WorldWideScience

Sample records for cell-compacted collagen gels

  1. Primary hepatocyte culture in collagen gel mixture and collagen sandwich

    Institute of Scientific and Technical Information of China (English)

    Ying-Jie Wang; Hong-Ling Liu; Hai-Tao Guo; Hong-Wei Wen; Jun Liu

    2004-01-01

    AIM: To explore the methods of hepatocytes culture in a collagen gel mixture or between double layers of collagen sandwich configuration and to examine the functional and cytomorphological characteristics of cultured hepatocytes.METHODS: A two-step collagenase perfusion technique was used to isolate the hepatocytes from Wistar rats or newborn Chinese experimental piglets. The isolated hepatocytes were cultured in a collagen gel mixture or between double layers of collagen sandwich configuration respectively. The former was that rat hepatocytes were mixed with type I rat tail collagen solution till gelled, and the medium was added onto the gel. The latter was that swine hepatocytes were seeded on a plate precoated with collagen gel for 24 h, then another layer of collagen gel was overlaid, resulting in a sandwich configuration. The cytomorphological characteristics, albumin secretion, and LDH-release of the hepatocytes cultured in these two models were examined.RESULTS: Freshly isolated rat hepatocytes were successfully mixed and fixed in collagen gel, and cultured in the gel condition. During the culture period, the urea synthesized and secreted by rat hepatocytes was detected throughout the period. Likewise, newborn experimental piglet hepatocytes were successfully fixed between the double layers of collagen gel, forming a sandwich configuration.Within a week of culture, the albumin secreted by swine hepatocytes was detected by SDS/PAGE analysis. The typical cytomorphological characteristics of the hepatocytes cultured by the above two culture models were found under a phasecontrast microscope. There was little LDH-release during the culture period.CONCLUSION: Both collagen gel mixture and double layers of collagen sandwich configuration can provide cultural conditions much closer to in vivoenvironment, and are helpful for maintaining specific hepatic fiJnctions and cytomorphological characteristics. A collagen gel mixture culture may be more eligible for the

  2. Interaction between hepatocytes and collagen gel in hollow fibers

    OpenAIRE

    Dai, Jing; Zhang, Guo-Liang; Meng, Qin

    2009-01-01

    Gel entrapment culture of primary mammalian cells within collagen gel is one important configuration for construction of bioartificial organ as well as in vitro model for predicting drug situation in vivo. Gel contraction in entrapment culture, resulting from cell-mediated reorganization of the extracellular matrix, was commonly used to estimate cell viability. However, the exact influence of gel contraction on cell activities has rarely been addressed. This paper investigated the gel contrac...

  3. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction

    Science.gov (United States)

    Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.

    1991-01-01

    Solubilized interstitial collagens will form a fibrillar, gel-like lattice when brought to physiologic conditions. In the presence of human dermal fibroblasts the collagen lattice will contract. The rate of contraction can be determined by computer-assisted planemetry. The mechanisms involved in contraction are as yet unknown. Using this system it was found that the rate of contraction was markedly decreased when collagen lacking telopeptides was substituted for native collagen. Histidinohydroxylysinonorleucine (HHL) is a major stable trifunctional collagen cross-link in mature skin that involves a carboxyl terminal, telopeptide site 16c, the sixteenth amino acid residue from the carboxy terminal of the telopeptide region of alpha 1 (I) in type I collagen. Little, if any, HHL was present in native, purified, reconstituted, soluble collagen fibrils from 1% acetic acid-extracted 2-year-old bovine skin. In contrast, HHL cross-links were present (0.22 moles of cross-link per mole of collagen) in lattices of the same collagen contracted by fibroblasts. However, rat tail tendon does not contain HHL cross-links, and collagen lattices made of rat tail tendon collagen are capable of contraction. This suggests that telopeptide sites, and not mature HHL cross-links per se, are essential for fibroblasts to contract collagen lattices. Beta-aminopropionitrile fumarate (BAPN), a potent lathyrogen that perturbs collagen cross-linking by inhibition of lysyl oxidase, also inhibited the rate of lattice cell contraction in lattices composed of native collagen. However, the concentrations of BAPN that were necessary to inhibit the contraction of collagen lattices also inhibited fibroblast growth suggestive of cellular toxicity. In accordance with other studies, we found no inhibition of the rate of lattice contraction when fibronectin-depleted serum was used. Electron microscopy of contracted gels revealed typical collagen fibers with a characteristic axial periodicity. The data

  4. Papain-gel Degrades Intact Nonmineralized Type I Collagen Fibrils

    OpenAIRE

    BERTASSONI, L. E.; Marshall, G.W.

    2009-01-01

    Papain-gel has been utilized as a chemomechanical material for caries removal due to its ability to preserve underlying sound dentin. However, little is known about the effect of the papain enzyme on intact type I collagen fibrils that compose the dentin matrix. Here we sought to define structural changes that occur in intact type I collagen fibrils after an enzymatic treatment with a papaingel. Intact and nonmineralized type I collagen fibrils from rat tail were obtained and treated with a p...

  5. Mechanical Behavior of Collagen-Fibrin Co-Gels Reflects Transition From Series to Parallel Interactions With Increasing Collagen Content

    OpenAIRE

    Lai, Victor K.; Lake, Spencer P.; Frey, Christina R.; Tranquillo, Robert T.; Barocas, Victor H.

    2012-01-01

    Fibrin and collagen, biopolymers occurring naturally in the body, are commonly-used biomaterials as scaffolds for tissue engineering. How collagen and fibrin interact to confer macroscopic mechanical properties in collagen-fibrin composite systems remains poorly understood. In this study, we formulated collagen-fibrin co-gels at different collagen-to-fibrin ratios to observe changes in overall mechanical behavior and microstructure. A modeling framework of a two-network system was developed b...

  6. Development of an injectable chitosan/marine collagen composite gel

    International Nuclear Information System (INIS)

    A chitosan/marine-originated collagen composite has been developed. This composite gel was characterized and its biocompatibility, as well as an inflammatory reaction, was observed. The chitosan gel including N-3-carboxypropanoil-6-O-(carboxymethyl) chitosan of 3 mol%, 6-O-(carboxymethyl) chitosan of 62 mol% and 6-O-(carboxymethyl) chitin of 35 mol% was prepared and compounded with the salmon atelocollagen (SA) gel at different mixture ratios. The composite gels were injected subcutaneously in to the back of rats. The specimens were harvested for a histological survey as well as a tumor necrosis factor-alpha (TNF-α) assay by ELISA. The inflammatory cell infiltration and release of TNF-α were successively controlled low with the ratio of SA to chitosan at 10:90 or 20:80. The SA gel first, within 2 weeks, and then chitosan in the composite gel were slowly absorbed after implantation, followed by soft tissue formation. It is expected that this composite gel will be available as a carrier for tissue filler and drug delivery systems.

  7. Development of an injectable chitosan/marine collagen composite gel

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wei [Department of Inorganic Materials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan); Itoh, Soichiro [Affiliated Facility for Clinical and Fieldwork Practices, International University of Health and Welfare, 6-1-14 Kounodai, Ichikawa-shi, Chiba 272-0827 (Japan); Aizawa, Tomoyasu; Demura, Makoto [Division of Molecular Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Okawa, Atsushi [Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Sakai, Katsuyoshi; Ohkuma, Tsuneo, E-mail: itoso.gene@kaken-hp.or.j [Research and Development Division, Hokkaido Soda Co., Ltd, 2-12 Chitose, Noboribetsu-shi 059-0003 (Japan)

    2010-12-15

    A chitosan/marine-originated collagen composite has been developed. This composite gel was characterized and its biocompatibility, as well as an inflammatory reaction, was observed. The chitosan gel including N-3-carboxypropanoil-6-O-(carboxymethyl) chitosan of 3 mol%, 6-O-(carboxymethyl) chitosan of 62 mol% and 6-O-(carboxymethyl) chitin of 35 mol% was prepared and compounded with the salmon atelocollagen (SA) gel at different mixture ratios. The composite gels were injected subcutaneously in to the back of rats. The specimens were harvested for a histological survey as well as a tumor necrosis factor-alpha (TNF-{alpha}) assay by ELISA. The inflammatory cell infiltration and release of TNF-{alpha} were successively controlled low with the ratio of SA to chitosan at 10:90 or 20:80. The SA gel first, within 2 weeks, and then chitosan in the composite gel were slowly absorbed after implantation, followed by soft tissue formation. It is expected that this composite gel will be available as a carrier for tissue filler and drug delivery systems.

  8. Platelets stimulate fibroblast-mediated contraction of collagen gels

    Directory of Open Access Journals (Sweden)

    Lundahl Joachim

    2003-10-01

    Full Text Available Abstract Background Platelets are thought to play a role in a variety of inflammatory conditions in the lung, some of which may lead to fibrosis. In the current study we tested the hypothesis that whole platelets and platelet lysate can mediate remodelling of extracellular matrix in vitro by affecting fibroblast-mediated contraction of a collagen gel. We also sought to determine to what extent platelet-derived growth factor (PDGF and transforming growth factor-β (TGF-β contribute to this effect. Methods Washed platelets, isolated from healthy blood donors, and platelet lysate (freezing and thawing, were cast together with human lung fibroblasts in three-dimensional collagen gels. The gels were then released and cultured for four days. PDGF and TGF-β1 concentrations were measured in culture supernatants by ELISA. Results Both platelets and platelet lysate augmented fibroblast-mediated gel contraction in a time and concentration dependent manner (19.9% ± 0.1 (mean ± SEM of initial area vs. 48.0% ± 0.4 at 48 hours; P 1 and PDGF-AA/AB were released in co-culture. PDGF-AA/AB had a maximum release at 24 hours whereas TGF-β1 release increased with longer culture periods. Neutralising antibodies to these mediators partially inhibited platelet-induced gel contraction. Conclusion We conclude that platelets may promote remodelling of extracellular matrix in vitro and that PDGF and TGF-β partially mediate this effect, also indicating a role for other mediators. The findings may be an important mechanism in regulating repair processes after injury.

  9. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    International Nuclear Information System (INIS)

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells

  10. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko [China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China); Fujisaki, Hitomi; Hattori, Shunji [Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017 (Japan); Tashiro, Shin-ichi [Institute for Clinical and Biomedical Sciences, Kyoto 603-8072 (Japan); Onodera, Satoshi [Department of Clinical and Pharmaceutical Sciences, Showa Pharmaceutical University, Tokyo 194-8543 (Japan); Ikejima, Takashi, E-mail: ikejimat@vip.sina.com [China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China)

    2015-02-20

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.

  11. Effect of papain-based gel on type I collagen - spectroscopy applied for microstructural analysis

    Science.gov (United States)

    Júnior, Zenildo Santos Silva; Botta, Sergio Brossi; Ana, Patricia Aparecida; França, Cristiane Miranda; Fernandes, Kristianne Porta Santos; Mesquita-Ferrari, Raquel Agnelli; Deana, Alessandro; Bussadori, Sandra Kalil

    2015-01-01

    Considering the improvement of biomaterials that facilitate atraumatic restorative techniques in dentistry, a papain-based gel can be used in the chemomechanical removal of decayed dental tissue. However, there is no information regarding the influence of this gel on the structure of sound collagen. The aim of the present study was to investigate the adsorption of a papain-based gel (PapacarieTM) to collagen and determine collagen integrity after treatment. A pilot study was first performed with 10 samples of type I collagen membrane obtained from bovine Achilles deep tendon to compare the influence of hydration (Milli-Q water) on infrared bands of collagen. In a further experiment, 10 samples of type I collagen membrane were used to evaluate the effects of PapacarieTM on the collagen microstructure. All analyses were performed using the attenuated total reflectance technique of Fourier transform infrared (ATR-FTIR). The results demonstrated that the application of PapacarieTM does not lead to the degradation of collagen and this product can be safely used in minimally invasive dentistry. As the integrity of sound collagen is preserved after the application of the papain-based gel, this product is indicated for the selective removal of infected dentin, leaving the affected dentin intact and capable of re-mineralization. PMID:26101184

  12. Predicting bulk mechanical properties of cellularized collagen gels using multiphoton microscopy

    OpenAIRE

    Raub, CB; Putnam, AJ; Tromberg, BJ; George, SC

    2010-01-01

    Cellularized collagen gels are a common model in tissue engineering, but the relationship between the microstructure and bulk mechanical properties is only partially understood. Multiphoton microscopy (MPM) is an ideal non-invasive tool to examine collagen microstructure, cellularity and crosslink content in these gels. In order to identify robust image parameters that characterize microstructural determinants of the bulk elastic modulus, we performed serial MPM and mechanical tests on acellu...

  13. Noninvasive Assessment of Collagen Gel Microstructure and Mechanics Using Multiphoton Microscopy

    OpenAIRE

    Raub, Christopher B.; Suresh, Vinod; Krasieva, Tatiana; Lyubovitsky, Julia; Mih, Justin D.; Putnam, Andrew J.; Tromberg, Bruce J.; George, Steven C.

    2006-01-01

    Multiphoton microscopy of collagen hydrogels produces second harmonic generation (SHG) and two-photon fluorescence (TPF) images, which can be used to noninvasively study gel microstructure at depth (∼1 mm). The microstructure is also a primary determinate of the mechanical properties of the gel; thus, we hypothesized that bulk optical properties (i.e., SHG and TPF) could be used to predict bulk mechanical properties of collagen hydrogels. We utilized polymerization temperature (4–37°C) and gl...

  14. Effects of estrogen on collagen gel contraction by human retinal glial cells

    Institute of Scientific and Technical Information of China (English)

    QIU Qing-hua; CHEN Zhi-Yi; YIN Li-li; ZHENG Zhi; WU Xing-wei

    2012-01-01

    Background There are definite gender differences in patients with macular holes.Menopausal women over 50 years are most affected.We aimed to observe the effect of estrogen on collagen gel contraction by cultured human retinal glial cells.It is speculated that estrogen could strengthen the tensile stress of the macula by maintaining the correct morphology and contraction.Methods Estrogen was used to determine its effects on collagen gel contraction,and its function was measured using morphological changes in cells.Human retinal glial cells were cultured in collagen solution.The cells were then exposed to collagen gels and the degree of contraction of the gel was determined.Results Estrogen at differing concentrations had no effect on the growth of human retinal glial cells.However,after exposed to collagen gel block,less contraction was noted in the estrogen-treated group than in the control group.Conclusions Estrogen can inhibit collagen gel contraction by glial cells.These results suggest a mechanism for macular hole formation,which is observed in menopausal females.

  15. Micro-structured materials and mechanical cues in 3D collagen gels.

    Science.gov (United States)

    Phillips, James B; Brown, Robert

    2011-01-01

    Collagen gels provide a versatile and widely used substrate for three-dimensional (3D) cell culture. Here we describe how cell-seeded Type-I collagen gels can be adapted to provide powerful 3D models to support a wide range of research applications where cell/substrate alignment, density, stiffness/compliance, and strain are critical factors. In their fully hydrated form, rectangular collagen gels can be tethered such that endogenous forces generated as resident cells attach to and remodel the fibrillar collagen network can align the substrate in a controllable, predictable, and quantifiable manner. By removing water from collagen gels (plastic compression), their density increases towards that of body tissues, facilitating the engineering of a range of biomimetic constructs with controllable mechanical properties. This dense collagen can be used in combination with other components to achieve a range of functional properties from controlled perfusion, or tensile/compressive strength to new micro-structures. Detailed methodology is provided for the assembly of a range of 3D collagen materials including tethered aligned hydrogels and plastic compressed constructs. A range of techniques for analysing cell behaviour within these models, including microscopy and molecular analyses are described. These systems therefore provide a highly controllable mechanical and chemical micro-environment for investigating a wide range of cellular responses. PMID:21042973

  16. Thickness sensing of hMSCs on collagen gel directs stem cell fate

    International Nuclear Information System (INIS)

    Research highlights: → hMSCs appeared to sense thin collagen gel (130 μm) with higher effective modulus as compared to thick gel (1440 μm). → Control of collagen gel thickness can modulate cellular behavior, even stem cell fate (neuronal vs. Quiescent). → Distinct cellular behavior of hMSCs on thin and thick collagen gel suggests long range interaction of hMSCs with collagen gel. -- Abstract: Mechanically compliant substrate provides crucial biomechanical cues for multipotent stem cells to regulate cellular fates such as differentiation, proliferation and maintenance of their phenotype. Effective modulus of which cells sense is not only determined by intrinsic mechanical properties of the substrate, but also the thickness of substrate. From our study, it was found that interference from underlying rigid support at hundreds of microns away could induce significant cellular response. Human mesenchymal stem cells (hMSCs) were cultured on compliant biological gel, collagen type I, of different thickness but identical ECM composition and local stiffness. The cells sensed the thin gel (130 μm) as having a higher effective modulus than the thick gel (1440 μm) and this was reflected in their changes in morphology, actin fibers structure, proliferation and tissue specific gene expression. Commitment into neuronal lineage was observed on the thin gel only. Conversely, the thick gel (1440 μm) was found to act like a substrate with lower effective modulus that inhibited actin fiber polymerization. Stem cells on the thick substrate did not express tissue specific genes and remained at their quiescent state. This study highlighted the need to consider not only the local modulus but also the thickness of biopolymer gel coating during modulation of cellular responses.

  17. Growth and differentiation of neural stem cells in a three-dimensional collagen gel scaffold

    Institute of Scientific and Technical Information of China (English)

    Fei Huang; Qiang Shen; Jitong Zhao

    2013-01-01

    Collagen protein is an ideal scaffold material for the transplantation of neural stem cells. In this study, rat neural stem cells were seeded into a three-dimensional collagen gel scaffold, with suspension cultured neural stem cells being used as a control group. Neural stem cells, which were cultured in medium containing epidermal growth factor and basic fibroblast growth factor, actively expanded and formed neurospheres in both culture groups. In serum-free medium conditions, the processes extended from neurospheres in the collagen gel group were much longer than those in the suspension culture group. Immunofluorescence staining showed that neurospheres cultured in collagen gels were stained positive for nestin and differentiated cells were stained positive for the neuronal marker βIII-tubulin, the astrocytic marker glial fibrillary acidic protein and the oligodendrocytic marker 2',3'-cyclic nucleotide 3'-phosphodiesterase. Compared with neurospheres cultured in suspension, the differentiation potential of neural stem cells cultured in collagen gels increased, with the formation of neurons at an early stage. Our results show that the three-dimensional collagen gel culture system is superior to suspension culture in the proliferation, differentiation and process outgrowth of neural stem cells.

  18. The evaluation of collagen gel with various connection states by using MRI

    International Nuclear Information System (INIS)

    To noninvasively evaluate the connection states of collagen fiber, a characterizing factor of the physical property, is considered to be helpful in the evaluation of cartilage functions. The purpose of this study was to examine how the connection states of collagen influence the MRI parameters by evaluating the collagen gel with various connection states using MRI. MRI was performed to six type I collagen gel samples with various connection status and a water sample. The evaluation parameters included T1 relaxation time, T2 relaxation time, and diffusion coefficient. With regard to gel samples with cross-links, the T2 relaxation time was shortened in proportion to the dose of glutaraldehyde. It is considered that as the glutaraldehyde concentration increases, the distance between protons in water molecules decreases; this is followed by a stronger bipole-bipole interaction, resulting in a shorter T2 relaxation time. The diffusion coefficient for gel samples with cross-links also decreased with increasing glutaraldehyde concentrations. However, gel samples without glutaraldehyde were almost the same as that of the water. This result suggested that the degree of entrapment of water inside the gel samples without cross-links, even when it converted into gel, was found to be nearly equal to that of the free water

  19. Automatic and quantitative measurement of collagen gel contraction using model-guided segmentation

    Science.gov (United States)

    Chen, Hsin-Chen; Yang, Tai-Hua; Thoreson, Andrew R.; Zhao, Chunfeng; Amadio, Peter C.; Sun, Yung-Nien; Su, Fong-Chin; An, Kai-Nan

    2013-08-01

    Quantitative measurement of collagen gel contraction plays a critical role in the field of tissue engineering because it provides spatial-temporal assessment (e.g., changes of gel area and diameter during the contraction process) reflecting the cell behavior and tissue material properties. So far the assessment of collagen gels relies on manual segmentation, which is time-consuming and suffers from serious intra- and inter-observer variability. In this study, we propose an automatic method combining various image processing techniques to resolve these problems. The proposed method first detects the maximal feasible contraction range of circular references (e.g., culture dish) and avoids the interference of irrelevant objects in the given image. Then, a three-step color conversion strategy is applied to normalize and enhance the contrast between the gel and background. We subsequently introduce a deformable circular model which utilizes regional intensity contrast and circular shape constraint to locate the gel boundary. An adaptive weighting scheme was employed to coordinate the model behavior, so that the proposed system can overcome variations of gel boundary appearances at different contraction stages. Two measurements of collagen gels (i.e., area and diameter) can readily be obtained based on the segmentation results. Experimental results, including 120 gel images for accuracy validation, showed high agreement between the proposed method and manual segmentation with an average dice similarity coefficient larger than 0.95. The results also demonstrated obvious improvement in gel contours obtained by the proposed method over two popular, generic segmentation methods.

  20. Thrombin and TNF-α/IL-1β Synergistically Induce Fibroblast-Mediated Collagen Gel Degradation

    OpenAIRE

    Fang, Qiuhong; Liu, Xiangde; Al-Mugotir, Mona; Kobayashi, Tetsu; Abe, Shinji; Kohyama, Tadashi; Rennard, Stephen I

    2006-01-01

    Degradation of preexisting and newly synthesized extracellular matrix is thought to play an important role in tissue remodeling. The current study evaluated whether thrombin and TNF-α/IL-1β could collaboratively induce collagen degradation by human fetal lung fibroblasts (HFL-1) and adult bronchial fibroblasts cultured in three-dimensional collagen gels. TNF-α/IL-1β alone induced production of matrix metalloproteinases (MMPs)-1, -3, and -9, which were released in latent form. With the additio...

  1. Ectopic bone formation in rapidly fabricated acellular injectable dense collagen-Bioglass hybrid scaffolds via gel aspiration-ejection

    OpenAIRE

    Miri, Amir K.; Muja, Naser; Kamranpour, Neysan O.; Lepry, William C.; Aldo R. Boccaccini; Clarke, Susan A.; Nazhat, Showan N.

    2016-01-01

    Gel aspiration-ejection (GAE) has recently been introduced as an effective technique for the rapid production of injectable dense collagen (IDC) gel scaffolds with tunable collagen fibrillar densities (CFDs) and microstructures. Herein, a GAE system was applied for the advanced production and delivery of IDC and IDC-Bioglass® (IDC-BG) hybrid gel scaffolds for potential bone tissue engineering applications. The efficacy of GAE in generating mineralizable IDC-BG gels (from an initial 75-25 coll...

  2. Characterization of Fibrin and Collagen Gels for Engineering Wound Healing Models

    Science.gov (United States)

    Moreno-Arotzena, Oihana; Meier, Johann G.; del Amo, Cristina; García-Aznar, José Manuel

    2015-01-01

    Hydrogels are used for 3D in vitro assays and tissue engineering and regeneration purposes. For a thorough interpretation of this technology, an integral biomechanical characterization of the materials is required. In this work, we characterize the mechanical and functional behavior of two specific hydrogels that play critical roles in wound healing, collagen and fibrin. A coherent and complementary characterization was performed using a generalized and standard composition of each hydrogel and a combination of techniques. Microstructural analysis was performed by scanning electron microscopy and confocal reflection imaging. Permeability was measured using a microfluidic-based experimental set-up, and mechanical responses were analyzed by rheology. We measured a pore size of 2.84 and 1.69 μm for collagen and fibrin, respectively. Correspondingly, the permeability of the gels was 1.00·10−12 and 5.73·10−13 m2. The shear modulus in the linear viscoelastic regime was 15 Pa for collagen and 300 Pa for fibrin. The gels exhibited strain-hardening behavior at ca. 10% and 50% strain for fibrin and collagen, respectively. This consistent biomechanical characterization provides a detailed and robust starting point for different 3D in vitro bioapplications, such as collagen and/or fibrin gels. These features may have major implications for 3D cellular behavior by inducing divergent microenvironmental cues. PMID:26290683

  3. Mathematical Modeling of Uniaxial Mechanical Properties of Collagen Gel Scaffolds for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Ramiro M. Irastorza

    2015-01-01

    Full Text Available Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.. When Akaike criterion is used, the best is the Mooney-Rivlin inspired model.

  4. Mathematical modeling of uniaxial mechanical properties of collagen gel scaffolds for vascular tissue engineering.

    Science.gov (United States)

    Irastorza, Ramiro M; Drouin, Bernard; Blangino, Eugenia; Mantovani, Diego

    2015-01-01

    Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.). When Akaike criterion is used, the best is the Mooney-Rivlin inspired model. PMID:25834840

  5. Microstructural modeling of collagen network mechanics and interactions with the proteoglycan gel in articular cartilage.

    Science.gov (United States)

    Quinn, T M; Morel, V

    2007-01-01

    Cartilage matrix mechanical function is largely determined by interactions between the collagen fibrillar network and the proteoglycan gel. Although the molecular physics of these matrix constituents have been characterized and modern imaging methods are capable of localized measurement of molecular densities and orientation distributions, theoretical tools for using this information for prediction of cartilage mechanical behavior are lacking. We introduce a means to model collagen network contributions to cartilage mechanics based upon accessible microstructural information (fibril density and orientation distributions) and which self-consistently follows changes in microstructural geometry with matrix deformations. The interplay between the molecular physics of the collagen network and the proteoglycan gel is scaled up to determine matrix material properties, with features such as collagen fibril pre-stress in free-swelling cartilage emerging naturally and without introduction of ad hoc parameters. Methods are developed for theoretical treatment of the collagen network as a continuum-like distribution of fibrils, such that mechanical analysis of the network may be simplified by consideration of the spherical harmonic components of functions of the fibril orientation, strain, and stress distributions. Expressions for the collagen network contributions to matrix stress and stiffness tensors are derived, illustrating that only spherical harmonic components of orders 0 and 2 contribute to the stress, while orders 0, 2, and 4 contribute to the stiffness. Depth- and compression-dependent equilibrium mechanical properties of cartilage matrix are modeled, and advantages of the approach are illustrated by exploration of orientation and strain distributions of collagen fibrils in compressed cartilage. Results highlight collagen-proteoglycan interactions, especially for very small physiological strains where experimental data are relatively sparse. These methods for

  6. Second-harmonic generation scattering directionality predicts tumor cell motility in collagen gels

    Science.gov (United States)

    Burke, Kathleen A.; Dawes, Ryan P.; Cheema, Mehar K.; Van Hove, Amy; Benoit, Danielle S. W.; Perry, Seth W.; Brown, Edward

    2015-05-01

    Second-harmonic generation (SHG) allows for the analysis of tumor collagen structural changes throughout metastatic progression. SHG directionality, measured through the ratio of the forward-propagating to backward-propagating signal (F/B ratio), is affected by collagen fibril diameter, spacing, and disorder of fibril packing within a fiber. As tumors progress, these parameters evolve, producing concurrent changes in F/B. It has been recently shown that the F/B of highly metastatic invasive ductal carcinoma (IDC) breast tumors is significantly different from less metastatic tumors. This suggests a possible relationship between the microstructure of collagen, as measured by the F/B, and the ability of tumor cells to locomote through that collagen. Utilizing in vitro collagen gels of different F/B ratios, we explored the relationship between collagen microstructure and motility of tumor cells in a "clean" environment, free of the myriad cells, and signals found in in vivo. We found a significant relationship between F/B and the total distance traveled by the tumor cell, as well as both the average and maximum velocities of the cells. Consequently, one possible mechanism underlying the observed relationship between tumor F/B and metastatic output in IDC patient samples is a direct influence of collagen structure on tumor cell motility.

  7. Neurotrophins differentially stimulate the growth of cochlear neurites on collagen surfaces and in gels

    Institute of Scientific and Technical Information of China (English)

    Joanna Xie; Kwang Pak; Amaretta Evans; Andy Kamgar-Parsi; Stephen Fausti; Lina Mullen; Allen Frederic Ryan

    2013-01-01

    The electrodes of a cochlear implant are located far from the surviving neurons of the spiral ganglion, which results in decreased precision of neural activation compared to the normal ear. If the neurons could be induced to extend neurites toward the implant, it might be possible to stimulate more discrete subpopulations of neurons, and to increase the resolution of the device. However, a major barrier to neurite growth toward a cochlear implant is the fluid filling the scala tympani, which separates the neurons from the electrodes. The goal of this study was to evaluate the growth of cochlear neurites in three-dimensional extracellular matrix molecule gels, and to increase biocompatibility by using fibroblasts stably transfected to produce neurotrophin-3 and brain-derived neurotrophic factor. Spiral ganglion explants from neonatal rats were evaluated in cultures. They were exposed to soluble neurotrophins, cells transfected to secrete neurotrophins, and/or collagen gels. We found that cochlear neurites grew readily on collagen surfaces and in three-dimensional collagen gels. Co-culture with cells producing neurotrophin-3 resulted in increased numbers of neurites, and neurites that were longer than when explants were cultured with control fibroblasts stably transfected with green fluorescent protein. Brain-derived neurotrophic factor-producing cells resulted in a more dramatic increase in the number of neurites, but there was no significant effect on neurite length. It is suggested that extracellular matrix molecule gels and cells transfected to produce neurotrophins offer an opportunity to attract spiral ganglion neurites toward a cochlear implant.

  8. MMP-9 regulates both positively and negatively collagen gel contraction - A nonproteolytic function of MMP-9

    OpenAIRE

    Defawe, Olivier D.; Kenagy, Richard D.; Choi, Chun; Wan, Samuel Y.C.; Deroanne, Christophe; Nusgens, Betty; SakalihasanN, Natzi; Colige, Alain; Clowes, Alexander W.

    2005-01-01

    Objective: Constrictive remodeling accounts for lumen loss in postangioplasty restenosis. Matrix metalloproteinase-9 (MMP-9) has been shown to prevent constrictive remodeling in vivo. To investigate potential mechanisms for this observation, we investigated the role of MMP-9 in smooth muscle cell (SMC)-mediated collagen gel contraction, an in vitro model of constrictive remodeling. Methods: Fischer rat SMCs were stably transfected with a construct-expressing rat-MMP-9 under the control of a t...

  9. DNA Micro-Array Gene Expression Profi ling of Angiogenesis in Collagen Gel Culture

    OpenAIRE

    Masumi Akita; Keiko Fujita

    2008-01-01

    We examined angiogenesis-related gene expression profiles using collagen gel culture and a DNA chip. After isolation of total RNA from cultures before and after capillary tube formation, a mouse whole-genome array study was performed. Seventy-three out of over 35,000 transcripts were expressed after capillary tube formation. The majority of genes did not show any significant differences between before and after capillary tube formation. However, there were 7 upregulated genes; tumor necrosis ...

  10. Controlling coupling reaction of EDC and NHS for preparation of collagen gels using ethanol/water co-solvents.

    Science.gov (United States)

    Nam, Kwangwoo; Kimura, Tsuyoshi; Kishida, Akio

    2008-01-01

    To control the crosslinking rate of the collagen gel, ethanol/water co-solvent was adopted for the reaction solvent for the collagen microfibril crosslinking. Collagen gel was prepared by using EDC and NHS as coupling agents. Ethanol did not denaturate the helical structure of the collagen and prevented the hydrolysis of EDC, but showed the protonation of carboxylate anions. In order to control the intra- and interhelical crosslink of the collagen triple helix, variations of the mole ratio of carboxyl group/EDC/NHS, and of the ethanol mole concentration were investigated. Increase in the EDC ratio against the carboxyl group increased the crosslinking rate. Furthermore, an increase in the ethanol mole concentration resulted in an increase of the crosslinking rate until ethanol mole concentration was 0.12, but showed gradual decrease as the ethanol mole concentration was further increased. This is because the adsorption of solvent by the collagen gel, protonation of carboxylate anion, and hydrolysis of EDC is at its most optimum condition for the coupling reaction when the ethanol mole concentration is 0.12. The re-crosslinking of the collagen gel showed an increase in the crosslinking rate, but did not show further increase when the coupling reaction was executed for the third time. This implied that the highest possible crosslinking rate for the intra- and interhelical is approximately 60% when EDC/NHS is used. PMID:18023082

  11. Multimodal CARS and SHG microscopy for label-free detection of collagen produced by hDFs in fibrin gel

    CERN Document Server

    Mortati, Leonardo; Sassi, Maria Paola

    2011-01-01

    Label-free combined CARS and SHG microscopy techniques are used as powerful tool to follow the cells behavior in cell-scaffold construct for regeneration of tissues. Imaging of histological section of hDFs seeded in fibrin gel scaffold and imaging of collagen produced by hDFs in a time course experiment at different culture days (0, 7, 21, 42) is performed. A study on the limit of collagen detection of the imaging system is reported using sample prepared with different collagen concentrations. The results show that also the small amount of collagen produced by hDFs after few hours of incubation in fibrin gel is detected. Co-localization of hDFs and collagen is also reported in function of the culture days.

  12. Effects of a Pseudophysiological Environment on the Elastic and Viscoelastic Properties of Collagen Gels

    Directory of Open Access Journals (Sweden)

    Sébastien Meghezi

    2012-01-01

    Full Text Available Vascular tissue engineering focuses on the replacement of diseased small-diameter blood vessels with a diameter less than 6 mm for which adequate substitutes still do not exist. One approach to vascular tissue engineering is to culture vascular cells on a scaffold in a bioreactor. The bioreactor establishes pseudophysiological conditions for culture (medium culture, 37°C, mechanical stimulation. Collagen gels are widely used as scaffolds for tissue regeneration due to their biological properties; however, they exhibit low mechanical properties. Mechanical characterization of these scaffolds requires establishing the conditions of testing in regard to the conditions set in the bioreactor. The effects of different parameters used during mechanical testing on the collagen gels were evaluated in terms of mechanical and viscoelastic properties. Thus, a factorial experiment was adopted, and three relevant factors were considered: temperature (23°C or 37°C, hydration (aqueous saline solution or air, and mechanical preconditioning (with or without. Statistical analyses showed significant effects of these factors on the mechanical properties which were assessed by tensile tests as well as stress relaxation tests. The last tests provide a more consistent understanding of the gels' viscoelastic properties. Therefore, performing mechanical analyses on hydrogels requires setting an adequate environment in terms of temperature and aqueous saline solution as well as choosing the adequate test.

  13. A modified collagen gel dressing promotes angiogenesis in a preclinical swine model of chronic ischemic wounds.

    Science.gov (United States)

    Elgharably, Haytham; Ganesh, Kasturi; Dickerson, Jennifer; Khanna, Savita; Abas, Motaz; Ghatak, Piya Das; Dixit, Sriteja; Bergdall, Valerie; Roy, Sashwati; Sen, Chandan K

    2014-01-01

    We recently performed proteomic characterization of a modified collagen gel (MCG) dressing and reported promising effects of the gel in healing full-thickness excisional wounds. In this work, we test the translational relevance of our aforesaid findings by testing the dressing in a swine model of chronic ischemic wounds recently reported by our laboratory. Full-thickness excisional wounds were established in the center of bipedicle ischemic skin flaps on the backs of animals. Ischemia was verified by laser Doppler imaging, and MCG was applied to the test group of wounds. Seven days post wounding, macrophage recruitment to the wound was significantly higher in MCG-treated ischemic wounds. In vitro, MCG up-regulated expression of Mrc-1 (a reparative M2 macrophage marker) and induced the expression of anti-inflammatory cytokine interleukin (IL)-10 and of fibroblast growth factor-basic (β-FGF). An increased expression of CCR2, an M2 macrophage marker, was noted in the macrophages from MCG treated wounds. Furthermore, analyses of wound tissues 7 days post wounding showed up-regulation of transforming growth factor-β, vascular endothelial growth factor, von Willebrand's factor, and collagen type I expression in MCG-treated ischemic wounds. At 21 days post wounding, MCG-treated ischemic wounds displayed higher abundance of proliferating endothelial cells that formed mature vascular structures and increased blood flow to the wound. Fibroblast count was markedly higher in MCG-treated ischemic wound-edge tissue. In addition, MCG-treated wound-edge tissues displayed higher abundance of mature collagen with increased collagen type I : III deposition. Taken together, MCG helped mount a more robust inflammatory response that resolved in a timely manner, followed by an enhanced proliferative phase, angiogenic outcome, and postwound tissue remodeling. Findings of the current study warrant clinical testing of MCG in a setting of ischemic chronic wounds. PMID:25224310

  14. Anti-EMP2 diabody blocks Epithelial Membrane Protein 2 (EMP2) and FAK mediated collagen gel contraction in ARPE-19 cells

    OpenAIRE

    Morales, Shawn A.; Telander, David G.; Mareninov, Sergey; Nagy, Agnes; Wadehra, Madhuri; Braun, Jonathan; Gordon, Lynn K.

    2012-01-01

    Epithelial membrane protein 2 (EMP2) regulates collagen gel contraction by the retinal pigment epithelium cell line ARPE-19 by modulating FAK activation. Collagen gel contraction is one in vitro model for an aberrant wound healing response, proliferative vitreoretinopathy (PVR), which occurs as a complication of severe ocular trauma. The purpose of this study is to investigate whether EMP2 specific recombinant diabody decreases activation of FAK and collagen gel contraction in ARPE-19. Anti-E...

  15. Effects of the CNTF-collagen gel-controlled delivery system on rat neural stem/progenitor cells behavior

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The injury of central nervous system (CNS) usually causes the cavity formation. Although transplantation of neural stem/precursor cells (NSPCs) into the lesioned area of CNS has been shown to be implicated in the functional restoration, the therapeutic result is limited by the poor survival of NSPCs as well as their insufficient proliferation and differentiation abilities. Type-1 collagen is considered as a candidate scaffold or drug delivery system to overcome the aforementioned obstacle. This study observed the effects of the CNTF (ciliary neurotrophic factor)-collagen gel-controlled delivery system and daily addition of soluble-form CNTF on the NSPC survival, migration, proliferation and differentiation. The results showed that, within 12 h of the initial co-culture, CNTF was released in a burst pattern, then the CNTF-collagen gel-controlled delivery system stably released CNTF for up to 12 d. The cell viability test, together with immunohistochemistry, RT-PCR and Western blotting, showed that the CNTF-collagen gel-controlled delivery system supported the NSPCs seeded on the surface of collagen gel survival and facilitated their migration and proliferation. The daily addition of soluble-form CNTF to the medium had similar effects to the CNTF-collagen gel-controlled delivery system, but large quantities of soluble-form CNTF were consumed during the entire process. Taken together, the CNTF-collagen gel-controlled delivery system not only provides a physical scaffold for the transplanted NSPCs to adhere and migrate, but also facilitates the NSPC survival, growth and proliferation, simultaneously reducing the consumption of the expensive growth factors. This system may be used to enhance the microenvironment in the lesioned area of CNS.

  16. Millicurrent stimulation of human articular chondrocytes cultivated in a collagen type-I gel and of human osteochondral explants

    Directory of Open Access Journals (Sweden)

    Silny Jiri

    2010-08-01

    Full Text Available Abstract Background Here we investigate the effect of millicurrent treatment on human chondrocytes cultivated in a collagen gel matrix and on human osteochondral explants. Methods Human chondrocytes from osteoarthritic knee joints were enzymatically released and transferred into a collagen type-I gel. Osteochondral explants and cell-seeded gel samples were cultivated in-vitro for three weeks. Samples of the verum groups were stimulated every two days by millicurrent treatment (3 mA, sinusoidal signal of 312 Hz amplitude modulated by two super-imposed signals of 0.28 Hz, while control samples remained unaffected. After recovery, collagen type-I, type-II, aggrecan, interleukin-1β, IL-6, TNFα and MMP13 were examined by immunohistochemistry and by real time PCR. Results With regard to the immunostainings 3 D gel samples and osteochondral explants did not show any differences between treatment and control group. The expression of all investigated genes of the 3 D gel samples was elevated following millicurrent treatment. While osteochondral explant gene expression of col-I, col-II and Il-1β was nearly unaffected, aggrecan gene expression was elevated. Following millicurrent treatment, IL-6, TNFα, and MMP13 gene expression decreased. In general, the standard deviations of the gene expression data were high, resulting in rarely significant results. Conclusions We conclude that millicurrent stimulation of human osteoarthritic chondrocytes cultivated in a 3 D collagen gel and of osteochondral explants directly influences cell metabolism.

  17. Collagen Gel Contraction as a Measure of Fibroblast Function in an Animal Model of Subsynovial Connective Tissue Fibrosis

    OpenAIRE

    Yang, Tai-hua; Thoreson, Andrew R.; Gingery, Anne; Larson, Dirk R.; Passe, Sandra M.; An, Kai-Nan; Zhao, Chunfeng; Amadio, Peter C.

    2015-01-01

    Carpal tunnel syndrome (CTS) is a peripheral neuropathy characterized by non-inflammatory fibrosis of the subsynovial connective tissues (SSCT). A rabbit model of CTS was developed to test the hypothesis that SSCT fibrosis causes the neuropathy. We used a cell-seeded collagen-gel contraction model to characterize the fibrosis in this model in terms of cellular mechanics, specifically to compare the ability of SSCT cells from the rabbit model and normal rabbits to contract the gel, and to asse...

  18. Intervention with Formulated Collagen Gel for Chronic Heel Pressure Ulcers in Older Adults with Diabetes.

    Science.gov (United States)

    Agosti, Jennifer K; Chandler, Lois A

    2015-11-01

    Chronic pressure ulcers (PrUs), ulcers that fail to progress through the expected phases of wound healing in a timely fashion, are not only a concern for the patients afflicted with them, but are also a significant burden for the long-term-care facilities in which patients reside. The heel is the second most common location for PrUs. Morbidity and mortality rates for heel PrUs, particularly in the diabetic population, are alarming. Therefore, a consistently effective, cost-conscious, and user-friendly topical treatment for heel ulcers would be welcomed by patients and clinicians. This article describes a marked and rapid improvement in wound granulation in 3 older adult patients following weekly treatment for 8 weeks of chronic (≥1-year duration) heel ulcers with an easy-to-use, cost-effective, topical, formulated collagen gel. PMID:26479694

  19. Collagens

    OpenAIRE

    Gordon, Marion K.; Hahn, Rita A.

    2009-01-01

    The collagens represent a family of trimeric extracellular matrix molecules used by cells for structural integrity and other functions. The three α chains that form the triple helical part of the molecule are composed of repeating peptide triplets of glycine-X-Y. X and Y can be any amino acid but are often proline and hydroxyproline, respectively. Flanking the triple helical regions (i.e., Col domains) are non-glycine-X-Y regions, termed non-collagenous domains. These frequently contain recog...

  20. Contraction-induced Mmp13 and-14 expression by goat articular chondrocytes in collagen type I but not type II gels

    NARCIS (Netherlands)

    Berendsen, Agnes D.; Vonk, Lucienne A.; Zandieh-Doulabi, Behrouz; Everts, Vincent; Bank, Ruud A.

    2012-01-01

    Collagen gels are promising scaffolds to prepare an implant for cartilage repair but several parameters, such as collagen concentration and composition as well as cell density, should be carefully considered, as they are reported to affect phenotypic aspects of chondrocytes. In this study we investi

  1. Fabrication and evaluation of biomimetic scaffolds by using collagen-alginate fibrillar gels for potential tissue engineering applications

    International Nuclear Information System (INIS)

    Pore architecture and its stable functionality under cell culturing of three dimensional (3D) scaffolds are of great importance for tissue engineering purposes. In this study, alginate was incorporated with collagen to fabricate collagen-alginate composite scaffolds with different collagen/alginate ratios by lyophilizing the respective composite gels formed via collagen fibrillogenesis in vitro and then chemically crosslinking. The effects of alginate amount and crosslinking treatment on pore architecture, swelling behavior, enzymatic degradation and tensile property of composite scaffolds were systematically investigated. The relevant results indicated that the present strategy was simple but efficient to fabricate highly interconnected strong biomimetic 3D scaffolds with nanofibrous surface. NIH3T3 cells were used as a model cell to evaluate the cytocompatibility, attachment to the nanofibrous surface and porous architectural stability in terms of cell proliferation and infiltration within the crosslinked scaffolds. Compared with the mechanically weakest crosslinked collagen sponges, the cell-cultured composite scaffolds presented a good porous architecture, thus permitting cell proliferation on the top surface as well as infiltration into the inner part of 3D composite scaffolds. These composite scaffolds with pore size ranging from 150 to 300 μm, over 90% porosity, tuned biodegradability and water-uptake capability are promising for tissue engineering applications.

  2. Fabrication of Collagen Gel Hollow Fibers by Covalent Cross-Linking for Construction of Bioengineering Renal Tubules.

    Science.gov (United States)

    Shen, Chong; Zhang, Guoliang; Wang, Qichen; Meng, Qin

    2015-09-01

    Collagen, the most used natural biomacromolecule, has been extensively utilized to make scaffolds for cell cultures in tissue engineering, but has never been fabricated into the configuration of a hollow fiber (HF) for cell culture due to its poor mechanical properties. In this study, renal tubular cell-laden collagen hollow fiber (Col HF) was fabricated by dissolving sacrificial Ca-alginate cores from collagen shells strengthened by carbodiimide cross-linking. The inner/outer diameters of the Col HF were precisely controlled by the flow rates of core alginate/shell collagen solution in the microfluidic device. As found, the renal tubular cells self-assembled into renal tubules with diameters of 50-200 μm post to the culture in Col HF for 10 days. According to the 3D reconstructed confocal images or HE staining, the renal cells appeared as a tight tubular monolayer on the Col HF inner surface, sustaining more 3D cell morphology than the cell layer on the 2D flat collagen gel surface. Moreover, compared with the cultures in either a Transwell or polymer HF membrane, the renal tubules in Col HF exhibited at least 1-fold higher activity on brush border enzymes of alkaline phosphatase and γ-glutamyltransferase, consistent with their gene expressions. The enhancement occurred similarly on multidrug resistance protein 2 and glucose uptake. Such bioengineered renal tubules in Col HF will present great potential as alternatives to synthetic HF in both clinical use and pharmaceutical investigation. PMID:26280545

  3. Fabrication and evaluation of biomimetic scaffolds by using collagen-alginate fibrillar gels for potential tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Sang Lin; Luo Dongmei; Xu Songmei; Wang Xiaoliang; Li Xudong, E-mail: xli20004@yahoo.com

    2011-03-12

    Pore architecture and its stable functionality under cell culturing of three dimensional (3D) scaffolds are of great importance for tissue engineering purposes. In this study, alginate was incorporated with collagen to fabricate collagen-alginate composite scaffolds with different collagen/alginate ratios by lyophilizing the respective composite gels formed via collagen fibrillogenesis in vitro and then chemically crosslinking. The effects of alginate amount and crosslinking treatment on pore architecture, swelling behavior, enzymatic degradation and tensile property of composite scaffolds were systematically investigated. The relevant results indicated that the present strategy was simple but efficient to fabricate highly interconnected strong biomimetic 3D scaffolds with nanofibrous surface. NIH3T3 cells were used as a model cell to evaluate the cytocompatibility, attachment to the nanofibrous surface and porous architectural stability in terms of cell proliferation and infiltration within the crosslinked scaffolds. Compared with the mechanically weakest crosslinked collagen sponges, the cell-cultured composite scaffolds presented a good porous architecture, thus permitting cell proliferation on the top surface as well as infiltration into the inner part of 3D composite scaffolds. These composite scaffolds with pore size ranging from 150 to 300 {mu}m, over 90% porosity, tuned biodegradability and water-uptake capability are promising for tissue engineering applications.

  4. Collagen type V enhances matrix contraction by human periodontal ligament fibroblasts seeded in three-dimensional collagen gels.

    NARCIS (Netherlands)

    Berendsen, A.D.; Bronckers, A.L.; Smit, T.H.; Walboomers, X.F.; Everts, V.

    2006-01-01

    Extracellular matrix components play an important role in modulating cellular activity. To study such capacities of the matrix, fibroblasts are frequently cultured in a three-dimensional gel and contraction is assessed as a measure of cellular activity. Since a connective tissue contains several typ

  5. Magnesium Modifies the Structural Features of Enzymatically Mineralized Collagen Gels Affecting the Retraction Capabilities of Human Dermal Fibroblasts Embedded within This 3D System

    Directory of Open Access Journals (Sweden)

    Federica Boraldi

    2016-06-01

    Full Text Available Mineralized collagen gels have been developed as in vitro models to better understand the mechanisms regulating the calcification process and the behavior of a variety of cell types. The vast majority of data are related to stem cells and to osteoblast-like cells, whereas little information is available for dermal fibroblasts, although these cells have been associated with ectopic calcification and consequently to a number of pathological conditions. Therefore, we developed and characterized an enzymatically mineralized collagen gel in which fibroblasts were encapsulated within the 3D structure. MgCl2 was also added during gel polymerization, given its role as (i modulator of ectopic calcification; (ii component of biomaterials used for bone replacement; and (iii constituent of pathological mineral deposits. Results demonstrate that, in a short time, an enzymatically mineralized collagen gel can be prepared in which mineral deposits and viable cells are homogeneously distributed. MgCl2 is present in mineral deposits and significantly affects collagen fibril assembly and organization. Consequently, cell shape and the ability of fibroblasts to retract collagen gels were modified. The development of three-dimensional (3D mineralized collagen matrices with both different structural features and mineral composition together with the use of fibroblasts, as a prototype of soft connective tissue mesenchymal cells, may pave new ways for the study of ectopic calcification.

  6. Preparation of collagen modified photopolymers: a new type of biodegradable gel for cell growth.

    Science.gov (United States)

    Bayramoğlu, Gülay; Kayaman-Apohan, Nilhan; Akçakaya, Handan; Vezir Kahraman, Memet; Erdem Kuruca, Serap; Güngör, Atilla

    2010-02-01

    In this study a new branched methacrylated poly(propylene glycol-co-lactic acid) (PPG-PLA-IEM) and methacrylated cellulose acetate butyrate resin (CAB-IEM) were synthesized. Hydrogels with various amounts of PPG-PLA-IEM and CAB-IEM (25, 50 and 75 wt% IEM modified) were prepared by photopolymerization. Collagen tethered PEG-monoacrylate (PEGMA-collagen) was prepared and introduced as a bioactive moiety to modify the hydrogel in order to enhance cell affinity. In vitro attachment and growth of 3T3 mouse fibroblasts and human umbilical vein endothelial cells (HUVEC) on the hydrogels with and without collagen were also investigated. It was observed that, the collagen improves the cell adhesion onto the hydrogel surface. With the increasing amount of collagen, cell viability increased by 28% for ECV304 (P < 0.05) and 30% for 3T3 (P < 0.05). PMID:19936889

  7. Alteration of cellular behavior and response to PI3K pathway inhibition by culture in 3D collagen gels.

    Directory of Open Access Journals (Sweden)

    Brian Fallica

    Full Text Available Most investigations into cancer cell drug response are performed with cells cultured on flat (2D tissue culture plastic. Emerging research has shown that the presence of a three-dimensional (3D extracellular matrix (ECM is critical for normal cell behavior including migration, adhesion, signaling, proliferation and apoptosis. In this study we investigate differences between cancer cell signaling in 2D culture and a 3D ECM, employing real-time, live cell tracking to directly observe U2OS human osteosarcoma and MCF7 human breast cancer cells embedded in type 1 collagen gels. The activation of the important PI3K signaling pathway under these different growth conditions is studied, and the response to inhibition of both PI3K and mTOR with PI103 investigated. Cells grown in 3D gels show reduced proliferation and migration as well as reduced PI3K pathway activation when compared to cells grown in 2D. Our results quantitatively demonstrate that a collagen ECM can protect U2OS cells from PI103. Overall, our data suggests that 3D gels may provide a better medium for investigation of anti-cancer drugs than 2D monolayers, therefore allowing better understanding of cellular response and behavior in native like environments.

  8. Fast and mild strategy, using superhydrophobic surfaces, to produce collagen/platelet lysate gel beads for skin regeneration.

    Science.gov (United States)

    Lima, Ana Catarina; Mano, João F; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2015-02-01

    Platelet lysate (PL) was encapsulated in collagen (Coll) millimetric gel beads, on biomimetic superhydrophobic surfaces, under mild conditions, with the aim of obtaining easy-to-handle formulations able to provide sustained release of multiple growth factors for skin ulcers treatment. The gel particles were prepared with various concentrations of PL incorporating or not stem cells, and tested as freshly prepared or after being freeze-dried or cryopreserved. Coll + PL particles were evaluated regarding degradation in collagenase-rich environment (simulating the aggressive environment of the chronic ulcers), sustained release of total protein, PDGF-BB and VEGF, cell proliferation (using particles as the only source of growth factors), scratch wound recovery and angiogenic capability. Compared to Coll solely particles, incorporation of PL notably enhanced cell proliferation (inside and outside gels) and favored scratch wound recovery and angiogenesis. Moreover, cell-laden gel particles containing PL notably improved cell proliferation and even migration of cells from one particle towards a neighbor one, which led to cell-cell contacts and the spontaneous formation of tissue layers in which the spherical gels were interconnected by the stem cells. PMID:25120225

  9. Collagen gel containing 3T3 fibroblasts (dermal equivalent for raft culture)

    OpenAIRE

    sprotocols

    2014-01-01

    Author: Matt Lewis ### Ingredients for 6 x collagen matrices in a 6-well plate 1. Roughly 3x10e6 J2-3T3s (a fully confluent T75?) - 1.5mL 10x reconstitution buffer - 1.5mL 10x DMEM - 12mL rat tail type 1 collagen (>3.8mg/mL) - 10N NaOH - Glacial acetic acid (in case) ### Method 1. Pre-chill pipettes, keep collagen on ice - *The collagen solidifies above 8ºC* - Mix 1.5mL of 10x DMEM with 1.5mL of 10x reconstitution buffer, keep on ice. Count J2-3T3s...

  10. Collagen Gel Contraction by Fibroblasts: The Role of Myosin 2 and Gravity Effects

    Science.gov (United States)

    Johnson-Wint, Barbara P.; Malouvier, Alexandre; Holton, Emily

    1996-01-01

    Several lines of evidence suggest that collagen organization by connective tissue cells is sensitive to force. For instance, in flight experiments on rats the collagen fibrils which were produced under weightlessness and which were immediately next to the tendon fibroblasts were shown to be oriented randomly around the cells while the older fibrils right next to these and which were produced under 1 G, were highly organized.

  11. Collagen gel contraction as a measure of fibroblast function in an animal model of subsynovial connective tissue fibrosis.

    Science.gov (United States)

    Yang, Tai-Hua; Thoreson, Andrew R; Gingery, Anne; Larson, Dirk R; Passe, Sandra M; An, Kai-Nan; Zhao, Chunfeng; Amadio, Peter C

    2015-05-01

    Carpal tunnel syndrome (CTS) is a peripheral neuropathy characterized by non-inflammatory fibrosis of the subsynovial connective tissues (SSCT). A rabbit model of CTS was developed to test the hypothesis that SSCT fibrosis causes the neuropathy. We used a cell-seeded collagen-gel contraction model to characterize the fibrosis in this model in terms of cellular mechanics, specifically to compare the ability of SSCT cells from the rabbit model and normal rabbits to contract the gel, and to assess the effect of transforming growth factor-β1,which is upregulated in CTS, on these cells. SSCT fibrosis was induced in six retired breeder female rabbits which were sacrificed at 6 weeks (N = 3) and 12 weeks (n = 3). An additional two rabbits served as controls. SSCT was harvested according to a standard protocol. Gels seeded with SSCT cells from rabbits sacrificed at 6 weeks had significantly higher tensile strength (p < 0.001) and Young's modulus (p < 0.001) than gels seeded with cells from rabbits sacrificed at 12 weeks or control animals. TGF-β1 significantly increased the decay time constant (p < 0.001), tensile strength (p < 0.001), and Young's modulus (p < 0.001) regardless of the cell source. This model may be useful in screening therapeutic agents that may block SSCT fibrosis, identifying possible candidates for CTS treatment. PMID:25626430

  12. Comprehensive analysis of collagen metabolism in vitro using [4(3H)]/[14C]proline dual-labeling and polyacrylamide gel electrophoresis

    International Nuclear Information System (INIS)

    A method to simultaneously quantify the production, secretion, and prolyl hydroxylation of individual types of collagen in cell culture samples has been developed. Collagens were biosynthetically labeled with a mixture of [14C]proline and [4-3H]proline. The labeled collagens were isolated and their component alpha-chains were resolved by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Migration of the collagen alpha-chains was determined by fluorography, and radioactivity in excised bands was quantified by scintillation counting. [14C]Proline labeling of collagen chains was used to determine the production and secretion of the different types of collagen. The ratios of the component alpha 1(I) and alpha 2(I) chains of type I collagen were also determined in this way. Prolyl hydroxylation of collagen alpha-chains was readily determined by measurement of their 3H:14C ratios. Following 4-hydroxylation, 3H was lost from the [4-3H]proline with alteration of this ratio. This dual-labeling method is suitable for the comprehensive analysis of collagen metabolism in multiple samples

  13. Cutaneous Wound Healing After Treatment with Plant-Derived Human Recombinant Collagen Flowable Gel

    OpenAIRE

    Shilo, Shani; Roth, Sigal; Amzel, Tal; Harel-Adar, Tamar; Tamir, Eran; Grynspan, Frida; Shoseyov, Oded

    2013-01-01

    Chronic wounds, particularly diabetic ulcers, represent a main public health concern with significant costs. Ulcers often harbor an additional obstacle in the form of tunneled or undermined wounds, requiring treatments that can reach the entire wound tunnel, because bioengineered grafts are typically available only in a sheet form. While collagen is considered a suitable biodegradable scaffold material, it is usually extracted from animal and human cadaveric sources, and accompanied by potent...

  14. Growth Induction and Low-Oxygen Apoptosis Inhibition of Human CD34+ Progenitors in Collagen Gels

    Directory of Open Access Journals (Sweden)

    Daniele Avitabile

    2013-01-01

    Full Text Available Various reports have indicated low survival of injected progenitors into unfavorable environments such as the ischemic myocardium or lower limb tissues. This represents a major bottleneck in stem-cell-based cardiovascular regenerative medicine. Strategies to enhance survival of these cells in recipient tissues have been therefore sought to improve stem cell survival and ensure long-term engraftment. In the present contribution, we show that embedding human cord blood-derived CD34+ cells into a collagen I-based hydrogel containing cytokines is a suitable strategy to promote stem cell proliferation and protect these cells from anoxia-induced apoptosis.

  15. Sustained Delivery of Bioactive GDNF from Collagen and Alginate-Based Cell-Encapsulating Gel Promoted Photoreceptor Survival in an Inherited Retinal Degeneration Model.

    Science.gov (United States)

    Wong, Francisca S Y; Wong, Calvin C H; Chan, Barbara P; Lo, Amy C Y

    2016-01-01

    Encapsulated-cell therapy (ECT) is an attractive approach for continuously delivering freshly synthesized therapeutics to treat sight-threatening posterior eye diseases, circumventing repeated invasive intravitreal injections and improving local drug availability clinically. Composite collagen-alginate (CAC) scaffold contains an interpenetrating network that integrates the physical and biological merits of its constituents, including biocompatibility, mild gelling properties and availability. However, CAC ECT properties and performance in the eye are not well-understood. Previously, we reported a cultured 3D CAC system that supported the growth of GDNF-secreting HEK293 cells with sustainable GDNF delivery. Here, the system was further developed into an intravitreally injectable gel with 1x104 or 2x105 cells encapsulated in 2mg/ml type I collagen and 1% alginate. Gels with lower alginate concentration yielded higher initial cell viability but faster spheroid formation while increasing initial cell density encouraged cell growth. Continuous GDNF delivery was detected in culture and in healthy rat eyes for at least 14 days. The gels were well-tolerated with no host tissue attachment and contained living cell colonies. Most importantly, gel-implanted in dystrophic Royal College of Surgeons rat eyes for 28 days retained photoreceptors while those containing higher initial cell number yielded better photoreceptor survival. CAC ECT gels offers flexible system design and is a potential treatment option for posterior eye diseases. PMID:27441692

  16. Epithelial-mesenchymal transition stimulates human cancer cells to extend microtubule-based invasive protrusions and suppresses cell growth in collagen gel.

