WorldWideScience

Sample records for cell-autonomous intracellular androgen

  1. Cell-autonomous intracellular androgen receptor signaling drives the growth of human prostate cancer initiating cells.

    Science.gov (United States)

    Vander Griend, Donald J; D'Antonio, Jason; Gurel, Bora; Antony, Lizamma; Demarzo, Angelo M; Isaacs, John T

    2010-01-01

    The lethality of prostate cancer is due to the continuous growth of cancer initiating cells (CICs) which are often stimulated by androgen receptor (AR) signaling. However, the underlying molecular mechanism(s) for such AR-mediated growth stimulation are not fully understood. Such mechanisms may involve cancer cell-dependent induction of tumor stromal cells to produce paracrine growth factors or could involve cancer cell autonomous autocrine and/or intracellular AR signaling pathways. We utilized clinical samples, animal models and a series of AR-positive human prostate cancer cell lines to evaluate AR-mediated growth stimulation of prostate CICs. The present studies document that stromal AR expression is not required for prostate cancer growth, since tumor stroma surrounding AR-positive human prostate cancer metastases (N = 127) are characteristically AR-negative. This lack of a requirement for AR expression in tumor stromal cells is also documented by the fact that human AR-positive prostate cancer cells grow equally well when xenografted in wild-type versus AR-null nude mice. AR-dependent growth stimulation was documented to involve secretion, extracellular binding, and signaling by autocrine growth factors. Orthotopic xenograft animal studies documented that the cellautonomous autocrine growth factors which stimulate prostate CIC growth are not the andromedins secreted by normal prostate stromal cells. Such cell autonomous and extracellular autocrine signaling is necessary but not sufficient for the optimal growth of prostate CICs based upon the response to anti-androgen plus/or minus preconditioned media. AR-induced growth stimulation of human prostate CICs requires AR-dependent intracellular pathways. The identification of such AR-dependent intracellular pathways offers new leads for the development of effective therapies for prostate cancer. (c) 2009 Wiley-Liss, Inc.

  2. Camptothecin disrupts androgen receptor signaling and suppresses prostate cancer cell growth

    International Nuclear Information System (INIS)

    Liu, Shicheng; Yuan, Yiming; Okumura, Yutaka; Shinkai, Norihiro; Yamauchi, Hitoshi

    2010-01-01

    The androgen receptor (AR) is the main therapeutic target for treatment of metastatic prostate cancers. The present study demonstrates that the topoisomerase I inhibitor camptothecin selectively inhibits androgen-responsive growth of prostate cancer cells. Camptothecin strikingly inhibited mutated and wild-type AR protein expression in LNCaP and PC-3/AR cells. This inhibition coincided with decreased androgen-mediated AR phosphorylation at Ser 81 and reduced androgen-mediated AR transcriptional activity in a dose-dependent manner. Additionally, camptothecin disrupted the association between AR and heat shock protein 90 and impeded binding of the synthetic androgen [ 3 H]R1881 to AR in LNCaP cells. Camptothecin also blocked androgen-induced AR nuclear translocation, leading to downregulation of the AR target gene PSA. In addition to decreasing the intracellular and secreted prostate-specific antigen (PSA) levels, camptothecin markedly inhibited androgen-stimulated PSA promoter activity. Collectively, our data reveal that camptothecin not only serves as a traditional genotoxic agent but, by virtue of its ability to target and disrupt AR, may also be a novel candidate for the treatment of prostate cancer.

  3. Anabolic Androgenic Steroids and Intracellular Calcium Signaling: A Mini Review on Mechanisms and Physiological Implications

    Science.gov (United States)

    Vicencio, J.M.; Estrada, M.; Galvis, D.; Bravo, R.; Contreras, A.E.; Rotter, D.; Szabadkai, G.; Hill, J.A.; Rothermel, B.A.; Jaimovich, E.; Lavandero, S.

    2015-01-01

    Increasing evidence suggests that nongenomic effects of testosterone and anabolic androgenic steroids (AAS) operate concertedly with genomic effects. Classically, these responses have been viewed as separate and independent processes, primarily because nongenomic responses are faster and appear to be mediated by membrane androgen receptors, whereas long-term genomic effects are mediated through cytosolic androgen receptors regulating transcriptional activity. Numerous studies have demonstrated increases in intracellular Ca2+ in response to AAS. These Ca2+ mediated responses have been seen in a diversity of cell types, including osteoblasts, platelets, skeletal muscle cells, cardiac myocytes and neurons. The versatility of Ca2+ as a second messenger provides these responses with a vast number of pathophysiological implications. In cardiac cells, testosterone elicits voltage-dependent Ca2+ oscillations and IP3R-mediated Ca2+ release from internal stores, leading to activation of MAPK and mTOR signaling that promotes cardiac hypertrophy. In neurons, depending upon concentration, testosterone can provoke either physiological Ca2+ oscillations, essential for synaptic plasticity, or sustained, pathological Ca2+ transients that lead to neuronal apoptosis. We propose therefore, that Ca2+ acts as an important point of crosstalk between nongenomic and genomic AAS signaling, representing a central regulator that bridges these previously thought to be divergent responses. PMID:21443511

  4. Differential Effects of Leptin on the Invasive Potential of Androgen-Dependent and -Independent Prostate Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Dayanand D. Deo

    2008-01-01

    Full Text Available Obesity has been linked with an increased risk of prostate cancer. The formation of toxic free oxygen radicals has been implicated in obesity mediated disease processes. Leptin is one of the major cytokines produced by adipocytes and controls body weight homeostasis through food intake and energy expenditure. The rationale of the study was to determine the impact of leptin on the metastatic potential of androgen-sensitive (LNCaP cells as well as androgen-insensitive (PC-3 and DU-145 cells. At a concentration of 200_nm, LNCaP cells showed a significant increase (20% above control; P<.0001 in cellular proliferation without any effect on androgen-insensitive cells. Furthermore, exposure to leptin caused a significant (P<.01 to P<.0001 dose-dependent decrease in migration and invasion of PC3 and Du-145 prostate carcinoma cell lines. At the molecular level, exposure of androgen-independent prostate cancer cells to leptin stimulates the phosphorylation of MAPK at early time point as well as the transcription factor STAT3, suggesting the activation of the intracellular signaling cascade upon leptin binding to its cognate receptor. Taken together, these results suggest that leptin mediates the invasive potential of prostate carcinoma cells, and that this effect is dependent on their androgen sensitivity.

  5. Intracellular Calcium Dynamics and Autonomic Stimulation in Atrial Fibrillation: Mechanisms and Implications

    Directory of Open Access Journals (Sweden)

    Chung-Chuan Chou, MD

    2008-01-01

    Full Text Available While atrial fibrillation is characterized by the co-existence of multiple activation waves within the atria, rapid activations in the pulmonary veins play an important role for the initiation and maintenance of atrial fibrillation. In addition to reentry, non-reentrant mechanisms resulting from abnormal intracellular calcium handling and intracellular calcium overload can also be responsible for these rapid activations in the pulmonary veins. Meanwhile, alterations of autonomic tone, involving both the sympathetic and parasympathetic nervous system, have been implicated in initiating paroxysmal atrial fibrillation. But the effectiveness of autonomic modulation as an adjunctive therapeutic strategy to catheter ablation of atrial fibrillation has been inconsistent. The interactions between the autonomic nervous system and atrial fibrillation are more complex than currently understood and further mechanistic and clinical studies are warranted.

  6. Determination of Six Transmembrane Protein of Prostate 2 Gene Expression and Intracellular Localization in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Bora İrer

    2017-12-01

    Full Text Available Objective: In this study, we aimed to determine the relationship between the RNA and protein expression profile of six transmembrane protein of prostate 2 (STAMP2 gene and androgen and the intracellular localization of STAMP2. Materials and Methods: RNA and protein were obtained from androgen treated lymph node carcinoma of the prostate (LNCaP cells, untreated LNCaP cells, DU145 cells with no androgen receptor, and STAMP2 transfected COS-7 cells. The expression profile of STAMP2 gene and the effect of androgenes on the expression was shown in RNA and protein levels by using Northern and Western blotting methods. In addition, intracellular localization of the naturally synthesized STAMP2 protein and the transfected STAMP2 protein in COS-7 cells after androgen administration in both LNCaP cells was determined by immunofluorescence microscopy. Results: We found that the RNA and protein expression of STAMP2 gene in LNCaP cells are regulated by androgenes, the power of expression is increased with the duration of androgen treatment and there is no STAMP2 expression in DU145 cells which has no androgen receptor. As a result of the immunofluorescence microscopy study we observed that STAMP2 protein was localized at golgi complex and cell membrane. Conclusion: In conclusion, we have demonstrated that STAMP2 may play an important role in the pathogenesis of the prostate cancer and in the androgen-dependent androgen-independent staging of prostate cancer. In addition, STAMP2 protein, which is localized in the intracellular golgi complex and cell membrane, may be a new target molecule for prostate cancer diagnosis and treatment.

  7. Bone stroma-derived cells change coregulators recruitment to androgen receptor and decrease cell proliferation in androgen-sensitive and castration-resistant prostate cancer cells

    International Nuclear Information System (INIS)

    Villagran, Marcelo A.; Gutierrez-Castro, Francisco A.; Pantoja, Diego F.; Alarcon, Jose C.; Fariña, Macarena A.; Amigo, Romina F.; Muñoz-Godoy, Natalia A.; Pinilla, Mabel G.; Peña, Eduardo A.; Gonzalez-Chavarria, Ivan; Toledo, Jorge R.; Rivas, Coralia I.; Vera, Juan C.; McNerney, Eileen M.; Onate, Sergio A.

    2015-01-01

    Prostate cancer (CaP) bone metastasis is an early event that remains inactive until later-stage progression. Reduced levels of circulating androgens, due to andropause or androgen deprivation therapies, alter androgen receptor (AR) coactivator expression. Coactivators shift the balance towards enhanced AR-mediated gene transcription that promotes progression to androgen-resistance. Disruptions in coregulators may represent a molecular switch that reactivates latent bone metastasis. Changes in AR-mediated transcription in androgen-sensitive LNCaP and androgen-resistant C4-2 cells were analyzed for AR coregulator recruitment in co-culture with Saos-2 and THP-1. The Saos-2 cell line derived from human osteosarcoma and THP-1 cell line representing human monocytes were used to display osteoblast and osteoclast activity. Increased AR activity in androgen-resistant C4-2 was due to increased AR expression and SRC1/TIF2 recruitment and decreased SMRT/NCoR expression. AR activity in both cell types was decreased over 90% when co-cultured with Saos-2 or THP-1 due to dissociation of AR from the SRC1/TIF2 and SMRT/NCoR coregulators complex, in a ligand-dependent and cell-type specific manner. In the absence of androgens, Saos-2 decreased while THP-1 increased proliferation of LNCaP cells. In contrast, both Saos-2 and THP-1 decreased proliferation of C4-2 in absence and presence of androgens. Global changes in gene expression from both CaP cell lines identified potential cell cycle and androgen regulated genes as mechanisms for changes in cell proliferation and AR-mediated transactivation in the context of bone marrow stroma cells. - Highlights: • Decreased corepressor expression change AR in androgen-resistance prostate cancer. • Bone stroma-derived cells change AR coregulator recruitment in prostate cancer. • Bone stroma cells change cell proliferation in androgen-resistant cancer cells. • Global gene expression in CaP cells is modified by bone stroma cells in co

  8. Bone stroma-derived cells change coregulators recruitment to androgen receptor and decrease cell proliferation in androgen-sensitive and castration-resistant prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Villagran, Marcelo A.; Gutierrez-Castro, Francisco A.; Pantoja, Diego F.; Alarcon, Jose C.; Fariña, Macarena A.; Amigo, Romina F.; Muñoz-Godoy, Natalia A. [Molecular Endocrinology and Oncology Laboratory, University of Concepcion, Concepcion (Chile); Pinilla, Mabel G. [Department of Medical Specialties, School of Medicine, University of Concepcion, Concepcion (Chile); Peña, Eduardo A.; Gonzalez-Chavarria, Ivan; Toledo, Jorge R.; Rivas, Coralia I.; Vera, Juan C. [Department of Physiopathology, School of Biological Sciences, University of Concepcion, Concepcion (Chile); McNerney, Eileen M. [Molecular Endocrinology and Oncology Laboratory, University of Concepcion, Concepcion (Chile); Onate, Sergio A., E-mail: sergio.onate@udec.cl [Molecular Endocrinology and Oncology Laboratory, University of Concepcion, Concepcion (Chile); Department of Medical Specialties, School of Medicine, University of Concepcion, Concepcion (Chile); Department of Urology, State University of New York at Buffalo, NY (United States)

    2015-11-27

    Prostate cancer (CaP) bone metastasis is an early event that remains inactive until later-stage progression. Reduced levels of circulating androgens, due to andropause or androgen deprivation therapies, alter androgen receptor (AR) coactivator expression. Coactivators shift the balance towards enhanced AR-mediated gene transcription that promotes progression to androgen-resistance. Disruptions in coregulators may represent a molecular switch that reactivates latent bone metastasis. Changes in AR-mediated transcription in androgen-sensitive LNCaP and androgen-resistant C4-2 cells were analyzed for AR coregulator recruitment in co-culture with Saos-2 and THP-1. The Saos-2 cell line derived from human osteosarcoma and THP-1 cell line representing human monocytes were used to display osteoblast and osteoclast activity. Increased AR activity in androgen-resistant C4-2 was due to increased AR expression and SRC1/TIF2 recruitment and decreased SMRT/NCoR expression. AR activity in both cell types was decreased over 90% when co-cultured with Saos-2 or THP-1 due to dissociation of AR from the SRC1/TIF2 and SMRT/NCoR coregulators complex, in a ligand-dependent and cell-type specific manner. In the absence of androgens, Saos-2 decreased while THP-1 increased proliferation of LNCaP cells. In contrast, both Saos-2 and THP-1 decreased proliferation of C4-2 in absence and presence of androgens. Global changes in gene expression from both CaP cell lines identified potential cell cycle and androgen regulated genes as mechanisms for changes in cell proliferation and AR-mediated transactivation in the context of bone marrow stroma cells. - Highlights: • Decreased corepressor expression change AR in androgen-resistance prostate cancer. • Bone stroma-derived cells change AR coregulator recruitment in prostate cancer. • Bone stroma cells change cell proliferation in androgen-resistant cancer cells. • Global gene expression in CaP cells is modified by bone stroma cells in co

  9. Non-cell autonomous or secretory tumor suppression.

    Science.gov (United States)

    Chua, Christelle En Lin; Chan, Shu Ning; Tang, Bor Luen

    2014-10-01

    Many malignancies result from deletions or loss-of-function mutations in one or more tumor suppressor genes, the products of which curb unrestrained growth or induce cell death in those with dysregulated proliferative capacities. Most tumor suppressors act in a cell autonomous manner, and only very few proteins are shown to exert a non-cell autonomous tumor suppressor function on other cells. Examples of these include members of the secreted frizzled-related protein (SFRP) family and the secreted protein acidic and rich in cysteine (SPARC)-related proteins. Very recent findings have, however, considerably expanded our appreciation of non-cell autonomous tumor suppressor functions. Broadly, this may occur in two ways. Intracellular tumor suppressor proteins within cells could in principle inhibit aberrant growth of neighboring cells by conditioning an antitumor microenvironment through secreted factors. This is demonstrated by an apparent non-cell autonomous tumor suppressing property of p53. On the other hand, a tumor suppressor produced by a cell may be secreted extracellularly, and taken up by another cell with its activity intact. Intriguingly, this has been recently shown to occur for the phosphatase and tensin homolog (PTEN) by both conventional and unconventional modes of secretion. These recent findings would aid the development of therapeutic strategies that seek to reinstate tumor suppression activity in therapeutically recalcitrant tumor cells, which have lost it in the first place. © 2014 Wiley Periodicals, Inc.

  10. Expression of a hyperactive androgen receptor leads to androgen-independent growth of prostate cancer cells.

    Science.gov (United States)

    Hsieh, Chen-Lin; Cai, Changmeng; Giwa, Ahmed; Bivins, Aaronica; Chen, Shao-Yong; Sabry, Dina; Govardhan, Kumara; Shemshedini, Lirim

    2008-07-01

    Cellular changes that affect the androgen receptor (AR) can cause prostate cancer to transition from androgen dependent to androgen independent, which is usually lethal. One common change in prostate tumors is overexpression of the AR, which has been shown to lead to androgen-independent growth of prostate cancer cells. This led us to hypothesize that expression of a hyperactive AR would be sufficient for androgen-independent growth of prostate cancer cells. To test this hypothesis, stable lune cancer prostate (LNCaP) cell lines were generated, which express a virion phosphoprotein (VP)16-AR hybrid protein that contains full-length AR fused to the strong viral transcriptional activation domain VP16. This fusion protein elicited as much as a 20-fold stronger transcriptional activity than the natural AR. Stable expression of VP16-AR in LNCaP cells yielded androgen-independent cell proliferation, while under the same growth conditions the parental LNCaP cells exhibited only androgen-dependent growth. These results show that expression of a hyperactive AR is sufficient for androgen-independent growth of prostate cancer cells. To study the molecular basis of this enhanced growth, we measured the expression of soluble guanylyl cyclase-alpha1 (sGCalpha1), a subunit of the sGC, an androgen-regulated gene that has been shown to be involved in prostate cancer cell growth. Interestingly, the expression of sGCalpha1 is androgen independent in VP16-AR-expressing cells, in contrast to its androgen-induced expression in control LNCaP cells. RNA(I)-dependent inhibition of sGCalpha1 expression resulted in significantly reduced proliferation of VP16-AR cells, implicating an important role for sGCalpha1 in the androgen-independent growth of these cells.

  11. The PPARγ ligand ciglitazone regulates androgen receptor activation differently in androgen-dependent versus androgen-independent human prostate cancer cells

    International Nuclear Information System (INIS)

    Moss, Patrice E.; Lyles, Besstina E.; Stewart, LaMonica V.

    2010-01-01

    The androgen receptor (AR) regulates growth and progression of androgen-dependent as well as androgen-independent prostate cancer cells. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists have been reported to reduce AR activation in androgen-dependent LNCaP prostate cancer cells. To determine whether PPARγ ligands are equally effective at inhibiting AR activity in androgen-independent prostate cancer, we examined the effect of the PPARγ ligands ciglitazone and rosiglitazone on C4-2 cells, an androgen- independent derivative of the LNCaP cell line. Luciferase-based reporter assays and Western blot analysis demonstrated that PPARγ ligand reduced dihydrotestosterone (DHT)-induced increases in AR activity in LNCaP cells. However, in C4-2 cells, these compounds increased DHT-induced AR driven luciferase activity. In addition, ciglitazone did not significantly alter DHT-mediated increases in prostate specific antigen (PSA) protein or mRNA levels within C4-2 cells. siRNA-based experiments demonstrated that the ciglitazone-induced regulation of AR activity observed in C4-2 cells was dependent on the presence of PPARγ. Furthermore, overexpression of the AR corepressor cyclin D1 inhibited the ability of ciglitazone to induce AR luciferase activity in C4-2 cells. Thus, our data suggest that both PPARγ and cyclin D1 levels influence the ability of ciglitazone to differentially regulate AR signaling in androgen-independent C4-2 prostate cancer cells.

  12. Microarray analysis of androgen-regulated gene expression in testis: the use of the androgen-binding protein (ABP-transgenic mouse as a model

    Directory of Open Access Journals (Sweden)

    Grossman Gail

    2005-12-01

    Full Text Available Abstract Background Spermatogenesis is an androgen-dependent process, yet the molecular mechanisms of androgens' actions in testis are poorly understood. Transgenic mice overexpressing rat androgen-binding protein (ABP in their testes have reduced levels of intratesticular androgens and, as a result, show a progressive impairment of spermatogenesis. We used this model to characterize changes in global gene expression in testis in response to reduced bioavailability of androgens. Methods Total RNA was extracted from testes of 30-day old transgenic and wild-type control mice, converted to cRNA, labeled with biotin, and hybridized to oligonucleotide microarrays. Microarray results were confirmed by real-time reverse transcription polymerase chain reaction. Results Three-hundred-eighty-one genes (3.05% of all transcripts represented on the chips were up-regulated and 198 genes (1.59% were down-regulated by at least a factor of 2 in the androgen-deficient animals compared to controls. Genes encoding membrane proteins, intracellular signaling molecules, enzymes, proteins participating in the immune response, and those involved in cytoskeleton organization were significantly overrepresented in the up-regulated group. Among the down-regulated transcripts, those coding for extracellular proteins were overrepresented most dramatically, followed by those related to proteolysis, cell adhesion, immune response, and growth factor, cytokine, and ion channel activities. Transcripts with the greatest potential impact on cellular activities included several transcription factors, intracellular signal transducers, secreted signaling molecules and enzymes, and various cell surface molecules. Major nodes in the up-regulated network were IL-6, AGT, MYC, and A2M, those in the down-regulated network were IL-2, -4, and -10, MAPK8, SOCS1, and CREB1. Conclusion Microarray analysis followed by gene ontology profiling and connectivity analysis identified several functional

  13. The PPAR{gamma} ligand ciglitazone regulates androgen receptor activation differently in androgen-dependent versus androgen-independent human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Patrice E.; Lyles, Besstina E.; Stewart, LaMonica V., E-mail: lstewart@mmc.edu

    2010-12-10

    The androgen receptor (AR) regulates growth and progression of androgen-dependent as well as androgen-independent prostate cancer cells. Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists have been reported to reduce AR activation in androgen-dependent LNCaP prostate cancer cells. To determine whether PPAR{gamma} ligands are equally effective at inhibiting AR activity in androgen-independent prostate cancer, we examined the effect of the PPAR{gamma} ligands ciglitazone and rosiglitazone on C4-2 cells, an androgen- independent derivative of the LNCaP cell line. Luciferase-based reporter assays and Western blot analysis demonstrated that PPAR{gamma} ligand reduced dihydrotestosterone (DHT)-induced increases in AR activity in LNCaP cells. However, in C4-2 cells, these compounds increased DHT-induced AR driven luciferase activity. In addition, ciglitazone did not significantly alter DHT-mediated increases in prostate specific antigen (PSA) protein or mRNA levels within C4-2 cells. siRNA-based experiments demonstrated that the ciglitazone-induced regulation of AR activity observed in C4-2 cells was dependent on the presence of PPAR{gamma}. Furthermore, overexpression of the AR corepressor cyclin D1 inhibited the ability of ciglitazone to induce AR luciferase activity in C4-2 cells. Thus, our data suggest that both PPAR{gamma} and cyclin D1 levels influence the ability of ciglitazone to differentially regulate AR signaling in androgen-independent C4-2 prostate cancer cells.

  14. Molecular basis of androgen insensitivity

    NARCIS (Netherlands)

    Brinkmann, A.; Jenster, G.; Ris-Stalpers, C.; van der Korput, H.; Brüggenwirth, H.; Boehmer, A.; Trapman, J.

    1996-01-01

    Male sexual differentiation and development proceed under direct control of androgens. Androgen action is mediated by the intracellular androgen receptor, which belongs to the superfamily of ligand-dependent transcription factors. In the X-linked androgen insensitivity syndrome, defects in the

  15. Androgen and taxol cause cell type-specific alterations of centrosome and DNA organization in androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cells

    Science.gov (United States)

    Schatten, H.; Ripple, M.; Balczon, R.; Weindruch, R.; Chakrabarti, A.; Taylor, M.; Hueser, C. N.

    2000-01-01

    We investigated the effects of androgen and taxol on the androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cell lines. Cells were treated for 48 and 72 h with 0.05-1 nM of the synthetic androgen R1881 and with 100 nM taxol. Treatment of LNCaP cells with 0.05 nM R1881 led to increased cell proliferation, whereas treatment with 1 nM R1881 resulted in inhibited cell division, DNA cycle arrest, and altered centrosome organization. After treatment with 1 nM R1881, chromatin became clustered, nuclear envelopes convoluted, and mitochondria accumulated around the nucleus. Immunofluorescence microscopy with antibodies to centrosomes showed altered centrosome structure. Although centrosomes were closely associated with the nucleus in untreated cells, they dispersed into the cytoplasm after treatment with 1 nM R1881. Microtubules were only faintly detected in 1 nM R1881-treated LNCaP cells. The effects of taxol included microtubule bundling and altered mitochondria morphology, but not DNA organization. As expected, the androgen-independent prostate cancer cell line DU145 was not affected by R1881. Treatment with taxol resulted in bundling of microtubules in both cell lines. Additional taxol effects were seen in DU145 cells with micronucleation of DNA, an indication of apoptosis. Simultaneous treatment with R1881 and taxol had no additional effects on LNCaP or DU145 cells. These results suggest that LNCaP and DU145 prostate cancer cells show differences not only in androgen responsiveness but in sensitivity to taxol as well. Copyright 2000 Wiley-Liss, Inc.

  16. Androgen receptor signaling is required for androgen-sensitive human prostate cancer cell proliferation and survival

    Directory of Open Access Journals (Sweden)

    Day Wanda V

    2005-04-01

    Full Text Available Abstract Background Androgens and androgen receptors (AR regulate normal prostate development and growth. They also are involved in pathological development of prostatic diseases, including benign prostatic hyperplasia (BPH and prostate cancer (PCa. Antiandrogen therapy for PCa, in conjunction with chemical or surgical castration, offers initial positive responses and leads to massive prostate cell death. However, cancer cells later appear as androgen-independent PCa. To investigate the role of AR in prostate cell proliferation and survival, we introduced a vector-based small interfering RNA (siRNA. This siRNA targeted 5'-untranslated region of AR mRNA for extended suppression of AR expression in androgen-sensitive human prostate LNCaP cells. Results The siRNA design successfully suppressed endogenous AR expression, as revealed by western blotting and immunofluorescence staining in LNCaP cells. LNCaP cells did not proliferate in the absence of AR and underwent apoptosis, based on elevated phospho-Histone H2B expression and higher number of apoptotic body as compared to control cells. Conclusion We demonstrated that AR is vital for prostate cell proliferation and survival in this androgen-sensitive prostate cell line. These results further strengthen the hypothesis that AR can be a therapeutic target for treating androgen-sensitive stages of PCa. Unlike antiandorgens, however, siRNA targeting AR provides a direct inactivation of AR function through the suppression of AR protein expression.

  17. Changes in amount and intracellular distribution of androgen receptor in human foreskin as a function of age.

    Science.gov (United States)

    Roehrborn, C G; Lange, J L; George, F W; Wilson, J D

    1987-01-01

    To provide insight into the factors that control growth of the penis we measured the amount and intracellular distribution of specific high affinity androgen receptor in foreskins obtained at circumcision from 49 males varying in age from newborn to 59 yr. Total (cytosolic plus nuclear extract) androgen receptor decreased from approximately 40 fmol/g tissue weight in newborn foreskins to approximately 25 fmol/g by 1 yr of age. The amount of receptor rose in childhood to approximately 180 fmol/g in the late teenage years and fell thereafter to approximately 20-40 fmol/g in men older than 40 yr. The amount of receptor in the nuclear fraction increased at the time of puberty and subsequently decreased in parallel with the decline in total receptor level. These changes in androgen-receptor amount are similar when expressed per milligram DNA or per milligram protein. Images PMID:3491838

  18. PTTG1, A novel androgen responsive gene is required for androgen-induced prostate cancer cell growth and invasion

    International Nuclear Information System (INIS)

    Zhang, Zheng; Jin, Bo; Jin, Yaqiong; Huang, Shengquan; Niu, Xiaohua; Mao, Zebin; Xin, Dianqi

    2017-01-01

    Androgens (AR) play an important role in initiation and progression of prostate cancer. It has been shown that AR exert their effects mainly through the androgen-activated AR which binds to androgen response elements (AREs) in the regulatory regions of target genes to regulate the transcription of androgen-responsive genes, thus, identification of AR downstream target gene is critical to understand androgen function in prostate cancer. In this study, our results showed that androgen treatment of LNCaP cells induced PTTG1 expression, which was blocked by the androgen receptor antagonist, Casodex. Bioinformatics analysis and experiments using PTTG1 promoter deletion mutants showed that the PTTG1 promoter contains a putative androgen response element (ARE), which localizes in the −851 to −836 region of the promoter. Androgen activated androgen receptor (AR) binding to this ARE was confirmed by Chromatin immunoprecipitation (ChIP) assay. Furthermore, Knockdown of PTTG1 expression using short hairpin RNA significantly reduced androgen-induced LNCaP cell growth and invasion. In addition, we showed PTTG1 is highly expressed in metastasis prostate cancer tissue. These results suggest that PTTG1 is a novel downstream target gene of androgen receptor and take part in prostate cancer proliferation and metastasis. - Highlights: • Androgen treatment of LNCaP cells induced PTTG1 expression. • Knockdown of PTTG1 expression significantly reduced androgen-induced LNCaP cell growth and invasion. • PTTG1 is highly expressed in metastasis prostate cancer tissue. • PTTG1 is a novel downstream target gene of androgen receptor.

  19. Prostate cancer cells differ in testosterone accumulation, dihydrotestosterone conversion, and androgen receptor signaling response to steroid 5α-reductase inhibitors.

    Science.gov (United States)

    Wu, Yue; Godoy, Alejandro; Azzouni, Faris; Wilton, John H; Ip, Clement; Mohler, James L

    2013-09-01

    Blocking 5α-reductase-mediated testosterone conversion to dihydrotestosterone (DHT) with finasteride or dutasteride is the driving hypothesis behind two prostate cancer prevention trials. Factors affecting intracellular androgen levels and the androgen receptor (AR) signaling axis need to be examined systematically in order to fully understand the outcome of interventions using these drugs. The expression of three 5α-reductase isozymes, as determined by immunohistochemistry and qRT-PCR, was studied in five human prostate cancer cell lines. Intracellular testosterone and DHT were analyzed using mass spectrometry. A luciferase reporter assay and AR-regulated genes were used to evaluate the modulation of AR activity. Prostate cancer cells were capable of accumulating testosterone to a level 15-50 times higher than that in the medium. The profile and expression of 5α-reductase isozymes did not predict the capacity to convert testosterone to DHT. Finasteride and dutasteride were able to depress testosterone uptake in addition to lowering intracellular DHT. The inhibition of AR activity following drug treatment often exceeded the expected response due to reduced availability of DHT. The ability to maintain high intracellular testosterone might compensate for the shortage of DHT. The biological effect of finasteride or dutasteride appears to be complex and may depend on the interplay of several factors, which include testosterone turnover, enzymology of DHT production, ability to use testosterone and DHT interchangeably, and propensity of cells for off-target AR inhibitory effect. © 2013 Wiley Periodicals, Inc.

  20. Luteinizing hormone-induced Akt phosphorylation and androgen production are modulated by MAP Kinase in bovine theca cells

    Directory of Open Access Journals (Sweden)

    Fukuda Shin

    2009-11-01

    Full Text Available Abstract Background Theca cells play an important role in controlling ovarian steroidogenesis by providing aromatizable androgens for granulosa cell estrogen biosynthesis. Although it is well established that the steroidogenic activity of theca cells is mainly regulated by LH, the intracellular signal transduction mechanisms that regulate thecal proliferation and/or steroidogenesis remain obscure. In this study, we examined whether and how LH controls the PI3K/Akt signaling pathway and androgen production in bovine theca cells. We also explored whether this LH-induced PI3K/Akt activation is modulated with other signaling pathways (i.e. PKA and MAPK. Methods Ovarian theca cells were isolated from bovine small antral follicles and were incubated with LH for various durations. Phospho-Akt and total-Akt content in the cultured theca cells were examined using Western blotting. Androstenedione levels in the spent media were determined using EIA. Semi-quantitative RT-PCR analyses were conducted to analyze the mRNA levels of CYP17A1 and StAR in the theca cells. To examine whether Akt activity is involved in theca cell androgen production, the PI3K inhibitors wortmannin and LY294002 were also added to the cells. Results Akt is constitutively expressed, but is gradually phosphorylated in cultured bovine theca cells through exposure to LH. LH significantly increased androstenedione production in bovine theca cells, whereas addition of the wortmannin and LY294002 significantly decreased LH-induced androstenedione production. LH significantly increased CYP17A1 mRNA level in theca cells, whereas addition of LY294002 significantly decreased LH-induced CYP17A1 expression. Neither LH nor PI3K inhibitors alter the mRNA levels of StAR in theca cells. Although H89 (a selective inhibitor of PKA does not affect LH-mediated changes in Akt, U0126 (a potent MEK inhibitor suppressed LH-induced Akt phosphorylation, CYP17A1 expression, and androgen production in theca

  1. Effect of propofol on androgen receptor activity in prostate cancer cells.

    Science.gov (United States)

    Tatsumi, Kenichiro; Hirotsu, Akiko; Daijo, Hiroki; Matsuyama, Tomonori; Terada, Naoki; Tanaka, Tomoharu

    2017-08-15

    Androgen receptor is a nuclear receptor and transcription factor activated by androgenic hormones. Androgen receptor activity plays a pivotal role in the development and progression of prostate cancer. Although accumulating evidence suggests that general anesthetics, including opioids, affect cancer cell growth and impact patient prognosis, the effect of those drugs on androgen receptor in prostate cancer is not clear. The purpose of this study was to investigate the effect of the general anesthetic propofol on androgen receptor activity in prostate cancer cells. An androgen-dependent human prostate cancer cell line (LNCaP) was stimulated with dihydrotestosterone (DHT) and exposed to propofol. The induction of androgen receptor target genes was investigated using real-time reverse transcription polymerase chain reaction, and androgen receptor protein levels and localization patterns were analyzed using immunoblotting and immunofluorescence assays. The effect of propofol on the proliferation of LNCaP cells was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Propofol significantly inhibited DHT-induced expression of androgen receptor target genes in a dose- and time-dependent manner, and immunoblotting and immunofluorescence assays indicated that propofol suppressed nuclear levels of androgen receptor proteins. Exposure to propofol for 24h suppressed the proliferation of LNCaP cells, whereas 4h of exposure did not exert significant effects. Together, our results indicate that propofol suppresses nuclear androgen receptor protein levels, and inhibits androgen receptor transcriptional activity and proliferation in LNCaP cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Unraveling the Complexities of Androgen Receptor Signaling in Prostate Cancer Cells

    OpenAIRE

    Heemers, Hannelore V.; Tindall, Donald J.

    2009-01-01

    Androgen signaling is critical for proliferation of prostate cancer cells but cannot be fully inhibited by current androgen deprivation therapies. A study by Xu et al. in this issue of Cancer Cell provides insights into the complexities of androgen signaling in prostate cancer and suggests avenues to target a subset of androgen-sensitive genes.

  3. Androgen responsiveness of the new human endometrial cancer cell line MFE-296.

    Science.gov (United States)

    Hackenberg, R; Beck, S; Filmer, A; Hushmand Nia, A; Kunzmann, R; Koch, M; Slater, E P; Schulz, K D

    1994-04-01

    MFE-296 endometrial cancer cells express androgen receptors in vitro. These cells, which are tumorigenic in nude mice, are derived from a moderately differentiated human endometrial adenocarcinoma. They express vimentin and the cytokeratins 7, 8, 18, and 19. Karyotyping revealed near-tetraploidy for most of the cells. No marker chromosomes were observed. DNA analyses confirmed the genetic identity of the cell line and the patient from whom the cell line was derived. Proliferation of MFE-296 cells was inhibited by the progestin R5020 and the androgen dihydrotestosterone (DHT). The inhibition of proliferation by DHT was antagonized by the antiandrogen Casodex, demonstrating the involvement of the androgen receptor. Androgen binding was determined at 22,000 binding sites per cell using a whole-cell assay (KD = 0.05 nM) and 30 fmol/mg protein with the dextran charcoal method; 7 fmol/mg protein of progesterone receptors were found, whereas estrogen receptors were below 5 fmol/mg protein. The androgen receptor was functionally intact, as demonstrated by transfection experiments with a reporter-gene construct, containing an androgen-responsive element. In MFE-296 cells the content of the androgen receptor was up-regulated by its own ligand.

  4. The promotion on cell growth of androgen-dependent prostate cancer by antimony via mimicking androgen activity.

    Science.gov (United States)

    Zhang, Changwen; Li, Penghao; Wen, Yingwu; Feng, Guowei; Liu, Yu; Zhang, Yangyi; Xu, Yong; Zhang, Zhihong

    2018-05-15

    Antimony is a widely used heavier pnictogens in industry, and its toxicity has been a matter of concern. Although previous studies have suggested that antimony may have the function as either a tumor suppressor or an oncogene in several cancers, the molecular basis underlying antimony-mediated transformation is still unclear. In the current study, we attempt to elucidate the potential role of antimony in the development of prostate cancer. Our results showed that the concentration of antimony was much higher in serum of prostate cancer patients, and was closely associated with poor outcome of patients who underwent radical prostatectomy. Additionally, low dose of antimony could promote proliferation and invasion of androgen-dependent prostate cancer cell line LNCaP cells in vitro and in vivo. The mechanistic studies demonstrated that exposure to antimony triggered the phosphorylation of androgen receptor (AR), which transcriptionally regulates the expression of androgen-related targets, including PSA and NKX3.1. Overall, our results unearthed that antimony could promote tumor growth by mimicking androgen activity in androgen-dependent prostate cancer cells. Therefore, these findings expanded our understanding on the molecular mechanism of antimony in tumorigenesis and tumor progression of prostate cancer, and it appears to be an inspiring strategy to restrain prostate cancer by inhibiting antimony-induced androgen-like effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Evidence That Androgens Modulate Human Thymic T Cell Output

    Science.gov (United States)

    Olsen, Nancy J.; Kovacs, William J.

    2010-01-01

    Background The thymus has long been recognized as a target for the actions of androgenic hormones, but it has only been recently recognized that alterations in circulating levels of gonadal steroids might affect thymic output of T cells. We had the opportunity to examine parameters of thymic cellular output in several hypogonadal men undergoing androgen replacement therapy. Methods Circulating naive (CD4+CD45RA+) T cells were quantitated by flow cytometric analysis of peripheral blood mononuclear cells (PBMCs). Cells bearing T cell receptor excision circles (TRECs) were quantitated using real-time PCR amplification of DNA isolated from PBMCs from normal men and from hypogonadal men before and after testosterone replacement therapy. Results CD4+CD45+ (“naïve”) T cells comprised 10.5% of lymphocytes in normal males; this proportion was greatly increased in two hypogonadal men (35.5% and 44.4%). One man was studied sequentially during treatment with physiologic doses of testosterone. CD4+CD45RA+ cells fell from 37.36% to 20.05% after one month and to 12.51% after 7 months of normalized androgen levels. In two hypogonadal patients TREC levels fell by 83% and 78% after androgen replacement therapy. Conclusions Our observations indicate that the hypogonadal state is associated with increased thymic output of T cells and that this increase in recent thymic emigrants in peripheral blood is reversed by androgen replacement. PMID:21218609

  6. Intratumoral conversion of adrenal androgen precursors drives androgen receptor-activated cell growth in prostate cancer more potently than de novo steroidogenesis.

    Science.gov (United States)

    Kumagai, Jinpei; Hofland, Johannes; Erkens-Schulze, Sigrun; Dits, Natasja F J; Steenbergen, Jacobie; Jenster, Guido; Homma, Yukio; de Jong, Frank H; van Weerden, Wytske M

    2013-11-01

    Despite an initial response to hormonal therapy, patients with advanced prostate cancer (PC) almost always progress to castration-resistant disease (CRPC). Although serum testosterone (T) is reduced by androgen deprivation therapy, intratumoral T levels in CRPC are comparable to those in prostate tissue of eugonadal men. These levels could originate from intratumoral conversion of adrenal androgens and/or from de novo steroid synthesis. However, the relative contribution of de novo steroidogenesis to AR-driven cell growth is unknown. The relative contribution of androgen biosynthetic pathways to activate androgen receptor (AR)-regulated cell growth and expression of PSA, FKBP5, and TMPRSS2 was studied at physiologically relevant levels of adrenal androgen precursors and intermediates of de novo androgen biosynthesis in human prostate cancer cell lines, PC346C, VCaP, and LNCaP. In PC346C and VCaP, responses to pregnenolone and progesterone were absent or minimal, while large effects of adrenal androgen precursors were found. VCaP CRPC clones overexpressing CYP17A1 did not acquire an increased ability to use pregnenolone or progesterone to activate AR. In contrast, all precursors stimulated growth and gene expression in LNCaP cells, presumably resulting from the mutated AR in these cells. Our data indicate that at physiological levels of T precursors PC cells can generally convert adrenal androgens, while de novo steroidogenesis is not generally possible in PC cells and is not able to support AR transactivation and PC growth. © 2013 Wiley Periodicals, Inc.

  7. Prostate Cancer Cells Express More Androgen Receptor (AR) Following Androgen Deprivation, Improving Recognition by AR-Specific T Cells.

    Science.gov (United States)

    Olson, Brian M; Gamat, Melissa; Seliski, Joseph; Sawicki, Thomas; Jeffery, Justin; Ellis, Leigh; Drake, Charles G; Weichert, Jamey; McNeel, Douglas G

    2017-12-01

    Androgen deprivation is the primary therapy for recurrent prostate cancer, and agents targeting the androgen receptor (AR) pathway continue to be developed. Because androgen-deprivation therapy (ADT) has immmunostimulatory effects as well as direct antitumor effects, AR-targeted therapies have been combined with other anticancer therapies, including immunotherapies. Here, we sought to study whether an antigen-specific mechanism of resistance to ADT (overexpression of the AR) may result in enhanced AR-specific T-cell immune recognition, and whether this might be strategically combined with an antitumor vaccine targeting the AR. Androgen deprivation increased AR expression in human and murine prostate tumor cells in vitro and in vivo The increased expression persisted over time. Increased AR expression was associated with recognition and cytolytic activity by AR-specific T cells. Furthermore, ADT combined with vaccination, specifically a DNA vaccine encoding the ligand-binding domain of the AR, led to improved antitumor responses as measured by tumor volumes and delays in the emergence of castrate-resistant prostate tumors in two murine prostate cancer models (Myc-CaP and prostate-specific PTEN-deficient mice). Together, these data suggest that ADT combined with AR-directed immunotherapy targets a major mechanism of resistance, overexpression of the AR. This combination may be more effective than ADT combined with other immunotherapeutic approaches. Cancer Immunol Res; 5(12); 1074-85. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Enzalutamide inhibits androgen receptor-positive bladder cancer cell growth.

    Science.gov (United States)

    Kawahara, Takashi; Ide, Hiroki; Kashiwagi, Eiji; El-Shishtawy, Kareem A; Li, Yi; Reis, Leonardo O; Zheng, Yichun; Miyamoto, Hiroshi

    2016-10-01

    Emerging preclinical evidence suggests that androgen-mediated androgen receptor (AR) signals promote bladder cancer progression. However, little is known about the efficacy of an AR signaling inhibitor, enzalutamide, in the growth of bladder cancer cells. In this study, we compared the effects of enzalutamide and 2 other classic antiandrogens, flutamide and bicalutamide, on androgen-induced bladder cancer cell proliferation, migration, and invasion as well as tumor growth in vivo. Thiazolyl blue cell viability assay, flow cytometry, scratch wound-healing assay, transwell invasion assay, real-time polymerase chain reaction, and reporter gene assay were performed in AR-positive (e.g., UMUC3, TCCSUP, and 647V-AR) and AR-negative (e.g., UMUC3-AR-short hairpin RNA [shRNA], TCCSUP-AR-shRNA, 647V) bladder cancer lines treated with dihydrotestosterone and each AR antagonist. We also used a mouse xenograft model for bladder cancer. Dihydrotestosterone increased bladder cancer cell proliferation, migration, and invasion indicating that endogenous or exogenous AR was functional. Enzalutamide, hydroxyflutamide, and bicalutamide showed similar inhibitory effects, without significant agonist activity, on androgen-mediated cell viability/apoptosis, cell migration, and cell invasion in AR-positive lines. No significant effects of dihydrotestosterone as well as AR antagonists on the growth of AR-negative cells were seen. Correspondingly, in UMUC3 cells, these AR antagonists down-regulated androgen-induced expression of AR, matrix metalloproteinase-2, and interleukin-6. Androgen-enhanced AR-mediated transcriptional activity was also blocked by each AR antagonist exhibiting insignificant agonist activity. In UMUC3 xenograft-bearing mice, oral gavage treatment with each antiandrogen retarded tumor growth, and only enzalutamide demonstrated a statistically significant suppression compared with mock treatment. Our current data support recent observations indicating the involvement of

  9. Comparison of steroid receptors from the androgen responsive DDT1 cell line and the nonresponsive HVP cell line.

    Science.gov (United States)

    Norris, J S; Kohler, P O

    1978-01-01

    Two hamster cell lines have been isolated from androgen target tissue. The DDT1 cells derived from ductus deferens tissue exhibit a growth response to androgens, while the HVP cells derived from ventral prostate are androgen unresponsive. Both cell lines contain androgen receptors, that are similar when compared by kinetic methods, sedimentation velocity, chromatographic procedures or nuclear translocation ability. The forms of the high salt extracted nuclear receptors are indistinguishable chromatographically. Therefore, we postulate that the lesion preventing androgen induced growth in the HVP cell line is subseqent to nuclear translocation of the steroid receptor complex.

  10. The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    Science.gov (United States)

    Mostowy, Serge; Shenoy, Avinash R.

    2016-01-01

    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence. PMID:26292640

  11. Restoration of the cellular secretory milieu overrides androgen dependence of in vivo generated castration resistant prostate cancer cells overexpressing the androgen receptor.

    Science.gov (United States)

    Patki, Mugdha; Huang, Yanfang; Ratnam, Manohar

    2016-07-22

    It is believed that growth of castration resistant prostate cancer (CRPC) cells is enabled by sensitization to minimal residual post-castrate androgen due to overexpression of the androgen receptor (AR). Evidence is derived from androgen-induced colony formation in the absence of cell-secreted factors or from studies involving forced AR overexpression in hormone-dependent cells. On the other hand, standard cell line models established from CRPC patient tumors (e.g., LNCaP and VCaP) are hormone-dependent and require selection pressure in castrated mice to re-emerge as CRPC cells and the resulting tumors then tend to be insensitive to the androgen antagonist enzalutamide. Therefore, we examined established CRPC model cells produced by castration of mice bearing hormone-dependent cell line xenografts including CRPC cells overexpressing full-length AR (C4-2) or co-expressing wtAR and splice-variant AR-V7 that is incapable of ligand binding (22Rv1). In standard colony formation assays, C4-2 cells were shown to be androgen-dependent and sensitive to enzalutamide whereas 22Rv1 cells were incapable of colony formation under identical conditions. However, both C4-2 and 22Rv1 cells formed colonies in conditioned media derived from the same cells or from HEK293 fibroblasts that were proven to lack androgenic activity. This effect was (i) not enhanced by androgen, (ii) insensitive to enzalutamide, (iii) dependent on AR (in C4-2) and on AR-V7 and wtAR (in 22Rv1) and (iv) sensitive to inhibitors of several signaling pathways, similar to androgen-stimulation. Therefore, during progression to CRPC in vivo, coordinate cellular changes accompanying overexpression of AR may enable cooperation between hormone-independent activity of AR and actions of cellular secretory factors to completely override androgen-dependence and sensitivity to drugs targeting hormonal factors. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. ANDROGENS REGULATE T47D CELLS MOTILITY AND INVASION THROUGH ACTIN CYTOSKELETON REMODELLING

    Directory of Open Access Journals (Sweden)

    Maria Magdalena Montt-Guevara

    2016-09-01

    Full Text Available The relationship between androgens and breast cancer is controversial. Androgens have complex effects on breast cancer progression and metastasis. Moreover, androgens receptor (AR is expressed in approximately 70% to 90% of invasive breast carcinomas, which has prognostic relevance in basal-like cancers and in triple negative breast cancers. Recent studies have associated the actin-binding proteins of the Ezrin-Radixin-Moesin (ERM family with metastasis in endocrine-sensitive cancers. We studied on T47D breast cancer cells whether androgens with different characteristics, such as testosterone (T, dihydrotestosterone (DHT and dehydroepiandrosterone (DHEA may regulate breast cancer cell motility and invasion through the control of actin remodelling. We demonstrate that androgens promote migration and invasion in T47D via Moesin activation. We show that T and DHEA exert their actions via the AR and estrogen receptor (ER, while the non aromatizable androgen – DHT only recruits AR. We further report that androgen induced significant changes in actin organization with pseudopodia along with membrane ruffles formation, and this process is mediated by Moesin. Our work identifies novel mechanisms of action of androgens on breast cancer cells. Through the modulation of Moesin, androgens alter the architecture of cytoskeleton in T47D breast cancer cell and promote cell migration and invasion. These results could help to understand the biological actions of androgens on breast cancer, and eventually to develop new strategies for treatment of breast cancer.

  13. Fenofibrate down-regulates the expressions of androgen receptor (AR) and AR target genes and induces oxidative stress in the prostate cancer cell line LNCaP

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hu; Zhu, Chen; Qin, Chao [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Tao, Tao [Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Li, Jie; Cheng, Gong; Li, Pu; Cao, Qiang; Meng, Xiaoxin; Ju, Xiaobing; Shao, Pengfei; Hua, Lixin [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Gu, Min, E-mail: medzhao1980@163.com [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Yin, Changjun, E-mail: drcjyin@gmail.com [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China)

    2013-03-08

    Highlights: ► Fenofibrate induces cell cycle arrest in G1 phase and apoptosis in LNCaP cells. ► Fenofibrate reduces the expressions of androgen receptor in LNCaP cells. ► Fenofibrate induces oxidative stress in the prostate cancer cell line LNCaP. -- Abstract: Fenofibrate, a peroxisome proliferator-androgen receptor-alpha agonist, is widely used in treating different forms of hyperlipidemia and hypercholesterolemia. Recent reports have indicated that fenofibrate exerts anti-proliferative and pro-apoptotic properties. This study aims to investigate the effects of fenofibrate on the prostate cancer (PCa) cell line LNCaP. The effects of fenofibrate on LNCaP cells were evaluated by flow cytometry, reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assays, Western blot analysis, and dual-luciferase reporter assay. Fenofibrate induces cell cycle arrest in G1 phase and apoptosis in LNCaP cells, reduces the expressions of androgen receptor (AR) and AR target genes (prostate-specific antigen and TMPRSS2), and inhibits Akt phosphorylation. Fenofibrate can induce the accumulation of intracellular reactive oxygen species and malondialdehyde, and decrease the activities of total anti-oxidant and superoxide dismutase in LNCaP cells. Fenofibrate exerts an anti-proliferative property by inhibiting the expression of AR and induces apoptosis by causing oxidative stress. Therefore, our data suggest fenofibrate may have beneficial effects in fenofibrate users by preventing prostate cancer growth through inhibition of androgen activation and expression.

  14. Changes in microfilament and focal adhesion distribution with loss of androgen responsiveness in cultured mammary tumor cells

    DEFF Research Database (Denmark)

    Couchman, J R; Yates, J; King, R J

    1981-01-01

    of the cells to grow in suspension culture. All these parameters were documented for androgen-responsive and -unresponsive cells grown in culture, as well as the transition of androgen-responsive to -unresponsive cells when deprived of androgen. The androgen-unresponsive cells had extensive and prominent...... microfilament bundles together with focal adhesions on the lower cell surface and also showed strict anchorage dependence for growth. In contrast, microfilament bundles and focal adhesions were absent from androgen-responsive cells, which furthermore had the ability to grow in suspension culture. Differences......, characteristics of both cell types were visible in the cell populations. However, at the stage where all androgen-responsive characteristics were lost, the cells were no longer androgen sensitive. The loss of androgen responsiveness in Shionogi 115 mouse mammary tumor cells is correlated with changes at the cell...

  15. Androgens as therapy for androgen receptor-positive castration-resistant prostate cancer

    Directory of Open Access Journals (Sweden)

    Lin Hui-Ping

    2011-08-01

    Full Text Available Abstract Prostate cancer is the most frequently diagnosed non-cutaneous tumor of men in Western countries. While surgery is often successful for organ-confined prostate cancer, androgen ablation therapy is the primary treatment for metastatic prostate cancer. However, this therapy is associated with several undesired side-effects, including increased risk of cardiovascular diseases. Shortening the period of androgen ablation therapy may benefit prostate cancer patients. Intermittent Androgen Deprivation therapy improves quality of life, reduces toxicity and medical costs, and delays disease progression in some patients. Cell culture and xenograft studies using androgen receptor (AR-positive castration-resistant human prostate cancers cells (LNCaP, ARCaP, and PC-3 cells over-expressing AR suggest that androgens may suppress the growth of AR-rich prostate cancer cells. Androgens cause growth inhibition and G1 cell cycle arrest in these cells by regulating c-Myc, Skp2, and p27Kip via AR. Higher dosages of testosterone cause greater growth inhibition of relapsed tumors. Manipulating androgen/AR signaling may therefore be a potential therapy for AR-positive advanced prostate cancer.

  16. Aging up-regulates ARA55 in stromal cells, inducing androgen-mediated prostate cancer cell proliferation and migration.

    Science.gov (United States)

    Zou, Qingsong; Cui, Di; Liang, Shengjie; Xia, Shujie; Jing, Yifeng; Han, Bangmin

    2016-06-01

    Stromal cells in the peripheral zone (PZ) of the prostate from older males (PZ-old) could significantly promote Prostate cancer (PCa) growth compared with stromal cells from young males (PZ-young). But the mechanism is still unknown. In the co-culture system with PZ-old cells, Pc3/Du145 cells showed advanced proliferation and migration after Dihydrotestosterone (DHT) incubation, but DHT didn't show the similar effect in PZ-young co-culture system. Also, higher androgen/AR signal pathway activity and AR-related cytokines secretion (FGF-2, KGF, IGF-1) were found in PZ-old cells. As AR exprssison was equivalent in PZ-old and PZ-young cells, we focused on Androgen receptor associated protein-55(ARA55), a stromal-specific androgen receptor (AR) coactivator. ARA55 expression was higher in PZ-old cells compared with PZ-young cells in vitro. After knocking down ARA55 expression in PZ-old cells, the PCa growth- promoting effect from the PZ-old cells was diminished, which may be explained by the decreased the progressive cytokines secretion (FGF-2, KGF, IGF-1) from PZ-old stromal cells. In vivo, the consistent results were also found: PZ-old cells promoted prostate cancer cells growth, but this effect receded when knocking down ARA55 expression in PZ-old cells. From our study, we found PZ stromal cells presented age-related effects in proliferation and migration of prostate cancer cells in the androgen/AR dependent manner. As aging increased, more ARA55 were expressed in PZ stromal cells, leading to more sensitive androgen/androgen receptor (AR) signal pathway, then constituting a more feasible environment to cancer cells.

  17. Development of an androgen reporter gene assay (AR-LUX) utilizing a human cell line with an endogenously regulated androgen receptor

    NARCIS (Netherlands)

    Blankvoort, B.M.G.; Groene, E.M. de; Meeteren-Kreikamp, A.P. van; Witkamp, R.F.; Rodenburg, R.J.T.; Aarts, J.M.M.J.G.

    2001-01-01

    The aim of the work described in this report is to develop and characterize a cell-based androgen reporter assay. For this purpose, the androgen receptor (AR) expressing human breast cancer cell line T47D was stably transfected with a luciferase gene under transcriptional control of the PB-ARE-2

  18. JS-K, a glutathione/glutathione S-transferase-activated nitric oxide releasing prodrug inhibits androgen receptor and WNT-signaling in prostate cancer cells.

    Science.gov (United States)

    Laschak, Martin; Spindler, Klaus-Dieter; Schrader, Andres J; Hessenauer, Andrea; Streicher, Wolfgang; Schrader, Mark; Cronauer, Marcus V

    2012-03-30

    Nitric oxide (NO) and its oxidative reaction products have been repeatedly shown to block steroid receptor function via nitrosation of zinc finger structures in the DNA-binding domain (DBD). In consequence NO-donors could be of special interest for the treatment of deregulated androgen receptor(AR)-signaling in castration resistant prostate cancer (CRPC). Prostate cancer (PCa) cells were treated with JS-K, a diazeniumdiolate derivate capable of generating large amounts of intracellular NO following activation by glutathione S-transferase. Generation of NO was determined indirectly by the detection of nitrate in tissue culture medium or by immunodetection of nitrotyrosine in the cytoplasm. Effects of JS-K on intracellular AR-levels were determined by western blotting. AR-dimerization was analyzed by mammalian two hybrid assay, nuclear translocation of the AR was visualized in PCa cells transfected with a green fluorescent AR-Eos fusion protein using fluorescence microscopy. Modulation of AR- and WNT-signalling by JS-K was investigated using reporter gene assays. Tumor cell proliferation following JS-K treatment was measured by MTT-Assay. The NO-releasing compound JS-K was shown to inhibit AR-mediated reporter gene activity in 22Rv1 CRPC cells. Inhibition of AR signaling was neither due to an inhibition of nuclear import nor to a reduction in AR-dimerization. In contrast to previously tested NO-donors, JS-K was able to reduce the intracellular concentration of functional AR. This could be attributed to the generation of extremely high intracellular levels of the free radical NO as demonstrated indirectly by high levels of nitrotyrosine in JS-K treated cells. Moreover, JS-K diminished WNT-signaling in AR-positive 22Rv1 cells. In line with these observations, castration resistant 22Rv1 cells were found to be more susceptible to the growth inhibitory effects of JS-K than the androgen dependent LNCaP which do not exhibit an active WNT-signaling pathway. Our results

  19. Salmonella modulation of host cell gene expression promotes its intracellular growth.

    Directory of Open Access Journals (Sweden)

    Sebastian Hannemann

    Full Text Available Salmonella Typhimurium has evolved a complex functional interface with its host cell largely determined by two type III secretion systems (T3SS, which through the delivery of bacterial effector proteins modulate a variety of cellular processes. We show here that Salmonella Typhimurium infection of epithelial cells results in a profound transcriptional reprogramming that changes over time. This response is triggered by Salmonella T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for the formation of its specialized vesicular compartment that is permissive for its intracellular replication. This study uncovers a cell-autonomous process required for Salmonella pathogenesis potentially opening up new avenues for the development of anti-infective strategies that target relevant host pathways.

  20. Salmonella modulation of host cell gene expression promotes its intracellular growth.

    Science.gov (United States)

    Hannemann, Sebastian; Gao, Beile; Galán, Jorge E

    2013-01-01

    Salmonella Typhimurium has evolved a complex functional interface with its host cell largely determined by two type III secretion systems (T3SS), which through the delivery of bacterial effector proteins modulate a variety of cellular processes. We show here that Salmonella Typhimurium infection of epithelial cells results in a profound transcriptional reprogramming that changes over time. This response is triggered by Salmonella T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for the formation of its specialized vesicular compartment that is permissive for its intracellular replication. This study uncovers a cell-autonomous process required for Salmonella pathogenesis potentially opening up new avenues for the development of anti-infective strategies that target relevant host pathways.

  1. Synergistic killing effect of chloroquine and androgen deprivation in LNCaP cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaini, Ramesh R. [Department of Biochemistry and Molecular Biology and UNM Cancer and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM (United States); Hu, Chien-An A., E-mail: AHu@salud.unm.edu [Department of Biochemistry and Molecular Biology and UNM Cancer and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM (United States)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Chloroquine synergistically killed LNCaP cells during androgen deprivation treatment. Black-Right-Pointing-Pointer Chloroquine inhibited the function of autolysosomes and decreases the cytosolic ATP. Black-Right-Pointing-Pointer Chloroquine induced nuclear and DNA fragmentation in androgen deprived LNCaP. Black-Right-Pointing-Pointer Chloroquine may be an useful adjuvant in hormone ablation therapy in PCa patients. -- Abstract: Modulation of autophagy is a new paradigm in cancer therapeutics. Recently a novel function of chloroquine (CLQ) in inhibiting degradation of autophagic vesicles has been revealed, which raises the question whether CLQ can be used as an adjuvant in targeting autophagic pro-survival mechanism in prostate cancer (PCa). We previously showed that autophagy played a protective role during hormone ablation therapy, in part, by consuming lipid droplets in PCa cells. In addition, blocking autophagy by genetic and pharmacological means in the presence of androgen deprivation caused cell death in PCa cells. To further investigate the importance of autophagy in PCa survival and dissect the role of CLQ in PCa death, we treated hormone responsive LNCaP cells with CLQ in combination with androgen deprivation. We observed that CLQ synergistically killed LNCaP cells during androgen deprivation in a dose- and time-dependent manner. We further confirmed that CLQ inhibited the maturation of autophagic vesicles and decreased the cytosolic ATP. Moreover, CLQ induced nuclear condensation and DNA fragmentation, a hallmark of apoptosis, in androgen deprived LNCaP cells. Taken together, our finding suggests that CLQ may be an useful adjuvant in hormone ablation therapy to improve the therapeutic efficacy.

  2. Synergistic killing effect of chloroquine and androgen deprivation in LNCaP cells

    International Nuclear Information System (INIS)

    Kaini, Ramesh R.; Hu, Chien-An A.

    2012-01-01

    Highlights: ► Chloroquine synergistically killed LNCaP cells during androgen deprivation treatment. ► Chloroquine inhibited the function of autolysosomes and decreases the cytosolic ATP. ► Chloroquine induced nuclear and DNA fragmentation in androgen deprived LNCaP. ► Chloroquine may be an useful adjuvant in hormone ablation therapy in PCa patients. -- Abstract: Modulation of autophagy is a new paradigm in cancer therapeutics. Recently a novel function of chloroquine (CLQ) in inhibiting degradation of autophagic vesicles has been revealed, which raises the question whether CLQ can be used as an adjuvant in targeting autophagic pro-survival mechanism in prostate cancer (PCa). We previously showed that autophagy played a protective role during hormone ablation therapy, in part, by consuming lipid droplets in PCa cells. In addition, blocking autophagy by genetic and pharmacological means in the presence of androgen deprivation caused cell death in PCa cells. To further investigate the importance of autophagy in PCa survival and dissect the role of CLQ in PCa death, we treated hormone responsive LNCaP cells with CLQ in combination with androgen deprivation. We observed that CLQ synergistically killed LNCaP cells during androgen deprivation in a dose- and time-dependent manner. We further confirmed that CLQ inhibited the maturation of autophagic vesicles and decreased the cytosolic ATP. Moreover, CLQ induced nuclear condensation and DNA fragmentation, a hallmark of apoptosis, in androgen deprived LNCaP cells. Taken together, our finding suggests that CLQ may be an useful adjuvant in hormone ablation therapy to improve the therapeutic efficacy.

  3. Single-cell intracellular nano-pH probes†

    OpenAIRE

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular p...

  4. Androgens and polycystic ovary syndrome.

    Science.gov (United States)

    Nisenblat, Vicki; Norman, Robert J

    2009-06-01

    Polycystic ovary syndrome (PCOS) is a common complex endocrine genetic disorder, which involves overproduction of androgens, leading to heterogeneous range of symptoms and associated with increased metabolic and cardiovascular morbidity. This review focuses on androgen biosynthesis, use, metabolism in PCOS and clinical consequences of hyperandrogenism. Controversial definition of the disorder and different phenotypic subgroups present a challenge for clinical and basic research. Further investigation of different phenotypes highlights the fact that PCOS probably represents a group of disorders with different etiologies. Prenatal androgen exposure and adolescent studies suggest early in life androgen excess as initiating factor of PCOS, but insufficient evidence available to confirm this hypothesis. Various intracellular signaling pathways implicated in PCOS steroidogenesis and in androgen action have been studied, however, PCOS pathogenesis remains obscure. Growing evidence links androgens with pathophysiology of PCOS and metabolic derangements. Despite intensive investigation, etiology and underlying mechanisms of PCOS remain unclear, warranting further investigation. Better understanding of molecular and genetic basis might lead to invention of novel therapeutic approaches. Long-term interventional studies that lower androgen levels in women with hyperandrogenism might protect against metabolic and cardiovascular comorbidities are needed.

  5. Androgen and FSH synergistically stimulate lipoprotein degradation and utilization by ovary granulosa cells

    International Nuclear Information System (INIS)

    Schreiber, J.R.; Nakamura, K.; Schmit, V.; Weinstein, D.B.

