (K=0.79) and 98.9% (K=0.79) for total EGFR mutations, L858R, E746_A750del and T790M, respectively. All 15 patients with EGFR mutation-positive results, as determined by EGFR d-PCR assay using cfDNA supernatants or cell pellets, also displayed positive results by conventional EGFR assays using tumor tissue or cytology specimens. Notably, EGFR mutations were even detected in five cfDNA supernatants for which the cytological diagnoses of the corresponding cell pellets were 'suspicious for malignancy', 'atypical' or 'negative for malignancy.' In conclusion, this rapid point-of-care system may be considered a promising novel screening method that may enable patients with NSCLC to receive EGFR-TKI therapy more rapidly, whilst also reserving cell pellets for additional morphological and molecular analyses.

  20. Droplet digital PCR combined with minisequencing, a new approach to analyze fetal DNA from maternal blood: application to the non-invasive prenatal diagnosis of achondroplasia.

    Orhant, Lucie; Anselem, Olivia; Fradin, Mélanie; Becker, Pierre Hadrien; Beugnet, Caroline; Deburgrave, Nathalie; Tafuri, Gilles; Letourneur, Franck; Goffinet, François; Allach El Khattabi, Laïla; Leturcq, France; Bienvenu, Thierry; Tsatsaris, Vassilis; Nectoux, Juliette

    2016-05-01

    Achondroplasia is generally detected by abnormal prenatal ultrasound findings in the third trimester of pregnancy and then confirmed by molecular genetic testing of fetal genomic DNA obtained by aspiration of amniotic fluid. This invasive procedure presents a small but significant risk for both the fetus and mother. Therefore, non-invasive procedures using cell-free fetal DNA in maternal plasma have been developed for the detection of the fetal achondroplasia mutations. To determine whether the fetus carries the de novo mis-sense genetic mutation at nucleotide 1138 in FGFR3 gene involved in >99% of achondroplasia cases, we developed two independent methods: digital-droplet PCR combined with minisequencing, which are very sensitive methods allowing detection of rare alleles. We collected 26 plasmatic samples from women carrying fetus at risk of achondroplasia and diagnosed to date a total of five affected fetuses in maternal blood. The sensitivity and specificity of our test are respectively 100% [95% confidence interval, 56.6-100%] and 100% [95% confidence interval, 84.5-100%]. This novel, original strategy for non-invasive prenatal diagnosis of achondroplasia is suitable for implementation in routine clinical testing and allows considering extending the applications of these technologies in non-invasive prenatal diagnosis of many other monogenic diseases. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  1. Assessment of global DNA methylation in the first trimester fetal tissues exposed to maternal cigarette smoking

    Fa, Svetlana; Larsen, Trine Vilsbøll; Bilde, Katrine

    2016-01-01

    to exposures with an epigenetic impact. We have assessed the influence of maternal cigarette smoking during the first trimester for fetal global DNA methylation. METHODS AND RESULTS: We analyzed the human fetal intestines and livers as well as the placentas from the first trimester pregnancies. Global DNA......AIMS: Maternal cigarette smoking during pregnancy increases the risk of negative health consequences for the exposed child. Epigenetic mechanisms constitute a likely link between the prenatal exposure to maternal cigarette smoking and the increased risk in later life for diverse pathologies....... Maternal smoking induces gene-specific DNA methylation alterations as well as global DNA hypermethylation in the term placentas and hypomethylation in the cord blood. Early pregnancy represents a developmental time where the fetal epigenome is remodeled and accordingly can be expected to be highly prone...

  2. DNA-methylation profiling of fetal tissues reveals marked epigenetic differences between chorionic and amniotic samples.

    Christel Eckmann-Scholz

    Full Text Available Epigenetic mechanisms including DNA methylation are supposed to play a key role in fetal development. Here we have investigated fetal DNA-methylation levels of 27,578 CpG loci in 47 chorionic villi (CVS and 16 amniotic cell (AC samples. Methylation levels differed significantly between karyotypically normal AC and CVS for 2,014 genes. AC showed more extreme DNA-methylation levels of these genes than CVS and the differentially methylated genes are significantly enriched for processes characteristic for the different cell types sampled. Furthermore, we identified 404 genes differentially methylated in CVS with trisomy 21. These genes were significantly enriched for high CG dinucleotid (CpG content and developmental processes associated with Down syndrome. Our study points to major tissue-specific differences of fetal DNA-methylation and gives rise to the hypothesis that part of the Down syndrome phenotype is epigenetically programmed in the first trimester of pregnancy.

  3. Non-invasive prenatal detection of achondroplasia using circulating fetal DNA in maternal plasma.

    Lim, Ji Hyae; Kim, Mee Jin; Kim, Shin Young; Kim, Hye Ok; Song, Mee Jin; Kim, Min Hyoung; Park, So Yeon; Yang, Jae Hyug; Ryu, Hyun Mee

    2011-02-01

    To perform a reliable non-invasive detection of the fetal achondroplasia using maternal plasma. We developed a quantitative fluorescent-polymerase chain reaction (QF-PCR) method suitable for detection of the FGFR3 mutation (G1138A) causing achondroplasia. This method was applied in a non-invasive detection of the fetal achondroplasia using circulating fetal-DNA (cf-DNA) in maternal plasma. Maternal plasmas were obtained at 27 weeks of gestational age from women carrying an achondroplasia fetus or a normal fetus. Two percent or less achondroplasia DNA was reliably detected by QF-PCR. In a woman carrying a normal fetus, analysis of cf-DNA showed only one peak of the wild-type G allele. In a woman expected an achondroplasia fetus, analysis of cf-DNA showed the two peaks of wild-type G allele and mutant-type A allele and accurately detected the fetal achondroplasia. The non-invasive method using maternal plasma and QF-PCR may be useful for diagnosis of the fetal achondroplasia.

  4. Noninvasive Digital Detection of Fetal DNA in Plasma of 4-Week-Pregnant Women following In Vitro Fertilization and Embryo Transfer.

    Bedri Karakas

    Full Text Available The discovery of cell-free fetal DNA (cfDNA circulating in the maternal blood has provided new opportunities for noninvasive prenatal diagnosis (NIPD. However, the extremely low levels of cfDNA within a high background of the maternal DNA in maternal circulation necessitate highly sensitive molecular techniques for its reliable use in NIPD. In this proof of principle study, we evaluated the earliest possible detection of cfDNA in the maternal plasma by a bead-based emulsion PCR technology known as BEAMing (beads, emulsion, amplification, magnetics. Blood samples were collected from in vitro fertilization (IVF patients at 2 to 6 weeks following embryo transfer (i.e., 4 to 8 week pregnancies and plasma DNA was extracted. The genomic regions of both X and Y chromosome-specific sequences (AMELX and AMELY were concurrently amplified in two sequential PCRs; first by conventional PCR then by BEAMing. The positive beads either for AMELX or AMELY gene sequences were counted by a flow cytometer. Our results showed that the pregnancies yielding boys had significantly higher plasma AMELY gene fractions (0.512 ± 0.221 than the ones yielding girls (0.028 ± 0.003 or non-pregnant women (0.020 ± 0.005, P= 0.0059. Here, we clearly demonstrated that the BEAMing technique is capable of reliably detecting cfDNA in the blood circulation of 4-week-pregnant women, which is only two weeks after the embryo transfer. BEAMing technique can also be used to early detect fetal DNA alterations in other pregnancy-associated disorders.

  5. Cloning-free template DNA preparation for cell-free protein synthesis via two-step PCR using versatile primer designs with short 3'-UTR.

    Nomoto, Mika; Tada, Yasuomi

    2018-01-01

    Cell-free protein synthesis (CFPS) systems largely retain the endogenous translation machinery of the host organism, making them highly applicable for proteomics analysis of diverse biological processes. However, laborious and time-consuming cloning procedures hinder progress with CFPS systems. Herein, we report the development of a rapid and efficient two-step polymerase chain reaction (PCR) method to prepare linear DNA templates for a wheat germ CFPS system. We developed a novel, effective short 3'-untranslated region (3'-UTR) sequence that facilitates translation. Application of the short 3'-UTR to two-step PCR enabled the generation of various transcription templates from the same plasmid, including fusion proteins with N- or C-terminal tags, and truncated proteins. Our method supports the cloning-free expression of target proteins using an mRNA pool from biological material. The established system is a highly versatile platform for in vitro protein synthesis using wheat germ CFPS. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  6. Prognostic role of APC and RASSF1A promoter methylation status in cell free circulating DNA of operable gastric cancer patients.

    Balgkouranidou, I; Matthaios, D; Karayiannakis, A; Bolanaki, H; Michailidis, P; Xenidis, N; Amarantidis, K; Chelis, L; Trypsianis, G; Chatzaki, E; Lianidou, E S; Kakolyris, S

    2015-08-01

    Gastric carcinogenesis is a multistep process including not only genetic mutations but also epigenetic alterations. The best known and more frequent epigenetic alteration is DNA methylation affecting tumor suppressor genes that may be involved in various carcinogenetic pathways. The aim of the present study was to investigate the methylation status of APC promoter 1A and RASSF1A promoter in cell free DNA of operable gastric cancer patients. Using methylation specific PCR, we examined the methylation status of APC promoter 1A and RASSF1A promoter in 73 blood samples obtained from patients with gastric cancer. APC and RASSF1A promoters were found to be methylated in 61 (83.6%) and 50 (68.5%) of the 73 gastric cancer samples examined, but in none of the healthy control samples (p APC promoter and elevated CEA (p = 0.033) as well as CA-19.9 (p = 0.032) levels, was noticed. The Kaplan-Meier estimates of survival, significantly favored patients with a non-methylated APC promoter status (p = 0.008). No other significant correlations between APC and RASSF1A methylation status and different tumor variables examined was observed. Serum RASSF1A and APC promoter hypermethylation is a frequent epigenetic event in patients with early operable gastric cancer. The observed correlations between APC promoter methylation status and survival as well as between a hypermethylated RASSF1A promoter and nodal positivity may be indicative of a prognostic role for those genes in early operable gastric cancer. Additional studies, in a larger cohort of patients are required to further explore whether these findings could serve as potential molecular biomarkers of survival and/or response to specific treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. DNA methylome profiling of maternal peripheral blood and placentas reveal potential fetal DNA markers for non-invasive prenatal testing.

    Xiang, Yuqian; Zhang, Junyu; Li, Qiaoli; Zhou, Xinyao; Wang, Teng; Xu, Mingqing; Xia, Shihui; Xing, Qinghe; Wang, Lei; He, Lin; Zhao, Xinzhi

    2014-09-01

    Utilizing epigenetic (DNA methylation) differences to differentiate between maternal peripheral blood (PBL) and fetal (placental) DNA has been a promising strategy for non-invasive prenatal testing (NIPT). However, the differentially methylated regions (DMRs) have yet to be fully ascertained. In the present study, we performed genome-wide comparative methylome analysis between maternal PBL and placental DNA from pregnancies of first trimester by methylated DNA immunoprecipitation-sequencing (MeDIP-Seq) and Infinium HumanMethylation450 BeadChip assays. A total of 36 931 DMRs and 45 804 differentially methylated sites (DMSs) covering the whole genome, exclusive of the Y chromosome, were identified via MeDIP-Seq and Infinium 450k array, respectively, of which 3759 sites in 2188 regions were confirmed by both methods. Not only did we find the previously reported potential fetal DNA markers in our identified DMRs/DMSs but also we verified fully the identified DMRs/DMSs in the validation round by MassARRAY EpiTYPER. The screened potential fetal DNA markers may be used for NIPT on aneuploidies and other chromosomal diseases, such as cri du chat syndrome and velo-cardio-facial syndrome. In addition, these potential markers may have application in the early diagnosis of placental dysfunction, such as pre-eclampsia. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Noninvasive prenatal diagnosis of fetal trisomy 18 and trisomy 13 by maternal plasma DNA sequencing.

    Chen, E.Z.; Chiu, R.W.; Sun, H; Akolekar, R.; Chan, K.C.; Leung, T.Y.; Jiang, P.; Zheng, Y.W.; Lun, F.M.; Chan, L.Y.; Jin, Y.; Go, A.T.; Lau, E.T; To, W.W.; Leung, W.C.; Tang, R.Y.; Au-Yeung, S.K.; Lam, H.; Kung, Y.Y.; Zhang, X.; Vugt, J.M.G. van; Minekawa, R.; Tang, M.H.; Wang, J.; Oudejans, C.B.; Lau, T.K.; Nicolaides, K.H.; Lo, Y.M.

    2011-01-01

    Massively parallel sequencing of DNA molecules in the plasma of pregnant women has been shown to allow accurate and noninvasive prenatal detection of fetal trisomy 21. However, whether the sequencing approach is as accurate for the noninvasive prenatal diagnosis of trisomy 13 and 18 is unclear due

  9. Positive predictive value estimates for cell-free noninvasive prenatal screening from data of a large referral genetic diagnostic laboratory.

    Petersen, Andrea K; Cheung, Sau Wai; Smith, Janice L; Bi, Weimin; Ward, Patricia A; Peacock, Sandra; Braxton, Alicia; Van Den Veyver, Ignatia B; Breman, Amy M

    2017-12-01

    Since its debut in 2011, cell-free fetal DNA screening has undergone rapid expansion with respect to both utilization and coverage. However, conclusive data regarding the clinical validity and utility of this screening tool, both for the originally included common autosomal and sex-chromosomal aneuploidies as well as the more recently added chromosomal microdeletion syndromes, have lagged behind. Thus, there is a continued need to educate clinicians and patients about the current benefits and limitations of this screening tool to inform pre- and posttest counseling, pre/perinatal decision making, and medical risk assessment/management. The objective of this study was to determine the positive predictive value and false-positive rates for different chromosomal abnormalities identified by cell-free fetal DNA screening using a large data set of diagnostic testing results on invasive samples submitted to the laboratory for confirmatory studies. We tested 712 patient samples sent to our laboratory to confirm a cell-free fetal DNA screening result, indicating high risk for a chromosome abnormality. We compiled data from all cases in which the indication for confirmatory testing was a positive cell-free fetal DNA screen, including the common trisomies, sex chromosomal aneuploidies, microdeletion syndromes, and other large genome-wide copy number abnormalities. Testing modalities included fluorescence in situ hybridization, G-banded karyotype, and/or chromosomal microarray analysis performed on chorionic villus samples, amniotic fluid, or postnatally obtained blood samples. Positive predictive values and false-positive rates were calculated from tabulated data. The positive predictive values for trisomy 13, 18, and 21 were consistent with previous reports at 45%, 76%, and 84%, respectively. For the microdeletion syndrome regions, positive predictive values ranged from 0% for detection of Cri-du-Chat syndrome and Prader-Willi/Angelman syndrome to 14% for 1p36 deletion

  10. Integration of noninvasive prenatal prediction of fetal blood group into clinical prenatal care

    Clausen, Frederik Banch

    2014-01-01

    Incompatibility of red blood cell blood group antigens between a pregnant woman and her fetus can cause maternal immunization and, consequently, hemolytic disease of the fetus and newborn. Noninvasive prenatal testing of cell-free fetal DNA can be used to assess the risk of hemolytic disease...

  11. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues

    Prody, C.A.; Zevin-Sonkin, D.; Gnatt, A.; Goldberg, O.; Soreq, H.

    1987-01-01

    To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase and Torpedo electric organ true acetylcholinesterase. Using these probes, the authors isolated several cDNA clones from λgt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. In RNA blots of poly(A) + RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These finding demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species

  12. DNA fragmentation: manifestation of target cell destruction mediated by cytotoxic T-cell lines, lymphotoxin-secreting helper T-cell clones, and cell-free lymphotoxin-containing supernatant

    Schmid, D.S.; Tite, J.P.; Ruddle, N.H.

    1986-01-01

    A Lyt-2 + , trinitrophenyl-specific, lymphotoxin-secreting, cytotoxic T-cell line, PCl 55, mediates the digestion of target cell DNA into discretely sized fragments. This phenomenon manifests itself within 30 min after effector cell encounter as measured by the release of 3 H counts from target cells prelabeled with [ 3 H]deoxythymidine and occurs even at very low effector to target cell ratios (0.25:1). A Lyt-1 + , ovalbumin-specific, lymphotoxin-secreting T-helper cell clone, 5.9.24, is also able to mediate fragmentation of target cell DNA over a time course essentially indistinguishable from the cytotoxic T lymphocyte-mediated hit. Cell-free lymphotoxin-containing supernatants also cause release of DNA from targets, although they require a longer time course, on the order of 24 hr. In contrast, lysis of cells by antibody plus complement or Triton X-100 does not result in DNA release even after extended periods of incubation (24 hr). All three treatments that result in the release of DNA from cells cause fragmentation of that DNA into discretely sized pieces that are multiples of 200 base pairs. The results thus suggest that cytotoxic T cells, lymphotoxin-secreting helper clones with cytolytic activity, and lymphotoxin all effect target cell destruction by means of a similar mechanism and that observed differences in time course and the absence of target cell specificity in killing mediated by lymphotoxin may simply reflect differences in the mode of toxin delivery

  13. The time of appearance and disappearance of fetal DNA from the maternal circulation.

    Thomas, M R; Tutschek, B; Frost, A; Rodeck, C H; Yazdani, N; Craft, I; Williamson, R

    1995-07-01

    A single copy Y-chromosome DNA sequence was amplified using the polymerase chain reaction (PCR) from the peripheral blood of 30 women who had achieved a pregnancy through an in vitro fertilization (IVF) programme. The time of conception was known precisely and was confirmed by serial ultrasound scans. Conceptions were dated as the number of weeks after fertilization plus 2, to give a time equivalent to the obstetric menstrual dating of the pregnancy (LMP). Y-chromosome-specific DNA was detected in all pregnancies with a male fetus (18/30). The earliest detection was at 4 weeks and 5 days, and the latest at 7 weeks and 1 day. Y-chromosome-specific sequences were no longer detected in any of the male pregnancies 8 weeks after delivery. No Y-chromosome sequences were detected in any of the pregnancies where only female babies were delivered. This demonstrates that fetal DNA appears in the maternal circulation early in the first trimester, that it can be identified in all pregnancies tested by 7 weeks, that it continues to be present throughout pregnancy, and that it has been cleared from the maternal circulation 2 months after parturition. Early non-invasive prenatal diagnosis for aneuploidies and inherited disorders will be possible in all pregnancies if fetal cells can be isolated free from maternal contamination (or identified accurately in the presence of maternal cells) without problems of contamination from previous pregnancies.

  14. Detection of fetal-specific DNA after enrichment for trophoblasts using the monoclonal antibody LK26 in model systems but failure to demonstrate fetal DNA in maternal peripheral blood

    Hviid, T V; Sørensen, S; Morling, N

    1999-01-01

    Trophoblast cells can be detected in maternal blood during normal human pregnancy and DNA from these cells may be used for non-invasive prenatal diagnosis of inherited diseases. The possibility of enriching trophoblast cells from maternal blood samples using a monoclonal antibody (LK26) against...... a folate-binding protein, which recognizes trophoblast in normal tissues, in conjunction with immunomagnetic cell sorting was investigated. Verification of the presence of fetal DNA in the sorted samples was done by detection of fetal/paternal-specific short tandem repeat (STR) alleles using polymerase...... on peripheral maternal blood samples. However, it was not possible to detect fetal DNA sequences in these samples, most probably due to the extremely low number of trophoblast cells. Positive identification and retrieval of trophoblast cells in suspension or trophoblast nuclear material prepared on microscope...

  15. Arraying proteins by cell-free synthesis.

    He, Mingyue; Wang, Ming-Wei

    2007-10-01

    Recent advances in life science have led to great motivation for the development of protein arrays to study functions of genome-encoded proteins. While traditional cell-based methods have been commonly used for generating protein arrays, they are usually a time-consuming process with a number of technical challenges. Cell-free protein synthesis offers an attractive system for making protein arrays, not only does it rapidly converts the genetic information into functional proteins without the need for DNA cloning, but also presents a flexible environment amenable to production of folded proteins or proteins with defined modifications. Recent advancements have made it possible to rapidly generate protein arrays from PCR DNA templates through parallel on-chip protein synthesis. This article reviews current cell-free protein array technologies and their proteomic applications.

  16. Y-chromosome DNA is present in the blood of female dogs suggesting the presence of fetal microchimerism.

    Sandra M Axiak-Bechtel

    Full Text Available Fetal microchimerism has been suggested to play contradictory roles in women's health, with factors including age of the recipient, time elapsed since microchimerism occurred, and microchimeric cell type modulating disease. Both beneficial and harmful effects have been identified in wound healing and tissue regeneration, immune mediated disease, and cancer. This area of research is relatively new, and hindered by the time course from occurrence of fetal microchimerism to the multi-factorial development of disease. Dogs represent an excellent model for study of fetal microchimerism, as they share our environment, have a naturally condensed lifespan, and spontaneously develop immune-mediated diseases and cancers similar to their human counterparts. However, fetal microchimerism has not been described in dogs. These experiments sought preliminary evidence that dogs develop fetal microchimerism following pregnancy. We hypothesized that Y chromosomal DNA would be detected in the peripheral blood mononuclear cells of female dogs collected within two months of parturition. We further hypothesized that Y chromosomal DNA would be detected in banked whole blood DNA samples from parous female Golden Retrievers with at least one male puppy in a prior litter. Amplification of DNA extracted from five female Golden Retrievers that had whelped within the two months prior to collection revealed strong positive bands for the Y chromosome. Of banked, parous samples, 36% yielded positive bands for the Y chromosome. This is the first report of persistent Y chromosomal DNA in post-partum female dogs and these results suggest that fetal microchimerism occurs in the canine species. Evaluation of the contributions of fetal microchimeric cells to disease processes in dogs as a model for human disease is warranted.

  17. Y-chromosome DNA is present in the blood of female dogs suggesting the presence of fetal microchimerism.

    Axiak-Bechtel, Sandra M; Kumar, Senthil R; Hansen, Sarah A; Bryan, Jeffrey N

    2013-01-01

    Fetal microchimerism has been suggested to play contradictory roles in women's health, with factors including age of the recipient, time elapsed since microchimerism occurred, and microchimeric cell type modulating disease. Both beneficial and harmful effects have been identified in wound healing and tissue regeneration, immune mediated disease, and cancer. This area of research is relatively new, and hindered by the time course from occurrence of fetal microchimerism to the multi-factorial development of disease. Dogs represent an excellent model for study of fetal microchimerism, as they share our environment, have a naturally condensed lifespan, and spontaneously develop immune-mediated diseases and cancers similar to their human counterparts. However, fetal microchimerism has not been described in dogs. These experiments sought preliminary evidence that dogs develop fetal microchimerism following pregnancy. We hypothesized that Y chromosomal DNA would be detected in the peripheral blood mononuclear cells of female dogs collected within two months of parturition. We further hypothesized that Y chromosomal DNA would be detected in banked whole blood DNA samples from parous female Golden Retrievers with at least one male puppy in a prior litter. Amplification of DNA extracted from five female Golden Retrievers that had whelped within the two months prior to collection revealed strong positive bands for the Y chromosome. Of banked, parous samples, 36% yielded positive bands for the Y chromosome. This is the first report of persistent Y chromosomal DNA in post-partum female dogs and these results suggest that fetal microchimerism occurs in the canine species. Evaluation of the contributions of fetal microchimeric cells to disease processes in dogs as a model for human disease is warranted.

  18. Dysregulation of the DNA Damage Response and KMT2A Rearrangement in Fetal Liver Hematopoietic Cells.

    Mai Nanya

    Full Text Available Etoposide, a topoisomerase 2 (TOP2 inhibitor, is associated with the development of KMT2A (MLL-rearranged infant leukemia. An epidemiological study suggested that in utero exposure to TOP2 inhibitors may be involved in generation of KMT2A (MLL rearrangement. The present study examined the mechanism underlying the development of KMT2A (MLL-rearranged infant leukemia in response to in utero exposure to etoposide in a mouse model. Fetal liver hematopoietic stem cells were more susceptible to etoposide than maternal bone marrow mononuclear cells. Etoposide-induced Kmt2a breakage was detected in fetal liver hematopoietic stem cells using a newly developed chromatin immunoprecipitation (ChIP assay. Assessment of etoposide-induced chromosomal translocation by next-generation RNA sequencing (RNA-seq identified several chimeric fusion messenger RNAs that were generated by etoposide treatment. However, Kmt2a (Mll-rearranged fusion mRNA was detected in Atm-knockout mice, which are defective in the DNA damage response, but not in wild-type mice. The present findings suggest that in utero exposure to TOP2 inhibitors induces Kmt2a rearrangement when the DNA damage response is defective.

  19. Proof of concept: preimplantation genetic screening without embryo biopsy through analysis of cell-free DNA in spent embryo culture media.

    Shamonki, Mousa I; Jin, Helen; Haimowitz, Zachary; Liu, Lian

    2016-11-01

    To assess whether preimplantation genetic screening (PGS) is possible by testing for free embryonic DNA in spent IVF media from embryos undergoing trophectoderm biopsy. Prospective cohort analysis. Academic fertility center. Seven patients undergoing IVF and 57 embryos undergoing trophectoderm biopsy for PGS. On day 3 of development, each embryo was placed in a separate media droplet. All biopsied embryos received a PGS result by array comparative genomic hybridization. Preimplantation genetic screening was performed on amplified DNA extracted from media and results were compared with PGS results for the corresponding biopsy. [1] Presence of DNA in spent IVF culture media. [2] Correlation between genetic screening result from spent media and corresponding biopsy. Fifty-five samples had detectable DNA ranging from 2-642 ng/μL after a 2-hour amplification. Six samples with the highest DNA levels underwent PGS, rendering one result with a derivative log ratio SD (DLRSD) of media and a result that is consistent with trophectoderm biopsy. Improvements in DNA collection, amplification, and testing may allow for PGS without biopsy in the future. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. PCR/LDR/capillary electrophoresis for detection of single-nucleotide differences between fetal and maternal DNA in maternal plasma.

    Yi, Ping; Chen, Zhuqin; Zhao, Yan; Guo, Jianxin; Fu, Huabin; Zhou, Yuanguo; Yu, Lili; Li, Li

    2009-03-01

    The discovery of fetal DNA in maternal plasma has opened up an approach for noninvasive diagnosis. We have now assessed the possibility of detecting single-nucleotide differences between fetal and maternal DNA in maternal plasma by polymerase chain reaction (PCR)/ligase detection reaction((LDR)/capillary electrophoresis. PCR/LDR/capillary electrophoresis was applied to detect the genotype of c.454-397T>gene (ESR1) from experimental DNA models of maternal plasma at different sensitivity levels and 13 maternal plasma samples.alphaC in estrogen receptor. (1) Our results demonstrated that the technique could discriminate low abundance single-nucleotide mutation with a mutant/normal allele ratio up to 1:10 000. (2) Examination of ESR1 c.454-397T>C genotypes by using the method of restriction fragment length analysis was performed in 25 pregnant women, of whom 13 pregnant women had homozygous genotypes. The c.454-397T>C genotypes of paternally inherited fetal DNA in maternal plasma of these 13 women were detected by PCR/LDR/capillary electrophoresis, which were accordant with the results of umbilical cord blood. PCR/LDR/capillary electrophoresis has very high sensitivity to distinguish low abundance single nucleotide differences and can discriminate point mutations and single-nucleotide polymorphisms(SNPs) of paternally inherited fetal DNA in maternal plasma.

  1. Unique genetic profiles from cerebrospinal fluid cell-free DNA in leptomeningeal metastases of EGFR-mutant non-small-cell lung cancer: a new medium of liquid biopsy.

    Li, Y S; Jiang, B Y; Yang, J J; Zhang, X C; Zhang, Z; Ye, J Y; Zhong, W Z; Tu, H Y; Chen, H J; Wang, Z; Xu, C R; Wang, B C; Du, H J; Chuai, S; Han-Zhang, H; Su, J; Zhou, Q; Yang, X N; Guo, W B; Yan, H H; Liu, Y H; Yan, L X; Huang, B; Zheng, M M; Wu, Y L

    2018-04-01

    Leptomeningeal metastases (LM) are more frequent in non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations. Due to limited access to leptomeningeal lesions, the purpose of this study was to explore the potential role of cerebrospinal fluid (CSF) as a source of liquid biopsy in patients with LM. Primary tumor, CSF, and plasma in NSCLC with LM were tested by next-generation sequencing. In total, 45 patients with suspected LM underwent lumbar puncture, and those with EGFR mutations diagnosed with LM were enrolled. A total of 28 patients were enrolled in this cohort; CSF and plasma were available in 26 patients, respectively. Driver genes were detected in 100% (26/26), 84.6% (22/26), and 73.1% (19/26) of samples comprising CSF cell-free DNA (cfDNA), CSF precipitates, and plasma, respectively; 92.3% (24/26) of patients had much higher allele fractions in CSF cfDNA than the other two media. Unique genetic profiles were captured in CSF cfDNA compared with those in plasma and primary tissue. Multiple copy number variations (CNVs) were mainly identified in CSF cfDNA, and MET copy number gain identified in 47.8% (11/23) of patients was the most frequent one, while other CNVs included ERBB2, KRAS, ALK, and MYC. Moreover, loss of heterozygosity (LOH) of TP53 was identified in 73.1% (19/26) CSF cfDNA, which was much higher than that in plasma (2/26, 7.7%; P liquid biopsy medium for LM in EGFR-mutant NSCLC.

  2. Sex determination using free fetal DNA in early pregnancy: With the approach to sex linked recessive disorders

    Amir Monfaredan

    2017-03-01

    Full Text Available Introduction: Prenatal diagnosis is testing for detection of diseases or conditions in a fetus or embryo before it is born. Most of prenatal diagnostic (PD techniques are invasive and done in late stages of pregnancy. Using fetal DNA in maternal blood for fetal sex determination in early pregnancy might help in management of X-linked genetic diseases. This study aimed to investigate the accuracy of sex determination using fetal DNA in maternal blood at 8-12 weeks of gestation. Methods: In this cross-sectional study, 30 pregnant women at 8-12 weeks of gestation were enrolled. The sex-determining region Y (SRY gene expression with the internal control (IC glyceraldehyde 3-phosphate dehydrogenase (GAPDH was investigated with quantitative real-time polymerase chain reaction (PCR using specific primers and probes. Results: Accuracy of sex determination with SRY gene expression in 8-12 weeks of pregnancy were 85%, 85%, 90% and 100% respectively. Conclusion: It seems that fetal sex determining using fetal DNA in maternal blood is a reliable method for early stage of pregnancy.

  3. Measurement of the capability of DNA synthesis of human fetal liver cells by the assay of 3H-TdR incorporation

    Wang Tao; Ma Xiangrui; Wang Hongyun; Cao Xia

    1987-01-01

    The fetal liver is one of the major sites of hematopoiesis during gestation. Under erythropoietin (EPO) stimulation, in erythroid precusor cells of fetal liver, proliferation and differentiation occurred and function of metabolism was enhanced. The technique of 3 H-TdR incorporation was used to measure the function of fetal liver cellular DNA synthesis. As EPO concentration at the range of approximately 20 ∼ 100 mU/ml, the counts of 3 H-TdR incorporation into fetal liver cells increased. As the concentration of EPO increased, however, its incorporation counts are lower than that in bone marrow of either the fetal or the adult. It suggested that precusors of erythrocyte of fetal liver has differentiated to later phases with the progressive accumulation of mature cells, therefore, both proliferation and function of metabolism are more or less decreased respectively. Under EPO stimulation, however, precusor of erythroid of fetal liver can greatly increase potential effects on DNA synthesis

  4. Haplotype-based approach for noninvasive prenatal tests of Duchenne muscular dystrophy using cell-free fetal DNA in maternal plasma

    Xu, Yan; Li, Xuchao; Ge, Hui-Juan

    2015-01-01

    Purpose:This study demonstrates noninvasive prenatal testing (NIPT) for Duchenne muscular dystrophy (DMD) using a newly developed haplotype-based approach.Methods:Eight families at risk for DMD were recruited for this study. Parental haplotypes were constructed using target-region sequencing data...

  5. Biophysical analysis of natural, double-helical DNA modified by anticancer heterocyclic complexes of ruthenium(III) in cell-free media

    Malina, Jaroslav; Nováková, Olga; Keppler, B. K.; Alessio, E.; Brabec, Viktor

    2001-01-01

    Roč. 6, č. 4 (2001), s. 435-445 ISSN 0949-8257 R&D Projects: GA ČR GA305/99/0695; GA ČR GA204/97/P028; GA MZd NL6058; GA MZd NL6069; GA MŠk OC D8.50 Institutional research plan: CEZ:AV0Z5004920 Keywords : DNA * ruthenium * cisplatin Subject RIV: BO - Biophysics Impact factor: 3.392, year: 2001

  6. EGFR T790M mutation testing of non-small cell lung cancer tissue and blood samples artificially spiked with circulating cell-free tumor DNA: results of a round robin trial.

    Fassunke, Jana; Ihle, Michaela Angelika; Lenze, Dido; Lehmann, Annika; Hummel, Michael; Vollbrecht, Claudia; Penzel, Roland; Volckmar, Anna-Lena; Stenzinger, Albrecht; Endris, Volker; Jung, Andreas; Lehmann, Ulrich; Zeugner, Silke; Baretton, Gustavo; Kreipe, Hans; Schirmacher, Peter; Kirchner, Thomas; Dietel, Manfred; Büttner, Reinhard; Merkelbach-Bruse, Sabine

    2017-10-01

    The European Commision (EC) recently approved osimertinib for the treatment of adult patients with locally advanced or metastatic non-small-cell lung cancer (NSCLC) harboring EGFR T790M mutations. Besides tissue-based testing, blood samples containing cell-free circulating tumor DNA (ctDNA) can be used to interrogate T790M status. Herein, we describe the conditions and results of a round robin trial (RRT) for T790M mutation testing in NSCLC tissue specimens and peripheral blood samples spiked with cell line DNA mimicking tumor-derived ctDNA. The underlying objectives of this two-staged external quality assessment (EQA) approach were (a) to evaluate the accuracy of T790M mutations testing across multiple centers and (b) to investigate if a liquid biopsy-based testing for T790M mutations in spiked blood samples is feasible in routine diagnostic. Based on a successfully completed internal phase I RRT, an open RRT for EGFR T790M mutation testing in tumor tissue and blood samples was initiated. In total, 48 pathology centers participated in the EQA. Of these, 47 (97.9%) centers submitted their analyses within the pre-defined time frame and 44 (tissue), respectively, 40 (plasma) successfully passed the test. The overall success rates in the RRT phase II were 91.7% (tissue) and 83.3% (blood), respectively. Thirty-eight out of 48 participants (79.2%) successfully passed both parts of the RRT. The RRT for blood-based EGFR testing initiated in Germany is, to the best of our knowledge, the first of his kind in Europe. In summary, our results demonstrate that blood-based genotyping for EGFR resistance mutations can be successfully integrated in routine molecular diagnostics complementing the array of molecular methods already available at pathology centers in Germany.

  7. Increased DNA methylation of scavenger receptor class B type I contributes to inhibitory effects of prenatal caffeine ingestion on cholesterol uptake and steroidogenesis in fetal adrenals

    Wu, Dong-Mei; He, Zheng; Ma, Liang-Peng; Wang, Lin-Long [Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071 (China); Ping, Jie, E-mail: pingjie@whu.edu.cn [Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Wang, Hui [Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2015-06-01

    Steroid hormones synthesized from cholesterol in the fetal adrenal are crucial for fetal development. We have observed the inhibited fetal adrenal corticosterone synthesis and increased intrauterine growth retardation (IUGR) rate in rats under prenatal caffeine ingestion. The aim of this study is to evaluate the effects of prenatal caffeine ingestion on cholesterol supply in fetal adrenal steroidogenesis in rats and explore the underlying epigenetic mechanisms. Pregnant Wistar rats were treated with 60 mg/kg·d caffeine from gestational day (GD) 7 to GD17. Histological changes of fetal adrenals and increased IUGR rates were observed in the caffeine group. There were significantly decreased steroid hormone contents and cholesterol supply in caffeine-treated fetal adrenals. Data from the gene expression array suggested that prenatal caffeine ingestion caused increased expression of genes related to DNA methylation and decreased expression of genes related to cholesterol uptake. The following conjoint analysis of DNA methylation array with these differentially expressed genes suggested that scavenger receptor class B type I (SR-BI) may play an important role in caffeine-induced cholesterol supply deficiency. Moreover, real-time RT-PCR and immunohistochemical detection certified the inhibitory effects of caffeine on both mRNA expression and protein expression of SR-BI in the fetal adrenal. And the increased DNA methylation frequency in the proximal promoter of SR-BI was confirmed by bisulfite-sequencing PCR. In conclusion, prenatal caffeine ingestion can induce DNA hypermethylation of the SR-BI promoter in the rat fetal adrenal. These effects may lead to decreased SR-BI expression and cholesterol uptake, which inhibits steroidogenesis in the fetal adrenal. - Highlights: • Prenatal caffeine ingestion inhibits steroid hormone production in the fetal adrenal. • Prenatal caffeine ingestion inhibits cholesterol uptake in the fetal adrenal. • Prenatal caffeine

  8. Increased DNA methylation of scavenger receptor class B type I contributes to inhibitory effects of prenatal caffeine ingestion on cholesterol uptake and steroidogenesis in fetal adrenals

    Wu, Dong-Mei; He, Zheng; Ma, Liang-Peng; Wang, Lin-Long; Ping, Jie; Wang, Hui

    2015-01-01

    Steroid hormones synthesized from cholesterol in the fetal adrenal are crucial for fetal development. We have observed the inhibited fetal adrenal corticosterone synthesis and increased intrauterine growth retardation (IUGR) rate in rats under prenatal caffeine ingestion. The aim of this study is to evaluate the effects of prenatal caffeine ingestion on cholesterol supply in fetal adrenal steroidogenesis in rats and explore the underlying epigenetic mechanisms. Pregnant Wistar rats were treated with 60 mg/kg·d caffeine from gestational day (GD) 7 to GD17. Histological changes of fetal adrenals and increased IUGR rates were observed in the caffeine group. There were significantly decreased steroid hormone contents and cholesterol supply in caffeine-treated fetal adrenals. Data from the gene expression array suggested that prenatal caffeine ingestion caused increased expression of genes related to DNA methylation and decreased expression of genes related to cholesterol uptake. The following conjoint analysis of DNA methylation array with these differentially expressed genes suggested that scavenger receptor class B type I (SR-BI) may play an important role in caffeine-induced cholesterol supply deficiency. Moreover, real-time RT-PCR and immunohistochemical detection certified the inhibitory effects of caffeine on both mRNA expression and protein expression of SR-BI in the fetal adrenal. And the increased DNA methylation frequency in the proximal promoter of SR-BI was confirmed by bisulfite-sequencing PCR. In conclusion, prenatal caffeine ingestion can induce DNA hypermethylation of the SR-BI promoter in the rat fetal adrenal. These effects may lead to decreased SR-BI expression and cholesterol uptake, which inhibits steroidogenesis in the fetal adrenal. - Highlights: • Prenatal caffeine ingestion inhibits steroid hormone production in the fetal adrenal. • Prenatal caffeine ingestion inhibits cholesterol uptake in the fetal adrenal. • Prenatal caffeine

  9. DNA methylation of IGF2DMR and H19 is associated with fetal and infant growth: the generation R study.

    Marieke I Bouwland-Both

    Full Text Available Changes in epigenetic programming of embryonic growth genes during pregnancy seem to affect fetal growth. Therefore, in a population-based prospective birth cohort in the Netherlands, we examined associations between fetal and infant growth and DNA methylation of IGF2DMR, H19 and MTHFR. For this study, we selected 69 case children born small-for-gestational age (SGA, birth weight <-2SDS and 471 control children. Fetal growth was assessed with serial ultrasound measurements. Information on birth outcomes was retrieved from medical records. Infant weight was assessed at three and six months. Methylation was assessed in DNA extracted from umbilical cord white blood cells. Analyses were performed using linear mixed models with DNA methylation as dependent variable. The DNA methylation levels of IGF2DMR and H19 in the control group were, median (90% range, 53.6% (44.5-61.6 and 30.0% (25.6-34.2 and in the SGA group 52.0% (43.9-60.9 and 30.5% (23.9-32.9, respectively. The MTHFR region was found to be hypomethylated with limited variability in the control and SGA group, 2.5% (1.4-4.0 and 2.4% (1.5-3.8, respectively. SGA was associated with lower IGF2DMR DNA methylation (β = -1.07, 95% CI -1.93; -0.21, P-value = 0.015, but not with H19 methylation. A weight gain in the first three months after birth was associated with lower IGF2DMR DNA methylation (β = -0.53, 95% CI -0.91; -0.16, P-value = 0.005. Genetic variants in the IGF2/H19 locus were associated with IGF2DMR DNA methylation (P-value<0.05, but not with H19 methylation. Furthermore, our results suggest a possibility of mediation of DNA methylation in the association between the genetic variants and SGA. To conclude, IGF2DMR and H19 DNA methylation is associated with fetal and infant growth.

  10. Maternal Diet during Pregnancy Induces Gene Expression and DNA Methylation Changes in Fetal Tissues in Sheep.

    Lan, Xianyong; Cretney, Evan C; Kropp, Jenna; Khateeb, Karam; Berg, Mary A; Peñagaricano, Francisco; Magness, Ronald; Radunz, Amy E; Khatib, Hasan

    2013-01-01

    Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from days 67 ± 3 of gestation until necropsy (days 130 ± 1), they were fed one of three diets of alfalfa haylage (HY; fiber), corn (CN; starch), or dried corn distiller's grains (DG; fiber plus protein plus fat). A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methyltransferase (DNMTs) genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues.

  11. Maternal diet during pregnancy induces gene expression and DNA methylation changes in fetal tissues in sheep

    Xianyong eLan

    2013-04-01

    Full Text Available Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from d 67 ± 3 of gestation until necropsy (d 130 ± 1, they were fed one of three diets of alfalfa haylage (HY; fiber, corn (CN; starch, or dried corn distiller’s grains (DG; fiber plus protein plus fat. A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methylatransferase (DNMTs genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues.

  12. D22S15 - a fetal brain cDNA with BanII and SacI RFLP

    Rouleau, G A; Kurnit, D M; Neve, R L; Bazanowsky, A; Patterson, D; Gusella, J F

    1988-02-25

    A .58 kb single copy EcoRI fragment was isolated from a human fetal brain cDNA library and cloned into pBR322. This fragment recognizes a two allele polymorphism when used to probe human genomic DNA digested with SacI. There are no constant bands. Additional polymorphisms recognized by BanII and Bsp1286 are in disequilibrium with the BanII polymorphism. It has been localized to chromosome 22 by somatic cell hybrid analysis and linkage analysis. Co-dominant segregation has been observed in 15 informative families.

  13. Rapid detection and quantification of cell free cytomegalovirus by a high-speed centrifugation-based microculture assay: comparison to longitudinally analyzed viral DNA load and pp67 late transcript during lactation.

    Hamprecht, Klaus; Witzel, Simone; Maschmann, Jens; Dietz, Klaus; Baumeister, Andrea; Mikeler, Elfriede; Goelz, Rangmar; Speer, Christian P; Jahn, Gerhard

    2003-12-01

    Human cytomegalovirus (HCMV) is reactivated in nearly every seropositive breastfeeding mother during lactation [Lancet 357 (2001) 513]. Conventional tissue culture (TC) and low-speed centrifugation-enhanced microtiter culture methods are not able to detect HCMV from milk during all stages of lactation. Development of a sensitive and quantitative microculture technique to describe the dynamics of HCMV reactivation in different milk compartments during lactation. Milk samples were collected longitudinally from seropositive breastfeeding mothers of preterm infants. Native milk samples were separated into fraction 1 (aqueous extract of milk fat), fraction 2 (cell and fat free milk whey) and fraction 3 (milk cells). Each of these fractions was screened qualitatively (TC, nPCR, pp67 late mRNA) and quantitatively (high-speed centrifugation-based microculture, quantitative PCR). Prior to low-speed centrifugation-enhanced inoculation, virus particles were concentrated by high-speed centrifugation (60 min at 50,000 x g, 4 degrees C). Using fraction 2 we were able to describe the dynamics of viral reactivation during lactation. We present the course of the quantitative virolactia and DNAlactia and qualitative detection of HCMV pp67 late mRNA in milk whey of four mothers (three transmitters and one non-transmitter). In all these cases virolactia described an unimodal and self limited course. Peak levels of virolactia for transmitters (T1: day 44; T2: day 43; T3: day 50) were closely related the onset of viruria of the corresponding preterm infants (U1: day 39; U2a/U2b: day 44/57; U3: day 60). The courses of viral load coincidence with the courses of DNA load. We present a rapid and highly sensitive microculture method for the quantification of cell free HCMV from milk whey and aqueous extracts from milk fat. Viral reactivation during lactation describes an unimodal course. Our findings have strong implications for quality control of any virus inactivation procedure.

  14. Diagnóstico prenatal no invasivo: Ácidos nucleicos de origen fetal en sangre materna Non invasive prenatal diagnosis: Fetal nucleic acid analysis in maternal blood

    Carla Sesarini

    2010-12-01

    decade, the presence of cell-free fetal DNA in maternal blood has been identified. These fetal DNA fragments would derive from the placenta and are not detected after delivery, making them a source of fetal material for carrying out diagnosis techniques using maternal blood. However, the vast majority of cell free DNA in maternal circulation is of maternal origin, with the fetal component contributing from 3% to 6% and rising towards term. Available methodologies do not allow separation of fetal from maternal cell free DNA, so current applications have been focused on the analysis of genes not present in the mother, such as Y chromosome sequences, or RHD gene in RhD-negative women, or paternal or de novo mutations. Also, the detection of cell-free fetal RNA in maternal blood offers the possibility of obtaining information regarding genetic expression profiles of embrionic tissues, and using genes expressed only at the feto-placental unit, controls for the presence of fetal material could be established, regardless of maternal genetic tissue. The present article describes the evidences regarding the passage of fetal nucleic acids to maternal circulation, its current prenatal diagnosis application and possible future perspectives.

  15. Fetal sex determination in the first trimester of pregnancy using a Y chromosome-specific DNA probe

    Zeng, Y.; Huang, S.; Chen, M.; Huang, Y.; Zhang, M.; Dong, J.; Ku, A.; Xu, S.

    1987-05-01

    Prenatal determination of fetal sex is important for the prevention of X-linked disorders such as hemophilia, Lesch-Nyhan syndrome and Duchenne muscular dystrophy. The complex procedures of prenatal diagnosis for X-linked disorders are unnecessary if the fetus is female, because usually no clinical symptoms ever appear in female. pY 3.4 probe used in this work for sex determination is a 3.4 kilobase human repeat sequence. The probe is specific for the Y chromosome of males and can be used for sex determination. The other prove pBLUR used in this paper as control is a widely dispersed, highly repeated human Alu family DNA sequence, represented equally in male and female DNA. On the basis of the relative densities of the autoradiographic spots produced by hybridization of fetal DNA with pY3.4 and pBLUR, the sex of fetus can be clearly identified. Further the authors can determine the radioactive intensity (cpm) of the hybridized DNA spots and the ratio of hybridization with Y3.4 to pBLUR (Y3.4/pBLUR x 10). Results show that the hybridization ratio of DNA from chorionic villi of male (1.03 +/- 0.24) is significantly higher than that of female (0.16 +/- 0.09). Therefore, sex determination of the fetus can be made, based on the ratio of pY3.4/pBLUR x 10. If necessary they can also use Southern hybridization with pY 3.4 probe of DNA isolated from chorionic villi to confirm the result of dot hybridization.

  16. Fetal Cell Based Prenatal Diagnosis: Perspectives on the Present and Future

    Morris Fiddler

    2014-09-01

    Full Text Available The ability to capture and analyze fetal cells from maternal circulation or other sources during pregnancy has been a goal of prenatal diagnostics for over thirty years. The vision of replacing invasive prenatal diagnostic procedures with the prospect of having the entire fetal genome in hand non-invasively for chromosomal and molecular studies for both clinical and research use has brought many investigators and innovations into the effort. While the object of this desire, however, has remained elusive, the aspiration for this approach to non-invasive prenatal diagnosis remains and the inquiry has continued. With the advent of screening by cell-free DNA analysis, the standards for fetal cell based prenatal diagnostics have been sharpened. Relevant aspects of the history and the current status of investigations to meet the goal of having an accessible and reliable strategy for capturing and analyzing fetal cells during pregnancy are reviewed.

  17. Mitochondrial DNA Hypomethylation Is a Biomarker Associated with Induced Senescence in Human Fetal Heart Mesenchymal Stem Cells

    Dehai Yu

    2017-01-01

    Full Text Available Background. Fetal heart can regenerate to restore its normal anatomy and function in response to injury, but this regenerative capacity is lost within the first week of postnatal life. Although the specific molecular mechanisms remain to be defined, it is presumed that aging of cardiac stem or progenitor cells may contribute to the loss of regenerative potential. Methods. To study this aging-related dysfunction, we cultured mesenchymal stem cells (MSCs from human fetal heart tissues. Senescence was induced by exposing cells to chronic oxidative stress/low serum. Mitochondrial DNA methylation was examined during the period of senescence. Results. Senescent MSCs exhibited flattened and enlarged morphology and were positive for the senescence-associated beta-galactosidase (SA-β-Gal. By scanning the entire mitochondrial genome, we found that four CpG islands were hypomethylated in close association with senescence in MSCs. The mitochondrial COX1 gene, which encodes the main subunit of the cytochrome c oxidase complex and contains the differentially methylated CpG island 4, was upregulated in MSCs in parallel with the onset of senescence. Knockdown of DNA methyltransferases (DNMT1, DNMT3a, and DNMT3B also upregulated COX1 expression and induced cellular senescence in MSCs. Conclusions. This study demonstrates that mitochondrial CpG hypomethylation may serve as a critical biomarker associated with cellular senescence induced by chronic oxidative stress.