    Directory of Open Access Journals (Sweden)

    Jun Oyanagi

    Full Text Available Epithelial-mesenchymal transition (EMT is a crucial event in tumor invasion and metastasis. However, most of past EMT studies have been conducted in the conventional two-dimensional (2D monolayer culture. Therefore, it remains unclear what invasive phenotypes are acquired by EMT-induced cancer cells. To address this point, we attempted to characterize EMT cells in more physiological, three-dimensional (3D collagen gel culture. EMT was induced by treating three human carcinoma cell lines (A549, Panc-1 and MKN-1 with TGF-ß. The TGF-ß treatment stimulated these cells to overexpress the invasion markers laminin γ2 and MT1-MMP in 2D culture, in addition to the induction of well-known morphological change and EMT marker expression. EMT induction enhanced cell motility and adhesiveness to fibronectin and collagen in 2D culture. Although EMT cells showed comparable cell growth to control cells in 2D culture, their growth rates were extremely suppressed in soft agar and collagen gel cultures. Most characteristically, EMT-induced cancer cells commonly and markedly extended invasive protrusions in collagen gel. These protrusions were mainly supported by microtubules rather than actin cytoskeleton. Snail-introduced, stable EMT cells showed similar protrusions in 3D conditions without TGF-ß. Moreover, these protrusions were suppressed by colchicine or inhibitors of heat shock protein 90 (HSP-90 and protein phosphatase 2A. However, MMP inhibitors did not suppress the protrusion formation. These data suggest that EMT enhances tumor cell infiltration into interstitial stroma by extending microtubule-based protrusions and suppressing cell growth. The elevated cell adhesion to fibronectin and collagen and high cell motility also seem important for the tumor invasion.

  17. Alignment of Astrocytes Increases Neuronal Growth in Three-Dimensional Collagen Gels and Is Maintained Following Plastic Compression to Form a Spinal Cord Repair Conduit

    OpenAIRE

    East, Emma; de Oliveira, Daniela Blum; Golding, Jon P.; Phillips, James B.

    2010-01-01

    After injury to the spinal cord, reactive astrocytes form a glial scar consisting of highly ramified cell processes that constitute a major impediment to repair, partly due to their lack of orientation and guidance for regenerating axons. In some nonmammalian vertebrates, successful central nervous system regeneration is attributed to the alignment of reactive glia, which guide axons across the lesion site. Here, a three-dimensional mammalian cell-seeded collagen gel culture system was used t...

  18. Pichia pastoris as a cell factory for the secreted production of tunable collagen-inspired gel-forming proteins

    NARCIS (Netherlands)

    Silva, da C.I.F.

    2013-01-01

    It is the ability to establish triple helices and assemble into supramolecular structures, which makes collagen and its denature counterpart, gelatine, interesting for the food and biomedical industry. Collagen and gelatine array of applications is quite extensive, ranging from gelling agents in foo

  19. The influence of particle size and static magnetic fields on the uptake of magnetic nanoparticles into three dimensional cell-seeded collagen gel cultures.

    Science.gov (United States)

    Lewis, Emily E L; Child, Hannah W; Hursthouse, Andrew; Stirling, David; McCully, Mark; Paterson, David; Mullin, Margaret; Berry, Catherine C

    2015-08-01

    Over recent decades there has been and continues to be major advances in the imaging, diagnosis and potential treatment of medical conditions, by the use of magnetic nanoparticles. However, to date the majority of cell delivery studies employ a traditional 2D monolayer culture. This article aims to determine the ability of various sized magnetic nanoparticles to penetrate and travel through a cell seeded collagen gel model, in the presence or absence of a magnetic field. Three different sized (100, 200, and 500 nm) nanoparticles were employed in the study. The results showed cell viability was unaffected by the presence of nanoparticles over a 24-h test period. The initial uptake of the 100 nm nanoparticle into the collagen gel structure was superior compared to the larger sized nanoparticles under the influence of a magnetic field and incubated for 24 h. Interestingly, it was the 200 nm nanoparticles, which proved to penetrate the gel furthest, under the influence of a magnetic field, during the initial culture stage after 1-h incubation. PMID:25358626

  20. Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration

    OpenAIRE

    Sirivisoot, Sirinrath; Pareta, Rajesh; Harrison, Benjamin S.

    2014-01-01

    It has been established that nerves and skeletal muscles respond and communicate via electrical signals. In regenerative medicine, there is current emphasis on using conductive nanomaterials to enhance electrical conduction through tissue-engineered scaffolds to increase cell differentiation and tissue regeneration. We investigated the role of chemically synthesized polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT) conductive polymer nanofibres for conductive gels. To mimic a na...

  1. Collagen biosynthesis.

    OpenAIRE

    Last, J A; Reiser, K M

    1984-01-01

    Collagen is the major structural protein of the lung. At least five genetically distinct collagen types have been identified in lung tissue. However, the precise role of collagen in nonrespiratory lung function is not well understood, in part because of the difficulties inherent in studying lung collagen, regardless of the type of assay used. A major problem is the insolubility of lung collagen; generally less than 20% of total lung collagen can be solubilized as intact chains, even with hars...

  2. CARS and SHG microscopy to follow the collagen production in living human corneal fibroblasts and mesenchymal stem cells in fibrin gel 3D cultures

    CERN Document Server

    Mortati, Leonardo; Sassi, Maria Paola

    2011-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is combined with second harmonic generation (SHG) technique in order to follow the early stage of stem cell differentiation within a 3D scaffold. CARS microscopy can detect lipid membranes and droplet compartments in living cells and SHG microscopy enables a strong imaging contrast for molecules with a non-centrosymmetric ordered structure like collagen. One of the first evidence of hMSCs differentiation is the formation of an extracellular matrix (ECM) where the collagen protein is its main component. This work demonstrated the multimodal CARS and SHG microscopy as a powerful non-invasive label free technique to investigate the collagen production dynamic in living cell 3D cultures. Its ability to image the cell morphology and the produced collagen distribution on a long term (4 weeks) experiment allowed to obtain important information about the cell-scaffold interaction and the ECM production. The very low limit reached in detecting collagen has permit...

  3. Type I Collagen Structure Regulates Cell Morphology and EGF Signaling in Primary Rat Hepatocytes through cAMP-dependent Protein Kinase A

    OpenAIRE

    Fassett, John; Tobolt, Diane; Hansen, Linda K.

    2006-01-01

    Adhesion to type 1 collagen elicits different responses dependent on whether the collagen is in fibrillar (gel) or monomeric form (film). Hepatocytes adherent to collagen film spread and proliferate, whereas those adherent to collagen gel remain rounded and growth arrested. To explore the role of potential intracellular inhibitory signals responsible for collagen gel-mediated growth arrest, cAMP-dependent protein kinase A (PKA) was examined in hepatocytes adherent to collagen film or gel. PKA...

  4. Preparation of Collagen-Coated Gels that Maximize In Vitro Myogenesis of Stem Cells by Matching the Lateral Elasticity of In Vivo Muscle

    OpenAIRE

    Chaudhuri, Tathagata; Rehfeldt, Florian; Sweeney, H. Lee; Discher, Dennis E.

    2010-01-01

    The physical nature of a cell’s microenvironment – including the elasticity of the surrounding tissue – appears to exert a significant influence on cell morphology, cytoskeleton, and gene expression. We have previously shown that committed muscle cells will develop sarcomeric striations of skeletal muscle myosin II only when the cells are grown on a compliant gel that closely matches the passive compliance of skeletal muscle. We have more recently shown with the same types of elastic gels tha...

  5. Collagenous sprue

    DEFF Research Database (Denmark)

    Soendergaard, Christoffer; Riis, Lene Buhl; Nielsen, Ole Haagen

    2014-01-01

    Collagenous sprue is a rare clinicopathological condition of the small bowel. It is characterised by abnormal subepithelial collagen deposition and is typically associated with malabsorption, diarrhoea and weight loss. The clinical features of collagenous sprue often resemble those of coeliac...... disease and together with frequent histological findings like mucosal thinning and intraepithelial lymphocytosis the diagnosis may be hard to reach without awareness of this condition. While coeliac disease is treated using gluten restriction, collagenous sprue is, however, not improved by this...... intervention. In cases of diet-refractory 'coeliac disease' it is therefore essential to consider collagenous sprue to initiate treatment at an early stage to prevent the fibrotic progression. Here, we report a case of a 78-year-old man with collagenous sprue and present the clinical and histological...

  6. Fibrillogenesis in Continuously Spun Synthetic Collagen Fiber

    OpenAIRE

    Caves, Jeffrey M.; Kumar, Vivek A.; Wen, Jing; Cui, Wanxing; Martinez, Adam; Apkarian, Robert; Coats, Julie E.; Berland, Keith; Chaikof, Elliot L.

    2010-01-01

    The universal structural role of collagen fiber networks has motivated the development of collagen gels, films, coatings, injectables, and other formulations. However, reported synthetic collagen fiber fabrication schemes have either culminated in short, discontinuous fiber segments at unsuitably low production rates, or have incompletely replicated the internal fibrillar structure that dictates fiber mechanical and biological properties. We report a continuous extrusion system with an off-li...

  7. Studies on fish scale collagen of Pacific saury (Cololabis saira).

    Science.gov (United States)

    Mori, Hideki; Tone, Yurie; Shimizu, Kouske; Zikihara, Kazunori; Tokutomi, Satoru; Ida, Tomoaki; Ihara, Hideshi; Hara, Masayuki

    2013-01-01

    We purified and characterized Type I collagen from the scales of the Pacific saury (Cololabis saira) and compared it with collagen from other organisms. Subunit composition of C. saira collagen (2α1+α2) was similar to that of red sea bream (Pagrus major) and porcine collagen. C. saira collagen did not form a firm gel after neutralization of pH in solution. The temperature of denaturation (24-25 °C) of C. saira collagen was slightly lower than that of P. major collagen (26-27 °C). The contents of proline and hydroxyproline were lower in red sea bream and Pacific saury collagen than in porcine collagen. Circular dichroism spectra and Fourier-transformed infrared spectra showed that heat denaturation caused unfolding of the triple helices in all three collagens. PMID:25428059

  8. Collagen Content and Electrophoretic Analysis of Type I Collagen in Breast Skin of Heterozygous Naked Neck and Normally Feathered Commercial Broilers

    OpenAIRE

    BİLGEN, Güldehen

    1999-01-01

    This study was conducted to evaluate the breast skin collagen content and electrophoretic analyses of type I collagen in heterozygous naked neck and normally feathered commercial chicks. A total of 72 birds from each genotype were randomly selected at 7 weeks and slaughtered. Breast skin was separated from each carcass and was analysed for collagen content and gel electrophopresis of type I collagen was performed. Males had significantly higher level of skin collagen content than females i...

  9. Chemical and biological evaluation of Egyptian Nile Tilapia (Oreochromis niloticas) fish scale collagen.

    Science.gov (United States)

    El-Rashidy, Aiah A; Gad, Ahmed; Abu-Hussein, Abd El-Hay G; Habib, Shaymaa I; Badr, Nadia A; Hashem, Azza A

    2015-08-01

    Collagen is considered to be one of the most useful biomaterials with different medical applications. However, collagen properties differ from one source to another. The aim of this study was to extract, purify, characterize and perform preliminary biological evaluation of type I collagen from scales of Egyptian Nile Tilapia. Pepsin-solubilized collagen (PSC) was successfully prepared from Nile Tilapia fish scale waste. Lyophilized collagen was dissolved in dilute HCl to form acidic collagen solutions (ACS) which was neutralized to form gel. To confirm the biocompatibility of the produced gel, baby hamster kidney (BHK-21) fibroblast cells were seeded onto a 3D collagen gel (0.3% and 0.5%, w/v). The results of an SDS-PAGE test showed that the extracted collagens were type I collagen, with α chain composition of (α1)2α2. Thermal analysis showed that the denaturation temperature was 32 °C. X-ray diffraction (XRD) analysis and Fourier-transform infrared spectra (FTIR) showed that the extracted collagen had a triple helix structure. Active proliferation of BHK-21 cells with no signs of toxicity was evident with both collagen gel concentrations tested. The results show that Nile Tilapia scales can be an effective source of collagen extraction that could be used as a potential biomaterial in biomedical applications. PMID:26026980

  10. Synthesis of type III collagen by fibroblasts from the embryonic chick cornea

    OpenAIRE

    1980-01-01

    Synthesis of collagen types I, II, III, and IV in cells from the embryonic chick cornea was studied using specific antibodies and immunofluorescence. Synthesis of radioactively labeled collagen types I and III was followed by fluorographic detection of cyanogen bromide peptides on polyacrylamide slab gels and by carboxymethylcellulose chromatography followed by disc gel electrophoresis. Type III collagen had been detected previously by indirect immunofluorescence in the corneal epithelial cel...

  11. Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase.

    OpenAIRE

    Heck, L W; Morihara, K; McRae, W B; Miller, E J

    1986-01-01

    Purified Pseudomonas aeruginosa elastase cleaved human type III and IV collagens with the formation of specific cleavage products. Furthermore, type I collagen appeared to be slowly cleaved by both P. aeruginosa elastase and alkaline protease. These cleavage fragments from type III and IV collagens were separated from the intact collagen chains by SDS polyacrylamide gradient gel electrophoresis run under reducing conditions, and they were detected by their characteristic Coomassie blue staini...

  12. Collagen vascular disease

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001223.htm Collagen vascular disease To use the sharing features on this page, ... were previously said to have "connective tissue" or "collagen vascular" disease. We now have names for many of many ...

  13. Proximal collagenous gastroenteritides:

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; Riis, Lene Buhl; Danese, Silvio;

    2014-01-01

    AIM: While collagenous colitis represents the most common form of the collagenous gastroenteritides, the collagenous entities affecting the proximal part of the gastrointestinal tract are much less recognized and possibly overlooked. The aim was to summarize the latest information through a syste...

  14. Complications of collagenous colitis

    Institute of Scientific and Technical Information of China (English)

    Hugh James Freeman

    2008-01-01

    Microscopic forms of colitis have been described, including collagenous colitis. This disorder generally has an apparently benign clinical course. However, a number of gastric and intestinal complications, possibly coincidental, may develop with collagenous colitis. Distinctive inflammatory disorders of the gastric mucosa have been described, including lymphocytic gastritis and collagenous gastritis. Celiac disease and collagenous sprue (or collagenous enteritis) may occur. Colonic ulceration has been associated with use of nonsteroidal anti-inflammatory drugs, while other forms of inflammatory bowel disease, including ulcerative colitis and Crohn's disease, may evolve from collagenous colitis. Submucosal "dissection", colonic fractures or mucosal tears and perforation from air insufflation during colonoscopy may occur and has been hypothesized to be due to compromise of the colonic wall from submucosal collagen deposition. Similar changes may result from increased intraluminal pressure during barium enema contrast studies. Finally, malignant disorders have also been reported, including carcinoma and lymphoproliferative disease.

  15. Endocytic collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe;

    2012-01-01

    Fibrosis of the liver and its end-stage, cirrhosis, represent major health problems worldwide. In these fibrotic conditions, activated fibroblasts and hepatic stellate cells display a net deposition of collagen. This collagen deposition is a major factor leading to liver dysfunction, thus making it...... crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked...... up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional...

  16. ISOCT study of collagen crosslinking of collagen in cancer models (Conference Presentation)

    Science.gov (United States)

    Spicer, Graham; Young, Scott T.; Yi, Ji; Shea, Lonnie D.; Backman, Vadim

    2016-03-01

    The role of extracellular matrix modification and signaling in cancer progression is an increasingly recognized avenue for the progression of the disease. Previous study of field effect carcinogenesis with Inverse Spectroscopic Optical Coherence Tomography (ISOCT) has revealed pronounced changes in the nanoscale-sensitive mass fractal dimension D measured from field effect tissue when compared to healthy tissue. However, the origin of this difference in tissue ultrastructure in field effect carcinogenesis has remained poorly understood. Here, we present findings supporting the idea that enzymatic crosslinking of the extracellular matrix is an effect that presents at the earliest stages of carcinogenesis. We use a model of collagen gel with crosslinking induced by lysyl oxidase (LOXL4) to recapitulate the difference in D previously reported from healthy and cancerous tissue biopsies. Furthermore, STORM imaging of this collagen gel model verifies the morphologic effects of enzymatic crosslinking at length scales as small as 40 nm, close to the previously reported lower length scale sensitivity threshold of 35 nm for ISOCT. Analysis of the autocorrelation function from STORM images of collagen gels and subsequent fitting to the Whittle-Matérn correlation function shows a similar effect of LOXL4 on D from collagen measured with ISOCT and STORM. We extend this to mass spectrometric study of tissue to directly measure concentrations of collagen crosslink residues. The validation of ISOCT as a viable tool for non-invasive rapid quantification of collagen ultrastructure lends it to study other physiological phenomena involving ECM restructuring such as atherosclerotic plaque screening or cervical ripening during pregnancy.

  17. Collagen-derived markers of bone metabolism in osteogenesis imperfecta

    DEFF Research Database (Denmark)

    Lund, A M; Hansen, M; Kollerup, Gina Birgitte;

    1998-01-01

    Markers of bone formation [C-terminal and N-terminal propeptides of procollagen I (PICP, PINP), osteocalcin and alkaline phosphatase] and bone resorption [C-terminal cross-linked telopeptide of collagen I (ICTP) and hydroxypyridinium cross-links, pyridinoline (Pyr) and deoxypyridinoline (Dpyr......)] were measured in 78 osteogenesis imperfecta (OI) patients to investigate bone metabolism in vivo and relate marker concentrations to phenotype and in vitro collagen I defects, as shown by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). PICP and PINP were generally low, and the...... serum levels were lower in all children and adults with mild OI and a quantitative collagen defect than in patients with severe OI and a qualitative collagen I defect. ICTP, Pyr and Dpyr were generally normal or reduced, but elevated in severely affected adults with a qualitative collagen I defect. The...

  18. Photo-active collagen systems with controlled triple helix architecture

    CERN Document Server

    Tronci, Giuseppe; Wood, David J

    2013-01-01

    The design of photo-active collagen systems is presented as a basis for establishing biomimetic materials with varied network architecture and programmable macroscopic properties. Following in-house isolation of type I collagen, reaction with vinyl-bearing compounds of varied backbone rigidity, i.e. 4-vinylbenzyl chloride (4VBC) and glycidyl methacrylate (GMA), was carried out. TNBS colorimetric assay, 1H-NMR and ATR-FTIR confirmed covalent and tunable functionalization of collagen lysines. Depending on the type and extent of functionalization, controlled stability and thermal denaturation of triple helices were observed via circular dichroism (CD), whereby the hydrogen-bonding capability of introduced moieties was shown to play a major role. Full gel formation was observed following photo-activation of functionalized collagen solutions. The presence of a covalent network only slightly affected collagen triple helix conformation (as observed by WAXS and ATR-FTIR), confirming the structural organization of fun...

  19. COLLAGEN STRUCTURE AND STABILITY

    OpenAIRE

    Shoulders, Matthew D.; Raines, Ronald T.

    2009-01-01

    Collagen is the most abundant protein in animals. This fibrous, structural protein comprises a right-handed bundle of three parallel, left-handed polyproline II-type helices. Much progress has been made in elucidating the structure of collagen triple helices and the physicochemical basis for their stability. New evidence demonstrates that stereoelectronic effects and preorganization play a key role in that stability. The fibrillar structure of type I collagen–the prototypical collagen fibril–...

  20. Collagen and gelatin.

    Science.gov (United States)

    Liu, Dasong; Nikoo, Mehdi; Boran, Gökhan; Zhou, Peng; Regenstein, Joe M

    2015-01-01

    Collagen and gelatin have been widely used in the food, pharmaceutical, and cosmetic industries due to their excellent biocompatibility, easy biodegradability, and weak antigenicity. Fish collagen and gelatin are of renewed interest, owing to the safety and religious concerns of their mammalian counterparts. The structure of collagen has been studied using various modern technologies, and interpretation of the raw data should be done with caution. The structure of collagen may vary with sources and seasons, which may affect its applications and optimal extraction conditions. Numerous studies have investigated the bioactivities and biological effects of collagen, gelatin, and their hydrolysis peptides, using both in vitro and in vivo assay models. In addition to their established nutritional value as a protein source, collagen and collagen-derived products may exert various potential biological activities on cells in the extracellular matrix through the corresponding food-derived peptides after ingestion, and this might justify their applications in dietary supplements and pharmaceutical preparations. Moreover, an increasing number of novel applications have been found for collagen and gelatin. Therefore, this review covers the current understanding of the structure, bioactivities, and biological effects of collagen, gelatin, and gelatin hydrolysates as well as their most recent applications. PMID:25884286

  1. Effect of cold storage on collagen-based hydrogels for the three-dimensional culture of adipose-derived stem cells

    International Nuclear Information System (INIS)

    Collagen gels have been extensively used as three-dimensional (3D) cell culture systems. To enhance their mechanical properties, the manufacture of collagen-based gels with agarose has been proposed. However, little is known about the stability of these gels under cold storage conditions. The consequences of cold storage on biological tissues for clinical applications are known to be significant; yet, they have not been considered on hydrogels used for in vitro experiments. This work studies the effect of extended cold storage on the stability of collagen and collagen-agarose hydrogels using rheometry and scanning electron microscopy. In addition, cell-matrix interactions of adipose-derived stem cells (ADSC) have been studied using these gels. Results show that both the storage modulus (G′) and loss modulus (G″) of pure collagen gels gradually decrease with extended cold storage along the 30 days of the study, while G′ and G″ increase in collagen-agarose gels under the same conditions. Moreover, significant changes in both moduli of collagen-agarose gels were only found after 30 days of cold storage, while in the case of collagen gels significant changes were already detected after 7 days. Finally, a reduction in the ability of ADSC to remodel the gel after prolonged cold storage was observed. To the best of our knowledge, this is the first work proving that cold storage of hydrogels prior to cell culture might have a significant impact on their mechanical properties and cell–matrix interactions. (paper)

  2. Type IV collagen

    International Nuclear Information System (INIS)

    Type IV collagen is a highly specialized form of collagen found only in basement membranes. It is one of the major components of all basement membranes together with the glycoproteins laminin, nidogen, entactin, and heparan sulfate proteoglycan. Basement membranes are ubiquitous, thin, sheetlike structures found frequently under epithelial and endothelial cell linings but also surrounding many cell types such as muscle, nerve, and fat. They function as a selective filtration barrier for macromolecules, for example, in the kidney, blood--brain barrier, and placenta, but also separate extracellular matrix from epithelial or endothelial cell layers as in gut, skin, cornea, lung, and blood vessels. Indications that basement membranes contained a collagen came from X-ray studies of intact basement membranes as early as 1951. Later, hydroxyproline and then hydroxylysine were detected in amino acid compositions of whole basement membranes. Because of the insolubility of basement membrane components, attempts were made to solubilize the collagen using Pronase, a method that had proved useful for type I collagen. The material that was isolated and characterized was clearly different from the other interstitial collagens known at that time, i.e., α1(I), α1(II), and α1(III). Basement membrane collagen was therefore designated type IV collagen

  3. Three Dimensional Collagen Scaffold Promotes Intrinsic Vascularisation for Tissue Engineering Applications

    Science.gov (United States)

    Chan, Elsa C.; Kuo, Shyh-Ming; Kong, Anne M.; Morrison, Wayne A.; Dusting, Gregory J.; Mitchell, Geraldine M.

    2016-01-01

    Here, we describe a porous 3-dimensional collagen scaffold material that supports capillary formation in vitro, and promotes vascularization when implanted in vivo. Collagen scaffolds were synthesized from type I bovine collagen and have a uniform pore size of 80 μm. In vitro, scaffolds seeded with primary human microvascular endothelial cells suspended in human fibrin gel formed CD31 positive capillary-like structures with clear lumens. In vivo, after subcutaneous implantation in mice, cell-free collagen scaffolds were vascularized by host neovessels, whilst a gradual degradation of the scaffold material occurred over 8 weeks. Collagen scaffolds, impregnated with human fibrinogen gel, were implanted subcutaneously inside a chamber enclosing the femoral vessels in rats. Angiogenic sprouts from the femoral vessels invaded throughout the scaffolds and these degraded completely after 4 weeks. Vascular volume of the resulting constructs was greater than the vascular volume of constructs from chambers implanted with fibrinogen gel alone (42.7±5.0 μL in collagen scaffold vs 22.5±2.3 μL in fibrinogen gel alone; p<0.05, n = 7). In the same model, collagen scaffolds seeded with human adipose-derived stem cells (ASCs) produced greater increases in vascular volume than did cell-free collagen scaffolds (42.9±4.0 μL in collagen scaffold with human ASCs vs 25.7±1.9 μL in collagen scaffold alone; p<0.05, n = 4). In summary, these collagen scaffolds are biocompatible and could be used to grow more robust vascularized tissue engineering grafts with improved the survival of implanted cells. Such scaffolds could also be used as an assay model for studies on angiogenesis, 3-dimensional cell culture, and delivery of growth factors and cells in vivo. PMID:26900837

  4. Biochemical and biophysical characterization of collagens of marine sponge, Ircinia fusca (Porifera: Demospongiae: Irciniidae).

    Science.gov (United States)

    Pallela, Ramjee; Bojja, Sreedhar; Janapala, Venkateswara Rao

    2011-07-01

    Collagens were isolated and partially characterized from the marine demosponge, Ircinia fusca from Gulf of Mannar (GoM), India, with an aim to develop potentially applicable collagens from unused and under-used resources. The yield of insoluble, salt soluble and acid soluble forms of collagens was 31.71 ± 1.59, 20.69 ± 1.03, and 17.38 ± 0.87 mg/g dry weight, respectively. Trichrome staining, Scanning & Transmission Electron microscopic (SEM & TEM) studies confirmed the presence of collagen in the isolated, terminally globular irciniid filaments. The partially purified (gel filtration chromatography), non-fibrillar collagens appeared as basement type collagenous sheets under light microscopy whereas the purified fibrillar collagens appeared as fibrils with a repeated band periodicity of 67 nm under Atomic Force Microscope (AFM). The non-fibrillar and fibrillar collagens were seen to have affinity for anti-collagen type IV and type I antibodies raised against human collagens, respectively. The macromolecules, i.e., total protein, carbohydrate and lipid contents within the tissues were also quantified. The present information on the three characteristic irciniid collagens (filamentous, fibrillar and non-fibrillar) could assist the future attempts to unravel the therapeutically important, safer collagens from marine sponges for their use in pharmaceutical and cosmeceutical industries. PMID:21501629

  5. Biological Safety of Fish (Tilapia Collagen

    Directory of Open Access Journals (Sweden)

    Kohei Yamamoto

    2014-01-01

    Full Text Available Marine collagen derived from fish scales, skin, and bone has been widely investigated for application as a scaffold and carrier due to its bioactive properties, including excellent biocompatibility, low antigenicity, and high biodegradability and cell growth potential. Fish type I collagen is an effective material as a biodegradable scaffold or spacer replicating the natural extracellular matrix, which serves to spatially organize cells, providing them with environmental signals and directing site-specific cellular regulation. This study was conducted to confirm the safety of fish (tilapia atelocollagen for use in clinical application. We performed in vitro and in vivo biological studies of medical materials to investigate the safety of fish collagen. The extract of fish collagen gel was examined to clarify its sterility. All present sterility tests concerning bacteria and viruses (including endotoxin yielded negative results, and all evaluations of cell toxicity, sensitization, chromosomal aberrations, intracutaneous reactions, acute systemic toxicity, pyrogenic reactions, and hemolysis were negative according to the criteria of the ISO and the http://dx.doi.org/10.13039/501100003478 Ministry of Health, Labour and Welfare. The present study demonstrated that atelocollagen prepared from tilapia is a promising biomaterial for use as a scaffold in regenerative medicine.

  6. Biological safety of fish (tilapia) collagen.

    Science.gov (United States)

    Yamamoto, Kohei; Igawa, Kazunari; Sugimoto, Kouji; Yoshizawa, Yuu; Yanagiguchi, Kajiro; Ikeda, Takeshi; Yamada, Shizuka; Hayashi, Yoshihiko

    2014-01-01

    Marine collagen derived from fish scales, skin, and bone has been widely investigated for application as a scaffold and carrier due to its bioactive properties, including excellent biocompatibility, low antigenicity, and high biodegradability and cell growth potential. Fish type I collagen is an effective material as a biodegradable scaffold or spacer replicating the natural extracellular matrix, which serves to spatially organize cells, providing them with environmental signals and directing site-specific cellular regulation. This study was conducted to confirm the safety of fish (tilapia) atelocollagen for use in clinical application. We performed in vitro and in vivo biological studies of medical materials to investigate the safety of fish collagen. The extract of fish collagen gel was examined to clarify its sterility. All present sterility tests concerning bacteria and viruses (including endotoxin) yielded negative results, and all evaluations of cell toxicity, sensitization, chromosomal aberrations, intracutaneous reactions, acute systemic toxicity, pyrogenic reactions, and hemolysis were negative according to the criteria of the ISO and the Ministry of Health, Labour and Welfare of Japan. The present study demonstrated that atelocollagen prepared from tilapia is a promising biomaterial for use as a scaffold in regenerative medicine. PMID:24809058

  7. Breakdown of cell-collagen networks through collagen remodeling

    OpenAIRE

    Iordan, Andreea; Duperray, Alain; Gérard, Anaïs; Grichine, Alexei; Verdier, Claude

    2010-01-01

    International audience Collagen model tissues are analyzed, which consist of cells embedded in a collagen matrix at different concentrations (of cells and collagen). Rheological properties are measured and complementary confocal microscopy analyses are carried out. An important feature is observed, corresponding to the breakdown of the collagen network (i.e. decrease in network elasticity) for high collagen concentrations, due to the presence of cells. Thanks to confocal microscopy, we sho...

  8. Platelet-collagen interaction: inhibition by a monoclonal antibody raised against collagen receptor

    International Nuclear Information System (INIS)

    The authors have previously reported that polyclonal antibody raised against the purified platelet collagen receptor cross reacted with glycoprotein IIb-IIIa complex of platelets. In order to study the receptor function further, the authors prepared a monoclonal antibody to the collagen receptor (65K). Platelet collagen receptor was purified as described previously by the authors. Mice were immunized by injection of purified 65K protein emulsified in complete Freund's adjuvant, and hybridomas were obtained from the fusion of spleen cells of immunized mice with myeloma cells (SP 2/0). The assay for antibody was performed with enzyme-linked immunosorbent assay. The hybridoma cells producing specific anti-65K protein were subcloned and the subcloned cells were injected into peritoneal cavity of Pristane-Primed mice. Immunoglobulin G(IgG) was isolated from ascitic fluids by an Affigel Blue chromatography. The Fab' fragments were isolated from papain digested IgG followed by an Affigel Blue chromatography. Immunoblot experiments using the monoclonal IgG of solubilized platelet membrane proteins following NaDodSO4-polyacrylamide gel electrophoresis showed that the monoclonal IgG reacted with the antigen specifically. It did not react with glycoprotein IIb-IIIa. The isolated IgG and Fab' fragments inhibited competitively the binding of radiolabelled α1(I) to washed platelets and soluble collagen- as well as fibrillar collagen-induced but not ADP-induced platelet aggregation. This indicates that collagen-induced platelet aggregation is mediated through interaction of collagen with 65K platelet receptor

  9. Platelet-collagen interaction: inhibition by a monoclonal antibody raised against collagen receptor

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, T.; Jin, A.; Kang, A.

    1986-05-01

    The authors have previously reported that polyclonal antibody raised against the purified platelet collagen receptor cross reacted with glycoprotein IIb-IIIa complex of platelets. In order to study the receptor function further, the authors prepared a monoclonal antibody to the collagen receptor (65K). Platelet collagen receptor was purified as described previously by the authors. Mice were immunized by injection of purified 65K protein emulsified in complete Freund's adjuvant, and hybridomas were obtained from the fusion of spleen cells of immunized mice with myeloma cells (SP 2/0). The assay for antibody was performed with enzyme-linked immunosorbent assay. The hybridoma cells producing specific anti-65K protein were subcloned and the subcloned cells were injected into peritoneal cavity of Pristane-Primed mice. Immunoglobulin G(IgG) was isolated from ascitic fluids by an Affigel Blue chromatography. The Fab' fragments were isolated from papain digested IgG followed by an Affigel Blue chromatography. Immunoblot experiments using the monoclonal IgG of solubilized platelet membrane proteins following NaDodSO/sub 4/-polyacrylamide gel electrophoresis showed that the monoclonal IgG reacted with the antigen specifically. It did not react with glycoprotein IIb-IIIa. The isolated IgG and Fab' fragments inhibited competitively the binding of radiolabelled ..cap alpha..1(I) to washed platelets and soluble collagen- as well as fibrillar collagen-induced but not ADP-induced platelet aggregation. This indicates that collagen-induced platelet aggregation is mediated through interaction of collagen with 65K platelet receptor.

  10. Biosynthesis of collagen by fibroblasts kept in culture

    International Nuclear Information System (INIS)

    The sinthesis of collagen is studied in fibroblasts of different origins with the purpose of obtaining an appropriate system for the study of its biosynthesis and processing. The percentage of collagen synthesis vary according to the fibroblast origin. Experiences are performed with fibroblasts kept in culture from: chicken - and guinea pig embryos, carragheenin - induced granulomas in adult guinea pig and from human skin. The collagen pattern synthesized after acetic acid - or saline extractions in the presence of inhibitors is also determined. This pattern is then assayed by poliacrilamide - 5% - SDS gel electrophoresis accompanied by fluorography. The importance of the cell culture system in the elucidation of collagen biosynthesis is pointed out. (M.A.)

  11. Collagenous Colitis and Spondylarthropathy

    OpenAIRE

    Kaouther Ben Abdelghani; Hana Sahli; Leila Souabni; Selma Chekili; Salwa Belhadj; Selma Kassab; Ahmed Laatar; Leith Zakraoui

    2012-01-01

    Collagenous colitis is a recent cause of chronic diarrhea. Cooccurrence with spondylarthropathy is rare. We describe two cases: one man and one woman of 33 and 20 years old were suffering from spondylarthropathy. They then developed collagenous colitis, 4 and 14 years after the onset of spondylarthropathy. The diagnosis was based on histological features. A sicca syndrome and vitiligo were observed with the female case. The presence of colitis leads to therapeutic problems. This association s...

  12. Update on collagenous sprue

    Institute of Scientific and Technical Information of China (English)

    Hugh; James; Freeman

    2010-01-01

    Collagenous sprue has traditionally been defined as a small intestinal mucosal disorder characterized by persistent diarrhea, severe malabsorption with multiple nutrient def iciencies and progressive weight loss. Pathologically, a severe to variably severe "flattened" mucosal biopsy lesion with distinctive sub-epithelial deposits in the lamina propria region is detected. Histochemical stains and ultrastructural studies have conf irmed that these deposits contain collagens. Often, an initial diagnosis of cel...

  13. Collagenous gastritis: Review

    Institute of Scientific and Technical Information of China (English)

    Kenya Kamimura; Masaaki Kobayashi; Yuichi Sato; Yutaka Aoyagi; Shuji Terai

    2015-01-01

    Collagenous gastritis is a rare disease characterizedby the subepithelial deposition of collagen bandsthicker than 10 μm and the infiltration of inflammatorymononuclear cells in the lamina propria. Collagenouscolitis and collagenous sprue have similar histologicalcharacteristics to collagenous gastritis and are thoughtto be part of the same disease entity. However, whilecollagenous colitis has become more common inthe field of gastroenterology, presenting with clinicalsymptoms of chronic diarrhea in older patients,collagenous gastritis is rare. Since the disease was firstreported in 1989, only 60 cases have been documentedin the English literature. No safe and effective treatmentshave been identified from randomized, controlled trials.Therefore, better understanding of the disease and thereporting of more cases will help to establish diagnosticcriteria and to develop therapeutic strategies. Therefore,here we review the clinical characteristics, endoscopicand histological findings, treatment, and clinical outcomesfrom case reports and case series published to date,and provide a summary of the latest information on thedisease. This information will contribute to improvedknowledge of collagenous gastritis so physicians canrecognize and correctly diagnose the disease, and willhelp to develop a standard therapeutic strategy forfuture clinical trials.

  14. Mechanical properties of collagen fibrils

    OpenAIRE

    Wenger, M. P. E.; Bozec, L.; Horton, M.A.; Mesquida, P

    2007-01-01

    The formation of collagen fibers from staggered subfibrils still lacks a universally accepted model. Determining the mechanical properties of single collagen fibrils ( diameter 50 - 200 nm) provides new insights into collagen structure. In this work, the reduced modulus of collagen was measured by nanoindentation using atomic force microscopy. For individual type 1 collagen fibrils from rat tail, the modulus was found to be in the range from 5 GPa to 11.5 GPa ( in air and at room temperature)...

  15. Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling.

    Science.gov (United States)

    Marelli, Benedetto; Le Nihouannen, Damien; Hacking, S Adam; Tran, Simon; Li, Jingjing; Murshed, Monzur; Doillon, Charles J; Ghezzi, Chiara E; Zhang, Yu Ling; Nazhat, Showan N; Barralet, Jake E

    2015-06-01

    Copper is becoming recognised as a key cation in a variety of biological processes. Copper chelation has been studied as a potential anti-angiogenic strategy for arresting tumour growth. Conversely the delivery of copper ions and complexes in vivo can elicit a pro-angiogenic effect. Previously we unexpectedly found that copper-stimulated intraperitoneal angiogenesis was accompanied by collagen deposition. Here, in hard tissue, not only was healing accelerated by copper, but again enhanced deposition of collagen was detected at 2 weeks. Experiments with reconstituted collagen showed that addition of copper ions post-fibrillogenesis rendered plastically-compressed gels resistant to collagenases, enhanced their mechanical properties and increased the denaturation temperature of the protein. Unexpectedly, this apparently interfibrillar crosslinking was not affected by addition of glucose or ascorbic acid, which are required for crosslinking by advanced glycation end products (AGEs). Fibroblasts cultured on copper-crosslinked gels did not proliferate, whereas those cultured with an equivalent quantity of copper on either tissue culture plastic or collagen showed no effect compared with controls. Although non-proliferative, fibroblasts grown on copper-cross-linked collagen could migrate, remained metabolically active for at least 14 days and displayed a 6-fold increase in Mmps 1 and 3 mRNA expression compared with copper-free controls. The ability of copper ions to crosslink collagen fibrils during densification and independently of AGEs or Fenton type reactions is previously unreported. The effect on MMP susceptibility of collagen and the dramatic change in cell behaviour on this crosslinked ECM may contribute to shedding some light on unexplained phenomena as the apparent benefit of copper complexation in fibrotic disorders or the enhanced collagen deposition in response to localised copper delivery. PMID:25907046

  16. Increasing extracellular matrix collagen level and MMP activity induces cyst development in polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    Liu Bin

    2012-09-01

    Full Text Available Abstract Background Polycystic Kidney Disease (PKD kidneys exhibit increased extracellular matrix (ECM collagen expression and metalloproteinases (MMPs activity. We investigated the role of these increases on cystic disease progression in PKD kidneys. Methods We examined the role of type I collagen (collagen I and membrane bound type 1 MMP (MT1-MMP on cyst development using both in vitro 3 dimensional (3D collagen gel culture and in vivo PCK rat model of PKD. Results We found that collagen concentration is critical in controlling the morphogenesis of MDCK cells cultured in 3D gels. MDCK cells did not form 3D structures at collagen I concentrations lower than 1 mg/ml but began forming tubules when the concentration reaches 1 mg/ml. Significantly, these cells began to form cyst when collagen I concentration reached to 1.2 mg/ml, and the ratios of cyst to tubule structures increased as the collagen I concentration increased. These cells exclusively formed cyst structures at a collagen I concentration of 1.8 mg/ml or higher. Overexpression of MT1-MMP in MDCK cells significantly induced cyst growth in 3D collagen gel culture. Conversely, inhibition of MMPs activity with doxycycline, a FDA approved pan-MMPs inhibitor, dramatically slowed cyst growth. More importantly, the treatment of PCK rats with doxycycline significantly decreased renal tubule cell proliferation and markedly inhibited the cystic disease progression. Conclusions Our data suggest that increased collagen expression and MMP activity in PKD kidneys may induce cyst formation and expansion. Our findings also suggest that MMPs may serve as a therapeutic target for the treatment of human PKD.

  17. New hydrogels based on maleilated collagen with potential applications in tissue engineering

    International Nuclear Information System (INIS)

    New hydrogels based on maleic anhydride (MA) modified collagen were prepared with the aim of overcoming the high degradation rate displayed by collagen that is not otherwise chemically crosslinked. Semi-interpenetrated matrices were obtained by free radical polymerization of maleilated collagen (CM) and 2-hydroxyethyl methacrylate (HEMA) in the presence of ammonium persulfate (APS) and N,N,N′,N′-tetramethylethylenediamine (TEMED) as initiating system. The resulting matrices (CMH) had a sharp decrease in degradation, when compared to pure collagen. FTIR and H1 NMR spectroscopies were used to confirm the incorporation of MA on the collagen peptide chains. The final composition of CMH was found to be strongly dependent by the concentration of maleilated collagen. The morphology of the hydrogels was studied by Scanning electron microscopy (SEM) and the macro-gel structure was confirmed. Water uptake of the synthetised hydrogels is influenced by both composition and the porosity of the matrices.

  18. New hydrogels based on maleilated collagen with potential applications in tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Potorac, Simona; Popa, Marcel [' Gheorghe Asachi' Technical University, Faculty of Chemical Engineering and Environmental Protection, Department of Natural and Synthetic Polymers, 71 Dimitrie Mangeron, 700050 Iasi (Romania); Maier, Vasilica [' Gheorghe Asachi' Technical University, Faculty of Textile, Leather and Industrial Management, Department of Chemical Technology of Leather and Substitutes, 71 Dimitrie Mangeron, 700050, Iasi (Romania); Lisa, Gabriela [' Gheorghe Asachi' Technical University, Faculty of Chemical Engineering and Environmental Protection, Department of Natural and Synthetic Polymers, 71 Dimitrie Mangeron, 700050 Iasi (Romania); Verestiuc, Liliana, E-mail: liliana.verestiuc@bioinginerie.ro [' Gr.T.Popa' University of Medicine and Pharmacy, Faculty of Medical Bioengineering, Department of Biological Sciences, 9-13 Kogalniceanu Street, 700454, Iasi (Romania)

    2012-02-01

    New hydrogels based on maleic anhydride (MA) modified collagen were prepared with the aim of overcoming the high degradation rate displayed by collagen that is not otherwise chemically crosslinked. Semi-interpenetrated matrices were obtained by free radical polymerization of maleilated collagen (CM) and 2-hydroxyethyl methacrylate (HEMA) in the presence of ammonium persulfate (APS) and N,N,N Prime ,N Prime -tetramethylethylenediamine (TEMED) as initiating system. The resulting matrices (CMH) had a sharp decrease in degradation, when compared to pure collagen. FTIR and H{sup 1} NMR spectroscopies were used to confirm the incorporation of MA on the collagen peptide chains. The final composition of CMH was found to be strongly dependent by the concentration of maleilated collagen. The morphology of the hydrogels was studied by Scanning electron microscopy (SEM) and the macro-gel structure was confirmed. Water uptake of the synthetised hydrogels is influenced by both composition and the porosity of the matrices.

  19. Collagen in organ development

    Science.gov (United States)

    Hardman, P.; Spooner, B. S.

    1992-01-01

    It is important to know whether microgravity will adversely affect developmental processes. Collagens are macromolecular structural components of the extracellular matrix (ECM) which may be altered by perturbations in gravity. Interstitial collagens have been shown to be necessary for normal growth and morphogenesis in some embryonic organs, and in the mouse salivary gland, the biosynthetic pattern of these molecules changes during development. Determination of the effects of microgravity on epithelial organ development must be preceded by crucial ground-based studies. These will define control of normal synthesis, secretion, and deposition of ECM macromolecules and the relationship of these processes to morphogenesis.

  20. Collagen-derived markers of bone metabolism in osteogenesis imperfecta

    DEFF Research Database (Denmark)

    Lund, A M; Hansen, M; Kollerup, Gina Birgitte; Juul, A; Teisner, Børge; Skovby, F

    1998-01-01

    )] were measured in 78 osteogenesis imperfecta (OI) patients to investigate bone metabolism in vivo and relate marker concentrations to phenotype and in vitro collagen I defects, as shown by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). PICP and PINP were generally low, and the...... in vivo findings correlated with in vitro results of collagen I SDS-PAGE. Bone turnover is reduced in OI children and mildly affected OI adults, whereas bone resorption is elevated in severely affected adults. These findings may prove helpful for diagnosis and decision-making regarding therapy in OI....

  1. Tetracycline Loaded Collagen/Hydroxyapatite Composite Materials for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Laura Cristina Rusu

    2015-01-01

    Full Text Available The paper describes the preparation, characterisation, and testing of tetracycline loaded collagen-carboxymethylcellulose/hydroxyapatite ternary composite materials. The synthesis of this drug delivery system consists in two steps: the first step is the mineralization of collagen-carboxymethylcellulose gel while the second step corresponds to the loading of the ternary composite material with tetracycline. The obtained DDS is characterised by physicochemical, morphological, and release behaviour by using FTIR spectroscopy and microscopy, scanning electron microscopy, and UV-VIS spectroscopy. Based on the release study, it can be assumed that tetracycline is released in a prolonged way, assuring at least 6 days of antiseptic properties.

  2. In Vitro Mineralization of an Osteoid-Like Dense Collagen Construct for Bone Tissue Engineering

    Science.gov (United States)

    Marelli, Benedetto

    The aim of this doctoral research was to design and evaluate strategies to rapidly achieve an acellular mineralization of an osteoid-like dense collagen gel for potential applications in bone regeneration. It was hypothesized that the collagen fibrillar density (CFD) affects the microenvironment and the physical properties of the framework of collagen gels. To test this hypothesis, and as a first objective, the mineralization of collagen gel sheets, rolls and strips with increasing CFDs was investigated in vitro in simulated body fluid (SBF). Collagen gels with physiologically relevant CFDs (14.1 wt%) led to greater extent of mineralization (12 dry wt% at day 14 in SBF), when compared to highly hydrated gels. Chemical characterization confirmed this mineral phase to be CHA, which significantly increased the gel apparent modulus and ultimate tensile strength (UTS). Surprisingly, CFD also affected the electrostatic properties of collagen gel, as investigated by quantifying the extent of anionic and cationic dyes bound to collagen gels with different CFDs. It was therefore proposed that the increase in gel CFD led to a more physiological microenvironment, resulting in a higher number of fibril-to-fibril contact points and an increase in charge concentration, which facilitated the mineral formation and validated the proposed osteoid model. As a second objective, the mineralization of dense collagen (DC) gels with physiologically relevant CFD (14.1 wt%) was enhanced and accelerated by mimicking the role of anionic non collagenous proteins (NCPs) in the native osteoid, which act as CHA nucleators. Two strategies were implemented: first, the influence of collagen fibrillization pH on the extent of DC gel mineralization was investigated. Since the collagen molecule is slightly positively charged at physiological pH (isoelectric point at pH 7.8), it was hypothesized that it would be more negatively charged if formed in an alkaline environment, i.e., above its isoelectric

  3. Collagen and injectable fillers.

    Science.gov (United States)

    Cheng, Jacqueline T; Perkins, Stephen W; Hamilton, Mark M

    2002-02-01

    Soft tissue augmentation of facial rhytids, scars, and deformities is a frequently performed office procedure. This article reviews the available biologic (collagen, Dermalogen, Autologen, Isolagen, autologous fat, Fibrel, hyaluronic acid derivatives, particulate fascia lata, micronized Alloderm) and alloplastic (silicone, Bioplastique, and Artecoll) soft tissue injectable fillers. PMID:11781208

  4. Interactions between the discoidin domain receptor 1 and β1 integrin regulate attachment to collagen

    Directory of Open Access Journals (Sweden)

    Lisa A. Staudinger

    2013-09-01

    Collagen degradation by phagocytosis is essential for physiological collagen turnover and connective tissue homeostasis. The rate limiting step of phagocytosis is the binding of specific adhesion receptors, which include the integrins and discoidin domain receptors (DDR, to fibrillar collagen. While previous data suggest that these two receptors interact, the functional nature of these interactions is not defined. In mouse and human fibroblasts we examined the effects of DDR1 knockdown and over-expression on β1 integrin subunit function. DDR1 expression levels were positively associated with enhanced contraction of floating and attached collagen gels, increased collagen binding and increased collagen remodeling. In DDR1 over-expressing cells compared with control cells, there were increased numbers, area and length of focal adhesions immunostained for talin, paxillin, vinculin and activated β1 integrin. After treatment with the integrin-cleaving protease jararhagin, in comparison to controls, DDR1 over-expressing cells exhibited increased β1 integrin cleavage at the cell membrane, indicating that DDR1 over-expression affected the access and susceptibility of cell-surface β1 integrin to the protease. DDR1 over-expression was associated with increased glycosylation of the β1 integrin subunit, which when blocked by deoxymannojirimycin, reduced collagen binding. Collectively these data indicate that DDR1 regulates β1 integrin interactions with fibrillar collagen, which positively impacts the binding step of collagen phagocytosis and collagen remodeling.

  5. Scaffold architecture and fibrin gels promote meniscal cell proliferation

    International Nuclear Information System (INIS)

    Stability of the knee relies on the meniscus, a complex connective tissue with poor healing ability. Current meniscal tissue engineering is inadequate, as the signals for increasing meniscal cell proliferation have not been established. In this study, collagen scaffold structure, isotropic or aligned, and fibrin gel addition were tested. Metabolic activity was promoted by fibrin addition. Cellular proliferation, however, was significantly increased by both aligned architectures and fibrin addition. None of the constructs impaired collagen type I production or triggered adverse inflammatory responses. It was demonstrated that both fibrin gel addition and optimized scaffold architecture effectively promote meniscal cell proliferation

  6. Scaffold architecture and fibrin gels promote meniscal cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pawelec, K. M., E-mail: pawelec.km@gmail.com, E-mail: jw626@cam.ac.uk; Best, S. M.; Cameron, R. E. [Cambridge Centre for Medical Materials, Materials Science and Metallurgy Department, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Wardale, R. J., E-mail: pawelec.km@gmail.com, E-mail: jw626@cam.ac.uk [Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge CB2 2QQ (United Kingdom)

    2015-01-01

    Stability of the knee relies on the meniscus, a complex connective tissue with poor healing ability. Current meniscal tissue engineering is inadequate, as the signals for increasing meniscal cell proliferation have not been established. In this study, collagen scaffold structure, isotropic or aligned, and fibrin gel addition were tested. Metabolic activity was promoted by fibrin addition. Cellular proliferation, however, was significantly increased by both aligned architectures and fibrin addition. None of the constructs impaired collagen type I production or triggered adverse inflammatory responses. It was demonstrated that both fibrin gel addition and optimized scaffold architecture effectively promote meniscal cell proliferation.

  7. Polyvinyl alcohol-graft-polyethylene glycol hydrogels improve utility and biofunctionality of injectable collagen biomaterials.

    Science.gov (United States)

    Hartwell, Ryan; Chan, Ben; Elliott, Keenan; Alnojeidi, Hatem; Ghahary, Aziz

    2016-01-01

    Collagen-based materials have become a staple in both research and the clinic. In wound care, collagen-based materials comprise a core gamut of biological dressings and therapeutic strategies. In research, collagen-based materials are employed in everything from 3D cultures to bioprinting. Soluble collagen is well characterized to undergo fibrillation at neutral pH and 37 °C. To remain stable, a neutralized collagen solution must be maintained at 4 °C. These physical characteristics of collagen impose limitations on its utility. In our previous work, we identified that the incorporation of a simple polyvinyl alcohol:borate hydrogel could improve the rate of collagen gel fibrillation. In this work we sought to further investigate the interactions of polyvinyl alcohol blend variants, as surfactant-like polymers, in comparison with known non-polymer surfactants. To conduct our investigations scaffold variants were created using increasing concentrations of polyvinyl alcohol, differing combinations of polymers, and non-polymer surfactants Tweens 20 and 80, and TritonX-100. Activation energy for collagen fibrillation was found to significantly decrease in the presence of polyvinyl alcohols (p  stability of the collagen scaffolds post-freeze drying. Our results demonstrated that the addition of polyvinyl alcohol hydrogels to a collagen solution could stabilize collagen solution such that the solution could easily be lyophilized (at pH 7) and then reconstituted with water. Cells cultured in polyvinyl alcohol scaffolds also exhibited more organized F-actin, as well as a reduced abundance of pro-collagen and α-smooth actin. In conclusion, our results demonstrate for the first time that polyvinyl alcohol, preferably polyvinyl alcohol-graft-polyethylene glycol, directly affects the physical properties of collagen and the physiology of cells cultured within improving the utility of the combined material for both research and clinic needs. PMID:27275759

  8. The crucial role of collagen-binding integrins in maintaining the mechanical properties of human scleral fibroblasts-seeded collagen matrix

    Science.gov (United States)

    Hu, Shoulong; Cui, Dongmei; Yang, Xiao; Hu, Jianmin; Wan, Wenjuan

    2011-01-01

    Purpose The aim of this study was to identify the presence of collagen-binding integrin subunits in human scleral fibroblasts (HSFs) and investigate their actual functions in maintaining the mechanical creep properties of the HSFs-seeded collagen matrix. Methods Primary HSFs were cultured in vitro. Reverse- transcription PCR was used to detect mRNA expression of integrin α1, α2, and β1 subunits in HSFs. In addition, western blot analysis and immunofluorescence were used to detect their protein in HSFs. Monoclonal antibodies were applied directly against the extracellular domains of integrin subunits in HSFs cultured in the three-dimensional collagen gels to block the interaction between HSFs and the extracellular collagen matrix. The effects of anti-integrin antibodies on HSFs morphology in collagen gel were observed. The effects of the added antibodies on fibroblast-mediated collagen gels’ contraction were evaluated. Furthermore, the changes in mechanical creep properties of collagen gel were measured by a biomechanics test instrument. Results The mRNA and protein expressions of collagen-binding integrin α1, α2, and β1 subunits were present in HSFs. The elongated bipolar cells converted to spherical shapes after 6 h after the addition of integrin α1β1 and α2β1 antibody. The blocking of integrin α1β1 and α2β1 subunits noticeably decreased the contraction in the collagen gels. In addition, all samples were subjected to a constantly applied load of 0.03 N for 600 s. The blocking of integrin α1β1 and α2β1 subunits also induced increases in the values of final extension, creep extension, and creep rate, compared to those of the controls (p0.05). Conclusions Our findings suggested that HSF integrin α1β1 and α2β1 participated in maintaining the mechanical creep properties of the HSFs-seeded collagen matrix. Furthermore, integrin α2β1 might play a more crucial role in maintaining the mechanical creep properties of the collagen matrix than does

  9. Shining Light on Collagen: Expressing Collagen in Plants

    OpenAIRE

    Brodsky, Barbara; Kaplan, David L.

    2013-01-01

    Collagens are a remarkable group of proteins that are critical from a physiological perspective due to their diverse and versatile functions in vivo. However, collagens are challenging to generate ex vivo for biomaterials or regenerative medicine due to their complex processing and assembly into functional materials. Therefore, collagen availability remains a major unmet need for biomaterials, as relatively limited supplies of the protein in pure form are available mainly through harvesting b...

  10. Evaluation of a collagen-chitosan hydrogel for potential use as a pro-angiogenic site for islet transplantation.

    Directory of Open Access Journals (Sweden)

    Joanne E McBane

    Full Text Available Islet transplantation to treat type 1 diabetes (T1D has shown varied long-term success, due in part to insufficient blood supply to maintain the islets. In the current study, collagen and collagen:chitosan (10:1 hydrogels, +/- circulating angiogenic cells (CACs, were compared for their ability to produce a pro-angiogenic environment in a streptozotocin-induced mouse model of T1D. Initial characterization showed that collagen-chitosan gels were mechanically stronger than the collagen gels (0.7 kPa vs. 0.4 kPa elastic modulus, respectively, had more cross-links (9.2 vs. 7.4/µm(2, and were degraded more slowly by collagenase. After gelation with CACs, live/dead staining showed greater CAC viability in the collagen-chitosan gels after 18 h compared to collagen (79% vs. 69%. In vivo, collagen-chitosan gels, subcutaneously implanted for up to 6 weeks in a T1D mouse, showed increased levels of pro-angiogenic cytokines over time. By 6 weeks, anti-islet cytokine levels were decreased in all matrix formulations ± CACs. The 6-week implants demonstrated increased expression of VCAM-1 in collagen-chitosan implants. Despite this, infiltrating vWF(+ and CXCR4(+ angiogenic cell numbers were not different between the implant types, which may be due to a delayed and reduced cytokine response in a T1D versus non-diabetic setting. The mechanical, degradation and cytokine data all suggest that the collagen-chitosan gel may be a suitable candidate for use as a pro-angiogenic ectopic islet transplant site.

  11. Detection of type V collagen-degrading enzyme activity in human liver.

    Directory of Open Access Journals (Sweden)

    Kobayashi,Michio

    1986-06-01

    Full Text Available Type V collagen-degrading enzyme activity was detected as a metalloprotease acting at neutral pH in the human liver. Type V collagen extracted from human placenta and labeled with [1-14C] acetic anhydride was used as the substrate in the assay. Four major degradation products with relatively high molecular weights were observed upon polyacrylamide gel electrophoresis of the incubation mixture of type V collagen and liver homogenate. The significance of the measurement of this enzyme activity was discussed in relation to the clarification of the mechanism of liver fibrosis.

  12. Collagen macromolecular drug delivery systems

    International Nuclear Information System (INIS)

    The objective of this study was to examine collagen for use as a macromolecular drug delivery system by determining the mechanism of release through a matrix. Collagen membranes varying in porosity, crosslinking density, structure and crosslinker were fabricated. Collagen characterized by infrared spectroscopy and solution viscosity was determined to be pure and native. The collagen membranes were determined to possess native vs. non-native quaternary structure and porous vs. dense aggregate membranes by electron microscopy. Collagen monolithic devices containing a model macromolecule (inulin) were fabricated. In vitro release rates were found to be linear with respect to t1/2 and were affected by crosslinking density, crosslinker and structure. The biodegradation of the collagen matrix was also examined. In vivo biocompatibility, degradation and 14C-inulin release rates were evaluated subcutaneously in rats

  13. Procoagulant activity on platelets adhered to collagen or plasma clot.

    Science.gov (United States)

    Ilveskero, S; Siljander, P; Lassila, R

    2001-04-01

    In a new 2-stage assay of platelet procoagulant activity (PCA), we first subjected gel-filtered platelets to adhesion on collagen (as a model of primary hemostasis) or plasma clots (as a model of preformed thrombus) for 30 minutes, and then the adherent platelets were supplemented with pooled, reptilase-treated, diluted plasma. Defibrinated plasma provided coagulation factors for assembly on platelet membranes without uncontrolled binding of thrombin to fibrin(ogen). Platelet adhesion to both surfaces showed modest individual variation, which increased at platelet densities that allowed aggregation. However, adhesion-induced PCA varied individually and surface-independently >3-fold, suggesting a uniform platelet procoagulant mechanism. Permanently adhered platelets showed markedly enhanced PCA when compared with the platelet pool in suspension, even after strong activation. The rate of thrombin generation induced by clot-adherent platelets was markedly faster than on collagen-adherent platelets during the initial phase of coagulation, whereas collagen-induced PCA proceeded slowly, strongly promoted by tissue thromboplastin. Therefore at 10 minutes, after adjustment for adhered platelets, collagen supported soluble thrombin formation as much as 5 times that of the thrombin-retaining clots. Activation of platelets by their firm adhesion was accompanied by formation of microparticles, representing about one third of the total soluble PCA. Collagen-adhered platelets provide soluble thrombin and microparticles, whereas the preformed clot serves to localize and accelerate hemostasis at the injury site, with the contribution of retained thrombin and microparticles. PMID:11304482

  14. Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata

    OpenAIRE

    1984-01-01

    It has been shown previously that cultures of mouse mammary epithelial cells retain their characteristic morphology and their ability to produce gamma-casein, a member of the casein gene family, only if they are maintained on floating collagen gels (Emerman, J.T., and D.R. Pitelka, 1977, In Vitro, 13:316-328). In this paper we show: (a) Cells on floating collagen gels secrete not only gamma-casein but also alpha 1-, alpha 2-, and beta-caseins. These are not secreted by cells on plastic and ar...

  15. Reevaluation of the role of the polar groups of collagen in the platelet-collagen interaction.

    OpenAIRE

    Chesney, C. M.; Pifer, D D; Crofford, L J; Huch, K. M.

    1983-01-01

    Chemical modification of collagen is a tool for exploring the platelet-collagen interaction. Since collagen must polymerize prior to the initiation of platelet aggregation and secretion, modification must be shown to affect platelet-collagen interaction and not collagen-collagen interaction. To address this point, the authors carried out the following chemical modifications on soluble monomeric collagen and preformed fibrillar collagen in parallel: 1) N-and O-acetylation, 2) esterification of...