    1984-01-01

    Androgen can directly modulate the induction of steroidogenic enzymes by FSH (follicle stimulating hormone) in ovary granulosa cells. In studies of its mechanism of action, the authors examined the androgen effect on granulosa cell interaction with lipoproteins, the physiologic source of cholesterol. After granulosa cells were cultured for 48 hours with and without androgen and/or FSH, the cells were incubated for 24 hours with 125 I-lipoproteins [human high density lipoprotein (HDL), rat HDL, or human low density lipoprotein (LDL)]. The media were then analyzed for lipoprotein protein coat degradation products (mainly 125 I-monoiodotyrosine) and progestin [mainly 20 alpha-dihydroprogesterone (20 alpha-DHP)]. In the absence of FSH and androgen, 2 X 10(5) granulosa cells degraded basal levels of all three lipoproteins, but produced no measurable 20 alpha-DHP. The addition of 10(-7) M androstenedione (A), testosterone (T), or 5 alpha-dihydrotestosterone (DHT) had no effect on lipoprotein protein degradation or 20 alpha-DHP production. FSH alone stimulated lipoprotein protein degradation by 50 to 300% while the addition of androgen synergistically augmented the FSH-stimulated 20 alpha-DHP production as well as protein coat degradation of all three lipoproteins. DHT and T were both effective, indicating that androgens themselves, and not estrogen products, were responsible for the effect on lipoprotein protein degradation and 20 alpha-DHP production

  6. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Claire [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); Lafosse, Jean-Michel [CHU Toulouse, Hopital Rangueil, Service d' orthopedie et Traumatologie, Toulouse F-31000 (France); Malavaud, Bernard [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); CHU Toulouse, Hopital Rangueil, Service d' Urologie et de Transplantation Renale, Toulouse F-31000 (France); Cuvillier, Olivier, E-mail: olivier.cuvillier@ipbs.fr [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France)

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK.

  7. The liver X receptor agonist T0901317 acts as androgen receptor antagonist in human prostate cancer cells

    International Nuclear Information System (INIS)

    Chuu, Chih-pin; Chen, Rou-Yu; Hiipakka, Richard A.; Kokontis, John M.; Warner, Karen V.; Xiang, Jialing; Liao, Shutsung

    2007-01-01

    T0901317 is a potent non-steroidal synthetic liver X receptor (LXR) agonist. T0901317 blocked androgenic stimulation of the proliferation of androgen-dependent LNCaP 104-S cells and androgenic suppression of the proliferation of androgen-independent LNCaP 104-R2 cells, inhibited the transcriptional activation of an androgen-dependent reporter gene by androgen, and suppressed gene and protein expression of prostate specific antigen (PSA), a target gene of androgen receptor (AR) without affecting gene and protein expression of AR. T0901317 also inhibited binding of a radiolabeled androgen to AR, but inhibition was much weaker compared to the effect of the antiandrogens, bicalutamide and hydroxyflutamide. The LXR agonist T0901317, therefore, acts as an antiandrogen in human prostate cancer cells

  8. Establishment of a novel immortalized human prostatic epithelial cell line stably expressing androgen receptor and its application for the functional screening of androgen receptor modulators

    International Nuclear Information System (INIS)

    Yu, Shan; Wang, Ming-Wei; Yao, Xiaoqiang; Chan, F.L.

    2009-01-01

    In this study, we developed a human prostatic epithelial cell line BPH-1-AR stably expressing AR by lentiviral transduction. Characterization by immunoblot and RT-PCR showed that AR was stably expressed in all representative BPH-1-AR clones. Androgen treatment induced a secretory differentiation phenotype in BPH-1-AR cells but suppressed their cell proliferation. Treatments with AR agonists induced transactivation of a transfected PSA-gene promoter reporter in BPH-1-AR cells, whereas this transactivation was suppressed by an AR antagonist flutamide, indicating that the transduced AR in BPH-1-AR cells was functional. Finally, we utilized BPH-1-AR cells to evaluate the androgenic activities and growth effects of five newly developed non-steroidal compounds. Results showed that these compounds showed androgenic activities and growth-inhibitory effects on BPH-1-AR cells. Our results showed that BPH-1-AR cell line would be a valuable in vitro model for the study of androgen-regulated processes in prostatic epithelial cells and identification of compounds with AR-modulating activities.

  9. Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells.

    Science.gov (United States)

    Kilcoyne, Karen R; Smith, Lee B; Atanassova, Nina; Macpherson, Sheila; McKinnell, Chris; van den Driesche, Sander; Jobling, Matthew S; Chambers, Thomas J G; De Gendt, Karel; Verhoeven, Guido; O'Hara, Laura; Platts, Sophie; Renato de Franca, Luiz; Lara, Nathália L M; Anderson, Richard A; Sharpe, Richard M

    2014-05-06

    Fetal growth plays a role in programming of adult cardiometabolic disorders, which in men, are associated with lowered testosterone levels. Fetal growth and fetal androgen exposure can also predetermine testosterone levels in men, although how is unknown, because the adult Leydig cells (ALCs) that produce testosterone do not differentiate until puberty. To explain this conundrum, we hypothesized that stem cells for ALCs must be present in the fetal testis and might be susceptible to programming by fetal androgen exposure during masculinization. To address this hypothesis, we used ALC ablation/regeneration to identify that, in rats, ALCs derive from stem/progenitor cells that express chicken ovalbumin upstream promoter transcription factor II. These stem cells are abundant in the fetal testis of humans and rodents, and lineage tracing in mice shows that they develop into ALCs. The stem cells also express androgen receptors (ARs). Reduction in fetal androgen action through AR KO in mice or dibutyl phthalate (DBP) -induced reduction in intratesticular testosterone in rats reduced ALC stem cell number by ∼40% at birth to adulthood and induced compensated ALC failure (low/normal testosterone and elevated luteinizing hormone). In DBP-exposed males, this failure was probably explained by reduced testicular steroidogenic acute regulatory protein expression, which is associated with increased histone methylation (H3K27me3) in the proximal promoter. Accordingly, ALCs and ALC stem cells immunoexpressed increased H3K27me3, a change that was also evident in ALC stem cells in fetal testes. These studies highlight how a key component of male reproductive development can fundamentally reprogram adult hormone production (through an epigenetic change), which might affect lifetime disease risk.

  10. Androgen Bioassay for the Detection of Nonlabeled Androgenic Compounds in Nutritional Supplements.

    Science.gov (United States)

    Cooper, Elliot R; McGrath, Kristine C Y; Li, XiaoHong; Heather, Alison K

    2018-01-01

    Both athletes and the general population use nutritional supplements. Athletes often turn to supplements hoping that consuming the supplement will help them be more competitive and healthy, while the general population hopes to improve body image or vitality. While many supplements contain ingredients that may have useful properties, there are supplements that are contaminated with compounds that are banned for use in sport or have been deliberately adulterated to fortify a supplement with an ingredient that will produce the advertised effect. In the present study, we have used yeast cell and mammalian cell androgen bioassays to characterize the androgenic bioactivity of 112 sports supplements available from the Australian market, either over the counter or via the Internet. All 112 products did not declare an androgen on the label as an included ingredient. Our findings show that six out of 112 supplements had strong androgenic bioactivity in the yeast cell bioassay, indicating products spiked or contaminated with androgens. The mammalian cell bioassay confirmed the strong androgenic bioactivity of five out of six positive supplements. Supplement 6 was metabolized to weaker androgenic bioactivity in the mammalian cells. Further to this, Supplement 6 was positive in a yeast cell progestin bioassay. Together, these findings highlight that nutritional supplements, taken without medical supervision, could expose or predispose users to the adverse consequences of androgen abuse. The findings reinforce the need to increase awareness of the dangers of nutritional supplements and highlight the challenges that clinicians face in the fast-growing market of nutritional supplements.

  11. Androgen-independent proliferation of LNCaP prostate cancer cells infected by xenotropic murine leukemia virus-related virus

    International Nuclear Information System (INIS)

    Kakoki, Katsura; Kamiyama, Haruka; Izumida, Mai; Yashima, Yuka; Hayashi, Hideki; Yamamoto, Naoki; Matsuyama, Toshifumi; Igawa, Tsukasa; Sakai, Hideki; Kubo, Yoshinao

    2014-01-01

    Highlights: • XMRV infection induces androgen-independent growth in LNCaP cells. • XMRV infection reduces expression of androgen receptor. • XMRV promotes appearance of androgen blocker-resistant prostate cancer cells. - Abstract: Xenotropic murine leukemia virus-related virus (XMRV) is a novel gammaretrovirus that was originally isolated from human prostate cancer. It is now believed that XMRV is not the etiologic agent of prostate cancer. An analysis of murine leukemia virus (MLV) infection in various human cell lines revealed that prostate cancer cell lines are preferentially infected by XMRV, and this suggested that XMRV infection may confer some sort of growth advantage to prostate cancer cell lines. To examine this hypothesis, androgen-dependent LNCaP cells were infected with XMRV and tested for changes in certain cell growth properties. We found that XMRV-infected LNCaP cells can proliferate in the absence of the androgen dihydrotestosterone. Moreover, androgen receptor expression is significantly reduced in XMRV-infected LNCaP cells. Such alterations were not observed in uninfected and amphotropic MLV-infected LNCaP cells. This finding explains why prostate cancer cell lines are preferentially infected with XMRV

  12. Single-cell intracellular nano-pH probes†

    Science.gov (United States)

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2016-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution. PMID:27708772

  13. Single-cell intracellular nano-pH probes.

    Science.gov (United States)

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution.

  14. Abhydrolase domain containing 2, an androgen target gene, promotes prostate cancer cell proliferation and migration.

    Science.gov (United States)

    Obinata, Daisuke; Takada, Shogo; Takayama, Ken-ichi; Urano, Tomohiko; Ito, Akiko; Ashikari, Daisaku; Fujiwara, Kyoko; Yamada, Yuta; Murata, Taro; Kumagai, Jinpei; Fujimura, Tetsuya; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Homma, Yukio; Takahashi, Satoru; Inoue, Satoshi

    2016-04-01

    The androgen receptor (AR) plays a key role in the development of prostate cancer. AR signalling mediates the expression of androgen-responsive genes, which are involved in prostate cancer development and progression. Our previous chromatin immunoprecipitation study showed that the region of abhydrolase domain containing 2 (ABHD2) includes a functional androgen receptor binding site. In this study, we demonstrated that ABHD2 is a novel androgen-responsive gene that is overexpressed in human prostate cancer tissues. The expression levels of ABHD2 in androgen-sensitive cells were evaluated by quantitative reverse transcription polymerase chain reaction and western-blot analyses. LNCaP and VCaP cells with ABHD2 overexpression or short interfering RNA (siRNA) knockdown were used for functional analyses. ABHD2 expression was examined in clinical samples of prostate cancer by immunohistochemistry. We showed that ABHD2 expression is increased by androgen in LNCaP and VCaP cells. This androgen-induced ABHD2 expression was diminished by bicalutamide. While stable expression of ABHD2 affected the enhancement of LNCaP cell proliferation and migration, siRNA-mediated ABHD2 knockdown suppressed cell proliferation and migration. In addition, the siRNA treatment significantly repressed the tumour growth derived from LNCaP cells in athymic mice. Immunohistochemical analysis of ABHD2 expression in tumour specimens showed a positive correlation of ABHD2 immunoreactivity with high Gleason score and pathological N stage. Moreover, patients with high immunoreactivity of ABHD2 showed low cancer-specific survival rates and a resistance to docetaxel-based chemotherapy. ABHD2 is a novel androgen-regulated gene that can promote prostate cancer growth and resistance to chemotherapy, and is a novel target for diagnosis and treatment of prostate cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Maryam Ghotbaddini

    2015-07-01

    Full Text Available The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR. TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models.

  16. The influence of androgens, anti-androgens, and castration on cell proliferation in the jejunal and colonic crypt epithelia, and in dimethylhydrazine-induced adenocarcinoma of rat colon.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1982-01-01

    Androgenic hormones have previously been shown to promote cell proliferation in the small intestine of rat and androgen receptors have been demonstrated in carcinomata of the large intestine of rat. In this study the influence of testosterone and of castration on epithelial cell proliferation in the small intestine, the large intestine and in dimethylhydrazine-induced colonic tumours is compared. Cell proliferation in the small intestine and in colonic tumours was accelerated by testosterone treatment, and cell proliferation in colonic tumours, but not in the small intestine, was retarded following castration. Cell proliferation in colonic tumours was also inhibited by the anti-androgenic drug, Flutamide. Testosterone and castration each failed to influence cell proliferation in the colonic crypt epithelium of both normal and carcinogen-treated animals.

  17. Androgen receptor signalling in Vascular Endothelial cells is dispensable for spermatogenesis and male fertility

    Directory of Open Access Journals (Sweden)

    O'Hara Laura

    2012-01-01

    Full Text Available Abstract Background Androgen signalling is essential both for male development and function of the male reproductive system in adulthood. Within the adult testis, Germ cells (GC do not express androgen receptor (AR suggesting androgen-mediated promotion of spermatogenesis must act via AR-expressing somatic cell-types. Several recent studies have exploited the Cre/lox system of conditional gene-targeting to ablate AR function from key somatic cell-types in order to establish the cell-specific role of AR in promotion of male fertility. In this study, we have used a similar approach to specifically ablate AR-signalling from Vascular Endothelial (VE cells, with a view to defining the significance of androgen signalling within this cell-type on spermatogenesis. Findings AR expression in VE cells of the testicular vasculature was confirmed using an antibody against AR. A Cre-inducible fluorescent reporter line was used to empirically establish the utility of a mouse line expressing Cre Recombinase driven by the Tie2-Promoter, for targeting VE cells. Immunofluorescent detection revealed expression of YFP (and therefore Cre Recombinase function limited to VE cells and an interstitial population of cells, believed to be macrophages, that did not express AR. Mating of Tie2-Cre males to females carrying a floxed AR gene produced Vascular Endothelial Androgen Receptor Knockout (VEARKO mice and littermate controls. Ablation of AR from all VE cells was confirmed; however, no significant differences in bodyweight or reproductive tissue weights could be detected in VEARKO animals and spermatogenesis and fertility was unaffected. Conclusions We demonstrate the successful generation and empirical validation of a cell-specific knockout of AR from VE cells, and conclude that AR expression in VE cells is not essential for spermatogenesis or male fertility.

  18. Context dependent regulatory patterns of the androgen receptor and androgen receptor target genes

    International Nuclear Information System (INIS)

    Olsen, Jan Roger; Azeem, Waqas; Hellem, Margrete Reime; Marvyin, Kristo; Hua, Yaping; Qu, Yi; Li, Lisha; Lin, Biaoyang; Ke, XI- Song; Øyan, Anne Margrete; Kalland, Karl- Henning

    2016-01-01

    Expression of the androgen receptor (AR) is associated with androgen-dependent proliferation arrest and terminal differentiation of normal prostate epithelial cells. Additionally, activation of the AR is required for survival of benign luminal epithelial cells and primary cancer cells, thus androgen deprivation therapy (ADT) leads to apoptosis in both benign and cancerous tissue. Escape from ADT is known as castration-resistant prostate cancer (CRPC). In the course of CRPC development the AR typically switches from being a cell-intrinsic inhibitor of normal prostate epithelial cell proliferation to becoming an oncogene that is critical for prostate cancer cell proliferation. A clearer understanding of the context dependent activation of the AR and its target genes is therefore desirable. Immortalized human prostate basal epithelial EP156T cells and progeny cells that underwent epithelial to mesenchymal transition (EMT), primary prostate epithelial cells (PrECs) and prostate cancer cell lines LNCaP, VCaP and 22Rv1 were used to examine context dependent restriction and activation of the AR and classical target genes, such as KLK3. Genome-wide gene expression analyses and single cell protein analyses were applied to study the effect of different contexts. A variety of growth conditions were tested and found unable to activate AR expression and transcription of classical androgen-dependent AR target genes, such as KLK3, in prostate epithelial cells with basal cell features or in mesenchymal type prostate cells. The restriction of androgen- and AR-dependent transcription of classical target genes in prostate basal epithelial cells was at the level of AR expression. Exogenous AR expression was sufficient for androgen-dependent transcription of AR target genes in prostate basal epithelial cells, but did not exert a positive feedback on endogenous AR expression. Treatment of basal prostate epithelial cells with inhibitors of epigenetic gene silencing was not efficient in

  19. Identification of the C-terminal domain of Daxx acts as a potential regulator of intracellular cholesterol synthesis in HepG2 cells

    International Nuclear Information System (INIS)

    Sun, Shaowei; Wen, Juan; Qiu, Fei; Yin, Yufang; Xu, Guina; Li, Tianping; Nie, Juan; Xiong, Guozuo; Zhang, Caiping; Liao, Duangfang; Chen, Jianxiong; Tuo, Qinhui

    2016-01-01

    Daxx is a highly conserved nuclear transcriptional factor, which has been implicated in many nuclear processes including transcription and cell cycle regulation. Our previous study demonstrated Daxx also plays a role in regulation of intracellular cholesterol content. Daxx contains several domains that are essential for interaction with a growing number of proteins. To delineate the underlying mechanism of hypocholesterolemic activity of Daxx, we constructed a set of plasmids which can be used to overexpress different fragments of Daxx and transfected to HepG2 cells. We found that the C- terminal region Daxx626–740 clearly reduced intracellular cholesterol levels and inhibited the expression of SREBPs and SCAP. In GST pull-down experiments and Double immunofluorescence assays, Daxx626–740 was demonstrated to bind directly to androgen receptor (AR). Our findings suggest that the interaction of Daxx626-740 and AR abolishes the AR-mediated activation of SCAP/SREBPs pathway, which suppresses the de novo cholesterol synthesis. Thus, C-terminal domain of Daxx acts as a potential regulator of intracellular cholesterol content in HepG2 cells. - Highlights: • Daxx C-terminal domain reduces cholesterol levels. • Daxx C-terminal domain binds directly to AR. • The interaction of Daxx C-terminal domain and AR suppresses cholesterol synthesis.

  20. Prostate Cancer Cells in Different Androgen Receptor Status Employ Different Leucine Transporters.

    Science.gov (United States)

    Otsuki, Hideo; Kimura, Toru; Yamaga, Takashi; Kosaka, Takeo; Suehiro, Jun-Ichi; Sakurai, Hiroyuki

    2017-02-01

    Leucine stimulates cancer cell proliferation through the mTOR pathway, therefore, inhibiting leucine transporters may be a novel therapeutic target for cancer. L-type amino acid transporter (LAT) 1, a Na + -independent amino acid transporter, is highly expressed in many tumor cells. However, leucine transporter(s) in different stages of prostate cancer, particularly in the stages of castration resistance with androgen receptor (AR) expression, is unclear. LNCaP and DU145 and PC-3 cell lines were used as a model of androgen dependent, and metastatic prostate cancer. A new "LN-cr" cell line was established after culturing LNCaP cells for 6 months under androgen-free conditions, which is considered a model of castration resistant prostate cancer (CRPC) with androgen AR expression. The expression of leucine transporters was investigated with quantitative PCR and immunofluorescence. Uptake of 14 C Leucine was examined in the presence or absence of BCH (a pan-LAT inhibitor), JPH203 (an LAT1-specific inhibitor), or Na + . Cell growth was assessed with MTT assay. siRNA studies were performed to evaluate the indispensability of y + LAT2 on leucine uptake and cell viability in LN-cr. Cell viability showed a 90% decrease in the absence of leucine in all four cell lines. LNCaP cells principally expressed LAT3, and their leucine uptake was more than 90% Na + -independent. BCH, but not JPH203, inhibited leucine uptake, and cell proliferation (IC 50BCH :15 mM). DU145 and PC-3 cells predominantly expressed LAT1. Leucine uptake and cell growth were suppressed by BCH or JPH203 in a dose-dependent manner (IC 50BCH : ∼20 mM, IC 50JPH203 : ∼5 µM). In LN-cr cells, Na + -dependent uptake of leucine was 3.8 pmol/mgprotein/min, while, Na + -independent uptake was only 0.52 (P prostate cancer. Prostate 77:222-233, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Artemisinin disrupts androgen responsiveness of human prostate cancer cells by stimulating the 26S proteasome-mediated degradation of the androgen receptor protein.

    Science.gov (United States)

    Steely, Andrea M; Willoughby, Jamin A; Sundar, Shyam N; Aivaliotis, Vasiliki I; Firestone, Gary L

    2017-10-01

    Androgen receptor (AR) expression and activity is highly linked to the development and progression of prostate cancer and is a target of therapeutic strategies for this disease. We investigated whether the antimalarial drug artemisinin, which is a sesquiterpene lactone isolated from the sweet wormwood plant Artemisia annua, could alter AR expression and responsiveness in cultured human prostate cancer cell lines. Artemisinin treatment induced the 26S proteasome-mediated degradation of the receptor protein, without altering AR transcript levels, in androgen-responsive LNCaP prostate cancer cells or PC-3 prostate cancer cells expressing exogenous wild-type AR. Furthermore, artemisinin stimulated AR ubiquitination and AR receptor interactions with the E3 ubiquitin ligase MDM2 in LNCaP cells. The artemisinin-induced loss of AR protein prevented androgen-responsive cell proliferation and ablated total AR transcriptional activity. The serine/threonine protein kinase AKT-1 was shown to be highly associated with artemisinin-induced proteasome-mediated degradation of AR protein. Artemisinin treatment activated AKT-1 enzymatic activity, enhanced receptor association with AKT-1, and induced AR serine phosphorylation. Treatment of LNCaP cells with the PI3-kinase inhibitor LY294002, which inhibits the PI3-kinase-dependent activation of AKT-1, prevented the artemisinin-induced AR degradation. Furthermore, in transfected receptor-negative PC-3 cells, artemisinin failed to stimulate the degradation of an altered receptor protein (S215A/S792A) with mutations in its two consensus AKT-1 serine phosphorylation sites. Taken together, our results indicate that artemisinin induces the degradation of AR protein and disrupts androgen responsiveness of human prostate cancer cells, suggesting that this natural compound represents a new potential therapeutic molecule that selectively targets AR levels.

  2. Development of cell-penetrating bispecific antibodies targeting the N-terminal domain of androgen receptor for prostate cancer therapy.

    Science.gov (United States)

    Goicochea, Nancy L; Garnovskaya, Maria; Blanton, Mary G; Chan, Grace; Weisbart, Richard; Lilly, Michael B

    2017-12-01

    Castration-resistant prostate cancer cells exhibit continued androgen receptor signaling in spite of low levels of ligand. Current therapies to block androgen receptor signaling act by inhibiting ligand production or binding. We developed bispecific antibodies capable of penetrating cells and binding androgen receptor outside of the ligand-binding domain. Half of the bispecific antibody molecule consists of a single-chain variable fragment of 3E10, an anti-DNA antibody that enters cells. The other half is a single-chain variable fragment version of AR441, an anti-AR antibody. The resulting 3E10-AR441 bispecific antibody enters human LNCaP prostate cells and accumulates in the nucleus. The antibody binds to wild-type, mutant and splice variant androgen receptor. Binding affinity of 3E10-AR441 to androgen receptor (284 nM) was lower than that of the parental AR441 mAb (4.6 nM), but could be improved (45 nM) through alternative placement of the affinity tags, and ordering of the VH and VK domains. The 3E10-AR441 bispecific antibody blocked genomic signaling by wild-type or splice variant androgen receptor in LNCaP cells. It also blocked non-genomic signaling by the wild-type receptor. Furthermore, bispecific antibody inhibited the growth of C4-2 prostate cancer cells under androgen-stimulated conditions. The 3E10-AR441 biAb can enter prostate cancer cells and inhibits androgen receptor function in a ligand-independent manner. It may be an attractive prototype agent for prostate cancer therapy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. PCA3 Silencing Sensitizes Prostate Cancer Cells to Enzalutamide-mediated Androgen Receptor Blockade.

    Science.gov (United States)

    Özgür, Emre; Celik, Ayca Iribas; Darendeliler, Emin; Gezer, Ugur

    2017-07-01

    Prostate cancer (PCa) is an androgen-dependent disease. Novel anti-androgens (i.e. enzalutamide) have recently been developed for the treatment of patients with metastatic castration-resistant prostate cancer (CRPC). Evidence is accumulating that prostate cancer antigen 3 (PCA3) is involved in androgen receptor (AR) signaling. Here, in combination with enzalutamide-mediated AR blockade, we investigated the effect of PCA3 targeting on the viability of PCa cells. In hormone-sensitive LNCaP cells, AR-overexpressing LNCaP-AR + cells and VCaP cells (representing CRPC), PCA3 was silenced using siRNA oligonucleotides. Gene expression and cell viability was assessed in PCA3-silenced and/or AR-blocked cells. PCA3 targeting reduced the expression of AR-related genes (i.e. prostate-specific antigen (PSA) and prostate-specific transcript 1 (non-protein coding) (PCGEM1)) and potentiated the effect of enzalutamide. Proliferation of PCa cells was suppressed upon PCA3 silencing with a greater effect in LNCaP-AR + cells. Furthermore, PCA3 silencing sensitized PCa cells to enzalutamide-induced loss of cell growth. PCA3, as a therapeutic target in PCa, might be used to potentiate AR antagonists. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Expression profiles and functional associations of endogenous androgen receptor and caveolin-1 in prostate cancer cell lines.

    Science.gov (United States)

    Bennett, Nigel C; Hooper, John D; Johnson, David W; Gobe, Glenda C

    2014-05-01

    In prostate cancer (PCa) patients, the protein target for androgen deprivation and blockade therapies is androgen receptor (AR). AR interacts with many proteins that function to either co-activate or co-repress its activity. Caveolin-1 (Cav-1) is not found in normal prostatic epithelium, but is found in PCa, and may be an AR co-regulator protein. We investigated cell line-specific signatures and associations of endogenous AR and Cav-1 in six PCa cell lines of known androgen sensitivity: LNCaP (androgen sensitive); 22Rv1 (androgen responsive); PC3, DU145, and ALVA41 (androgen non-reliant); and RWPE1 (non-malignant). Protein and mRNA expression profiles were compared and electron microscopy used to identify cells with caveolar structures. For cell lines expressing both AR and Cav-1, knockdown techniques using small interfering RNA against AR or Cav-1 were used to test whether diminished expression of one affected the other. Co-sedimentation of AR and Cav-1 was used to test their association. A reporter assay for AR genomic activity was utilized following Cav-1 knockdown. AR-expressing LNCaP and 22Rv1 cells had low endogenous Cav-1 mRNA and protein. Cell lines that expressed little or no AR (DU145, PC3, ALVA41, and RWPE1) expressed high endogenous levels of Cav-1. AR knockdown in LNCaP cells had little effect on Cav-1, but Cav-1 knockdown inhibited AR expression and genomic activity. These data show endogenous AR and Cav-1 mRNA and protein expression is inversely related in PCa cells, with Cav-1 acting on the androgen/AR signaling axis possibly as an AR co-activator, demonstrated by diminished AR genomic activity following Cav-1 knockdown. © 2013 Wiley Periodicals, Inc.

  5. HOXB13 promotes androgen independent growth of LNCaP prostate cancer cells by the activation of E2F signaling

    Directory of Open Access Journals (Sweden)

    Choi Chan

    2010-05-01

    Full Text Available Abstract Background Androgen signaling plays a critical role in the development of prostate cancer and its progression. However, androgen-independent prostate cancer cells emerge after hormone ablation therapy, resulting in significant clinical problems. We have previously demonstrated that the HOXB13 homeodomain protein functions as a prostate cancer cell growth suppressor by inhibiting androgen-mediated signals. However, the role of the HOXB13 in androgen-independent growth of prostate cancer cells remains unexplained. Results In this report, we first demonstrated that HOXB13 was highly overexpressed in hormone-refractory tumors compared to tumors without prostate-specific antigen after initial treatment. Functionally, in an androgen-free environment minimal induction of HOXB13 in LNCaP prostate cancer cells, to the level of the normal prostate, markedly promoted cell proliferation while suppression inhibited cell proliferation. The HOXB13-mediated cell growth promotion in the absence of androgen, appears to be mainly accomplished through the activation of RB-E2F signaling by inhibiting the expression of the p21waf tumor suppressor. Indeed, forced expression of HOXB13 dramatically decreased expression of p21waf; this inhibition largely affected HOXB13-mediated promotion of E2F signaling. Conclusions Taken together, the results of this study demonstrated the presence of a novel pathway that helps understand androgen-independent survival of prostate cancer cells. These findings suggest that upregulation of HOXB13 is associated with an additive growth advantage of prostate cancer cells in the absence of or low androgen concentrations, by the regulation of p21-mediated E2F signaling.

  6. Establishment of prostate cancer spheres from a prostate cancer cell line after phenethyl isothiocyanate treatment and discovery of androgen-dependent reversible differentiation between sphere and neuroendocrine cells.

    Science.gov (United States)

    Chen, Yamei; Cang, Shundong; Han, Liying; Liu, Christina; Yang, Patrick; Solangi, Zeeshan; Lu, Quanyi; Liu, Delong; Chiao, J W

    2016-05-03

    Prostate cancer can transform from androgen-responsive to an androgen-independent phenotype. The mechanism responsible for the transformation remains unclear. We studied the effects of an epigenetic modulator, phenethyl isothiocyanate (PEITC), on the androgen-responsive LNCaP cells. After treatment with PEITC, floating spheres were formed with characteristics of prostate cancer stem cells (PCSC). These spheres were capable of self-renewal in media with and without androgen. They have been maintained in both types of media as long term cultures. Upon androgen deprivation, the adherent spheres differentiated to neuroendocrine cells (NEC) with decreased proliferation, expression of androgen receptor, and PSA. NEC reverse differentiated to spheres when androgen was replenished. The sphere cells expressed surface marker CD44 and had enhanced histone H3K4 acetylation, DNMT1 down-regulation and GSTP1 activation. We hypothesize that PEITC-mediated alteration in epigenomics of LNCaP cells may give rise to sphere cells, whereas reversible androgenomic alterations govern the shuttling between sphere PCSC and progeny NEC. Our findings identify unrecognized properties of prostate cancer sphere cells with multi-potential plasticity. This system will facilitate development of novel therapeutic agents and allow further exploration into epigenomics and androgenomics governing the transformation to hormone refractory prostate cancer.

  7. Positive HER-2 protein expression in circulating prostate cells and micro-metastasis, resistant to androgen blockage but not diethylstilbestrol

    Directory of Open Access Journals (Sweden)

    Nigel P Murray

    2011-01-01

    Full Text Available Introduction : HER-2 expression in prostate cancer is associated with a worse prognosis and is suggested to play a role in androgen resistance. We present a study of HER-2 expression in circulating tumor cells and micrometastasis in bone marrow and the effect of androgen blockage or DES in the presence of HER-2 expressing cells. Patients and Methods : A multicenter study of men with prostate cancer, treated with surgery, radiotherapy, or observation, and with or without hormone therapy. Mononuclear cells were separated from blood and bone marrow aspirate by differential centrifugation, touch preps were made from bone marrow biopsy samples. Prostate cells were detected using anti-PSA monoclonal antibody and standard immunocytochemistry. Positive samples were processed using Herceptest® to determine HER-2 expression. After 1 year, patients were re-evaluated and the findings of HER-2 expression and PSA change compared with treatment. Results : Total 199 men participated, and 97 had a second evaluation 1 year later, frequency of HER-2 expression in circulating tumor cells and micrometastasis was 18% and 21%, respectively. There was no significant difference in HER-2 expression in the pretreatment group, after radical surgery or radiotherapy or with biochemical failure. Men with androgen blockade had a significantly higher expression of HER-2 (58% (P =0.001. Of the 97 men with a second evaluation, 56 were in the observation arm, 27 androgen blockade, and 14 DES. Use of androgen blockade or DES significantly reduced serum PSA levels in comparison with observation (P =0.001. However, there was a significant increase in HER-2 expression in patients with androgen blockade (P =0.05 en comparison with observation or DES treatment. No patient with observation or DES became HER-2 positive, en comparison 4/22 patients initially HER-2 negative became HER-2 positive with androgen blockade. Conclusions : The results suggest that HER-2 positive cells are

  8. Epigenetic repression of regulator of G-protein signaling 2 promotes androgen-independent prostate cancer cell growth.

    Science.gov (United States)

    Wolff, Dennis W; Xie, Yan; Deng, Caishu; Gatalica, Zoran; Yang, Mingjie; Wang, Bo; Wang, Jincheng; Lin, Ming-Fong; Abel, Peter W; Tu, Yaping

    2012-04-01

    G-protein-coupled receptor (GPCR)-stimulated androgen-independent activation of androgen receptor (AR) contributes to acquisition of a hormone-refractory phenotype by prostate cancer. We previously reported that regulator of G-protein signaling (RGS) 2, an inhibitor of GPCRs, inhibits androgen-independent AR activation (Cao et al., Oncogene 2006;25:3719-34). Here, we show reduced RGS2 protein expression in human prostate cancer specimens compared to adjacent normal or hyperplastic tissue. Methylation-specific PCR analysis and bisulfite sequencing indicated that methylation of the CpG island in the RGS2 gene promoter correlated with RGS2 downregulation in prostate cancer. In vitro methylation of this promoter suppressed reporter gene expression in transient transfection studies, whereas reversal of this promoter methylation with 5-aza-2'-deoxycytidine (5-Aza-dC) induced RGS2 reexpression in androgen-independent prostate cancer cells and inhibited their growth under androgen-deficient conditions. Interestingly, the inhibitory effect of 5-Aza-dC was significantly reduced by an RGS2-targeted short hairpin RNA, indicating that reexpressed RGS2 contributed to this growth inhibition. Restoration of RGS2 levels by ectopic expression in androgen-independent prostate cancer cells suppressed growth of xenografts in castrated mice. Thus, RGS2 promoter hypermethylation represses its expression and unmasks a latent pathway for AR transactivation in prostate cancer cells. Targeting this reversible process may provide a new strategy for suppressing prostate cancer progression by reestablishing its androgen sensitivity. Copyright © 2011 UICC.

  9. Androgen receptor requires JunD as a coactivator to switch on an oxidative stress generation pathway in prostate cancer cells.

    Science.gov (United States)

    Mehraein-Ghomi, Farideh; Basu, Hirak S; Church, Dawn R; Hoffmann, F Michael; Wilding, George

    2010-06-01

    Relatively high oxidative stress levels in the prostate are postulated to be a major factor for prostate carcinogenesis and prostate cancer (CaP) progression. We focused on elucidating metabolic pathways of oxidative stress generation in CaP cells. Previously, we showed that the transcription factor JunD is essential for androgen-induced reactive oxygen species (ROS) production in androgen-dependent human CaP cells. We also recently showed that androgen induces the first and regulatory enzyme spermidine/spermine N1-acetyltransferase (SSAT) in a polyamine catabolic pathway that produces copious amounts of metabolic ROS. Here, we present coimmunoprecipitation and Gaussia luciferase reconstitution assay data that show that JunD forms a complex with androgen-activated androgen receptor (AR) in situ. Our chromatin immunoprecipitation assay data show that JunD binds directly to a specific SSAT promoter sequence only in androgen-treated LNCaP cells. Using a vector containing a luciferase reporter gene connected to the SSAT promoter and a JunD-silenced LNCaP cell line, we show that JunD is essential for androgen-induced SSAT gene expression. The elucidation of JunD-AR complex inducing SSAT expression leading to polyamine oxidation establishes the mechanistic basis of androgen-induced ROS production in CaP cells and opens up a new prostate-specific target for CaP chemopreventive/chemotherapeutic drug development. Copyright 2010 AACR.

  10. Intracellular Complement Activation Sustains T Cell Homeostasis and Mediates Effector Differentiation

    Science.gov (United States)

    Liszewski, M. Kathryn; Kolev, Martin; Le Friec, Gaelle; Leung, Marilyn; Bertram, Paula G.; Fara, Antonella F.; Subias, Marta; Pickering, Matthew C.; Drouet, Christian; Meri, Seppo; Arstila, T. Petteri; Pekkarinen, Pirkka T.; Ma, Margaret; Cope, Andrew; Reinheckel, Thomas; Rodriguez de Cordoba, Santiago; Afzali, Behdad; Atkinson, John P.; Kemper, Claudia

    2013-01-01

    Summary Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While “tonic” intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance. PMID:24315997

  11. Androgen Modulates Functions of Endothelial Progenitor Cells through Activated Egr1 Signaling

    Directory of Open Access Journals (Sweden)

    Yizhou Ye

    2016-01-01

    Full Text Available Researches show that androgens have important effects on migration of endothelial cells and endothelial protection in coronary heart disease. Endothelial progenitor cells (EPCs as a progenitor cell type that can differentiate into endothelial cells, have a critical role in angiogenesis and endothelial protection. The relationship between androgen and the functions of EPCs has animated much interest and controversy. In this study, we investigated the angiogenic and migratory functions of EPCs after treatment by dihydrotestosterone (DHT and the molecular mechanisms as well. We found that DHT treatment enhanced the incorporation of EPCs into tubular structures formed by HUVECs and the migratory activity of EPCs in the transwell assay dose dependently. Moreover, microarray analysis was performed to explore how DHT changes the gene expression profiles of EPCs. We found 346 differentially expressed genes in androgen-treated EPCs. Angiogenesis-related genes like Egr-1, Vcan, Efnb2, and Cdk2ap1 were identified to be regulated upon DHT treatment. Furthermore, the enhanced angiogenic and migratory abilities of EPCs after DHT treatment were inhibited by Egr1-siRNA transfection. In conclusion, our findings suggest that DHT markedly enhances the vessel forming ability and migration capacity of EPCs. Egr1 signaling may be a possible pathway in this process.

  12. Androgen Receptor Localizes to Plasma Membrane by Binding to Caveolin-1 in Mouse Sertoli Cells

    Directory of Open Access Journals (Sweden)

    Qiong Deng

    2017-01-01

    Full Text Available The nonclassical androgen signaling pathway translates signals into alterations in cellular function within minutes, and this action is proposed to be mediated by an androgen receptor (AR localized to the plasma membrane. This study was designed to determine the mechanism underlying the membrane association of androgen receptor in TM4 cells, a mouse Sertoli cell line. Western blot analysis indicated testosterone-induced AR translocation to the cell membrane. Data from coimmunoprecipitation indicated that AR is associated with caveolin-1, and testosterone enhanced this association. Knockdown of caveolin-1 by shRNA decreased the amount of AR localized to membrane fraction and prevented AR membrane trafficking after being exposed to testosterone at physiological concentration. The palmitoylation inhibitor 2-bromopalmitate decreased AR membrane localization in basal condition and completely blocked testosterone-induced AR translocation to membrane fraction. These data suggested that AR localized to membrane fraction by binding with caveolin-1 through palmitoylation of the cysteine residue. This study provided a new evidence for AR membrane localization and its application for clarifying the nonclassical signaling pathway of androgens.

  13. Increased expression of heparin binding EGF (HB-EGF), amphiregulin, TGF alpha and epiregulin in androgen-independent prostate cancer cell lines.

    DEFF Research Database (Denmark)

    Tørring, Niels; Sørensen, Boe Sandahl; Nexø, Ebba

    2000-01-01

    BACKGROUND: The proliferation of androgen-independent prostate cancer cell lines has previously been shown to be influenced by an autocrine loop of the epidermal growth factor (EGF) system. This observation has alerted us to study the expression of ligands and receptors from the EGF......-system in prostate cell lines. METHODS: The expression of the EGF system was determined by quantitative RT-PCR and ELISA in the normal prostate epithelial cell line (PNT1A), in the androgen sensitive-(LNCaP), and the androgen-independent (DU145 and PC3) prostate cancer cell lines. RESULTS: The expression of m...... which exhibit low expression of HER1. Similar results were obtained by ELISA. CONCLUSIONS: The data indicates a selective up-regulation of a subclass of ligands of the EGF-system in androgen-independent prostate cancer cell lines. We suggest this could be a mechanism to escape androgen dependence...

  14. Regulation of expression of Na+,K+-ATPase in androgen-dependent and androgen-independent prostate cancer

    NARCIS (Netherlands)

    L.J. Blok (Leen); G.T.G. Chang; M. Steenbeek-Slotboom (M.); W.M. van Weerden (Wytske); H.G. Swarts; J.J.H.H.M. de Pont (J. J H H M); G.J. van Steenbrugge (Gert Jan); A.O. Brinkmann (Albert)

    1999-01-01

    textabstractThe β1-subunit of Na+,K+-ATPase was isolated and identified as an androgen down-regulated gene. Expression was observed at high levels in androgen-independent as compared to androgen-dependent (responsive) human prostate cancer cell lines and xenografts when grown in the presence of

  15. Antiandrogens act as selective androgen receptor modulators at the proteome level in prostate cancer cells.

    Science.gov (United States)

    Brooke, Greg N; Gamble, Simon C; Hough, Michael A; Begum, Shajna; Dart, D Alwyn; Odontiadis, Michael; Powell, Sue M; Fioretti, Flavia M; Bryan, Rosie A; Waxman, Jonathan; Wait, Robin; Bevan, Charlotte L

    2015-05-01

    Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor mutations, which are commonly detected in patients who relapse while receiving antiandrogens, i.e. in castrate-resistant prostate cancer. To characterize the early proteomic response to these antiandrogens we used the LNCaP prostate cancer cell line, which harbors the androgen receptor mutation most commonly detected in castrate-resistant tumors (T877A), analyzing alterations in the proteome, and comparing these to the effect of these therapeutics upon androgen receptor activity and cell proliferation. The majority are regulated post-transcriptionally, possibly via nongenomic androgen receptor signaling. Differences detected between the exposure groups demonstrate subtle changes in the biological response to each specific ligand, suggesting a spectrum of agonistic and antagonistic effects dependent on the ligand used. Analysis of the crystal structures of the AR in the presence of cyproterone acetate, hydroxyflutamide, and DHT identified important differences in the orientation of key residues located in the AF-2 and BF-3 protein interaction surfaces. This further implies that although there is commonality in the growth responses between androgens and those antiandrogens that stimulate growth in the presence of a mutation, there may also be influential differences in the growth pathways stimulated by the different ligands. This therefore has implications for prostate cancer treatment because tumors may respond differently dependent upon which mutation is present and which ligand is activating growth, also for the design of selective androgen receptor modulators, which aim to elicit differential proteomic

  16. Reduced fetal androgen exposure compromises Leydig cell function in adulthood

    NARCIS (Netherlands)

    Teerds, K.J.; Keijer, J.

    2015-01-01

    Disruption of normal fetal development can influence functioning of organs and cells in adulthood. Circumstantial evidence suggests that subtle reductions in fetal androgen production may be the cause of adult male reproductive disorders due to reduced testosterone production. The mechanisms through

  17. The Androgen Receptor Bridges Stem Cell-Associated Signaling Nodes in Prostate Stem Cells

    Directory of Open Access Journals (Sweden)

    Alastair H. Davies

    2016-01-01

    Full Text Available The therapeutic potential of stem cells relies on dissecting the complex signaling networks that are thought to regulate their pluripotency and self-renewal. Until recently, attention has focused almost exclusively on a small set of “core” transcription factors for maintaining the stem cell state. It is now clear that stem cell regulatory networks are far more complex. In this review, we examine the role of the androgen receptor (AR in coordinating interactions between signaling nodes that govern the balance of cell fate decisions in prostate stem cells.

  18. Sarcosine induces increase in HER2/neu expression in androgen-dependent prostate cancer cells

    DEFF Research Database (Denmark)

    Dahl, Malin; Bouchelouche, Pierre; Kramer-Marek, Gabriela

    2011-01-01

    Increasing evidence suggests that Human epidermal growth factor receptor 2 (HER2/neu) is involved in progression of prostate cancer. Recently, sarcosine was reported to be highly increased during prostate cancer progression, and exogenous sarcosine induces an invasive phenotype in benign prostate...... epithelial cells. The aim of this work was to investigate the effect of sarcosine on HER2/neu expression in prostate cancer cell lines LNCaP (androgen dependent), PC-3 and DU145 (both androgen independent). Relative amounts of HER2/neu and androgen receptor (AR) transcripts were determined using RT...... that sarcosine is involved in the regulation of the oncoprotein HER2/neu. Thus, sarcosine may induce prostate cancer progression by increased HER2/neu expression. However, detailed information on cellular mechanisms remains to be elucidated....

  19. Effects of intracellular iron overload on cell death and identification of potent cell death inhibitors.

    Science.gov (United States)

    Fang, Shenglin; Yu, Xiaonan; Ding, Haoxuan; Han, Jianan; Feng, Jie

    2018-06-11

    Iron overload causes many diseases, while the underlying etiologies of these diseases are unclear. Cell death processes including apoptosis, necroptosis, cyclophilin D-(CypD)-dependent necrosis and a recently described additional form of regulated cell death called ferroptosis, are dependent on iron or iron-dependent reactive oxygen species (ROS). However, whether the accumulation of intracellular iron itself induces ferroptosis or other forms of cell death is largely elusive. In present study, we study the role of intracellular iron overload itself-induced cell death mechanisms by using ferric ammonium citrate (FAC) and a membrane-permeable Ferric 8-hydroxyquinoline complex (Fe-8HQ) respectively. We show that FAC-induced intracellular iron overload causes ferroptosis. We also identify 3-phosphoinositide-dependent kinase 1 (PDK1) inhibitor GSK2334470 as a potent ferroptosis inhibitor. Whereas, Fe-8HQ-induced intracellular iron overload causes unregulated necrosis, but partially activates PARP-1 dependent parthanatos. Interestingly, we identify many phenolic compounds as potent inhibitors of Fe-8HQ-induced cell death. In conclusion, intracellular iron overload-induced cell death form might be dependent on the intracellular iron accumulation rate, newly identified cell death inhibitors in our study that target ferroptosis and unregulated oxidative cell death represent potential therapeutic strategies against iron overload related diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms.

    Science.gov (United States)

    Li, Zhi Gang; Mathew, Paul; Yang, Jun; Starbuck, Michael W; Zurita, Amado J; Liu, Jie; Sikes, Charles; Multani, Asha S; Efstathiou, Eleni; Lopez, Adriana; Wang, Jing; Fanning, Tina V; Prieto, Victor G; Kundra, Vikas; Vazquez, Elba S; Troncoso, Patricia; Raymond, Austin K; Logothetis, Christopher J; Lin, Sue-Hwa; Maity, Sankar; Navone, Nora M

    2008-08-01

    In prostate cancer, androgen blockade strategies are commonly used to treat osteoblastic bone metastases. However, responses to these therapies are typically brief, and the mechanism underlying androgen-independent progression is not clear. Here, we established what we believe to be the first human androgen receptor-negative prostate cancer xenografts whose cells induced an osteoblastic reaction in bone and in the subcutis of immunodeficient mice. Accordingly, these cells grew in castrated as well as intact male mice. We identified FGF9 as being overexpressed in the xenografts relative to other bone-derived prostate cancer cells and discovered that FGF9 induced osteoblast proliferation and new bone formation in a bone organ assay. Mice treated with FGF9-neutralizing antibody developed smaller bone tumors and reduced bone formation. Finally, we found positive FGF9 immunostaining in prostate cancer cells in 24 of 56 primary tumors derived from human organ-confined prostate cancer and in 25 of 25 bone metastasis cases studied. Collectively, these results suggest that FGF9 contributes to prostate cancer-induced new bone formation and may participate in the osteoblastic progression of prostate cancer in bone. Androgen receptor-null cells may contribute to the castration-resistant osteoblastic progression of prostate cancer cells in bone and provide a preclinical model for studying therapies that target these cells.

  1. Compounds from Cynomorium songaricum with Estrogenic and Androgenic Activities Suppress the Oestrogen/Androgen-Induced BPH Process.

    Science.gov (United States)

    Wang, Xueni; Tao, Rui; Yang, Jing; Miao, Lin; Wang, Yu; Munyangaju, Jose Edouard; Wichai, Nuttapong; Wang, Hong; Zhu, Yan; Liu, Erwei; Chang, Yanxu; Gao, Xiumei

    2017-01-01

    To investigate the phytoestrogenic and phytoandrogenic activities of compounds isolated from CS and uncover the role of CS in prevention of oestrogen/androgen-induced BPH. Cells were treated with CS compounds, and immunofluorescence assay was performed to detect the nuclear translocation of ER α or AR in MCF-7 or LNCaP cells; luciferase reporter assay was performed to detect ERs or AR transcriptional activity in HeLa or AD293 cells; MTT assay was performed to detect the cell proliferation of MCF-7 or LNCaP cells. Oestrogen/androgen-induced BPH model was established in rat and the anti-BPH, anti-estrogenic, and anti-androgenic activities of CS in vivo were further investigated. The nuclear translocation of ER α was stimulated by nine CS compounds, three of which also stimulated AR translocation. The transcriptional activities of ER α and ER β were induced by five compounds, within which only ECG induced AR transcriptional activity as well. Besides, ECG stimulated the proliferation of both MCF-7 cells and LNCaP cells. CS extract suppressed oestrogen/androgen-induced BPH progress in vivo by downregulation of E2 and T level in serum and alteration of the expressions of ER α , ER β , and AR in the prostate. Our data demonstrates that compounds from CS exhibit phytoestrogenic and phytoandrogenic activities, which may contribute to inhibiting the oestrogen/androgen-induced BPH development.

  2. Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription.

    Science.gov (United States)

    Jia, Lin; Wu, Dinglan; Wang, Yuliang; You, Wenxing; Wang, Zhu; Xiao, Lijia; Cai, Ganhui; Xu, Zhenyu; Zou, Chang; Wang, Fei; Teoh, Jeremy Yuen-Chun; Ng, Chi-Fai; Yu, Shan; Chan, Franky L

    2018-03-20

    The metastatic castration-resistant prostate cancer (CRPC) is a lethal form of prostate cancer, in which the expression of androgen receptor (AR) is highly heterogeneous. Indeed, lower AR expression and attenuated AR signature activity is shown in CRPC tissues, especially in the subset of neuroendocrine prostate cancer (NEPC) and prostate cancer stem-like cells (PCSCs). However, the significance of AR downregulation in androgen insensitivity and de-differentiation of tumor cells in CRPC is poorly understood and much neglected. Our previous study shows that the orphan nuclear receptor TLX (NR2E1), which is upregulated in prostate cancer, plays an oncogenic role in prostate carcinogenesis by suppressing oncogene-induced senescence. In the present study, we further established that TLX exhibited an increased expression in metastatic CRPC. Further analyses showed that overexpression of TLX could confer resistance to androgen deprivation and anti-androgen in androgen-dependent prostate cancer cells in vitro and in vivo, whereas knockdown of endogenous TLX could potentiate the sensitivity to androgen deprivation and anti-androgen in prostate cancer cells. Our study revealed that the TLX-induced resistance to androgen deprivation and anti-androgen was mediated through its direct suppression of AR gene transcription and signaling in both androgen-stimulated and -unstimulated prostate cancer cells. We also characterized that TLX could bind directly to AR promoter and repress AR transcription by recruitment of histone modifiers, including HDAC1, HDAC3, and LSD1. Together, our present study shows, for the first time, that TLX can contribute to androgen insensitivity in CRPC via repression of AR gene transcription and signaling, and also implicates that targeting the druggable TLX may have a potential therapeutic significance in CRPC management, particularly in NEPC and PCSCs.

  3. Androgen-Sensitized Apoptosis of HPr-1AR Human Prostate Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Congcong Chen

    Full Text Available Androgen receptor (AR signaling is crucial to the development and homeostasis of the prostate gland, and its dysregulation mediates common prostate pathologies. The mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells have been investigated in human and rodent adult prostate. However, the cellular stress response of human prostate epithelial cells is not well understood, though it is central to prostate health and pathology. Here, we report that androgen sensitizes HPr-1AR and RWPE-AR human prostate epithelial cells to cell stress agents and apoptotic cell death. Although 5α-dihydrotestosterone (DHT treatment alone did not induce cell death, co-treatment of HPr-1AR cells with DHT and an apoptosis inducer, such as staurosporine (STS, TNFt, or hydrogen peroxide, synergistically increased cell death in comparison to treatment with each apoptosis inducer by itself. We found that the synergy between DHT and apoptosis inducer led to activation of the intrinsic/mitochondrial apoptotic pathway, which is supported by robust cleavage activation of caspase-9 and caspase-3. Further, the dramatic depolarization of the mitochondrial membrane potential that we observed upon co-treatment with DHT and STS is consistent with increased mitochondrial outer membrane permeabilization (MOMP in the pro-apoptotic mechanism. Interestingly, the synergy between DHT and apoptosis inducer was abolished by AR antagonists and inhibitors of transcription and protein synthesis, suggesting that AR mediates pro-apoptotic synergy through transcriptional regulation of MOMP genes. Expression analysis revealed that pro-apoptotic genes (BCL2L11/BIM and AIFM2 were DHT-induced, whereas pro-survival genes (BCL2L1/BCL-XL and MCL1 were DHT-repressed. Hence, we propose that the net effect of these AR-mediated expression changes shifts the balance of BCL2-family proteins

  4. Resting spontaneous baroreflex sensitivity and cardiac autonomic control in anabolic androgenic steroid users

    OpenAIRE

    Santos, Marcelo R. dos; Sayegh, Ana L.C.; Armani, Rafael; Costa-Hong, Valéria; Souza, Francis R. de; Toschi-Dias, Edgar; Bortolotto, Luiz A.; Yonamine, Mauricio; Negrão, Carlos E.; Alves, Maria-Janieire N.N.

    2018-01-01

    OBJECTIVES: Misuse of anabolic androgenic steroids in athletes is a strategy used to enhance strength and skeletal muscle hypertrophy. However, its abuse leads to an imbalance in muscle sympathetic nerve activity, increased vascular resistance, and increased blood pressure. However, the mechanisms underlying these alterations are still unknown. Therefore, we tested whether anabolic androgenic steroids could impair resting baroreflex sensitivity and cardiac sympathovagal control. In addition, ...

  5. Uptake and intracellular activity of AM-1155 in phagocytic cells.

    Science.gov (United States)

    Yamamoto, T; Kusajima, H; Hosaka, M; Fukuda, H; Oomori, Y; Shinoda, H

    1996-01-01

    The uptake and intracellular activity of AM-1155 in murine J774.1 macrophages and human polymorphonuclear leukocytes were investigated. AM-1155 penetrated phagocytic cells rapidly and reversibly, although the penetration process was not affected by metabolic inhibitors such as sodium fluoride, cyanide m-chlorophenylhydrazone, or ouabain or by nucleoside transport system inhibitors such as adenosine. The intracellular concentration-to-extracellular concentration ratio of AM-1155 in both cell types of phagocytes ranged from 5 to 7. These ratios were almost equal to those for sparfloxacin. The intracellular activity of AM-1155 in J774.1 macrophages, examined with Staphylococcus aureus 209P as a test bacterium, was dependent on the extracellular concentration. AM-1155 at a concentration of 1 microgram/ml reduced the number of viable cells of S. aureus ingested by more than 90%. The intracellular activity of AM-1155 was more potent than those of sparfloxacin, ofloxacin, ciprofloxacin, flomoxef, and erythromycin. These results suggest that the potent intracellular activity of AM-1155 might mainly be due to the high intracellular concentration and its potent in vitro activity. PMID:9124835

  6. Cheap electricity with autonomous solar cell systems

    International Nuclear Information System (INIS)

    Ouwens, C.D.

    1993-01-01

    A comparison has been made between the costs of an autonomous solar cell system and a centralized electricity supply system. In both cases investment costs are the main issue. It is shown that for households in densely populated sunny areas, the use of autonomous solar cell systems is - even with today's market prices - only as expensive or even cheaper than a grid connection, as long as efficient electric appliances are used. The modular nature of solar cell systems makes it possible to start with any number of appliances, depending on the amount of money available to be spent. (author)

  7. Epithelial Cell Gene Expression Induced by Intracellular Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Xianglu Li

    2009-01-01

    Full Text Available HEp-2 cell monolayers were cocultured with intracellular Staphylococcus aureus, and changes in gene expression were profiled using DNA microarrays. Intracellular S. aureus affected genes involved in cellular stress responses, signal transduction, inflammation, apoptosis, fibrosis, and cholesterol biosynthesis. Transcription of stress response and signal transduction-related genes including atf3, sgk, map2k1, map2k3, arhb, and arhe was increased. In addition, elevated transcription of proinflammatory genes was observed for tnfa, il1b, il6, il8, cxcl1, ccl20, cox2, and pai1. Genes involved in proapoptosis and fibrosis were also affected at transcriptional level by intracellular S. aureus. Notably, intracellular S. aureus induced strong transcriptional down-regulation of several cholesterol biosynthesis genes. These results suggest that epithelial cells respond to intracellular S. aureus by inducing genes affecting immunity and in repairing damage caused by the organism, and are consistent with the possibility that the organism exploits an intracellular environment to subvert host immunity and promote colonization.

  8. Opposing effects of estradiol- and testosterone-membrane binding sites on T47D breast cancer cell apoptosis

    International Nuclear Information System (INIS)

    Kampa, Marilena; Nifli, Artemissia-Phoebe; Charalampopoulos, Ioannis; Alexaki, Vassilia-Ismini; Theodoropoulos, Panayiotis A.; Stathopoulos, Efstathios N.; Gravanis, Achille; Castanas, Elias

    2005-01-01

    Classical steroid mode of action involves binding to intracellular receptors, the later acting as ligand-activated nuclear transcription factors. Recently, membrane sites for different steroids have been also identified, mediating rapid, non-genomic, steroid actions. Membrane sites for estrogen and androgen have been found in a number of different cell types, bearing or not classical intracellular receptors. In the present study, with the use of radioligand binding, flow cytometry and confocal laser microscopy, we report that T47D human breast cancer cells express specific and saturable membrane receptors for both estrogen (K D 4.06 ± 3.31 nM) and androgen (K D 7.64 ± 3.15 nM). Upon activation with BSA-conjugated, non-permeable ligands (E 2 -BSA and testosterone-BSA), membrane estrogen receptors protect cells from serum-deprivation-induced apoptosis, while androgen receptors induce apoptosis in serum-supplemented T47D cells. In addition, co-incubation of cells with a fixed concentration of one steroid and varying concentrations of the other reversed the abovementioned effect (apoptosis for androgen, and anti-apoptosis for E 2 ), suggesting that the fate of the cell depends on the relative concentration of either steroid in the culture medium. We also report the identification of membrane receptors for E 2 and androgen in biopsy slides from breast cancer patients. Both sites are expressed, with the staining for membrane E 2 being strongly present in ER-negative, less differentiated, more aggressive tumors. These findings suggest that aromatase inhibitors may exert their beneficial effects on breast cancer by also propagating the metabolism of local steroids towards androgen, inducing thus cell apoptosis through membrane androgen receptor activation

  9. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    Science.gov (United States)

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Intracellular renin disrupts chemical communication between heart cells. Pathophysiological implications

    Directory of Open Access Journals (Sweden)

    Walmor eDe Mello

    2015-01-01

    Full Text Available The influence of intracellular renin on the process of chemical communication between cardiac cells was investigated in cell pairs isolated from the left ventricle of adult Wistar Kyoto rats. The enzyme together with Lucifer yellow CH was dialyzed into one cell of the pair using the whole cell clamp technique. The diffusion of the dye in the dialyzed and in non-dialyzed cell was followed by measuring the intensity of fluorescence in both cells as a function of time. The results indicated that; 1 under normal conditions, Lucifer Yellow flows from cell-to-cell through gap junctions; 2 the intracellular dialysis of renin (100nM disrupts chemical communication-an effect enhanced by simultaneous administration of angiotensinogen (100nM; 3 enalaprilat (10-9M administered to the cytosol together with renin reduced drastically the uncoupling action of the enzyme; 4 aliskiren (10-8M inhibited the effect of renin on chemical communication;5 the possible role of intracellular renin independently of angiotensin II (Ang II was evaluated including the increase of the inward calcium current elicited by the enzyme and the possible role of oxidative stress on the disruption of cell communication; 6 the possible harmful versus the beneficial effect of intracellular renin during myocardial infarction was discussed;7 the present results indicate that intracellular renin due to internalization or in situ synthesis, causes a severe impairment of chemical communication in the heart resulting in derangement of metabolic cooperation with serious consequences for heart function.

  11. To Die or to Survive, a Fatal Question for the Destiny of Prostate Cancer Cells after Androgen Deprivation Therapy

    International Nuclear Information System (INIS)

    Zhang, Kai-Xin; Firus, Jessica; Prieur, Brenda; Jia, William; Rennie, Paul S.

    2011-01-01

    Prostate cancer is the most frequently diagnosed non-skin cancer in adult males in North America and is the second leading cause of cancer-related mortality. For locally advanced or metastatic disease, androgen deprivation, through medical or surgical castration, is the primary treatment to induce prostate cancer cell death and extend patient survival. However, the vast majority of cancers progress to a castration-resistant/androgen-independent state where the cell death processes are no longer active. This review describes the main cell death processes, apoptosis, autophagy, necrosis and necroptosis, which may be activated in prostate cancers after androgen deprivation therapy as well as the molecular mechanisms through which the cancers progress to become castration resistant. In particular, the central role of persistent androgen receptor (AR)-mediated signaling and AR crosstalk with other critical cell signaling pathways, including (i) the PI3K/Akt pathway, (ii) receptor tyrosine kinases, (iii) the p38 MAPK pathway, and (iv) the Wnt/β-catenin pathway, as well as reactivation of AR by de novo synthesized androgen are discussed in this context. Understanding the molecular changes that subvert normal cell death mechanisms and thereby compromise the survival of prostate cancer patients continues to be a major challenge

  12. To Die or to Survive, a Fatal Question for the Destiny of Prostate Cancer Cells after Androgen Deprivation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai-Xin; Firus, Jessica; Prieur, Brenda [The Vancouver Prostate Centre, 2660 Oak St., Vancouver, BC V6H 3Z6 (Canada); Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6 (Canada); Jia, William [Department of Surgery and Brain Research Centre, University of British Columbia, Vancouver, BC V6H 3Z6 (Canada); Rennie, Paul S., E-mail: prennie@interchange.ubc.ca [The Vancouver Prostate Centre, 2660 Oak St., Vancouver, BC V6H 3Z6 (Canada); Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6 (Canada)

    2011-03-24

    Prostate cancer is the most frequently diagnosed non-skin cancer in adult males in North America and is the second leading cause of cancer-related mortality. For locally advanced or metastatic disease, androgen deprivation, through medical or surgical castration, is the primary treatment to induce prostate cancer cell death and extend patient survival. However, the vast majority of cancers progress to a castration-resistant/androgen-independent state where the cell death processes are no longer active. This review describes the main cell death processes, apoptosis, autophagy, necrosis and necroptosis, which may be activated in prostate cancers after androgen deprivation therapy as well as the molecular mechanisms through which the cancers progress to become castration resistant. In particular, the central role of persistent androgen receptor (AR)-mediated signaling and AR crosstalk with other critical cell signaling pathways, including (i) the PI3K/Akt pathway, (ii) receptor tyrosine kinases, (iii) the p38 MAPK pathway, and (iv) the Wnt/β-catenin pathway, as well as reactivation of AR by de novo synthesized androgen are discussed in this context. Understanding the molecular changes that subvert normal cell death mechanisms and thereby compromise the survival of prostate cancer patients continues to be a major challenge.

  13. To Die or to Survive, a Fatal Question for the Destiny of Prostate Cancer Cells after Androgen Deprivation Therapy

    Directory of Open Access Journals (Sweden)

    Paul S. Rennie

    2011-03-01

    Full Text Available Prostate cancer is the most frequently diagnosed non-skin cancer in adult males in North America and is the second leading cause of cancer-related mortality. For locally advanced or metastatic disease, androgen deprivation, through medical or surgical castration, is the primary treatment to induce prostate cancer cell death and extend patient survival. However, the vast majority of cancers progress to a castration-resistant/androgen-independent state where the cell death processes are no longer active. This review describes the main cell death processes, apoptosis, autophagy, necrosis and necroptosis, which may be activated in prostate cancers after androgen deprivation therapy as well as the molecular mechanisms through which the cancers progress to become castration resistant. In particular, the central role of persistent androgen receptor (AR-mediated signaling and AR crosstalk with other critical cell signaling pathways, including (i the PI3K/Akt pathway, (ii receptor tyrosine kinases, (iii the p38 MAPK pathway, and (iv the Wnt/β-catenin pathway, as well as reactivation of AR by de novo synthesized androgen are discussed in this context. Understanding the molecular changes that subvert normal cell death mechanisms and thereby compromise the survival of prostate cancer patients continues to be a major challenge.