  18. Translation in cell-free systems

    Jagus, R.

    1987-01-01

    The simplest, unambiguous identification of a particular mRNA is the identification of its protein product. This can be established by translation of the mRNA of interest in a cell-free protein-synthesizing system. Messenger RNA protein product identification is important in the isolation of a particular mRNA species for cDNA cloning and in the identification of positive cDNA clones. The two high-activity translation systems in common use are those prepared from rabbit reticulocytes and from wheat germ. Both systems are easy to prepare, and both are available commercially. Each has advantages and disadvantages over the other and a choice between the two will depend on the type of mRNAs to be translated, the prejudices of experience, and availability. The main disadvantage of the reticulocyte system is that it requires removal of endogenous mRNA. However, this is a relatively simple procedure. The wheat germ system does not require removal of endogenous mRNA and may translate weakly initiating mRNAs more efficiently. However, ionic optima for translation in the wheat germ system are more sensitive to the nature and concentration of mRNA and may need to be determined for each template. The biggest problem with the use of the wheat germ system is its tendency to produce incomplete translation products due to premature termination

  19. Feasibilty of in utero DNA vaccination following naked gene transfer into pig fetal muscle: transgene expression, immunity and safety.

    Rinaldi, Monica; Signori, Emanuela; Rosati, Paolo; Cannelli, Giorgio; Parrella, Paola; Iannace, Enrico; Monego, Giovanni; Ciafrè, Silvia Anna; Farace, Maria Giulia; Iurescia, Sandra; Fioretti, Daniela; Rasi, Guido; Fazio, Vito Michele

    2006-05-22

    The high toll of death among first-week infants is due to infections occurring at the end of pregnancy, during birth or by breastfeeding. This problem significantly concerns industrialized countries also. To prevent the typical "first-week infections", a vaccine would be protective as early as at the birth. In utero DNA immunization has demonstrated the effectiveness in inducing specific immunity in newborns. We have already published results of a 2-year follow-up showing long-term safety, protective antibody titers at birth and long-term immune memory, following intramuscular in utero anti-HBV DNA immunization in 90-days pig fetuses. We have now analyzed further parameters of short-term safety. Two different reporter genes were injected in the thigh muscles of 90-days fetuses. At 8 days following DNA injection, we found high-level of transgenes expression in all injected fetuses. A step gradient of expression from the area of injection was observed with both reporter genes. CMV promoter/enhancer produced higher levels of expression compared to SV40 promoter/enhancer. Moreover, no evidence of local or systemic flogistic alterations or fetal malformations, mortality or haemorrhage following intramuscular injection were observed. A single anti-HBV s-antigen DNA immunization in 90-days fetuses supported protective antibody levels in all immunized newborns, lasting at least up to 4 months after birth. Our report further sustains safety and efficacy of intramuscular in utero naked gene transfer and immunization. This approach may support therapeutic or prophylactic procedure in many early life-threatening pathologic conditions.

  20. Recent advances in the prenatal interrogation of the human fetal genome.

    Hui, Lisa; Bianchi, Diana W

    2013-02-01

    The amount of genetic and genomic information obtainable from the human fetus during pregnancy is accelerating at an unprecedented rate. Two themes have dominated recent technological advances in prenatal diagnosis: interrogation of the fetal genome in increasingly high resolution and the development of non-invasive methods of fetal testing using cell-free DNA in maternal plasma. These two areas of advancement have now converged with several recent reports of non-invasive assessment of the entire fetal genome from maternal blood. However, technological progress is outpacing the ability of the healthcare providers and patients to incorporate these new tests into existing clinical care, and further complicates many of the economic and ethical dilemmas in prenatal diagnosis. This review summarizes recent work in this field and discusses the integration of these new technologies into the clinic and society. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Performance of Droplet Digital PCR in Non-Invasive Fetal RHD Genotyping - Comparison with a Routine Real-Time PCR Based Approach.

    Iveta Svobodová

    Full Text Available Detection and characterization of circulating cell-free fetal DNA (cffDNA from maternal circulation requires an extremely sensitive and precise method due to very low cffDNA concentration. In our study, droplet digital PCR (ddPCR was implemented for fetal RHD genotyping from maternal plasma to compare this new quantification alternative with real-time PCR (qPCR as a golden standard for quantitative analysis of cffDNA. In the first stage of study, a DNA quantification standard was used. Clinical samples, including 10 non-pregnant and 35 pregnant women, were analyzed as a next step. Both methods' performance parameters-standard curve linearity, detection limit and measurement precision-were evaluated. ddPCR in comparison with qPCR has demonstrated sufficient sensitivity for analysing of cffDNA and determination of fetal RhD status from maternal circulation, results of both methods strongly correlated. Despite the more demanding workflow, ddPCR was found to be slightly more precise technology, as evaluated using quantitative standard. Regarding the clinical samples, the precision of both methods equalized with decreasing concentrations of tested DNA samples. In case of cffDNA with very low concentrations, variance parameters of both techniques were comparable. Detected levels of fetal cfDNA in maternal plasma were slightly higher than expected and correlated significantly with gestational age as measured by both methods (ddPCR r = 0.459; qPCR r = 0.438.

  2. Effects of an overload of animal protein on the rat: brain DNA alterations and tissue morphological modifications during fetal and post-natal stage.

    Greco, A M; Sticchi, R; Boschi, G; Vetrani, A; Salvatore, G

    1985-01-01

    On account of many literature reports about the definite correlation between high animal protein intake and cardiovascular diseases, we have studied the effect of a hyperproteic purified diet (casein 40%, lactalbumin 20%) on fetal and post-natal (not further than 40th day) stage of the rat, when cell subdivision process is faster and therefore damage by nutritional imbalance is certainly more serious. Litters of rats were grouped according to mother's (either hyperproteic or common basic) and rat's (after lactation) diet. Brain DNA and histology of various organs were studied. Hyperproteic diet during fetal stage and lactation would inhibit brain cell subdivision since overall content of brain DNA would be decreased on autoptic finding. Structural changes were also shown in liver, heart, kidney and adrenal cortex, especially when hyperproteic diet was continued even after lactation.

  3. Non-invasive prenatal testing for fetal chromosome abnormalities: review of clinical and ethical issues.

    Gekas, Jean; Langlois, Sylvie; Ravitsky, Vardit; Audibert, François; van den Berg, David Gradus; Haidar, Hazar; Rousseau, François

    2016-01-01

    Genomics-based non-invasive prenatal screening using cell-free DNA (cfDNA screening) was proposed to reduce the number of invasive procedures in current prenatal diagnosis for fetal aneuploidies. We review here the clinical and ethical issues of cfDNA screening. To date, it is not clear how cfDNA screening is going to impact the performances of clinical prenatal diagnosis and how it could be incorporated in real life. The direct marketing to users may have facilitated the early introduction of cfDNA screening into clinical practice despite limited evidence-based independent research data supporting this rapid shift. There is a need to address the most important ethical, legal, and social issues before its implementation in a mass setting. Its introduction might worsen current tendencies to neglect the reproductive autonomy of pregnant women.

  4. The effect of exercise and metformin treatment on circulating free DNA in pregnancy.

    Christiansen, S C; Vanky, E; Klungland, H; Stafne, S N; Mørkved, S; Salvesen, K Å; Sæther, M; Carlsen, S M

    2014-12-01

    Some pregnancy complications are characterized by increased levels of cell-free fetal (cffDNA) and maternal DNA (cfmDNA), the latter may also be elevated during physical strain. This study aims at assessing the impact of exercise and metformin intervention in pregnancy, and to compare the levels of cell free DNA in pregnant women with or without PCOS diagnosis. Consecutive women from two previous randomized controlled trials in pregnancy were included. Women came from a trial with organized exercise vs. standard antenatal care in pregnancy and a trial of metformin vs. placebo in PCOS women. Levels of cffDNA, cfmDNA and cell-free total DNA (cftDNA) were measured by qPCR. Training in pregnancy did not affect the levels of cffDNA, cfmDNA or cftDNA. PCOS-women treated with metformin had lower levels of cfmDNA and cftDNA at week 32 (mean ± SD: 301 ± 162 versus 570 ± 337, p = 0.012, 345 ± 173 versus 635 ± 370, p = 0.019); otherwise the levels were comparable to PCOS-controls. Metformin-treated PCOS-women had higher cffDNA at inclusion, in the 1st trimester; later on in pregnancy the levels in the metformin and placebo groups were equal. A comparison of pregnant women in the exercise study (TRIP) to placebo-treated pregnant PCOS-women, showed the levels of cffDNA, cfmDNA or cftDNA during mid-pregnancy (weeks 18-36) to be equal. Training during pregnancy was not associated with altered levels of cffDNA cfmDNA or cftDNA, but metformin treatment may reduce cfmDNA and cftDNA in pregnant PCOS women. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Uracil excision repair in Mycobacterium tuberculosis cell-free extracts.

    Kumar, Pradeep; Bharti, Sanjay Kumar; Varshney, Umesh

    2011-05-01

    Uracil excision repair is ubiquitous in all domains of life and initiated by uracil DNA glycosylases (UDGs) which excise the promutagenic base, uracil, from DNA to leave behind an abasic site (AP-site). Repair of the resulting AP-sites requires an AP-endonuclease, a DNA polymerase, and a DNA ligase whose combined activities result in either short-patch or long-patch repair. Mycobacterium tuberculosis, the causative agent of tuberculosis, has an increased risk of accumulating uracils because of its G + C-rich genome, and its niche inside host macrophages where it is exposed to reactive nitrogen and oxygen species, two major causes of cytosine deamination (to uracil) in DNA. In vitro assays to study DNA repair in this important human pathogen are limited. To study uracil excision repair in mycobacteria, we have established assay conditions using cell-free extracts of M. tuberculosis and M. smegmatis (a fast-growing mycobacterium) and oligomer or plasmid DNA substrates. We show that in mycobacteria, uracil excision repair is completed primarily via long-patch repair. In addition, we show that M. tuberculosis UdgB, a newly characterized family 5 UDG, substitutes for the highly conserved family 1 UDG, Ung, thereby suggesting that UdgB might function as backup enzyme for uracil excision repair in mycobacteria. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. DNA binding mode of the cis and trans geometries of new antitumor nonclassical platinum complexes containing piperidine, piperazine or 4-picoline ligand in cell-free media. Relations to their activity in cancer cell lines

    Kašpárková, Jana; Marini, Victoria; Najajreh, Y.; Gibson, D.; Brabec, Viktor

    2003-01-01

    Roč. 42, č. 20 (2003), s. 6321-6332 ISSN 0006-2960 R&D Projects: GA AV ČR IAA5004101; GA AV ČR KJB5004301; GA ČR GA305/01/0418 Institutional research plan: CEZ:AV0Z5004920 Keywords : cross links * DNA * nonclassical platinum complexes Subject RIV: BO - Biophysics Impact factor: 3.922, year: 2003

  7. Escherichia coli cell-free protein synthesis and isotope labeling of mammalian proteins.

    Terada, Takaho; Yokoyama, Shigeyuki

    2015-01-01

    This chapter describes the cell-free protein synthesis method, using an Escherichia coli cell extract. This is a cost-effective method for milligram-scale protein production and is particularly useful for the production of mammalian proteins, protein complexes, and membrane proteins that are difficult to synthesize by recombinant expression methods, using E. coli and eukaryotic cells. By adjusting the conditions of the cell-free method, zinc-binding proteins, disulfide-bonded proteins, ligand-bound proteins, etc., may also be produced. Stable isotope labeling of proteins can be accomplished by the cell-free method, simply by using stable isotope-labeled amino acid(s) in the cell-free reaction. Moreover, the cell-free protein synthesis method facilitates the avoidance of stable isotope scrambling and dilution over the recombinant expression methods and is therefore advantageous for amino acid-selective stable isotope labeling. Site-specific stable isotope labeling is also possible with a tRNA molecule specific to the UAG codon. By the cell-free protein synthesis method, coupled transcription-translation is performed from a plasmid vector or a PCR-amplified DNA fragment encoding the protein. A milligram quantity of protein can be produced with a milliliter-scale reaction solution in the dialysis mode. More than a thousand solution structures have been determined by NMR spectroscopy for uniformly labeled samples of human and mouse functional domain proteins, produced by the cell-free method. Here, we describe the practical aspects of mammalian protein production by the cell-free method for NMR spectroscopy. © 2015 Elsevier Inc. All rights reserved.

  8. Endogenous DNA Damage Leads to p53-Independent Deficits in Replicative Fitness in Fetal Murine Fancd2−/− Hematopoietic Stem and Progenitor Cells

    Young me Yoon

    2016-11-01

    Full Text Available Our mechanistic understanding of Fanconi anemia (FA pathway function in hematopoietic stem and progenitor cells (HSPCs owes much to their role in experimentally induced DNA crosslink lesion repair. In bone marrow HSPCs, unresolved stress confers p53-dependent apoptosis and progressive cell attrition. The role of FA proteins during hematopoietic development, in the face of physiological replicative demand, remains elusive. Here, we reveal a fetal HSPC pool in Fancd2−/− mice with compromised clonogenicity and repopulation. Without experimental manipulation, fetal Fancd2−/− HSPCs spontaneously accumulate DNA strand breaks and RAD51 foci, associated with a broad transcriptional DNA-damage response, and constitutive activation of ATM as well as p38 stress kinase. Remarkably, the unresolved stress during rapid HSPC pool expansion does not trigger p53 activation and apoptosis; rather, it constrains proliferation. Collectively our studies point to a role for the FA pathway during hematopoietic development and provide a new model for studying the physiological function of FA proteins.

  9. Fetal MRI; Fetales MRT

    Blondin, D. [Inst. fuer Diagn. Radiologie, Uniklinikum Duesseldorf (Germany); Turowski, B. [Inst. fuer Diagn. Radiologie, Neuroradiologie, Uniklinikum Duesseldorf (Germany); Schaper, J. [Inst. fuer Diagn. Radiologie, Kinderradiologie, Uniklinikum Duesseldorf (Germany)

    2007-02-15

    Ultrasonography is the method of choice for prenatal malformation screening, but it does not always provide sufficient information for correct diagnosis or adequate abnormality evaluation. Fetal MRI is increasingly being used to complete sonographic findings. It was initially used for evaluation of cerebral abnormalities but is increasingly being applied to other fetal areas. In vivo investigation of fetal brain maturation has been enhanced by MRI. An adequate analysis of fetal chest and abdomen can be achieved with fast T2-, T1-weighted and diffusion-weighted imaging (DWI). The advantages include the great field of view and the excellent soft tissue contrast. This allows correct diagnosis of congenital diaphragmatic hernia and evaluation of the consequences on pulmonary growth. Other pulmonary malformations, such as cystic adenomatoid malformation, sequestration and brochogenic cysts, can also be easily identified. Renal position can be quickly determined using DWI sequences and renal agenesia can be easily diagnosed with only one sequence. Prenatal MRI is virtually as effective as postnatal examination, dispenses with transport of a potentially very ill newborn, and provides logistic advantages. Therefore, prenatal MRI is useful for adequate postnatal treatment of newborns with malformations. (orig.)

  10. Non-invasive prenatal testing for fetal chromosome abnormalities: review of clinical and ethical issues

    Gekas J

    2016-02-01

    Full Text Available Jean Gekas,1,2 Sylvie Langlois,3 Vardit Ravitsky,4 François Audibert,5 David Gradus van den Berg,6 Hazar Haidar,4 François Rousseau2,7 1Prenatal Diagnosis Unit, Department of Medical Genetics and Pediatrics, Faculty of Medicine, Université Laval, Québec City, QC, Canada; 2Department of Medical Biology, CHU de Québec, Québec City, QC, Canada; 3Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; 4Bioethics Program, Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, QC, Canada; 5Department of Obstetrics and Gynecology, Hospital Sainte-Justine, Montreal, QC, Canada; 6Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada; 7Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, Canada Abstract: Genomics-based non-invasive prenatal screening using cell-free DNA (cfDNA screening was proposed to reduce the number of invasive procedures in current prenatal diagnosis for fetal aneuploidies. We review here the clinical and ethical issues of cfDNA screening. To date, it is not clear how cfDNA screening is going to impact the performances of clinical prenatal diagnosis and how it could be incorporated in real life. The direct marketing to users may have facilitated the early introduction of cfDNA screening into clinical practice despite limited evidence-based independent research data supporting this rapid shift. There is a need to address the most important ethical, legal, and social issues before its implementation in a mass setting. Its introduction might worsen current tendencies to neglect the reproductive autonomy of pregnant women. Keywords: prenatal diagnosis, Down syndrome, non-invasive prenatal testing, cell-free fetal DNA, informed consent, reproductive autonomy

  11. Dynamic Changes in Fetal Microchimerism in Maternal Peripheral Blood Mononuclear Cells, CD4+ and CD8+ Cells in Normal Pregnancy

    Adams Waldorf, Kristina M.; Gammill, Hilary S.; Lucas, Joëlle; Aydelotte, Tessa M.; Leisenring, Wendy M.; Lambert, Nathalie C.; Nelson, J. Lee

    2010-01-01

    Objective Cell trafficking during pregnancy results in persistence of small populations of fetal cells in the mother, known as fetal microchimerism (FMc). Changes in cell-free fetal DNA during gestation have been well-described, however, less is known about dynamic changes in fetal immune cells in maternal blood. We investigated FMc in maternal peripheral blood mononuclear cells (PBMC) longitudinally across gestation. Study Design Thirty-five women with normal pregnancies were studied. FMc was identified in PBMC, CD4+ and CD8+ subsets employing quantitative PCR assays targeting fetal-specific genetic polymorphisms. FMc quantities were reported as fetal genome equivalents (gEq) per 1,000,000 gEq mother’s cells. Poisson regression modeled the rate of FMc detection. Main Outcome Measure FMc in PBMC Results The probability of detecting one fetal cell equivalent increased 6.2-fold each trimester [Incidence Rate Ratio (IRR) 95% CI: 1.73, 21.91; p=0.005]. Although FMC in PBMC was not detected for the majority of time points, 7 of 35 women had detectable FMc during pregnancy at one or more time points, with the majority of positive samples being from the third trimester. There was a suggestion of greater HLA-sharing in families where women had FMc in PBMC. FMc was detected in 9% of CD4+ (2/23) and 18% of CD8+ (3/25) subsets. Conclusions FMc in PBMC increased as gestation progressed and was found within CD4+ and CD8+ subsets in some women in the latter half of gestation. A number of factors could influence cellular FMc levels including subclinical fetal-maternal interface changes and events related to parturition. Whether FMc during pregnancy predicts persistent FMc and/or correlates with fetal-maternal HLA-relationships also merits further study. PMID:20569981

  12. Fetal echocardiography

    Chaubal, Nitin G.; Chaubal, Jyoti

    2009-01-01

    USG performed with a high-end machine, using a good cine-loop facility is extremely helpful in the diagnosis of fetal cardiac anomalies. In fetal echocardiography, the four-chamber view and the outflow-tract view are used to diagnose cardiac anomalies. The most important objective during a targeted anomaly scan is to identify those cases that need a dedicated fetal echocardiogram. Associated truncal and chromosomal anomalies need to be identified. This review shows how fetal echocardiography, apart from identifying structural defects in the fetal heart, can be used to look at rhythm abnormalities and other functional aspects of the fetal heart

  13. Fetal echocardiography

    ... page: //medlineplus.gov/ency/article/007340.htm Fetal echocardiography To use the sharing features on this page, please enable JavaScript. Fetal echocardiography is a test that uses sound waves ( ultrasound ) ...

  14. Inhibitory effect of benzene metabolites on nuclear DNA synthesis in bone marrow cells

    Lee, E.W.; Johnson, J.T.; Garner, C.D.

    1989-01-01

    Effects of endogenously produced and exogenously added benzene metabolites on the nuclear DNA synthetic activity were investigated using a culture system of mouse bone marrow cells. Effects of the metabolites were evaluated by a 30-min incorporation of [ 3 H]thymidine into DNA following a 30-min interaction with the cells in McCoy's 5a medium with 10% fetal calf serum. Phenol and muconic acid did not inhibit nuclear DNA synthesis. However, catechol, 1,2,4-benzenetriol, hydroquinone, and p-benzoquinone were able to inhibit 52, 64, 79, and 98% of the nuclear DNA synthetic activity, respectively, at 24 μM. In a cell-free DNA synthetic system, catechol and hydroquinone did not inhibit the incorporation of [ 3 H]thymidine triphosphate into DNA up to 24 μM but 1,2,4-benzenetriol and p-benzoquinone did. The effect of the latter two benzene metabolites was completely blocked in the presence of 1,4-dithiothreitol (1 mM) in the cell-free assay system. Furthermore, when DNA polymerase α, which requires a sulfhydryl (SH) group as an active site, was replaced by DNA polymerase 1, which does not require an SH group for its catalytic activity, p-benzoquinone and 1,2,4-benzenetriol were unable to inhibit DNA synthesis. Thus, the data imply the p-benzoquinone and 1,2,4-benzenetriol inhibited DNA polymerase α, consequently resulting in inhibition of DNA synthesis in both cellular and cell-free DNA synthetic systems. The present study identifies catechol, hydroquinone, p-benzoquinone, and 1,2,4-benzenetriol as toxic benzene metabolites in bone marrow cells and also suggests that their inhibitory action on DNA synthesis is mediated by mechanism(s) other than that involving DNA damage as a primary cause

  15. Reconstituted AIM2 inflammasome in cell-free system.

    Kaneko, Naoe; Ito, Yuki; Iwasaki, Tomoyuki; Takeda, Hiroyuki; Sawasaki, Tatsuya; Migita, Kiyoshi; Agematsu, Kazunaga; Kawakami, Atsushi; Morikawa, Shinnosuke; Mokuda, Sho; Kurata, Mie; Masumoto, Junya

    2015-11-01

    Absent in melanoma 2 (AIM2) is an intracellular pattern-recognition receptor, which is a member of the PYHIN protein family, consisting of a PYD domain and an IFN-inducible nuclear localization (HIN) domain. AIM2 is reported to oligomerize with adaptor protein ASC upon sensing bacterial and viral cytosolic DNA in order to form the AIM2 inflammasome, which activates caspase-1 leading to IL-1β secretion. Dysregulation of AIM2 inflammasome is supposed to result in autoinflammatory and autoimmune diseases. Thus, the development of new targeted drugs against AIM2 inflammasome would be important for the treatment of these diseases. However, since AIM2 inflammasome is an intracellular receptor, enforced internalization of both ligands and candidate molecules is necessary for the screening of AIM2-inflammasome-targeted molecules. We developed a reconstituted AIM2 inflammasome in a cell-free system with amplified luminescent proximity homogeneous assay (Alpha). Strong Alpha signal was detected upon incubation with poly-deoxyadenylic-deoxythymidylic acid, poly(dA:dT), whereas no Alpha signal was detected upon incubation with muramyl dipeptide, one of the NLR ligands of Nod2 ligand. The interaction between AIM2 and ASC was disrupted by an anti-human ASC monoclonal antibody, CRID3, a class of diarylsulfonylurea-containing compounds, and glycyrrhizin, a substance found in liquorice root. Thus, the reconstituted AIM2 inflammasome in a cell-free system is useful for screening AIM2-inflammasome-targeted therapeutic molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Circulating cell free DNA as a predictor of systemic lupus ...

    Olfat M. Hendy

    2015-07-29

    Jul 29, 2015 ... as a potential tool to predict disease activity and treatment follow up. Subjects and ... control group. Thorough clinical examination stressing on the central nervous system, vascular, ... sis/necrosis of blood and tissue cells) and, second, active metabolic ..... alternative biomarkers should be tested. There was ...

  17. Activation of Fetal γ-globin Gene Expression via Direct Protein Delivery of Synthetic Zinc-finger DNA-Binding Domains

    Mir A Hossain

    2016-01-01

    Full Text Available Reactivation of γ-globin expression has been shown to ameliorate disease phenotypes associated with mutations in the adult β-globin gene, including sickle cell disease. Specific mutations in the promoter of the γ-globin genes are known to prevent repression of the genes in the adult and thus lead to hereditary persistence of fetal hemoglobin. One such hereditary persistence of fetal hemoglobin is associated with a sequence located 567 bp upstream of the Gγ-globin gene which assembles a GATA-containing repressor complex. We generated two synthetic zinc-finger DNA-binding domains (ZF-DBDs targeting this sequence. The -567Gγ ZF-DBDs associated with high affinity and specificity with the target site in the γ-globin gene promoter. We delivered the -567Gγ ZF-DBDs directly to primary erythroid cells. Exposure of these cells to the recombinant -567Gγ ZF-DBDs led to increased expression of the γ-globin gene. Direct protein delivery of ZF-DBDs that compete with transcription regulatory proteins will have broad implications for modulating gene expression in analytical or therapeutic settings.

  18. Levels of PAH-DNA adducts in cord blood and cord tissue and the risk of fetal neural tube defects in a Chinese population.

    Yi, Deqing; Yuan, Yue; Jin, Lei; Zhou, Guodong; Zhu, Huiping; Finnell, Richard H; Ren, Aiguo

    2015-01-01

    Maternal exposure to polycyclic aromatic hydrocarbons (PAHs) has been shown to be associated with an elevated risk for neural tube defects (NTDs). In the human body, PAHs are bioactivated and the resultant reactive epoxides can covalently bind to DNA to form PAH-DNA adducts, which may, in turn, cause transcription errors, changes in gene expression or altered patterns of apoptosis. During critical developmental phases, these changes can result in abnormal morphogenesis. We aimed to examine the relationship between the levels of PAH-DNA adducts in cord blood and cord tissue and the risk of NTDs. From 2010 to 2012, 60 NTD cases and 60 healthy controls were recruited from a population-based birth defects surveillance system in five counties of Shanxi Province in Northern China, where the emission of PAHs remains one of the highest in the country and PAHs exposure is highly prevalent. PAH-DNA adducts in cord blood of 15 NTD cases and 15 control infants, and in cord tissue of 60 NTD cases and 60 control infants were measured using the (32)P-postlabeling method. PAH-DNA adduct levels in cord blood tend to be higher in the NTD group (28.5 per 10(8) nucleotides) compared with controls (19.7 per 10(8) nucleotides), although the difference was not statistically significant (P=0.377). PAH-DNA adducts in cord tissue were significantly higher in the NTD group (24.6 per 10(6) nucleotides) than in the control group (15.3 per 10(6) nucleotides), P=0.010. A positive dose-response relationship was found between levels of PAH-DNA adducts in cord tissue and the risk of NTDs (P=0.009). When the lowest tertile was used as the referent and potential confounding factors were adjusted for, a 1.03-fold (95% CI, 0.37-2.89) and 2.96-fold (95% CI, 1.16-7.58) increase in the risk of NTDs was observed for fetuses whose cord tissue PAH-DNA adduct levels were in the second and highest tertile, respectively. High levels of PAH-DNA adducts in fetal tissues were associated with increased risks of

  19. Cell-free protein synthesis: applications in proteomics and biotechnology.

    He, Mingyue

    2008-01-01

    Protein production is one of the key steps in biotechnology and functional proteomics. Expression of proteins in heterologous hosts (such as in E. coli) is generally lengthy and costly. Cell-free protein synthesis is thus emerging as an attractive alternative. In addition to the simplicity and speed for protein production, cell-free expression allows generation of functional proteins that are difficult to produce by in vivo systems. Recent exploitation of cell-free systems enables novel development of technologies for rapid discovery of proteins with desirable properties from very large libraries. This article reviews the recent development in cell-free systems and their application in the large scale protein analysis.

  20. Non invasive prenatal diagnosis: analysis of circulating fetal DNA and cells in maternal blood El diagnóstico prenatal no invasor: análisis de células y ADN fetal circulantes en la sangre materna

    Diana Cecilia Jaramillo Posada

    2009-11-01

    Full Text Available

    Prenatal non invasive diagnosis by means of analyses of foetal DNA or cells circulating in maternal blood is one of the most promising areas of obstetrics. Among maternal diseases that could be diagnosed by these methods, or whose behaviour could be predicted, are preeclampsia, growth restriction and preterm labour. Some foetal conditions that could be detected are sex, chromosomal anomalies and single-gene defects. However, these are complex and expensive techniques that are not regularly performed in health care institutions. With this review we intend to provide the readers with up to date information on the main techniques available for the study of circulating foetal cells and DNA, and on their possible clinical applications. The review was based on a search for journals indexed up to 2008 in Pubmed, Scielo and Latindex. Especially relevant articles were chosen by the authors.

    El diagnóstico prenatal temprano y no invasor por medio del análisis de células o ADN fetales circulantes en la sangre materna es un área prometedora de la obstetricia moderna. Entre las enfermedades que se pueden diagnosticar o cuyo comportamiento es posible predecir por estos métodos se encuentran la preeclampsia, la restricción del crecimiento intrauterino y el parto pretérmino. Algunas condiciones fetales que podrían detectarse son el sexo, ciertas anomalías cromosómicas y los defectos de un solo gen. Sin

  1. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure.

    Eric J Chater-Diehl

    Full Text Available The molecular basis of Fetal Alcohol Spectrum Disorders (FASD is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse's lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as "Free radical scavenging". We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was "Peroxisome biogenesis"; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD.

  2. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure.

    Chater-Diehl, Eric J; Laufer, Benjamin I; Castellani, Christina A; Alberry, Bonnie L; Singh, Shiva M

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse's lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as "Free radical scavenging". We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was "Peroxisome biogenesis"; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD.

  3. DNA methylation links genetics, fetal environment, and an unhealthy lifestyle to the development of type 2 diabetes.

    Nilsson, Emma; Ling, Charlotte

    2017-01-01

    Type 2 diabetes is a complex trait with both environmental and hereditary factors contributing to the overall pathogenesis. One link between genes, environment, and disease is epigenetics influencing gene transcription and, consequently, organ function. Genome-wide studies have shown altered DNA methylation in tissues important for glucose homeostasis including pancreas, liver, skeletal muscle, and adipose tissue from subjects with type 2 diabetes compared with nondiabetic controls. Factors predisposing for type 2 diabetes including an adverse intrauterine environment, increasing age, overweight, physical inactivity, a family history of the disease, and an unhealthy diet have all shown to affect the DNA methylation pattern in target tissues for insulin resistance in humans. Epigenetics including DNA methylation may therefore improve our understanding of the type 2 diabetes pathogenesis, contribute to development of novel treatments, and be a useful tool to identify individuals at risk for developing the disease.

  4. Fetal MSCs

    First page Back Continue Last page Overview Graphics. Derived from extra embryonic tissues (amniotic fluid, placenta, cord blood, Wharton's Jelly) and fetal tissues (aborted fetuses). Derived from extra embryonic tissues (amniotic fluid, placenta, cord blood, Wharton's Jelly) and fetal tissues (aborted fetuses). In comparison ...

  5. Cell-free synthetic biology for environmental sensing and remediation.

    Karig, David K

    2017-06-01

    The fields of biosensing and bioremediation leverage the phenomenal array of sensing and metabolic capabilities offered by natural microbes. Synthetic biology provides tools for transforming these fields through complex integration of natural and novel biological components to achieve sophisticated sensing, regulation, and metabolic function. However, the majority of synthetic biology efforts are conducted in living cells, and concerns over releasing genetically modified organisms constitute a key barrier to environmental applications. Cell-free protein expression systems offer a path towards leveraging synthetic biology, while preventing the spread of engineered organisms in nature. Recent efforts in the areas of cell-free approaches for sensing, regulation, and metabolic pathway implementation, as well as for preserving and deploying cell-free expression components, embody key steps towards realizing the potential of cell-free systems for environmental sensing and remediation. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  6. The emerging age of cell-free synthetic biology.

    Smith, Mark Thomas; Wilding, Kristen M; Hunt, Jeremy M; Bennett, Anthony M; Bundy, Bradley C

    2014-08-25

    The engineering of and mastery over biological parts has catalyzed the emergence of synthetic biology. This field has grown exponentially in the past decade. As increasingly more applications of synthetic biology are pursued, more challenges are encountered, such as delivering genetic material into cells and optimizing genetic circuits in vivo. An in vitro or cell-free approach to synthetic biology simplifies and avoids many of the pitfalls of in vivo synthetic biology. In this review, we describe some of the innate features that make cell-free systems compelling platforms for synthetic biology and discuss emerging improvements of cell-free technologies. We also select and highlight recent and emerging applications of cell-free synthetic biology. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Fetal Ultrasound

    ... isn't recommended simply to determine a baby's sex. Similarly, fetal ultrasound isn't recommended solely for the purpose of producing keepsake videos or pictures. If your health care provider doesn' ...

  8. Fetal Macrosomia

    ... re more likely to have a large baby. Maternal obesity. Fetal macrosomia is more likely if you're ... is more likely to be a result of maternal diabetes, obesity or weight gain during pregnancy than other causes. ...

  9. Controlling cell-free metabolism through physiochemical perturbations.

    Karim, Ashty S; Heggestad, Jacob T; Crowe, Samantha A; Jewett, Michael C

    2018-01-01

    Building biosynthetic pathways and engineering metabolic reactions in cells can be time-consuming due to complexities in cellular metabolism. These complexities often convolute the combinatorial testing of biosynthetic pathway designs needed to define an optimal biosynthetic system. To simplify the optimization of biosynthetic systems, we recently reported a new cell-free framework for pathway construction and testing. In this framework, multiple crude-cell extracts are selectively enriched with individual pathway enzymes, which are then mixed to construct full biosynthetic pathways on the time scale of a day. This rapid approach to building pathways aids in the study of metabolic pathway performance by providing a unique freedom of design to modify and control biological systems for both fundamental and applied biotechnology. The goal of this work was to demonstrate the ability to probe biosynthetic pathway performance in our cell-free framework by perturbing physiochemical conditions, using n-butanol synthesis as a model. We carried out three unique case studies. First, we demonstrated the power of our cell-free approach to maximize biosynthesis yields by mapping physiochemical landscapes using a robotic liquid-handler. This allowed us to determine that NAD and CoA are the most important factors that govern cell-free n-butanol metabolism. Second, we compared metabolic profile differences between two different approaches for building pathways from enriched lysates, heterologous expression and cell-free protein synthesis. We discover that phosphate from PEP utilization, along with other physiochemical reagents, during cell-free protein synthesis-coupled, crude-lysate metabolic system operation inhibits optimal cell-free n-butanol metabolism. Third, we show that non-phosphorylated secondary energy substrates can be used to fuel cell-free protein synthesis and n-butanol biosynthesis. Taken together, our work highlights the ease of using cell-free systems to explore

  10. Insights into cell-free therapeutic approach: Role of stem cell "soup-ernatant".

    Raik, Shalini; Kumar, Ajay; Bhattacharyya, Shalmoli

    2018-03-01

    Current advances in medicine have revolutionized the field of regenerative medicine dramatically with newly evolved therapies for repair or replacement of degenerating or injured tissues. Stem cells (SCs) can be harvested from different sources for clinical therapeutics, which include fetal tissues, umbilical cord blood, embryos, and adult tissues. SCs can be isolated and differentiated into desired lineages for tissue regeneration and cell replacement therapy. However, several loopholes need to be addressed properly before this can be extended for large-scale therapeutic application. These include a careful approach for patient safety during SC treatments and tolerance of recipients. SC treatments are associated with a number of risk factors and require successful integration and survival of transplanted cells in the desired microenvironment with concurrent tissue regeneration. Recent studies have focused on developing alternatives that can replace the cell-based therapy using paracrine factors. The development of stem "cell free" therapies can be devoted mainly to the use of soluble factors (secretome), extracellular vesicles, and mitochondrial transfer. The present review emphasizes on the paradigms related to the use of SC-based therapeutics and the potential applications of a cell-free approach as an alternative to cell-based therapy in the area of regenerative medicine. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  11. ACVP-05: Virus Genetic Analysis from Cell-Free Plasma, Virally Infected Cells or Tissues and Cultured Supernatant Via Single Genome Amplification and Direct Sequencing | Frederick National Laboratory for Cancer Research

    The Viral Evolution Core within the AIDS and Cancer Virus Program will extract viral RNA/DNA from cell-free or cell-associated samples. Complementary (cDNA) will be generated as needed, and cDNA or DNA will be diluted to a single copy prior to nested

  12. Cell-free protein synthesis for structure determination by X-ray crystallography.

    Watanabe, Miki; Miyazono, Ken-ichi; Tanokura, Masaru; Sawasaki, Tatsuya; Endo, Yaeta; Kobayashi, Ichizo

    2010-01-01

    Structure determination has been difficult for those proteins that are toxic to the cells and cannot be prepared in a large amount in vivo. These proteins, even when biologically very interesting, tend to be left uncharacterized in the structural genomics projects. Their cell-free synthesis can bypass the toxicity problem. Among the various cell-free systems, the wheat-germ-based system is of special interest due to the following points: (1) Because the gene is placed under a plant translational signal, its toxic expression in a bacterial host is reduced. (2) It has only little codon preference and, especially, little discrimination between methionine and selenomethionine (SeMet), which allows easy preparation of selenomethionylated proteins for crystal structure determination by SAD and MAD methods. (3) Translation is uncoupled from transcription, so that the toxicity of the translation product on DNA and its transcription, if any, can be bypassed. We have shown that the wheat-germ-based cell-free protein synthesis is useful for X-ray crystallography of one of the 4-bp cutter restriction enzymes, which are expected to be very toxic to all forms of cells retaining the genome. Our report on its structure represents the first report of structure determination by X-ray crystallography using protein overexpressed with the wheat-germ-based cell-free protein expression system. This will be a method of choice for cytotoxic proteins when its cost is not a problem. Its use will become popular when the crystal structure determination technology has evolved to require only a tiny amount of protein.

  13. Cell-free synthetic biology: thinking outside the cell.

    Hodgman, C Eric; Jewett, Michael C

    2012-05-01

    Cell-free synthetic biology is emerging as a powerful approach aimed to understand, harness, and expand the capabilities of natural biological systems without using intact cells. Cell-free systems bypass cell walls and remove genetic regulation to enable direct access to the inner workings of the cell. The unprecedented level of control and freedom of design, relative to in vivo systems, has inspired the rapid development of engineering foundations for cell-free systems in recent years. These efforts have led to programmed circuits, spatially organized pathways, co-activated catalytic ensembles, rational optimization of synthetic multi-enzyme pathways, and linear scalability from the micro-liter to the 100-liter scale. It is now clear that cell-free systems offer a versatile test-bed for understanding why nature's designs work the way they do and also for enabling biosynthetic routes to novel chemicals, sustainable fuels, and new classes of tunable materials. While challenges remain, the emergence of cell-free systems is poised to open the way to novel products that until now have been impractical, if not impossible, to produce by other means. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Fetal cardiology

    Meijboom, E.J.; Rijsterborgh, N.; Bom, N.

    1986-01-01

    Doppler echocardiography makes it possible to diagnose congenital heart disease in early pregnancy. It allows us to study the anatomical configuration of the fetal heart, and additionally, to evaluate the physiological conditions of the fetus. Evaluation of the direction, velocity, wave form pattern, and quantification of blood flow at the various sites in the fetal heart helps us to assess the characteristics of the fetal circulation and condition of the fetal heart. In order to use this technique in pathological situations, an initial study of the developing normal human fetal circulation was necessary. The authors studied 34 uncomplicated pregnancies by serial Doppler echocardiography. The studies were performed every 4 weeks from 16-weeks gestation to term. The pulsed Doppler sector scanner provided cardiac cross-sectional images, mitral and tricuspid blood velocities were obtained from apical four-chamber views. Angle corrected maximal and mean temporal velocities were calculated by digitizing the Doppler frequency shift recording on a graphic tablet computed with a minicomputer. The angle between the Doppler interrogation beam and the direction of blood flow was kept as small as possible in order to minimize the error

  15. Cell-free synthetic biology for in vitro prototype engineering.

    Moore, Simon J; MacDonald, James T; Freemont, Paul S

    2017-06-15

    Cell-free transcription-translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells. © 2017 The Author(s).

  16. Fetal MRI

    Prayer, D.; Brugger, P.C.

    2004-01-01

    New, ultrafast sequences have made it possible to obtain MR images of the fetus without maternal sedation or immobilization of the fetus itself. While fetal MRI began as an adjunct to ultrasound, it has now been shown that MRI can provide additional information that may change prognosis, the management of pregnancy, or the treatment of the newborn child. It is of particular value in the assessment of malformations of the central nervous system. The steady development and adaptation of MR-sequences to the needs of fetal imaging has led to new indications that can support prognostic and therapeutic decisions. (orig.)

  17. Fetal MRI

    Prayer, D.; Brugger, P.C. [University Hospital of Vienna (Austria). Division of Neuroradiology

    2004-07-01

    New, ultrafast sequences have made it possible to obtain MR images of the fetus without maternal sedation or immobilization of the fetus itself. While fetal MRI began as an adjunct to ultrasound, it has now been shown that MRI can provide additional information that may change prognosis, the management of pregnancy, or the treatment of the newborn child. It is of particular value in the assessment of malformations of the central nervous system. The steady development and adaptation of MR-sequences to the needs of fetal imaging has led to new indications that can support prognostic and therapeutic decisions. (orig.)

  18. Radio-modification by caffeine alone and in combination with phosphorothioates: in vivo and cell-free studies

    Swenberg, C.E.; Landauer, M.R.; Weiss, J.F.

    1997-01-01

    Caffeine is generally considered to result in radiosensitization by affecting the cell cycle. Data from in vivo studies, however, do not suggest sensitization; caffeine administration did not adversely affect survival of mice irradiated at doses causing hematopoietic injury, or gastrointestinal injury, or when administered in combination with phosphorothioates. For example, caffeine administration (20 mg/kg IP) in combination with the radioprotector WR-151327, S-2-(3-methyl-amino-propyl-amino)propyl-phosphoro-thioic acid. (200 mg/kg IP) resulted in a dose modification factor of 1.54 in comparison to 1.51 for WR-151327 treatment alone. In a cell-free system, the active metabolites of phosphorothiotates, i.e. free thiols and disulfides, appear to mimic polyamines and modulate enzymes involves in DNA structure and synthesis. The free thiol of WR-151327 (WR-151326) actively enhanced topoisomerase I-mediated unwinding of supercoiled plB130 DNA and super-coiling of DNA mediated by DNA gyrase (topoisomerase II). Caffeine, in general, had opposite effects on potoisomerase activities compared to WR-151326. When caffeine was added to the cell-free system together with WR-151326, the stimulatory effects of WR-151326 were suppressed. Further studies are needed in cell-free systems, cells, and animals to elucidate the potential utility of caffeine administration in combination with radiation and other therapeutic agents. (authors)

  19. Radio-modification by caffeine alone and in combination with phosphorothioates: in vivo and cell-free studies

    Swenberg, C.E.; Landauer, M.R. [Armed Forces Radiobiology Research Institute, Bethesda (United States); Weiss, J.F. [Office of International Health Programs, Department of Energy, Germantown (United States)

    1997-03-01

    Caffeine is generally considered to result in radiosensitization by affecting the cell cycle. Data from in vivo studies, however, do not suggest sensitization; caffeine administration did not adversely affect survival of mice irradiated at doses causing hematopoietic injury, or gastrointestinal injury, or when administered in combination with phosphorothioates. For example, caffeine administration (20 mg/kg IP) in combination with the radioprotector WR-151327, S-2-(3-methyl-amino-propyl-amino)propyl-phosphoro-thioic acid. (200 mg/kg IP) resulted in a dose modification factor of 1.54 in comparison to 1.51 for WR-151327 treatment alone. In a cell-free system, the active metabolites of phosphorothiotates, i.e. free thiols and disulfides, appear to mimic polyamines and modulate enzymes involves in DNA structure and synthesis. The free thiol of WR-151327 (WR-151326) actively enhanced topoisomerase I-mediated unwinding of supercoiled plB130 DNA and super-coiling of DNA mediated by DNA gyrase (topoisomerase II). Caffeine, in general, had opposite effects on potoisomerase activities compared to WR-151326. When caffeine was added to the cell-free system together with WR-151326, the stimulatory effects of WR-151326 were suppressed. Further studies are needed in cell-free systems, cells, and animals to elucidate the potential utility of caffeine administration in combination with radiation and other therapeutic agents. (authors)

  20. In-cell PCR method for specific genotyping of genomic DNA from one individual in a mixture of cells from two individuals: a model study with specific relevance to prenatal diagnosis based on fetal cells in maternal blood

    Hviid, T Vauvert

    2002-01-01

    only in the male cells, leading to the correct HLA-DPB1 genotyping of the male by DNA sequencing of a nested, linked TSPY-HLA-DPB1 PCR product. CONCLUSION: This approach might be usable on mixed cell populations of fetal and maternal cells obtained after conventional cell-sorting techniques on maternal...... maternal blood samples, the use of such an approach for genotyping by molecular biology techniques in a more routine setting has been hampered by the large contamination of maternal nucleated blood cells in the cell isolates. Therefore, a new method based on in-cell PCR is described, which may overcome...... this problem. Methods and Results: Mixtures of cells from two different individuals were fixed and permeabilized in suspension. After coamplification of a DNA sequence specific for one of the individuals and the DNA sequence to be genotyped, the two PCR products were linked together in the fixed cells positive...

  1. Advanced Whole-Genome Sequencing and Analysis of Fetal Genomes from Amniotic Fluid.

    Mao, Qing; Chin, Robert; Xie, Weiwei; Deng, Yuqing; Zhang, Wenwei; Xu, Huixin; Zhang, Rebecca Yu; Shi, Quan; Peters, Erin E; Gulbahce, Natali; Li, Zhenyu; Chen, Fang; Drmanac, Radoje; Peters, Brock A

    2018-04-01

    Amniocentesis is a common procedure, the primary purpose of which is to collect cells from the fetus to allow testing for abnormal chromosomes, altered chromosomal copy number, or a small number of genes that have small single- to multibase defects. Here we demonstrate the feasibility of generating an accurate whole-genome sequence of a fetus from either the cellular or cell-free DNA (cfDNA) of an amniotic sample. cfDNA and DNA isolated from the cell pellet of 31 amniocenteses were sequenced to approximately 50× genome coverage by use of the Complete Genomics nanoarray platform. In a subset of the samples, long fragment read libraries were generated from DNA isolated from cells and sequenced to approximately 100× genome coverage. Concordance of variant calls between the 2 DNA sources and with parental libraries was >96%. Two fetal genomes were found to harbor potentially detrimental variants in chromodomain helicase DNA binding protein 8 ( CHD8 ) and LDL receptor-related protein 1 ( LRP1 ), variations of which have been associated with autism spectrum disorder and keratosis pilaris atrophicans, respectively. We also discovered drug sensitivities and carrier information of fetuses for a variety of diseases. We were able to elucidate the complete genome sequence of 31 fetuses from amniotic fluid and demonstrate that the cfDNA or DNA from the cell pellet can be analyzed with little difference in quality. We believe that current technologies could analyze this material in a highly accurate and complete manner and that analyses like these should be considered for addition to current amniocentesis procedures. © 2018 American Association for Clinical Chemistry.

  2. Fetal pain

    Adama van Scheltema, Phebe

    2011-01-01

    Recent studies have suggested that the fetus is capable of exhibiting a stress response to intrauterine needling, resulting in alterations in fetal stress hormone levels. Intrauterine transfusions are performed by inserting a needle either in the umbilical cord root at the placental surface (PCI),

  3. Pathophysiological consequences of hemolysis. Role of cell-free hemoglobin

    Tomasz Misztal

    2011-09-01

    Full Text Available Abundant hemolysis is associated with a number of inherent and acquired diseases including sickle-cell disease (SCD, polycythemia, paroxysmal nocturnal hemoglobinuria (PNH and drug-induced hemolytic anemia. Despite different etiopathology of hemolytic diseases, many concomitant symptoms are comparable and include e.g. hypertension, hemoglobinuria and hypercoagulation state. Studies in the last years have shown a growing list of mechanisms lying at the basis of those symptoms, in particular irreversible reaction between cell-free hemoglobin (Hb and nitric oxide (NO – endogenous vasorelaxant and anti-thrombotic agent. Saturation of protective physiological cell-free Hb-scavenging mechanisms results in accumulation of Hb in plasma and hemoglobinemia. Extensive hemoglobinemia subsequently leads to hemoglobinuria, which may cause kidney damage and development of Fanconi syndrome. A severe problem in patients with SCD and PNH is pulmonary and systemic hypertension. It may lead to circulation failure, including stroke, and it is related to abolition of NO bioavailability for vascular smooth muscle cells. Thrombotic events are the major cause of death in SCD and PNH. It ensues from lack of platelet inhibition evoked by Hb-mediated NO scavenging. A serious complication that affects patients with excessive hemolysis is erectile dysfunction. Also direct cytotoxic, prooxidant and proinflammatory effects of cell-free hemoglobin and heme compose the clinical picture of hemolytic diseases. The pathophysiological role of plasma Hb, mechanisms of its elimination, and direct and indirect (via NO scavenging deleterious effects of cell-free Hb are presented in detail in this review. Understanding the critical role of hemolysis and cell-free Hb is important in the perspective of treating patients with hemolytic diseases and to design new effective therapies in future.