  16. Relationship between serum and hepatic 7S fragments of type IV collagen in chronic liver disease.

    Science.gov (United States)

    Suou, T; Yamada, S; Hosho, K; Yoshikawa, N; Kawasaki, H

    1996-05-01

    We evaluated the mechanism of increased serum concentrations of the 7S fragment of the N-terminal domain of type IV collagen (7S collagen) in chronic liver disease. We measured the concentrations of hepatic-free and deposited 7S collagens after extraction with Tris-HCl buffer and bacterial collagenase, then compared them with the serum levels in 8 normal controls and 48 patients with chronic liver disease. The hepatic 7S collagen levels extracted with Tris-HCl buffer and collagenase accounted for 7% and 93%, respectively, of the total 7S collagen levels in normal controls. Both hepatic 7S collagen levels as well as serum levels increased in accordance with the progress of liver disease. Serum levels of 7S collagen showed a closer correlation with the hepatic 7S collagen levels extracted with Tris-HCl buffer (r = .822), compared with those extracted with collagenase (r = .382). On the other hand, the histological degrees of liver fibrosis were highly correlated with the hepatic collagenase-extracted 7S collagen levels (r = .822), compared with serum and the hepatic Tris-HCl buffer-extracted levels (r = .478 and r = .537, respectively). Although there was no difference in serum and hepatic 7S collagen levels between B and C viral patients, the serum and hepatic Tris-HCl buffer-extracted 7S collagen levels were higher in patients with alcoholic cirrhosis than patients with viral cirrhosis. However, the hepatic collagenase-extracted levels were similar in both groups. Gel filtration demonstrated that the serum and hepatic Tris-HCl buffer-extracted 7S collagens were mainly eluted in the macromolecular 7S collagen-reactive fraction in cirrhosis, whereas the hepatic collagenase-extracted 7S collagen was eluted in the authentic 7S collagen-reactive fraction. The results suggest that serum 7S collagen levels are not a particularly reliable measure of hepatic fibrosis but reflect the enhanced metabolism, especially synthesis of type IV collagen in the liver. PMID:8621148

  17. Host Tissue Interaction, Fate, and Risks of Degradable and Nondegradable Gel Fillers

    DEFF Research Database (Denmark)

    Christensen, Lise

    2009-01-01

    BACKGROUND A constantly increasing number of gel fillers for aesthetic and reconstructive purposes have been introduced during the last 20 years. Most of the new ones are modified versions of the original collagen and hyaluronic acid gels. They have been reconstructed, often by adding cross...

  18. Increase in collagen production with loss of androgen responsiveness in cultured androgen-responsive Shionogi carcinoma 115 cells.

    Science.gov (United States)

    Terada, N; Wakimoto, H; Yamamoto, R; Uchida, N; Takatsuka, D; Takada, T; Taniguchi, H; Li, W; Kitamura, Y; Matsumoto, K

    1988-05-01

    The collagen production of androgen-responsive and -unresponsive Shionogi carcinoma 115 cells was investigated by culturing them in a medium with or without testosterone. Androgen-unresponsive cells were obtained by culturing a cloned androgen-responsive cell in a testosterone-free medium for 12 weeks. The collagen production of androgen-responsive cells slightly increased in the absence of testosterone, whereas testosterone did not affect the collagen production of androgen-unresponsive cells. Androgen-unresponsive cells produced 3-4 times more collagen than androgen-responsive cells. The major collagen produced by both androgen-responsive and - unresponsive cells migrated to the same position in sodium dodecylsulfate:polyacylamide gel electrophoresis. The present results indicate that the collagen production of androgen-responsive Shionogi carcinoma 115 cells increases with the loss of androgen responsiveness in culture. PMID:3169094

  19. Second-harmonic generation reveals a relationship between metastatic potential and collagen fiber structure

    Science.gov (United States)

    Burke, Kathleen A.; Dawes, Ryan P.; Cheema, Mehar K.; Perry, Seth; Brown, Edward

    2014-02-01

    Second Harmonic Generation (SHG) of collagen signals allows for the analysis of collagen structural changes throughout metastatic progression. The directionality of coherent SHG signals, measured through the ratio of the forward-propagating to backward propagating signal (F/B ratio), is affected by fibril diameter, spacing, and order versus disorder of fibril packing within a fiber. As tumors interact with their microenvironment and metastasize, it causes changes in these parameters, and concurrent changes in the F/B ratio. Specifically, the F/B ratio of breast tumors that are highly metastatic to the lymph nodes is significantly higher than those in tumors with restricted lymph node involvement. We utilized in vitro analysis of tumor cell motility through collagen gels of different microstructures, and hence different F/B ratios, to explore the relationship between collagen microstructures and metastatic capabilities of the tumor. By manipulating environmental factors of fibrillogenesis and biochemical factors of fiber composition we created methods of varying the average F/B ratio of the gel, with significant changes in fiber structure occurring as a result of alterations in incubation temperature and increasing type III collagen presence. A migration assay was performed using simultaneous SHG and fluorescent imaging to measure average penetration depth of human tumor cells into the gels of significantly different F/B ratios, with preliminary data demonstrating that cells penetrate deeper into gels of higher F/B ratio caused by lower type III collagen concentration. Determining the role of collagen structure in tumor cell motility will aid in the future prediction metastatic capabilities of a primary tumor.

  20. Isolation and Characterization of Collagen and Antioxidant Collagen Peptides from Scales of Croceine Croaker (Pseudosciaena crocea

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2013-11-01

    Full Text Available Acid soluble collagen (ASC from scales of croceine croaker (ASC-C was successfully isolated with the yield of 0.37% ± 0.08% (dry weight basis, and characterized as type I collagen on the basis of amino acid analysis and electrophoretic pattern. The antioxidant hydrolysate of ASC-C (ACH was prepared through a two-stage in vitro digestion (4-h trypsin followed by 4-h pepsin, and three antioxidant peptides (ACH-P1, ACH-P2, and ACH-P3 were further isolated from ACH using ultrafiltration, gel chromatography, and RP-HPLC, and their amino acid sequences were identified as GFRGTIGLVG (ACH-P1, GPAGPAG (ACH-P2, and GFPSG (ACH-P3. ACH-P1, ACH-P2, and ACH-P3 showed good scavenging activities on hydroxyl radical (IC50 0.293, 0.240, and 0.107 mg/mL, respectively, DPPH radical (IC50 1.271, 0.675, and 0.283 mg/mL, respectively, superoxide radical (IC50 0.463, 0.099, and 0.151 mg/mL, respectively, and ABTS radical (IC50 0.421, 0.309, and 0.210 mg/mL, respectively. ACH-P3 was also effectively against lipid peroxidation in the model system. The antioxidant activities of three collagen peptides were due to the presence of hydrophobic amino acid residues within the peptide sequences. The collagen peptides might be used as antioxidant for the therapy of diseases associated with oxidative stress, or reducing oxidative changes during storage.

  1. Collagen Conduit Versus Microsurgical Neurorrhaphy

    DEFF Research Database (Denmark)

    Boeckstyns, Michel; Sørensen, Allan Ibsen; Viñeta, Joaquin Fores;

    2013-01-01

    To compare repair of acute lacerations of mixed sensory-motor nerves in humans using a collagen tube versus conventional repair.......To compare repair of acute lacerations of mixed sensory-motor nerves in humans using a collagen tube versus conventional repair....

  2. Articular cartilage collagen: an irreplaceable framework?

    OpenAIRE

    Eyre, D. R.; Weis, M A; J-J Wu

    2006-01-01

    Adult articular cartilage by dry weight is two-thirds collagen. The collagen has a unique molecular phenotype. The nascent type II collagen fibril is a heteropolymer, with collagen IX molecules covalently linked to the surface and collagen XI forming the filamentous template of the fibril as a whole. The functions of collagens IX and XI in the heteropolymer are far from clear but, evidently, they are critically important since mutations in COLIX and COLXI genes can result in chondrodysplasia ...

  3. Formation of multimers of bacterial collagens through introduction of specific sites for oxidative crosslinking.

    Science.gov (United States)

    Stoichevska, Violet; An, Bo; Peng, Yong Y; Yigit, Sezin; Vashi, Aditya V; Kaplan, David L; Werkmeister, Jerome A; Dumsday, Geoff J; Ramshaw, John A M

    2016-09-01

    A range of non-animal collagens has been described, derived from bacterial species, which form stable triple-helical structures without the need for secondary modification to include hydroxyproline in the sequence. The non-animal collagens studied to date are typically smaller than animal interstitial collagens, around one quarter the length and do not pack into large fibrillar aggregates like those that are formed by the major animal interstitial collagens. A consequence of this for biomedical products is that fabricated items, such as collagen sponges, are not as mechanically and dimensionally stable as those of animal collagens. In the present study, we examined the production of larger, polymeric forms of non-animal collagens through introduction of tyrosine and cysteine residues that can form selective crosslinks through oxidation. These modifications allow the formation of larger aggregates of the non-animal collagens. When Tyr residues were incorporated, gels were obtained. And with Cys soluble aggregates were formed. These materials can be formed into sponges that are more stable than those formed without these modifications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2369-2376, 2016. PMID:27171817

  4. Type I Collagen and Collagen Mimetics as Angiogenesis Promoting Superpolymers

    Energy Technology Data Exchange (ETDEWEB)

    Twardowski, T.; Fertala, A.; Orgel, J.P.R.O.; San Antonio, J.D. (TJU); (IIT); (Widener)

    2008-07-18

    Angiogenesis, the development of blood vessels from the pre-existing vasculature, is a key component of embryogenesis and tissue regeneration. Angiogenesis also drives pathologies such as tumor growth and metastasis, and hemangioma development in newborns. On the other hand, promotion of angiogenesis is needed in tissues with vascular insufficiencies, and in bioengineering, to endow tissue substitutes with appropriate microvasculatures. Therefore, much research has focused on defining mechanisms of angiogenesis, and identifying pro- and anti-angiogenic molecules. Type I collagen, the most abundant protein in humans, potently stimulates angiogenesis in vitro and in vivo. Crucial to its angiogenic activity appears to be ligation and possibly clustering of endothelial cell (EC) surface {alpha}1{beta}1/{alpha}2{beta}1 integrin receptors by the GFPGER502-507 sequence of the collagen fibril. However, additional aspects of collagen structure and function that may modulate its angiogenic properties are discussed. Moreover, type I collagen and fibrin, another angiogenic polymer, share several structural features. These observations suggest strategies for creating 'angiogenic superpolymers', including: modifying type I collagen to influence its biological half-life, immunogenicity, and integrin binding capacity; genetically engineering fibrillar collagens to include additional integrin binding sites or angiogenic determinants, and remove unnecessary or deleterious sequences without compromising fibril integrity; and exploring the suitability of poly(ortho ester), PEG-lysine copolymer, tubulin, and cholesteric cuticle as collagen mimetics, and suggesting means of modifying them to display ideal angiogenic properties. The collagenous and collagen mimetic angiogenic superpolymers described here may someday prove useful for many applications in tissue engineering and human medicine.

  5. DESARROLLO DEL DIAGRAMA DE ESTADO DEL GEL-COLAGENO PARA LA IMPRESIÓN DE ALIMENTOS 3D

    OpenAIRE

    CASTELBLANQUE YUSTE, EVA MARÍA

    2015-01-01

    [EN] This project aims to build and cook food complex structures using 3D printing. It will be based on the physicochemical characterization and kinetics obtaining collagen gel (cooling curves). This requires getting the diagram state of collagen-gel using techniques such as differential scanning calorimetry. Also it will be determined these second-order transitions by thermal and kinetic conductimetric analysis. Subsequently the viscoelastic properties of the different states of gelation wer...

  6. Hyaluronic acid-recombinant gelatin gels as a scaffold for soft tissue regeneration

    OpenAIRE

    A Tuin; J Zandstra; SG Kluijtmans; JB Bouwstra; MC Harmsen; MJA Van Luyn

    2012-01-01

    An array of different types of hyaluronic acid (HA)- and collagen-based products is available for filling soft-tissue defects. A major drawback of the current soft-tissue fillers is their inability to induce cell infiltration and new tissue formation. Our aim is to develop novel biodegradable injectable gels which induce soft tissue regeneration, initially resulting in integration and finally replacement of the gel with new autologous tissue. Two reference gels of pure HA, monophasic HA-1 and...

  7. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix

    OpenAIRE

    Hui Liang; Xiaoran Li; Bin Wang; Bing Chen; Yannan Zhao; Jie Sun; Yan Zhuang; Jiajia Shi; He Shen; Zhijun Zhang; Jianwu Dai

    2016-01-01

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of ...

  8. Collagen fibril formation during development

    International Nuclear Information System (INIS)

    Studies with embryonic skin and bone suggested that the aminopropeptide (AP) and carboxylpropeptide (CP) of type I pro-callagen (pro-col) play a role in fibril formation. Chick leg metatarsal tendons were studied by electron microscopy. AP and CP of type I pro-col were purified from chick leg tendons; antibodies developed in rabbits and purity tested by radioimmunoassays. Antibodies were used for immunofluorescence microscopy (IFM) and immunoblotting (IB). The peritendineum, consisting of thin 20-30 nm fibrils, revealed the AP of type I and type III procol. In the tendon area, collagen fibrils were arranged within small compartments and were of uniform diameter at 10d, 14d and 18d. However, beyond 21d, there was confluency of the compartments and a wide range of fibril diameters. IFM revealed fine streaks of collagen, staining with the AP of type I throughout the tendon. The CP was mainly intracellular with only a small amount present in the extracellular space. IB revealed procollagen, pN-collagen (AP+collagen) and pC-collagen, (CP+collagen) at all stages of development. Ratios of pN/pC collagen, determined by spectrophotometric scanning of autoradiographs, correlated well with the distribution of fibril diameter. This study suggests the hypothesis that AP initiates fibrillogenesis while CP may regulate additional fibril growth

  9. Collagen binding to Staphylococcus aureus

    International Nuclear Information System (INIS)

    Staphylococcus aureus can bind soluble collagen in a specific, saturable manner. We have previously shown that some variability exists in the degree of collagen binding between different strains of heat-killed, formaldehyde-fixed S. aureus which are commercially available as immunologic reagents. The present study demonstrates that live S. aureus of the Cowan 1 strain binds amounts of collagen per organism equivalent to those demonstrated previously in heat-killed, formaldehyde-fixed bacteria but has an affinity over 100 times greater, with Kd values of 9.7 X 10(-11) M and 4.3 X 10(-8) M for live and heat-killed organisms, respectively. Studies were also carried out with S. aureus killed by ionizing radiation, since this method of killing the organism seemed less likely to alter the binding moieties on the surface than did heat killing. Bacteria killed by exposure to gamma radiation bound collagen in a manner essentially indistinguishable from that of live organisms. Binding of collagen to irradiated cells of the Cowan 1 strain was rapid, with equilibrium reached by 30 min at 22 degrees C, and was fully reversible. The binding was not inhibited by fibronectin, fibrinogen, C1q, or immunoglobulin G, suggesting a binding site for collagen distinct from those for these proteins. Collagen binding was virtually eliminated in trypsin-treated organisms, indicating that the binding site has a protein component. Of four strains examined, Cowan 1 and S. aureus ATCC 25923 showed saturable, specific binding, while strains Woods and S4 showed a complete lack of binding. These results suggest that some strains of S. aureus contain high-affinity binding sites for collagen. While the number of binding sites per bacterium varied sixfold in the two collagen-binding strains, the apparent affinity was similar

  10. Microstructural and physicochemical analysis of collagen in intramuscular pin bones of Bocachico fish (Prochilodus sp.

    Directory of Open Access Journals (Sweden)

    Héctor Suárez

    2015-06-01

    Full Text Available Background: the presence of intramuscular pin bones hinders the production and commercialization of fish fillet products; however, application of physical processes, such as thermal treatments, offers alternatives for the degradation of said bones. Objective: the present study aimed to conduct a microstructural and physicochemical analysis of Bocachico intramuscular pin bones subjected to a thermal treatment. Methods: collagen extracted from intramuscular pin bones of Bocachico fillets was analyzed using SDS-polyacrylamide gel electrophoresis and viscosity. Pin bones were subjected to 1.5, 2, and 3 minutes heating time and analyzed using electron microscopy and cutting force. Results: intramuscular pin bones contain type I collagen. Threeminute thermal treatment degraded collagen components present in the internal pin bone structure, coinciding with the lowest values of the cutting force test. Conclusions: according to our results, collagen degradation initiates in the internal structure of intramuscular pin bones and moves towards the external layer which does not show the effects of thermal treatment.

  11. Fibroblast traction as a mechanism for collagen morphogenesis

    Science.gov (United States)

    Harris, Albert K.; Stopak, David; Wild, Patricia

    1981-03-01

    To make visible the traction forces exerted by individual cells, we have previously developed a method of culturing them on thin distortable sheets of silicone rubber1. We have now used this method to compare the forces exerted by various differentiated cell types and have examined the effects of cellular traction on re-precipitated collagen matrices. We find that the strength of cellular traction differs greatly between cell types and this traction is paradoxically weakest in the most mobile and invasive cells (leukocytes and nerve growth cones). Untransformed fibroblasts exert forces very much larger than those actually needed for locomotion. This strong traction distorts collagen gels dramatically, creating patterns similar to tendons and organ capsules. We propose that this morphogenetic rearrangement of extracellular matrices is the primary function of fibroblast traction and explains its excessive strength.

  12. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension.

    OpenAIRE

    Bayer ML, Yeung CY, Kadler KE, Qvortrup K, Baar K, Svensson RB, Magnusson SP, Krogsgaard M, Koch M, Kjaer M.

    2010-01-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts to initiate collagen fibrillogenesis when cultured in fixed-length fibrin gels. Fibroblasts were dissected from semitendinosus and gracilis tendons from healthy humans and cultured in 3D linear fibrin ...

  13. Nonlinear microscopy of collagen fibers

    Science.gov (United States)

    Strupler, M.; Pena, A.-M.; Hernest, M.; Tharaux, P.-L.; Fabre, A.; Marchal-Somme, J.; Crestani, B.; Débarre, D.; Martin, J.-L.; Beaurepaire, E.; Schanne-Klein, M.-C.

    2007-02-01

    We used intrinsic Second Harmonic Generation (SHG) by fibrillar collagen to visualize the three-dimensional architecture of collagen fibrosis at the micrometer scale using laser scanning nonlinear microscopy. We showed that SHG signals are highly specific to fibrillar collagen and provide a sensitive probe of the micrometer-scale structural organization of collagen in tissues. Moreover, recording simultaneously other nonlinear optical signals in a multimodal setup, we visualized the tissue morphology using Two-Photon Excited Fluorescence (2PEF) signals from endogenous chromophores such as NADH or elastin. We then compared different methods to determine accurate indexes of collagen fibrosis using nonlinear microscopy, given that most collagen fibrils are smaller than the microscope resolution and that second harmonic generation is a coherent process. In order to define a robust method to process our three-dimensional images, we either calculated the fraction of the images occupied by a significant SHG signal, or averaged SHG signal intensities. We showed that these scores provide an estimation of the extension of renal and pulmonary fibrosis in murine models, and that they clearly sort out the fibrotic mice.

  14. Characterisations of collagen-silver-hydroxyapatite nanocomposites

    Science.gov (United States)

    Ciobanu, C. S.; Popa, C. L.; Petre, C. C.; Jiga, G.; Trusca, R.; Predoi, D.

    2016-05-01

    The XRD analysis were performed to confirm the formation of hydroxyapatite structure in collagen-silver-hydroxyapatite nanocomposites. The molecular interaction in collagen-hydroxyapatite nanocomposites was highlighted by Fourier transform infrared spectroscopy (FTIR) analysis. The SEM showed a nanostructure of collagen-silverhydroxyapatite nanocomposites composed of nano needle-like particles in a veil with collagen texture. The presence of vibrational groups characteristics to the hydroxyapatite structure in collagen-silver-hydroxyapatite (AgHApColl) nanocomposites was investigated by FTIR.

  15. PHAGOCYTOSIS AND REMODELING OF COLLAGEN MATRICES

    OpenAIRE

    Abraham, Leah C.; Dice, J. Fred; Lee, Kyongbum; Kaplan, David L.

    2007-01-01

    The biodegradation of collagen and the deposition of new collagen-based extracellular matrices are of central importance in tissue remodeling and function. Similarly, for collagen-based biomaterials used in tissue engineering, the degradation of collagen scaffolds with accompanying cellular infiltration and generation of new extracellular matrix is critical for integration of in vitro grown tissues in vivo. In earlier studies we observed significant impact of collagen structure on primary lun...

  16. Drug carrier systems based on collagen-alginate composite structures for improving the performance of GDNF-secreting HEK293 cells.

    Science.gov (United States)

    Lee, M; Lo, A C; Cheung, P T; Wong, D; Chan, B P

    2009-02-01

    Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor. Development of drug delivery technologies facilitating controlled release of GDNF is critical to applying GDNF in treating neurodegenerative diseases. We previously developed 3D collagen microspheres and demonstrated enhanced GDNF secretion after encapsulation of HEK293 cells, which were transduced to overexpress GDNF in these microspheres. However, the entrapped HEK293 cells were able to migrate out of the collagen microspheres, making it undesirable for clinical applications. In this report, we investigate two new carrier designs, namely collagen-alginate composite gel and collagen microspheres embedded in alginate gel in preventing cell leakage, maintaining cell growth and controlling GDNF secretion in the HEK293 cells. We demonstrated that inclusion of alginate gel in both designs is efficient in preventing cell leakage to the surrounding yet permitting the GDNF secretion, although the cellular growth rate is reduced in an alginate concentration dependent manner. Differential patterns of GDNF secretion in the two designs were demonstrated. The collagen-alginate composite gel maintains a more or less constant GDNF secretion over time while the collagen microspheres embedded in alginate gel continue to increase the secretion level of GDNF over time. This study contributes towards the development of cell-based GDNF delivery devices for the future therapeutics of neurodegenerative diseases. PMID:19059641

  17. Characterization of collagen fibrils after equine suspensory ligament injury: an ultrastructural and biochemical approach.

    Science.gov (United States)

    Shikh Alsook, M K; Gabriel, A; Salouci, M; Piret, J; Alzamel, N; Moula, N; Denoix, J-M; Antoine, N; Baise, E

    2015-04-01

    Suspensory ligament (SL) injuries are an important cause of lameness in horses. The mechanical properties of connective tissue in normal and pathological ligaments are mainly related to fibril morphology, as well as collagen content and types. The purpose of this study was to evaluate, using biochemical and ultrastructural approaches, the alterations in collagen fibrils after injury. Eight Warmblood horses with visible signs of injury in only one forelimb SL were selected and specimens were examined by transmission electron microscope (TEM). Collagen types I, III and V were purified by differential salt precipitation after collagen extraction with acetic acid containing pepsin. TEM revealed abnormal organization as well as alterations in the diameter and shape of fibrils after SL injury. The bands corresponding to types I, III and V collagen were assessed by densitometry after sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Densitometric analysis indicated that the proportions of type III and type V collagen were higher (P < 0.001) in damaged tissues compared with normal tissues with a mean increase of 20.9% and 17.3%, respectively. Concurrently, a decrease (P < 0.001) in type I collagen within damaged tissues was recorded with a mean decrease of 15.2%. These alterations could be the hallmark of a decrease in the tissue quality and mechanical properties of the ligament. The findings provide new insight for subsequent research on tissue regeneration that may lead to the development of future treatment strategies for SL injury. PMID:25795168

  18. Agar/collagen membrane as skin dressing for wounds

    International Nuclear Information System (INIS)

    Agar, a highly hydrophilic polymer, has a special gel property and favorable biocompatibility, but moderate intension strength in an aqueous condition and a low degradation rate. In order to tailor both properties of mechanical intension and degradation, type I collagen was composited with agar in a certain ratio by drying at 50 0C or by a freeze-dry process. Glutaraldehyde was chosen as a crosslinking agent, and the most favorable condition for crosslinking was that the weight ratio of agar to glutaraldehyde was 66.7 and the pH value about 5. Dynamic mechanical analysis results showed that the single agar membrane had a modulus value between 640 MPa and 1064 MPa, but it was between 340 MPa and 819 MPa after being composited with type I collagen. It was discovered under an optical microscope that the pores were interconnected in the composite scaffolds instead of the honeycomb-like pores in a single type I collagen scaffold or the laminated gaps in a single agar scaffold. The results of an acute toxicity test disclosed that the composites were not toxic to mice although the composites were crosslinked with a certain concentration of glutaraldehyde. The results of gross examinations showed that when the composite membranes or scaffolds were applied to a repair rabbit skin lesion, the composites had a good repair effect without infection, liquid exudation or visible scar in the lesion covered with them. But in the control group, the autologous skin showed necrosis and there were a lot of scar tissues in the lesion site. H and E staining results showed that the repair tissue was similar to the normal one and very few scaffolds or membranes were left without degradation after 2 or 3 weeks. In conclusion, it is proved that type I collagen increases the toughness of the agar membrane, and the agar/type I collagen composites are promising biomaterials as wound dressings for healing burns or ulcers.

  19. Agar/collagen membrane as skin dressing for wounds

    Energy Technology Data Exchange (ETDEWEB)

    Bao Lei; Yang Wei; Mao Xuan; Mou Shansong; Tang Shunqing [Biomedical Engineering Institute, Jinan University, Guangzhou (China)], E-mail: tshunqt@jnu.edu.cn, E-mail: tmuss@jnu.edu.cn

    2008-12-15

    Agar, a highly hydrophilic polymer, has a special gel property and favorable biocompatibility, but moderate intension strength in an aqueous condition and a low degradation rate. In order to tailor both properties of mechanical intension and degradation, type I collagen was composited with agar in a certain ratio by drying at 50 {sup 0}C or by a freeze-dry process. Glutaraldehyde was chosen as a crosslinking agent, and the most favorable condition for crosslinking was that the weight ratio of agar to glutaraldehyde was 66.7 and the pH value about 5. Dynamic mechanical analysis results showed that the single agar membrane had a modulus value between 640 MPa and 1064 MPa, but it was between 340 MPa and 819 MPa after being composited with type I collagen. It was discovered under an optical microscope that the pores were interconnected in the composite scaffolds instead of the honeycomb-like pores in a single type I collagen scaffold or the laminated gaps in a single agar scaffold. The results of an acute toxicity test disclosed that the composites were not toxic to mice although the composites were crosslinked with a certain concentration of glutaraldehyde. The results of gross examinations showed that when the composite membranes or scaffolds were applied to a repair rabbit skin lesion, the composites had a good repair effect without infection, liquid exudation or visible scar in the lesion covered with them. But in the control group, the autologous skin showed necrosis and there were a lot of scar tissues in the lesion site. H and E staining results showed that the repair tissue was similar to the normal one and very few scaffolds or membranes were left without degradation after 2 or 3 weeks. In conclusion, it is proved that type I collagen increases the toughness of the agar membrane, and the agar/type I collagen composites are promising biomaterials as wound dressings for healing burns or ulcers.

  20. Endothelial monolayers on collagen-coated nanofibrous membranes: cell-cell and cell-ECM interactions.

    Science.gov (United States)

    Kang, Donggu; Kim, Jeong Hwa; Jeong, Young Hun; Kwak, Jong-Young; Yoon, Sik; Jin, Songwan

    2016-06-01

    Endothelial cells (ECs) form a monolayer lining over the entire vascular wall and play an important role in maintaining vascular homeostasis and cancer metastasis. Loss of proper endothelial function can lead to vascular diseases. Therefore, the endothelial monolayer is particularly important in tissue regeneration and mimicking vascular tissue in vitro. Numerous studies have described the effects of ECs on nanofibers made from a variety of synthetic polymer materials designed to mimic the extracellular matrix (ECM). However, little is known about maintaining the integrity of ECs in in vitro systems. Here we describe polycaprolactone nanofibrous membranes coated with collagen gel that overcome many limitations of conventional nanofibers used for engineering endothelia. We investigated cell-cell and cell-ECM junctional complexes using collagen-coated and conventional nanofibrous membranes. Conventional nanofibrous membranes alone did not form a monolayer with ECs, whereas collagen-coated nanofibrous membranes did. Several concentrations of collagen in the gel coating promoted the formation of cell-cell junctional complexes, facilitated the deposition of laminin, and increased the focal contact organization of ECs. These results suggest the possible use of collagen-coated nanofibrous membranes for vascular tissue engineering applications and a vascular platform for organ-on-a-chip systems. PMID:27186924

  1. Fracture mechanics of collagen fibrils

    DEFF Research Database (Denmark)

    Svensson, Rene B; Mulder, Hindrik; Kovanen, Vuokko;

    2013-01-01

    Tendons are important load-bearing structures, which are frequently injured in both sports and work. Type I collagen fibrils are the primary components of tendons and carry most of the mechanical loads experienced by the tissue, however, knowledge of how load is transmitted between and within...... fibrils is limited. The presence of covalent enzymatic cross-links between collagen molecules is an important factor that has been shown to influence mechanical behavior of the tendons. To improve our understanding of how molecular bonds translate into tendon mechanics, we used an atomic force microscopy...... technique to measure the mechanical behavior of individual collagen fibrils loaded to failure. Fibrils from human patellar tendons, rat-tail tendons (RTTs), NaBH₄ reduced RTTs, and tail tendons of Zucker diabetic fat rats were tested. We found a characteristic three-phase stress-strain behavior in the human...

  2. Flying spot en-face OCT for monitoring cell distribution in collagen-based constructs

    Science.gov (United States)

    Kosmidis, Konstantinos; Russell, Christopher D.; Black, Richard A.; Dobre, George; Podoleanu, Adrian Gh.

    2006-02-01

    The use of optical coherence tomography (OCT) as a monitoring tool in the growth of human fibroblasts cells in collagen-based constructs is investigated. Rat-tail tendon type-1 collagen based gels mixed with human fibroblasts were prepared and incubated. Fixed samples were then imaged using OCT, and subsequently cross-sectioned and analysed microscopically. The concentration of cells in samples under different contraction dynamics was investigated using analysis of the OCT images. Results show clear differences in scattering intensity as a consequence of cell concentration in both OCT images and micrographs.

  3. Biology, chemistry and pathology of collagen

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmajer, R.; Olsen, B.R.; Kuhn, K.

    1985-01-01

    This book consists of five parts and a section of poster papers. Some of the articles are: Structure of the Type II Collagen Gene; Structural and Functional Analysis of the Genes for ..cap alpha..2(1) and ..cap alpha..1(III) collagens; Structure and Expression of the Collagen Genes of C. Elegans; Molecular Basis of Clinical Heterogeneity in the Ehlers-Danlos Syndrome; and Normal and Mutant Human Collagen Genes.

  4. Collagen gene expression during limb cartilage differentiation

    OpenAIRE

    1986-01-01

    As limb mesenchymal cells differentiate into chondrocytes, they initiate the synthesis of type II collagen and cease synthesizing type I collagen. Changes in the cytoplasmic levels of type I and type II collagen mRNAs during the course of limb chondrogenesis in vivo and in vitro were examined using cloned cDNA probes. A striking increase in cytoplasmic type II collagen mRNA occurs coincident with the crucial condensation stage of chondrogenesis in vitro, in which prechondrogenic mesenchymal c...

  5. Fabrication of polycaprolactone collagen hydrogel constructs seeded with mesenchymal stem cells for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, J C; Berner, A [Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane (Australia); Heymer, A; Eulert, J; Noeth, U, E-mail: johannes.reichert@qut.edu.a [Orthopaedic Institute, Division of Tissue Engineering, Koenig-Ludwig-Haus, Julius-Maximilians-University, Wuerzburg (Germany)

    2009-12-15

    The osteogenic differentiation of bone marrow-derived human mesenchymal stem cells (MSCs) in a collagen I hydrogel was investigated. Collagen hydrogels with 7.5 x 10{sup 5} MSCs ml{sup -1} were fabricated and cultured for 6 weeks in a defined, osteogenic differentiation medium. Histochemistry revealed morphologically distinct, chondrocyte-like cells, surrounded by a sulfated proteoglycan-rich extracellular matrix in the group treated with bone morphogenetic protein 2 (BMP-2), while cells cultured with dexamethasone, ascorbate-2-phosphate, and beta-glycerophosphate displayed a spindle-shaped morphology and deposited a mineralized matrix. Real-time polymerase chain reaction (RT-PCR) analyses revealed a specific chondrogenic differentiation with the expression of cartilage-specific markers in the BMP-2-treated group and a distinct expression pattern of the osteogenic markers alkaline phosphatase (ALP), type I collagen, osteocalcin (OC), and cbfa-1 in the group treated with an osteogenic standard medium. The collagen gels were used to engineer a cell laden medical grade epsilon-polycaprolactone (PCL)-hydrogel construct for segmental bone repair showing good bonding at the scaffold hydrogel interface and even cell distribution. The results show that MSCs cultured in a collagen I hydrogel are able to undergo a distinct osteogenic differentiation pathway when stimulated with specific differentiation factors and suggest that collagen I hydrogels are a suitable means to facilitate cell seeding of scaffolds for bone tissue engineering applications.

  6. Fabrication of polycaprolactone collagen hydrogel constructs seeded with mesenchymal stem cells for bone regeneration

    International Nuclear Information System (INIS)

    The osteogenic differentiation of bone marrow-derived human mesenchymal stem cells (MSCs) in a collagen I hydrogel was investigated. Collagen hydrogels with 7.5 x 105 MSCs ml-1 were fabricated and cultured for 6 weeks in a defined, osteogenic differentiation medium. Histochemistry revealed morphologically distinct, chondrocyte-like cells, surrounded by a sulfated proteoglycan-rich extracellular matrix in the group treated with bone morphogenetic protein 2 (BMP-2), while cells cultured with dexamethasone, ascorbate-2-phosphate, and β-glycerophosphate displayed a spindle-shaped morphology and deposited a mineralized matrix. Real-time polymerase chain reaction (RT-PCR) analyses revealed a specific chondrogenic differentiation with the expression of cartilage-specific markers in the BMP-2-treated group and a distinct expression pattern of the osteogenic markers alkaline phosphatase (ALP), type I collagen, osteocalcin (OC), and cbfa-1 in the group treated with an osteogenic standard medium. The collagen gels were used to engineer a cell laden medical grade ε-polycaprolactone (PCL)-hydrogel construct for segmental bone repair showing good bonding at the scaffold hydrogel interface and even cell distribution. The results show that MSCs cultured in a collagen I hydrogel are able to undergo a distinct osteogenic differentiation pathway when stimulated with specific differentiation factors and suggest that collagen I hydrogels are a suitable means to facilitate cell seeding of scaffolds for bone tissue engineering applications.

  7. Transport Phenomena in Gel

    Directory of Open Access Journals (Sweden)

    Masayuki Tokita

    2016-05-01

    Full Text Available Gel becomes an important class of soft materials since it can be seen in a wide variety of the chemical and the biological systems. The unique properties of gel arise from the structure, namely, the three-dimensional polymer network that is swollen by a huge amount of solvent. Despite the small volume fraction of the polymer network, which is usually only a few percent or less, gel shows the typical properties that belong to solids such as the elasticity. Gel is, therefore, regarded as a dilute solid because its elasticity is much smaller than that of typical solids. Because of the diluted structure, small molecules can pass along the open space of the polymer network. In addition to the viscous resistance of gel fluid, however, the substance experiences resistance due to the polymer network of gel during the transport process. It is, therefore, of importance to study the diffusion of the small molecules in gel as well as the flow of gel fluid itself through the polymer network of gel. It may be natural to assume that the effects of the resistance due to the polymer network of gel depends strongly on the network structure. Therefore, detailed study on the transport processes in and through gel may open a new insight into the relationship between the structure and the transport properties of gel. The two typical transport processes in and through gel, that is, the diffusion of small molecules due to the thermal fluctuations and the flow of gel fluid that is caused by the mechanical pressure gradient will be reviewed.

  8. Collagen and Collagen-derived Fragments Are Chemotactic for Tumor Cells

    OpenAIRE

    Mundy, Gregory R; Demartino, Sandra; Rowe, David W.

    1981-01-01

    Organs that are rich in collagen such as liver, lungs, and bone are frequently sites of tumor cell metastasis. In this study, we have found that cultured tumor cells of human and rat origin migrated unidirectionally in response to collagen in vitro. Synthetic di- and tri-peptides that contained amino acid sequences found frequently in the collagen helix caused similar effects. These results are consistent with the hypothesis that collagen or collagen fragments released during connective tissu...

  9. Collagen breakdown products and lung collagen metabolism: an in vitro study on fibroblast cultures.

    OpenAIRE

    Gardi, C.; Calzoni, P.; Marcolongo, P.; E. Cavarra; Vanni, L.; Lungarella, G.

    1994-01-01

    BACKGROUND--In fibrotic diseases such as pulmonary fibrosis there is evidence suggesting enhanced synthesis and degradation of lung connective tissue components, including collagen. It has therefore been hypothesised that products of collagen degradation may have a role in the promotion of collagen deposition. In support of this hypothesis, it has recently been shown that intravenous injection of lung collagen degradation products in experimental animals stimulated collagen synthesis leading ...

  10. Collagen metabolism of human osteoarthritic articular cartilage as modulated by bovine collagen hydrolysates

    OpenAIRE

    Saskia Schadow; Hans-Christian Siebert; Günter Lochnit; Jens Kordelle; Markus Rickert; Jürgen Steinmeyer

    2013-01-01

    Destruction of articular cartilage is a characteristic feature of osteoarthritis (OA). Collagen hydrolysates are mixtures of collagen peptides and have gained huge public attention as nutriceuticals used for prophylaxis of OA. Here, we evaluated for the first time whether different bovine collagen hydrolysate preparations indeed modulate the metabolism of collagen and proteoglycans from human OA cartilage explants and determined the chemical composition of oligopeptides representing collagen ...

  11. Isolation and characterization of new collagens from chick cartilage.

    Science.gov (United States)

    von der Mark, K; van Menxel, M; Wiedemann, H

    1982-05-01

    Three unique collagen chains were isolated from chick sternal cartilage following pepsin solubilization of total cartilage collagens and removal of the predominant type II collagen by fractional salt precipitation. Native molecules containing 1 alpha, 2 alpha and 3 alpha chains precipitated between 0.7 M and 1.2 M NaCl at acidic pH and could be purified by chromatography on carboxymethyl-cellulose and agarose columns. Although similar to mammalian 1 alpha, 2 alpha and 3 alpha chains, differences in the mobilities on sodium dodecylsulfate gel electrophoresis, CNBr peptide profiles and amino acid composition were found. The 1 alpha and 2 alpha chains resemble, but are structurally distinct from, the chick alpha 1(V) and alpha 2(V) chains. The 3 alpha chain appears to be closely related to the alpha 1(II) chain, although some differences in the cyanogen bromide peptides suggest that they might be different gene products. In addition, two collagenous fragments of Mr 140 000 (M1) and 35 000 (M2) were found which precipitated at 2.0 m NaCl at acidic pH. Both fragments contain interchain disulfide bonds. The larger fragment was reducible to subunits of approximate Mr 120 000, 48 000, 28 000 and 11 000. The smaller fragment gave rise to peptides of Mr about 12 000 and 10 000 after reduction. By the technique of rotary shadowing the native, unreduced larger fragment M1 appeared as a slender rod-like molecule with a distinct bend approximately 40 nm from one end. We interpret this finding as indicative of a focal amino acid sequence irregularity, disrupting the triple-helical conformation. PMID:7084229

  12. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension

    DEFF Research Database (Denmark)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E;

    2010-01-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts to...... fibroblasts stained positive for integrin alpha(5). Finally, the presence of cell extensions into the extracellular space with membrane-enclosed fibrils in fibripositors indicated characteristics of embryonic tendon. We conclude that mature human tendon fibroblasts retain an intrinsic capability to perform...... initiate collagen fibrillogenesis when cultured in fixed-length fibrin gels. Fibroblasts were dissected from semitendinosus and gracilis tendons from healthy humans and cultured in 3D linear fibrin gels. The fibroblasts synthesized an extracellular matrix of parallel collagen fibrils that were aligned...

  13. Enhanced bioavailability of subcutaneously injected insulin coadministered with collagen in rats and humans

    International Nuclear Information System (INIS)

    The present study was undertaken to develop an agent that stabilizes insulin injected subcutaneously. 125I-Porcine insulin with 0.2 U/kg unlabeled porcine insulin was subcutaneously injected with or without collagen in the rat under the depilated skin of the back. At various times, the radioactivity in subcutaneous tissue was assayed for insulin and its metabolites by gel filtration. The degradation and absorption rate constants of insulin at the subcutaneous injection site were estimated according to a one-compartment model. The degradation rate constant of insulin in the presence of collagen at the injection site was less than half of the control rate. The inhibition was confirmed by increases in the immunoreactive insulin plasma levels and the hypoglycemic effect in rats and healthy volunteers. We postulate that collagen prevents insulin from being degraded by inhibiting proteolytic enzymes, mainly collagenase-like peptidase, in subcutaneous tissue

  14. Collagen cross linking: Current perspectives

    Directory of Open Access Journals (Sweden)

    Srinivas K Rao

    2013-01-01

    Full Text Available Keratoconus is a common ectatic disorder occurring in more than 1 in 1,000 individuals. The condition typically starts in adolescence and early adulthood. It is a disease with an uncertain cause and its progression is unpredictable, but in extreme cases, vision deteriorates and can require corneal transplant surgery. Corneal collagen cross-linking (CCL with riboflavin (C3R is a recent treatment option that can enhance the rigidity of the cornea and prevent disease progression. Since its inception, the procedure has evolved with newer instrumentation, surgical techniques, and is also now performed for expanded indications other than keratoconus. With increasing experience, newer guidelines regarding optimization of patient selection, the spectrum of complications and their management, and combination procedures are being described. This article in conjunction with the others in this issue, will try and explore the uses of collagen cross-linking (CXL in its current form.

  15. GelTouch

    DEFF Research Database (Denmark)

    Miruchna, Viktor; Walter, Robert; Lindlbauer, David;

    2015-01-01

    We present GelTouch, a gel-based layer that can selectively transition between soft and stiff to provide tactile multi-touch feedback. It is flexible, transparent when not activated, and contains no mechanical, electromagnetic, or hydraulic components, resulting in a compact form factor (a 2mm thin...... touchscreen layer for our prototype). The activated areas can be morphed freely and continuously, without being limited to fixed, predefined shapes. GelTouch consists of a poly(N-isopropylacrylamide) gel layer which alters its viscoelasticity when activated by applying heat (>32 C). We present three different...

  16. CONFORMANCE IMPROVEMENT USING GELS

    Energy Technology Data Exchange (ETDEWEB)

    Randall S. Seright

    2003-09-01

    This report describes work performed during the second year of the project, ''Conformance Improvement Using Gels.'' The project has two objectives. The first objective is to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective is to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil. Pore-level images from X-ray computed microtomography were re-examined for Berea sandstone and porous polyethylene. This analysis suggests that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than a gel-ripping mechanism. This finding helps to explain why aqueous gels can reduce permeability to water more than to oil. We analyzed a Cr(III)-acetate-HPAM gel treatment in a production well in the Arbuckle formation. The availability of accurate pressure data before, during, and after the treatment was critical for the analysis. After the gel treatment, water productivity was fairly constant at about 20% of the pre-treatment value. However, oil productivity was stimulated by a factor of 18 immediately after the treatment. During the six months after the treatment, oil productivity gradually decreased to approach the pre-treatment value. To explain this behavior, we proposed that the fracture area open to oil flow was increased substantially by the gel treatment, followed by a gradual closing of the fractures during subsequent production. For a conventional Cr(III)-acetate-HPAM gel, the delay between gelant preparation and injection into a fracture impacts the placement, leakoff, and permeability reduction behavior. Formulations placed as partially formed gels showed relatively low pressure gradients during placement, and yet substantially reduced the

  17. Type III Collagen, a Fibril Network Modifier in Articular Cartilage*

    OpenAIRE

    Wu, Jiann-Jiu; Weis, Mary Ann; Kim, Lammy S.; Eyre, David R.

    2010-01-01

    The collagen framework of hyaline cartilages, including articular cartilage, consists largely of type II collagen that matures from a cross-linked heteropolymeric fibril template of types II, IX, and XI collagens. In the articular cartilages of adult joints, type III collagen makes an appearance in varying amounts superimposed on the original collagen fibril network. In a study to understand better the structural role of type III collagen in cartilage, we find that type III collagen molecules...

  18. Hyaluronic acid-recombinant gelatin gels as a scaffold for soft tissue regeneration

    Directory of Open Access Journals (Sweden)

    A Tuin

    2012-10-01

    Full Text Available An array of different types of hyaluronic acid (HA- and collagen-based products is available for filling soft-tissue defects. A major drawback of the current soft-tissue fillers is their inability to induce cell infiltration and new tissue formation. Our aim is to develop novel biodegradable injectable gels which induce soft tissue regeneration, initially resulting in integration and finally replacement of the gel with new autologous tissue. Two reference gels of pure HA, monophasic HA-1 and micronised HA-2, were used. Furthermore, both gels were mixed with recombinant gelatin (RG resulting in HA-1+RG and HA-2+RG. All gels were subcutaneously injected on the back of rats and explanted after 4 weeks. Addition of RG to HA-1 resulted in stroma formation (neovascularisation and ECM deposition which was restricted to the outer rim of the HA-1+RG gel. In contrast, addition of RG to HA-2 induced stroma formation throughout the gel. The RG component of the gel was degraded by macrophages and giant cells and subsequently replaced by new vascularised tissue. Immunohistochemical staining showed that the extracellular matrix components collagen I and III were deposited throughout the gel. In conclusion, this study shows the proof of principle that addition of RG to HA-2 results in a novel injectable gel capable of inducing soft tissue regeneration. In this gel HA has a scaffold function whereas the RG component induces new tissue formation, resulting in proper vascularisation and integration of the HA-2+RG gel with the autologous tissue.

  19. Localization of type V collagen and type IV collagen in human cornea, lung, and skin. Immunohistochemical evidence by anti-collagen antibodies characterized by immunoelectroblotting.

    OpenAIRE

    Konomi, H.; Hayashi, T.; NAKAYASU, K.; Arima, M.

    1984-01-01

    Tissue distribution of Type V collagen in comparison with Type IV collagen was investigated by indirect immunofluorescence microscopy. Affinity-purified rat antibodies to Type IV and Type V collagens obtained from human placenta reacted specifically only with the corresponding type of collagen in both native and denatured conformations. In indirect immunofluorescent stainings of human skin, lung, and cornea tissues, Type IV and Type V collagens showed distinct distributions. Type IV collagen ...

  20. Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion

    OpenAIRE

    Reigle, Kristin L.; Di Lullo, Gloria; Turner, Kevin R.; Last, Jerold A; Chervoneva, Inna; Birk, David E.; Funderburgh, James L.; Elrod, Elizabeth; Markus W. Germann; Surber, Charles; Sanderson, Ralph D.; San Antonio, James D.

    2008-01-01

    Non-enzymatic glycation of type I collagen occurs in aging and diabetes, and may affect collagen solubility, charge, polymerization, and intermolecular interactions. Proteoglycans1(PGs) bind type I collagen and are proposed to regulate fibril assembly, function, and cell-collagen interactions. Moreover, on the collagen fibril a keratan sulfate (KS) PG binding region overlaps with preferred collagen glycation sites. Thus, we examined the effect of collagen modified by simple glycation on PG-co...

  1. A novel functional role of collagen glycosylation

    DEFF Research Database (Denmark)

    Jürgensen, Henrik J; Madsen, Daniel H; Ingvarsen, Signe;

    2011-01-01

    Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains, the...... function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose...... receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens. The...

  2. The promoting effects of geniposidic acid and aucubin in Eucommia ulmoides Oliver leaves on collagen synthesis.

    Science.gov (United States)

    Li, Y; Sato, T; Metori, K; Koike, K; Che, Q M; Takahashi, S

    1998-12-01

    We have reported that collagen synthesis was stimulated by the administration of a hot water extract from the leaves of Eucommia ulmoides OLIVER, Eucommiaceae (Du-Zhong leaves) in false aged model rats. In this paper, we set out to examine the compounds in Du-Zhong leaves that stimulated collagen synthesis in false aged model rats. In experiment 1, a methanol extract of Du-Zhong leaves also stimulated collagen synthesis in aged model rats. An acetone fraction was derived from the methanol extract by silica gel chromatography in experiment 2. The acetone fraction mainly contained iridoides mono-glycosides such as geniposidic acid and aucubin. The administration of geniposidic acid or aucubin stimulated collagen synthesis in aged model rats in experiments 3 and 4 (significance (p<0.05)). The reported pharmacological effects of Du-Zhong leaves, including healing organs and strengthening bone and muscle, are closely related to collagen metabolism. It appears that geniposidic acid and aucubin are the actual compounds in Du-Zhong which caused the effect in our experiments. PMID:9881644

  3. Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration.

    Science.gov (United States)

    Ma, Xin; He, Zhiwei; Han, Fengxuan; Zhong, Zhiyuan; Chen, Liang; Li, Bin

    2016-07-01

    Development of biomimetic scaffolds represents a promising direction in bone tissue engineering. In this study, we designed a two-step process to prepare a type of biomimetic hybrid hydrogels that were composed of collagen, hydroxyapatite (HAP) and alendronate (ALN), an anti-osteoporosis drug. First, water-soluble ALN-conjugated HAP (HAP-ALN) containing 4.0wt.% of ALN was synthesized by treating HAP particles with ALN. Hydrogels were then formed from HAP-ALN conjugate and collagen under physiological conditions using genipin (GNP) as the crosslinker. Depending on the ALN/collagen molar ratio and GNP concentration, the gelation time of hydrogels ranged from 5 to 37min. Notably, these hybrid hydrogels exhibited markedly improved mechanical property (storage modulus G'=38-187kPa), higher gel contents, and lower swelling ratios compared to the hydrogels prepared from collagen alone under similar conditions. Moreover, they showed tunable degradation behaviors against collagenase. The collagen/HAP-ALN hybrid hydrogels supported the adhesion and growth of murine MC3T3-E1 osteoblastic cells well. Such tough yet enzymatically degradable hybrid hydrogels hold potential as scaffolds for bone tissue engineering. PMID:26998869

  4. Effects of chitosan/collagen substrates on the behavior of rat neural stem cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Spinal cord and brain injuries usually lead to cavity formation.The transplantation by combining stem cells and tissue engineering scaffolds has the potential to fill the cavities and replace the lost neural cells.Both chitosan and collagen have their unique characteristics.In this study,the effects of chitosan and collagen on the behavior of rat neural stem cells (at the neurosphere level) were tested in vitro in terms of cytotoxicity and supporting ability for stem cell survival,proliferation and differentiation.Under the serum-free condition,both chitosan membranes and collagen gels had low cytotoxicity to neurospheres.That is,cells migrated from neurospheres,and processes extended out from these neurospheres and the differentiated cells.Compared with the above two materials,chitosan-collagen membranes were more suitable for the co-culture with rat neural stem cells,because,except for low cytotoxicity and supporting ability for the cell survival,in this group,a large number of cells were observed to migrate out from neurospheres,and the differentiating percentage from neurospheres into neurons was significantly increased.Further modification of chitosan-collagen membranes may shed light on in vivo nerve regeneration by transplanting neural stem cells.

  5. Recombinant gelatin and collagen from methylotrophic yeasts

    OpenAIRE

    Bruin,, Henk

    2002-01-01

    Based on its structural role and compatibility within the human body, collagen is a commonly used biomaterial in medical applications, such as cosmetic surgery, wound treatment and tissue engineering. Gelatin is in essence denatured and partly degraded collagen and is, as a result of its unique functional and chemical properties, also used in many medical and pharmaceutical products. Collagen and gelatin are traditionally extracted from animal tissues. The quality and the characteristics of t...

  6. Alginate-Collagen Fibril Composite Hydrogel

    OpenAIRE

    Mahmoud Baniasadi; Majid Minary-Jolandan

    2015-01-01

    We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM)-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of th...

  7. Alginate-Collagen Fibril Composite Hydrogel

    Directory of Open Access Journals (Sweden)

    Mahmoud Baniasadi

    2015-02-01

    Full Text Available We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel.

  8. Ionic solutes impact collagen scaffold bioactivity.

    Science.gov (United States)

    Pawelec, K M; Husmann, A; Wardale, R J; Best, S M; Cameron, R E

    2015-02-01

    The structure of ice-templated collagen scaffolds is sensitive to many factors. By adding 0.5 wt% of sodium chloride or sucrose to collagen slurries, scaffold structure could be tuned through changes in ice growth kinetics and interactions of the solute and collagen. With ionic solutes (sodium chloride) the entanglements of the collagen molecule decreased, leading to fibrous scaffolds with increased pore size and decreased attachment of chondrocytes. With non-ionic solutes (sucrose) ice growth was slowed, leading to significantly reduced pore size and up-regulated cell attachment. This highlights the large changes in structure and biological function stimulated by solutes in ice-templating systems. PMID:25649518

  9. Collagen I confers gamma radiation resistance

    International Nuclear Information System (INIS)

    The effect of collagen on the response of somatomammotroph tumor cells (GH3) to gamma, radiation therapy was studied in vitro. After incubating confluent GH3 cell monolayers in a serum-free, maintaining medium, either with or without collagen, the monolayers were irradiated with 137Cs, gamma radiation. Collagen reduces cell mortality via ERK1/2 activation, abolishing gamma radiation, cell death, and promotes cell invasion when acting in synergy with collagen and in association with the, MAPK/ERK1/2 signaling pathway activation. The presence of collagen in somatomammotroph tumors, confers resistance to radiation. - Highlights: ► Collagen effect on GH3 cells response to gamma radiation therapy was studied. ► Collagen ERK activation abolishes gamma radiation GH3 cell death. ► Gamma radiation promotes cell invasion and ERK activation in synergy with collagen. ► The presence of collagen in somatomammotroph tumors confers radiotherapy resistance. ► Analysis of tumor surrounding tissue before applying radiotherapy would be advisable.

  10. Suppression of type II collagen-induced arthritis by intragastric administration of soluble type II collagen.

    OpenAIRE

    NAGLER-ANDERSON, C; Bober, L A; Robinson, M E; Siskind, G W; Thorbecke, G. J.

    1986-01-01

    Although oral administration of protein antigens may lead to specific immunologic unresponsiveness, this method of immunoregulation has not been applied to models of autoimmune disease. Type II collagen-induced arthritis is an animal model of polyarthritis induced in susceptible mice and rats by immunization with type II collagen, a major component of cartilage. Intragastric administration of soluble type II collagen, prior to immunization with type II collagen in adjuvant, suppresses the inc...

  11. Molecules in Focus: Collagen XII: Protecting bone and muscle integrity by organizing collagen fibrils

    Science.gov (United States)

    Chiquet, Matthias; Birk, David E.; Bönnemann, Carsten G.; Koch, Manuel

    2014-01-01

    Collagen XII, largest member of the fibril-associated collagens with interrupted triple helix (FACIT) family, assembles from three identical α-chains encoded by the COL12A1 gene. The molecule consists of three threadlike N-terminal noncollagenous NC3 domains, joined by disulfide bonds and a short interrupted collagen triple helix towards the C-terminus. Splice variants differ considerably in size and properties: "small" collagen XIIB (220 kDa subunit) is similar to collagen XIV, whereas collagen XIIA (350 kDa) has a much larger NC3 domain carrying glycosaminoglycan chains. Collagen XII binds to collagen I-containing fibrils via its collagenous domain, whereas its large noncollagenous arms interact with other matrix proteins such as tenascin-X. In dense connective tissues and bone, collagen XII is thought to regulate organization and mechanical properties of collagen fibril bundles. Accordingly, recent findings show that collagen XII mutations cause Ehlers-Danlos/myopathy overlap syndrome associated with skeletal abnormalities and muscle weakness in mice and humans. PMID:24801612

  12. Collagen XII: Protecting bone and muscle integrity by organizing collagen fibrils.

    Science.gov (United States)

    Chiquet, Matthias; Birk, David E; Bönnemann, Carsten G; Koch, Manuel

    2014-08-01

    Collagen XII, largest member of the fibril-associated collagens with interrupted triple helix (FACIT) family, assembles from three identical α-chains encoded by the COL12A1 gene. The molecule consists of three threadlike N-terminal noncollagenous NC3 domains, joined by disulfide bonds and a short interrupted collagen triple helix toward the C-terminus. Splice variants differ considerably in size and properties: "small" collagen XIIB (220 kDa subunit) is similar to collagen XIV, whereas collagen XIIA (350 kDa) has a much larger NC3 domain carrying glycosaminoglycan chains. Collagen XII binds to collagen I-containing fibrils via its collagenous domain, whereas its large noncollagenous arms interact with other matrix proteins such as tenascin-X. In dense connective tissues and bone, collagen XII is thought to regulate organization and mechanical properties of collagen fibril bundles. Accordingly, recent findings show that collagen XII mutations cause Ehlers-Danlos/myopathy overlap syndrome associated with skeletal abnormalities and muscle weakness in mice and humans. PMID:24801612

  13. Antioxidant and Functional Properties of Collagen Hydrolysates from Spanish Mackerel Skin as Influenced by Average Molecular Weight

    Directory of Open Access Journals (Sweden)

    Chang-Feng Chi

    2014-07-01

    Full Text Available In the current study, the relationships between functional properties and average molecular weight (AMW of collagen hydrolysates from Spanish mackerel (Scomberomorous niphonius skin were researched. Seven hydrolysate fractions (5.04 ≤ AMW ≤ 47.82 kDa from collagen of Spanish mackerel skin were obtained through the processes of acid extraction, proteolysis, and fractionation using gel filtration chromatography. The physicochemical properties of the collagen hydrolysate fractions were studied by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE, gel filtration chromatography, scanning electron microscope (SEM and Fourier transform infrared spectroscopy (FTIR. The results indicated that there was an inverse relationship between the antioxidant activities and the logarithm of the AMW of the hydrolysate fractions in the tested AMW range. However, the reduction of AMW significantly enhanced the solubility of the hydrolysate fractions, and a similar AMW decrease of the hydrolysate fractions negatively affected the emulsifying and foaming capacities. This presented as a positive correlation between the logarithm of AMW and emulsion stability index, emulsifying activity index, foam stability, and foam capacity. Therefore, these collagen hydrolysates with excellent antioxidant activities or good functionalities as emulsifiers could be obtained by controlling the effect of the digestion process on the AMW of the resultant hydrolysates.

  14. Cell cytoskeletal changes effected by static compressive stress lead to changes in the contractile properties of tissue regenerative collagen membranes.

    Science.gov (United States)

    Gellynck, K; Shah, R; Deng, D; Parkar, M; Liu, W; Knowles, J C; Buxton, P

    2013-01-01

    Static compressive stress can influence the matrix, which subsequently affects cell behaviour and the cell's ability to further transform the matrix. This study aimed to assess response to static compressive stress at different stages of osteoblast differentiation and assess the cell cytoskeleton's role as a conduit of matrix-derived stimuli. Mouse bone marrow mesenchymal stem cells (MSCs) (D1 ORL UVA), osteoblastic cells (MC3T3-E1) and post-osteoblast/pre-osteocyte-like cells (MLO-A5) were seeded in hydrated and compressed collagen gels. Contraction was quantified macroscopically, and cell morphology, survival, differentiation and mineralisation assessed using confocal microscopy, alamarBlue® assay, real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and histological stains, respectively. Confocal microscopy demonstrated cell shape changes and favourable microfilament organisation with static compressive stress of the collagen matrix; furthermore, cell survival was greater compared to the hydrated gels. The stage of osteoblast differentiation determined the degree of matrix contraction, with MSCs demonstrating the greatest amount. Introduction of microfilament disrupting inhibitors confirmed that pre-stress and tensegrity forces were under the influence of gel density, and there was increased survival and differentiation of the cells within the compressed collagen compared to the hydrated collagen. There was also relative stiffening and differentiation with time of the compressed cell-seeded collagen, allowing for greater manipulation. In conclusion, the combined collagen chemistry and increased density of the microenvironment can promote upregulation of osteogenic genes and mineralisation; MSCs can facilitate matrix contraction to form an engineered membrane with the potential to serve as a 'pseudo-periosteum' in the regeneration of bone defects. PMID:23813054

  15. Cell cytoskeletal changes effected by static compressive stress lead to changes in the contractile properties of tissue regenerative collagen membranes

    Directory of Open Access Journals (Sweden)

    K Gellynck

    2013-06-01

    Full Text Available Static compressive stress can influence the matrix, which subsequently affects cell behaviour and the cell’s ability to further transform the matrix. This study aimed to assess response to static compressive stress at different stages of osteoblast differentiation and assess the cell cytoskeleton’s role as a conduit of matrix-derived stimuli. Mouse bone marrow mesenchymal stem cells (MSCs (D1 ORL UVA, osteoblastic cells (MC3T3-E1 and post-osteoblast/pre-osteocyte-like cells (MLO-A5 were seeded in hydrated and compressed collagen gels. Contraction was quantified macroscopically, and cell morphology, survival, differentiation and mineralisation assessed using confocal microscopy, alamarBlue® assay, real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR and histological stains, respectively. Confocal microscopy demonstrated cell shape changes and favourable microfilament organisation with static compressive stress of the collagen matrix; furthermore, cell survival was greater compared to the hydrated gels. The stage of osteoblast differentiation determined the degree of matrix contraction, with MSCs demonstrating the greatest amount. Introduction of microfilament disrupting inhibitors confirmed that pre-stress and tensegrity forces were under the influence of gel density, and there was increased survival and differentiation of the cells within the compressed collagen compared to the hydrated collagen. There was also relative stiffening and differentiation with time of the compressed cell-seeded collagen, allowing for greater manipulation. In conclusion, the combined collagen chemistry and increased density of the microenvironment can promote upregulation of osteogenic genes and mineralisation; MSCs can facilitate matrix contraction to form an engineered membrane with the potential to serve as a ‘pseudo-periosteum’ in the regeneration of bone defects.