  14. Differential effects of genistein on prostate cancer cells depend on mutational status of the androgen receptor.

    Directory of Open Access Journals (Sweden)

    Abeer M Mahmoud

    Full Text Available Blocking the androgen receptor (AR activity is the main goal of therapies for advanced prostate cancer (PCa. However, relapse with a more aggressive, hormone refractory PCa arises, which harbors restored AR activity. One mechanism of such reactivation occurs through acquisition of AR mutations that enable its activation by various steroidal and non-steroidal structures. Thus, natural and chemical compounds that contribute to inappropriate (androgen-independent activation of the AR become an area of intensive research. Here, we demonstrate that genistein, a soy phytoestrogen binds to both the wild and the Thr877Ala (T877A mutant types of AR competitively with androgen, nevertheless, it exerts a pleiotropic effect on PCa cell proliferation and AR activity depending on the mutational status of the AR. Genistein inhibited, in a dose-dependent way, cell proliferation and AR nuclear localization and expression in LAPC-4 cells that have wild AR. However, in LNCaP cells that express the T877A mutant AR, genistein induced a biphasic effect where physiological doses (0.5-5 µmol/L stimulated cell growth and increased AR expression and transcriptional activity, and higher doses induced inhibitory effects. Similar biphasic results were achieved in PC-3 cells transfected with AR mutants; T877A, W741C and H874Y. These findings suggest that genistein, at physiological concentrations, potentially act as an agonist and activate the mutant AR that can be present in advanced PCa after androgen ablation therapy.

  15. Zebrafish model of tuberous sclerosis complex reveals cell-autonomous and non-cell-autonomous functions of mutant tuberin

    Directory of Open Access Journals (Sweden)

    Seok-Hyung Kim

    2011-03-01

    Tuberous sclerosis complex (TSC is an autosomal dominant disease caused by mutations in either the TSC1 (encodes hamartin or TSC2 (encodes tuberin genes. Patients with TSC have hamartomas in various organs throughout the whole body, most notably in the brain, skin, eye, heart, kidney and lung. To study the development of hamartomas, we generated a zebrafish model of TSC featuring a nonsense mutation (vu242 in the tsc2 gene. This tsc2vu242 allele encodes a truncated Tuberin protein lacking the GAP domain, which is required for inhibition of Rheb and of the TOR kinase within TORC1. We show that tsc2vu242 is a recessive larval-lethal mutation that causes increased cell size in the brain and liver. Greatly elevated TORC1 signaling is observed in tsc2vu242/vu242 homozygous zebrafish, and is moderately increased in tsc2vu242/+ heterozygotes. Forebrain neurons are poorly organized in tsc2vu242/vu242 homozygous mutants, which have extensive gray and white matter disorganization and ectopically positioned cells. Genetic mosaic analyses demonstrate that tsc2 limits TORC1 signaling in a cell-autonomous manner. However, in chimeric animals, tsc2vu242/vu242 mutant cells also mislocalize wild-type host cells in the forebrain in a non-cell-autonomous manner. These results demonstrate a highly conserved role of tsc2 in zebrafish and establish a new animal model for studies of TSC. The finding of a non-cell-autonomous function of mutant cells might help explain the formation of brain hamartomas and cortical malformations in human TSC.

  16. Inhibition of progression of androgen-dependent prostate LNCaP tumors to androgen independence in SCID mice by oral caffeine and voluntary exercise.

    Science.gov (United States)

    Zheng, Xi; Cui, Xiao-Xing; Huang, Mou-Tuan; Liu, Yue; Wagner, George C; Lin, Yong; Shih, Weichung Joe; Lee, Mao-Jung; Yang, Chung S; Conney, Allan H

    2012-01-01

    The effect of oral caffeine or voluntary running wheel exercise (RW) alone or in combination on the progression of human androgen-dependent LNCaP prostate tumors to androgen independence in male severe combined immunodeficiency mice was determined. The mice were injected subcutaneously with LNCaP cells, and when the tumors reached a moderate size, the mice were surgically castrated and treated with caffeine (0.40 mg/ml drinking water) or RW alone or in combination for 42 days. We found that caffeine administration or RW inhibited the progression and growth of androgen-dependent LNCaP tumors to androgen independence, and a combination of the 2 regimens was more effective than the individual regimens alone. The ratios of the percent mitotic cells/caspase-3 positive cells in tumors from the caffeine-treated, RW-treated, or combination-treated mice were decreased by 34%, 38%, and 52%, respectively. Caffeine treatment increased the percentage of mitotic tumor cells undergoing apoptosis (lethal mitosis) whereas RW inhibited the increase in interleukin-6 that occurred during the progression of LNCaP tumors from androgen dependence to androgen independence. Our results indicate that oral administration of caffeine in combination with voluntary exercise may be an effective strategy for the prevention of prostate cancer progression from androgen dependence to androgen independence.

  17. Conventional and novel stem cell based therapies for androgenic alopecia

    Directory of Open Access Journals (Sweden)

    Talavera-Adame D

    2017-08-01

    Full Text Available Dodanim Talavera-Adame,1 Daniella Newman,2 Nathan Newman1 1American Advanced Medical Corp. (Private Practice, Beverly Hills, CA, 2Western University of Health Sciences, Pomona, CA, USA Abstract: The prevalence of androgenic alopecia (AGA increases with age and it affects both men and women. Patients diagnosed with AGA may experience decreased quality of life, depression, and feel self-conscious. There are a variety of therapeutic options ranging from prescription drugs to non-prescription medications. Currently, AGA involves an annual global market revenue of US$4 billion and a growth rate of 1.8%, indicating a growing consumer market. Although natural and synthetic ingredients can promote hair growth and, therefore, be useful to treat AGA, some of them have important adverse effects and unknown mechanisms of action that limit their use and benefits. Biologic factors that include signaling from stem cells, dermal papilla cells, and platelet-rich plasma are some of the current therapeutic agents being studied for hair restoration with milder side effects. However, most of the mechanisms exerted by these factors in hair restoration are still being researched. In this review, we analyze the therapeutic agents that have been used for AGA and emphasize the potential of new therapies based on advances in stem cell technologies and regenerative medicine. Keywords: stem cells, stem cell therapies, hair follicle, dermal papilla, androgenic alopecia, laser, hair regeneration

  18. Nucleoporin 62 and Ca(2+)/calmodulin dependent kinase kinase 2 regulate androgen receptor activity in castrate resistant prostate cancer cells.

    Science.gov (United States)

    Karacosta, Loukia G; Kuroski, Laura A; Hofmann, Wilma A; Azabdaftari, Gissou; Mastri, Michalis; Gocher, Angela M; Dai, Shuhang; Hoste, Allen J; Edelman, Arthur M

    2016-02-15

    Re-activation of the transcriptional activity of the androgen receptor (AR) is an important factor mediating progression from androgen-responsive to castrate-resistant prostate cancer (CRPC). However, the mechanisms regulating AR activity in CRPC remain incompletely understood. Ca(2+) /calmodulin-dependent kinase kinase (CaMKK) 2 was previously shown to regulate AR activity in androgen-responsive prostate cancer cells. Our objective was to further explore the basis of this regulation in CRPC cells. The abundance of CaMKK2 in nuclear fractions of androgen-responsive prostate cancer and CRPC, cells were determined by subcellular fractionation and Western blotting. CaMKK2 association with nuclear pore complexes (NPCs) and nucleoporins (Nups) including Nup62, were imaged by structured illumination and super-resolution fluorescence microscopy and co-immunoprecipitation, respectively. The abundance and subcellular localization of CaMKK2 and Nup62 in human clinical specimens of prostate cancer was visualized by immunohistochemistry. The role of Nups in the growth and viability of CRPC cells was assessed by RNA interference and cell counting. The involvement of CaMKK2 and Nup62 in regulating AR transcriptional activity was addressed by RNA interference, chromatin immunoprecipitation, androgen response element reporter assay, and Western blotting. CaMKK2 was expressed at higher levels in the nuclear fraction of CPRC C4-2 cells, than in that of androgen-responsive LNCaP cells. In C4-2 cells, CaMKK2 associated with NPCs of the nuclear envelope and physically interacted with Nup62. CaMKK2 and Nup62 demonstrated pronounced, and similar increases in both expression and perinuclear/nuclear localization in human clinical specimens of advanced prostate cancer relative to normal prostate. Knockdown of Nup62, but not of Nups, 98 or 88, reduced growth and viability of C4-2 cells. Knockdown of Nup62 produced a greater reduction of the growth and viability of C4-2 cells than of non

  19. Androgen Receptor Signaling in Bladder Cancer

    Science.gov (United States)

    Li, Peng; Chen, Jinbo; Miyamoto, Hiroshi

    2017-01-01

    Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in urothelial carcinogenesis as well as tumor growth. While the precise mechanisms of the functions of the androgen receptor in urothelial cells remain far from being fully understood, current evidence may offer chemopreventive or therapeutic options, using androgen deprivation therapy, in patients with bladder cancer. PMID:28241422

  20. Androgen Receptor Signaling in Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-02-01

    Full Text Available Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in urothelial carcinogenesis as well as tumor growth. While the precise mechanisms of the functions of the androgen receptor in urothelial cells remain far from being fully understood, current evidence may offer chemopreventive or therapeutic options, using androgen deprivation therapy, in patients with bladder cancer.

  1. Androgen Receptor-Mediated Growth Suppression of HPr-1AR and PC3-Lenti-AR Prostate Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Young-Chae Kim

    Full Text Available The androgen receptor (AR mediates the developmental, physiologic, and pathologic effects of androgens including 5α-dihydrotestosterone (DHT. However, the mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells are not well understood, though they are central to prostate development, homeostasis, and neoplasia. Here, we identify androgen-responsive genes that restrain cell cycle progression and proliferation of human prostate epithelial cell lines (HPr-1AR and PC3-Lenti-AR, and we investigate the mechanisms through which AR regulates their expression. DHT inhibited proliferation of HPr-1AR and PC3-Lenti-AR, and cell cycle analysis revealed a prolonged G1 interval. In the cell cycle, the G1/S-phase transition is initiated by the activity of cyclin D and cyclin-dependent kinase (CDK complexes, which relieve growth suppression. In HPr-1AR, cyclin D1/2 and CDK4/6 mRNAs were androgen-repressed, whereas CDK inhibitor, CDKN1A, mRNA was androgen-induced. The regulation of these transcripts was AR-dependent, and involved multiple mechanisms. Similar AR-mediated down-regulation of CDK4/6 mRNAs and up-regulation of CDKN1A mRNA occurred in PC3-Lenti-AR. Further, CDK4/6 overexpression suppressed DHT-inhibited cell cycle progression and proliferation of HPr-1AR and PC3-Lenti-AR, whereas CDKN1A overexpression induced cell cycle arrest. We therefore propose that AR-mediated growth suppression of HPr-1AR involves cyclin D1 mRNA decay, transcriptional repression of cyclin D2 and CDK4/6, and transcriptional activation of CDKN1A, which serve to decrease CDK4/6 activity. AR-mediated inhibition of PC3-Lenti-AR proliferation occurs through a similar mechanism, albeit without down-regulation of cyclin D. Our findings provide insight into AR-mediated regulation of prostate epithelial cell proliferation.

  2. Developmental programming of polycystic ovary syndrome (PCOS): prenatal androgens establish pancreatic islet α/β cell ratio and subsequent insulin secretion.

    Science.gov (United States)

    Ramaswamy, S; Grace, C; Mattei, A A; Siemienowicz, K; Brownlee, W; MacCallum, J; McNeilly, A S; Duncan, W C; Rae, M T

    2016-06-06

    Exogenous androgenic steroids applied to pregnant sheep programmes a PCOS-like phenotype in female offspring. Via ultrasound guidance we applied steroids directly to ovine fetuses at d62 and d82 of gestation, and examined fetal (day 90 gestation) and postnatal (11 months old) pancreatic structure and function. Of three classes of steroid agonists applied (androgen - Testosterone propionate (TP), estrogen - Diethystilbesterol (DES) and glucocorticoid - Dexamethasone (DEX)), only androgens (TP) caused altered pancreatic development. Beta cell numbers were significantly elevated in prenatally androgenised female fetuses (P = 0.03) (to approximately the higher numbers found in male fetuses), whereas alpha cell counts were unaffected, precipitating decreased alpha:beta cell ratios in the developing fetal pancreas (P = 0.001), sustained into adolescence (P = 0.0004). In adolescence basal insulin secretion was significantly higher in female offspring from androgen-excess pregnancies (P = 0.045), and an exaggerated, hyperinsulinaemic response to glucose challenge (P = 0.0007) observed, whereas prenatal DES or DEX treatment had no effects upon insulin secretion. Postnatal insulin secretion correlated with beta cell numbers (P = 0.03). We conclude that the pancreas is a primary locus of androgenic stimulation during development, giving rise to postnatal offspring whose pancreas secreted excess insulin due to excess beta cells in the presence of a normal number of alpha cells.

  3. Concentration-dependent fluorescence live-cell imaging and tracking of intracellular nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Ji Hye; Joo, Sang-Woo [Department of Chemistry, Soongsil University, Seoul 156-743 (Korea, Republic of); Cho, Keunchang [Logos Biosystems, Incorporated, Anyang 431-070 (Korea, Republic of); Lee, So Yeong, E-mail: leeso@snu.ac.kr, E-mail: sjoo@ssu.ac.kr [Laboratory of Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2011-06-10

    Using live-cell imaging techniques we investigated concentration-dependent intracellular movements of fluorescence nanoparticles (NPs) in real-time after their entry into HeLa cells via incubation. Intracellular particle traces appeared to be a mixture of both random and fairly unidirectional movements of the particles. At rather low concentrations of NPs, a majority of the non-random intracellular particle trajectories are assumed to mostly go along microtubule networks after endocytosis, as evidenced from the inhibition test with nocodazole. On the other hand, as the concentrations of NPs increased, random motions were more frequently observed inside the cells.

  4. Concentration-dependent fluorescence live-cell imaging and tracking of intracellular nanoparticles

    International Nuclear Information System (INIS)

    Seo, Ji Hye; Joo, Sang-Woo; Cho, Keunchang; Lee, So Yeong

    2011-01-01

    Using live-cell imaging techniques we investigated concentration-dependent intracellular movements of fluorescence nanoparticles (NPs) in real-time after their entry into HeLa cells via incubation. Intracellular particle traces appeared to be a mixture of both random and fairly unidirectional movements of the particles. At rather low concentrations of NPs, a majority of the non-random intracellular particle trajectories are assumed to mostly go along microtubule networks after endocytosis, as evidenced from the inhibition test with nocodazole. On the other hand, as the concentrations of NPs increased, random motions were more frequently observed inside the cells.

  5. Development of androgen-and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays

    NARCIS (Netherlands)

    Sonneveld, E.; Jansen, H.J..; Riteco, J.A.C.; Brouwer, A.

    2005-01-01

    We have established highly sensitive and specific androgen and estrogen reporter cell lines which we have named AR (androgen receptor) and ERα (estrogen receptor alpha) CALUX® (Chemically Activated LUciferase eXpression), respectively. Both bioassays are member of a panel of CALUX reporter cell

  6. Androgen regulation of the androgen receptor coregulators

    International Nuclear Information System (INIS)

    Urbanucci, Alfonso; Waltering, Kati K; Suikki, Hanna E; Helenius, Merja A; Visakorpi, Tapio

    2008-01-01

    The critical role of the androgen receptor (AR) in the development of prostate cancer is well recognized. The transcriptional activity of AR is partly regulated by coregulatory proteins. It has been suggested that these coregulators could also be important in the progression of prostate cancer. The aim of this study was to identify coregulators whose expression is regulated by either the androgens and/or by the expression level of AR. We used empty vector and AR cDNA-transfected LNCaP cells (LNCaP-pcDNA3.1, and LNCaP-ARhi, respectively), and grew them for 4 and 24 hours in the presence of dihydrotestosterone (DHT) at various concentrations. The expression of 25 AR coregulators (SRC1, TIF2, PIAS1, PIASx, ARIP4, BRCA1, β-catenin, AIB3, AIB1, CBP, STAT1, NCoR1, AES, cyclin D1, p300, ARA24, LSD1, BAG1L, gelsolin, prohibitin, JMJD2C, JMJD1A, MAK, PAK6 and MAGE11) was then measured by using real-time quantitative RT-PCR (Q-RT-PCR). Five of the coregulators (AIB1, CBP, MAK, BRCA1 and β-catenin) showed more than 2-fold induction and 5 others (cyclin D1, gelsolin, prohibitin, JMJD1A, and JMJD2C) less than 2-fold induction. Overexpression of AR did not affect the expression of the coregulators alone. However, overexpression of AR enhanced the DHT-stimulated expression of MAK, BRCA1, AIB1 and CBP and reduced the level of expression of β-catenin, cyclinD1 and gelsolin. In conclusion, we identified 5 coactivators whose expression was induced by androgens suggesting that they could potentiate AR signaling. Overexpression of AR seems to sensitize cells for low levels of androgens

  7. Serum androgen binding protein and follicle stimulating hormone as indices of Sertoli cell function in the irradiated testis

    International Nuclear Information System (INIS)

    Delic, J.I.; Hendry, J.H.; Shalet, S.M.; Morris, I.D.

    1986-01-01

    The present study presents evidence of radiation-induced Sertoli cell damage in both the pubertal and adult rat. The indirect measurement of Sertoli cell function, serum follicle stimulating hormone (FSH), in general mirrored the changes seen in androgen binding protein (ABP), again indicating Sertoli cell dysfunction. Although FSH remained elevated in adult rats after 5 Gy and above and in pubertal rats after 10 and 20 Gy, the elevation was not as great as that observed in castrates. This suggests that FSH secretion was still inhibited by some factor. As ABP was reduced to near 'background' (castrate) levels after these high doses, suggesting Sertoli cell dysfunction, this may indicate that serum ABP levels may not adequately reflect all Sertoli cell functions. Alternatively FSH may have been inhibited by by Leydig cell androgens, which have been demonstrated to modulate, in part, FSH secretion. Although the Leydig cells were damaged, androgen secretion was not entirely reduced during the study. In general, FSH was elevated when severe damage to spermatogenesis was noted. Whether the changes were related to the absence of a specific spermatogenic cell type could not be determined. (UK)

  8. Androgens Exert a Cysticidal Effect upon Taenia crassiceps by Disrupting Flame Cell Morphology and Function

    Science.gov (United States)

    Ambrosio, Javier R.; Valverde-Islas, Laura; Nava-Castro, Karen E.; Palacios- Arreola, M. Isabel; Ostoa-Saloma, Pedro; Reynoso-Ducoing, Olivia; Escobedo, Galileo; Ruíz-Rosado, Azucena; Dominguez-Ramírez, Lenin; Morales-Montor, Jorge

    2015-01-01

    The effects of testosterone (T4) and dihydrotestosterone (DHT) on the survival of the helminth cestode parasite Taenia crassiceps, as well as their effects on actin, tubulin and myosin expression and their assembly into the excretory system of flame cells are described in this paper. In vitro evaluations on parasite viability, flow cytometry, confocal microscopy, video-microscopy of live flame cells, and docking experiments of androgens interacting with actin, tubulin, and myosin were conducted. Our results show that T4 and DHT reduce T. crassiceps viability in a dose- and time-dependent fashion, reaching 90% of mortality at the highest dose used (40 ng/ml) and time exposed (10 days) in culture. Androgen treatment does not induce differences in the specific expression pattern of actin, tubulin, and myosin isoforms as compared with control parasites. Confocal microscopy demonstrated a strong disruption of the parasite tegument, with reduced assembly, shape, and motion of flame cells. Docking experiments show that androgens are capable of affecting parasite survival and flame cell morphology by directly interacting with actin, tubulin and myosin without altering their protein expression pattern. We show that both T4 and DHT are able to bind actin, tubulin, and myosin affecting their assembly and causing parasite intoxication due to impairment of flame cell function. Live flame cell video microscopy showing a reduced motion as well changes in the shape of flame cells are also shown. In summary, T4 and DHT directly act on T. crassiceps cysticerci through altering parasite survival as well as the assembly and function of flame cells. PMID:26076446

  9. Study the Origin and Mechanisms of Castration Resistance Characterized by Outgrowth of Prostate Cancer Cells with Low/Negative Androgen Receptor

    Science.gov (United States)

    2017-12-01

    Prostate Cancer Cells with Low/Negative Androgen Receptor 5b. GRANT NUMBER W81XWH-15-1-0540 5c. PROGRAM...role of androgen receptor (AR) signaling in disease progression, the current approach to treat prostate cancer is AR-targeted therapy. While this... Prostate cancer ; Androgen receptor ; Castration-resistant prostate cancer (CRPC); Enzalutamide resistance; GREB1; p300 6 Accomplishments Specific

  10. Cellular androgen content influences enzalutamide agonism of F877L mutant androgen receptor

    Science.gov (United States)

    Coleman, Daniel J.; Van Hook, Kathryn; King, Carly J.; Schwartzman, Jacob; Lisac, Robert; Urrutia, Joshua; Sehrawat, Archana; Woodward, Josha; Wang, Nicholas J.; Gulati, Roman; Thomas, George V.; Beer, Tomasz M.; Gleave, Martin; Korkola, James E.; Gao, Lina; Heiser, Laura M.; Alumkal, Joshi J.

    2016-01-01

    Prostate cancer is the most commonly diagnosed and second-most lethal cancer among men in the United States. The vast majority of prostate cancer deaths are due to castration-resistant prostate cancer (CRPC) – the lethal form of the disease that has progressed despite therapies that interfere with activation of androgen receptor (AR) signaling. One emergent resistance mechanism to medical castration is synthesis of intratumoral androgens that activate the AR. This insight led to the development of the AR antagonist enzalutamide. However, resistance to enzalutamide invariably develops, and disease progression is nearly universal. One mechanism of resistance to enzalutamide is an F877L mutation in the AR ligand-binding domain that can convert enzalutamide to an agonist of AR activity. However, mechanisms that contribute to the agonist switch had not been fully clarified, and there were no therapies to block AR F877L. Using cell line models of castration-resistant prostate cancer (CRPC), we determined that cellular androgen content influences enzalutamide agonism of mutant F877L AR. Further, enzalutamide treatment of AR F877L-expressing cell lines recapitulated the effects of androgen activation of F877L AR or wild-type AR. Because the BET bromodomain inhibitor JQ-1 was previously shown to block androgen activation of wild-type AR, we tested JQ-1 in AR F877L-expressing CRPC models. We determined that JQ-1 suppressed androgen or enzalutamide activation of mutant F877L AR and suppressed growth of mutant F877L AR CRPC tumors in vivo, demonstrating a new strategy to treat tumors harboring this mutation. PMID:27276681

  11. Sphingosine kinase-1 is central to androgen-regulated prostate cancer growth and survival.

    Directory of Open Access Journals (Sweden)

    Audrey Dayon

    Full Text Available BACKGROUND: Sphingosine kinase-1 (SphK1 is an oncogenic lipid kinase notably involved in response to anticancer therapies in prostate cancer. Androgens regulate prostate cancer cell proliferation, and androgen deprivation therapy is the standard of care in the management of patients with advanced disease. Here, we explored the role of SphK1 in the regulation of androgen-dependent prostate cancer cell growth and survival. METHODOLOGY/PRINCIPAL FINDINGS: Short-term androgen removal induced a rapid and transient SphK1 inhibition associated with a reduced cell growth in vitro and in vivo, an event that was not observed in the hormono-insensitive PC-3 cells. Supporting the critical role of SphK1 inhibition in the rapid effect of androgen depletion, its overexpression could impair the cell growth decrease. Similarly, the addition of dihydrotestosterone (DHT to androgen-deprived LNCaP cells re-established cell proliferation, through an androgen receptor/PI3K/Akt dependent stimulation of SphK1, and inhibition of SphK1 could markedly impede the effects of DHT. Conversely, long-term removal of androgen support in LNCaP and C4-2B cells resulted in a progressive increase in SphK1 expression and activity throughout the progression to androgen-independence state, which was characterized by the acquisition of a neuroendocrine (NE-like cell phenotype. Importantly, inhibition of the PI3K/Akt pathway--by negatively impacting SphK1 activity--could prevent NE differentiation in both cell models, an event that could be mimicked by SphK1 inhibitors. Fascinatingly, the reversability of the NE phenotype by exposure to normal medium was linked with a pronounced inhibition of SphK1 activity. CONCLUSIONS/SIGNIFICANCE: We report the first evidence that androgen deprivation induces a differential effect on SphK1 activity in hormone-sensitive prostate cancer cell models. These results also suggest that SphK1 activation upon chronic androgen deprivation may serve as a

  12. Protein kinase D1 (PKD1) influences androgen receptor (AR) function in prostate cancer cells

    International Nuclear Information System (INIS)

    Mak, Paul; Jaggi, Meena; Syed, Viqar; Chauhan, Subhash C.; Hassan, Sazzad; Biswas, Helal; Balaji, K.C.

    2008-01-01

    Protein kinase D1 (PKD1), founding member of PKD protein family, is down-regulated in advanced prostate cancer (PCa). We demonstrate that PKD1 and androgen receptor (AR) are present as a protein complex in PCa cells. PKD1 is associated with a transcriptional complex which contains AR and promoter sequence of the Prostate Specific Antigen (PSA) gene. Ectopic expression of wild type PKD1 and the kinase dead mutant PKD1 (K628W) attenuated the ligand-dependent transcriptional activation of AR in prostate cancer cells and yeast cells indicating that PKD1 can affect AR transcription activity, whereas knocking down PKD1 enhanced the ligand-dependent transcriptional activation of AR. Co-expression of kinase dead mutant with AR significantly inhibited androgen-mediated cell proliferation in both LNCaP and DU145 PC cells. Our data demonstrate for the first time that PKD1 can influence AR function in PCa cells

  13. Development of Androgen- and Estrogen-Responsive bio-assays, members of a panel of human cell line-based highly selective steroid-responsive bioassays

    NARCIS (Netherlands)

    Sonneveld, E.; Jansen, H.J.

    2004-01-01

    We have established highly sensitive and specific androgen and estrogen reporter cell lines which we have named AR (androgen receptor) and ERα (estrogen receptor alpha) CALUX® (Chemically Activated LUciferase eXpression), respectively. Both bioassays are member of a panel of CALUX reporter cell

  14. Withaferin A Induces Cell Death Selectively in Androgen-Independent Prostate Cancer Cells but Not in Normal Fibroblast Cells.

    Directory of Open Access Journals (Sweden)

    Yukihiro Nishikawa

    Full Text Available Withaferin A (WA, a major bioactive component of the Indian herb Withania somnifera, induces cell death (apoptosis/necrosis in multiple types of tumor cells, but the molecular mechanism underlying this cytotoxicity remains elusive. We report here that 2 μM WA induced cell death selectively in androgen-insensitive PC-3 and DU-145 prostate adenocarcinoma cells, whereas its toxicity was less severe in androgen-sensitive LNCaP prostate adenocarcinoma cells and normal human fibroblasts (TIG-1 and KD. WA also killed PC-3 cells in spheroid-forming medium. DNA microarray analysis revealed that WA significantly increased mRNA levels of c-Fos and 11 heat-shock proteins (HSPs in PC-3 and DU-145, but not in LNCaP and TIG-1. Western analysis revealed increased expression of c-Fos and reduced expression of the anti-apoptotic protein c-FLIP(L. Expression of HSPs such as HSPA6 and Hsp70 was conspicuously elevated; however, because siRNA-mediated depletion of HSF-1, an HSP-inducing transcription factor, reduced PC-3 cell viability, it is likely that these heat-shock genes were involved in protecting against cell death. Moreover, WA induced generation of reactive oxygen species (ROS in PC-3 and DU-145, but not in normal fibroblasts. Immunocytochemistry and immuno-electron microscopy revealed that WA disrupted the vimentin cytoskeleton, possibly inducing the ROS generation, c-Fos expression and c-FLIP(L suppression. These observations suggest that multiple events followed by disruption of the vimentin cytoskeleton play pivotal roles in WA-mediated cell death.

  15. Comparison of the effect of cortisol on aromatase activity and androgen metabolism in two human fibroblast cell lines derived from the same individual

    DEFF Research Database (Denmark)

    Svenstrup, B; Brünner, N; Dombernowsky, P

    1990-01-01

    The effect of preincubation with cortisol on estrogen and androgen metabolism was investigated in human fibroblast monolayers grown from biopsies of genital and non-genital skin of the same person. The activity in the cells of aromatase, 5 alpha-reductase, 17 beta-hydroxysteroid oxidoreductase.......5-1.0 x 10(-6) M in both cell lines. When preincubation with cortisol was omitted no estrogen synthesis was detected. The formation of androgen was not altered after preincubation with cortisol. Pronounced differences were found in estrogen and in androgen metabolism in the two cell lines suggesting...

  16. Androgen receptor signalling in peritubular myoid cells is essential for normal differentiation and function of adult Leydig cells

    DEFF Research Database (Denmark)

    Welsh, M.; Moffat, L.; Belling, Kirstine Christensen

    2012-01-01

    Testosterone synthesis depends on normal Leydig cell (LC) development, but the mechanisms controlling this development remain unclear. We recently demonstrated that androgen receptor (AR) ablation from a proportion of testicular peritubular myoid cells (PTM-ARKO) did not affect LC number, but res......Testosterone synthesis depends on normal Leydig cell (LC) development, but the mechanisms controlling this development remain unclear. We recently demonstrated that androgen receptor (AR) ablation from a proportion of testicular peritubular myoid cells (PTM-ARKO) did not affect LC number......’ subpopulation that had arrested development and only weakly expressed INSL3, luteinizing hormone receptor, and several steroidogenic enzymes. Furthermore, unlike ‘normal’ LCs in PTM-ARKOs, the ‘abnormal’ LCs did not involute as expected in response to exogenous testosterone. Differential function of these LC...... sub-populations is likely to mean that the ‘normal’ LCs work harder to compensate for the ‘abnormal’ LCs to maintain normal serum testosterone. These findings reveal new paracrine mechanisms underlying adult LC development, which can be further investigated using PTM-ARKOs....

  17. Characterizations of Factors Affecting Androgen Receptor Transcriptional Regulation in Prostate Cancer

    National Research Council Canada - National Science Library

    Garabedian, Michael

    2003-01-01

    .... Expression of ART-27 in LNCaP cells, an androgen-dependent prostate cancer cell line, reduces androgen-mediated cellular proliferation, suggesting that ART-27 plays a role in suppressing cell growth...

  18. Transient fluctuations of intracellular zinc ions in cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan [Division of Human Nutrition, Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Maret, Wolfgang, E-mail: womaret@utmb.edu [Division of Human Nutrition, Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2009-08-15

    Zinc is essential for cell proliferation, differentiation, and viability. When zinc becomes limited for cultured cells, DNA synthesis ceases and the cell cycle is arrested. The molecular mechanisms of actions of zinc are believed to involve changes in the availability of zinc(II) ions (Zn{sup 2+}). By employing a fluorescent Zn{sup 2+} probe, FluoZin-3 acetoxymethyl ester, intracellular Zn{sup 2+} concentrations were measured in undifferentiated and in nerve growth factor (NGF)-differentiated rat pheochromocytoma (PC12) cells. Intracellular Zn{sup 2+} concentrations are pico- to nanomolar in PC12 cells and are higher in the differentiated than in the undifferentiated cells. When following cellular Zn{sup 2+} concentrations for 48 h after the removal of serum, a condition that is known to cause cell cycle arrest, Zn{sup 2+} concentrations decrease after 30 min but, remarkably, increase after 1 h, and then decrease again to about one half of the initial concentration. Cell proliferation, measured by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, decreases after both serum starvation and zinc chelation. Two peaks of Zn{sup 2+} concentrations occur within one cell cycle: one early in the G1 phase and the other in the late G1/S phase. Thus, fluctuations of intracellular Zn{sup 2+} concentrations and established modulation of phosphorylation signaling, via an inhibition of protein tyrosine phosphatases at commensurately low Zn{sup 2+} concentrations, suggest a role for Zn{sup 2+} in the control of the cell cycle. Interventions targeted at these picomolar Zn{sup 2+} fluctuations may be a way of controlling cell growth in hyperplasia, neoplasia, and diseases associated with aberrant differentiation.

  19. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie, E-mail: shujieli@nankai.edu.cn

    2014-06-13

    Highlights: • Lansoprazole (LPZ) induces cell apoptosis in breast cancer cells. • LPZ markedly inhibits intracellular proton extrusion. • LPZ induces an increase in intracellular ATP level, lysosomal alkalinization and ROS accumulation. - Abstract: The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor.

  20. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion

    International Nuclear Information System (INIS)

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie

    2014-01-01

    Highlights: • Lansoprazole (LPZ) induces cell apoptosis in breast cancer cells. • LPZ markedly inhibits intracellular proton extrusion. • LPZ induces an increase in intracellular ATP level, lysosomal alkalinization and ROS accumulation. - Abstract: The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor

  1. Activation of intracellular angiotensin AT2 receptors induces rapid cell death in human uterine leiomyosarcoma cells

    DEFF Research Database (Denmark)

    Zhao, Yi; Lützen, Ulf; Fritsch, Jürgen

    2015-01-01

    The presence of AT2 receptors in mitochondria and their role in NO generation and cell aging were recently demonstrated in various human and mouse non-tumour cells. We investigated the intracellular distribution of AT2 receptors including their presence in mitochondria and the role in the induction...... agonist, Compound 21 (C21) penetrates the cell membrane of quiescent SK-UT-1 cells, activates intracellular AT2 receptors and induces rapid cell death; approximately 70% of cells died within 24 h. The cells, which escaped from the cell death, displayed activation of the mitochondrial apoptotic pathway, i...

  2. Amino acid containing thapsigargin analogues deplete androgen receptor protein via synthesis inhibition and induce the death of prostate cancer cells

    DEFF Research Database (Denmark)

    Griend, Donald J Vander; Antony, Lizamma; Dalrymple, Susan L

    2009-01-01

    There are quantitative and/or qualitative mechanisms allowing androgen receptor (AR) growth signaling in androgen ablation refractory prostate cancer cells. Regardless of the mechanism, agents that deplete AR protein expression prevent such AR growth signaling. Thapsigargin (TG) is a highly cell......-penetrant sequiterpene-lactone that once inside cells inhibits (IC(50), approximately 10 nmol/L) critically important housekeeping SERCA 2b calcium pumps in the endoplasmic reticulum. Using a series of five genetically diverse androgen ablation refractory human prostate cancer lines (LNCaP, LAPC-4, VCaP, MDA-PCa-2b......-specific proteases, such as prostate-specific antigen and prostate-specific membrane antigen, or cancer-specific proteases, such as fibroblast activation protein, so that toxicity of these prodrugs is selectively targeted to metastatic sites of prostate cancer. Based on these results, these prodrugs are undergoing...

  3. Androgen Ablation Augments Prostate Cancer Vaccine Immunogenicity Only When Applied After Immunization

    Science.gov (United States)

    Koh, Yi T.; Gray, Andrew; Higgins, Sean A.; Hubby, Bolyn; Kast, W. Martin

    2009-01-01

    Background Androgen ablation (AA) causes apoptosis of normal and neoplastic prostate cells. It is a standard treatment for advanced prostate cancer. Androgen ablation-mediated immunological effects include bone marrow hyperplasia, thymic regeneration, T and B cell lymphopoeisis and restoration of age-related peripheral T cell dysfunction. Androgens also regulate the transcription of several cytokines. Dendritic cells (DC) are the most potent antigen presenting cells that can activate antigen-specific naïve T cells. Despite myriad clinical trials involving DC-based prostate cancer immunotherapies, the effects of AA on DC function remain largely uncharacterized. Therefore, we investigated the effects of AA on DC and whether it could improve the efficacy of prostate cancer immunotherapy. Methods Cytokine expression changes due to AA were quantified by multiplex ELISA. Flow cytometry was used to assess AA-mediated effects on DC maturation and expression of costimulatory markers. Mixed leukocyte reactions and cell-mediated lysis assays elucidated the role of androgens in DC function. The effect of AA on the efficacy of vaccination against a prostate tumor-associated antigen was tested using Elispot assays. Results Androgen ablation increased dendritic cell maturation and costimulatory marker expression, but had no effect on DC costimulatory function. However, DC isolated from castrated mice increased the expression of key cytokines by antigen-experienced T cells while decreasing their expression in naïve cells. Finally, androgen ablation improved immune responses to vaccination only when applied after immunization. Conclusion Androgen ablation causes differential effects of DC on primary and secondary T cell responses, thus augmenting vaccine immunogenicity only when applied after immunization. PMID:19143030

  4. Effects of 2,4-D and DCP on the DHT-induced androgenic action in human prostate cancer cells.

    Science.gov (United States)

    Kim, Hyun-Jung; Park, Young In; Dong, Mi-Sook

    2005-11-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) and its metabolite 2,4-dichlorophenol (DCP) are used extensively in agriculture as herbicides, and are suspected of potential endocrine disruptor activity. In a previous study, we showed that these compounds exhibited synergistic androgenic effects by co-treatment with testosterone in the Hershberger assay. To elucidate the mechanisms of the synergistic effects of these compounds on the androgenicity of testosterone, the androgenic action of 2,4-D and DCP was characterized using a mammalian detection system in prostate cancer cell lines. In in vitro assay systems, while 2,4-D or DCP alone did not show androgenic activity, 2,4-D or DCP with 5alpha-dihydroxytestosterone (DHT) exhibited synergistic androgenic activities. Co-treatment of 10 nM 2,4-D or DCP with 10 nM DHT was shown to stimulate the cell proliferation by 1.6-fold, compared to 10 nM DHT alone. In addition, in transient transfection assays, androgen-induced transactivation was also increased to a maximum of 32-fold or 1.28-fold by co-treatment of 2,4-D or DCP with DHT, respectively. However, 2,4-D and DCP exerted no effects on either mRNA or protein levels of AR. In a competitive AR binding assay, 2,4-D and DCP inhibited androgen binding to AR, up to 50% at concentrations of approximately 0.5 microM for both compounds. The nuclear translocation of green fluorescent protein-AR fusion protein in the presence of DHT was promoted as the result of the addition of 2,4-D and DCP. Collectively, these results that 2,4-D and DCP enhanced DHT-induced AR transcriptional activity might be attributable, at least in part, to the promotion of AR nuclear translocation.

  5. Autonomous Voltage Oscillations in a Direct Methanol Fuel Cell

    International Nuclear Information System (INIS)

    Nogueira, Jéssica A.; Peña Arias, Ivonne K.; Hanke-Rauschenbach, Richard; Vidakovic-Koch, Tanja; Varela, Hamilton; Sundmacher, Kai

    2016-01-01

    Proton exchange membrane fuel cells fed with H_2/CO mixtures at the anode have a considerably lower performance than fuel cells fed with pure hydrogen. However, when operated in an autonomous oscillatory regime, the overall voltage loss decreases due to a self-cleaning mechanism. Another molecule, also widely used as feed in the fuel cell and susceptible to kinetic instabilities, is methanol. To the best of our knowledge, there are no reports on autonomous voltage oscillations in the direct methanol fuel cell (DMFC). The purpose of this work was to explore if such instabilities also occur in the DMFC system. Initially, half-cell experiments with a gas diffusion electrode were performed. Then, a DMFC was operated under current control and studied by means of electrochemical impedance spectroscopy. The half-cell measurements revealed that the induction period for oscillations depends on the mass transfer conditions, where on stagnant electrode the induction time was shorter than in the case of forced convection. The DMFC showed also autonomous voltage oscillations above a certain threshold current. The results obtained by electrochemical impedance spectroscopy give evidence of a negative differential resistance in the fuel cell, hitherto not described in the literature, which can be related to the appearance of oscillations during galvanostatic methanol electro-oxidation. These results open the possibility to evaluate the performance of low-temperature fuel cells fed with carbon-containing fuels under oscillatory operating conditions.

  6. Polymorphic variation in the androgen receptor gene: association with risk of testicular germ cell cancer and metastatic disease

    DEFF Research Database (Denmark)

    Västermark, Åke; Giwercman, Yvonne Lundberg; Hagströmer, Oskar

    2011-01-01

    Increasing incidence of testicular germ cell cancer (TGCC) is most probably related to environment and lifestyle. However, an underlying genetic predisposition may play a role and since sex steroids are assumed to be important for the rise and progression of TGCC, a study of androgen receptor (AR...... of endocrine disruptors. From a biological point of view, our findings strengthen the hypothesis of the importance of androgen action in the aetiology and pathogenesis of testicular malignancy. Future studies should focus on the impact of sex hormones on foetal germ cell development and the interaction between...

  7. Age-Dependent Differences in Systemic and Cell-Autonomous Immunity to L. monocytogenes

    Directory of Open Access Journals (Sweden)

    Ashley M. Sherrid

    2013-01-01

    Full Text Available Host defense against infection can broadly be categorized into systemic immunity and cell-autonomous immunity. Systemic immunity is crucial for all multicellular organisms, increasing in importance with increasing cellular complexity of the host. The systemic immune response to Listeria monocytogenes has been studied extensively in murine models; however, the clinical applicability of these findings to the human newborn remains incompletely understood. Furthermore, the ability to control infection at the level of an individual cell, known as “cell-autonomous immunity,” appears most relevant following infection with L. monocytogenes; as the main target, the monocyte is centrally important to innate as well as adaptive systemic immunity to listeriosis. We thus suggest that the overall increased risk to suffer and die from L. monocytogenes infection in the newborn period is a direct consequence of age-dependent differences in cell-autonomous immunity of the monocyte to L. monocytogenes. We here review what is known about age-dependent differences in systemic innate and adaptive as well as cell-autonomous immunity to infection with Listeria monocytogenes.

  8. Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models

    National Research Council Canada - National Science Library

    Wang, Zhou

    2004-01-01

    .... Intermittent androgen ablation therapy may slow down the development of androgen refractory tumors because intermittent recovery of androgens can induce differentiation of prostatic epithelial cells...

  9. Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models

    National Research Council Canada - National Science Library

    Wang, Zhou

    2005-01-01

    .... Intermittent androgen ablation therapy may slow down the development of androgen refractory tumors because intermittent recovery of androgens can induce differentiation of prostatic epithelial cells...

  10. Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models

    National Research Council Canada - National Science Library

    Wang, Zhou

    2003-01-01

    .... Intermittent androgen ablation therapy may slow down the development of androgen refractory tumors because intermittent recovery of androgens can induce differentiation of prostatic epithelial cells...

  11. Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria.

    Directory of Open Access Journals (Sweden)

    Yves Briers

    Full Text Available Cell wall-deficient bacteria, or L-forms, represent an extreme example of bacterial plasticity. Stable L-forms can multiply and propagate indefinitely in the absence of a cell wall. Data presented here are consistent with the model that intracellular vesicles in Listeria monocytogenes L-form cells represent the actual viable reproductive elements. First, small intracellular vesicles are formed along the mother cell cytoplasmic membrane, originating from local phospholipid accumulation. During growth, daughter vesicles incorporate a small volume of the cellular cytoplasm, and accumulate within volume-expanding mother cells. Confocal Raman microspectroscopy demonstrated the presence of nucleic acids and proteins in all intracellular vesicles, but only a fraction of which reveals metabolic activity. Following collapse of the mother cell and release of the daughter vesicles, they can establish their own membrane potential required for respiratory and metabolic processes. Premature depolarization of the surrounding membrane promotes activation of daughter cell metabolism prior to release. Based on genome resequencing of L-forms and comparison to the parental strain, we found no evidence for predisposing mutations that might be required for L-form transition. Further investigations revealed that propagation by intracellular budding not only occurs in Listeria species, but also in L-form cells generated from different Enterococcus species. From a more general viewpoint, this type of multiplication mechanism seems reminiscent of the physicochemical self-reproducing properties of abiotic lipid vesicles used to study the primordial reproduction pathways of putative prokaryotic precursor cells.

  12. Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria.

    Science.gov (United States)

    Briers, Yves; Staubli, Titu; Schmid, Markus C; Wagner, Michael; Schuppler, Markus; Loessner, Martin J

    2012-01-01

    Cell wall-deficient bacteria, or L-forms, represent an extreme example of bacterial plasticity. Stable L-forms can multiply and propagate indefinitely in the absence of a cell wall. Data presented here are consistent with the model that intracellular vesicles in Listeria monocytogenes L-form cells represent the actual viable reproductive elements. First, small intracellular vesicles are formed along the mother cell cytoplasmic membrane, originating from local phospholipid accumulation. During growth, daughter vesicles incorporate a small volume of the cellular cytoplasm, and accumulate within volume-expanding mother cells. Confocal Raman microspectroscopy demonstrated the presence of nucleic acids and proteins in all intracellular vesicles, but only a fraction of which reveals metabolic activity. Following collapse of the mother cell and release of the daughter vesicles, they can establish their own membrane potential required for respiratory and metabolic processes. Premature depolarization of the surrounding membrane promotes activation of daughter cell metabolism prior to release. Based on genome resequencing of L-forms and comparison to the parental strain, we found no evidence for predisposing mutations that might be required for L-form transition. Further investigations revealed that propagation by intracellular budding not only occurs in Listeria species, but also in L-form cells generated from different Enterococcus species. From a more general viewpoint, this type of multiplication mechanism seems reminiscent of the physicochemical self-reproducing properties of abiotic lipid vesicles used to study the primordial reproduction pathways of putative prokaryotic precursor cells.

  13. Androgen insensitivity syndrome: gonadal androgen receptor activity

    International Nuclear Information System (INIS)

    Coulam, C.B.; Graham, M.L.; Spelsberg, T.C.

    1984-01-01

    To determine whether abnormalities of the androgen receptor previously observed in skin fibroblasts from patients with androgen insensitivity syndrome also occur in the gonads of affected individuals, androgen receptor activity in the gonads of a patient with testicular feminization syndrome was investigated. Using conditions for optimal recovery of androgen receptor from human testes established by previous studies, we detected the presence of a high-affinity (dissociation constant . 3.2 X 10(-10) mol/L), low-capacity (4.2 X 10(-12) mol/mg DNA), androgen-binding protein when tritium-labeled R1881 was incubated at 4 degrees C with nuclear extracts from the gonads of control patients or from a patient with testicular feminization syndrome but not when incubated at 37 degrees C. Thus this patient has an androgen receptor with a temperature lability similar to that of receptors from normal persons

  14. Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models

    National Research Council Canada - National Science Library

    Wang, Zhou

    2006-01-01

    .... Intermittent androgen ablation therapy (IAAT) may slow down the development of androgen refractory tumors because intermittent recovery of androgens can induce differentiation of prostatic epithelial cells...

  15. Heavy metals toxicity after acute exposure of cultured renal cells. Intracellular accumulation and repartition

    International Nuclear Information System (INIS)

    Khodja, Hicham; Carriere, Marie; Avoscan, Laure; Gouget, Barbara

    2005-01-01

    Lead (Pb), cadmium (Cd) and uranium (U) present no known biological function but are toxic in various concentration ranges. Pb and Cd lead generally to nephrotoxicity consisting in proximal renal tubular dysfunction and accumulation while U has been reported to induce chemical kidney toxicity, functional and histological damages being as well mainly observed in proximal tubule cells. This work address the question of Cd, Pb, and U cytotoxicity, intracellular accumulation and repartition after acute intoxication of renal proximal tubule epithelial cells. After cells exposure to different concentrations of metals for various times, morphological changes were observed and intracellular concentrations and distributions of toxic metals were specified by PIXE coupled to RBS. Cell viability, measured by biochemical tests, was used as toxicity indicator. A direct correlation between cytotoxicity and intracellular accumulation in renal epithelial cells have been established. Finally, intracellular Pb and U localizations were detected while Cd was found to be uniformly distributed in renal cells. (author)

  16. Lestaurtinib inhibits histone phosphorylation and androgen-dependent gene expression in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Jens Köhler

    Full Text Available BACKGROUND: Epigenetics is defined as heritable changes in gene expression that are not based on changes in the DNA sequence. Posttranslational modification of histone proteins is a major mechanism of epigenetic regulation. The kinase PRK1 (protein kinase C related kinase 1, also known as PKN1 phosphorylates histone H3 at threonine 11 and is involved in the regulation of androgen receptor signalling. Thus, it has been identified as a novel drug target but little is known about PRK1 inhibitors and consequences of its inhibition. METHODOLOGY/PRINCIPAL FINDING: Using a focused library screening approach, we identified the clinical candidate lestaurtinib (also known as CEP-701 as a new inhibitor of PRK1. Based on a generated 3D model of the PRK1 kinase using the homolog PKC-theta (protein kinase c theta protein as a template, the key interaction of lestaurtinib with PRK1 was analyzed by means of molecular docking studies. Furthermore, the effects on histone H3 threonine phosphorylation and androgen-dependent gene expression was evaluated in prostate cancer cells. CONCLUSIONS/SIGNIFICANCE: Lestaurtinib inhibits PRK1 very potently in vitro and in vivo. Applied to cell culture it inhibits histone H3 threonine phosphorylation and androgen-dependent gene expression, a feature that has not been known yet. Thus our findings have implication both for understanding of the clinical activity of lestaurtinib as well as for future PRK1 inhibitors.

  17. Immunocharacteristics of oestrogen and androgen target cells in the anterior pituitary gland of the chick as embryo demonstrated by a combined method of autoradiography and immunohistochemistry

    International Nuclear Information System (INIS)

    Gasc, J.-M.; Sar, M.; Stumpf, W.E.

    1980-01-01

    The distribution of oestrogen and androgen target cells in the anterior pituitary gland of the chick embryo on days 10, 12 and 15 of incubation was studied 1 h after the injection of tritium-labelled steroid hormone using the thaw-mount autoradiographic technique. Oestradiol target cells were localized in the caudal zone that corresponds to the so-called 'caudal lobe', while androgen target cells were found throughout the rostral and caudal lobes of the anterior gland. With a combined autoradiography and immunohistochemistry technique, most of the oestrogen target cells showed immunoreactivity to turkey LH antiserum but not to adrenocorticotrophin (1-24) and β-thyrotrophin antisera. In contrast, androgen target cells did not show positive immunoreactivity to the three antisera used. The results suggested a direct and early involvement of oestrogens but not of androgens in the feedback regulation of pituitary gonadotrophin secretion in the chick embryo. (U.K.)

  18. Testicular development in mice lacking receptors for follicle stimulating hormone and androgen.

    Directory of Open Access Journals (Sweden)

    Peter J O'Shaughnessy

    Full Text Available Post-natal testicular development is dependent on gonadotrophin and androgen stimulation. Follicle stimulating hormone (FSH acts through receptors (FSHR on the Sertoli cell to stimulate spermatogenesis while androgens promote testis growth through receptors (AR on the Sertoli cells, Leydig cells and peritubular myoid cells. In this study we have examined the effects on testis development of ablating FSHRs (FSHRKO mice and/or ARs ubiquitously (ARKO mice or specifically on the Sertoli cells (SCARKO mice. Cell numbers were measured using stereological methods. In ARKO mice Sertoli cell numbers were reduced at all ages from birth until adulthood. FSHR ablation also caused small reductions in Sertoli cell numbers up to day 20 with more marked effects seen in the adult. Germ cell numbers were unaffected by FSHR and/or AR ablation at birth. By day 20 ubiquitous AR or FSHR ablation caused a marked reduction in germ cell numbers with a synergistic effect of losing both receptors (germ cell numbers in FSHRKO.ARKO mice were 3% of control. Germ cell numbers in SCARKO mice were less affected. By adulthood, in contrast, clear synergistic control of germ cell numbers had become established between the actions of FSH and androgen through the Sertoli cells. Leydig cell numbers were normal on day 1 and day 5 in all groups. By day 20 and in adult animals total AR or FSHR ablation significantly reduced Leydig cell numbers but Sertoli cell specific AR ablation had no effect. Results show that, prior to puberty, development of most testicular parameters is more dependent on FSH action than androgen action mediated through the Sertoli cells although androgen action through other cells types is crucial. Post-pubertally, germ cell numbers and spermatogenesis are dependent on FSH and androgen action through the Sertoli cells.

  19. Somatic mosaicism of androgen receptor CAG repeats in colorectal carcinoma epithelial cells from men.

    Science.gov (United States)

    Di Fabio, Francesco; Alvarado, Carlos; Gologan, Adrian; Youssef, Emad; Voda, Linda; Mitmaker, Elliot; Beitel, Lenore K; Gordon, Philip H; Trifiro, Mark

    2009-06-01

    The X-linked human androgen receptor gene (AR) contains an exonic polymorphic trinucleotide CAG. The length of this encoded CAG tract inversely affects AR transcriptional activity. Colorectal carcinoma is known to express the androgen receptor, but data on somatic CAG repeat lengths variations in malignant and normal epithelial cells are still sporadic. Using laser capture microdissection (LCM), epithelial cells from colorectal carcinoma and normal-appearing mucosa were collected from the fresh tissue of eight consecutive male patients undergoing surgery (mean age, 70 y; range, 54-82). DNA isolated from each LCM sample underwent subsequent PCR and DNA sequencing to precisely determine AR CAG repeat lengths and the presence of microsatellite instability (MSI). Different AR CAG repeat lengths were observed in colorectal carcinoma (ranging from 0 to 36 CAG repeats), mainly in the form of multiple shorter repeat lengths. This genetic heterogeneity (somatic mosaicism) was also found in normal-appearing colorectal mucosa. Half of the carcinoma cases examined tended to have a higher number of AR CAG repeat lengths with a wider range of repeat size variation compared to normal mucosa. MSI carcinomas tended to have longer median AR CAG repeat lengths (n = 17) compared to microsatellite stable carcinomas (n = 14), although the difference was not significant (P = 0.31, Mann-Whitney test). Multiple unique somatic mutations of the AR CAG repeats occur in colorectal mucosa and in carcinoma, predominantly resulting in shorter alleles. Colorectal epithelial cells carrying AR alleles with shorter CAG repeat lengths may be more androgen-sensitive and therefore have a growth advantage.

  20. Cryptotanshinone Regulates Androgen Synthesis through the ERK/c-Fos/CYP17 Pathway in Porcine Granulosa Cells

    Directory of Open Access Journals (Sweden)

    Danfeng Ye

    2017-01-01

    Full Text Available The aim of the study is to investigate the molecular mechanism behind androgen reduction in porcine granulosa cells (pGCs with Salvia miltiorrhiza Bunge extract cryptotanshinone. PGCs were isolated from porcine ovaries and identified. Androgen excess model of the pGCs was induced with the MAPK inhibitor PD98059 and then treated with cryptotanshinone. The testosterone level was measured by radioimmunoassay in the culture media. The protein levels of P-ERK1/2, c-Fos, and CYP17 in the cells were measured by western blot. Cryptotanshinone decreased the concentration of testosterone and the protein level of CYP17 and increased the protein levels of P-ERK1/2 and c-Fos in the androgen excess mode. After the c-Fos gene was silenced by infection with c-Fos shRNA lentivirus, we measured the mRNA expression by quantitative RT-PCR and protein level by western blot of P-ERK1/2, c-Fos, and CYP17. This showed that the mRNA expression and protein level of P-ERK1/2 and c-Fos were significantly reduced in the shRNA–c-Fos group compared to the scrambled group, while those of CYP17 were significantly increased. So we concluded that cryptotanshinone can significantly reduce the androgen excess induced by PD98059 in pGCs. The possible molecular mechanism for this activity is regulating the ERK/c-Fos/CYP17 pathway.

  1. Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Anthony Arlia-Ciommo

    2014-05-01

    Full Text Available A body of evidence supports the view that the signaling pathways governing cellular aging – as well as mechanisms of their modulation by longevity-extending genetic, dietary and pharmacological interventions - are conserved across species. The scope of this review is to critically analyze recent advances in our understanding of cell-autonomous mechanisms of chronological aging in the budding yeast Saccharomyces cerevisiae. Based on our analysis, we propose a concept of a biomolecular network underlying the chronology of cellular aging in yeast. The concept posits that such network progresses through a series of lifespan checkpoints. At each of these checkpoints, the intracellular concentrations of some key intermediates and products of certain metabolic pathways - as well as the rates of coordinated flow of such metabolites within an intricate network of intercompartmental communications - are monitored by some checkpoint-specific ′′master regulator′′ proteins. The concept envisions that a synergistic action of these master regulator proteins at certain early-life and late-life checkpoints modulates the rates and efficiencies of progression of such processes as cell metabolism, growth, proliferation, stress resistance, macromolecular homeostasis, survival and death. The concept predicts that, by modulating these vital cellular processes throughout lifespan (i.e., prior to an arrest of cell growth and division, and following such arrest, the checkpoint-specific master regulator proteins orchestrate the development and maintenance of a pro- or anti-aging cellular pattern and, thus, define longevity of chronologically aging yeast.

  2. Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Arlia-Ciommo, Anthony; Leonov, Anna; Piano, Amanda; Svistkova, Veronika; Titorenko, Vladimir I

    2014-05-27

    A body of evidence supports the view that the signaling pathways governing cellular aging - as well as mechanisms of their modulation by longevity-extending genetic, dietary and pharmacological interventions - are conserved across species. The scope of this review is to critically analyze recent advances in our understanding of cell-autonomous mechanisms of chronological aging in the budding yeast Saccharomyces cerevisiae . Based on our analysis, we propose a concept of a biomolecular network underlying the chronology of cellular aging in yeast. The concept posits that such network progresses through a series of lifespan checkpoints. At each of these checkpoints, the intracellular concentrations of some key intermediates and products of certain metabolic pathways - as well as the rates of coordinated flow of such metabolites within an intricate network of intercompartmental communications - are monitored by some checkpoint-specific "master regulator" proteins. The concept envisions that a synergistic action of these master regulator proteins at certain early-life and late-life checkpoints modulates the rates and efficiencies of progression of such processes as cell metabolism, growth, proliferation, stress resistance, macromolecular homeostasis, survival and death. The concept predicts that, by modulating these vital cellular processes throughout lifespan (i.e., prior to an arrest of cell growth and division, and following such arrest), the checkpoint-specific master regulator proteins orchestrate the development and maintenance of a pro- or anti-aging cellular pattern and, thus, define longevity of chronologically aging yeast.

  3. Influence of Androgen Receptor in Vascular Cells on Reperfusion following Hindlimb Ischaemia.

    Directory of Open Access Journals (Sweden)

    Junxi Wu

    Full Text Available Studies in global androgen receptor knockout (G-ARKO and orchidectomised mice suggest that androgen accelerates reperfusion of the ischaemic hindlimb by stimulating angiogenesis. This investigation used novel, vascular cell-specific ARKO mice to address the hypothesis that the impaired hindlimb reperfusion in G-ARKO mice was due to loss of AR from cells in the vascular wall.Mice with selective deletion of AR (ARKO from vascular smooth muscle cells (SM-ARKO, endothelial cells (VE-ARKO, or both (SM/VE-ARKO were compared with wild type (WT controls. Hindlimb ischaemia was induced in these mice by ligation and removal of the femoral artery. Post-operative reperfusion was reduced in SM-ARKO and SM/VE-ARKO mice. Immunohistochemistry indicated that this was accompanied by a reduced density of smooth muscle actin-positive vessels but no change in the density of isolectin B4-positive vessels in the gastrocnemius muscle. Deletion of AR from the endothelium (VE-ARKO did not alter post-operative reperfusion or vessel density. In an ex vivo (aortic ring culture model of angiogenesis, AR was not detected in vascular outgrowths and angiogenesis was not altered by vascular ARKO or by exposure to dihydrotestosterone (DHT 10-10-10-7M; 6 days.These results suggest that loss of AR from vascular smooth muscle, but not from the endothelium, contributes to impaired reperfusion in the ischaemic hindlimb of G-ARKO. Impaired reperfusion was associated with reduced collateral formation rather than reduced angiogenesis.

  4. Elevated androgen levels induce hyperinsulinemia through increase in Ins1 transcription in pancreatic beta cells in female rats.

    Science.gov (United States)

    Mishra, Jay S; More, Amar S; Kumar, Sathish

    2018-01-22

    Hyperandrogenism is associated with hyperinsulinemia and insulin resistance in adult females. We tested whether androgens dysregulate pancreatic beta cell function to induce hyperinsulinemia through transcriptional regulation of insulin gene (Ins) in the islets. Adult female Wistar rats implanted with dihydrotestosterone (DHT; 7.5-mg, 90-d release) or placebo pellets were examined after 10 weeks. DHT exposure increased plasma DHT levels by 2-fold similar to that in polycystic ovary syndrome in women. DHT exposure induced hyperinsulinemia with increased HOMA-IR index in fasting state and glucose intolerance and exaggerated insulin responses following glucose tolerance test. DHT females had no change in islet number, size and beta cell proliferation/apoptosis but exhibited significant mitochondrial dysfunction (higher ADP/ATP ratio, decreased mtDNA copy number, increased reactive oxygen production and downregulation of mitochondrial biogenesis) and enhanced glucose-stimulated insulin secretion. Ins expression was increased in DHT islets. In vitro incubation of control islets with DHT dose-dependently stimulated Ins transcription. Analysis of Ins1 gene revealed a putative androgen responsive element in the promoter. Chromatin-immunoprecipitation assays showed that androgen receptors bind to this element in response to DHT stimulation. Furthermore, reporter assays showed that the promoter element is highly responsive to androgens. Insulin stimulated glucose uptake in skeletal muscle was decreased with associated decrease in IRβ expression in DHT females. Our studies identified a novel androgen-mediated mechanism for the control of Ins expression via transcriptional regulation providing a molecular mechanism linking elevated androgens and hyperinsulemia. Decreased IRβ expression in the skeletal muscles may contribute, in part, to glucose intolerance in this model. © The Author(s) 2018. Published by Oxford University Press on behalf of Society for the Study of

  5. Metabolic responses of primary and transformed cells to intracellular Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    Nadine Gillmaier

    Full Text Available The metabolic response of host cells, in particular of primary mammalian cells, to bacterial infections is poorly understood. Here, we compare the carbon metabolism of primary mouse macrophages and of established J774A.1 cells upon Listeria monocytogenes infection using (13C-labelled glucose or glutamine as carbon tracers. The (13C-profiles of protein-derived amino acids from labelled host cells and intracellular L. monocytogenes identified active metabolic pathways in the different cell types. In the primary cells, infection with live L. monocytogenes increased glycolytic activity and enhanced flux of pyruvate into the TCA cycle via pyruvate dehydrogenase and pyruvate carboxylase, while in J774A.1 cells the already high glycolytic and glutaminolytic activities hardly changed upon infection. The carbon metabolism of intracellular L. monocytogenes was similar in both host cells. Taken together, the data suggest that efficient listerial replication in the cytosol of the host cells mainly depends on the glycolytic activity of the hosts.

  6. Autonomous and nonautonomous regulation of axis formation by antagonistic signaling via 7-span cAMP receptors and GSK3 in Dictyostelium.

    Science.gov (United States)

    Ginsburg, G T; Kimmel, A R

    1997-08-15

    Early during Dictyostelium development a fundamental cell-fate decision establishes the anteroposterior (prestalk/prespore) axis. Signaling via the 7-transmembrane cAMP receptor CAR4 is essential for creating and maintaining a normal pattern; car4-null alleles have decreased levels of prestalk-specific mRNAs but enhanced expression of prespore genes. car4- cells produce all of the signals required for prestalk differentiation but lack an extracellular factor necessary for prespore differentiation of wild-type cells. This secreted factor decreases the sensitivity of prespore cells to inhibition by the prestalk morphogen DIF-1. At the cell autonomous level, CAR4 is linked to intracellular circuits that activate prestalk but inhibit prespore differentiation. The autonomous action of CAR4 is antagonistic to the positive intracellular signals mediated by another cAMP receptor, CAR1 and/or CAR3. Additional data indicate that these CAR-mediated pathways converge at the serine/threonine protein kinase GSK3, suggesting that the anterior (prestalk)/posterior (prespore) axis of Dictyostelium is regulated by an ancient mechanism that is shared by the Wnt/Fz circuits for dorsoventral patterning during early Xenopus development and establishing Drosophila segment polarity.