  4. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  5. Cell-Free Expression and In Situ Immobilization of Parasite Proteins from Clonorchis sinensis for Rapid Identification of Antigenic Candidates.

    Christy Catherine

    Full Text Available Progress towards genetic sequencing of human parasites has provided the groundwork for a post-genomic approach to develop novel antigens for the diagnosis and treatment of parasite infections. To fully utilize the genomic data, however, high-throughput methodologies are required for functional analysis of the proteins encoded in the genomic sequences. In this study, we investigated cell-free expression and in situ immobilization of parasite proteins as a novel platform for the discovery of antigenic proteins. PCR-amplified parasite DNA was immobilized on microbeads that were also functionalized to capture synthesized proteins. When the microbeads were incubated in a reaction mixture for cell-free synthesis, proteins expressed from the microbead-immobilized DNA were instantly immobilized on the same microbeads, providing a physical linkage between the genetic information and encoded proteins. This approach of in situ expression and isolation enables streamlined recovery and analysis of cell-free synthesized proteins and also allows facile identification of the genes coding antigenic proteins through direct PCR of the microbead-bound DNA.

  6. Measuring strand discontinuity-directed mismatch repair in yeast Saccharomyces cerevisiae by cell-free nuclear extracts.

    Yuan, Fenghua; Lai, Fangfang; Gu, Liya; Zhou, Wen; El Hokayem, Jimmy; Zhang, Yanbin

    2009-05-01

    Mismatch repair corrects biosynthetic errors generated during DNA replication, whose deficiency causes a mutator phenotype and directly underlies hereditary non-polyposis colorectal cancer and sporadic cancers. Because of remarkably high conservation of the mismatch repair machinery between the budding yeast (Saccharomyces cerevisiae) and humans, the study of mismatch repair in yeast has provided tremendous insights into the mechanisms of this repair pathway in humans. In addition, yeast cells possess an unbeatable advantage over human cells in terms of the easy genetic manipulation, the availability of whole genome deletion strains, and the relatively low cost for setting up the system. Although many components of eukaryotic mismatch repair have been identified, it remains unclear if additional factors, such as DNA helicase(s) and redundant nuclease(s) besides EXO1, participate in eukaryotic mismatch repair. To facilitate the discovery of novel mismatch repair factors, we developed a straightforward in vitro cell-free repair system. Here, we describe the practical protocols for preparation of yeast cell-free nuclear extracts and DNA mismatch substrates, and the in vitro mismatch repair assay. The validity of the cell-free system was confirmed by the mismatch repair deficient yeast strain (Deltamsh2) and the complementation assay with purified yeast MSH2-MSH6.

  7. Gateway-compatible vectors for high-throughput protein expression in pro- and eukaryotic cell-free systems.

    Gagoski, Dejan; Mureev, Sergey; Giles, Nichole; Johnston, Wayne; Dahmer-Heath, Mareike; Škalamera, Dubravka; Gonda, Thomas J; Alexandrov, Kirill

    2015-02-10

    Although numerous techniques for protein expression and production are available the pace of genome sequencing outstrips our ability to analyze the encoded proteins. To address this bottleneck, we have established a system for parallelized cloning, DNA production and cell-free expression of large numbers of proteins. This system is based on a suite of pCellFree Gateway destination vectors that utilize a Species Independent Translation Initiation Sequence (SITS) that mediates recombinant protein expression in any in vitro translation system. These vectors introduce C or N terminal EGFP and mCherry fluorescent and affinity tags, enabling direct analysis and purification of the expressed proteins. To maximize throughput and minimize the cost of protein production we combined Gateway cloning with Rolling Circle DNA Amplification. We demonstrate that as little as 0.1 ng of plasmid DNA is sufficient for template amplification and production of recombinant human protein in Leishmania tarentolae and Escherichia coli cell-free expression systems. Our experiments indicate that this approach can be applied to large gene libraries as it can be reliably performed in multi-well plates. The resulting protein expression pipeline provides a valuable new tool for applications of the post genomic era. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Non-invasive prenatal diagnosis for fetal sex determination: benefits and disadvantages from the service users' perspective.

    Lewis, Celine; Hill, Melissa; Skirton, Heather; Chitty, Lyn S

    2012-11-01

    Prenatal fetal sex determination is clinically indicated for women who are at risk of having a child with a serious genetic disorder affecting a particular sex. Ultrasound has been the traditional method used, but early fetal sex determination using non-invasive prenatal diagnosis (NIPD) can now be performed using cell-free fetal DNA in maternal plasma. The study aim was to assess the views and experiences of service users who had used NIPD for fetal sex determination. In this paper, we report on the perceived benefits and disadvantages. A qualitative approach using semi-structured interviews was used. A total of 44 participants (38 women and 6 partners of participating women) were recruited. Participants' views and experiences of NIPD were overwhelmingly positive. Concerning benefits over traditional methods, three themes emerged: (1) technical aspects of technology; (2) timing; and (3) enhanced decision-making. Practical advantages of NIPD included avoiding miscarriage, and there were a number of psychological advantages associated with timing such as perceived control, early re-engagement, normalization of pregnancy and peace of mind. Participants also valued NIPD as it enabled a stepwise approach to decision-making. A number of disadvantages were discussed including concerns about social sexing and increased bonding at a time in pregnancy when miscarriage risk is high. However, participants felt these were fairly minor in comparison with the advantages of NIPD. Until definitive genetic diagnosis using NIPD is available, NIPD for fetal sex determination is perceived as a good interim measure with a number of notable advantages over traditional methods.

  9. Non-invasive prenatal diagnosis for fetal sex determination: benefits and disadvantages from the service users' perspective

    Lewis, Celine; Hill, Melissa; Skirton, Heather; Chitty, Lyn S

    2012-01-01

    Prenatal fetal sex determination is clinically indicated for women who are at risk of having a child with a serious genetic disorder affecting a particular sex. Ultrasound has been the traditional method used, but early fetal sex determination using non-invasive prenatal diagnosis (NIPD) can now be performed using cell-free fetal DNA in maternal plasma. The study aim was to assess the views and experiences of service users who had used NIPD for fetal sex determination. In this paper, we report on the perceived benefits and disadvantages. A qualitative approach using semi-structured interviews was used. A total of 44 participants (38 women and 6 partners of participating women) were recruited. Participants' views and experiences of NIPD were overwhelmingly positive. Concerning benefits over traditional methods, three themes emerged: (1) technical aspects of technology; (2) timing; and (3) enhanced decision-making. Practical advantages of NIPD included avoiding miscarriage, and there were a number of psychological advantages associated with timing such as perceived control, early re-engagement, normalization of pregnancy and peace of mind. Participants also valued NIPD as it enabled a stepwise approach to decision-making. A number of disadvantages were discussed including concerns about social sexing and increased bonding at a time in pregnancy when miscarriage risk is high. However, participants felt these were fairly minor in comparison with the advantages of NIPD. Until definitive genetic diagnosis using NIPD is available, NIPD for fetal sex determination is perceived as a good interim measure with a number of notable advantages over traditional methods. PMID:22453293

  10. Muerte fetal

    G. Andrés Pons, DR

    2014-11-01

    Full Text Available La muerte fetal es un evento poco frecuente pero de gran repercusión afectiva para los padres involucrados y su entorno. En el presente artículo revisaremos la epidemiología, las causas, orientaremos a los médicos en los pasos a seguir para realizar adecuadamente el estudio, la resolución del embarazo y el manejo del embarazo siguiente junto con las estrategias para prevenirlo.

  11. Muerte fetal

    Andrés Pons, G.; Eduardo Sepúlveda, S.; Juan Luis Leiva, B.; Gustavo Rencoret, P.; Alfredo Germain, A.

    2014-01-01

    La muerte fetal es un evento poco frecuente pero de gran repercusión afectiva para los padres involucrados y su entorno. En el presente artículo revisaremos la epidemiología, las causas, orientaremos a los médicos en los pasos a seguir para realizar adecuadamente el estudio, la resolución del embarazo y el manejo del embarazo siguiente junto con las estrategias para prevenirlo.

  12. Non-invasive fetal RHD genotyping for RhD negative women stratified into RHD gene deletion or variant groups: comparative accuracy using two blood collection tube types.

    Hyland, Catherine A; Millard, Glenda M; O'Brien, Helen; Schoeman, Elizna M; Lopez, Genghis H; McGowan, Eunike C; Tremellen, Anne; Puddephatt, Rachel; Gaerty, Kirsten; Flower, Robert L; Hyett, Jonathan A; Gardener, Glenn J

    2017-12-01

    Non-invasive fetal RHD genotyping in Australia to reduce anti-D usage will need to accommodate both prolonged sample transport times and a diverse population demographic harbouring a range of RHD blood group gene variants. We compared RHD genotyping accuracy using two blood sample collection tube types for RhD negative women stratified into deleted RHD gene haplotype and RHD gene variant cohorts. Maternal blood samples were collected into EDTA and cell-free (cf)DNA stabilising (BCT) tubes from two sites, one interstate. Automated DNA extraction and polymerase chain reaction (PCR) were used to amplify RHD exons 5 and 10 and CCR5. Automated analysis flagged maternal RHD variants, which were classified by genotyping. Time between sample collection and processing ranged from 2.9 to 187.5 hours. cfDNA levels increased with time for EDTA (range 0.03-138 ng/μL) but not BCT samples (0.01-3.24 ng/μL). For the 'deleted' cohort (n=647) all fetal RHD genotyping outcomes were concordant, excepting for one unexplained false negative EDTA sample. Matched against cord RhD serology, negative predictive values using BCT and EDTA tubes were 100% and 99.6%, respectively. Positive predictive values were 99.7% for both types. Overall 37.2% of subjects carried an RhD negative baby. The 'variant' cohort (n=15) included one novel RHD and eight hybrid or African pseudogene variants. Review for fetal RHD specific signals, based on one exon, showed three EDTA samples discordant to BCT, attributed to high maternal cfDNA levels arising from prolonged transport times. For the deleted haplotype cohort, fetal RHD genotyping accuracy was comparable for samples collected in EDTA and BCT tubes despite higher cfDNA levels in the EDTA tubes. Capacity to predict fetal RHD genotype for maternal carriers of hybrid or pseudogene RHD variants requires stringent control of cfDNA levels. We conclude that fetal RHD genotyping is feasible in the Australian environment to avoid unnecessary anti

  13. Cell-Free, De Nova Synthesis of Poliovirus

    Molla, Akhteruzzaman; Paul, Aniko V.; Wimmer, Eckard

    1991-12-01

    Cell-free translation of poliovirus RNA in an extract of uninfected human (HeLa) cells yielded viral proteins through proteolysis of the polyprotein. In the extract, newly synthesized proteins catalyzed poliovirus-specific RNA synthesis, and formed infectious poliovirus de novo. Newly formed virions were neutralized by type-specific antiserum, and infection of human cells with them was prevented by poliovirus receptor-specific antibodies. Poliovirus synthesis was increased nearly 70-fold when nucleoside triphosphates were added, but it was abolished in the presence of inhibitors of translation or viral genome replication. The ability to conduct cell-free synthesis of poliovirus will aid in the study of picornavirus proliferation and in the search for the control of picornaviral disease.

  14. Efficient production of isotopically labeled proteins by cell-free synthesis: A practical protocol

    Torizawa, Takuya; Shimizu, Masato [Crest, Jst (Japan); Taoka, Masato [Tokyo Metropolitan University, Graduate School of Science (Japan); Miyano, Hiroshi [Ajinomoto Co., Inc. Institute of Life Sciences (Japan); Kainosho, Masatsune [Crest, Jst (Japan)], E-mail: kainosho@nmr.chem.metro-u.ac.jp

    2004-11-15

    We provide detailed descriptions of our refined protocols for the cell-free production of labeled protein samples for NMR spectroscopy. These methods are efficient and overcome two critical problems associated with the use of conventional Escherichia coli extract systems. Endogenous amino acids normally present in E. coli S30 extracts dilute the added labeled amino acids and degrade the quality of NMR spectra of the target protein. This problem was solved by altering the protocol used in preparing the S30 extract so as to minimize the content of endogenous amino acids. The second problem encountered in conventional E. coli cell-free protein production is non-uniformity in the N-terminus of the target protein, which can complicate the NMR spectra. This problem was solved by adding a DNA sequence to the construct that codes for a cleavable N-terminal peptide tag. Addition of the tag serves to increase the yield of the protein as well as to ensure a homogeneous protein product following tag cleavage. We illustrate the method by describing its stepwise application to the production of calmodulin samples with different stable isotope labeling patterns for NMR analysis.

  15. Absence of regulation of tumor cholesterogenesis in cell-free synthesizing systems

    Azrolan, N.; Coleman, P.S.

    1986-01-01

    In tumors, cholesterol synthesis de novo is deregulated relative to normal tissues. But no previous study has demonstrated the decontrol of tumor cholesterogenesis with cell-free cytosolic systems. They have utilized a lipid synthesizing, post-mitochondrial supernatant system (PMS), with 14 C-citrate as substrate, to characterize the cholesterogenic pathway in Morris Hepatoma 3924A and normal rat liver. The rate of cholesterogenesis in the hepatoma PMS was 6-fold higher than that in the liver system on a per cell basis. The ratio of sterol-to-fatty acid synthesis was also significantly greater in the tumor versus the liver PMS. The authors determined the steady-state carbon flux through the early intermediates of the lipogenic pathways. Whereas the liver system displayed a metabolic crossover point at the HMG-CoA reductase reaction, the hepatoma system showed no evidence of control at this rate-limiting site of sterol synthesis. Furthermore, acetyl-CoA formation from added citrate (via ATP-citrate lyase) exhibited rates of 42% and 88% in excess of that required for lipidogenesis by liver and tumor PMS systems, respectively. Clearly, a cell-free PMS system from tumor tissue displays the property of deregulated lipidogenesis, especially cholesterol biosynthesis. The authors suggest that deregulated and continuously operating cholesterogenesis would provide for an increased level of a mevalonate-derived sterol pathway intermediate proposed as a trigger for DNA synthesis and cell proliferation in tumors

  16. Efficient production of isotopically labeled proteins by cell-free synthesis: A practical protocol

    Torizawa, Takuya; Shimizu, Masato; Taoka, Masato; Miyano, Hiroshi; Kainosho, Masatsune

    2004-01-01

    We provide detailed descriptions of our refined protocols for the cell-free production of labeled protein samples for NMR spectroscopy. These methods are efficient and overcome two critical problems associated with the use of conventional Escherichia coli extract systems. Endogenous amino acids normally present in E. coli S30 extracts dilute the added labeled amino acids and degrade the quality of NMR spectra of the target protein. This problem was solved by altering the protocol used in preparing the S30 extract so as to minimize the content of endogenous amino acids. The second problem encountered in conventional E. coli cell-free protein production is non-uniformity in the N-terminus of the target protein, which can complicate the NMR spectra. This problem was solved by adding a DNA sequence to the construct that codes for a cleavable N-terminal peptide tag. Addition of the tag serves to increase the yield of the protein as well as to ensure a homogeneous protein product following tag cleavage. We illustrate the method by describing its stepwise application to the production of calmodulin samples with different stable isotope labeling patterns for NMR analysis

  17. [Fetal urology].

    Jakobovits, Akos; Jakobovits, Antal

    2009-06-14

    Although it becomes vitally important only after birth, renal function already plays significant role in maintaining fetal metabolic equilibrium. The kidneys significantly contribute to production of amniotic fluid. Adequate amount of amniotic fluid is needed to stimulate the intrauterine fetal respiratory activity. Intrauterine breathing is essential for lung development. As a result, oligohydramnion is conducive to pulmonary hypoplasia. The latter may lead to neonatal demise soon after birth. In extrauterine life kidneys eliminate nitrogen containing metabolic byproducts. Inadequate renal function results therefore lethal uremia. Integrity of ureters and the urethra is essential for the maintenance of renal function. Retention of urine causes degeneration of the functional units of the kidneys and ensuing deterioration of renal function. Intrauterine kidney puncture or shunt procedure may delay this process in some cases. On the other hand, once renal function has been damaged, no therapy can restart it. Certain anomalies of renal excretory pathways may also be associated with other congenital abnormalities, making the therapeutic efforts pointless. Presence of these associated intrauterine defects makes early pregnancy termination a management alternative, as well as it affects favorably perinatal mortality rates.

  18. Medio ambiente fetal Fetal environment

    César Bernardo Ospina Arcila

    1996-04-01

    Full Text Available Con base en el artículo clásico "Monte Everest in utero" se hace un análisis de la situación que afronta el feto con respecto a la disponibilidad de oxígeno; para una mejor comprensión del sufrimiento fetal se revisan los siguientes conceptos: presión barométrica, presión parcial del oxígeno atmosférico, presión parcial del oxígeno inspirado, presión barométrica intranasal, ecuación del gas alveolar y difusión de gases a través de la membrana alvéolo capilar. Based on the classical paper by Eastman "Mount Everest in utero" an analysis is made of the situation faced by the fetus with respect to the availability of oxygen; for a better under. standing of fetal distress the following concepts are reviewed: barometric pressure, partial pressure of atmosferic oxygen, partial pressure of inspired oxygen, barometric intranasal pressure, alveolar gas equation and gas diffusion through alveolo-capilar membrane.

  19. Association of Tissue-Specific DNA Methylation Alterations with α-Thalassemia Southeast Asian Deletion

    Tanapat Pangeson

    2017-11-01

    Full Text Available In the wild-type allele, DNA methylation levels of 10 consecutive CpG sites adjacent to the upstream 5′-breakpoint of α-thalassemia Southeast Asian (SEA deletion are not different between placenta and leukocytes. However, no previous study has reported the map of DNA methylation in the SEA allele. This report aims to show that the SEA mutation is associated with DNA methylation changes, resulting in differential methylation between placenta and leukocytes. Methylation-sensitive high-resolution analysis was used to compare DNA methylation among placenta, leukocytes, and unmethylated control DNA. The result indicates that the DNA methylation between placenta and leukocyte DNA is different and shows that the CpG status of both is not fully unmethylated. Mapping of individual CpG sites was performed by targeted bisulfite sequencing. The DNA methylation level of the 10 consecutive CpG sites was different between placenta and leukocyte DNA. When the 10th CpG of the mutation allele was considered as a hallmark for comparing DNA methylation level, it was totally different from the unmethylated 10th CpG of the wild-type allele. Finally, the distinct DNA methylation patterns between both DNA were extracted. In total, 24 patterns were found in leukocyte samples and 9 patterns were found in placenta samples. This report shows that the large deletion is associated with DNA methylation change. In further studies for clinical application, the distinct DNA methylation pattern might be a potential marker for detecting cell-free fetal DNA.

  20. Unmethylated-maspin DNA in maternal plasma is associated with severe preeclampsia.

    Qi, Yan-Hua; Teng, Fei; Zhou, Qi; Liu, Yu-Xin; Wu, Jin-Fang; Yu, Shan-Shan; Zhang, Xin; Ma, Miao-Yan; Zhou, Ni; Chen, Li-Juan

    2015-09-01

    Cell-free fetal DNA in maternal plasma is associated with complications of pregnancy, including preeclampsia. Determination of levels is affected by fetal gender and genetic polymorphisms. Unmethylated maspin (u-maspin) is present in the placenta, and is placental-specific. The purpose of this study was to determine whether u-maspin DNA in maternal blood could serve as a marker of preeclampsia by measuring levels in different trimesters of normal pregnancies and in those complicated by preeclampsia. This case-control study was set in a tertiary care hospital. The population consisted of 45 women with normal pregnancies (15 in the 1st trimester, 15 in the 2nd trimester, 15 in the 3rd trimester), 20 women with mild preeclampsia, 25 women with severe preeclampsia, and six women with gestational trophoblastic disease. Peripheral blood was collected and methylation-specific PCR and fluorescence quantitative PCR were performed to measure the content of u-maspin DNA in maternal blood. U-maspin DNA was 5.5-fold higher in women with severe preeclampsia than in those with a normal 3rd trimester pregnancy (p preeclampsia. © 2015 Nordic Federation of Societies of Obstetrics and Gynecology.

  1. Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion.

    Lee, Ko-Eun; Radhakrishnan, Ramalingam; Kang, Sang-Mo; You, Young-Hyun; Joo, Gil-Jae; Lee, In-Jung; Ko, Jae-Hwan; Kim, Jin-Ho

    2015-09-01

    The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth.

  2. Studies on the isolation, structural analysis and tissue localization of fetal antigen 1 and its relation to a human adrenal-specific cDNA, pG2

    Jensen, Charlotte Harken; Teisner, Børge; Højrup, Peter

    1993-01-01

    Fetal antigen 1 was purified from second trimester human amniotic fluid by immunospecific affinity chromatography followed by reversed-phase chromatography. Fetal antigen 1 is a single chain glycoprotein with a M(r) of 32-38 kDa. The amino acid composition revealed a high content of cysteines......, prolines and amino acids (aa) with acidic side-chains indicating that fetal antigen 1 is a compactly folded, strongly hydrophilic molecule. The N-terminal amino acid sequence (37 aa) revealed no homology to other known protein sequences, implying that fetal antigen 1 is a 'novel' human protein. When the aa...... sequence was back-translated into the appropriate degenerate sequence of nucleic acids, fetal antigen 1 could be partially aligned to a 'human adrenal-specific mRNA, pG2'. The indirect immunoperoxidase technique demonstrated fetal antigen 1 in fetal hepatocytes, glandular cells of fetal pancreas...

  3. Reduced DNA methylation at the PEG3 DMR and KvDMR1 loci in children exposed to alcohol in utero: A South African Fetal Alcohol Syndrome cohort study

    Michele eRamsay

    2015-03-01

    Full Text Available Fetal alcohol syndrome (FAS is a devastating developmental disorder resulting from alcohol exposure during fetal development. It is a considerable public health problem worldwide and is characterised by central nervous system abnormalities, dysmorphic facial features and growth retardation. Imprinted genes are known to play an important role in growth and development and therefore four imprinting control regions (ICRs, H19 ICR, IG-DMR, CvDMR1 and PEG3 DMR were examined. It is proposed that DNA methylation changes may contribute to developmental abnormalities seen in FAS and which persist into adulthood. The participants included FAS children and controls from the Western and Northern Cape Provinces. DNA samples extracted from blood and buccal cells were bisulfite modified, the ICRs were amplified by PCR and pyrosequencing was used to derive a quantitative estimate of methylation at selected CpG dinucleotides: H19 ICR (6 CpG sites; 50 controls and 73 cases; KvDMR1 (7; 55 and 86; IG-DMR (10; 56 and 84; and PEG3 DMR (7; 50 and 79. The most profound effects of alcohol exposure are on neuronal development. In this study we report on epigenetic effects observed in blood which may not directly reflect tissue-specific alterations in the developing brain. After adjusting for age and sex (known confounders for DNA methylation, there was a significant difference at KvDMR1 and PEG, but not the H19 ICR, with only a small effect (0.84% lower in cases; p=0.035 at IG-DMR. The two maternally imprinted loci, KvDMR1 and PEG3 DMR, showed lower average locus-wide methylation in the FAS cases (1.49%; p<0.001 and 7.09%; p<0.001, respectively. The largest effect was at the PEG3 DMR though the functional impact is uncertain. This study supports the role of epigenetic modulation as a mechanism for the teratogenic effects of alcohol by altering the methylation profiles of imprinted loci in a locus-specific manner.

  4. Comparison of Eight Cell-Free Media for Maintenance of Toxoplasma gondii Tachyzoites

    Hamed KALANI

    2016-03-01

    Full Text Available Background: Toxoplasmosis is considered as one of the most common infectious diseases caused by the protozoan parasite Toxoplasma gondii. Tachyzoite is the main form of Toxoplasma and continuously is maintained in cell culture or injected into the mice peritoneal cavity. This study was designed to evaluate the survival rate of RH strain of T. gondii tachyzoites in different cell free, nutrient and biological media at different temperatures.Methods: This experimental study was performed at the Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran, in 2010. One ml of each solution including hypotonic saline (0.3%, normal saline (0.85%, RPMI-1640 (RPMI, RPMI with 10% fetal bovine serum (FBS, RPMI with 20% FBS, ovine hydatid cyst fluid, pasteurized milk of cow, and phosphate buffered saline (PBS along with 4×104 T. gondii tachyzoites were added to plate wells and incubated in 4 °C, 22 °C, 37 °C, and 37 °C under 5% CO2. The survival rate and viability as­sessment of parasites were performed daily and the results were analyzed using Univariate tests.Result: Tachyzoites survival rate in PBS (4 °C and normal saline (4 °C were con­siderably high, compared to other solutions in different conditions (P<0.001. The best temperature for Toxoplasma maintenance was 4 °C (P<0.001.Conclusion: This study introduces two available and economical solutions, PBS (4 °C and normal saline (4 °C media, for maintenance of Toxoplasma tachyzoites as appropriate choice media for a noticeable period of time (11 days in vitro.

  5. Fetal behavioral teratology.

    Visser, Gerard H A; Mulder, Eduard J H; Tessa Ververs, F F

    2010-10-01

    Ultrasound studies of fetal motor behavior provide direct – in vivo – insight in the functioning of the motor component of the fetal central nervous system. In this article, studies are reviewed showing changes in the first timetable of appearance of fetal movements, changes in quality and/or quantity of movements and disturbances in the development of fetal behavioral states in case of endogenous malfunctions, maternal diseases and exogenous behavioral teratogens.

  6. Differing levels of excision repair in human fetal dermis and brain cells

    Gibson, R.E.; D'Ambrosio, S.M.; Ohio State Univ., Columbus

    1982-01-01

    The levels of DNA excision repair, as measured by unscheduled DNA synthesis (UDS) and the UV-endonuclease sensitive site assay, were compared in cells derived from human fetal brain and dermal tissues. The level of UDS induced following ultraviolet (UV) irradiation was found to be lower (approx. 60%) in the fetal brain cells than in fetal dermal cells. It was determined, using the UV-endonuclease sensitive site assay to confirm the UDS observation, that 50% of the dimers induced by UV in fetal dermal cells were repaired in 8 h. while only 15% were removed in the fetal brain cells during the same period of time. Even after 24 h. only 44% of the dimers induced by UV in the fetal brain cells were repaired, while 65% were removed in the dermal cells. These data suggest that cultured human fetal brain cells exhibit lower levels of excision repair compared to cultured human fetal dermal cells. (author)

  7. Fragment Length of Circulating Tumor DNA.

    Underhill, Hunter R; Kitzman, Jacob O; Hellwig, Sabine; Welker, Noah C; Daza, Riza; Baker, Daniel N; Gligorich, Keith M; Rostomily, Robert C; Bronner, Mary P; Shendure, Jay

    2016-07-01

    Malignant tumors shed DNA into the circulation. The transient half-life of circulating tumor DNA (ctDNA) may afford the opportunity to diagnose, monitor recurrence, and evaluate response to therapy solely through a non-invasive blood draw. However, detecting ctDNA against the normally occurring background of cell-free DNA derived from healthy cells has proven challenging, particularly in non-metastatic solid tumors. In this study, distinct differences in fragment length size between ctDNAs and normal cell-free DNA are defined. Human ctDNA in rat plasma derived from human glioblastoma multiforme stem-like cells in the rat brain and human hepatocellular carcinoma in the rat flank were found to have a shorter principal fragment length than the background rat cell-free DNA (134-144 bp vs. 167 bp, respectively). Subsequently, a similar shift in the fragment length of ctDNA in humans with melanoma and lung cancer was identified compared to healthy controls. Comparison of fragment lengths from cell-free DNA between a melanoma patient and healthy controls found that the BRAF V600E mutant allele occurred more commonly at a shorter fragment length than the fragment length of the wild-type allele (132-145 bp vs. 165 bp, respectively). Moreover, size-selecting for shorter cell-free DNA fragment lengths substantially increased the EGFR T790M mutant allele frequency in human lung cancer. These findings provide compelling evidence that experimental or bioinformatic isolation of a specific subset of fragment lengths from cell-free DNA may improve detection of ctDNA.

  8. The effects of X-irradiation, N-ethyl-N-nitrosourea or combined treatment on O6-alkylguanine-DNA alkyltransferase activity in fetal rat brain and liver and the induction of CNS tumours

    Stammberger, I.; Nice, L.; Schmahl, W.

    1990-01-01

    Wistar rats were treated in utero on day 16 of gestation either by X-irradiation, N-ethyl-N-nitrosourea (ENU), or both in combination. The O 6 -alkylguanine-DNA alkyltransferase (AT) activity of the fetal brain and liver was analyzed and long-term observations were made to reveal any relationship between the O 6 -ethylguanine repair capability and tumour incidence in the organs of the offspring. The AT activity in the brain was affected to the same extent in the fetuses as in the dams. There was a 60.9% decrease in AT activity in fetuses 24 h after ENU treatment. This correlates with a significant increase in the incidence of brain tumours in the treated offspring (44.1%) compared to control animals. The inductive effect of X-irradiation on AT activity corresponded in turn with a reduction of the incidence of tumours after the combined treatment. In the liver of the rat fetuses, there was generally no effect of treatment on AT activity in contrast to the results obtained for the dams, where an increased AT activity was observed. There were no tumours of the liver observed in the offspring after either treatment alone or after combined treatment. It is suggested that the combined treatment of rat fetuses could significantly reduce the incidence of brain tumours in adult life. (author)

  9. The effects of X-irradiation, N-ethyl-N-nitrosourea or combined treatment on O sup 6 -alkylguanine-DNA alkyltransferase activity in fetal rat brain and liver and the induction of CNS tumours

    Stammberger, I.; Nice, L. (Muenchen Univ. (Germany, F.R.). Walter-Straub-Institut fuer Pharmakologie und Toxikologie); Schmahl, W. (Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany, F.R.). Inst. fuer Pathologie)

    1990-02-01

    Wistar rats were treated in utero on day 16 of gestation either by X-irradiation, N-ethyl-N-nitrosourea (ENU), or both in combination. The O{sup 6}-alkylguanine-DNA alkyltransferase (AT) activity of the fetal brain and liver was analyzed and long-term observations were made to reveal any relationship between the O{sup 6}-ethylguanine repair capability and tumour incidence in the organs of the offspring. The AT activity in the brain was affected to the same extent in the fetuses as in the dams. There was a 60.9% decrease in AT activity in fetuses 24 h after ENU treatment. This correlates with a significant increase in the incidence of brain tumours in the treated offspring (44.1%) compared to control animals. The inductive effect of X-irradiation on AT activity corresponded in turn with a reduction of the incidence of tumours after the combined treatment. In the liver of the rat fetuses, there was generally no effect of treatment on AT activity in contrast to the results obtained for the dams, where an increased AT activity was observed. There were no tumours of the liver observed in the offspring after either treatment alone or after combined treatment. It is suggested that the combined treatment of rat fetuses could significantly reduce the incidence of brain tumours in adult life. (author).

  10. A reproducible and scalable procedure for preparing bacterial extracts for cell-free protein synthesis.

    Katsura, Kazushige; Matsuda, Takayoshi; Tomabechi, Yuri; Yonemochi, Mayumi; Hanada, Kazuharu; Ohsawa, Noboru; Sakamoto, Kensaku; Takemoto, Chie; Shirouzu, Mikako

    2017-11-01

    Cell-free protein synthesis is a useful method for preparing proteins for functional or structural analyses. However, batch-to-batch variability with regard to protein synthesis activity remains a problem for large-scale production of cell extract in the laboratory. To address this issue, we have developed a novel procedure for large-scale preparation of bacterial cell extract with high protein synthesis activity. The developed procedure comprises cell cultivation using a fermentor, harvesting and washing of cells by tangential flow filtration, cell disruption with high-pressure homogenizer and continuous diafiltration. By optimizing and combining these methods, ∼100 ml of the cell extract was prepared from 150 g of Escherichia coli cells. The protein synthesis activities, defined as the yield of protein per unit of absorbance at 260 nm of the cell extract, were shown to be reproducible, and the average activity of several batches was twice that obtained using a previously reported method. In addition, combinatorial use of the high-pressure homogenizer and diafiltration increased the scalability, indicating that the cell concentration at disruption varies from 0.04 to 1 g/ml. Furthermore, addition of Gam protein and examinations of the N-terminal sequence rendered the extract prepared here useful for rapid screening with linear DNA templates. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  11. Temperature and UV light affect the activity of marine cell-free enzymes

    B. Thomson

    2017-09-01

    Full Text Available Microbial extracellular enzymatic activity (EEA is the rate-limiting step in the degradation of organic matter in the oceans. These extracellular enzymes exist in two forms: cell-bound, which are attached to the microbial cell wall, and cell-free, which are completely free of the cell. Contrary to previous understanding, cell-free extracellular enzymes make up a substantial proportion of the total marine EEA. Little is known about these abundant cell-free enzymes, including what factors control their activity once they are away from their sites (cells. Experiments were run to assess how cell-free enzymes (excluding microbes respond to ultraviolet radiation (UVR and temperature manipulations, previously suggested as potential control factors for these enzymes. The experiments were done with New Zealand coastal waters and the enzymes studied were alkaline phosphatase (APase, β-glucosidase, (BGase, and leucine aminopeptidase (LAPase. Environmentally relevant UVR (i.e. in situ UVR levels measured at our site reduced cell-free enzyme activities by up to 87 % when compared to controls, likely a consequence of photodegradation. This effect of UVR on cell-free enzymes differed depending on the UVR fraction. Ambient levels of UV radiation were shown to reduce the activity of cell-free enzymes for the first time. Elevated temperatures (15 °C increased the activity of cell-free enzymes by up to 53 % when compared to controls (10 °C, likely by enhancing the catalytic activity of the enzymes. Our results suggest the importance of both UVR and temperature as control mechanisms for cell-free enzymes. Given the projected warming ocean environment and the variable UVR light regime, it is possible that there could be major changes in the cell-free EEA and in the enzymes contribution to organic matter remineralization in the future.

  12. Cell-free translational screening of an expression sequence tag library of Clonorchis sinensis for novel antigen discovery.

    Kasi, Devi; Catherine, Christy; Lee, Seung-Won; Lee, Kyung-Ho; Kim, Yu Jung; Ro Lee, Myeong; Ju, Jung Won; Kim, Dong-Myung

    2017-05-01

    The rapidly evolving cloning and sequencing technologies have enabled understanding of genomic structure of parasite genomes, opening up new ways of combatting parasite-related diseases. To make the most of the exponentially accumulating genomic data, however, it is crucial to analyze the proteins encoded by these genomic sequences. In this study, we adopted an engineered cell-free protein synthesis system for large-scale expression screening of an expression sequence tag (EST) library of Clonorchis sinensis to identify potential antigens that can be used for diagnosis and treatment of clonorchiasis. To allow high-throughput expression and identification of individual genes comprising the library, a cell-free synthesis reaction was designed such that both the template DNA and the expressed proteins were co-immobilized on the same microbeads, leading to microbead-based linkage of the genotype and phenotype. This reaction configuration allowed streamlined expression, recovery, and analysis of proteins. This approach enabled us to identify 21 antigenic proteins. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:832-837, 2017. © 2017 American Institute of Chemical Engineers.

  13. SLC9B1 methylation predicts fetal intolerance of labor.

    Knight, Anna K; Conneely, Karen N; Kilaru, Varun; Cobb, Dawayland; Payne, Jennifer L; Meilman, Samantha; Corwin, Elizabeth J; Kaminsky, Zachary A; Dunlop, Anne L; Smith, Alicia K

    2018-01-01

    Fetal intolerance of labor is a common indication for delivery by Caesarean section. Diagnosis is based on the presence of category III fetal heart rate tracing, which is an abnormal heart tracing associated with increased likelihood of fetal hypoxia and metabolic acidemia. This study analyzed data from 177 unique women who, during their prenatal visits (7-15 weeks and/or 24-32 weeks) to Atlanta area prenatal care clinics, consented to provide blood samples for DNA methylation (HumanMethylation450 BeadChip) and gene expression (Human HT-12 v4 Expression BeadChip) analyses. We focused on 57 women aged 18-36 (mean 25.4), who had DNA methylation data available from their second prenatal visit. DNA methylation patterns at CpG sites across the genome were interrogated for associations with fetal intolerance of labor. Four CpG sites (P value intolerance of labor. DNA methylation and gene expression were negatively associated when examined longitudinally during pregnancy using a linear mixed-effects model. Positive predictive values of methylation of these four sites ranged from 0.80 to 0.89, while negative predictive values ranged from 0.91 to 0.92. The four CpG sites were also associated with fetal intolerance of labor in an independent cohort (the Johns Hopkins Prospective PPD cohort). Therefore, fetal intolerance of labor could be accurately predicted from maternal blood samples obtained between 24-32 weeks gestation. Fetal intolerance of labor may be accurately predicted from maternal blood samples obtained between 24-32 weeks gestation by assessing DNA methylation patterns of SLC9B1. The identification of pregnant women at elevated risk for fetal intolerance of labor may allow for the development of targeted treatments or management plans.

  14. Accounting for Fetal Origins

    Dalgaard, Carl-Johan Lars; Hansen, Casper Worm; Strulik, Holger

    2017-01-01

    The Fetal Origins hypothesis has received considerable empirical support, both within epidemiology and economics. The present study compares the ability of two rival theoretical frameworks in accounting for the kind of path dependence implied by the Fetal Origins Hypothesis. We argue that while...

  15. The Study of Lung Cancer Personalized Medicine Through Circulating Cell Free DNA Test

    Ye, Mingzhi

    According to the serious situation of lung cancer in Chinese cancer incidence and mortality, better prognosis and early diagnosis are the key problems. These works are around of lung cancer genetic profiling, pathway signaling and tumor evolution, targeted therapy and transplant monitoring, and f...

  16. Fetal scalp pH testing

    Fetal scalp blood; Scalp pH testing; Fetal blood testing - scalp; Fetal distress - fetal scalp testing; Labor - fetal scalp testing ... a baby. In these cases, testing the scalp pH can help the doctor decide whether the fetus ...

  17. A Robust, Cell-free Production System for On-Demand Protein Synthesis in Space

    National Aeronautics and Space Administration — We will develop a new cell-free expression system that functions after rehydrating from a freeze-dried condition. Freeze-dried powder that can be stored or...

  18. Efficient cell-free expression with the endogenous E. Coli RNA polymerase and sigma factor 70

    Noireaux Vincent

    2010-06-01

    Full Text Available Abstract Background Escherichia coli cell-free expression systems use bacteriophage RNA polymerases, such as T7, to synthesize large amounts of recombinant proteins. These systems are used for many applications in biotechnology, such as proteomics. Recently, informational processes have been reconstituted in vitro with cell-free systems. These synthetic approaches, however, have been seriously limited by a lack of transcription modularity. The current available cell-free systems have been optimized to work with bacteriophage RNA polymerases, which put significant restrictions to engineer processes related to biological information. The development of efficient cell-free systems with broader transcription capabilities is required to study complex informational processes in vitro. Results In this work, an efficient cell-free expression system that uses the endogenous E. coli RNA polymerase only and sigma factor 70 for transcription was prepared. Approximately 0.75 mg/ml of Firefly luciferase and enhanced green fluorescent protein were produced in batch mode. A plasmid was optimized with different regulatory parts to increase the expression. In addition, a new eGFP was engineered that is more translatable in cell-free systems than the original eGFP. The protein production was characterized with three different adenosine triphosphate (ATP regeneration systems: creatine phosphate (CP, phosphoenolpyruvate (PEP, and 3-phosphoglyceric acid (3-PGA. The maximum protein production was obtained with 3-PGA. Preparation of the crude extract was streamlined to a simple routine procedure that takes 12 hours including cell culture. Conclusions Although it uses the endogenous E. coli transcription machinery, this cell-free system can produce active proteins in quantities comparable to bacteriophage systems. The E. coli transcription provides much more possibilities to engineer informational processes in vitro. Many E. coli promoters/operators specific to sigma

  19. Fetal Echocardiography and Indications

    Melih Atahan Güven

    2008-09-01

    Full Text Available Congenital heart diseases are encountered in 0.8% of live births and are among the most frequently diagnosed malformations. At least half of these anomalies end up with death or require surgical interventions and are responsible for 30% of the perinatal mortality. Fetal echocardiography is the sum of knowledge, skill and orientation rather than knowing the embryologic details of the fetal heart. The purpose of fetal echocardiography is to document the presence of normal fetal cardiac anatomy and rhythm in high risk group and to define the anomaly and arrhythmia if present. A certain sequence should be followed during the evaluation of fetal heart. Sequential segmental analysis (SSA and basic definition terminology made it possible to determine a lot of complex cardiac anomalies during prenatal period. By the end of 1970’s, Shinebourne started using sequential segmental analysis for fetal cardiac evaluation and today, prenatal diagnosis of congenital heart disease is possible without any confusion. In this manner, whole fetal heart can be evaluated as the relation of three segments (atria, ventricles and the great arteries with each other, irrelevant of complexity of a possible cardiac anomaly. Presence of increased nuchal thickness during early gestation and abnormal four-chamber-view during ultrasonography by the obstetrician presents a clear indication for fetal echocardiography,however, one should keep in mind that 80-90% of the babies born with a congenital heart disease do not have a familial or maternal risk factor. In addition, it should be remembered that expectant mothers with diabetes mellitus pose an indication for fetal echocardiography.

  20. Rapid and Scalable Characterization of CRISPR Technologies Using an E. coli Cell-Free Transcription-Translation System.

    Marshall, Ryan; Maxwell, Colin S; Collins, Scott P; Jacobsen, Thomas; Luo, Michelle L; Begemann, Matthew B; Gray, Benjamin N; January, Emma; Singer, Anna; He, Yonghua; Beisel, Chase L; Noireaux, Vincent

    2018-01-04

    CRISPR-Cas systems offer versatile technologies for genome engineering, yet their implementation has been outpaced by ongoing discoveries of new Cas nucleases and anti-CRISPR proteins. Here, we present the use of E. coli cell-free transcription-translation (TXTL) systems to vastly improve the speed and scalability of CRISPR characterization and validation. TXTL can express active CRISPR machinery from added plasmids and linear DNA, and TXTL can output quantitative dynamics of DNA cleavage and gene repression-all without protein purification or live cells. We used TXTL to measure the dynamics of DNA cleavage and gene repression for single- and multi-effector CRISPR nucleases, predict gene repression strength in E. coli, determine the specificities of 24 diverse anti-CRISPR proteins, and develop a fast and scalable screen for protospacer-adjacent motifs that was successfully applied to five uncharacterized Cpf1 nucleases. These examples underscore how TXTL can facilitate the characterization and application of CRISPR technologies across their many uses. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Validation of cell-free culture using scanning electron microscopy (SEM) and gene expression studies.

    Yang, R; Elankumaran, Y; Hijjawi, N; Ryan, U

    2015-06-01

    A cell-free culture system for Cryptosporidium parvum was analysed using scanning electron microscopy (SEM) to characterise life cycle stages and compare gene expression in cell-free culture and cell culture using HCT-8 cells. Cryptosporidium parvum samples were harvested at 2 h, 8 h, 14 h, 26 h, 50 h, 74 h, 98 h, 122 h and 170 h, chemically fixed and specimens were observed using a Zeiss 1555 scanning electron microscope. The presence of sporozoites, trophozoites and type I merozoites were identified by SEM. Gene expression in cell culture and cell-free culture was studied using reverse transcriptase quantitative PCR (RT-qPCR) of the sporozoite surface antigen protein (cp15), the glycoprotein 900 (gp900), the Cryptosporidium oocyst wall protein (COWP) and 18S ribosomal RNA (rRNA) genes in both cell free and conventional cell culture. In cell culture, cp15 expression peaked at 74 h, gp900 expression peaked at 74 h and 98 h and COWP expression peaked at 50 h. In cell-free culture, CP15 expression peaked at 98 h, gp900 expression peaked at 74 h and COWP expression peaked at 122 h. The present study is the first to compare gene expression of C. parvum in cell culture and cell-free culture and to characterise life cycle stages of C. parvum in cell-free culture using SEM. Findings from this study showed that gene expression patterns in cell culture and cell-free culture were similar but in cell-free culture, gene expression was delayed for CP15 and COWP in cell free culture compared with the cell culture system and was lower. Although three life cycle stageswere conclusively identified, improvements in SEM methodology should lead to the detection of more life cycle stages. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Fetal tachycardia : diagnosis and treatment

    Oudijk, Martijn Alexander

    2003-01-01

    Part I: Fetal tachyarrhythmias Diagnosis Fetal tachycardia is a serious condition warranting specialized evaluation. In chapter 2, methods of diagnosis of fetal tachycardia are described, including doppler and M-mode echocardiography and fetal magnetocardiography. The study presented in chapter 3

  3. Fetal body movement monitoring.

    Rayburn, W F

    1990-03-01

    Recording fetal activity serves as an indirect measure of central nervous system integrity and function. The coordination of whole body movement, which requires complex neurologic control, is likely similar to that of the newborn infant. Short-term observations of the fetus are best performed using real-time ultrasound imaging. Monitoring fetal motion has been shown to be clinically worthwhile in predicting impending death or compromise, especially when placental insufficiency is longstanding. The presence of a vigorous fetus is reassuring. Perceived inactivity requires a reassessment of any underlying antepartum complication and a more precise evaluation by fetal heart rate testing or real-time ultrasonography before delivery is contemplated.

  4. Fetal blood drawing.

    Hobbins, J C; Mahoney, M J

    1975-07-19

    A small sample of fetal blood suitable for studies of haemoglobin synthesis was obtained from a placental vessel under endoscopic visualisation in 23 of 26 patients in whom the procedure was attempted prior to second-trimester abortion. Fetal blood loss, calculated in 23 cases, was between 0-2 ml. and 2-5 ml., and fetal blood-volume depletion varied from 0-5% to 15%. No short-term ill-effects were demonstrated in mother or fetus in any of 16 patients in whom the injection of aborti-facient was postponed for between 16 and 24 hours after the procedure.

  5. Current approaches on non-invasive prenatal diagnosis: Prenatal genomics, transcriptomics, personalized fetal diagnosis

    Tuba Günel

    2014-12-01

    Full Text Available Recent developments in molecular genetics improved our knowledge on fetal genome and physiology. Novel scientific innovations in prenatal diagnosis have accelerated in the last decade changing our vision immensely. Data obtained from fetal genomic studies brought new insights to fetal medicine and by the advances in fetal DNA and RNA sequencing technology novel treatment strategies has evolved. Non-invasive prenatal diagnosis found ground in genetics and the results are widely studied in scientific arena. When Lo and colleges proved fetal genetic material can be extracted from maternal plasma and fetal DNA can be isolated from maternal serum, the gate to many exciting discoveries was open. Microarray technology and advances in sequencing helped fetal diagnosis as well as other areas of medicine. Today it is a very crucial prerequisite for physicians practicing prenatal diagnosis to have a profound knowledge in genetics. Prevailing practical use and application of fetal genomic tests in maternal and fetal medicine mandates obstetricians to update their knowledge in genetics. The purpose of this review is to assist physicians to understand and update their knowledge in fetal genetic testing from maternal blood, individualized prenatal counseling and advancements on the subject by sharing our experiences as İstanbul University Fetal Nucleic Acid Research Group.

  6. Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models

    Joseph A. Wayman

    2015-03-01

    Full Text Available Cell-free systems offer many advantages for the study, manipulation and modeling of metabolism compared to in vivo processes. Many of the challenges confronting genome-scale kinetic modeling can potentially be overcome in a cell-free system. For example, there is no complex transcriptional regulation to consider, transient metabolic measurements are easier to obtain, and we no longer have to consider cell growth. Thus, cell-free operation holds several significant advantages for model development, identification and validation. Theoretically, genome-scale cell-free kinetic models may be possible for industrially important organisms, such as E. coli, if a simple, tractable framework for integrating allosteric regulation with enzyme kinetics can be formulated. Toward this unmet need, we present an effective biochemical network modeling framework for building dynamic cell-free metabolic models. The key innovation of our approach is the integration of simple effective rules encoding complex allosteric regulation with traditional kinetic pathway modeling. We tested our approach by modeling the time evolution of several hypothetical cell-free metabolic networks. We found that simple effective rules, when integrated with traditional enzyme kinetic expressions, captured complex allosteric patterns such as ultrasensitivity or non-competitive inhibition in the absence of mechanistic information. Second, when integrated into network models, these rules captured classic regulatory patterns such as product-induced feedback inhibition. Lastly, we showed, at least for the network architectures considered here, that we could simultaneously estimate kinetic parameters and allosteric connectivity from synthetic data starting from an unbiased collection of possible allosteric structures using particle swarm optimization. However, when starting with an initial population that was heavily enriched with incorrect structures, our particle swarm approach could converge

  7. Watch Out for the “Living Dead”: Cell-Free Enzymes and Their Fate

    Federico Baltar

    2018-01-01

    Full Text Available Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs are the “gatekeepers” of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached, and dissolved (i.e., cell-free enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100% of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell’s fate. In contrast, cell-free enzymes belong to a kind of “living dead” realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go “beyond the living things,” studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles.

  8. Watch Out for the “Living Dead”: Cell-Free Enzymes and Their Fate

    Baltar, Federico

    2018-01-01

    Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs) are the “gatekeepers” of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached), and dissolved (i.e., cell-free) enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100%) of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA) will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell’s fate. In contrast, cell-free enzymes belong to a kind of “living dead” realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go “beyond the living things,” studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles. PMID:29354095

  9. Fetal Alcohol Spectrum Disorders

    Alcohol can harm your baby at any stage during a pregnancy. That includes the earliest stages, before ... can cause a group of conditions called fetal alcohol spectrum disorders (FASDs). Children who are born with ...