  16. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects

    Directory of Open Access Journals (Sweden)

    Wang Y

    2016-05-01

    Full Text Available Yao Wang,1 Ngo Van Manh,1,2 Haorong Wang,1 Xue Zhong,1 Xu Zhang,1 Changyi Li1 1School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, People’s Republic of China; 2Thaibinh University of Medicine and Pharmacy, Thaibinh, Vietnam Abstract: The mineralization of collagen scaffolds can improve their mechanical properties and biocompatibility, thereby providing an appropriate microenvironment for bone regeneration. The primary purpose of the present study is to fabricate a synergistically intra- and extrafibrillar mineralized collagen scaffold, which has many advantages in terms of biocompatibility, biomechanical properties, and further osteogenic potential. In this study, mineralized collagen scaffolds were fabricated using a traditional mineralization method (ie, immersed in simulated body fluid as a control group and using a biomimetic method based on the polymer-induced liquid precursor process as an experimental group. In the polymer-induced liquid precursor process, a negatively charged polymer, carboxymethyl chitosan (CMC, was used to stabilize amorphous calcium phosphate (ACP to form nanocomplexes of CMC/ACP. Collagen scaffolds mineralized based on the polymer-induced liquid precursor process were in gel form such that nanocomplexes of CMC/ACP can easily be drawn into the interstices of the collagen fibrils. Scanning electron microscopy and transmission electron microscopy were used to examine the porous micromorphology and synergistic mineralization pattern of the collagen scaffolds. Compared with simulated body fluid, nanocomplexes of CMC/ACP significantly increased the modulus of the collagen scaffolds. The results of in vitro experiments showed that the cell count and differentiated degrees in the experimental group were higher than those in the control group. Histological staining and micro-computed tomography showed that the amount of new bone regenerated in the experimental group was larger than that in the

  17. Genetics Home Reference: collagen VI-related myopathy

    Science.gov (United States)

    ... Genetics Home Health Conditions collagen VI-related myopathy collagen VI-related myopathy Enable Javascript to view the ... boxes. Print All Open All Close All Description Collagen VI-related myopathy is a group of disorders ...

  18. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Selective laser sintering (SLS), an additive manufacturing (AM) technology, can be used to produce tissue engineering scaffolds with pre-designed macro and micro features based on computer-aided design models. An in-house SLS machine was built and 3D poly-ε-caprolactone (PCL) scaffolds were manufactured using a layer-by-layer design of scaffold struts with varying orientations (0°/45°/0°/45°, 0°/90°/0°/90°, 0°/45°/90°/135°), producing scaffolds with pores of different shapes and distribution. To better enhance the scaffold properties, chondrocytes were seeded in collagen gel and loaded in scaffolds for cartilage tissue engineering. Gel uptake and dynamic mechanical analysis demonstrated the better suitability of the 0°/90°/0°/90° scaffolds for reconstructive cartilage tissue engineering purposes. Chondrocytes were then seeded onto the 0°/90°/0°/90° scaffolds in collagen I hydrogel (PCL/COL1) and compared to medium-suspended cells in terms of their cartilage-like tissue engineering parameters. PCL/COL1 allowed better cell proliferation when compared to PCL or two-dimensional tissue culture polystyrene. Scanning electron microscopy and confocal microscopy observations demonstrated a similar trend for extracellular matrix production and cell survival. Glycosaminoglycan and collagen II quantification also demonstrated the superior matrix secretion properties of PCL/COL1 hybrid scaffolds. Collagen-gel-suspended chondrocytes loaded in SLS-manufactured PCL scaffolds may provide a means of producing tissue-engineered cartilage with customized shapes and designs via AM technology. (paper)

  19. Engineering stable topography in dense bio-mimetic 3D collagen scaffolds

    Directory of Open Access Journals (Sweden)

    T Alekseeva

    2012-01-01

    Full Text Available Topographic features are well known to influence cell behaviour and can provide a powerful tool for engineering complex, functional tissues. This study aimed to investigate the mechanisms of formation of a stable micro-topography on plastic compressed (PC collagen gels. The uni-directional fluid flow that accompanies PC of collagen gels creates a fluid leaving surface (FLS and a non-fluid leaving surface (non-FLS. Here we tested the hypothesis that the resulting anisotropy in collagen density and stiffness between FLS and non-FLS would influence the fidelity and stability of micro-grooves patterned on these surfaces. A pattern template of parallel-aligned glass fibres was introduced to the FLS or non-FLS either at the start of the compression or halfway through, when a dense FLS had already formed. Results showed that both early and late patterning of the FLS generated grooves that had depth (25 ±7 µm and 19 ±8 µm, respectively and width (55 ±11 µm and 50 ±12 µm, respectively which matched the glass fibre diameter (50 µm. In contrast, early and late patterning of the non-FLS gave much wider (151 ±50 µm and 89 ±14 µm, respectively and shallower (10 ±2.7 µm and 13 ±3.5 µm, respectively grooves than expected. The depth to width ratio of the grooves generated on the FLS remained unaltered under static culture conditions over 2 weeks, indicating that grooves were stable under long term active cell-mediated matrix remodelling. These results indicate that the FLS, characterised by a higher matrix collagen density and stiffness than the non-FLS, provides the most favourable mechanical surface for precise engineering of a stable micro-topography in 3D collagen hydrogel scaffolds.

  20. Conformance Improvement Using Gels

    Energy Technology Data Exchange (ETDEWEB)

    Seright, Randall S.; Schrader, Richard; II Hagstrom, John; Wang, Ying; Al-Dahfeeri, Abdullah; Gary, Raven; Marin; Amaury; Lindquist, Brent

    2002-09-26

    This research project had two objectives. The first objective was to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective was to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil.

  1. Crystallization from Gels

    Science.gov (United States)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  2. Preparation of chitosan gel

    Directory of Open Access Journals (Sweden)

    Lagerge S.

    2012-06-01

    Full Text Available Aerogel conditioning of the chitosan makes it possible to prepare porous solids of significant specific surface. The increase in the chitosan concentration or the degree of acetylation decreases the specific surface of the synthesized chitosan gel. Whereas drying with supercritical CO2 more effectively makes it possible to preserve the volume of the spheres of gel and to have a more significant specific surface in comparison with evaporative drying.

  3. Zosteriform collagen nevus in a young boy

    OpenAIRE

    Topal, Ilteris Oguz; Kamali, Gulcin Harman; Gungor, Sule; Goncu, Ozgur Emek Kocaturk

    2014-01-01

    Zosterifom connective tissue nevus is a rare kind of connective tissue nevi composed of collagen, elastin, or glycosaminoglycan, which was first reported by Steiner 1944. Herein, we report a young boy with a collagen nevus that presented in a zosteriform distribution.

  4. Recombinant gelatin and collagen from methylotrophic yeasts

    NARCIS (Netherlands)

    Bruin, de E.C.

    2002-01-01

    Based on its structural role and compatibility within the human body, collagen is a commonly used biomaterial in medical applications, such as cosmetic surgery, wound treatment and tissue engineering. Gelatin is in essence denatured and partly degraded collagen and is, as a result of

  5. Proline puckering parameters for collagen structure simulations

    International Nuclear Information System (INIS)

    Collagen is made of triple helices rich in proline residues, and hence is influenced by the conformational motions of prolines. Because the backbone motions of prolines are restricted by the helical structures, the only side chain motion—proline puckering—becomes an influential factor that may affect the stability of collagen structures. In molecular simulations, a proper proline puckering population is desired so to yield valid results of the collagen properties. Here we design the proline puckering parameters in order to yield suitable proline puckering populations as demonstrated in the experimental results. We test these parameters in collagen and the proline dipeptide simulations. Compared with the results of the PDB and the quantum calculations, we propose the proline puckering parameters for the selected collagen model simulations

  6. Proline puckering parameters for collagen structure simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Di, E-mail: diwu@fudan.edu.cn [Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438 (China)

    2015-03-15

    Collagen is made of triple helices rich in proline residues, and hence is influenced by the conformational motions of prolines. Because the backbone motions of prolines are restricted by the helical structures, the only side chain motion—proline puckering—becomes an influential factor that may affect the stability of collagen structures. In molecular simulations, a proper proline puckering population is desired so to yield valid results of the collagen properties. Here we design the proline puckering parameters in order to yield suitable proline puckering populations as demonstrated in the experimental results. We test these parameters in collagen and the proline dipeptide simulations. Compared with the results of the PDB and the quantum calculations, we propose the proline puckering parameters for the selected collagen model simulations.

  7. CONFORMANCE IMPROVEMENT USING GELS

    Energy Technology Data Exchange (ETDEWEB)

    Randall S. Seright

    2004-09-30

    This report describes work performed during the third and final year of the project, ''Conformance Improvement Using Gels.'' Corefloods revealed throughput dependencies of permeability reduction by polymers and gels that were much more prolonged during oil flow than water flow. This behavior was explained using simple mobility ratio arguments. A model was developed that quantitatively fits the results and predicts ''clean up'' times for oil productivity when production wells are returned to service after application of a polymer or gel treatment. X-ray computed microtomography studies of gels in strongly water-wet Berea sandstone and strongly oil-wet porous polyethylene suggested that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than gel-ripping or gel-displacement mechanisms. In contrast, analysis of data from the University of Kansas suggests that the gel-ripping or displacement mechanisms are more important in more permeable, strongly water-wet sandpacks. These findings help to explain why aqueous gels can reduce permeability to water more than to oil under different conditions. Since cement is the most commonly used material for water shutoff, we considered when gels are preferred over cements. Our analysis and experimental results indicated that cement cannot be expected to completely fill (top to bottom) a vertical fracture of any width, except near the wellbore. For vertical fractures with apertures less than 4 mm, the cement slurry will simply not penetrate very far into the fracture. For vertical fractures with apertures greater than 4 mm, the slurry may penetrate a substantial distance into the bottom part of the fracture. However, except near the wellbore, the upper part of the fracture will remain open due to gravity segregation. We compared various approaches to plugging fractures using gels, including (1) varying polymer content, (2) varying placement (extrusion) rate

  8. Optimization of enzyme-assisted extraction and characterization of collagen from Chinese sturgeon (Acipenser sturio Linnaeus skin

    Directory of Open Access Journals (Sweden)

    Weiwei Feng

    2013-01-01

    Full Text Available Background: Sturgeon (Acipenser sturio Linnaeus skin contains high amount of nutrients including unsaturated fatty acids and collagen. A pepsin-assisted extraction procedure was developed and optimized for the extraction of collagen from Chinese sturgeon (Acipenser sturio Linnaeus skins. Objective: To determine the optimum conditions with the maximum yield of the pepsin-soluble collagen (PSC extraction. Materials and Methods: The conditions of the extraction were optimized using response surface methodology. The Box-Behnken design was used to evaluate the effects of the three independent variables (extraction time, enzyme concentration, and solid-liquid ratio on the PSC yield of the sturgeon skin. Results: The optimal conditions were: solid-liquid ratio of 1:11.88, enzyme concentration of 2.42%, and extraction time of 6.45 h. The maximum yield of 86.69% of PSC was obtained under the optimal conditions. This value was not significantly different from the predicted value (87.4% of the RSM (P < 0.05. Conclusion: The results of this study indicated that the production of PSC from sturgeon skin is feasible and beneficial. The patterns of sodium dodecyl sulfate-polyacrylamide gel electrophoretic patterns (SDS-PAGE indicated that the sturgeon skin contains type I collagen, which is made of α-chain and β-chain. The infrared spectra of the collagens also indicated that pepsin hydrolysis does not affect the secondary structure of collagen, especially triple-helical structure.

  9. Review of Fricke gel dosimeters

    International Nuclear Information System (INIS)

    The innovation of adding a gel matrix to the traditional Fricke dosimeter to stabilize geometric information established the field of gel dosimetry for radiation therapy. A discussion of Fricke gels provides an overview of the issues that determine the dose response of all gel dosimeters in general. In this paper we review some of the features of Fricke systems to illustrate these issues and, in addition, to motivate renewed clinical interest in Fricke gels

  10. Design of Autonomous Gel Actuators

    OpenAIRE

    Shuji Hashimoto; Shingo Maeda; Yusuke Hara; Satoshi Nakamaru

    2011-01-01

    In this paper, we introduce autonomous gel actuators driven by chemical energy. The polymer gels prepared here have cyclic chemical reaction networks. With a cyclic reaction, the polymer gels generate periodical motion. The periodic motion of the gel is produced by the chemical energy of the oscillatory Belouzov-Zhabotinsky (BZ) reaction. We have succeeded in making synthetic polymer gel move autonomously like a living organism. This experimental fact represents the great possibility of the c...

  11. Design of Autonomous Gel Actuators

    Directory of Open Access Journals (Sweden)

    Shuji Hashimoto

    2011-01-01

    Full Text Available In this paper, we introduce autonomous gel actuators driven by chemical energy. The polymer gels prepared here have cyclic chemical reaction networks. With a cyclic reaction, the polymer gels generate periodical motion. The periodic motion of the gel is produced by the chemical energy of the oscillatory Belouzov-Zhabotinsky (BZ reaction. We have succeeded in making synthetic polymer gel move autonomously like a living organism. This experimental fact represents the great possibility of the chemical robot.

  12. Isolation and characterization of collagen from the body wall of sea cucumber Stichopus monotuberculatus.

    Science.gov (United States)

    Zhong, Ming; Chen, Ting; Hu, Chaoqun; Ren, Chunhua

    2015-04-01

    To exploit a new collagen resource from the body wall of tropical sea cucumber, pepsin-solubilized collagen of Stichopus monotuberculatus (PSC-Sm) was isolated and characterized with UV-vis spectra, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), amino acid composition, enzyme-digested peptide maps, Fourier transform infrared spectroscopy (FTIR), maximum transition temperature (Tm ), and solubilities. The maximum absorbance of PSC-Sm was exhibited at 218 nm in UV-vis spectra. The triple helical structure and activity of PSC-Sm could be indicated by FTIR. SDS-PAGE showed that the triple helix of PSC-Sm was formed as (α1 )3 by 3 α1 chain homologous with molecular weight of 137 kDa. The Tm of PSC-Sm and calf skin collagen (CSC) were 30.2 and 35.0 ºC, respectively, which consistent with the result of FTIR that CSC contained more stable triple-helix than PSC-Sm. Peptide maps were different between PSC-Sm and CSC, indicating the differences in their amino acid compositions and sequences. The maximum and minimum solubilities of PSC-Sm were observed at pH 2.0 and 4.0, respectively. A sharp decrease in solubility appeared when NaCl concentration was between 3% and 5%. These results showed that collagen from S. monotuberculatus had the type I collagen characteristics and good thermal stability, and therefore, it could be used as an alternative resource of collagen. PMID:25810305

  13. Microfibrous {beta}-TCP/collagen scaffolds mimic woven bone in structure and composition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shen; Zhang Xin; Cai Qing; Yang Xiaoping [Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Wang Bo; Deng Xuliang, E-mail: yangxp@mail.buct.edu.c [Department of VIP Dental Service, School and Hospital of Stomatology, Peking University, Beijing 100081 (China)

    2010-12-15

    Woven bone, as the initial form of bone tissue, is always found in developing and repairing bone. It is thought of as a temporary scaffold for the deposition of osteogenic cells and the laying down of lamellar bone. Thus, we hypothesize that a matrix which resembles the architecture and components of woven bone can provide an osteoblastic microenvironment for bone cell growth and new bone formation. In this study, woven-bone-like beta-tricalcium phosphate ({beta}-TCP)/collagen scaffolds were fabricated by sol-gel electrospinning and impregnating methods. Optimization studies on sol-gel synthesis and electrospinning process were conducted respectively to prepare pure {beta}-TCP fibers with dimensions close to mineralized collagen fibrils in woven bone. The collagen-coating layer prepared by impregnation had an adhesive role that held the {beta}-TCP fibers together, and resulted in rapid degradation and matrix mineralization in in vitro tests. MG63 osteoblast-like cells seeded on the resultant scaffolds showed three-dimensional (3D) morphologies, and merged into multicellular layers after 7 days culture. Cytotoxicity test further revealed that extracts from the resultant scaffolds could promote the proliferation of MG63 cells. Therefore, the woven-bone-like matrix that we constructed favored the attachment and proliferation of MG63 cells in three dimensions. It has great potential ability to shorten the time of formation of new bone.

  14. Collagen-platelet interactions: recognition and signalling.

    Science.gov (United States)

    Farndale, Richard W; Siljander, Pia R; Onley, David J; Sundaresan, Pavithra; Knight, C Graham; Barnes, Michael J

    2003-01-01

    The collagen-platelet interaction is central to haemostasis and may be a critical determinant of arterial thrombosis, where subendothelium is exposed after rupture of atherosclerotic plaque. Recent research has capitalized on the cloning of an important signalling receptor for collagen, glycoprotein VI, which is expressed only on platelets, and on the use of collagen-mimetic peptides as specific tools for both glycoprotein VI and integrin alpha 2 beta 1. We have identified sequences, GPO and GFOGER (where O denotes hydroxyproline), within collagen that are recognized by the collagen receptors glycoprotein VI and integrin alpha 2 beta 1 respectively, allowing their signalling properties and specific functional roles to be examined. Triple-helical peptides containing these sequences were used to show the signalling potential of integrin alpha 2 beta 1, and to confirm its important contribution to platelet adhesion. Glycoprotein VI appears to operate functionally on the platelet surface as a dimer, which recognizes GPO motifs that are separated by four triplets of collagen sequence. These advances will allow the relationship between the structure of collagen and its haemostatic activity to be established. PMID:14587284

  15. Characterization of Genipin-Modified Dentin Collagen

    Directory of Open Access Journals (Sweden)

    Hiroko Nagaoka

    2014-01-01

    Full Text Available Application of biomodification techniques to dentin can improve its biochemical and biomechanical properties. Several collagen cross-linking agents have been reported to strengthen the mechanical properties of dentin. However, the characteristics of collagen that has undergone agent-induced biomodification are not well understood. The objective of this study was to analyze the effects of a natural cross-linking agent, genipin (GE, on dentin discoloration, collagen stability, and changes in amino acid composition and lysyl oxidase mediated natural collagen cross-links. Dentin collagen obtained from extracted bovine teeth was treated with three different concentrations of GE (0.01%, 0.1%, and 0.5% for several treatment times (0–24 h. Changes in biochemical properties of NaB3H4-reduced collagen were characterized by amino acid and cross-link analyses. The treatment of dentin collagen with GE resulted in a concentration- and time-dependent pigmentation and stability against bacterial collagenase. The lysyl oxidase-mediated trivalent mature cross-link, pyridinoline, showed no difference among all groups while the major divalent immature cross-link, dehydro-dihydroxylysinonorleucine/its ketoamine in collagen treated with 0.5% GE for 24 h, significantly decreased compared to control (P< 0.05. The newly formed GE-induced cross-links most likely involve lysine and hydroxylysine residues of collagen in a concentration-dependent manner. Some of these cross-links appear to be reducible and stabilized with NaB3H4.

  16. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects

    Science.gov (United States)

    Wang, Yao; Van Manh, Ngo; Wang, Haorong; Zhong, Xue; Zhang, Xu; Li, Changyi

    2016-01-01

    The mineralization of collagen scaffolds can improve their mechanical properties and biocompatibility, thereby providing an appropriate microenvironment for bone regeneration. The primary purpose of the present study is to fabricate a synergistically intra- and extrafibrillar mineralized collagen scaffold, which has many advantages in terms of biocompatibility, biomechanical properties, and further osteogenic potential. In this study, mineralized collagen scaffolds were fabricated using a traditional mineralization method (ie, immersed in simulated body fluid) as a control group and using a biomimetic method based on the polymer-induced liquid precursor process as an experimental group. In the polymer-induced liquid precursor process, a negatively charged polymer, carboxymethyl chitosan (CMC), was used to stabilize amorphous calcium phosphate (ACP) to form nanocomplexes of CMC/ACP. Collagen scaffolds mineralized based on the polymer-induced liquid precursor process were in gel form such that nanocomplexes of CMC/ACP can easily be drawn into the interstices of the collagen fibrils. Scanning electron microscopy and transmission electron microscopy were used to examine the porous micromorphology and synergistic mineralization pattern of the collagen scaffolds. Compared with simulated body fluid, nanocomplexes of CMC/ACP significantly increased the modulus of the collagen scaffolds. The results of in vitro experiments showed that the cell count and differentiated degrees in the experimental group were higher than those in the control group. Histological staining and micro-computed tomography showed that the amount of new bone regenerated in the experimental group was larger than that in the control group. The biomimetic mineralization will assist us in fabricating a novel collagen scaffold for clinical applications. PMID:27274235

  17. Establishment of in vitro models of denatured collagen%变性胶原体外培养模型的建立

    Institute of Scientific and Technical Information of China (English)

    苏荣家; 王志勇; 刘英开; 原博; 王西樵; 董叫云; 宋菲; 姜育智; 陆树良

    2013-01-01

    目的 探讨不同温度对Ⅰ型胶原分子二级结构的影响,确定合适的胶原变性温度,研究热变性后胶原纤维排列及三维凝胶性质的改变,比较胶原变性后不同培养环境成纤维细胞形态差异,以建立变性胶原-细胞体外培养模型. 方法 Ⅰ型胶原蛋白溶液在不同温度作用后通过蛋白质圆二色光谱仪分析胶原分子二级结构改变.扫描探针显微镜观察胶原变性后纤维结构的改变.制备不同种类三维胶原凝胶并通过气相压力仪检测胶原凝胶断裂模量.将变性后的胶原进行二维包被和三维胶原凝胶制作,倒置相差显微镜及光镜下观察不同培养环境下细胞形态变化. 结果 温度达到50℃时,Ⅰ型胶原分子二级结构发生明显改变,在二维胶原包被时可见胶原纤维凝集成团,含变性胶原的三维凝胶断裂模量明显下降.在变性胶原存在环境中培养成纤维细胞,细胞形态均有显著改变. 结论 经50℃作用后Ⅰ型胶原分子二级结构发生明显改变,含变性胶原的三维凝胶断裂模量明显下降,Ⅰ型胶原包被及三维凝胶模型培养的成纤维细胞形态明显不同,可作为变性胶原影响细胞生物学活性的体外模型.%Objective To investigate influence of different temperatures on secondary structure of type Ⅰ collagen,determine the proper temperature for collagen denaturation,observe changes of collagen fibre arrangement and three dimensional collagen gel properties after thermal denaturation,compare morphological variation of fibroblasts seeded in mediums with denatured collagen and therefore establish a standardized culture model with denatured collagen in vitro.Methods Changes of the secondary structure of type Ⅰ collagen was measured by circular dichroism spectrameter after the collagen solution had been treated with different temperatures.Changes of the fibre structure after collagen denaturation were observed by scanning probe

  18. Gel-silica science

    International Nuclear Information System (INIS)

    Sol-gel techniques can be used to produce two new types of optical silicas, termed Type V for the full density material and Type VI for the optically transparent porous material. This paper summarizes the processing differences between these six types of commercial silicas. The primary emphasis of this paper is to discuss the scientific basis for the processing of Types V and VI optical silica. First, however, the use of sol-gel processing of other systems will be briefly reviewed. The controlled hydrolysis of alkoxides has also been used to produce submicrometer TiO2, doped TiO2 (17), ZrO2 (18), doped ZrO2 (18), doped SiO2 (19), SrTiO3 (20), and corderite (20) powders. Emulsions have been employed to produce spherical powders of mixed cation oxides, such as yttrium aluminum garnets (YAG) and many other systems (20). Sol-gel powder processes have also been applied to fissile elements (21) where spray form sols UO2, and rigid gel spheres of UO-PuO2 are formed during passage through a column of heated liquid. Both crystalline and vitreous ceramic fibers have been prepared using the sol-gel method. Compositions include TiO2-SiO2 and ZrO2-SiO2 glass fibers (22), high purity SiO2 waveguide fibers (23), Al2O3, ZrO2, ThO2, MgO, TiO2, ZrSiO4, 3AlO3-2SiO2 fibers (24). Sol-gel derived alumina grains are important commercial products (25)

  19. Additive manufacturing of collagen scaffolds by three-dimensional plotting of highly viscous dispersions.

    Science.gov (United States)

    Lode, Anja; Meyer, Michael; Brüggemeier, Sophie; Paul, Birgit; Baltzer, Hagen; Schröpfer, Michaela; Winkelmann, Claudia; Sonntag, Frank; Gelinsky, Michael

    2016-03-01

    Additive manufacturing (AM) allows the free form fabrication of three-dimensional (3D) structures with distinct external geometry, fitting into a patient-specific defect, and defined internal pore architecture. However, fabrication of predesigned collagen scaffolds using AM-based technologies is challenging due to the low viscosity of collagen solutions, gels or dispersions commonly used for scaffold preparation. In the present study, we have developed a straightforward method which is based on 3D plotting of a highly viscous, high density collagen dispersion. The swollen state of the collagen fibrils at pH 4 enabled the homogenous extrusion of the material, the deposition of uniform strands and finally the construction of 3D scaffolds. Stabilization of the plotted structures was achieved by freeze-drying and chemical crosslinking with the carbodiimide EDC. The scaffolds exhibited high shape and dimensional fidelity and a hierarchical porosity consisting of macropores generated by strand deposition as well as an interconnected microporosity within the strands as result of the freeze-drying process. Cultivation of human mesenchymal stromal cells on the scaffolds, with and without adipogenic or osteogenic stimulation, revealed their cytocompatibility and potential applicability for adipose and bone tissue engineering. PMID:26924825

  20. Mechanical and Swelling Properties of Poly (vinyl alcohol and Hyaluronic Acid Gels used in Biomaterial Systems - a Comparative Study

    Directory of Open Access Journals (Sweden)

    Jagadeeshwar Kodavaty

    2014-05-01

    Full Text Available There is an increasing demand for designing controlled drug delivery systems with materials which are morebiocompatible, economical and materials which can be processed easily. Poly (vinyl alcohol (PVA and hyaluronicacid (HA are promising polymers for applications in drug delivery. PVA forms gel based on the acetal bridges when cross linked with glutaraldehyde (GA. On the other hand, HA a natural polymer, forms gel with divinyl sulfone(DVS as a crosslinker. PVA and HA blends upon crosslinking PVA with GA or HA with DVS, in the presence ofthe other polymer, form gels that are more adaptable to the drug delivery systems. In this work, the mechanicalproperties and swelling behaviour of PVAHA gels were characterized. The effect of composition on viscoelasticmoduli and degree of swelling was determined. The storage modulus (G″ of various gels made of PVA, HA andPVAHA blends were measured using rheology and compared with the values available in the literature. Swellingproperties were measured and compared among various PVA and HA gels. Collagen is added to PVA solution andthe rheological properties were measured in the gel state. Based on the values of storage modulus, gels of variouscompositions of PVA, HA and collagen might be selected as potential biomaterials for drug delivery system dependingon careful understanding the type of application.Defence Science Journal, Vol. 64, No. 3, May 2014, pp. 222-229, DOI:http://dx.doi.org /10.14429/dsj.64.7320

  1. Modified sol-gel coatings for biotechnological applications

    International Nuclear Information System (INIS)

    The modified sol-gel derived silica coatings were prepared and characterized. The amino and methyl groups were introduced onto the colloidal silica. The silica coatings with different wettability properties: coloidal silica (water contact angle 17 deg.), polysiloxane (61 deg.), methyl-modified (158 deg. and 46 deg.) coatings samples were tested for CaCo-2 cells proliferation. Methyl-modified coating (46 deg.) proved to be the best substrate for cell proliferation. CaCo-2 cell proliferation two days post seeding was significantly faster on almost laminine, fibronectin and collagen-1 coated samples compared to corresponding controls

  2. Modified sol-gel coatings for biotechnological applications

    Energy Technology Data Exchange (ETDEWEB)

    Beganskiene, A [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania); Raudonis, R [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania); Jokhadar, S Zemljic [Faculty of Medicine, Institute of Biophysics, Lipiceva 2, Ljubljana SI-1000 (Slovenia); Batista, U [Faculty of Medicine, Institute of Biophysics, Lipiceva 2, Ljubljana SI-1000 (Slovenia); Kareiva, A [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania)

    2007-12-15

    The modified sol-gel derived silica coatings were prepared and characterized. The amino and methyl groups were introduced onto the colloidal silica. The silica coatings with different wettability properties: coloidal silica (water contact angle 17 deg.), polysiloxane (61 deg.), methyl-modified (158 deg. and 46 deg.) coatings samples were tested for CaCo-2 cells proliferation. Methyl-modified coating (46 deg.) proved to be the best substrate for cell proliferation. CaCo-2 cell proliferation two days post seeding was significantly faster on almost laminine, fibronectin and collagen-1 coated samples compared to corresponding controls.

  3. Modified sol-gel coatings for biotechnological applications

    Science.gov (United States)

    Beganskiene, A.; Raudonis, R.; Zemljic Jokhadar, S.; Batista, U.; Kareiva, A.

    2007-12-01

    The modified sol-gel derived silica coatings were prepared and characterized. The amino and methyl groups were introduced onto the colloidal silica. The silica coatings with different wettability properties: coloidal silica (water contact angle 17°), polysiloxane (61°), methyl-modified (158° and 46°) coatings samples were tested for CaCo-2 cells proliferation. Methyl-modified coating (46°) proved to be the best substrate for cell proliferation. CaCo-2 cell proliferation two days post seeding was significantly faster on almost laminine, fibronectin and collagen-1 coated samples compared to corresponding controls.

  4. Daily consumption of the collagen supplement Pure Gold Collagen® reduces visible signs of aging

    Directory of Open Access Journals (Sweden)

    Borum

    2014-10-01

    Full Text Available Maryam Borumand, Sara Sibilla Minerva Research Labs Ltd., London, UK Abstract: With age, changes in the metabolic processes of structural components of the skin lead to visible signs of aging, such as increased dryness and wrinkle formation. The nutritional supplement, Pure Gold Collagen®, which consists of hydrolyzed collagen, hyaluronic acid, vitamins, and minerals, was developed to counteract these signs. An open-label study was conducted to investigate the effects of this nutritional supplement on skin properties. Supplementation with 50 mL of Pure Gold Collagen on a daily basis for 60 days led to a noticeable reduction in skin dryness, wrinkles, and nasolabial fold depth. In addition, a significant increase in collagen density and skin firmness was observed after 12 weeks. The data from this study suggest that Pure Gold Collagen can counteract signs of natural aging. Keywords: hydrolyzed collagen, antiaging, wrinkles, firmness, skin

  5. Asporin competes with decorin for collagen binding, binds calcium and promotes osteoblast collagen mineralization

    DEFF Research Database (Denmark)

    Kalamajski, Sebastian; Aspberg, Anders; Lindblom, Karin;

    2009-01-01

    The interactions of the ECM (extracellular matrix) protein asporin with ECM components have previously not been investigated. Here, we show that asporin binds collagen type I. This binding is inhibited by recombinant asporin fragment LRR (leucine-rich repeat) 10-12 and by full-length decorin, but...... not by biglycan. We demonstrate that the polyaspartate domain binds calcium and regulates hydroxyapatite formation in vitro. In the presence of asporin, the number of collagen nodules, and mRNA of osteoblastic markers Osterix and Runx2, were increased. Moreover, decorin or the collagen-binding asporin...... fragment LRR 10-12 inhibited the pro-osteoblastic activity of full-length asporin. Our results suggest that asporin and decorin compete for binding to collagen and that the polyaspartate in asporin directly regulates collagen mineralization. Therefore asporin has a role in osteoblast-driven collagen...

  6. A New Kind of Biomaterials-Bullfrog Skin Collagen

    Institute of Scientific and Technical Information of China (English)

    He LI; Bai Ling LIU; Hua Lin CHEN; Li Zhen GAO

    2003-01-01

    Pepsin-soluble collagen was prepared from bullfrog skin and partially characterized. This study revealed interesting differences, such as molecular weight, amino acid composition, denaturation temperature (Td), in the frog skin collagen when compared to the known vertebrate collagens. This study gives hints that bullfrog skin can be a potential, safe alternative source of collagen from cattle for use in various fields.

  7. Effects of solar radiation on collagen-based biomaterials

    OpenAIRE

    Alina Sionkowska; Marcin Wisniewski; Joanna Skopinska; Diego Mantovani

    2006-01-01

    The effect of solar radiation on collagen and collagen/synthetic polymer blends in the form of thin films and solutions has been studied by UV-VIS and FTIR spectroscopies. Films and solutions of collagen blended with poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) were irradiated by solar light. It was found that UV-VIS spectra, which characterize collagen, collagen/PVA, and collagen/PVP blended films, were significantly altered by solar radiation. FTIR spectra of collagen, collag...

  8. Targeting collagen expression in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Kyle J Thompson; Iain H McKillop; Laura W Schrum

    2011-01-01

    Alcoholic liver disease (ALD) is a leading cause of liver disease and liver-related deaths globally, particularly in developed nations. Liver fibrosis is a consequence of ALD and other chronic liver insults, which can progress to cirrhosis and hepatocellular carcinoma if left untreated. Liver fibrosis is characterized by accumulation of excess extracellular matrix components, including type Ⅰ collagen, which disrupts liver microcirculation and leads to injury. To date, there is no therapy for the treatment of liver fibrosis; thus treatments that either prevent the accumulation of type Ⅰ collagen or hasten its degradation are desirable. The focus of this review is to examine the regulation of type Ⅰ collagen in fibrogenic cells of the liver and to discuss current advances in therapeutics to eliminate excessive collagen deposition.

  9. Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation

    DEFF Research Database (Denmark)

    Kvist, A. J.; Johnson, A. E.; Mörgelin, M.;

    2006-01-01

    disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional to the...... content of the 4,6-disulfated disaccharide in the different cartilage extracts, with growth plate cartilage glycosaminoglycan being the most efficient enhancer. These findings demonstrate a role for perlecan chondroitin sulfate side chains in cartilage extracellular matrix assembly and provide an...... collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters...

  10. Effect of Bio-Oss ® Collagen and Collagen matrix on bone formation

    OpenAIRE

    Wong, R.W.K; Rabie, A B M

    2010-01-01

    Objective: to compare the amount of new bone produced by Bio-Oss ® Collagen to that produced by collagen matrix in vivo. Method: eighteen bone defects, 5mm by 10mm were created in the parietal bone of 9 New Zealand White rabbits. 6 defects were grafted with Bio-Oss ® Collagen. 6 defects were grafted with collagen matrix alone (positive control) and 6 were left empty (negative control). Animals were killed on day 14 and the defects were dissected and prepared for histological assessment. Quant...

  11. Supramolecular assembly of collagen fibrils into collagen fiber in fish scales of red seabream, Pagrus major.

    Science.gov (United States)

    Youn, Hwa Shik; Shin, Tae Joo

    2009-11-01

    Supramolecular assembly of collagen fibrils into collagen fiber and its distribution in fish scales of red seabream, Pagrus major, were investigated. By virtue of Zernike phase-contrast hard X-ray microscopy, it has been firstly observed that collagen fiber consists of helical substructures of collagen fibrils wrapped with incrustation. As it close to the scalar focus (that is, with aging), loosened- and deteriorated-helical assemblies started to be observed with loosing wrapping incrustation, indicative of the distortion of the basic helical assembly. Various distributions and packing arrangements of collagen fibers were observed dependent on subdivisions of fish scale. Freshly growing edge region of fish scale, embedded into fish skin, showed rarely patched and one directionally arranged collagen fibers, in which specifically triple helical assemblies of collagen fibrils were found. On the contrary, relatively aged region of the rostral field close to the scalar focus displayed randomly directed and densely packed collagen fibers, in which loosened- and deteriorated-helical assemblies of collagen fibrils were mostly found. Our results have demonstrated that hard X-ray microscope can be a powerful tool to study in situ internal structure of biological specimens in an atmospheric pressure. PMID:19666125

  12. An inhibitor selective for collagen-stimulated platelet aggregation from the salivary glands of hard tick Haemaphysalis longicornis and its mechanism of action

    Institute of Scientific and Technical Information of China (English)

    程远国; 吴厚永; 李德昌

    1999-01-01

    Soluble materials of salivary glands from Haemaphysalis longicornis were found to inhibit collagen, ADP, and thrombin-stimulated platelet aggregation. One inhibitory component was purified to salivary gland homogeneity by a combination of gel filtration, ion-exchange, and C8 reverse phase HPLC. The purified activity, named longieornin, is a protein of moleeular weight 16 000 on SDS-PAGE under both reduced and nonredueed conditions. Collagen-mediated aggregation of platelets in plasma and of washed platelets (IC50 was approximately 60 nmol/L) was inhibited with the same efficacy. No inhibition of aggregation stimulated by other effeetors, including ADP, arachidonic acid, thrombin, ristocetin, calcium ionophore A23187, thromboxane A2 mimetic U46619 and 12-O-phorbol-13-myristate acetate, was observed. Longieonin had no effect on platelet adhension to collagen. Not only platelet aggregation but also release reaction, and increase of intraeellar Ca2+ level of platelets in response to collagen were com

  13. Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite

    International Nuclear Information System (INIS)

    To meet the challenges of designing an injectable scaffold and regenerating bone with complex three-dimensional (3D) structures, a biomimetic and injectable hydrogel scaffold based on nano-hydroxyapatite (HA), collagen (Col) and chitosan (Chi) is synthesized. The chitosan/nano-hydroxyapatite/collagen (Chi/HA/Col) solution rapidly forms a stable gel at body temperature. It shows some features of natural bone both in main composition and microstructure. The Chi/HA/Col system can be expected as a candidate for workable systemic minimally invasive scaffolds with surface properties similar to physiological bone based on scanning electron microscopic (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) results.

  14. Cardiac tumours simulating collagen vascular disease.

    OpenAIRE

    Fitzpatrick, A. P.; Lanham, J. G.; Doyle, D V

    1986-01-01

    Cardiac tumours can mimic collagen vascular disease and they are often accompanied by profound systemic upset. Both benign and malignant tumours may present in this way. Three cases of cardiac tumour, two malignant and one benign, are reported with just such a presentation. A review of fifteen similar case reports showed that a spectrum of different collagen vascular diseases was diagnosed and treated before the true diagnosis emerged. In half of these cases the cardiac tumour was only diagno...

  15. Marine Origin Collagens and Its Potential Applications

    OpenAIRE

    Silva, Tiago H.; Joana Moreira-Silva; Marques, Ana L. P.; Alberta Domingues; Yves Bayon; Reis, Rui L.

    2014-01-01

    Collagens are the most abundant high molecular weight proteins in both invertebrate and vertebrate organisms, including mammals, and possess mainly a structural role, existing different types according with their specific organization in distinct tissues. From this, they have been elected as one of the key biological materials in tissue regeneration approaches. Also, industry is constantly searching for new natural sources of collagen and upgraded methodologies for their production. The most ...

  16. Why collagens best survived in fossils?

    DEFF Research Database (Denmark)

    Wang, Shuang-Yin; Cappellini, Enrico; Zhang, Hong-Yu

    2012-01-01

    Explaining why type I collagens are preferentially preserved in the geological time scale remains a challenge. Several pieces of evidence indicate that its rich content in the bone and its unique, stable structure played key roles in its preservation. By considering the distinct thermal stability...... of amino acids, we reveal that the elevated abundance of thermostable amino acid residues in type I collagens also contribute to its survival....

  17. Collagen quantification across human skeletal muscles

    OpenAIRE

    Lin, Evie Ya Hui

    2011-01-01

    Intramuscular connective tissue provides structural stability and facilitates force transmission in skeletal muscle. Additionally, it contains extracellular matrix that is crucial for muscle development and regeneration¹. Alterations of collagen content within intramuscular connective tissue have been associated with aging or diseased muscle ²,³. Data of baseline collagen content among different muscles, to provide deeper understanding of normal muscular functions, does not exist. Hence the a...

  18. DSC Study of Collagen in Disc Disease

    OpenAIRE

    S. Skrzyński; Sionkowska, A.; A. Marciniak

    2010-01-01

    Differential scanning calorimetry (DSC) has been used to estimate the effect of disc disease on the collagen helix-coil transition and morphology for tissue extracted from patients during surgical operation. Forty discs were obtained from patients with degenerative disc disease undergoing surgery for low back pain. The patients were in the age between 20 and 70 years old. The specimens were kept wet during DSC experiment. The data allow the comparison between thermal stability of collagen ti...

  19. Biological Safety of Fish (Tilapia) Collagen

    OpenAIRE

    Yamamoto, Kohei; Igawa, Kazunari; Sugimoto, Kouji; Yoshizawa, Yuu; Yanagiguchi, Kajiro; Ikeda, Takeshi; Yamada, Shizuka; Hayashi, Yoshihiko

    2014-01-01

    Marine collagen derived from fish scales, skin, and bone has been widely investigated for application as a scaffold and carrier due to its bioactive properties, including excellent biocompatibility, low antigenicity, and high biodegradability and cell growth potential. Fish type I collagen is an effective material as a biodegradable scaffold or spacer replicating the natural extracellular matrix, which serves to spatially organize cells, providing them with environmental signals and directing...

  20. Biological Safety of Fish (Tilapia) Collagen

    OpenAIRE

    山本, 耕平

    2015-01-01

    Marine collagen derived from fish scales, skin, and bone has been widely investigated for application as a scaffold and carrier due to its bioactive properties, including excellent biocompatibility, low antigenicity, and high biodegradability and cell growth potential. Fish type I collagen is an effective material as a biodegradable scaffold or spacer replicating the natural extracellular matrix, which serves to spatially organize cells, providing them with environmental signals and directing...

  1. Marine origin collagen membranes for drug delivery

    OpenAIRE

    Marques, A.P.; A. Domingues; Joana M Silva; Perez-Martin, R. I.; Sotelo, C. G.; Silva, Tiago H.; Reis, R. L.

    2014-01-01

    Introduction: Collagen is the most abundant protein of animal connective tissues, found in skins, bones or cartilages, which turn it into one of the key polymers to be considered for biomedical applications, namely tissue engineering and drug delivery. Current industrial procedures to extract collagen involves bovine and porcine as main sources. However, due to religious factors and the risk of transmitting diseases to humans, the search for new sources has been growing.M...

  2. Collagen-like antimicrobial peptides.

    Science.gov (United States)

    Masuda, Ryo; Kudo, Masakazu; Dazai, Yui; Mima, Takehiko; Koide, Takaki

    2016-11-01

    Combinatorial library composed of rigid rod-like peptides with a triple-helical scaffold was constructed. The component peptides were designed to have various combinations of basic and neutral (or hydrophobic) amino acid residues based on collagen-like (Gly-Pro-Yaa)-repeating sequences, inspired from the basic and amphiphilic nature of naturally occurring antimicrobial peptides. Screening of the peptide pools resulted in identification of antimicrobial peptides. A structure-activity relationship study revealed that the position of Arg-cluster at N-terminus and cystine knots at C-terminus in the triple helix significantly contributed to the antimicrobial activity. The most potent peptide RO-A showed activity against Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. In addition, Escherichia coli exposed to RO-A resulted in abnormal elongation of the cells. RO-A was also shown to have remarkable stability in human serum and low cytotoxicity to mammalian cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 453-459, 2016. PMID:27271210

  3. Collagen coated tantalum substrate for cell proliferation.

    Science.gov (United States)

    Li, Yinli; Zhang, Shuai; Guo, Lijun; Dong, Mingdong; Liu, Bo; Mamdouh, Wael

    2012-06-15

    The extracellular matrix (ECM) plays a key role in cell culture in various physiological and pathological processes in the field of tissue engineering. Recently, the type I collagen ECM has been widely utilized in vitro model systems for the attachment of many different cell lines since it has multi-functions in human tissues. For example it accounts for 6% of the weight of strong, tendinous muscles. In this paper, we reported a new material by coating tantalum (Ta), one highly biocompatible metal, with type I collagen fibrils. The morphology of the new material was studied by high resolution atomic force microscope. It was shown that the adhesion force between type I collagen fibrils network and Ta was strong enough to overcome surface defects. A possible way to explain the phenomenon is that the longitudinal periodicity of collagen fibrils matches the grain size of the Ta domains, which results in increase of the physical adsorption contact area, thereby inducing the dramatic adhesion enhancement between collagen fibrils and Ta. The obtained material was then employed as a template for cell proliferation. Although the surface of this template is more hydrophobic by comparison with the bare Ta surface, the cells on this material were successfully incubated, indicating that the collagen coated Ta might be used as the buffer layer for proliferating cells in hydrophobic biomaterials. PMID:22494669

  4. Marine Origin Collagens and Its Potential Applications

    Directory of Open Access Journals (Sweden)

    Tiago H. Silva

    2014-12-01

    Full Text Available Collagens are the most abundant high molecular weight proteins in both invertebrate and vertebrate organisms, including mammals, and possess mainly a structural role, existing different types according with their specific organization in distinct tissues. From this, they have been elected as one of the key biological materials in tissue regeneration approaches. Also, industry is constantly searching for new natural sources of collagen and upgraded methodologies for their production. The most common sources are from bovine and porcine origin, but other ways are making their route, such as recombinant production, but also extraction from marine organisms like fish. Different organisms have been proposed and explored for collagen extraction, allowing the sustainable production of different types of collagens, with properties depending on the kind of organism (and their natural environment and extraction methodology. Such variety of collagen properties has been further investigated in different ways to render a wide range of applications. The present review aims to shed some light on the contribution of marine collagens for the scientific and technological development of this sector, stressing the opportunities and challenges that they are and most probably will be facing to assume a role as an alternative source for industrial exploitation.

  5. Ultrastructural localization of type V collagen in rat kidney

    OpenAIRE

    1982-01-01

    Antibodies specific for the alpha 1 (V) chain and native collagen molecules containing the alpha 1 (V) chain have been used in electron immunohistochemical studies of rat kidney to determine the ultrastructural distribution of this class of collagen molecules. In addition, antibodies against type I collagen and whole basement membrane were used as markers for interstitial collagen and authentic basement membranes. Our results indicate that type V collagen is present in the renal interstitium ...

  6. An Ultrastructural Analysis of Collagen in Tissue Engineered Arteries

    OpenAIRE

    Dahl, Shannon L. M.; Vaughn, Megann E.; Niklason, Laura E.

    2007-01-01

    Collagen is the structural molecule that is most correlated with strength in blood vessels. In this study, we compared the properties of collagen in engineered and native blood vessels. Transmission electron microscopy (TEM) was used to image sections of engineered and native arteries. Band periodicities of engineered and native collagen fibrils indicated that spacing between collagen molecules was similar in engineered and native tissues. Engineered arteries, however, had thinner collagen fi...

  7. Collagen scaffold remodeling by human mesenchymal stem cells

    OpenAIRE

    Han, SJ; Chan, BP

    2011-01-01

    Type I collagen has been widely used as scaffold for tissue engineering because of its excellent biocompatibility and negligible immunogenicity. We previously have developed a collagen microencapsulation technology entrapping many cells including human mesenchymal stem cells (hMSCs) in microspheres made of nanofibrous collagen meshwork. Nevertheless, little is understood about how stem cells interact with and remodel the collagen meshwork. This study aims to investigate collagen remodeling by...

  8. Exploring the Structural Requirements of Collagen-Binding Peptides

    OpenAIRE

    Abd-Elgaliel, Wael R; Tung, Ching-Hsuan

    2013-01-01

    Collagen synthesis and tissue remodeling are involved in many diseases; therefore collagen specific binding agents have been developed to study collagen changes in various tissues. Based on a recently reported collagen binding peptide, which contains unnatural Biphenylalanine (Bip) amino acid residue, constructs with various structure variations were synthesized to explore the contributions of unnatural Bip residue, conformational restrain, and amino acid sequence in collagen recognition. The...

  9. Autoimmunity to citrullinated type II collagen in rheumatoid arthritis

    OpenAIRE

    Yoshida, Mamoru; TSUJI, Michiko; Kurosaka, Daitaro; Kurosaka, Daisaburo; Yasuda, Jun; Ito, Yoshitaka; Nishizawa, Tetsuro; Yamada, Akio

    2006-01-01

    The production of autoantibodies to citrullinated type II collagen and the citrullination of type II collagen were analyzed in rheumatoid arthritis. Autoantibodies to citrullinated type II collagen were detected in 78.5% of serum samples from 130 rheumatoid arthritis patients. Autoantibodies to native noncitrullinated type II collagen were detected in 14.6% of serum samples, all of which were positive for anti-citrullinated type II collagen antibodies. Serum samples were also positive for ant...

  10. Anti-collagen antibodies in sera from rheumatoid arthritis patients.

    OpenAIRE

    Beard, H K; Ryvar, R; Skingle, J; Greenbury, C. L.

    1980-01-01

    Anti-cartilage antibodies, demonstrable by immunofluorescence, were found in 3.3% of rheumatoid arthritis patients. In most of these patients antibodies to type II collagen were detected. In specificity studies on these anti-collagen antibodies, they appeared to be type specific, showing no reaction with collagen types I and III. Denatured type II collagen reacted much less well than native type II, but isolated peptides from different regions of the collagen molecule were differentiated by i...

  11. Full-Length Fibronectin Drives Fibroblast Accumulation at the Surface of Collagen Microtissues during Cell-Induced Tissue Morphogenesis.

    Science.gov (United States)

    Foolen, Jasper; Shiu, Jau-Ye; Mitsi, Maria; Zhang, Yang; Chen, Christopher S; Vogel, Viola

    2016-01-01

    Generating and maintaining gradients of cell density and extracellular matrix (ECM) components is a prerequisite for the development of functionality of healthy tissue. Therefore, gaining insights into the drivers of spatial organization of cells and the role of ECM during tissue morphogenesis is vital. In a 3D model system of tissue morphogenesis, a fibronectin-FRET sensor recently revealed the existence of two separate fibronectin populations with different conformations in microtissues, i.e. 'compact and adsorbed to collagen' versus 'extended and fibrillar' fibronectin that does not colocalize with the collagen scaffold. Here we asked how the presence of fibronectin might drive this cell-induced tissue morphogenesis, more specifically the formation of gradients in cell density and ECM composition. Microtissues were engineered in a high-throughput model system containing rectangular microarrays of 12 posts, which constrained fibroblast-populated collagen gels, remodeled by the contractile cells into trampoline-shaped microtissues. Fibronectin's contribution during the tissue maturation process was assessed using fibronectin-knockout mouse embryonic fibroblasts (Fn-/- MEFs) and floxed equivalents (Fnf/f MEFs), in fibronectin-depleted growth medium with and without exogenously added plasma fibronectin (full-length, or various fragments). In the absence of full-length fibronectin, Fn-/- MEFs remained homogenously distributed throughout the cell-contracted collagen gels. In contrast, in the presence of full-length fibronectin, both cell types produced shell-like tissues with a predominantly cell-free compacted collagen core and a peripheral surface layer rich in cells. Single cell assays then revealed that Fn-/- MEFs applied lower total strain energy on nanopillar arrays coated with either fibronectin or vitronectin when compared to Fnf/f MEFs, but that the presence of exogenously added plasma fibronectin rescued their contractility. While collagen decoration of

  12. Three-dimensional collagen I promotes gemcitabine resistance in vitro in pancreatic cancer cells through HMGA2-dependent histone acetyltransferase expression.

    Directory of Open Access Journals (Sweden)

    Surabhi Dangi-Garimella

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is associated with a pronounced collagen-rich stromal reaction that has been shown to contribute to chemo-resistance. We have previously shown that PDAC cells are resistant to gemcitabine chemotherapy in the collagen microenvironment because of increased expression of the chromatin remodeling protein high mobility group A2 (HMGA2. We have now found that human PDAC tumors display higher levels of histone H3K9 and H3K27 acetylation in fibrotic regions. We show that relative to cells grown on tissue culture plastic, PDAC cells grown in three-dimensional collagen gels demonstrate increased histone H3K9 and H3K27 acetylation, along with increased expression of p300, PCAF and GCN5 histone acetyltransferases (HATs. Knocking down HMGA2 attenuates the effect of collagen on histone H3K9 and H3K27 acetylation and on collagen-induced p300, PCAF and GCN5 expression. We also show that human PDAC tumors with HMGA2 demonstrate increased histone H3K9 and H3K27 acetylation. Additionally, we show that cells in three-dimensional collagen gels demonstrate increased protection against gemcitabine. Significantly, down-regulation of HMGA2 or p300, PCAF and GCN5 HATs sensitizes the cells to gemcitabine in three-dimensional collagen. Overall, our results increase our understanding of how the collagen microenvironment contributes to chemo-resistance in vitro and identify HATs as potential therapeutic targets against this deadly cancer.

  13. Effects of soybean peptide and collagen peptide on collagen synthesis in normal human dermal fibroblasts.

    Science.gov (United States)

    Tokudome, Yoshihiro; Nakamura, Kyosuke; Kage, Madoka; Todo, Hiroaki; Sugibayashi, Kenji; Hashimoto, Fumie

    2012-09-01

    The collagen present in the dermis of the skin is a fibrous protein that fills the gaps between cells and helps maintain tissue flexibility. Effectively increasing the collagen present in the skin is an important goal for cosmetic research. Recent research has shown that soybean peptide (SP) has anti-fatigue activity, antioxidant activity, and the ability to increase type I collagen, while collagen peptide (CP) has the ability to enhance corneal moisture content and viscoelasticity, as well as to increase levels of hyaluronic acid synthesizing enzymes in human skin. Little documented research, however, has been conducted on collagen formation in relation to these peptides. Therefore, this research applied SP and CP with molecular weights primarily around 500 and preparations containing both SP and CP to normal human dermal fibroblasts together with magnesium ascorbyl phosphate (VC-PMg), and used real-time PCR to determine the gene expression of type I collagen (COL1A1), which contributes to collagen synthesis, and Smad7, which contribute to collagen breakdown. In addition, enzyme linked immuno sorbent assay (ELISA) was used to measure collagen content in the media. COL1A1 gene expression at 24 h after sample addition showed higher tendency in all samples and increased with time at 4, 8 and 24 h after addition. Smad7 gene expression was not substantially different at 4 h after addition. matrix metalloproteinase-1 gene expression was higher following SP addition, but was lower after the addition of CP and SP+CP. Medium collagen content was higher in all samples and increased with time at 8 h after addition. Collagen levels were higher when SP and CP were added together. PMID:22264122

  14. Nature and specificity of the immune response to collagen in type II collagen-induced arthritis in mice.

    OpenAIRE

    Stuart, J. M.; Townes, A S; Kang, A H

    1982-01-01

    To determine the role of collagen-immunity in the development of collagen-induced arthritis, DBA/1 mice were immunized with type II collagen and observed for the development of polyarthritis. 96% of the mice immunized with native type II collagen developed inflammatory arthritis between 4 and 5 wk after primary immunization. Immunization with denatured type II collagen in exactly the same manner was not effective in inducing arthritis. Cell-mediated immunity in arthritic mice was assessed by ...

  15. ADHERENCE, PROLIFERATION AND COLLAGEN TURNOVER BY HUMAN FIBROBLASTS SEEDED INTO DIFFERENT TYPES OF COLLAGEN SPONGES

    NARCIS (Netherlands)

    MIDDELKOOP, E; DEVRIES, HJC; RUULS, L; EVERTS, [No Value; WILDEVUUR, CHR; WESTERHOF, W

    1995-01-01

    We describe an in vitro model that we have used to evaluate dermal substitutes and to obtain data on cell proliferation, the rate of degradation of the dermal equivalent, contractibility and de novo synthesis of collagen. We tested three classes of collagenous materials: (1) reconstituted non-crossl

  16. Cell-collagen interactions : the use of peptide Toolkits to investigate collagen-receptor interactions

    NARCIS (Netherlands)

    Farndale, Richard W.; Lisman, Ton; Bihan, Dominique; Hamaia, Samir; Smerling, Christiane S.; Pugh, Nicholas; Konitsiotis, Antonios; Leitinger, Birgit; de Groot, Philip G.; Jarvis, Gavin E.; Raynal, Nicolas

    2008-01-01

    Fibrillar collagens provide the most fundamental platform in the vertebrate organism for the attachment of cells and matrix molecules. we have identified specific sites in collagens to which cells can attach, either directly or through protein intermediaries. Using Toolkits of triple-helical peptide

  17. In vivo bioengineered ovarian tumors based on collagen, matrigel, alginate and agarose hydrogels: a comparative study

    International Nuclear Information System (INIS)

    Scaffold-based tumor engineering is rapidly evolving the study of cancer progression. However, the effects of scaffolds and environment on tumor formation have seldom been investigated. In this study, four types of injectable hydrogels, namely, collagen type I, Matrigel, alginate and agarose gels, were loaded with human ovarian cancer SKOV3 cells and then injected into nude mice subcutaneously. The growth of the tumors in vitro was also investigated. After four weeks, the specimens were harvested and analyzed. We found that tumor formation by SKOV3 cells was best supported by collagen, followed by Matrigel, alginate, control (without scaffold) and agarose in vivo. The collagen I group exhibited a larger tumor volume with increased neovascularization and increased necrosis compared with the other materials. Further, increased MMP activity, upregulated expression of laminin and fibronectin and higher levels of HIF-1α and VEGF-A in the collagen group revealed that the engineered tumor is closer to human ovarian carcinoma. In order, collagen, Matrigel, alginate, control (without scaffold) and agarose exhibited decreases in tumor formation. All evidence indicated that the in vivo engineered tumor is scaffold-dependent. Bioactive hydrogels are superior to inert hydrogels at promoting tumor regeneration. In particular, biomimetic hydrogels are advantageous because they provide a microenvironment that mimics the ECM of natural tumors. On the other hand, typical features of cancer cells and the expression of genes related to cancer malignancy were far less similar to the natural tumor in vitro, which indicated the importance of culture environment in vivo. Superior to the in vitro culture, nude mice can be considered satisfactory in vivo ‘bioreactors’ for the screening of favorable cell vehicles for tumor engineering in vitro. (paper)

  18. Linear electrochemical gel actuators

    Science.gov (United States)

    Goswami, Shailesh; McAdam, C. John; Hanton, Lyall R.; Moratti, Stephen C.

    2012-04-01

    By using electroactive monomers it is possible to produce gels that respond to oxidation or reduction by swelling and deswelling in the presence of solvent. By the inclusion of an appropriate biasing element such as a spring, it is possible to produce linear, reversible actuation. The process can be driven electrochemically in a standard cell, with driving voltages under +/- 1 V. For many systems, the intrinsic conductivity of the gel, leading to poor or no performance. This can be overcome by blending conductive carbon nanotubes at 1% concentration, which give reasonable conductivity without affecting mechanical performance. Extensions of up to 40% are possible, against an external pressure of 30 kPa. The process is slow, taking up to 160 minutes per cycle due to slow ionic diffusion. The electrochemical cell can be cycled many times without degradation.

  19. In vitro Mineralization Behavior of the Sol-gel Derived Bioglass/Collegen Composite Porous Scaffold

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The porous scaffold of the sol-gel derived bioactive glass (BG) in the system CaO-P2 O5- SiO2 was treated with the type I collagen solution. The pore walls of the scaffold were covered by the collagenous network. The in vitro mineralization behavior of the sol-gel derived bioglass/ collegen composite porous scaffold was investigated by immersion in supersaturated calcification solution (SCS) at 37 ℃ for different times. XRD , FTIR, SEM/ EDAX techniques were applied to analyze the crystalline phases, morphology and composition of the minerals formed on the pore walls of the scaffold. It was found that with increasing of immersion time, the morphology of reaction products on the pore walls changed from the spherical particles of calcium phosphate to the flake-like HCA crystals.

  20. MAGIC Gel Dosimetry

    Science.gov (United States)

    Mifflin, Rachel; Shahnazi, Kambiz; Jesseph, Rick

    2008-10-01

    Proton therapy has proven a very successful tool in treating certain tumors, but a three dimensional view of this fact has not yet been clearly demonstrated. In this experiment we have used MAGIC (Methacrylic and Ascorbic Acid in Gelatin Initiated by Copper) gel to represent brain tissue and gone through normal treatment planning for an Acoustic Neuroma to show the three dimensional dose distributions associated with such a tumor.

  1. The Gel Generator option

    International Nuclear Information System (INIS)

    The development of a national policy for guaranteeing an ample supply of 99mTc to nuclear medicine, involves issues which go beyond the means by which radioactivation is achieved. Indeed, in such an exercise the pragmatic dictates of business and the sensitivities of politics must also be taken into account. Furthermore where a preference towards the nuclear reactor or the potential of cyclotrons is being questioned, the debate is incomplete if the only options that are considered are the fission-based 99Mo generator versus the direct cyclotron production of 99mTc. There is a third option (also neutron γ-based), an alternative to the fission 99Mo generator, which ought not be overlooked. The application of low specific activity (n,γ) 99Mo to a new type of generator, the Gel Generator, has been the focus of much research, particularly in Australia and more recently in China. After the initial concept had been established in the laboratory, the Australian researchers then undertook a comprehensive program of tests on the Gel Generator to assess its potential, either in the clinical laboratory or the centralised radiopharmacy, for supplying 99mTc suitable for nuclear medicine. The outcome of this program was a clear indication that the Gel Generator innovation had the capability to provide both technical and economic advantages to the nuclear medicine industry. These advantages are described. Since that time the Gel Generator has been selected for routine use in China where it now satisfies more than 30% of the 99mTc demand. (author)

  2. Aprotic gel polymer electrolytes

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jiří; Sedlaříková, M.; Krejza, O.