  7. Intracellular signaling by diffusion: can waves of hydrogen peroxide transmit intracellular information in plant cells?

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.; Flyvbjerg, Henrik; Møller, Ian Max

    2012-01-01

    of the physical and biochemical conditions in plant cells. As model system, we use a H(2)O(2) signal originating at the plasma membrane (PM) and spreading through the cytosol. We consider two maximally simple types of signals, isolated pulses and harmonic oscillations. First we consider the basic limits......Amplitude- and frequency-modulated waves of Ca(2+) ions transmit information inside cells. Reactive Oxygen Species (ROS), specifically hydrogen peroxide, have been proposed to have a similar role in plant cells. We consider the feasibility of such an intracellular communication system in view...

  8. Tissue- and Cell-Specific Co-localization of Intracellular Gelatinolytic Activity and Matrix Metalloproteinase 2

    Science.gov (United States)

    Solli, Ann Iren; Fadnes, Bodil; Winberg, Jan-Olof; Uhlin-Hansen, Lars

    2013-01-01

    Matrix metalloproteinase 2 (MMP-2) is a proteolytic enzyme that degrades extracellular matrix proteins. Recent studies indicate that MMP-2 also has a role in intracellular proteolysis during various pathological conditions, such as ischemic injuries in heart and brain and in tumor growth. The present study was performed to map the distribution of intracellular MMP-2 activity in various mouse tissues and cells under physiological conditions. Samples from normal brain, heart, lung, liver, spleen, pancreas, kidney, adrenal gland, thyroid gland, gonads, oral mucosa, salivary glands, esophagus, intestines, and skin were subjected to high-resolution in situ gelatin zymography and immunohistochemical staining. In hepatocytes, cardiac myocytes, kidney tubuli cells, epithelial cells in the oral mucosa as well as in excretory ducts of salivary glands, and adrenal cortical cells, we found strong intracellular gelatinolytic activity that was significantly reduced by the metalloprotease inhibitor EDTA but not by the cysteine protease inhibitor E-64. Furthermore, the gelatinolytic activity was co-localized with MMP-2. Western blotting and electron microscopy combined with immunogold labeling revealed the presence of MMP-2 in different intracellular compartments of isolated hepatocytes. Our results indicate that MMP-2 takes part in intracellular proteolysis in specific tissues and cells during physiological conditions. PMID:23482328

  9. Conazole fungicides inhibit Leydig cell testosterone secretion and androgen receptor activation in vitro

    Directory of Open Access Journals (Sweden)

    Maarke J.E. Roelofs

    2014-01-01

    Full Text Available Conazole fungicides are widely used in agriculture despite their suspected endocrine disrupting properties. In this study, the potential (anti-androgenic effects of ten conazoles were assessed and mutually compared with existing data. Effects of cyproconazole (CYPRO, fluconazole (FLUC, flusilazole (FLUS, hexaconazole (HEXA, myconazole (MYC, penconazole (PEN, prochloraz (PRO, tebuconazole (TEBU, triadimefon (TRIA, and triticonazole (TRIT were examined using murine Leydig (MA-10 cells and human T47D-ARE cells stably transfected with an androgen responsive element and a firefly luciferase reporter gene. Six conazoles caused a decrease in basal testosterone (T secretion by MA-10 cells varying from 61% up to 12% compared to vehicle-treated control. T secretion was concentration-dependently inhibited after exposure of MA-10 cells to several concentrations of FLUS (IC50 = 12.4 μM or TEBU (IC50 = 2.4 μM in combination with LH. The expression of steroidogenic and cholesterol biosynthesis genes was not changed by conazole exposure. Also, there were no changes in reactive oxygen species (ROS formation that could explain the altered T secretion after exposure to conazoles. Nine conazoles decreased T-induced AR activation (IC50s ranging from 10.7 to 71.5 μM and effect potencies (REPs were calculated relative to the known AR antagonist flutamide (FLUT. FLUC had no effect on AR activation by T. FLUS was the most potent (REP = 3.61 and MYC the least potent (REP = 0.03 AR antagonist. All other conazoles had a comparable REP from 0.12 to 0.38. Our results show distinct in vitro anti-androgenic effects of several conazole fungicides arising from two mechanisms: inhibition of T secretion and AR antagonism, suggesting potential testicular toxic effects. These effects warrant further mechanistic investigation and clearly show the need for accurate exposure data in order to perform proper (human risk assessment of this class of compounds.

  10. Role of UBIAD1 in Intracellular Cholesterol Metabolism and Vascular Cell Calcification.

    Directory of Open Access Journals (Sweden)

    Sha Liu

    Full Text Available Vascular calcification is an important risk factor associated with mortality among patients with chronic kidney disease. Intracellular cholesterol metabolism is involved in the process of vascular cell calcification. In this study, we investigated the role of UbiA prenyltransferase domain containing 1 (UBIAD1 in intracellular cholesterol metabolism and vascular cell calcification, and identified its subcellular location. Primary human umbilical vein smooth muscle cells (HUVSMCs were incubated with either growth medium (1.4 mmol/L Pi or calcification medium (CM (3.0 mmol/L Pi. Under treatment with CM, HUVSMCs were further incubated with exogenous cholesterol, or menaquinone-4, a product of UBIAD1. The plasmid and small interfering RNA were transfected in HUVSMCs to alter the expression of UBIAD1. Matrix calcium quantitation, alkaline phosphatase activity, intracellular cholesterol level and menaquinone-4 level were measured. The expression of several genes involved in cholesterol metabolism were analyzed. Using an anti-UBIAD1 antibody, an endoplasmic reticulum marker and a Golgi marker, the subcellular location of UBIAD1 in HUVSMCs was analyzed. CM increased matrix calcium, alkaline phosphatase activity and intracellular cholesterol level, and reduced UBIAD1 expression and menaquinone-4 level. Addition of cholesterol contributed to increased matrix calcification and alkaline phosphatase activity in a dose-dependent manner. Elevated expression of UBIAD1 or menaquinone-4 in HUVSMCs treated with CM significantly reduced intracellular cholesterol level, matrix calcification and alkaline phosphatase activity, but increased menaquinone-4 level. Elevated expression of UBIAD1 or menaquinone-4 reduced the gene expression of sterol regulatory element-binding protein-2, and increased gene expression of ATP binding cassette transporters A1, which are in charge of cholesterol synthesis and efflux. UBIAD1 co-localized with the endoplasmic reticulum marker and

  11. Androgens and Hypertension in Men and Women: a Unifying View.

    Science.gov (United States)

    Moretti, Costanzo; Lanzolla, Giulia; Moretti, Marta; Gnessi, Lucio; Carmina, Enrico

    2017-05-01

    This review was designed to revaluate the androgen role on the mechanisms of hypertension and cardiovascular risks in both men and women. Sex steroids are involved in the regulation of blood pressure, but pathophysiological mechanism is not well understood. Androgens have an important effect on metabolism, adipose and endothelial cell function, and cardiovascular risk in both men and women. A focal point in this contest is represented by the possible gender-specific regulation of different tissues and in particular of the adipose cell. Available data confirm that androgen deficiency is linked to increased prevalence of hypertension and cardiovascular diseases. Adipocyte dysfunction seems to be the main involved mechanism. Androgen replacement reduces inflammation state in man, protecting by metabolic syndrome progression. In women, androgen excess has been considered as promoting factor of cardiovascular risk. However, recent data suggest that excessive androgen production has little effect per se in inducing hypertension in young women of reproductive age. Also in postmenopausal women, data on relative androgen excess and hypertension are missing, while adrenal androgen deficiency has been associated to increased mortality. Molecular mechanisms linking androgen dysregulation to hypertension are almost Unknown, but they seem to be related to increased visceral fat, promoting a chronic inflammatory state through different mechanisms. One of these may involve the recruitment and over-activation of NF-kB, a ubiquitous transcription factor also expressed in adipose cells, where it may cause the production of cytokines and other immune factors. The NF-kB signalling pathway may also influence brown adipogenesis leading to the preferential enlargement of visceral adipocytes. Chronic inflammation and adipocyte dysfunction may alter endothelial function leading to hypertension. Both in men and in women, particularly in the post-menopausal period, hypoandrogenism seems to be

  12. Sertoli cell origin of testicular androgen-binding protein (ABP)

    Energy Technology Data Exchange (ETDEWEB)

    Hagenaes, L [Pediatric Endocrinology Unit, Stockholm; Ritzen, E M; Ploeen, L; Hansson, V; French, F S; Nayfeh, S N

    1975-05-01

    In this report it is suggested that the specific androgen-binding protein (ABP), previously shown to originate in the testes of rat and other species, is produced by the Sertoli cells. This suggestion is based upon the following experimental findings: (1) ABP was found in high concentrations in testicular efferent duct fluid but only in trace amounts in inter-tubular lymph. (2) ABP could be recovered from crude preparations of testes tubules, but not from Leydig cells from the same testes. (3) Testes whose germinal epithelium had been severely damaged by gamma irradiation showed no decrease in ABP content. The transport of ABP to epididymis was also preserved as judged from the levels of ABP in caput epididymis. (4) Testes that were completely devoid of germ cells following prenatal gamma irradiation showed high levels of ABP. These high levels approached zero following hypophysectomy, but could be restored by FSH administration to the hypophysectomized animals. ABP has been well characterized and now provides a valuable experimental tool as an indicator of Sertoli cell function.

  13. Supraphysiological Doses of Performance Enhancing Anabolic-Androgenic Steroids Exert Direct Toxic Effects on Neuron-like Cells

    Directory of Open Access Journals (Sweden)

    John Robert Basile

    2013-05-01

    Full Text Available Anabolic-androgenic steroids (AAS are lipophilic hormones often taken in excessive quantities by athletes and bodybuilders to enhance performance and increase muscle mass. AAS exert well known toxic effects on specific cell and tissue types and organ systems. The attention that androgen abuse has received lately should be used as an opportunity to educate both athletes and the general population regarding their adverse effects. Among numerous commercially available steroid hormones, very few have been specifically tested for direct neurotoxicity. We evaluated the effects of supraphysiological doses of methandienone and 17-α-methyltestosterone on sympathetic-like neuron cells. Vitality and apoptotic effects were analyzed, and immunofluorescence staining and western blot performed. In this study, we demonstrate that exposure of supraphysiological doses of methandienone and 17-α-methyltestosterone are toxic to the neuron-like differentiated pheochromocytoma cell line PC12, as confirmed by toxicity on neurite networks responding to nerve growth factor and the modulation of the survival and apoptosis-related proteins ERK, caspase-3, poly (ADP-ribose polymerase and heat-shock protein 90. We observe, in contrast to some previous reports but in accordance with others, expression of the androgen receptor (AR in neuron-like cells, which when inhibited mitigated the toxic effects of AAS tested, suggesting that the AR could be binding these steroid hormones to induce genomic effects. We also note elevated transcription of neuritin in treated cells, a neurotropic factor likely expressed in an attempt to resist neurotoxicity. Taken together, these results demonstrate that supraphysiological exposure to the AAS methandienone and 17-α-methyltestosterone exert neurotoxic effects by an increase in the activity of the intrinsic apoptotic pathway and alterations in neurite networks.

  14. The role of intracellular thyroid hormone metabolism in innate immune cells

    NARCIS (Netherlands)

    van der Spek, A.H.

    2018-01-01

    Innate immune cells have recently been identified as important thyroid hormone target cells. This thesis studies the role of intracellular thyroid hormone metabolism in the function of neutrophils and macrophages, two essential cell types of the innate immune system. Neutrophils, monocytes and

  15. Flow cytometric analysis of cell-surface and intracellular antigens in leukemia diagnosis.

    Science.gov (United States)

    Knapp, W; Strobl, H; Majdic, O

    1994-12-15

    New technology allows highly sensitive flow cytometric detection and quantitative analysis of intracellular antigens in normal and malignant hemopoietic cells. With this technology, the earliest stages of myeloid and lymphoid differentiation can easily and reliably be identified using antibodies directed against (pro-)myeloperoxidase/MPO, CD22 and CD3 antigens, respectively. Particularly for the analysis of undifferentiated acute myeloblastic leukemia (AML) cells, the immunological demonstration of intracellular MPO or its enzymatically inactive proforms is highly relevant, since other myeloid marker molecules such as CD33, CD13, or CDw65 are either not restricted to the granulomonocytic lineage or appear later in differentiation. By combining MPO staining with staining for lactoferrin (LF), undifferentiated cells can be distinguished from the granulomonocytic maturation compartment in bone marrow, since LF is selectively expressed from the myelocyte stage of differentiation onward. The list of informative intracellular antigens to be used in leukemia cell analysis will certainly expand in the near future. One candidate, intracellular CD68, has already been tested by us, and results are presented. Also dealt within this article are surface marker molecules not (as yet) widely used in leukemia cell analysis but with the potential to provide important additional information. Among them are the surface structures CD15, CD15s, CDw65, CD79a (MB-1), CD79b (B29), CD87 (uPA-R), and CD117 (c-kit).

  16. In Vitro Androgen Bioassays as a Detection Method for Designer Androgens

    Directory of Open Access Journals (Sweden)

    Alison K. Heather

    2013-02-01

    Full Text Available Androgens are the class of sex steroids responsible for male sexual characteristics, including increased muscle mass and decreased fat mass. Illicit use of androgen doping can be an attractive option for those looking to enhance sporting performance and/or physical appearance. The use of in vitro bioassays to detect androgens, especially designer or proandrogens, is becoming increasingly important in combating androgen doping associated with nutritional supplements. The nutritional sports supplement market has grown rapidly throughout the past decade. Many of these supplements contain androgens, designer androgens or proandrogens. Many designer or proandrogens cannot be detected by the standard highly-sensitive screening methods such as gas chromatography-mass spectrometry because their chemical structure is unknown. However, in vitro androgen bioassays can detect designer and proandrogens as these assays are not reliant on knowing the chemical structure but instead are based on androgen receptor activation. For these reasons, it may be advantageous to use routine androgen bioassay screening of nutraceutical samples to help curb the increasing problem of androgen doping.

  17. Cellular Microenvironment Dictates Androgen Production by Murine Fetal Leydig Cells in Primary Culture1

    Science.gov (United States)

    Carney, Colleen M.; Muszynski, Jessica L.; Strotman, Lindsay N.; Lewis, Samantha R.; O'Connell, Rachel L.; Beebe, David J.; Theberge, Ashleigh B.; Jorgensen, Joan S.

    2014-01-01

    ABSTRACT Despite the fact that fetal Leydig cells are recognized as the primary source of androgens in male embryos, the mechanisms by which steroidogenesis occurs within the developing testis remain unclear. A genetic approach was used to visualize and isolate fetal Leydig cells from remaining cells within developing mouse testes. Cyp11a1-Cre mice were bred to mT/mG dual reporter mice to target membrane-tagged enhanced green fluorescent protein (GFP) within steroidogenic cells, whereas other cells expressed membrane-tagged tandem-dimer tomato red. Fetal Leydig cell identity was validated using double-labeled immunohistochemistry against GFP and the steroidogenic enzyme 3beta-HSD, and cells were successfully isolated as indicated by qPCR results from sorted cell populations. Because fetal Leydig cells must collaborate with neighboring cells to synthesize testosterone, we hypothesized that the fetal Leydig cell microenvironment defined their capacity for androgen production. Microfluidic culture devices were used to measure androstenedione and testosterone production of fetal Leydig cells that were cultured in cell-cell contact within a mixed population, were isolated but remained in medium contact via compartmentalized co-culture with other testicular cells, or were isolated and cultured alone. Results showed that fetal Leydig cells maintained their identity and steroidogenic activity for 3–5 days in primary culture. Microenvironment dictated proficiency of testosterone production. As expected, fetal Leydig cells produced androstenedione but not testosterone when cultured in isolation. More testosterone accumulated in medium from mixed cultures than from compartmentalized co-cultures initially; however, co-cultures maintained testosterone synthesis for a longer time. These data suggest that a combination of cell-cell contact and soluble factors constitute the ideal microenvironment for fetal Leydig cell activity in primary culture. PMID:25143354

  18. Profiling of androgen response in rainbow trout pubertal testis: relevance to male gonad development and spermatogenesis.

    Directory of Open Access Journals (Sweden)

    Antoine D Rolland

    Full Text Available The capacity of testicular somatic cells to promote and sustain germ cell differentiation is largely regulated by sexual steroids and notably androgens. In fish species the importance of androgens is emphasized by their ability to induce sex reversal of the developing fries and to trigger spermatogenesis. Here we studied the influence of androgens on testicular gene expression in trout testis using microarrays. Following treatment of immature males with physiological doses of testosterone or 11-ketotestosterone, 418 genes that exhibit changes in expression were identified. Interestingly, the activity of testosterone appeared stronger than that of 11-ketotestosterone. Expression profiles of responsive genes throughout testis development and in isolated germ cells confirmed androgens to mainly affect gene expression in somatic cells. Furthermore, specific clusters of genes that exhibit regulation coincidently with changes in the natural circulating levels of androgens during the reproductive cycle were highlighted, reinforcing the physiological significance of these data. Among somatic genes, a phylogenetic footprinting study identified putative androgen response elements within the proximal promoter regions of 42 potential direct androgen target genes. Finally, androgens were also found to alter the germ line towards meiotic expression profiles, supporting the hypothesis of a role for the somatic responsive genes in driving germ cell fate. This study significantly increases our understanding of molecular pathways regulated by androgens in vertebrates. The highly cyclic testicular development in trout together with functions associated with regulated genes reveal potential mechanisms for androgen actions in tubule formation, steroid production, germ cell development and sperm secretion.

  19. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells.

    Science.gov (United States)

    Peng, Tao; Hang, Howard C

    2016-11-02

    Over the past years, fluorescent proteins (e.g., green fluorescent proteins) have been widely utilized to visualize recombinant protein expression and localization in live cells. Although powerful, fluorescent protein tags are limited by their relatively large sizes and potential perturbation to protein function. Alternatively, site-specific labeling of proteins with small-molecule organic fluorophores using bioorthogonal chemistry may provide a more precise and less perturbing method. This approach involves site-specific incorporation of unnatural amino acids (UAAs) into proteins via genetic code expansion, followed by bioorthogonal chemical labeling with small organic fluorophores in living cells. While this approach has been used to label extracellular proteins for live cell imaging studies, site-specific bioorthogonal labeling and fluorescence imaging of intracellular proteins in live cells is still challenging. Herein, we systematically evaluate site-specific incorporation of diastereomerically pure bioorthogonal UAAs bearing stained alkynes or alkenes into intracellular proteins for inverse-electron-demand Diels-Alder cycloaddition reactions with tetrazine-functionalized fluorophores for live cell labeling and imaging in mammalian cells. Our studies show that site-specific incorporation of axial diastereomer of trans-cyclooct-2-ene-lysine robustly affords highly efficient and specific bioorthogonal labeling with monosubstituted tetrazine fluorophores in live mammalian cells, which enabled us to image the intracellular localization and real-time dynamic trafficking of IFITM3, a small membrane-associated protein with only 137 amino acids, for the first time. Our optimized UAA incorporation and bioorthogonal labeling conditions also enabled efficient site-specific fluorescence labeling of other intracellular proteins for live cell imaging studies in mammalian cells.

  20. Network analysis of an in vitro model of androgen-resistance in prostate cancer

    International Nuclear Information System (INIS)

    Detchokul, Sujitra; Elangovan, Aparna; Crampin, Edmund J.; Davis, Melissa J.; Frauman, Albert G.

    2015-01-01

    The development of androgen resistance is a major limitation to androgen deprivation treatment in prostate cancer. We have developed an in vitro model of androgen-resistance to characterise molecular changes occurring as androgen resistance evolves over time. Our aim is to understand biological network profiles of transcriptomic changes occurring during the transition to androgen-resistance and to validate these changes between our in vitro model and clinical datasets (paired samples before and after androgen-deprivation therapy of patients with advanced prostate cancer). We established an androgen-independent subline from LNCaP cells by prolonged exposure to androgen-deprivation. We examined phenotypic profiles and performed RNA-sequencing. The reads generated were compared to human clinical samples and were analysed using differential expression, pathway analysis and protein-protein interaction networks. After 24 weeks of androgen-deprivation, LNCaP cells had increased proliferative and invasive behaviour compared to parental LNCaP, and its growth was no longer responsive to androgen. We identified key genes and pathways that overlap between our cell line and clinical RNA sequencing datasets and analysed the overlapping protein-protein interaction network that shared the same pattern of behaviour in both datasets. Mechanisms bypassing androgen receptor signalling pathways are significantly enriched. Several steroid hormone receptors are differentially expressed in both datasets. In particular, the progesterone receptor is significantly differentially expressed and is part of the interaction network disrupted in both datasets. Other signalling pathways commonly altered in prostate cancer, MAPK and PI3K-Akt pathways, are significantly enriched in both datasets. The overlap between the human and cell-line differential expression profiles and protein networks was statistically significant showing that the cell-line model reproduces molecular patterns observed in

  1. Atmospheric Pressure Photoionization Tandem Mass Spectrometry of Androgens in Prostate Cancer

    Science.gov (United States)

    Lih, Fred Bjørn; Titus, Mark A.; Mohler, James L.; Tomer, Kenneth B.

    2010-01-01

    Androgen deprivation therapy is the most common treatment option for advanced prostate cancer. Almost all prostate cancers recur during androgen deprivation therapy, and new evidence suggests that androgen receptor activation persists despite castrate levels of circulating androgens. Quantitation of tissue levels of androgens is critical to understanding the mechanism of recurrence of prostate cancer during androgen deprivation therapy. A liquid chromatography atmospheric pressure photoionization tandem mass spectrometric method was developed for quantitation of tissue levels of androgens. Quantitation of the saturated keto-steroids dihydrotestosterone and 5-α-androstanedione required detection of a novel parent ion, [M + 15]+. The nature of this parent ion was explored and the method applied to prostate tissue and cell culture with comparison to results achieved using electrospray ionization. PMID:20560527

  2. Intracellular Hyper-Acidification Potentiated by Hydrogen Sulfide Mediates Invasive and Therapy Resistant Cancer Cell Death

    Directory of Open Access Journals (Sweden)

    Zheng-Wei Lee

    2017-10-01

    Full Text Available Slow and continuous release of H2S by GYY4137 has previously been demonstrated to kill cancer cells by increasing glycolysis and impairing anion exchanger and sodium/proton exchanger activity. This action is specific for cancer cells. The resulting lactate overproduction and defective pH homeostasis bring about intracellular acidification-induced cancer cell death. The present study investigated the potency of H2S released by GYY4137 against invasive and radio- as well as chemo-resistant cancers, known to be glycolytically active. We characterized and utilized cancer cell line pairs of various organ origins, based on their aggressive behaviors, and assessed their response to GYY4137. We compared glycolytic activity, via lactate production, and intracellular pH of each cancer cell line pair after exposure to H2S. Invasive and therapy resistant cancers, collectively termed aggressive cancers, are receptive to H2S-mediated cytotoxicity, albeit at a higher concentration of GYY4137 donor. While lactate production was enhanced, intracellular pH of aggressive cancers was only modestly decreased. Inherently, the magnitude of intracellular pH decrease is a key determinant for cancer cell sensitivity to H2S. We demonstrated the utility of coupling GYY4137 with either simvastatin, known to inhibit monocarboxylate transporter 4 (MCT4, or metformin, to further boost glycolysis, in bringing about cell death for aggressive cancers. Simvastatin inhibiting lactate extrusion thence contained excess lactate induced by GYY4137 within intracellular compartment. In contrast, the combined exposure to both GYY4137 and metformin overwhelms cancer cells with lactate over-production exceeding its expulsion rate. Together, GYY4137 and simvastatin or metformin synergize to induce intracellular hyper-acidification-mediated cancer cell death.

  3. Advantages and Limitations of Androgen Receptor-Based Methods for Detecting Anabolic Androgenic Steroid Abuse as Performance Enhancing Drugs

    Science.gov (United States)

    Bailey, Kathy; Yazdi, Tahmineh; Masharani, Umesh; Tyrrell, Blake; Butch, Anthony; Schaufele, Fred

    2016-01-01

    Testosterone (T) and related androgens are performance enhancing drugs (PEDs) abused by some athletes to gain competitive advantage. To monitor unauthorized androgen abuse, doping control programs use mass spectrometry (MS) to detect androgens, synthetic anabolic-androgenic steroids (AASs) and their metabolites in an athlete’s urine. AASs of unknown composition will not be detected by these procedures. Since AASs achieve their anabolic effects by activating the Androgen Receptor (AR), cell-based bioassays that measure the effect of a urine sample on AR activity are under investigation as complementary, pan-androgen detection methods. We evaluated an AR BioAssay as a monitor for androgen activity in urine pre-treated with glucuronidase, which releases T from the inactive T-glucuronide that predominates in urine. AR BioAssay activity levels were expressed as ‘T-equivalent’ concentrations by comparison to a T dose response curve. The T-equivalent concentrations of androgens in the urine of hypogonadal participants supplemented with T (in whom all androgenic activity should arise from T) were quantitatively identical to the T measurements conducted by MS at the UCLA Olympic Analytical Laboratory (0.96 ± 0.22). All 17 AASs studied were active in the AR BioAssay; other steroids were inactive. 12 metabolites of 10 commonly abused AASs, which are used for MS monitoring of AAS doping because of their prolonged presence in urine, had reduced or no AR BioAssay activity. Thus, the AR BioAssay can accurately and inexpensively monitor T, but its ability to monitor urinary AASs will be limited to a period immediately following doping in which the active AASs remain intact. PMID:26998755

  4. Advantages and Limitations of Androgen Receptor-Based Methods for Detecting Anabolic Androgenic Steroid Abuse as Performance Enhancing Drugs.

    Science.gov (United States)

    Bailey, Kathy; Yazdi, Tahmineh; Masharani, Umesh; Tyrrell, Blake; Butch, Anthony; Schaufele, Fred

    2016-01-01

    Testosterone (T) and related androgens are performance enhancing drugs (PEDs) abused by some athletes to gain competitive advantage. To monitor unauthorized androgen abuse, doping control programs use mass spectrometry (MS) to detect androgens, synthetic anabolic-androgenic steroids (AASs) and their metabolites in an athlete's urine. AASs of unknown composition will not be detected by these procedures. Since AASs achieve their anabolic effects by activating the Androgen Receptor (AR), cell-based bioassays that measure the effect of a urine sample on AR activity are under investigation as complementary, pan-androgen detection methods. We evaluated an AR BioAssay as a monitor for androgen activity in urine pre-treated with glucuronidase, which releases T from the inactive T-glucuronide that predominates in urine. AR BioAssay activity levels were expressed as 'T-equivalent' concentrations by comparison to a T dose response curve. The T-equivalent concentrations of androgens in the urine of hypogonadal participants supplemented with T (in whom all androgenic activity should arise from T) were quantitatively identical to the T measurements conducted by MS at the UCLA Olympic Analytical Laboratory (0.96 ± 0.22). All 17 AASs studied were active in the AR BioAssay; other steroids were inactive. 12 metabolites of 10 commonly abused AASs, which are used for MS monitoring of AAS doping because of their prolonged presence in urine, had reduced or no AR BioAssay activity. Thus, the AR BioAssay can accurately and inexpensively monitor T, but its ability to monitor urinary AASs will be limited to a period immediately following doping in which the active AASs remain intact.

  5. Dissecting the roles of the androgen receptor in prostate cancer from molecular perspectives.

    Science.gov (United States)

    Hu, Jieping; Wang, Gongxian; Sun, Ting

    2017-05-01

    Androgen receptor plays a pivotal role in prostate cancer progression, and androgen deprivation therapy to intercept androgen receptor signal pathway is an indispensable treatment for most advanced prostate cancer patients to delay cancer progression. However, the emerging of castration-resistant prostate cancer reminds us the alteration of androgen receptor, which includes androgen receptor mutation, the formation of androgen receptor variants, and androgen receptor distribution in cancer cells. In this review, we introduce the process of androgen receptor and also its variants' formation, translocation, and function alteration by protein modification or interaction with other pathways. We dissect the roles of androgen receptor in prostate cancer from molecular perspective to provide clues for battling prostate cancer, especially castration-resistant prostate cancer.

  6. Delta(9)-tetrahydrocannabinol inhibits 17beta-estradiol-induced proliferation and fails to activate androgen and estrogen receptors in MCF7 human breast cancer cells.

    Science.gov (United States)

    von Bueren, A O; Schlumpf, M; Lichtensteiger, W

    2008-01-01

    Delta(9)-tetrahydrocannabinol (THC) exerts palliative effects in cancer patients, but produces adverse effects on the endocrine and reproductive systems. Experimental evidence concerning such effects is controversial. Whether THC exhibits estrogenic or androgenic activity in vitro was investigated. Estrogenic effects of THC were analyzed in vitro by measuring the proliferation of estrogen-sensitive MCF7 cells. Androgenic activity was investigated by the A-Screen assay that measures androgen-dependent inhibition of proliferation of the androgen receptor (AR)-positive human mammary carcinoma cell line, MCF7-AR1. In contrast to 17beta-estradiol, included as positive control with an EC50 value (concentration required for 50% of maximal 17beta-estradiol-induced proliferation) of 1.00 x 10(-12) M, THC failed to induce cell proliferation in the MCF7 cell line at concentrations between 10(-13) and 10(-4) M. THC inhibited 17beta-estradiol-induced proliferation in wild-type MCF7 and MCF7-AR1 cells, with an IC50 value of 2.6 x 10(-5) M and 9 x 10(-6) M, respectively. THC failed to act as an estrogen, but antagonized 17beta-estradiol-induced proliferation. This effect was independent of the AR expression level.

  7. Towards autonomous lab-on-a-chip devices for cell phone biosensing.

    Science.gov (United States)

    Comina, Germán; Suska, Anke; Filippini, Daniel

    2016-03-15

    Modern cell phones are a ubiquitous resource with a residual capacity to accommodate chemical sensing and biosensing capabilities. From the different approaches explored to capitalize on such resource, the use of autonomous disposable lab-on-a-chip (LOC) devices-conceived as only accessories to complement cell phones-underscores the possibility to entirely retain cell phones' ubiquity for distributed biosensing. The technology and principles exploited for autonomous LOC devices are here selected and reviewed focusing on their potential to serve cell phone readout configurations. Together with this requirement, the central aspects of cell phones' resources that determine their potential for analytical detection are examined. The conversion of these LOC concepts into universal architectures that are readable on unaccessorized phones is discussed within this context. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Intracellular Trafficking Modulation by Ginsenoside Rg3 Inhibits Brucella abortus Uptake and Intracellular Survival within RAW 264.7 Cells.

    Science.gov (United States)

    Huy, Tran Xuan Ngoc; Reyes, Alisha Wehdnesday Bernardo; Hop, Huynh Tan; Arayan, Lauren Togonon; Min, WonGi; Lee, Hu Jang; Rhee, Man Hee; Chang, Hong Hee; Kim, Suk

    2017-03-28

    Ginsenoside Rg3, a saponin extracted from ginseng, has various pharmacological and biological activities; however, its effects against Brucella infection are still unclear. Herein, the inhibitory effects of ginsenoside Rg3 against intracellular parasitic Brucella infection were evaluated through bacterial infection, adherence assays, and LAMP-1 colocalization, as well as immunoblotting and FACS for detecting MAPK signaling proteins and F-actin polymerization, respectively. The internalization, intracellular growth, and adherence of Brucella abortus in Rg3-treated RAW 264.7 cells were significantly decreased compared with the Rg3-untreated control. Furthermore, an apparent reduction of F-actin content and intensity of F-actin fluorescence in Rg3-treated cells was observed compared with B. abortus -infected cells without treatment by flow cytometry analysis and confocal microscopy, respectively. In addition, treating cells with Rg3 decreased the phosphorylation of MAPK signaling proteins such as ERK 1/2 and p38 compared with untreated cells. Moreover, the colocalization of B. abortus -containing phagosomes with LAMP-1 was markedly increased in Rg3-treated cells. These findings suggest that ginsenoside Rg3 inhibits B. abortus infection in mammalian cells and can be used as an alternative approach in the treatment of brucellosis.

  9. Gold-coated polydimethylsiloxane microwells for high-throughput electrochemiluminescence analysis of intracellular glucose at single cells.

    Science.gov (United States)

    Xia, Juan; Zhou, Junyu; Zhang, Ronggui; Jiang, Dechen; Jiang, Depeng

    2018-06-04

    In this communication, a gold-coated polydimethylsiloxane (PDMS) chip with cell-sized microwells was prepared through a stamping and spraying process that was applied directly for high-throughput electrochemiluminescence (ECL) analysis of intracellular glucose at single cells. As compared with the previous multiple-step fabrication of photoresist-based microwells on the electrode, the preparation process is simple and offers fresh electrode surface for higher luminescence intensity. More luminescence intensity was recorded from cell-retained microwells than that at the planar region among the microwells that was correlated with the content of intracellular glucose. The successful monitoring of intracellular glucose at single cells using this PDMS chip will provide an alternative strategy for high-throughput single-cell analysis. Graphical abstract ᅟ.

  10. Selective androgen receptor modulators: in pursuit of tissue-selective androgens.

    Science.gov (United States)

    Omwancha, Josephat; Brown, Terry R

    2006-10-01

    The androgen receptor mediates the androgenic and anabolic activity of the endogenous steroids testosterone and 5alpha-dihydrotestosterone. Current knowledge of the androgen receptor protein structure, and the molecular mechanisms surrounding the binding properties and activities of agonists and antagonists has led to the design and development of novel nonsteroidal ligands with selected tissue-specific androgen receptor agonist and antagonist activities. The activity of these compounds, termed selective androgen receptor modulators (SARMs), is directed toward the maintenance or enhancement of anabolic effects on bone and muscle with minimal androgenic effects on prostate growth. SARMs are of potential therapeutic value in the treatment of male hypogonadism, osteoporosis, frailty and muscle wasting, burn injury and would healing, anemia, mood and depression, benign prostatic hyperplasia and prostate cancer.

  11. Stromal Androgen Receptor in Prostate Cancer Development and Progression

    Science.gov (United States)

    Leach, Damien A.; Buchanan, Grant

    2017-01-01

    Prostate cancer development and progression is the result of complex interactions between epithelia cells and fibroblasts/myofibroblasts, in a series of dynamic process amenable to regulation by hormones. Whilst androgen action through the androgen receptor (AR) is a well-established component of prostate cancer biology, it has been becoming increasingly apparent that changes in AR signalling in the surrounding stroma can dramatically influence tumour cell behavior. This is reflected in the consistent finding of a strong association between stromal AR expression and patient outcomes. In this review, we explore the relationship between AR signalling in fibroblasts/myofibroblasts and prostate cancer cells in the primary site, and detail the known functions, actions, and mechanisms of fibroblast AR signaling. We conclude with an evidence-based summary of how androgen action in stroma dramatically influences disease progression. PMID:28117763

  12. Selective androgen receptor modulators (SARMs) negatively regulate triple-negative breast cancer growth and epithelial:mesenchymal stem cell signaling.

    Science.gov (United States)

    Narayanan, Ramesh; Ahn, Sunjoo; Cheney, Misty D; Yepuru, Muralimohan; Miller, Duane D; Steiner, Mitchell S; Dalton, James T

    2014-01-01

    The androgen receptor (AR) is the most highly expressed steroid receptor in breast cancer with 75-95% of estrogen receptor (ER)-positive and 40-70% of ER-negative breast cancers expressing AR. Though historically breast cancers were treated with steroidal androgens, their use fell from favor because of their virilizing side effects and the emergence of tamoxifen. Nonsteroidal, tissue selective androgen receptor modulators (SARMs) may provide a novel targeted approach to exploit the therapeutic benefits of androgen therapy in breast cancer. Since MDA-MB-453 triple-negative breast cancer cells express mutated AR, PTEN, and p53, MDA-MB-231 triple-negative breast cancer cells stably expressing wildtype AR (MDA-MB-231-AR) were used to evaluate the in vitro and in vivo anti-proliferative effects of SARMs. Microarray analysis and epithelial:mesenchymal stem cell (MSC) co-culture signaling studies were performed to understand the mechanisms of action. Dihydrotestosterone and SARMs, but not bicalutamide, inhibited the proliferation of MDA-MB-231-AR. The SARMs reduced the MDA-MB-231-AR tumor growth and tumor weight by greater than 90%, compared to vehicle-treated tumors. SARM treatment inhibited the intratumoral expression of genes and pathways that promote breast cancer development through its actions on the AR. SARM treatment also inhibited the metastasis-promoting paracrine factors, IL6 and MMP13, and subsequent migration and invasion of epithelial:MSC co-cultures. 1. AR stimulation inhibits paracrine factors that are important for MSC interactions and breast cancer invasion and metastasis. 2. SARMs may provide promise as novel targeted therapies to treat AR-positive triple-negative breast cancer.

  13. Selective androgen receptor modulators (SARMs negatively regulate triple-negative breast cancer growth and epithelial:mesenchymal stem cell signaling.

    Directory of Open Access Journals (Sweden)

    Ramesh Narayanan

    Full Text Available The androgen receptor (AR is the most highly expressed steroid receptor in breast cancer with 75-95% of estrogen receptor (ER-positive and 40-70% of ER-negative breast cancers expressing AR. Though historically breast cancers were treated with steroidal androgens, their use fell from favor because of their virilizing side effects and the emergence of tamoxifen. Nonsteroidal, tissue selective androgen receptor modulators (SARMs may provide a novel targeted approach to exploit the therapeutic benefits of androgen therapy in breast cancer.Since MDA-MB-453 triple-negative breast cancer cells express mutated AR, PTEN, and p53, MDA-MB-231 triple-negative breast cancer cells stably expressing wildtype AR (MDA-MB-231-AR were used to evaluate the in vitro and in vivo anti-proliferative effects of SARMs. Microarray analysis and epithelial:mesenchymal stem cell (MSC co-culture signaling studies were performed to understand the mechanisms of action.Dihydrotestosterone and SARMs, but not bicalutamide, inhibited the proliferation of MDA-MB-231-AR. The SARMs reduced the MDA-MB-231-AR tumor growth and tumor weight by greater than 90%, compared to vehicle-treated tumors. SARM treatment inhibited the intratumoral expression of genes and pathways that promote breast cancer development through its actions on the AR. SARM treatment also inhibited the metastasis-promoting paracrine factors, IL6 and MMP13, and subsequent migration and invasion of epithelial:MSC co-cultures.1. AR stimulation inhibits paracrine factors that are important for MSC interactions and breast cancer invasion and metastasis. 2. SARMs may provide promise as novel targeted therapies to treat AR-positive triple-negative breast cancer.

  14. Variety in intracellular diffusion during the cell cycle

    DEFF Research Database (Denmark)

    Selhuber-Unkel, C.; Yde, P.; Berg-Sørensen, Kirstine

    2009-01-01

    During the cell cycle, the organization of the cytoskeletal network undergoes dramatic changes. In order to reveal possible changes of the viscoelastic properties in the intracellular space during the cell cycle we investigated the diffusion of endogenous lipid granules within the fission yeast...... Schizosaccharomyces Pombe using optical tweezers. The cell cycle was divided into interphase and mitotic cell division, and the mitotic cell division was further subdivided in its stages. During all stages of the cell cycle, the granules predominantly underwent subdiffusive motion, characterized by an exponent...... a that is also linked to the viscoelastic moduli of the cytoplasm. The exponent a was significantly smaller during interphase than during any stage of the mitotic cell division, signifying that the cytoplasm was more elastic during interphase than during division. We found no significant differences...

  15. Analysis of the molecular networks in androgen dependent and independent prostate cancer revealed fragile and robust subsystems.

    Directory of Open Access Journals (Sweden)

    Ryan Tasseff

    Full Text Available Androgen ablation therapy is currently the primary treatment for metastatic prostate cancer. Unfortunately, in nearly all cases, androgen ablation fails to permanently arrest cancer progression. As androgens like testosterone are withdrawn, prostate cancer cells lose their androgen sensitivity and begin to proliferate without hormone growth factors. In this study, we constructed and analyzed a mathematical model of the integration between hormone growth factor signaling, androgen receptor activation, and the expression of cyclin D and Prostate-Specific Antigen in human LNCaP prostate adenocarcinoma cells. The objective of the study was to investigate which signaling systems were important in the loss of androgen dependence. The model was formulated as a set of ordinary differential equations which described 212 species and 384 interactions, including both the mRNA and protein levels for key species. An ensemble approach was chosen to constrain model parameters and to estimate the impact of parametric uncertainty on model predictions. Model parameters were identified using 14 steady-state and dynamic LNCaP data sets taken from literature sources. Alterations in the rate of Prostatic Acid Phosphatase expression was sufficient to capture varying levels of androgen dependence. Analysis of the model provided insight into the importance of network components as a function of androgen dependence. The importance of androgen receptor availability and the MAPK/Akt signaling axes was independent of androgen status. Interestingly, androgen receptor availability was important even in androgen-independent LNCaP cells. Translation became progressively more important in androgen-independent LNCaP cells. Further analysis suggested a positive synergy between the MAPK and Akt signaling axes and the translation of key proliferative markers like cyclin D in androgen-independent cells. Taken together, the results support the targeting of both the Akt and MAPK

  16. Neuroendocrine androgen action is a key extraovarian mediator in the development of polycystic ovary syndrome

    OpenAIRE

    Caldwell, Aimee S. L.; Edwards, Melissa C.; Desai, Reena; Jimenez, Mark; Gilchrist, Robert B.; Handelsman, David J.; Walters, Kirsty A.

    2017-01-01

    The cause of polycystic ovary syndrome (PCOS) is unknown, but androgen excess is a key feature. We combined a hyperandrogenized PCOS mouse model with global and tissue- and cell-specific androgen-resistant mouse lines to uncover the sites of androgen action that initiate PCOS. We demonstrate that direct androgen actions, particularly in neurons but less so in granulosa cells, are required for the development of key reproductive and metabolic PCOS features. These data highlight the previously ...

  17. Effects of Sorafenib on C-Terminally Truncated Androgen Receptor Variants in Human Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mark Schrader

    2012-09-01

    Full Text Available Recent evidence suggests that the development of castration resistant prostate cancer (CRPCa is commonly associated with an aberrant, ligand-independent activation of the androgen receptor (AR. A putative mechanism allowing prostate cancer (PCa cells to grow under low levels of androgens, is the expression of constitutively active, C-terminally truncated AR lacking the AR-ligand binding domain (LBD. Due to the absence of a LBD, these receptors, termed ARΔLBD, are unable to respond to any form of anti-hormonal therapies. In this study we demonstrate that the multikinase inhibitor sorafenib inhibits AR as well as ARΔLBD-signalling in CRPCa cells. This inhibition was paralleled by proteasomal degradation of the AR- and ARΔLBD-molecules. In line with these observations, maximal antiproliferative effects of sorafenib were achieved in AR and ARΔLBD-positive PCa cells. The present findings warrant further investigations on sorafenib as an option for the treatment of advanced AR-positive PCa.

  18. Intracellular Events and Cell Fate in Filovirus Infection

    Directory of Open Access Journals (Sweden)

    Elena Ryabchikova

    2011-08-01

    Full Text Available Marburg and Ebola viruses cause a severe hemorrhagic disease in humans with high fatality rates. Early target cells of filoviruses are monocytes, macrophages, and dendritic cells. The infection spreads to the liver, spleen and later other organs by blood and lymph flow. A hallmark of filovirus infection is the depletion of non-infected lymphocytes; however, the molecular mechanisms leading to the observed bystander lymphocyte apoptosis are poorly understood. Also, there is limited knowledge about the fate of infected cells in filovirus disease. In this review we will explore what is known about the intracellular events leading to virus amplification and cell damage in filovirus infection. Furthermore, we will discuss how cellular dysfunction and cell death may correlate with disease pathogenesis.

  19. Protection of Dentate Hilar Cells from Prolonged Stimulation by Intracellular Calcium Chelation

    Science.gov (United States)

    Scharfman, Helen E.; Schwartzkroin, Philip A.

    1989-10-01

    Prolonged afferent stimulation of the rat dentate gyrus in vivo leads to degeneration only of those cells that lack immunoreactivity for the calcium binding proteins parvalbumin and calbindin. In order to test the hypothesis that calcium binding proteins protect against the effects of prolonged stimulation, intracellular recordings were made in hippocampal slices from cells that lack immunoreactivity for calcium binding proteins. Calcium binding protein--negative cells showed electrophysiological signs of deterioration during prolonged stimulation; cells containing calcium binding protein did not. When neurons without calcium binding proteins were impaled with microelectrodes containing the calcium chelator BAPTA, and BAPTA was allowed to diffuse into the cells, these cells showed no deterioration. These results indicate that, in a complex tissue of the central nervous system, an activity-induced increase in intracellular calcium can trigger processes leading to cell deterioration, and that increasing the calcium binding capacity of a cell decreases its vulnerability to damage.

  20. Loss and recovery of androgen receptor protein expression in the adult rat testis following androgen withdrawal by ethane dimethanesulfonate.

    Directory of Open Access Journals (Sweden)

    Boycho Nikolov

    2006-06-01

    Full Text Available Androgens are especially important for the maintenance of spermatogenesis in adulthood and the experimental withdrawal of testosterone (T production by ethane dimenthanesulfonate (EDS is a valuable tool for studying androgen-dependent events of spermatogenesis. The aim of the present study was to investigate the specific changes in immunoexpression of androgen receptor (AR in the testis in relation to degeneration and regeneration of Leydig cell (LC population and seminiferous epithelium. Immunohistochemistry for AR and 3beta-hydroxysteroid dehydrogenase (3beta-HSD as well as TUNEL assay for apoptosis were performed on testicular sections of control and EDS-treated rats. Serum LH and T levels were measured by RIA. Our results revealed a total loss of AR immunoexpression from the nuclei of Sertoli (SCs, LCs and peritubular cells during the first week after EDS administration and that coincided with severe drop in T levels. Two weeks after EDS administration, the AR expression was recovered in these cells but normal stage-specificity in SCs was replaced by uniform intensity of AR immunostaining at all the stages of the spermatogenic cycle. The stage-specific pattern of androgen expression in SCs with a maximum at stages VII-VIII appeared 5 weeks after treatment. LC immunoreactivity for 3beta-HSD at different time points after EDS administration correlated with values of T concentration. The maximal germ cell apoptosis on day 7 was followed by total loss of elongated spermatids 2 weeks after EDS treatment. Regeneration of seminiferous epithelium 3 weeks after EDS administration and onwards occurred in tandem with the development of new LC population indicated by the appearance of 3beta-HSD-positive cells and gradual increase in T production. The specific changes in AR after EDS including their loss and recovery in Sertoli cells paralleled with degenerative and regenerative events in Leydig and germ cell populations, confirming close functional

  1. Dynamics of postirradiation intracellular cysteine and aspartic proteinases profiles in proliferating and nonproliferating mammalian cells

    International Nuclear Information System (INIS)

    Korbelik, M.; Osmak, M.; Suhar, A.; Turk, V.; Skrk, J.

    1990-01-01

    Dynamics of postirradiation intracellular cysteine and aspartic proteinases profiles were examined in proliferating and nonproliferating Chinese hamster fibroblasts (V 79). The results show that there are significant alterations in cysteine and aspartic intracellular proteinases activity already in the early postirradiation period, which are different in proliferating and nonproliferating cells. Irradiation of the cells examined to low doses and up to 15 Gy induced an increase in cysteine proteinases activity in the early postexposure period, while at higher irradiation doses applied, the activity of these proteinases was decreased. These observations suggest that intracellular proteinases are actively participating in process involving recovery from radiation injury or cell killing. (orig.) [de

  2. Feedback Regulation of Intracellular Hydrostatic Pressure in Surface Cells of the Lens

    Science.gov (United States)

    Gao, Junyuan; Sun, Xiurong; White, Thomas W.; Delamere, Nicholas A.; Mathias, Richard T.

    2015-01-01

    In wild-type lenses from various species, an intracellular hydrostatic pressure gradient goes from ∼340 mmHg in central fiber cells to 0 mmHg in surface cells. This gradient drives a center-to-surface flow of intracellular fluid. In lenses in which gap-junction coupling is increased, the central pressure is lower, whereas if gap-junction coupling is reduced, the central pressure is higher but surface pressure is always zero. Recently, we found that surface cell pressure was elevated in PTEN null lenses. This suggested disruption of a feedback control system that normally maintained zero surface cell pressure. Our purpose in this study was to investigate and characterize this feedback control system. We measured intracellular hydrostatic pressures in mouse lenses using a microelectrode/manometer-based system. We found that all feedback went through transport by the Na/K ATPase, which adjusted surface cell osmolarity such that pressure was maintained at zero. We traced the regulation of Na/K ATPase activity back to either TRPV4, which sensed positive pressure and stimulated activity, or TRPV1, which sensed negative pressure and inhibited activity. The inhibitory effect of TRPV1 on Na/K pumps was shown to signal through activation of the PI3K/AKT axis. The stimulatory effect of TRPV4 was shown in previous studies to go through a different signal transduction path. Thus, there is a local two-legged feedback control system for pressure in lens surface cells. The surface pressure provides a pedestal on which the pressure gradient sits, so surface pressure determines the absolute value of pressure at each radial location. We speculate that the absolute value of intracellular pressure may set the radial gradient in the refractive index, which is essential for visual acuity. PMID:26536260

  3. Androgen action via testicular arteriole smooth muscle cells is important for Leydig cell function, vasomotion and testicular fluid dynamics.

    Directory of Open Access Journals (Sweden)

    Michelle Welsh

    2010-10-01

    Full Text Available Regulation of blood flow through the testicular microvasculature by vasomotion is thought to be important for normal testis function as it regulates interstitial fluid (IF dynamics which is an important intra-testicular transport medium. Androgens control vasomotion, but how they exert these effects remains unclear. One possibility is by signalling via androgen receptors (AR expressed in testicular arteriole smooth muscle cells. To investigate this and determine the overall importance of this mechanism in testis function, we generated a blood vessel smooth muscle cell-specific AR knockout mouse (SMARKO. Gross reproductive development was normal in SMARKO mice but testis weight was reduced in adulthood compared to control littermates; this reduction was not due to any changes in germ cell volume or to deficits in testosterone, LH or FSH concentrations and did not cause infertility. However, seminiferous tubule lumen volume was reduced in adult SMARKO males while interstitial volume was increased, perhaps indicating altered fluid dynamics; this was associated with compensated Leydig cell failure. Vasomotion was impaired in adult SMARKO males, though overall testis blood flow was normal and there was an increase in the overall blood vessel volume per testis in adult SMARKOs. In conclusion, these results indicate that ablating arteriole smooth muscle AR does not grossly alter spermatogenesis or affect male fertility but does subtly impair Leydig cell function and testicular fluid exchange, possibly by locally regulating microvascular blood flow within the testis.

  4. Temperature dependence of intracellular Ca2+ homeostasis in rat meiotic and postmeiotic spermatogenic cells.

    Science.gov (United States)

    Herrera, E; Salas, K; Lagos, N; Benos, D J; Reyes, J G

    2001-10-01

    The hypothesis that intracellular [Ca2+] is a cell parameter responsive to extreme temperatures in rat meiotic and postmeiotic spermatogenic cells was tested using intracellular fluorescent probes for Ca2+ and pH. In agreement with this hypothesis, extreme temperatures induced a rapid increase of cytosolic [Ca2+] in rat pachytene spermatocytes and round spermatids. Oscillatory changes in temperature can induce oscillations in cytosolic [Ca2+] in these cells. Intracellular [Ca2+] homeostasis in round spermatids was more sensitive to high temperatures compared with pachytene spermatocytes. The calculated activation energies for SERCA ATPase-mediated fluxes in pachytene spermatocytes and round spermatids were 62 and 75 kJ mol(-1), respectively. The activation energies for leak fluxes from intracellular Ca2+ stores were 55 and 68 kJ mol(-1) for pachytene spermatocytes and round spermatids, respectively. Together with changes in cytosolic [Ca2+], round spermatids undergo a decrease in pH(i) at high temperatures. This temperature-induced decrease in pH(i) appears to be partially responsible for the increase in cytosolic [Ca2+] of round spermatids induced by high temperatures. This characteristic of rat meiotic and postmeiotic spermatogenic cells to undergo an increment in cytosolic Ca2+ at temperatures > 33 degrees C can be related to the induction of programmed cell death by high temperatures in these cells.

  5. Obstructing Androgen Receptor Activation in Prostate Cancer Cells Through Post-translational Modification by NEDD8

    Science.gov (United States)

    2012-11-01

    FACS flow cytometer analysis . In addition, we will measure the steady state protein level of p53, p21, p27, and pRb. In the Jab1 silencing cell...affected by DHT treatment, and the endogenous AR level was not affected by Jab1 silencing. Interestingly, Western blot analysis of immunoprecipitated AR...Avantaggiati, and R. G. Pestell . 2003. Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. Mol

  6. Cell fate reprogramming by control of intracellular network dynamics

    Science.gov (United States)

    Zanudo, Jorge G. T.; Albert, Reka

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.

  7. Long-lasting masculinizing effects of postnatal androgens on myelin governed by the brain androgen receptor

    Science.gov (United States)

    Abi Ghanem, Charly; Degerny, Cindy; Hussain, Rashad; Liere, Philippe; Pianos, Antoine; Tourpin, Sophie; Habert, René; Schumacher, Michael

    2017-01-01

    The oligodendrocyte density is greater and myelin sheaths are thicker in the adult male mouse brain when compared with females. Here, we show that these sex differences emerge during the first 10 postnatal days, precisely at a stage when a late wave of oligodendrocyte progenitor cells arises and starts differentiating. Androgen levels, analyzed by gas chromatography/tandem-mass spectrometry, were higher in males than in females during this period. Treating male pups with flutamide, an androgen receptor (AR) antagonist, or female pups with 5α-dihydrotestosterone (5α-DHT), revealed the importance of postnatal androgens in masculinizing myelin and their persistent effect into adulthood. A key role of the brain AR in establishing the sexual phenotype of myelin was demonstrated by its conditional deletion. Our results uncover a new persistent effect of postnatal AR signaling, with implications for neurodevelopmental disorders and sex differences in multiple sclerosis. PMID:29107990

  8. Increased Androgen Response to Follicle-Stimulating Hormone Administration in Women with Polycystic Ovary Syndrome

    OpenAIRE

    Wachs, Deborah S.; Coffler, Mickey S.; Malcom, Pamela J.; Shimasaki, Shunichi; Chang, R. Jeffrey

    2008-01-01

    Context: In women with polycystic ovary syndrome (PCOS), excess ovarian androgen production is driven by increased LH secretion. Studies conducted in animals suggest that the granulosa cell may influence LH-stimulated theca cell androgen production.

  9. Genome-wide mapping of autonomous promoter activity in human cells.

    Science.gov (United States)

    van Arensbergen, Joris; FitzPatrick, Vincent D; de Haas, Marcel; Pagie, Ludo; Sluimer, Jasper; Bussemaker, Harmen J; van Steensel, Bas

    2017-02-01

    Previous methods to systematically characterize sequence-intrinsic activity of promoters have been limited by relatively low throughput and the length of the sequences that could be tested. Here we present 'survey of regulatory elements' (SuRE), a method that assays more than 10 8 DNA fragments, each 0.2-2 kb in size, for their ability to drive transcription autonomously. In SuRE, a plasmid library of random genomic fragments upstream of a 20-bp barcode is constructed, and decoded by paired-end sequencing. This library is used to transfect cells, and barcodes in transcribed RNA are quantified by high-throughput sequencing. When applied to the human genome, we achieve 55-fold genome coverage, allowing us to map autonomous promoter activity genome-wide in K562 cells. By computational modeling we delineate subregions within promoters that are relevant for their activity. We show that antisense promoter transcription is generally dependent on the sense core promoter sequences, and that most enhancers and several families of repetitive elements act as autonomous transcription initiation sites.

  10. The Nrf1 and Nrf2 Balance in Oxidative Stress Regulation and Androgen Signaling in Prostate Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Michelle A. [Department of Pharmacology, Tulane University Medical Center, 1430 Tulane Avenue, New Orleans, LA 70112 (United States); Abdel-Mageed, Asim B. [Department of Urology, Tulane University Medical Center, 1430 Tulane Avenue, New Orleans, LA 70112 (United States); Mondal, Debasis, E-mail: dmondal@tulane.edu [Department of Pharmacology, Tulane University Medical Center, 1430 Tulane Avenue, New Orleans, LA 70112 (United States)

    2010-06-21

    Reactive oxygen species (ROS) signaling has recently sparked a surge of interest as being the molecular underpinning for cancer cell survival, but the precise mechanisms involved have not been completely elucidated. This review covers the possible roles of two ROS-induced transcription factors, Nrf1 and Nrf2, and the antioxidant proteins peroxiredoxin-1 (Prx-1) and Thioredoxin-1 (Txn-1) in modulating AR expression and signaling in aggressive prostate cancer (PCa) cells. In androgen independent (AI) C4-2B cells, in comparison to the parental androgen dependent (AD) LNCaP cells, we present evidence of high Nrf1 and Prx-1 expression and low Nrf2 expression in these aggressive PCa cells. Furthermore, in DHT treated C4-2B cells, increased expression of the p65 (active) isoform of Nrf1 correlated with enhanced AR transactivation. Our findings implicate a crucial balance of Nrf1 and Nrf2 signaling in regulating AR activity in AI-PCa cells. Here we will discuss how understanding the mechanisms by which oxidative stress may affect AR signaling may aid in developing novel therapies for AI-PCa.

  11. pH-sensitive intracellular photoluminescence of carbon nanotube-fluorescein conjugates in human ovarian cancer cells

    International Nuclear Information System (INIS)

    Chen, M T; Ishikawa, F N; Gundersen, M A; Gomez, L M; Vernier, P T; Zhou, C

    2009-01-01

    To add to the understanding of the properties of functionalized carbon nanotubes in biological applications, we report a monotonic pH sensitivity of the intracellular fluorescence emission of single-walled carbon nanotube-fluorescein carbazide (SWCNT-FC) conjugates in human ovarian cancer cells. Light-stimulated intracellular hydrolysis of the amide linkage and localized intracellular pH changes are proposed as mechanisms. SWCNT-FC conjugates may serve as intracellular pH sensors.

  12. Resveratrol, piceatannol and analogs inhibit activation of both wild-type and T877A mutant androgen receptor.

    Science.gov (United States)

    Lundqvist, Johan; Tringali, Corrado; Oskarsson, Agneta

    2017-11-01

    Prostate cancer growth and progression are mainly dependent on androgens and many current prostate cancer treatment options target the synthesis or function of androgens. We have previously reported that resveratrol and synthetic analogs of resveratrol with a higher bioavailability inhibit the synthesis of androgens in human adrenocortical H295R cells. Now we have studied the antiandrogenic properties of resveratrol, piceatannol and analogs in two different prostate cell lines; LNCaP and RWPE. LNCaP carry a T877A mutation in the androgen receptor while RWPE has a wild-type androgen receptor. We found that resveratrol, piceatannol and all studied analogs were able to inhibit a dihydrotestosterone-induced activation of the androgen receptor, showing that they act as antiandrogens. In LNCaP cells, all studied compounds were able to statistically significantly decrease the androgenic signaling in concentrations ≥1μM and the synthetic analogs trimethylresveratrol (RSVTM) and tetramethylpiceatannol (PICTM) were the most potent compounds. RWPE cells were not as responsive to the studied compounds as the LNCaP cells. A statistically significant decrease in the androgenic signaling was observed at concentrations ≤5μM for most compounds and RSVTM was found to be the most potent compound. Further, we studied the effects of resveratrol, piceatannol and analogs on the levels of prostate-specific antigen (PSA) in LNCaP cells and found that all studied compounds decreased the level of PSA and that the synthetic analogs diacetylresveratrol (RSVDA), triacetylresveratrol (RSVTA) and RSVTM were the most potent compounds, decreasing the PSA level by approx. 50% at concentrations ≥10μM. In a cell-free receptor binding assay we were unable to show binding of resveratrol or analogs to the ligand binding domain of the androgen receptor, indicating that the observed effects are mediated via other mechanisms than direct ligand competition. We conclude that the resveratrol

  13. The androgen receptor controls expression of the cancer-associated sTn antigen and cell adhesion through induction of ST6GalNAc1 in prostate cancer

    Science.gov (United States)

    Munkley, Jennifer; Oltean, Sebastian; Vodák, Daniel; Wilson, Brian T.; Livermore, Karen E.; Zhou, Yan; Star, Eleanor; Floros, Vasileios I.; Johannessen, Bjarne; Knight, Bridget; McCullagh, Paul; McGrath, John; Crundwell, Malcolm; Skotheim, Rolf I.; Robson, Craig N.; Leung, Hing Y.; Harries, Lorna W.; Rajan, Prabhakar; Mills, Ian G.; Elliott, David J.

    2015-01-01

    Patterns of glycosylation are important in cancer, but the molecular mechanisms that drive changes are often poorly understood. The androgen receptor drives prostate cancer (PCa) development and progression to lethal metastatic castration-resistant disease. Here we used RNA-Seq coupled with bioinformatic analyses of androgen-receptor (AR) binding sites and clinical PCa expression array data to identify ST6GalNAc1 as a direct and rapidly activated target gene of the AR in PCa cells. ST6GalNAc1 encodes a sialytransferase that catalyses formation of the cancer-associated sialyl-Tn antigen (sTn), which we find is also induced by androgen exposure. Androgens induce expression of a novel splice variant of the ST6GalNAc1 protein in PCa cells. This splice variant encodes a shorter protein isoform that is still fully functional as a sialyltransferase and able to induce expression of the sTn-antigen. Surprisingly, given its high expression in tumours, stable expression of ST6GalNAc1 in PCa cells reduced formation of stable tumours in mice, reduced cell adhesion and induced a switch towards a more mesenchymal-like cell phenotype in vitro. ST6GalNAc1 has a dynamic expression pattern in clinical datasets, being significantly up-regulated in primary prostate carcinoma but relatively down-regulated in established metastatic tissue. ST6GalNAc1 is frequently upregulated concurrently with another important glycosylation enzyme GCNT1 previously associated with prostate cancer progression and implicated in Sialyl Lewis X antigen synthesis. Together our data establishes an androgen-dependent mechanism for sTn antigen expression in PCa, and are consistent with a general role for the androgen receptor in driving important coordinate changes to the glycoproteome during PCa progression. PMID:26452038

  14. A novel intracellular pool of LFA-1 is critical for asymmetric CD8+ T cell activation and differentiation.

    Science.gov (United States)

    Capece, Tara; Walling, Brandon L; Lim, Kihong; Kim, Kyun-Do; Bae, Seyeon; Chung, Hung-Li; Topham, David J; Kim, Minsoo

    2017-11-06

    The integrin lymphocyte function-associated antigen 1 (LFA-1; CD11a/CD18) is a key T cell adhesion receptor that mediates stable interactions with antigen-presenting cell (APC), as well as chemokine-mediated migration. Using our newly generated CD11a-mYFP knock-in mice, we discovered that naive CD8 + T cells reserve a significant intracellular pool of LFA-1 in the uropod during migration. Intracellular LFA-1 quickly translocated to the cell surface with antigenic stimulus. Importantly, the redistribution of intracellular LFA-1 at the contact with APC was maintained during cell division and led to an unequal inheritance of LFA-1 in divided T cells. The daughter CD8 + T cells with disparate LFA-1 expression showed different patterns of migration on ICAM-1, APC interactions, and tissue retention, as well as altered effector functions. In addition, we identified Rab27 as an important regulator of the intracellular LFA-1 translocation. Collectively, our data demonstrate that an intracellular pool of LFA-1 in naive CD8 + T cells plays a key role in T cell activation and differentiation. © 2017 Capece et al.