  10. Evaluation of single-nucleotide polymorphisms as internal controls in prenatal diagnosis of fetal blood groups.

    Doescher, Andrea; Petershofen, Eduard K; Wagner, Franz F; Schunter, Markus; Müller, Thomas H

    2013-02-01

    Determination of fetal blood groups in maternal plasma samples critically depends on adequate amplification of fetal DNA. We evaluated the routine inclusion of 52 single-nucleotide polymorphisms (SNPs) as internal reference in our polymerase chain reaction (PCR) settings to obtain a positive internal control for fetal DNA. DNA from 223 plasma samples of pregnant women was screened for RHD Exons 3, 4, 5, and 7 in a multiplex PCR including 52 SNPs divided into four primer pools. Amplicons were analyzed by single-base extension and the GeneScan method in a genetic analyzer. Results of D screening were compared to standard RHD genotyping of amniotic fluid or real-time PCR of fetal DNA from maternal plasma. The vast majority of all samples (97.8%) demonstrated differences in maternal and fetal SNP patterns when tested with four primer pools. These differences were not observed in less than 2.2% of the samples most probably due to an extraction failure for adequate amounts of fetal DNA. Comparison of the fetal genotypes with independent results did not reveal a single false-negative case among samples (n = 42) with positive internal control and negative fetal RHD typing. Coamplification of 52 SNPs with RHD-specific sequences for fetal blood group determination introduces a valid positive control for the amplification of fetal DNA to avoid false-negative results. This new approach does not require a paternal blood sample. It may also be applicable to other assays for fetal genotyping in maternal blood samples. © 2012 American Association of Blood Banks.

  11. Fetal and neonatal thyrotoxicosis

    Batra, Chandar Mohan

    2013-01-01

    Fetal thyrotoxicosis is a rare disease occurring in 1 out of 70 pregnancies with Grave's disease or in 1 out of 4000-50,000 deliveries. The mortality is 12-20%, usually from heart failure, but other complications are tracheal compression, infections and thrombocytopenia. It results from transfer of thyroid stimulating immunoglobulins from mother to fetus through the placenta. This transplacental transfer begins around 20th week of pregnancy and reaches its maximum by 30th week. These autoantibodies bind to the fetal thyroid stimulating hormone (TSH) receptors and increase the secretion of the thyroid hormones. The mother has an active autoimmune thyroid disease or has been treated for it in the past. She may be absolutely euthyroid due to past treatment by drugs, surgery or radioiodine ablation, but still have active TSH receptor stimulating autoantibodies, which can cause fetal thyrotoxicosis. The other features of this disease are fetal tachycardia, fetal goiter and history of spontaneous abortions and findings of goiter, ascites, craniosyntosis, fetal growth retardation, maceration and hydrops at fetal autopsy. If untreated, this disease can result in intrauterine death. The treatment for this disease consists of giving carbimazole to the mother, which is transferred through the placenta to the fetus. The dose of carbimazole is titrated with the fetal heart rate. If the mother becomes hypothyroid due to carbimazole, thyroxine is added taking advantage of the fact that very little of thyroxine is transferred across the placenta. Neonatal thyrotoxicosis patients are very sick and require emergency treatment. The goal of the treatment is to normalize thyroid functions as quickly as possible, to avoid iatrogenic hypothyroidism while providing management and supportive therapy for the infant's specific signs and symptoms. PMID:24251220

  12. Content of intrinsic disorder influences the outcome of cell-free protein synthesis.

    Tokmakov, Alexander A; Kurotani, Atsushi; Ikeda, Mariko; Terazawa, Yumiko; Shirouzu, Mikako; Stefanov, Vasily; Sakurai, Tetsuya; Yokoyama, Shigeyuki

    2015-09-11

    Cell-free protein synthesis is used to produce proteins with various structural traits. Recent bioinformatics analyses indicate that more than half of eukaryotic proteins possess long intrinsically disordered regions. However, no systematic study concerning the connection between intrinsic disorder and expression success of cell-free protein synthesis has been presented until now. To address this issue, we examined correlations of the experimentally observed cell-free protein expression yields with the contents of intrinsic disorder bioinformatically predicted in the expressed sequences. This analysis revealed strong relationships between intrinsic disorder and protein amenability to heterologous cell-free expression. On the one hand, elevated disorder content was associated with the increased ratio of soluble expression. On the other hand, overall propensity for detectable protein expression decreased with disorder content. We further demonstrated that these tendencies are rooted in some distinct features of intrinsically disordered regions, such as low hydrophobicity, elevated surface accessibility and high abundance of sequence motifs for proteolytic degradation, including sites of ubiquitination and PEST sequences. Our findings suggest that identification of intrinsically disordered regions in the expressed amino acid sequences can be of practical use for predicting expression success and optimizing cell-free protein synthesis.

  13. Preparation of ubiquitin-conjugated proteins using an insect cell-free protein synthesis system.

    Suzuki, Takashi; Ezure, Toru; Ando, Eiji; Nishimura, Osamu; Utsumi, Toshihiko; Tsunasawa, Susumu

    2010-01-01

    Ubiquitination is one of the most significant posttranslational modifications (PTMs). To evaluate the ability of an insect cell-free protein synthesis system to carry out ubiquitin (Ub) conjugation to in vitro translated proteins, poly-Ub chain formation was studied in an insect cell-free protein synthesis system. Poly-Ub was generated in the presence of Ub aldehyde (UA), a de-ubiquitinating enzyme inhibitor. In vitro ubiquitination of the p53 tumor suppressor protein was also analyzed, and p53 was poly-ubiquitinated when Ub, UA, and Mdm2, an E3 Ub ligase (E3) for p53, were added to the in vitro reaction mixture. These results suggest that the insect cell-free protein synthesis system contains enzymatic activities capable of carrying out ubiquitination. CBB-detectable ubiquitinated p53 was easily purified from the insect cell-free protein synthesis system, allowing analysis of the Ub-conjugated proteins by mass spectrometry (MS). Lys 305 of p53 was identified as one of the Ub acceptor sites using this strategy. Thus, we conclude that the insect cell-free protein synthesis system is a powerful tool for studying various PTMs of eukaryotic proteins including ubiqutination presented here.

  14. Glucocorticoid programming of the fetal male hippocampal epigenome.

    Crudo, Ariann; Suderman, Matthew; Moisiadis, Vasilis G; Petropoulos, Sophie; Kostaki, Alisa; Hallett, Michael; Szyf, Moshe; Matthews, Stephen G

    2013-03-01

    The late-gestation surge in fetal plasma cortisol is critical for maturation of fetal organ systems. As a result, synthetic glucocorticoids (sGCs) are administered to pregnant women at risk of delivering preterm. However, animal studies have shown that fetal exposure to sGC results in increased risk of behavioral, endocrine, and metabolic abnormalities in offspring. Here, we test the hypothesis that prenatal GC exposure resulting from the fetal cortisol surge or after sGC exposure results in promoter-specific epigenetic changes in the hippocampus. Fetal guinea pig hippocampi were collected before (gestational day [GD52]) and after (GD65) the fetal plasma cortisol surge (Term∼GD67) and 24 hours after (GD52) and 14 days after (GD65) two repeat courses of maternal sGC (betamethasone) treatment (n = 3-4/gp). We identified extensive genome-wide alterations in promoter methylation in late fetal development (coincident with the fetal cortisol surge), whereby the majority of the affected promoters exhibited hypomethylation. Fetuses exposed to sGC in late gestation exhibited substantial differences in DNA methylation and histone h3 lysine 9 (H3K9) acetylation in specific gene promoters; 24 hours after the sGC treatment, the majority of genes affected were hypomethylated or hyperacetylated. However, 14 days after sGC exposure these differences did not persist, whereas other promoters became hypermethylated or hyperacetylated. These data support the hypothesis that the fetal GC surge is responsible, in part, for significant variations in genome-wide promoter methylation and that prenatal sGC treatment profoundly changes the epigenetic landscape, affecting both DNA methylation and H3K9 acetylation. This is important given the widespread use of sGC in the management of women in preterm labor.

  15. Intrapartum fetal heart rate profiles with and without fetal asphyxia.

    Low, J A; Pancham, S R; Worthington, D N

    1977-04-01

    Fetal heart rate profiles for periods up to 12 hours prior to delivery have been reviewed in 515 patients with a fetus at risk. Mechanisms other than fetal asphyxia will cause fetal heart rate decelerations, and fetal asphyxia may in some instances develop in the absence of total or late decelerations. However, an increasing incidence of total decelerations and late decelerations and particularly a marked pattern of total decelerations and late decelerations are of value in the prediction of fetal asphyxia. Fetal heart rate deceleration patterns can predict the probability of fetal asphyxia at the time of initial intervention, while a progression of fetal heart rate deceleration patterns in the individual fetus can be of assistance in the subsequent scheduling of serial acid-base assessments during labor.

  16. Production of functional bacteriorhodopsin by an Escherichia coli cell-free protein synthesis system supplemented with steroid detergent and lipid

    Shimono, Kazumi; Goto, Mie; Kikukawa, Takashi; Miyauchi, Seiji; Shirouzu, Mikako; Kamo, Naoki; Yokoyama, Shigeyuki

    2009-01-01

    Cell-free expression has become a highly promising tool for the efficient production of membrane proteins. In this study, we used a dialysis-based Escherichia coli cell-free system for the production of a membrane protein actively integrated into liposomes. The membrane protein was the light-driven proton pump bacteriorhodopsin, consisting of seven transmembrane α-helices. The cell-free expression system in the dialysis mode was supplemented with a combination of a detergent and a natural lip...

  17. Fetal abdominal magnetic resonance imaging

    Brugger, Peter C.; Prayer, Daniela

    2006-01-01

    This review deals with the in vivo magnetic resonance imaging (MRI) appearance of the human fetal abdomen. Imaging findings are correlated with current knowledge of human fetal anatomy and physiology, which are crucial to understand and interpret fetal abdominal MRI scans. As fetal MRI covers a period of more than 20 weeks, which is characterized not only by organ growth, but also by changes and maturation of organ function, a different MR appearance of the fetal abdomen results. This not only applies to the fetal intestines, but also to the fetal liver, spleen, and adrenal glands. Choosing the appropriate sequences, various aspects of age-related and organ-specific function can be visualized with fetal MRI, as these are mirrored by changes in signal intensities. Knowledge of normal development is essential to delineate normal from pathological findings in the respective developmental stages

  18. Fetal abdominal magnetic resonance imaging

    Brugger, Peter C. [Center of Anatomy and Cell Biology, Integrative Morphology Group, Medical University of Vienna, Waehringerstrasse 13, 1090 Vienna (Austria)]. E-mail: peter.brugger@meduniwien.ac.at; Prayer, Daniela [Department of Radiology, Medical University of Vienna, Waehringerguertel 18-20, 1090 Vienna (Austria)

    2006-02-15

    This review deals with the in vivo magnetic resonance imaging (MRI) appearance of the human fetal abdomen. Imaging findings are correlated with current knowledge of human fetal anatomy and physiology, which are crucial to understand and interpret fetal abdominal MRI scans. As fetal MRI covers a period of more than 20 weeks, which is characterized not only by organ growth, but also by changes and maturation of organ function, a different MR appearance of the fetal abdomen results. This not only applies to the fetal intestines, but also to the fetal liver, spleen, and adrenal glands. Choosing the appropriate sequences, various aspects of age-related and organ-specific function can be visualized with fetal MRI, as these are mirrored by changes in signal intensities. Knowledge of normal development is essential to delineate normal from pathological findings in the respective developmental stages.

  19. Ultrasonic prediction of fetal mass

    1983-02-19

    Feb 19, 1983 ... Summary. A clinically accurate method for estimating fetal. mass from fetal body parameters is reviewed. The abdominal circumference is first calculated from ... reliable clinical parameter is the impression of uterine volume,.

  20. Unexplained fetal death

    Sepúlveda, Janer; Quintero, Eliana Maribel

    2004-01-01

    El porcentaje de muertes fetales inexplicadas oscila entre un 21% a 50%; se define como la muerte que ocurre en fetos con edad gestacional mayor de 20 semanas o peso superior a 500 g, en la cual ni la autopsia ni el examen histológico del cordón umbilical, placenta y membranas, se logra identificar la causa. Los factores asociados con muerte fetal inexplicada son edad materna mayor de 35 años, sobrepeso, nivel educativo menor de 10 años, cigarrillo y bajo nivel socioeconómico, entre otros. La...

  1. Spore coat protein synthesis in cell-free systems from sporulating cells of Bacillus subtilis.

    Nakayama, T; Munoz, L E; Sadaie, Y; Doi, R H

    1978-09-01

    Cell-free systems for protein synthesis were prepared from Bacillus subtilis 168 cells at several stages of sporulation. Immunological methods were used to determine whether spore coat protein could be synthesized in the cell-free systems prepared from sporulating cells. Spore coat protein synthesis first occurred in extracts from stage t2 cells. The proportion of spore coat protein to total proteins synthesized in the cell-free systems was 2.4 and 3.9% at stages t2 and t4, respectively. The sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis patterns of immunoprecipitates from the cell-free systems showed the complete synthesis of an apparent spore coat protein precursor (molecular weight, 25,000). A polypeptide of this weight was previously identified in studies in vivo (L.E. Munoz, Y. Sadaie, and R.H. Doi, J. Biol. Chem., in press). The synthesis in vitro of polysome-associated nascent spore coat polypeptides with varying molecular weights up to 23,000 was also detected. These results indicate that the spore coat protein may be synthesized as a precursor protein. The removal of proteases in the crude extracts by treatment with hemoglobin-Sepharose affinity techniques may be preventing the conversion of the large 25,000-dalton precursor to the 12,500-dalton mature spore coat protein.

  2. Combining tissue repair and tissue engineering ; bioactivating implantable cell-free vascular scaffolds

    Muylaert, D.E.P.; Fledderus, J.O.; Bouten, C.V.C.; Dankers, P.Y.W.; Verhaar, M.C.

    2014-01-01

    Synthetic replacement grafts for heart valves and small-diameter blood vessels such as coronary arteries have the potential to circumvent many of the limitations of currently available autologous grafting materials. Cell-free material incorporating biologically active compounds may guide the

  3. Generation of thermostable Moloney murine leukemia virus reverse transcriptase variants using site saturation mutagenesis library and cell-free protein expression system.

    Katano, Yuta; Li, Tongyang; Baba, Misato; Nakamura, Miyo; Ito, Masaaki; Kojima, Kenji; Takita, Teisuke; Yasukawa, Kiyoshi

    2017-12-01

    We attempted to increase the thermostability of Moloney murine leukemia virus (MMLV) reverse transcriptase (RT). The eight-site saturation mutagenesis libraries corresponding to Ala70-Arg469 in the whole MMLV RT (Thr24-Leu671), in each of which 1 out of 50 amino acid residues was replaced with other amino acid residue, were constructed. Seven-hundred and sixty eight MMLV RT clones were expressed using a cell-free protein expression system, and their thermostabilities were assessed by the temperature of thermal treatment at which they retained cDNA synthesis activity. One clone D200C was selected as the most thermostable variant. The highest temperature of thermal treatment at which D200C exhibited cDNA synthesis activity was 57ºC, which was higher than for WT (53ºC). Our results suggest that a combination of site saturation mutagenesis library and cell-free protein expression system might be useful for generation of thermostable MMLV RT in a short period of time for expression and selection.

  4. Human fetal anatomy: MR imaging.

    Weinreb, J C; Lowe, T; Cohen, J M; Kutler, M

    1985-12-01

    Twenty-four pregnant women carrying 26 fetuses (two sets of twins) were imaged with magnetic resonance (MR) imaging at 0.35 T following sonographic evaluation. Each study was retrospectively evaluated to determine which of 33 normal fetal structures were visible on the images and which imaging parameters were most useful for depicting fetal anatomy. Fetal motion degraded fetal images in all but two cases, both with oligohydramnios and in the third trimester of gestation. Nevertheless, many fetal structures were identifiable, particularly in the third trimester. Visualization of fetal anatomy improved with intravenous maternal sedation in five cases. Relatively T1-weighted images occasionally offered the advantage of less image degradation owing to fetal motion and improved contrast between different fetal structures. More T2 weighting was believed to be advantageous in one case for outlining the fetal head and in one case for delineation of the brain. In many cases, structures were similarly identifiable (though with different signal intensities) regardless of the parameters selected. The authors conclude that MR imaging of many fetal structures is currently unsatisfactory and is probably of limited value, particularly in the first and second trimesters. However, the relative frequency and detail with which the fetal head and liver can be depicted indicate that these may be areas for further investigation, and the potential utility of imaging fetal fat warrants further investigation.

  5. Sensitive Monogenic Noninvasive Prenatal Diagnosis by Targeted Haplotyping

    Vermeulen, Carlo; Geeven, Geert; de Wit, Elzo; Verstegen, Marjon J A M; Jansen, Rumo P.M.; van Kranenburg, Melissa; de Bruijn, Ewart; Pulit, Sara L.; Kruisselbrink, Evelien; Shahsavari, Zahra; Omrani, Davood; Zeinali, Fatemeh; Najmabadi, Hossein; Katsila, Theodora; Vrettou, Christina; Patrinos, George P.; Traeger-Synodinos, Joanne; Splinter, Erik; Beekman, Jeffrey M.; Kheradmand Kia, Sima; Te Meerman, Gerard J; Ploos van Amstel, Hans Kristian; de Laat, Wouter

    2017-01-01

    During pregnancy, cell-free DNA (cfDNA) in maternal blood encompasses a small percentage of cell-free fetal DNA (cffDNA), an easily accessible source for determination of fetal disease status in risk families through non-invasive procedures. In case of monogenic heritable disease, background

  6. Preparative scale production of functional mouse aquaporin 4 using different cell-free expression modes.

    Lei Kai

    Full Text Available The continuous progress in the structural and functional characterization of aquaporins increasingly attracts attention to study their roles in certain mammalian diseases. Although several structures of aquaporins have already been solved by crystallization, the challenge of producing sufficient amounts of functional proteins still remains. CF (cell free expression has emerged in recent times as a promising alternative option in order to synthesize large quantities of membrane proteins, and the focus of this report was to evaluate the potential of this technique for the production of eukaryotic aquaporins. We have selected the mouse aquaporin 4 as a representative of mammalian aquaporins. The protein was synthesized in an E. coli extract based cell-free system with two different expression modes, and the efficiencies of two modes were compared. In both, the P-CF (cell-free membrane protein expression as precipitate mode generating initial aquaporin precipitates as well as in the D-CF (cell-free membrane protein expression in presence of detergent mode, generating directly detergent solubilized samples, we were able to obtain mg amounts of protein per ml of cell-free reaction. Purified aquaporin samples solubilized in different detergents were reconstituted into liposomes, and analyzed for the water channel activity. The calculated P(f value of proteoliposome samples isolated from the D-CF mode was 133 µm/s at 10°C, which was 5 times higher as that of the control. A reversible inhibitory effect of mercury chloride was observed, which is consistent with previous observations of in vitro reconstituted aquaporin 4. In this study, a fast and convenient protocol was established for functional expression of aquaporins, which could serve as basis for further applications such as water filtration.

  7. Dynamic imaging of cell-free and cell-associated viral capture in mature dendritic cells.

    Izquierdo-Useros, Nuria; Esteban, Olga; Rodriguez-Plata, Maria T; Erkizia, Itziar; Prado, Julia G; Blanco, Julià; García-Parajo, Maria F; Martinez-Picado, Javier

    2011-12-01

    Dendritic cells (DCs) capture human immunodeficiency virus (HIV) through a non-fusogenic mechanism that enables viral transmission to CD4(+) T cells, contributing to in vivo viral dissemination. Although previous studies have provided important clues to cell-free viral capture by mature DCs (mDCs), dynamic and kinetic insight on this process is still missing. Here, we used three-dimensional video microscopy and single-particle tracking approaches to dynamically dissect both cell-free and cell-associated viral capture by living mDCs. We show that cell-free virus capture by mDCs operates through three sequential phases: virus binding through specific determinants expressed in the viral particle, polarized or directional movements toward concrete regions of the cell membrane and virus accumulation in a sac-like structure where trapped viral particles display a hindered diffusive behavior. Moreover, real-time imaging of cell-associated viral transfer to mDCs showed a similar dynamics to that exhibited by cell-free virus endocytosis leading to viral accumulation in compartments. However, cell-associated HIV type 1 transfer to mDCs was the most effective pathway, boosted throughout enhanced cellular contacts with infected CD4(+) T cells. Our results suggest that in lymphoid tissues, mDC viral uptake could occur either by encountering cell-free or cell-associated virus produced by infected cells generating the perfect scenario to promote HIV pathogenesis and impact disease progression. © 2011 John Wiley & Sons A/S.

  8. Two-stage approach for risk estimation of fetal trisomy 21 and other aneuploidies using computational intelligence systems.

    Neocleous, A C; Syngelaki, A; Nicolaides, K H; Schizas, C N

    2018-04-01

    To estimate the risk of fetal trisomy 21 (T21) and other chromosomal abnormalities (OCA) at 11-13 weeks' gestation using computational intelligence classification methods. As a first step, a training dataset consisting of 72 054 euploid pregnancies, 295 cases of T21 and 305 cases of OCA was used to train an artificial neural network. Then, a two-stage approach was used for stratification of risk and diagnosis of cases of aneuploidy in the blind set. In Stage 1, using four markers, pregnancies in the blind set were classified into no risk and risk. No-risk pregnancies were not examined further, whereas the risk pregnancies were forwarded to Stage 2 for further examination. In Stage 2, using seven markers, pregnancies were classified into three types of risk, namely no risk, moderate risk and high risk. Of 36 328 unknown to the system pregnancies (blind set), 17 512 euploid, two T21 and 18 OCA were classified as no risk in Stage 1. The remaining 18 796 cases were forwarded to Stage 2, of which 7895 euploid, two T21 and two OCA cases were classified as no risk, 10 464 euploid, 83 T21 and 61 OCA as moderate risk and 187 euploid, 50 T21 and 52 OCA as high risk. The sensitivity and the specificity for T21 in Stage 2 were 97.1% and 99.5%, respectively, and the false-positive rate from Stage 1 to Stage 2 was reduced from 51.4% to ∼1%, assuming that the cell-free DNA test could identify all euploid and aneuploid cases. We propose a method for early diagnosis of chromosomal abnormalities that ensures that most T21 cases are classified as high risk at any stage. At the same time, the number of euploid cases subjected to invasive or cell-free DNA examinations was minimized through a routine procedure offered in two stages. Our method is minimally invasive and of relatively low cost, highly effective at T21 identification and it performs better than do other existing statistical methods. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd. Copyright

  9. Ovine fetal necrobacillosis

    Agerholm, J.S.; Boye, Mette; Aalbæk, B.

    2007-01-01

    were found in several tissues. Histologically, placental lesions were characterized by locally diffuse infiltration of neutrophils, closely associated with abundant small Gram-negative and FISH-positive rods, thrombosis and necrosis. Lesions in the fetal-maternal interface were multifocal and consisted...

  10. Fetal Alcohol Syndrome.

    Zerrer, Peggy

    The paper reviews Fetal Alcohol Syndrome (FAS), a series of effects seen in children whose mothers drink alcohol to excess during pregnancy. The identification of FAS and its recognition as a major health problem in need of prevention are traced. Characteristics of children with FAS are described and resultant growth retardation, abnormal physical…

  11. Fetal Alcohol Exposure

    ... categories: 4 » Fetal Alcohol Syndrome (FAS) » Partial FAS (pFAS) » Alcohol-Related Neurodevelopmental Disorder (ARND) » Alcohol-Related Birth ... either prenatally, after birth, or both Partial FAS (pFAS) Partial FAS (pFAS) involves prenatal alcohol exposure, and ...

  12. Rapid acquisition and model-based analysis of cell-free transcription–translation reactions from nonmodel bacteria

    Wienecke, Sarah; Ishwarbhai, Alka; Tsipa, Argyro; Aw, Rochelle; Kylilis, Nicolas; Bell, David J.; McClymont, David W.; Jensen, Kirsten; Biedendieck, Rebekka

    2018-01-01

    Native cell-free transcription–translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene expression from nonmodel microbial hosts, which can be difficult to assess through traditional in vivo approaches. One such host, Bacillus megaterium, is a giant Gram-positive bacterium with potential biotechnology applications, although many of its regulatory elements remain uncharacterized. Here, we have developed a rapid automated platform for measuring and modeling in vitro cell-free reactions and have applied this to B. megaterium to quantify a range of ribosome binding site variants and previously uncharacterized endogenous constitutive and inducible promoters. To provide quantitative models for cell-free systems, we have also applied a Bayesian approach to infer ordinary differential equation model parameters by simultaneously using time-course data from multiple experimental conditions. Using this modeling framework, we were able to infer previously unknown transcription factor binding affinities and quantify the sharing of cell-free transcription–translation resources (energy, ribosomes, RNA polymerases, nucleotides, and amino acids) using a promoter competition experiment. This allows insights into resource limiting-factors in batch cell-free synthesis mode. Our combined automated and modeling platform allows for the rapid acquisition and model-based analysis of cell-free transcription–translation data from uncharacterized microbial cell hosts, as well as resource competition within cell-free systems, which potentially can be applied to a range of cell-free synthetic biology and biotechnology applications. PMID:29666238

  13. The effect of fetal sex on customized fetal growth charts.

    Rizzo, Giuseppe; Prefumo, Federico; Ferrazzi, Enrico; Zanardini, Cristina; Di Martino, Daniela; Boito, Simona; Aiello, Elisa; Ghi, Tullio

    2016-12-01

    To evaluate the effect of fetal sex on singleton pregnancy growth charts customized for parental characteristics, race, and parity Methods: In a multicentric cross-sectional study, 8070 ultrasonographic examinations from low-risk singleton pregnancies between 16 and 40 weeks of gestation were considered. The fetal measurements obtained were biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length (FL). Quantile regression was used to examine the impact of fetal sex across the biometric percentiles of the fetal measurements considered together with parents' height, weight, parity, and race. Fetal gender resulted to be a significant covariate for BDP, HC, and AC with higher values for male fetuses (p ≤ 0.0009). Minimal differences were found among sexes for FL. Parity, maternal race, paternal height and maternal height, and weight resulted significantly related to the fetal biometric parameters considered independently from fetal gender. In this study, we constructed customized biometric growth charts for fetal sex, parental, and obstetrical characteristics using quantile regression. The use of gender-specific charts offers the advantage to define individualized normal ranges of fetal biometric parameters at each specific centile. This approach may improve the antenatal identification of abnormal fetal growth.

  14. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    Lewis, Daniel D. [Integrative Genetics and Genomics, University of California Davis, Davis, CA (United States); Department of Biomedical Engineering, University of California Davis, Davis, CA (United States); Villarreal, Fernando D.; Wu, Fan; Tan, Cheemeng, E-mail: cmtan@ucdavis.edu [Department of Biomedical Engineering, University of California Davis, Davis, CA (United States)

    2014-12-09

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  15. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    Daniel eLewis

    2014-12-01

    Full Text Available As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo systems, with only a few examples of prominent work done on predicting the dynamics of cell-free systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  16. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    Lewis, Daniel D.; Villarreal, Fernando D.; Wu, Fan; Tan, Cheemeng

    2014-01-01

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  17. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology

    Lihong Jiang

    2018-06-01

    Full Text Available Advances in metabolic engineering and synthetic biology have facilitated the manufacturing of many valuable-added compounds and commodity chemicals using microbial cell factories in the past decade. However, due to complexity of cellular metabolism, the optimization of metabolic pathways for maximal production represents a grand challenge and an unavoidable barrier for metabolic engineering. Recently, cell-free protein synthesis system (CFPS has been emerging as an enabling alternative to address challenges in biomanufacturing. This review summarizes the recent progresses of CFPS in rapid prototyping of biosynthetic pathways and genetic circuits (biosensors to speed up design-build-test (DBT cycles of metabolic engineering and synthetic biology. Keywords: Cell-free protein synthesis, Metabolic pathway optimization, Genetic circuits, Metabolic engineering, Synthetic biology

  18. Fetal cardiac assessment

    Greene, K.R.

    1983-01-01

    The better understanding of fetal cardiovascular physiology coupled with improved technology for non-invasive study of the fetus now enable much more detailed assessment of fetal cardiac status than by heart rate alone. Even the latter, relatively simple, measurement contains much more information than was previously realized. It is also increasingly clear that no single measurement will provide the answer to all clinical dilemmas either on cardiac function or the welfare of the fetus as a whole. There are obvious clinical advantages in measuring several variables from one signal and the measurement of heart rate, heart rate variation and waveform from the ECG in labour is a potentially useful combination. Systolic time intervals or flow measurements could easily be added or used separately by combining real-time and Doppler ultrasound probes

  19. Fetal chromosome analysis

    Philip, J; Tabor, A; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  20. Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models

    2015-03-03

    based whole-cell models of E. coli [6]. Conversely , highly abstracted kinetic frameworks, such as the cybernetic framework, represented a paradigm shift...metabolic objective function has been the optimization of biomass formation [18], although other metabolic objectives have also been estimated [19...experimental data. Toward these questions, we explored five hypothetical cell-free networks. Each network shared the same enzymatic connectivity, but

  1. Percutaneous Mitral Valve Repair in Mitral Regurgitation Reduces Cell-Free Hemoglobin and Improves Endothelial Function.

    Christos Rammos

    Full Text Available Endothelial dysfunction is predictive for cardiovascular events and may be caused by decreased bioavailability of nitric oxide (NO. NO is scavenged by cell-free hemoglobin with reduction of bioavailable NO up to 70% subsequently deteriorating vascular function. While patients with mitral regurgitation (MR suffer from an impaired prognosis, mechanisms relating to coexistent vascular dysfunctions have not been described yet. Therapy of MR using a percutaneous mitral valve repair (PMVR approach has been shown to lead to significant clinical benefits. We here sought to investigate the role of endothelial function in MR and the potential impact of PMVR.Twenty-seven patients with moderate-to-severe MR treated with the MitraClip® device were enrolled in an open-label single-center observational study. Patients underwent clinical assessment, conventional echocardiography, and determination of endothelial function by measuring flow-mediated dilation (FMD of the brachial artery using high-resolution ultrasound at baseline and at 3-month follow-up. Patients with MR demonstrated decompartmentalized hemoglobin and reduced endothelial function (cell-free plasma hemoglobin in heme 28.9±3.8 μM, FMD 3.9±0.9%. Three months post-procedure, PMVR improved ejection fraction (from 41±3% to 46±3%, p = 0.03 and NYHA functional class (from 3.0±0.1 to 1.9±1.7, p<0.001. PMVR was associated with a decrease in cell free plasma hemoglobin (22.3±2.4 μM, p = 0.02 and improved endothelial functions (FMD 4.8±1.0%, p<0.0001.We demonstrate here that plasma from patients with MR contains significant amounts of cell-free hemoglobin, which is accompanied by endothelial dysfunction. PMVR therapy is associated with an improved hemoglobin decompartmentalization and vascular function.

  2. Increasing the fidelity of noncanonical amino acid incorporation in cell-free protein synthesis.

    Gan, Qinglei; Fan, Chenguang

    2017-11-01

    Cell-free protein synthesis provides a robust platform for co-translational incorporation of noncanonical amino acid (ncAA) into proteins to facilitate biological studies and biotechnological applications. Recently, eliminating the activity of release factor 1 has been shown to increase ncAA incorporation in response to amber codons. However, this approach could promote mis-incorporation of canonical amino acids by near cognate suppression. We performed a facile protocol to remove near cognate tRNA isoacceptors of the amber codon from total tRNAs, and used the phosphoserine (Sep) incorporation system as validation. By manipulating codon usage of target genes and tRNA species introduced into the cell-free protein synthesis system, we increased the fidelity of Sep incorporation at a specific position. By removing three near cognate tRNA isoacceptors of the amber stop codon [tRNA Lys , tRNA Tyr , and tRNA Gln (CUG)] from the total tRNA, the near cognate suppression decreased by 5-fold without impairing normal protein synthesis in the cell-free protein synthesis system. Mass spectrometry analyses indicated that the fidelity of ncAA incorporation was improved. Removal of near cognate tRNA isoacceptors of the amber codon could increase ncAA incorporation fidelity towards the amber stop codon in release factor deficiency systems. We provide a general strategy to improve fidelity of ncAA incorporation towards stop, quadruplet and sense codons in cell-free protein synthesis systems. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Enzymatic cyanide degradation by cell-free extract of Rhodococcus UKMP-5M.

    Nallapan Maniyam, Maegala; Sjahrir, Fridelina; Latif Ibrahim, Abdul; Cass, Anthony E G

    2015-01-01

    The cell-free extract of locally isolated Rhodococcus UKMP-5M strain was used as an alternative to develop greener and cost effective cyanide removal technology. The present study aims to assess the viability of the cell-free extract to detoxify high concentrations of cyanide which is measured through the monitoring of protein concentration and specific cyanide-degrading activity. When cyanide-grown cells were subjected to grinding in liquid nitrogen which is relatively an inexpressive and fast cell disruption method, highest cyanide-degrading activity of 0.63 mM min(-1) mg(-1) protein was obtained in comparison to enzymatic lysis and agitation with fine glass beads. The cell-free extracts managed to degrade 80% of 20 mM KCN within 80 min and the rate of cyanide consumption increased linearly as the concentration of protein was raised. In both cases, the addition of co-factor was not required which proved to be advantageous economically. The successful formation of ammonia and formate as endproducts indicated that the degradation of cyanide by Rhodococcus UKMP-5M proceeded via the activity of cyanidase and the resulting non-toxic products are safe for disposal into the environment. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Thus, the utilization of cell-free extracts as an alternative to live microbial in cyanide degradation offers numerous advantageous such as the potential to tolerate and degrade higher concentration of cyanide and total reduction in the overall cost of operation since the requirement for nutrient support is irrelevant.

  4. Efficient cell-free production of olfactory receptors: detergent optimization, structure, and ligand binding analyses.

    Kaiser, Liselotte; Graveland-Bikker, Johanna; Steuerwald, Dirk; Vanberghem, Mélanie; Herlihy, Kara; Zhang, Shuguang

    2008-10-14

    High-level production of membrane proteins, particularly of G protein-coupled receptors (GPCRs) in heterologous cell systems encounters a number of difficulties from their inherent hydrophobicity in their transmembrane domains, which frequently cause protein aggregation and cytotoxicity and thus reduce the protein yield. Recent advances in cell-free protein synthesis circumvent those problems to produce membrane proteins with a yield sometimes exceeding the cell-based approach. Here, we report cell-free production of a human olfactory receptor 17-4 (hOR17-4) using the wheat germ extract. Using the simple method, we also successful produced two additional olfactory receptors. To obtain soluble olfactory receptors and to increase yield, we directly added different detergents in varying concentrations to the cell-free reaction. To identify a purification buffer system that maintained the receptor in a nonaggregated form, we developed a method that uses small-volume size-exclusion column chromatography combined with rapid and sensitive dot-blot detection. Different buffer components including salt concentration, various detergents and detergent concentration, and reducing agent and its concentrations were evaluated for their ability to maintain the cell-free produced protein stable and nonaggregated. The purified olfactory receptor displays a typical a alpha-helical CD spectrum. Surface plasmon resonance measurements were used to show binding of a known ligand undecanal to hOR17-4. Our approach to produce a high yield of purified olfactory receptor is a milestone toward obtaining a large quantity of olfactory receptors for designing bionic sensors. Furthermore, this simple approach may be broadly useful not only for other classes of GPCRs but also for other membrane proteins.

  5. The Normal Fetal Pancreas.

    Kivilevitch, Zvi; Achiron, Reuven; Perlman, Sharon; Gilboa, Yinon

    2017-10-01

    The aim of the study was to assess the sonographic feasibility of measuring the fetal pancreas and its normal development throughout pregnancy. We conducted a cross-sectional prospective study between 19 and 36 weeks' gestation. The study included singleton pregnancies with normal pregnancy follow-up. The pancreas circumference was measured. The first 90 cases were tested to assess feasibility. Two hundred ninety-seven fetuses of nondiabetic mothers were recruited during a 3-year period. The overall satisfactory visualization rate was 61.6%. The intraobserver and interobserver variability had high interclass correlation coefficients of of 0.964 and 0.967, respectively. A cubic polynomial regression described best the correlation of pancreas circumference with gestational age (r = 0.744; P pancreas circumference percentiles for each week of gestation were calculated. During the study period, we detected 2 cases with overgrowth syndrome and 1 case with an annular pancreas. In this study, we assessed the feasibility of sonography for measuring the fetal pancreas and established a normal reference range for the fetal pancreas circumference throughout pregnancy. This database can be helpful when investigating fetomaternal disorders that can involve its normal development. © 2017 by the American Institute of Ultrasound in Medicine.

  6. In vitro Fab display: a cell-free system for IgG discovery

    Stafford, Ryan L.; Matsumoto, Marissa L.; Yin, Gang; Cai, Qi; Fung, Juan Jose; Stephenson, Heather; Gill, Avinash; You, Monica; Lin, Shwu-Hwa; Wang, Willie D.; Masikat, Mary Rose; Li, Xiaofan; Penta, Kalyani; Steiner, Alex R.; Baliga, Ramesh; Murray, Christopher J.; Thanos, Christopher D.; Hallam, Trevor J.; Sato, Aaron K.

    2014-01-01

    Selection technologies such as ribosome display enable the rapid discovery of novel antibody fragments entirely in vitro. It has been assumed that the open nature of the cell-free reactions used in these technologies limits selections to single-chain protein fragments. We present a simple approach for the selection of multi-chain proteins, such as antibody Fab fragments, using ribosome display. Specifically, we show that a two-chain trastuzumab (Herceptin) Fab domain can be displayed in a format which tethers either the heavy or light chain to the ribosome while retaining functional antigen binding. Then, we constructed synthetic Fab HC and LC libraries and performed test selections against carcinoembryonic antigen (CEA) and vascular endothelial growth factor (VEGF). The Fab selection output was reformatted into full-length immunoglobulin Gs (IgGs) and directly expressed at high levels in an optimized cell-free system for immediate screening, purification and characterization. Several novel IgGs were identified using this cell-free platform that bind to purified CEA, CEA positive cells and VEGF. PMID:24586053

  7. Cell-free expression and stable isotope labelling strategies for membrane proteins

    Sobhanifar, Solmaz; Reckel, Sina; Junge, Friederike; Schwarz, Daniel; Kai, Lei; Karbyshev, Mikhail; Loehr, Frank; Bernhard, Frank; Doetsch, Volker

    2010-01-01

    Membrane proteins are highly underrepresented in the structural data-base and remain one of the most challenging targets for functional and structural elucidation. Their roles in transport and cellular communication, furthermore, often make over-expression toxic to their host, and their hydrophobicity and structural complexity make isolation and reconstitution a complicated task, especially in cases where proteins are targeted to inclusion bodies. The development of cell-free expression systems provides a very interesting alternative to cell-based systems, since it circumvents many problems such as toxicity or necessity for the transportation of the synthesized protein to the membrane, and constitutes the only system that allows for direct production of membrane proteins in membrane-mimetic environments which may be suitable for liquid state NMR measurements. The unique advantages of the cell-free expression system, including strong expression yields as well as the direct incorporation of almost any combination of amino acids with very little metabolic scrambling, has allowed for the development of a wide-array of isotope labelling techniques which facilitate structural investigations of proteins whose spectral congestion and broad line-widths may have earlier rendered them beyond the scope of NMR. Here we explore various labelling strategies in conjunction with cell-free developments, with a particular focus on α-helical transmembrane proteins which benefit most from such methods.

  8. Cell-free unnatural amino acid incorporation with alternative energy systems and linear expression templates.

    Shrestha, Prashanta; Smith, Mark Thomas; Bundy, Bradley Charles

    2014-01-25

    Site-specific incorporation of unnatural amino acids (uAAs) during protein synthesis expands the proteomic code through the addition of unique residue chemistry. This field provides a unique tool to improve pharmacokinetics, cancer treatments, vaccine development, proteomics and protein engineering. The limited ability to predict the characteristics of proteins with uAA-incorporation creates a need for a low-cost system with the potential for rapid screening. Escherichia coli-based cell-free protein synthesis is a compelling platform for uAA incorporation due to the open and accessible nature of the reaction environment. However, typical cell-free systems can be expensive due to the high cost of energizing reagents. By employing alternative energy sources, we reduce the cost of uAA-incorporation in CFPS by 55%. While alternative energy systems reduce cost, the time investment to develop gene libraries can remain cumbersome. Cell-free systems allow the direct use of PCR products known as linear expression templates, thus alleviating tedious plasmid library preparations steps. We report the specific costs of CFPS with uAA incorporation, demonstrate that LETs are suitable expression templates with uAA-incorporation, and consider the substantial reduction in labor intensity using LET-based expression for CFPS uAA incorporation. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Probing the biology of cell boundary conditions through confinement of Xenopus cell-free cytoplasmic extracts.

    Bermudez, Jessica G; Chen, Hui; Einstein, Lily C; Good, Matthew C

    2017-01-01

    Cell-free cytoplasmic extracts prepared from Xenopus eggs and embryos have for decades provided a biochemical system with which to interrogate complex cell biological processes in vitro. Recently, the application of microfabrication and microfluidic strategies in biology has narrowed the gap between in vitro and in vivo studies by enabling formation of cell-size compartments containing functional cytoplasm. These approaches provide numerous advantages over traditional biochemical experiments performed in a test tube. Most notably, the cell-free cytoplasm is confined using a two- or three-dimensional boundary, which mimics the natural configuration of a cell. This strategy enables characterization of the spatial organization of a cell, and the role that boundaries play in regulating intracellular assembly and function. In this review, we describe the marriage of Xenopus cell-free cytoplasm and confinement technologies to generate synthetic cell-like systems, the recent biological insights they have enabled, and the promise they hold for future scientific discovery. © 2017 Wiley Periodicals, Inc.

  10. Fluorescent in situ folding control for rapid optimization of cell-free membrane protein synthesis.

    Annika Müller-Lucks

    Full Text Available Cell-free synthesis is an open and powerful tool for high-yield protein production in small reaction volumes predestined for high-throughput structural and functional analysis. Membrane proteins require addition of detergents for solubilization, liposomes, or nanodiscs. Hence, the number of parameters to be tested is significantly higher than with soluble proteins. Optimization is commonly done with respect to protein yield, yet without knowledge of the protein folding status. This approach contains a large inherent risk of ending up with non-functional protein. We show that fluorophore formation in C-terminal fusions with green fluorescent protein (GFP indicates the folding state of a membrane protein in situ, i.e. within the cell-free reaction mixture, as confirmed by circular dichroism (CD, proteoliposome reconstitution and functional assays. Quantification of protein yield and in-gel fluorescence intensity imply suitability of the method for membrane proteins of bacterial, protozoan, plant, and mammalian origin, representing vacuolar and plasma membrane localization, as well as intra- and extracellular positioning of the C-terminus. We conclude that GFP-fusions provide an extension to cell-free protein synthesis systems eliminating the need for experimental folding control and, thus, enabling rapid optimization towards membrane protein quality.

  11. Fetal magnetic resonance: technique applications and normal fetal anatomy

    Martin, C.; Darnell, A.; Duran, C.; Mellado, F.; Corona, M

    2003-01-01

    Ultrasonography is the preferred diagnostic imaging technique for intrauterine fetal examination. Nevertheless, circumstances sometimes dictate the use of other techniques in order to analyze fetal structures. The advent of ultra rapid magnetic resonance (MR) sequencing has led to the possibility of doing MR fetal studies, since images are obtained in an extradordiarily short time and are not affected by either maternal or fetal movements. It does not employ ionizing radiations, it provides high-contrast images and it can obtain such images in any plane of space without being influenced by either the child bearer's physical characteristics of fetal position. MR provides good quality images of most fetal organs. It is extremely useful in analysing distinct structures, as well as permitting an evaluation of cervical structures, lungs, diaphragms, intra-abdominal and retroperitoneal structures, and fetal extremities. It can also provide useful information regarding the placenta,umbilical cord, amniotic fluid and uterus. The objective of this work is to describe MR technique as applied to intrauterine fetal examination, and to illustrate normal fetal anatomy as manifested by MR and its applications. (Author) 42 refs

  12. Are there fetal stem cells in the maternal brain?

    Osman Demirhan; Necmi (C)ekin; Deniz Ta(s)temir; Erdal Tun(c); Ali irfan Güzel; Demet Meral; Bülent Demirbek

    2013-01-01

    Fetal cells can enter maternal blood during pregnancy but whether they can also cross the blood-brain barrier to enter the maternal brain remains poorly understood. Previous results suggest that fetal cells are summoned to repair damage to the mother's brain. If this is confirmed, it would open up new and safer avenues of treatment for brain damage caused by strokes and neural diseases. In this study, we aimed to investigate whether a baby's stem cells can enter the maternal brain during pregnancy. Deceased patients who had at least one male offspring and no history of abortion and blood transfusion were included in this study. DNA was extracted from brain tissue samples of deceased women using standard phenol-chloroform extraction and ethanol precipitation methods. Genomic DNA was screened by quantitative fluorescent-polymerase chain reaction amplification together with short tandem repeat markers specific to the Y chromosome, and 13, 18, 21 and X. Any foreign DNA residues that could be used to interpret the presence of fetal stem cells in the maternal brain were monitored. Results indicated that fetal stem cells can not cross the blood-brain barrier to enter the maternal brain.

  13. MRI of the fetal spine

    Simon, Erin M.

    2004-01-01

    Magnetic resonance imaging of the fetal spine is a vital complement to fetal sonographic examination. Assessing the wide spectrum of spinal dysraphism, as well as spinal neoplasia, allows for more correct prenatal diagnoses, patient care planning, and patient counselling. Proper appraisal of the value of experimental procedures, such as fetal myelomeningocoele repair, requires a high level of diagnostic accuracy for the selection and follow-up of appropriate candidates. (orig.)

  14. MRI of the fetal spine

    Simon, Erin M. [Departement of Radiology, Children' s Hospital of Philadelphia, PA (United States)

    2004-09-01

    Magnetic resonance imaging of the fetal spine is a vital complement to fetal sonographic examination. Assessing the wide spectrum of spinal dysraphism, as well as spinal neoplasia, allows for more correct prenatal diagnoses, patient care planning, and patient counselling. Proper appraisal of the value of experimental procedures, such as fetal myelomeningocoele repair, requires a high level of diagnostic accuracy for the selection and follow-up of appropriate candidates. (orig.)

  15. Repair of X-ray-induced single-strand breaks by a cell-free system

    Seki, Shuji; Ikeda, Shogo; Tsutui, Ken; Teraoka, Hirobumi

    1990-01-01

    Repair of X-ray-induced single-strand breaks of DNA was studied in vitro using an exonuclease purified from mouse ascites sarcoma (SR-C3H/He) cells. X-ray-dose-dependent unscheduled DNA synthesis was primed by the exonuclease. Repair of X-ray-induced single-strand breaks in pUC19 plasmid DNA was demonstrated by agarose gel electrophoresis after incubating the damaged DNA with the exonuclease, DNA polymerase (Klenow fragment of DNA polymerase I or DNA polymerase β purified from SR-C3H/He cells), four deoxynucleoside triphosphates, ATP and DNA ligase (T4 DNA ligase or DNA ligase I purified from calf thymus). The present results suggested that the exonuclease is involved in the initiation of repair of X-ray-induced single-strand breaks in removing 3' ends of X-ray-damaged DNA. (author)

  16. Fetal Echocardiography/Your Unborn Baby's Heart

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Fetal Echocardiography / Your Unborn Baby's Heart Updated:Oct 6,2016 ... Your Risk • Symptoms & Diagnosis Introduction Common Tests Fetal Echocardiography/Your Unborn Baby's Heart - Fetal Echocardiogram Test - Detection ...

  17. Fetal Alcohol Syndrome and Fetal Alcohol Effects in Child Development.

    Pancratz, Diane R.

    This literature review defines Fetal Alcohol Syndrome (FAS) and Fetal Alcohol Effects (FAE) and considers their causes, diagnoses, prevalence, and educational ramifications. Effects of alcohol during each of the trimesters of pregnancy are summarized. Specific diagnostic characteristics of FAS are listed: (1) growth deficiency, (2) a…

  18. HEPATITIS ALOINMUNE FETAL

    Fernando Álvarez C., Dr.

    2015-07-01

    Full Text Available La hepatitis aloinmune fetal, conocida anteriormente como hemocromatosis neonatal, ha demostrado en los últimos años ser una enfermedad completamente distinta a la hemocromatosis del adulto, tanto en su etiología como en su la fisiopatología. Este conocimiento abre nuevas perspectivas tanto en la prevención de la enfermedad en futuros embarazos, así como en el tratamiento con inmunoglobulina endovenosa en la madre durante el embarazo y eventualmente el tratamiento postnatal, en el que el trasplante de hígado juega un rol primordial.

  19. Cell-Free and In Vivo Characterization of Lux, Las, and Rpa Quorum Activation Systems in E. coli.

    Halleran, Andrew D; Murray, Richard M

    2018-02-16

    Synthetic biologists have turned toward quorum systems as a path for building sophisticated microbial consortia that exhibit group decision making. Currently, however, even the most complex consortium circuits rely on only one or two quorum sensing systems, greatly restricting the available design space. High-throughput characterization of available quorum sensing systems is useful for finding compatible sets of systems that are suitable for a defined circuit architecture. Recently, cell-free systems have gained popularity as a test-bed for rapid prototyping of genetic circuitry. We take advantage of the transcription-translation cell-free system to characterize three commonly used Lux-type quorum activators, Lux, Las, and Rpa. We then compare the cell-free characterization to results obtained in vivo. We find significant genetic crosstalk in both the Las and Rpa systems and substantial signal crosstalk in Lux activation. We show that cell-free characterization predicts crosstalk observed in vivo.