    Brno : University of Technology Brno, 2008, s. 71-72. ISBN 978-80-214-3659-6. [International Conference Advanced Batteries and Accumulators /9./. Brno (CZ), 29.06.2008-03.07.2008] R&D Projects: GA ČR(CZ) GA104/06/1471; GA AV ČR(CZ) KJB208130604 Institutional research plan: CEZ:AV0Z40320502 Keywords : gel polymer electrolytes Subject RIV: CA - Inorganic Chemistry

  3. Staining Proteins in Gels

    OpenAIRE

    Gallagher, Sean; Chakavarti, Deb

    2008-01-01

    Following separation by electrophoretic methods, proteins in a gel can be detected by several staining methods. This unit describes protocols for detecting proteins by four popular methods. Coomassie blue staining is an easy and rapid method. Silver staining, while more time consuming, is considerably more sensitive and can thus be used to detect smaller amounts of protein. Fluorescent staining is a popular alternative to traditional staining procedures, mainly because it is more sensitive th...

  4. Fluorescently labeled collagen binding proteins allow specific visualization of collagen in tissues and live cell culture.

    Science.gov (United States)

    Krahn, Katy Nash; Bouten, Carlijn V C; van Tuijl, Sjoerd; van Zandvoort, Marc A M J; Merkx, Maarten

    2006-03-15

    Visualization of the formation and orientation of collagen fibers in tissue engineering experiments is crucial for understanding the factors that determine the mechanical properties of tissues. In this study, collagen-specific fluorescent probes were developed using a new approach that takes advantage of the inherent specificity of collagen binding protein domains present in bacterial adhesion proteins (CNA35) and integrins (GST-alpha1I). Both collagen binding domains were obtained as fusion proteins from an Escherichia coli expression system and fluorescently labeled using either amine-reactive succinimide (CNA35) or cysteine-reactive maleimide (GST-alpha1I) dyes. Solid-phase binding assays showed that both protein-based probes are much more specific than dichlorotriazinyl aminofluorescein (DTAF), a fluorescent dye that is currently used to track collagen formation in tissue engineering experiments. The CNA35 probe showed a higher affinity for human collagen type I than did the GST-alpha1I probe (apparent K(d) values of 0.5 and 50 microM, respectively) and showed very little cross-reactivity with noncollagenous extracellular matrix proteins. The CNA35 probe was also superior to both GST-alpha1I and DTAF in visualizing the formation of collagen fibers around live human venous saphena cells. Immunohistological experiments on rat tissue showed colocalization of the CNA35 probe with collagen type I and type III antibodies. The fluorescent probes described here have important advantages over existing methods for visualization of collagen, in particular for monitoring the formation of collagen in live tissue cultures over prolonged time periods. PMID:16476406

  5. New recommendations for measuring collagen solubility.

    Science.gov (United States)

    Latorre, María E; Lifschitz, Adrian L; Purslow, Peter P

    2016-08-01

    The heat-solubility of intramuscular collagen is usually conducted in 1/4 Ringer's solution at pH7.4, despite this ionic strength and pH being inappropriate for post-rigor meat. The current work studied the percentage of soluble collagen and hydrothermal isometric tension characteristics of perimysial strips on bovine semitendinosus muscles in either 1/4 Ringer's solution, distilled water, PBS, or a solution of the same salt concentration as 1/4 Ringer's but at pH5.6. Values of % soluble collagen were lower at pH7.4 than 5.6. Increasing ionic strength reduced % soluble collagen. The maximum perimysial isometric tension was independent of the bathing medium, but the percent relaxation was higher at pH7.4 than at pH5.6, and increased with ionic strength of the media. It is recommended that future measurements of collagen solubility and tests on connective tissue components of post-rigor meat should be carried out in a solution of concentrations NaCl and KCl equivalent to those in 1/4 Ringer's, but at pH5.6, a pH relevant to post-rigor meat. PMID:27057755

  6. Pengujian Sediaan Gel Ekstrak Etanol Daun Kelapa Sawit(Elaeis guineensis Jacq.) Sebagai Obat Luka Bakar

    OpenAIRE

    Wahyudi

    2016-01-01

    Leaves of palm (Elaeis guineensis Jacq.) Contain alkaloids that have the ability as an antibacterial, astringent activity of flavonoids and saponins that can stimulate the formation of collagen, which plays a role in wound healing process and. This study aimed to test the effectiveness of the ethanol extract gel palm leaves for the healing of burns. Palm’ leaf powder macerated by ethanol 80% for 5 days, filtered, the residue has extraction by ethanol, then the filtrate leave for 2 day and ...

  7. A novel fibrin gel derived from hyaluronic acid-grafted fibrinogen

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chiung L; Chen, Hui W; Wang, Tzu C; Wang, Yng J, E-mail: wang@ym.edu.tw [Institute of Biomedical Engineering, National Yang Ming University, No. 155, Sec. 2, Li-Nung St., Shih-Pai, Taipei, Taiwan 112 (China)

    2011-04-15

    Fibrinogen is a major plasma protein that forms a three-dimensional fibrin gel upon being activated by thrombin. In this study, we report the synthesis and potential applications of hybrid molecules composed of fibrinogen coupled to the reducing ends of short-chain hyaluronic acids (sHAs) by reductive amination. The grafting of sHAs to fibrinogen was verified by analyzing particle size, zeta potential and gel-electrophoretic mobility of the hybrid molecules. The sHA-fibrinogen hybrid molecules with graft ratios (sHA/fibrinogen) of up to 6.5 retained the ability to form gels in response to thrombin activation. The sHA-fibrin gels were transparent in appearance and exhibited high water content, which were characteristics distinct from those of gels formed by mixtures of sHAs and fibrinogen. The potential applications of the sHA-fibrin gels were evaluated. The sHA-fibrinogen gel with a graft ratio of 3.6 (S3.6F) was examined for its ability to encapsulate and support the differentiation of ATDC5 chondrocyte-like cells. Compared with the fibrinogen-formed gel, cells cultured in the S3.6F gel exhibited increased lacunae formation; moreover, the abundance of cartilaginous extracellular matrix molecules and the expression of chondrocyte marker genes, such as aggrecan, collagen II and Sox9, were also significantly increased. Our data suggest that the three-dimensional gel formed by the sHA-fibrinogen hybrid is a better support than the fibrin gel for chondrogenesis induction.

  8. A novel fibrin gel derived from hyaluronic acid-grafted fibrinogen

    International Nuclear Information System (INIS)

    Fibrinogen is a major plasma protein that forms a three-dimensional fibrin gel upon being activated by thrombin. In this study, we report the synthesis and potential applications of hybrid molecules composed of fibrinogen coupled to the reducing ends of short-chain hyaluronic acids (sHAs) by reductive amination. The grafting of sHAs to fibrinogen was verified by analyzing particle size, zeta potential and gel-electrophoretic mobility of the hybrid molecules. The sHA-fibrinogen hybrid molecules with graft ratios (sHA/fibrinogen) of up to 6.5 retained the ability to form gels in response to thrombin activation. The sHA-fibrin gels were transparent in appearance and exhibited high water content, which were characteristics distinct from those of gels formed by mixtures of sHAs and fibrinogen. The potential applications of the sHA-fibrin gels were evaluated. The sHA-fibrinogen gel with a graft ratio of 3.6 (S3.6F) was examined for its ability to encapsulate and support the differentiation of ATDC5 chondrocyte-like cells. Compared with the fibrinogen-formed gel, cells cultured in the S3.6F gel exhibited increased lacunae formation; moreover, the abundance of cartilaginous extracellular matrix molecules and the expression of chondrocyte marker genes, such as aggrecan, collagen II and Sox9, were also significantly increased. Our data suggest that the three-dimensional gel formed by the sHA-fibrinogen hybrid is a better support than the fibrin gel for chondrogenesis induction.

  9. Collagen-curcumin interaction - A physico-chemical study

    Indian Academy of Sciences (India)

    N Nishad Fathima; R Saranya Devi; K B Rekha; Aruna Dhathathreyan

    2009-07-01

    Curcumin is a widely used therapeutic agent with a wide spectrum of biological and physiological applications like wound healing and interacts with the skin protein, collagen. This work reports the effect of curcumin on various physico-chemical properties of collagen. The results suggest that significant changes in viscosity and surface tension occur on collagen interacting with curcumin. Secondary structure analysis using circular dichroism shows that curcumin does not alter the triple helical structure of collagen. Increasing concentration of curcumin resulted in aggregation of the protein. Further, curcumin imparts high level of thermal stability to collagen with shrinkage temperature of collagen increasing from 60 to 90°C.

  10. Mineralization of Hydroxyapatite Regulated by Recombinant Human-like Collagen

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We reported recombinant human-like type I collagen inducing growth of hydroxyapatite crystals in vitro in the form of self-assembly of nano-fibrils of mineralized collagen resembling extracellular matrix, which obey the same rules, but is superior to the collagen derived from animal tissues because the latter may carry diseases of animals and cause immunological reactions. The mineralized collagen fibrils aligned parallel to each other to form mineralized collagen fibers. Hydroxyapatite nanocrystals grew on the surface of these collagen fibrils with the c-axis of nanocrystals of HA orienting along the longitudinal axis of the fibrils.

  11. Radiotherapy gel dosimetry

    International Nuclear Information System (INIS)

    shapes and sizes while sparing normal tissue. The situation is further complicated if the normal tissues are critical organs or are particularly sensitive to radiation. Radiotherapy techniques employed to obtain a closer conformation of the dose distribution to the tumour volume are referred to as conformal radiotherapy techniques. The clinical implementation of conformal therapy has been delayed by limitations in the verification of conformal dose distributions calculated by treatment planning systems prior to the irradiation of the patient and the verification of complex treatments during its delivery to the patient. There are several aspects of conformal therapy that complicate dose verification. To achieve the dose distributions conforming to complex 3D volumes, high dose gradients arise in the treatment volume. Further, overdose or underdose regions can exist when separate radiation fields are used to deliver additional radiation. These aspects require that practical dose measurement (dosimetry) techniques be able to integrate dose over time and easily measure dose distributions in 3D with high spatial resolution. Traditional dosimeters, such as ion chambers, thermoluminescent dosimeters and radiographic film do not fulfil these requirements. Novel gel dosimetry techniques are being developed in which dose distributions can potentially be determined in vitro in 3D using anthropomorphic phantoms to simulate a clinically irradiated situation. As long ago as the 1950's, radiation-induced colour change in dyes was used to investigate radiation doses in gels. It was subsequently shown that radiation induced changes in nuclear magnetic resonance (NMR) relaxation properties of gels infused with conventional Fricke dosimetry solutions could be measured using magnetic resonance imaging (MRI). In Fricke gels, Fe2+ ions in ferrous sulphate solutions are usually dispersed throughout a gelatin, agarose or PVA matrix. Radiation-induced changes in the dosimeters are considered to

  12. Distinct Characteristics of Mandibular Bone Collagen Relative to Long Bone Collagen: Relevance to Clinical Dentistry

    Directory of Open Access Journals (Sweden)

    Takashi Matsuura

    2014-01-01

    Full Text Available Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.

  13. A rare case of cutaneous collagenous vasculopathy.

    Science.gov (United States)

    Meah, Nekma; Khirwadkar, Nitin; Ellison, Judith

    2016-08-01

    Cutaneous collagenous vasculopathy is a rare microangiopathy first described by Salama and Rosenthal in 2000. Several cases have been reported to date, describing distinct histological findings of thick hyaline collagenous blood vessel walls in the superficial dermis. Clinical confusion can arise with generalised essential telangiectasia. We report a case occurring in a 76-year-old woman who presented with a 2-year history of a telangiectatic rash progressing from her knees upwards. The diagnosis was confirmed on skin biopsy and treatment with pulsed dye laser was later initiated at the patient's request. PMID:25872701

  14. Purification of Titania Gels

    Czech Academy of Sciences Publication Activity Database

    Matějová, Lenka; Cajthaml, Tomáš; Klusoň, P.; Benada, Oldřich; Matěj, Z.; Šolcová, Olga

    Bratislava : Slovak Society of Chemical Engineering, 2008 - (Markoš, J.), s. 166 ISBN 978-80-227-2903-1. [35th International Conference of Slovak Society of Chemical Engineering. Tatranské Matliare (SK), 26.05.2008-30.05.2008] R&D Projects: GA AV ČR KAN400720701; GA AV ČR IAA4072404 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z50200510 Keywords : sol-gel * TiO2 powder * supercritic fluid extraction Subject RIV: CF - Physical ; Theoretical Chemistry

  15. In vitro formation and thermal transition of novel hybrid fibrils from type I fish scale collagen and type I porcine collagen

    OpenAIRE

    Song Chen, Toshiyuki Ikoma, Nobuhiro Ogawa, Satoshi Migita, Hisatoshi Kobayashi and Nobutaka Hanagata

    2010-01-01

    Novel type I collagen hybrid fibrils were fabricated by neutralizing a mixture of type I fish scale collagen solution and type I porcine collagen solution with a phosphate buffer saline at 28 °C. Their structure was discussed in terms of the volume ratio of fish/porcine collagen solution. Scanning electron and atomic force micrographs showed that the diameter of collagen fibrils derived from the collagen mixture was larger than those derived from each collagen, and all resultant fibrils exhib...

  16. A structural model for the in vivo human cornea including collagen-swelling interaction.

    Science.gov (United States)

    Cheng, Xi; Petsche, Steven J; Pinsky, Peter M

    2015-08-01

    A structural model of the in vivo cornea, which accounts for tissue swelling behaviour, for the three-dimensional organization of stromal fibres and for collagen-swelling interaction, is proposed. Modelled as a binary electrolyte gel in thermodynamic equilibrium, the stromal electrostatic free energy is based on the mean-field approximation. To account for active endothelial ionic transport in the in vivo cornea, which modulates osmotic pressure and hydration, stromal mobile ions are shown to satisfy a modified Boltzmann distribution. The elasticity of the stromal collagen network is modelled based on three-dimensional collagen orientation probability distributions for every point in the stroma obtained by synthesizing X-ray diffraction data for azimuthal angle distributions and second harmonic-generated image processing for inclination angle distributions. The model is implemented in a finite-element framework and employed to predict free and confined swelling of stroma in an ionic bath. For the in vivo cornea, the model is used to predict corneal swelling due to increasing intraocular pressure (IOP) and is adapted to model swelling in Fuchs' corneal dystrophy. The biomechanical response of the in vivo cornea to a typical LASIK surgery for myopia is analysed, including tissue fluid pressure and swelling responses. The model provides a new interpretation of the corneal active hydration control (pump-leak) mechanism based on osmotic pressure modulation. The results also illustrate the structural necessity of fibre inclination in stabilizing the corneal refractive surface with respect to changes in tissue hydration and IOP. PMID:26156299

  17. Jellyfish collagen and alginate: Combined marine materials for superior chondrogenesis of hMSC.

    Science.gov (United States)

    Pustlauk, W; Paul, B; Gelinsky, M; Bernhardt, A

    2016-07-01

    Marine, hybrid constructs of porous scaffolds from fibrillized jellyfish collagen and alginate hydrogel are mimicking both of the main tissue components of cartilage, thus being a promising approach for chondrogenic differentiation of human mesenchymal stem cells (hMSC). Investigating their potential for articular cartilage repair, the present study examined scaffolds being either infiltrated with an alginate-cell-suspension (ACS) or seeded with hMSC and embedded in alginate after cell adhesion (EAS). Hybrid constructs with 2×10(5) and 4.5×10(5)hMSC/scaffold were compared to hMSC encapsulated in pure alginate discs, both chondrogenically stimulated for 21days. Typical round, chondrocyte-like morphology was observed in pure alginate gels and ACS scaffolds, while cells in EAS were elongated and tightly attached to the collagen pores. Col 2 gene expression was comparable in all scaffold types examined. However, the Col 2/Col 1 ratio was higher for pure alginate discs and ACS scaffolds compared to EAS. In contrast, cells in EAS scaffolds displayed higher gene expression of Sox 9, Col 11 and ACAN compared to ACS and pure alginate. Secretion of sulfated glycosaminoglycans (sGAG) was comparable for ACS and EAS scaffolds. In conclusion hybrid constructs of jellyfish collagen and alginate support hMSC chondrogenic differentiation and provide more stable and constructs compared to pure hydrogels. PMID:27127044

  18. Visualisation of newly synthesised collagen in vitro and in vivo.

    Science.gov (United States)

    Oostendorp, Corien; Uijtdewilligen, Peter J E; Versteeg, Elly M; Hafmans, Theo G; van den Bogaard, Ellen H; de Jonge, Paul K J D; Pirayesh, Ali; Von den Hoff, Johannes W; Reichmann, Ernst; Daamen, Willeke F; van Kuppevelt, Toin H

    2016-01-01

    Identifying collagen produced de novo by cells in a background of purified collagenous biomaterials poses a major problem in for example the evaluation of tissue-engineered constructs and cell biological studies to tumor dissemination. We have developed a universal strategy to detect and localize newly deposited collagen based on its inherent association with dermatan sulfate. The method is applicable irrespective of host species and collagen source. PMID:26738984

  19. Targeting and mimicking collagens via triple helical peptide assembly

    OpenAIRE

    Li, Yang; Yu, S. Michael

    2013-01-01

    As the major structural component of the extracellular matrix, collagen plays a crucial role in tissue development and regeneration. Since structural and metabolic abnormalities of collagen are associated with numerous debilitating diseases and pathologic conditions, the ability to target collagens of diseased tissues could lead to new diagnostics and therapeutics. Collagen is also a natural biomaterial widely used in drug delivery and tissue engineering, and construction of synthetic collage...

  20. A statistically derived parameterization for the collagen triple-helix

    OpenAIRE

    Rainey, Jan K.; Goh, M. Cynthia

    2002-01-01

    The triple-helix is a unique secondary structural motif found primarily within the collagens. In collagen, it is a homo- or hetero-tripeptide with a repeating primary sequence of (Gly-X-Y)n, displaying characteristic peptide backbone dihedral angles. Studies of bulk collagen fibrils indicate that the triple-helix must be a highly repetitive secondary structure, with very specific constraints. Primary sequence analysis shows that most collagen molecules are primarily triple-helical; however, n...

  1. Structural basis of sequence-specific collagen recognition by SPARC

    OpenAIRE

    Hohenester, Erhard; Sasaki, Takako; Giudici, Camilla; Farndale, Richard W.; Bächinger, Hans Peter

    2008-01-01

    Protein interactions with the collagen triple helix play a critical role in collagen fibril formation, cell adhesion, and signaling. However, structural insight into sequence-specific collagen recognition is limited to an integrin-peptide complex. A GVMGFO motif in fibrillar collagens (O denotes 4-hydroxyproline) binds 3 unrelated proteins: von Willebrand factor (VWF), discoidin domain receptor 2 (DDR2), and the extracellular matrix protein SPARC/osteonectin/BM-40. We report the crystal struc...

  2. Hydroxyproline-free Single Composition ABC Collagen Heterotrimer

    OpenAIRE

    Jalan, Abhishek A.; Demeler, Borries; Hartgerink, Jeffrey D.

    2013-01-01

    Hydroxyproline plays a major role in stabilizing collagenous domains in eukaryotic organisms. Lack of this modification is associated with significant lowering in thermal stability of the collagen triple helix and may also affect fibrillogenesis and folding of the peptide chains. In contrast, even though bacterial collagens lack hydroxyproline, their thermal stability is comparable to fibrillar collagen. This has been attributed to the high frequency of charged amino acids found in bacterial ...

  3. Extraction and Characterization of Collagen from Sea Cucumber Flesh

    OpenAIRE

    Alhana; Pipih Suptijah; Kustiariyah tarman

    2015-01-01

    Sea cucumber (Stichopus variegatus) is one of the Echinodermata phylum that grows along Indonesian coastal. Sea cucumber is potential source of collagen. The purposes of this research were to determine the optimal concentration of NaOH and CH3COOH solution in collagen production and analyze the physicochemical characteristics of collagen from S. variegatus. Yield of the collagen was 1.5% (based on wet weight basis), produced by pretreatment with NaOH 0,30%, hydrolysis with CH3C...

  4. Measurement of skeletal muscle collagen breakdown by microdialysis

    DEFF Research Database (Denmark)

    Miller, B F; Ellis, D; Robinson, M M;

    2011-01-01

    Exercise increases the synthesis of collagen in the extracellular matrix of skeletal muscle. Breakdown of skeletal muscle collagen has not yet been determined because of technical limitations. The purpose of the present study was to use local sampling to determine skeletal muscle collagen breakdown...... collagen breakdown 17–21 h post-exercise, and our measurement of OHP using GC–MS was in agreement with traditional assays....

  5. Number and organization of collagen genes in Caenorhabditis elegans.

    OpenAIRE

    Cox, G N; Kramer, J. M.; Hirsh, D

    1984-01-01

    We analyzed the number and organization of collagen genes in the nematode Caenorhabditis elegans. Genomic Southern blot hybridization experiments and recombinant phage library screenings indicated that C. elegans has between 40 and 150 distinct collagen genes. A large number of recombinant phages containing collagen genes were isolated from C. elegans DNA libraries. Physical mapping studies indicated that most phage contained a single small collagen gene less than 3 kilobases in size. A few p...

  6. Immunoelectron microscopic studies of type X collagen in endochondral ossification

    OpenAIRE

    1989-01-01

    Immunofluorescence and immunoelectron microscopy were used in conjunction with a monoclonal antibody to investigate the localization of type X collagen in the proximal tibial growth plate of 7-d-old chicks. This molecule was detected throughout the hypertrophic zone first appearing when chondrocytes exhibited hypertrophy: it was absent from the proliferative zone. Type X collagen was primarily associated with type II collagen fibrils as demonstrated by immunogold staining. Type X collagen was...

  7. Crosslinked collagen-gelatin-hyaluronic acid biomimetic film for cornea tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Ren, Li, E-mail: psliren@scut.edu.cn; Wang, Yingjun, E-mail: imwangyj@163.com

    2013-01-01

    Cornea disease may lead to blindness and keratoplasty is considered as an effective treatment method. However, there is a severe shortage of donor corneas worldwide. This paper presents the crosslinked collagen (Col)-gelatin (Gel)-hyaluronic acid (HA) films developed by making use of 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as the crosslinker. The test results on the physical and biological properties indicate that the CGH631 film (the mass ratio of Col:Gel:HA = 6:3:1) has appropriate optical performance, hydrophilicity and mechanical properties. The diffusion properties of the CGH631 film to NaCl and tryptophan are also satisfactory and the measured data are 2.43 Multiplication-Sign 10{sup -6} cm{sup 2}/s and 7.97 Multiplication-Sign 10{sup -7} cm{sup 2}/s, respectively. In addition, cell viability studies demonstrate that the CGH631 film has good biocompatibility, on which human corneal epithelial cells attached and proliferated well. This biocompatible film may have potential use in cornea tissue engineering. - Highlights: Black-Right-Pointing-Pointer Crosslinked collagen-gelatin-hyaluronic acid films were fabricated in this study. Black-Right-Pointing-Pointer The film had appropriate physical properties. Black-Right-Pointing-Pointer Diffusion coefficient of the film was comparable with the human cornea. Black-Right-Pointing-Pointer HCEC viability studies confirmed the biocompatibility of the film.

  8. Decontamination of collagen biomatrices with combined pulsed electric field and nisin treatment.

    Science.gov (United States)

    Griffiths, Sarah; Maclean, Michelle; Macgregor, Scott J; Anderson, John G; Helen Grant, M

    2011-02-01

    Pulsed electric field (PEF) treatment has been proposed as a decontamination method for labile matrices used in tissue engineering applications. Through the application of PEF, a non-thermal treatment that causes bacterial inactivation through the irreversible rupture of microbial cell membranes, inactivation is achieved without loss of scaffold structure and function. However, some microorganisms are less susceptible to PEF treatment. This study shows that treatment with PEF and nisin, a food preservative bacteriocin, has a synergistic effect on the inactivation of Staphylococcus epidermidis in collagen gels. Almost complete inactivation of a 10(3) -10(4) CFU/mL S. epidermidis population was achieved when treated with a combination of PEF and 500 IU/mL nisin, with results demonstrating a 3.4 log(10) reduction, compared with 0.66 log(10) reduction with PEF alone. Nisin, at concentrations up to 3000 IU/mL, had no discernable toxicity to mammalian 3T3 cells when added to the culture medium or incorporated into the collagen gels. This combined decontamination method, involving PEF plus nisin, may provide a non-destructive process for inactivation of PEF-resistant bacteria in labile tissue engineering scaffolds. PMID:21210508

  9. Epithelial morphogenesis of MDCK cells in three-dimensional collagen culture is modulated by interleukin-8.

    Science.gov (United States)

    Wells, Erika K; Yarborough, OrLando; Lifton, Richard P; Cantley, Lloyd G; Caplan, Michael J

    2013-05-15

    Epithelial morphogenesis is dependent upon a variety of factors, many of which involve complex interactions between cells and their surrounding environments. We analyzed the patterns of differential gene expression associated with Madin-Darby canine kidney (MDCK) renal epithelial cells grown within a collagen gel in three-dimensional (3D) culture compared with those grown atop a collagen gel in two-dimensional (2D) culture. Under these conditions, MDCK cells spontaneously formed either hollow spherical cysts or flat monolayer sheets, respectively. Microarray analysis of gene expression revealed a twofold or greater expression difference in 732 gene sets from MDCK cysts compared with monolayers (false discovery rate or FDR-adjusted P values growth factor (HGF) induces MDCK cells in 3D culture to form linear tubule-like structures. We found that HGF stimulation caused MDCK cells in 3D culture to decrease the expression of IL-8 at both the mRNA and protein levels. Furthermore, the addition of recombinant IL-8 to HGF-stimulated 3D MDCK cultures was sufficient to partially reverse the tubulogenic effects of HGF, resulting in the formation of cystic structures. These data suggest that IL-8 participates in the formation of cystic structures by MDCK cells in 3D culture and that HGF may stimulate tubulogenesis through the suppression of IL-8. PMID:23485708

  10. Capillary fracture of soft gels

    OpenAIRE

    Bostwick, Joshua B.; Daniels, Karen E.

    2013-01-01

    A liquid droplet resting on a soft gel substrate can deform that substrate to the point of material failure, whereby fractures develop on the gel surface that propagate outwards from the contact-line in a starburst pattern. In this paper, we characterize i) the initiation process in which the number of arms in the starburst is controlled by the ratio of surface tension contrast to the gel's elastic modulus and ii) the propagation dynamics showing that once fractures are initiated they propaga...

  11. THE PROPERTIES OF CARRAGEENAN GELS

    OpenAIRE

    Grubnik I.M., Gladukh Ye.V., Chernyaev S.V.

    2012-01-01

    The article presents the results of studies on the functional properties of carrageenan, depending on the concentration of sodium chloride and xanthan in gels. It is established that the main factors in the syneresis of carrageenan gels are its concentration, the presence of ions and gums in solution. If using sodium chloride there is a change in the structure of mesh of the resulting gel, which leads to an increase in syneresis.

  12. THE PROPERTIES OF CARRAGEENAN GELS

    Directory of Open Access Journals (Sweden)

    Grubnik I.M., Gladukh Ye.V., Chernyaev S.V.

    2012-04-01

    Full Text Available The article presents the results of studies on the functional properties of carrageenan, depending on the concentration of sodium chloride and xanthan in gels. It is established that the main factors in the syneresis of carrageenan gels are its concentration, the presence of ions and gums in solution. If using sodium chloride there is a change in the structure of mesh of the resulting gel, which leads to an increase in syneresis.

  13. Colloidal thermoresponsive gel forming hybrids.

    Science.gov (United States)

    Liu, Ruixue; Tirelli, Nicola; Cellesi, Francesco; Saunders, Brian R

    2010-09-15

    Colloidal hybrids comprise organic and inorganic components and are attracting considerable attention in the literature. Recently, we reported hybrid anisotropic microsheets that formed thermoresponsive gels in polymer solutions [Liu et al., Langmuir, 25, 490, 2009]. Here, we investigate the composition and properties of these hybrid colloids themselves in detail for the first time. Three different cationic PNIPAm (N-isopropylacrylamide) graft copolymers and two inorganic nanoparticle types (laponite and Ludox silica) were used to prepare a range of hybrids. Anisotropic microsheets only formed when laponite particles were added to the copolymer implying directed self-assembly. Aqueous dispersions of the microsheets spontaneously formed gels at room temperature and these gels were thermoresponsive. They represent a new class of gel forming colloid and are termed thermoresponsive gel forming hybrids. The compositions of the hybrids were determined from thermogravimetric analysis and those that gave gel forming behaviour identified. Variable-temperature rheology experiments showed that the elasticity of the gels increased linearly with temperature. The reversibility of the thermally-triggered changes in gel elasticity was investigated. The concentration dependence of the rheology data was well described by elastic percolation scaling theory and the data could be collapsed onto a master curve. The concentration exponent for the elastic modulus was 2.5. The strong attractive interactions that exist between the dispersed gel forming hybrids was demonstrated by the formation of stable thermoresponsive hybrid hydrogels through casting of hybrid dispersions. PMID:20561633

  14. Collagen metabolism in obesity: the effect of weight loss

    DEFF Research Database (Denmark)

    Rasmussen, M H; Jensen, L T; Andersen, T;

    1995-01-01

    OBJECTIVE: To investigate the impact of obesity, fat distribution and weight loss on collagen turnover using serum concentrations of the carboxyterminal propeptide of type I procollagen (S-PICP) and the aminoterminal propeptide of type III pro-collagen (S-PIIINP) as markers for collagen turnover....

  15. Collagen derived serum markers in carcinoma of the prostate

    DEFF Research Database (Denmark)

    Rudnicki, M; Jensen, L T; Iversen, P

    1995-01-01

    Three new collagen markers deriving from the collagenous matrix, e.g. carboxyterminal propeptide of type I procollagen (PICP), carboxy-terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP), and aminoterminal propeptide of type III procollagen (PIIINP) were used for the diagnose...

  16. Controlled self assembly of collagen nanoparticle

    International Nuclear Information System (INIS)

    In recent years carrier-mediated drug delivery has emerged as a powerful methodology for the treatment of various pathologies. The therapeutic index of traditional and novel drugs is enhanced via the increase of specificity due to targeting of drugs to a particular tissue, cell or intracellular compartment, the control over release kinetics, the protection of the active agent, or a combination of the above. Collagen is an important biomaterial in medical applications and ideal as protein-based drug delivery platform due to its special characteristics, such as biocompatibility, low toxicity, biodegradability, and weak antigenicity. While some many attempts have been made, further work is needed to produce fully biocompatible collagen hydrogels of desired size and able to release drugs on a specific target. In this article we propose a novel method to obtain spherical particles made of polymerized collagen surrounded by DMPC liposomes. The liposomes allow to control both the particles dimension and the gelling environment during the collagen polymerization. Furthermore, an optical based method to visualize and quantify each step of the proposed protocol is detailed and discussed.

  17. Edaravone suppresses degradation of type II collagen.

    Science.gov (United States)

    Huang, Chen; Liao, Guangjun; Han, Jian; Zhang, Guofeng; Zou, Benguo

    2016-05-13

    Osteoarthritis (OA) is a degenerative joint disease affecting millions of people. The degradation and loss of type II collagen induced by proinflammatory cytokines secreted by chondrocytes, such as factor-α (TNF-α) is an important pathological mechanism to the progression of OA. Edaravone is a potent free radical scavenger, which has been clinically used to treat the neuronal damage following acute ischemic stroke. However, whether Edaravone has a protective effect in articular cartilage hasn't been reported before. In this study, we investigated the chondrocyte protective effects of Edaravone on TNF-α induced degradation of type Ⅱ collagen. And our results indicated that TNF-α treatment resulted in degradation of type Ⅱ collagen, which can be ameliorated by treatment with Edaravone in a dose dependent manner. Notably, it was found that the inhibitory effects of Edaravone on TNF-α-induced reduction of type Ⅱ collagen were mediated by MMP-3 and MMP-13. Mechanistically, we found that Edaravone alleviated TNF-α induced activation of STAT1 and expression of IRF-1. These findings suggest a potential protective effect of Edaravone in OA. PMID:27037019

  18. Reduced collagen accumulation after major surgery

    DEFF Research Database (Denmark)

    Jorgensen, L N; Kallehave, F; Karlsmark, T;

    1996-01-01

    .01)). This decline was significantly higher in the six patients who had a postoperative infection (median 3.02 (range -0.06 to 6.14) versus 0.36 (range -1.56 to 12.60) micrograms/cm, P = 0.02). This study shows that major surgery is associated with impairment of subcutaneous collagen accumulation in a test...

  19. Cyclooxygenase-2 immunoreactivity in collagenous colitis

    DEFF Research Database (Denmark)

    Wildt, Signe; Rumessen, Jüri J; Csillag, Claudio;

    2009-01-01

    Collagenous colitis (CC) is an inflammatory bowel disease of unknown aetiology and pathogenesis. In ulcerative colitis and Crohn's disease, prostaglandins may be involved in the pathogenesis of inflammation, and increased expression of cyclo-oxygenase-2 (COX-2) has been detected. The purpose of...

  20. Corneal collagen crosslinking for keratoconus. A review

    Directory of Open Access Journals (Sweden)

    M. M. Bikbov

    2014-10-01

    Full Text Available Photochemical crosslinking is widely applied in ophthalmology. Its biochemical effect is due to the release of singlet oxygen that promotes anaerobic photochemical reaction. Keratoconus is one of the most common corneal ectasia affecting 1 in 250 to 250 000 persons. Currently, the rate of iatrogenic ectasia following eximer laser refractive surgery increases due to biomechanical weakening of the cornea. Morphologically and biochemically, ectasia is characterized by corneal layers thinning, contact between the stroma and epithelium resulting from Bowman’s membrane rupture, chromatin fragmentation in keratocyte nuclei, phagocytosis, abnormal staining and arrangement of collagen fibers, enzyme system disorders, and keratocyte apoptosis. In corneal ectasia, altered enzymatic processes result in the synthesis of abnormal collagen. Collagen packing is determined by the activity of various extracellular matrix enzymes which bind amines and aldehydes of collagen fiber amino acids. In the late stage, morphological changes of Descemet’s membrane (i.e., rupture and detachment develop. Abnormal hexagonal-shaped keratocytes and their apoptosis are the signs of endothelial dystrophy. The lack of analogs in domestic ophthalmology encouraged the scientists of Ufa Eye Research Institute to develop a device for corneal collagen crosslinking. The parameters of ultraviolet (i.e., wavelength, exposure time, power to achieve the desired effect were identified. The specifics of some photosensitizers in the course of the procedure were studied. UFalink, a device for UV irradiation of cornea, and photosensitizer Dextralink were developed and adopted. Due to the high risk of endothelial damage, this treatment is contraindicated in severe keratoconus (CCT less than 400 microns. Major effects of corneal collagen crosslinking are the following: Young’s modulus (modulus of elasticity increase by 328.9 % (on average, temperature tolerance increase by 5

  1. Daily consumption of the collagen supplement Pure Gold Collagen® reduces visible signs of aging

    OpenAIRE

    Sibilla, Sara

    2014-01-01

    Maryam Borumand, Sara Sibilla Minerva Research Labs Ltd., London, UK Abstract: With age, changes in the metabolic processes of structural components of the skin lead to visible signs of aging, such as increased dryness and wrinkle formation. The nutritional supplement, Pure Gold Collagen®, which consists of hydrolyzed collagen, hyaluronic acid, vitamins, and minerals, was developed to counteract these signs. An open-label study was conducted to investigate the effects of this nutrit...

  2. Lamprey type II collagen and Sox9 reveal an ancient origin of the vertebrate collagenous skeleton

    OpenAIRE

    Zhang, Guangjun; Miyamoto, Michael M.; Cohn, Martin J.

    2006-01-01

    Type II collagen is the major cartilage matrix protein in the jawed vertebrate skeleton. Lampreys and hagfishes, by contrast, are thought to have noncollagenous cartilage. This difference in skeletal structure has led to the hypothesis that the vertebrate common ancestor had a noncollagenous skeleton, with type II collagen becoming the predominant cartilage matrix protein after the divergence of jawless fish from the jawed vertebrates ≈500 million years ago. Here we report that lampreys have ...

  3. Dilute gels with exceptional rigidity from self-assembling silk-collagen-like block copolymers

    NARCIS (Netherlands)

    Martens, A.A.; Gucht, van der J.; Eggink, G.; Wolf, de F.A.; Cohen Stuart, M.A.

    2009-01-01

    Rheological data on monodisperse block copolymer hydrogels are rare because the amounts produced with various methods usually are not sufficient for materials testing. By biotechnological means, expression of a block copolymer encoding gene in the yeast Pichia pastoris, we produced enough protein bl

  4. In vitro formation and thermal transition of novel hybrid fibrils from type I fish scale collagen and type I porcine collagen

    Energy Technology Data Exchange (ETDEWEB)

    Chen Song; Ogawa, Nobuhiro; Migita, Satoshi; Kobayashi, Hisatoshi [Biomaterials Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Ikoma, Toshiyuki [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, O-okayama 2-12-1, Meguro-ku, Tokyo 152-8550 (Japan); Hanagata, Nobutaka, E-mail: HANAGATA.Nobutaka@nims.go.j [Nanotechnology Innovation Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2010-06-15

    Novel type I collagen hybrid fibrils were fabricated by neutralizing a mixture of type I fish scale collagen solution and type I porcine collagen solution with a phosphate buffer saline at 28 {sup 0}C. Their structure was discussed in terms of the volume ratio of fish/porcine collagen solution. Scanning electron and atomic force micrographs showed that the diameter of collagen fibrils derived from the collagen mixture was larger than those derived from each collagen, and all resultant fibrils exhibited a typical D-periodic unit of {approx}67 nm, irrespective of volume ratio of both collagens. Differential scanning calorimetry revealed only one endothermic peak for the fibrils derived from collagen mixture or from each collagen solution, indicating that the resultant collagen fibrils were hybrids of type I fish scale collagen and type I porcine collagen.

  5. In vitro formation and thermal transition of novel hybrid fibrils from type I fish scale collagen and type I porcine collagen

    Directory of Open Access Journals (Sweden)

    Song Chen, Toshiyuki Ikoma, Nobuhiro Ogawa, Satoshi Migita, Hisatoshi Kobayashi and Nobutaka Hanagata

    2010-01-01

    Full Text Available Novel type I collagen hybrid fibrils were fabricated by neutralizing a mixture of type I fish scale collagen solution and type I porcine collagen solution with a phosphate buffer saline at 28 °C. Their structure was discussed in terms of the volume ratio of fish/porcine collagen solution. Scanning electron and atomic force micrographs showed that the diameter of collagen fibrils derived from the collagen mixture was larger than those derived from each collagen, and all resultant fibrils exhibited a typical D-periodic unit of ~67 nm, irrespective of volume ratio of both collagens. Differential scanning calorimetry revealed only one endothermic peak for the fibrils derived from collagen mixture or from each collagen solution, indicating that the resultant collagen fibrils were hybrids of type I fish scale collagen and type I porcine collagen.

  6. In vitro formation and thermal transition of novel hybrid fibrils from type I fish scale collagen and type I porcine collagen

    Science.gov (United States)

    Chen, Song; Ikoma, Toshiyuki; Ogawa, Nobuhiro; Migita, Satoshi; Kobayashi, Hisatoshi; Hanagata, Nobutaka

    2010-06-01

    Novel type I collagen hybrid fibrils were fabricated by neutralizing a mixture of type I fish scale collagen solution and type I porcine collagen solution with a phosphate buffer saline at 28 °C. Their structure was discussed in terms of the volume ratio of fish/porcine collagen solution. Scanning electron and atomic force micrographs showed that the diameter of collagen fibrils derived from the collagen mixture was larger than those derived from each collagen, and all resultant fibrils exhibited a typical D-periodic unit of ~67 nm, irrespective of volume ratio of both collagens. Differential scanning calorimetry revealed only one endothermic peak for the fibrils derived from collagen mixture or from each collagen solution, indicating that the resultant collagen fibrils were hybrids of type I fish scale collagen and type I porcine collagen.

  7. In vitro formation and thermal transition of novel hybrid fibrils from type I fish scale collagen and type I porcine collagen

    International Nuclear Information System (INIS)

    Novel type I collagen hybrid fibrils were fabricated by neutralizing a mixture of type I fish scale collagen solution and type I porcine collagen solution with a phosphate buffer saline at 28 0C. Their structure was discussed in terms of the volume ratio of fish/porcine collagen solution. Scanning electron and atomic force micrographs showed that the diameter of collagen fibrils derived from the collagen mixture was larger than those derived from each collagen, and all resultant fibrils exhibited a typical D-periodic unit of ∼67 nm, irrespective of volume ratio of both collagens. Differential scanning calorimetry revealed only one endothermic peak for the fibrils derived from collagen mixture or from each collagen solution, indicating that the resultant collagen fibrils were hybrids of type I fish scale collagen and type I porcine collagen.

  8. Collagen IV in normal skin and in pathological processes

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu-Velez

    2012-01-01

    Full Text Available Context: Type IV collagen is a type of collagen found primarily in the skin within the basement membrane zone. The type IV collagen C4 domain at the C-terminus is not removed in post-translational processing, and the fibers are thus link head-to-head, rather than in a parallel fashion. Also, type IV collagen lacks a glycine in every third amino-acid residue necessary for the tight collagen helix. Thus, the overall collagen-IV conformation is structurally more pliable and kinked, relative to other collagen subtypes. These structural features allow collagen IV to form sheets, which is the primary structural form found in the cutaneous basal lamina. There are six human genes associated with collagen IV, specifically COL4A1, COL4A2, COL4A3, COL4A4, COL4A5 and COL4A6. The aim of this review is to highlight the significance of this protein in normal skin, and in selected diseases. Results: The alpha 3 protein constituent of type IV collagen is thought to be the antigen implicated in Goodpasture′s syndrome, wherein the immune system attacks the basement membranes of the renal glomeruli and pulmonary alveoli. In addition, mutations to the genes coding for type IV collagen lead to the Alport syndrome. Furthermore, autoantibodies directed against denatured human type IV collagen have been described in rheumatoid arthritis, scleroderma, and SLE. Structural studies of collagen IV have been utilized to differentiate between subepidermal blistering diseases, including bullous pemphigoid, acquired epidermolysis bullosa, anti-epiligrin cicatricial pemphigoid, and bullous lupus erythematosus. Collagen IV is also of importance in wound healing and in embryogenesis. Conclusions: Pathological studies have demonstrated that minor structural differences in collagen IV can lead to distinct, clinically different diseases.

  9. Antimicrobial Graft Copolymer Gels.

    Science.gov (United States)

    Harvey, Amanda C; Madsen, Jeppe; Douglas, C W Ian; MacNeil, Sheila; Armes, Steven P

    2016-08-01

    In view of the growing worldwide rise in microbial resistance, there is considerable interest in designing new antimicrobial copolymers. The aim of the current study was to investigate the relationship between antimicrobial activity and copolymer composition/architecture to gain a better understanding of their mechanism of action. Specifically, the antibacterial activity of several copolymers based on 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] and 2-hydroxypropyl methacrylate (HPMA) toward Staphylococcus aureus was examined. Both block and graft copolymers were synthesized using either atom transfer radical polymerization or reversible addition-fragmentation chain transfer polymerization and characterized via (1)H NMR, gel permeation chromatography, rheology, and surface tensiometry. Antimicrobial activity was assessed using a range of well-known assays, including direct contact, live/dead staining, and the release of lactate dehydrogenase (LDH), while transmission electron microscopy was used to study the morphology of the bacteria before and after the addition of various copolymers. As expected, PMPC homopolymer was biocompatible but possessed no discernible antimicrobial activity. PMPC-based graft copolymers comprising PHPMA side chains (i.e. PMPC-g-PHPMA) significantly reduced both bacterial growth and viability. In contrast, a PMPC-PHPMA diblock copolymer comprising a PMPC stabilizer block and a hydrophobic core-forming PHPMA block did not exhibit any antimicrobial activity, although it did form a biocompatible worm gel. Surface tensiometry studies and LDH release assays suggest that the PMPC-g-PHPMA graft copolymer exhibits surfactant-like activity. Thus, the observed antimicrobial activity is likely to be the result of the weakly hydrophobic PHPMA chains penetrating (and hence rupturing) the bacterial membrane. PMID:27409712

  10. Rheology and structure of milk protein gels

    NARCIS (Netherlands)

    Vliet, van T.; Lakemond, C.M.M.; Visschers, R.W.

    2004-01-01

    Recent studies on gel formation and rheology of milk gels are reviewed. A distinction is made between gels formed by aggregated casein, gels of `pure` whey proteins and gels in which both casein and whey proteins contribute to their properties. For casein' whey protein mixtures, it has been shown th

  11. Collagen mediates adhesion of Streptococcus mutans to human dentin.

    OpenAIRE

    Switalski, L M; Butcher, W G; Caufield, P C; Lantz, M S

    1993-01-01

    Some strains of Streptococcus mutans were found to recognize and bind collagen type I. Binding of 125I-labeled collagen type I was specific in that collagen types I and II, but not unrelated proteins, were able to inhibit binding of the labeled ligand to bacteria. Collagen binding to S. mutans was partially reversible and involved a limited number of bacterial binding sites per cell. S. mutans UA 140 cells bound collagen type I with high affinity (Kd = 8 x 10(-8) M). The number of binding sit...

  12. Utilization of Chicken By-Products to Form Collagen Films

    OpenAIRE

    Kumudini A. Munasinghe; Jurgen G. Schwarz; Matthew Whittiker

    2015-01-01

    Chicken collagen casings could be an alternate source of collagen casings that are manufactured for sausages. The overall objective of this project was to extract chicken collagen from by-products of the broiler processing industries and to explore the possibility of making films. Chicken skin was washed, ground, and pretreated to remove the noncollagenous compounds. Collagen was extracted using acetic acid and pepsin. Solubilized collagen was salted-out and centrifuged at 20,000 ×g at 4°C fo...

  13. Nanocrystal/sol-gel nanocomposites

    Science.gov (United States)

    Petruska, Melissa A.; Klimov, Victor L.

    2012-06-12

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites

  14. Nanocrystal/sol-gel nanocomposites

    Science.gov (United States)

    Petruska, Melissa A.; Klimov, Victor L.

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  15. On the role of type IX collagen in the extracellular matrix of cartilage: type IX collagen is localized to intersections of collagen fibrils

    OpenAIRE

    1986-01-01

    The tissue distribution of type II and type IX collagen in 17-d-old chicken embryo was studied by immunofluorescence using polyclonal antibodies against type II collagen and a peptic fragment of type IX collagen (HMW), respectively. Both proteins were found only in cartilage where they were co-distributed. They occurred uniformly throughout the extracellular matrix, i.e., without distinction between pericellular, territorial, and interterritorial matrices. Tissues that undergo endochondral bo...

  16. Sucrose release from polysaccharide gels.

    Science.gov (United States)

    Nishinari, Katsuyoshi; Fang, Yapeng

    2016-05-18

    Sucrose release from polysaccharide gels has been studied extensively because it is expected to be useful in understanding flavour release from solid foods and to find a new processing method which produces more palatable and healthier foods. We provide an overview of the release of sucrose and other sugars from gels of agar and related polysaccharides. The addition of sucrose to agar solutions leads to the increase in transparency of the resulting gels and the decrease in syneresis, which is attributed to the decrease in mesh size in gels. The syneresis occurring in the quiescent condition and fluid release induced by compression is discussed. The relationship between the sugar release and the structural, rheological and thermal properties of gels is also discussed. Finally, the future research direction is proposed. PMID:26952168

  17. Effect of silica and hydroxyapatite mineralization on the mechanical properties and the biocompatibility of nanocomposite collagen scaffolds.

    Science.gov (United States)

    Heinemann, S; Heinemann, C; Jäger, M; Neunzehn, J; Wiesmann, H P; Hanke, T

    2011-11-01

    A recently established materials concept of biomimetic composites based on silica, collagen, and calcium phosphates was adapted for the preparation of porous scaffolds suitable for tissue engineering applications. Mineralization was achieved by directed nucleation of silica on the templating organic phase during a sol-gel process with or without addition of hydroxyapatite. Both mineral phases (25 wt %, individually or combined in equal shares) influenced the scaffold's morphology at the nanoscale. Enhancement of apparent density and compressive strength was similar for silica or hydroxyapatite mineralization; however the stiffening effect of hydroxyapatite was much higher. All scaffold modifications provided proper conditions for adhesion, proliferation, and osteogenic differentiation of human bone marrow stromal cells. The open porosity allowed cells to migrate throughout the scaffolds while maintaining their viability, both confirmed by MTT staining and confocal laser scanning microscopy. Initial cell distributions were graduated due to collagen mineralization, but balanced out over the cultivation time of 28 days. RT-PCR analyses revealed higher gene expression of ALP but lower expression of BSP II and osteocalcin because of collagen mineralization. The results demonstrate that both silica and hydroxyapatite offer comparable possibilities to tailor mechanical properties of collagen-based scaffolds without being detrimental to in vitro biocompatibility. PMID:21942510

  18. Synthesis of Citric-Acrylate Oligomer and its in-Situ Reaction with Chrome Tanned Collagen (hide powder)

    International Nuclear Information System (INIS)

    The purpose of this study was to formulate the new combined system of acrylic and citric acids, which has been prepared by free radical polymerization and esterification reaction at the same time to form citric acrylate (CAC) oligomer through ester linkage and low molecular weight (Mw 2241), in compared with polyacrylic acid. The chemical structure and the reaction mechanism of this oligomer were confirmed by different spectroscopic tools (1H, 13C-NMR, ATR-IR), gel permeation chromatography and thermogravimetric analysis (TGA/DTA). The problem of the effect of the masking agents in the chrome tanning of the collagen and the pickling of the hide has been approached from the study of the hydrothermal and mechanical properties, using this new eco-friendly oligomer, which was carried out in-situ treated/grafted chrome tanned collagen (hide powder), and pickled hide. The microemulsion grafting copolymerization of (CAC) using 2.2-azo-bis isobutyronitrile (ABIN), via direct coupling reaction, onto the chrome tanned collagen showed that the free amino groups of the collagen were considered to be a potential site for the in-situ reaction with (CAC) oligomer. Also, using of citric-acrylate (CAC) oligomer, during chrome tanning of leather, instead of the traditional strong acids (sulfuric, hydrochloric and formic) resulted in significant improvement in chrome exhaustion and physical properties

  19. Study of collagen metabolism and regulation after β radiation injury

    International Nuclear Information System (INIS)

    The animal model of β radiation injury was established by the β radiation produced by the linear accelerator; and irradiated NIH 3T3 cells were studied. In the experiment the contents of total collagen, collagen type I and type III were measured. The activity of MMPs-1 were tested. The contents of TGF-β1, IL-6 were also detected. The results showed that after exposure to β radiation, little change was found in the content of total collagen, but the content of collagen I decreased and the content of collagen III, MMPs-1 activity increased; the expression of TGF-β1, IL-6 increased. The results suggest that changes in the metabolism of collagen play an important role in the irradiated injury of the skin; TGF-β1, IL-6 may be essential in the regulation of the collagen metabolism

  20. 3H-collagen turnover in non-cross-linked and aldehyde-cross-linked dermal collagen grafts.

    OpenAIRE

    Oliver, R. F.; Barker, H; Cooke, A.; L. Stephen

    1982-01-01

    Using trypsin-purified rat dermal collagen labelled with tritiated hydroxyproline and proline, a study has been made of hydroxyproline turnover in non-cross-linked and glutaraldehyde- and formaldehyde-cross-linked collagen when implanted s.c. in unlabelled isogenic rats. Grafts cross-linked with 0.01% glutaraldehyde maintained their collagen mass over a 22-week period, loss of original collagen being balanced by the gain in new collagen (22% at 22 weeks). Cross-linking with 5% formaldehyde te...

  1. LARP6 Meets Collagen mRNA: Specific Regulation of Type I Collagen Expression

    Directory of Open Access Journals (Sweden)

    Yujie Zhang

    2016-03-01

    Full Text Available Type I collagen is the most abundant structural protein in all vertebrates, but its constitutive rate of synthesis is low due to long half-life of the protein (60–70 days. However, several hundred fold increased production of type I collagen is often seen in reparative or reactive fibrosis. The mechanism which is responsible for this dramatic upregulation is complex, including multiple levels of regulation. However, posttranscriptional regulation evidently plays a predominant role. Posttranscriptional regulation comprises processing, transport, stabilization and translation of mRNAs and is executed by RNA binding proteins. There are about 800 RNA binding proteins, but only one, La ribonucleoprotein domain family member 6 (LARP6, is specifically involved in type I collagen regulation. In the 5′untranslated region (5’UTR of mRNAs encoding for type I and type III collagens there is an evolutionally conserved stem-loop (SL structure; this structure is not found in any other mRNA, including any other collagen mRNA. LARP6 binds to the 5′SL in sequence specific manner to regulate stability of collagen mRNAs and their translatability. Here, we will review current understanding of how is LARP6 involved in posttranscriptional regulation of collagen mRNAs. We will also discuss how other proteins recruited by LARP6, including nonmuscle myosin, vimentin, serine threonine kinase receptor associated protein (STRAP, 25 kD FK506 binding protein (FKBP25 and RNA helicase A (RHA, contribute to this process.

  2. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stamov, Dimitar R, E-mail: stamov@jpk.com [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Stock, Erik [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Franz, Clemens M [DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe (Germany); Jähnke, Torsten; Haschke, Heiko [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany)

    2015-02-15

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I.

  3. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    International Nuclear Information System (INIS)

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I

  4. Study of Native Type I Collagen Fibrils

    Science.gov (United States)

    Heim, August

    2006-03-01

    Presented in this work is direct imaging and force microscopy of native, intact type I collagen fibrils extracted from the sea cucumber Cucumaria frondosa dermis with affiliated proteoglycan molecules. The prototypical collagen fibril structure is well conserved through higher mammalian species and presents a model for study of the mechanical properties of the primary individual components of the dermis and skeletal ligature. Common practice is to use reconstituted fibrils which lack the precise conformal structure and affiliated proteoglycans. We have performed force microscopy to probe the mechanical properties of native fibrils and extract the elastic modulus under natural conditions. This knowledge is combined transmission and atomic force imaging, in conjunction with applied computation models, to demonstrate an inherent semitubular structure of these fibrils.

  5. About collagen, a tribute to Yves Bouligand.

    Science.gov (United States)

    Charvolin, Jean; Sadoc, Jean-François

    2012-10-01

    Yves Bouligand's analysis of the organizations of biological materials in relation to those of liquid crystals enabled the development of the idea that physical forces exerting their actions under strong spatial constraints determine the structures and morphologies of these materials. The different levels of organization in collagen have preoccupied him for a long time. We present here our recent works in this domain that we were still discussing with him a few months before his death at the age of 76 on 21 January 2011. After recalling the hierarchical set of structures built by collagen molecules, we analyse them, exploiting the properties of the curved space of the hypersphere and of the algorithm of phyllotaxis. Those two geometrical concepts can be proposed as structural archetypes founding the polymorphism of this complex material of biological origin. PMID:24098840

  6. Effect of the addition of collagen in the preparation of hydroxyapatite, aiming the application of pulp capping

    International Nuclear Information System (INIS)

    This work studied the action of collagen (COLL) in the hydroxyapatite (HA) synthesis, produced through sol-gel process, in order to mimetize the chemical composition of dental tissue. The resulting material was characterized by energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), wide-angle X-ray diffraction (WAXD) and scanning electron microscopy (SEM). The Ca/P ratio was determined through EDX - 1,89 e 2,38, with and without collagen, respectively. The FT-IR analysis showed no significant interaction between the constituents of the composite. The R-ray diffractograms indicated an increase of the resolution and intensity of the HA peak. The photomicrographies showed that the preparation method exhibited significantly influence onto the hydroxyapatite morphology, as well as resulted in a homogeneously dispersed composite. (author)

  7. Biomimetic silicification of demineralized hierarchical collagenous tissues

    OpenAIRE

    Niu, Li-na; Jiao, Kai; Ryou, Heonjune; Diogenes, Anibal; Yiu, Cynthia K. Y.; Mazzoni, Annalisa; Chen, Ji-hua; Arola, Dwayne D.; Hargreaves, Kenneth M.; Pashley, David H; Franklin R Tay

    2013-01-01

    Unlike man-made composite materials, natural biominerals containing composites usually demonstrate different levels of sophisticated hierarchical structures which are responsible for their mechanical properties and other metabolic functions. However, the complex spatial organizations of the organic-inorganic phases are far beyond what they be achieved by contemporary engineering techniques. Here, we demonstrate that carbonated apatite present in collagen matrices derived from fish scale and b...

  8. Human Bone Marrow Mesenchymal Stem Cell Behaviors on PCL/Gelatin Nanofibrous Scaffolds Modified with A Collagen IV-Derived RGD-Containing Peptide

    OpenAIRE

    Ali Mota; Abbas Sahebghadam Lotfi; Jalal Barzin; Mostafa Hatam; Behzad Adibi; Zahra Khalaj; Mohammad Massumi

    2014-01-01

    Objective We introduce an RGD (Arg-Gly-Asp)-containing peptide of collagen IV origin that possesses potent cell adhesion and proliferation properties. Materials and Methods In this experimental study, the peptide was immobilized on an electrospun nanofibrous polycaprolactone/gelatin (PCL/Gel) hybrid scaffold by a chemical bonding approach to improve cell adhesion properties of the scaffold. An io- dine-modified phenylalanine was introduced in the peptide to track the immobilization process. N...

  9. Chemical Gel for Surface Decontamination

    International Nuclear Information System (INIS)

    Many chemical decontamination processes operate by immersing components in aggressive chemical solutions. In these applications chemical decontamination technique produce large amounts of radioactive liquid waste. Therefore it is necessary to develop processes using chemical gels instead of chemical solutions, to avoid the well-known disadvantages of chemical decontamination techniques while retaining their high efficiency. Chemical gels decontamination process consists of applying the gel by spraying it onto the surface of large area components (floors, walls, etc) to be decontaminated. The gel adheres to any vertical or complex surface due to their thixotropic properties and operates by dissolving the radioactive deposit, along with a thin layer of the gel support, so that the radioactivity trapped at the surface can be removed. Important aspects of the gels are that small quantities can be used and they show thixitropic properties : liquid during spraying, and solid when stationary, allowing for strong adherence to surfaces. This work investigates the decontamination behaviors of organic-based chemical gel for SS 304 metallic surfaces contaminated with radioactive materials

  10. sol-gel

    Directory of Open Access Journals (Sweden)

    Humberto A. Monreal

    2005-01-01

    Full Text Available En este trabajo sintetizamos nanocilindros de dióxido de titanio de 30 a 400 nm por medio de ADN del plásmido pBR322 de 4,362 pares de bases y el uso de isopropóxido de titanio como precursor por medio del proceso sol-gel. Los geles resultantes fueron calcinados y los polvos caracterizados por medio de Microscopio Electrónico de Barrido (MEB, Espectroscopía de Energía Dispersiva, Microscopio Electrónico de Transmisión (MET y Difracción de Rayos X. Los resultados muestran que la síntesis in vitro de nanorods en presencia de ADN, puede ser activada. Muchas otras moléculas sintéticas pueden producirse por medio del uso de sistemas orgánicos, es así como reportamos la síntesis de híbridos hechos de ácidos nucleicos en materiales inorgánicos que pueden tener diversas aplicaciones en sistemas catalíticos, biomateriales y materiales nanoestructurados.

  11. Denaturing gradient gel electrophoresis

    International Nuclear Information System (INIS)

    It is worthwhile considering that only some 30 species make up the bulk of the bacterial population in human faeces at any one time based on the classical cultivation-based approach. The situation in the rumen is similar. Thus, it is practical to focus on specific groups of interest within the complex community. These may be the predominant or the most active species, specific physiological groups or readily identifiable (genetic) clusters of phylogenetically related organisms. Several 16S rDNA fingerprinting techniques can be invaluable for selecting and monitoring sequences or phylogenetic groups of interest and are described below. Over the past few decades, considerable attention was focussed on the identification of pure cultures of microbes on the basis of genetic polymorphisms of DNA encoding rRNA such as ribotyping, amplified fragment length polymorphism and randomly amplified polymorphic DNA. However, many of these methods require prior cultivation and are less suitable for use in analysis of complex mixed populations although important in describing cultivated microbial diversity in molecular terms. Much less attention was given to molecular characterization of complex communities. In particular, research into diversity and community structure over time has been revolutionized by the advent of molecular fingerprinting techniques for complex communities. Denaturing or temperature gradient gel electrophoresis (DGGE/TGGE) methods have been successfully applied to the analysis of human, pig, cattle, dog and rodent intestinal populations

  12. Collagen remodeling by phagocytosis is determined by collagen substrate topology and calcium-dependent interactions of gelsolin with nonmuscle myosin IIA in cell adhesions

    OpenAIRE

    Arora, P. D.; Wang, Y.; Bresnick, A.; Dawson, J.; Janmey, P. A.; McCulloch, C. A.