  15. IκBα mediates prostate cancer cell death induced by combinatorial targeting of the androgen receptor

    International Nuclear Information System (INIS)

    Carter, Sarah Louise; Centenera, Margaret Mary; Tilley, Wayne Desmond; Selth, Luke Ashton; Butler, Lisa Maree

    2016-01-01

    Combining different clinical agents to target multiple pathways in prostate cancer cells, including androgen receptor (AR) signaling, is potentially an effective strategy to improve outcomes for men with metastatic disease. We have previously demonstrated that sub-effective concentrations of an AR antagonist, bicalutamide, and the histone deacetylase inhibitor, vorinostat, act synergistically when combined to cause death of AR-dependent prostate cancer cells. In this study, expression profiling of human prostate cancer cells treated with bicalutamide or vorinostat, alone or in combination, was employed to determine the molecular mechanisms underlying this synergistic action. Cell viability assays and quantitative real time PCR were used to validate identified candidate genes. A substantial proportion of the genes modulated by the combination of bicalutamide and vorinostat were androgen regulated. Independent pathway analysis identified further pathways and genes, most notably NFKBIA (encoding IκBα, an inhibitor of NF-κB and p53 signaling), as targets of this combinatorial treatment. Depletion of IκBα by siRNA knockdown enhanced apoptosis of prostate cancer cells, while ectopic overexpression of IκBα markedly suppressed cell death induced by the combination of bicalutamide and vorinostat. These findings implicate IκBα as a key mediator of the apoptotic action of this combinatorial AR targeting strategy and a promising new therapeutic target for prostate cancer. The online version of this article (doi:10.1186/s12885-016-2188-2) contains supplementary material, which is available to authorized users

  16. Estrogen-induced disruption of intracellular iron metabolism leads to oxidative stress, membrane damage, and cell cycle arrest in MCF-7 cells.

    Science.gov (United States)

    Bajbouj, Khuloud; Shafarin, Jasmin; Abdalla, Maher Y; Ahmad, Iman M; Hamad, Mawieh

    2017-10-01

    It is well established that several forms of cancer associate with significant iron overload. Recent studies have suggested that estrogen (E2) disrupts intracellular iron homeostasis by reducing hepcidin synthesis and maintaining ferroportin integrity. Here, the ability of E2 to alter intracellular iron status and cell growth potential was investigated in MCF-7 cells treated with increasing concentrations of E2. Treated cells were assessed for intracellular iron status, the expression of key proteins involved in iron metabolism, oxidative stress, cell survival, growth, and apoptosis. E2 treatment resulted in a significant reduction in hepcidin expression and a significant increase in hypoxia-inducible factor 1 alpha, ferroportin, transferrin receptor, and ferritin expression; a transient decrease in labile iron pool; and a significant increase in total intracellular iron content mainly at 20 nM/48 h E2 dose. Treated cells also showed increased total glutathione and oxidized glutathione levels, increased superoxide dismutase activity, and increased hemoxygenase 1 expression. Treatment with E2 at 20 nM for 48 h resulted in a significant reduction in cell growth (0.35/1 migration rate) and decreased cell survival (iron metabolism and precipitates adverse effects concerning cell viability, membrane integrity, and growth potential.

  17. Super-Penetrant Androgen Receptor: Overcoming Enzalutamide Sensitivity in Castration-Resistant Prostate Cancer

    Science.gov (United States)

    2016-07-01

    Prostate Cancer Research Symposium- Prostate Cancer Epigenetic Reprogramming of the Androgen Receptor in Castration Resistant Prostate Cancer , May19... cancer cells rely critically on the androgen receptor (AR) for initiation, growth and progression to castration resistant prostate cancer (CRPC...Androgen receptor, castration resistant prostate cancer , Enzalutamide , kinases. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER

  18. Monitoring Intracellular Redox Changes in Ozone-exposed airway epithelial cells

    Science.gov (United States)

    Background: The toxicity of many compounds involves oxidative injury to cells. Direct assessment of mechanistic events involved in xenobiotic-induced oxidative stress is not easily achievable. Development of genetically-encoded probes designed for monitoring intracellular redox s...

  19. Androgen receptor expression in Circulating Tumor Cells from castration-resistant prostate cancer patients with novel endocrine agents

    NARCIS (Netherlands)

    Crespo, M.; van Dalum, Guus; Ferraldeschi, R.; Zafeiriou, Z.; Sideris, S.; Lorente, D.; Bianchini, D.; Rodrigues, D.N.; Rijsnaes, R.; Miranda, S.; Figueiredo, I.; Flohr, P.; Nowakowska, K.; de Bono, J.S.; Terstappen, Leonardus Wendelinus Mathias Marie; Attard, G.

    2015-01-01

    Background: Abiraterone and enzalutamide are novel endocrine treatments that abrogate androgen receptor (AR) signalling in castration-resistant prostate cancer (CRPC). Here, we developed a circulating tumour cells (CTCs)-based assay to evaluate AR expression in real-time in CRPC and investigated

  20. Intracellular Retention of ABL Kinase Inhibitors Determines Commitment to Apoptosis in CML Cells

    Science.gov (United States)

    Dziadosz, Marek; Schnöder, Tina; Heidel, Florian; Schemionek, Mirle; Melo, Junia V.; Kindler, Thomas; Müller-Tidow, Carsten; Koschmieder, Steffen; Fischer, Thomas

    2012-01-01

    Clinical development of imatinib in CML established continuous target inhibition as a paradigm for successful tyrosine kinase inhibitor (TKI) therapy. However, recent reports suggested that transient potent target inhibition of BCR-ABL by high-dose TKI (HD-TKI) pulse-exposure is sufficient to irreversibly commit cells to apoptosis. Here, we report a novel mechanism of prolonged intracellular TKI activity upon HD-TKI pulse-exposure (imatinib, dasatinib) in BCR-ABL-positive cells. Comprehensive mechanistic exploration revealed dramatic intracellular accumulation of TKIs which closely correlated with induction of apoptosis. Cells were rescued from apoptosis upon HD-TKI pulse either by repetitive drug wash-out or by overexpression of ABC-family drug transporters. Inhibition of ABCB1 restored sensitivity to HD-TKI pulse-exposure. Thus, our data provide evidence that intracellular drug retention crucially determines biological activity of imatinib and dasatinib. These studies may refine our current thinking on critical requirements of TKI dose and duration of target inhibition for biological activity of TKIs. PMID:22815843

  1. Regulation of intracellular calcium in resting and stimulated rat basophilic leukemia cells

    International Nuclear Information System (INIS)

    Mohr, F.C.

    1988-01-01

    Intracellular calcium regulation was studied in a cell line of mast cells, the rat basophilic leukemia (RBL) cells with the purpose of determining (1) The properties of the plasma membrane calcium permeability pathway and (2) The role of intracellular calcium stores. The first set of experiments showed that depolarization did not induce calcium entry or secretion in resting cells and did inhibit antigen-stimulated calcium uptake and secretion. In the second set of experiments the ionic basis of antigen-induced depolarization was studied using the fluorescent potential-sensitive probe bis-oxonol. The properties of the calcium entry pathway were more consistent with a calcium channel than a calcium transport mechanism such as Na:Ca exchange. The third set of experiments examined the effects of the proton ionophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) on RBL cells. CCCP inhibited antigen-stimulated 45 Ca uptake and secretion by depolarizing the plasma membrane

  2. Involvement of intracellular Zn2+ signaling in LTP at perforant pathway-CA1 pyramidal cell synapse.

    Science.gov (United States)

    Tamano, Haruna; Nishio, Ryusuke; Takeda, Atsushi

    2017-07-01

    Physiological significance of synaptic Zn 2+ signaling was examined at perforant pathway-CA1 pyramidal cell synapses. In vivo long-term potentiation (LTP) at perforant pathway-CA1 pyramidal cell synapses was induced using a recording electrode attached to a microdialysis probe and the recording region was locally perfused with artificial cerebrospinal fluid (ACSF) via the microdialysis probe. Perforant pathway LTP was not attenuated under perfusion with CaEDTA (10 mM), an extracellular Zn 2+ chelator, but attenuated under perfusion with ZnAF-2DA (50 μM), an intracellular Zn 2+ chelator, suggesting that intracellular Zn 2+ signaling is required for perforant pathway LTP. Even in rat brain slices bathed in CaEDTA in ACSF, intracellular Zn 2+ level, which was measured with intracellular ZnAF-2, was increased in the stratum lacunosum-moleculare where perforant pathway-CA1 pyramidal cell synapses were contained after tetanic stimulation. These results suggest that intracellular Zn 2+ signaling, which originates in internal stores/proteins, is involved in LTP at perforant pathway-CA1 pyramidal cell synapses. Because the influx of extracellular Zn 2+ , which originates in presynaptic Zn 2+ release, is involved in LTP at Schaffer collateral-CA1 pyramidal cell synapses, synapse-dependent Zn 2+ dynamics may be involved in plasticity of postsynaptic CA1 pyramidal cells. © 2017 Wiley Periodicals, Inc.

  3. Thymosin β4 promotes the migration of endothelial cells without intracellular Ca2+ elevation

    International Nuclear Information System (INIS)

    Selmi, Anna; Malinowski, Mariusz; Brutkowski, Wojciech; Bednarek, Radoslaw; Cierniewski, Czeslaw S.

    2012-01-01

    Numerous studies have demonstrated the effects of Tβ4 on cell migration, proliferation, apoptosis and inflammation after exogenous treatment, but the mechanism by which Tβ4 functions is still unclear. Previously, we demonstrated that incubation of endothelial cells with Tβ4 induced synthesis and secretion of various proteins, including plasminogen activator inhibitor type 1 and matrix metaloproteinases. We also showed that Tβ4 interacts with Ku80, which may operate as a novel receptor for Tβ4 and mediates its intracellular activity. In this paper, we provide evidence that Tβ4 induces cellular processes without changes in the intracellular Ca 2+ concentration. External treatment of HUVECs with Tβ4 and its mutants deprived of the N-terminal tetrapeptide AcSDKP (Tβ4 AcSDKPT/4A ) or the actin-binding sequence KLKKTET (Tβ4 KLKKTET/7A ) resulted in enhanced cell migration and formation of tubular structures in Matrigel. Surprisingly, the increased cell motility caused by Tβ4 was not associated with the intracellular Ca 2+ elevation monitored with Fluo-4 NW or Fura-2 AM. Therefore, it is unlikely that externally added Tβ4 induces HUVEC migration via the surface membrane receptors known to generate Ca 2+ influx. Our data confirm the concept that externally added Tβ4 must be internalized to induce intracellular mechanisms supporting endothelial cell migration.

  4. Targeting Prostate Cancer with Bifunctional Modulators of the Androgen Receptor

    Science.gov (United States)

    2015-06-01

    Wittmann, B.; Dwyer, M.; Cui, H.; Dye, D.; McDonnell, D.; Norris , J. Inhibition of prostate cancer cell growth by second-site androgen receptor antagonists...Wittmann, B.; Dwyer, M.; Cui, H.; Dye, D.; McDonnell, D.; Norris , J. Inhibition of prostate cancer cell growth by second-site androgen receptor...important clin- ical problem in diseases such as asthma (51, 52), ne- phrotic syndrome (53), and malignancies such as acute lymphoblastic leukemia (54

  5. Total glucosides of paeony inhibits lipopolysaccharide-induced proliferation, migration and invasion in androgen insensitive prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Zhi-Hui Zhang

    Full Text Available Previous studies demonstrated that inflammatory microenvironment promoted prostate cancer progression. This study investigated whether total glucosides of paeony (TGP, the active constituents extracted from the root of Paeonia Lactiflora Pall, suppressed lipopolysaccharide (LPS-stimulated proliferation, migration and invasion in androgen insensitive prostate cancer cells. PC-3 cells were incubated with LPS (2.0 μg/mL in the absence or presence of TGP (312.5 μg /mL. As expected, cells at S phase and nuclear CyclinD1, the markers of cell proliferation, were increased in LPS-stimulated PC-3 cells. Migration activity, as determined by wound-healing assay and transwell migration assay, and invasion activity, as determined by transwell invasion assay, were elevated in LPS-stimulated PC-3 cells. Interestingly, TGP suppressed LPS-stimulated PC-3 cells proliferation. Moreover, TGP inhibited LPS-stimulated migration and invasion of PC-3 cells. Additional experiment showed that TGP inhibited activation of nuclear factor kappa B (NF-κB and mitogen-activated protein kinase (MAPK/p38 in LPS-stimulated PC-3 cells. Correspondingly, TGP attenuated upregulation of interleukin (IL-6 and IL-8 in LPS-stimulated PC-3 cells. In addition, TGP inhibited nuclear translocation of signal transducer and activator of transcription 3 (STAT3 in LPS-stimulated PC-3 cells. These results suggest that TGP inhibits inflammation-associated STAT3 activation and proliferation, migration and invasion in androgen insensitive prostate cancer cells.

  6. Epigenetic silencing of host cell defense genes enhances intracellular survival of the rickettsial pathogen Anaplasma phagocytophilum.

    Directory of Open Access Journals (Sweden)

    Jose C Garcia-Garcia

    2009-06-01

    Full Text Available Intracellular bacteria have evolved mechanisms that promote survival within hostile host environments, often resulting in functional dysregulation and disease. Using the Anaplasma phagocytophilum-infected granulocyte model, we establish a link between host chromatin modifications, defense gene transcription and intracellular bacterial infection. Infection of THP-1 cells with A. phagocytophilum led to silencing of host defense gene expression. Histone deacetylase 1 (HDAC1 expression, activity and binding to the defense gene promoters significantly increased during infection, which resulted in decreased histone H3 acetylation in infected cells. HDAC1 overexpression enhanced infection, whereas pharmacologic and siRNA HDAC1 inhibition significantly decreased bacterial load. HDAC2 does not seem to be involved, since HDAC2 silencing by siRNA had no effect on A. phagocytophilum intracellular propagation. These data indicate that HDAC up-regulation and epigenetic silencing of host cell defense genes is required for A. phagocytophilum infection. Bacterial epigenetic regulation of host cell gene transcription could be a general mechanism that enhances intracellular pathogen survival while altering cell function and promoting disease.

  7. Red Maca (Lepidium meyenii) did not affect cell viability despite increased androgen receptor and prostate-specific antigen gene expression in the human prostate cancer cell line LNCaP.

    Science.gov (United States)

    Díaz, P; Cardenas, H; Orihuela, P A

    2016-10-01

    We examined whether aqueous extract of Lepidium meyenii (red Maca) could inhibit growth, potentiate apoptotic activity of two anticancer drugs Taxol and 2-methoxyestradiol (2ME) or change mRNA expression for the androgen target genes, androgen receptor (Ar) and prostate-specific antigen (Psa) in the human prostate cancer cell line LNCaP. Red Maca aqueous extract at 0, 10, 20, 40 or 80 μg/ml was added to LNCaP cells, and viability was evaluated by the MTS assay at 24 or 48 hr after treatment. Furthermore, LNCaP cells were treated with 80 μg/ml of red Maca plus Taxol or 2ME 5 μM and viability was assessed 48 hr later. Finally, LNCaP cells were treated with red Maca 0, 20, 40 or 80 μg/ml, and 12 hr later, mRNA level for Ar or Psa was assessed by real-time PCR. Treatment with red Maca did not affect viability of LNCaP cells. Apoptotic activity induced by Taxol and 2ME in LNCaP cells was not altered with red Maca treatment. Relative expression of the mRNA for Ar and Psa increased with red Maca 20 and 40 μg/ml, but not at 80 μg/ml. We conclude that red Maca aqueous extract does not have toxic effects, but stimulates androgen signalling in LNCaP cells. © 2016 Blackwell Verlag GmbH.

  8. Regulation of intracellular pH in LLC-PK1 cells by Na+/H+ exchange.

    Science.gov (United States)

    Montrose, M H; Murer, H

    1986-01-01

    Suspensions of LLC-PK1 cells (a continuous epitheliod cell line with renal characteristics) are examined for mechanisms of intracellular pH regulation using the fluorescent probe BCECF. Initial experiments determine suitable calibration procedures for use of the BCECF fluorescent signal. They also determine that the cell suspension contains cells which (after 4 hr in suspension) have Na+ and K+ gradients comparable to those of cells in monolayer culture. The steady-state intracellular pH (7.05 +/- 0.01, n = 5) of cells which have recovered in (pH 7.4) Na+-containing medium is not affected over several minutes by addition of 100 microM amiloride or removal of extracellular Na+ (Na+o less than 1 mM). In contrast, when the cells recover from an acid load (caused by NH4 preincubation and removal), the recovery is largely Na+ dependent and is sensitive to 100 microM amiloride. These results suggest that with resting pH near neutrality, both Na+o/H+i and Na+i/H+o exchange reactions are functionally inactive (compared to cellular buffering capacity). In contrast, Na+o/H+i exchange is activated by an increased cellular acid load. This activation may be observed directly either as a stimulation of net H+ efflux or net Na+ influx with decreasing intracellular pH. The extrapolation of this latter data suggests a "set point" of Na+/H+ exchange of approximately pH 7.0, consistent with the observed resting intracellular pH of approximately 7.05.

  9. Intracellular fate of recombinant human interferon-gamma (rIFN) in U937 cells

    International Nuclear Information System (INIS)

    Finbloom, D.S.

    1986-01-01

    After IFN binds to specific receptors on macrophages, both modulation of surface molecules and induction of microbicidal and tumoricidal activity occurs 24-48 hr later. Since the intracellular events required to insure these responses are poorly defined, the fate of radiolabeled rIFN in U937 cells was examined. Endocytosis was determined by exposing cells to pH 2.5 to allow rIFN to dissociate leaving only intracellular ligand. Degradation was measured as trichloroacetic acid soluble radioactivity in the media. Of the 4-5000 molecules of rIFN that specifically and saturably (at 300 U/ml) bound at 4 0 C, 40% dissociated during 15-30 min after cells were warmed to 37 0 C. However, if cells were continuously exposed at 37 0 C to lower levels of rIFN (60-100 U/ml), 30-40% of those molecules capable of binding to the cell at that concentration were internalized. Furthermore, 60% of the molecules were degraded during 3-4 hr of additional culture. Since exposure of cells to chloroquine and monensin resulted in only partial inhibition of degradation (75% and 43%, respectively), there may also be degradation within endosomes or on the cell following binding to its receptor. Soon thereafter, degradation products are measurable. Since many biological responses require prolonged incubation with the molecule, intracellular processing of IFN may be important for expression of these effects

  10. The pluripotency factor Nanog is directly upregulated by the androgen receptor in prostate cancer cells.

    Science.gov (United States)

    Kregel, Steven; Szmulewitz, Russell Z; Vander Griend, Donald J

    2014-11-01

    The Androgen Receptor (AR) is a nuclear hormone receptor that functions as a critical oncogene in all stages of prostate cancer progression, including progression to castration-resistance following androgen-deprivation therapy. Thus, identifying and targeting critical AR-regulated genes is one potential method to block castration-resistant cancer proliferation. Of particular importance are transcription factors that regulate stem cell pluripotency; many of these genes are emerging as critical oncogenes in numerous tumor cell types. Of these, Nanog has been previously shown to increase the self-renewal and stem-like properties of prostate cancer cells. Thus, we hypothesized that Nanog is a candidate AR target gene that may impart castration-resistance. We modulated AR signaling in LNCaP prostate cancer cells and assayed for Nanog expression. Direct AR binding to the NANOG promoter was tested using AR Chromatin Immunoprecipation (ChIP) and analyses of publically available AR ChIP-sequencing data-sets. Nanog over-expressing cells were analyzed for cell growth and cytotoxicity in response to the AR antagonist enzalutamide and the microtubule stabilizing agent docetaxel. AR signaling upregulates Nanog mRNA and protein. AR binds directly to the NANOG promoter, and was not identified within 75 kb of the NANOGP8 pseudogene, suggesting the NANOG gene locus was preferentially activated. Nanog overexpression in LNCaP cells increases overall growth, but does not increase resistance to enzalutamide or docetaxel. Nanog is a novel oncogenic AR target gene in prostate cancer cells, and stable expression of Nanog increases proliferation and growth of prostate cancer cells, but not resistance to enzalutamide or docetaxel. © 2014 Wiley Periodicals, Inc.

  11. Molecular features contributing to virus-independent intracellular localization and dynamic behavior of the herpesvirus transport protein US9.

    Directory of Open Access Journals (Sweden)

    Manuela Pedrazzi

    Full Text Available Reaching the right destination is of vital importance for molecules, proteins, organelles, and cargoes. Thus, intracellular traffic is continuously controlled and regulated by several proteins taking part in the process. Viruses exploit this machinery, and viral proteins regulating intracellular transport have been identified as they represent valuable tools to understand and possibly direct molecules targeting and delivery. Deciphering the molecular features of viral proteins contributing to (or determining this dynamic phenotype can eventually lead to a virus-independent approach to control cellular transport and delivery. From this virus-independent perspective we looked at US9, a virion component of Herpes Simplex Virus involved in anterograde transport of the virus inside neurons of the infected host. As the natural cargo of US9-related vesicles is the virus (or its parts, defining its autonomous, virus-independent role in vesicles transport represents a prerequisite to make US9 a valuable molecular tool to study and possibly direct cellular transport. To assess the extent of this autonomous role in vesicles transport, we analyzed US9 behavior in the absence of viral infection. Based on our studies, Us9 behavior appears similar in different cell types; however, as expected, the data we obtained in neurons best represent the virus-independent properties of US9. In these primary cells, transfected US9 mostly recapitulates the behavior of US9 expressed from the viral genome. Additionally, ablation of two major phosphorylation sites (i.e. Y32Y33 and S34ES36 have no effect on protein incorporation on vesicles and on its localization on both proximal and distal regions of the cells. These results support the idea that, while US9 post-translational modification may be important to regulate cargo loading and, consequently, virion export and delivery, no additional viral functions are required for US9 role in intracellular transport.

  12. Intracellular Delivery of Nanobodies for Imaging of Target Proteins in Live Cells.

    Science.gov (United States)

    Röder, Ruth; Helma, Jonas; Preiß, Tobias; Rädler, Joachim O; Leonhardt, Heinrich; Wagner, Ernst

    2017-01-01

    Cytosolic delivery of nanobodies for molecular target binding and fluorescent labeling in living cells. Fluorescently labeled nanobodies were formulated with sixteen different sequence-defined oligoaminoamides. The delivery of formulated anti-GFP nanobodies into different target protein-containing HeLa cell lines was investigated by flow cytometry and fluorescence microscopy. Nanoparticle formation was analyzed by fluorescence correlation spectroscopy. The initial oligomer screen identified two cationizable four-arm structured oligomers (734, 735) which mediate intracellular nanobody delivery in a receptor-independent (734) or folate receptor facilitated (735) process. The presence of disulfide-forming cysteines in the oligomers was found critical for the formation of stable protein nanoparticles of around 20 nm diameter. Delivery of labeled GFP nanobodies or lamin nanobodies to their cellular targets was demonstrated by fluorescence microscopy including time lapse studies. Two sequence-defined oligoaminoamides with or without folate for receptor targeting were identified as effective carriers for intracellular nanobody delivery, as exemplified by GFP or lamin binding in living cells. Due to the conserved nanobody core structure, the methods should be applicable for a broad range of nanobodies directed to different intracellular targets.

  13. Androgen receptor and immune inflammation in benign prostatic hyperplasia and prostate cancer

    Science.gov (United States)

    Izumi, Kouji; Li, Lei; Chang, Chawnshang

    2014-01-01

    Both benign prostatic hyperplasia (BPH) and prostate cancer (PCa) are frequent diseases in middle-aged to elderly men worldwide. While both diseases are linked to abnormal growth of the prostate, the epidemiological and pathological features of these two prostate diseases are different. BPH nodules typically arise from the transitional zone, and, in contrast, PCa arises from the peripheral zone. Androgen deprivation therapy alone may not be sufficient to cure these two prostatic diseases due to its undesirable side effects. The alteration of androgen receptor-mediated inflammatory signals from infiltrating immune cells and prostate stromal/epithelial cells may play key roles in those unwanted events. Herein, this review will focus on the roles of androgen/androgen receptor signals in the inflammation-induced progression of BPH and PCa. PMID:26594314

  14. F NMR measurement of intracellular free calcium in human red blood cells

    International Nuclear Information System (INIS)

    Gupta, R.K.; Schanne, F.A.X.

    1986-01-01

    Optical techniques for the measurement of intracellular Ca are not readily applicable to the human red cell because of the intense absorption of hemoglobin. The authors have therefore examined the use of 19 F NMR of 5,5'-difluoro-1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetra acetic acid (5FBAPTA) introduced non-disruptively by intracellular hydrolysis of the membrane-permeant acetoxymethyl ester derivative. 19 F NMR spectra of 5FBAPTA-containing erythrocytes at 188 MHz displayed two well resolved resonances corresponding to the free and Ca-bound forms of the chelator, the resonance of the free form being ten-fold larger than that of the Ca-bound form. Addition of the ionophore A23187 resulted in the disappearance of the resonance of the free anion and a quantitative increase in the intensity of the resonance of the Ca-complex. From these data, and a K/sub D/ of 708 nM for the Ca-5FBAPTA complex, the authors estimate red cell free Ca to be 70 nM, which is in the range of values obtained for other cells, despite the fact that the human red cell, which lacks intracellular organelles for storing Ca, possesses only 1 μmol total Ca/1. cells in comparison to mmols of total Ca found in other cells. The authors ability to use 19 F NMR to measure free Ca in the red blood cell paves the way for future NMR studies of red cell free Ca concentrations in human essential hypertension as well as in other diseases states in which alterations in cellular Ca homeostasis may be involved

  15. Interrelation of androgen receptor and miR-30a and miR-30a function in ER-, PR-, AR+ MDA-MB-453 breast cancer cells.

    Science.gov (United States)

    Lyu, Shuhua; Liu, Han; Liu, Xia; Liu, Shan; Wang, Yahong; Yu, Qi; Niu, Yun

    2017-10-01

    The association between androgen-induced androgen receptor (AR) activating signal and microRNA (miR)-30a was investigated, as well as the function of miR-30a in estrogen receptor-negative (ER - ), progesterone receptor-negative (PR - ), and AR-positive (AR + ) MDA-MB-453 breast cancer cells. Androgen-induced AR activating signal upregulated the expression of AR, and downregulated the expression of miR-30a, b and c. Bioinformatics analysis indicated a putative miR-30a, b and c binding site in the 3'-untranslated region of AR mRNA. It was confirmed that the AR gene is a direct target of miR-30a, whereas AR does not target the miR-30a promoter, and AR activating signal may indirectly downregulate miR-30a through other cell signaling pathways. In this positive feedback mechanism AR is then upregulated through miR-30a. Overexpression of miR-30a inhibited cell proliferation, whereas inhibition of miR-30a expression by specific antisense oligonucleotides, increased cell growth. Previously, androgen-induced AR activating signal was demonstrated to inhibit cell proliferation in ER - , PR - and AR + MDA-MB-453 breast cancer cells, but AR activating signal downregulated the expression of miR-30a, relieving the inhibition of MDA-MB-453 cell growth. Therefore, in MDA-MB-453 breast cancer cells, miR-30a has two different functions regarding cell growth: Inhibition of cell proliferation through a positive feedback signaling pathway; and the relative promotion of cell proliferation through downregulation of miR-30a. Thus, the association between AR activating signal and microRNAs is complex, and microRNAs may possess different functions due to different signaling pathways. Although the results of the present study were obtained in one cell line, they contribute to subsequent studies on ER - , PR - and AR + breast cancer.

  16. Conventional and novel stem cell based therapies for androgenic alopecia.

    Science.gov (United States)

    Talavera-Adame, Dodanim; Newman, Daniella; Newman, Nathan

    2017-01-01

    The prevalence of androgenic alopecia (AGA) increases with age and it affects both men and women. Patients diagnosed with AGA may experience decreased quality of life, depression, and feel self-conscious. There are a variety of therapeutic options ranging from prescription drugs to non-prescription medications. Currently, AGA involves an annual global market revenue of US$4 billion and a growth rate of 1.8%, indicating a growing consumer market. Although natural and synthetic ingredients can promote hair growth and, therefore, be useful to treat AGA, some of them have important adverse effects and unknown mechanisms of action that limit their use and benefits. Biologic factors that include signaling from stem cells, dermal papilla cells, and platelet-rich plasma are some of the current therapeutic agents being studied for hair restoration with milder side effects. However, most of the mechanisms exerted by these factors in hair restoration are still being researched. In this review, we analyze the therapeutic agents that have been used for AGA and emphasize the potential of new therapies based on advances in stem cell technologies and regenerative medicine.

  17. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis.

    Science.gov (United States)

    Li, Qingli; Lambrechts, Mark J; Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Yin, Rutie; Xi, Mingrong; You, Zongbing

    2013-01-01

    Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose) polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy.

  18. Detection of Intracellular Factor VIII Protein in Peripheral Blood Mononuclear Cells by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Gouri Shankar Pandey

    2013-01-01

    Full Text Available Flow cytometry is widely used in cancer research for diagnosis, detection of minimal residual disease, as well as immune monitoring and profiling following immunotherapy. Detection of specific host proteins for diagnosis predominantly uses quantitative PCR and western blotting assays. In this study, we optimized a flow cytometry-based detection assay for Factor VIII protein in peripheral blood mononuclear cells (PBMCs. An indirect intracellular staining (ICS method was standardized using monoclonal antibodies to different domains of human Factor VIII protein. The FVIII protein expression level was estimated by calculating the mean and median fluorescence intensities (MFI values for each monoclonal antibody. ICS staining of transiently transfected cell lines supported the method's specificity. Intracellular FVIII protein expression was also detected by the monoclonal antibodies used in the study in PBMCs of five blood donors. In summary, our data suggest that intracellular FVIII detection in PBMCs of hemophilia A patients can be a rapid and reliable method to detect intracellular FVIII levels.

  19. Anti-androgen effects of cypermethrin on the amino- and carboxyl-terminal interaction of the androgen receptor

    International Nuclear Information System (INIS)

    Hu, Jin-xia; Li, Yan-fang; Pan, Chen; Zhang, Jin-peng; Wang, Hong-mei; Li, Jing; Xu, Li-chun

    2012-01-01

    Graphical abstract: Both the known AR antagonist nilutamide and the pyrethroid insecticide cypermethrin inhibited DHT-induced AR N/C interaction in the mammalian two-hybrid assay. However, cypermethrin was a weaker androgen antagonist than nilutamide. Highlights: ► We have developed the mammalian two-hybrid assay. ► The assay displayed appropriate response to DHT and nilutamide. ► The N/C interaction was induced by DHT in a dose-dependent manner. ► Nilutamide inhibited DHT-induced AR N/C interaction. ► Cypermethrin exhibits inhibitory effects on DHT-induced AR N/C interaction. -- Abstract: The pyrethroid insecticide, cypermethrin has been demonstrated to be an environmental anti-androgen in the androgen receptor (AR) reporter gene assay. The amino- and carboxyl-terminal (N/C) interaction is required for transcription potential of the AR. In order to characterize the anti-androgen effects of cypermethrin involved in the N/C interaction of AR, the mammalian two-hybrid assay has been developed in the study. The fusion vectors pVP16-ARNTD, pM-ARLBD and the pG5CAT Reporter Vector were cotransfected into the CV-1 cells. The assay displayed appropriate response to the potent, classical AR agonist 5α-dihydrotestosterone (DHT) and known AR antagonist nilutamide. The N/C interaction was induced by DHT from 10 −11 M to 10 −5 M in a dose-dependent manner. Nilutamide did not activate N/C interaction, while inhibited DHT-induced AR N/C interaction at the concentrations from 10 −7 M to 10 −5 M. Treatment of CV-1 cells with cypermethrin alone did not activate the reporter CAT. Cypermethrin significantly decreased the DHT-induced reporter CAT expression at the higher concentration of 10 −5 M. The mammalian two-hybrid assay provides a promising tool both for defining mechanism involved in AR N/C interaction of EDCs and for screening of chemicals with androgen agonistic and antagonistic activities. Cypermethrin exhibits inhibitory effects on the DHT-induced AR N

  20. Testosterone regulates the autophagic clearance of androgen binding protein in rat Sertoli cells

    Science.gov (United States)

    Ma, Yi; Yang, Hao-Zheng; Xu, Long-Mei; Huang, Yi-Ran; Dai, Hui-Li; Kang, Xiao-Nan

    2015-01-01

    Dysregulation of androgen-binding protein (ABP) is associated with a number of endocrine and andrology diseases. However, the ABP metabolism in Sertoli cells is largely unknown. We report that autophagy degrades ABP in rat Sertoli cells, and the autophagic clearance of ABP is regulated by testosterone, which prolongs the ABP biological half-life by inhibiting autophagy. Further studies identified that the autophagic clearance of ABP might be selectively regulated by testosterone, independent of stress (hypoxia)-induced autophagic degradation. These data demonstrate that testosterone up-regulates ABP expression at least partially by suppressing the autophagic degradation. We report a novel finding with respect to the mechanisms by which ABP is cleared, and by which the process is regulated in Sertoli cells. PMID:25745956

  1. Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting

    Directory of Open Access Journals (Sweden)

    Ajioka Itsuki

    2007-09-01

    Full Text Available Abstract Background Development of multicellular organisms proceeds from a single fertilized egg as the combined effect of countless numbers of cellular interactions among highly dynamic cells. Since at least a reminiscent pattern of morphogenesis can be recapitulated in a reproducible manner in reaggregation cultures of dissociated embryonic cells, which is known as cell sorting, the cells themselves must possess some autonomous cell behaviors that assure specific and reproducible self-organization. Understanding of this self-organized dynamics of heterogeneous cell population seems to require some novel approaches so that the approaches bridge a gap between molecular events and morphogenesis in developmental and cell biology. A conceptual cell model in a computer may answer that purpose. We constructed a dynamical cell model based on autonomous cell behaviors, including cell shape, growth, division, adhesion, transformation, and motility as well as cell-cell signaling. The model gives some insights about what cellular behaviors make an appropriate global pattern of the cell population. Results We applied the model to "inside and outside" pattern of cell-sorting, in which two different embryonic cell types within a randomly mixed aggregate are sorted so that one cell type tends to gather in the central region of the aggregate and the other cell type surrounds the first cell type. Our model can modify the above cell behaviors by varying parameters related to them. We explored various parameter sets with which the "inside and outside" pattern could be achieved. The simulation results suggested that direction of cell movement responding to its neighborhood and the cell's mobility are important for this specific rearrangement. Conclusion We constructed an in silico cell model that mimics autonomous cell behaviors and applied it to cell sorting, which is a simple and appropriate phenomenon exhibiting self-organization of cell population. The model

  2. Dimethylfumarate induces cell cycle arrest and apoptosis via regulating intracellular redox systems in HeLa cells.

    Science.gov (United States)

    Han, Guocan; Zhou, Qiang

    2016-12-01

    Dimethylfumarate (DMF) is cytotoxic to several kinds of cells and serves as an anti-tumor drug. This study was designed to investigate the effects and underlying mechanism of DMF on cervical cancer cells. HeLa cells were cultured and treated with 0, 50, 100, 150, and 200 μM DMF, respectively. After 24 h, cell growth was evaluated using Cell Counting Kit-8 (CCK-8) assay and the cell cycle was examined using flow cytometry. In addition, cell apoptosis was detected by Annexin V/propidium iodide (PI) staining and the expressions of caspase-3 and poly-ADP-ribose polymerase (PARP) were detected using western blotting. The redox-related factors were then assessed. Furthermore, all of the indicators were detected in HeLa cells after combined treatment of DMF and N-acetyl-L-cysteine (NAC, an oxygen-free radical scavenger). The cell number and cell growth of HeLa were obviously inhibited by DMF in a dose-dependent manner, as the cell cycle was arrested at G0/G1 phase (P HeLa cells were markedly increased, and the expression levels of caspase-3 and PARP were significantly increased in a DMF concentration-dependent way (P cell proliferation and apoptosis of HeLa cells was mainly related to the intracellular redox systems by depletion of intracellular GSH.

  3. Quantification of the Force of Nanoparticle-Cell Membrane Interactions and Its Influence on Intracellular Trafficking of Nanoparticles

    Science.gov (United States)

    Vasir, Jaspreet K.; Labhasetwar, Vinod

    2008-01-01

    Understanding the interaction of nanoparticles (NPs) with the cell membrane and their trafficking through cells is imperative to fully explore the use of NPs for efficient intracellular delivery of therapeutics. Here, we report a novel method of measuring the force of NP-cell membrane interactions using atomic force microscopy (AFM). Poly(dl-lactide co-glycolide, PLGA) NPs functionalized with poly-l-lysine were used as a model system, to demonstrate that this force determines the adhesive interaction of NPs with the cell membrane and in turn the extent of cellular uptake of NPs, and hence that of the encapsulated therapeutic. Cellular uptake of NPs was monitored using AFM imaging, and the dynamics of their intracellular distribution was quantified using confocal microscopy. Results demonstrated that the functionalized NPs have a five-fold greater force of adhesion with the cell membrane and the time-lapse AFM images show their rapid internalization than unmodified NPs. The intracellular trafficking study showed that the functionalized NPs escape more rapidly and efficiently from late endosomes than unmodified NPs and result in 10-fold higher intracellular delivery of the encapsulated model protein. The findings described herein enhance our basic understanding of the NP-cell membrane interaction on the basis of physical phenomena that could have wider applications in developing efficient nanocarrier systems for intracellular delivery of therapeutics. PMID:18692238

  4. Near-Infrared Light Activation of Proteins Inside Living Cells Enabled by Carbon Nanotube-Mediated Intracellular Delivery.

    Science.gov (United States)

    Li, He; Fan, Xinqi; Chen, Xing

    2016-02-01

    Light-responsive proteins have been delivered into the cells for controlling intracellular events with high spatial and temporal resolution. However, the choice of wavelength is limited to the UV and visible range; activation of proteins inside the cells using near-infrared (NIR) light, which has better tissue penetration and biocompatibility, remains elusive. Here, we report the development of a single-walled carbon nanotube (SWCNT)-based bifunctional system that enables protein intracellular delivery, followed by NIR activation of the delivered proteins inside the cells. Proteins of interest are conjugated onto SWCNTs via a streptavidin-desthiobiotin (SA-DTB) linkage, where the protein activity is blocked. SWCNTs serve as both a nanocarrier for carrying proteins into the cells and subsequently a NIR sensitizer to photothermally cleave the linkage and release the proteins. The released proteins become active and exert their functions inside the cells. We demonstrated this strategy by intracellular delivery and NIR-triggered nuclear translocation of enhanced green fluorescent protein, and by intracellular delivery and NIR-activation of a therapeutic protein, saporin, in living cells. Furthermore, we showed that proteins conjugated onto SWCNTs via the SA-DTB linkage could be delivered to the tumors, and optically released and activated by using NIR light in living mice.

  5. Cyproterone acetate enhances TRAIL-induced androgen-independent prostate cancer cell apoptosis via up-regulation of death receptor 5.

    Science.gov (United States)

    Chen, Linjie; Wolff, Dennis W; Xie, Yan; Lin, Ming-Fong; Tu, Yaping

    2017-03-07

    Virtually all prostate cancer deaths occur due to obtaining the castration-resistant phenotype after prostate cancer cells escaped from apoptosis and/or growth suppression initially induced by androgen receptor blockade. TNF-related apoptosis-inducing ligand (TRAIL) was an attractive cancer therapeutic agent due to its minimal toxicity to normal cells and remarkable apoptotic activity in tumor cells. However, most localized cancers including prostate cancer are resistant to TRAIL-induced apoptosis, thereby creating a therapeutic challenge of inducing TRAIL sensitivity in cancer cells. Herein the effects of cyproterone acetate, an antiandrogen steroid, on the TRAIL-induced apoptosis of androgen receptor-negative prostate cancer cells are reported. Cell apoptosis was assessed by both annexin V/propidium iodide labeling and poly (ADP-ribose) polymerase cleavage assays. Gene and protein expression changes were determined by quantitative real-time PCR and western blot assays. The effect of cyproterone acetate on gene promoter activity was determined by luciferase reporter assay. Cyproterone acetate but not AR antagonist bicalutamide dramatically increased the susceptibility of androgen receptor-negative human prostate cancer PC-3 and DU145 cells to TRAIL-induced apoptosis but no effects on immortalized human prostate stromal PS30 cells and human embryonic kidney HEK293 cells. Further investigation of the TRAIL-induced apoptosis pathway revealed that cyproterone acetate exerted its effect by selectively increasing death receptor 5 (DR5) mRNA and protein expression. Cyproterone acetate treatment also increased DR5 gene promoter activity, which could be abolished by mutation of a consensus binding domain of transcription factor CCAAT-enhancer-binding protein homologous protein (CHOP) in the DR5 gene promoter. Cyproterone acetate increases CHOP expression in a concentration and time-dependent manner and endoplasmic reticulum stress reducer 4-phenylbutyrate could block

  6. Intracellular NAD(H) levels control motility and invasion of glioma cells.

    NARCIS (Netherlands)

    Horssen, R. van; Willemse, M.P.; Haeger, A.; Attanasio, F.; Guneri, T.; Schwab, A.; Stock, C.M.; Buccione, R.; Fransen, J.A.M.; Wieringa, B.

    2013-01-01

    Oncogenic transformation involves reprogramming of cell metabolism, whereby steady-state levels of intracellular NAD(+) and NADH can undergo dramatic changes while ATP concentration is generally well maintained. Altered expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting

  7. Gelsolin-Cu/ZnSOD interaction alters intracellular reactive oxygen species levels to promote cancer cell invasion

    KAUST Repository

    Tochhawng, Lalchhandami

    2016-07-07

    The actin-binding protein, gelsolin, is a well known regulator of cancer cell invasion. However, the mechanisms by which gelsolin promotes invasion are not well established. As reactive oxygen species (ROS) have been shown to promote cancer cell invasion, we investigated on the hypothesis that gelsolin-induced changes in ROS levels may mediate the invasive capacity of colon cancer cells. Herein, we show that increased gelsolin enhances the invasive capacity of colon cancer cells, and this is mediated via gelsolin\\'s effects in elevating intracellular superoxide (O2 .-) levels. We also provide evidence for a novel physical interaction between gelsolin and Cu/ZnSOD, that inhibits the enzymatic activity of Cu/ZnSOD, thereby resulting in a sustained elevation of intracellular O2 .-. Using microarray data of human colorectal cancer tissues from Gene Omnibus, we found that gelsolin gene expression positively correlates with urokinase plasminogen activator (uPA), an important matrix-degrading protease invovled in cancer invasion. Consistent with the in vivo evidence, we show that increased levels of O2 .- induced by gelsolin overexpression triggers the secretion of uPA. We further observed reduction in invasion and intracellular O2 .- levels in colon cancer cells, as a consequence of gelsolin knockdown using two different siRNAs. In these cells, concurrent repression of Cu/ ZnSOD restored intracellular O2 .- levels and rescued invasive capacity. Our study therefore identified gelsolin as a novel regulator of intracellular O2 .- in cancer cells via interacting with Cu/ZnSOD and inhibiting its enzymatic activity. Taken together, these findings provide insight into a novel function of gelsolin in promoting tumor invasion by directly impacting the cellular redox milieu.

  8. 17β-Hydroxysteroid Dehydrogenase Type 2 Expression Is Induced by Androgen Signaling in Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Chiaki Hashimoto

    2018-04-01

    Full Text Available Endometrial cancer is one of the most common female pelvic cancers and has been considered an androgen-related malignancy. Several studies have demonstrated the anti-cell proliferative effect of androgen on endometrial cancer cells; however, the mechanisms of the anti-cancer effect of androgen remain largely unclear. 17β-hydroxysteroid dehydrogenase type 2 (17β-HSD2, which catalyzes the conversion of E2 to E1, is known to be upregulated by androgen treatment in breast cancer cells. In this study, we therefore focused on the role of androgen on estrogen dependence in endometrial cancer. Dihydrotestosterone (DHT was found to induce 17β-HSD2 mRNA and protein expression in HEC-1B endometrial cancer cells. DHT could also inhibit cell proliferation of HEC-1B when induced by estradiol treatment. In 19 endometrioid endometrial adenocarcinoma (EEA tissues, intratumoral DHT concentration was measured by liquid chromatography/electrospray tandem mass spectrometry and was found to be significantly correlated with 17β-HSD2 immunohistochemical status. We further examined the correlations between 17β-HSD2 immunoreactivity and clinicopathological parameters in 53 EEA tissues. 17β-HSD2 status was inversely associated with the histological grade, clinical stage, and cell proliferation marker Ki-67, and positively correlated with progesterone receptor expression. 17β-HSD2 status tended to be positively associated with androgen receptor status. In 53 EEA cases, the 17β-HSD2-positive group tended to have better prognosis than that for the negative group with respect to progression-free survival and endometrial cancer-specific survival. These findings suggest that androgen suppresses the estrogen dependence of endometrial cancer through the induction of 17β-HSD2 in endometrial cancer.

  9. Unique Approaches to Androgen Effects on Prostate Cancer

    National Research Council Canada - National Science Library

    Rosner, W; Kahn, S. M

    2007-01-01

    Sex hormone-binding globulin (SHBG) is a plasma protein that binds andrngens and it acts as a transducer of androgen signaling at the plasma membrane of prostate cancer cells The human prostate cancer cell line LNCaP in addition...

  10. Intracellular targeting of annexin A2 inhibits tumor cell adhesion, migration, and in vivo grafting.

    Science.gov (United States)

    Staquicini, Daniela I; Rangel, Roberto; Guzman-Rojas, Liliana; Staquicini, Fernanda I; Dobroff, Andrey S; Tarleton, Christy A; Ozbun, Michelle A; Kolonin, Mikhail G; Gelovani, Juri G; Marchiò, Serena; Sidman, Richard L; Hajjar, Katherine A; Arap, Wadih; Pasqualini, Renata

    2017-06-26

    Cytoskeletal-associated proteins play an active role in coordinating the adhesion and migration machinery in cancer progression. To identify functional protein networks and potential inhibitors, we screened an internalizing phage (iPhage) display library in tumor cells, and selected LGRFYAASG as a cytosol-targeting peptide. By affinity purification and mass spectrometry, intracellular annexin A2 was identified as the corresponding binding protein. Consistently, annexin A2 and a cell-internalizing, penetratin-fused version of the selected peptide (LGRFYAASG-pen) co-localized and specifically accumulated in the cytoplasm at the cell edges and cell-cell contacts. Functionally, tumor cells incubated with LGRFYAASG-pen showed disruption of filamentous actin, focal adhesions and caveolae-mediated membrane trafficking, resulting in impaired cell adhesion and migration in vitro. These effects were paralleled by a decrease in the phosphorylation of both focal adhesion kinase (Fak) and protein kinase B (Akt). Likewise, tumor cells pretreated with LGRFYAASG-pen exhibited an impaired capacity to colonize the lungs in vivo in several mouse models. Together, our findings demonstrate an unrecognized functional link between intracellular annexin A2 and tumor cell adhesion, migration and in vivo grafting. Moreover, this work uncovers a new peptide motif that binds to and inhibits intracellular annexin A2 as a candidate therapeutic lead for potential translation into clinical applications.

  11. Nanoparticles for intracellular-targeted drug delivery

    International Nuclear Information System (INIS)

    Paulo, Cristiana S O; Pires das Neves, Ricardo; Ferreira, Lino S

    2011-01-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  12. Up-Regulation of Follistatin-Like 1 By the Androgen Receptor and Melanoma Antigen-A11 in Prostate Cancer.

    Science.gov (United States)

    Su, Shifeng; Parris, Amanda B; Grossman, Gail; Mohler, James L; Wang, Zengjun; Wilson, Elizabeth M

    2017-04-01

    High affinity androgen binding to the androgen receptor (AR) activates genes required for male sex differentiation and promotes the development and progression of prostate cancer. Human AR transcriptional activity involves interactions with coregulatory proteins that include primate-specific melanoma antigen-A11 (MAGE-A11), a coactivator that increases AR transcriptional activity during prostate cancer progression to castration-resistant/recurrent prostate cancer (CRPC). Microarray analysis and quantitative RT-PCR were performed to identify androgen-regulated MAGE-A11-dependent genes in LAPC-4 prostate cancer cells after lentivirus shRNA knockdown of MAGE-A11. Chromatin immunoprecipitation was used to assess androgen-dependent AR recruitment, and immunocytochemistry to localize an androgen-dependent protein in prostate cancer cells and tissue and in the CWR22 human prostate cancer xenograft. Microarray analysis of androgen-treated LAPC-4 prostate cancer cells indicated follistatin-like 1 (FSTL1) is up-regulated by MAGE-A11. Androgen-dependent up-regulation of FSTL1 was inhibited in LAPC-4 cells by lentivirus shRNA knockdown of AR or MAGE-A11. Chromatin immunoprecipitation demonstrated AR recruitment to intron 10 of the FSTL1 gene that contains a classical consensus androgen response element. Increased levels of FSTL1 protein in LAPC-4 cells correlated with higher levels of MAGE-A11 relative to other prostate cancer cells. FSTL1 mRNA levels increased in CRPC and castration-recurrent CWR22 xenografts in association with predominantly nuclear FSTL1. Increased nuclear localization of FSTL1 in prostate cancer was suggested by predominantly cytoplasmic FSTL1 in benign prostate epithelial cells and predominantly nuclear FSTL1 in epithelial cells in CRPC tissue and the castration-recurrent CWR22 xenograft. AR expression studies showed nuclear colocalization of AR and endogenous FSTL1 in response to androgen. AR and MAGE-A11 cooperate in the up-regulation of FSTL1 to

  13. Peripheral neuropathies associated with antibodies directed to intracellular neural antigens.

    Science.gov (United States)

    Antoine, J-C

    2014-10-01

    Antibodies directed to intracellular neural antigens have been mainly described in paraneoplastic peripheral neuropathies and mostly includes anti-Hu and anti-CV2/CRMP5 antibodies. These antibodies occur with different patterns of neuropathy. With anti-Hu antibody, the most frequent manifestation is sensory neuronopathy with frequent autonomic involvement. With anti-CV2/CRMP5 the neuropathy is more frequently sensory and motor with an axonal or mixed demyelinating and axonal electrophysiological pattern. The clinical pattern of these neuropathies is in keeping with the cellular distribution of HuD and CRMP5 in the peripheral nervous system. Although present in high titer, these antibodies are probably not directly responsible for the neuropathy. Pathological and experimental studies indicate that cytotoxic T-cells are probably the main effectors of the immune response. These disorders contrast with those in which antibodies recognize a cell surface antigen and are probably responsible for the disease. The neuronal cell death and axonal degeneration which result from T-cell mediated immunity explains why treating these disorders remains challenging. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Poking cells for efficient vector-free intracellular delivery

    Science.gov (United States)

    Wang, Ying; Yang, Yang; Yan, Li; Kwok, So Ying; Li, Wei; Wang, Zhigang; Zhu, Xiaoyue; Zhu, Guangyu; Zhang, Wenjun; Chen, Xianfeng; Shi, Peng

    2014-07-01

    Techniques for introducing foreign molecules and materials into living cells are of great value in cell biology research. A major barrier for intracellular delivery is to cross the cell membrane. Here we demonstrate a novel platform utilizing diamond nanoneedle arrays to facilitate efficient vector-free cytosolic delivery. Using our technique, cellular membrane is deformed by an array of nanoneedles with a force on the order of a few nanonewtons. We show that this technique is applicable to deliver a broad range of molecules and materials into different types of cells, including primary neurons in adherent culture. Especially, for delivering plasmid DNAs into neurons, our technique produces at least eightfold improvement (~45% versus ~1-5%) in transfection efficiency with a dramatically shorter experimental protocol, when compared with the commonly used lipofection approach. It is anticipated that our technique will greatly benefit basic research in cell biology and also a wide variety of clinical applications.

  15. In human granulosa cells from small antral follicles, androgen receptor mRNA and androgen levels in follicular fluid correlate with FSH receptor mRNA

    DEFF Research Database (Denmark)

    Nielsen, M. E.; Rasmussen, I. A.; Kristensen, S. G.

    2011-01-01

    significantly with the expression of AMHRII, but did not correlate with any of the hormones in the follicular fluid. These data demonstrate an intimate association between AR expression in immature granulosa cells, and the expression of FSHR in normal small human antral follicles and between the follicular......Human small antral follicles (diameter 3-9 mm) were obtained from ovaries surgically removed for fertility preservation. From the individual aspirated follicles, granulosa cells and the corresponding follicular fluid were isolated in 64 follicles, of which 55 were available for mRNA analysis (24...... and to the follicular fluid concentrations of AMH, inhibin-B, progesterone and estradiol. AR mRNA expression in granulosa cells and the follicular fluid content of androgens both showed a highly significant positive association with the expression of FSHR mRNA in granulosa cells. AR mRNA expression also correlated...

  16. Overexpression of HepaCAM inhibits cell viability and motility through suppressing nucleus translocation of androgen receptor and ERK signaling in prostate cancer.

    Science.gov (United States)

    Song, Xuedong; Wang, Yin; Du, Hongfei; Fan, Yanru; Yang, Xue; Wang, Xiaorong; Wu, Xiaohou; Luo, Chunli

    2014-07-01

    HepaCAM is suppressed in a variety of human cancers, and involved in cell adhesion, growth, migration, invasion, and survival. However, the expression and function of HepaCAM in prostate cancer are still unknown. HepaCAM expression has been detected by RT-PCR, Western blotting and immunohistochemistry staining in prostate cell lines RWPE-1, LNCap, DU145, PC3, and in 75 human prostate tissue specimens, respectively. Meanwhile, the cell proliferation ability was detected by WST-8 assay. The role of HepaCAM in prostate cancer cell migration and invasion was examined by wound healing and transwell assay. And flow cytometry was used to observe the apoptosis of prostate cancer cells. Then we detected changes of Androgen Receptor translocation and ERK signaling using immunofluorescence staining and western blot after overexpression of HepaCAM. The HepaCAM expression was significantly down-regulated in prostate cancer tissues and undetected in prostate cancer cells. However, the low HepaCAM expression was not statistically associated with clinicopathological characteristics of prostate cancer. Overexpression of HepaCAM in prostate cancer cells decreased the cell proliferation, migration and invasion, and induced the cell apoptosis. Meanwhile, HepaCAM prevented the androgen receptor translocation from the cytoplasm to the nucleus and down-regulated the MAPK/ERK signaling. Our results suggested that HepaCAM acted as a tumor suppressor in prostate cancer. HepaCAM inhibited cell viability and motility which might be through suppressing the nuclear translocation of Androgen Receptor and down-regulating the ERK signaling. Therefore, it was indicated that HepaCAM may be a potential therapeutic target for prostate cancer. © 2014 Wiley Periodicals, Inc.

  17. Intracellular proteins produced by mammalian cells in response to environmental stress

    Science.gov (United States)

    Goochee, Charles F.; Passini, Cheryl A.

    1988-01-01

    The nature of the response of mammalian cells to environmental stress is examined by reviewing results of studies where cultured mouse L cells and baby hamster kidney cells were exposed to heat shock and the synthesis of heat-shock proteins and stress-response proteins (including HSP70, HSC70, HSP90, ubiquitin, and GRP70) in stressed and unstressed cells was evaluated using 2D-PAGE. The intracellular roles of the individual stress response proteins are discussed together with the regulation of the stress response system.

  18. An Update on Plant Derived Anti-Androgens

    Science.gov (United States)

    Grant, Paul; Ramasamy, Shamin

    2012-01-01

    Anti-androgens are an assorted group of drugs and compounds that reduce the levels or activity of androgen hormones within the human body. Disease states in which this is relevant include polycystic ovarian syndrome, hirsutism, acne, benign prostatic hyperplasia, and endocrine related cancers such as carcinoma of the prostate. We provide an overview and discussion of the use of anti-androgen medications in clinical practice and explore the increasing recognition of the benefits of plant-derived anti-androgens, for example, spearmint tea in the management of PCOS, for which some evidence about efficacy is beginning to emerge. Other agents covered include red reishi, which has been shown to reduce levels 5-alpha reductase, the enzyme that facilitates conversion of testosterone to dihydrotestosterone (DHT); licorice, which has phytoestrogen effects and reduces testosterone levels; Chinese peony, which promotes the aromatization of testosterone into estrogen; green tea, which contains epigallocatechins and also inhibits 5-alpha reductase, thereby reducing the conversion of normal testosterone into the more potent DHT; black cohosh, which has been shown to kill both androgenresponsive and non-responsive human prostate cancer cells; chaste tree, which has a reduces prolactin from the anterior pituitary; and saw palmetto extract, which is used as an anti-androgen although it shown no difference in comparison to placebo in clinical trials. PMID:23843810

  19. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles

    Science.gov (United States)

    Unzueta, Ugutz; Céspedes, María Virtudes; Ferrer-Miralles, Neus; Casanova, Isolda; Cedano, Juan; Corchero, José Luis; Domingo-Espín, Joan; Villaverde, Antonio; Mangues, Ramón; Vázquez, Esther

    2012-01-01

    Background Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4) is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing. Results Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4+ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer. Conclusion Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles, and imaging agents. PMID:22923991

  20. Characterization of niphatenones that inhibit androgen receptor N-terminal domain.

    Directory of Open Access Journals (Sweden)

    Carmen A Banuelos

    Full Text Available Androgen ablation therapy causes a temporary reduction in tumor burden in patients with advanced prostate cancer. Unfortunately the malignancy will return to form lethal castration-recurrent prostate cancer (CRPC. The androgen receptor (AR remains transcriptionally active in CRPC in spite of castrate levels of androgens in the blood. AR transcriptional activity resides in its N-terminal domain (NTD. Possible mechanisms of continued AR transcriptional activity may include, at least in part, expression of constitutively active splice variants of AR that lack the C-terminal ligand-binding domain (LBD. Current therapies that target the AR LBD, would not be effective against these AR variants. Currently no drugs are clinically available that target the AR NTD which should be effective against these AR variants as well as full-length AR. Niphatenones were originally isolated and identified in active extracts from Niphates digitalis marine sponge. Here we begin to characterize the mechanism of niphatenones in blocking AR transcriptional activity. Both enantiomers had similar IC50 values of 6 µM for inhibiting the full-length AR in a functional transcriptional assay. However, (S-niphatenone had significantly better activity against the AR NTD compared to (R-niphatenone. Consistent with niphatenones binding to and inhibiting transactivation of AR NTD, niphatenones inhibited AR splice variant. Niphatenone did not affect the transcriptional activity of the related progesterone receptor, but slightly decreased glucocorticoid receptor (GR activity and covalently bound to GR activation function-1 (AF-1 region. Niphatenone blocked N/C interactions of AR without altering either AR protein levels or its intracellular localization in response to androgen. Alkylation with glutathione suggests that niphatenones are not a feasible scaffold for further drug development.

  1. Molecular and Biochemical Effects of a Kola Nut Extract on Androgen Receptor-Mediated Pathways

    Directory of Open Access Journals (Sweden)

    Rajasree Solipuram

    2009-01-01

    Full Text Available The low incidence of prostate cancer in Asians has been attributed to chemopreventative properties of certain chemicals found in their diet. This study characterized the androgenic and chemopreventative properties of the Jamaican bush tea “Bizzy,” using androgen receptor positive and negative cell lines. Exposure of prostate cells to Biz-2 resulted in a growth inhibition (GI50 of 15 ppm in LNCaP cells and 3.6 ppm in DU145 cells. Biz-2 elicited a 2-fold increase in the mRNA of the anti-apoptotic gene Bcl2, with a 10-fold increase in that of the proapoptotic gene Bax. We observed a 2.4- to 7.5-fold change in apoptotic cells in both cell lines. Biz-2 at 10 ppm elicited a time- and dose-dependent stimulation of both the protein and mRNA levels of several androgen-regulated genes. Biz-2 caused a 36% decrease in PSA secretion and a significant increase in PSA mRNA. The relative binding affinity (IC50 of Biz-2 for AR was 2- to 5-fold lower than that of the synthetic androgen R1881. Biz-2 was found to be a specific ligand for the AR in that the natural ligand, DHT, and the anti-androgen, flutamide, displaced Biz-2 bound to AR and inhibited Biz-2-induced transcription and PSA secretion. This study provided evidence that Biz-2 extract possesses the ability to modulate prostate cancer cell biology in an AR-dependent manner.

  2. Dynamics of an HBV/HCV infection model with intracellular delay and cell proliferation

    Science.gov (United States)

    Zhang, Fengqin; Li, Jianquan; Zheng, Chongwu; Wang, Lin

    2017-01-01

    A new mathematical model of hepatitis B/C virus (HBV/HCV) infection which incorporates the proliferation of healthy hepatocyte cells and the latent period of infected hepatocyte cells is proposed and studied. The dynamics is analyzed via Pontryagin's method and a newly proposed alternative geometric stability switch criterion. Sharp conditions ensuring stability of the infection persistent equilibrium are derived by applying Pontryagin's method. Using the intracellular delay as the bifurcation parameter and applying an alternative geometric stability switch criterion, we show that the HBV/HCV infection model undergoes stability switches. Furthermore, numerical simulations illustrate that the intracellular delay can induce complex dynamics such as persistence bubbles and chaos.

  3. Autonomously bioluminescent mammalian cells for continuous and real-time monitoring of cytotoxicity.

    Science.gov (United States)

    Xu, Tingting; Close, Dan M; Webb, James D; Ripp, Steven A; Sayler, Gary S

    2013-10-28

    Mammalian cell-based in vitro assays have been widely employed as alternatives to animal testing for toxicological studies but have been limited due to the high monetary and time costs of parallel sample preparation that are necessitated due to the destructive nature of firefly luciferase-based screening methods. This video describes the utilization of autonomously bioluminescent mammalian cells, which do not require the destructive addition of a luciferin substrate, as an inexpensive and facile method for monitoring the cytotoxic effects of a compound of interest. Mammalian cells stably expressing the full bacterial bioluminescence (luxCDABEfrp) gene cassette autonomously produce an optical signal that peaks at 490 nm without the addition of an expensive and possibly interfering luciferin substrate, excitation by an external energy source, or destruction of the sample that is traditionally performed during optical imaging procedures. This independence from external stimulation places the burden for maintaining the bioluminescent reaction solely on the cell, meaning that the resultant signal is only detected during active metabolism. This characteristic makes the lux-expressing cell line an excellent candidate for use as a biosentinel against cytotoxic effects because changes in bioluminescent production are indicative of adverse effects on cellular growth and metabolism. Similarly, the autonomous nature and lack of required sample destruction permits repeated imaging of the same sample in real-time throughout the period of toxicant exposure and can be performed across multiple samples using existing imaging equipment in an automated fashion.

  4. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles

    Science.gov (United States)

    Lojk, Jasna; Bregar, Vladimir B; Rajh, Maruša; Miš, Katarina; Kreft, Mateja Erdani; Pirkmajer, Sergej; Veranič, Peter; Pavlin, Mojca

    2015-01-01

    Magnetic nanoparticles (NPs) are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs) are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA) in three cell types: Chinese Hamster Ovary (CHO), mouse melanoma (B16) cell line, and primary human myoblasts (MYO). We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM) as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours’ exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS) upon 24 and 48 hours’ exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP–cell interactions on several different cell types for better prediction of possible toxic effects on different cell and tissue types in vivo. PMID:25733835

  5. Evolving perspectives of the role of novel agents in androgen-independent prostate cancer

    Directory of Open Access Journals (Sweden)

    Sujith Kalmadi

    2008-01-01

    Full Text Available Metastatic androgen-independent prostate cancer presents an intriguing clinical challenge, with a subtle interaction between hormone-responsive and refractory tumor cell elements. The treatment of advanced prostate carcinoma, which had remained stagnant for several decades following the understanding of the link between androgenic stimulation and carcinogenesis, has now started to make steady headway with chemotherapy and targeted approaches. Metastatic prostate cancer is almost always treated with initial androgen deprivation, in various forms. However, despite such treatment androgen-independent prostate cancer cells eventually emerge and progress to threaten life. The therapeutic objectives for treatment of metastatic prostate cancer are to maintain the quality of life and prolong survival. The out-dated nihilistic dogma of deferring chemotherapy until the most advanced stages in advanced prostate cancer is now falling by the wayside with the development of newer effective, tolerable agents.

  6. The prohibitin-repressive interaction with E2F1 is rapidly inhibited by androgen signalling in prostate cancer cells

    NARCIS (Netherlands)

    Koushyar, S.; Economides, G.; Zaat, S.; Jiang, W.; Bevan, C. L.; Dart, D. A.

    2017-01-01

    Prohibitin (PHB) is a tumour suppressor molecule with pleiotropic activities across several cellular compartments including mitochondria, cell membrane and the nucleus. PHB and the steroid-activated androgen receptor (AR) have an interplay where AR downregulates PHB, and PHB represses AR.