  20. Oral epithelial cells are susceptible to cell-free and cell-associated HIV-1 infection in vitro

    Moore, Jennifer S.; Rahemtulla, Firoz; Kent, Leigh W.; Hall, Stacy D.; Ikizler, Mine R.; Wright, Peter F.; Nguyen, Huan H.; Jackson, Susan

    2003-01-01

    Epithelial cells lining the oral cavity are exposed to HIV-1 through breast-feeding and oral-genital contact. Genital secretions and breast milk of HIV-1-infected subjects contain both cell-free and cell-associated virus. To determine if oral epithelial cells can be infected with HIV-1 we exposed gingival keratinocytes and adenoid epithelial cells to cell-free virus and HIV-1-infected peripheral blood mononuclear cells and monocytes. Using primary isolates we determined that gingival keratinocytes are susceptible to HIV-1 infection via cell-free CD4-independent infection only. R5 but not X4 viral strains were capable of infecting the keratinocytes. Further, infected cells were able to release infectious virus. In addition, primary epithelial cells isolated from adenoids were also susceptible to infection; both cell-free and cell-associated virus infected these cells. These data have potential implications in the transmission of HIV-1 in the oral cavity

  1. Impact of fetal echocardiography

    Simpson, John M

    2009-01-01

    Prenatal diagnosis of congenital heart disease is now well established for a wide range of cardiac anomalies. Diagnosis of congenital heart disease during fetal life not only identifies the cardiac lesion but may also lead to detection of associated abnormalities. This information allows a detailed discussion of the prognosis with parents. For continuing pregnancies, appropriate preparation can be made to optimize the postnatal outcome. Reduced morbidity and mortality, following antenatal diagnosis, has been reported for coarctation of the aorta, hypoplastic left heart syndrome, and transposition of the great arteries. With regard to screening policy, most affected fetuses are in the “low risk” population, emphasizing the importance of appropriate training for those who undertake such obstetric anomaly scans. As a minimum, the four chamber view of the fetal heart should be incorporated into midtrimester anomaly scans, and where feasible, views of the outflow tracts should also be included, to increase the diagnostic yield. Newer screening techniques, such as measurement of nuchal translucency, may contribute to identification of fetuses at high risk for congenital heart disease and prompt referral for detailed cardiac assessment

  2. Effect of Antimalarial Drugs on Plasmodia Cell-Free Protein Synthesis

    Ana Ferreras

    2002-04-01

    Full Text Available A cell-free system from Plasmodium falciparum able to translate endogenous mRNA was used to determine the effect of artemisinin, chloroquine and primaquine on the protein synthesis mechanism of the parasite. The antimalarial drugs did not inhibit the incorporation of [³H] methionine into parasite proteins even at concentrations higher than the ones found to strongly inhibit the parasite growth. Results clearly indicate that these compounds do not have a direct effect on protein synthesis activity of P. falciparum coded by endogenous mRNA.

  3. Cell-free soluble-phase radioimmunoassay for Thy-1 antigen

    Shalev, A.; Zuckerman, F. (Ben-Gurion Univ. of the Negev, Beersheba (Israel))

    1983-12-01

    A cell-free, soluble-phase, radioimmunoassay has been developed for Thy-1 antigen. The method is based on immunoprecipitation of radiolabelled Thy-1 molecules with specific antibodies, antiimmunoglobulin serum and polyethyleneglycol (PEG). The method can be used with convenience to screen for the presence of Thy-1 in various fluids as well as on cell surfaces for qualitative or quantitative purposes. Presence of antibodies or autoantibodies against Thy-1 can also be detected specifically. Evidence that the dog, carp, hamster and goldfish carry Thy-1-like molecules on neuronal (brain) cells is demonstrated by this method.

  4. Completion of proteomic data sets by Kd measurement using cell-free synthesis of site-specifically labeled proteins.

    Paul Majkut

    Full Text Available The characterization of phosphotyrosine mediated protein-protein interactions is vital for the interpretation of downstream pathways of transmembrane signaling processes. Currently however, there is a gap between the initial identification and characterization of cellular binding events by proteomic methods and the in vitro generation of quantitative binding information in the form of equilibrium rate constants (Kd values. In this work we present a systematic, accelerated and simplified approach to fill this gap: using cell-free protein synthesis with site-specific labeling for pull-down and microscale thermophoresis (MST we were able to validate interactions and to establish a binding hierarchy based on Kd values as a completion of existing proteomic data sets. As a model system we analyzed SH2-mediated interactions of the human T-cell phosphoprotein ADAP. Putative SH2 domain-containing binding partners were synthesized from a cDNA library using Expression-PCR with site-specific biotinylation in order to analyze their interaction with fluorescently labeled and in vitro phosphorylated ADAP by pull-down. On the basis of the pull-down results, selected SH2's were subjected to MST to determine Kd values. In particular, we could identify an unexpectedly strong binding of ADAP to the previously found binding partner Rasa1 of about 100 nM, while no evidence of interaction was found for the also predicted SH2D1A. Moreover, Kd values between ADAP and its known binding partners SLP-76 and Fyn were determined. Next to expanding data on ADAP suggesting promising candidates for further analysis in vivo, this work marks the first Kd values for phosphotyrosine/SH2 interactions on a phosphoprotein level.

  5. The mixture of cashew nut shell liquid and castor oil results in an efficient larvicide against Aedes aegypti that does not alter embryo-fetal development, reproductive performance or DNA integrity.

    Juliana Miron Vani

    Full Text Available Dengue fever, chikungunya fever and Zika virus are epidemics in Brazil that are transmitted by mosquitoes, such as Aedes aegypti or Aedes albopictus. The liquid from shells of cashew nuts is attractive for its important biological and therapeutic activities, which include toxicity to mosquitoes of the genus Aedes. The present study evaluated the effects of a mixture of surfactants from natural cashew nutshell liquid and castor oil (named TaLCC-20 on the mortality of larvae and on the reproductive performance, embryonic and fetal development and genetic stability of Swiss mice. A total of 400 Ae. aegypti larvae (third larval stage were treated with TaLCC-20 concentrations of 0.05 mg/L, 0.5 mg/L, or 5 mg/L (ppm. Twenty pregnant female mice were also orally administered TaLCC-20 at doses of 5 mg/kg and 50 mg/kg body weight (b.w., and 10 animals were given only drinking water at 0.1 mL/10 g b.w. (orally. The results of a larvicide test demonstrated that 5 mg/mL TaLCC-20 killed 100% of larvae within three hours, which is comparable to the gold standard indicated by the Ministry of Health. Overall, these results show that TaLCC-20 is an efficient larvicide that does not induce genetic damage. In addition, changes in reproductive performance and embryo-fetal development appear positive, and the formulation is cost effective. Therefore, TaLCC-20 is an important product in the exploration of natural larvicides and can assist in fighting mosquitos as vectors for dengue fever, chikungunya fever and Zika virus, which are emerging/re-emerging and require proper management to ensure minimal harm to the human population. Therefore, TaLCC-20 can be considered a key alternative to commercial products, which are effective yet toxigenic.

  6. Erythroid differentiation of fetal, newborn and adult haemopoietic stem cells

    Rencricca, N.J.; Howard, D.; Kubanek, B.; Stohlman, F.; Department of Biological Sciences, University of Lowell, Lowell, Massachusetts, USA)

    1976-01-01

    Erythroid regeneration was studied in lethally irradiated mice given transplants containing equivalent numbers of haemopoietic stem cells (i.e. CFU) from fetal liver, neonatal marrow or adult marrow. Adult marrow was taken from normal control mice, whose CFU for the most part were not in active cell cycle, as well as from phenylhydrazine-treated groups whose CFU were in similar state of proliferation (i.e. approximately 40-50% in DNA synthesis) as those derived from fetal liver and neonatal marrow. Splenic and femoral radioiron ( 59 Fe) incorporation were measured at intervals after transplantation and were found to begin earliest in mice given fetal liver, then in animals given neonatal marrow and latest in recipients of adult marrow. Peripheral reticulocytes showed a similar pattern of recovery. The data reported herein suggest that the differences in erythroid regeneration evoked by transplants of fetal liver, neonatal marrow or adult marrow, are not solely attributed to the degree of proliferation in the pluripotential stem cell compartment. These data may, however, suggest a shorter doubling time for cells comprising the fetal and newborn committed erythroid compartments. (author)

  7. Erythroid differentiation of fetal, newborn, and adult haemopoietic stem cells

    Rencricca, N J; Howard, D; Kubanek, B; Stohlman, F [Boston Univ., Mass. (USA). School of Medicine; Department of Biological Sciences, University of Lowell, Lowell, Massachusetts, USA)

    1976-01-01

    Erythroid regeneration was studied in lethally irradiated mice given transplants containing equivalent numbers of haemopoietic stem cells (i.e. CFU) from fetal liver, neonatal marrow or adult marrow. Adult marrow was taken from normal control mice, whose CFU for the most part were not in active cell cycle, as well as from phenylhydrazine-treated groups whose CFU were in similar state of proliferation (i.e. approximately 40-50% in DNA synthesis) as those derived from fetal liver and neonatal marrow. Splenic and femoral radioiron (/sup 59/Fe) incorporation were measured at intervals after transplantation and were found to begin earliest in mice given fetal liver, then in animals given neonatal marrow and latest in recipients of adult marrow. Peripheral reticulocytes showed a similar pattern of recovery. The data reported herein suggest that the differences in erythroid regeneration evoked by transplants of fetal liver, neonatal marrow or adult marrow, are not solely attributed to the degree of proliferation in the pluripotential stem cell compartment. These data may, however, suggest a shorter doubling time for cells comprising the fetal and newborn committed erythroid compartments.

  8. Assessment of DNA damage induced by terrestrial UV irradiation of dried bloodstains: forensic implications.

    Hall, Ashley; Sims, Lynn M; Ballantyne, Jack

    2014-01-01

    Few publications have detailed the nature of DNA damage in contemporary (i.e. non-ancient) dried biological stains. The chief concern, from a forensic standpoint, is that the damage can inhibit polymerase-mediated primer extension, ultimately resulting in DNA typing failure. In the work described here, we analyzed the effects of UVA and UVB irradiation on cell-free solubilized DNA, cell-free dehydrated DNA and dehydrated cellular DNA (from bloodstains). After UV exposure ranging from 25 J cm(-2) to 1236 J cm(-2), we assayed for the presence of bipyrimidine photoproducts (BPPPs), oxidative lesions and strand breaks, correlating the damage with the inhibition of STR profiling. Subsequent to irradiation with either UVA and UVB, the incidence of BPPPs, oxidative products and strand breaks were observed in decreasing quantities as follows: cell-free solubilized DNA>cell-free dehydrated DNA>bloodstain DNA. UVA irradiation did not result in even the partial loss of a STR profile in any sample tested. Somewhat different results were observed after genetic analysis of UVB exposed samples, in that the ability to produce a complete STR profile was affected earliest in bloodstain DNA, next in cell-free solubilized DNA and not at all in cell-free dehydrated DNA. Therefore, it is likely that other types of damage contributed to allele-drop-out in these samples but remained undetected by our assays, whereby the endonucleases did not react with the lesions or the presence of the lesions was masked by strand breaks. Under the conditions of the study, strand breaks appeared to be the predominant types of damage that ultimately resulted in DNA typing failure from physiological stains, although some evidence suggested oxidative damage may have played a role as well. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Circulating Tumor DNA Analysis for Liver Cancers and Its Usefulness as a Liquid BiopsySummary

    Atsushi Ono

    2015-09-01

    Full Text Available Background & Aims: Circulating tumor DNA (ctDNA carrying tumor-specific sequence alterations has been found in the cell-free fraction of blood. Liver cancer tumor specimens are difficult to obtain, and noninvasive methods are required to assess cancer progression and characterize underlying genomic features. Methods: We analyzed 46 patients with hepatocellular carcinoma who underwent hepatectomy or liver transplantation and for whom whole-genome sequencing data was available. We designed personalized assays targeting somatic rearrangements of each tumor to quantify serum ctDNA. Exome sequencing was performed using cell-free DNA paired primary tumor tissue DNA from a patient with recurrent liver cancer after transcatheter arterial chemoembolization (TACE. Results: We successfully detected ctDNA from 100 μL of serum samples in 7 of the 46 patients before surgery, increasing with disease progression. The cumulative incidence of recurrence and extrahepatic metastasis in the ctDNA-positive group were statistically significantly worse than in the ctDNA-negative group (P = .0102 and .0386, respectively. Multivariate analysis identified ctDNA (OR 6.10; 95% CI, 1.11–33.33, P = .038 as an independent predictor of microscopic vascular invasion of the portal vein (VP. We identified 45 nonsynonymous somatic mutations in cell-free DNA after TACE and 71 nonsynonymous somatic mutations in primary tumor tissue by exome sequencing. We identified 25 common mutations in both samples, and 83% of mutations identified in the primary tumor could be detected in the cell-free DNA. Conclusions: The presence of ctDNA reflects tumor progression, and detection of ctDNA can predict VP and recurrence, especially extrahepatic metastasis within 2 years. Our study demonstrated the usefulness of ctDNA detection and sequencing analysis of cell-free DNA for personalized treatment of liver cancer. Keywords: Circulating Tumor DNA, Exome Sequencing, Hepatocellular

  10. Sexual dimorphism in epigenomicresponses of stem cells to extreme fetal growth

    Delahaye, Fabien; Wijetunga, N. Ari; Heo, Hye J.; Tozour, Jessica N.; Zhao, Yong Mei; Greally, John M.; Einstein, Francine H.

    2014-01-01

    Extreme fetal growth is associated with increased susceptibility to a range of adult diseases through an unknown mechanism of cellular memory. We tested whether heritable epigenetic processes in long-lived CD34+ hematopoietic stem/progenitor cells (HSPCs) showed evidence for re-programming associated with the extremes of fetal growth. Here we show that both fetal growth restriction and over-growth are associated with global shifts towards DNA hypermethylation, targeting cis-regulatory elements in proximity to genes involved in glucose homeostasis and stem cell function. We find a sexually dimorphic response; intrauterine growth restriction (IUGR) is associated with substantially greater epigenetic dysregulation in males, whereas large for gestational age (LGA) growth predominantly affects females. The findings are consistent with extreme fetal growth interacting with variable fetal susceptibility to influence cellular aging and metabolic characteristics through epigenetic mechanisms, potentially generating biomarkers that could identify infants at higher risk for chronic disease later in life. PMID:25300954

  11. Number of infection events per cell during HIV-1 cell-free infection.

    Ito, Yusuke; Remion, Azaria; Tauzin, Alexandra; Ejima, Keisuke; Nakaoka, Shinji; Iwasa, Yoh; Iwami, Shingo; Mammano, Fabrizio

    2017-07-26

    HIV-1 accumulates changes in its genome through both recombination and mutation during the course of infection. For recombination to occur, a single cell must be infected by two HIV strains. These coinfection events were experimentally demonstrated to occur more frequently than would be expected for independent infection events and do not follow a random distribution. Previous mathematical modeling approaches demonstrated that differences in target cell susceptibility can explain the non-randomness, both in the context of direct cell-to-cell transmission, and in the context of free virus transmission (Q. Dang et al., Proc. Natl. Acad. Sci. USA 101:632-7, 2004: K. M. Law et al., Cell reports 15:2711-83, 2016). Here, we build on these notions and provide a more detailed and extensive quantitative framework. We developed a novel mathematical model explicitly considering the heterogeneity of target cells and analysed datasets of cell-free HIV-1 single and double infection experiments in cell culture. Particularly, in contrast to the previous studies, we took into account the different susceptibility of the target cells as a continuous distribution. Interestingly, we showed that the number of infection events per cell during cell-free HIV-1 infection follows a negative-binomial distribution, and our model reproduces these datasets.

  12. Mechanistic insights of the Min oscillator via cell-free reconstitution and imaging

    Mizuuchi, Kiyoshi; Vecchiarelli, Anthony G.

    2018-05-01

    The MinD and MinE proteins of Escherichia coli self-organize into a standing-wave oscillator on the membrane to help align division at mid-cell. When unleashed from cellular confines, MinD and MinE form a spectrum of patterns on artificial bilayers—static amoebas, traveling waves, traveling mushrooms, and bursts with standing-wave dynamics. We recently focused our cell-free studies on bursts because their dynamics recapitulate many features of Min oscillation observed in vivo. The data unveiled a patterning mechanism largely governed by MinE regulation of MinD interaction with membrane. We proposed that the MinD to MinE ratio on the membrane acts as a toggle switch between MinE-stimulated recruitment and release of MinD from the membrane. In this review, we summarize cell-free data on the Min system and expand upon a molecular mechanism that provides a biochemical explanation as to how these two ‘simple’ proteins can form the remarkable spectrum of patterns.

  13. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis.

    Nitzan Krinsky

    Full Text Available Cell-free protein synthesis (CFPS systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3 and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa. This system was able to produce 40-150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins.

  14. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis

    Kaduri, Maya; Shainsky-Roitman, Janna; Goldfeder, Mor; Ivanir, Eran; Benhar, Itai; Shoham, Yuval; Schroeder, Avi

    2016-01-01

    Cell-free protein synthesis (CFPS) systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3) and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa). This system was able to produce 40–150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins. PMID:27768741

  15. Formation of Lignans(-)-Secoisolariciresinol and (-)-Matairesinol with Forsythia intermedia Cell-Free Extracts

    Umezawa, Toshiaki; Davin, Laurence B.; Lewis, Norman G.

    1991-01-01

    In vivo labeling experiments of Forsythia intermedia plant tissue with [8-(C-14)]- and [9,9-(2)H2,OC(2)H3]coniferyl alcohols revealed that the lignans, (-)-secoisolariciresinol and (-)-matairesinol, were derived from two coniferyl alcohol molecules; no evidence for the formation of the corresponding (+)-enantiomers was found. Administration of (+/-)-[Ar-(H-3)] secoisolariciresinols to excised shoots of F.intermedia resulted in a significant conversion into (-)-matairesinol; again, the (+)-antipode was not detected. Experiments using cell-free extracts of F.intermedia confirmed and extended these findings. In the presence of NAD(P)H and H2O2, the cell-free extracts catalyzed the formation of (-)- secoisolariciresinol, with either [8-(C-14)]- or [9,9-(2)H2,OC(2)H3]coniferyl alcohols as substrates. The (+)- enantiomer was not formed. Finally, when either (-)-[Ar-(H-3)] or (+/-)-[Ar-(H-2)]secoisolariciresinols were used as substrates, in the presence of NAD(P), only (-)- and not (+)-matairesinol formation occurred. The other antipode, (+)-secoisolariciresinol, did not serve as a substrate for the formation of either (+)- or (-)-matairesinol. Thus, in F.intermedia, the formation of the lignan, (-)-secoisolariciresinol, occurs under strict stereochemical control, in a reaction or reactions requiring NAD(P)H and H2O2 as cofactors. This stereoselectivity is retained in the subsequent conversion into (-)-matairesinol, since (+)-secoisolariciresinol is not a substrate. These are the first two enzymes to be discovered in lignan formation.

  16. High yield cell-free production of integral membrane proteins without refolding or detergents.

    Wuu, Jessica J; Swartz, James R

    2008-05-01

    Integral membrane proteins act as critical cellular components and are important drug targets. However, difficulties in producing membrane proteins have hampered investigations of structure and function. In vivo production systems are often limited by cell toxicity, and previous in vitro approaches have required unnatural folding pathways using detergents or lipid solutions. To overcome these limitations, we present an improved cell-free expression system which produces high yields of integral membrane proteins without the use of detergents or refolding steps. Our cell-free reaction activates an Escherichia coli-derived cell extract for transcription and translation. Purified E. coli inner membrane vesicles supply membrane-bound components and the lipid environment required for insertion and folding. Using this system, we demonstrated successful synthesis of two complex integral membrane transporters, the tetracycline pump (TetA) and mannitol permease (MtlA), in yields of 570+/-50 microg/mL and 130+/-30 microg/mL of vesicle-associated protein, respectively. These yields are up to 400 times typical in vivo concentrations. Insertion and folding of these proteins are verified by sucrose flotation, protease digestion, and activity assays. Whereas TetA incorporates efficiently into vesicle membranes with over two-thirds of the synthesized protein being inserted, MtlA yields appear to be limited by insufficient concentrations of a membrane-associated chaperone.

  17. MR evaluation of fetal demise

    Victoria, Teresa; Chauvin, Nancy Anne; Johnson, Ann M.; Kramer, Sandra Sue; Epelman, Monica; Capilla, Elena

    2011-01-01

    Fetal demise is an uncommon event encountered at MR imaging. When it occurs, recognition by the interpreting radiologist is important to initiate appropriate patient management. To identify MR findings of fetal demise. Following IRB approval, a retrospective search of the radiology fetal MR database was conducted searching the words ''fetal demise'' and ''fetal death.'' Fetuses with obvious maceration or no sonographic confirmation of death were excluded. Eleven cases formed the study group. These were matched randomly to live fetuses of similar gestational age. Images were reviewed independently by three pediatric radiologists. The deceased fetus demonstrates decreased MR soft-tissue contrast and definition of tissue planes, including loss of gray-white matter differentiation in the brain. The signal within the cardiac chambers, when visible, is bright on HASTE sequences from the stagnant blood; the heart is small. Pleural effusions and decreased lung volumes may be seen. Interestingly, the fetal orbits lose their anatomical round shape and become smaller and more elliptical; a dark, irregular rim resembling a mask may be seen. Although fetal demise is uncommonly encountered at MR imaging, radiologists should be aware of such imaging findings so prompt management can be instituted. (orig.)

  18. My journey to DNA repair.

    Lindahl, Tomas

    2013-02-01

    I completed my medical studies at the Karolinska Institute in Stockholm but have always been devoted to basic research. My longstanding interest is to understand fundamental DNA repair mechanisms in the fields of cancer therapy, inherited human genetic disorders and ancient DNA. I initially measured DNA decay, including rates of base loss and cytosine deamination. I have discovered several important DNA repair proteins and determined their mechanisms of action. The discovery of uracil-DNA glycosylase defined a new category of repair enzymes with each specialized for different types of DNA damage. The base excision repair pathway was first reconstituted with human proteins in my group. Cell-free analysis for mammalian nucleotide excision repair of DNA was also developed in my laboratory. I found multiple distinct DNA ligases in mammalian cells, and led the first genetic and biochemical work on DNA ligases I, III and IV. I discovered the mammalian exonucleases DNase III (TREX1) and IV (FEN1). Interestingly, expression of TREX1 was altered in some human autoimmune diseases. I also showed that the mutagenic DNA adduct O(6)-methylguanine (O(6)mG) is repaired without removing the guanine from DNA, identifying a surprising mechanism by which the methyl group is transferred to a residue in the repair protein itself. A further novel process of DNA repair discovered by my research group is the action of AlkB as an iron-dependent enzyme carrying out oxidative demethylation. Copyright © 2013. Production and hosting by Elsevier Ltd.

  19. 21 CFR 884.2900 - Fetal stethoscope.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal stethoscope. 884.2900 Section 884.2900 Food... Fetal stethoscope. (a) Identification. A fetal stethoscope is a device used for listening to fetal heart... conventional stethoscopes. (b) Classification. Class I (general controls). The device is exempt from the...

  20. [Incidence of fetal macrosomia: maternal and fetal morbidity].

    Rodríguez-Rojas, R R; Cantú-Esquivel, M G; Benavides-de la Garza, L; Benavides-de Anda, L

    1996-06-01

    The macrosomia is an obstetric eventuality associated to high maternal-fetal morbidity-mortality. This assay was planned in order to know the incidence of macrosomia in our institution, the relation between vaginal and abdominal deliveries and the fetal-maternal morbidity we reviewed 3590 records and we found 5.6% incidence of macrosomia in the global obstetric population. There was 58% of vaginal deliveries, 68% of the newborn were male. The main complications were in the C. sections, 2 laceration of the hysterectomy, and 2 peroperative atonias. In the vaginal deliveries, the lacerations of III and IV grade were 9 of each grade. The main fetal complications were 5 slight to severe asphyxia and 4 shoulder dystocias. This assay concludes that the macrosomia in our service is similar to the already published ones, a 42% were C. section and the maternal-fetal morbidity was low.

  1. Digital communication with fetal monitors.

    Bozóki, Z

    1997-11-01

    Fetal heart rate (FHR) values in the averaged format that are provided by commercial computed cardiotocography analysis systems may be unsuitable for special analysis purposes. I developed a communication software program to obtain any measured values of fetal monitors for individual analysis of computed cardiotocography. The software program was used to study the data continuity of beat-to-beat FHR values as an experiment for chaos theory and power spectrum analysis. The results indicated that the signal loss was recognized at a precision of 95%. The described method of digital communication with fetal monitors was found to be useful for individual purposes in the field of computed cardiotocography analysis.

  2. Ultrasonographic determination of fetal gender

    Kim, Il Young; Kim, Dae Ho; Lee, Byung Ho; Bae, Dong Han

    1985-01-01

    Sonographic determination of fetal gender was attempted prospectively in most pregnancies of more than 26 weeks. We studied 193 cases of pregnancies with ultrasound for recent 9 months from June 1984 to February 1985 at department of radiology, Soonchunhyang university, Soonchunhyang Chunan hospital, and analysed ultrasonographic finding of fetal gender. The results were as follows; 1. Overall accuracy rate for fetal gender is 90%. 2. Accuracy rate for male fetus is 97.8%. 3. Accuracy rate for female fetus is 88.2%

  3. MRI of the fetal abdomen

    Hoermann, M.; Brugger, P.C.; Witzani, L.; Prayer, D.

    2006-01-01

    Magnetic resonance imaging (MRI) is an important diagnostic component for central nervous system and thoracic diseases during fetal development. Although ultrasound remains the method of choice for observing the fetus during pregnancy, fetal MRI is being increasingly used as an additional technique for the accurate diagnosis of abdominal diseases. Recent publications confirm the value of MRI in the diagnosis of fetal gastrointestinal tract and urogenital system diseases. The following report provides an overview of MRI-examination techniques for the most frequent diseases of the abdomen. (orig.) [de

  4. The Danish fetal medicine database

    Ekelund, Charlotte Kvist; Kopp, Tine Iskov; Tabor, Ann

    2016-01-01

    trimester ultrasound scan performed at all public hospitals in Denmark are registered in the database. Main variables/descriptive data: Data on maternal characteristics, ultrasonic, and biochemical variables are continuously sent from the fetal medicine units’Astraia databases to the central database via...... analyses are sent to the database. Conclusion: It has been possible to establish a fetal medicine database, which monitors first-trimester screening for chromosomal abnormalities and second-trimester screening for major fetal malformations with the input from already collected data. The database...

  5. Clinical implications from monitoring fetal activity.

    Rayburn, W F

    1982-12-15

    The monitoring of fetal motion in high-risk pregnancies has been shown to be worthwhile in predicting fetal distress and impending fetal death. The maternal recording of perceived fetal activity is an inexpensive surveillance technique which is most useful when there is chronic uteroplacental insufficiency or when a stillbirth may be expected. The presence of an active, vigorous fetus is reassuring, but documented fetal inactivity required a reassessment of the underlying antepartum complication and further fetal evaluation with real-time ultrasonography, fetal heart rate testing, and biochemical testing. Fetal distress from such acute changes as abruptio placentae or umbilical cord compression may not be predicted by monitoring fetal motion. Although not used for routine clinical investigation, electromechanical devices such as tocodynamometry have provided much insight into fetal behavioral patterns at many stages of pregnancy and in pregnancies with an antepartum complication.

  6. Maternal Aldehyde Elimination during Pregnancy Preserves the Fetal Genome

    Oberbeck, Nina; Langevin, Frédéric; King, Gareth; de Wind, Niels; Crossan, Gerry P.; Patel, Ketan J.

    2014-01-01

    Summary Maternal metabolism provides essential nutrients to enable embryonic development. However, both mother and embryo produce reactive metabolites that can damage DNA. Here we discover how the embryo is protected from these genotoxins. Pregnant mice lacking Aldh2, a key enzyme that detoxifies reactive aldehydes, cannot support the development of embryos lacking the Fanconi anemia DNA repair pathway gene Fanca. Remarkably, transferring Aldh2−/−Fanca−/− embryos into wild-type mothers suppresses developmental defects and rescues embryonic lethality. These rescued neonates have severely depleted hematopoietic stem and progenitor cells, indicating that despite intact maternal aldehyde catabolism, fetal Aldh2 is essential for hematopoiesis. Hence, maternal and fetal aldehyde detoxification protects the developing embryo from DNA damage. Failure of this genome preservation mechanism might explain why birth defects and bone marrow failure occur in Fanconi anemia, and may have implications for fetal well-being in the many women in Southeast Asia that are genetically deficient in ALDH2. PMID:25155611

  7. Maternal aldehyde elimination during pregnancy preserves the fetal genome.

    Oberbeck, Nina; Langevin, Frédéric; King, Gareth; de Wind, Niels; Crossan, Gerry P; Patel, Ketan J

    2014-09-18

    Maternal metabolism provides essential nutrients to enable embryonic development. However, both mother and embryo produce reactive metabolites that can damage DNA. Here we discover how the embryo is protected from these genotoxins. Pregnant mice lacking Aldh2, a key enzyme that detoxifies reactive aldehydes, cannot support the development of embryos lacking the Fanconi anemia DNA repair pathway gene Fanca. Remarkably, transferring Aldh2(-/-)Fanca(-/-) embryos into wild-type mothers suppresses developmental defects and rescues embryonic lethality. These rescued neonates have severely depleted hematopoietic stem and progenitor cells, indicating that despite intact maternal aldehyde catabolism, fetal Aldh2 is essential for hematopoiesis. Hence, maternal and fetal aldehyde detoxification protects the developing embryo from DNA damage. Failure of this genome preservation mechanism might explain why birth defects and bone marrow failure occur in Fanconi anemia, and may have implications for fetal well-being in the many women in Southeast Asia that are genetically deficient in ALDH2. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Fetal MRI: techniques and protocols

    Prayer, Daniela; Brugger, Peter Christian; Prayer, Lucas

    2004-01-01

    The development of ultrafast sequences has led to a significant improvement in fetal MRI. Imaging protocols have to be adjusted to the rapidly developing fetal central nervous system (CNS) and to the clinical question. Sequence parameters must be changed to cope with the respective developmental stage, to produce images free from motion artefacts and to provide optimum visualization of the region and focus of interest. In contrast to postnatal studies, every suspect fetal CNS abnormality requires examination of the whole fetus and the extrafetal intrauterine structures including the uterus. This approach covers both aspects of fetal CNS disorders: isolated and complex malformations and cerebral lesions arising from the impaired integrity of the feto-placental unit. (orig.)

  9. Fetal programming of renal function.

    Dötsch, Jörg; Plank, Christian; Amann, Kerstin

    2012-04-01

    Results from large epidemiological studies suggest a clear relation between low birth weight and adverse renal outcome evident as early as during childhood. Such adverse outcomes may include glomerular disease, hypertension, and renal failure and contribute to a phenomenon called fetal programming. Other factors potentially leading to an adverse renal outcome following fetal programming are maternal diabetes mellitus, smoking, salt overload, and use of glucocorticoids during pregnancy. However, clinical data on the latter are scarce. Here, we discuss potential underlying mechanisms of fetal programming, including reduced nephron number via diminished nephrogenesis and other renal (e.g., via the intrarenal renin-angiotensin-aldosterone system) and non-renal (e.g., changes in endothelial function) alterations. It appears likely that the outcomes of fetal programming may be influenced or modified postnatally, for example, by the amount of nutrients given at critical times.

  10. Fetal MRI: techniques and protocols

    Prayer, Daniela [Department of Neuroradiology, University Clinics of Radiodiagnostics, Medical University Vienna, Waehringerguertel 18-10, 1090, Vienna (Austria); Brugger, Peter Christian [Department of Anatomy, Integrative Morphology Group, Medical University Vienna (Austria); Prayer, Lucas [Diagnosezentrum Urania, Vienna (Austria)

    2004-09-01

    The development of ultrafast sequences has led to a significant improvement in fetal MRI. Imaging protocols have to be adjusted to the rapidly developing fetal central nervous system (CNS) and to the clinical question. Sequence parameters must be changed to cope with the respective developmental stage, to produce images free from motion artefacts and to provide optimum visualization of the region and focus of interest. In contrast to postnatal studies, every suspect fetal CNS abnormality requires examination of the whole fetus and the extrafetal intrauterine structures including the uterus. This approach covers both aspects of fetal CNS disorders: isolated and complex malformations and cerebral lesions arising from the impaired integrity of the feto-placental unit. (orig.)

  11. Applications of cell-free protein synthesis in synthetic biology: Interfacing bio-machinery with synthetic environments.

    Lee, Kyung-Ho; Kim, Dong-Myung

    2013-11-01

    Synthetic biology is built on the synthesis, engineering, and assembly of biological parts. Proteins are the first components considered for the construction of systems with designed biological functions because proteins carry out most of the biological functions and chemical reactions inside cells. Protein synthesis is considered to comprise the most basic levels of the hierarchical structure of synthetic biology. Cell-free protein synthesis has emerged as a powerful technology that can potentially transform the concept of bioprocesses. With the ability to harness the synthetic power of biology without many of the constraints of cell-based systems, cell-free protein synthesis enables the rapid creation of protein molecules from diverse sources of genetic information. Cell-free protein synthesis is virtually free from the intrinsic constraints of cell-based methods and offers greater flexibility in system design and manipulability of biological synthetic machinery. Among its potential applications, cell-free protein synthesis can be combined with various man-made devices for rapid functional analysis of genomic sequences. This review covers recent efforts to integrate cell-free protein synthesis with various reaction devices and analytical platforms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cell-free placental mRNA in maternal plasma to predict placental invasion in patients with placenta accreta.

    El Behery, Manal M; Rasha L, Etewa; El Alfy, Yehya

    2010-04-01

    To evaluate whether measuring cell-free placental mRNA in maternal plasma improves the diagnostic accuracy of ultrasound and color Doppler in detecting placental invasion in patients at risk for placenta accreta. Thirty-five singleton pregnant women of more than 28 weeks of gestation and at risk for placenta accreta underwent ultrasound and color Doppler assessment. Cell-free placental mRNA in maternal plasma was measured using real-time reverse-transcription polymerase chain reaction. Patients were classified into 2 groups based on the findings at cesarean delivery and histological examination: women with placenta accreta (n=7) and women without placenta accreta (n=28). The median MoM (multiples of the median) value of cell-free placental mRNA was significantly higher in patients with placenta accreta than in those without placenta accreta (6.50 vs 2.60; Pplacental mRNA was significantly elevated in patients with placenta increta and percreta than in those with simple accreta. Six false-positive results were found on ultrasound, all from patients without placenta accreta and an insignificant rise in cell-free placental mRNA levels. Measuring cell-free placental mRNA in maternal plasma may increase the accuracy of ultrasound and color Doppler in prenatal prediction of placental invasion in patients with suspected placenta accreta. Copyright 2009 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Glucocorticoids and fetal programming part 2: Mechanisms.

    Moisiadis, Vasilis G; Matthews, Stephen G

    2014-07-01

    The lifelong health of an individual is shaped during critical periods of development. The fetus is particularly susceptible to internal and external stimuli, many of which can alter developmental trajectories and subsequent susceptibility to disease. Glucocorticoids are critical in normal development of the fetus, as they are involved in the growth and maturation of many organ systems. The surge in fetal glucocorticoid levels that occurs in most mammalian species over the last few days of pregnancy is an important developmental switch leading to fundamental changes in gene regulation in many organs, including the brain. These changes are important for the transition to postnatal life. Exposure of the fetus to increased levels of glucocorticoids, resulting from maternal stress or treatment with synthetic glucocorticoids, can lead to long-term 'programming' of hypothalamic-pituitary-adrenal function and behaviours. Glucocorticoids act at multiple levels within the fetal brain. Growing evidence indicates that they can exert powerful effects on the epigenome, including on DNA methylation, histone acetylation and microRNA, to influence gene expression. Such influences probably represent a critical component of the 'programming' process, and might be partly responsible for the transgenerational effects of antenatal glucocorticoid exposure on neurologic, cardiovascular and metabolic function.

  14. Analysis of fetal movements by Doppler actocardiogram and fetal B-mode imaging.

    Maeda, K; Tatsumura, M; Utsu, M

    1999-12-01

    We have presented that fetal surveillance may be enhanced by use of the fetal actocardiogram and by computerized processing of fetal motion as well as fetal B-mode ultrasound imaging. Ultrasonic Doppler fetal actogram is a sensitive and objective method for detecting and recording fetal movements. Computer processing of the actograph output signals enables powerful, detailed, and convenient analysis of fetal physiologic phenomena. The actocardiogram is a useful measurement tool not only in fetal behavioral studies but also in evaluation of fetal well-being. It reduces false-positive, nonreactive NST and false-positive sinusoidal FHR pattern. It is a valuable tool to predict fetal distress. The results of intrapartum fetal monitoring are further improved by the antepartum application of the actocardiogram. Quantified fetal motion analysis is a useful, objective evaluation of the embryo and fetus. This method allows monitoring of changes in fetal movement, as well as frequency, amplitude, and duration. Furthermore, quantification of fetal motion enables evaluation of fetal behavior states and how these states relate to other measurements, such as changes in FHR. Numeric analysis of both fetal actogram and fetal motion from B-mode images is a promising application in the correlation of fetal activity or behavior with other fetal physiologic measurements.

  15. Prenatal diagnosis of fetal syndromes

    Murthy, BS Rama

    2008-01-01

    A syndrome is a pattern of multiple anomalies arising due to a single known causative factor. Ultrasonography has enabled us to recognize many fetal anomalies and dysmorphic features. Recognition of the anomaly pattern leads to the diagnosis of a particular syndrome. This enables us to counsel prospective parents and aids in management. We present a selection of fetal syndromes in the form of a pictorial essay

  16. Cell-Free Synthetic Biology Chassis for Nanocatalytic Photon-to-Hydrogen Conversion.

    Wang, Peng; Chang, Angela Y; Novosad, Valentyn; Chupin, Vladimir V; Schaller, Richard D; Rozhkova, Elena A

    2017-07-25

    We report on an entirely man-made nano-bio architecture fabricated through noncovalent assembly of a cell-free expressed transmembrane proton pump and TiO 2 semiconductor nanoparticles as an efficient nanophotocatalyst for H 2 evolution. The system produces hydrogen at a turnover of about 240 μmol of H 2 (μmol protein) -1 h -1 and 17.74 mmol of H 2 (μmol protein) -1 h -1 under monochromatic green and white light, respectively, at ambient conditions, in water at neutral pH and room temperature, with methanol as a sacrificial electron donor. Robustness and flexibility of this approach allow for systemic manipulation at the nanoparticle-bio interface toward directed evolution of energy transformation materials and artificial systems.

  17. Diagnostic and Prognostic MicroRNA Biomarkers for Prostate Cancer in Cell-free Urine

    Fredsøe, Jacob Christian; Rasmussen, Anne Karin; Thomsen, Anni Rønfeldt

    2017-01-01

    Background: Widespread use of prostate-specific antigen (PSA) testing for prostate cancer (PC) detection has led to extensive overdiagnosis and overtreatment. Urine-based microRNA (miRNA) biomarkers could be useful in PC diagnosis and prognosis. Objective: To train and validate urine-based micro......RNA (miRNA) biomarkers that may assist in PC diagnosis and prognosis. Design, setting, and participants: We profiled the expression levels of 92 miRNAs via reverse transcriptase–poymerase chain reaction in cell-free urine samples from 29 patients with benign prostatic hyperplasia (BPH) and 215 patients...... could help in primary diagnosis of PC and guide treatment decisions. Further validation studies are warranted. Patient summary: Using two large patient cohorts, we searched for novel prostate cancer biomarkers in urine. We found two new sets of microRNA biomarkers in urine that could accurately predict...

  18. Efficiency and fidelity of cell-free protein synthesis by transfer RNA from aged mice

    Foote, R.S.; Stulberg, M.P.

    1980-01-01

    Transfer RNAs (tRNAs) from heart, kidney, liver, and spleen of mature (10 to 12 months old) and aged (29 months old) C57BL/6 mice were tested for their ability to translate encephalomyocarditis viral RNA in a tRNA-dependent cell-free system derived from mouse ascites tumor cells. The rates of in vitro protein synthesis were compared as a function of tRNA concentration, and the fidelity of translation was examined by sodium dodecyl sulfate gel electrophoresis and isoelectric focusing of the viral polypeptides synthesized in vitro. No significant age-related differences in either the efficiency or fidelity of synthesis were discovered, indicating that alternations in tRNAs are probably not involved in the cellular aging of these tissues.

  19. Coping with complexity: machine learning optimization of cell-free protein synthesis.

    Caschera, Filippo; Bedau, Mark A; Buchanan, Andrew; Cawse, James; de Lucrezia, Davide; Gazzola, Gianluca; Hanczyc, Martin M; Packard, Norman H

    2011-09-01

    Biological systems contain complex metabolic pathways with many nonlinearities and synergies that make them difficult to predict from first principles. Protein synthesis is a canonical example of such a pathway. Here we show how cell-free protein synthesis may be improved through a series of iterated high-throughput experiments guided by a machine-learning algorithm implementing a form of evolutionary design of experiments (Evo-DoE). The algorithm predicts fruitful experiments from statistical models of the previous experimental results, combined with stochastic exploration of the experimental space. The desired experimental response, or evolutionary fitness, was defined as the yield of the target product, and new experimental conditions were discovered to have ∼ 350% greater yield than the standard. An analysis of the best experimental conditions discovered indicates that there are two distinct classes of kinetics, thus showing how our evolutionary design of experiments is capable of significant innovation, as well as gradual improvement. Copyright © 2011 Wiley Periodicals, Inc.

  20. Epigenetic regulation and fetal programming.

    Gicquel, Christine; El-Osta, Assam; Le Bouc, Yves

    2008-02-01

    Fetal programming encompasses the role of developmental plasticity in response to environmental and nutritional signals during early life and its potential adverse consequences (risk of cardiovascular, metabolic and behavioural diseases) in later life. The first studies in this field highlighted an association between poor fetal growth and chronic adult diseases. However, environmental signals during early life may lead to adverse long-term effects independently of obvious effects on fetal growth. Adverse long-term effects reflect a mismatch between early (fetal and neonatal) environmental conditions and the conditions that the individual will confront later in life. The mechanisms underlying this risk remain unclear. However, experimental data in rodents and recent observations in humans suggest that epigenetic changes in regulatory genes and growth-related genes play a significant role in fetal programming. Improvements in our understanding of the biochemical and molecular mechanisms at play in fetal programming would make it possible to identify biomarkers for detecting infants at high risk of adult-onset diseases. Such improvements should also lead to the development of preventive and therapeutic strategies.

  1. Genomics-based non-invasive prenatal testing for detection of fetal chromosomal aneuploidy in pregnant women.

    Badeau, Mylène; Lindsay, Carmen; Blais, Jonatan; Nshimyumukiza, Leon; Takwoingi, Yemisi; Langlois, Sylvie; Légaré, France; Giguère, Yves; Turgeon, Alexis F; Witteman, William; Rousseau, François

    2017-11-10

    Common fetal aneuploidies include Down syndrome (trisomy 21 or T21), Edward syndrome (trisomy 18 or T18), Patau syndrome (trisomy 13 or T13), Turner syndrome (45,X), Klinefelter syndrome (47,XXY), Triple X syndrome (47,XXX) and 47,XYY syndrome (47,XYY). Prenatal screening for fetal aneuploidies is standard care in many countries, but current biochemical and ultrasound tests have high false negative and false positive rates. The discovery of fetal circulating cell-free DNA (ccfDNA) in maternal blood offers the potential for genomics-based non-invasive prenatal testing (gNIPT) as a more accurate screening method. Two approaches used for gNIPT are massively parallel shotgun sequencing (MPSS) and targeted massively parallel sequencing (TMPS). To evaluate and compare the diagnostic accuracy of MPSS and TMPS for gNIPT as a first-tier test in unselected populations of pregnant women undergoing aneuploidy screening or as a second-tier test in pregnant women considered to be high risk after first-tier screening for common fetal aneuploidies. The gNIPT results were confirmed by a reference standard such as fetal karyotype or neonatal clinical examination. We searched 13 databases (including MEDLINE, Embase and Web of Science) from 1 January 2007 to 12 July 2016 without any language, search filter or publication type restrictions. We also screened reference lists of relevant full-text articles, websites of private prenatal diagnosis companies and conference abstracts. Studies could include pregnant women of any age, ethnicity and gestational age with singleton or multifetal pregnancy. The women must have had a screening test for fetal aneuploidy by MPSS or TMPS and a reference standard such as fetal karyotype or medical records from birth. Two review authors independently carried out study selection, data extraction and quality assessment (using the QUADAS-2 tool). Where possible, hierarchical models or simpler alternatives were used for meta-analysis. Sixty-five studies of

  2. Fetal Kidney Anomalies: Next Generation Sequencing

    Rasmussen, Maria; Sunde, Lone; Nielsen, Marlene Louise

    Aim and Introduction Identification of abnormal kidneys in the fetus may lead to termination of the pregnancy and raises questions about the underlying cause and recurrence risk in future pregnancies. In this study, we investigate the effectiveness of targeted next generation sequencing in fetuses...... with prenatally detected kidney anomalies in order to uncover genetic explanations and assess recurrence risk. Also, we aim to study the relation between genetic findings and post mortem kidney histology. Methods The study comprises fetuses diagnosed prenatally with bilateral kidney anomalies that have undergone...... postmortem examination. The approximately 110 genes included in the targeted panel were chosen on the basis of their potential involvement in embryonic kidney development, cystic kidney disease, or the renin-angiotensin system. DNA was extracted from fetal tissue samples or cultured chorion villus cells...

  3. Average fetal depth in utero: data for estimation of fetal absorbed radiation dose

    Ragozzino, M.W.; Breckle, R.; Hill, L.M.; Gray, J.E.

    1986-01-01

    To estimate fetal absorbed dose from radiographic examinations, the depth from the anterior maternal surface to the midline of the fetal skull and abdomen was measured by ultrasound in 97 pregnant women. The relationships between fetal depth, fetal presentation, and maternal parameters of height, weight, anteroposterior (AP) thickness, gestational age, placental location, and bladder volume were analyzed. Maternal AP thickness (MAP) can be estimated from gestational age, maternal height, and maternal weight. Fetal midskull and abdominal depths were nearly equal. Fetal depth normalized to MAP was independent or nearly independent of maternal parameters and fetal presentation. These data enable a reasonable estimation of absorbed dose to fetal brain, abdomen, and whole body

  4. A novel non-invasive detection method for the FGFR3 gene mutation in maternal plasma for a fetal achondroplasia diagnosis based on signal amplification by hemin-MOFs/PtNPs.