    2013-01-01

    We examine how collagen substrate topography, free intracellular calcium ion concentration ([Ca2+]i, and the association of gelsolin with nonmuscle myosin IIA (NMMIIA) at collagen adhesions are regulated to enable collagen phagocytosis. Fibroblasts plated on planar, collagen-coated substrates show minimal increase of [Ca2+]i, minimal colocalization of gelsolin and NMMIIA in focal adhesions, and minimal intracellular collagen degradation. In fibroblasts plated on collagen-coated latex beads th...

  13. Collagen-like peptides and peptide-polymer conjugates in the design of assembled materials

    OpenAIRE

    Luo, Tianzhi; Kiick, Kristi L.

    2013-01-01

    Collagen is the most abundant protein in mammals, and there has been long-standing interest in understanding and controlling collagen assembly in the design of new materials. Collagen-like peptides (CLP), also known as collagen-mimetic peptides (CMP) or collagen-related peptides (CRP), have thus been widely used to elucidate collagen triple helix structure as well as to produce higher-order structures that mimic natural collagen fibers. This mini-review provides an overview of recent progress...

  14. Field inversion gel electrophoresis in denaturing polyacrylamide gels.

    OpenAIRE

    Heller, C.; Beck, S

    1992-01-01

    The velocities of single stranded DNA molecules in denaturing polyacrylamide gels during symmetric and asymmetric field inversion were measured at different pulse times and gel concentrations. Under the conditions chosen in our study, pulse times as short as a few milliseconds lead to a retardation of DNA molecules larger than 400 bases. We found that a field inversion with an electric field in the forward direction of about double the strength of that applied in the backward direction is a g...

  15. Collagens and proteoglycans of the corneal extracellular matrix

    Directory of Open Access Journals (Sweden)

    Y.M. Michelacci

    2003-08-01

    Full Text Available The cornea is a curved and transparent structure that provides the initial focusing of a light image into the eye. It consists of a central stroma that constitutes 90% of the corneal depth, covered anteriorly with epithelium and posteriorly with endothelium. Its transparency is the result of the regular spacing of collagen fibers with remarkably uniform diameter and interfibrillar space. Corneal collagen is composed of heterotypic fibrils consisting of type I and type V collagen molecules. The cornea also contains unusually high amounts of type VI collagen, which form microfibrillar structures, FACIT collagens (XII and XIV, and other nonfibrillar collagens (XIII and XVIII. FACIT collagens and other molecules, such as leucine-rich repeat proteoglycans, play important roles in modifying the structure and function of collagen fibrils.Proteoglycans are macromolecules composed of a protein core with covalently linked glycosaminoglycan side chains. Four leucine-rich repeat proteoglycans are present in the extracellular matrix of corneal stroma: decorin, lumican, mimecan and keratocan. The first is a dermatan sulfate proteoglycan, and the other three are keratan sulfate proteoglycans. Experimental evidence indicates that the keratan sulfate proteoglycans are involved in the regulation of collagen fibril diameter, and dermatan sulfate proteoglycan participates in the control of interfibrillar spacing and in the lamellar adhesion properties of corneal collagens. Heparan sulfate proteoglycans are minor components of the cornea, and are synthesized mainly by epithelial cells. The effect of injuries on proteoglycan synthesis is discussed.

  16. Type VI Collagen Regulates Dermal Matrix Assembly and Fibroblast Motility.

    Science.gov (United States)

    Theocharidis, Georgios; Drymoussi, Zoe; Kao, Alexander P; Barber, Asa H; Lee, David A; Braun, Kristin M; Connelly, John T

    2016-01-01

    Type VI collagen is a nonfibrillar collagen expressed in many connective tissues and implicated in extracellular matrix (ECM) organization. We hypothesized that type VI collagen regulates matrix assembly and cell function within the dermis of the skin. In the present study we examined the expression pattern of type VI collagen in normal and wounded skin and investigated its specific function in new matrix deposition by human dermal fibroblasts. Type VI collagen was expressed throughout the dermis of intact human skin, at the expanding margins of human keloid samples, and in the granulation tissue of newly deposited ECM in a mouse model of wound healing. Generation of cell-derived matrices (CDMs) by human dermal fibroblasts with stable knockdown of COL6A1 revealed that type VI collagen-deficient matrices were significantly thinner and contained more aligned, thicker, and widely spaced fibers than CDMs produced by normal fibroblasts. In addition, there was significantly less total collagen and sulfated proteoglycans present in the type VI collagen-depleted matrices. Normal fibroblasts cultured on de-cellularized CDMs lacking type VI collagen displayed increased cell spreading, migration speed, and persistence. Taken together, these findings indicate that type VI collagen is a key regulator of dermal matrix assembly, composition, and fibroblast behavior and may play an important role in wound healing and tissue regeneration. PMID:26763426

  17. In vivo determination of arterial collagen synthesis in atherosclerotic rabbits

    International Nuclear Information System (INIS)

    Collagen and non-collagen protein synthesis rates were determined in vivo in tissues from rabbits fed a control or atherogenic diet supplemented with 2% peanut oil and 0.25% cholesterol for 4 months. Rabbits received a bolus intravenous injection of L-[3H]-proline (1.0 mCi/kg) and unlabeled L-proline (7 mmoles/kg) in 0.9% NaCl. Plasma proline specific activity decreased only 20% over 5 hr and was similar to the specific activity of free proline in tissues. Thoracic aortas from atherosclerotic rabbits exhibited raised plaques covering at least 75% of the surface. Thoracic intima plus a portion of the media (TIM) was separated from the remaining media plus adventitia (TMA). Dry delipidated weight, total collagen content, and collagen as a percent of dry weight were increased significantly in the TIM of atherosclerotic rabbits. Collagen synthesis rates and collagen synthesis as a percent of total protein synthesis were likewise increased both in the TIM and in the abdominal aortas. No differences from controls either in collagen content or collagen synthesis rates were observed in the TMA, lung or skin. These results demonstrate for the first time in vivo that formation of atherosclerotic plaques is associated with increased rates of collagen synthesis. Furthermore, as previously observed with incubations in vitro, collagen synthesis was elevated to a greater extent than noncollagen protein synthesis in atherosclerotic aortas from rabbits fed cholesterol plus peanut oil

  18. Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation

    International Nuclear Information System (INIS)

    Collagen type I is the most abundant extracellular matrix protein in the human body, providing the basis for tissue structure and directing cellular functions. Collagen has complex structural hierarchy, organized at different length scales, including the characteristic triple helical feature. In the present study, the relationship between collagen structure (native vs. denatured) and sensitivity to UV radiation was assessed, with a focus on changes in primary structure, changes in conformation, microstructure and material properties. A brief review of free radical reactions involved in collagen degradation is also provided as a mechanistic basis for the changes observed in the study. Structural and functional changes in the collagens were related to the initial conformation (native vs. denatured) and the energy of irradiation. These changes were tracked using SDS-PAGE to assess molecular weight, Fourier transform infrared (FTIR) spectroscopy to study changes in the secondary structure, and atomic force microscopy (AFM) to characterize changes in mechanical properties. The results correlate differences in sensitivity to irradiation with initial collagen structural state: collagen in native conformation vs. heat-treated (denatured) collagen. Changes in collagen were found at all levels of the hierarchical structural organization. In general, the native collagen triple helix is most sensitive to UV-254 nm radiation. The triple helix delays single chain degradation. The loss of the triple helix in collagen is accompanied by hydrogen abstraction through free radical mechanisms. The results received suggest that the effects of electromagnetic radiation on biologically relevant extracellular matrices (collagen in the present study) are important to assess in the context of the state of collagen structure. The results have implications in tissue remodeling, wound repair and disease progression

  19. MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix

    Energy Technology Data Exchange (ETDEWEB)

    Takino, Takahisa; Tsuge, Hisashi; Ozawa, Terumasa [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Sato, Hiroshi, E-mail: vhsato@kenroku.kanazawa-u.ac.jp [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2010-06-11

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21{sup WAF1} and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin {alpha}{sub v}{beta}{sub 3} were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.

  20. Fibroblast invasive migration into fibronectin/fibrin gels requires a previously uncharacterized dermatan sulfate-CD44 proteoglycan

    DEFF Research Database (Denmark)

    Clark, Richard A F; Lin, Fubao; Greiling, Doris;

    2004-01-01

    After tissue injury, fibroblast migration from the peri-wound collagenous stroma into the fibrin-laden wound is critical for granulation tissue formation and subsequent healing. Recently we found that fibroblast transmigration from a collagen matrix into a fibrin matrix required the presence of...... migration into a fibronectin/fibrin gel. This conclusion was based on beta-xyloside inhibition of glycanation and specific glycosaminoglycan degradation. CD44, a cell surface receptor known to bind hyaluronan, not infrequently exists as a proteoglycan, decorated with various glycosaminoglycan chains...... including heparan sulfate and chondroitin sulfate, and as such can bind fibronectin. We found that CD44H, the non-spliced isoform of CD44, was necessary for fibroblast invasion into fibronectin/fibrin gels. Resting fibroblasts expressed mostly nonglycanated CD44H core protein, which became glycanated with...

  1. Composite alginate gels for tunable cellular microenvironment mechanics

    Science.gov (United States)

    Khavari, Adele; Nydén, Magnus; Weitz, David A.; Ehrlicher, Allen J.

    2016-01-01

    The mechanics of the cellular microenvironment can be as critical as biochemistry in directing cell behavior. Many commonly utilized materials derived from extra-cellular-matrix create excellent scaffolds for cell growth, however, evaluating the relative mechanical and biochemical effects independently in 3D environments has been difficult in frequently used biopolymer matrices. Here we present 3D sodium alginate hydrogel microenvironments over a physiological range of stiffness (E = 1.85 to 5.29 kPa), with and without RGD binding sites or collagen fibers. We use confocal microscopy to measure the growth of multi-cellular aggregates (MCAs), of increasing metastatic potential in different elastic moduli of hydrogels, with and without binding factors. We find that the hydrogel stiffness regulates the growth and morphology of these cell clusters; MCAs grow larger and faster in the more rigid environments similar to cancerous breast tissue (E = 4–12 kPa) as compared to healthy tissue (E = 0.4–2 kpa). Adding binding factors from collagen and RGD peptides increases growth rates, and change maximum MCA sizes. These findings demonstrate the utility of these independently tunable mechanical/biochemistry gels, and that mechanical confinement in stiffer microenvironments may increase cell proliferation. PMID:27484403

  2. Composite alginate gels for tunable cellular microenvironment mechanics

    Science.gov (United States)

    Khavari, Adele; Nydén, Magnus; Weitz, David A.; Ehrlicher, Allen J.

    2016-08-01

    The mechanics of the cellular microenvironment can be as critical as biochemistry in directing cell behavior. Many commonly utilized materials derived from extra-cellular-matrix create excellent scaffolds for cell growth, however, evaluating the relative mechanical and biochemical effects independently in 3D environments has been difficult in frequently used biopolymer matrices. Here we present 3D sodium alginate hydrogel microenvironments over a physiological range of stiffness (E = 1.85 to 5.29 kPa), with and without RGD binding sites or collagen fibers. We use confocal microscopy to measure the growth of multi-cellular aggregates (MCAs), of increasing metastatic potential in different elastic moduli of hydrogels, with and without binding factors. We find that the hydrogel stiffness regulates the growth and morphology of these cell clusters; MCAs grow larger and faster in the more rigid environments similar to cancerous breast tissue (E = 4–12 kPa) as compared to healthy tissue (E = 0.4–2 kpa). Adding binding factors from collagen and RGD peptides increases growth rates, and change maximum MCA sizes. These findings demonstrate the utility of these independently tunable mechanical/biochemistry gels, and that mechanical confinement in stiffer microenvironments may increase cell proliferation.

  3. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.;

    2004-01-01

    scattering at very low q, but no structure and formfactor information. However, on heating above the viscoelastic to plastic transition, the 'typical' scattering pattern of the copolymer gel builds-up. All reinforced gels are strengthened by the addition of the reinforcing agent. The transitions from a...... viscoclastic rubber to a plastic fluid and from a plastic fluid to a viscoelastic liquid are shifted to more elevated temperatures when silica is added to the triblock copolymer gel. (C) 2004 Elsevier Ltd. All rights reserved.......The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order to...

  4. Raft Instability of Biopolymer Gels

    OpenAIRE

    Borukhov, I.; Bruinsma, R.F.

    2002-01-01

    Following recent X-ray diffraction experiments by Wong, Li, and Safinya on biopolymer gels, we apply Onsager excluded volume theory to a nematic mixture of rigid rods and strong ``$\\pi/2$'' cross-linkers obtaining a long-ranged, highly anisotropic depletion attraction between the linkers. This attraction leads to breakdown of the percolation theory for this class of gels, to breakdown of Onsager's second-order virial method, and to formation of heterogeneities in the form of raft-like ribbons.

  5. Topical Review: Polymer gel dosimetry

    OpenAIRE

    Baldock, C; De Deene, Y; Doran, S.; Ibbott, G; Jirasek, A.; Lepage, M.; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose ...

  6. Mineralized Collagen: Rationale, Current Status, and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Zhi-Ye Qiu

    2015-07-01

    Full Text Available This paper presents a review of the rationale for the in vitro mineralization process, preparation methods, and clinical applications of mineralized collagen. The rationale for natural mineralized collagen and the related mineralization process has been investigated for decades. Based on the understanding of natural mineralized collagen and its formation process, many attempts have been made to prepare biomimetic materials that resemble natural mineralized collagen in both composition and structure. To date, a number of bone substitute materials have been developed based on the principles of mineralized collagen, and some of them have been commercialized and approved by regulatory agencies. The clinical outcomes of mineralized collagen are of significance to advance the evaluation and improvement of related medical device products. Some representative clinical cases have been reported, and there are more clinical applications and long-term follow-ups that currently being performed by many research groups.

  7. The non-phagocytic route of collagen uptake

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Ingvarsen, Signe; Jürgensen, Henrik J;

    2011-01-01

    The degradation of collagens, the most abundant proteins of the extracellular matrix, is involved in numerous physiological and pathological conditions including cancer invasion. An important turnover pathway involves cellular internalization and degradation of large, soluble collagen fragments......, generated by initial cleavage of the insoluble collagen fibers. We have previously observed that in primary mouse fibroblasts, this endocytosis of collagen fragments is dependent on the receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180. Others have identified additional...... mechanisms of collagen uptake, with different associated receptors, in other cell types. These receptors include β1-integrins, being responsible for collagen phagocytosis, and the mannose receptor. We have now utilized a newly developed monoclonal antibody against uPARAP/Endo180, which down-regulates the...

  8. The decorin sequence SYIRIADTNIT binds collagen type I

    DEFF Research Database (Denmark)

    Kalamajski, Sebastian; Aspberg, Anders; Oldberg, Ake

    2007-01-01

    Decorin belongs to the small leucine-rich repeat proteoglycan family, interacts with fibrillar collagens, and regulates the assembly, structure, and biomechanical properties of connective tissues. The decorin-collagen type I-binding region is located in leucine-rich repeats 5-6. Site......-directed mutagenesis of this 54-residue-long collagen-binding sequence identifies Arg-207 and Asp-210 in leucine-rich repeat 6 as crucial for the binding to collagen. The synthetic peptide SYIRIADTNIT, which includes Arg-207 and Asp-210, inhibits the binding of full-length recombinant decorin to collagen in vitro....... These collagen-binding amino acids are exposed on the exterior of the beta-sheet-loop structure of the leucine-rich repeat. This resembles the location of interacting residues in other leucine-rich repeat proteins....

  9. Collagens and proteoglycans of the corneal extracellular matrix

    OpenAIRE

    Michelacci Y.M.

    2003-01-01

    The cornea is a curved and transparent structure that provides the initial focusing of a light image into the eye. It consists of a central stroma that constitutes 90% of the corneal depth, covered anteriorly with epithelium and posteriorly with endothelium. Its transparency is the result of the regular spacing of collagen fibers with remarkably uniform diameter and interfibrillar space. Corneal collagen is composed of heterotypic fibrils consisting of type I and type V collagen molecules. Th...

  10. The Role of Collagen Organization on the Properties of Bone.

    Science.gov (United States)

    Garnero, Patrick

    2015-09-01

    Bone is a complex tissue constituted by a collagen matrix filled in with crystal of hydroxyapatite (HAP). Bone mechanical properties are influenced by the collagen matrix which is organized into hierarchical structures from the individual type I collagen heterotrimer flanked by linear telopeptides at each end to the collagen fibrils that are interconnected by enzymatic and non-enzymatic cross-links. Although most studies focused on the role of collagen cross-links in bone strength, other organizational features may also play a role. At the molecular level it has been shown that homotrimer of type I collagen found in bone tissue of some patients with osteogenesis imperfecta (OI) is characterized by decreased mechanical competence compared to the regular heterotrimer. The state of C-telopeptide isomerization-which can be estimated by the measurement in body fluids of the native and isomerized isoforms-has also been shown to be associated with bone strength, particularly the post-yield properties independent of bone size and bone mineral density. Other higher hierarchical features of collagen organization have shown to be associated with changes in bone mechanical behavior in ex vivo models and may also be relevant to explain bone fragility in diseases characterized by collagen abnormalities e.g., OI and Paget's disease. These include the orientation of collagen fibrils in a regular longitudinal direction, the D-spacing period between collagen fibrils and the collagen-HAP interfacial bonding. Preliminary data indicate that some of these organizational features can change during treatment with bisphosphonate, raloxifene, and PTH suggesting that they may contribute to their anti-fracture efficacy. It remains however to be determined which of these parameters play a specific and independent role in bone matrix properties, what is the magnitude of mechanical strength explained by collagen organization, whether they are relevant to explain osteoporosis-induced bone

  11. Backbone Dynamics of Triple-helical Collagen-like Structure

    OpenAIRE

    Lazarev, Yu.A.; Lazareva, A.V.; Komarov, V.M.

    1999-01-01

    Some details of the backbone dynamics in the collagen-like triple helix is discussed and the role of backbone dynamics in functioning collagen proteins is illustrated. On a series of oligotripeptides synthetic analogs of collagen formation of high-frequency vibrational backbone dynamics and low-frequency nonlinear backbone dynamics upon stepwise elongation of peptide chain have been described using infrared spectroscopy and hydrogen-exchange method. In the fully completed triple helix the lev...

  12. Enhancing collagen stability through nanostructures containing chromium(III) oxide.

    Science.gov (United States)

    Sangeetha, Selvam; Ramamoorthy, Usha; Sreeram, Kalarical Janardhanan; Nair, Balachandran Unni

    2012-12-01

    Stabilization of collagen for various applications employs chemicals such as aldehydes, metal ions, polyphenols, etc. Stability against enzymatic, thermal and mechanical degradation is required for a range of biomedical applications. The premise of this research is to explore the use of nanoparticles with suitable functionalization/encapsulation to crosslink with collagen, such that the three dimensional architecture had the desired stability. Collagen solution prepared as per standard protocols is treated with chromium(III) oxide nanoparticules encapsulated within a polymeric matrix (polystyrene-block-polyacrylic acid copolymer). Selectivity towards encapsulation was ensured by the reaction in dimethyl sulfoxide, where the PS groups popped out and encapsulated the Cr(2)O(3). Subsequently when immersed in aqueous solution, PAA units popped up to react with functional groups of collagen. The interaction with collagen was monitored through techniques such as CD, FTIR, viscosity measurements, stress analysis. CD studies and FTIR showed no degradation of collagen. Thermal stability was enhanced upon interaction of nanostructures with collagen. Self-assembly of collagen was delayed but not inhibited, indicating a compete binding of the metal oxide encapsulated polymer to collagen. Metal oxide nanoparticles encapsulated within a polymeric matrix could provide thermal and mechanical stability to collagen. The formed fibrils of collagen could serve as ideal material for various smart applications such as slow/sustained drug release. The study is also relevant to the leather industry in that the nanostructures can diffuse through the highly networked collagen fibre bundles in skin matrix easily, thus overcoming the rate limiting step of diffusion. PMID:22766281

  13. Lens capsule as a model to study type IV collagen

    OpenAIRE

    Cummings, Christopher F.; Hudson, Billy G.

    2014-01-01

    The study of collagen IV has benefited greatly from the seminal work conducted by Arthur Veis and colleagues over three decades ago. Through a series of electron microscopy studies focused on lens basement membrane, an appreciation was gained for the distinct network-forming properties of collagen IV. Veis correctly suggested that network assembly is a phenomenon of the non-collagenous termini of the molecule. This review seeks to document how the field advanced following these seminal conclu...

  14. Osteogenesis imperfecta (lethal) bones contain types III and V collagens.

    OpenAIRE

    Pope, F. M.; Nicholls, A. C.; Eggleton, C; Narcissi, P; Hey, E N; Parkin, J M

    1980-01-01

    Lethal osteogenesis imperfecta (OI-L) and normal fetal bones contain types I and V collagen with relatively more type V in OI-L bones. The latter, unlike normal fetal bone, also contain some type III collagen. Such altered collagen ratios could directly produce the bony fragility and radiotranslucency of OI-L bones. Since this is an inherited osteoporosis similar alterations in acquired osteoporoses are also possible.

  15. Collagenous Colitis Associated with Protein Losing Enteropathy in a Toddler

    OpenAIRE

    Osama F. Almadhoun; Katzman, Philip J.; Thomas de Rossi

    2014-01-01

    Collagenous mucosal inflammatory disease is a rare gastrointestinal disorder that involves the columnar lining of gastric and intestinal mucosa and is characterized by a distinct subepithelial collagen deposition. Recent clinical and pathological evidence have indicated that collagenous mucosal inflammatory disease can be extensive disease that may concomitantly involve several gastrointestinal sites at the same time. This entity, however, occurs infrequently in children. It is even less comm...

  16. Quantum Model of Energy Transport in Collagen Molecules

    Institute of Scientific and Technical Information of China (English)

    XIAO Yi; LIN Xian-Zhe

    2001-01-01

    A semi-quantum model for energy transport in collagen molecules is presented. Soliton-like dynamics of this model is investigated numerically without and with the temperature effect taking into account. It is found that in both the cases energy can transport for a long distance along the collagen chain. This indicates that collagen molecules can be taken as a candidate for the acupuncture channel.

  17. Attachment of cells to basement membrane collagen type IV

    OpenAIRE

    1986-01-01

    Of ten different cell lines examined, three showed distinct attachment and spreading on collagen IV substrates, and neither attachment nor spreading was enhanced by adding soluble laminin or fibronectin. This reaction was not inhibited by cycloheximide or antibodies to laminin, indicating a direct attachment to collagen IV without the need of mediator proteins. Cell-binding sites were localized to the major triple-helical domain of collagen IV and required an intact triple helical conformatio...

  18. Collagen represses canonical Notch signaling and binds to Notch ectodomain

    OpenAIRE

    Zhang, Xiaojie; Meng, He; Michael M Wang

    2013-01-01

    The Notch signaling system features a growing number of modulators that include extracellular proteins that bind to the Notch ectodomain. Collagens are a complex, heterogeneous family of secreted proteins that serve both structural and signaling functions, most prominently through binding to integrins and DDR. The shared widespread tissue distribution of Notch and collagen prompted us to investigate the effects of collagen on Notch signaling. In a cell co-culture signaling assay, we found tha...

  19. Rheumatic fever–associated Streptococcus pyogenes isolates aggregate collagen

    OpenAIRE

    Dinkla, Katrin; Rohde, Manfred; Jansen, Wouter T. M.; Kaplan, Edward L.; Chhatwal, Gursharan S.; Talay, Susanne R.

    2003-01-01

    Acute rheumatic fever is a serious autoimmune sequel of Streptococcus pyogenes infection. This study shows that serotype M3 and M18 S. pyogenes isolated during outbreaks of rheumatic fever have the unique capability to bind and aggregate human basement membrane collagen type IV. M3 protein is identified as collagen-binding factor of M3 streptococci, whereas M18 isolates bind collagen through a hyaluronic acid capsule, revealing a novel function for M3 protein and capsule. Following in vivo mo...

  20. Glomerular Basement Membrane Type IV Collagen in Health and Disease

    OpenAIRE

    Fish, Alfred J.; Kashtan, Clifford E.; Matsukura, Hiro; Butkowski, Ralph J.

    1991-01-01

    Glomerular basement membrane is the major supporting structural element of the glomerular capillary wall. This is a highly complex locus which functionally serves as a filtration barrier, and has been the subject of detailed investigation. The composition of whole glomerular basement membrane suggests that collagen is a major component. Isolation and characterization of the collagenous domains has revealed that glomerular basement membrane is chiefly composed of type IV collagen. This molecul...

  1. The Characterization of Fish (Tilapia) Collagen Sponge as a Biomaterial

    OpenAIRE

    Kohei Yamamoto; Yuu Yoshizawa; Kajiro Yanagiguchi; Takeshi Ikeda; Shizuka Yamada; Yoshihiko Hayashi

    2015-01-01

    For scaffold manufacturing, the utility of bioactive natural organic materials derived from marine products is useful and indispensable as an alternative to bovine collagen. The weakest feature of fish collagen for scaffold application is its low degeneration temperature (Td), indicating poor stability of fish collagen in mammals in vivo. We have focused on the tropical fish tilapia as a candidate for generating a clinical scaffold. The aim of this study was to confirm the Td of tilapia type ...

  2. Investigation of different cell types and gel carriers for cell-based intervertebral disc therapy, in vitro and in vivo studies.

    Science.gov (United States)

    Henriksson, H B; Hagman, M; Horn, M; Lindahl, A; Brisby, H

    2012-10-01

    Biological treatment options for the repair of intervertebral disc damage have been suggested for patients with chronic low back pain. The aim of this study was to investigate possible cell types and gel carriers for use in the regenerative treatment of degenerative intervertebral discs (IVD). In vitro: human mesenchymal cells (hMSCs), IVD cells (hDCs), and chondrocytes (hCs) were cultivated in three gel types: hyaluronan gel (Durolane®), hydrogel (Puramatrix®), and tissue-glue gel (TISSEEL®) in chondrogenic differentiation media for 9 days. Cell proliferation and proteoglycan accumulation were evaluated with microscopy and histology. In vivo: hMSCs or hCs and hyaluronan gel were co-injected into injured IVDs of six minipigs. Animals were sacrificed at 3 or 6 months. Transplanted cells were traced with anti-human antibodies. IVD appearance was visualized by MRI, immunohistochemistry, and histology. Hyaluronan gel induced the highest cell proliferation in vitro for all cell types. Xenotransplanted hMSCs and hCs survived in porcine IVDs for 6 months and produced collagen II in all six animals. Six months after transplantation of cell/gel, pronounced endplate changes indicating severe IVD degeneration were observed at MRI in 1/3 hC/gel, 1/3 hMSCs/gel and 1/3 gel only injected IVDs at MRI and 1/3 hMSC/gel, 3/3 hC/gel, 2/3 gel and 1/3 injured IVDs showed positive staining for bone mineralization. In 1 of 3 discs receiving hC/gel, in 1 of 3 receiving hMSCs/gel, and in 1 of 3 discs receiving gel alone. Injected IVDs on MRI results in 1 of 3 hMSC/gel, in 3 of 3 hC/gel, in 2 of 3 gel, and in 1 of 3 injured IVDs animals showed positive staining for bone mineralization. The investigated hyaluronan gel carrier is not suitable for use in cell therapy of injured/degenerated IVDs. The high cell proliferation observed in vitro in the hyaluronan could have been a negative factor in vivo, since most cell/gel transplanted IVDs showed degenerative changes at MRI and

  3. Alternative imaging modalities for polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jirasek, Andrew, E-mail: jirasek@uvic.c [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8W 3P6 (Canada)

    2010-11-01

    This review summarizes recent work in the area of imaging polymer gel dosimeters using x-ray CT imaging, ultrasound, and radiation-induced changes in gel mechanical properties. In addition, recent work in the area of Raman tomographic imaging of canine bone, in conjunction with past efforts in Raman imaging of polymer gel dosimeters, raises new possibilities for new polymer gel imaging techniques.

  4. Marine-derived collagen biomaterials from echinoderm connective tissues

    KAUST Repository

    Ferrario, Cinzia

    2016-03-31

    The use of marine collagens is a hot topic in the field of tissue engineering. Echinoderms possess unique connective tissues (Mutable Collagenous Tissues, MCTs) which can represent an innovative source of collagen to develop collagen barrier-membranes for Guided Tissue Regeneration (GTR). In the present work we used MCTs from different echinoderm models (sea urchin, starfish and sea cucumber) to produce echinoderm-derived collagen membranes (EDCMs). Commercial membranes for GTR or soluble/reassembled (fibrillar) bovine collagen substrates were used as controls. The three EDCMs were similar among each other in terms of structure and mechanical performances and were much thinner and mechanically more resistant than the commercial membranes. Number of fibroblasts seeded on sea-urchin membranes were comparable to the bovine collagen substrates. Cell morphology on all EDCMs was similar to that of structurally comparable (reassembled) bovine collagen substrates. Overall, echinoderms, and sea urchins particularly, are alternative collagen sources to produce efficient GTR membranes. Sea urchins display a further advantage in terms of eco-sustainability by recycling tissues from food wastes.

  5. Collagen fibril biosynthesis in tendon: a review and recent insights.

    Science.gov (United States)

    Canty, E G; Kadler, K E

    2002-12-01

    The development and evolution of multicellular animals relies on the ability of certain cell types to synthesise an extracellular matrix (ECM) comprising very long collagen fibrils that are arranged in very ordered 3-dimensional scaffolds. Tendon is a good example of a highly ordered ECM, in which tens of millions of collagen fibrils, each hundreds of microns long, are synthesised parallel to the tendon long axis. This review highlights recent discoveries showing that the assembly of collagen fibrils in tendon is hierarchical, and involves the formation of fairly short "collagen early fibrils" that are the fusion precursors of the very long fibrils that occur in mature tendon. PMID:12485687

  6. Type IV collagen-degrading enzyme activity in human serum.

    Directory of Open Access Journals (Sweden)

    Hashimoto,Noriaki

    1988-02-01

    Full Text Available Type IV collagen-degrading enzyme activity was detected in human serum. Serum was preincubated with 4-aminophenylmercuric acetate and trypsin to activate the enzyme prior to assay. Type IV collagen, purified from human placentas and radiolabeled with [1-14C] acetic anhydride, was used as the substrate. The enzyme activity was measured at pH 7.5 and inhibited by treatment with ethylenediaminetetraacetic acid or heat. The assay of type IV collagen-degrading enzyme in human serum might be useful for estimating the degradation of type IV collagen.

  7. Stabilization and anomalous hydration of collagen fibril under heating.

    Directory of Open Access Journals (Sweden)

    Sasun G Gevorkian

    Full Text Available BACKGROUND: Type I collagen is the most common protein among higher vertebrates. It forms the basis of fibrous connective tissues (tendon, chord, skin, bones and ensures mechanical stability and strength of these tissues. It is known, however, that separate triple-helical collagen macromolecules are unstable at physiological temperatures. We want to understand the mechanism of collagen stability at the intermolecular level. To this end, we study the collagen fibril, an intermediate level in the collagen hierarchy between triple-helical macromolecule and tendon. METHODOLOGY/PRINCIPAL FINDING: When heating a native fibril sample, its Young's modulus decreases in temperature range 20-58°C due to partial denaturation of triple-helices, but it is approximately constant at 58-75°C, because of stabilization by inter-molecular interactions. The stabilization temperature range 58-75°C has two further important features: here the fibril absorbs water under heating and the internal friction displays a peak. We relate these experimental findings to restructuring of collagen triple-helices in fibril. A theoretical description of the experimental results is provided via a generalization of the standard Zimm-Bragg model for the helix-coil transition. It takes into account intermolecular interactions of collagen triple-helices in fibril and describes water adsorption via the Langmuir mechanism. CONCLUSION/SIGNIFICANCE: We uncovered an inter-molecular mechanism that stabilizes the fibril made of unstable collagen macromolecules. This mechanism can be relevant for explaining stability of collagen.

  8. Polarized Microscopy in Lesions With Altered Dermal Collagen.

    Science.gov (United States)

    Elbendary, Amira; Valdebran, Manuel; Parikh, Kruti; Elston, Dirk M

    2016-08-01

    Alterations in dermal collagen are noted in dermatofibroma, dermatofibrosarcoma protuberans, morphea, lichen sclerosus et atrophicus, hypertrophic scars, and keloids. The authors sought to determine whether variations in birefringence of collagen by polarized microscopy could be of help in diagnosing such conditions. Representative hematoxylin and eosin sections of 400 cases, including dermatofibroma, dermatofibrosarcoma protuberans, hypertrophic scars, keloid, morphea, and lichen sclerosus, were examined under polarized microscopy. Distinct patterns of birefringence of collagen for each disease were noted under polarized microscopy. This study highlights the use of polarized microscopy as adjunctive tool in differentiating different diseases with collagen alteration. PMID:26959692

  9. The collagen receptor uPARAP/Endo180

    DEFF Research Database (Denmark)

    Engelholm, Lars H; Ingvarsen, Signe; Jürgensen, Henrik J;

    2009-01-01

    The uPAR-associated protein (uPARAP/Endo180), a type-1 membrane protein belonging to the mannose receptor family, is an endocytic receptor for collagen. Through this endocytic function, the protein takes part in a previously unrecognized mechanism of collagen turnover. uPARAP/Endo180 can bind and...... internalize both intact and partially degraded collagens. In some turnover pathways, the function of the receptor probably involves an interplay with certain matrix-degrading proteases whereas, in other physiological processes, redundant mechanisms involving both endocytic and pericellular collagenolysis seem...... receptor in collagen breakdown seems to be involved in invasive tumor growth....

  10. Automated image analysis in the study of collagenous colitis

    DEFF Research Database (Denmark)

    Fiehn, Anne-Marie Kanstrup; Kristensson, Martin; Engel, Ulla;

    2016-01-01

    PURPOSE: The aim of this study was to develop an automated image analysis software to measure the thickness of the subepithelial collagenous band in colon biopsies with collagenous colitis (CC) and incomplete CC (CCi). The software measures the thickness of the collagenous band on microscopic...... agreement between the four pathologists and the VG app was κ=0.71. CONCLUSION: In conclusion, the Visiopharm VG app is able to measure the thickness of a sub-epithelial collagenous band in colon biopsies with an accuracy comparable to the performance of a pathologist and thereby provides a promising...

  11. Nonmuscle myosin dependent synthesis of type I collagen

    OpenAIRE

    Cai, Le; Fritz, Dillon; Stefanovic, Lela; Stefanovic, Branko

    2010-01-01

    Type I collagen is the most abundant protein in human body synthesized in all tissues as the heterotrimer of two α1(I) and one α2(I) polypeptides. Here we show that intact nonmuscle myosin filaments are required for synthesis of heterotrimeric type I collagen. Conserved 5′ stem-loop in collagen α1(I) and α2(I) mRNAs binds RNA binding protein LARP6. LARP6 interacts with nonmuscle myosin through its C-terminal domain and associates collagen mRNAs with the filaments. Dissociation of nonmuscle my...

  12. Binding of collagen to Staphylococcus aureus Cowan 1.

    OpenAIRE

    Speziale, P; Raucci, G; Visai, L.; Switalski, L M; Timpl, R; Höök, M

    1986-01-01

    Collagen binds to a receptor protein present on the surfaces of Staphylococcus aureus cells. Binding of 125I-labeled type II collagen to its bacterial receptor is reversible, and Scatchard plot analysis indicates the presence of one class of receptor that occurs on an average of 3 X 10(4) copies per cell and binds type II collagen with a Kd of 10(-7) M. Studies on the specificity of collagen cell binding indicate that the receptor does not recognize noncollagenous proteins but binds all of th...

  13. Intratumoral radioimmunotherapy of a human colon cancer xenograft using a sustained-release gel

    International Nuclear Information System (INIS)

    Low tumor uptake and normal tissue toxicity limit the efficacy of RIT for the treatment of solid tumors. In this study, an intratumoral injectable gel drug delivery system for local administration of RIT was evaluated using the LS174T human colon cancer xenograft model in SCID mice. The injectable gel is a collagen-based drug delivery system designed for intratumoral (i.t.) administration, which has previously been shown to enhance drug retention at the injection site and reduce systemic drug exposure. We compared the local (tumor) retention and biodistribution of 111In-labeled NR-LU-10 monoclonal antibody given i.t. in the injectable gel versus simple aqueous solution. 111In gel given i.t. and 111In-NR-LU-10 given intraperitoneally (i.p.) were used as controls. The results showed that tumors treated with 111In-NR-LU-10 gel maintained the highest levels of radioactivity for up to 96 h. At 48 h after the administration of 111In-NR-LU-10 gel i.t., 111In-NR-LU-10 solution i.t., 111In gel i.t., or111 In-NR-LU-10 i.p., the level of radioactivity remaining in each gram of tumor was 98, 49, 45, and 16% of the injected dose, respectively. It was estimated that if 100 μCi of 90Y-NR-LU-10 were administered similarly, tumor treated with 90Y-NR-LU-10 gel i.t. would receive a dose of 90.0 Gy, whereas normal tissues in the same animal would receive a dose of approximately 2.43 Gy. In contrast, if 90Y-NR-LU-10 were delivered i.p., a comparable tumor would receive a dose of 16.8 Gy and corresponding normal tissues would receive 3.36 Gy. Consistent with these estimates, enhanced antitumor efficacy was observed when 90Y-NR-LU-10 gel was administered i.t. Tumor growth delay time was 6.9-fold (P 90Y-NR-LU-10 i.p. (2.1 days). Systemic toxicity was also significantly reduced in gel-treated animals as monitored by loss of body weight. This study demonstrated that intratumoral delivery of 90Y-NR-LU-10 gel markedly increased the retention of the radioisotope in tumors, enhanced the

  14. Cell Alignment Driven by Mechanically Induced Collagen Fiber Alignment in Collagen/Alginate Coatings.

    Science.gov (United States)

    Chaubaroux, Christophe; Perrin-Schmitt, Fabienne; Senger, Bernard; Vidal, Loïc; Voegel, Jean-Claude; Schaaf, Pierre; Haikel, Youssef; Boulmedais, Fouzia; Lavalle, Philippe; Hemmerlé, Joseph

    2015-09-01

    For many years it has been a major challenge to regenerate damaged tissues using synthetic or natural materials. To favor the healing processes after tendon, cornea, muscle, or brain injuries, aligned collagen-based architectures are of utmost interest. In this study, we define a novel aligned coating based on a collagen/alginate (COL/ALG) multilayer film. The coating exhibiting a nanofibrillar structure is cross-linked with genipin for stability in physiological conditions. By stretching COL/ALG-coated polydimethylsiloxane substrates, we developed a versatile method to align the collagen fibrils of the polymeric coating. Assays on cell morphology and alignment were performed to investigate the properties of these films. Microscopic assessments revealed that cells align with the stretched collagen fibrils of the coating. The degree of alignment is tuned by the stretching rate (i.e., the strain) of the COL/ALG-coated elastic substrate. Such coatings are of great interest for strategies that require aligned nanofibrillar biological material as a substrate for tissue engineering. PMID:25658028

  15. Metastatic dissemination of human ovarian epithelial carcinoma is promoted by alpha2beta1-integrin-mediated interaction with type I collagen.

    Science.gov (United States)

    Fishman, D A; Kearns, A; Chilukuri, K; Bafetti, L M; O'Toole, E A; Georgacopoulos, J; Ravosa, M J; Stack, M S

    1998-01-01

    Metastatic dissemination of epithelial ovarian carcinoma is thought to be mediated via tumor cell exfoliation into the peritoneal cavity, followed by adhesion to and invasion through the mesothelium which overlies the contents of the peritoneal cavity. In this study, we have utilized short-term primary cultures to analyze the effect of specific extracellular matrix proteins on properties of human ovarian epithelial carcinoma cells which contribute to the invasive phenotype. Analysis of cell:matrix adhesive profiles indicated that ovarian carcinoma cells adhere preferentially to type I collagen. Immunoprecipitation analyses demonstrated the presence of the collagen-binding alpha2beta1 integrin in biotin-labeled ovarian carcinoma cell membranes, and cellular adhesion was inhibited by blocking antibodies directed against the alpha2 and beta1 integrin subunits. The alpha2beta1-binding peptide Asp-Gly-Glu-Ala (DGEA) was also moderately effective at blocking adhesion to collagen relative to the control peptide Ala-Gly-Glu-Ala (AGEA). Analysis of cell motility on protein-coated colloidal gold coverslips demonstrated that ovarian carcinoma cells migrate preferentially on type I collagen coated surfaces. Type I collagen promoted migration in a concentration-dependent, saturable manner, with maximal migration observed at a collagen-coating concentration of 50 microg/ml. Migration on collagen was inhibited by antibodies directed against the alpha2 and beta1 integrin subunits and by DGEA peptide, providing evidence for the role of the alpha2beta1 integrin in ovarian carcinoma cell motility. Culturing ovarian carcinoma cells on type I collagen gels led to a significant increase in conversion of the matrix metalloproteinase 2 zymogen to the 66-kD form, suggesting that adhesion to collagen also influences matrix-degrading proteinases. These data suggest that alpha2beta1-integrin-mediated interaction of ovarian carcinoma cells with type I collagen, a protein prevalent both in the

  16. Thixotropic gel for vadose zone remediation

    Energy Technology Data Exchange (ETDEWEB)

    Riha, Brian D.; Looney, Brian B.

    2015-10-27

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  17. Thixotropic gel for vadose zone remediation

    Science.gov (United States)

    Rhia, Brian D.

    2011-03-01

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  18. Surface grafted chitosan gels. Part II. Gel formation and characterization

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.;

    2014-01-01

    Responsive biomaterial hydrogels attract significant attention due to their biocompatibility and degradability. In order to make chitosan based gels, we first graft one layer of chitosan to silica, and then build a chitosan/poly(acrylic acid) multilayer using the layer-by-layer approach. After...... cross-linking the chitosan present in the polyelectrolyte multilayer, poly(acrylic acid) is partly removed by exposing the multilayer structure to a concentrated carbonate buffer solution at a high pH, leaving a surface-grafted cross-linked gel. Chemical cross-linking enhances the gel stability against...... detachment and decomposition. The chemical reaction between gluteraldehyde, the cross-linking agent, and chitosan was followed in situ using total internal reflection Raman (TIRR) spectroscopy, which provided a molecular insight into the complex reaction mechanism, as well as the means to quantify the cross...

  19. Synthetic collagen heterotrimers: structural mimics of wild-type and mutant collagen type I.

    Science.gov (United States)

    Gauba, Varun; Hartgerink, Jeffrey D

    2008-06-11

    Collagen type I is an AAB heterotrimer assembled from two alpha1 chains and one alpha2 chain. Missense mutations in either of these chains that substitute a glycine residue in the ubiquitous X-Y-Gly repeat with a bulky amino acid leads to osteogenesis imperfecta (OI) of varying severity. These mutations have been studied in the past using collagen-like peptide homotrimers as a model system. However, homotrimers, which by definition will contain glycine mutations in all the three chains, do not accurately mimic the mutations in their native form and result in an exaggerated effect on stability and folding. In this article, we report the design of a novel model system based upon collagen-like heterotrimers that can mimic the glycine mutations present in either the alpha1 or alpha2 chains of type I collagen. This design utilizes an electrostatic recognition motif in three chains that can force the interaction of any three peptides, including AAA (all same), AAB (two same and one different), or ABC (all different) triple helices. Therefore, the component peptides can be designed in such a way that glycine mutations are present in zero, one, two, or all three chains of the triple helix. With this design, we for the first time report collagen mutants containing one or two glycine substitutions with structures relevant to native forms of OI. Furthermore, we demonstrate the difference in thermal stability and refolding half-life times between triple helices that vary only in the frequency of glycine mutations at a particular position. PMID:18481852

  20. Topographical guidance of 3D tumor cell migration at an interface of collagen densities

    International Nuclear Information System (INIS)

    During cancer progression, metastatic cells leave the primary tumor and invade into the fibrous extracellular matrix (ECM) within the surrounding stroma. This ECM network is highly heterogeneous, and interest in understanding how this network can affect cell behavior has increased in the past several decades. However, replicating this heterogeneity has proven challenging. Here, we designed and utilized a method to create a well-defined interface between two distinct regions of high- and low-density collagen gels to mimic the heterogeneities in density found in the tumor stroma. We show that cells will invade preferentially from the high-density side into the low-density side. We also demonstrate that the net cell migration is a function of the density of the collagen in which the cells are embedded, and the difference in density between the two regions has minimal effect on cell net displacement and distance travelled. Our data further indicate that a low-to-high density interface promotes directional migration and induces formation of focal adhesion on the interface surface. Together, the current results demonstrate how ECM heterogeneities, in the form of interfacial boundaries, can affect cell migration. (paper)

  1. Crosslinked collagen/chitosan matrix for artificial livers

    NARCIS (Netherlands)

    Wang, X.H.; Li, D.P.; Wang, W.J.; Feng, Q.L.; Cui, F.Z.; Xu, Y.X.; Song, X.H.; Werf, van der Mark

    2003-01-01

    Matrices composed of collagen and chitosan may create an appropriate environment for the regeneration of livers. In this study, we have prepared, characterized and evaluated a new collagen/chitosan matrix (CCM). The CCM was made by using crosslinking agent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiim

  2. Cellular origins of type IV collagen networks in developing glomeruli.

    Science.gov (United States)

    Abrahamson, Dale R; Hudson, Billy G; Stroganova, Larysa; Borza, Dorin-Bogdan; St John, Patricia L

    2009-07-01

    Laminin and type IV collagen composition of the glomerular basement membrane changes during glomerular development and maturation. Although it is known that both glomerular endothelial cells and podocytes produce different laminin isoforms at the appropriate stages of development, the cellular origins for the different type IV collagen heterotrimers that appear during development are unknown. Here, immunoelectron microscopy demonstrated that endothelial cells, mesangial cells, and podocytes of immature glomeruli synthesize collagen alpha 1 alpha 2 alpha1(IV). However, intracellular labeling revealed that podocytes, but not endothelial or mesangial cells, contain collagen alpha 3 alpha 4 alpha 5(IV). To evaluate the origins of collagen IV further, we transplanted embryonic kidneys from Col4a3-null mutants (Alport mice) into kidneys of newborn, wildtype mice. Hybrid glomeruli within grafts containing numerous host-derived, wildtype endothelial cells never expressed collagen alpha 3 alpha 4 alpha 5(IV). Finally, confocal microscopy of glomeruli from infant Alport mice that had been dually labeled with anti-collagen alpha 5(IV) and the podocyte marker anti-GLEPP1 showed immunolabeling exclusively within podocytes. Together, these results indicate that collagen alpha 3 alpha 4 alpha 5(IV) originates solely from podocytes; therefore, glomerular Alport disease is a genetic defect that manifests specifically within this cell type. PMID:19423686

  3. The collagen receptor uPARAP/Endo180

    DEFF Research Database (Denmark)

    Engelholm, Lars H; Ingvarsen, Signe; Jürgensen, Henrik J;

    2009-01-01

    The uPAR-associated protein (uPARAP/Endo180), a type-1 membrane protein belonging to the mannose receptor family, is an endocytic receptor for collagen. Through this endocytic function, the protein takes part in a previously unrecognized mechanism of collagen turnover. uPARAP/Endo180 can bind and...

  4. Changes in collagen synthesis and degradation during skeletal muscle growth

    International Nuclear Information System (INIS)

    The changes in collagen metabolism during skeletal muscle growth were investigated by measuring rates of synthesis and degradation during stretch-induced hypertrophy of the anterior latissimus dorsi muscle of the adult chicken (Gallus domesticus). Synthesis rates were obtained from the uptake of tritiated proline injected intravenously with a flooding dose of unlabeled proline. Degradation of newly synthesized and ''mature'' collagen was estimated from the amount of hydroxyproline in the free pool as small molecular weight moieties. In normal muscle, the synthesis rate was 1.1 +/- 0.3%/day, with 49 +/- 7% of the newly produced collagen degraded rapidly after synthesis. During hypertrophy there was an increase of about fivefold in the rate of synthesis (P less than 0.01), a 60% decrease in the rate of degradation of newly synthesized collagen (P less than 0.02), and an increase of about fourfold in the amount of degradation of mature collagen (P less than 0.01). These results suggest an important role for degradative as well as synthetic processes in the regulation of collagen mass. They indicate that enhanced degradation of mature collagen is required for muscle growth and suggest a physiological role for the pathway whereby in normal muscle, a large proportion of newly produced collagen is rapidly degraded

  5. Preparation of collagen-based materials for wound dressing

    Institute of Scientific and Technical Information of China (English)

    吴志谷; 盛志勇; 孙同柱; 耿淼; 黎君友; 姚咏明; 黄祖琇

    2003-01-01

    Objective To describe the methods which were used to develop collagen-based materials for wound dressing.Methods Fresh frozen bovine tendon was treated with 0.05 mol/L acetic acid at pH 3.2 for 48-72 hours, homogenized, filtered, mixed with 8% chondroitin sulphate, for creating a deaerated 1.5%-2.5% collagen solution. The solution was lyophilized in either a pre-frozen or non-pre-frozen mould. The collagen sponge was then cross-linked with 0.25% glutaraldehyde for 24 hours. Three other types of wound dressings were developed using a similar method: collagen membrane with a polyurethane membrane onlay, polyurethane-coated collagen membrane and collagen membrane on gauze.Results It was demonstrated that the use of frozen bovine tendon was stable, and that the prepared collagen sponge contained pores of 50-400 μm in diameter. Conclusions Collagen could be used as wound dressing.

  6. Pyridinium cross-links in heritable disorders of collagen

    Energy Technology Data Exchange (ETDEWEB)

    Pasquali, M.; Still, M.J.; Dembure, P.P. [Emory Univ., Atlanta, GA (United States)] [and others

    1995-12-01

    Ehlers-Danlos syndrome (EDS) is a heterogeneous group of inherited disorders of collagen that is characterized by skin fragility, skin hyperextensibility, and joint hypermobility. EDS type VI is caused by impaired collagen lysyl hydroxylase (procollagen-lysine, 2-oxoglutarate 5-dioxygenase; E.C.1.14.11.4), the ascorbate-dependent enzyme that hydroxylates lysyl residues on collagen neopeptides. Different alterations in the gene for collagen lysyl hydroxylase have been reported in families with EDS type VI. In EDS type VI, impairment of collagen lysyl hydroxylase results in a low hydroxylysine content in mature collagen. Hydroxylysine is a precursor of the stable, covalent, intermolecular cross-links of collagen, pyridinoline (Pyr), and deoxypyridinoline (Dpyr). Elsewhere we reported in preliminary form that patients with EDS type VI had a distinctive alteration in the urinary excretion of Pyr and Dpyr. In the present study, we confirm that the increased Dpyr/Pyr ratio is specific for EDS type VI and is not observed in other inherited or acquired collagen disorders. In addition, we find that skin from patients with EDS type VI has reduced Pyr and increased Dpyr, which could account for the organ pathology. 19 refs., 1 tab.

  7. Collagen based magnetic nanocomposites for oil removal applications

    OpenAIRE

    Palanisamy Thanikaivelan; Narayanan, Narayanan T.; Pradhan, Bhabendra K.; Ajayan, Pulickel M.

    2012-01-01

    A stable magnetic nanocomposite of collagen and superparamagnetic iron oxide nanoparticles (SPIONs) is prepared by a simple process utilizing protein wastes from leather industry. Molecular interaction between helical collagen fibers and spherical SPIONs is proven through calorimetric, microscopic and spectroscopic techniques. This nanocomposite exhibited selective oil absorption and magnetic tracking ability, allowing it to be used in oil removal applications. The environmental sustainabilit...

  8. Collagen a natural scaffold for biology and engineering

    Science.gov (United States)

    Collagen, the most abundant protein in mammals, constitutes a quarter of the animal's total weight. The unique structure of fibrous collagens, a long triple helix that further associates into fibers, provides an insoluble scaffold that gives strength and form to the skin, tendons, bones, cornea and...

  9. Metabolic and inflammatory faecal markers in collagenous colitis

    DEFF Research Database (Denmark)

    Wildt, Signe; Nordgaard-Lassen, Inge; Bendtsen, Flemming;

    2007-01-01

    To evaluate the excretion of the inflammatory and metabolic faecal markers calprotectin, lactoferrin, and short-chain fatty acids in symptomatic and quiescent collagenous colitis.......To evaluate the excretion of the inflammatory and metabolic faecal markers calprotectin, lactoferrin, and short-chain fatty acids in symptomatic and quiescent collagenous colitis....

  10. The collagen microfibril model, a tool for biomaterials scientists

    Science.gov (United States)

    Animal hides, a major byproduct of the meat industry, are a rich source of collagen, a structural protein of the extracellular matrix that gives strength and form to the skin, tendons and bones of mammals. The structure of fibrous collagen, a long triple helix that self-associates in a staggered arr...

  11. Collagen levels are normalized after decompression of experimentally obstructed colon

    DEFF Research Database (Denmark)

    Rehn, Martin; Ågren, Sven Per Magnus; Syk, I

    2011-01-01

    Our aim was to define the dynamics in collagen concentrations in the large bowel wall following decompression of experimental obstruction.......Our aim was to define the dynamics in collagen concentrations in the large bowel wall following decompression of experimental obstruction....

  12. Osmotically driven tensile stress in collagen-based mineralized tissues.

    Science.gov (United States)

    Bertinetti, Luca; Masic, Admir; Schuetz, Roman; Barbetta, Aurelio; Seidt, Britta; Wagermaier, Wolfgang; Fratzl, Peter

    2015-12-01

    Collagen is the most abundant protein in mammals and its primary role is to serve as mechanical support in many extracellular matrices such as those of bones, tendons, skin or blood vessels. Water is an integral part of the collagen structure, but its role is still poorly understood, though it is well-known that the mechanical properties of collagen depend on hydration. Recently, it was shown that the conformation of the collagen triple helix changes upon water removal, leading to a contraction of the molecule with considerable forces. Here we investigate the influence of mineralization on this effect by studying bone and turkey leg tendon (TLT) as model systems. Indeed, TLT partially mineralizes so that well-aligned collagen with various mineral contents can be found in the same tendon. We show that water removal leads to collagen contraction in all cases generating tensile stresses up to 80MPa. Moreover, this contraction of collagen puts mineral particles under compression leading to strains of around 1%, which implies localized compressive loads in mineral of up to 800MPa. This suggests that collagen dehydration upon mineralization is at the origin of the compressive pre-strains commonly observed in bone mineral. PMID:25862347

  13. Injuries of osteoarticular apparatus in case of collagenic diseases

    International Nuclear Information System (INIS)

    Roentgenologic features of osteoarticular apparatus injuries in collagenic diseases are given. The roetgenologic picture of rheumatism, rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus, periarteritis nodosa and dermatomyositis is given; psoriatic joint injuries are considered for the roentgenologic picture of their injuries is similar to collagenic, and differential diagnosis should primarily deal with them

  14. Collagen-hyaluronic acid scaffolds for adipose tissue engineering.

    Science.gov (United States)

    Davidenko, N; Campbell, J J; Thian, E S; Watson, C J; Cameron, R E

    2010-10-01

    Three-dimensional (3-D) in vitro models of the mammary gland require a scaffold matrix that supports the development of adipose stroma within a robust freely permeable matrix. 3-D porous collagen-hyaluronic acid (HA: 7.5% and 15%) scaffolds were produced by controlled freeze-drying technique and crosslinking with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride. All scaffolds displayed uniform, interconnected pore structure (total porosity approximately 85%). Physical and chemical analysis showed no signs of collagen denaturation during the formation process. The values of thermal characteristics indicated that crosslinking occurred and that its efficiency was enhanced by the presence of HA. Although the crosslinking reduced the swelling of the strut material in water, the collagen-HA matrix as a whole tended to swell more and show higher dissolution resistance than pure collagen samples. The compressive modulus and elastic collapse stress were higher for collagen-HA composites. All the scaffolds were shown to support the proliferation and differentiation 3T3-L1 preadipocytes while collagen-HA samples maintained a significantly increased proportion of cycling cells (Ki-67+). Furthermore, collagen-HA composites displayed significantly raised Adipsin gene expression with adipogenic culture supplementation for 8 days vs. control conditions. These results indicate that collagen-HA scaffolds may offer robust, freely permeable 3-D matrices that enhance mammary stromal tissue development in vitro. PMID:20466086

  15. Collagenous colitis as a possible cause of toxic megacolon.

    LENUS (Irish Health Repository)

    Fitzgerald, S C

    2009-03-01

    Collagenous colitis is a microscopic colitis characterized by normal appearing colonic mucosa on endoscopy. It is regarded as a clinically benign disease which rarely results in serious complications. We report a case of toxic megacolon occurring in a patient with collagenous colitis. This is the first reported case of toxic megacolon occurring in this subset of patients.

  16. Interstitial and Vascular Type V Collagen Morphologic Disorganization in Usual Interstitial Pneumonia

    OpenAIRE

    Parra, Edwin Roger; Teodoro, Walcy R; Velosa, Ana Paula Pereira; de Oliveira, Cristiane Carla; Yoshinari, Natalino Hajime; Capelozzi, Vera Luiza

    2006-01-01

    Recent evidence suggests that type V collagen plays a role in organizing collagen fibrils, thus maintaining fibril size and spatial organization uniform. In this study we sought to characterize the importance of type V collagen morphological disorganization and to study the relationship between type V collagen, active remodeling of the pulmonary vascular/parenchyma (fibroblastic foci), and other collagen types in usual interstitial pneumonia (UIP). We examined type V collagen and several othe...

  17. 3-dimensional polymer gel dosimetry

    International Nuclear Information System (INIS)

    Recently developed techniques in conformal radiotherapy demand special properties of radiation dosimeters. Polymer gel dosimeter evaluated by nuclear magnetic resonance (NMR) is promising tool which can be used for measuring rather complicated 3-dimensional dose distributions with required precision of ± 5 %. This system is based on radiation-induced polymerisation and cross-linking of acrylic monomers which are uniformly dispersed in aqueous gel. The formation of cross-linked polymers in the irradiated regions of the gel increases the NMR relaxation rates of neighbouring water protons. BANG-2 type polymer gel was prepared. The composition of gel dosimeter was as follows: 3 % N,N'-methylene-bisacrylamide, 3 % acrylic acid, 1 % sodium hydroxide, 5 % gelatine, and 88 % water, where all percentages are by weight. The dosimeters in glass vessels were homogeneously irradiated by 60Co gamma photons in a Gammacell 220 unit and by 4 MV, 6 MV and 18 MV X ray photons on Varian Clinac 600C and 2100 C linear accelerators by doses in the range of 0-50 Gy. Evaluation of dosimeters was performed on Siemens EXPERT 1 T and Siemens VISION 1,5 T scanners. Multi-echo CPMG sequence with 16 echoes was used for the evaluation of T2-relaxation times in irradiated gel dosimeters. The dependence of 1/T2 response of dosimeters was studied on following factors: absorbed dose, energy of applied radiation, temperature during NMR evaluation, time since irradiation to NMR evaluation and strength of the magnetic field. An exponential dependence of 1/T2 response on absorbed dose in the range of 0-50 Gy was observed, in the range 0-10 Gy the data could be fitted by a linear function. There was observed no dependence of 1/T2 response on: energy (for three different photon energies used in this study), strength of magnetic field of NMR scanner, time from irradiation of the dosimeters to NMR evaluation. Increase of gel dosimeter 1/T2 response with the decrease of the temperature during NMR evaluation

  18. Transdermal absorption enhancement of papain loaded in elastic niosomes incorporated in gel for scar treatment.

    Science.gov (United States)

    Manosroi, Aranya; Chankhampan, Charinya; Manosroi, Worapaka; Manosroi, Jiradej

    2013-02-14

    Papain is one of the protease enzymes from Carica papaya latex which is widely used in dermatology for scar treatment. The aim of this study was to compare the penetration of papain from gel formulations containing niosomes and nanospheres loaded with papain. The vesicular sizes of all niosomes and nanospheres in the gel formulations were in the range of 220.7-520.2 nm. Papain loaded in elastic niosomes and incorporated in gel exhibited the accumulate amounts and fluxes of 0.226 mg/cm² and 0.029 mg/cm²/h in the whole rat skin and 0.220 mg/cm² and 0.037 mg/cm²/h in the receiving solution, which were 3.10, 2.38 and 2.24, 2.25; 10.08, 7.78 and 4.92, 4.93; 4.86, 3.71 and 7.38, 7.38 times more than that from gel containing papain loaded in non-elastic niosomes, PLGA nanospheres and in solution, respectively, investigated by Franz diffusion cells at 6h. All gel formulations incorporated with papain loaded in niosomes and nanospheres gave no irritation on rabbit skin. Gel containing papain loaded in elastic niosomes gave superior chemical stability to gel containing free papain of 1.13, 1.29 and 1.35 times when stored at 4 ± 2, 27 ± 2 and 45 ± 2°C after 3 months, respectively. After 28 days of application, gel containing papain loaded in elastic niosomes (GEN) exhibited higher reduction of hypertrophic scars of the induced scar on rabbits' ears determined by a vernier caliper than gel base (GB), gel containing free papain (GS), and gel containing papain loaded in non-elastic niosomes (GNN) of 10.20, 2.73 and 2.31 times, respectively. For histological examination, the numbers of collagen fibres and the height of the scars treated with GEN were significantly decreased compared with the control group. This study has demonstrated the potential of niosomes, especially the elastic niosomes, for the enhancement of rat skin transdermal absorption of papain and the improvement of scar reduction in rabbit ear model which will be beneficial for the development of topical

  19. Structure-property-function relationships in triple helical collagen hydrogels

    CERN Document Server

    Tronci, Giuseppe; Russell, Stephen J; Wood, David J

    2012-01-01

    In order to establish defined biomimetic systems, type I collagen was functionalised with 1,3-Phenylenediacetic acid (Ph) as aromatic, bifunctional segment. Following investigation on molecular organization and macroscopic properties, material functionalities, i.e. degradability and bioactivity, were addressed, aiming at elucidating the potential of this collagen system as mineralization template. Functionalised collagen hydrogels demonstrated a preserved triple helix conformation. Decreased swelling ratio and increased thermo-mechanical properties were observed in comparison to state-of-the-art carbodiimide (EDC)-crosslinked collagen controls. Ph-crosslinked samples displayed no optical damage and only a slight mass decrease (~ 4 wt.-%) following 1-week incubation in simulated body fluid (SBF), while nearly 50 wt.-% degradation was observed in EDC-crosslinked collagen. SEM/EDS revealed amorphous mineral deposition, whereby increased calcium phosphate ratio was suggested in hydrogels with increased Ph content...