  7. Thymosin {beta}4 promotes the migration of endothelial cells without intracellular Ca{sup 2+} elevation

    Energy Technology Data Exchange (ETDEWEB)

    Selmi, Anna [Department of Molecular and Medical Biophysics, Medical University of Lodz, 92-215 Lodz (Poland); Malinowski, Mariusz [Institute of Medical Biology, Polish Academy of Sciences, Lodz (Poland); Brutkowski, Wojciech [Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw (Poland); Bednarek, Radoslaw [Department of Molecular and Medical Biophysics, Medical University of Lodz, 92-215 Lodz (Poland); Cierniewski, Czeslaw S., E-mail: czeslaw.cierniewski@umed.lodz.pl [Department of Molecular and Medical Biophysics, Medical University of Lodz, 92-215 Lodz (Poland); Institute of Medical Biology, Polish Academy of Sciences, Lodz (Poland)

    2012-08-15

    Numerous studies have demonstrated the effects of T{beta}4 on cell migration, proliferation, apoptosis and inflammation after exogenous treatment, but the mechanism by which T{beta}4 functions is still unclear. Previously, we demonstrated that incubation of endothelial cells with T{beta}4 induced synthesis and secretion of various proteins, including plasminogen activator inhibitor type 1 and matrix metaloproteinases. We also showed that T{beta}4 interacts with Ku80, which may operate as a novel receptor for T{beta}4 and mediates its intracellular activity. In this paper, we provide evidence that T{beta}4 induces cellular processes without changes in the intracellular Ca{sup 2+} concentration. External treatment of HUVECs with T{beta}4 and its mutants deprived of the N-terminal tetrapeptide AcSDKP (T{beta}4{sub AcSDKPT/4A}) or the actin-binding sequence KLKKTET (T{beta}4{sub KLKKTET/7A}) resulted in enhanced cell migration and formation of tubular structures in Matrigel. Surprisingly, the increased cell motility caused by T{beta}4 was not associated with the intracellular Ca{sup 2+} elevation monitored with Fluo-4 NW or Fura-2 AM. Therefore, it is unlikely that externally added T{beta}4 induces HUVEC migration via the surface membrane receptors known to generate Ca{sup 2+} influx. Our data confirm the concept that externally added T{beta}4 must be internalized to induce intracellular mechanisms supporting endothelial cell migration.

  8. A Novel Mechanism of Androgen Receptor Action

    National Research Council Canada - National Science Library

    Roberts, Jr, Charles T

    2006-01-01

    .... Specifically, the authors had determined that the androgen receptor controls the expression of the cell-surface receptor for the hormone IGF-1 at the level of translation of the IGF-1 receptor mRNA...

  9. Melanin targeting for intracellular drug delivery: Quantification of bound and free drug in retinal pigment epithelial cells.

    Science.gov (United States)

    Rimpelä, Anna-Kaisa; Hagström, Marja; Kidron, Heidi; Urtti, Arto

    2018-05-31

    Melanin binding affects drug distribution and retention in pigmented ocular tissues, thereby affecting drug response, duration of activity and toxicity. Therefore, it is a promising possibility for drug targeting and controlled release in the pigmented cells and tissues. Intracellular unbound drug concentrations determine pharmacological and toxicological actions, but analyses of unbound vs. total drug concentrations in pigmented cells are lacking. We studied intracellular binding and cellular drug uptake in pigmented retinal pigment epithelial cells and in non-pigmented ARPE-19 cells with five model drugs (chloroquine, propranolol, timolol, diclofenac, methotrexate). The unbound drug fractions in pigmented cells were 0.00016-0.73 and in non-pigmented cells 0.017-1.0. Cellular uptake (i.e. distribution ratio Kp), ranged from 1.3 to 6300 in pigmented cells and from 1.0 to 25 in non-pigmented cells. Values for intracellular bioavailability, F ic , were similar in both cells types (although larger variation in pigmented cells). In vitro melanin binding parameters were used to predict intracellular unbound drug fraction and cell uptake. Comparison of predictions with experimental data indicates that other factors (e.g. ion-trapping, lipophilicity-related binding to other cell components) also play a role. Melanin binding is a major factor that leads to cellular uptake and unbound drug fractions of a range of 3-4 orders of magnitude indicating that large reservoirs of melanin bound drug can be generated in the cells. Understanding melanin binding has important implications on retinal drug targeting, efficacy and toxicity. Copyright © 2017. Published by Elsevier B.V.

  10. Intracellular scFvs against the viral E6 oncoprotein provoke apoptosis in human papillomavirus-positive cancer cells

    International Nuclear Information System (INIS)

    Lagrange, Magali; Boulade-Ladame, Charlotte; Mailly, Laurent; Weiss, Etienne; Orfanoudakis, Georges; Deryckere, Francois

    2007-01-01

    The E6 protein of human papillomavirus type 16 (16E6) is involved in the tumorigenesis of human cervical cells by targeting numerous cellular proteins. We have designed a strategy for neutralizing 16E6 based on the intracellular expression of single-chain Fv antibodies (scFvs) specific to 16E6. Recombinant adenovirus vectors were constructed to allow expression of two 16E6-binding scFvs and one 16E6-non-binding scFv in HPV16-positive and -negative cells. Expression of the scFvs provoked two types of effects: (i) inhibition of proliferation of all cell lines tested, this aspecific toxicity being likely due to the aggregation of unfolded scFvs; and (ii) apoptosis observed only in HPV16-positive cervical cancer cell lines after expression of 16E6-binding scFvs, this specific effect being proportional to the intracellular solubility of the scFvs. These data demonstrate the feasibility of intracellular immunization with anti-16E6 scFvs and highlight the importance of the solubility of the intracellular antibodies

  11. Effects of fenoterol on the skeletal system depend on the androgen level.

    Science.gov (United States)

    Śliwiński, Leszek; Cegieła, Urszula; Pytlik, Maria; Folwarczna, Joanna; Janas, Aleksandra; Zbrojkiewicz, Małgorzata

    2017-04-01

    The role of sympathetic nervous system in the osseous tissue remodeling is not clear enough. The effects of fenoterol, a selective β 2 -adrenomimetic drug, on the skeletal system of normal and androgen deficient (orchidectomized) rats were studied in vivo. Osteoclastogenesis and mRNA expression in osteoblasts were investigated in vitro in mouse cell cultures. Fenoterol administered to animals with physiological androgen level unfavorably affected the skeletal system, damaging the bone microarchitecture. Androgen deficiency induced osteoporotic changes, and fenoterol protected the osseous tissue from consequences of androgen deficiency. The results of in vitro studies correlated with the in vivo observations. A significantly increased number of osteoclasts in bone marrow cell cultures to which testosterone and fenoterol were added simultaneously was demonstrated. In cultures without the addition of testosterone, fenoterol significantly inhibited osteoclastogenesis in comparison with control cultures. The results indicate the favorable action of fenoterol in conditions of testosterone deficiency, and its destructive influence upon the skeleton in the presence of androgens. The results confirm the key role of sympathetic nervous system in the regulation of bone remodeling. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  12. Glucocorticoids can affect Pseudomonas aeruginosa (ATCC 27853) internalization and intracellular calcium concentration in cystic fibrosis bronchial epithelial cells.

    Science.gov (United States)

    Hussain, Rashida; Shahror, Rami; Karpati, Ferenc; Roomans, Godfried M

    2015-01-01

    Glucocorticoids (GCs) are anti-inflammatory agents, but their use in cystic fibrosis (CF) is controversial. In CF, the early colonization with Pseudomonas aeruginosa is mainly due to nonmucoid strains that can internalize, and induce apoptosis in the epithelial cells. Uptake of P. aeruginosa by the epithelial cells and subsequent apoptosis may prevent colonization of P. aeruginosa in CF airways. In the airway epithelia, several other biological effects, including an anti-secretory role by decreasing intracellular Ca(2+) concentration have been described for this anti-inflammatory drug. However, the effects of GCs on the nonmucoid P. aeruginosa internalization and intracellular Ca(2+) in CF bronchial epithelial cells have not been evaluated. We used cultured human CF bronchial airway epithelial cell (CFBE) monolayers to determine P. aeruginosa internalization, apoptosis, and intracellular Ca(2+)concentration in CF bronchial epithelial cells. Cells were treated with IL-6, IL-8, dexamethasone, betamethasone, or budesonide. GCs in co-treatments with IL-6 reversed the effect of IL-6 by decreasing the internalization of P. aeruginosa in the CFBE cells. GCs decreased the extent of apoptosis in CFBE cells infected with internalized P. aeruginosa, and increased the intracellular Ca(2+) concentration. These findings suggest that if internalization of P. aeruginosa reduces infection, GC therapy would increase the risk of pulmonary infection by decreasing the internalization of P. aeruginosa in CF cells, but GCs may improve airway hydration by increasing the intracellular Ca(2+) concentration. Whether the benefits of GC treatment outweigh the negative effects is questionable, and further clinical studies need to be carried out.

  13. Both cell-autonomous mechanisms and hormones contribute to sexual development in vertebrates and insects.

    Science.gov (United States)

    Bear, Ashley; Monteiro, Antónia

    2013-08-01

    The differentiation of male and female characteristics in vertebrates and insects has long been thought to proceed via different mechanisms. Traditionally, vertebrate sexual development was thought to occur in two phases: a primary and a secondary phase, the primary phase involving the differentiation of the gonads, and the secondary phase involving the differentiation of other sexual traits via the influence of sex hormones secreted by the gonads. In contrast, insect sexual development was thought to depend exclusively on cell-autonomous expression of sex-specific genes. Recently, however, new evidence indicates that both vertebrates and insects rely on sex hormones as well as cell-autonomous mechanisms to develop sexual traits. Collectively, these new data challenge the traditional vertebrate definitions of primary and secondary sexual development, call for a redefinition of these terms, and indicate the need for research aimed at explaining the relative dependence on cell-autonomous versus hormonally guided sexual development in animals. © 2013 The Authors. BioEssays published by WILEY Periodicals, Inc.

  14. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Lojk J

    2015-02-01

    Full Text Available Jasna Lojk,1 Vladimir B Bregar,1 Maruša Rajh,1 Katarina Miš,2 Mateja Erdani Kreft,3 Sergej Pirkmajer,2 Peter Veranič,3 Mojca Pavlin1 1Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, 2Institute of Pathophysiology, Faculty of Medicine, 3Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia Abstract: Magnetic nanoparticles (NPs are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA in three cell types: Chinese Hamster Ovary (CHO, mouse melanoma (B16 cell line, and primary human myoblasts (MYO. We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours’ exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS upon 24 and 48 hours’ exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP–cell interactions on several different cell types for better

  15. Androgen-Dependent Regulation of Human MUC1 Mucin Expression

    Directory of Open Access Journals (Sweden)

    Stephen Mitchell

    2002-01-01

    Full Text Available MUC1 mucin is transcriptionally regulated by estrogen, progesterone, and glucocorticoids. Our objective was to determine whether androgen receptor. (20AR activation regulates expression of MUC1. The following breast and prostatic cell lines were phenotyped and grouped according to AR and MUC1protein expression: 1 AR+MUCi + [DAR17+19. (20AR transfectants of DU-145, ZR-75-1, MDA-MB-453, and T47D]; 2 AR-MUCi+ [DZeoi. (20AR- vector control, DU-145, BT20, MDA-MB231, and MCF7]; 3 AIR +MUCi -. (20LNCaP and LNCaP-r. Cell proliferation was determined using the MTT assay in the presence of synthetic androgen R1881, 0.1 pM to 1 µM. Cell surface MUC1expression was determined by flow cytometry in the presence or absence of oestradiol, medroxy progesterone acetate or R1881, with and without 4 hydroxy-flutamide. (204-OH, a nonsteroidal AR antagonist. The functional significance of MUC1expression was investigated with a cell-cell aggregation assay. Only AR+ MUC1 + cell lines showed a significant increase in MUC1expression with AR activation. (20P. (20range =.01 to .0001, reversed in the presence of 4-OHF. Cell proliferation was unaffected. Increased expression of MUC1was associated with a significant. (20P. (20range =.002 to .001 reduction in cell-cell adhesion. To our knowledge, this is the first description of androgen-dependent regulation of MUC1mucin. This is also functionally associated with decreased cell-cell adhesion, a recognised feature of progressive malignancy. These findings have important implications for physiological and pathological processes.

  16. Caenorhabditis elegans as a model system for studying non-cell-autonomous mechanisms in protein-misfolding diseases

    Directory of Open Access Journals (Sweden)

    Carmen I. Nussbaum-Krammer

    2014-01-01

    Full Text Available Caenorhabditis elegans has a number of distinct advantages that are useful for understanding the basis for cellular and organismal dysfunction underlying age-associated diseases of protein misfolding. Although protein aggregation, a key feature of human neurodegenerative diseases, has been typically explored in vivo at the single-cell level using cells in culture, there is now increasing evidence that proteotoxicity has a non-cell-autonomous component and is communicated between cells and tissues in a multicellular organism. These discoveries have opened up new avenues for the use of C. elegans as an ideal animal model system to study non-cell-autonomous proteotoxicity, prion-like propagation of aggregation-prone proteins, and the organismal regulation of stress responses and proteostasis. This Review focuses on recent evidence that C. elegans has mechanisms to transmit certain classes of toxic proteins between tissues and a complex stress response that integrates and coordinates signals from single cells and tissues across the organism. These findings emphasize the potential of C. elegans to provide insights into non-cell-autonomous proteotoxic mechanisms underlying age-related protein-misfolding diseases.

  17. Metformin induces an intracellular reductive state that protects oesophageal squamous cell carcinoma cells against cisplatin but not copper-bis(thiosemicarbazones)

    International Nuclear Information System (INIS)

    Damelin, Leonard Howard; Jivan, Rupal; Veale, Robin Bruce; Rousseau, Amanda Louise; Mavri-Damelin, Demetra

    2014-01-01

    Oesophageal squamous cell carcinoma (OSCC) is a highly aggressive carcinoma with a poor survival rate. One of the most commonly used chemotherapeutic drugs, cisplatin, displays varied and often poor efficacy in vivo. Therefore, alternative, cost-effective and more efficacious treatments are required. Metformin has been previously shown to reduce proliferative rates in various carcinoma cell lines. We report for the first time, the effect of metformin on OSCC cell proliferation and show that it antagonises cisplatin-induced but not copper-bis(thiosemicarbazone)-induced cytotoxicity in OSCC cells. Cell proliferation and stage of the cell cycle were quantified by trypan blue counts and flow cytometry, respectively. All cytotoxicity measurements were made using the tetrazolium based MTT assay. Metabolic alterations to cells were determined as follows: glycolysis via a lactate dehydrogenase assay, reducing equivalents by MTT reduction and reduced intracellular thiols by monobromobimane-thiol fluorescence, and glutathione depletion using buthionine sulfoximine. Inductively coupled plasma mass spectrometry was used to quantify cisplatin-DNA adduct formation. Metformin was found to reduce cell proliferation significantly in all OSCC cell lines, with an accumulation of cells in G0/G1 phase of the cell cycle. However, metformin significantly protected OSCC cells against cisplatin toxicity. Our results indicate that a major mechanism of metformin-induced cisplatin resistance results from a significant increase in glycolysis, intracellular NAD(P)H levels with a concomitant increase in reduced intracellular thiols, leading to decreased cisplatin-DNA adduct formation. The glutathione synthesis inhibitor buthionine sulfoximine significantly ablated the protective effect of metformin. We subsequently show that the copper-bis(thiosemicarbazones), Cu-ATSM and Cu-GTSM, which are trapped in cells under reducing conditions, cause significant OSCC cytotoxicity, both alone and in

  18. Effective modification of cell death-inducing intracellular peptides by means of a photo-cleavable peptide array-based screening system.

    Science.gov (United States)

    Kozaki, Ikko; Shimizu, Kazunori; Honda, Hiroyuki

    2017-08-01

    Intracellular functional peptides that play a significant role inside cells have been receiving a lot of attention as regulators of cellular activity. Previously, we proposed a novel screening system for intracellular functional peptides; it combined a photo-cleavable peptide array system with cell-penetrating peptides (CPPs). Various peptides can be delivered into cells and intracellular functions of the peptides can be assayed by means of our system. The aim of the present study was to demonstrate that the proposed screening system can be used for assessing the intracellular activity of peptides. The cell death-inducing peptide (LNLISKLF) identified in a mitochondria-targeting domain (MTD) of the Noxa protein served as an original peptide sequence for screening of peptides with higher activity via modification of the peptide sequence. We obtained 4 peptides with higher activity, in which we substituted serine (S) at the fifth position with phenylalanine (F), valine (V), tryptophan (W), or tyrosine (Y). During analysis of the mechanism of action, the modified peptides induced an increase in intracellular calcium concentration, which was caused by the treatment with the original peptide. Higher capacity for cell death induction by the modified peptides may be caused by increased hydrophobicity or an increased number of aromatic residues. Thus, the present work suggests that the intracellular activity of peptides can be assessed using the proposed screening system. It could be used for identifying intracellular functional peptides with higher activity through comprehensive screening. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Testosterone-Dependent Interaction between Androgen Receptor and Aryl Hydrocarbon Receptor Induces Liver Receptor Homolog 1 Expression in Rat Granulosa Cells

    Science.gov (United States)

    Wu, Yanguang; Baumgarten, Sarah C.; Zhou, Ping

    2013-01-01

    Androgens play a major role in the regulation of normal ovarian function; however, they are also involved in the development of ovarian pathologies. These contrasting effects may involve a differential response of granulosa cells to the androgens testosterone (T) and dihydrotestosterone (DHT). To determine the molecular pathways that mediate the distinct effects of T and DHT, we studied the expression of the liver receptor homolog 1 (LRH-1) gene, which is differentially regulated by these steroids. We found that although both T and DHT stimulate androgen receptor (AR) binding to the LRH-1 promoter, DHT prevents T-mediated stimulation of LRH-1 expression. T stimulated the expression of aryl hydrocarbon receptor (AHR) and its interaction with the AR. T also promoted the recruitment of the AR/AHR complex to the LRH-1 promoter. These effects were not mimicked by DHT. We also observed that the activation of extracellular regulated kinases by T is required for AR and AHR interaction. In summary, T, but not DHT, stimulates AHR expression and the interaction between AHR and AR, leading to the stimulation of LRH-1 expression. These findings could explain the distinct response of granulosa cells to T and DHT and provide a molecular mechanism by which DHT negatively affects ovarian function. PMID:23689136

  20. Minoxidil may suppress androgen receptor-related functions.

    Science.gov (United States)

    Hsu, Cheng-Lung; Liu, Jai-Shin; Lin, An-Chi; Yang, Chih-Hsun; Chung, Wen-Hung; Wu, Wen-Guey

    2014-04-30

    Although minoxidil has been used for more than two decades to treat androgenetic alopecia (AGA), an androgen-androgen receptor (AR) pathway-dominant disease, its precise mechanism of action remains elusive. We hypothesized that minoxidil may influence the AR or its downstream signaling. These tests revealed that minoxidil suppressed AR-related functions, decreasing AR transcriptional activity in reporter assays, reducing expression of AR targets at the protein level, and suppressing AR-positive LNCaP cell growth. Dissecting the underlying mechanisms, we found that minoxidil interfered with AR-peptide, AR-coregulator, and AR N/C-terminal interactions, as well as AR protein stability. Furthermore, a crystallographic analysis using the AR ligand-binding domain (LBD) revealed direct binding of minoxidil to the AR in a minoxidil-AR-LBD co-crystal model, and surface plasmon resonance assays demonstrated that minoxidil directly bound the AR with a K(d) value of 2.6 µM. Minoxidil also suppressed AR-responsive reporter activity and decreased AR protein stability in human hair dermal papilla cells. The current findings provide evidence that minoxidil could be used to treat both cancer and age-related disease, and open a new avenue for applications of minoxidil in treating androgen-AR pathway-related diseases.

  1. Cell growth, intracellular calcium concentration and metabolic cooperation measured in cells exposed to 50 Hz electromagnetic fields

    International Nuclear Information System (INIS)

    Skauli, K.S.

    1996-08-01

    Colony-forming efficiency, DNA/protein and DNA/cell were measured in cells exposed to magnetic fields of 0.2 and 1 mT at a frequency of 50 Hz. Intracellular calcium concentrations were measured in cells exposed to 0.3 and 1 mT at 50 Hz. Metabolic cooperation was measured in cells exposed to 1 mT at 50 Hz. No significant effects of the fields were observed. 20 refs., 10 figs

  2. Exploring the genetics and non-cell autonomous mechanisms underlying ALS/FTLD.

    Science.gov (United States)

    Chen, Hongbo; Kankel, Mark W; Su, Susan C; Han, Steve W S; Ofengeim, Dimitry

    2018-03-01

    Although amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, was first described in 1874, a flurry of genetic discoveries in the last 10 years has markedly increased our understanding of this disease. These findings have not only enhanced our knowledge of mechanisms leading to ALS, but also have revealed that ALS shares many genetic causes with another neurodegenerative disease, frontotemporal lobar dementia (FTLD). In this review, we survey how recent genetic studies have bridged our mechanistic understanding of these two related diseases and how the genetics behind ALS and FTLD point to complex disorders, implicating non-neuronal cell types in disease pathophysiology. The involvement of non-neuronal cell types is consistent with a non-cell autonomous component in these diseases. This is further supported by studies that identified a critical role of immune-associated genes within ALS/FTLD and other neurodegenerative disorders. The molecular functions of these genes support an emerging concept that various non-autonomous functions are involved in neurodegeneration. Further insights into such a mechanism(s) will ultimately lead to a better understanding of potential routes of therapeutic intervention. Facts ALS and FTLD are severe neurodegenerative disorders on the same disease spectrum. Multiple cellular processes including dysregulation of RNA homeostasis, imbalance of proteostasis, contribute to ALS/FTLD pathogenesis. Aberrant function in non-neuronal cell types, including microglia, contributes to ALS/FTLD. Strong neuroimmune and neuroinflammatory components are associated with ALS/FTLD patients. Open Questions Why can patients with similar mutations have different disease manifestations, i.e., why do C9ORF72 mutations lead to motor neuron loss in some patients while others exhibit loss of neurons in the frontotemporal lobe? Do ALS causal mutations result in microglial dysfunction and contribute to ALS/FTLD pathology? How do microglia

  3. Development of an in vitro photosafety evaluation method utilizing intracellular ROS production in THP-1 cells.

    Science.gov (United States)

    Toyoda, Akemi; Itagaki, Hiroshi

    2018-01-01

    Photoreactive compounds that may experience exposure to ultraviolet (UV) radiation can lead to the intracellular production of reactive oxygen species (ROS), which may cause phototoxic and photoallergenic responses. Here, we developed a novel in vitro photosafety assay and investigated whether it could be used to predict phototoxicity and photosensitivity by measuring changes in intracellular ROS production. THP-1 cells that had previously taken up 5-(and-6)-carboxy-2',7'-difluorodihydrofluorescein diacetate (carboxy-H 2 DFFDA), a ROS-sensitive fluorescent reagent, were exposed to photoreactive substances such as phototoxic and photoallergenic materials and then subjected to with UV-A irradiation (5 J/cm 2 ). The fluorescence intensity was subsequently measured using a flow cytometer, and the intracellular ROS production was calculated. A statistically significant increase in ROS following treatment with photoreactive substances was observed in cells irradiated with UV-A. In contrast, no significant increase was observed for non-photoreactive substances in comparison to the control solution. Next, to confirm the impact of intracellular ROS on the photosensitive response, changes in CD86 and CD54 expression were measured following quencher addition during the photo human cell line activation test (photo h-CLAT). The results confirmed the reduction of CD86 and CD54 expression in response to photoallergenic substances following quencher addition. Together, these findings suggest that intracellular ROS production is involved in photosensitizing reactions. Therefore, we suggest that the developed method utilizing intracellular ROS production as an index may be useful as a novel in vitro evaluation tool for photoreactive substances.

  4. Detection and Measurement of the Intracellular Calcium Variation in Follicular Cells

    Directory of Open Access Journals (Sweden)

    Ana M. Herrera-Navarro

    2014-01-01

    Full Text Available This work presents a new method for measuring the variation of intracellular calcium in follicular cells. The proposal consists in two stages: (i the detection of the cell’s nuclei and (ii the analysis of the fluorescence variations. The first stage is performed via watershed modified transformation, where the process of labeling is controlled. The detection process uses the contours of the cells as descriptors, where they are enhanced with a morphological filter that homogenizes the luminance variation of the image. In the second stage, the fluorescence variations are modeled as an exponential decreasing function, where the fluorescence variations are highly correlated with the changes of intracellular free Ca2+. Additionally, it is introduced a new morphological called medium reconstruction process, which helps to enhance the data for the modeling process. This filter exploits the undermodeling and overmodeling properties of reconstruction operators, such that it preserves the structure of the original signal. Finally, an experimental process shows evidence of the capabilities of the proposal.

  5. Androgen receptor expression in human ovarian and uterine tissue of long term androgen-treated transsexual women

    NARCIS (Netherlands)

    D. Chadha; T.D. Pache; F.J. Huikeshoven (Frans); A.O. Brinkmann (Albert); Th.H. van der Kwast (Theo)

    1994-01-01

    textabstractAndrogen receptor (AR) modulation in human uteri and ovaries of long term androgen-treated transsexual female patients was investigated. Androgen receptor expression was evaluated immunohistochemically in the ovaries of 11 and the endometria and myometria of six androgen-treated

  6. Relationship between serum response factor and androgen receptor in prostate cancer.

    Science.gov (United States)

    Prencipe, Maria; O'Neill, Amanda; O'Hurley, Gillian; Nguyen, Lan K; Fabre, Aurelie; Bjartell, Anders; Gallagher, William M; Morrissey, Colm; Kay, Elaine W; Watson, R William

    2015-11-01

    Serum response factor (SRF) is an important transcription factor in castrate-resistant prostate cancer (CRPC). Since CRPC is associated with androgen receptor (AR) hypersensitivity, we investigated the relationship between SRF and AR. Transcriptional activity was assessed by luciferase assay. Cell proliferation was measured by MTT and flow cytometry. Protein expression in patients was assessed by immunohistochemistry. To investigate AR involvement in SRF response to androgen, AR expression was down-regulated using siRNA. This resulted in the abrogation of SRF induction post-DHT. Moreover, DHT stimulation failed to induce SRF transcriptional activity in AR-negative PC346 DCC cells, which was only restored following AR over-expression. Next, SRF expression was down-regulated by siRNA, resulting in AR increased transcriptional activity in castrate-resistant LNCaP Abl cells but not in the parental LNCaP. This negative feedback loop in the resistant cells was confirmed by immunohistochemistry which showed a negative correlation between AR and SRF expression in CRPC bone metastases and a positive correlation in androgen-naïve prostatectomies. Cell proliferation was next assessed following SRF inhibition, demonstrating that SRF inhibition is more effective than AR inhibition in castrate-resistant cells. Our data support SRF as a promising therapeutic target in combination with current treatments. © 2015 Wiley Periodicals, Inc.

  7. Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolomide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft.

    Science.gov (United States)

    Yamamoto, Yutaro; Tomiyama, Arata; Sasaki, Nobuyoshi; Yamaguchi, Hideki; Shirakihara, Takuya; Nakashima, Katsuhiko; Kumagai, Kosuke; Takeuchi, Satoru; Toyooka, Terushige; Otani, Naoki; Wada, Kojiro; Narita, Yoshitaka; Ichimura, Koichi; Sakai, Ryuichi; Namba, Hiroki; Mori, Kentaro

    2018-01-01

    Development of resistance against temozolomide (TMZ) in glioblastoma (GBM) after continuous treatment with TMZ is one of the critical problems in clinical GBM therapy. Intracellular cholesterol regulates cancer cell biology, but whether intracellular cholesterol is involved in TMZ resistance of GBM cells remains unclear. The involvement of intracellular cholesterol in acquired resistance against TMZ in GBM cells was investigated. Intracellular cholesterol levels were measured in human U251 MG cells with acquired TMZ resistance (U251-R cells) and TMZ-sensitive control U251 MG cells (U251-Con cells), and found that the intracellular cholesterol level was significantly lower in U251-R cells than in U251-Con cells. In addition, treatment by intracellular cholesterol remover, methyl-beta cyclodextrin (MβCD), or intracellular cholesterol inducer, soluble cholesterol (Chol), regulated TMZ-induced U251-Con cell death in line with changes in intracellular cholesterol level. Involvement of death receptor 5 (DR5), a death receptor localized in the plasma membrane, was evaluated. TMZ without or with MβCD and/or Chol caused accumulation of DR5 into the plasma membrane lipid raft and formed a complex with caspase-8, an extrinsic caspase cascade inducer, reflected in the induction of cell death. In addition, treatment with caspase-8 inhibitor or knockdown of DR5 dramatically suppressed U251-Con cell death induced by combination treatment with TMZ, MβCD, and Chol. Combined treatment of Chol with TMZ reversed the TMZ resistance of U251-R cells and another GBM cell model with acquired TMZ resistance, whereas clinical antihypercholesterolemia agents at physiological concentrations suppressed TMZ-induced cell death of U251-Con cells. These findings suggest that intracellular cholesterol level affects TMZ treatment of GBM mediated via a DR5-caspase-8 mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Structural characteristics of anabolic androgenic steroids contributing to binding to the androgen receptor and to their anabolic and androgenic activities. Applied modifications in the steroidal structure.

    Science.gov (United States)

    Fragkaki, A G; Angelis, Y S; Koupparis, M; Tsantili-Kakoulidou, A; Kokotos, G; Georgakopoulos, C

    2009-02-01

    Anabolic androgenic steroids (AAS) are synthetic derivatives of testosterone introduced for therapeutic purposes providing enhanced anabolic potency with reduced androgenic effects. Androgens mediate their action through their binding to the androgen receptor (AR) which is mainly expressed in androgen target tissues, such as the prostate, skeletal muscle, liver and central nervous system. This paper reviews some of the wide spectrum of testosterone and synthetic AAS structure modifications related to the intended enhancement in anabolic activity. The structural features of steroids necessary for effective binding to the AR and those which contribute to the stipulation of the androgenic and anabolic activities are also presented.

  9. A novel selective androgen receptor modulator (SARM) MK-4541 exerts anti-androgenic activity in the prostate cancer xenograft R-3327G and anabolic activity on skeletal muscle mass & function in castrated mice.

    Science.gov (United States)

    Chisamore, Michael J; Gentile, Michael A; Dillon, Gregory Michael; Baran, Matthew; Gambone, Carlo; Riley, Sean; Schmidt, Azriel; Flores, Osvaldo; Wilkinson, Hilary; Alves, Stephen E

    2016-10-01

    The androgen receptor (AR) is a member of the nuclear hormone receptor super family of transcription factors. Androgens play an essential role in the development, growth, and maintenance of male sex organs, as well as the musculoskeletal and central nervous systems. Yet with advancing age, androgens can drive the onset of prostate cancer, the second leading cause of cancer death in males within the United States. Androgen deprivation therapy (ADT) by pharmacologic and/or surgical castration induces apoptosis of prostate cells and subsequent shrinkage of the prostate and prostate tumors. However, ADT is associated with significant musculoskeletal and behavioral adverse effects. The unique pharmacological activity of selective androgen receptor modulator (SARM) MK-4541 recently has been reported as an AR antagonist with 5α-reductase inhibitor function. The molecule inhibits proliferation and induces apoptosis in AR positive, androgen dependent prostate cancer cells. Importantly, MK-4541 inhibited androgen-dependent prostate growth in male rats yet maintained lean body mass and bone formation following ovariectomy in female rats. In the present study, we evaluated the effects of SARM MK-4541 in the androgen-dependent Dunning R3327-G prostate carcinoma xenograft mouse model as well as on skeletal muscle mass and function, and AR-regulated behavior in mice. MK-4541 significantly inhibited the growth of R3327-G prostate tumors, exhibited anti-androgen effects on the seminal vesicles, reduced plasma testosterone concentrations in intact males, and inhibited Ki67 expression. MK-4541 treated xenografts appeared similar to xenografts in castrated mice. Importantly, we demonstrate that MK-4541 exhibited anabolic activity in androgen deficient conditions, increasing lean body mass and muscle function in adult castrated mice. Moreover, MK-4541 treatment restored general activity levels in castrated mice. Thus, MK-4541 exhibits an optimum profile as an adjuvant therapy to ADT

  10. Androgen receptor activity modulates responses to cisplatin treatment in bladder cancer.

    Science.gov (United States)

    Kashiwagi, Eiji; Ide, Hiroki; Inoue, Satoshi; Kawahara, Takashi; Zheng, Yichun; Reis, Leonardo O; Baras, Alexander S; Miyamoto, Hiroshi

    2016-08-02

    Cisplatin (CDDP)-based combination chemotherapy remains the mainstream treatment for advanced bladder cancer. However, its efficacy is often limited due to the development of resistance for which underlying mechanisms are poorly understood. Meanwhile, emerging evidence has indicated the involvement of androgen-mediated androgen receptor (AR) signals in bladder cancer progression. In this study, we aimed to investigate whether AR signals have an impact on sensitivity to CDDP in bladder cancer cells. UMUC3-control-short hairpin RNA (shRNA) cells with endogenous AR and AR-negative 647V/5637 cells stably expressing AR were significantly more resistant to CDDP treatment at its pharmacological concentrations, compared with UMUC3-AR-shRNA and 647V-vector/5637-vector control cells, respectively. A synthetic androgen R1881 significantly reduced CDDP sensitivity in UMUC3, 647V-AR, or 5637-AR cells, and the addition of an anti-androgen hydroxyflutamide inhibited the effect of R1881. In these AR-positive cells, R1881 treatment also induced the expression levels of NF-κB, which is known to involve CDDP resistance, and its phosphorylated form, as well as nuclear translocation of NF-κB. In CDDP-resistant bladder cancer sublines established following long-term culture with CDDP, the expression levels of AR as well as NF-κB and phospho-NF-κB were considerably elevated, compared with respective control sublines. In bladder cancer specimens, there was a strong trend to correlate between AR positivity and chemoresistance. These results suggest that AR activation correlates with CDDP resistance presumably via modulating NF-κB activity in bladder cancer cells. Targeting AR during chemotherapy may thus be a useful strategy to overcome CDDP resistance in patients with AR-positive bladder cancer.

  11. CLINICAL SIGNIFICANCE OF 5αα-REDUCTASE AND ANDROGEN RECEPTOR GENE POLYMORPHISMS IN PROSTATE CANCER

    Directory of Open Access Journals (Sweden)

    O. B. Loran

    2014-07-01

    Full Text Available The development of prostate cancer is inseparably linked with the effect of androgens on the fundamental prostatic intracellular processes,such as proliferation, apoptosis, which is realized through a number of second messengers. Major of them are the AR gene encoding androgenreceptors and the SRD5A2 gene encoding 5α-reductase enzyme. This paper deals with the study of the role of these genes in prostate cancer.  

  12. Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation.

    Directory of Open Access Journals (Sweden)

    Nils Paulmann

    2009-10-01

    Full Text Available While serotonin (5-HT co-localization with insulin in granules of pancreatic beta-cells was demonstrated more than three decades ago, its physiological role in the etiology of diabetes is still unclear. We combined biochemical and electrophysiological analyses of mice selectively deficient in peripheral tryptophan hydroxylase (Tph1-/- and 5-HT to show that intracellular 5-HT regulates insulin secretion. We found that these mice are diabetic and have an impaired insulin secretion due to the lack of 5-HT in the pancreas. The pharmacological restoration of peripheral 5-HT levels rescued the impaired insulin secretion in vivo. These findings were further evidenced by patch clamp experiments with isolated Tph1-/- beta-cells, which clearly showed that the secretory defect is downstream of Ca(2+-signaling and can be rescued by direct intracellular application of 5-HT via the clamp pipette. In elucidating the underlying mechanism further, we demonstrate the covalent coupling of 5-HT by transglutaminases during insulin exocytosis to two key players in insulin secretion, the small GTPases Rab3a and Rab27a. This renders them constitutively active in a receptor-independent signaling mechanism we have recently termed serotonylation. Concordantly, an inhibition of such activating serotonylation in beta-cells abates insulin secretion. We also observed inactivation of serotonylated Rab3a by enhanced proteasomal degradation, which is in line with the inactivation of other serotonylated GTPases. Our results demonstrate that 5-HT regulates insulin secretion by serotonylation of GTPases within pancreatic beta-cells and suggest that intracellular 5-HT functions in various microenvironments via this mechanism in concert with the known receptor-mediated signaling.

  13. Keeping the intracellular vitamin C at a physiologically relevant level in endothelial cell culture

    DEFF Research Database (Denmark)

    Frikke-Schmidt, Henriette Rønne; Lykkesfeldt, Jens

    2010-01-01

    It is generally accepted that the addition of vitamin C to cell culture medium improves cell growth. However, once added, the vitamin C concentration declines rapidly. This situation differs from the in vivo environment where the endothelium is constantly supplied with ascorbate from the blood....... With a focus on intracellular vitamin C, we simulated constant supply of ascorbate by the hourly addition of freshly prepared medium containing 75 lM ascorbate and subsequently compared it with more practical regimens using combinations of ascorbate and 2-phosphoascorbate. We found that a single supplement...... of ascorbate and 2-phosphoascorbate adequately maintains intracellular vitamin C at physiological levels for up to 72 h....

  14. Androgens and alopecia.

    Science.gov (United States)

    Kaufman, Keith D

    2002-12-30

    Androgens have profound effects on scalp and body hair in humans. Scalp hair grows constitutively in the absence of androgens, while body hair growth is dependent on the action of androgens. Androgenetic alopecia, referred to as male pattern hair loss (MPHL) in men and female pattern hair loss (FPHL) in women, is due to the progressive miniaturization of scalp hair. Observations in both eunuchs, who have low levels of testicular androgens, and males with genetic 5alpha-reductase (5alphaR) deficiency, who have low levels of dihydrotestosterone (DHT), implicate DHT as a key androgen in the pathogenesis of MPHL in men. The development of finasteride, a type 2-selective 5alphaR inhibitor, further advanced our understanding of the role of DHT in the pathophysiology of scalp alopecia. Controlled clinical trials with finasteride demonstrated improvements in scalp hair growth in treated men associated with reductions in scalp DHT content, and a trend towards reversal of scalp hair miniaturization was evident by histopathologic evaluation of scalp biopsies. In contrast to its beneficial effects in men, finasteride did not improve hair growth in postmenopausal women with FPHL. Histopathological evaluation of scalp biopsies confirmed that finasteride treatment produced no benefit on scalp hair in these women. These findings suggest that MPHL and FPHL are distinct clinical entities, with disparate pathophysiologies. Studies that elucidate the molecular mechanisms by which androgens regulate hair growth would provide greater understanding of these differences. Copyright 2002 Elsevier Science Ireland Ltd.

  15. An autonomous fuel-cell system. Optimisation approach; Ein autonomes Brennstoffzellensystem. Optimierungsansaetze

    Energy Technology Data Exchange (ETDEWEB)

    Heideck, Guenter

    2006-07-20

    The reduction of the consumption of fossil energy sources and CO2 Emissions has become a worldwide issue. One promising way to accomplish this is by using hydrogen, which is predominantly produced by renewable energy sources, as energy storage. Fuel cell technology will play a key role in the field of converting chemically stored energy into electrical energy. This work contributes ways to make this conversion more effective. Because autonomous fuel cell systems have the largest application potential, this work concentrates on their optimization. To clarify the interrelationship of the parameters and the influencing physical factors as well as the potentials of optimization, models in the form of mathematical equation systems are given in the main part of this work. The focus is on the energy balance of the subsystems. The theoretical analyses showed that with improved efficiency of single subsystems, the system efficiency does not necessarily improve too, because the subsystems are not free of interactions. Instead, the system efficiency is improved through adapting single subsystems to match the needs of a given application. (orig.)

  16. Intracellular pH Response to Weak Acid Stress in Individual Vegetative Bacillus subtilis Cells

    NARCIS (Netherlands)

    Pandey, R.; Vischer, N.O.E.; Smelt, J.P.P.M.; van Beilen, J.W.A.; Ter Beek, A.; De Vos, W.H.; Brul, S.; Manders, E.M.M.

    2016-01-01

    Intracellular pH (pHi) critically affects bacterial cell physiology. Hence, a variety of food preservation strategies are aimed at perturbing pHi homeostasis. Unfortunately, accurate pHi quantification with existing methods is suboptimal, since measurements are averages across populations of cells,

  17. Rab7b at the intersection of intracellular trafficking and cell migration.

    Science.gov (United States)

    Distefano, Marita Borg; Kjos, Ingrid; Bakke, Oddmund; Progida, Cinzia

    2015-01-01

    Rab proteins are small GTPases essential for controlling and coordinating intracellular traffic. The small GTPase Rab7b regulates the retrograde transport from late endosomes toward the Trans-Golgi Network (TGN), and is important for the proper trafficking of several receptors such as Toll-like receptors (TLRs) and sorting receptors. We recently identified the actin motor protein myosin II as a new interaction partner for Rab7b, and found that Rab7b transport is dependent on myosin II. Interestingly, we also discovered that Rab7b influences the phosphorylation state of myosin II by controlling the activation status of the small GTPase RhoA. Consequently, Rab7b is important for the remodeling of actin filaments in processes such as stress fiber formation, cell adhesion, polarization and cell migration. Our finding that Rab7b can control actomyosin reorganization reveals yet another important role for Rab proteins, in addition to their already established role as master regulators of intracellular transport. Here we discuss our findings and speculate how they can explain the importance of Rab7b in dendritic cells (DCs).

  18. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles

    Directory of Open Access Journals (Sweden)

    Unzueta U

    2012-08-01

    Full Text Available Ugutz Unzueta,1–3 María Virtudes Céspedes,3,4 Neus Ferrer-Miralles,1–3 Isolda Casanova,3,4 Juan Cedano,5 José Luis Corchero,1–3 Joan Domingo-Espín,1–3 Antonio Villaverde,1–3 Ramón Mangues,3,4 Esther Vázquez1–31Institut de Biotecnologia i de Biomedicina, 2Departamento de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 3CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona, 4Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; 5Laboratory of Immunology, Regional Norte, Universidad de la Republica, Salto, UruguayBackground: Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4 is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing.Results: Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4+ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer.Conclusion: Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles

  19. Splicing Factor Prp8 Interacts With NES(AR) and Regulates Androgen Receptor in Prostate Cancer Cells.

    Science.gov (United States)

    Wang, Dan; Nguyen, Minh M; Masoodi, Khalid Z; Singh, Prabhpreet; Jing, Yifeng; O'Malley, Katherine; Dar, Javid A; Dhir, Rajiv; Wang, Zhou

    2015-12-01

    Androgen receptor (AR) plays a pivotal role in the development of primary as well as advanced castration-resistant prostate cancer. Previous work in our lab identified a novel nuclear export signal (NES) (NES(AR)) in AR ligand-binding domain essential for AR nucleocytoplasmic trafficking. By characterizing the localization of green fluorescence protein (GFP)-tagged NES(AR), we designed and executed a yeast mutagenesis screen and isolated 7 yeast mutants that failed to display the NES(AR) export function. One of those mutants was identified as the splicing factor pre-mRNA processing factor 8 (Prp8). We further showed that Prp8 could regulate NES(AR) function using short hairpin RNA knockdown of Prp8 coupled with a rapamycin export assay in mammalian cells and knockdown of Prp8 could induce nuclear accumulation of GFP-tagged AR in PC3 cells. Prp8 expression was decreased in castration-resistant LuCaP35 xenograft tumors as compared with androgen-sensitive xenografts. Laser capture microdissection and quantitative PCR showed Prp8 mRNA levels were decreased in human prostate cancer specimens with high Gleason scores. In prostate cancer cells, coimmunoprecipitation and deletion mutagenesis revealed a physical interaction between Prp8 and AR mainly mediated by NES(AR). Luciferase assay with prostate specific antigen promoter-driven reporter demonstrated that Prp8 regulated AR transcription activity in prostate cancer cells. Interestingly, Prp8 knockdown also increased polyubiquitination of endogenous AR. This may be 1 possible mechanism by which it modulates AR activity. These results show that Prp8 is a novel AR cofactor that interacts with NES(AR) and regulates AR function in prostate cancer cells.

  20. Prevalent flucocorticoid and androgen activity in US water sources

    Science.gov (United States)

    Stavreva, Diana A.; George, Anuja A.; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C.; Schiltz, R. Louis; Blazer, Vicki; Iwanowiczl, Luke R.; Hager, Gordon L.

    2012-01-01

    Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations.

  1. Prevalent glucocorticoid and androgen activity in US water sources.

    Science.gov (United States)

    Stavreva, Diana A; George, Anuja A; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C; Schiltz, R Louis; Blazer, Vicki S; Iwanowicz, Luke R; Hager, Gordon L

    2012-01-01

    Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations.

  2. Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth.

    Science.gov (United States)

    Deng, X; Shao, G; Zhang, H-T; Li, C; Zhang, D; Cheng, L; Elzey, B D; Pili, R; Ratliff, T L; Huang, J; Hu, C-D

    2017-03-02

    Protein arginine methyltransferase 5 (PRMT5) is an emerging epigenetic enzyme that mainly represses transcription of target genes via symmetric dimethylation of arginine residues on histones H4R3, H3R8 and H2AR3. Accumulating evidence suggests that PRMT5 may function as an oncogene to drive cancer cell growth by epigenetic inactivation of several tumor suppressors. Here, we provide evidence that PRMT5 promotes prostate cancer cell growth by epigenetically activating transcription of the androgen receptor (AR) in prostate cancer cells. Knockdown of PRMT5 or inhibition of PRMT5 by a specific inhibitor reduces the expression of AR and suppresses the growth of multiple AR-positive, but not AR-negative, prostate cancer cells. Significantly, knockdown of PRMT5 in AR-positive LNCaP cells completely suppresses the growth of xenograft tumors in mice. Molecular analysis reveals that PRMT5 binds to the proximal promoter region of the AR gene and contributes mainly to the enriched symmetric dimethylation of H4R3 in the same region. Mechanistically, PRMT5 is recruited to the AR promoter by its interaction with Sp1, the major transcription factor responsible for AR transcription, and forms a complex with Brg1, an ATP-dependent chromatin remodeler, on the proximal promoter region of the AR gene. Furthermore, PRMT5 expression in prostate cancer tissues is significantly higher than that in benign prostatic hyperplasia tissues, and PRMT5 expression correlates positively with AR expression at both the protein and mRNA levels. Taken together, our results identify PRMT5 as a novel epigenetic activator of AR in prostate cancer. Given that inhibiting AR transcriptional activity or androgen synthesis remains the major mechanism of action for most existing anti-androgen agents, our findings also raise an interesting possibility that targeting PRMT5 may represent a novel approach for prostate cancer treatment by eliminating AR expression.

  3. Electrochemical monitoring of intracellular enzyme activity of single living mammalian cells by using a double-mediator system

    International Nuclear Information System (INIS)

    Matsumae, Yoshiharu; Takahashi, Yasufumi; Ino, Kosuke; Shiku, Hitoshi; Matsue, Tomokazu

    2014-01-01

    Graphical abstract: NAD(P)H:quinone oxidoreductase (NQO) activity of single HeLa cells were evaluated by using the menadione–ferrocyanide double mediator system combined with scanning electrochemical microscopy (SECM). - Highlights: • NAD(P)H:quinone oxidoreductase activity of single cells were evaluated with SECM. • Fe(CN) 6 3− /menadione concentrations were optimized for long-term SECM monitoring. • Menadione affect the intracellular levels of reactive oxygen species and GSH. • At 100 μM menadione, the Fe(CN) 6 3− generation rate decreased rapidly within 30 min. - Abstract: We evaluated the intracellular NAD(P)H:quinone oxidoreductase (NQO) activity of single HeLa cells by using the menadione–ferrocyanide double-mediator system combined with scanning electrochemical microscopy (SECM). The double-mediator system was used to amplify the current response from the intracellular NQO activity and to reduce menadione-induced cell damage. The electron shuttle between the electrode and menadione was mediated by the ferrocyanide/ferricyanide redox couple. Generation of ferrocyanide was observed immediately after the addition of a lower concentration (10 μM) of menadione. The ferrocyanide generation rate was constant for 120 min. At a higher menadione concentration (100 μM), the ferrocyanide generation rate decreased within 30 min because of the cytotoxic effect of menadione. We also investigated the relationship between intracellular reactive oxygen species or glutathione levels and exposure to different menadione concentrations to determine the optimal condition for SECM with minimal invasiveness. The present study clearly demonstrates that SECM is useful for the analysis of intracellular enzymatic activities in single cells with a double-mediator system

  4. Electrochemical monitoring of intracellular enzyme activity of single living mammalian cells by using a double-mediator system

    Energy Technology Data Exchange (ETDEWEB)

    Matsumae, Yoshiharu [Graduate School of Environmental Studies, Tohoku University, Aramaki 6-6-11-605, Aoba, Sendai 980-8579 (Japan); Takahashi, Yasufumi [Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba, Sendai 980-8577 (Japan); Ino, Kosuke [Graduate School of Environmental Studies, Tohoku University, Aramaki 6-6-11-605, Aoba, Sendai 980-8579 (Japan); Shiku, Hitoshi, E-mail: shiku@bioinfo.che.tohoku.ac.jp [Graduate School of Environmental Studies, Tohoku University, Aramaki 6-6-11-605, Aoba, Sendai 980-8579 (Japan); Matsue, Tomokazu, E-mail: matsue@bioinfo.che.tohoku.ac.jp [Graduate School of Environmental Studies, Tohoku University, Aramaki 6-6-11-605, Aoba, Sendai 980-8579 (Japan); Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba, Sendai 980-8577 (Japan)

    2014-09-09

    Graphical abstract: NAD(P)H:quinone oxidoreductase (NQO) activity of single HeLa cells were evaluated by using the menadione–ferrocyanide double mediator system combined with scanning electrochemical microscopy (SECM). - Highlights: • NAD(P)H:quinone oxidoreductase activity of single cells were evaluated with SECM. • Fe(CN){sub 6}{sup 3−}/menadione concentrations were optimized for long-term SECM monitoring. • Menadione affect the intracellular levels of reactive oxygen species and GSH. • At 100 μM menadione, the Fe(CN){sub 6}{sup 3−} generation rate decreased rapidly within 30 min. - Abstract: We evaluated the intracellular NAD(P)H:quinone oxidoreductase (NQO) activity of single HeLa cells by using the menadione–ferrocyanide double-mediator system combined with scanning electrochemical microscopy (SECM). The double-mediator system was used to amplify the current response from the intracellular NQO activity and to reduce menadione-induced cell damage. The electron shuttle between the electrode and menadione was mediated by the ferrocyanide/ferricyanide redox couple. Generation of ferrocyanide was observed immediately after the addition of a lower concentration (10 μM) of menadione. The ferrocyanide generation rate was constant for 120 min. At a higher menadione concentration (100 μM), the ferrocyanide generation rate decreased within 30 min because of the cytotoxic effect of menadione. We also investigated the relationship between intracellular reactive oxygen species or glutathione levels and exposure to different menadione concentrations to determine the optimal condition for SECM with minimal invasiveness. The present study clearly demonstrates that SECM is useful for the analysis of intracellular enzymatic activities in single cells with a double-mediator system.

  5. Heat shock protein 90 chaperone complex inhibitor enhanced radiosensitivity through modification of response to hormone and degradation of androgen receptor in hormone sensitive prostate cancer cell line

    International Nuclear Information System (INIS)

    Mitsuhashi, N.; Harashima, K.; Akimoto, T.

    2003-01-01

    It is easily speculated that androgen or androgen deprivation affects proliferative activity or radiosensitivity, but there has been enough information how androgen or androgen deprivation influences the response to radiation. In this setting, the effect of dihydrotestosterone (DHT) on cellular growth and radiosensitivity was examined in hormone-responsive human prostate cancer cell line (LnCap). The binding of androgen receptor (AR) with heat shock protein 90 (Hsp90) plays an important role in stability of the function of receptor. It was, therefore, examined how Hsp90 chaperone complex inhibitor modified the effect of DHT on radiosensitivity in addition to the effect of DHT, especially focusing on AR and its downstream signal transduction pathways. Hydroxy-flutamide (OH-flutamide) was also used to confirm the effect of activation of AR on radiosensitivity because AR of LnCap has a point mutation, leading to activation of AR caused by the binding of OH-flutamide. Radicicol was used as a Hsp90 chaperone complex inhibitor, and incubated with cells at a concentration of 500 nM. Radicicol was incubated with cells for 9 h, and cells were irradiated 1 h after the start of incubation. DHT and OH-flutamide were incubated with cells until staining. DHT or OH-flutamide resulted in stimulation of cellular growth in contrast to inhibition of cellular growth caused by higher concentrations, so that we adopted 1 nM as a concentration of DHT and 1μM as a concentration of OH-flutamide. DHT or OH-flutamide in combination with radiation resulted in slight decrease in radiosensitivity compared with radiation alone. Radicicol at a concentration of 500 nM in combination with DHT or OH-flutamide abolished decrease in radiosensitivity caused by DHT or OH-flutamide. In terms of the expression of AR, radicicol in combination with radiation and/or DHT, OH-flutamide induced degradation of AR. In consistent with degradation of AR, the expression of prostate specific antigen (PSA) decreased

  6. Increase in intracellular PGE2 induces apoptosis in Bax-expressing colon cancer cell

    International Nuclear Information System (INIS)

    Lalier, Lisenn; Pedelaborde, François; Braud, Christophe; Menanteau, Jean; M Vallette, François; Olivier, Christophe

    2011-01-01

    NSAIDs exhibit protective properties towards some cancers, especially colon cancer. Yet, it is not clear how they play their protective role. PGE 2 is generally shown as the only target of the NSAIDs anticancerous activity. However, PGE 2 known targets become more and more manifold, considering both the molecular pathways involved and the target cells in the tumour. The role of PGE 2 in tumour progression thus appears complex and multipurpose. To gain understanding into the role of PGE 2 in colon cancer, we focused on the activity of PGE 2 in apoptosis in colon cancer cell lines. We observed that an increase in intracellular PGE 2 induced an apoptotic cell death, which was dependent on the expression of the proapoptotic protein Bax. This increase was induced by increasing PGE 2 intracellular concentration, either by PGE 2 microinjection or by the pharmacological inhibition of PGE 2 exportation and enzymatic degradation. We present here a new sight onto PGE 2 in colon cancer cells opening the way to a new prospective therapeutic strategy in cancer, alternative to NSAIDs

  7. Isolation of intact RNA from murine CD4+ T cells after intracellular cytokine staining and fluorescence-activated cell sorting.

    Science.gov (United States)

    Kunnath-Velayudhan, Shajo; Porcelli, Steven A

    2018-05-01

    Intracellular cytokine staining (ICS) is a powerful method for identifying functionally distinct lymphocyte subsets, and for isolating these by fluorescence activated cell sorting (FACS). Although transcriptomic analysis of cells sorted on the basis of ICS has many potential applications, this is rarely performed because of the difficulty in isolating intact RNA from cells processed using standard fixation and permeabilization buffers for ICS. To address this issue, we compared three buffers shown previously to preserve RNA in nonhematopoietic cells subjected to intracellular staining for their effects on RNA isolated from T lymphocytes processed for ICS. Our results showed that buffers containing the recombinant ribonuclease inhibitor RNasin or high molar concentrations of salt yielded intact RNA from fixed and permeabilized T cells. As proof of principle, we successfully used the buffer containing RNasin to isolate intact RNA from CD4 + T cells that were sorted by FACS on the basis of specific cytokine production, thus demonstrating the potential of this approach for coupling ICS with transcriptomic analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Imaging and controlling intracellular reactions: Lysosome transport as a function of diameter and the intracellular synthesis of conducting polymers

    Science.gov (United States)

    Payne, Christine

    2014-03-01

    Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.

  9. A T4SS Effector Targets Host Cell Alpha-Enolase Contributing to Brucella abortus Intracellular Lifestyle.

    Science.gov (United States)

    Marchesini, María I; Morrone Seijo, Susana M; Guaimas, Francisco F; Comerci, Diego J

    2016-01-01

    Brucella abortus , the causative agent of bovine brucellosis, invades and replicates within cells inside a membrane-bound compartment known as the Brucella containing vacuole (BCV). After trafficking along the endocytic and secretory pathways, BCVs mature into endoplasmic reticulum-derived compartments permissive for bacterial replication. Brucella Type IV Secretion System (VirB) is a major virulence factor essential for the biogenesis of the replicative organelle. Upon infection, Brucella uses the VirB system to translocate effector proteins from the BCV into the host cell cytoplasm. Although the functions of many translocated proteins remain unknown, some of them have been demonstrated to modulate host cell signaling pathways to favor intracellular survival and replication. BPE123 (BAB2_0123) is a B. abortus VirB-translocated effector protein recently identified by our group whose function is yet unknown. In an attempt to identify host cell proteins interacting with BPE123, a pull-down assay was performed and human alpha-enolase (ENO-1) was identified by LC/MS-MS as a potential interaction partner of BPE123. These results were confirmed by immunoprecipitation assays. In bone-marrow derived macrophages infected with B. abortus , ENO-1 associates to BCVs in a BPE123-dependent manner, indicating that interaction with translocated BPE123 is also occurring during the intracellular phase of the bacterium. Furthermore, ENO-1 depletion by siRNA impaired B. abortus intracellular replication in HeLa cells, confirming a role for α-enolase during the infection process. Indeed, ENO-1 activity levels were enhanced upon B. abortus infection of THP-1 macrophagic cells, and this activation is highly dependent on BPE123. Taken together, these results suggest that interaction between BPE123 and host cell ENO-1 contributes to the intracellular lifestyle of B. abortus .

  10. A nonlinear competitive model of the prostate tumor growth under intermittent androgen suppression.

    Science.gov (United States)

    Yang, Jing; Zhao, Tong-Jun; Yuan, Chang-Qing; Xie, Jing-Hui; Hao, Fang-Fang

    2016-09-07

    Hormone suppression has been the primary modality of treatment for prostate cancer. However long-term androgen deprivation may induce androgen-independent (AI) recurrence. Intermittent androgen suppression (IAS) is a potential way to delay or avoid the AI relapse. Mathematical models of tumor growth and treatment are simple while they are capable of capturing the essence of complicated interactions. Game theory models have analyzed that tumor cells can enhance their fitness by adopting genetically determined survival strategies. In this paper, we consider the survival strategies as the competitive advantage of tumor cells and propose a new model to mimic the prostate tumor growth in IAS therapy. Then we investigate the competition effect in tumor development by numerical simulations. The results indicate that successfully IAS-controlled states can be achieved even though the net growth rate of AI cells is positive for any androgen level. There is crucial difference between the previous models and the new one in the phase diagram of successful and unsuccessful tumor control by IAS administration, which means that the suggestions from the models for medication can be different. Furthermore we introduce quadratic logistic terms to the competition model to simulate the tumor growth in the environment with a finite carrying capacity considering the nutrients or inhibitors. The simulations show that the tumor growth can reach an equilibrium state or an oscillatory state with the net growth rate of AI cells being androgen independent. Our results suggest that the competition and the restraint of a limited environment can enhance the possibility of relapse prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Regulation of B cell differentiation by intracellular membrane associated proteins and microRNAs: role in the antibody response

    Directory of Open Access Journals (Sweden)

    Zheng eLou

    2015-10-01

    Full Text Available B cells are central to adaptive immunity and their functions in antibody responses are exquisitely regulated. As suggested by recent findings, B cell differentiation is mediated by intracellular membrane structures (including endosomes, lysosomes and autophagosomes and protein factors specifically associated with these membranes, including Rab7, Atg5 and Atg7. These factors participate in vesicle formation/trafficking, signal transduction and induction of gene expression to promote antigen presentation, CSR/SHM, and generation/maintenance of plasma cells and memory B cells. Their expression is induced in B cells activated to differentiate and further fine-tuned by immune-modulating microRNAs, which coordinates CSR/SHM, plasma cell differentiation and memory B cell differentiation. These short non-coding RNAs would individually target multiple factors associated with the same intracellular membrane compartments and collaboratively target a single factor in addition to regulate AID and Blimp-1. These, together with regulation of microRNA biogenesis and activities by endosomes and autophagosomes, show that intracellular membranes and microRNAs, two broadly relevant cell constituents, play important roles in balancing gene expression to specify B cell differentiation processes for optimal antibody responses.

  12. Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation.

    Science.gov (United States)

    Kobayashi, Takashi; Shimizu, Yosuke; Terada, Naoki; Yamasaki, Toshinari; Nakamura, Eijiro; Toda, Yoshinobu; Nishiyama, Hiroyuki; Kamoto, Toshiyuki; Ogawa, Osamu; Inoue, Takahiro

    2010-06-01

    Ras homolog-enriched in brain (Rheb), a small GTP-binding protein, is associated with prostate carcinogenesis through activating mammalian target of rapamycin (mTOR) signaling pathway. This study aimed to elucidate whether Rheb promotes proliferation of prostate cancer cells and can act as a potent therapeutic target in prostate cancer. Prostate cancer cell lines and human prostatic tissues were examined for the expression of Rheb. The effects of forced expression or knockdown of Rheb on cell proliferation were also examined. Semi-quantitative and quantitative RT-PCR were performed to evaluate mRNA expression. Western blotting was used to examine protein expression. Cell count and WST-1 assay were used to measure cell proliferation. Fluorescence-activated cell sorting was used to assess the cell cycle. Rheb mRNA and protein expression was higher in more aggressive, androgen-independent prostate cancer cell lines PC3, DU145, and C4-2, compared with the less aggressive LNCaP. Rheb expression was higher in cancer tissues than in benign prostatic epithelia. Forced expression of Rheb in LNCaP cells accelerated proliferation without enhancing androgen receptor transactivity. Attenuation of Rheb expression or treatment with the mTOR inhibitor rapamycin decreased proliferation of PC3 and DU145 cells, with a decrease in the activated form of p70S6 kinase, one of the main targets of mTOR. Rheb potentiates proliferation of prostate cancer cells and inhibition of Rheb or mTOR can lead to suppressed proliferation of aggressive prostate cancer cell lines in vitro. Rheb and the mTOR pathway are therefore probable targets for suppressing prostate cancer.

  13. Increased androgen response to follicle-stimulating hormone administration in women with polycystic ovary syndrome.

    Science.gov (United States)

    Wachs, Deborah S; Coffler, Mickey S; Malcom, Pamela J; Shimasaki, Shunichi; Chang, R Jeffrey

    2008-05-01

    In women with polycystic ovary syndrome (PCOS), excess ovarian androgen production is driven by increased LH secretion. Studies conducted in animals suggest that the granulosa cell may influence LH-stimulated theca cell androgen production. The objective of this study was to determine whether FSH enhances androgen production in women with PCOS compared with that of normal women. A prospective study was conducted to compare androgen production in response to FSH in two groups of women. The study was conducted in a General Clinical Research Center in a tertiary academic medical center. Women with PCOS, 18-35 yr (n = 20), and normal ovulatory controls, 18-35 yr (n = 10), were recruited for study. Serial blood samples were obtained over a 24-h period after an iv injection of recombinant human FSH (150 IU). The main outcome measures were serum 17-hydroxyprogesterone (17-OHP), androstenedione (A), dehydroepiandrosterone (DHEA), testosterone (T), and inhibin B (Inh B) responses after FSH administration. Basal serum 17-OHP, A, and T levels were markedly increased in women with PCOS compared with that observed in normal women. Basal DHEA and Inh B levels were similar to those of normal controls. After FSH injection, PCOS women demonstrated enhanced production of 17-OHP, A, DHEA, and Inh B, whereas in normal women no increases were observed. T levels declined slightly in both groups. These findings provide evidence that, in PCOS women, theca cell androgen production is enhanced by FSH administration and suggest a granulosa-theca cell paracrine mechanism.