    Chen, Jun; Yu, Chao; Zhao, Yilin; Niu, Yazhen; Zhang, Lei; Yu, Yujie; Wu, Jing; He, Junlin

    2017-05-15

    The small amount of cell-free fetal DNA (cffDNA) can be a useful biomarker for early non-invasive prenatal diagnosis (NIPD) of achondroplasia. In this study, a novel non-invasive electrochemical DNA sensor for ultrasensitive detecting FGFR3 mutation gene, a pathogenic gene of achondroplasia, based on biocatalytic signal materials and the biotin-streptavidin system are presented. Notably encapsulation of hemin in metal-organic frameworks-based materials (hemin-MOFs) and platinum nanoparticles (PtNPs) were used to prepare hemin-MOFs/PtNPs composites via a one-beaker-one-step reduction. We utilized hemin-MOFs/PtNPs for signal amplification because the promising hemin-MOFs/PtNPs nanomaterial has remarkable ability of catalyze H 2 O 2 as well as excellent conductivity. To further amplify the electrochemical signal, reduced graphene oxide-tetraethylene pentamine (rGO-TEPA), gold nanoparticles and streptavidin were selected for modification of the electrode to enhance the conductivity and immobilize more biotin-modified capture probe (Bio-CP) through the high specificity and superior affinity between streptavidin and biotin. The electrochemical signal was primarily derived from the synergistic catalysis of H 2 O 2 by hemin and PtNPs and recorded by Chronoamperometry. Under the optimal conditions, this newly designed biosensor exhibited sensitive detection of FGFR3 from 0.1fM to 1nM with a low detection limit of 0.033fM (S/N=3). We proposed that this ultrasensitive biosensor is useful for the early non-invasive prenatal diagnosis of achondroplasia. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The Danish Fetal Medicine Database

    Ekelund CK

    2016-10-01

    Full Text Available Charlotte Kvist Ekelund,1 Tine Iskov Kopp,2 Ann Tabor,1 Olav Bjørn Petersen3 1Department of Obstetrics, Center of Fetal Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; 2Registry Support Centre (East – Epidemiology and Biostatistics, Research Centre for Prevention and Health, Glostrup, Denmark; 3Fetal Medicine Unit, Aarhus University Hospital, Aarhus Nord, Denmark Aim: The aim of this study is to set up a database in order to monitor the detection rates and false-positive rates of first-trimester screening for chromosomal abnormalities and prenatal detection rates of fetal malformations in Denmark. Study population: Pregnant women with a first or second trimester ultrasound scan performed at all public hospitals in Denmark are registered in the database. Main variables/descriptive data: Data on maternal characteristics, ultrasonic, and biochemical variables are continuously sent from the fetal medicine units' Astraia databases to the central database via web service. Information about outcome of pregnancy (miscarriage, termination, live birth, or stillbirth is received from the National Patient Register and National Birth Register and linked via the Danish unique personal registration number. Furthermore, results of all pre- and postnatal chromosome analyses are sent to the database. Conclusion: It has been possible to establish a fetal medicine database, which monitors first-trimester screening for chromosomal abnormalities and second-trimester screening for major fetal malformations with the input from already collected data. The database is valuable to assess the performance at a regional level and to compare Danish performance with international results at a national level. Keywords: prenatal screening, nuchal translucency, fetal malformations, chromosomal abnormalities

  6. Fetal electrocardiogram (ECG) for fetal monitoring during labour.

    Neilson, James P

    2015-12-21

    Hypoxaemia during labour can alter the shape of the fetal electrocardiogram (ECG) waveform, notably the relation of the PR to RR intervals, and elevation or depression of the ST segment. Technical systems have therefore been developed to monitor the fetal ECG during labour as an adjunct to continuous electronic fetal heart rate monitoring with the aim of improving fetal outcome and minimising unnecessary obstetric interference. To compare the effects of analysis of fetal ECG waveforms during labour with alternative methods of fetal monitoring. The Cochrane Pregnancy and Childbirth Group's Trials Register (latest search 23 September 2015) and reference lists of retrieved studies. Randomised trials comparing fetal ECG waveform analysis with alternative methods of fetal monitoring during labour. One review author independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy. One review author assessed the quality of the evidence using the GRADE approach. Seven trials (27,403 women) were included: six trials of ST waveform analysis (26,446 women) and one trial of PR interval analysis (957 women). The trials were generally at low risk of bias for most domains and the quality of evidence for ST waveform analysis trials was graded moderate to high. In comparison to continuous electronic fetal heart rate monitoring alone, the use of adjunctive ST waveform analysis made no obvious difference to primary outcomes: births by caesarean section (risk ratio (RR) 1.02, 95% confidence interval (CI) 0.96 to 1.08; six trials, 26,446 women; high quality evidence); the number of babies with severe metabolic acidosis at birth (cord arterial pH less than 7.05 and base deficit greater than 12 mmol/L) (average RR 0.72, 95% CI 0.43 to 1.20; six trials, 25,682 babies; moderate quality evidence); or babies with neonatal encephalopathy (RR 0.61, 95% CI 0.30 to 1.22; six trials, 26,410 babies; high quality evidence). There were, however, on average

  7. Fetal Programming and Cardiovascular Pathology

    Alexander, Barbara T.; Dasinger, John Henry; Intapad, Suttira

    2016-01-01

    Low birth weight serves as a crude proxy for impaired growth during fetal life and indicates a failure for the fetus to achieve its full growth potential. Low birth weight can occur in response to numerous etiologies that include complications during pregnancy, poor prenatal care, parental smoking, maternal alcohol consumption or stress. Numerous epidemiological and experimental studies demonstrate that birth weight is inversely associated with blood pressure and coronary heart disease. Sex and age impact the developmental programming of hypertension. In addition, impaired growth during fetal life also programs enhanced vulnerability to a secondary insult. Macrosomia, which occurs in response to maternal obesity, diabetes and excessive weight gain during gestation, is also associated with increased cardiovascular risk. Yet, the exact mechanisms that permanently change the structure, physiology and endocrine health of an individual across their lifespan following altered growth during fetal life are not entirely clear. Transmission of increased risk from one generation to the next in the absence of an additional prenatal insult indicates an important role for epigenetic processes. Experimental studies also indicate that the sympathetic nervous system, the renin angiotensin system, increased production of oxidative stress and increased endothelin play an important role in the developmental programming of blood pressure in later life. Thus, this review will highlight how adverse influences during fetal life and early development program an increased risk for cardiovascular disease including high blood pressure and provide an overview of the underlying mechanisms that contribute to the fetal origins of cardiovascular pathology. PMID:25880521

  8. Fetal programming and cardiovascular pathology.

    Alexander, Barbara T; Dasinger, John Henry; Intapad, Suttira

    2015-04-01

    Low birth weight serves as a crude proxy for impaired growth during fetal life and indicates a failure for the fetus to achieve its full growth potential. Low birth weight can occur in response to numerous etiologies that include complications during pregnancy, poor prenatal care, parental smoking, maternal alcohol consumption, or stress. Numerous epidemiological and experimental studies demonstrate that birth weight is inversely associated with blood pressure and coronary heart disease. Sex and age impact the developmental programming of hypertension. In addition, impaired growth during fetal life also programs enhanced vulnerability to a secondary insult. Macrosomia, which occurs in response to maternal obesity, diabetes, and excessive weight gain during gestation, is also associated with increased cardiovascular risk. Yet, the exact mechanisms that permanently change the structure, physiology, and endocrine health of an individual across their lifespan following altered growth during fetal life are not entirely clear. Transmission of increased risk from one generation to the next in the absence of an additional prenatal insult indicates an important role for epigenetic processes. Experimental studies also indicate that the sympathetic nervous system, the renin angiotensin system, increased production of oxidative stress, and increased endothelin play an important role in the developmental programming of blood pressure in later life. Thus, this review will highlight how adverse influences during fetal life and early development program an increased risk for cardiovascular disease including high blood pressure and provide an overview of the underlying mechanisms that contribute to the fetal origins of cardiovascular pathology. © 2015 American Physiological Society.

  9. Optimizing Immobilized Enzyme Performance in Cell-Free Environments to Produce Liquid Fuels

    Belfort, Georges [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering; Grimaldi, Joseph J. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering

    2015-01-27

    Limitations on biofuel production using cell culture (Escherichia coli, Clostridium, Saccharomyces cerevisiae, brown microalgae, blue-green algae and others) include low product (alcohol) concentrations (≤0.2 vol%) due to feedback inhibition, instability of cells, and lack of economical product recovery processes. To overcome these challenges, an alternate simplified biofuel production scheme was tested based on a cell-free immobilized enzyme system. Using this cell free system, we were able to obtain about 2.6 times higher concentrations of iso-butanol using our non-optimized system as compared with live cell systems. This process involved two steps: (i) converts acid to aldehyde using keto-acid decarboxylase (KdcA), and (ii) produces alcohol from aldehyde using alcohol dehydrogenase (ADH) with a cofactor (NADH) conversion from inexpensive formate using a third enzyme, formate dehydrogenase (FDH). To increase stability and conversion efficiency with easy separations, the first two enzymes were immobilized onto methacrylate resin. Fusion proteins of labile KdcA (fKdcA) were expressed to stabilize the covalently immobilized KdcA. Covalently immobilized ADH exhibited long-term stability and efficient conversion of aldehyde to alcohol over multiple batch cycles without fusions. High conversion rates and low protein leaching were achieved by covalent immobilization of enzymes on methacrylate resin. The complete reaction scheme was demonstrated by immobilizing both ADH and fKdcA and using FDH free in solution. The new system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.5 % (v/v). Further increases in titer will require continuous removal of the isobutanol using our novel brush membrane system that exhibits a 1.5 fold increase in the separation factor of isobutanol from water versus that obtained for commercial silicone rubber membranes. These bio-inspired brush membranes are based on the

  10. Impact of collection season and storage of semen on methylation activity in swine placental and fetal tissues derived from summer or winter breedings

    DNA methylation patterns in extra-embryonic tissues have been linked to irregular fetal growth and early pregnancy loss. The objective of the current study was to evaluate methylation profiles of placental and fetal tissue collected from pregnancies derived using cooled-extended (ExT) or cryopreserv...

  11. The circulating cell-free microrna profile in systemic sclerosis is distinct from both healthy controls and Systemic Lupus Erythematosus

    Steen, S. O.; Iversen, L. V.; Carlsen, A. L.

    2015-01-01

    Objective. To evaluate the expression profile of cell-free circulating microRNA (miRNA) in systemic sclerosis (SSc), healthy controls (HC), and systemic lupus erythematosus (SLE). Methods. Total RNA was purified from plasma and 45 different, mature miRNA were measured using quantitative PCR assays...

  12. A Continuous-Exchange Cell-Free Protein Synthesis System Based on Extracts from Cultured Insect Cells

    Stech, Marlitt; Quast, Robert B.; Sachse, Rita; Schulze, Corina; Wüstenhagen, Doreen A.; Kubick, Stefan

    2014-01-01

    In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds. PMID:24804975

  13. Fetal red blood cell parameters in thalassemia and hemoglobinopathies.

    Karnpean, Rossarin; Fucharoen, Goonnapa; Fucharoen, Supan; Ratanasiri, Thawalwong

    2013-01-01

    With the lack of fetal blood specimens in routine practice, little is known about red blood cell (RBC) parameters of fetuses with various thalassemia syndromes. This study aimed to describe these in various forms of thalassemia. The study was performed on 93 fetal blood specimens obtained from pregnant women by cordocentesis during 18-24 weeks of gestation. RBC parameters were recorded on automated analyzer. Hemoglobin (Hb) and DNA analyses were performed for definite genotyping. No significant difference in RBC parameters was observed between non-thalassemic fetuses and those with β-thalassemia trait, Hb E trait, homozygous Hb E and β-thalassemia/Hb E disease. However, in those with α(0)-thalassemia trait and double heterozygous α(0)-thalassemia/Hb E, slight reduction in mean corpuscular volume (MCV) was noted. Fetuses with the Hb H disease showed significant reductions in Hb, MCV and mean corpuscular Hb (MCH). Marked reductions in Hb, hematocrit, MCH and mean cell Hb concentration and increased RBC distribution width with numerous nucleated RBC were clearly observed in Hb Bart's hydrops fetalis. Simple analysis of fetal RBC parameters is useful for making presumptive prenatal diagnosis of α-thalassemia syndromes including Hb H disease and Hb Bart's hydrops fetalis which can then be confirmed by Hb and DNA analyses. Copyright © 2013 S. Karger AG, Basel.

  14. [Fetal version as ambulatory intervention].

    Nohe, G; Hartmann, W; Klapproth, C E

    1996-06-01

    The external cephalic version (ECV) of the fetus at term reduces the maternal and fetal risks of intrapartum breech presentation and Caesarean delivery. Since 1986 over 800 external cephalic versions were performed in the outpatient Department of Obstetrics and Gynaecology of the Städtische Frauenklinik Stuttgart. 60.5% were successful. NO severe complications occurred. Sufficient amniotic fluid as well as the mobility of the fetal breech is a major criterion for the success of the ECV. Management requires a safe technique for mother and fetus. This includes ultrasonography, elektronic fetal monitoring and the ability to perform immediate caesarean delivery as well as the performance of ECV without analgesicas and sedatives. More than 70% of the ECV were successful without tocolysis. In unsuccessful cases the additional use of tocolysis improves the success rate only slightly. Therefore routine use of tocolysis does not appear necessary. External cephalic version can be recommended as an outpatient treatment without tocolysis.

  15. The Danish Fetal Medicine Database

    Ekelund, Charlotte K; Petersen, Olav B; Jørgensen, Finn S

    2015-01-01

    OBJECTIVE: To describe the establishment and organization of the Danish Fetal Medicine Database and to report national results of first-trimester combined screening for trisomy 21 in the 5-year period 2008-2012. DESIGN: National register study using prospectively collected first-trimester screening...... data from the Danish Fetal Medicine Database. POPULATION: Pregnant women in Denmark undergoing first-trimester screening for trisomy 21. METHODS: Data on maternal characteristics, biochemical and ultrasonic markers are continuously sent electronically from local fetal medicine databases (Astraia Gmbh...... software) to a central national database. Data are linked to outcome data from the National Birth Register, the National Patient Register and the National Cytogenetic Register via the mother's unique personal registration number. First-trimester screening data from 2008 to 2012 were retrieved. MAIN OUTCOME...

  16. Fetal exposure in diagnostic radiology

    Baker, M.L.; Vandergrift, J.F.; Dalrymple, G.V.

    1979-01-01

    The problem of possible radiation damage to the fetus or embryo as a result of diagnostic radiography during pregnancy, particularly in the early stages, is discussed. Recommendations of therapeutic abortion after fetal exposure require an adequate knowledge of the doses involved. In the absence of actual dose measurements or estimates, approximate exposure levels may be determined from the literature. A summary of published values for radiography involving the lower abdomen is given. Data is also presented from a series of fetal exposures resulting mostly from routine diagnostic radiography when pregnancy was not known at the time but was established later. Results of actual dose measurements using a phantom and of dose calculations based on published values are in reasonable agreement indicating that literature values of dose provide a satisfactory alternative to measurement. These data suggest that diagnostic radiography rarely, if ever, results in fetal exposures high enough to justify therapeutic abortion. (author)

  17. Fetal Heart Rate Monitoring during Labor

    ... What are the types of monitoring? • How is auscultation performed? • How is electronic fetal monitoring performed? • How ... methods of fetal heart rate monitoring in labor. Auscultation is a method of periodically listening to the ...

  18. Births and deaths including fetal deaths

    U.S. Department of Health & Human Services — Access to a variety of United States birth and death files including fetal deaths: Birth Files, 1968-2009; 1995-2005; Fetal death file, 1982-2005; Mortality files,...

  19. Fetal scalp blood sampling during labor

    Chandraharan, Edwin; Wiberg, Nana

    2014-01-01

    Fetal cardiotocography is characterized by low specificity; therefore, in an attempt to ensure fetal well-being, fetal scalp blood sampling has been recommended by most obstetric societies in the case of a non-reassuring cardiotocography. The scientific agreement on the evidence for using fetal...... scalp blood sampling to decrease the rate of operative delivery for fetal distress is ambiguous. Based on the same studies, a Cochrane review states that fetal scalp blood sampling increases the rate of instrumental delivery while decreasing neonatal acidosis, whereas the National Institute of Health...... and Clinical Excellence guideline considers that fetal scalp blood sampling decreases instrumental delivery without differences in other outcome variables. The fetal scalp is supplied by vessels outside the skull below the level of the cranial vault, which is likely to be compressed during contractions...

  20. Coupled cell-free synthesis, segregation, and core glycosylation of a secretory protein.

    Lingappa, V R; Lingappa, J R; Prasad, R; Ebner, K E; Blobel, G

    1978-05-01

    mRNA from rat mammary glands 13-15 days post partum was translated in a wheat germ cell-free system either in the absence or in the presence of ribosome-denuded membranes prepared from isolated rough microsomes of dog pancreas. Newly synthesized alpha-lactalbumin was identified by immunoprecipitation with a monospecific rabbit antiserum against rat alpha-lactalbumin and was characterized by partial amino-terminal sequence determination and by lectin affinity chromatography. In the absence of membranes a presumably unglycosylated form of alpha-lactalbumin was synthesized that bound neither to concanavalin A-Sepharose nor to Ricinus communis lectin-agarose and that contained an amino-terminal signal peptide region comprising 19 amino acid residues. In the presence of membranes a processed form was synthesized that lacked the signal peptide portion and that had an amino-terminal sequence identical to that of mature alpha-lactalbumin. Furthermore, this processed form was found to be segregated, presumably within the microsomal vesicles, because it was resistant to post-translational proteolysis. It was also found to be glycosylated, and because it bound to concanavalin A-Sepharose, from which it could be eluted specifically by alpha-methyl mannoside, but not to R. communis lectin-agarose, it was presumably core-glycosylated. Processing, segregation, and core glycosylation were observed to proceed only when membranes were present during translation and not when they were added after translation.

  1. Cell-free oxygen carriers: scientific foundations, clinical development, and new directions.

    Winslow, Robert M

    2008-10-01

    The most significant hurdle to the development of a safe and effective hemoglobin-based oxygen carrier ("blood substitute") is generally thought to be its propensity to cause vasoconstriction in the microcirculation and hypertension. Two theories for this effect are currently being studied: in one, scavenging NO by hemoglobin reduces vasorelaxation; in the other, cell-free hemoglobin oversupplies O2 (a known vasoconstrictor) to vascular walls by facilitated diffusion. While both mechanisms might lead to reduction of local NO concentration, the important distinction between the two is that if the NO scavenging theory is correct, it greatly diminishes the prospects to develop any solution based on free hemoglobin. However, if the O2-oversupply theory is correct, modifications to the hemoglobin molecule can be envisioned that can prevent oversupply and reduce toxicity. This review summarizes the development of Hemospan, a novel modification of human hemoglobin whose design is based on the O2-oversupply theory. Because of its low P50 and increased molecular size, the release of O2 in resistance vessels (arterioles) by Hemospan is restricted, and vasoconstriction is greatly reduced.

  2. Analysis of signal transduction in cell-free extracts and rafts of Xenopus eggs.

    Tokmakov, Alexander A; Iwasaki, Tetsushi; Sato, Ken-Ichi; Fukami, Yasuo

    2010-05-01

    Intracellular signaling during egg activation/fertilization has been extensively studied using intact eggs, which can be manipulated by microinjection of different mRNAs, proteins, or chemical drugs. Furthermore, egg extracts, which retain high CSF activity (CSF-arrested extracts), were developed for studying fertilization/activation signal transduction, which have significant advantages as a model system. The addition of calcium to CSF-arrested extracts initiates a plethora of signaling events that take place during egg activation. Hence, the signaling downstream of calcium mobilization has been successfully studied in the egg extracts. Moreover, despite disruption of membrane-associated signaling compartments and ordered compartmentalization during extract preparation, CSF-arrested extracts can be successfully used to study early signaling events, which occur upstream of calcium release during egg activation/fertilization. In combination with the CSF-arrested extracts, activated egg rafts can reproduce some events of egg activation, including PLCgamma activation, IP3 production, transient calcium release, MAPK inactivation, and meiotic exit. This becomes possible due to complementation of the sperm-induced egg activation signaling machinery present in the rafts with the components of signal transduction system localized in the extracts. Herein, we describe protocols for studying molecular mechanisms of egg fertilization/activation using cell-free extracts and membrane rafts prepared from metaphase-arrested Xenopus eggs.

  3. Control of protein synthesis in cell-free extracts of sea urchin embryos

    Hansen, L.J.; Huang, W.I.; Jagus, R.

    1986-01-01

    Although the increase in protein synthesis that occurs after fertilization of sea urchin eggs results from increased utilization of stored maternal mRNA, the underlying mechanism is unknown. The authors have prepared cell-free extracts from S.purpuratus and A.puctulata unfertilized eggs and 2-cell embryos that retain the protein synthetic differences observed in vivo. The method is based on that of Dr. Alina Lopo. 35 S methionine incorporation is linear during a 30 min incubation and is 10-20 fold higher in extracts from 2-cell embryos than unfertilized eggs. Addition of purified mRNA does not stimulate these systems, suggesting a regulatory mechanism other than mRNA masking. Addition of rabbit reticulocyte ribosomal salt wash stimulated protein synthesis in extracts from eggs but not embryos, suggesting deficiencies in translational components in unfertilized eggs. Mixing of egg and embryo lysates indicated the presence of a weak protein synthesis inhibitor in eggs. Translational control in developing sea urchin embryos thus appears to be complex, involving both stimulatory and inhibitory factors

  4. Effects of polymorphisms in ovine and caprine prion protein alleles on cell-free conversion

    Eiden Martin

    2011-02-01

    Full Text Available Abstract In sheep polymorphisms of the prion gene (PRNP at the codons 136, 154 and 171 strongly influence the susceptibility to scrapie and bovine spongiform encephalopathy (BSE infections. In goats a number of other gene polymorphisms were found which are suspected to trigger similar effects. However, no strong correlation between polymorphisms and TSE susceptibility in goats has yet been obtained from epidemiological studies and only a low number of experimental challenge data are available at present. We have therefore studied the potential impact of these polymorphisms in vitro by cell-free conversion assays using mouse scrapie strain Me7. Mouse scrapie brain derived PrPSc served as seeds and eleven recombinant single mutation variants of sheep and goat PrPC as conversion targets. With this approach it was possible to assign reduced conversion efficiencies to specific polymorphisms, which are associated to low frequency in scrapie-affected goats or found only in healthy animals. Moreover, we could demonstrate a dominant-negative inhibition of prion polymorphisms associated with high susceptibility by alleles linked to low susceptibility in vitro.

  5. Antimicrobial Activity of Cell Free Supernatant of Irradiated Lactic Acid Bacteria Isolates

    Abdelaleem, M.A.; AL-Hagar, O.E.Aa.

    2015-01-01

    Attempts were made to isolate bio preservatives using food wastes with no value and low cost. Whey is the raw material achieved that value. Whey and many other food wastes are used in our study to isolate Lactic acid bacteria (LAB). Cell free supernatants (CFS) of isolates are used to evaluate their antimicrobial activity against indicator pathogenic bacterial strains. CFS-9 isolate from whey has the highest inhibitory activity compared to all other isolates. The inhibitory activity of CFS-9, Nisin (400 IU / ml) and the standard Lactococcus Lactis Subsp. Lactis ATCC 11454 (Lacto) were determined. Furthermore, isolate-9 and Lacto strains were exposed to irradiation at different doses. The inhibition zones of; control isolate-9 (non-irradiated) showed the highest values against all indicator strains, CFS of irradiated Lacto at dose 250 Gy was the highest value against Bacillus cereus and Escherichia coli compared to other irradiation treatments, CFS of irradiated Lacto at dose 100 Gy was the highest value against Staph aureus, while the inhibition zone was in the highest value in CFS of irradiated Lacto at dose 500 Gy against Salmonella typhimurium. Nisin (400 IU / ml) was significantly higher than all CFS of irradiated isolate-9 while, the inhibition zones of all CFS-Lacto (irradiated and nonirradiated) are better and higher than nisin-400

  6. Cell-free protein synthesis in micro compartments: building a minimal cell from biobricks.

    Jia, Haiyang; Heymann, Michael; Bernhard, Frank; Schwille, Petra; Kai, Lei

    2017-10-25

    The construction of a minimal cell that exhibits the essential characteristics of life is a great challenge in the field of synthetic biology. Assembling a minimal cell requires multidisciplinary expertise from physics, chemistry and biology. Scientists from different backgrounds tend to define the essence of 'life' differently and have thus proposed different artificial cell models possessing one or several essential features of living cells. Using the tools and methods of molecular biology, the bottom-up engineering of a minimal cell appears in reach. However, several challenges still remain. In particular, the integration of individual sub-systems that is required to achieve a self-reproducing cell model presents a complex optimization challenge. For example, multiple self-organisation and self-assembly processes have to be carefully tuned. We review advances and developments of new methods and techniques, for cell-free protein synthesis as well as micro-fabrication, for their potential to resolve challenges and to accelerate the development of minimal cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Cell-free nucleic acids as noninvasive biomarkers for colorectal cancer detection

    Mansour, Hicham

    2014-08-27

    Cell-free nucleic acids (CFNA) have been reported by several authors in blood, stool, and urine of patients with colorectal cancer (CRC). These genetic biomarkers can be an indication of neoplastic colorectal epithelial cells, and can thus potentially be used as noninvasive tests for the detection of the disease in CRC patients and monitor their staging, without the need to use heavier and invasive tools. In a number of test-trials, these genetic tests have shown the advantage of non-invasiveness, making them well accepted by most of the patients, without major side effects. They have also shown a promising sensitivity and specificity in the detection of malignant and premalignant neoplasms. Moreover, costs for performing such tests are very low. Several studies reported and confirmed the proof of the principle for these genetic tests for screening, diagnosis, and prognosis; the main challenge of translating this approach from research to clinical laboratory is the validation from large and long-term randomized trials to prove sustainable high sensitivity and specificity. In this paper, we present a review on the noninvasive genetics biomarkers for CRC detection described in the literature and the challenges that can be encountered for validation processes.

  8. Cell-free nucleic acids as noninvasive biomarkers for colorectal cancer detection

    Mansour, Hicham

    2014-01-01

    Cell-free nucleic acids (CFNA) have been reported by several authors in blood, stool, and urine of patients with colorectal cancer (CRC). These genetic biomarkers can be an indication of neoplastic colorectal epithelial cells, and can thus potentially be used as noninvasive tests for the detection of the disease in CRC patients and monitor their staging, without the need to use heavier and invasive tools. In a number of test-trials, these genetic tests have shown the advantage of non-invasiveness, making them well accepted by most of the patients, without major side effects. They have also shown a promising sensitivity and specificity in the detection of malignant and premalignant neoplasms. Moreover, costs for performing such tests are very low. Several studies reported and confirmed the proof of the principle for these genetic tests for screening, diagnosis, and prognosis; the main challenge of translating this approach from research to clinical laboratory is the validation from large and long-term randomized trials to prove sustainable high sensitivity and specificity. In this paper, we present a review on the noninvasive genetics biomarkers for CRC detection described in the literature and the challenges that can be encountered for validation processes.

  9. Biological Synthesis of Silver Nanoparticles by Cell-Free Extract of Spirulina platensis

    Gaurav Sharma

    2015-01-01

    Full Text Available The present study explores biological synthesis of silver nanoparticles (AgNPs using the cell-free extract of Spirulina platensis. Biosynthesised AgNPs were characterised by UV-Vis spectroscopy, SEM, TEM, and FTIR analysis and finally evaluated for antibacterial activity. Extracellular synthesis using aqueous extract of S. platensis showed the formation of well scattered, highly stable, spherical AgNPs with an average size of 30–50 nm. The size and morphology of the nanoparticles were confirmed by SEM and TEM analysis. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilisation of AgNPs. Furthermore, the synthesised nanoparticles exhibited high antibacterial activity against pathogenic Gram-negative, that is, Escherichia coli, MTCC-9721; Proteus vulgaris, MTCC-7299; Klebsiella pneumoniae, MTCC-9751, and Gram-positive, that is, Staphylococcus aureus, MTCC-9542; S. epidermidis, MTCC-2639; Bacillus cereus, MTCC-9017, bacteria. The AgNPs had shown maximum zone of inhibition (ZOI that is 31.3±1.11 in P. vulgaris. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials of silver in a large scale that could be of great use in biomedical applications.

  10. Green Synthesis and Antimicrobial Activities of Silver Nanoparticles using Cell Free-Extracts of Enterococcus species

    Iyabo C. OLADIPO

    2017-06-01

    Full Text Available Cell-free extracts of six strains of Enterococcus species obtained from fermented foods were used for the green synthesis of silver nanoparticles (AgNPs, which was characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR and transmission electron microscopy (TEM. The biosynthesized AgNPs were dark brown in colour having surface plasmon resonance in the range of 420-442 nm. The spherical shaped AgNPs had sizes of 4-55 nm, whose formations were facilitated by proteins as indicated by the presence of peaks 1,635-1,637 and 3,275-3,313 cm-1 in the FTIR spectra. The energy dispersive x-ray (EDX showed prominent presence of silver in the AgNPs colloidal solution, while the selected area electron diffraction was typified by the face-centred crystalline nature of silver. The particles inhibited the growth of multi-drug resistant clinical isolates of Escherichia coli, Klebsiella pneumoniae and Proteus vulgaris, and also potentiated the activities of ampicillin, ciprofloxacin and cefuroxime in the AgNPs-antibiotic synergy studies. In addition, the prospective relevance of the particles as nanopreservative in paints was demonstrated with the inhibition of growth of Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus niger and A. flavus in AgNPs-paint admixture. This report further demonstrates the green synthesis of AgNPs by strains of Enterococcus species.

  11. Pyrrhocoricin, a proline-rich antimicrobial peptide derived from insect, inhibits the translation process in the cell-free Escherichia coli protein synthesis system.

    Taniguchi, Masayuki; Ochiai, Akihito; Kondo, Hiroshi; Fukuda, Shun; Ishiyama, Yohei; Saitoh, Eiichi; Kato, Tetsuo; Tanaka, Takaaki

    2016-05-01

    Previous studies have shown that pyrrhocoricin, a proline-rich antimicrobial peptide (PrAMP), killed sensitive species in a dose-dependent manner by specifically binding to DnaK. Here, on the basis of the finding that DnaK-deficient Escherichia coli strains are susceptible to PrAMPs, we used pyrrhocoricin to investigate internal targets other than DnaK. Using conventional antibiotics (bleomycin, streptomycin, and fosfomycin) that have known modes of action, first, we validated the availability of an assay using a cell-free rapid translation system (RTS), which is an in vitro protein synthesis system based on E. coli lysate, for evaluating inhibition of protein synthesis. We found that, similarly to bleomycin and streptomycin, pyrrhocoricin inhibited GFP synthesis in RTS in a concentration-dependent manner. In addition, blockage of transcription and translation steps in RTS was individually estimated using RT-PCR after gene expression to determine mRNA products and using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to determine the amounts of GFP expressed from purified mRNA, respectively. The results demonstrated that this inhibition of GFP synthesis by pyrrhocoricin did not occur at the transcription step but rather at the translation step, in a manner similar to that of GFP synthesis by streptomycin, an inhibitor of the translation step by causing misreading of tRNA. These results suggest that RTS is a powerful assay system for determining if antimicrobial peptides inhibit protein synthesis and its transcription and/or translation steps. This is the first study to have shown that pyrrhocoricin inhibited protein synthesis by specifically repressing the translation step. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Cell-free synthesis of functional antibody fragments to provide a structural basis for antibody-antigen interaction.

    Takayoshi Matsuda

    Full Text Available Growing numbers of therapeutic antibodies offer excellent treatment strategies for many diseases. Elucidation of the interaction between a potential therapeutic antibody and its target protein by structural analysis reveals the mechanism of action and offers useful information for developing rational antibody designs for improved affinity. Here, we developed a rapid, high-yield cell-free system using dialysis mode to synthesize antibody fragments for the structural analysis of antibody-antigen complexes. Optimal synthesis conditions of fragments (Fv and Fab of the anti-EGFR antibody 059-152 were rapidly determined in a day by using a 30-μl-scale unit. The concentration of supplemented disulfide isomerase, DsbC, was critical to obtaining soluble antibody fragments. The optimal conditions were directly applicable to a 9-ml-scale reaction, with linear scalable yields of more than 1 mg/ml. Analyses of purified 059-152-Fv and Fab showed that the cell-free synthesized antibody fragments were disulfide-bridged, with antigen binding activity comparable to that of clinical antibodies. Examination of the crystal structure of cell-free synthesized 059-152-Fv in complex with the extracellular domain of human EGFR revealed that the epitope of 059-152-Fv broadly covers the EGF binding surface on domain III, including residues that formed critical hydrogen bonds with EGF (Asp355EGFR, Gln384EGFR, H409EGFR, and Lys465EGFR, so that the antibody inhibited EGFR activation. We further demonstrated the application of the cell-free system to site-specific integration of non-natural amino acids for antibody engineering, which would expand the availability of therapeutic antibodies based on structural information and rational design. This cell-free system could be an ideal antibody-fragment production platform for functional and structural analysis of potential therapeutic antibodies and for engineered antibody development.

  13. Sodium nitrite induces acute central nervous system toxicity in guinea pigs exposed to systemic cell-free hemoglobin

    Buehler, Paul W.; Butt, Omer I. [Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); D' Agnillo, Felice, E-mail: felice.dagnillo@fda.hhs.gov [Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2011-06-10

    Highlights: {yields} Toxicological implications associated with the use of NaNO{sub 2} therapy to treat systemic cell-free Hb exposure are not well-defined. {yields} Systemic Hb exposure followed by NaNO{sub 2} infusion induces acute CNS toxicities in guinea pigs. {yields} These CNS effects were not reproduced by the infusion of cell-free Hb or NaNO{sub 2} alone. {yields} NaNO{sub 2}-mediated oxidation of cell-free Hb may play a causative role in the observed CNS changes. -- Abstract: Systemic cell-free hemoglobin (Hb) released via hemolysis disrupts vascular homeostasis, in part, through the scavenging of nitric oxide (NO). Sodium nitrite (NaNO{sub 2}) therapy can attenuate the hypertensive effects of Hb. However, the chemical reactivity of NaNO{sub 2} with Hb may enhance heme- or iron-mediated toxicities. Here, we investigate the effect of NaNO{sub 2} on the central nervous system (CNS) in guinea pigs exposed to systemic cell-free Hb. Intravascular infusion of NaNO{sub 2}, at doses sufficient to alleviate Hb-mediated blood pressure changes, reduced the expression of occludin, but not zona occludens-1 (ZO-1) or claudin-5, in cerebral tight junctions 4 h after Hb infusion. This was accompanied by increased perivascular heme oxygenase-1 expression, neuronal iron deposition, increased astrocyte and microglial activation, and reduced expression of neuron-specific nuclear protein (NeuN). These CNS changes were not observed in animals treated with Hb or NaNO{sub 2} alone. Taken together, these findings suggest that the use of nitrite salts to treat systemic Hb exposure may promote acute CNS toxicity.

  14. Sodium nitrite induces acute central nervous system toxicity in guinea pigs exposed to systemic cell-free hemoglobin

    Buehler, Paul W.; Butt, Omer I.; D'Agnillo, Felice

    2011-01-01

    Highlights: → Toxicological implications associated with the use of NaNO 2 therapy to treat systemic cell-free Hb exposure are not well-defined. → Systemic Hb exposure followed by NaNO 2 infusion induces acute CNS toxicities in guinea pigs. → These CNS effects were not reproduced by the infusion of cell-free Hb or NaNO 2 alone. → NaNO 2 -mediated oxidation of cell-free Hb may play a causative role in the observed CNS changes. -- Abstract: Systemic cell-free hemoglobin (Hb) released via hemolysis disrupts vascular homeostasis, in part, through the scavenging of nitric oxide (NO). Sodium nitrite (NaNO 2 ) therapy can attenuate the hypertensive effects of Hb. However, the chemical reactivity of NaNO 2 with Hb may enhance heme- or iron-mediated toxicities. Here, we investigate the effect of NaNO 2 on the central nervous system (CNS) in guinea pigs exposed to systemic cell-free Hb. Intravascular infusion of NaNO 2 , at doses sufficient to alleviate Hb-mediated blood pressure changes, reduced the expression of occludin, but not zona occludens-1 (ZO-1) or claudin-5, in cerebral tight junctions 4 h after Hb infusion. This was accompanied by increased perivascular heme oxygenase-1 expression, neuronal iron deposition, increased astrocyte and microglial activation, and reduced expression of neuron-specific nuclear protein (NeuN). These CNS changes were not observed in animals treated with Hb or NaNO 2 alone. Taken together, these findings suggest that the use of nitrite salts to treat systemic Hb exposure may promote acute CNS toxicity.

  15. Fetal Alcohol Syndrome "Chemical Genocide."

    Asetoyer, Charon

    In the Northern Plains of the United States, 100% of Indian reservations are affected by alcohol related problems. Approximately 90% of Native American adults are currently alcohol users or abusers or are recovering from alcohol abuse. Alcohol consumption has a devastating effect on the unborn. Fetal Alcohol Syndrome (FAS) is an irreversible birth…

  16. Fetal programming and environmental exposures ...

    Fetal programming is an enormously complex process that relies on numerous environmental inputs from uterine tissue, the placenta, the maternal blood supply, and other sources. Recent evidence has made clear that the process is not based entirely on genetics, but rather on a delicate series of interactions between genes and the environment. It is likely that epigenctic (“above the genome”) changes are responsible for modifying gene expression in the developing fetus, and these modifications can have long-lasting health impacts. Determining which epigenetic regulators are most vital in embryonic development will improve pregnancy outcomes and our ability to treat and prevent disorders that emerge later in life. “Fetal Programming and Environmental Exposures: Implications for Prenatal Care and Preterm Birth’ began with a keynote address by Frederick vom Saal, who explained that low-level exposure to endocrine disrupting chemicals (EDCs) perturbs hormone systems in utero and can have negative effects on fetal development. vom Saal presented data on the LOC bisphenol A (BPA), an estrogen-mimicking compound found in many plastics. He suggested that low-dose exposure to LOCs can alter the development process and enhance chances of acquiring adult diseases, such as breastcancer, diabetes, and even developmental disorders such as attention deficit disorder (ADHD).’ Fetal programming is an enormously complex process that relies on numerous environmental inputs

  17. Fetal programming of neuropsychiatric disorders.

    Faa, Gavino; Manchia, Mirko; Pintus, Roberta; Gerosa, Clara; Marcialis, Maria Antonietta; Fanos, Vassilios

    2016-09-01

    Starting from the Developmental Origins of Health and Disease (DOHaD) hypotheses proposed by David Barker, namely fetal programming, in the past years, there is a growing evidence of the major role played by epigenetic factors during the intrauterine life and the perinatal period. Furthermore, it has been assessed that these factors can affect the health status in infancy and even in adulthood. In this review, we focus our attention on the fetal programming of the brain, analyzing the most recent literature concerning the epigenetic factors that can influence the development of neuropsychiatric disorders such as bipolar disorders, major depressive disorders, and schizophrenia. The perinatal epigenetic factors have been divided in two main groups: maternal factors and fetal factors. The maternal factors include diet, smoking, alcoholism, hypertension, malnutrition, trace elements, stress, diabetes, substance abuse, and exposure to environmental toxicants, while the fetal factors include hypoxia/asphyxia, placental insufficiency, prematurity, low birth weight, drugs administered to the mother or to the baby, and all factors causing intrauterine growth restriction. A better comprehension of the possible mechanisms underlying the pathogenesis of these diseases may help researchers and clinicians develop new diagnostic tools and treatments to offer these patients a tailored medical treatment strategy to improve their quality of life. Birth Defects Research (Part C) 108:207-223, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. A comparison of cell-free placental messenger ribonucleic acid and color Doppler ultrasound for the prediction of placental invasion in patients with placenta accreta

    Elham Naghshineh

    2015-01-01

    Conclusions: Cell-free mRNA is an acceptable, easy made, functional test with sensitivity, specificity, PPV and NPV more than Doppler ultrasound for diagnosis and prediction of incidence of placenta accrete and we recommend the use of cell-free mRNA test for diagnosis of placenta accreta.

  19. Ancient DNA

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  20. Fetal magnetic resonance imaging and human genetics

    Hengstschlaeger, Markus

    2006-01-01

    The use of fetal magnetic resonance imaging (MRI), in addition to prenatal genetic testing and sonography, has the potential to improve prenatal diagnosis of genetic disorders. MRI plays an important role in the evaluation of fetal abnormalities and malformations. Fetal MRI often enables a differential diagnosis, a determination of the extent of the disorder, the prognosis, and an improvement in therapeutic management. For counseling of parents, as well as to basically understand how genetic aberrations affect fetal development, it is of great importance to correlate different genotypes with fetal MRI data

  1. Fetal magnetic resonance imaging and human genetics

    Hengstschlaeger, Markus [Medical Genetics, Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)]. E-mail: markus.hengstschlaeger@meduniwien.ac.at

    2006-02-15

    The use of fetal magnetic resonance imaging (MRI), in addition to prenatal genetic testing and sonography, has the potential to improve prenatal diagnosis of genetic disorders. MRI plays an important role in the evaluation of fetal abnormalities and malformations. Fetal MRI often enables a differential diagnosis, a determination of the extent of the disorder, the prognosis, and an improvement in therapeutic management. For counseling of parents, as well as to basically understand how genetic aberrations affect fetal development, it is of great importance to correlate different genotypes with fetal MRI data.

  2. Effect of microbial cell-free meat extract on the growth of spoilage bacteria.

    Nychas, G-J E; Dourou, D; Skandamis, P; Koutsoumanis, K; Baranyi, J; Sofos, J

    2009-12-01

    This study examined the effect of microbial cell-free meat extract (CFME) derived from spoiled meat, in which quorum sensing (QS) compounds were present, on the growth kinetics (lag phase, and growth rate) of two spoilage bacteria, Pseudomonas fluorescens and Serratia marcescens. Aliquots of CFME from spoiled meat were transferred to Brain Heart Infusion broth inoculated with 10(3) CFU ml(-1) of 18 h cultures of Ps. fluorescens or Ser. marcescens, both fresh meat isolates; CFME derived from unspoiled fresh meat ('clean' meat) served as a control. Changes in impedance measurements were monitored for 48 h, and the detection time (Tdet) was recorded. It was found that in the absence of CFME containing QS compounds the Tdet was shorter (P meat. The rate of growth of Ps. fluorescens, recorded as the maximum slope rate of conductance changes (MSrCC), after Tdet, was higher (P meat. Similar results in MSrCC of impedance changes were obtained for Ser. marcescens. The study indicated that the growth rate (expressed in MSrCC units) of meat spoilage bacteria in vitro was enhanced in samples supplemented with CFME containing QS compounds compared to control samples (i.e., without CFME or with CFME from 'clean' meat). This behaviour may explain the dominant role of these two bacteria in the spoilage of meat. These results illustrate the potential effect of signalling compounds released during storage of meat on the behaviour of meat spoilage bacteria. Understanding such interactions may assist in the control of fresh meat quality and the extension of its shelf life.

  3. Diurnal Variations of Human Circulating Cell-Free Micro-RNA.

    Niels H H Heegaard

    Full Text Available A 24-hour light and dark cycle-dependent rhythmicity pervades physiological processes in virtually all living organisms including humans. These regular oscillations are caused by external cues to endogenous, independent biological time-keeping systems (clocks. The rhythm is reflected by gene expression that varies in a circadian and specific fashion in different organs and tissues and is regulated largely by dynamic epigenetic and post-transcriptional mechanisms. This leads to well-documented oscillations of specific electrolytes, hormones, metabolites, and plasma proteins in blood samples. An emerging, important class of gene regulators is short single-stranded RNA (micro-RNA, miRNA that interferes post-transcriptionally with gene expression and thus may play a role in the circadian variation of gene expression. MiRNAs are promising biomarkers by virtue of their disease-specific tissue expression and because of their presence as stable entities in the circulation. However, no studies have addressed the putative circadian rhythmicity of circulating, cell-free miRNAs. This question is important both for using miRNAs as biological markers and for clues to miRNA function in the regulation of circadian gene expression. Here, we investigate 92 miRNAs in plasma samples from 24 young male, healthy volunteers repeatedly sampled 9 times during a 24-hour stay in a regulated environment. We demonstrate that a third (26/79 of the measurable plasma miRNAs (using RT-qPCR on a microfluidic system exhibit a rhythmic behavior and are distributed in two main phase patterns. Some of these miRNAs weakly target known clock genes and many have strong targets in intracellular MAPK signaling pathways. These novel findings highlight the importance of considering bio-oscillations in miRNA biomarker studies and suggest the further study of a set of specific circulating miRNAs in the regulation and functioning of biological clocks.

  4. Establishing a high yielding streptomyces-based cell-free protein synthesis system.

    Li, Jian; Wang, He; Kwon, Yong-Chan; Jewett, Michael C

    2017-06-01

    Cell-free protein synthesis (CFPS) has emerged as a powerful platform for applied biotechnology and synthetic biology, with a range of applications in synthesizing proteins, evolving proteins, and prototyping genetic circuits. To expand the current CFPS repertoire, we report here the development and optimization of a Streptomyces-based CFPS system for the expression of GC-rich genes. By developing a streamlined crude extract preparation protocol and optimizing reaction conditions, we were able to achieve active enhanced green fluorescent protein (EGFP) yields of greater than 50 μg/mL with batch reactions lasting up to 3 h. By adopting a semi-continuous reaction format, the EGFP yield could be increased to 282 ± 8 μg/mL and the reaction time was extended to 48 h. Notably, our extract preparation procedures were robust to multiple Streptomyces lividans and Streptomyces coelicolor strains, although expression yields varied. We show that our optimized Streptomyces lividans system provides benefits when compared to an Escherichia coli-based CFPS system for increasing percent soluble protein expression for four Streptomyces-originated high GC-content genes that are involved in biosynthesis of the nonribosomal peptides tambromycin and valinomycin. Looking forward, we believe that our Streptomyces-based CFPS system will contribute significantly towards efforts to express complex natural product gene clusters (e.g., nonribosomal peptides and polyketides), providing a new avenue for obtaining and studying natural product biosynthesis pathways. Biotechnol. Bioeng. 2017;114: 1343-1353. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Treatment of osteochondral lesions in the knee using a cell-free scaffold.

    Verdonk, P; Dhollander, A; Almqvist, K F; Verdonk, R; Victor, J

    2015-03-01

    The treatment of osteochondral lesions is of great interest to orthopaedic surgeons because most lesions do not heal spontaneously. We present the short-term clinical outcome and MRI findings of a cell-free scaffold used for the treatment of these lesions in the knee. A total of 38 patients were prospectively evaluated clinically for two years following treatment with an osteochondral nanostructured biomimetic scaffold. There were 23 men and 15 women; the mean age of the patients was 30.5 years (15 to 64). Clinical outcome was assessed using the Knee Injury and Osteoarthritis Outcome Score (KOOS), the Tegner activity scale and a Visual Analgue scale for pain. MRI data were analysed based on the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) scoring system at three, 12 and 24 months post-operatively. There was a continuous significant clinical improvement after surgery. In two patients, the scaffold treatment failed (5.3%) There was a statistically significant improvement in the MOCART precentage scores. The repair tissue filled most of the defect sufficiently. We found subchondral laminar changes in all patients. Intralesional osteophytes were found in two patients (5.3%). We conclude that this one-step scaffold-based technique can be used for osteochondral repair. The surgical technique is straightforward, and the clinical results are promising. The MRI aspects of the repair tissue continue to evolve during the first two years after surgery. However, the subchondral laminar and bone changes are a concern. ©2015 The British Editorial Society of Bone & Joint Surgery.

  6. Ascorbic acid attenuates endothelial permeability triggered by cell-free hemoglobin.

    Kuck, Jamie L; Bastarache, Julie A; Shaver, Ciara M; Fessel, Joshua P; Dikalov, Sergey I; May, James M; Ware, Lorraine B

    2018-01-01

    Increased endothelial permeability is central to shock and organ dysfunction in sepsis but therapeutics targeted to known mediators of increased endothelial permeability have been unsuccessful in patient studies. We previously reported that cell-free hemoglobin (CFH) is elevated in the majority of patients with sepsis and is associated with organ dysfunction, poor clinical outcomes and elevated markers of oxidant injury. Others have shown that Vitamin C (ascorbate) may have endothelial protective effects in sepsis. In this study, we tested the hypothesis that high levels of CFH, as seen in the circulation of patients with sepsis, disrupt endothelial barrier integrity. Human umbilical vein endothelial cells (HUVEC) were grown to confluence and treated with CFH with or without ascorbate. Monolayer permeability was measured by Electric Cell-substrate Impedance Sensing (ECIS) or transfer of 14 C-inulin. Viability was measured by trypan blue exclusion. Intracellular ascorbate was measured by HPLC. CFH increased permeability in a dose- and time-dependent manner with 1 mg/ml of CFH increasing inulin transfer by 50% without affecting cell viability. CFH (1 mg/ml) also caused a dramatic reduction in intracellular ascorbate in the same time frame (1.4 mM without CFH, 0.23 mM 18 h after 1 mg/ml CFH, p < 0.05). Pre-treatment of HUVECs with ascorbate attenuated CFH induced permeability. CFH increases endothelial permeability in part through depletion of intracellular ascorbate. Supplementation of ascorbate can attenuate increases in permeability mediated by CFH suggesting a possible therapeutic approach in sepsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Serial postural and motor assessment of Fetal Akinesia Deformation Sequence (FADS)

    Donker, M.E.; Eijckelhof, B.H.; Tan, G.M.; de Vries, J.I.

    2009-01-01

    Background: Fetal Akinesia Deformation Sequence (FADS) is a rare, in most cases autosomal recessive, disorder. Its heterogeneous origin results in variable onset and expression of motor and postural anomalies. DNA-diagnostic possibilities are limited, thus prenatal diagnosis is chiefly dependent on

  8. Fetal programming of reproduction, what we know and how we manage it

    For the purposes of this paper, fetal programming will cover developmental and nutritional programming both before and after birth. Developmental programming is defined as changes in anatomical structure and/or physiology that result from differences in gene function instead of variation in DNA seq...

  9. Imprinted NanoVelcro Microchips for Isolation and Characterization of Circulating Fetal Trophoblasts: Toward Noninvasive Prenatal Diagnostics

    Hou, Shuang; Chen, Jie-Fu; Song, Min; Zhu, Yazhen; Jan, Yu Jen; Chen, Szu Hao; Weng, Tzu-Hua; Ling, Dean-An; Chen, Shang-Fu; Ro, Tracy; Liang, An-Jou; Lee, Tom; Jin, Helen; Li, Man; Liu, Lian

    2017-01-01

    Circulating fetal nucleated cells (CFNCs) in maternal blood offer an ideal source of fetal genomic DNA for noninvasive prenatal diagnostics (NIPD). We developed a class of nanoVelcro microchips to effectively enrich a subcategory of CFNCs, i.e., circulating trophoblasts (cTBs) from maternal blood, which can then be isolated with single-cell resolution by a laser capture microdissection (LCM) technique for downstream genetic testing. We first established a nanoimprinting fabrication process to...

  10. Fetal anatomy revealed with fast MR sequences.

    Levine, D; Hatabu, H; Gaa, J; Atkinson, M W; Edelman, R R

    1996-10-01

    Although all the imaging studies in this pictorial essay were done for maternal rather than fetal indications, fetal anatomy was well visualized. However, when scans are undertaken for fetal indications, fetal motion in between scout views and imaging sequences may make specific image planes difficult to obtain. Of the different techniques described in this review, we preferred the HASTE technique and use it almost exclusively for scanning pregnant patients. The T2-weighting is ideal for delineating fetal organs. Also, the HASTE technique allows images to be obtained in 430 msec, limiting artifacts arising from maternal and fetal motion. MR imaging should play a more important role in evaluating equivocal sonographic cases as fast scanning techniques are more widely used. Obstetric MR imaging no longer will be limited by fetal motion artifacts. When complex anatomy requires definition in a complicated pregnant patient, MR imaging should be considered as a useful adjunct to sonography.