  20. Cervical Collagen Concentration within Fifteen Months after Delivery

    DEFF Research Database (Denmark)

    Sundtoft, Iben; Uldbjerg, Niels; Sommer, Steffe

    2011-01-01

    OBJECTIVE: Cervical collagen concentration decreases during pregnancy. The increased risk of preterm birth following a short interpregnancy interval may be explained by an incomplete remodeling of the cervix. The objective of this study was to describe the changes in cervical collagen concentration...... over 15 months following delivery. METHODS: The collagen concentrations were determined in cervical biopsies obtained from 15 women at 3, 6, 9, 12, and 15 months after delivery. RESULTS: The mean cervical collagen concentrations were 50, 59, 63, 65, and 65 % of dry weight (SD 4.2 – 6.5). This increase...... was statistically significant until month 9, but not between months 9 and 12. CONCLUSIONS: Low collagen concentrations in the uterine cervix may contribute to the association between a short interpregnancy interval and preterm birth....

  1. Mechanical response of collagen molecule under hydrostatic compression

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Karanvir, E-mail: karans@iitrpr.ac.in; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  2. Mechanisms of lamellar collagen formation in connective tissues.

    Science.gov (United States)

    Ghazanfari, Samaneh; Khademhosseini, Ali; Smit, Theodoor H

    2016-08-01

    The objective of tissue engineering is to regenerate functional tissues. Engineering functional tissues requires an understanding of the mechanisms that guide the formation and evolution of structure in the extracellular matrix (ECM). In particular, the three-dimensional (3D) collagen fiber arrangement is important as it is the key structural determinant that provides mechanical integrity and biological function. In this review, we survey the current knowledge on collagen organization mechanisms that can be applied to create well-structured functional lamellar tissues and in particular intervertebral disc and cornea. Thus far, the mechanisms behind the formation of cross-aligned collagen fibers in the lamellar structures is not fully understood. We start with cell-induced collagen alignment and strain-stabilization behavior mechanisms which can explain a single anisotropically aligned collagen fiber layer. These mechanisms may explain why there is anisotropy in a single layer in the first place. However, they cannot explain why a consecutive collagen layer is laid down with an alternating alignment. Therefore, we explored another mechanism, called liquid crystal phasing. While dense concentrations of collagen show such behavior, there is little evidence that the conditions for liquid crystal phasing are actually met in vivo. Instead, lysyl aldehyde-derived collagen cross-links have been found essential for correct lamellar matrix deposition. Furthermore, we suggest that supra-cellular (tissue-level) shear stress may be instrumental in the alignment of collagen fibers. Understanding the potential mechanisms behind the lamellar collagen structure in connective tissues will lead to further improvement of the regeneration strategies of functional complex lamellar tissues. PMID:27162076

  3. Yield stress determination of a physical gel

    DEFF Research Database (Denmark)

    Hvidt, Søren

    2013-01-01

    Pluronic F127 solutions form gels in water with high elastic moduli. Pluronic gels can, however, only withstand small deformations and stresses. Different steady shear and oscillatory methods traditionally used to determine yield stress values are compared. The results show that the yield stresse...... values of these gels depend on test type and measurement time, and no absolute yield stress value can be determined for these physical gels.......Pluronic F127 solutions form gels in water with high elastic moduli. Pluronic gels can, however, only withstand small deformations and stresses. Different steady shear and oscillatory methods traditionally used to determine yield stress values are compared. The results show that the yield stresses...

  4. Screening effect on nanostructure of charged gel

    DEFF Research Database (Denmark)

    Sugiyama, M; Annaka, M; Hino, M;

    2004-01-01

    Charge screening effects on nanostructures of N-isopropylacrylamide-sodium acrylate (NIPA-SA) and -acrylic acid (NIPA-AAc) gels are investigated with small-angle neutron scattering. The NIPA-SA and NIPA-AAc gels with low water content exhibit microphase separations with different dimensions. The...... dehydrated NIPA-SA gel also makes the microphase separation but the dehydrated NIPA-AAc gel does not. These results indicate that ionic circumstance around charged bases strongly affects the nanostructures both of the dehydrated gel and the gel with low water content. (C) 2004 Elsevier B. V. All rights...

  5. Glycosylation of type II collagen is of major importance for T cell tolerance and pathology in collagen-induced arthritis

    DEFF Research Database (Denmark)

    Bäcklund, Johan; Treschow, Alexandra; Bockermann, Robert;

    2002-01-01

    Type II collagen (CII) is a candidate cartilage-specific autoantigen, which can become post-translationally modified by hydroxylation and glycosylation. T cell recognition of CII is essential for the development of murine collagen-induced arthritis (CIA) and also occurs in rheumatoid arthritis (RA...

  6. Endoplasmic reticulum stress inhibits collagen synthesis independent of collagen-modifying enzymes in different chondrocyte populations and dermal fibroblasts

    NARCIS (Netherlands)

    Vonk, Lucienne A.; Doulabi, Behrouz Zandieh; Huang, Chun-Ling; Helder, Marco N.; Everts, Vincent; Bank, Ruud A.

    2010-01-01

    Chondrocytes respond to glucose deprivation with a decreased collagen synthesis due to disruption of a proper functioning of the endoplasmic reticulum (ER): ER stress. Since the mechanisms involved in the decreased synthesis are unknown, we have investigated whether chaperones and collagen-modifying

  7. uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion

    DEFF Research Database (Denmark)

    Engelholm, Lars H; List, Karin; Netzel-Arnett, Sarah;

    2003-01-01

    The uptake and lysosomal degradation of collagen by fibroblasts constitute a major pathway in the turnover of connective tissue. However, the molecular mechanisms governing this pathway are poorly understood. Here, we show that the urokinase plasminogen activator receptor-associated protein (u......PARAP)/Endo180, a novel mesenchymally expressed member of the macrophage mannose receptor family of endocytic receptors, is a key player in this process. Fibroblasts from mice with a targeted deletion in the uPARAP/Endo180 gene displayed a near to complete abrogation of collagen endocytosis. Furthermore, these...... cells had diminished initial adhesion to a range of different collagens, as well as impaired migration on fibrillar collagen. These studies identify a central function of uPARAP/Endo180 in cellular collagen interactions....

  8. Subclinical pulmonary involvement in collagen vascular diseases

    International Nuclear Information System (INIS)

    A recruitment of immune and inflammatory cells into alveolar spaces has been reported in patients with collagen vascular diseases (CVD) and a normal chest radiograph. These findings defined the concept of subclinical alveolitis (SCA). To determine whether SCA may be associated with CT signs of interstitial lung disease (ILD), the authors of this paper compared bronchoalveolar lavage (BAL) findings and high-resolution (HRCT) scans in 36 patients with CVD and normal chest radiographs (systemic sclerosis [SS, n = 21], rheumatoid arthritis [RA, n = 9], primary Sjogren's syndrome [PS, n = 6]). HRCT scans were obtained in supine and prone positions. Results of BAL revealed SCA in 17/36 patients (47%); lymphocyte SCA in 4/36 (24%); neutrophil SCA in 7/36 (41%); and mixed SCA in 6/36 (35%)

  9. Open collagen membrane technique in socket preservation.

    Science.gov (United States)

    Cheng, Wen-Yen

    2016-01-01

    Both hard and soft tissue undergo change after tooth extraction. In particular, the bone tissue surrounding teeth with fenestration or dehiscence defects undergoes dramatic change following tooth extraction, which can compromise further rehabilitation of the area. Adequate alveolar bone volume and keratinized mucosa are critical to the success of implant therapy. Therefore, the anatomic dimension of the alveolar ridge must be adequate to achieve an esthetically acceptable outcome of implant therapy. Previous studies have proposed many clinical techniques for preserving the extraction socket. This article presents a procedure in which an open collagen membrane technique was adopted to maintain an adequate volume of hard tissue and a sufficient width of the keratinized mucosa for further esthetic and functional implantation. Through this simple technique, an adequate volume and architecture around the implant can be achieved, with a long-term prognosis for implant therapy expected. PMID:27433553

  10. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  11. Fibronectin- and collagen-mimetic ligands regulate bone marrow stromal cell chondrogenesis in three-dimensional hydrogels

    Directory of Open Access Journals (Sweden)

    JT Connelly

    2011-09-01

    Full Text Available Modification of tissue engineering scaffolds with bioactive molecules is a potential strategy for modulating cell behavior and guiding tissue regeneration. While adhesion to RGD peptides has been shown to inhibit in vitro chondrogenesis, the effects of extracellular matrix (ECM-mimetic ligands with complex secondary and tertiary structures are unknown. This study aimed to determine whether collagen- and fibronectin-mimetic ligands would retain biologic functionality in three-dimensional (3D hydrogels, whether different ECM-mimetic ligands differentially influence in vitro chondrogenesis, and if effects of ligands on differentiation depend on soluble biochemical stimuli. A linear RGD peptide, a recombinant fibronectin fragment containing the seven to ten Type III repeats (FnIII7-10 and a triple helical, collagen mimetic peptide with the GFOGER motif were covalently coupled to agarose gels using the sulfo-SANPAH crosslinker, and bone marrow stromal cells (BMSCs were cultured within the 3D hydrogels. The ligands retained biologic functionality within the agarose gels and promoted density-dependent BMSC spreading. Interactions with all adhesive ligands inhibited stimulation by chondrogenic factors of collagen Type II and aggrecan mRNA levels and deposition of sulfated glycosaminoglycans. In medium containing fetal bovine serum, interactions with the GFOGER peptide enhanced mRNA expression of the osteogenic gene osteocalcin whereas FnIII7-10 inhibited osteocalcin expression. In conclusion, modification of agarose hydrogels with ECM-mimetic ligands can influence the differentiation of BMSCs in a manner that depends strongly on the presence and nature of soluble biochemical stimuli.

  12. Influence of collagen concentration and glutaraldehyde on collagen-based scaffold properties.

    Science.gov (United States)

    Perez-Puyana, V; Romero, A; Guerrero, A

    2016-06-01

    Several studies have shown the influence of the physical properties of scaffolds on their mechanical properties. An initial characterization of a type of collagen protein was carried out by studying its composition andits solubility at different pH values and infrared spectroscopy. Subsequently, porosity and scaffold pore size were studied, assessing how varying the composition of the initial solution (increasing the protein concentration or adding glutaraldehyde) changed the properties of the final scaffolds obtained. Lastly, rheological measurements were performed to evaluate the mechanical strength of the scaffolds. The initial characterization revealed that the type I collagen protein used is considerably denatured. In addition, increasing the protein content in the scaffold decreases the porosity, related to an increase in the elastic modulus producing an enhancement of its mechanical strength, while adding glutaraldehyde to the scaffold increases its mechanical strength without lowering its pore size or porosity. The results obtained are useful in that they demonstrate that it is possible to design a scaffold with specific properties, by just controlling the collagen concentration or adding glutaraldehyde to the initial solution. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1462-1468, 2016. PMID:26833811

  13. Capillary fracture of soft gels.

    Science.gov (United States)

    Bostwick, Joshua B; Daniels, Karen E

    2013-10-01

    A liquid droplet resting on a soft gel substrate can deform that substrate to the point of material failure, whereby fractures develop on the gel surface that propagate outwards from the contact line in a starburst pattern. In this paper, we characterize (i) the initiation process, in which the number of arms in the starburst is controlled by the ratio of the surface tension contrast to the gel's elastic modulus, and (ii) the propagation dynamics showing that once fractures are initiated they propagate with a universal power law L[proportional]t(3/4). We develop a model for crack initiation by treating the gel as a linear elastic solid and computing the deformations within the substrate from the liquid-solid wetting forces. The elastic solution shows that both the location and the magnitude of the wetting forces are critical in providing a quantitative prediction for the number of fractures and, hence, an interpretation of the initiation of capillary fractures. This solution also reveals that the depth of the gel is an important factor in the fracture process, as it can help mitigate large surface tractions; this finding is confirmed with experiments. We then develop a model for crack propagation by considering the transport of an inviscid fluid into the fracture tip of an incompressible material and find that a simple energy-conservation argument can explain the observed material-independent power law. We compare predictions for both linear elastic and neo-Hookean solids, finding that the latter better explains the observed exponent. PMID:24229192

  14. Calculating Percent Gel For Process Control

    Science.gov (United States)

    Webster, Charles Neal; Scott, Robert O.

    1988-01-01

    Reaction state of thermosetting resin tracked to assure desired properties. Rate of gel determined as function of temperature by measuring time to gel of part of graphite fabric impregnated with Hexcel R120 (or equivalent) phenolic resin.

  15. Smooth Muscle Cell Functionality on Collagen Immobilized Polycaprolactone Nanowire Surfaces

    Directory of Open Access Journals (Sweden)

    Victoria Leszczak

    2014-05-01

    Full Text Available Inhibition of smooth muscle cell (SMC proliferation and preservation of a differentiated state are important aspects in the management, avoidance and progression of vascular diseases. An understanding of the interaction between SMCs and the biomaterial involved is essential for a successful implant. In this study, we have developed collagen immobilized nanostructured surfaces with controlled arrays of high aspect ratio nanowires for the growth and maintenance of human aortic SMCs. The nanowire surfaces were fabricated from polycaprolactone and were immobilized with collagen. The objective of this study is to reveal how SMCs interact with collagen immobilized nanostructures. The results indicate significantly higher cellular adhesion on nanostructured and collagen immobilized surfaces; however, SMCs on nanostructured surfaces exhibit a more elongated phenotype. The reduction of MTT was significantly lower on nanowire (NW and collagen immobilized NW (colNW surfaces, suggesting that SMCs on nanostructured surfaces may be differentiated and slowly dividing. Scanning electron microscopy results reveal that SMCs on nanostructured surfaces are more elongated and that cells are interacting with the nano-features on the surface. After providing differentiation cues, heavy chain myosin and calponin, specific to a contractile SMC phenotype, are upregulated on collagen immobilized surfaces. These results suggest that nanotopography affects cell adhesion, proliferation, as well as cell elongation, while collagen immobilized surfaces greatly affect cell differentiation.

  16. Collagen density promotes mammary tumor initiation and progression

    Directory of Open Access Journals (Sweden)

    Knittel Justin G

    2008-04-01

    Full Text Available Abstract Background Mammographically dense breast tissue is one of the greatest risk factors for developing breast carcinoma. Despite the strong clinical correlation, breast density has not been causally linked to tumorigenesis, largely because no animal model has existed for studying breast tissue density. Importantly, regions of high breast density are associated with increased stromal collagen. Thus, the influence of the extracellular matrix on breast carcinoma development and the underlying molecular mechanisms are not understood. Methods To study the effects of collagen density on mammary tumor formation and progression, we utilized a bi-transgenic tumor model with increased stromal collagen in mouse mammary tissue. Imaging of the tumors and tumor-stromal interface in live tumor tissue was performed with multiphoton laser-scanning microscopy to generate multiphoton excitation and spectrally resolved fluorescent lifetimes of endogenous fluorophores. Second harmonic generation was utilized to image stromal collagen. Results Herein we demonstrate that increased stromal collagen in mouse mammary tissue significantly increases tumor formation approximately three-fold (p p Conclusion This study provides the first data causally linking increased stromal collagen to mammary tumor formation and metastasis, and demonstrates that fundamental differences arise and persist in epithelial tumor cells that progressed within collagen-dense microenvironments. Furthermore, the imaging techniques and signature identified in this work may provide useful diagnostic tools to rapidly assess fresh tissue biopsies.

  17. Extraction and Characterization of Collagen from Sea Cucumber Flesh

    Directory of Open Access Journals (Sweden)

    Alhana

    2015-11-01

    Full Text Available Sea cucumber (Stichopus variegatus is one of the Echinodermata phylum that grows along Indonesian coastal. Sea cucumber is potential source of collagen. The purposes of this research were to determine the optimal concentration of NaOH and CH3COOH solution in collagen production and analyze the physicochemical characteristics of collagen from S. variegatus. Yield of the collagen was 1.5% (based on wet weight basis, produced by pretreatment with NaOH 0,30%, hydrolysis with CH3COOH 0.10% and extracted using distilled water. Protein, moisture, and ash content of the collagen was 67.68%, 13.64%, and 4.15%, respectively. Collagen was extracted using distilled water at 45°C during 2h and still had triple helix structure ; pH 7.37 ; melting temperature 163.67°C and whiteness 69.25%. The major amino acid content of collagen were glycine, alanine, proline and glutamic acid.

  18. A method for labeling polyacrylamide gels

    OpenAIRE

    sprotocols

    2015-01-01

    Have you ever struggled with the identification of your polyacrylamide gels after running a few of them at once? Here is a new method for labeling gels which is easy, free and does not interfere with your protein samples. You will be intrigued once you learn how you can add a label to your laboratory-made gels and will have no problem identifying your gels any more.

  19. Consolidation of Inorganic Precipitated Silica Gel

    OpenAIRE

    Matthias Kind; Hussein Sahabi

    2011-01-01

    Colloidal gels are possible intermediates in the generation of highly porous particle systems. In the production process the gels are fragmented after their formation. These gel fragments compact to particles whose application-technological properties are determined by their size and porosity. In the case of precipitated silica gels, this consolidation process depends on temperature and pH, among other parameters. It is shown that these dependencies can be characterized by oedometer measureme...

  20. Hybrid Materials of Polymer Gels with Surfactants

    Institute of Scientific and Technical Information of China (English)

    Hu Yan; Kaoru Tsujii

    2005-01-01

    @@ 1 Introduction Polymer gels have been extensively studied[1~17] since the discovery of volume phase-transition of a gel by Tanaka[1~5]. As a unique soft material, gels attract much attention and are tried to be applied for drug-delivery systgems[6], actuators or chemo-mechanical devices[7~9] and so on. In particular, controlled-release of small molecules from a gel is now a subject of special interest[10].

  1. Proof of direct radiogenic destruction of collagen in vitro

    International Nuclear Information System (INIS)

    Background: Fibroses of vessels and soft tissue are side effects of radiotherapy. The authors assumed that there was an immediate direct radiogenic damage of collagen of bone, periosteum and skin. Material and Methods: 15 porcine jaws samples (group 1) were exposed to a total dose of 60 Gy (cobalt-60, 2 Gy/day, five fractions/week). 15 jaws samples were stored accordingly (group 2, no irradiation, control). Collagen fragments of bone, periosteum and skin samples of groups 1 and 2 were isolated by ultrafiltration. Collagen types were characterized by SDS-PAGE measurement of the mature collagen cross-links hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) by high-performance liquid chromatography (HPLC) and analysis of hydroxyproline (Hyp) was used to determine the ratio of the amount of collagen fragments from irradiated as opposed to nonirradiated samples. Results: The concentrations of HP, LP and Hyp in ultrafiltrates of probes of irradiated bone, periosteum and skin were markedly increased (average factors for bone: 3.69, 1.84, and 3.40, respectively; average factors for periosteum: 1.55, 1.41, and 1.77, respectively; average factors for skin: 1.55, 1.60, and 2.23, respectively) as compared to nonirradiated probes. SDS-PAGE did show collagen types I and V in nonirradiated bone, I and III in nonirradiated skin, and I in nonirradiated periosteum samples. In irradiated samples, smeared bands illustrated fragmentation of the collagen molecule. Conclusion: The increased concentrations of HP, LP and Hyp in ultrafiltrates indicated increased concentrations of split collagen. Direct and instant radiogenic damage of (extracellular matrix of) bone, periosteum and skin tissue collagen could be demonstrated. (orig.)

  2. Collagen-like proteins in pathogenic E. coli strains.

    Directory of Open Access Journals (Sweden)

    Neelanjana Ghosh

    Full Text Available The genome sequences of enterohaemorrhagic E. coli O157:H7 strains show multiple open-reading frames with collagen-like sequences that are absent from the common laboratory strain K-12. These putative collagens are included in prophages embedded in O157:H7 genomes. These prophages carry numerous genes related to strain virulence and have been shown to be inducible and capable of disseminating virulence factors by horizontal gene transfer. We have cloned two collagen-like proteins from E. coli O157:H7 into a laboratory strain and analysed the structure and conformation of the recombinant proteins and several of their constituting domains by a variety of spectroscopic, biophysical, and electron microscopy techniques. We show that these molecules exhibit many of the characteristics of vertebrate collagens, including trimer formation and the presence of a collagen triple helical domain. They also contain a C-terminal trimerization domain, and a trimeric α-helical coiled-coil domain with an unusual amino acid sequence almost completely lacking leucine, valine or isoleucine residues. Intriguingly, these molecules show high thermal stability, with the collagen domain being more stable than those of vertebrate fibrillar collagens, which are much longer and post-translationally modified. Under the electron microscope, collagen-like proteins from E. coli O157:H7 show a dumbbell shape, with two globular domains joined by a hinged stalk. This morphology is consistent with their likely role as trimeric phage side-tail proteins that participate in the attachment of phage particles to E. coli target cells, either directly or through assembly with other phage tail proteins. Thus, collagen-like proteins in enterohaemorrhagic E. coli genomes may have a direct role in the dissemination of virulence-related genes through infection of harmless strains by induced bacteriophages.

  3. Cytoskeletal organization and collagen orientation in the fish scales.

    Science.gov (United States)

    Zylberberg, L; Bereiter-Hahn, J; Sire, J Y

    1988-09-01

    Immunofluorescence and electron microscopy were used to analyze the relationships between the organization of collagen fibrils in elasmoid scales, and the orientation of microtubules and actin microfilaments in the scleroblasts producing this collagenous stroma. Attention was focused on the basal plate of the scales because of the highly ordered three-dimensional arrangement of the collagen fibrils in superimposed plies forming an acellular plywood-like structure. The collagen fibrils are synthesized by the scleroblasts forming a monolayered pseudo-epithelium, the hyposquama, at the lowest surface of the scale. Fully developed scales with a low collagen deposition rate were compared with regenerating scales active in fibrillogenesis. When an ordered array of the collagen fibrils is found, the innermost collagen fibrils are coaligned with microtubules and actin microfilaments. Thus, because of this coalignment, microtubules and actin microfilaments of the hyposquamal scleroblasts are subjected to consecutive alterations during the formation of the plies of the basal plate. The sequence of events when the collagen fibrils change their direction from one ply to the other in the basal plate is deduced from immunofluorescence and phase-contrast-microscopic observations. During the formation of the orthogonal plywood-like structure in the regenerating scales, first microtubules may change their curse with a rotating angle of about 90 degrees; then, actin microfilaments are disorganized and reorganized by interacting mechanically with the microtubules with which they are coaligned. Collagen fibrils are synthesized in a direction that is roughly perpendicular to that of the preceding ply. The unknown signals inducing the change in direction of the cytoskeleton may be transmitted throughout the hyposquama via gap junctions. PMID:3052849

  4. Spring-loaded polymeric gel actuators

    Science.gov (United States)

    Shahinpoor, M.

    1995-02-14

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications. 5 figs.

  5. Attachment and conformational changes of collagen on bioactive glass surface.

    Science.gov (United States)

    Magyari, K; Vanea, E; Baia, L; Simon, V

    2016-05-12

    The proteins adsorption on biomaterials surface leads to changes in their structural conformation that may further influence the adhesion, migration and growth of cells. The aim of this study was to examine the attachment of collagen (calf skin type I) on bioactive glass powders and the conformational changes of the protein. Scanning electron microscopy analysis and X-ray photoelectron spectroscopy measurements indicate that the collagen cover the glass surface in a nanometric thin layer. The infrared amide I absorption signal shows pronounced changes in the secondary structure of the adsorbed collagen. PMID:27175468

  6. Type IV collagen-degrading enzyme activity in human serum.

    OpenAIRE

    Hashimoto, Noriaki; Kobayashi,Michio; Watanabe,Akiharu; Higashi,Toshiro; Tsuji, Takao

    1988-01-01

    Type IV collagen-degrading enzyme activity was detected in human serum. Serum was preincubated with 4-aminophenylmercuric acetate and trypsin to activate the enzyme prior to assay. Type IV collagen, purified from human placentas and radiolabeled with [1-14C] acetic anhydride, was used as the substrate. The enzyme activity was measured at pH 7.5 and inhibited by treatment with ethylenediaminetetraacetic acid or heat. The assay of type IV collagen-degrading enzyme in human serum might be useful...

  7. Selective adsorption of tannins onto hide collagen fibres

    Institute of Scientific and Technical Information of China (English)

    廖学品; 陆忠兵; 石碧

    2003-01-01

    Hide collagen of animals is used to prepare adsorbent material and its adsorption properties to tannins are investigated. It is indicated that the collagen fibres has excellent adsorption selectivity and high adsorption capacity to tannins. The adsorption rate of tannins is more than 90% whilst less than 10% of functional components are retained by the adsorbent. The adsorption mechanism of tannins onto hide collagen fibres is hydrogen-bonding association. Freundlich model can be used to describe the adsorption isotherms, and the pseudo-second-order rate model can be used to describe adsorption kinetics.

  8. Effect of Structural Modification on Second Harmonic Generation in Collagen

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, P C; Reiser, K M; Celliers, P M; Rubenchik, A M

    2003-04-04

    The effects of structural perturbation on second harmonic generation in collagen were investigated. Type I collagen fascicles obtained from rat tails were structurally modified by increasing nonenzymatic cross-linking, by thermal denaturation, by collagenase digestion, or by dehydration. Changes in polarization dependence were observed in the dehydrated samples. Surprisingly, no changes in polarization dependence were observed in highly crosslinked samples, despite significant alterations in packing structure. Complete thermal denaturation and collagenase digestion produced samples with no detectable second harmonic signal. Prior to loss of signal, no change in polarization dependence was observed in partially heated or digested collagen.

  9. Collagenous gastroduodenitis coexisting repeated Dieulafoy ulcer: A case report and review of collagenous gastritis and gastroduodenitis without colonic involvement.

    Science.gov (United States)

    Soeda, Atsuko; Mamiya, Takashi; Hiroshima, Yoshinori; Sugiyama, Hiroaki; Shidara, Sayoko; Dai, Yuichi; Nakahara, Akira; Ikezawa, Kazuto

    2014-10-01

    Collagenous gastritis (CG) is a rare disorder characterized by the thick collagenous subepithelial bands associated with mucosal inflammation. There have been approximately fifty reports in the literature since it was first described in 1989. According to previous reports, CG is heterogeneous and classified into two groups-(1) cases limited to the gastric mucosa in children or young adults, and (2) CG associated with collagenous colitis in elderly adults presenting with chronic watery diarrhea. In Japan, only nine previous cases were reported, and all of them were young adults. We report a case of CG with collagenous duodenitis in a 22-year-old female. She had repeated upper gastrointestinal bleeding from a Dieulafoy lesion of the fornix, but had no symptoms of malabsorption or diarrhea. Endoscopic findings revealed striking nodularity with a smooth islet-shaped normal area in the antrum and the body. The pathological findings of nodular mucosa showed the deposition of collagen bands just under the mucoepithelial lesion. In addition, she had collagenous duodenitis in part of the bulbs, and a colonoscopy showed no abnormalities. We provide a literature review of CG and collagenous gastroduodenitis without colonic involvement. PMID:26184019

  10. KEKUATAN GEL GELATIN TIPE B DALAM FORMULASI GRANUL TERHADAP KEMAMPUAN MUKOADHESIF

    Directory of Open Access Journals (Sweden)

    Astri Fajriani

    2009-06-01

    Full Text Available Type B Gelatin Gel Strength in Granule Formulation and its Mucoadhesive Characteristics. Mucoadhesive test of polymer excipient is important for development of oral sustained release dosage form in mucoadhesive system to increase bioavailability of a drug. The study focused on mucoadhesive strength of gelatinus granules in stomach and intestine of rat using bioadhesive and wash off tests. Gelatin is a substance obtained from partially hydrolyzed collagen of skin, white cattle bones and animal bones. Gelatin derived from acid process is called type A gelatin and those from alkali process is called type B gelatin. This research studied the influence of various gel strength of type B gelatins, particularly their mucoadhesive characteristics. Mucoadhesive tests were performed at the concentration of 7.14%, 3.66%, and 2.45% and with gel strength of 328 g Bloom, 230 g Bloom and 119 g Bloom respectively. The results showed that granules formula with 230 g Bloom gel strength showed the best mucoadhesive strength, with adhesion percentage of 100%.

  11. Isolation, characterization, and in vitro evaluation of bovine rumen submucosa films of collagen or chitosan-treated collagen.

    Science.gov (United States)

    Gopal Shankar, K; Udhaya Kumar, S; Sowndarya, S; Suresh Babu, P; Rose, C

    2016-01-01

    Bovine rumen is hitherto considered as an inedible waste of meat industry. The rumen tissues can be used as an alternative source of collagen to produce biocompatible materials for clinical application. In an effort to develop a functional biomaterial from the inedible mammalian tissues, this study aims to isolate and characterize bovine rumen submucosa. Initially, the rumen tissue was sequentially processed using chemical and enzymatic treatment to decellularize, neutralize, stabilize, and to produce a native collagen matrix which is referred as collagen film (COL-F). Thus, prepared matrix was treated with 1% (w/v) chitosan solution to produce a hybrid film which is referred as collagen-chitosan film (COL/CS-F). The comparative study includes the evaluation of physical, chemical, and biological properties of the biofilms prepared. The surface topology of COL-F exhibited a continuous collagenous network with fibrous nature, while the chitosan treatment provided smooth plain surface to the parent film. Incorporation of chitosan in COL-F increased the tensile properties, as well as the thermal stability and durability of the films. The Fourier Transform Infrared spectroscopy results revealed the presence of respective amide peaks, which corresponds to protein (collagen), and the evidence of collagen-chitosan interlinking. The submucosa layer was electrophoretically found to have type I collagen. The X-ray diffraction data showed the presence of amorphous and crystalline peak which attributes to the triple helical structure of collagen in the films. Cytotoxicity studies on the films were performed in vitro using human keratinocytes. The results of cell viability and proliferation demonstrated that COL-F and COL/CS-F exhibit good biocompatibility and therefore can augment cell infiltration and proliferation. However, enhanced cellular activity was observed on the chitosan treated COL-F. These observations demonstrate that the biofilms prepared in this study can be

  12. Gel dosimetry for conformal radiotherapy

    International Nuclear Information System (INIS)

    With the continuum development of conformal radio therapies, aimed at delivering high dose to tumor tissue and low dose to the healthy tissue around, the necessities has appeared of suitable improvement of dosimetry techniques giving the possibility of obtaining dose images to be compared with diagnostic images. Also if wide software has been developed for calculating dose distributions in the fields of various radiotherapy units, experimental verifications are necessary, in particular in the case of complex geometries in conformal radiotherapy. Gel dosimetry is a promising method for imaging the absorbed dose in tissue-equivalent phantoms, with the possibility of 3D reconstruction of the spatial dose distribution, with milli metric resolution. Optical imaging of gel dosimeters, based on visible light absorbance analysis, has shown to be a reliable technique for achieving dose distributions. (Author)

  13. The Swelling of Olympic Gels

    Science.gov (United States)

    Lang, Michael; Fischer, Jakob; Werner, Marco; Sommer, Jens-Uwe

    2014-03-01

    The swelling equilibrium of Olympic gels is studied by Monte Carlo Simulations. We observe that gels consisting of flexible cyclic molecules of a higher degree of polymerization N show a smaller equilibrium swelling degree Q ~N - 0 . 28φ0- 0 . 72 for the same monomer volume fraction φ0 at network preparation. This observation is explained by a disinterpenetration process of overlapping non-concatenated polymers upon swelling. In the limit of a sufficiently large number of concatenations per cyclic molecule we expect that the equilibrium degree of swelling becomes proportional to φ0- 1 / 2 independent of N. Our results challenge current textbook models for the equilibrium degree of swelling of entangled polymer networks. Now at: Bio Systems Analysis Group, Jena Centre for Bioinformatics (JCB) and Department for Mathematics and Computer Sciences, Friedrich Schiller University of Jena, 07743 Jena, Germany.

  14. Synthesis of LaNiO3 perovskite by the modified proteic gel method and study of catalytic properties in the syngas production

    International Nuclear Information System (INIS)

    This work describes a study on the synthesis of LaNiO3 perovskites via the modified proteic gel method, varying collagen content and on the catalytic activity of LaNiO3 and LaNiO3/Al2O3 in the syngas (CO + H2) production. X-ray diffraction patterns revealed the formation of perovskite structure in all samples prepared by proteic gel synthesis method, varying collagen content and after calcination at 700 deg C for 2 h. LaNiO3/Al2O3 catalyst prepared by the impregnation method showed diffraction peaks due to the perovskite structure and to the support (Al2O3). This catalyst presented: specific surface of 46.1 m2 g-1, two reduction peaks in the temperature programmed reduction (TPR) profile and 46% of methane conversion (by the partial oxidation of methane using oxygen) after 18 h of reaction. (author)

  15. Effect of pomegranate peel polyphenol gel on cutaneous wound healing in alloxan-induced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    YAN Huan; PENG Ke-jun; WANG Qiu-lin; GU Zheng-yi; LU Yao-qin; ZHAO Jun; XU Fang

    2013-01-01

    Background Pomegranate (punica granatum) belongs to the family Punicaceae,and its peel has been used as a traditional Chinese medicine because of its efficacy in restraining intestine,promoting hemostasis,and killing parasites.Pomegranate peel has been reported to possess wound-healing properties which are mainly attributed to its polyphenol extracts.The purpose of this study was to investigate the effect of pomegranate peel polyphenols (PPP) gel on cutaneous wound healing in diabetic rats.Methods Alloxan-induced diabetic rats were given incisional wounds on each side of the mid-back and then treated daily with PPP gel (polyphenol mass fraction =30%) post-wounding.Rats were sacrificed on days 4,7,14,and 21post-wounding to assess the rates of wound closure,histological characteristics; and to detect the contents of hydroxyproline,production of nitric oxide (NO),and activities of NO synthase (NOS),as well as the expressions of transforming growth factor-β1 (TGF-β1),vascular endothelial growth factor (VEGF),and epidermal growth factor (EGF)in wound tissue.Results Wound closure was significantly shortened when PPP gel was applied to the wounds of diabetic rats.Histological examination showed the ability of PPP gel to increase fibroblast infiltration,collagen regeneration,vascularization,and epithelialization in the wound area of diabetic rats.In addition,PPP gel-treated diabetic rats showed increased contents of hydroxyproline,production of NO,and activities of NOS and increased expressions of TGF-β1,VEGF,and EGF in wound tissues.Conclusion PPP gel may be a beneficial method for treating wound disorders associated with diabetes.

  16. Uncoiling collagen: a multidimensional mass spectrometry study.

    Science.gov (United States)

    Simon, H J; van Agthoven, M A; Lam, P Y; Floris, F; Chiron, L; Delsuc, M-A; Rolando, C; Barrow, M P; O'Connor, P B

    2016-01-01

    Mass spectrometry can be used to determine structural information about ions by activating precursors and analysing the resulting series of fragments. Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) is a technique that correlates the mass-to-charge (m/z) ratio of fragment and precursor ions in a single spectrum. 2D FT-ICR MS records the fragmentation of all ions in a sample without the need for isolation. To analyse specific precursors, horizontal cross-sections of the spectrum (fragment ion scans) are taken, providing an alternative to conventional tandem mass spectrometry (MS/MS) experiments. In this work, 2D FT-ICR MS has been used to study the tryptic digest of type I collagen, a large protein. Fragment ion scans have been extracted from the 2D FT-ICR MS spectrum for precursor m/z ratios: 951.81, 850.41, 634.34, and 659.34, and 2D FT-ICR MS spectra are compared with a set of 1D MS/MS spectra using different fragmentation methods. The results show that two-dimensional mass spectrometry excells at MS/MS of complex mixtures, simplifying spectra by eliminating contaminant peaks, and aiding the identification of species in the sample. Currently, with desktop computers, 2D FT-ICR MS is limited by data processing power, a limitation which should be alleviated using cluster parallel computing. In order to explore 2D FT-ICR MS for collagen, with reasonable computing time, the resolution in the fragment ion dimension is limited to 256k data points (compared to 4M data points in 1D MS/MS spectra), but the vertical precursor ion dimension has 4096 lines, so the total data set is 1G data points (4 Gbytes). The fragment ion coverage obtained with a blind, unoptimized 2D FT-ICR MS experiment was lower than conventional MS/MS, but MS/MS information is obtained for all ions in the sample regardless of selection and isolation. Finally, although all 2D FT-ICR MS peak assignments were made with the aid of 1D FT-ICR MS data, these results

  17. The Gel Electrophoresis Markup Language (GelML) from the Proteomics Standards Initiative

    OpenAIRE

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J. Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W.; Jones, Andrew R.

    2010-01-01

    The Human Proteome Organisation’s Proteomics Standards Initiative (HUPO-PSI) has developed the GelML data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting f...

  18. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution

    OpenAIRE

    Stellwagen, Nancy C.

    2009-01-01

    This review describes the electrophoresis of curved and normal DNA molecules in agarose gels, polyacrylamide gels and in free solution. These studies were undertaken to clarify why curved DNA molecules migrate anomalously slowly in polyacrylamide gels but not in agarose gels. Two milestone papers are cited, in which Ferguson plots were used to estimate the effective pore size of agarose and polyacrylamide gels. Subsequent studies on the effect of the electric field on agarose and polyacrylami...

  19. Osmotic pressure induced tensile forces in tendon collagen

    Science.gov (United States)

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J.; Fratzl, Peter

    2015-01-01

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  20. Plasma protein adsorption onto cell attachment controlled ion implanted collagen

    International Nuclear Information System (INIS)

    Ion implantation into collagen (Type I) coated inner surfaces of test tubes with a length of 50 mm and inner diameter of 2 and 3 mm were performed to develop hybrid type small-diameter artificial vascular grafts. He+ ion implanted collagen coated grafts with a fluence of 1x1014 ions/cm2 replacing femoral arteries exhibited excellent graft patency. To obtain information about the relationship between plasma protein adsorption and antithrombogenicity of ion implanted collagen surfaces, protein adsorption measurements, platelet adhesion test, and animal study were performed. The amount of fibrinogen, fibronectin and albumin showed minimum value at a fluence of 1x1014 ions/cm2. The adsorption of fibrinogen and fibronectin to surfaces is known to promote the adhesion of platelets. The results indicated that antithrombogenicity of He+ ion-implanted collagen with a fluence of 1x1014 ions/cm2 was caused by the reduction of the amount of adsorbed proteins

  1. Experimental investigations with radiolabeled anti-collagen antibody

    International Nuclear Information System (INIS)

    Antibodies to collagen were prepared and labelled with indium 111. Kinetic studies were performed using labelled antibody for up to 48 hours following an injury. These results provide a method to detect injury by radioimmunographic techniques. 5 figs., 3 tabs

  2. Bioinformatics in crosslinking chemistry of collagen with selective cross linkers

    Directory of Open Access Journals (Sweden)

    Gopal Ramesh

    2011-10-01

    Full Text Available Abstract Background Identifying the molecular interactions using bioinformatics tools before venturing into wet lab studies saves the energy and time considerably. The present study summarizes, molecular interactions and binding energy calculations made for major structural protein, collagen of Type I and Type III with the chosen cross-linkers, namely, coenzyme Q10, dopaquinone, embelin, embelin complex-1 & 2, idebenone, 5-O-methyl embelin, potassium embelate and vilangin. Results Molecular descriptive analyses suggest, dopaquinone, embelin, idebenone, 5-O-methyl embelin, and potassium embelate display nil violations. And results of docking analyses revealed, best affinity for Type I (- 4.74 kcal/mol and type III (-4.94 kcal/mol collagen was with dopaquinone. Conclusions Among the selected cross-linkers, dopaquinone, embelin, potassium embelate and 5-O-methyl embelin were the suitable cross-linkers for both Type I and Type III collagen and stabilizes the collagen at the expected level.

  3. Collagen mRNA levels changes during colorectal cancer carcinogenesis

    DEFF Research Database (Denmark)

    Skovbjerg, Hanne; Anthonsen, Dorit; Lothe, Inger M B;

    2009-01-01

    BACKGROUND: Invasive growth of epithelial cancers is a complex multi-step process which involves dissolution of the basement membrane. Type IV collagen is a major component in most basement membranes. Type VII collagen is related to anchoring fibrils and is found primarily in the basement membrane...... zone of stratified epithelia. Immunohistochemical studies have previously reported changes in steady-state levels of different alpha(IV) chains in several epithelial cancer types. In the present study we aimed to quantitatively determine the mRNA levels of type IV collagen (alpha1/alpha 4/alpha 6) and...... type VII collagen (alpha1) during colorectal cancer carcinogenesis. METHODS: Using quantitative RT-PCR, we have determined the mRNA levels for alpha1(IV), alpha 4(IV), alpha 6(IV), and alpha1(VII) in colorectal cancer tissue (n = 33), adenomas (n = 29) and in normal tissue from the same individuals. In...

  4. Studies on Structural Changes of Collagen in Silicosis

    Institute of Scientific and Technical Information of China (English)

    LIYU-RUI; HUXUN; 等

    1994-01-01

    In order to provide scientific information on the prevention and treatment of silicosis,studies about changes of silicotic collagen in lungs were carried out.In this paper,we present experiments about the structural changes of collagen in silicotic lungs of rats and patients.These included clectron microscopy,circular dichroism and infrared spectroscopy studies of collaeen fibers.The results indicated that fibers of silicotic collagen were shorter in length.smaller in diameter and decreased in α-helix content,The Si-O-R-group and -OH group were found increased and -C-C-backbone shortened.The increase of -Si-O-R-group indicated that silica formed linking bridgen between collagens whih may be the cause of progressive enlargement of nodules.

  5. Influence of neutral salts on the hydrothermal stability of acid-soluble collagen.

    Science.gov (United States)

    Brown, E M; Farrell, H M; Wildermuth, R J

    2000-02-01

    The thermal stability of acid-soluble collagens was studied by circular dichroism (CD) spectroscopy. Adult bovine dermal collagen (BDC), rat-tail tendon collagen (RTC), and calf skin collagen (CSC) were compared. Despite some variability in amino acid composition and apparent molecular weight, the CD spectra for helical and unordered collagen structures were essentially the same for all the sources. The melting of these collagens occurs as a two-stage process characterized by a pretransition (Tp) followed by complete denaturation (Td). The characteristic temperatures vary with the source of the collagen; for mature collagens (BDC, RTC) Tp = 30 degrees C and Td = 36 degrees C, and for CSC Tp = 34 degrees C and Td = 40 degrees C. Neutral salts, NaCl or KCl, at low concentrations (0.02-0.2 M) appear to bind to the collagens and shift the thermal transitions of these collagens to lower temperatures. PMID:10945432

  6. Water equivalence of polymer gel dosimeters

    International Nuclear Information System (INIS)

    To evaluate the water equivalence and radiation transport properties of polymer gel dosimeters over the wide range of photon and electron energies 14 different types of polymer gels were considered. Their water equivalence was evaluated in terms of effective atomic number (Zeff), electron density (ρe), photon mass attenuation coefficient (μ/ρ), photon mass energy absorption coefficient (μen/ρ) and total stopping power (S/ρ)tot of electrons using the XCOM and the ESTAR database. The study showed that the effective atomic number of polymer gels were very close (en/ρ for all polymer gels were in close agreement (tot of electrons in polymer gel dosimeters were within 1% agreement with that of water. From the study we conclude that at lower energy (<80keV) the polymer gel dosimeters cannot be considered water equivalent and study has to be carried out before using the polymer gel for clinical application

  7. Gel fire suppressants for controlling underground heating

    Institute of Scientific and Technical Information of China (English)

    HU Sheng-gen; XUE Sheng

    2011-01-01

    One of the major safety issues in coal mining is heatings and the resultant spontaneous combustion in underground coal mines.CSIRO researchers have developed a number of polymer gels suitable for controlling heatings in coal mines.These gels were developed to meet strict selection criteria including easy preparation,no or low toxicity,controllable gelation time,adaptable to mine water chemistry,adjustable viscosity,relatively long gel life,thermally and chemically stable and low cost.The HPAM-Aluminum Citrate gel system was identified to be the most favourable gel system for fire suppression in underground coal mines.These gels can be applied to the areas undergoing coal heating or gas leakage at a controllable gelation time and impermeable gel barriers can be formed in the areas to block ingress of air.

  8. Consolidation of Inorganic Precipitated Silica Gel

    Directory of Open Access Journals (Sweden)

    Matthias Kind

    2011-08-01

    Full Text Available Colloidal gels are possible intermediates in the generation of highly porous particle systems. In the production process the gels are fragmented after their formation. These gel fragments compact to particles whose application-technological properties are determined by their size and porosity. In the case of precipitated silica gels, this consolidation process depends on temperature and pH, among other parameters. It is shown that these dependencies can be characterized by oedometer measurements. Originally, the oedometer test (one-dimensional compression test stemmed from soil mechanics. It has proven to be an interesting novel examination method for gels. Quantitative data of the time-dependent shrinkage of gel samples can be obtained. The consolidation of the gels shows a characteristic dependence on the above parameters.

  9. Thermal stability of collagen fibers in ethylene glycol.

    OpenAIRE

    Miles, C A; Burjanadze, T V

    2001-01-01

    The mechanism that renders collagen molecules more stable when precipitated as fibers than the same molecules in solution is controversial. According to the polymer-melting mechanism the presence of a solvent depresses the melting point of the polymer due to a thermodynamic mechanism resembling the depression of the freezing point of a solvent due to the presence of a solute. On the other hand, according to the polymer-in-a-box mechanism, the change in configurational entropy of the collagen ...

  10. Autoantibody recognition of collagen type II in arthritis

    OpenAIRE

    Lindh, Ingrid

    2013-01-01

    Autoantibodies against collagen type II (CII), a protein localized in the joint cartilage, play a major role in collagen-induced arthritis (CIA), one of the most commonly used animal models for rheumatoid arthritis (RA). The studies included in this thesis were undertaken to elucidate structural and functional requirements for B and T cells to recognize native CII structures during experimental arthritis as well as in human RA. To reveal in detail how CII-specific autoantibodies recognize CII...

  11. Collagen fibre arrangement in the skin of the pig.

    OpenAIRE

    Meyer, W.; Neurand, K; Radke, B

    1982-01-01

    The arrangement and proportion of collagen fibres and fibre bundles in the dermis of the pig have been investigated with light microscopical (Nomarski's interference contrast, polarization optics) and scanning electron microscopical methods. Skin samples were obtained from different body regions of wild boars, domestic pigs and miniature pigs. All the methods used have demonstrated that the bulk of the dermis is dominated by a massive three dimensional network of collagen fibres and fibre bun...

  12. Enhancing amine terminals in an amine-deprived collagen matrix.

    LENUS (Irish Health Repository)

    Tiong, William H C

    2008-10-21

    Collagen, though widely used as a core biomaterial in many clinical applications, is often limited by its rapid degradability which prevents full exploitation of its potential in vivo. Polyamidoamine (PAMAM) dendrimer, a highly branched macromolecule, possesses versatile multiterminal amine surface groups that enable them to be tethered to collagen molecules and enhance their potential. In this study, we hypothesized that incorporation of PAMAM dendrimer in a collagen matrix through cross-linking will result in a durable, cross-linked collagen biomaterial with free -NH 2 groups available for further multi-biomolecular tethering. The aim of this study was to assess the physicochemical properties of a G1 PAMAM cross-linked collagen matrix and its cellular sustainability in vitro. Different amounts of G1 PAMAM dendrimer (5 or 10 mg) were integrated into bovine-derived collagen matrices through a cross-linking process, mediated by 5 or 25 mM 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) in 5 mM N-hydroxysuccinimide (NHS) and 50 mM 2-morpholinoethane sulfonic acid buffer at pH 5.5. The physicochemical properties of resultant matrices were investigated with scanning electron microscopy (SEM), collagenase degradation assay, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectra, and ninhydrin assay. Cellular sustainability of the matrices was assessed with Alamar Blue assay and SEM. There was no significant difference in cellular behavior between the treated and nontreated groups. However, the benefit of incorporating PAMAM in the cross-linking reaction was limited when higher concentrations of either agent were used. These results confirm the hypothesis that PAMAM dendrimer can be incorporated in the collagen cross-linking process in order to modulate the properties of the resulting cross-linked collagen biomaterial with free -NH 2 groups available for multi-biomolecular tethering.

  13. Immunosuppression Related to Collagen-Vascular Disease or Its Treatment

    OpenAIRE

    Hamilton, Carol Dukes

    2005-01-01

    Collagen-vascular diseases are associated with immune dysregulation and inflammation, leading to tissue destruction or compromise. Immunosuppression is more commonly associated with the drugs used to treat these disorders than with the diseases themselves. The newest agents being used to treat collagen-vascular diseases are the tumor necrosis factor (TNF)-α inhibitors. U.S. Food and Drug Administration–approved TNF-α inhibitors have differing effects on the immune system, reflecting their pot...

  14. Type IV collagen-degrading enzyme activity in hepatocellular carcinoma.

    OpenAIRE

    Nakatsukasa,Harushige

    1986-01-01

    Type IV collagen-degrading enzyme activity was measured in liver homogenate obtained from 10 patients with hepatocellular carcinomas. Type IV collagen, the enzyme substrate, was extracted from human placenta with pepsin digestion, and labeled with [1-14C] acetic anhydride. The homogenate was preincubated with p-aminophenylmercuric acetate to activate the latent form of the enzyme, and then the enzyme activity was measured at pH 7.5 by adding a substrate mixture. Referring to previous reports,...

  15. Dielectric Properties of Collagen on Plasma Modified Polyvinylidene Fluoride

    Directory of Open Access Journals (Sweden)

    R. M. Dahan

    2012-01-01

    Full Text Available Problem statement: The attachment of biopolymers such as collagen on inert polymeric template created great challenge due to hydrophobic nature of polymeric material. The modification of PVDF for improved adhesion and introduction of specific functionalities have been widely recognized in various industrial applications. Typical methods for modifying polymer surface such as chemical etching and UV irradiation are not favorable as it requires high temperature and the use of chemical solvents. However plasma modification is suitable as it utilizes low heat and a clean environment, thus preventing contamination on the deposited collagen. Approach: Free standing orientated Poly (Vinylidene Fluoride (PVDF films were fabricated by solution casting method and dried in a convention oven. The dried PVDF films were orientated in a tensile machine at temperature 70°C enclosed in a custom made environmental chamber. The pulling rates of 5 mm min-1 were utilized with a draw ratio of 2 (R = Lfinal/Linitial. The PVDF film was plasma treated for 60 sec to enhance the hydrophilic property of PVDF and utilized as template for collagen deposition. The deposited collagen on surface of PVDF was left in desiccators at temperature of 24°C for complete drying. Results: The untreated and plasma-treated PVDF template were observed for water contact angle measurement, the functional group and dielectric properties of collagen were observed and measured by FTIR and SOLARTRON respectively. Conclusion: The orientated PVDF films were produced at pulling speed of 5 mm min-1 and temperature of 70°C. The hydrophobic PVDF surface was transformed to a hydrophilic surface by plasma treatment for collagen deposition. The FTIR result shows the overlapping peaks of C-H and C-F in range 1500-1000 cm-1 which indicates the C-C bonding of collagen and PVDF. The significant increase in dielectric constant is a result from the favorable bonding between collagen and PVDF template.

  16. New insights into structure and function of type I collagen

    OpenAIRE

    Xiong, Xin

    2008-01-01

    Collagen is one of the most abundant proteins in mammalians and strongly conserved throughout evolution. It constitutes one third of the human proteome and comprises three-quarters of the dry weight of human skin. It is widely accepted as a major structural component in animal body such as in bones, cartilage and skins. More and more studies have shown that, in addition to the structural function, collagens can induce or regulate many cellular functions and processes such as cell differentiat...

  17. Dynamic interplay between the collagen scaffold and tumor evolution

    DEFF Research Database (Denmark)

    Egeblad, Mikala; Rasch, Morten G; Weaver, Valerie M

    2010-01-01

    remodeling of the ECM network regulate tissue tension, generate pathways for migration, and release ECM protein fragments to direct normal developmental processes such as branching morphogenesis. Collagens are major components of the ECM of which basement membrane type IV and interstitial matrix type I are...... the most prevalent. Here we discuss how abnormal expression, proteolysis and structure of these collagens influence cellular functions to elicit multiple effects on tumors, including proliferation, initiation, invasion, metastasis, and therapy response....

  18. SPARC regulates collagen interaction with cardiac fibroblast cell surfaces

    OpenAIRE

    Harris, Brett S.; Zhang, Yuhua; Card, Lauren; Rivera, Lee B.; Brekken, Rolf A.; Bradshaw, Amy D.

    2011-01-01

    Cardiac tissue from mice that do not express secreted protein acidic and rich in cysteine (SPARC) have reduced amounts of insoluble collagen content at baseline and in response to pressure overload hypertrophy compared with wild-type (WT) mice. However, the cellular mechanism by which SPARC affects myocardial collagen is not clearly defined. Although expression of SPARC by cardiac myocytes has been detected in vitro, immunohistochemistry of hearts demonstrated SPARC staining primarily associa...

  19. A Novel Approach to Stimulate Cartilage Repair: Targeting Collagen Turnover

    OpenAIRE

    Bastiaansen-Jenniskens, Yvonne Maria

    2009-01-01

    textabstractOA is a complex disease of which the ethiopathology is not completely known and therapies to repair cartilage are still under investigation. The increase of collagen type II expression in osteoarthritic cartilage suggests an activated repair mechanism that is however ineffective in repairing or maintaining the ECM homeostasis. We therefore investigated the ability to modulate the formation of a functional collagen type II network that can ultimately contribute to innovation of car...

  20. Experimental nonenzymatic glycosylation of vitreous collagens occurs by two pathways.

    OpenAIRE

    Pulido, J S

    1996-01-01

    PURPOSE: To study the process of nonenzymatic glycosolation of vitreous collagen in vitro to determine the contributions of the classic Maillard pathway and the oxidative pathway, as well as to evaluate possible inhibitors of both pathways. METHODS: Bovine vitreous collagen was extracted and then incubated with hexoses in vitro. The amount of advanced glycosylation end (AGE) products was measured by fluorometry under varying conditions in the presence and absence of glycosolation inhibitors. ...

  1. Collagen cross-linking in thin corneas

    Directory of Open Access Journals (Sweden)

    Prema Padmanabhan

    2013-01-01

    Full Text Available Collagen cross-linking (CXL has become the standard of care for progressive keratoconus, after numerous clinical studies have established its efficacy and safety in suitably selected eyes. The standard protocol is applicable in eyes which have a minimum corneal thickness of 400 μm after epithelial debridement. This prerequisite was stipulated to protect the corneal endothelium and intraocular tissues from the deleterious effect of ultraviolet-A (UVA radiation. However, patients with keratoconus often present with corneal thickness of less than 400 μm and could have otherwise benefited from this procedure. A few modifications of the standard procedure have been suggested to benefit these patients without a compromise in safety. Transepithelial cross-linking, pachymetry-guided epithelial debridement before cross-linking, and the use of hypoosmolar riboflavin are some of the techniques that have been attempted. Although clinical data is limited at the present time, these techniques are worth considering in patients with thin corneas. Further studies are needed to scientifically establish their efficacy and safety.

  2. Aspects of dosimetry using radiation sensitive gels

    International Nuclear Information System (INIS)

    The use of radiation sensitive gels for dosimetry measurements was first suggested in the 1950s. It was subsequently shown that radiation induced changes in nuclear magnetic resonance (NMR) relaxation properties of gels infused with conventional Fricke dosimetry solutions could be measured. However, due to predominantly diffusion-related limitations, alternative polymer gel dosimeters were suggested. Clinical applications of these radiologically tissue equivalent gel dosimeters using magnetic resonance imaging (MRI) have subsequently been reported in the literature. In Fricke gels, Fe2+ ions in ferrous sulphate solutions are usually dispersed throughout a gelatin or agarose hydrogel matrix. Radiation-induced changes in the dosimeters are considered to be either through direct absorption of ionising radiation or via intermediate water free radicals. Fe2+ ions are converted to Fe3+ ions with a corresponding change in paramagnetic properties that may be quantified using NMR relaxation measurements. In polymer gels, monomers are also dispersed in a gelatin or agarose hydrogel matrix. Monomers undergo a polymerisation reaction as a function of absorbed dose resulting in a three-dimensional polymer gel matrix. The radiation-induced formation of polymer influences NMR relaxation properties. The growth in polymer also results in other physical changes that may be used to quantify absorbed radiation dose. This thesis investigates various aspects of radiation dosimetry using radiation sensitive gels. Image processing software was developed to calculate NMR relaxation images of dosimetry gels. Measurements were undertaken to investigate the diffusion problem in Fricke gels. Radiological properties were theoretically modelled for both Fricke and polymer gels. A methodology was developed for the preparation of polymer gels. Vibrational spectroscopic studies were undertaken to investigate the underlying mechanism involved in the radiation-induced formation of polymer. MRI pulse

  3. Tumor matrix protein collagen XIα1 in cancer

    Science.gov (United States)

    Raglow, Zoe; Thomas, Sufi M

    2015-01-01

    The extracellular matrix is increasingly recognized as an essential player in cancer development and progression. Collagens are one of the most important components of the extracellular matrix, and have themselves been implicated in many aspects of neoplastic transformation. Collagen XI is a minor collagen whose main physiologic function is to regulate the diameter of major collagen fibrils. The α1 chain of collagen XI (colXIα1), has known pathogenic roles in several musculoskeletal disorders. Recent research has highlighted the importance of colXIα1 in many types of cancer, including its roles in metastasis, angiogenesis, and drug resistance, as well as its potential utility in screening tests and as a therapeutic target. High levels of colXIα1 overexpression have been reported in multiple expression profile studies examining differences between cancerous and normal tissue, and between beginning and advanced stage cancer. Its expression has been linked to poor progression-free and overall survival. The consistency of this data across cancer types is particularly striking, including colorectal, ovarian, breast, head and neck, lung, and brain cancers. This review discusses the role of collagen XIα1 in cancer and its potential as a target for cancer therapy. PMID:25511741

  4. Modulation of collagen by addition of Hofmeister salts.

    Science.gov (United States)

    Oechsle, Anja Maria; Landenberger, Markus; Gibis, Monika; Irmscher, Stefan Björn; Kohlus, Reinhard; Weiss, Jochen

    2015-08-01

    Collagen can be modified by addition of chaotropic or kosmotropic salts of the reversed Hofmeister series. Hence, telopeptide-poor collagen type I was suspended in H2SO4 (pH 2) and 0.05-0.5 M KCl and KNO3 (chaotropes), as well as KI and KSCN (kosmotropes). Rheological parameters, including storage and loss modulus, intrinsic viscosity, and critical overlap concentration, were assessed and the microstructure was characterized by applying confocal laser scanning microscopy and scanning electron microscopy. The addition of up to 0.1 M KCl and 0.05 M KNO3 increased the intrinsic viscosity from 1.22 to 1.51 L/g without salt to a maximal value of 1.74 L/g and decreased the critical overlap concentration from 0.66 to 0.82 g/L to a minimal value of 0.57 g/L. Higher salt concentrations increased the collagen-collagen interactions due to ions withdrawing the water from the collagen molecules. Hence, 0.1 M KSCN delivered the largest structures with the highest structure factor, area value and the highest critical overlap concentration with 17.6 L/g. Overall, 0.5 M salt led to salting out, with chaotropes forming fine precipitates and kosmotropes leading to elastic three-dimensional networks. The study demonstrated that collagen entanglement and microstructure depend strongly on the ionic strength and type of salt. PMID:26014138

  5. Effects of isopropanol on collagen fibrils in new parchment

    Directory of Open Access Journals (Sweden)

    Gonzalez Lee G

    2012-03-01

    Full Text Available Abstract Background Isopropanol is widely used by conservators to relax the creases and folds of parchment artefacts. At present, little is known of the possible side effects of the chemical on parchments main structural component- collagen. This study uses X-ray Diffraction to investigate the effects of a range of isopropanol concentrations on the dimensions of the nanostructure of the collagen component of new parchment. Results It is found in this study that the packing features of the collagen molecules within the collagen fibril are altered by exposure to isopropanol. The results suggest that this chemical treatment can induce a loss of structural water from the collagen within parchment and thus a rearrangement of intermolecular bonding. This study also finds that the effects of isopropanol treatment are permanent to parchment artefacts and cannot be reversed with rehydration using deionised water. Conclusions This study has shown that isopropanol induces permanent changes to the packing features of collagen within parchment artefacts and has provided scientific evidence that its use to remove creases and folds on parchment artefacts will cause structural change that may contribute to long-term deterioration of parchment artefacts. This work provides valuable information that informs conservation practitioners regarding the use of isopropanol on parchment artefacts.