  14. Effects of androgens on insulin action in women: is androgen excess a component of female metabolic syndrome?

    Science.gov (United States)

    Corbould, A

    2008-10-01

    Hyperinsulinemia as a consequence of insulin resistance causes hyperandrogenemia in women. The objective was to review evidence for the converse situation, i.e. whether androgens adversely influence insulin action. Androgen excess could potentially contribute to the pathogenesis of insulin resistance in women with polycystic ovary syndrome (PCOS), metabolic syndrome/type 2 diabetes, and in obese peripubertal girls. An Entrez-PubMed search was conducted to identify studies addressing the relationship of androgens with metabolic syndrome/type 2 diabetes in women. Studies reporting outcomes of androgen administration, interventions to reduce androgen effects in hyperandrogenemic women, and basic studies investigating androgen effects on insulin target tissues were reviewed. Multiple studies showed associations between serum testosterone and insulin resistance or metabolic syndrome/type 2 diabetes risk in women, but their cross-sectional nature did not allow conclusions about causality. Androgen administration to healthy women was associated with development of insulin resistance. Intervention studies in women with hyperandrogenism were limited by small subject numbers and use of indirect methods for assessing insulin sensitivity. However, in three of the seven studies using euglycemic hyperinsulinemic clamps, reduction of androgen levels or blockade of androgen action improved insulin sensitivity. Testosterone administration to female rats caused skeletal muscle insulin resistance. Testosterone induced insulin resistance in adipocytes of women in vitro. In conclusion, the metabolic consequences of androgen excess in women have been under-researched. Studies of long-term interventions that lower androgen levels or block androgen effects in young women with hyperandrogenism are needed to determine whether these might protect against metabolic syndrome/type 2 diabetes in later life. Copyright (c) 2008 John Wiley & Sons, Ltd.

  15. Inhibition of protease-inhibitor resistant hepatitis C virus replicons and infectious virus by intracellular intrabodies

    Science.gov (United States)

    Gal-Tanamy, Meital; Zemel, Romy; Bachmatov, Larissa; Jangra, Rohit K.; Shapira, Assaf; Villanueva, Rodrigo; Yi, MinKyung; Lemon, Stanley M.; Benhar, Itai; Tur-Kaspa, Ran

    2015-01-01

    Hepatitis C virus (HCV) infection is a common cause of chronic liver disease and a serious threat to human health. The HCV NS3/4A serine protease is necessary for viral replication and innate immune evasion, and represents a well-validated target for specific antiviral therapy. We previously reported the isolation of single-chain antibodies (scFvs) that inhibit NS3/4A protease activity in vitro. Expressed intracellularly (intrabodies), these scFvs blocked NS3-mediated proliferation of NS3-transfected cells. Here we show that anti-NS3 scFvs suppress HCV RNA replication when expressed intracellularly in Huh7 hepatoma cells bearing either subgenomic or genome-length HCV RNA replicons. The expression of intrabodies directed against NS3 inhibited the autonomous amplification of HCV replicons resistant to small molecule inhibitors of the NS3/4A protease, and replicons derived from different HCV genotypes. The combination of intrabodies and interferon-α had an additive inhibitory effect on RNA replication in the replicon model. Intrabody expression also inhibited production of infectious HCV in a cell culture system. The NS3 protease activity was inhibited by the intrabodies in NS3-expressing cells. In contrast, cell-free synthesis of HCV RNA by preformed replicase complexes was not inhibited by intrabodies, suggesting that the major mode of inhibition of viral replication is inhibition of NS3/4A protease activity and subsequent suppression of viral polyprotein processing. PMID:20705106

  16. Androgen signaling promotes translation of TMEFF2 in prostate cancer cells via phosphorylation of the α subunit of the translation initiation factor 2.

    Directory of Open Access Journals (Sweden)

    Ryan F Overcash

    Full Text Available The type I transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2, is expressed mainly in brain and prostate. Expression of TMEFF2 is deregulated in prostate cancer, suggesting a role in this disease, but the molecular mechanism(s involved in this effect are not clear. Although androgens promote tmeff2 transcription, androgen delivery to castrated animals carrying CWR22 xenografts increases TMEFF2 protein levels in the absence of mRNA changes, suggesting that TMEFF2 may also be post-transcriptionally regulated. Here we show that translation of TMEFF2 is regulated by androgens. Addition of physiological concentrations of dihydrotestosterone (DHT to prostate cancer cell lines increases translation of endogenous TMEFF2 or transfected TMEFF2-Luciferase fusions, and this effect requires the presence of upstream open reading frames (uORFs in the 5'-untranslated region (5'-UTR of TMEFF2. Using chemical and siRNA inhibition of the androgen receptor (AR, we show that the androgen effect on TMEFF2 translation is mediated by the AR. Importantly, DHT also promotes phosphorylation of the α subunit of the translation initiation factor 2 (eIF2α in an AR-dependent manner, paralleling the effect on TMEFF2 translation. Moreover, endoplasmic reticulum (ER stress conditions, which promote eIF2α phosphorylation, also stimulate TMEFF2 translation. These results indicate that androgen signaling promotes eIF2α phosphorylation and subsequent translation of TMEFF2 via a mechanism that requires uORFs in the 5'-UTR of TMEFF2.

  17. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux.

    Science.gov (United States)

    Joseph, Noah; Reicher, Barak; Barda-Saad, Mira

    2014-02-01

    During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters

  18. Expression of androgen-binding protein (ABP) in human cardiac myocytes.

    Science.gov (United States)

    Schock, H W; Herbert, Z; Sigusch, H; Figulla, H R; Jirikowski, G F; Lotze, U

    2006-04-01

    Cardiomyocytes are known to be androgen targets. Changing systemic steroid levels are thought to be linked to various cardiac ailments, including dilated cardiomyopathy (DCM). The mode of action of gonadal steroid hormones on the human heart is unknown to date. In the present study, we used high-resolution immunocytochemistry on semithin sections (1 microm thick), IN SITU hybridization, and mass spectrometry to investigate the expression of androgen-binding protein (ABP) in human myocardial biopsies taken from male patients with DCM. We observed distinct cytoplasmic ABP immunoreactivity in a fraction of the myocytes. IN SITU hybridization with synthetic oligonucleotide probes revealed specific hybridization signals in these cells. A portion of the ABP-positive cells contained immunostaining for androgen receptor. With SELDI TOF mass spectrometry of affinity purified tissue extracts of human myocardium, we confirmed the presence of a 50 kDa protein similar to ABP. Our observations provide evidence of an intrinsic expression of ABP in human heart. ABP may be secreted from myocytes in a paracrine manner perhaps to influence the bioavailabity of gonadal steroids in myocardium.

  19. Intracellular amyloid formation in muscle cells of Aβ-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification

    Directory of Open Access Journals (Sweden)

    Bush Ashley I

    2009-01-01

    Full Text Available Abstract Background The amyloid β-peptide is a ubiquitous peptide, which is prone to aggregate forming soluble toxic oligomers and insoluble less-toxic aggregates. The intrinsic and external/environmental factors that determine Aβ aggregation in vivo are poorly understood, as well as the cellular meaning of this process itself. Genetic data as well as cell biological and biochemical evidence strongly support the hypothesis that Aβ is a major player in the onset and development of Alzheimer's disease. In addition, it is also known that Aβ is involved in Inclusion Body Myositis, a common myopathy of the elderly in which the peptide accumulates intracellularly. Results In the present work, we found that intracellular Aβ aggregation in muscle cells of Caenorhabditis elegans overexpressing Aβ peptide is affected by two single amino acid substitutions, E22G (Arctic and V18A (NIC. Both variations show decrease intracellular amyloidogenesis compared to wild type Aβ. We show that intracellular amyloid aggregation of wild type Aβ is accelerated by Cu2+ and diminished by copper chelators. Moreover, we demonstrate through toxicity and behavioral assays that Aβ-transgenic worms display a higher tolerance to Cu2+ toxic effects and that this resistance may be linked to the formation of amyloid aggregates. Conclusion Our data show that intracellular Aβ amyloid aggregates may trap excess of free Cu2+ buffering its cytotoxic effects and that accelerated intracellular Aβ aggregation may be part of a cell protective mechanism.

  20. HYPERTHERMIA, INTRACELLULAR FREE CALCIUM AND CALCIUM IONOPHORES

    NARCIS (Netherlands)

    STEGE, GJJ; WIERENGA, PK; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    It is shown that heat-induced increase of intracellular calcium does not correlate with hyperthermic cell killing. Six different cell lines were investigated; in four (EAT, HeLa S3, L5178Y-R and L5178Y-S) heat treatments killing 90% of the cells did not affect the levels of intracellular free

  1. Complete androgen insensitivity syndrome with paratesticular leiomyoma: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hoon; Oh, Hyung Woo; Lee, Mi Ja; Lim, Dong Hoon [Chosun University College of Medicine, Gwangju (Korea, Republic of)

    2017-03-15

    Complete androgen insensitivity syndrome (AIS) is a rare, X-linked recessive disorder. Patients with AIS may develop primary amenorrhea due to androgen receptor resistance, resulting in a normal female phenotype and male (XY) karyotype. We report a case of a 30-year-old woman who was diagnosed with complete AIS. Ultrasonography and magnetic resonance imaging revealed bilateral inguinal cryptorchidism and no ovaries and uterus. After gonadectomy, the inguinal mass was confirmed as testicular atrophy with hamartomatous proliferation of Leydig cells and paratesticular leiomyoma. Although these tumors have been reported in association with AIS, this is the first case of paratesticular leiomyoma with hamartomatous proliferation of Leydig cells in atrophic testes being reported in Korea.

  2. Complete androgen insensitivity syndrome with paratesticular leiomyoma: A case report

    International Nuclear Information System (INIS)

    Lee, Ji Hoon; Oh, Hyung Woo; Lee, Mi Ja; Lim, Dong Hoon

    2017-01-01

    Complete androgen insensitivity syndrome (AIS) is a rare, X-linked recessive disorder. Patients with AIS may develop primary amenorrhea due to androgen receptor resistance, resulting in a normal female phenotype and male (XY) karyotype. We report a case of a 30-year-old woman who was diagnosed with complete AIS. Ultrasonography and magnetic resonance imaging revealed bilateral inguinal cryptorchidism and no ovaries and uterus. After gonadectomy, the inguinal mass was confirmed as testicular atrophy with hamartomatous proliferation of Leydig cells and paratesticular leiomyoma. Although these tumors have been reported in association with AIS, this is the first case of paratesticular leiomyoma with hamartomatous proliferation of Leydig cells in atrophic testes being reported in Korea

  3. Genomic and non-genomic effects of androgens in the cardiovascular system: clinical implications.

    Science.gov (United States)

    Lucas-Herald, Angela K; Alves-Lopes, Rheure; Montezano, Augusto C; Ahmed, S Faisal; Touyz, Rhian M

    2017-07-01

    The principle steroidal androgens are testosterone and its metabolite 5α-dihydrotestosterone (DHT), which is converted from testosterone by the enzyme 5α-reductase. Through the classic pathway with androgens crossing the plasma membrane and binding to the androgen receptor (AR) or via mechanisms independent of the ligand-dependent transactivation function of nuclear receptors, testosterone induces genomic and non-genomic effects respectively. AR is widely distributed in several tissues, including vascular endothelial and smooth muscle cells. Androgens are essential for many developmental and physiological processes, especially in male reproductive tissues. It is now clear that androgens have multiple actions besides sex differentiation and sexual maturation and that many physiological systems are influenced by androgens, including regulation of cardiovascular function [nitric oxide (NO) release, Ca 2+ mobilization, vascular apoptosis, hypertrophy, calcification, senescence and reactive oxygen species (ROS) generation]. This review focuses on evidence indicating that interplay between genomic and non-genomic actions of testosterone may influence cardiovascular function. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  4. DeltaFosB induces osteosclerosis and decreases adipogenesis by two independent cell-autonomous mechanisms

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Sabatakos, George; Chiusaroli, Riccardo

    2004-01-01

    establishes that the skeletal phenotype is cell autonomous to the osteoblast lineage and independent of adipocyte formation. It also strongly suggests that the decreased fat phenotype of NSE-DeltaFosB mice is independent of the changes in the osteoblast lineage. In vitro, overexpression of Delta......Osteoblasts and adipocytes may develop from common bone marrow mesenchymal precursors. Transgenic mice overexpressing DeltaFosB, an AP-1 transcription factor, under the control of the neuron-specific enolase (NSE) promoter show both markedly increased bone formation and decreased adipogenesis...... of DeltaFosB on adipocyte differentiation appears to occur at early stages of stem cell commitment, affecting C/EBPbeta functions. It is concluded that the changes in osteoblast and adipocyte differentiation in DeltaFosB transgenic mice result from independent cell-autonomous mechanisms....

  5. Androgen receptor expression in human ovarian and uterine tissue of long term androgen-treated transsexual women

    OpenAIRE

    Chadha, D.; Pache, T.D.; Huikeshoven, Frans; Brinkmann, Albert; Kwast, Theo

    1994-01-01

    textabstractAndrogen receptor (AR) modulation in human uteri and ovaries of long term androgen-treated transsexual female patients was investigated. Androgen receptor expression was evaluated immunohistochemically in the ovaries of 11 and the endometria and myometria of six androgen-treated transsexual female patients. This was compared with AR expression in the ovaries and uteri of premenopausal and postmenopausal women not receiving treatment and in 10 ovaries of female patients with polycy...

  6. Influence of docosahexaenoic acid in vitro on intracellular adriamycin concentration in lymphocytes and human adriamycin-sensitive and -resistant small-cell lung cancer cell lines, and on cytotoxicity in the tumor cell lines

    NARCIS (Netherlands)

    Zijlstra, J G; de Vries, E G; Muskiet, F A; Martini, I A; Timmer-Bosscha, H; Mulder, N H

    1987-01-01

    An increase in the therapeutic effects of cancer chemotherapeutic agents and circumvention of drug resistance in cancer cells might result from an increase in the intracellular drug level. Alteration of the lipid domain of the cell membrane can result in a higher intracellular drug level. This

  7. Effect of serum proteins on polystyrene nanoparticle uptake and intracellular trafficking in endothelial cells

    International Nuclear Information System (INIS)

    Guarnieri, Daniela; Guaccio, Angela; Fusco, Sabato; Netti, Paolo A.

    2011-01-01

    The physico-chemical properties of nanoparticles (NPs), such as small dimensions, surface charge and surface functionalization, control their capability to interact with cells and, in particular, with sub-cellular components. This interaction can be also influenced by the adsorption of molecules present in biological fluids, like blood, on NP surface. Here, we analysed the effect of serum proteins on 49 and 100 nm red fluorescent polystyrene NP uptake in porcine aortic endothelial (PAE) cells, as a model for vascular transport. To this aim, NP uptake kinetic, endocytic pathway and intracellular trafficking were studied by monitoring NPs inside cells through confocal microscopy and multiple particle tracking (MPT). We demonstrated that NPs are rapidly internalized by cells in serum-free (SF) medium, according to a saturation kinetic. Conversely, in 10% foetal bovine serum-enriched (SE) medium, NP uptake rate results drastically reduced. Moreover, NP internalization depends on an active endocytic mechanism that does not involve clathrin- and caveolae-mediated vesicular transport, in both SE and SF media. Furthermore, MPT data indicate that NP intracellular trafficking is unaffected by protein presence. Indeed, approximately 50–60% of internalized NPs is characterized by a sub-diffusive behaviour, whereas the remaining fraction shows an active motion. These findings demonstrate that the unspecific protein adsorption on NP surface can affect cellular uptake in terms of internalization kinetics, but it is not effective in controlling active and cellular-mediated uptake mechanisms of NPs and their intracellular routes.

  8. The effect of intracellular trafficking of CD1d on the formation of TCR repertoire of NKT cells.

    Science.gov (United States)

    Shin, Jung Hoon; Park, Se-Ho

    2014-05-01

    CD1 molecules belong to non-polymorphic MHC class I-like proteins and present lipid antigens to T cells. Five different CD1 genes (CD1a-e) have been identified and classified into two groups. Group 1 include CD1a-c and present pathogenic lipid antigens to αβ T cells reminiscence of peptide antigen presentation by MHC-I molecules. CD1d is the only member of Group 2 and presents foreign and self lipid antigens to a specialized subset of αβ T cells, NKT cells. NKT cells are involved in diverse immune responses through prompt and massive production of cytokines. CD1d-dependent NKT cells are categorized upon the usage of their T cell receptors. A major subtype of NKT cells (type I) is invariant NKT cells which utilize invariant Vα14-Jα18 TCR alpha chain in mouse. The remaining NKT cells (type II) utilize diverse TCR alpha chains. Engineered CD1d molecules with modified intracellular trafficking produce either type I or type II NKT cell-defects suggesting the lipid antigens for each subtypes of NKT cells are processed/generated in different intracellular compartments. Since the usage of TCR by a T cell is the result of antigen-driven selection, the intracellular metabolic pathways of lipid antigen are a key in forming the functional NKT cell repertoire.

  9. Spatiotemporal dynamics of androgen signaling underlie sexual differentiation and congenital malformations of the urethra and vagina

    Science.gov (United States)

    Larkins, Christine E.; Enriquez, Ana B.; Cohn, Martin J.

    2016-01-01

    Disorders of sex development (DSDs) are congenital anomalies that affect sexual differentiation of genitourinary organs and secondary sex characters. A common cause of female genital virilization is congenital adrenal hyperplasia (CAH), in which excess androgen production during development of 46XX females can result in vaginal atresia, masculinization of the urethra, a single urogenital sinus, and clitoral hypertrophy or ambiguous external genitalia. Development of the vagina depends on sexual differentiation of the urogenital sinus ridge, an epithelial thickening that forms where the sex ducts attach to the anterior urethra. In females, the sinus ridge descends posteriorly to allow the vaginal opening to form in the vulva, whereas in males and in females with CAH, androgens inhibit descent of the sinus ridge. The mechanisms that regulate development of the female urethra and vagina are largely unknown. Here we show that the timing and duration of, and the cell population targeted by, androgen signaling determine the position of vaginal attachment to the urethra. Manipulations of androgen signaling in utero reveal a temporal window of development when sinus ridge fate is determined. Cell type-specific genetic deletions of androgen receptor (Ar) identify a subpopulation of mesenchymal cells that regulate sinus ridge morphogenesis. These results reveal a common mechanism that coordinates development of the vagina and feminization of the urethra, which may account for development of a single urogenital sinus in females exposed to excessive androgen during a critical period of prenatal development. PMID:27821748

  10. Arginine-rich intracellular delivery peptides noncovalently transport protein into living cells

    International Nuclear Information System (INIS)

    Wang, Y.-H.; Chen, C.-P.; Chan, M.-H.; Chang, M.; Hou, Y.-W.; Chen, H.-H.; Hsu, H.-R.; Liu, Kevin; Lee, H.-J.

    2006-01-01

    Plasma membranes of plant or animal cells are generally impermeable to peptides or proteins. Many basic peptides have previously been investigated and covalently cross-linked with cargoes for cellular internalization. In the current study, we demonstrate that arginine-rich intracellular delivery (AID) peptides are able to deliver fluorescent proteins or β-galactosidase enzyme into animal and plant cells, as well as animal tissue. Cellular internalization and transdermal delivery of protein could be mediated by effective and nontoxic AID peptides in a neither fusion protein nor conjugation fashion. Therefore, noncovalent AID peptides may provide a useful strategy to have active proteins function in living cells and tissues in vivo

  11. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles.

    Science.gov (United States)

    Lavado, Andrea S; Chauhan, Veeren M; Zen, Amer Alhaj; Giuntini, Francesca; Jones, D Rhodri E; Boyle, Ross W; Beeby, Andrew; Chan, Weng C; Aylott, Jonathan W

    2015-09-14

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(II) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(II) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(II) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.

  12. Direct Regulation of Androgen Receptor Activity by Potent CYP17 Inhibitors in Prostate Cancer Cells*

    Science.gov (United States)

    Soifer, Harris S.; Souleimanian, Naira; Wu, Sijian; Voskresenskiy, Anatoliy M.; Kisaayak Collak, Filiz; Cinar, Bekir; Stein, Cy A.

    2012-01-01

    TOK-001 and abiraterone are potent 17-heteroarylsteroid (17-HAS) inhibitors of Cyp17, one of the rate-limiting enzymes in the biosynthesis of testosterone from cholesterol in prostate cancer cells. Nevertheless, the molecular mechanism underlying the prevention of prostate cell growth by 17-HASs still remains elusive. Here, we assess the effects of 17-HASs on androgen receptor (AR) activity in LNCaP and LAPC-4 cells. We demonstrate that both TOK-001 and abiraterone reduced AR protein and mRNA expression, and antagonized AR-dependent promoter activation induced by androgen. TOK-001, but not abiraterone, is an effective apparent competitor of the radioligand [3H]R1881 for binding to the wild type and various mutant AR (W741C, W741L) proteins. In agreement with these data, TOK-001 is a consistently superior inhibitor than abiraterone of R1881-induced transcriptional activity of both wild type and mutant AR. However, neither agent was able to trans-activate the AR in the absence of R1881. Our data demonstrate that phospho-4EBP1 levels are significantly reduced by TOK-001 and to a lesser extent by abiraterone alcohol, and suggest a mechanism by which cap-dependent translation is suppressed by blocking assembly of the eIF4F and eIF4G complex to the mRNA 5′ cap. Thus, the effects of these 17-HASs on AR signaling are complex, ranging from a decrease in testosterone production through the inhibition of Cyp17 as previously described, to directly reducing both AR protein expression and R1881-induced AR trans-activation. PMID:22174412

  13. Calibration and quantification of fast intracellular motion (FIM) in living cells using correlation analysis

    Czech Academy of Sciences Publication Activity Database

    Veselý, Pavel; Mikš, A.; Novák, J.; Boyde, A.

    2003-01-01

    Roč. 25, - (2003), s. 230-239 ISSN 0161-0457 R&D Projects: GA ČR GA304/99/0368 Institutional research plan: CEZ:AV0Z5052915 Keywords : fast intracellular motion * living cell ů video rate confocal laser scanning microscopy Subject RIV: EA - Cell Biology Impact factor: 0.733, year: 2003

  14. Activation of estrogen receptor beta (ERβ) regulates the expression of N-cadherin, E-cadherin and β-catenin in androgen-independent prostate cancer cells.

    Science.gov (United States)

    Silva, Rafael de Souza; Lombardi, Ana Paola G; de Souza, Deborah Simão; Vicente, Carolina M; Porto, Catarina S

    2018-03-01

    The aim of the present study was to investigate the impact of the activation of estrogen receptors on expression and localization of N-cadherin, E-cadherin and non-phosphorylated β-catenin in androgen-independent prostate cancer cells (PC-3 and DU-145) and in human post pubertal prostate epithelial cells (PNT1A). Expression of N-cadherin was detected in PNT1A and PC-3 cells, but not in DU-145 cells. E-cadherin was detected only in DU-145 cells and β-catenin was detected in all cells studied. N-cadherin and β-catenin were located preferentially in the cellular membrane of PNT1A cells and in the cytoplasm of PC-3 cells. E-cadherin and β-catenin were located preferentially in the cellular membrane of DU-145 cells. 17β-estradiol (E2) or the ERα-selective agonist PPT did not affect the content and localization of N-cadherin in PC-3 and PNT1A cells or E-cadherin in DU-145 cells. In PC-3 cells, ERβ-selective agonist DPN decreased the expression of N-cadherin. DPN-induced downregulation of N-cadherin was blocked by pretreatment with the ERβ-selective antagonist (PHTPP), indicating that ERβ1 is the upstream receptor regulating the expression of N-cadherin. In DU-145 cells, the activation of ERβ1 by DPN increased the expression of E-cadherin. Taken together, these results suggest that activation of ERβ1 is required to maintain an epithelial phenotype in PC-3 and DU-145 cells. The activation of ERβ1 also increased the expression of β-catenin in cytoplasm of PC-3 and in the cellular membrane of DU-145 cells. In conclusion, our results indicate differential expression and localization of N-cadherin, E-cadherin and β-catenin in androgen-independent prostate cancer cells. The reduction of N-cadherin content by activation of ERβ, exclusively observed in androgen-independent prostate cancer cells (PC-3), may be related to the activation of signaling pathways, such as the release of β-catenin into the cytoplasm, translocation of β-catenin to the nucleus and

  15. Androgen receptor and its splice variant, AR-V7, differentially regulate FOXA1 sensitive genes in LNCaP prostate cancer cells.

    Science.gov (United States)

    Krause, William C; Shafi, Ayesha A; Nakka, Manjula; Weigel, Nancy L

    2014-09-01

    Prostate cancer (PCa) is an androgen-dependent disease, and tumors that are resistant to androgen ablation therapy often remain androgen receptor (AR) dependent. Among the contributors to castration-resistant PCa are AR splice variants that lack the ligand-binding domain (LBD). Instead, they have small amounts of unique sequence derived from cryptic exons or from out of frame translation. The AR-V7 (or AR3) variant is constitutively active and is expressed under conditions consistent with CRPC. AR-V7 is reported to regulate a transcriptional program that is similar but not identical to that of AR. However, it is unknown whether these differences are due to the unique sequence in AR-V7, or simply to loss of the LBD. To examine transcriptional regulation by AR-V7, we have used lentiviruses encoding AR-V7 (amino acids 1-627 of AR with the 16 amino acids unique to the variant) to prepare a derivative of the androgen-dependent LNCaP cells with inducible expression of AR-V7. An additional cell line was generated with regulated expression of AR-NTD (amino acids 1-660 of AR); this mutant lacks the LBD but does not have the AR-V7 specific sequence. We find that AR and AR-V7 have distinct activities on target genes that are co-regulated by FOXA1. Transcripts regulated by AR-V7 were similarly regulated by AR-NTD, indicating that loss of the LBD is sufficient for the observed differences. Differential regulation of target genes correlates with preferential recruitment of AR or AR-V7 to specific cis-regulatory DNA sequences providing an explanation for some of the observed differences in target gene regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Immunohistochemical localization of androgen receptor in rat caput epididymis during postnatal development

    Directory of Open Access Journals (Sweden)

    Sema Timurkaan

    2011-09-01

    Full Text Available Objectives: The aim of this study was to investigate the developmental pattern of androgen receptor (AR in caput epididymis.Materials and methods: In this study three randomly selected rats were sacrificed at ages 21, 56, 90 and 120 days old. All male rats were anesthetized with ethyl ether before killing. Then, the caput epididymides were removed and fixed in Bouin’s fixative at +4°C for 36 hour. Afterwards the tissue samples were embedded in paraffin for routine histological methods. Later the tissues were sectioned at 5μm and mounted on poly-L-lysin-coated slides. To solve the antigen masking problem, we performed microwave stimulated antigen retrieval technique before the immunohistochemical staining. Avidin-Biotin-Peroxidase Complex (ABC method was applied for immunohistochemical staining.Results: In all age groups of rats studied, positive immunohistochemical staining for the AR appeared in nuclei of epididymal cells. The staining intensity of AR positive cells did not change depending on age. In caput epididymis, immunostainable AR was found in tubular epithelial cells (principal cells, basal cells and apical cells and peritubular smooth muscle cells. The AR staining in the epithelial cells appeared to be stronger than in the peritubular smooth muscle cells. In the epithelial cells; staining intensity was stronger in principal cells than in basal cells and apical cells.Conclusion: Staining intensity of AR positive epididymal cells irrespective of age indicated the necessity of androgens for postnatal differentiation and maintaining the structure of the epididymis. Stronger staining intensity in principal cells suggested that principal cells are more sensitive to androgen stimulation. J Clin Exp Invest 2011; 2 (3: 260-266.

  17. Concept and viability of androgen annihilation for advanced prostate cancer.

    Science.gov (United States)

    Mohler, James L

    2014-09-01

    There remains no standard of care for patients with a rising prostate-specific antigen level after radical prostatectomy or radiotherapy but who have no radiographic metastases, even though this is the second largest group of patients with prostate cancer (CaP) in the United States. Androgen deprivation therapy (ADT) may cure some men with advanced CaP based on single-institution series and a randomized clinical trial of immediate versus delayed ADT for men found to have pelvic lymph node metastasis at the time of radical prostatectomy. ADT may be more effective when initiated for minimal disease burden, which can be detected using PSA after radical prostatectomy or radiotherapy, and if more complete disruption of the androgen axis using newer agents decreases the chance that androgen-sensitive cells survive to adapt to a low-androgen environment. Androgens may be "annihilated" simultaneously using a luteinizing hormone-releasing hormone antagonist or agonist to inhibit testicular production of testosterone, a P45017A1 (CYP17A1) inhibitor to diminish metabolism of testosterone via the adrenal pathway and dihydrotestosterone (DHT) via the backdoor pathway, a 5α-reductase (SRD5A) inhibitor to diminish testosterone reduction to DHT and backdoor metabolism of progesterone substrates to DHT, and a newer antiandrogen to compete better with DHT for the androgen receptor ligand-binding domain. Early initiation of androgen annihilation for induction as part of planned intermittent ADT should be safe, may reduce tumor burden below a threshold that allows eradication by the immune system, and may cure many men who have failed definitive local therapy. © 2014 American Cancer Society.

  18. Hatred of the System: Menacing Loners and Autonomous Cells in the Netherlands

    NARCIS (Netherlands)

    van Buuren, G.M.; de Graaf, B.A.

    2014-01-01

    In this article, the violent threat emerging from “menacing loners” and autonomous cells in The Netherlands is being historicized and contextualized by providing quantitative and qualitative insight into this threat and illuminating some of the most dramatic incidents. Although beyond the core

  19. Abnormal autonomic cardiac response to transient hypoxia in sickle cell anemia

    International Nuclear Information System (INIS)

    Sangkatumvong, S; Khoo, M C K; Coates, T D

    2008-01-01

    The objective of this study was to non-invasively assess cardiac autonomic control in subjects with sickle cell anemia (SCA) by tracking the changes in heart rate variability (HRV) that occur following brief exposure to a hypoxic stimulus. Five African–American SCA patients and seven healthy control subjects were recruited to participate in this study. Each subject was exposed to a controlled hypoxic stimulus consisting of five breaths of nitrogen. Time-varying spectral analysis of HRV was applied to estimate the cardiac autonomic response to the transient episode of hypoxia. The confounding effects of changes in respiration on the HRV spectral indices were reduced by using a computational model. A significant decrease in the parameters related to parasympathetic control was detected in the post-hypoxic responses of the SCA subjects relative to normal controls. The spectral index related to sympathetic activity, on the other hand, showed a tendency to increase the following hypoxic stimulation, but the change was not significant. This study suggests that there is some degree of cardiovascular autonomic dysfunction in SCA that is revealed by the response to transient hypoxia

  20. Ontogenic and sexual differences in pituitary GnRH receptors and intracellular Ca2+ mobilization induced by GnRH.

    Science.gov (United States)

    Lacau-Mengido, I M; González Iglesias, A; Lux-Lantos, V; Libertun, C; Becú-Villalobos, D

    1998-04-01

    The present experiments were designed in order to elucidate the participation of the developing hypophysis in determining the changing sensitivity of gonadotrophins to gonadotropin-releasing hormone (GnRH) during ontogeny in the rat. To that end, we chose two well defined developmental ages that differ markedly in sexual and ontogenic characteristics of hypophyseal sensitivity to GnRH, 15 and 30 d. In order to study sex differences and the role of early sexual organization of the hypothalamus, experiments were carried out in males, females, and neonatally androgenized females (TP females). We evaluated (1) the characteristics of pituitary GnRH receptors, and (2) associated changes in GnRH-induced mobilization of intracellular Ca2+ (a second messenger involved in gonadotropins exocytosis). We measured binding characteristics of the GnRH analog D-Ser(TBu)6-des-Gly10-GnRH ethylamide in pituitary homogenates. We found that Kds did not vary among the different sex groups. Total number and concentration of receptors decreased in the female rat from 15-30 d of age, whereas in the male and TP female, receptors/pituitary increased, and the concentration/mg tissue did not change. Also, at 30 days of age, males presented higher content and concentration of receptors than females, and higher content than TP females. In order to evaluate if developmental and sexual differences in pituitary sensitivity to GnRH might be expressed through variations in the intracellular Ca2+ signal, we studied the mobilization of intracellular Ca2+ induced by GnRH (1 x 10(-8) to 1 x 10(-11) M) in a suspension of dispersed pituitary cells in the six groups. In cells from 15-d-old females, Ca2+ response was greater than in 30-d-old females at the doses of 10(-8) to 10(-10) M, indicating that in the infantile female rat activation of highly concentrated GnRH receptors is reflected in an increase in signal transduction mediated by Ca2+. In males and in female rats androgenized at birth, there was also

  1. Androgen-deprivation therapy-induced aggressive prostate cancer with neuroendocrine differentiation

    Directory of Open Access Journals (Sweden)

    Julia Lipianskaya

    2014-08-01

    Full Text Available Most prostate cancers (PCas are classified as acinar type (conventional adenocarcinoma which are composed of tumor cells with luminal differentiation including the expression of androgen receptor (AR and prostate-specific antigen (PSA. There are also scattered neuroendocrine (NE cells in every case of adenocarcinoma. The NE cells are quiesecent, do not express AR or PSA, and their function remains unclear. We have demonstrated that IL8-CXCR2-P53 pathway provides a growth-inhibitory signal and keeps the NE cells in benign prostate and adenocarcinoma quiescent. Interestingly, some patients with a history of adenocarcinoma recur with small cell neuroendocrine carcinoma (SCNC after hormonal therapy, and such tumors are composed of pure NE cells that are highly proliferative and aggressive, due to P53 mutation and inactivation of the IL8-CXCR2-P53 pathway. The incidence of SCNC will likely increase due to the widespread use of novel drugs that further inhibit AR function or intratumoral androgen synthesis. A phase II trial has demonstrated that platinum-based chemotherapy may be useful for such therapy-induced tumors.

  2. LncRNA HOTAIR Enhances the Androgen-Receptor-Mediated Transcriptional Program and Drives Castration-Resistant Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Ali Zhang

    2015-10-01

    Full Text Available Understanding the mechanisms of androgen receptor (AR activation in the milieu of low androgen is critical to effective treatment of castration-resistant prostate cancer (CRPC. Here, we report HOTAIR as an androgen-repressed lncRNA, and, as such, it is markedly upregulated following androgen deprivation therapies and in CRPC. We further demonstrate a distinct mode of lncRNA-mediated gene regulation, wherein HOTAIR binds to the AR protein to block its interaction with the E3 ubiquitin ligase MDM2, thereby preventing AR ubiquitination and protein degradation. Consequently, HOTAIR expression is sufficient to induce androgen-independent AR activation and drive the AR-mediated transcriptional program in the absence of androgen. Functionally, HOTAIR overexpression increases, whereas HOTAIR knockdown decreases, prostate cancer cell growth and invasion. Taken together, our results provide compelling evidence of lncRNAs as drivers of androgen-independent AR activity and CRPC progression, and they support the potential of lncRNAs as therapeutic targets.

  3. Association of Androgen Excess with Glucose Intolerance in Women with Polycystic Ovary Syndrome.

    Science.gov (United States)

    Zhang, Bingjie; Wang, Jing; Shen, Shanmei; Liu, Jiayi; Sun, Jie; Gu, Tianwei; Ye, Xiao; Zhu, Dalong; Bi, Yan

    2018-01-01

    Women with polycystic ovary syndrome (PCOS) show high prevalence of glucose intolerance. This study aimed to investigate the association of androgen excess with glucose intolerance in PCOS. A total of 378 women with PCOS participated in the study. Free androgen index (FAI) was selected as indicator of hyperandrogenism. Insulin sensitivity was assessed by 1/homeostasis model assessment of insulin resistance (1/HOMA-IR) and Matsuda insulin sensitivity index (ISI M ); β -cell function was assessed by disposition index (DI). We found that women with glucose intolerance had higher FAI levels compared to women with normal glucose tolerance (NGT) (prediabetes 6.2, T2DM 7.9 versus NGT 5.0, resp.; p androgen excess indicated by high FAI levels might serve as indicator of glucose intolerance, as it might promote insulin resistance and β -cell dysfunction in women with PCOS.

  4. Nonlinear system identification for prostate cancer and optimality of intermittent androgen suppression therapy.

    Science.gov (United States)

    Suzuki, Taiji; Aihara, Kazuyuki

    2013-09-01

    These days prostate cancer is one of the most common types of malignant neoplasm in men. Androgen ablation therapy (hormone therapy) has been shown to be effective for advanced prostate cancer. However, continuous hormone therapy often causes recurrence. This results from the progression of androgen-dependent cancer cells to androgen-independent cancer cells during the continuous hormone therapy. One possible method to prevent the progression to the androgen-independent state is intermittent androgen suppression (IAS) therapy, which ceases dosing intermittently. In this paper, we propose two methods to estimate the dynamics of prostate cancer, and investigate the IAS therapy from the viewpoint of optimality. The two methods that we propose for dynamics estimation are a variational Bayesian method for a piecewise affine (PWA) system and a Gaussian process regression method. We apply the proposed methods to real clinical data and compare their predictive performances. Then, using the estimated dynamics of prostate cancer, we observe how prostate cancer behaves for various dosing schedules. It can be seen that the conventional IAS therapy is a way of imposing high cost for dosing while keeping the prostate cancer in a safe state. We would like to dedicate this paper to the memory of Professor Luigi M. Ricciardi. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Selective ablation of the androgen receptor in mouse sertoli cells affects sertoli cell maturation, barrier formation and cytoskeletal development.

    Directory of Open Access Journals (Sweden)

    Ariane Willems

    2010-11-01

    Full Text Available The observation that mice with a selective ablation of the androgen receptor (AR in Sertoli cells (SC (SCARKO mice display a complete block in meiosis supports the contention that SC play a pivotal role in the control of germ cell development by androgens. To delineate the physiological and molecular mechanism responsible for this control, we compared tubular development in pubertal SCARKO mice and littermate controls. Particular attention was paid to differences in SC maturation, SC barrier formation and cytoskeletal organization and to the molecular mediators potentially involved. Functional analysis of SC barrier development by hypertonic perfusion and lanthanum permeation techniques and immunohistochemical analysis of junction formation showed that SCARKO mice still attempt to produce a barrier separating basal and adluminal compartment but that barrier formation is delayed and defective. Defective barrier formation was accompanied by disturbances in SC nuclear maturation (immature shape, absence of prominent, tripartite nucleoli and SC polarization (aberrant positioning of SC nuclei and cytoskeletal elements such as vimentin. Quantitative RT-PCR was used to study the transcript levels of genes potentially related to the described phenomena between day 8 and 35. Differences in the expression of SC genes known to play a role in junction formation could be shown from day 8 for Cldn11, from day 15 for Cldn3 and Espn, from day 20 for Cdh2 and Jam3 and from day 35 for ZO-1. Marked differences were also noted in the transcript levels of several genes that are also related to cell adhesion and cytoskeletal dynamics but that have not yet been studied in SC (Actn3, Ank3, Anxa9, Scin, Emb, Mpzl2. It is concluded that absence of a functional AR in SC impedes the remodeling of testicular tubules expected at the onset of spermatogenesis and interferes with the creation of the specific environment needed for germ cell development.

  6. Androgen Receptor Signaling in Bladder Cancer

    OpenAIRE

    Li, Peng; Chen, Jinbo; Miyamoto, Hiroshi

    2017-01-01

    Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in u...

  7. Molecular Mechanisms Elicited by d-Aspartate in Leydig Cells and Spermatogonia

    Directory of Open Access Journals (Sweden)

    Maria Maddalena Di Fiore

    2016-07-01

    Full Text Available A bulk of evidence suggests that d-aspartate (d-Asp regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK pathways. d-Asp treatment enhances gene and protein expression of enzymes involved in the steroidogenic cascade. d-Asp also directly affects spermatogonial mitotic activity. In spermatogonial GC-1 cells, d-Asp induces phosphorylation of MAPK and AKT serine-threonine kinase proteins, and stimulates expression of proliferating cell nuclear antigen (PCNA and aurora kinase B (AURKB. Further stimulation of spermatogonial GC-1 cell proliferation might come from estradiol/estrogen receptor β (ESR2 interaction. d-Asp modulates androgen and estrogen levels as well as the expression of their receptors in the rat epididymis by acting on mRNA levels of Srd5a1 and Cyp19a1 enzymes, hence suggesting involvement in spermatozoa maturation.

  8. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis

    Directory of Open Access Journals (Sweden)

    Li Q

    2013-07-01

    Full Text Available Qingli Li,1,2 Mark J Lambrechts,1 Qiuyang Zhang,1 Sen Liu,1 Dongxia Ge,1 Rutie Yin,2 Mingrong Xi,2 Zongbing You1 1Departments of Structural and Cellular Biology and Orthopaedic Surgery, Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, USA; 2Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China Abstract: Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA, are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy. Keywords: serine hydroxymethyltransferase, prostate cancer, apoptosis

  9. Characteristic findings of cervical Papanicolaou tests from transgender patients on androgen therapy: Challenges in detecting dysplasia.

    Science.gov (United States)

    Adkins, B D; Barlow, A B; Jack, A; Schultenover, S J; Desouki, M M; Coogan, A C; Weiss, V L

    2018-02-28

    The characteristic features of Papanicolaou (Pap) tests collected from female-to-male (FTM) transgender patients on androgen therapy have not been well defined in the literature. FTM transgender patients require cervical cancer screening with the same recommended frequency as cis-gender females. Dysplasia remains challenging to differentiate from atrophy. Without pertinent history, the atrophic findings in younger transgender patients can be misinterpreted as high-grade dysplasia. A review of all cervical Pap tests of transgender patients receiving androgen therapy (2010-2017) was performed. Bethesda diagnosis, cytomorphological features, HPV testing and cervical biopsy results were reviewed. Eleven transgender patients receiving androgen therapy were identified with 23 cervical Pap tests, 11 HPV tests and five cervical biopsies performed. A review of the Pap tests demonstrated: 57% negative for intraepithelial lesion; 13% unsatisfactory; 13% atypical squamous cells of undetermined significance; 13% atypical squamous cells - cannot exclude high-grade squamous intraepithelial lesion; and 4% high-grade squamous intraepithelial lesion. The rates of abnormal tests were higher than our age-matched cis-gender atrophic cohort rates of unsatisfactory (0.5%), atypical squamous cells of undetermined significance (7%), atypical squamous cells-cannot exclude high-grade squamous intraepithelial lesion (0%) and high-grade squamous intraepithelial lesion (0.5%). The cytological findings from liquid-based preparations included dispersed and clustered parabasal-type cells, scattered degenerated cells, smooth evenly dispersed chromatin, and occasional mild nuclear enlargement and irregularity. Dysplastic cells had larger nuclei, hyperchromatic clumped chromatin, and more irregular nuclear contours. The evaluation of dysplasia can be challenging on Pap tests from transgender patients on androgen therapy. The cohort evaluated had higher rates of unsatisfactory and abnormal Pap tests

  10. Intracellular Drug Bioavailability: Effect of Neutral Lipids and Phospholipids.

    Science.gov (United States)

    Treyer, Andrea; Mateus, André; Wiśniewski, Jacek R; Boriss, Hinnerk; Matsson, Pär; Artursson, Per

    2018-06-04

    Intracellular unbound drug concentrations are the pharmacologically relevant concentrations for targets inside cells. Intracellular drug concentrations are determined by multiple processes, including the extent of drug binding to intracellular structures. The aim of this study was to evaluate the effect of neutral lipid (NL) and phospholipid (PL) levels on intracellular drug disposition. The NL and/or PL content of 3T3-L1 cells were enhanced, resulting in phenotypes (in terms of morphology and proteome) reminiscent of adipocytes (high NL and PL) or mild phospholipidosis (only high PL). Intracellular bioavailability ( F ic ) was then determined for 23 drugs in these cellular models and in untreated wild-type cells. A higher PL content led to higher intracellular drug binding and a lower F ic . The induction of NL did not further increase drug binding but led to altered F ic due to increased lysosomal pH. Further, there was a good correlation between binding to beads coated with pure PL and intracellular drug binding. In conclusion, our results suggest that PL content is a major determinant of drug binding in cells and that PL beads may constitute a simple alternative to estimating this parameter. Further, the presence of massive amounts of intracellular NLs did not influence drug binding significantly.

  11. Intracellular pH distribution as a cell health indicator in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Aabo, Thomas; Glückstad, Jesper; Siegumfeldt, Henrik

    2011-01-01

    .d.(pHint)) to describe the internal pH distributions. The cellular pH distributional response to external stress such as heat has not previously been determined. In this study, the intracellular pH (pHi) and the s.d.(pHint) of Saccharomyces cerevisiae cells exposed to supralethal temperatures were measured using...

  12. Inhibition of glycogen synthase kinase-3β counteracts ligand-independent activity of the androgen receptor in castration resistant prostate cancer.

    Directory of Open Access Journals (Sweden)

    Stefanie V Schütz

    Full Text Available In order to generate genomic signals, the androgen receptor (AR has to be transported into the nucleus upon androgenic stimuli. However, there is evidence from in vitro experiments that in castration-resistant prostate cancer (CRPC cells the AR is able to translocate into the nucleus in a ligand-independent manner. The recent finding that inhibition of the glycogen-synthase-kinase 3β (GSK-3β induces a rapid nuclear export of the AR in androgen-stimulated prostate cancer cells prompted us to analyze the effects of a GSK-3β inhibition in the castration-resistant LNCaP sublines C4-2 and LNCaP-SSR. Both cell lines exhibit high levels of nuclear AR in the absence of androgenic stimuli. Exposure of these cells to the maleimide SB216763, a potent GSK-3β inhibitor, resulted in a rapid nuclear export of the AR even under androgen-deprived conditions. Moreover, the ability of C4-2 and LNCaP-SSR cells to grow in the absence of androgens was diminished after pharmacological inhibition of GSK-3β in vitro. The ability of SB216763 to modulate AR signalling and function in CRPC in vivo was additionally demonstrated in a modified chick chorioallantoic membrane xenograft assay after systemic delivery of SB216763. Our data suggest that inhibition of GSK-3β helps target the AR for export from the nucleus thereby diminishing the effects of mislocated AR in CRPC cells. Therefore, inhibition of GSK-3β could be an interesting new strategy for the treatment of CRPC.

  13. Insecticide resistance and intracellular proteases.

    Science.gov (United States)

    Wilkins, Richard M

    2017-12-01

    Pesticide resistance is an example of evolution in action with mechanisms of resistance arising from mutations or increased expression of intrinsic genes. Intracellular proteases have a key role in maintaining healthy cells and in responding to stressors such as pesticides. Insecticide-resistant insects have constitutively elevated intracellular protease activity compared to corresponding susceptible strains. This increase was shown for some cases originally through biochemical enzyme studies and subsequently putatively by transcriptomics and proteomics methods. Upregulation and expression of proteases have been characterised in resistant strains of some insect species, including mosquitoes. This increase in proteolysis results in more degradation products (amino acids) of intracellular proteins. These may be utilised in the resistant strain to better protect the cell from stress. There are changes in insect intracellular proteases shortly after insecticide exposure, suggesting a role in stress response. The use of protease and proteasome inhibitors or peptide mimetics as synergists with improved application techniques and through protease gene knockdown using RNA interference (possibly expressed in crop plants) may be potential pest management strategies, in situations where elevated intracellular proteases are relevant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Identification of intracellular proteins and signaling pathways in human endothelial cells regulated by angiotensin-(1-7).

    Science.gov (United States)

    Meinert, Christian; Gembardt, Florian; Böhme, Ilka; Tetzner, Anja; Wieland, Thomas; Greenberg, Barry; Walther, Thomas

    2016-01-01

    The study aimed to identify proteins regulated by the cardiovascular protective peptide angiotensin-(1-7) and to determine potential intracellular signaling cascades. Human endothelial cells were stimulated with Ang-(1-7) for 1 h, 3 h, 6 h, and 9 h. Peptide effects on intracellular signaling were assessed via antibody microarray, containing antibodies against 725 proteins. Bioinformatics software was used to identify affected intracellular signaling pathways. Microarray data was verified exemplarily by Western blot, Real-Time RT-PCR, and immunohistochemical studies. The microarray identified 110 regulated proteins after 1 h, 119 after 3 h, 31 after 6 h, and 86 after 9 h Ang-(1-7) stimulation. Regulated proteins were associated with high significance to several metabolic pathways like “Molecular Mechanism of Cancer” and “p53 signaling” in a time dependent manner. Exemplarily, Western blots for the E3-type small ubiquitin-like modifier ligase PIAS2 confirmed the microarray data and displayed a decrease by more than 50% after Ang-(1-7) stimulation at 1 h and 3 h without affecting its mRNA. Immunohistochemical studies with PIAS2 in human endothelial cells showed a decrease in cytoplasmic PIAS2 after Ang-(1-7) treatment. The Ang-(1-7) mediated decrease of PIAS2 was reproduced in other endothelial cell types. The results suggest that angiotensin-(1-7) plays a role in metabolic pathways related to cell death and cell survival in human endothelial cells.

  15. Oncolytic targeting of androgen-sensitive prostate tumor by the respiratory syncytial virus (RSV): consequences of deficient interferon-dependent antiviral defense

    International Nuclear Information System (INIS)

    Echchgadda, Ibtissam; Chang, Te-Hung; Sabbah, Ahmed; Bakri, Imad; Ikeno, Yuji; Hubbard, Gene B; Chatterjee, Bandana; Bose, Santanu

    2011-01-01

    Oncolytic virotherapy for cancer treatment utilizes viruses for selective infection and death of cancer cells without any adverse effect on normal cells. We previously reported that the human respiratory syncytial virus (RSV) is a novel oncolytic virus against androgen-independent PC-3 human prostate cancer cells. The present study extends the result to androgen-dependent prostate cancer, and explores the underlying mechanism that triggers RSV-induced oncolysis of prostate cancer cells. The oncolytic effect of RSV on androgen-sensitive LNCaP human prostate cancer cells and on androgen-independent RM1 murine prostate cancer cells was studied in vitro in culture and in vivo in a xenograft or allograft tumor model. In vitro, cell viability, infectivity and apoptosis were monitored by MTT assay, viral plaque assay and annexin V staining, respectively. In vivo studies involved virus administration to prostate tumors grown in immune compromised nude mice and in syngeneic immune competent C57BL/6J mice. Anti-tumorogenic oncolytic activity was monitored by measuring tumor volume, imaging bioluminescent tumors in live animals and performing histopathological analysis and TUNEL assay with tumors We show that RSV imposes a potent oncolytic effect on LNCaP prostate cancer cells. RSV infectivity was markedly higher in LNCaP cells compared to the non-tumorigenic RWPE-1 human prostate cells. The enhanced viral burden led to LNCaP cell apoptosis and growth inhibition of LNCaP xenograft tumors in nude mice. A functional host immune response did not interfere with RSV-induced oncolysis, since growth of xenograft tumors in syngeneic C57BL/6J mice from murine RM1 cells was inhibited upon RSV administration. LNCaP cells failed to activate the type-I interferon (IFNα/β)-induced transcription factor STAT-1, which is required for antiviral gene expression, although these cells could produce IFN in response to RSV infection. The essential role of IFN in restricting infection was further

  16. Androgen Receptor Expression in Epithelial and Stromal Cells of Prostatic Carcinoma and Benign Prostatic Hyperplasia.

    Science.gov (United States)

    Filipovski, Vanja; Kubelka-Sabit, Katerina; Jasar, Dzengis; Janevska, Vesna

    2017-08-15

    Prostatic carcinoma (PCa) derives from prostatic epithelial cells. However stromal microenvironment, associated with malignant epithelium, also plays a role in prostatic carcinogenesis. Alterations in prostatic stromal cells contribute to the loss of growth control in epithelial cells that lead to progression of PCa. To analyse the differences between Androgen Receptor (AR) expression in both epithelial and stromal cells in PCa and the surrounding benign prostatic hyperplasia (BPH) and to compare the results with tumour grade. Samples from 70 cases of radical prostatectomy specimens were used. The expression and intensity of the signal for AR was analysed in the epithelial and stromal cells of PCa and BPH, and the data was quantified using histological score (H-score). AR showed significantly lower expression in both epithelial and stromal cells of PCa compared to BPH. In PCa a significant positive correlation of AR expression was found between stromal and epithelial cells of PCa. AR expression showed a correlation between the stromal cells of PCa and tumour grade. AR expression is reduced in epithelial and stromal cells of PCa. Expression of AR in stromal cells of PCa significantly correlates with tumour grade.

  17. Memantine Can Reduce Ethanol-Induced Caspase-3 Activity and Apoptosis in H4 Cells by Decreasing Intracellular Calcium.

    Science.gov (United States)

    Wang, Xiaolong; Chen, Jiajun; Wang, Hongbo; Yu, Hao; Wang, Changliang; You, Jiabin; Wang, Pengfei; Feng, Chunmei; Xu, Guohui; Wu, Xu; Zhao, Rui; Zhang, Guohua

    2017-08-01

    Caspase-3 activation and apoptosis are associated with various neurodegenerative disorders. Calcium activation is an important factor in promoting apoptosis. We, therefore, assessed the role of intracellular calcium in ethanol-induced activation of caspase-3 in H4 human neuroglioma cells and the protective effect of the NMDA receptor antagonist, memantine, on ethanol-induced apoptosis in H4 cells. H4 cells were treated with 100 mM EtOH (in culture medium) for 2 days. For interaction studies, cells were treated with memantine (4 μM), EDTA (1 mM), or BAPTA-AM (10 μM) before treatment with EtOH. Knockdown of the gene encoding the NR1 subunit of the NMDA receptor was performed using RNAi. Apoptosis was detected by Annexin V-FITC/PI staining and flow cytometry. Cell viability was detected using an MTS cell proliferation kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration. The levels of NR1, caspase-3, IP3R1, and SERCA1 proteins were detected by western blotting. NR1, IP3R1, and SERCA1 mRNA levels were detected by qPCR. We observed increased expression of NR1, IP3R1, SERCA1, and increased intracellular levels of calcium ions in H4 cells exposed to ethanol. In addition, the calcium chelators, EDTA and BAPTA, and RNAi disruption of the NMDA receptor reduced ethanol-induced caspase-3 activation in H4 cells. Memantine treatment reduced the ethanol-induced increase of intracellular calcium, caspase-3 activation, apoptosis, and the ethanol-induced decrease in cell viability. Our results indicate that ethanol-induced caspase-3 activation and apoptosis are likely to be dependent on cytosolic calcium levels and that they can be reduced by memantine treatment.

  18. Androgen Receptor (AR) Physiological Roles in Male and Female Reproductive Systems: Lessons Learned from AR-Knockout Mice Lacking AR in Selective Cells1

    Science.gov (United States)

    Chang, Chawnshang; Lee, Soo Ok; Wang, Ruey-Sheng; Yeh, Shuyuan; Chang, Ta-Min

    2013-01-01

    ABSTRACT Androgens/androgen receptor (AR) signaling is involved primarily in the development of male-specific phenotypes during embryogenesis, spermatogenesis, sexual behavior, and fertility during adult life. However, this signaling has also been shown to play an important role in development of female reproductive organs and their functions, such as ovarian folliculogenesis, embryonic implantation, and uterine and breast development. The establishment of the testicular feminization (Tfm) mouse model exploiting the X-linked Tfm mutation in mice has been a good in vivo tool for studying the human complete androgen insensitivity syndrome, but this mouse may not be the perfect in vivo model. Mouse models with various cell-specific AR knockout (ARKO) might allow us to study AR roles in individual types of cells in these male and female reproductive systems, although discrepancies are found in results between labs, probably due to using various Cre mice and/or knocking out AR in different AR domains. Nevertheless, no doubt exists that the continuous development of these ARKO mouse models and careful studies will provide information useful for understanding AR roles in reproductive systems of humans and may help us to develop more effective and more specific therapeutic approaches for reproductive system-related diseases. PMID:23782840

  19. Detection of Metabolic Fluxes of O and H Atoms into Intracellular Water in Mammalian Cells

    Science.gov (United States)

    Kreuzer, Helen W.; Quaroni, Luca; Podlesak, David W.; Zlateva, Theodora; Bollinger, Nikki; McAllister, Aaron; Lott, Michael J.; Hegg, Eric L.

    2012-01-01

    Metabolic processes result in the release and exchange of H and O atoms from organic material as well as some inorganic salts and gases. These fluxes of H and O atoms into intracellular water result in an isotopic gradient that can be measured experimentally. Using isotope ratio mass spectroscopy, we revealed that slightly over 50% of the H and O atoms in the intracellular water of exponentially-growing cultured Rat-1 fibroblasts were isotopically distinct from growth medium water. We then employed infrared spectromicroscopy to detect in real time the flux of H atoms in these same cells. Importantly, both of these techniques indicate that the H and O fluxes are dependent on metabolic processes; cells that are in lag phase or are quiescent exhibit a much smaller flux. In addition, water extracted from the muscle tissue of rats contained a population of H and O atoms that were isotopically distinct from body water, consistent with the results obtained using the cultured Rat-1 fibroblasts. Together these data demonstrate that metabolic processes produce fluxes of H and O atoms into intracellular water, and that these fluxes can be detected and measured in both cultured mammalian cells and in mammalian tissue. PMID:22848359

  20. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    International Nuclear Information System (INIS)

    Levy, J.R.; Olefsky, J.M.

    1988-01-01

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4 0 C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37 0 C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  1. Antiproliferation effects of an androgen receptor triple-helix forming oligonucleotide on prostate cancer cells

    International Nuclear Information System (INIS)

    Zhang Yong; Chen Weizhen; Xie Yao; Gao Jinhui

    2005-01-01

    Objective: To provide experimental basis for antigene radiation therapy through exploring the effects of antigene strategy on androgen receptor (AR) expression and proliferation of prostate cancer cells. Methods: The triple-helix forming oligonucleotide (TFO) targeting 2447-2461nt of AR cDNA was designed and transfected LNCaP prostate cancer cells with liposome. 24-72 h after transfection, the cellular proliferation was detected by 3 H-thymidine (TdR) incorporation test, the expression of AR gene was examined by reverse transcription-polymerase chain reaction (RT-PCR) and expression of AR protein was performed by radioligand binding assay. The results of TFO were compared with antisense oligonucleotide (ASON). Results: At all time points, the AR expression levels in TFO group were markedly lower than that of ASON group (P<0.05). The inhibitory rate of TFO for cellular proliferation was significantly higher than that of ASON (P<0.05). Conclusion: The TFO was a potent inhibitor for AR expression and cell proliferation of LNCaP cells , and could be used in antigene radiotherapy. (authors)

  2. Radiation-induced apoptosis of stem/progenitor cells in human umbilical cord blood is associated with alterations in reactive oxygen and intracellular pH

    International Nuclear Information System (INIS)

    Hayashi, Tomonori; Hayashi, Ikue; Shinohara, Tomoko; Morishita, Yukari; Nagamura, Hiroko; Kusunoki, Yoichiro; Kyoizumi, Seishi; Seyama, Toshio; Nakachi, Kei

    2004-01-01

    To investigate the sensitivity of human hematopoietic stem cell populations to radiation and its relevance to intracellular events, specifically alteration in cellular energy production systems, we examined the frequency of apoptotic cells, generation of superoxide anions (O2-), and changes in cytosol pH in umbilical cord blood (UCB) CD34 + /CD38 - , CD34 + /CD38 + and CD34 - /CD38 + cells before and after 5Gy of X-irradiation. Human UCB mononucleated cells were used in this study. After X-irradiation and staining subgroups of the cells with fluorescence (FITC, PE, or CY)-labeled anti-CD34 and anti-CD38 antibodies, analyses were performed by FACScan using as stains 7-amino-actinomycin D (7-AAD) for the detection of apoptosis, and hydroethidine (HE) for the measurement of O2- generation in the cells. For intracellular pH, image analysis was conducted using confocal laser microscopy after irradiation and staining with carboxy-SNAFR-1. The frequency of apoptotic cells, as determined by cell staining with 7-AAD, was highest in the irradiated CD34 + /CD38 - cell population, where the level of O2- detected by the oxidation of HE was also most highly elevated. Intracellular pH measured with carboxy-SNARF-1-AM by image cytometer appeared to be lowest in the same irradiated CD34 + /CD38 - cell population, and this intracellular pH decreased as early as 4h post-irradiation, virtually simultaneous with the significant elevation of O2- generation. These results suggest that the CD34 + /CD38 - stem cell population is sensitive to radiation-induced apoptosis as well as production of intracellular O2-, compare to more differentiated CD34 + /CD38 + and CD34 - /CD38 + cells and that its intracellular pH declines at an early phase in the apoptosis process

  3. Intracellular Na+ regulation of Na+ pump sites in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Allen, J.C.; Navran, S.S.; Seidel, C.L.; Dennison, D.K.; Amann, J.M.; Jemelka, S.K.

    1989-01-01

    Enzymatically dispersed cells from canine saphenous vein and femoral artery were grown in fetal calf serum and studied at day 0 (freshly dispersed) through confluence in primary culture. Intracellular Na levels (Nai), but not intracellular K (Ki), were increased after 24 h in culture and then decreased to a steady state by 4 days. Na+ pump site number [( 3 H] ouabain binding) increased through day 3 and remained elevated. Nai was still elevated at 2 days when the Na+ pump site number began to increase. Total pump turnover (maximum ouabain-inhibited 86 Rb uptake) reflected the increase in Na+ pump site number. These key events precede the observed increases in both protein production and cellular proliferation. If the same cells are maintained in defined medium, without fetal calf serum, Nai, Ki, and the number of [ 3 H]ouabain binding sites do not change with time. These data are consistent with the suggestion that the initial mitogenic response of vascular smooth muscle cells to fetal calf serum involves an increased Na+ influx, and a Nai accumulation, caused by low Na+ pump density. The synthesis of new pump sites effects a decrease in the accumulated Nai, which may be related to cell proliferation

  4. Determination of Zidovudine Triphosphate Intracellular Concentrations in Peripheral Blood Mononuclear Cells from Human Immunodeficiency Virus-Infected Individuals by Tandem Mass Spectrometry

    Science.gov (United States)

    Font, Eva; Rosario, Osvaldo; Santana, Jorge; García, Hermes; Sommadossi, Jean-Pierre; Rodriguez, Jose F.

    1999-01-01

    Nucleoside reverse transcriptase inhibitors (NRTIs) used against the human immunodeficiency virus (HIV) need to be activated intracellularly to their triphosphate moiety to inhibit HIV replication. Intracellular concentrations of these NRTI triphosphates, especially zidovudine triphosphate (ZDV-TP), are relatively low (low numbers of femtomoles per 106 cells) in HIV-infected patient peripheral blood mononuclear cells. Recently, several methods have used either high-performance liquid chromatography (HPLC) or solid-phase extraction (SPE) coupled with radioimmunoassay to obtain in vivo measurements of ZDV-TP. The limit of detection (LOD) by these methods ranged from 20 to 200 fmol/106 cells. In this report, we describe the development of a method to determine intracellular ZDV-TP concentrations in HIV-infected patients using SPE and HPLC with tandem mass spectrometry for analysis. The LOD by this method is 4.0 fmol/106 cells with a linear concentration range of at least 4 orders of magnitude from 4.0 to 10,000 fmol/106 cells. In hispanic HIV-infected patients, ZDV-TP was detectable even when the sampling time after drug administration was 15 h. Intracellular ZDV-TP concentrations in these patients ranged from 41 to 193 fmol/106 cells. The low LOD obtained with this method will provide the opportunity for further in vivo pharmacokinetic studies of intracellular ZDV-TP in different HIV-infected populations. Furthermore, this methodology could be used to perform simultaneous detection of two or more NRTIs, such as ZDV-TP and lamivudine triphosphate. PMID:10582890

  5. Androgenic and Estrogenic Response of Green Mussel Extracts from Singapore’s Coastal Environment Using a Human Cell-Based Bioassay

    Science.gov (United States)

    Bayen, Stéphane; Gong, Yinhan; Chin, Hong Soon; Lee, Hian Kee; Leong, Yong Eu; Obbard, Jeffrey Philip

    2004-01-01

    In the last decade, evidence of endocrine disruption in biota exposed to environmental pollutants has raised serious concern. Human cell-based bioassays have been developed to evaluate induced androgenic and estrogenic activities of chemical compounds. However, bioassays have been sparsely applied to environmental samples. In this study we present data on sex hormone activities in the green mussel, Perna viridis, in Singapore’s coastal waters. P. viridis is a common bioindicator of marine contamination, and this study is a follow-up to an earlier investigation that reported the presence of sex hormone activities in seawater samples from Singapore’s coastal environment. Specimens were collected from eight locations around the Singapore coastline and analyzed for persistent organic pollutants (POPs) and heavy metals. Tissue extracts were then screened for activities on androgen receptors (ARs) and estrogen receptors (ER-α and ER-β) using a reporter gene bio-assay based on a HeLa human cell line. Mussel extracts alone did not exhibit AR activity, but in the presence of the reference androgenic hormone dihydrotestosterone (DHT), activities were up to 340% higher than those observed for DHT alone. Peak activities were observed in locations adjacent to industrial and shipping activities. Estrogenic activities of the mussel extract both alone and in the presence of reference hormone were positive. Correlations were statistically investigated between sex hormone activities, levels of pollutants in the mussel tissues, and various biological parameters (specimen size, sex ratio, lipid and moisture content). Significant correlations exist between AR activities, in the presence of DHT, and total concentration of POPs (r = 0.725, p < 0.05). PMID:15531429

  6. The Cell Cycle Inhibitor p27KIP1: A Key of G1 Arrest by Androgen Ablation and by Vitamin D3 Analog

    National Research Council Canada - National Science Library

    Slingerland, Joyce

    2001-01-01

    .... Effects of androgens and vDR activation by EB 1089 on p27 function were assayed. We demonstrated that physiologic concentrations of DHT and EB 1089 have synergistic effects to upregulate p27 and inhibit growth of prostate cancer cells...