  11. Antithyroid drug-induced fetal goitrous hypothyroidism

    Bliddal, Sofie; Rasmussen, Ase Krogh; Sundberg, Karin

    2011-01-01

    Maternal overtreatment with antithyroid drugs can induce fetal goitrous hypothyroidism. This condition can have a critical effect on pregnancy outcome, as well as on fetal growth and neurological development. The purpose of this Review is to clarify if and how fetal goitrous hypothyroidism can...... be prevented, and how to react when prevention has failed. Understanding the importance of pregnancy-related changes in maternal thyroid status when treating a pregnant woman is crucial to preventing fetal goitrous hypothyroidism. Maternal levels of free T(4) are the most consistent indication of maternal...... and fetal thyroid status. In patients with fetal goitrous hypothyroidism, intra-amniotic levothyroxine injections improve fetal outcome. The best way to avoid maternal overtreatment with antithyroid drugs is to monitor closely the maternal thyroid status, especially estimates of free T(4) levels....

  12. Responding to chromosomal breakage during M-phase: insights from a cell-free system

    Costanzo Vincenzo

    2009-07-01

    Full Text Available Abstract DNA double strand breaks (DSBs activate ATM and ATR dependent checkpoints that prevent the onset of mitosis. However, how cells react to DSBs occurring when they are already in mitosis is poorly understood. The Xenopus egg extract has been utilized to study cell cycle progression and DNA damage checkpoints. Recently this system has been successfully used to uncover an ATM and ATR dependent checkpoint affecting centrosome driven spindle assembly. These studies have led to the identification of XCEP63 as major target of this pathway. XCEP63 is a coiled-coil rich protein localized at centrosome essential for proper spindle assembly. ATM and ATR directly phosphorylate XCEP63 on serine 560 inducing its delocalization from centrosome, which in turn delays spindle assembly. This pathway might contribute to regulate DNA repair or mitotic cell survival in the presence of chromosome breakage.

  13. Fetal body weight and the development of the control of the cardiovascular system in fetal sheep.

    Frasch, M G; Müller, T; Wicher, C; Weiss, C; Löhle, M; Schwab, K; Schubert, H; Nathanielsz, P W; Witte, O W; Schwab, M

    2007-03-15

    Reduced birth weight predisposes to cardiovascular diseases in later life. We examined in fetal sheep at 0.76 (n = 18) and 0.87 (n = 17) gestation whether spontaneously occurring variations in fetal weight affect maturation of autonomic control of cardiovascular function. Fetal weights at both gestational ages were grouped statistically in low (LW) and normal weights (NW) (P fetal sheep not constituting a major malnutritive condition. Mean fetal blood pressure (FBP) of all fetuses was negatively correlated to fetal weight at 0.76 but not 0.87 gestation (P fetal heart rate depended on fetal weight (P fetal weight within the normal weight span is accompanied by a different trajectory of development of sympathetic blood pressure and vagal heart rate control. This may contribute to the development of elevated blood pressure in later life. Examination of the underlying mechanisms and consequences may contribute to the understanding of programming of cardiovascular diseases.

  14. Integrating cell-free biosyntheses of heme prosthetic group and apoenzyme for the synthesis of functional P450 monooxygenase.

    Kwon, Yong-Chan; Oh, In-Seok; Lee, Nahum; Lee, Kyung-Ho; Yoon, Yeo Joon; Lee, Eun Yeol; Kim, Byung-Gee; Kim, Dong-Myung

    2013-04-01

    Harnessing the isolated protein synthesis machinery, cell-free protein synthesis reproduces the cellular process of decoding genetic information in artificially controlled environments. More often than not, however, generation of functional proteins requires more than simple translation of genetic sequences. For instance, many of the industrially important enzymes require non-protein prosthetic groups for biological activity. Herein, we report the complete cell-free biogenesis of a heme prosthetic group and its integration with concurrent apoenzyme synthesis for the production of functional P450 monooxygenase. Step reactions required for the syntheses of apoenzyme and the prosthetic group have been designed so that these two separate pathways take place in the same reaction mixture, being insulated from each other. Combined pathways for the synthesis of functional P450 monooxygenase were then further integrated with in situ assay reactions to enable real-time measurement of enzymatic activity during its synthesis. Copyright © 2012 Wiley Periodicals, Inc.

  15. Case-control study of fetal microchimerism and breast cancer.

    Vijayakrishna K Gadi

    2008-03-01

    Full Text Available Prior pregnancy is known to protect against development of breast cancer. Recent studies have demonstrated that pregnancy has the capacity to establish small numbers of immunologically active fetal-derived cells in the mother, a phenomenon known as fetal microchimerism (FMc. We asked whether presence of FMc, routinely acquired during pregnancy, is a protective factor for breast cancer.DNA extracts from peripheral blood specimens were obtained from a population-based case-control study of risk factors for breast cancer in women 21 to 45 years old. Specimens were tested with quantitative PCR for presence and concentrations of male DNA presumed to derive from prior pregnancies with a male fetus. Odds ratios (OR and 95% confidence intervals (CI were estimated with consideration of multiple established reproductive and environmental risk factors for breast cancer. FMc results were generated on 99 parous women, 54 with primary invasive breast cancer and 45 general population controls. FMc prevalence was 56% (25/45 and 26% (14/54 in controls and cases, respectively. Women harboring FMc were less likely to have had breast cancer (OR = 0.29, 95% CI 0.11-0.83; p = 0.02, adjusting for age, number of children, birth of a son, history of miscarriage, and total DNA tested. In addition, FMc concentrations were higher in controls versus cases (p = 0.01. Median concentrations were 2 (0-78 and 0 (0-374 fetal genomes/10(6 maternal genomes in controls and cases, respectively.Results suggest that the enigma of why some parous women are not afforded protection from breast cancer by pregnancy might in part be explained by differences in FMc. Mechanistic studies of FMc-derived protection against breast cancer are warranted.

  16. Tobacco BY-2 cell-free lysate: an alternative and highly-productive plant-based in vitro translation system.

    Buntru, Matthias; Vogel, Simon; Spiegel, Holger; Schillberg, Stefan

    2014-05-03

    Cell-free protein synthesis is a rapid and efficient method for the production of recombinant proteins. Usage of prokaryotic cell-free extracts often leads to non-functional proteins. Eukaryotic counterparts such as wheat germ extract (WGE) and rabbit reticulocyte lysate (RLL) may improve solubility and promote the correct folding of eukaryotic multi-domain proteins that are difficult to express in bacteria. However, the preparation of WGEs is complex and time-consuming, whereas RLLs suffer from low yields. Here we report the development of a novel cell-free system based on tobacco Bright Yellow 2 (BY-2) cells harvested in the exponential growth phase. The highly-productive BY-2 lysate (BYL) can be prepared quickly within 4-5 h, compared to 4-5 d for WGE. The efficiency of the BYL was tested using three model proteins: enhanced yellow fluorescent protein (eYFP) and two versions of luciferase. The added mRNA was optimized by testing different 5' and 3' untranslated regions (UTRs). The protein yield in batch and dialysis reactions using BYL was much higher than that of a commercial Promega WGE preparation, achieving a maximum yield of 80 μg/mL of eYFP and 100 μg/mL of luciferase, compared to only 45 μg/mL of eYFP and 35 μg/mL of luciferase in WGEs. In dialysis reactions, the BYL yielded about 400 μg/mL eYFP, representing up to 50% more of the target protein than the Promega WGE, and equivalent to the amount using 5Prime WGE system. Due to the high yield and the short preparation time the BYL represents a remarkable improvement over current eukaryotic cell-free systems.

  17. Evaluation of Synergistic Interactions Between Cell-Free Supernatant of Lactobacillus Strains and Amikacin and Genetamicin Against Pseudomonas aeruginosa

    Aminnezhad, Sargol; Kermanshahi, Rouha Kasra; Ranjbar, Reza

    2015-01-01

    Background: The indiscriminate use of antibiotics in the treatment of infectious diseases can increase the development of antibiotic resistance. Therefore, there is a big demand for new sources of antimicrobial agents and alternative treatments for reduction of antibiotic dosage required to decrease the associated side effects. Objectives: In this study, the synergistic action of aminoglycoside antibiotics and cell-free supernatant (CFS) of probiotic (Lactobacillus rahmnosus and L. casei) aga...

  18. Ultrastructural Histopathology of Vervet Monkey Colonic Epithelium After In Vitro Exposure to Cell-free Supernatants of Shigella Cultures

    Hill, R. R.; Collins, N. E.; Cowley, H. M.

    2011-01-01

    The full dysentery syndrome of human shigellosis is often preceded by a transient diarrhoea that may be induced by bacterial extracellular products before invasion of the colonic mucosa and development of subsequent pathology. To examine this hypothesis, we studied the effects of cell-free cultures of Shigella sp. on the ultrastructure of monkey colonic epithelium in vitro. Clinical isolates of shigella strains were grown in a niche-simulating medium. Sheets of colon wall collected from verve...

  19. Investigation of Halohydrins Degradation by Whole Cells and Cell-free Extract of Pseudomonas putida DSM 437: A Kinetic Approach

    A. Konti

    2017-10-01

    Full Text Available The biodegradation of two halohydrins (1,3-dichloro-2-propanol and 3-chloro-1,2-propanediol by P. putida DSM 437 was investigated. Intact cells of previously acclimatized P. putida DSM 437 as well as cell-free extracts were used in order to study the degradation kinetics. When whole cells were used, a maximum biodegradation rate of 3-CPD (vmax = 1.28.10–5 mmol mg–1 DCW h–1 was determined, which was more than 4 times higher than that of 1,3-DCP. However, the affinity towards both halohydrins (Km was practically the same. When using cell-free extract, the apparent vmax and Km values for 1,3-DCP were estimated at 9.61.10–6 mmol mg–1 protein h–1 and 8.00 mM, respectively, while for 3-CPD the corresponding values were 2.42.10–5 mmol mg–1 protein h–1 and 9.07 mM. GC-MS analysis of cell-free extracts samples spiked with 1,3-DCP revealed the presence of 3-CPD and glycerol, intermediates of 1,3-DCP degradation pathway. 3-CPD degradation was strongly inhibited by the presence of epichlorohydrin and to a lesser extent by glycidol, intermediates of dehalogenation pathway.

  20. An Extraordinary Accumulation of (-)-Pinoresinol in Cell-Free Extracts of Forsythia intermedia: Evidence for Enantiospecific Reduction of (+)-Pinoresinol

    Katayama, Takeshi; Davin, Laurence B.; Lewis, Norman G.

    1992-01-01

    Stereoselective and enantiospecific transformation mechanisms in lignan biogenesis are only now yielding to scientific inquiry: it has been shown that soluble cell-free preparations from Forsythia intermedia catalysis the formation of the enantiomerically pure lignan, (-)-secoisolariciresinol, when incubated with coniferyl alcohol in the presence of NAD(P)H and H2O2. Surprisingly, (-)-pinoresinol also accumulates in this soluble cell-free assay mixture in greater than 96% enantiomeric excess, even though it is not the naturally occurring antipode present in Forsythia sp. But these soluble cell-free preparations do not engender stereoselective coupling; instead, racemic pinoresinols are first formed, catalysed by an H2O2-dependent peroxidase reaction. An enantiospecific NAD(P)H reductase then converts (+)- pinoresinol, and not the (-)-antipode, into (-)-secoisolariciresinol. Stereoselective syntheis of(+)-pinoresinol from E-coniferyl alcohol is, however, catalysed by an insoluble enzyme preparation in F. suspensa, obtained following removal of readily soluble and ionically bound enzymes; no exogenously supplied cofactors were required other than oxygen, although the reaction was stimulated by NAD-malate addition. Thus, the overall biochemical pathway to enantiomerically pure (-)-secoisolariciresinol has been delineated.

  1. Production of functional bacteriorhodopsin by an Escherichia coli cell-free protein synthesis system supplemented with steroid detergent and lipid.

    Shimono, Kazumi; Goto, Mie; Kikukawa, Takashi; Miyauchi, Seiji; Shirouzu, Mikako; Kamo, Naoki; Yokoyama, Shigeyuki

    2009-10-01

    Cell-free expression has become a highly promising tool for the efficient production of membrane proteins. In this study, we used a dialysis-based Escherichia coli cell-free system for the production of a membrane protein actively integrated into liposomes. The membrane protein was the light-driven proton pump bacteriorhodopsin, consisting of seven transmembrane alpha-helices. The cell-free expression system in the dialysis mode was supplemented with a combination of a detergent and a natural lipid, phosphatidylcholine from egg yolk, in only the reaction mixture. By examining a variety of detergents, we found that the combination of a steroid detergent (digitonin, cholate, or CHAPS) and egg phosphatidylcholine yielded a large amount (0.3-0.7 mg/mL reaction mixture) of the fully functional bacteriorhodopsin. We also analyzed the process of functional expression in our system. The synthesized polypeptide was well protected from aggregation by the detergent-lipid mixed micelles and/or lipid disks, and was integrated into liposomes upon detergent removal by dialysis. This approach might be useful for the high yield production of functional membrane proteins.

  2. Structural study of the membrane protein MscL using cell-free expression and solid-state NMR

    Abdine, Alaa; Verhoeven, Michiel A.; Park, Kyu-Ho; Ghazi, Alexandre; Guittet, Eric; Berrier, Catherine; Van Heijenoort, Carine; Warschawski, Dror E.

    2010-05-01

    High-resolution structures of membrane proteins have so far been obtained mostly by X-ray crystallography, on samples where the protein is surrounded by detergent. Recent developments of solid-state NMR have opened the way to a new approach for the study of integral membrane proteins inside a membrane. At the same time, the extension of cell-free expression to the production of membrane proteins allows for the production of proteins tailor made for NMR. We present here an in situ solid-state NMR study of a membrane protein selectively labeled through the use of cell-free expression. The sample consists of MscL (mechano-sensitive channel of large conductance), a 75 kDa pentameric α-helical ion channel from Escherichia coli, reconstituted in a hydrated lipid bilayer. Compared to a uniformly labeled protein sample, the spectral crowding is greatly reduced in the cell-free expressed protein sample. This approach may be a decisive step required for spectral assignment and structure determination of membrane proteins by solid-state NMR.

  3. Pulmonary Hypoplasia Caused by Fetal Ascites in Congenital Cytomegalovirus Infection Despite Fetal Therapy

    Kazumichi Fujioka

    2017-11-01

    Full Text Available We report two cases of pulmonary hypoplasia due to fetal ascites in symptomatic congenital cytomegalovirus (CMV infections despite fetal therapy. The patients died soon after birth. The pathogenesis of pulmonary hypoplasia in our cases might be thoracic compression due to massive fetal ascites as a result of liver insufficiency. Despite aggressive fetal treatment, including multiple immunoglobulin administration, which was supposed to diminish the pathogenic effects of CMV either by neutralization or immunomodulatory effects, the fetal ascites was uncontrollable. To prevent development of pulmonary hypoplasia in symptomatic congenital CMV infections, further fetal intervention to reduce ascites should be considered.

  4. Generation of hydrogen peroxide from San Joaquin Valley particles in a cell-free solution

    H. Shen

    2011-01-01

    Full Text Available Epidemiological studies have shown a correlation between exposure to ambient particulate matter (PM and adverse health effects. One proposed mechanism of PM-mediated health effects is the generation of reactive oxygen species (ROS – e.g., superoxide (O2, hydrogen peroxide (HOOH, and hydroxyl radical (OH – followed by oxidative stress. There are very few quantitative, specific measures of individual ROS generated from PM, but this information would help to more quantitatively address the link between ROS and the health effects of PM. To address this gap, we quantified the generation of HOOH by PM collected at an urban (Fresno and rural (Westside site in the San Joaquin Valley (SJV of California during summer and winter from 2006 to 2009. HOOH was quantified by HPLC after extracting the PM in a cell-free, phosphate-buffered saline (PBS solution with or without 50 μM ascorbate (Asc. Our results show that the urban PM generally generates much more HOOH than the rural PM but that there is no apparent seasonal difference in HOOH generation. In nearly all of the samples the addition of a physiologically relevant concentration of Asc greatly enhances HOOH formation, but a few of the coarse PM samples were able to generate a considerable amount of HOOH in the absence of added Asc, indicating the presence of unknown reductants. Normalized by air volume, the fine PM (PM2.5 generally makes more HOOH than the corresponding coarse PM (PMcf, i.e., 2.5 to 10 μm, primarily because the mass concentration of PM2.5 is much higher than that of PMcf. However, normalized by PM mass, the coarse PM typically generates more HOOH than the fine PM. The amount of HOOH produced by SJV PM is reduced on average by (78 ± 15% when the transition metal chelator desferoxamine (DSF is added to the extraction solution, indicating that transition metals play a dominant role in HOOH

  5. Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans

    Costa Silva LP

    2017-08-01

    Full Text Available Laryssa Pinheiro Costa Silva,1 Jairo Pinto Oliveira,2 Wanderson Juvencio Keijok,2 André Romero da Silva,3 Anderson Rocha Aguiar,1 Marco Cesar Cunegundes Guimarães,2 Carolina Magri Ferraz,1 Jackson Victor Araújo,4 Fernando Luiz Tobias,5 Fábio Ribeiro Braga1 1Department of Parasitology, University Vila Velha, Vila Velha, Espírito Santo, Brazil; 2Morphology Department, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil; 3Federal Institute of Education, Science and Technology of Espírito Santo, Aracruz, Espírito Santo, Brazil; 4Department of Veterinary Medicine, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil; 5Department of Microbiology, University Vila Velha, Vila Velha, Espírito Santo, Brazil Abstract: The biosynthesis of metallic nanoparticles (NPs using biological systems such as fungi has evolved to become an important area of nanobiotechnology. Herein, we report for the first time the extracellular synthesis of highly stable silver NPs (AgNPs using the nematophagous fungus Duddingtonia flagrans (AC001. The fungal cell-free filtrate was analyzed by the Bradford method and 3,5-dinitrosalicylic acid assay and used to synthesize the AgNPs in the presence of a 1 mM AgNO3 solution. They have been characterized by UV–Vis spectroscopy, X-ray diffraction, transmission electron microscopy, dynamic light scattering, Zeta potential measurements, Fourier-transform infrared, and Raman spectroscopes. UV–Vis spectroscopy confirmed bioreduction, while X-ray diffractometry established the crystalline nature of the AgNPs. Dynamic light scattering and transmission electron microscopy images showed approximately 11, 38 nm monodisperse and quasispherical AgNPs. Zeta potential analysis was able to show a considerable stability of AgNPs. The N–H stretches in Fourier-transform infrared spectroscopy indicate the presence of protein molecules. The Raman bands suggest that chitinase was involved in the growth and

  6. Imposed Environmental Stresses Facilitate Cell-Free Nanoparticle Formation by Deinococcus radiodurans.

    Chen, Angela; Contreras, Lydia M; Keitz, Benjamin K

    2017-09-15

    The biological synthesis of metal nanoparticles has been examined in a wide range of organisms, due to increased interest in green synthesis and environmental remediation applications involving heavy metal ion contamination. Deinococcus radiodurans is particularly attractive for environmental remediation involving metal reduction, due to its high levels of resistance to radiation and other environmental stresses. However, few studies have thoroughly examined the relationships between environmental stresses and the resulting effects on nanoparticle biosynthesis. In this work, we demonstrate cell-free nanoparticle production and study the effects of metal stressor concentrations and identity, temperature, pH, and oxygenation on the production of extracellular silver nanoparticles by D. radiodurans R1. We also report the synthesis of bimetallic silver and gold nanoparticles following the addition of a metal stressor (silver or gold), highlighting how production of these particles is enabled through the application of environmental stresses. Additionally, we found that both the morphology and size of monometallic and bimetallic nanoparticles were dependent on the environmental stresses imposed on the cells. The nanoparticles produced by D. radiodurans exhibited antimicrobial activity comparable to that of pure silver nanoparticles and displayed catalytic activity comparable to that of pure gold nanoparticles. Overall, we demonstrate that biosynthesized nanoparticle properties can be partially controlled through the tuning of applied environmental stresses, and we provide insight into how their application may affect nanoparticle production in D. radiodurans during bioremediation. IMPORTANCE Biosynthetic production of nanoparticles has recently gained prominence as a solution to rising concerns regarding increased bacterial resistance to antibiotics and a desire for environmentally friendly methods of bioremediation and chemical synthesis. To date, a range of organisms

  7. Effects of a 4.7 T static magnetic field on fetal development in ICR mice

    Okazaki, Ryuji; Ootsuyama, Akira; Uchida, Soshi; Norimura, Toshiyuki

    2001-01-01

    In order to determine the effects of a 4.7 T static magnetic field (SMF) on fetal development in mice, we evaluated fetal teratogenesis and endochondral ossification following exposure in utero. Pregnant ICR mice were exposed to a 4.7 T SMF from day 7.5 to 9.5 of gestation in a whole-body dose, and sacrificed on day 18.5 of gestation. We examined with incidence of prenatal death, external malformations and fetal skeletal malformations. There were no significant differences observed in the incidence of prenatal death and/or malformations between SMF-exposed mice and control mice. Further, we evaluated the immunoreactivity for the vascular endothelial growth factor (VEGF), which is implicated in angiogenesis and osteogenesis, in the sternum of fetal mice following magnetic exposure. Our studies also indicated that on day 16.5 of gestation following SMF exposure, the immunoreactivity for VEGF was increased compared to unexposed controls. However, it was decreased in the exposed group compared to the control group on day 18.5 of gestation. DNA and proteoglycan (PG) synthesis were also measured in rabbit costal growth plate chondrocytes in vitro. No significant differences were observed in DNA synthesis between the SMF exposed chondrocytes and the control chondrocytes; however, PG synthesis in SMF exposed chondrocytes increased compared to the controls. Based on these results, we suggest that while SMF exposure promoted the endochondral ossification of chondrocytes, it did not induce any harmful effects on fetal development in ICR mice. (author)

  8. Prenatal testing for hemolytic disease of the newborn and fetal neonatal alloimmune thrombocytopenia - current status.

    Avent, Neil D

    2014-12-01

    Incompatibility of red cell and platelet antigens can lead to maternal alloimmunization causing hemolytic disease of the fetus & newborn and fetal neonatal alloimmune thrombocytopenia respectively. As the molecular background of these polymorphisms emerged, prenatal testing using initially fetal DNA obtained from invasively obtained amniotic fluid or chorionic villus was implemented. This evolved into testing using maternal plasma as source of fetal DNA, and this is in routine use as a safe non-invasive diagnostic that has no risk to the fetus of alloimmunization or spontaneous miscarriage. These tests were initially applied to high risk pregnancies, but has been applied on a mass scale, to screen fetuses in D-negative pregnant populations as national screening programs. Fetal neonatal alloimmune thrombocytopenia management has had comparatively small take up in non-invasive testing for causative fetal platelet alleles (e.g., HPA-1A), but mass scale genotyping of mothers to identify at risk HPA-1b1b pregnancies and their treatment with prophylactic anti-HPA-1A is being considered in at least one country (Norway).

  9. Effects of a 4.7 T static magnetic field on fetal development in ICR mice

    Okazaki, Ryuji; Ootsuyama, Akira; Uchida, Soshi; Norimura, Toshiyuki [Univ. of Occupational and Environmental Health, Kitakyushu, Fukuoka (Japan). School of Medicine

    2001-09-01

    In order to determine the effects of a 4.7 T static magnetic field (SMF) on fetal development in mice, we evaluated fetal teratogenesis and endochondral ossification following exposure in utero. Pregnant ICR mice were exposed to a 4.7 T SMF from day 7.5 to 9.5 of gestation in a whole-body dose, and sacrificed on day 18.5 of gestation. We examined with incidence of prenatal death, external malformations and fetal skeletal malformations. There were no significant differences observed in the incidence of prenatal death and/or malformations between SMF-exposed mice and control mice. Further, we evaluated the immunoreactivity for the vascular endothelial growth factor (VEGF), which is implicated in angiogenesis and osteogenesis, in the sternum of fetal mice following magnetic exposure. Our studies also indicated that on day 16.5 of gestation following SMF exposure, the immunoreactivity for VEGF was increased compared to unexposed controls. However, it was decreased in the exposed group compared to the control group on day 18.5 of gestation. DNA and proteoglycan (PG) synthesis were also measured in rabbit costal growth plate chondrocytes in vitro. No significant differences were observed in DNA synthesis between the SMF exposed chondrocytes and the control chondrocytes; however, PG synthesis in SMF exposed chondrocytes increased compared to the controls. Based on these results, we suggest that while SMF exposure promoted the endochondral ossification of chondrocytes, it did not induce any harmful effects on fetal development in ICR mice. (author)

  10. A crucial role for maternal dietary methyl donor intake in epigenetic programming and fetal growth outcomes.

    McGee, Meghan; Bainbridge, Shannon; Fontaine-Bisson, Bénédicte

    2018-06-01

    The fetal origins of health and disease framework has identified extremes in fetal growth and birth weight as factors associated with the lifelong generation of chronic diseases such as obesity, diabetes, cardiovascular disease, and hypertension. Maternal nutrition plays a critical role in fetal and placental development, in part by providing the methyl groups required to establish the fetus's genome structure and function, notably through DNA methylation. The goal of this narrative review is to describe the role of maternal dietary methyl donor (methionine, folate, and choline) and cofactor (zinc and vitamins B2, B6, and B12) intake in one-carbon metabolism and DNA methylation in the fetus and placenta, as well as their impacts on fetal growth and lifelong health outcomes, with specific examples in animals and humans. Based on the available evidence, it is concluded that intake of different amounts of dietary methyl donors and cofactors during pregnancy may alter fetal growth and development, thus establishing a major link between early environmental exposure and disease development in the offspring later in life.

  11. Fetal evaluation of spine dysraphism

    Bulas, Dorothy

    2010-01-01

    Spinal dysraphism or neural tube defects (NTD) encompass a heterogeneous group of congenital spinal anomalies that result from the defective closure of the neural tube early in gestation with anomalous development of the caudal cell mass. Advances in ultrasound and MRI have dramatically improved the diagnosis and therapy of spinal dysraphism and caudal spinal anomalies both prenatally and postnatally. Advances in prenatal US including high frequency linear transducers and three dimensional imaging can provide detailed information concerning spinal anomalies. MR imaging is a complementary tool that can further elucidate spine abnormalities as well as associated central nervous system and non-CNS anomalies. Recent studies have suggested that 3-D CT can help further assess fetal spine anomalies in the third trimester. With the advent of fetal therapy including surgery, accurate prenatal diagnosis of open and closed spinal dysraphism becomes critical in appropriate counselling and perinatal management. (orig.)

  12. Fetal origin of vascular aging

    Shailesh Pitale

    2011-01-01

    Full Text Available Aging is increasingly regarded as an independent risk factor for development of cardiovascular diseases such as atherosclerosis and hypertension and their complications (e.g. MI and Stroke. It is well known that vascular disease evolve over decades with progressive accumulation of cellular and extracellular materials and many inflammatory processes. Metabolic syndrome, obesity and diabetes are conventionally recognized as risk factors for development of coronary vascular disease (CVD. These conditions are known to accelerate ageing process in general and vascular ageing in particular. Adverse events during intrauterine life may programme organ growth and favour disease later in life, popularly known as, ′Barker′s Hypothesis′. The notion of fetal programming implies that during critical periods of prenatal growth, changes in the hormonal and nutritional milieu of the conceptus may alter the full expression of the fetal genome, leading to permanent effects on a range of physiological.

  13. Fetal evaluation of spine dysraphism

    Bulas, Dorothy [George Washington University Medical Center, Division of Diagnostic Imaging and Radiology, Children' s National Medical Center, Washington, DC (United States)

    2010-06-15

    Spinal dysraphism or neural tube defects (NTD) encompass a heterogeneous group of congenital spinal anomalies that result from the defective closure of the neural tube early in gestation with anomalous development of the caudal cell mass. Advances in ultrasound and MRI have dramatically improved the diagnosis and therapy of spinal dysraphism and caudal spinal anomalies both prenatally and postnatally. Advances in prenatal US including high frequency linear transducers and three dimensional imaging can provide detailed information concerning spinal anomalies. MR imaging is a complementary tool that can further elucidate spine abnormalities as well as associated central nervous system and non-CNS anomalies. Recent studies have suggested that 3-D CT can help further assess fetal spine anomalies in the third trimester. With the advent of fetal therapy including surgery, accurate prenatal diagnosis of open and closed spinal dysraphism becomes critical in appropriate counselling and perinatal management. (orig.)

  14. Clinical significance of perceptible fetal motion.

    Rayburn, W F

    1980-09-15

    The monitoring of fetal activity during the last trimester of pregnancy has been proposed to be useful in assessing fetal welfare. The maternal perception of fetal activity was tested among 82 patients using real-time ultrasonography. All perceived fetal movements were visualized on the scanner and involved motion of the lower limbs. Conversely, 82% of all visualized motions of fetal limbs were perceived by the patients. All combined motions of fetal trunk with limbs were preceived by the patients and described as strong movements, whereas clusters of isolated, weak motions of the fetal limbs were less accurately perceived (56% accuracy). The number of fetal movements perceived during the 15-minute test period was significantly (p fetal motion was present (44 of 45 cases) than when it was absent (five of 10 cases). These findings reveal that perceived fetal motion is: (1) reliable; (2) related to the strength of lower limb motion; (3) increased with ruptured amniotic membranes; and (4) reassuring if considered to be active.

  15. Hydrogen exchange during cell-free incorporation of deuterated amino acids and an approach to its inhibition

    Tonelli, Marco; Singarapu, Kiran K. [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison (NMRFAM), Department of Biochemistry (United States); Makino, Shin-ichi; Sahu, Sarata C.; Matsubara, Yuko [University of Wisconsin-Madison, Center for Eukaryotic Structural Genomics (CESG), Department of Biochemistry (United States); Endo, Yaeta [Ehime University, Cell-Free Science and Technology Research Center (Japan); Kainosho, Masatsune [Tokyo Metropolitan University, Center for Priority Areas (Japan); Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison (NMRFAM), Department of Biochemistry (United States)

    2011-12-15

    Perdeuteration, selective deuteration, and stereo array isotope labeling (SAIL) are valuable strategies for NMR studies of larger proteins and membrane proteins. To minimize scrambling of the label, it is best to use cell-free methods to prepare selectively labeled proteins. However, when proteins are prepared from deuterated amino acids by cell-free translation in H{sub 2}O, exchange reactions can lead to contamination of {sup 2}H sites by {sup 1}H from the solvent. Examination of a sample of SAIL-chlorella ubiquitin prepared by Escherichia coli cell-free synthesis revealed that exchange had occurred at several residues (mainly at Gly, Ala, Asp, Asn, Glu, and Gln). We present results from a study aimed at identifying the exchanging sites and level of exchange and at testing a strategy for minimizing {sup 1}H contamination during wheat germ cell-free translation of proteins produced from deuterated amino acids by adding known inhibitors of transaminases (1 mM aminooxyacetic acid) and glutamate synthetase (0.1 mM l-methionine sulfoximine). By using a wheat germ cell-free expression system, we produced [U-{sup 2}H, {sup 15}N]-chlorella ubiquitin without and with added inhibitors, and [U-{sup 15}N]-chlorella ubiquitin as a reference to determine the extent of deuterium incorporation. We also prepared a sample of [U-{sup 13}C, {sup 15}N]-chlorella ubiquitin, for use in assigning the sites of exchange. The added inhibitors did not reduce the protein yield and were successful in blocking hydrogen exchange at C{sup {alpha}} sites, with the exception of Gly, and at C{sup {beta}} sites of Ala. We discovered, in addition, that partial exchange occurred with or without the inhibitors at certain side-chain methyl and methylene groups: Asn-H{sup {beta}}, Asp-H{sup {beta}}, Gln-H{sup {gamma}}, Glu-H{sup {gamma}}, and Lys-H{sup {epsilon}}. The side-chain labeling pattern, in particular the mixed chiral labeling resulting from partial exchange at certain sites, should be of

  16. Fetal programming in meat production.

    Du, Min; Wang, Bo; Fu, Xing; Yang, Qiyuan; Zhu, Mei-Jun

    2015-11-01

    Nutrient fluctuations during the fetal stage affects fetal development, which has long-term impacts on the production efficiency and quality of meat. During the early development, a pool of mesenchymal progenitor cells proliferate and then diverge into either myogenic or adipogenic/fibrogenic lineages. Myogenic progenitor cells further develop into muscle fibers and satellite cells, while adipogenic/fibrogenic lineage cells develop into adipocytes, fibroblasts and resident fibro-adipogenic progenitor cells. Enhancing the proliferation and myogenic commitment of progenitor cells during fetal development enhances muscle growth and lean production in offspring. On the other hand, promoting the adipogenic differentiation of adipogenic/fibrogenic progenitor cells inside the muscle increases intramuscular adipocytes and reduces connective tissue, which improves meat marbling and tenderness. Available studies in mammalian livestock, including cattle, sheep and pigs, clearly show the link between maternal nutrition and the quantity and quality of meat production. Similarly, chicken muscle fibers develop before hatching and, thus, egg and yolk sizes and hatching temperature affect long-term growth performance and meat production of chicken. On the contrary, because fishes are able to generate new muscle fibers lifelong, the impact of early nutrition on fish growth performance is expected to be minor, which requires further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Fetal growth and developmental programming.

    Galjaard, Sander; Devlieger, Roland; Van Assche, Frans A

    2013-01-01

    The environment in utero and in early neonatal life may induce a permanent response in the fetus and the newborn, leading to enhanced susceptibility to later diseases. This review concentrates on the role and mechanisms of events during the antenatal and immediate postnatal period resulting in later life diseases, concentrating on abnormal growth patterns of the fetus. Fetal overgrowth is related to exposure to a diabetic intra uterine environment, increasing the vulnerability to transgenerational obesity and hence an increased sensitivity to more diabetic mothers. This effect has been supported by animal data. Fetal growth restriction is complex due to malnutrition in utero, catch up growth due to a high caloric intake and low physical activity in later life. Metabolic changes and a transgenerational effect of intra uterine malnutrition has been supported by animal data. In recent years the discovery of alterations of the genome due to different influences during embryonic life, called epigenetics, has led to the phenomenon of fetal programming resulting in changing transgenerational metabolic effects.

  18. The use of non-invasive fetal electrocardiography in diagnosing second-degree fetal atrioventricular block.

    Lakhno, Igor; Behar, Joachim A; Oster, Julien; Shulgin, Vyacheslav; Ostras, Oleksii; Andreotti, Fernando

    2017-01-01

    Complete atrioventricular block in fetuses is known to be mostly associated with autoimmune disease and can be irreversible if no steroids treatment is provided. Conventional methods used in clinical practice for diagnosing fetal arrhythmia are limited since they do not reflect the primary electrophysiological conduction processes that take place in the myocardium. The non-invasive fetal electrocardiogram has the potential to better support fetal arrhythmias diagnosis through the continuous analysis of the beat to beat variation of the fetal heart rate and morphological analysis of the PQRST complex. We present two retrospective case reports on which atrioventricular block diagnosis could have been supported by the non-invasive fetal electrocardiogram. The two cases comprised a 22-year-old pregnant woman with the gestational age of 31 weeks and a 25-year-old pregnant woman with the gestational age of 41 weeks. Both women were admitted to the Department of Maternal and Fetal Medicine at the Kyiv and Kharkiv municipal perinatal clinics. Patients were observed using standard fetal monitoring methods as well as the non-invasive fetal electrocardiogram. The non-invasive fetal electrocardiographic recordings were analyzed retrospectively, where it is possible to identify the presence of the atrioventricular block. This study demonstrates, for the first time, the feasibility of the non-invasive fetal electrocardiogram as a supplementary method to diagnose of the fetal atrioventricular block. Combined with current fetal monitoring techniques, non-invasive fetal electrocardiography could support clinical decisions.

  19. A New Cell-Free System to Study BRCA1 Function

    2016-06-01

    with antibodies to FANCI, FANCD2, DNA pol e, FANCA , FANCM. We first wanted to test whether Approach, which is inhibited in BRCA1-depleted egg...novel proteins whose binding to chromatin depends on BRCA1: clone the gene , express the protein, raise antibodies, immunodeplete the protein from egg... Gene Regulation and Genomics Seminar Series, UT Southwestern 2016 Keynote Speaker Gordon Research Seminar on Mutagenesis, Ventura, CA 2016 Invited

  20. A comparison of cell-free placental messenger ribonucleic acid and color Doppler ultrasound for the prediction of placental invasion in patients with placenta accreta

    Naghshineh, Elham; Khorvash, Elahe; Kamali, Sara

    2015-01-01

    Background: The aim of the present study was to comparison between cell-free placental messenger ribonucleic acid (mRNA) and Doppler ultrasound for the prediction of placental invasion in women with placenta accreta. Materials and Methods: In this cross-sectional study, 50 pregnant women at risk for placenta accreta underwent color Doppler and assessment of cell-free placental mRNA. Real-time reverse-transcription polymerase chain reaction was used for measurement of cell-free placental m...

  1. Efficient production and purification of functional bacteriorhodopsin with a wheat-germ cell-free system and a combination of Fos-choline and CHAPS detergents.

    Genji, Takahisa; Nozawa, Akira; Tozawa, Yuzuru

    2010-10-01

    Cell-free translation is one potential approach to the production of functional transmembrane proteins. We have now examined various detergents as supplements to a wheat-germ cell-free system in order to optimize the production and subsequent purification of a functional model transmembrane protein, bacteriorhodopsin. We found that Fos-choline and CHAPS detergents counteracted each other's inhibitory effects on cell-free translation activity and thereby allowed the efficient production and subsequent purification of functional bacteriorhodopsin in high yield. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Fetal microchimeric cells in autoimmune thyroid diseases

    Lepez, Trees; Vandewoestyne, Mado; Deforce, Dieter

    2013-01-01

    Autoimmune thyroid diseases (AITD) show a female predominance, with an increased incidence in the years following parturition. Fetal microchimerism has been suggested to play a role in the pathogenesis of AITD. However, only the presence of fetal microchimeric cells in blood and in the thyroid gland of these patients has been proven, but not an actual active role in AITD. Is fetal microchimerism harmful for the thyroid gland by initiating a Graft versus Host reaction (GvHR) or being the target of a Host versus Graft reaction (HvGR)? Is fetal microchimerism beneficial for the thyroid gland by being a part of tissue repair or are fetal cells just innocent bystanders in the process of autoimmunity? This review explores every hypothesis concerning the role of fetal microchimerism in AITD. PMID:23723083

  3. Increasing fetal ovine number per gestation alters fetal plasma clinical chemistry values.

    Zywicki, Micaela; Blohowiak, Sharon E; Magness, Ronald R; Segar, Jeffrey L; Kling, Pamela J

    2016-08-01

    Intrauterine growth restriction (IUGR) is interconnected with developmental programming of lifelong pathophysiology. IUGR is seen in human multifetal pregnancies, with stepwise rises in fetal numbers interfering with placental nutrient delivery. It remains unknown whether fetal blood analyses would reflect fetal nutrition, liver, and excretory function in the last trimester of human or ovine IUGR In an ovine model, we hypothesized that fetal plasma biochemical values would reflect progressive placental, fetal liver, and fetal kidney dysfunction as the number of fetuses per gestation rose. To determine fetal plasma biochemical values in singleton, twin, triplet, and quadruplet/quintuplet ovine gestation, we investigated morphometric measures and comprehensive metabolic panels with nutritional measures, liver enzymes, and placental and fetal kidney excretory measures at gestational day (GD) 130 (90% gestation). As anticipated, placental dysfunction was supported by a stepwise fall in fetal weight, fetal plasma glucose, and triglyceride levels as fetal number per ewe rose. Fetal glucose and triglycerides were directly related to fetal weight. Plasma creatinine, reflecting fetal renal excretory function, and plasma cholesterol, reflecting placental excretory function, were inversely correlated with fetal weight. Progressive biochemical disturbances and growth restriction accompanied the rise in fetal number. Understanding the compensatory and adaptive responses of growth-restricted fetuses at the biochemical level may help explain how metabolic pathways in growth restriction can be predetermined at birth. This physiological understanding is important for clinical care and generating interventional strategies to prevent altered developmental programming in multifetal gestation. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  4. The World Health Organization Fetal Growth Charts

    Kiserud, Torvid; Piaggio, Gilda; Carroli, Guillermo

    2017-01-01

    BACKGROUND: Perinatal mortality and morbidity continue to be major global health challenges strongly associated with prematurity and reduced fetal growth, an issue of further interest given the mounting evidence that fetal growth in general is linked to degrees of risk of common noncommunicable...... longitudinal study of fetal growth in low-risk singleton pregnancies of women of high or middle socioeconomic status and without known environmental constraints on fetal growth. Centers in ten countries (Argentina, Brazil, Democratic Republic of the Congo, Denmark, Egypt, France, Germany, India, Norway...

  5. Digital atlas of fetal brain MRI.

    Chapman, Teresa; Matesan, Manuela; Weinberger, Ed; Bulas, Dorothy I

    2010-02-01

    Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C#, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download from http://radiology.seattlechildrens.org/teaching/fetal_brain . Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development.

  6. MR imaging of the fetal brain

    Glenn, Orit A.

    2010-01-01

    Fetal MRI is clinically performed to evaluate the brain in cases where an abnormality is detected by prenatal sonography. These most commonly include ventriculomegaly, abnormalities of the corpus callosum, and abnormalities of the posterior fossa. Fetal MRI is also increasingly performed to evaluate fetuses who have normal brain findings on prenatal sonogram but who are at increased risk for neurodevelopmental abnormalities, such as complicated monochorionic twin pregnancies. This paper will briefly discuss the common clinical conditions imaged by fetal MRI as well as recent advances in fetal MRI research. (orig.)

  7. MR imaging of the fetal brain

    Glenn, Orit A. [University of California, San Francisco, Department of Radiology, Neuroradiology Section, San Francisco, CA (United States)

    2010-01-15

    Fetal MRI is clinically performed to evaluate the brain in cases where an abnormality is detected by prenatal sonography. These most commonly include ventriculomegaly, abnormalities of the corpus callosum, and abnormalities of the posterior fossa. Fetal MRI is also increasingly performed to evaluate fetuses who have normal brain findings on prenatal sonogram but who are at increased risk for neurodevelopmental abnormalities, such as complicated monochorionic twin pregnancies. This paper will briefly discuss the common clinical conditions imaged by fetal MRI as well as recent advances in fetal MRI research. (orig.)

  8. Circulating cell-free nucleosomes as biomarkers for early detection of colorectal cancer

    Rasmussen, Louise; Christensen, Ib Jarle; Herzog, Marielle

    2018-01-01

    -malignant findings. Predictor models including ccfn containing 5-methylcytosine DNA, CEA, age and gender improved results (AUCROC = 0.736, sensitivity = 0.37 at specificity = 0.90). Further improvement was achieved in discrimination of individuals with CRC from individuals with clean colorectum (AUCROC = 0.......840, sensitivity = 0.57 at specificity = 0.90). The levels of ccfn among patients with CRC appeared to be stage-independent. In conclusion, the performance of the developed predictor models is potentially promising in early detection of CRC....

  9. Prenatal smoking exposure and asymmetric fetal growth restriction

    Delpisheh, Ali; Brabin, Loretta; Drummond, Sandra; Brabin, Bernard J.

    2008-01-01

    Background: Prenatal smoking exposure causes intrauterine fetal growth restriction ( IUGR), although its effects on fetal proportionality are less clearly defined. Aim: The present study assessed fetal proportionality in babies with IUGR using maternal salivary cotinine to indicate maternal smoking

  10. Imaging of fetal chest masses

    Barth, Richard A. [Lucile Packard Children' s Hospital, Stanford University School of Medicine, Department of Radiology, Stanford, CA (United States)

    2012-01-15

    Prenatal imaging with high-resolution US and rapid acquisition MRI plays a key role in the accurate diagnosis of congenital chest masses. Imaging has enhanced our understanding of the natural history of fetal lung masses, allowing for accurate prediction of outcome, parental counseling, and planning of pregnancy and newborn management. This paper will focus on congenital bronchopulmonary malformations, which account for the vast majority of primary lung masses in the fetus. In addition, anomalies that mimic masses and less common causes of lung masses will be discussed. (orig.)

  11. Forskolin and the meiosis inducing substance synergistically initiate meiosis in fetal male germ cells

    Byskov, A G; Fenger, M; Westergaard, L

    1993-01-01

    We have shown that Meiosis Inducing Substance (MIS) and forskolin synergistically and dose dependently induce meiosis in germ cells of cultured fetal mouse testes. We used a bioassay which consists of fetal mouse testes and ovaries cultured for 6 days. In this study MIS media are spent culture...... are fixed, squashed, and DNA-stained. In these preparations germ cells and somatic cells can be distinguished, and the number of germ cells in the different stages of meiosis is counted as is the number of somatic cells in mitosis. MIS activity is defined to be present in a medium when meiosis is induced...... in male germ cells during culture. We found that MIS media as well as forskolin induced meiosis in fetal male germ cells in a dose-dependent manner. In addition, MIS media and forskolin acted synergistically by inducing meiosis. Female germ cells seem to be unaffected by the various culture media...

  12. How to evaluate PCR assays for the detection of low-level DNA

    Banch-Clausen, Frederik; Urhammer, Emil; Rieneck, Klaus

    2015-01-01

    distribution describing parameters for singleplex real-time PCR-based detection of low-level DNA. The model was tested against experimental data of diluted cell-free foetal DNA. Also, the model was compared with a simplified formula to enable easy predictions. The model predicted outcomes that were...... not significantly different from experimental data generated by testing of cell-free foetal DNA. Also, the simplified formula was applicable for fast and accurate assay evaluation. In conclusion, the model can be applied for evaluation of sensitivity of real-time PCR-based detection of low-level DNA, and may also......High sensitivity of PCR-based detection of very low copy number DNA targets is crucial. Much focus has been on design of PCR primers and optimization of the amplification conditions. Very important are also the criteria used for determining the outcome of a PCR assay, e.g. how many replicates...

  13. DNA nanotechnology from the test tube to the cell.

    Chen, Yuan-Jyue; Groves, Benjamin; Muscat, Richard A; Seelig, Georg

    2015-09-01

    The programmability of Watson-Crick base pairing, combined with a decrease in the cost of synthesis, has made DNA a widely used material for the assembly of molecular structures and dynamic molecular devices. Working in cell-free settings, researchers in DNA nanotechnology have been able to scale up system complexity and quantitatively characterize reaction mechanisms to an extent that is infeasible for engineered gene circuits or other cell-based technologies. However, the most intriguing applications of DNA nanotechnology - applications that best take advantage of the small size, biocompatibility and programmability of DNA-based systems - lie at the interface with biology. Here, we review recent progress in the transition of DNA nanotechnology from the test tube to the cell. We highlight key successes in the development of DNA-based imaging probes, prototypes of smart therapeutics and drug delivery systems, and explore the future challenges and opportunities for cellular DNA nanotechnology.

  14. DNA nanotechnology from the test tube to the cell

    Chen, Yuan-Jyue; Groves, Benjamin; Muscat, Richard A.; Seelig, Georg

    2015-09-01

    The programmability of Watson-Crick base pairing, combined with a decrease in the cost of synthesis, has made DNA a widely used material for the assembly of molecular structures and dynamic molecular devices. Working in cell-free settings, researchers in DNA nanotechnology have been able to scale up system complexity and quantitatively characterize reaction mechanisms to an extent that is infeasible for engineered gene circuits or other cell-based technologies. However, the most intriguing applications of DNA nanotechnology -- applications that best take advantage of the small size, biocompatibility and programmability of DNA-based systems -- lie at the interface with biology. Here, we review recent progress in the transition of DNA nanotechnology from the test tube to the cell. We highlight key successes in the development of DNA-based imaging probes, prototypes of smart therapeutics and drug delivery systems, and explore the future challenges and opportunities for cellular DNA nanotechnology.

  15. Digital atlas of fetal brain MRI

    Chapman, Teresa; Weinberger, E.; Matesan, Manuela; Bulas, Dorothy I.

    2010-01-01

    Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download. Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development. (orig.)

  16. Fetal microchimerism in breast and colon cancer

    Kamper-Jørgensen, M; Biggar, R J; Stamper, Casey L

    2011-01-01

    1574 Background: Cells acquired by a woman from her baby that durably persist in her blood and tissues is known as fetal microchimerism (FMc). In women with breast cancer, frequency and quantity of FMc in blood and breast tissue is reduced compared to healthy women. Whether the absence of fetal...

  17. Digital atlas of fetal brain MRI

    Chapman, Teresa; Weinberger, E. [Department of Radiology, Seattle Children' s Hospital, Seattle, WA (United States); Matesan, Manuela [University of Washington, Department of Radiology, Seattle, WA (United States); Bulas, Dorothy I. [Division of Diagnostic Imaging and Radiology, Children' s National Medical Center, Washington, DC (United States)

    2010-02-15

    Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download. Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development. (orig.)

  18. Expert systems for fetal assessment in labour

    Lutomski, J.E.; Meaney, S.; Greene, R.A.; Ryan, A.C.; Devane, D.