  6. Collagen synthesis in human musculoskeletal tissues and skin

    DEFF Research Database (Denmark)

    Babraj, J A; Cuthbertson, D J R; Smith, K;

    2005-01-01

    We have developed a direct method for the measurement of human musculoskeletal collagen synthesis on the basis of the incorporation of stable isotope-labeled proline or leucine into protein and have used it to measure the rate of synthesis of collagen in tendon, ligament, muscle, and skin. In...... postabsorptive, healthy young men (28 +/- 6 yr) synthetic rates for tendon, ligament, muscle, and skin collagen were 0.046 +/- 0.005, 0.040 +/- 0.006, 0.016 +/- 0.002, and 0.037 +/- 0.003%/h, respectively (means +/- SD). In postabsorptive, healthy elderly men (70 +/- 6 yr) the rate of skeletal muscle collagen...... synthesis is greater than in the young (0.023 +/- 0.002%/h, P <0.05 vs. young). The rates of synthesis of tendon and ligament collagen are similar to those of mixed skeletal muscle protein in the postabsorptive state, whereas the rate for muscle collagen synthesis is much lower in both young and elderly men...

  7. Spectroscopic characterization of collagen cross-links in bone

    Science.gov (United States)

    Paschalis, E. P.; Verdelis, K.; Doty, S. B.; Boskey, A. L.; Mendelsohn, R.; Yamauchi, M.

    2001-01-01

    Collagen is the most abundant protein of the organic matrix in mineralizing tissues. One of its most critical properties is its cross-linking pattern. The intermolecular cross-linking provides the fibrillar matrices with mechanical properties such as tensile strength and viscoelasticity. In this study, Fourier transform infrared (FTIR) spectroscopy and FTIR imaging (FTIRI) analyses were performed in a series of biochemically characterized samples including purified collagen cross-linked peptides, demineralized bovine bone collagen from animals of different ages, collagen from vitamin B6-deficient chick homogenized bone and their age- and sex-matched controls, and histologically stained thin sections from normal human iliac crest biopsy specimens. One region of the FTIR spectrum of particular interest (the amide I spectral region) was resolved into its underlying components. Of these components, the relative percent area ratio of two subbands at approximately 1660 cm(-1) and approximately 1690 cm(-1) was related to collagen cross-links that are abundant in mineralized tissues (i.e., pyridinoline [Pyr] and dehydrodihydroxylysinonorleucine [deH-DHLNL]). This study shows that it is feasible to monitor Pyr and DHLNL collagen cross-links spatial distribution in mineralized tissues. The spectroscopic parameter established in this study may be used in FTIRI analyses, thus enabling the calculation of relative Pyr/DHLNL amounts in thin (approximately 5 microm) calcified tissue sections with a spatial resolution of approximately 7 microm.

  8. The Recognition of Collagen and Triple-helical Toolkit Peptides by MMP-13

    OpenAIRE

    Howes, Joanna-Marie; Bihan, Dominique; David A. Slatter; Hamaia, Samir W.; Packman, Len C.; Knauper, Vera; Visse, Robert; Farndale, Richard W.

    2014-01-01

    Remodeling of collagen by matrix metalloproteinases (MMPs) is crucial to tissue homeostasis and repair. MMP-13 is a collagenase with a substrate preference for collagen II over collagens I and III. It recognizes a specific, well-known site in the tropocollagen molecule where its binding locally perturbs the triple helix, allowing the catalytic domain of the active enzyme to cleave the collagen ? chains sequentially, at Gly775-Leu776 in collagen II. However, the specific residues upon which co...

  9. Collagen phagocytosis is regulated by the guanine nucleotide exchange factor Vav2

    OpenAIRE

    Arora, P. D.; Marignani, P A; McCulloch, C. A.

    2008-01-01

    Collagen phagocytosis is a crucial α2β1-integrin-dependent process that mediates extracellular matrix remodeling by fibroblasts. We showed previously that after initial contact with collagen, activated Rac1 accelerates collagen phagocytosis but the Rac guanine nucleotide exchange factors (GEFs) that regulate Rac are not defined. We examined here the GEFs that regulate collagen phagocytosis in mouse fibroblasts. Collagen binding enhanced Rac1 activity (5–20 min) but not Cdc42 or RhoA activity....

  10. Structural Insights into the Interactions between Platelet Receptors and Fibrillar Collagen*

    OpenAIRE

    Herr, Andrew B.; Farndale, Richard W.

    2009-01-01

    Collagen peptides have been used to identify binding sites for several important collagen receptors, including integrin α2β1, glycoprotein VI, and von Willebrand factor. In parallel, the structures of these collagen receptors have been reported, and their interactions with collagen peptides have been studied. Recently, the three-dimensional structure of the intact type I collagen fiber from rat tail tendon has been resolved by fiber diffraction. It is now possible to map the binding sites of ...

  11. A role for collagen XXIII in cancer cell adhesion, anchorage-independence, and metastasis

    OpenAIRE

    Spivey, Kristin A.; Chung, Ivy; Banyard, Jacqueline; Adini, Irit; Feldman, Henry A.; Bruce R Zetter

    2011-01-01

    Collagen XXIII is a transmembrane collagen previously shown to be upregulated in metastatic prostate cancer that has been used as a tissue and fluid biomarker for non-small cell lung cancer and prostate cancer. To determine whether collagen XXIII facilitates cancer cell metastasis in vivo and to establish a function for collagen XXIII in cancer progression, collagen XXIII knockdown cells were examined for alterations in in vivo metastasis as well as in vitro cell adhesion. In experimental and...

  12. Defining the domains of type I collagen involved in heparin- binding and endothelial tube formation

    OpenAIRE

    Sweeney, Shawn M.; Guy, Cynthia A.; Fields, Gregg B.; Antonio, James D. San

    1998-01-01

    Cell surface heparan sulfate proteoglycan (HSPG) interactions with type I collagen may be a ubiquitous cell adhesion mechanism. However, the HSPG binding sites on type I collagen are unknown. Previously we mapped heparin binding to the vicinity of the type I collagen N terminus by electron microscopy. The present study has identified type I collagen sequences used for heparin binding and endothelial cell–collagen interactions. Using affinity coelectrophoresis, we found heparin to bind as foll...

  13. Deficient degradation of homotrimeric type I collagen,α1(I)3 glomerulopathy in oim mice

    OpenAIRE

    Roberts-Pilgrim, Anna M.; Makareeva, Elena; Myles, Matthew H; Besch-Williford, Cynthia L.; Brodeur, Amanda C.; Walker, Andrew L.; Leikin, Sergey; Franklin, Craig L.; Phillips, Charlotte L.

    2011-01-01

    Col1a2-deficient (oim) mice synthesize homotrimeric type I collagen due to nonfunctional proα2(I) collagen chains. Our previous studies revealed a postnatal, progressive type I collagen glomerulopathy in this mouse model, but the mechanism of the sclerotic collagen accumulation within the renal mesangium remains unclear. The recent demonstration of the resistance of homotrimeric type I collagen to cleavage by matrix metalloproteinases (MMPs), led us to investigate the role of MMP-resistance i...

  14. Cellular localisation of type XIII collagen, and its induced expression in human neoplasias and corneal diseases

    OpenAIRE

    Väisänen, T. (Teemu)

    2005-01-01

    Abstract Type XIII collagen belongs to the group of transmembrane collagens. In this thesis the plasma membrane localisation and function of type XIII collagen have been studied using cell biological methods. Type XIII collagen was found to reside in focal adhesions. It appeared in these structures at a very early stage of their assembly and disappeared from them concurrently with focal adhesion proteins talin and vinculin. Insect cells expressing type XIII collagen showed an enhanced ...

  15. Renal Fibrosis : Collagen Composition and Assembly Regulates Epithelial-Mesenchymal Transdifferentiation

    OpenAIRE

    Zeisberg, Michael; Bonner, Gary; Maeshima, Yohei; Colorado, Pablo; Müller, Gerhard A; Strutz, Frank; Kalluri, Raghu

    2001-01-01

    Type IV collagen is a major component of basement membranes and it provides structural and functional support to various cell types. Type IV collagen exists in a highly complex suprastructure form and recent studies implicate that protomer (the trimeric building unit of type IV collagen) assembly is mediated by the NC1 domain present in the C-terminus of each collagen α-chain polypeptide. Here we show that type IV collagen contributes to the maintenance of the epithelial phenotype of proximal...

  16. Preparation and some properties of type I collagen from fish scales.

    Science.gov (United States)

    Nomura, Y; Sakai, H; Ishii, Y; Shirai, K

    1996-12-01

    Soluble collagen from fish (sardine) scales was yielded at about 5% with 0.5 M acetic acid after demineralization with EDTA, while a great portion of the collagen remained insoluble. The solubility of this insoluble collagen was about 20% at 45 degrees C (denaturation temperature of soluble collagen) for 24 h. The remaining 80% of the insoluble collagen was denatured in the form of insoluble gelatin, and that may be an interesting food material. PMID:8988647

  17. Uniform spatial distribution of collagen fibril radii within tendon implies local activation of pC-collagen at individual fibrils

    CERN Document Server

    Rutenberg, Andrew D; Kreplak, Laurent

    2016-01-01

    Collagen fibril cross-sectional radii show no systematic variation between the interior and the periphery of fibril bundles, indicating an effectively constant rate of collagen incorporation into fibrils throughout the bundle. Such spatially homogeneous incorporation constrains the extracellular diffusion of collagen precursors from sources at the bundle boundary to sinks at the growing fibrils. With a coarse-grained diffusion equation we determine stringent bounds, using parameters extracted from published experimental measurements of tendon development. From the lack of new fibril formation after birth, we further require that the concentration of diffusing precursors stays below the critical concentration for fibril nucleation. We find that the combination of the diffusive bound, which requires larger concentrations to ensure homogeneous fibril radii, and lack of nucleation, which requires lower concentrations, is only marginally consistent with fully-processed collagen using conservative bounds. More real...

  18. Hagfish and lancelet fibrillar collagens reveal that type II collagen-based cartilage evolved in stem vertebrates

    OpenAIRE

    Zhang, Guangjun; Cohn, Martin J.

    2006-01-01

    The origin of vertebrates was defined by evolution of a skeleton; however, little is known about the developmental mechanisms responsible for this landmark evolutionary innovation. In jawed vertebrates, cartilage matrix consists predominantly of type II collagen (Col2α1), whereas that of jawless fishes has long been thought to be noncollagenous. We recently showed that Col2α1 is present in lamprey cartilage, indicating that type II collagen-based cartilage evolved earlier than previously reco...

  19. Autoantibodies to Multiple Epitopes on the Non-Collagenous-1 Domain of Type VII Collagen Induce Blisters

    OpenAIRE

    Vorobyev, Artem; Ujiie, Hideyuki; Recke, Andreas; Buijsrogge, Jacqueline J. A.; Jonkman, Marcel F.; Pas, Hendrikus; Iwata, Hiroaki; HASHIMOTO, TAKASHI; Kim, Soo-Chan; Kim, Jong Hoon; Groves, Richard; Samavedam, Unni; Gupta, Yask; Schmidt, Enno; Zillikens, Detlef

    2015-01-01

    Epidermolysis bullosa acquisita (EBA) is an autoimmune blistering disease of the skin and mucous membranes, characterized by autoantibodies against type VII collagen (COL7), a major component of anchoring fibrils. Different clinical EBA phenotypes are described, including mechanobullous and inflammatory variants. Most EBA patients' sera react with epitopes located within the non-collagenous 1 (NC1) domain of human COL7. However, it has remained unclear whether antibody binding to these differ...

  20. Polarized Raman anisotropic response of collagen in tendon: towards 3D orientation mapping of collagen in tissues.

    Directory of Open Access Journals (Sweden)

    Leonardo Galvis

    Full Text Available In this study, polarized Raman spectroscopy (PRS was used to characterize the anisotropic response of the amide I band of collagen as a basis for evaluating three-dimensional collagen fibril orientation in tissues. Firstly, the response was investigated theoretically by applying classical Raman theory to collagen-like peptide crystal structures. The theoretical methodology was then tested experimentally, by measuring amide I intensity anisotropy in rat tail as a function of the orientation of the incident laser polarization. For the theoretical study, several collagen-like triple-helical peptide crystal structures obtained from the Protein Data Bank were rotated "in plane" and "out of plane" to evaluate the role of molecular orientation on the intensity of the amide I band. Collagen-like peptides exhibit a sinusoidal anisotropic response when rotated "in plane" with respect to the polarized incident laser. Maximal intensity was obtained when the polarization of the incident light is perpendicular to the molecule and minimal when parallel. In the case of "out of plane" rotation of the molecular structure a decreased anisotropic response was observed, becoming completely isotropic when the structure was perpendicular to the plane of observation. The theoretical Raman response of collagen was compared to that of alpha helical protein fragments. In contrast to collagen, alpha helices have a maximal signal when incident light is parallel to the molecule and minimal when perpendicular. For out-of-plane molecular orientations alpha-helix structures display a decreased average intensity. Results obtained from experiments on rat tail tendon are in excellent agreement with the theoretical predictions, thus demonstrating the high potential of PRS for experimental evaluation of the three-dimensional orientation of collagen fibers in biological tissues.

  1. Effect of Immobilization on Insoluble Collagen Concentration and Type I and Type III Collagen Isoforms of Rat Soleus Muscle

    OpenAIRE

    Hibino, Itaru; Okita, Minoru; Inoue, Takayuki; Banno, Yasuhiro; Hoso, Masahiro

    2008-01-01

    Immobilization is often associated with decreased muscle elasticity. This condition is known as muscle contracture; however, the mechanism remains unclear. The purpose of this study was to clarify the mechanism governing muscle contracture in rat soleus muscle by identifying changes in ankle joint mobility, insoluble collagen concentration and type I and type III collagen isoforms following 1- and 3-week immobilizations. Following a 1-week immobilization, range of motion (ROM) of dorsiflexion...

  2. Alport familial nephritis. Absence of 28 kilodalton non-collagenous monomers of type IV collagen in glomerular basement membrane.

    OpenAIRE

    Kleppel, M M; Kashtan, C. E.; Butkowski, R J; Fish, A. J.; Michael, A. F.

    1987-01-01

    Alport-type familial nephritis (FN), a genetic disorder, results in progressive renal insufficiency and sensorineural hearing loss. Immunochemical and biochemical analyses of the non-collagenous (NC1) domain of type IV collagen isolated from the glomerular basement membranes (GBM) of three males with this disease demonstrate absence of the normally occurring 28-kilodalton (kD) NC1 monomers, but persistence of the 26- and 24-kD monomeric subunits derived from alpha 1 and 2 (both type IV) colla...

  3. Adoptive transfer of suppression of arthritis in the mouse model of collagen-induced arthritis. Evidence for a type II collagen-specific suppressor T cell.

    OpenAIRE

    Kresina, T F; Moskowitz, R W

    1985-01-01

    This study details the suppressive mechanism involved in the antigen-specific suppression of collagen-induced arthritis. Intravenous injection of 500 micrograms of soluble native type II collagen 3 d before immunization with native type II collagen emulsified in complete Freund's adjuvant resulted in animals with decreased in vitro cellular and humoral immune response to native and denatured type II collagen compared with control groups. Control groups were composed of animals preinoculated w...

  4. Type II and VI collagen in nasal and articular cartilage and the effect of IL-1 alpha on the distribution of these collagens

    OpenAIRE

    Jansen, I.D.C.; Hollander, A P; Buttle, D. J.; Everts, V.

    2010-01-01

    The distribution of type II and VI collagen was immunocytochemically investigated in bovine articular and nasal cartilage. Cartilage explants were used either fresh or cultured for up to 4 weeks with or without interleukin 1α (IL-1α). Sections of the explants were incubated with antibodies for both types of collagen. Microscopic analyses revealed that type II collagen was preferentially localized in the interchondron matrix whereas type VI collagen was primarily found in the direct vicinity o...

  5. PEMANFAATAN LIMBAH SEKAM PADI MENJADI SILIKA GEL

    Directory of Open Access Journals (Sweden)

    Prima Astuti Handayani

    2014-12-01

    Full Text Available Sekam padi merupakan salah satu sumber penghasil silika terbesar, berpotensi sebagai bahan pembuatan silika gel. Abu sekam padi mengandung silika sebanyak 87%-97% berat kering. Sintesis silika gel dari abu sekam padi dilakukan dengan mereaksikan abu sekam padi menggunakan larutan NaOH 1N pada suhu 800C selama 1 jam dan dilanjutkan dengan penambahan larutan asam hingga pH=7. Gel yang dihasilkan selanjutnya didiamkan selama 18 jam kemudian dikeringkan pada suhu dikeringkan menggunakan oven pada suhu 800C hingga beratnya konstan. Hasil percobaan diperoleh bahwa silika gel dengan penambahan CH3COOH menghasilkan yield yang lebih besar dibandingkan penambahan HCl. Berdasarkan analisis FT-IR silika gel yang diperoleh memiliki gugus Si-O-Si dan gugus Si-OH. Silika gel dengan penambahan HCl memiliki surface area sebesar 65,558 m2/g, total pore volume 0,1935 cc/g, dan average pore size sebesar 59,0196 Å. Sedangkan silika gel dengan penambahan CH3COOH memiliki surface area sebesar 9,685 m2/g, total pore volume 0,02118 cc/g, dan average pore size sebesar 43,7357Å. Silika gel dengan penambahanCH3COOH memiliki kemampuan menyerap kelembaban udara yang lebih baik dibanding silika gel dengan penambahan HCl. Rice hull ash (RHA is one of the biggest source of silica, potential for sintesis silica gel. RHA contains silica as many as 87 % -97 %. Synthesis of silica gel from rice hull ash was done by reaction using NaOH solution at temperature 800C for 1 hour and followed by the addition of an acid solution until pH=7. The gel were rested with time aging 18 hour, and then dried using oven at temperature 800C until constant weigh. The results obtained that the silica gel with the addition of CH3COOH produce higher yields than the addition of HCl. Based on FT-IR analysis, silica gel has a group of silanol (Si-`OH and siloxan (Si-O-Si group. Silica gel with the addition of HCl has a surface area 65,558 m2/g, a total pore volume 0,1935 cc/g, and average pore size 59

  6. Endoplasmic reticulum stress inhibits collagen synthesis independent of collagen-modifying enzymes in different chondrocyte populations and dermal fibroblasts.

    Science.gov (United States)

    Vonk, Lucienne A; Doulabi, Behrouz Zandieh; Huang, Chun-Ling; Helder, Marco N; Everts, Vincent; Bank, Ruud A

    2010-06-01

    Chondrocytes respond to glucose deprivation with a decreased collagen synthesis due to disruption of a proper functioning of the endoplasmic reticulum (ER): ER stress. Since the mechanisms involved in the decreased synthesis are unknown, we have investigated whether chaperones and collagen-modifying enzymes are affected by glucose deprivation. Chondrocytes obtained from nucleus pulposus, annulus fibrosus, articular cartilage, and meniscus and dermal fibroblasts were cultured under control conditions or exposed to the ER stress-inducing treatments of tunicamycin addition or glucose withdrawal. Both treatments resulted in an up-regulation of the gene expression of the ER stress markers in all cell types, but dermal fibroblasts showed a delayed response to glucose deprivation. Collagen gene expression was down-regulated, and less collagen protein was present in the cells under both ER stress-inducing conditions. The expression levels of the prolyl 4-hydroxylases were either not affected (P4ha3) or increased (P4ha1 and P4ha2), the levels of the lysyl hydroxylases decreased, and the N-propeptidase Adamts2 decreased. Both treatments induced apoptosis. Chondrocytes respond more quickly to glucose deprivation, but it appears that chondrocytes can cope better with tunicamycin-induced ER stress than fibroblasts. Although collagen synthesis was inhibited by the treatments, some collagen-modifying enzymes and chaperones were up-regulated, suggesting that there is no causal relation between them. PMID:20555395

  7. A Comparison of Conventional Collagen Sponge and Collagen-Gelatin Sponge in Wound Healing

    Science.gov (United States)

    Jinno, Chizuru; Morimoto, Naoki; Ito, Ran; Sakamoto, Michiharu; Ogino, Shuichi; Taira, Tsuguyoshi; Suzuki, Shigehiko

    2016-01-01

    The objective of this study was to compare the effectiveness of the collagen-gelatin sponge (CGS) with that of the collagen sponge (CS) in dermis-like tissue regeneration. CGS, which achieves the sustained release of basic fibroblast growth factor (bFGF), is a promising material in wound healing. In the present study, we evaluated and compared CGSs and conventional CSs. We prepared 8 mm full-thickness skin defects on the backs of rats. Either CGSs or CSs were impregnated with normal saline solution (NSS) or 7 μg/cm2 of bFGF solution and implanted into the defects. At 1 and 2 weeks after implantation, tissue specimens were obtained from the rats of each group (n = 3, total n = 24). The wound area, neoepithelial length, dermis-like tissue area, and the number and area of capillaries were evaluated at 1 and 2 weeks after implantation. There were no significant differences in the CGS without bFGF and CS groups. Significant improvements were observed in the neoepithelial length, the dermis-like tissue area, and the number of newly formed capillaries in the group of rats that received CGSs impregnated with bFGF. The effects on epithelialization, granulation, and vascularization of wound healing demonstrated that, as a scaffold, CGSs are equal or superior to conventional CSs. PMID:27218103

  8. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  9. First Analysis of a Bacterial Collagen-Binding Protein with Collagen Toolkits: Promiscuous Binding of YadA to Collagens May Explain How YadA Interferes with Host Processes▿ †

    OpenAIRE

    Jack C. Leo; Elovaara, Heli; Bihan, Dominique; Pugh, Nicholas; Kilpinen, Sami K.; Raynal, Nicolas; Skurnik, Mikael; Farndale, Richard W.; Goldman, Adrian

    2010-01-01

    The Yersinia adhesin YadA mediates the adhesion of the human enteropathogen Yersinia enterocolitica to collagens and other components of the extracellular matrix. Though YadA has been proposed to bind to a specific site in collagens, the exact binding determinants for YadA in native collagen have not previously been elucidated. We investigated the binding of YadA to collagen Toolkits, which are libraries of triple-helical peptides spanning the sequences of type II and III human collagens. Yad...

  10. Polarization-Modulated Second Harmonic Generation Microscopy in Collagen

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, P C

    2002-09-30

    Collagen is a key structural protein in the body; several pathological conditions lead to changes in collagen. Among imaging modalities that can be used in vivo, second harmonic generation (SHG) microscopy has a key advantage: it provides {approx}1 {micro}m resolution information about collagen structure as a function of depth. A new technique--polarization-modulated SHG--is presented: it permits simultaneous measurement of collagen orientation, of a lower bound on the magnitude of the second order nonlinear susceptibility tensor, and of the ratio of the two independent elements in this tensor. It is applied to characterizing SHG in collagen and to determining effects of biologically relevant changes in collagen structure. The magnitude of the second harmonic signal in two dimensional images varies with position even in structurally homogeneous tissue; this phenomenon is due to interference between second harmonic light generated by neighboring fibrils, which are randomly oriented parallel or anti-parallel to each other. Studies in which focal spot size was varied indicated that regions where fibrils are co-oriented are less than {approx}1.5 {micro}m in diameter. A quartz reference was used to determine the spot size as well as a lower limit (d{sub xxx} > 0.3 pm/V) for the magnitude of the second order nonlinear susceptibility. The ratio of the two independent tensor elements ranged between d{sub XYY}/d{sub XXX} = 0.60 and 0.75. SHG magnitude alone was not useful for identifying structural anomalies in collagenous tissue. Instead, changes in the polarization dependence of SHG were used to analyze biologically relevant perturbations in collagen structure. Changes in polarization dependence were observed in dehydrated samples, but not in highly crosslinked samples, despite significant alterations in packing structure. Complete thermal denaturation and collagenase digestion produced samples with no detectable SHG signal. Collagen orientation was measured in thin

  11. Using magnetic resonance microscopy to study the growth dynamics of a glioma spheroid in collagen I: A case study

    Directory of Open Access Journals (Sweden)

    Dai Guangping

    2008-01-01

    Full Text Available Abstract Background Highly malignant gliomas are characterized by rapid growth, extensive local tissue infiltration and the resulting overall dismal clinical outcome. Gaining any additional insights into the complex interaction between this aggressive brain tumor and its microenvironment is therefore critical. Currently, the standard imaging modalities to investigate the crucial interface between tumor growth and invasion in vitro are light and confocal laser scanning microscopy. While immensely useful in cell culture, integrating these modalities with this cancer's clinical imaging method of choice, i.e. MRI, is a non-trivial endeavour. However, this integration is necessary, should advanced computational modeling be able to utilize these in vitro data to eventually predict growth behaviour in vivo. We therefore argue that employing the same imaging modality for both the experimental setting and the clinical situation it represents should have significant value from a data integration perspective. In this case study, we have investigated the feasibility of using a specific form of MRI, i.e. magnetic resonance microscopy or MRM, to study the expansion dynamics of a multicellular tumor spheroid in a collagen type I gel. Methods An U87mEGFR human giloblastoma multicellular spheroid (MTS containing approximately 4·103 cells was generated and pipetted into a collagen I gel. The sample was then imaged using a T2-weighted 3D spoiled gradient echo pulse sequence on a 14T MRI scanner over a period of 12 hours with a temporal resolution of 3 hours at room temperature. Standard histopathology was performed on the MRM sample, as well as on control samples. Results We were able to acquire three-dimensional MR images with a spatial resolution of 24 × 24 × 24 μm3. Our MRM data successfully documented the volumetric growth dynamics of an MTS in a collagen I gel over the 12-hour period. The histopathology results confirmed cell viability in the MRM sample

  12. Chitosan: Gels and Interfacial Properties

    OpenAIRE

    Julie Nilsen-Nygaard; Strand, Sabina P.; Kjell M. Vårum; Kurt I. Draget; Catherine T. Nordgård

    2015-01-01

    Chitosan is a unique biopolymer in the respect that it is abundant, cationic, low-toxic, non-immunogenic and biodegradable. The relative occurrence of the two monomeric building units (N-acetyl-glucosamine and d-glucosamine) is crucial to whether chitosan is predominantly an ampholyte or predominantly a polyelectrolyte at acidic pH-values. The chemical composition is not only crucial to its surface activity properties, but also to whether and why chitosan can undergo a sol–gel transition. T...

  13. Motility initiation in active gels

    CERN Document Server

    Recho, Pierre; Truskinovsky, Lev

    2015-01-01

    Motility initiation in crawling cells requires a symmetry breaking mechanism which transforms a symmetric state into a polarized state. Experiments on keratocytes suggest that polarization is triggered by increased contractility of motor proteins. In this paper we argue that contraction can be responsible not only for the symmetry breaking transition but also for the incipient translocation of the segment of an active gel mimicking the crawling cell. Our model suggests that when the contractility increases sufficiently far beyond the motility initiation threshold, the cell can stop and re-symmetrizes. The proposed theory reproduces the motility initiation pattern in fish keratocytes and the behavior of keratocytes prior to cell division.

  14. Chitosan-collagen biomembrane embedded with calcium-aluminate enhances dentinogenic potential of pulp cells.

    Science.gov (United States)

    Soares, Diana Gabriela; Rosseto, Hebert Luís; Basso, Fernanda Gonçalves; Scheffel, Débora Salles; Hebling, Josimeri; Costa, Carlos Alberto de Souza

    2016-01-01

    The development of biomaterials capable of driving dental pulp stem cell differentiation into odontoblast-like cells able to secrete reparative dentin is the goal of current conservative dentistry. In the present investigation, a biomembrane (BM) composed of a chitosan/collagen matrix embedded with calcium-aluminate microparticles was tested. The BM was produced by mixing collagen gel with a chitosan solution (2:1), and then adding bioactive calcium-aluminate cement as the mineral phase. An inert material (polystyrene) was used as the negative control. Human dental pulp cells were seeded onto the surface of certain materials, and the cytocompatibility was evaluated by cell proliferation and cell morphology, assessed after 1, 7, 14 and 28 days in culture. The odontoblastic differentiation was evaluated by measuring alkaline phosphatase (ALP) activity, total protein production, gene expression of DMP-1/DSPP and mineralized nodule deposition. The pulp cells were able to attach onto the BM surface and spread, displaying a faster proliferative rate at initial periods than that of the control cells. The BM also acted on the cells to induce more intense ALP activity, protein production at 14 days, and higher gene expression of DSPP and DMP-1 at 28 days, leading to the deposition of about five times more mineralized matrix than the cells in the control group. Therefore, the experimental biomembrane induced the differentiation of pulp cells into odontoblast-like cells featuring a highly secretory phenotype. This innovative bioactive material can drive other protocols for dental pulp exposure treatment by inducing the regeneration of dentin tissue mediated by resident cells. PMID:27119587

  15. Collagenous sprue: a clinicopathologic study of 12 cases.

    LENUS (Irish Health Repository)

    Maguire, Aoife A

    2012-02-01

    Collagenous sprue is a rare form of small bowel enteropathy characterized by chronic diarrhea and progressive malabsorption with little data available on its natural history. The pathologic lesion consists of subepithelial collagen deposition associated with variable alterations in villous architecture. The small bowel biopsies of 12 cases were reviewed. Clinical details, celiac serology, and T-cell receptor gene rearrangement study results, when available, were collated. There were 8 females and 4 males (age ranged from 41 to 84 y) who presented with chronic diarrhea and weight loss. Small intestinal biopsies showed subepithelial collagen deposition with varying degrees of villous atrophy and varying numbers of intraepithelial lymphocytes. Four patients had previous biopsies showing enteropathic changes without collagen deposition. Seven cases were associated with collagenous colitis and 1 also had features of lymphocytic colitis. Three patients also had collagen deposition in gastric biopsies. One case was associated with lymphocytic gastritis. Celiac disease (CD, gluten-sensitive enteropathy) was documented in 4 patients. Five patients made a clinical improvement with combinations of a gluten-free diet and immunosuppressive therapy. Two patients died of complications of malnutrition and 1 of another illness. Clonal T-cell populations were identified in 5 of 6 cases tested. Four of these patients improved clinically after treatment but 1 has died. Collagenous sprue evolved on a background of CD in 4 cases. There was no history of CD in others and these cases may be the result of a biologic insult other than gluten sensitivity. None has developed clinical evidence of lymphoma to date.

  16. Shrinking mechanism of a porous collagen matrix immersed in solution.

    Science.gov (United States)

    Chen, Po-Yang; Hsieh, Hsyue-Jen; Huang, Lynn L H

    2014-12-01

    The porous structure of collagen-based matrices enables the infiltration of cells both in in vitro and clinical applications. Reconstituted porous collagen matrices often collapse when they are in contact with aqueous solutions; however, the mechanism for the collapse of the pores is not understood. We, therefore, investigated the interactions between the collagen matrix and different solutions, and discuss the mechanisms for the change in microstructure of the matrix on immersing it in solution. When a dried collagen matrix was immersed in aqueous solutions, the matrix shrunk and pores close to the surface closed. The shrinkage ratio and thickness of the compact microstructure close to the superficial area decreased with increasing ethanol content in the solution. The original porous structure of the collagen matrix was preserved when the matrix was immersed in absolute ethanol. The shrinkage of a porous collagen matrix in contact with aqueous solutions was attributed to the liquid/gas interfacial tension. The average pore diameter of the matrix also significantly affected the shrinkage of the matrix. The shrinkage of the matrix, explained using the Young-Laplace equation, was found to result from the pressure drop, and especially in the pores located superficially, leading to the collapse of the matrix microstructure. The integrity of the porous microstructure allows better penetration of cells in medical applications. The numbers of NIH/3T3 fibroblasts penetrated through the hydrated Col/PBS porous collagen matrices pre-immersed in absolute ethanol with subsequent water and DMEM culture medium replacements were significantly higher than those through matrices hydrated directly in DMEM. PMID:24678021

  17. Human Collagen Injections to Reduce Rectal Dose During Radiotherapy

    International Nuclear Information System (INIS)

    Objectives: The continuing search for interventions, which address the incidence and grade of rectal toxicities associated with radiation treatment of prostate cancer, is a major concern. We are reporting an investigational trial using human collagen to increase the distance between the prostate and anterior rectal wall, thereby decreasing the radiation dose to the rectum. Methods: This is a pilot study evaluating the use of human collagen as a displacing agent for the rectal wall injected before starting a course of intensity-modulated radiotherapy (IMRT) for prostate cancer. Using a transperineal approach, 20 mL of human collagen was injected into the perirectal space in an outpatient setting. Computerized IMRT plans were performed pre- and postcollagen injection, and after a patient completed their radiotherapy, to determine radiation dose reduction to the rectum associated with the collagen injection. Computed tomography scans were performed 6 months and 12 months after completing their radiotherapy to evaluate absorption rate of the collagen. All patients were treated with IMRT to a dose of 75.6 Gy to the prostate. Results: Eleven patients were enrolled into the study. The injection of human collagen in the outpatient setting was well tolerated. The mean separation between the prostate and anterior rectum was 12.7 mm. The mean reduction in dose to the anterior rectal wall was 50%. All men denied any rectal symptoms during the study. Conclusions: The transperineal injection of human collagen for the purpose of tissue displacement is well tolerated in the outpatient setting. The increased separation between the prostate and rectum resulted in a significant decrease in radiation dose to the rectum while receiving IMRT and was associated with no rectal toxicities.

  18. Anisotropic microsrheology of self-assembling collagen networks

    Science.gov (United States)

    Dutov, Pavel

    Collagen is the main component of human connective tissue and extracellular matrix. Here we report multiple novel methods for utilizing optical tweezers to measure mechanical properties of different hierarchical levels of collagenous materials. First, we introduce a method for optical trap calibration that is suitable for viscoelastic material. The method is designed for use on experimental setups with two optical tweezers and is based on pulling a trapped particle with one trap while holding it with the other. The method combines advantages of commonly known PSD-fitting and fast-sweeping methods, allowing calibration of a completely fixed trap in a fluid of unknown viscosity/viscoelasticity without additional expensive equipment. Then we report an approach to measure the longitudinal component of the elastic moduli of biological fibers under conditions close to those found in vivo and apply it to type I collagen from rat tail tendon. This approach combines optical tweezers, atomic force microscopy, and exploits Euler-Bernoulli elasticity theory for data analysis. The approach also avoids the traditional drying-soaking cycle, since samples are freshly extracted. Importantly, strains are kept below 0.5%, which appear consistent with the linear elastic regime. We find, surprisingly, that the longitudinal elastic modulus of type I collagen cannot be represented by a single quantity but rather is a distribution that is broader than the uncertainty of our experimental technique. Lastly, we report a new method for characterizing anisotropic viscoelastic response of collagenous matrices. Anisotropic collagenous extracellular matrices are used in biomedicine to enhance the wound healing process by directing fibroblast proliferation. We utilize an optical trap to monitor the thermal fluctuations of microspheres embedded into collagenous network to extract a viscoelastic response function of the network along the principal axes of anisotropy.

  19. Cloning of the human type XVII collagen gene (COL17A1), and detection of novel mutations in generalized atrophic benign epidermolysis bullosa

    Energy Technology Data Exchange (ETDEWEB)

    Gatalica, B.; Pulkkinen, L.; Li, K. [Thomas Jefferson Univ., Philadelphia, PA (United States)] [and others

    1997-02-01

    Generalized atrophic benign epidermolysis bullosa (GABEB) is a nonlethal variant of junctional epidermolysis bullosa (JEB). Previous findings have suggested that type XVII collagen is the candidate gene for mutations in this disease. We now have cloned the entire human type XVII collagen gene (COL17A1) and have elucidated its intron-exon organization. The gene comprises 56 distinct exons, which span {approximately}52 kb of the genome, on the long arm of chromosome 10. It encodes a polypeptide, the {alpha}1(XVII) chain, consisting of an intracellular globular domain, a transmembrane segment, and an extracellular domain that contains 15 separate collagenous subdomains, the largest consisting of 242 amino acids. We also have developed a strategy to identify mutations in COL17A1 by use of PCR amplification of genomic DNA, using primers placed on the flanking introns. The PCR products are scanned for sequence variants by heteroduplex analysis using conformation-sensitive gel electrophoresis and then are subjected to direct automated sequencing. We have identified several intragenic polymorphisms in COL17A1, as well as mutations, in both alleles, in two Finnish families with GABEB. The probands in both families showed negative immunofluorescence staining with an anti-type XVII collagen antibody. In one family, the proband was homozygous for a 5-bp deletion, 2944del5, which resulted in frameshift and a premature termination codon of translation. The proband in the other family was a compound heterozygote, with one allele containing the 2944del5 mutation and the other containing a nonsense mutation, Q1023X. These results expand the mutation database in different variants of JEB, and they attest to the functional importance of type XVII collagen as a transmembrane component of the hemidesmosomes at the dermal/epidermal junction. 48 refs., 9 figs., 3 tabs.

  20. An aqueous extract of the leaves of Chromolaena odorata (formerly Eupatorium odoratum) (Eupolin) inhibits hydrated collagen lattice contraction by normal human dermal fibroblasts.

    Science.gov (United States)

    Phan, T T; Hughes, M A; Cherry, G W; Le, T T; Pham, H M

    1996-01-01

    Chromolaena odorata (formerly Eupatorium odoratum) is used as a traditional medicine in Vietnam (Nghiem, 1992), where its Vietnamese common name is "co hoi." While it has been widely considered a weed by agriculturalists (Holm et al., 1991), the aqueous extract and the decoction from the leaves of this plant have been used throughout Vietnam for the treatment of soft tissue wounds, burn wounds, and skin infections. A number of clinical studies done by Vietnamese as well as foreign medical workers has demonstrated the efficacy of this extract on the wound-healing process. In this article, the effect of the Eupolin extract on hydrated collagen lattice contraction by human dermal fibroblasts, an in vitro model of wound contraction, is described. The significant inhibition of collagen gel contraction by Eupolin extract at 50 to 200 micrograms/ml is demonstrated in various concentrations of collagen. When the extract at 50 to 150 micrograms/ml was washed out of the lattices and replaced by fresh medium without Eupolin, the contraction of collagen by cells was resumed. The visualization of cells in the lattices by incubation in a tetrazolium salt for 2 h showed live cells at 50 to 150 micrograms/ml of extract. In contrast, all cells were killed in the higher extract doses of 300 or 400 micrograms/ml. These preliminary results showing the inhibitory effect of Eupolin extract on collagen contraction suggest that a clinical evaluation of its effect on wound contraction and scar quality should be made. This work illustrates that traditional remedies that are used by folk practitioners to improve healing can be examined in a scientific manner using in vitro wound-healing models. It could be that the synergistic properties of components of the natural extract contribute to the positive effects demonstrated on various wound-healing mechanisms. PMID:9395667

  1. Automated apparatus for producing gradient gels

    Science.gov (United States)

    Anderson, N.L.

    1983-11-10

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  2. Research on pre-staining gel electrophoresis

    International Nuclear Information System (INIS)

    Background: Gel electrophoresis is a powerful biochemical separation technique. Most biological molecules are completely transparent in the visible region of light, so it is necessary to use staining to show the results after gel electrophoresis, and the general steps of conventional staining methods are time-consuming. Purpose: We try to develop a novel approach to simplify the gel electrophoresis: Pre-Staining Gel Electrophoresis (PSGE), which can make the gel electrophoresis results monitored in real time. Methods: Pre-stain the protein samples with Coomassie Brilliant Blue (CBB) for 30 min before loading the sample into the gel well. Results and Conclusion: PSGE can be successfully used to analyze the binding efficiency of Bovine Serum Albumin (BSA) and amphiphilic polymer via chemical coupling and physical absorption, and the double PSGE also shows a great potential in bio-analytical chemistry. (authors)

  3. Active Gel Model of Amoeboid Cell Motility

    CERN Document Server

    Callan-Jones, A C

    2013-01-01

    We develop a model of amoeboid cell motility based on active gel theory. Modeling the motile apparatus of a eukaryotic cell as a confined layer of finite length of poroelastic active gel permeated by a solvent, we first show that, due to active stress and gel turnover, an initially static and homogeneous layer can undergo a contractile-type instability to a polarized moving state in which the rear is enriched in gel polymer. This agrees qualitatively with motile cells containing an actomyosin-rich uropod at their rear. We find that the gel layer settles into a steadily moving, inhomogeneous state at long times, sustained by a balance between contractility and filament turnover. In addition, our model predicts an optimal value of the gel-susbstrate adhesion leading to maximum layer speed, in agreement with cell motility assays. The model may be relevant to motility of cells translocating in complex, confining environments that can be mimicked experimentally by cell migration through microchannels.

  4. GEM printer: 3D gel printer for free shaping of functional gel engineering materials

    Science.gov (United States)

    Furukawa, Hidemitsu; Muroi, Hisato; Yamamoto, Kouki; Serizawa, Ryo; Gong, Jin

    2013-04-01

    In the past decade, several high-strength gels have been developed. These gels are expected to use as a kind of new engineering materials in the fields of industry and medical as substitutes to polyester fibers, which are materials of artificial blood vessels. The gels have both low surface friction and well permeability due to a large amount of water absorbed in the gels, which are superiority of the gels compering to the polyester fibers. It is, however, difficult for gels to be forked structure or cavity structure by using cutting or mold. Consequently, it is necessary to develop the additive manufacturing device to synthesize and mode freely gels at the same time. Here we try to develop an optical 3D gel printer that enables gels to be shaped precisely and freely. For the free forming of high-strength gels, the 1st gels are ground to particles and mixed with 2nd pregel solution, and the mixed solution is gelled by the irradiation of UV laser beam through an optical fiber. The use of the optical fiber makes one-point UV irradiation possible. Since the optical fiber is controlled by 3D-CAD, the precise and free molding in XYZ directions is easily realized. We successfully synthesized tough gels using the gel printer.

  5. Characteristics of polyacrylamide gel with THPC and Turnbull Blue gel dosimeters evaluated using optical tomography

    Science.gov (United States)

    Pilařová (Vávrů), Kateřina; Kozubíková, Petra; Šolc, Jaroslav; Spěváček, Václav

    2014-11-01

    The purpose of this study was to compare characteristics of radiochromic gel - Turnbull Blue gel (TB gel) with polymer gel - polyacrylamide gel and tetrakis hydroxymethyl phosphonium chloride (PAGAT) using optical tomography. Both types of gels were examined in terms of dose sensitivity, dose response linearity and background value of spectrophotometric absorbance. The calibration curve was obtained for 60Co irradiation performed on Gammacell 220 at predefined gamma dose levels between 0 and 140 Gy for TBG and 0-15 Gy for PAGAT. To measure relative dose distributions from stereotactic irradiation, dosimeters were irradiated on Leksell Gamma Knife Perfexion. The cylindrical glass housings filled with gel were attached to the stereotactic frame. They were exposed with single shot and 16 mm collimator by 65 Gy to a 50% prescription isodose for TB gel and 4 Gy to a 50% prescription isodose for PAGAT. Evaluations of dosimeters were performed on an UV-vis Spectrophotometer Helios β and an optical cone beam homemade tomography scanner with a 16-bit astronomy CCD camera with a set of color filters. The advantages and potential disadvantages for both types of gel dosimeters were summarized. Dose distribution in central slice and measured profiles of 16 mm shot shows excellent correspondence with treatment planning system Leksell GammaPlan® for both PAGAT and Turnbull Blue gels. Gel dosimeters are suitable for steep dose gradient verification. An optical tomography evaluation method is successful. Dose response characteristics of TB gel and PAGAT gel are presented.

  6. Characteristics of polyacrylamide gel with THPC and Turnbull Blue gel dosimeters evaluated using optical tomography

    International Nuclear Information System (INIS)

    The purpose of this study was to compare characteristics of radiochromic gel – Turnbull Blue gel (TB gel) with polymer gel – polyacrylamide gel and tetrakis hydroxymethyl phosphonium chloride (PAGAT) using optical tomography. Both types of gels were examined in terms of dose sensitivity, dose response linearity and background value of spectrophotometric absorbance. The calibration curve was obtained for 60Co irradiation performed on Gammacell 220 at predefined gamma dose levels between 0 and 140 Gy for TBG and 0–15 Gy for PAGAT. To measure relative dose distributions from stereotactic irradiation, dosimeters were irradiated on Leksell Gamma Knife Perfexion. The cylindrical glass housings filled with gel were attached to the stereotactic frame. They were exposed with single shot and 16 mm collimator by 65 Gy to a 50% prescription isodose for TB gel and 4 Gy to a 50% prescription isodose for PAGAT. Evaluations of dosimeters were performed on an UV–vis Spectrophotometer Helios β and an optical cone beam homemade tomography scanner with a 16-bit astronomy CCD camera with a set of color filters. The advantages and potential disadvantages for both types of gel dosimeters were summarized. Dose distribution in central slice and measured profiles of 16 mm shot shows excellent correspondence with treatment planning system Leksell GammaPlan® for both PAGAT and Turnbull Blue gels. - highlights: • Gel dosimeters are suitable for steep dose gradient verification. • An optical tomography evaluation method is successful. • Dose response characteristics of TB gel and PAGAT gel are presented

  7. Periurethral injection of collagen in the treatment of urinary stress incontinence: ultrasonographic appearance

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, C.; Krysl, J.; Arenson, A.M.; Herschorn, S. [Toronto Univ., ON (Canada). Faculty of Medicine

    1995-06-01

    Transvesical and transvaginal ultrasonography (US) was performed 26 times in 23 patients, 3 to 36 months after periurethral injection of collagen to treat symptomatic urinary stress incontinence. The appearance, location and volume of the collagen were recorded. In all the patients the injected collagen had the appearance of a well-circumscribed mass of variable size, located at the bladder base. Transvesical US demonstrated the collagen in only 17 of the patients, and allowed only limited visualization of the collagen in five of these 17 patients. However, transvaginal US demonstrated the collagen in all of them. The collagen collections showed various levels of echogenicity with both techniques. However, in patients with more than one deposit of collagen, the collections had similar echogenicity. The study indicated that US provides a rapid, noninvasive method of assessing collagen after periurethral injection, and that transvaginal US was the best method of visualizing such collections. 10 refs., 5 figs.

  8. Self-Pumping Active Gel

    Science.gov (United States)

    Wu, Kun-Ta; Hishamunda, Jean Bernard; Fraden, Seth; Dogic, Zvonimir

    Isotropic active gels are the network which is consist of cross-linked building blocks and the structure of which changes randomly and isotropically with time. Dogic et. al. show that pairs of anti-parallel microtubules form extensile bundles, which merge, extend, and buckle. In an unconfined system, the dynamics of these bundles causes spontaneous turbulent-like flow driven by motion of microscopic molecular motors. We found that confining these active gels in a millimeter sized toroids causes a transition into a new dynamical state characterized by circulation currents persisting for hours until ATP is depleted. We show how toroid dimensions impact the properties of self-organized circular currents, how directions of circulation can be designed by engineering ratchet-shaped boundaries, and how circulations of connected toroids can be either synchronized or antisynchronized. Furthermore, we demonstrate that the flow rate in the circulation is independent of curvature and length of flow path. The flow rate persists for centimeters without decay, disregarding conventional pipe flow resistance. Such findings pave the path to self-pumping pipe transport and performing physical work with biological system.

  9. Microfluidics of soft granular gels

    Science.gov (United States)

    Nixon, Ryan; Bhattacharjee, Tapomoy; Sawyer, W. Gregory; Angelini, Thomas E.

    Microfluidic methods for encapsulating cells and particles typically involve drop making with two immiscible fluids. The main materials constraint in this approach is surface tension, creating inherent instability between the two fluids. We can eliminate this instability by using miscible inner and outer phases. This is achieved by using granular micro gels which are chemically miscible but physically do not mix. These microgels are yield stress materials, so they flow as solid plugs far from shear gradients, and fluidize where gradients are generated - near an injection nozzle for example. We have found that tuning the yield stress of the material by varying polymer concentration, device performance can be controlled. The solid like behavior of the gel allows us to produces infinitely stable jets that maintain their integrity and configuration over long distances and times. These properties can be combined and manipulated to produce discrete particulate bunches of an inner phase, flowing inside of an outer phase, well enough even to print a Morse code message suspended within flow chambers about a millimeter in diameter moving at millimeters a second.

  10. Stabilized aqueous gels and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, B.L.

    1978-08-29

    New improved aqueous gels, and methods of using same in contacting subterranean formations, are provided. The gels are prepared by gelling an aqueous brine having incorporated therein a water-soluble cellulose ether such as a carboxymethylcellulose (CMC), and are rendered more stable to decomposition by incorporating a sulfoalkylated tannin stabilizing agent, such as a sulfomethylated quebracho (SMQ), in the gel during the preparation thereof.

  11. Gel time of calcium acrylate grouting material.

    Science.gov (United States)

    Han, Tong-Chun

    2004-08-01

    Calcium acrylate is a polymerized grout, and can polymerize in an aqueous solution. The polymerization reaction utilizes ammonium persulfate as a catalyst and sodium thiosulfate as the activator. Based on the theory of reaction kinetics, this study on the relation between gel time and concentration of activator and catalyst showed that gel time of calcium acrylate is inversely proportional to activator and catalyst concentration. A formula of gel time is proposed, and an example is provided to verify the proposed formula. PMID:15236477

  12. Structure and Frictional Properties of Colloid Gel

    OpenAIRE

    Masayuki Tokita

    2014-01-01

    Polymer gels are known to be opaque when the preparation conditions, such as the reaction temperature and the composition, are changed. The increase of the opaqueness of the gel suggests strongly the change of network structure. Here, we are going to review the recent studies on the structure and the frictional study of the opaque poly(acrylamide) gel. The results indicate that the opaque poly(acrylamide) gel consists of the fractal aggregate of the colloidal particles of sub-micrometer in si...

  13. Structure of chitosan gels mineralized by sorption

    Science.gov (United States)

    Modrzejewska, Z.; Skwarczyńska, A.; Douglas, T. E. L.; Biniaś, D.; Maniukiewicz, W.; Sielski, J.

    2015-10-01

    The paper presents the structural studies of mineralized chitosan hydrogels. Hydrogels produced by using sodium beta-glycerophosphate (Na-β-GP) as a neutralizing agent. Mineralization was performed method "post loading", which consisted in sorption to the gels structure Ca ions. In order to obtain - in the structure of gels - compounds similar to the hydroxyapatites present naturally in bone tissue, gels after sorption were modified in: pH 7 buffer and sodium hydrogen phosphate. In order to determine the structural properties of the gels, the following methods were used: infrared spectroscopy with Fourier transformation, FTIR, X-ray diffractometry, XRD, scanning electron microscopy, SEM.

  14. Chondrogenic differentiation of human mesenchymal stem cells on fish scale collagen.

    Science.gov (United States)

    Hsu, Han-Hsiu; Uemura, Toshimasa; Yamaguchi, Isamu; Ikoma, Toshiyuki; Tanaka, Junzo

    2016-08-01

    Fish collagen has recently been reported to be a novel biomaterial for cell and tissue culture as an alternative to conventional mammalian collagens such as bovine and porcine collagens. Fish collagen could overcome the risk of zoonosis, such as from bovine spongiform encephalopathy. Among fish collagens, tilapia collagen, the denaturing temperature of which is near 37°C, is appropriate for cell and tissue culture. In this study, we investigated chondrogenic differentiation of human mesenchymal stem cells (hMSCs) cultured on tilapia scale collagen fibrils compared with porcine collagen and non-coated dishes. The collagen fibrils were observed using a scanning electronic microscope. Safranin O staining, glycosaminoglycans (GAG) expression, and real-time PCR were examined to evaluate chondrogenesis of hMSCs on each type of collagen fibril. The results showed that hMSCs cultured on tilapia scale collagen showed stronger Safranin O staining and higher GAG expression at day 6. Results of real-time PCR indicated that hMSCs cultured on tilapia collagen showed earlier SOX9 expression on day 4 and higher AGGRECAN and COLLAGEN II expression on day 6 compared with on porcine collagen and non-coated dishes. Furthermore, low mRNA levels of bone gamma-carboxyglutamate, a specific marker of osteogenesis, showed that tilapia collagen fibrils specifically enhanced chondrogenic differentiation of hMSCs in chondrogenic medium, as well as porcine collagen. Accordingly, tilapia scale collagen may provide an appropriate collagen source for hMSC chondrogenesis in vitro. PMID:26829997

  15. Effect of collagen sponge and fibrin glue on bone repair

    Science.gov (United States)

    SANTOS, Thiago de Santana; ABUNA, Rodrigo Paolo Flores; de ALMEIDA, Adriana Luisa Gonçalves; BELOTI, Marcio Mateus; ROSA, Adalberto Luiz

    2015-01-01

    ABSTRACT The ability of hemostatic agents to promote bone repair has been investigated using in vitro and in vivo models but, up to now, the results are inconclusive. Objective In this context, the aim of this study was to compare the potential of bone repair of collagen sponge with fibrin glue in a rat calvarial defect model. Material and Methods Defects of 5 mm in diameter were created in rat calvariae and treated with either collagen sponge or fibrin glue; untreated defects were used as control. At 4 and 8 weeks, histological analysis and micro-CT-based histomorphometry were carried out and data were compared by two-way ANOVA followed by Student-Newman-Keuls test when appropriated (p≤0.05). Results Three-dimensional reconstructions showed increased bone formation in defects treated with either collagen sponge or fibrin glue compared with untreated defects, which was confirmed by the histological analysis. Morphometric parameters indicated the progression of bone formation from 4 to 8 weeks. Additionally, fibrin glue displayed slightly higher bone formation rate when compared with collagen sponge. Conclusion Our results have shown the benefits of using collagen sponge and fibrin glue to promote new bone formation in rat calvarial bone defects, the latter being discreetly more advantageous. PMID:26814464

  16. A biocomposite of collagen nanofibers and nanohydroxyapatite for bone regeneration

    International Nuclear Information System (INIS)

    This work aims to design a synthetic construct that mimics the natural bone extracellular matrix through innovative approaches based on simultaneous type I collagen electrospinning and nanophased hydroxyapatite (nanoHA) electrospraying using non-denaturating conditions and non-toxic reagents. The morphological results, assessed using scanning electron microscopy and atomic force microscopy (AFM), showed a mesh of collagen nanofibers embedded with crystals of HA with fiber diameters within the nanometer range (30 nm), thus significantly lower than those reported in the literature, over 200 nm. The mechanical properties, assessed by nanoindentation using AFM, exhibited elastic moduli between 0.3 and 2 GPa. Fourier transformed infrared spectrometry confirmed the collagenous integrity as well as the presence of nanoHA in the composite. The network architecture allows cell access to both collagen nanofibers and HA crystals as in the natural bone environment. The inclusion of nanoHA agglomerates by electrospraying in type I collagen nanofibers improved the adhesion and metabolic activity of MC3T3-E1 osteoblasts. This new nanostructured collagen–nanoHA composite holds great potential for healing bone defects or as a functional membrane for guided bone tissue regeneration and in treating bone diseases. (paper)

  17. Thermal stabilization of collagen in skin and decalcified bone

    International Nuclear Information System (INIS)

    The state of collagen molecules in the fibres of tail tendon, skin and demineralized bone has been investigated in situ using differential scanning calorimetry (DSC). Hydroxyproline analysis and tissue digestion with bacterial collagenase and trypsin were used to confirm that the common cause of all the DSC endotherms was collagen denaturation. This occurred within a narrow temperature range in tendons, but over a wide temperature range in demineralized bone and old skin and demonstrated that in tendon and demineralized bone at least the same type I collagen molecule exists in different thermal states. Hypothesizing that this might be caused by different degrees of confinement within the fibre lattice, experiments were performed to measure the effect of changing the lattice dimensions by extracting the collagen into dilute solution with pepsin, swelling the lattice in acetic acid, and contracting the lattice by dehydration. A theoretical analysis was undertaken to predict the effect of dehydration. Results were consistent with the hypothesis, demonstrating that collagen molecules within the natural fibres of bone and old skin are located at different intermolecular spacings, revealing differences between molecules in the magnitude of either the attractive or repulsive forces controlling their separation. One potential cause of such variation is known differences in covalent cross-linking

  18. Effect of collagen sponge and fibrin glue on bone repair

    Directory of Open Access Journals (Sweden)

    Thiago de Santana SANTOS

    2015-12-01

    Full Text Available ABSTRACT The ability of hemostatic agents to promote bone repair has been investigated using in vitro and in vivo models but, up to now, the results are inconclusive. Objective In this context, the aim of this study was to compare the potential of bone repair of collagen sponge with fibrin glue in a rat calvarial defect model. Material and Methods Defects of 5 mm in diameter were created in rat calvariae and treated with either collagen sponge or fibrin glue; untreated defects were used as control. At 4 and 8 weeks, histological analysis and micro-CT-based histomorphometry were carried out and data were compared by two-way ANOVA followed by Student-Newman-Keuls test when appropriated (p≤0.05. Results Three-dimensional reconstructions showed increased bone formation in defects treated with either collagen sponge or fibrin glue compared with untreated defects, which was confirmed by the histological analysis. Morphometric parameters indicated the progression of bone formation from 4 to 8 weeks. Additionally, fibrin glue displayed slightly higher bone formation rate when compared with collagen sponge. Conclusion Our results have shown the benefits of using collagen sponge and fibrin glue to promote new bone formation in rat calvarial bone defects, the latter being discreetly more advantageous.

  19. Can green solvents be alternatives for thermal stabilization of collagen?

    Science.gov (United States)

    Mehta, Ami; Rao, J Raghava; Fathima, Nishter Nishad

    2014-08-01

    "Go Green" campaign is gaining light for various industrial applications where water consumption needs to be reduced. To resolve this, industries have adopted usage of green, organic solvents, as an alternative to water. For leather making, tanning industry consumes gallons of water. Therefore, for adopting green solvents in leather making, it is necessary to evaluate its influence on type I collagen, the major protein present in the skin matrix. The thermal stability of collagen from rat tail tendon fiber (RTT) treated with seven green solvents namely, ethanol, ethyl lactate, ethyl acetate, propylene carbonate, propylene glycol, polyethylene glycol-200 and heptane was determined using differential scanning calorimetry (DSC). Crosslinking efficiency of basic chromium sulfate and wattle on RTT in green solvents was determined. DSC thermograms show increase in thermal stability of RTT collagen against heat with green solvents (>78°C) compared to water (63°C). In the presence of crosslinkers, RTT demonstrated thermal stability >100°C in some green solvents, resulting in increased intermolecular forces between collagen, solvent and crosslinkers. The significant improvement in thermal stability of collagen potentiates the capability of green solvents as an alternative for water. PMID:24942230

  20. In Vitro Biocompatibility of Electrospun Chitosan/Collagen Scaffold

    Directory of Open Access Journals (Sweden)

    Peiwei Wang

    2013-01-01

    Full Text Available Chitosan/collagen composite nanofibrous scaffold has been greatly concerned in recent years for its favorable physicochemical properties which mimic the native extracellular matrix (ECM both morphologically and chemically. In a previous study, we had successfully fabricated nanofibrous chitosan/collagen composite by electrospinning. In the present study, we further investigate the biocompatibility of such chitosan/collagen composite nanofiber to be used as scaffolds in vascular tissue engineering. The porcine iliac artery endothelial cells (PIECs were employed for morphogenesis, attachment, proliferation, and phenotypic studies. Four characteristic EC markers, including two types of cell adhesion molecules, one proliferation molecule (PCNA, and one function molecule (p53, were studied by semiquantitative RT-PCR. Results showed that the chitosan/collagen composite nanofibrous scaffold could enhance the attachment, spreading, and proliferation of PIECs and preserve the EC phenotype. Our work provides profound proofs for the applicable potency of scaffolds made from chitosan/collagen composite nanofiber to be used in vascular tissue engineering.