    2015-01-01

    BACKGROUND: Cardiotocography (CTG) records the fetal heart rate in relation to maternal uterine contractions and is one of the most common forms of fetal assessment during labour. Despite guidelines for CTG interpretation, substantial inter- and intra-observer variation in interpretation has been

  19. PREVENTION FETAL ALCOHOL SYNDROME IN RUSSIA

    L. V. Skitnevskaya

    2013-01-01

    Full Text Available The article is devoted to the influence of alcohol problems in women of childbearing age during pregnancy on the unborn child. The concept of a fetal alcohol syndrome (FAS. We describe the stages of the research project "Prevention of fetal FAS in Russia."

  20. New treatment of early fetal chylothorax

    Nygaard, Ulrikka; Sundberg, Karin; Nielsen, Henriette Svarre

    2007-01-01

    OBJECTIVE: To evaluate OK-432, a preparation of Streptococcus pyogenes, in the treatment of early fetal chylothorax. METHODS: A prospective study of all fetuses (n=7) with persistent early chylothorax (gestational ages 16-21 weeks) referred to the tertiary center of fetal medicine in Denmark in 2...

  1. Fetal hydronephrosis: is there hope for consensus?

    Toiviainen-Salo, Sanna; Dubois, Josee; Rypens, Francoise; Boisvert, Jacques; Perreault, Gilles; Decarie, Jean Claude; Filiatrault, Denis; Lapierre, Chantale; Miron, Marie-Claude; Bechard, Nancy [Department of Medical Imaging, Hopital Ste-Justine, 3175 Cote Ste-Catherine, H3T 1C5, Montreal, Quebec (Canada); Garel, Laurent; Grignon, Andree [Department of Medical Imaging, Hopital Ste-Justine, 3175 Cote Ste-Catherine, H3T 1C5, Montreal, Quebec (Canada); Department of Radiology, Universite de Montreal, 3175 Cote Ste-Catherine, H3T 1C5, Montreal, Quebec (Canada)

    2004-07-01

    This review article aims at summarizing the data regarding fetal and neonatal hydronephrosis, at correlating controversial data with the differences in the practice of obstetrical sonography from one country to another, and finally, at presenting our own criteria for fetal renal collecting system dilatation along with our own guidelines of postnatal investigation. (orig.)

  2. Ultrasonic Diagnosis of Fetal Ascites and Toxoplasmosis

    Blaakær, Jan

    1986-01-01

    The ultrasonic diagnosis of fetal ascites caused by Toxoplasma Gondii is presented. When a diagnosis of fetal ascites without obvious etiological malformation is established, toxoplasmosis should be suspected. A serological test should be performed, in view of the possibility of antenatal treatme...

  3. Fetal behavior in normal dichorionic twin pregnancy

    Mulder, E. J. H.; Derks, J. B.; de Laat, M. W. M.; Visser, G. H. A.

    2012-01-01

    Objectives: A prospective study was performed to compare fetal behavioral development in healthy dichorionic twins and singletons, and identify twin intra-pair associations (synchrony) of fetal movements and rest-activity cycles using different criteria to define synchrony. Subjects and methods:

  4. Value of amniocentesis versus fetal tissue for cytogenetic analysis in cases of fetal demise.

    Bryant Borders, Ann E; Greenberg, Jessica; Plaga, Stacey; Shepard-Hinton, Megan; Yates, Carin; Elias, Sherman; Shulman, Lee P

    2009-01-01

    Use of fetal tissue for cytogenetic analysis in cases of second- and third-trimester fetal demise frequently results in unacceptably high failure rates. We reviewed our ongoing use of amniocentesis prior to uterine evacuation to determine if this provided a better source of cells for cytogenetic analysis. We compared cytogenetic results using fetal tissues obtained following uterine evacuation to our ongoing use of amniotic fluid cell obtained by transabdominal amniocentesis prior to uterine evacuation from 2003 to 2008. In 49 of the 63 cases evaluated by fetal tissue biopsies performed after uterine evacuation, a karyotypic analysis was obtained (77.8%). Among the 38 cases evaluated by amniocentesis, an amniotic fluid sample and fetal cytogenetic results were obtained in all 38 (100%) cases. Our findings indicate that amniocentesis is a more reliable source of cytogenetic information than fetal tissue in cases of second- and third-trimester fetal demise.

  5. Fetal Origin of Sensorimotor Behavior

    Jaqueline Fagard

    2018-05-01

    Full Text Available The aim of this article is to track the fetal origin of infants’ sensorimotor behavior. We consider development as the self-organizing emergence of complex forms from spontaneously generated activity, governed by the innate capacity to detect and memorize the consequences of spontaneous activity (contingencies, and constrained by the sensory and motor maturation of the body. In support of this view, we show how observations on fetuses and also several fetal experiments suggest that the fetus’s first motor activity allows it to feel the space around it and to feel its body and the consequences of its movements on its body. This primitive motor babbling gives way progressively to sensorimotor behavior which already possesses most of the characteristics of infants’ later behavior: repetition of actions leading to sensations, intentionality, some motor control and oriented reactions to sensory stimulation. In this way the fetus can start developing a body map and acquiring knowledge of its limited physical and social environment.

  6. Inequality in Fetal Autopsy in Canada.

    Auger, Nathalie; Tiandrazana, Rémi-Claude; Healy-Profitós, Jessica; Costopoulos, André

    2016-01-01

    Inequality in use of fetal autopsy is poorly understood, despite the importance of autopsy in establishing the cause of stillbirth for future prevention. We examined fetal autopsy rates between linguistic minorities in Quebec, Canada, and assessed trends over three decades. Using registry data on 11,992 stillbirths from 1981-2011, we calculated fetal autopsy rates for Francophones, Anglophones, and Allophones by decade. We found lower fetal autopsy rates for Allophones (54.4%) than Francophones (68.5%) and Anglophones (63.4%), but rates decreased over time for all language groups. After 2000, Allophones had 25% higher risk of non-autopsy relative to Francophones, with 8.8 fewer autopsies for every 100 stillbirths. Allophones who were not autopsied had 32% higher risk of having an undetermined cause of death. Inequality in use of fetal autopsy may be widespread for minorities in Canada. Efforts to decrease stillbirth in minorities may require policies to increase autopsy rates.

  7. Fetal activity patterns in hypertensive pregnancies.

    Rayburn, W F

    1982-01-01

    This prospective investigation attempts to determine whether the maternal recording of perceived fetal motion is useful for fetal assessment in pregnancies complicated by hypertension. During a 21 month period, 124 patients whose pregnancies were complicated by either chronic or pregnancy-induced hypertension participated. The number of perceived movements per hour (24 +/- 11, mean +/- S.D.) and evidence for fetal inactivity (7 cases, 6%) did not vary significantly from a control group of normotensive pregnancies (p greater than 0.05). Fetal inactivity was predictive of an unfavorable perinatal outcome in 6 of 7 cases, including the three stillborn infants. No perinatal deaths occurred among the 117 hypertensive pregnancies with active fetuses, and the 6 cases with an unfavorable outcome were associated with mild intrauterine growth delay, prematurity, or acute changes such as placental abruption or umbilical cord accidents. Realizing these limitations, a record of fetal inactivity is worthwhile in managing the pregnancy complicated by hypertension.

  8. Fetal neonatal hyperthyroidism: diagnostic and therapeutic approachment

    Kurtoğlu, Selim; Özdemir, Ahmet

    2017-01-01

    Fetal and neonatal hyperthyroidism may occur in mothers with Graves’ disease. Fetal thyrotoxicosis manifestation is observed with the transition of TSH receptor stimulating antibodies to the fetus from the 17th–20th weeks of pregnancy and with the fetal TSH receptors becoming responsive after 20 weeks. The diagnosis is confirmed by fetal tachycardia, goiter and bone age advancement in pregnancy and maternal treatment is conducted in accordance. The probability of neonatal hyperthyroidism is high in the babies of mothers that have ongoing antithyroid requirement and higher antibody levels in the last months of pregnancy. Clinical manifestation may be delayed by 7–17 days because of the antithyroid drugs taken by the mother. Neonatal hyperthyroidism symptoms can be confused with sepsis and congenital viral infections. Herein, the diagnosis and therapeutic approach are reviewed in cases of fetal neonatal hyperthyroidism. PMID:28439194

  9. A versatile coupled cell-free transcription-translation system based on tobacco BY-2 cell lysates.

    Buntru, Matthias; Vogel, Simon; Stoff, Katrin; Spiegel, Holger; Schillberg, Stefan

    2015-05-01

    Cell-free protein synthesis is a powerful method for the high-throughput production of recombinant proteins, especially proteins that are difficult to express in living cells. Here we describe a coupled cell-free transcription-translation system based on tobacco BY-2 cell lysates (BYLs). Using a combination of fractional factorial designs and response surface models, we developed a cap-independent system that produces more than 250 μg/mL of functional enhanced yellow fluorescent protein (eYFP) and about 270 μg/mL of firefly luciferase using plasmid templates, and up to 180 μg/mL eYFP using linear templates (PCR products) in 18 h batch reactions. The BYL contains actively-translocating microsomal vesicles derived from the endoplasmic reticulum, promoting the formation of disulfide bonds, glycosylation and the cotranslational integration of membrane proteins. This was demonstrated by expressing a functional full-size antibody (∼ 150 μg/mL), the model enzyme glucose oxidase (GOx) (∼ 7.3 U/mL), and a transmembrane growth factor (∼ 25 μg/mL). Subsequent in vitro treatment of GOx with peptide-N-glycosidase F confirmed the presence of N-glycans. Our results show that the BYL can be used as a high-throughput expression and screening platform that is particularly suitable for complex and cytotoxic proteins. © 2014 Wiley Periodicals, Inc.

  10. In Vivo Evaluation of Biocompatibility and Chondrogenic Potential of a Cell-Free Collagen-Based Scaffold

    Giovanna Calabrese

    2017-11-01

    Full Text Available Injured articular cartilage has a limited innate regenerative capacity, due to the avascular nature and low cellularity of the tissue itself. Although several approaches have been proposed to repair the joint cartilage, none of them has proven to be effective. The absence of suitable therapeutic options has encouraged tissue-engineering approaches combining specific cell types and biomaterials. In the present work, we have evaluated the potential of a cell-free Collagen I-based scaffold to promote the augmentation of cartilage-like phenotype after subcutaneous implantation in the mouse. Forty female mice were grafted subcutaneously with scaffolds, while four additional mice without scaffold were used as negative controls. The effects of scaffold were evaluated at 1, 2, 4, 8, or 16 weeks after implantation. Immunohistochemical analysis shows the expression of typical cartilage markers, including type-II Collagen, Aggrecan, Matrilin-1 and Sox 9. These data are also confirmed by qRT-PCR that further show that both COL2A1 and COL1A1 increase over time, but the first one increases more rapidly, thus suggesting a typical cartilage-like address. Histological analysis shows the presence of some pericellular lacunae, after 8 and 16 weeks. Results suggest that this scaffold (i is biocompatible in vivo, (ii is able to recruit host cells (iii induce chondrogenic differentiation of host cells. Such evidences suggest that this cell-free scaffold is promising and represents a potential approach for cartilage regeneration.

  11. Cell-Free Protein Synthesis Enhancement from Real-Time NMR Metabolite Kinetics: Redirecting Energy Fluxes in Hybrid RRL Systems.

    Panthu, Baptiste; Ohlmann, Théophile; Perrier, Johan; Schlattner, Uwe; Jalinot, Pierre; Elena-Herrmann, Bénédicte; Rautureau, Gilles J P

    2018-01-19

    A counterintuitive cell-free protein synthesis (CFPS) strategy, based on reducing the ribosomal fraction in rabbit reticulocyte lysate (RRL), triggers the development of hybrid systems composed of RRL ribosome-free supernatant complemented with ribosomes from different mammalian cell-types. Hybrid RRL systems maintain translational properties of the original ribosome cell types, and deliver protein expression levels similar to RRL. Here, we show that persistent ribosome-associated metabolic activity consuming ATP is a major obstacle for maximal protein yield. We provide a detailed picture of hybrid CFPS systems energetic metabolism based on real-time nuclear magnetic resonance (NMR) investigation of metabolites kinetics. We demonstrate that protein synthesis capacity has an upper limit at native ribosome concentration and that lower amounts of the ribosomal fraction optimize energy fluxes toward protein translation, consequently increasing CFPS yield. These results provide a rationalized strategy for further mammalian CFPS developments and reveal the potential of real-time NMR metabolism phenotyping for optimization of cell-free protein expression systems.

  12. Immobilization of anaerobic thermophilic bacteria for the production of cell-free thermostable. alpha. -amylases and pullulanases

    Klingeberg, M [Goettingen Univ. (Germany, F.R.). Inst. fuer Mikrobiologie; Vorlop, K D [Technische Univ. Braunschweig (Germany, F.R.). Inst. fuer Technische Chemie; Antranikian, G [Technische Univ. Hamburg-Harburg, Hamburg (Germany, F. R.). Arbeitsbereich Biotechnologie 1

    1990-08-01

    For the production of cell-free thermostable {alpha}-amylases and pullulanases various anaerobic thermophilic bacteria that belong to the genera Clostridium and Thermoanaerobacter were immobilized in calcium alginate gel beads. The entrapment of bacteria was performed in full was well as in hollow spheres. An optimal limited medium, which avoided bacterial outgrowth, was developed for the cultivation of immobilized organisms at 60deg C using 0.4% starch as substrate. Compared to non-immobilized cells these techniques allowed a significant increase (up to 5.6-fold) in the specific activities of the extracellular enzymes formed. An increase in the productivity of extracellular enzymes was observed after immobilization of bacteria in full spheres. In the case of C. thermosaccharolyticum, for instance, the productivity was raised from 90 units (U)/10{sup 12} cells up to 700 U/10{sup 12} cells. Electrophoretic analysis of the secreted proteins showed that in all cases most of the amylolytic enzymes formed were released into the culture medium. Proteins that had a molecular mass of less than 450 000 daltons could easily diffuse through the gel matrix. Cultivation of immobilized bacteria in semi-continuous and fed-batch cultures was also accompanied by an elevation in the concentration of cell-free enzymes. (orig.).

  13. Distortion of maternal-fetal angiotensin II type 1 receptor allele transmission in pre-eclampsia.

    Morgan, L; Crawshaw, S; Baker, P N; Brookfield, J F; Broughton Pipkin, F; Kalsheker, N

    1998-01-01

    OBJECTIVE: To investigate the fetal angiotensin II type 1 receptor genotype in pre-eclampsia. DESIGN: Case-control study. POPULATION: Forty-one maternal-fetal pairs from pre-eclamptic pregnancies and 80 maternal-fetal pairs from normotensive pregnancies. METHODS: Maternal and fetal DNA was genotyped at three diallelic polymorphisms, at nucleotides 573, 1062, and 1166, in the coding exon of the angiotensin II type 1 receptor gene, and at a dinucleotide repeat polymorphism in its 3' flanking region. RESULTS: Allele and genotype frequencies at the four polymorphic regions investigated did not differ between pre-eclamptic and normotensive groups, in either fetal or maternal samples. Mothers heterozygous for the dinucleotide repeat allele designated A4 transmitted this allele to the fetus in 15 of 18 informative pre-eclamptic pregnancies and in eight of 26 normotensive pregnancies. This was greater than the expected probability in pre-eclamptic pregnancies (p=0.04) and less than expected in normotensive pregnancies (p<0.005). The 573T variant, which is in partial linkage disequilibrium with the A4 allele, showed a similar distortion of maternal-fetal transmission. CONCLUSION: Angiotensin II type 1 receptor gene expression in the fetus may contribute to the aetiology of pre-eclampsia. It is unclear whether susceptibility is conferred by the fetal genotype acting alone, or by allele sharing by mother and fetus. Possible mechanisms for the effect of the angiotensin II type 1 receptor gene are suggested by the association of the 573T variant with low levels of surface receptor expression on platelets. If receptor expression is similarly genetically determined in the placenta, responsiveness to angiotensin II may be affected, with the potential to influence placentation or placental prostaglandin secretion. PMID:9719367

  14. Exome sequencing for gene discovery in lethal fetal disorders--harnessing the value of extreme phenotypes.

    Filges, Isabel; Friedman, Jan M

    2015-10-01

    Massively parallel sequencing has revolutionized our understanding of Mendelian disorders, and many novel genes have been discovered to cause disease phenotypes when mutant. At the same time, next-generation sequencing approaches have enabled non-invasive prenatal testing of free fetal DNA in maternal blood. However, little attention has been paid to using whole exome and genome sequencing strategies for gene identification in fetal disorders that are lethal in utero, because they can appear to be sporadic and Mendelian inheritance may be missed. We present challenges and advantages of applying next-generation sequencing approaches to gene discovery in fetal malformation phenotypes and review recent successful discovery approaches. We discuss the implication and significance of recessive inheritance and cross-species phenotyping in fetal lethal conditions. Whole exome sequencing can be used in individual families with undiagnosed lethal congenital anomaly syndromes to discover causal mutations, provided that prior to data analysis, the fetal phenotype can be correlated to a particular developmental pathway in embryogenesis. Cross-species phenotyping allows providing further evidence for causality of discovered variants in genes involved in those extremely rare phenotypes and will increase our knowledge about normal and abnormal human developmental processes. Ultimately, families will benefit from the option of early prenatal diagnosis. © 2014 John Wiley & Sons, Ltd.

  15. Relation between parvovirus B19 infection and fetal mortality and spontaneous abortion.

    Shabani, Zahra; Esghaei, Maryam; Keyvani, Hossein; Shabani, Fateme; Sarmadi, Fateme; Mollaie, Hamidreza; Monavari, Seyed Hamidreza

    2015-01-01

    Infection with parvovirus B19 may cause fetal losses including spontaneous abortion, intrauterine fetal death and non-immune hydrops fetalis. The aim of this study is to determine the frequency of parvovirus B19 in formalin fixed placental tissues in lost fetuses using real-time PCR method. In this cross-sectional study, 100 formalin fixed placental tissues with unknown cause of fetal death were determined using real-time PCR method after DNA extraction. Six out of 100 cases (6%) were positive for parvovirus B19 using real-time PCR. Gestational age of all positive cases was less than 20 weeks with a mean of 12.3 weeks. Three cases have a history of abortion and all of positive cases were collected in spring. Mean age of positive cases were 28 years. Parvovirus B19 during pregnancy can infect red precursor cells and induces apoptosis or lyses these cells that resulting in anemia and congestive heart failure leading to fetal death. Management of parvovirus B19 infection in pregnant women is important because immediate diagnosis and transfusion in hydropsic fetuses can decrease the risk of fetal death.

  16. Using long ssDNA polynucleotides to amplify STRs loci in degraded DNA samples

    Pérez Santángelo, Agustín; Corti Bielsa, Rodrigo M.; Sala, Andrea; Ginart, Santiago; Corach, Daniel

    2017-01-01

    Obtaining informative short tandem repeat (STR) profiles from degraded DNA samples is a challenging task usually undermined by locus or allele dropouts and peak-high imbalances observed in capillary electrophoresis (CE) electropherograms, especially for those markers with large amplicon sizes. We hereby show that the current STR assays may be greatly improved for the detection of genetic markers in degraded DNA samples by using long single stranded DNA polynucleotides (ssDNA polynucleotides) as surrogates for PCR primers. These long primers allow a closer annealing to the repeat sequences, thereby reducing the length of the template required for the amplification in fragmented DNA samples, while at the same time rendering amplicons of larger sizes suitable for multiplex assays. We also demonstrate that the annealing of long ssDNA polynucleotides does not need to be fully complementary in the 5’ region of the primers, thus allowing for the design of practically any long primer sequence for developing new multiplex assays. Furthermore, genotyping of intact DNA samples could also benefit from utilizing long primers since their close annealing to the target STR sequences may overcome wrong profiling generated by insertions/deletions present between the STR region and the annealing site of the primers. Additionally, long ssDNA polynucleotides might be utilized in multiplex PCR assays for other types of degraded or fragmented DNA, e.g. circulating, cell-free DNA (ccfDNA). PMID:29099837

  17. DNA methylation and transcriptional trajectories during human development and reprogramming of isogenic pluripotent stem cells

    Roost, Matthias S; Slieker, Roderick C; Bialecka, Monika; van Iperen, Liesbeth; Gomes Fernandes, Maria M; He, Nannan; Suchiman, H Eka D; Szuhai, Karoly; Carlotti, Françoise; de Koning, Eelco J P; Mummery, Christine L; Heijmans, Bastiaan T; Chuva de Sousa Lopes, Susana M

    2017-01-01

    Determining cell identity and maturation status of differentiated pluripotent stem cells (PSCs) requires knowledge of the transcriptional and epigenetic trajectory of organs during development. Here, we generate a transcriptional and DNA methylation atlas covering 21 organs during human fetal

  18. Evidence for a Rad18-independent frameshift mutagenesis pathway in human cell-free extracts.

    Régine Janel-Bintz

    Full Text Available Bypass of replication blocks by specialized DNA polymerases is crucial for cell survival but may promote mutagenesis and genome instability. To gain insight into mutagenic sub-pathways that coexist in mammalian cells, we examined N-2-acetylaminofluorene (AAF-induced frameshift mutagenesis by means of SV40-based shuttle vectors containing a single adduct. We found that in mammalian cells, as previously observed in E. coli, modification of the third guanine of two target sequences, 5'-GGG-3' (3G and 5'-GGCGCC-3' (NarI site, induces -1 and -2 frameshift mutations, respectively. Using an in vitro assay for translesion synthesis, we investigated the biochemical control of these events. We showed that Pol eta, but neither Pol iota nor Pol zeta, plays a major role in the frameshift bypass of the AAF adduct located in the 3G sequence. By complementing PCNA-depleted extracts with either a wild-type or a non-ubiquitinatable form of PCNA, we found that this Pol eta-mediated pathway requires Rad18 and ubiquitination of PCNA. In contrast, when the AAF adduct is located within the NarI site, TLS is only partially dependent upon Pol eta and Rad18, unravelling the existence of alternative pathways that concurrently bypass this lesion.

  19. APOPTOSIS DURING HUMAN FETAL KIDNEY DEVELOPMENT

    Rade Čukuranović

    2005-01-01

    Full Text Available Kidney morphogenesis is a complex and stepwise process. The formation of mature kidney in mammals is preceded by two primitive embryonic kidneys known as pronephros and mesonephros. Metanephros develops as a result of reciprocal inductive interactions between two primordial mesodermal derivates: ureteric bud, an epithelial outgrowth of the Wolffian duct, and metanephric blastema, a group of mesenchymal cells. The ureteric bud induces the metanephric mesenchyme to differentiate and form nephrons, whilst the metanephric mesenchyme induces the ureteric bud to grow and branch to form collecting ducts. The nephron goes through four developmental stages, which are described as: 1 vesicle, 2 comma-shaped and S-shaped stages, 3 developing capillary loop, and finally 4 maturing glomerulus. Apoptosis (programmed cell death is a predominant form of physiological cell death, by which organism eliminate unwanted or damaged cells. It is the major component of normal development and disease. Apoptosis is the result of series of biochemical processes happening in certain order in a dying cell, among which the most important is activation of enzyme families called caspases which influence different cell components. Apoptosis is characterized by membrane blebbing, shrinkage of the cell, nuclear fragmentation and chromatin condensation. Organelles are preserved almost intact. Cell surface molecules change. A variety of physiological and pathological stimuli can initiate apoptosis. They act via receptor mechanisms, through biochemical agents, or cause DNA and cell membrane damage. Apoptosis is an important component of fetal development. It is thought that apoptosis is the one of the main regulatory events involved in kidney morphogenesis, considering that among great number of developed cells, only a few of them are involved in the developing program by escaping apoptosis. In any period during kidney development about 3 to 5%of cells are apoptotic. Thorough

  20. 32P-postlabeling assay in mice of transplacental DNA damage induced by the environmental carcinogens safrole, 4-aminobiphenyl, and benzo(a)pyrene

    Lu, L.J.; Disher, R.M.; Reddy, M.V.; Randerath, K.

    1986-01-01

    Transplacental exposure of fetuses to carcinogens is known to induce tumors in the offspring, often with a high incidence and short latency. While covalent adduction of DNA appears to be essential for tumor initiation, little is known about the binding of carcinogens to the DNA of fetal tissues. A sensitive 32 P-postlabeling method enabled us to study the binding of the environmental carcinogens safrole (600 mumol/kg p.o.), 4-aminobiphenyl (800 mumol/kg), and benzo(a)pyrene (200 mumol/kg) to the DNA of various maternal and fetal tissues after administration of test carcinogens to pregnant ICR mice on day 18 of gestation. The results show that these carcinogens bound to the DNA of maternal and fetal liver, lung, kidney, heart, brain, intestine, skin, maternal uterus, and placenta, with organ-specific quantitative and qualitative differences. It was possible for the first time to analyze DNA adduct patterns in minute amounts of tissue, for example those available from fetal heart. The covalent binding index 24 h after safrole treatment was estimated for the different organs and ranged from 0.1 to 247 and 0.1 to 5.8 for maternal and fetal DNA, respectively. Covalent binding index values of 0.2 to 13 and 0.1 to 0.3 for maternal and fetal DNA, respectively, were found for 4-aminobiphenyl. Benzo(a)pyrene treatment yielded covalent binding index values of 0.6 to 6.5 and 0.3 to 0.7 for maternal and fetal DNA, respectively. In both maternal and fetal tissues, safrole exhibited preferential binding to liver DNA. 4-Aminobiphenyl bound preferentially to DNA of maternal liver and kidney but showed no preference among fetal tissues. Benzo(a)pyrene exhibited weak tissue preference in both maternal and fetal organs

  1. [FETAL PROGRAMMING OF METABOLIC DISORDERS].

    Varadinova, M R; Metodieva, R; Boyadzhieva, N

    2015-01-01

    Our knowledge of fetal programming has developed notably over the years and recent data suggest that an unbalanced diet prior and during pregnancy can have early-onset and long-lasting consequences on the health of the offspring. Specific negative influences of high dietary glucose and lipid consumption, as well as undernutrition, are associated with development of metabolic syndrome, insulin resistance and diabetes in the offspring. The mechanisms underlying the effects of maternal hyperglycemia on the fetus may involve structural, metabolic and epigenetic changes. The aim of this review is to illustrate how adverse intrauterine environment may influence molecular modifications in the fetus and cause epigenetic alterations in particular. It has been demonstrated that prenatal epigenetic modifications may be linked to the pathogenesis and progression of the adult chronic disorders. Studies on epigenetic alterations will contribute to a better understanding of the long-term effects of in utero exposure and may open new perspectives for disease prevention and treatment.

  2. An intelligent fetal monitoring system

    Inaba, J.; Akatsuka, T.; Kubo, T.; Iwasaki, H.

    1986-01-01

    An intelligent monitoring system is constructed by a multi-micro-computer system. The monitoring signals are fetal heart rate (FHR) and uterine contraction (UC) through the conventional monitoring device for a day until the delivery. These signals are fed to a micro-computer in digital format, and evaluated by the computer in real time according to the diagnostic algorithm of the expert physician. Monitoring signals are always displayed on the CRT screen and in the case of dangerous state of the fetus, warning signal will appear on the screen and the doctor or nurse will be called. All these signals are sent to the next micro-computer with 10MB hard disk system. On this computer, the doctor and nurse can retrieve and inspect the details of the process by clock-key and/or events-key. After finishing monitoring process, summarized report is constructed and printed out on the paper

  3. Detection of Methylated Circulating DNA as Noninvasive Biomarkers for Breast Cancer Diagnosis

    Cheuk, Isabella Wai Yin; Shin, Vivian Yvonne

    2017-01-01

    Internationally, breast cancer is the most common female cancer, and is induced by a combination of environmental, genetic, and epigenetic risk factors. Despite the advancement of imaging techniques, invasive sampling of breast epithelial cells is the only definitive diagnostic procedure for patients with breast cancer. To date, molecular biomarkers with high sensitivity and specificity for the screening and early detection of breast cancer are lacking. Recent evidence suggests that the detection of methylated circulating cell-free DNA in the peripheral blood of patients with cancer may be a promising quantitative and noninvasive method for cancer diagnosis. Methylation detection based on a multi-gene panel, rather than on the methylation status of a single gene, may be used to increase the sensitivity and specificity of breast cancer screening. In this review, the results of 14 relevant studies, investigating the efficacy of cell-free DNA methylation screening for breast cancer diagnosis, have been summarized. The genetic risk factors for breast cancer, the methods used for breast cancer detection, and the techniques and limitations related to the detection of cell-free DNA methylation status, have also been reviewed and discussed. From this review, we conclude that the analysis of peripheral blood or other samples to detect differentially methylated cell-free DNA is a promising technique for use in clinical settings, and may improve the sensitivity of screening for both, early detection and disease relapse, and thus improve the future prognosis of patients with breast cancer. PMID:28382090

  4. Development of a PCR/LDR/capillary electrophoresis assay with potential for the detection of a beta-thalassemia fetal mutation in maternal plasma.

    Yi, Ping; Chen, Zhuqin; Yu, Lili; Zheng, Yingru; Liu, Guodong; Xie, Haichang; Zhou, Yuanguo; Zheng, Xiuhui; Han, Jian; Li, Li

    2010-08-01

    Analysis of fetal DNA in maternal plasma has recently been introduced for non-invasive prenatal diagnosis. We have now investigated the feasibility of polymerase chain reaction (PCR)/ligase detection reaction (LDR)/capillary electrophoresis for the detection of fetal point mutations, such as the beta-thalassemia mutation, IVS2 654(C --> T), in maternal plasma DNA. The sensitivity of LDR/capillary electrophoresis was examined by quantifying the mutant PCR products in the presence of a vast excess of non-mutant competitor template, a situation that mimics the detection of rare fetal mutations in the presence of excess maternal DNA. PCR/LDR/capillary electrophoresis was applied to detect the mutation, IVS2 654(C --> T), in an experimental model at different sensitivity levels and from 10 maternal plasma samples. Our results demonstrated that this approach to detect a low abundance IVS2 654(C --> T) mutation achieved a sensitivity of approximately 1:10,000. The approach was applied to maternal plasma DNA to detect the paternally inherited fetal IVS2 654(C --> T) mutation, and the results were equivalent to those obtained by PCR/reverse dot blot of amniotic fluid cell DNA. PCR/LDR/capillary electrophoresis has a very high sensitivity that can distinguish low abundance single nucleotide differences and can detect paternally inherited fetal point mutations in maternal plasma.

  5. Hypoxia: From Placental Development to Fetal Programming.

    Fajersztajn, Lais; Veras, Mariana Matera

    2017-10-16

    Hypoxia may influence normal and different pathological processes. Low oxygenation activates a variety of responses, many of them regulated by hypoxia-inducible factor 1 complex, which is mostly involved in cellular control of O 2 consumption and delivery, inhibition of growth and development, and promotion of anaerobic metabolism. Hypoxia plays a significant physiological role in fetal development; it is involved in different embryonic processes, for example, placentation, angiogenesis, and hematopoiesis. More recently, fetal hypoxia has been associated directly or indirectly with fetal programming of heart, brain, and kidney function and metabolism in adulthood. In this review, the role of hypoxia in fetal development, placentation, and fetal programming is summarized. Hypoxia is a basic mechanism involved in different pregnancy disorders and fetal health developmental complications. Although there are scientific data showing that hypoxia mediates changes in the growth trajectory of the fetus, modulates gene expression by epigenetic mechanisms, and determines the health status later in adulthood, more mechanistic studies are needed. Furthermore, if we consider that intrauterine hypoxia is not a rare event, and can be a consequence of unavoidable exposures to air pollution, nutritional deficiencies, obesity, and other very common conditions (drug addiction and stress), the health of future generations may be damaged and the incidence of some diseases will markedly increase as a consequence of disturbed fetal programming. Birth Defects Research 109:1377-1385, 2017.© 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Awareness of fetal echo in Indian scenario

    Warrier, Dhanya; Saraf, Rahul; Maheshwari, Sunita; Suresh, PV; Shah, Sejal

    2012-01-01

    Fetal echocardiography is a well established sensitive tool to diagnose congenital heart disease (CHD) in utero. One of the determinants of effective utilization of fetal echocardiography is its awareness in the general population. The present hospital based study was undertaken to assess the awareness of the need for fetal echocardiography amongst Indian parents. One thousand one hundred and thirty eight consecutive parents who visited the pediatric cardiology outpatient department of a tertiary care centre over a period of two months were asked to fill up a questionnaire that included their demographic data, educational status, history of CHD in children, awareness of fetal echocardiography and source of information and timing of fetal echocardiogram if performed. The data was categorized and awareness was noted in different groups. The awareness in the study population was 2.2%. Awareness was found to be similar across the study population irrespective of the demographics and high risk status of the parents. The awareness of fetal echocardiography, an important tool in reducing the incidence of complex CHD, thereby impacting public health, is alarmingly low in the population studied. Appropriate action to increase awareness of fetal echocardiography needs to be looked into

  7. Fetal stimulation by pulsed diagnostic ultrasound.

    Fatemi, M; Ogburn, P L; Greenleaf, J F

    2001-08-01

    To show that pulsed ultrasound from a clinical ultrasonic imaging system can stimulate the fetus. Stimulation is defined mainly as increased fetal gross body movements in response to excitation. Fetuses of a group of 9 volunteer women (mean gestational age, 33.37 weeks; range, 25-40 weeks) were evaluated for body movement under 3 different conditions: (1) control, with no ultrasound exposure; (2) ultrasound in continuous wave Doppler mode; and (3) pulsed ultrasound in pulsed Doppler and B modes. A conventional external fetal monitor, with negligible ultrasonic output, was used to monitor fetal gross body motions. After an initial rest period of 3 minutes with 1 or no fetal motion, fetuses were monitored for an additional 3 minutes under the exposure criterion defined for each condition. Resulting fetal motions under the 3 conditions were compared using the Wilcoxon signed rank test. The test showed that fetuses moved significantly more frequently under condition 3 (mean +/- SD, 3.43 +/- 1.93 movements per minute) than under condition 1 (0.40 +/- 7.33 movements per minute) or condition 2 (0.63 +/- 7.67 movements per minute); P = .004 and .016, respectively. Fetal movements under conditions 1 and 2 did not differ significantly. Diagnostic ultrasound may stimulate fetal body motion.

  8. MRI of fetal acquired brain lesions

    Prayer, Daniela; Brugger, Peter C.; Kasprian, Gregor; Witzani, Linde; Helmer, Hanns; Dietrich, Wolfgang; Eppel, Wolfgang; Langer, Martin

    2006-01-01

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images

  9. Fetal Primary Cardiac Tumors During Perinatal Period

    Shi-Min Yuan

    2017-06-01

    Full Text Available Fetal primary cardiac tumors are rare, but they may cause complications, which are sometimes life threatening, including arrhythmias, hydrops fetalis, ventricular outflow/inflow obstruction, cardiac failure, and even sudden death. Among fetal primary cardiac tumors, rhabdomyomas are most common, followed by teratomas, fibromas, hemangiomas, and myxomas. Everolimus, a mammalian target of rapamycin inhibitor, has been reported to be an effective drug to cause tumor remission in three neonates with multiple cardiac rhabdomyomas. Neonatal cardiac surgery for the resection of primary cardiac tumors found by fetal echocardiography has been reported sporadically. However, open fetal surgery for pericardial teratoma resection, which was performed successfully via a fetal median sternotomy in one case report, could be a promising intervention to rescue these patients with large pericardial effusions. These recent achievements undoubtedly encourage further development in early management of fetal cardiac tumors. Owing to the rarity of fetal primary cardiac tumors, relevant information in terms of prenatal diagnosis, treatment, and prognosis remains to be clarified.

  10. First Trimester Fetal Gender Assignment by Ultrasound

    Sabahattin Altunyurt

    2010-03-01

    Full Text Available Objective: To investigate the efficiency of genital tubercule angle on detecting fetal gender in first trimester by ultrasonography. Material-Method: Fetal sex assignment by ultrasound was carried out in 172 pregnancies at 11-13+6 weeks between 2007 June and 2007 December. Gestational age was determined by the measurement of crown-rump length (CRL. The ultrasound predictions were compared with actual sex at birth. Mid-sagittal planes of a section of the fetal genital tubercle were performed to identify the gender. Results: 155 of 172 patients’ data were achieved. The overall success rate was 92.3 % in sonographic assignment of fetal sex. The correct assignment rate in female fetuses was significantly higher than males (95.9 % - 88.8 % [p=0,001]. The correct identification of fetal sex improved with advancing gestational age from 89.3 % between 11-11+6 weeks, 92.5 % between 12-12+6 weeks and 93.4 % between 13-13+6 weeks (p=0,96. Conclusion: The fetal sex assignment by ultrasonography between 11-13+6 weeks had high success rate. The sensitivity of fetal sex assignment was not affected with fetus position and gestational age.

  11. MRI of fetal acquired brain lesions

    Prayer, Daniela [Department of Radiodiagnostics, Medical University of Vienna (Austria)]. E-mail: daniela.prayer@meduniwien.ac.at; Brugger, Peter C. [Center of Anatomy and Cell Biology, Medical University of Vienna (Austria); Kasprian, Gregor [Department of Radiodiagnostics, Medical University of Vienna (Austria); Witzani, Linde [Department of Radiodiagnostics, Medical University of Vienna (Austria); Helmer, Hanns [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Dietrich, Wolfgang [Department of Neurosurgery, Medical University of Vienna (Austria); Eppel, Wolfgang [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Langer, Martin [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria)

    2006-02-15

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images.

  12. Investigating the effects of in utero benzene exposure on epigenetic modifications in maternal and fetal CD-1 mice

    Philbrook, Nicola A.; Winn, Louise M.

    2015-01-01

    Exposure to the ubiquitous environmental pollutant benzene is positively correlated with leukemia in adults and may be associated with childhood leukemia following in utero exposure. While numerous studies implicate oxidative stress and DNA damage as playing a role in benzene-mediated carcinogenicity, emerging evidence suggests that alterations in epigenetic regulations may be involved. The present study aimed to determine whether DNA methylation and/or various histone modifications were altered following in utero benzene exposure in CD-1 mice. Global DNA methylation and promoter-specific methylation of the tumor suppressor gene, p15, were assessed. Additionally, levels of acetylated histones H3, H4, and H3K56, as well as methylated histones H3K9 and H3K27 were assessed by Western blotting. A significant decrease in global DNA methylation of maternal bone marrow was observed following benzene exposure; however no effect on global DNA methylation was detected in fetal livers. Additionally, no effect of benzene exposure was observed on p15 promoter methylation or any measured histone modifications in both maternal bone marrow and fetal livers. These results suggest that the methodology used in the present study did not reveal alterations in DNA methylation and histone modifications following in utero exposure to benzene; however further experimentation investigating these modifications at the whole genome/epigenome level, as well as at later stages of benzene-induced carcinogenesis, are warranted. - Highlights: • Benzene exposure in pregnant mice decreased global DNA methylation in maternal bone marrow. • Benzene exposure in pregnant mice had no effect on global DNA methylation in fetal livers. • No effect of benzene exposure was observed on p15 promoter methylation. • No effect of benzene on measured histone modifications in both maternal bone marrow and fetal livers was observed.

  13. Investigating the effects of in utero benzene exposure on epigenetic modifications in maternal and fetal CD-1 mice

    Philbrook, Nicola A. [Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen' s University, Kingston, ON K7L3N6 (Canada); Winn, Louise M., E-mail: winnl@queensu.ca [Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen' s University, Kingston, ON K7L3N6 (Canada); School of Environmental Studies, Queen' s University, Kingston, ON K7L3N6 (Canada)

    2015-11-15

    Exposure to the ubiquitous environmental pollutant benzene is positively correlated with leukemia in adults and may be associated with childhood leukemia following in utero exposure. While numerous studies implicate oxidative stress and DNA damage as playing a role in benzene-mediated carcinogenicity, emerging evidence suggests that alterations in epigenetic regulations may be involved. The present study aimed to determine whether DNA methylation and/or various histone modifications were altered following in utero benzene exposure in CD-1 mice. Global DNA methylation and promoter-specific methylation of the tumor suppressor gene, p15, were assessed. Additionally, levels of acetylated histones H3, H4, and H3K56, as well as methylated histones H3K9 and H3K27 were assessed by Western blotting. A significant decrease in global DNA methylation of maternal bone marrow was observed following benzene exposure; however no effect on global DNA methylation was detected in fetal livers. Additionally, no effect of benzene exposure was observed on p15 promoter methylation or any measured histone modifications in both maternal bone marrow and fetal livers. These results suggest that the methodology used in the present study did not reveal alterations in DNA methylation and histone modifications following in utero exposure to benzene; however further experimentation investigating these modifications at the whole genome/epigenome level, as well as at later stages of benzene-induced carcinogenesis, are warranted. - Highlights: • Benzene exposure in pregnant mice decreased global DNA methylation in maternal bone marrow. • Benzene exposure in pregnant mice had no effect on global DNA methylation in fetal livers. • No effect of benzene exposure was observed on p15 promoter methylation. • No effect of benzene on measured histone modifications in both maternal bone marrow and fetal livers was observed.

  14. Long QT Syndrome–Associated Mutations in Intrauterine Fetal Death

    Crotti, Lia; Tester, David J.; White, Wendy M.; Bartos, Daniel C.; Insolia, Roberto; Besana, Alessandra; Kunic, Jennifer D.; Will, Melissa L.; Velasco, Ellyn J.; Bair, Jennifer J.; Ghidoni, Alice; Cetin, Irene; Van Dyke, Daniel L.; Wick, Myra J.; Brost, Brian; Delisle, Brian P.; Facchinetti, Fabio; George, Alfred L.; Schwartz, Peter J.; Ackerman, Michael J.

    2013-01-01

    Importance Intrauterine fetal death or stillbirth occurs in approximately 1 out of every 160 pregnancies and accounts for 50% of all perinatal deaths. Postmortem evaluation fails to elucidate an underlying cause in many cases. Long QT syndrome (LQTS) may contribute to this problem. Objective To determine the spectrum and prevalence of mutations in the 3 most common LQTS susceptible genes (KCNQ1, KCNH2, and SCN5A) for a cohort of unexplained cases. Design, Setting, and Patients In this case series, retrospective postmortem genetic testing was conducted on a convenience sample of 91 unexplained intrauterine fetal deaths (mean [SD] estimated gestational age at fetal death, 26.3 [8.7] weeks) that were collected from 2006-2012 by the Mayo Clinic, Rochester, Minnesota, or the Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. More than 1300 ostensibly healthy individuals served as controls. In addition, publicly available exome databases were assessed for the general population frequency of identified genetic variants. Main Outcomes and Measures Comprehensive mutational analyses of KCNQ1 (KV7.1, LQTS type 1), KCNH2 (HERG/KV11.1, LQTS type 2), and SCN5A (NaV1.5, LQTS type 3) were performed using denaturing high-performance liquid chromatography and direct DNA sequencing on genomic DNA extracted from decedent tissue. Functional analyses of novel mutations were performed using heterologous expression and patch-clamp recording. Results The 3 putative LQTS susceptibility missense mutations (KCNQ1, p.A283T; KCNQ1, p.R397W; and KCNH2[1b], p.R25W), with a heterozygous frequency of less than 0.05% in more than 10000 publicly available exomes and absent in more than 1000 ethnically similar control patients, were discovered in 3 intrauterine fetal deaths (3.3% [95% CI, 0.68%-9.3%]). Both KV7.1-A283T (16-week male) and KV7.1-R397W (16-week female) mutations were associated with marked KV7.1 loss-of-function consistent with in utero LQTS type 1, whereas the HERG1b-R25W mutation

  15. Advanced MRI techniques of the fetal brain

    Schoepf, V.; Dittrich, E.; Berger-Kulemann, V.; Kasprian, G.; Kollndorfer, K.; Prayer, D.

    2013-01-01

    Evaluation of the normal and pathological fetal brain. Magnetic resonance imaging (MRI). Advanced MRI of the fetal brain. Diffusion tensor imaging (DTI) is used in clinical practice, all other methods are used at a research level. Serving as standard methods in the future. Combined structural and functional data for all gestational ages will allow more specific insight into the developmental processes of the fetal brain. This gain of information will help provide a common understanding of complex spatial and temporal procedures of early morphological features and their impact on cognitive and sensory abilities. (orig.) [de

  16. Fetal abuse and neglect: an emerging controversy.

    Landwirth, J

    1987-04-01

    Advances in fetal medicine have expanded opportunities for protection of fetal health and intrauterine management of an increasing number of fetal disorders. The legal rights and duties of parents to provide necessary medical treatment for the child may extend to the prenatal period. Resolution of the conflict between the rights of the fetus to be born healthy and the pregnant woman's right of privacy is difficult and controversial. It is suggested that intrusion into a woman's individual fundamental rights for the potential benefit of her fetus should be permissible only in narrowly defined circumstances.

  17. Effect of intravenous administration of d-lysergic acid diethylamide on subsequent protein synthesis in a cell-free system derived from brain.

    Cosgrove, J W; Clark, B D; Brown, I R

    1981-03-01

    An initiating cell-free protein synthesis system derived from brain was utilized to demonstrate that the intravenous injection of d-lysergic acid diethylamide (LSD) to rabbits induced a transient inhibition of translation following a brief stimulatory period. Subfractionation of the brain cell-free system into postribosomal supernatant (PRS) and microsome fractions demonstrated that LSD in vivo induced alterations in both of these fractions. In addition to the overall inhibition of translation in the cell-free system, differential effects were noted, i.e., greater than average relative decreases in in vitro labeling of certain brain proteins and relative increases in others. The brain proteins of molecular weights 75K and 95K, which were increased in relative labeling under conditions of LSD-induced hyperthermia, are similar in molecular weight to two of the major "heat shock" proteins reported in tissue culture systems. Injection of LSD to rabbits at 4 degrees C prevented LSD-induced hyperthermia but behavioral effects of the drug were still apparent. The overall decrease in cell-free translation was still observed but the differential labeling effects were not. LSD appeared to influence cell-free translation in the brain at two dissociable levels: (a) an overall decrease in translation that was observed even in the absence of LSD-induced hyperthermia and (b) differential labeling effects on particular proteins that were dependent on LSD-induced hyperthermia.

  18. Effect of γ-irradiated DNA on the activity of DNA polymerase

    Leadon, S.A.; Ward, J.F.

    1981-01-01

    A cell-free assay was developed to measure the effect of γ-irradiated DNA template on the ability of DNA polymerase to copy unirradiated template. Doses as low as 1 krad were able to decrease (approx. 15%) the activity of both bacterial and mammalian DNA polymerases in the assay. The percentage of polymerase activity decreased as the dose received by the template increased. The reduction in DNA polymerase activity was shown to be due to an inhibition of the enzyme by the irradiated DNA. Irradiated poly(dA-dT) was more effective in reducing polymerase activity than calf thymus DNA. Thus the polymerase-inhibition site(s) appears to be associated with base damage, specifically adenine or thymine. Using a free-radical scavenger, OH radicals were found to be involved in producing the damage sites. The interaction between irradiated DNA and DNA polymerase was found to be specific for the enzyme and not for other proteins present in the assay. The inhibition of DNA polymerase occurred prior to or during the initiation of DNA synthesis rather than after initiation of synthesis, i.e., during elongation

  19. Real-Time Automatic Fetal Brain Extraction in Fetal MRI by Deep Learning

    Salehi, Seyed Sadegh Mohseni; Hashemi, Seyed Raein; Velasco-Annis, Clemente; Ouaalam, Abdelhakim; Estroff, Judy A.; Erdogmus, Deniz; Warfield, Simon K.; Gholipour, Ali

    2017-01-01

    Brain segmentation is a fundamental first step in neuroimage analysis. In the case of fetal MRI, it is particularly challenging and important due to the arbitrary orientation of the fetus, organs that surround the fetal head, and intermittent fetal motion. Several promising methods have been proposed but are limited in their performance in challenging cases and in real-time segmentation. We aimed to develop a fully automatic segmentation method that independently segments sections of the feta...

  20. Fetal thrombocytopenia in pregnancies with fetal human parvovirus-B19 infection.

    Melamed, Nir; Whittle, Wendy; Kelly, Edmond N; Windrim, Rory; Seaward, P Gareth R; Keunen, Johannes; Keating, Sarah; Ryan, Greg

    2015-06-01

    Fetal infection with human parvovirus B19 (hParvo-B19) has been associated mainly with fetal anemia, although data regarding other fetal hematologic effects are limited. Our aim was to assess the rate and consequences of severe fetal thrombocytopenia after fetal hParvo-B19 infection. We conducted a retrospective study of pregnancies that were complicated by fetal hParvo-B19 infection that underwent fetal blood sampling (FBS). The characteristics and outcomes of fetuses with severe thrombocytopenia (B19 infection. A total of 37 pregnancies that were affected by fetal hParvo-B19 infection were identified. Of the 29 cases that underwent FBS and had information regarding fetal platelets, 11 cases (38%) were complicated by severe fetal thrombocytopenia. Severely thrombocytopenic fetuses were characterized by a lower hemoglobin concentration (2.6 ± 0.9 g/dL vs 5.5 ± 3.6 g/dL; P = .01), lower reticulocyte count (9.1% ± 2.8% vs 17.3% ± 10.6%; P = .02), and lower gestational age at the time of diagnosis (21.4 ± 3.1 wk vs 23.6 ± 2.2 wk; P = .03). Both the fetal death rate within 48 hours of FBS (27.3% vs 0%; P = .02) and the risk of prematurity (100.0% vs 13.3%; P B19 infection, can be further worsened by IUT, and may be associated with an increased risk of procedure-related fetal loss after either FBS or IUT. Copyright © 2015. Published by Elsevier Inc.