  7. Selectivity in progesterone and androgen receptor binding of progestagens used in oral contraceptives

    International Nuclear Information System (INIS)

    Kloosterboer, H.J.; Vonk-Noordegraaf, C.A.; Turpijn, E.W.

    1988-01-01

    The relative binding affinities (RBAs) of four progestational compounds (norethisterone, levonorgestrel, 3-keto-desogestrel and gestodene) for the human progesterone and androgen receptors were measured in MCF-7 cytosol and intact MCF-7 cells. For the binding to the progesterone receptor, both Org 2058 and Org 3236 (or 3-keto-desogestrel) were used as labelled ligands. The following ranking (low to high) for the RBA of the nuclear (intact cells) progesterone receptor irrespective of the ligand used is found: norethisterone much less than levonorgestrel less than 3-keto-destogestrel less than gestodene. The difference between the various progestagens is significant with the exception of that between 3-keto-desogestrel and gestodene, when Org 2058 is used as ligand. For the cytosolic progesterone receptor, the same order is found with the exception that similar RBAs are found for gestodene and 3-keto-desogestrel. The four progestagens clearly differ with respect to binding to the androgen receptor using dihydrotestosterone as labelled ligand in intact cells; the ranking (low to high) is: norethisterone less than 3 keto-desogestrel less than levonorgestrel and gestodene. The difference between 3-keto-desogestrel and levonorgestrel or gestodene is significant. The selectivity indices (ratio of the mean RBA for the progesterone receptor to that of androgen receptor) in intact cells are significantly higher for 3-keto-desogestrel and gestodene than for levonorgestrel and norethisterone. From these results we conclude that the introduction of the 18-methyl in norethisterone (levonorgestel) increases both the binding to the progesterone and androgen receptors

  8. Catecholamines and diabetic autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1995-01-01

    In diabetic patients with autonomic neuropathy plasma noradrenaline concentration, used as an index of sympathetic nervous activity, is low. This decrease is, however, only found in patients with a long duration of diabetes with clinically severe autonomic neuropathy. This apparent insensitivity...... of plasma catecholamine measurements is not due to changes in the clearance of catecholamines in diabetic autonomic neuropathy. The physiological responses to infused adrenaline and to noradrenaline are enhanced, for noradrenaline mainly cardiovascular responses. Adrenoceptors (alpha and beta adrenoceptors......) are not altered in circulating blood cells in diabetic autonomic neuropathy. Thus, a generalized up-regulation of adrenoceptors does not occur in diabetic autonomic neuropathy....

  9. Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose.

    Science.gov (United States)

    Berrone, Elena; Beltramo, Elena; Solimine, Carmela; Ape, Alessandro Ubertalli; Porta, Massimo

    2006-04-07

    Hyperglycemia is a causal factor in the development of the vascular complications of diabetes. One of the biochemical mechanisms activated by excess glucose is the polyol pathway, the key enzyme of which, aldose reductase, transforms d-glucose into d-sorbitol, leading to imbalances of intracellular homeostasis. We aimed at verifying the effects of thiamine and benfotiamine on the polyol pathway, transketolase activity, and intracellular glucose in endothelial cells and pericytes under high ambient glucose. Human umbilical vein endothelial cells and bovine retinal pericytes were cultured in normal (5.6 mmol/liter) or high (28 mmol/liter) glucose, with or without thiamine or benfotiamine 50 or 100 mumol/liter. Transketolase and aldose reductase mRNA expression was determined by reverse transcription-PCR, and their activity was measured spectrophotometrically; sorbitol concentrations were quantified by gas chromatography-mass spectrometry and intracellular glucose concentrations by fluorescent enzyme-linked immunosorbent assay method. Thiamine and benfotiamine reduce aldose reductase mRNA expression, activity, sorbitol concentrations, and intracellular glucose while increasing the expression and activity of transketolase, for which it is a coenzyme, in human endothelial cells and bovine retinal pericytes cultured in high glucose. Thiamine and benfotiamine correct polyol pathway activation induced by high glucose in vascular cells. Activation of transketolase may shift excess glycolytic metabolites into the pentose phosphate cycle, accelerate the glycolytic flux, and reduce intracellular free glucose, thereby preventing its conversion to sorbitol. This effect on the polyol pathway, together with other beneficial effects reported for thiamine in high glucose, could justify testing thiamine as a potential approach to the prevention and/or treatment of diabetic complications.

  10. Minnelide Inhibits Androgen Dependent, Castration Resistant Prostate Cancer Growth by Decreasing Expression of Androgen Receptor Full Length and Splice Variants.

    Science.gov (United States)

    Isharwal, Sumit; Modi, Shrey; Arora, Nivedita; Uhlrich, Charles; Giri, Bhuwan; Barlass, Usman; Soubra, Ayman; Chugh, Rohit; Dehm, Scott M; Dudeja, Vikas; Saluja, Ashok; Banerjee, Sulagna; Konety, Badrinath

    2017-05-01

    With almost 30,000 deaths per year, prostate cancer is the second-leading cause of cancer-related death in men. Androgen Deprivation Therapy (ADT) has been the corner stone of prostate cancer treatment for decades. However, despite an initial response of prostate cancer to ADT, this eventually fails and the tumors recur, resulting in Castration Resistant Prostate Cancer (CRPC). Triptolide, a diterpene triepoxide, has been tested for its anti-tumor properties in a number of cancers for over a decade. Owing to its poor solubility in aqueous medium, its clinical application had been limited. To circumvent this problem, we have synthesized a water-soluble pro-drug of triptolide, Minnelide, that is currently being evaluated in a Phase 1 clinical trial against gastrointestinal tumors. In the current study, we assessed the therapeutic potential of Minnelide and its active compound triptolide against androgen dependent prostate cancer both in vitro as well as in vivo. Cell viability was measured by a MTT based assay after treating prostate cancer cells with multiple doses of triptolide. Apoptotic cell death was measured using a caspase 3/7 activity. Androgen Receptor (AR) promoter-binding activity was evaluated by using luciferase reporter assay. For evaluating the effect in vivo, 22Rv1 cells were implanted subcutaneously in animals, following which, treatment was started with 0.21 mg/kg Minnelide. Our study showed that treatment with triptolide induced apoptotic cell death in CRPC cells. Triptolide treatment inhibited AR transcriptional activity and decreased the expression of AR and its splice variants both at the mRNA and the protein level. Our studies show that triptolide inhibits nuclear translocation of Sp1, resulting in its decreased transcriptional activity leading to downregulation of AR and its splice variants in prostate cancer cells. In vivo, Minnelide (0.21 mg/kg) regressed subcutaneous tumors derived from CRPC 22RV1 at our study endpoint. Our animal

  11. Performance comparison of two androgen receptor splice variant 7 (AR-V7) detection methods.

    Science.gov (United States)

    Bernemann, Christof; Steinestel, Julie; Humberg, Verena; Bögemann, Martin; Schrader, Andres Jan; Lennerz, Jochen K

    2018-01-23

    To compare the performance of two established androgen receptor splice variant 7 (AR-V7) mRNA detection systems, as paradoxical responses to next-generation androgen-deprivation therapy in AR-V7 mRNA-positive circulating tumour cells (CTC) of patients with castration-resistant prostate cancer (CRPC) could be related to false-positive classification using detection systems with different sensitivities. We compared the performance of two established mRNA-based AR-V7 detection technologies using either SYBR Green or TaqMan chemistries. We assessed in vitro performance using eight genitourinary cancer cell lines and serial dilutions in three AR-V7-positive prostate cancer cell lines, as well as in 32 blood samples from patients with CRPC. Both assays performed identically in the cell lines and serial dilutions showed identical diagnostic thresholds. Performance comparison in 32 clinical patient samples showed perfect concordance between the assays. In particular, both assays determined AR-V7 mRNA-positive CTCs in three patients with unexpected responses to next-generation anti-androgen therapy. Thus, technical differences between the assays can be excluded as the underlying reason for the unexpected responses to next-generation anti-androgen therapy in a subset of AR-V7 patients. Irrespective of the method used, patients with AR-V7 mRNA-positive CRPC should not be systematically precluded from an otherwise safe treatment option. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.

  12. Imaging Intracellular pH in Live Cells with a Genetically-Encoded Red Fluorescent Protein Sensor

    OpenAIRE

    Tantama, Mathew; Hung, Yin Pun; Yellen, Gary

    2011-01-01

    Intracellular pH affects protein structure and function, and proton gradients underlie the function of organelles such as lysosomes and mitochondria. We engineered a genetically-encoded pH sensor by mutagenesis of the red fluorescent protein mKeima, providing a new tool to image intracellular pH in live cells. This sensor, named pHRed, is the first ratiometric, single-protein red fluorescent sensor of pH. Fluorescence emission of pHRed peaks at 610 nm while exhibiting dual excitation peaks at...

  13. Steroidal androgens and nonsteroidal, tissue-selective androgen receptor modulator, S-22, regulate androgen receptor function through distinct genomic and nongenomic signaling pathways.

    Science.gov (United States)

    Narayanan, Ramesh; Coss, Christopher C; Yepuru, Muralimohan; Kearbey, Jeffrey D; Miller, Duane D; Dalton, James T

    2008-11-01

    Androgen receptor (AR) ligands are important for the development and function of several tissues and organs. However, the poor oral bioavailability, pharmacokinetic properties, and receptor cross-reactivity of testosterone, coupled with side effects, place limits on its clinical use. Selective AR modulators (SARMs) elicit anabolic effects in muscle and bone, sparing reproductive organs like the prostate. However, molecular mechanisms underlying the tissue selectivity remain ambiguous. We performed a variety of in vitro studies to compare and define the molecular mechanisms of an aryl propionamide SARM, S-22, as compared with dihydrotestosterone (DHT). Studies indicated that S-22 increased levator ani muscle weight but decreased the size of prostate in rats. Analysis of the upstream intracellular signaling events indicated that S-22 and DHT mediated their actions through distinct pathways. Modulation of these pathways altered the recruitment of AR and its cofactors to the PSA enhancer in a ligand-dependent fashion. In addition, S-22 induced Xenopus laevis oocyte maturation and rapid phosphorylation of several kinases, through pathways distinct from steroids. These studies reveal novel differences in the molecular mechanisms by which S-22, a nonsteroidal SARM, and DHT mediate their pharmacological effects.

  14. Myofibroblast androgen receptor expression determines cell survival in co-cultures of myofibroblasts and prostate cancer cells in vitro.

    Science.gov (United States)

    Palethorpe, Helen M; Leach, Damien A; Need, Eleanor F; Drew, Paul A; Smith, Eric

    2018-04-10

    Fibroblasts express androgen receptor (AR) in the normal prostate and during prostate cancer development. We have reported that loss of AR expression in prostate cancer-associated fibroblasts is a poor prognostic indicator. Here we report outcomes of direct and indirect co-cultures of immortalised AR-positive (PShTert-AR) or AR-negative (PShTert) myofibroblasts with prostate cancer cells. In the initial co-cultures the AR-negative PC3 cell line was used so AR expression and signalling were restricted to the myofibroblasts. In both direct and indirect co-culture with PShTert-AR myofibroblasts, paracrine signalling to the PC3 cells slowed proliferation and induced apoptosis. In contrast, PC3 cells proliferated with PShTert myofibroblasts irrespective of the co-culture method. In direct co-culture PC3 cells induced apoptosis in and destroyed PShTerts by direct signalling. Similar results were seen in direct co-cultures with AR-negative DU145 and AR-positive LNCaP and C4-2B prostate cancer cell lines. The AR ligand 5α-dihydrotestosterone (DHT) inhibited the proliferation of the PShTert-AR myofibroblasts, thereby reducing the extent of their inhibitory effect on cancer cell growth. These results suggest loss of stromal AR would favour prostate cancer cell growth in vivo , providing an explanation for the clinical observation that reduced stromal AR is associated with a poorer outcome.

  15. 5alphaDH-DOC (5alpha-dihydro-deoxycorticosterone) activates androgen receptor in castration-resistant prostate cancer.

    Science.gov (United States)

    Uemura, Motohide; Honma, Seijiro; Chung, Suyoun; Takata, Ryo; Furihata, Mutsuo; Nishimura, Kazuo; Nonomura, Norio; Nasu, Yasutomo; Miki, Tsuneharu; Shuin, Taro; Fujioka, Tomoaki; Okuyama, Akihiko; Nakamura, Yusuke; Nakagawa, Hidewaki

    2010-08-01

    Prostate cancer often relapses during androgen-depletion therapy, even under the castration condition in which circulating androgens are drastically reduced. High expressions of androgen receptor (AR) and genes involved in androgen metabolism indicate a continued role for AR in castration-resistant prostate cancers (CRPCs). There is increasing evidence that some amounts of 5alpha-dihydrotestosterone (DHT) and other androgens are present sufficiently to activate AR within CRPC tissues, and enzymes involved in the androgen and steroid metabolism, such as 5alpha-steroid reductases, are activated in CRPCs. In this report, we screened eight natural 5alphaDH-steroids to search for novel products of 5alpha-steroid reductases, and identified 11-deoxycorticosterone (DOC) as a novel substrate for 5alpha-steroid reductases in CRPCs. 11-Deoxycorticosterone (DOC) and 5alpha-dihydro-deoxycorticosterone (5alphaDH-DOC) could promote prostate cancer cell proliferation through AR activation, and type 1 5alpha-steroid reductase (SRD5A1) could convert from DOC to 5alphaDH-DOC. Sensitive liquid chromatography-tandem mass spectrometric analysis detected 5alphaDH-DOC in some clinical CRPC tissues. These findings implicated that under an extremely low level of DHT, 5alphaDH-DOC and other products of 5alpha-steroid reductases within CRPC tissues might activate the AR pathway for prostate cancer cell proliferation and survival under castration.

  16. Dual Targeting of Intracellular Pathogenic Bacteria with a Cleavable Conjugate of Kanamycin and an Antibacterial Cell-Penetrating Peptide.

    Science.gov (United States)

    Brezden, Anna; Mohamed, Mohamed F; Nepal, Manish; Harwood, John S; Kuriakose, Jerrin; Seleem, Mohamed N; Chmielewski, Jean

    2016-08-31

    Bacterial infection caused by intracellular pathogens, such as Mycobacterium, Salmonella, and Brucella, is a burgeoning global health epidemic that necessitates urgent action. However, the therapeutic value of a number of antibiotics, including aminoglycosides, against intracellular pathogenic bacteria is compromised due to their inability to traverse eukaryotic membranes. For this significant problem to be addressed, a cleavable conjugate of the antibiotic kanamycin and a nonmembrane lytic, broad-spectrum antimicrobial peptide with efficient mammalian cell penetration, P14LRR, was prepared. This approach allows kanamycin to enter mammalian cells as a conjugate linked via a tether that breaks down in the reducing environment within cells. Potent antimicrobial activity of the P14KanS conjugate was demonstrated in vitro, and this reducible conjugate effectively cleared intracellular pathogenic bacteria within macrophages more potently than that of a conjugate lacking the disulfide moiety. Notably, successful clearance of Mycobacterium tuberculosis within macrophages was observed with the dual antibiotic conjugate, and Salmonella levels were significantly reduced in an in vivo Caenorhabditis elegans model.

  17. Cell internalizable and intracellularly degradable cationic polyurethane micelles as a potential platform for efficient imaging and drug delivery.

    Science.gov (United States)

    Ding, Mingming; Zeng, Xin; He, Xueling; Li, Jiehua; Tan, Hong; Fu, Qiang

    2014-08-11

    A cell internalizable and intracellularly degradable micellar system, assembled from multiblock polyurethanes bearing cell-penetrating gemini quaternary ammonium pendent groups in the side chain and redox-responsive disulfide linkages throughout the backbone, was developed for potential magnetic resonance imaging (MRI) and drug delivery. The nanocarrier is featured as a typical "cleavable core-internalizable shell-protective corona" architecture, which exhibits small size, positive surface charge, high loading capacity, and reduction-triggered destabilization. Furthermore, it can rapidly enter tumor cells and release its cargo in response to an intracellular level of glutathione, resulting in enhanced drug efficacy in vitro. The magnetic micelles loaded with superparamagnetic iron oxide (SPIO) nanoparticles demonstrate excellent MRI contrast enhancement, with T2 relaxivity found to be affected by the morphology of SPIO-clustering inside the micelle core. The multifunctional carrier with good cytocompatibility and nontoxic degradation products can serve as a promising theranostic candidate for efficient intracellular delivery of anticancer drugs and real-time monitoring of therapeutic effect.

  18. Spatial Cytoskeleton Organization Supports Targeted Intracellular Transport

    Science.gov (United States)

    Hafner, Anne E.; Rieger, Heiko

    2018-03-01

    The efficiency of intracellular cargo transport from specific source to target locations is strongly dependent upon molecular motor-assisted motion along the cytoskeleton. Radial transport along microtubules and lateral transport along the filaments of the actin cortex underneath the cell membrane are characteristic for cells with a centrosome. The interplay between the specific cytoskeleton organization and the motor performance realizes a spatially inhomogeneous intermittent search strategy. In order to analyze the efficiency of such intracellular search strategies we formulate a random velocity model with intermittent arrest states. We evaluate efficiency in terms of mean first passage times for three different, frequently encountered intracellular transport tasks: i) the narrow escape problem, which emerges during cargo transport to a synapse or other specific region of the cell membrane, ii) the reaction problem, which considers the binding time of two particles within the cell, and iii) the reaction-escape problem, which arises when cargo must be released at a synapse only after pairing with another particle. Our results indicate that cells are able to realize efficient search strategies for various intracellular transport tasks economically through a spatial cytoskeleton organization that involves only a narrow actin cortex rather than a cell body filled with randomly oriented actin filaments.

  19. Intracellular Position of Centrioles and the Direction of Homeostatic Epithelial Cell Movements in the Mouse Cornea.

    Science.gov (United States)

    Silverman, Erika; Zhao, Jin; Merriam, John C; Nagasaki, Takayuki

    2017-02-01

    Corneal epithelial cells exhibit continuous centripetal movements at a rate of about 30 µm per day, but neither the driving force nor the mechanism that determines the direction of movements is known. To facilitate the investigation of homeostatic cell movement, we examined if the intracellular position of a centriole can be used as a directional marker of epithelial cell movements in the mouse cornea. A direction of cell movements was estimated in fixed specimens from a pattern of underlying subepithelial nerve fibers. Intracellular position of centrioles was determined by gamma-tubulin immunohistology and plotted in a narrow strip along the entire diameter of a cornea from limbus to limbus. When we determined the position of centrioles in the peripheral cornea where cell movements proceed generally along a radial path, about 55% of basal epithelial cells contained a centriole in the front half of a cell. However, in the central cornea where cells exhibit a spiral pattern of movements, centrioles were distributed randomly. These results suggest that centrioles tend to be positioned toward the direction of movement in corneal basal epithelial cells when they are moving centripetally at a steady rate.

  20. Androgen and retinoic acid interaction in LNCaP cells, effects on cell proliferation and expression of retinoic acid receptors and epidermal growth factor receptor

    International Nuclear Information System (INIS)

    Li, Ming-tang; Richter, Frank; Chang, Chawnshang; Irwin, Robert J; Huang, Hosea FS

    2002-01-01

    Modulation of the expression of retinoic acid receptors (RAR) α and γ in adult rat prostate by testosterone (T) suggests that RAR signaling events might mediate some of the androgen effects on prostate cells. In this study, we examined the interactions between T and retinoic acid (RA) in cell growth of human prostate carcinoma cells, LNCaP, and their relationship with the expression of RAR and epidermal growth factor receptor (EGF-R). Both T and RA, when administered alone, stimulated 3 H-thymidine incorporation in LNCaP cells in a dose-dependent manner; the effect of each agent was reciprocally attenuated by the other agent. Testosterone treatment of LNCaP cells also resulted in dose dependent, biphasic increases in RAR α and γ mRNAs; increases paralleled that of 3 H-thymidine incorporation and were attenuated by the presence of 100 nM RA. These results suggest a link between RAR signaling and the effect of T on LNCaP cell growth. Gel electrophoretic mobility shift assays revealed the presence of putative androgen responsive element (ARE) in the promoter region of RAR α gene, suggesting that a direct AR-DNA interaction might mediate the effects of T on RAR α gene. Furthermore, treatment of LNCaP cells with 20 nM T resulted in an increase in EGF-R. In contrast, EGF-R was suppressed by 100 nM RA that also suppressed the effect of T. Current results demonstrate interactions between T and RA in the expression of RARs and cell growth in LNCaP cells. The presence of putative ARE in the promoter of the RAR α gene suggests that AR-DNA interaction might mediate the effects of T on RAR α gene. The opposite effects of T and RA on the expression of RAR and EGF-R suggest that signal events of these receptors might be involved in the interaction between T and RA in the control of LNCaP cell growth

  1. Androgen and retinoic acid interaction in LNCaP cells, effects on cell proliferation and expression of retinoic acid receptors and epidermal growth factor receptor

    Directory of Open Access Journals (Sweden)

    Irwin Robert J

    2002-06-01

    Full Text Available Abstract Background Modulation of the expression of retinoic acid receptors (RAR α and γ in adult rat prostate by testosterone (T suggests that RAR signaling events might mediate some of the androgen effects on prostate cells. Method In this study, we examined the interactions between T and retinoic acid (RA in cell growth of human prostate carcinoma cells, LNCaP, and their relationship with the expression of RAR and epidermal growth factor receptor (EGF-R. Results Both T and RA, when administered alone, stimulated 3H-thymidine incorporation in LNCaP cells in a dose-dependent manner; the effect of each agent was reciprocally attenuated by the other agent. Testosterone treatment of LNCaP cells also resulted in dose dependent, biphasic increases in RAR α and γ mRNAs; increases paralleled that of 3H-thymidine incorporation and were attenuated by the presence of 100 nM RA. These results suggest a link between RAR signaling and the effect of T on LNCaP cell growth. Gel electrophoretic mobility shift assays revealed the presence of putative androgen responsive element (ARE in the promoter region of RAR α gene, suggesting that a direct AR-DNA interaction might mediate the effects of T on RAR α gene. Furthermore, treatment of LNCaP cells with 20 nM T resulted in an increase in EGF-R. In contrast, EGF-R was suppressed by 100 nM RA that also suppressed the effect of T. Conclusions Current results demonstrate interactions between T and RA in the expression of RARs and cell growth in LNCaP cells. The presence of putative ARE in the promoter of the RAR α gene suggests that AR-DNA interaction might mediate the effects of T on RAR α gene. The opposite effects of T and RA on the expression of RAR and EGF-R suggest that signal events of these receptors might be involved in the interaction between T and RA in the control of LNCaP cell growth.

  2. Methoxychlor and Vinclozolin Induce Rapid Changes in Intercellular and Intracellular Signaling in Liver Progenitor Cells.

    Science.gov (United States)

    Babica, Pavel; Zurabian, Rimma; Kumar, Esha R; Chopra, Rajus; Mianecki, Maxwell J; Park, Joon-Suk; Jaša, Libor; Trosko, James E; Upham, Brad L

    2016-09-01

    Methoxychlor (MXC) and vinclozolin (VIN) are well-recognized endocrine disrupting chemicals known to alter epigenetic regulations and transgenerational inheritance; however, non-endocrine disruption endpoints are also important. Thus, we determined the effects of MXC and VIN on the dysregulation of gap junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) in WB-F344 rat liver epithelial cells. Both chemicals induced a rapid dysregulation of GJIC at non-cytotoxic doses, with 30 min EC50 values for GJIC inhibition being 10 µM for MXC and 126 µM for VIN. MXC inhibited GJIC for at least 24 h, while VIN effects were transient and GJIC recovered after 4 h. VIN induced rapid hyperphosphorylation and internalization of gap junction protein connexin43, and both chemicals also activated MAPK ERK1/2 and p38. Effects on GJIC were not prevented by MEK1/2 inhibitor, but by an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), resveratrol, and in the case of VIN, also, by a p38 inhibitor. Estrogen (ER) and androgen receptor (AR) modulators (estradiol, ICI 182,780, HPTE, testosterone, flutamide, VIN M2) did not attenuate MXC or VIN effects on GJIC. Our data also indicate that the effects were elicited by the parental compounds of MXC and VIN. Our study provides new evidence that MXC and VIN dysregulate GJIC via mechanisms involving rapid activation of PC-PLC occurring independently of ER- or AR-dependent genomic signaling. Such alterations of rapid intercellular and intracellular signaling events involved in regulations of gene expression, tissue development, function and homeostasis, could also contribute to transgenerational epigenetic effects of endocrine disruptors. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Autonomous patterning of cells on microstructured fine particles

    International Nuclear Information System (INIS)

    Takeda, Iwori; Kawanabe, Masato; Kaneko, Arata

    2015-01-01

    Regularly patterned cells can clarify cellular function and are required in some biochip applications. This study examines cell patterning along microstructures and the effect of microstructural geometry on selective cellular adhesion. Particles can be autonomously assembled on a soda-lime glass substrate that is chemically patterned by immersion in a suspension of fine particles. By adopting various sizes of fine particles, we can control the geometry of the microstructure. Cells adhere more readily to microstructured fine particles than to flat glass substrate. Silica particles hexagonally packed in 5–40 μm line and space microstructures provide an effective cell scaffold on the glass substrate. Cultured cells tend to attach and proliferate along the microstructured region while avoiding the flat region. The difference in cell adhesion is attributed to their geometries, as both of the silica particles and soda-lime glass are hydrophilic related with cell adhesiveness. After cell seeding, cells adhered to the flat region migrated toward the microstructured region. For most of the cells to assemble on the scaffold, the scaffolding microstructures must be spaced by at most 65 μm. - Highlights: • PS and SiO 2 particles provide effective scaffolds for cells. • Cells that adhere to microstructured particles successfully proliferate and differentiate. • Selective adhesion and growth along the scaffold can be achieved by patterning the fine particle microstructure. • Cells adhered to flat regions migrate toward microstructured regions. • Selective adhesion by cells depends on the microstructural geometry; specifically, on the inter-line spacing

  4. Role of Hsp90 in Androgen-Refractory Prostate Cancer

    Science.gov (United States)

    2010-03-01

    designed siRNA sequence using Intergrated DNA Technologies RNAi online software tool (IDT, Coralville, IA). The sequence of siRNA specific for...proliferation and production of prostate-specific antigen in androgen-sensitive pros- tatic cancer cells, LNCaP, by dihydrotestosterone. Endocrinology 136

  5. Navigating the plant cell: intracellular transport logistics in the green kingdom.

    Science.gov (United States)

    Geitmann, Anja; Nebenführ, Andreas

    2015-10-01

    Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin-myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions. © 2015 Geitmann and Nebenführ. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. INTRACELLULAR ION CONCENTRATIONS IN BRANCHIAL EPITHELIAL CELLS OF BROWN TROUT (SALMO TRUTTA L.) DETERMINED BY X-RAY MICROANALYSIS

    Science.gov (United States)

    Morgan; Potts; Oates

    1994-09-01

    The intracellular concentrations of sodium, chloride, phosphorus and potassium under normal conditions in pavement epithelial (PE) cells of brown trout (Salmo trutta) gill were 66, 51, 87 and 88 mmol l-1 respectively. The concentrations of these elements under identical conditions in mitochondria-rich (MR) cells were not significantly different, except for that of chlorine, which was lower in MR cells (40 mmol l-1). The concentration of sodium in the PE cells decreased slightly after exposure of the fish to low external [Na+] (25 µmol l-1) for 7 days but increased greatly within 5 min of subsequent exposure to 1 mmol l-1 external Na+. These changes in external [Na+] had no significant effect on MR cells. Exposure of fish to low [Cl-] (25 µmol l-1) had no effect on PE or MR cells, but on exposure to 1 mmol l-1 Cl- the concentrations of chlorine, phosphorus and potassium in both types of cells increased, whilst the intracellular sodium concentration decreased only in MR cells. The PE cells were little affected by exposure of the fish to the carbonic anhydrase inhibitor acetazolamide. In contrast, 0.5 mmol l-1 external acetazolamide caused a significant decrease in intracellular phosphorus, chlorine and potassium concentrations in MR cells. This suggests that the PE cells are the sites of sodium uptake in the gills of the brown trout and that chloride uptake occurs via the MR cells. These results are discussed with respect to the sites and possible mechanisms of ionic exchange in freshwater vertebrates.

  7. Mechanically induced intracellular calcium waves in osteoblasts demonstrate calcium fingerprints in bone cell mechanotransduction.

    Science.gov (United States)

    Godin, Lindsay M; Suzuki, Sakiko; Jacobs, Christopher R; Donahue, Henry J; Donahue, Seth W

    2007-11-01

    An early response to mechanical stimulation of bone cells in vitro is an increase in intracellular calcium concentration ([Ca (2+)](i)). This study analyzed the [Ca (2+)](i) wave area, magnitude, duration, rise time, fall time, and time to onset in individual osteoblasts for two identical bouts of mechanical stimulation separated by a 30-min rest period. The area under the [Ca (2+)](i) wave increased in the second loading bout compared to the first. This suggests that rest periods may potentiate mechanically induced intracellular calcium signals. Furthermore, many of the [Ca (2+)](i) wave parameters were strongly, positively correlated between the two bouts of mechanical stimulation. For example, in individual primary osteoblasts, if a cell had a large [Ca (2+)](i) wave area in the first bout it was likely to have a large [Ca (2+)](i) wave area in the second bout (r (2) = 0.933). These findings support the idea that individual bone cells have "calcium fingerprints" (i.e., a unique [Ca (2+)](i) wave profile that is reproducible for repeated exposure to a given stimulus).

  8. Manipulation of Host Cholesterol by Obligate Intracellular Bacteria

    Directory of Open Access Journals (Sweden)

    Dhritiman Samanta

    2017-05-01

    Full Text Available Cholesterol is a multifunctional lipid that plays important metabolic and structural roles in the eukaryotic cell. Despite having diverse lifestyles, the obligate intracellular bacterial pathogens Chlamydia, Coxiella, Anaplasma, Ehrlichia, and Rickettsia all target cholesterol during host cell colonization as a potential source of membrane, as well as a means to manipulate host cell signaling and trafficking. To promote host cell entry, these pathogens utilize cholesterol-rich microdomains known as lipid rafts, which serve as organizational and functional platforms for host signaling pathways involved in phagocytosis. Once a pathogen gains entrance to the intracellular space, it can manipulate host cholesterol trafficking pathways to access nutrient-rich vesicles or acquire membrane components for the bacteria or bacteria-containing vacuole. To acquire cholesterol, these pathogens specifically target host cholesterol metabolism, uptake, efflux, and storage. In this review, we examine the strategies obligate intracellular bacterial pathogens employ to manipulate cholesterol during host cell colonization. Understanding how obligate intracellular pathogens target and use host cholesterol provides critical insight into the host-pathogen relationship.

  9. The formation of lipid droplets favors intracellular Mycobacterium leprae survival in SW-10, non-myelinating Schwann cells.

    Science.gov (United States)

    Jin, Song-Hyo; An, Sung-Kwan; Lee, Seong-Beom

    2017-06-01

    Leprosy is a chronic infectious disease that is caused by the obligate intracellular pathogen Mycobacterium leprae (M.leprae), which is the leading cause of all non-traumatic peripheral neuropathies worldwide. Although both myelinating and non-myelinating Schwann cells are infected by M.leprae in patients with lepromatous leprosy, M.leprae preferentially invades the non-myelinating Schwann cells. However, the effect of M.leprae infection on non-myelinating Schwann cells has not been elucidated. Lipid droplets (LDs) are found in M.leprae-infected Schwann cells in the nerve biopsies of lepromatous leprosy patients. M.leprae-induced LD formation favors intracellular M.leprae survival in primary Schwann cells and in a myelinating Schwann cell line referred to as ST88-14. In the current study, we initially characterized SW-10 cells and investigated the effects of LDs on M.leprae-infected SW-10 cells, which are non-myelinating Schwann cells. SW-10 cells express S100, a marker for cells from the neural crest, and NGFR p75, a marker for immature or non-myelinating Schwann cells. SW-10 cells, however, do not express myelin basic protein (MBP), a marker for myelinating Schwann cells, and myelin protein zero (MPZ), a marker for precursor, immature, or myelinating Schwann cells, all of which suggests that SW-10 cells are non-myelinating Schwann cells. In addition, SW-10 cells have phagocytic activity and can be infected with M. leprae. Infection with M. leprae induces the formation of LDs. Furthermore, inhibiting the formation of M. leprae-induced LD enhances the maturation of phagosomes containing live M.leprae and decreases the ATP content in the M. leprae found in SW-10 cells. These facts suggest that LD formation by M. leprae favors intracellular M. leprae survival in SW-10 cells, which leads to the logical conclusion that M.leprae-infected SW-10 cells can be a new model for investigating the interaction of M.leprae with non-myelinating Schwann cells.

  10. Restoration of spermatogenesis and male fertility using an androgen receptor transgene.

    Directory of Open Access Journals (Sweden)

    William H Walker

    Full Text Available Androgens signal through the androgen receptor (AR to regulate male secondary sexual characteristics, reproductive tract development, prostate function, sperm production, bone and muscle mass as well as body hair growth among other functions. We developed a transgenic mouse model in which endogenous AR expression was replaced by a functionally modified AR transgene. A bacterial artificial chromosome (BAC was constructed containing all AR exons and introns plus 40 kb each of 5' and 3' regulatory sequence. Insertion of an internal ribosome entry site and the EGFP gene 3' to AR allowed co-expression of AR and EGFP. Pronuclear injection of the BAC resulted in six founder mice that displayed EGFP production in appropriate AR expressing tissues. The six founder mice were mated into a Sertoli cell specific AR knockout (SCARKO background in which spermatogenesis is blocked at the meiosis stage of germ cell development. The AR-EGFP transgene was expressed in a cyclical manner similar to that of endogenous AR in Sertoli cells and fertility was restored as offspring were produced in the absence of Sertoli cell AR. Thus, the AR-EGFP transgene under the control of AR regulatory elements is capable of rescuing AR function in a cell selective, AR-null background. These initial studies provide proof of principle that a strategy employing the AR-EGFP transgene can be used to understand AR functions. Transgenic mice expressing selective modifications of the AR-EGFP transgene may provide crucial information needed to elicit the molecular mechanisms by which AR acts in the testis and other androgen responsive tissues.

  11. Rising intracellular zinc by membrane depolarization and glucose in insulin-secreting clonal HIT-T15 beta cells.

    Science.gov (United States)

    Slepchenko, Kira G; Li, Yang V

    2012-01-01

    Zinc (Zn(2+)) appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30-60 mM) was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM) induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells.

  12. Enterococcus faecalis Infection Causes Inflammation, Intracellular Oxphos-Independent ROS Production, and DNA Damage in Human Gastric Cancer Cells

    DEFF Research Database (Denmark)

    Strickertsson, Jesper A. B; Desler, Claus; Martin-Bertelsen, Tomas

    2013-01-01

    therefore wanted to study the impact of E. faecalis infection on inflammatory response, reactive oxygen species (ROS) formation, mitochondrial respiration, and mitochondrial genetic stability in gastric mucosal cells. Methods To separate the changes induced by bacteria from those of the inflammatory cells...... intracellular ROS production through a pathway independent of oxidative phosphorylation (oxphos). Furthermore, E. faecalis infection induced mitochondrial DNA instability. Following infection, genes coding for inflammatory response proteins were transcriptionally up-regulated while DNA damage repair and cell...... cycle control genes were down-regulated. Cell growth slowed down when infected with viable E. faecalis and responded in a dose dependent manner to E. faecalis lysate. Conclusions Infection by E. faecalis induced an oxphos-independent intracellular ROS response and damaged the mitochondrial genome...

  13. Biosynthesis of the D2-cell adhesion molecule: post-translational modifications, intracellular transport, and developmental changes

    DEFF Research Database (Denmark)

    Lyles, J M; Linnemann, D; Bock, E

    1984-01-01

    Posttranslational modifications and intracellular transport of the D2-cell adhesion molecule (D2-CAM) were examined in cultured fetal rat neuronal cells. Developmental changes in biosynthesis were studied in rat forebrain explant cultures. Two D2-CAM polypeptides with Mr of 187,000-210,000 (A...

  14. Photo-oxidation of cells generates long-lived intracellular protein peroxides

    DEFF Research Database (Denmark)

    Wright, Adam; Hawkins, Clare Louise; Davies, Michael Jonathan

    2003-01-01

    Singlet oxygen is generated by several cellular, enzymatic, and chemical reactions as well as by exposure to UV or visible light in the presence of a sensitizer. Consequently, this oxidant has been proposed to be a damaging agent many pathologies. Proteins are major targets for singlet oxygen...... as a result of their abundance and high rate constants for reaction. In this study, we show that illumination of viable rose bengal-loaded THP-1 (human monocyte-like) cells with visible light gives rise to intracellular protein-derived peroxides. The peroxide yield increases with illumination time, requires....../2) about 4 h at 37 degrees C. Decomposition of protein peroxides formed within cells, or on isolated cellular proteins, by metal ions gives rise to radicals as detected by EPR spin trapping. These studies demonstrate that exposure of intact cells to visible light in the presence of a sensitizer leads...

  15. Developmental programming by androgen affects the circadian timing system in female mice.

    Science.gov (United States)

    Mereness, Amanda L; Murphy, Zachary C; Sellix, Michael T

    2015-04-01

    Circadian clocks play essential roles in the timing of events in the mammalian hypothalamo-pituitary-ovarian (HPO) axis. The molecular oscillator driving these rhythms has been localized to tissues of the HPO axis. It has been suggested that synchrony among these oscillators is a feature of normal reproductive function. The impact of fertility disorders on clock function and the role of the clock in the etiology of endocrine pathology remain unknown. Polycystic ovarian syndrome (PCOS) is a particularly devastating fertility disorder, affecting 5%-10% of women at childbearing age with features including a polycystic ovary, anovulation, and elevated serum androgen. Approximately 40% of these women have metabolic syndrome, marked by hyperinsulinemia, dyslipidemia, and insulin resistance. It has been suggested that developmental exposure to excess androgen contributes to the etiology of fertility disorders, including PCOS. To better define the role of the timing system in these disorders, we determined the effects of androgen-dependent developmental programming on clock gene expression in tissues of the metabolic and HPO axes. Female PERIOD2::luciferase (PER2::LUC) mice were exposed to androgen (dihydrotestosterone [DHT]) in utero (Days 16-18 of gestation) or for 9-10 wk (DHT pellet) beginning at weaning (pubertal androgen excess [PAE]). As expected, both groups of androgen-treated mice had disrupted estrous cycles. Analysis of PER2::LUC expression in tissue explants revealed that excess androgen produced circadian misalignment via tissue-dependent effects on phase distribution. In vitro treatment with DHT differentially affected the period of PER2::LUC expression in tissue explants and granulosa cells, indicating that androgen has direct and tissue-specific effects on clock gene expression that may account for the effects of developmental programming on the timing system. © 2015 by the Society for the Study of Reproduction, Inc.

  16. Radiation-induced apoptosis of stem/progenitor cells in human umbilical cord blood is associated with alterations in reactive oxygen and intracellular pH

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Tomonori [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan)]. E-mail: tomo@rerf.or.jp; Hayashi, Ikue [Central Research Laboratory, Hiroshima University Faculty of Dentistry, Hiroshima (Japan); Shinohara, Tomoko [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Morishita, Yukari [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Nagamura, Hiroko [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Kusunoki, Yoichiro [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Kyoizumi, Seishi [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Seyama, Toshio [Yasuda Women' s University, Hiroshima (Japan); Nakachi, Kei [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan)

    2004-11-22

    To investigate the sensitivity of human hematopoietic stem cell populations to radiation and its relevance to intracellular events, specifically alteration in cellular energy production systems, we examined the frequency of apoptotic cells, generation of superoxide anions (O2-), and changes in cytosol pH in umbilical cord blood (UCB) CD34{sup +}/CD38{sup -}, CD34{sup +}/CD38{sup +} and CD34{sup -}/CD38{sup +} cells before and after 5Gy of X-irradiation. Human UCB mononucleated cells were used in this study. After X-irradiation and staining subgroups of the cells with fluorescence (FITC, PE, or CY)-labeled anti-CD34 and anti-CD38 antibodies, analyses were performed by FACScan using as stains 7-amino-actinomycin D (7-AAD) for the detection of apoptosis, and hydroethidine (HE) for the measurement of O2- generation in the cells. For intracellular pH, image analysis was conducted using confocal laser microscopy after irradiation and staining with carboxy-SNAFR-1. The frequency of apoptotic cells, as determined by cell staining with 7-AAD, was highest in the irradiated CD34{sup +}/CD38{sup -} cell population, where the level of O2- detected by the oxidation of HE was also most highly elevated. Intracellular pH measured with carboxy-SNARF-1-AM by image cytometer appeared to be lowest in the same irradiated CD34{sup +}/CD38{sup -} cell population, and this intracellular pH decreased as early as 4h post-irradiation, virtually simultaneous with the significant elevation of O2- generation. These results suggest that the CD34{sup +}/CD38{sup -} stem cell population is sensitive to radiation-induced apoptosis as well as production of intracellular O2-, compare to more differentiated CD34{sup +}/CD38{sup +} and CD34{sup -}/CD38{sup +} cells and that its intracellular pH declines at an early phase in the apoptosis process.

  17. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense.

    Science.gov (United States)

    Meza, Beatriz; de-Bashan, Luz E; Hernandez, Juan-Pablo; Bashan, Yoav

    2015-06-01

    Accumulation of intra-cellular phosphate, as polyphosphate, was measured when the microalga Chlorella vulgaris was immobilized in alginate with either of two wild-type strains of the microalgae growth-promoting bacterium Azospirillum brasilense or their corresponding IAA-attenuated mutants. Wild type strains of A. brasilense induced higher amounts of intra-cellular phosphate in Chlorella than their respective mutants. Calculations comparing intra-cellular phosphate accumulation by culture or net accumulation by the cell and the amount of IAA that was produced by each of these strains revealed that higher IAA was linked to higher accumulations of intra-cellular phosphate. Application of four levels of exogenous IAA reported for A. brasilense and their IAA-attenuated mutants to cultures of C. vulgaris enhanced accumulation of intra-cellular phosphate; the higher the content of IAA per culture or per single cell, the higher was the amount of accumulated phosphate. When an IAA-attenuated mutant was complemented with exogenous IAA, accumulation of intra-cellular phosphate at the culture level was even higher than phosphate accumulation with the respective wild type strains. When calculating the net accumulation of intra-cellular phosphate in the complementation experiment, net intra-cellular phosphate induced by the IAA-attenuated mutant was completely restored and was similar to the wild strains. We propose that IAA produced by A. brasilense is linked to polyphosphate accumulation in C. vulgaris. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Depletion of intracellular calcium stores facilitates the influx of extracellular calcium in platelet derived growth factor stimulated A172 glioblastoma cells.

    Science.gov (United States)

    Vereb, G; Szöllösi, J; Mátyus, L; Balázs, M; Hyun, W C; Feuerstein, B G

    1996-05-01

    Calcium signaling in non-excitable cells is the consequence of calcium release from intracellular stores, at times followed by entry of extracellular calcium through the plasma membrane. To study whether entry of calcium depends upon the level of saturation of intracellular stores, we measured calcium channel opening in the plasma membrane of single confluent A172 glioblastoma cells stimulated with platelet derived growth factor (PDGF) and/or bradykinin (BK). We monitored the entry of extracellular calcium by measuring manganese quenching of Indo-1 fluorescence. PDGF raised intracellular calcium concentration ([Ca2+]i) after a dose-dependent delay (tdel) and then opened calcium channels after a dose-independent delay (tch). At higher doses (> 3 nM), BK increased [Ca2+]i after a tdel approximately 0 s, and tch decreased inversely with both dose and peak [Ca2+]i. Experiments with thapsigargin (TG), BK, and PDGF indicated that BK and PDGF share intracellular Ca2+ pools that are sensitive to TG. When these stores were depleted by treatment with BK and intracellular BAPTA, tdel did not change, but tch fell to almost 0 s in PDGF stimulated cells, indicating that depletion of calcium stores affects calcium channel opening in the plasma membrane. Our data support the capacitative model for calcium channel opening and the steady-state model describing quantal Ca2+ release from intracellular stores.

  19. Effects of androgen on immunohistochemical localization of androgen receptor and Connexin 43 in mouse ovary.

    Science.gov (United States)

    Yang, Mei; Li, Jianhua; An, Yulin; Zhang, Shuiwen

    2015-10-01

    Androgens have essential roles in the regulation of follicular development and female fertility. Androgen excess is the leading defect in polycystic ovary syndrome (PCOS) patients and involved in the ovarian dysfunction. The aim of this study was to elucidate the regarding regulatory role of androgen in the follicular development of female mouse. Immunohistochemical staining and Western blot analyses were performed to detect androgen receptor (AR) and Connexin 43 (Cx43) expression in ovaries from both control and testosterone-treated group mice. In this study, localizations of AR and Cx43 were dramatically altered in testosterone-treated mouse ovaries. In addition, AR expression was significantly increased, whereas Cx43 expression was markedly decreased after testosterone treatment. Alterations of AR and Cx43 expression by testosterone with concomitant reduction of MII oocytes. Overall, these results suggest the involvement of androgen in the regulation of AR and Cx43 localizations in mouse ovary. Alterations of AR and Cx43 expression by testosterone may affect normal folliculogenesis. Together these findings will enable us to begin understanding the important roles of AR and Cx43 actions in the regulation of follicular development, as well as providing insights into the role of AR and Cx43 actions in the androgen-associated reproductive diseases such as PCOS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Association of Androgen Excess with Glucose Intolerance in Women with Polycystic Ovary Syndrome

    Science.gov (United States)

    Zhang, Bingjie; Wang, Jing; Shen, Shanmei; Liu, Jiayi; Sun, Jie; Ye, Xiao

    2018-01-01

    Women with polycystic ovary syndrome (PCOS) show high prevalence of glucose intolerance. This study aimed to investigate the association of androgen excess with glucose intolerance in PCOS. A total of 378 women with PCOS participated in the study. Free androgen index (FAI) was selected as indicator of hyperandrogenism. Insulin sensitivity was assessed by 1/homeostasis model assessment of insulin resistance (1/HOMA-IR) and Matsuda insulin sensitivity index (ISIM); β-cell function was assessed by disposition index (DI). We found that women with glucose intolerance had higher FAI levels compared to women with normal glucose tolerance (NGT) (prediabetes 6.2, T2DM 7.9 versus NGT 5.0, resp.; p intolerance (OR = 2.480, 95% CI 1.387–4.434), even after adjusting for age, BMI, waist circumference, hypertension, fasting insulin, testosterone, SHBG, and family history of diabetes. In addition, with FAI increase, glycosylated hemoglobin (HbA1c), plasma glucose concentrations, and serum insulin levels increased, while insulin sensitivity and β-cell function decreased. Our results suggested that androgen excess indicated by high FAI levels might serve as indicator of glucose intolerance, as it might promote insulin resistance and β-cell dysfunction in women with PCOS.

  1. Baicalein suppresses the androgen receptor (AR)-mediated prostate cancer progression via inhibiting the AR N-C dimerization and AR-coactivators interaction.

    Science.gov (United States)

    Xu, Defeng; Chen, Qiulu; Liu, Yalin; Wen, Xingqiao

    2017-12-01

    Androgen receptor (AR) plays a critical role in prostate cancer (PCa) development and progression. Androgen deprivation therapy with antiandrogens to reduce androgen biosynthesis or prevent androgens from binding to AR are widely used to suppress AR-mediated PCa growth. However, most of ADT may eventually fail with development of the castration resistance after 12-24 months. Here we found that a natural product baicalein can effectively suppress the PCa progression via targeting the androgen-induced AR transactivation with little effect to AR protein expression. PCa cells including LNCaP, CWR22Rv1, C4-2, PC-3, and DU145, were treated with baicalein and luciferase assay was used to evaluate their effect on the AR transactivation. Cell growth and IC 50 were determined by MTT assay after 48 hrs treatment. RT-PCR was used to evaluate the mRNA levels of AR target genes including PSA, TMPRSS2, and TMEPA1. Western blot was used to determine AR and PSA protein expression. The natural product of baicalein can selectively inhibit AR transactivation with little effect on the other nuclear receptors, including ERα, and GR. At a low concentration, 2.5 μM of baicalein effectively suppresses the growth of AR-positive PCa cells, and has little effect on AR-negative PCa cells. Mechanism dissection suggest that baicalein can suppress AR target genes (PSA, TMPRSS2, and TMEPA1) expression in both androgen responsive LNCaP cells and castration resistant CWR22Rv1 cells, that may involve the inhibiting the AR N/C dimerization and AR-coactivators interaction. Baicalein may be developed as an effective anti-AR therapy via its ability to inhibit AR transactivation and AR-mediated PCa cell growth.

  2. Protection from intracellular oxidative stress by cytoglobin in normal and cancerous oesophageal cells.

    Directory of Open Access Journals (Sweden)

    Fiona E McRonald

    Full Text Available Cytoglobin is an intracellular globin of unknown function that is expressed mostly in cells of a myofibroblast lineage. Possible functions of cytoglobin include buffering of intracellular oxygen and detoxification of reactive oxygen species. Previous work in our laboratory has demonstrated that cytoglobin affords protection from oxidant-induced DNA damage when over expressed in vitro, but the importance of this in more physiologically relevant models of disease is unknown. Cytoglobin is a candidate for the tylosis with oesophageal cancer gene, and its expression is strongly down-regulated in non-cancerous oesophageal biopsies from patients with TOC compared with normal biopsies. Therefore, oesophageal cells provide an ideal experimental model to test our hypothesis that downregulation of cytoglobin expression sensitises cells to the damaging effects of reactive oxygen species, particularly oxidative DNA damage, and that this could potentially contribute to the TOC phenotype. In the current study, we tested this hypothesis by manipulating cytoglobin expression in both normal and oesophageal cancer cell lines, which have normal physiological and no expression of cytoglobin respectively. Our results show that, in agreement with previous findings, over expression of cytoglobin in cancer cell lines afforded protection from chemically-induced oxidative stress but this was only observed at non-physiological concentrations of cytoglobin. In addition, down regulation of cytoglobin in normal oesophageal cells had no effect on their sensitivity to oxidative stress as assessed by a number of end points. We therefore conclude that normal physiological concentrations of cytoglobin do not offer cytoprotection from reactive oxygen species, at least in the current experimental model.

  3. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    Science.gov (United States)

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-01-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron–oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  4. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    Energy Technology Data Exchange (ETDEWEB)

    Volland, Stefanie, E-mail: Stefanie.Volland@stud.sbg.ac.at [Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstr 34, 5020 Salzburg (Austria); Luetz, Cornelius, E-mail: cornelius.luetz@uibk.ac.at [Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck (Austria); Michalke, Bernhard, E-mail: bernhard.michalke@helmholtz-muenchen.de [Helmholtz Zentrum Muenchen, German Research Centre for Environmental Health, Institute of Ecological Chemistry, Ingolstaedter Landstrasse 1, 85764 Neuherberg (Germany); Luetz-Meindl, Ursula, E-mail: ursula.luetz-meindl@sbg.ac.at [Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstr 34, 5020 Salzburg (Austria)

    2012-03-15

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 {mu}M Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron-oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  5. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    International Nuclear Information System (INIS)

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-01-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron–oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  6. Relevance of intracellular polarity to accuracy of eukaryotic chemotaxis

    International Nuclear Information System (INIS)

    Hiraiwa, Tetsuya; Nishikawa, Masatoshi; Shibata, Tatsuo; Nagamatsu, Akihiro; Akuzawa, Naohiro

    2014-01-01

    Eukaryotic chemotaxis is usually mediated by intracellular signals that tend to localize at the front or back of the cell. Such intracellular polarities frequently require no extracellular guidance cues, indicating that spontaneous polarization occurs in the signal network. Spontaneous polarization activity is considered relevant to the persistent motions in random cell migrations and chemotaxis. In this study, we propose a theoretical model that connects spontaneous intracellular polarity and motile ability in a chemoattractant solution. We demonstrate that the intracellular polarity can enhance the accuracy of chemotaxis. Chemotactic accuracy should also depend on chemoattractant concentration through the concentration-dependent correlation time in the polarity direction. Both the polarity correlation time and the chemotactic accuracy depend on the degree of responsiveness to the chemical gradient. We show that optimally accurate chemotaxis occurs at an intermediate responsiveness of intracellular polarity. Experimentally, we find that the persistence time of randomly migrating Dictyostelium cells depends on the chemoattractant concentration, as predicted by our theory. At the optimum responsiveness, this ameboid cell can enhance its chemotactic accuracy tenfold. (paper)

  7. Identification of novel androgen receptor target genes in prostate cancer

    Directory of Open Access Journals (Sweden)

    Gerald William L

    2007-06-01

    Full Text Available Abstract Background The androgen receptor (AR plays critical roles in both androgen-dependent and castrate-resistant prostate cancer (PCa. However, little is known about AR target genes that mediate the receptor's roles in disease progression. Results Using Chromatin Immunoprecipitation (ChIP Display, we discovered 19 novel loci occupied by the AR in castrate resistant C4-2B PCa cells. Only four of the 19 AR-occupied regions were within 10-kb 5'-flanking regulatory sequences. Three were located up to 4-kb 3' of the nearest gene, eight were intragenic and four were in gene deserts. Whereas the AR occupied the same loci in C4-2B (castrate resistant and LNCaP (androgen-dependent PCa cells, differences between the two cell lines were observed in the response of nearby genes to androgens. Among the genes strongly stimulated by DHT in C4-2B cells – D-dopachrome tautomerase (DDT, Protein kinase C delta (PRKCD, Glutathione S- transferase theta 2 (GSTT2, Transient receptor potential cation channel subfamily V member 3 (TRPV3, and Pyrroline-5-carboxylate reductase 1 (PYCR1 – most were less strongly or hardly stimulated in LNCaP cells. Another AR target gene, ornithine aminotransferase (OAT, was AR-stimulated in a ligand-independent manner, since it was repressed by AR siRNA knockdown, but not stimulated by DHT. We also present evidence for in vivo AR-mediated regulation of several genes identified by ChIP Display. For example, PRKCD and PYCR1, which may contribute to PCa cell growth and survival, are expressed in PCa biopsies from primary tumors before and after ablation and in metastatic lesions in a manner consistent with AR-mediated stimulation. Conclusion AR genomic occupancy is similar between LNCaP and C4-2B cells and is not biased towards 5' gene flanking sequences. The AR transcriptionally regulates less than half the genes nearby AR-occupied regions, usually but not always, in a ligand-dependent manner. Most are stimulated and a few are

  8. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles

    Science.gov (United States)

    Lavado, Andrea S.; Chauhan, Veeren M.; Alhaj Zen, Amer; Giuntini, Francesca; Jones, D. Rhodri E.; Boyle, Ross W.; Beeby, Andrew; Chan, Weng C.; Aylott, Jonathan W.

    2015-08-01

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(ii) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn

  9. Intrahippocampal administration of an androgen receptor antagonist, flutamide, can increase anxiety-like behavior in intact and DHT-replaced male rats.

    Science.gov (United States)

    Edinger, Kassandra L; Frye, Cheryl A

    2006-08-01

    Testosterone (T) and its 5alpha-reduced metabolite, dihydrotestosterone (DHT), can decrease anxiety-like behavior; however, the mechanisms underlying these effects have not been established. First, we hypothesized that if T reduces anxiety-like behavior through actions of its 5alpha-reduced metabolite, DHT, then gonadectomy (GDX) would increase anxiety-like behavior, an effect which would be reversed by systemic administration of DHT. Second, we hypothesized that if T and DHT reduce anxiety-like behavior in part through actions at intracellular androgen receptors in the hippocampus, then administration of an androgen receptor antagonist, flutamide, directly to the hippocampus should increase anxiety-like behavior of intact and DHT-replaced, but not GDX, male rats. Inserts that were empty or contained flutamide were applied directly to the dorsal hippocampus of intact, GDX, or GDX and DHT-replaced rats 2 h prior to testing in the open field, elevated plus maze, or defensive freezing tasks. GDX rats exhibited significantly more anxiety-like behaviors than intact or DHT-replaced rats. Intact and DHT-replaced rats administered flutamide to the hippocampus showed significantly more anxiety-like behavior than did intact and DHT-replaced controls. However, flutamide alone did not increase anxiety-like behavior of GDX rats. Together, these findings suggest that androgens can decrease anxiety-like behavior of male rats in part through DHT's actions at androgen receptors in the hippocampus.

  10. ING3 promotes prostate cancer growth by activating the androgen receptor.

    Science.gov (United States)

    Nabbi, Arash; McClurg, Urszula L; Thalappilly, Subhash; Almami, Amal; Mobahat, Mahsa; Bismar, Tarek A; Binda, Olivier; Riabowol, Karl T

    2017-05-16

    The androgen receptor (AR) is a major driver of prostate cancer, and increased AR levels and co-activators of the receptor promote the development of prostate cancer. INhibitor of Growth (ING) proteins target lysine acetyltransferase or lysine deacetylase complexes to the histone H3K4Me3 mark of active transcription, to affect chromatin structure and gene expression. ING3 is a stoichiometric member of the TIP60 lysine acetyltransferase complex implicated in prostate cancer development. Biopsies of 265 patients with prostate cancer were stained for ING3, pan-cytokeratin, and DNA. LNCaP and C4-2 androgen-responsive cells were used for in vitro assays including immunoprecipitation, western blotting, Luciferase reporter assay and quantitative polymerase chain reaction. Cell viability and migration assays were performed in prostate cancer cell lines using scrambled siRNA or siRNA targeting ING3. We find that ING3 levels and AR activity positively correlate in prostate cancer. ING3 potentiates androgen effects, increasing expression of androgen-regulated genes and androgen response element-driven reporters to promote growth and anchorage-independent growth. Conversely, ING3 knockdown inhibits prostate cancer cell growth and invasion. ING3 activates the AR by serving as a scaffold to increase interaction between TIP60 and the AR in the cytoplasm, enhancing receptor acetylation and translocation to the nucleus. Activation is independent of ING3's ability to target the TIP60 complex to H3K4Me3, identifying a previously unknown chromatin-independent cytoplasmic activity for ING3. In agreement with in vitro observations, analysis of The Cancer Genome Atlas (TCGA) data (n = 498) and a prostate cancer tissue microarray (n = 256) show that ING3 levels are higher in aggressive prostate cancers, with high levels of ING3 predicting shorter patient survival in a low AR subgroup. Including ING3 levels with currently used indicators such as the Gleason score provides more

  11. CD147 modulates androgen receptor activity through the Akt/Gsk-3β/β-catenin/AR pathway in prostate cancer cells.

    Science.gov (United States)

    Fang, Fang; Qin, Yingxin; Hao, Feng; Li, Qiang; Zhang, Wei; Zhao, Chen; Chen, Shuang; Zhao, Liangzhong; Wang, Liguo; Cai, Jianhui

    2016-08-01

    The androgen signaling pathway serves an important role in the development of prostate cancer. β-Catenin is an androgen receptor (AR) cofactor and augments AR signaling. Glycogen synthase kinase-3β (GSK-3β), a target of phosphorylated serine/threonine protein kinase B (p-Akt), regulates β-catenin stability. In addition, β-catenin, a coregulator of AR, physically interacts with AR and enhances AR-mediated target gene transcription. The multifunctional glycoprotein cluster of differentiation (CD) 147 is highly expressed on the cell surface of the majority of cancer cells, and it promotes tumor invasion, metastasis and growth. In the present study, the molecular effects of CD147 on the Akt/GSK-3β/β-catenin/AR signaling network were investigated in LNCaP cells. Using short hairpin-mediated RNA knockdown of CD147 in LNCaP cells, it was demonstrated that downregulation of CD147 resulted in inhibitory phosphorylation of GSK-3β, and then promoted degeneration of β-catenin and reduced nuclear accumulation of β-catenin. In addition, immunoprecipitation studies demonstrated that CD147 downregulation decreased the formation of a complex between β-catenin and AR. It was shown that CD147 knockdown suppressed the expression of the AR target gene prostate-specific antigen and the growth of AR-positive LNCaP cells. Furthermore, inhibition of PI3K/Akt with LY294002 augmented CD147-mediated function. The present study indicates that the PI3K/Akt pathway may facilitate CD147-mediated activation of the AR pathway.

  12. Cotargeting of Androgen Synthesis and Androgen Receptor Expression as a Novel Treatment for Castration Resistant Prostate Cancer

    Science.gov (United States)

    2017-08-01

    disease [2-4]. The major mechanism underlying the development of CRPC is the reactivation of the androgen receptor (AR), the driver of prostate cancer ...Epigenetic Activator of Androgen Receptor Expression in Castration- Resistant Prostate Cancer . Indiana Basic Urological Research (IBUR) Symposium...principal discipline(s) of the project? Androgen receptor (AR) is the driver of prostate cancer development and progression and is the validated

  13. Mitofusin2 decreases intracellular cholesterol of oxidized LDL-induced foam cells from rat vascular smooth muscle cells.

    Science.gov (United States)

    He, Chao; Chen, Ying; Liu, Chun; Cao, Ming; Fan, Yu-jin; Guo, Xiao-mei

    2013-04-01

    Mitofusin2 (Mfn2) plays a pivotal role in the proliferation and apoptosis of vascular smooth muscle cells (VSMCs). The purpose of this study was to investigate the effects of Mfn2 on the trafficking of intracellular cholesterol in the foam cells derived from rat VSMCs (rVSMCs) and also to investigate the effects of Mfn2 on the expression of adenosine triphosphate-binding cassette subfamily A member 1 (ABCA1), adenosine triphosphate-binding cassette subfamily G member 1 (ABCG1) and peroxisome proliferator-activated receptor gamma (PPARγ). The rVSMCs were co-cultured with oxidized low density lipoprotein (LDL, 80 μg/mL) to produce foam cells and cholesterol accumulation in cells. Before oxidized LDL treatment, different titers (20, 40 and 60 pfu/cell) of recombinant adenovirus containing Mfn2 gene (Adv-Mfn2) were added into the culture medium for 24 h to transfect the Mfn2 gene into the rVSMCs. Then the cells were harvested for analyses. The protein expression of Mfn2 was significantly higher in Adv-Mfn2-transfected group than in untransfected group (PLDL treatment, rVSMCs became irregular and their nuclei became larger, and their plasma abounded with red lipid droplets. However, the number of red lipid droplets was significantly decreased in Adv-Mfn2-transfected group as compared with untransfected group. At 48 h after oxidized LDL treatment, the intracellular cholesterol in rVSMCs was significantly increased (P0.05), the phosporylation levels of PPARγ were significantly decreased in Adv-Mfn2-transfected group as compared with untransfected group (Pcholesterol in oxidized LDL-induced rVSMCs possibly by decreasing PPARγ phosporylation and then increasing protein expression levels of ABCA1 and ABCG1, which may be helpful to suppress the formation of foam cells.

  14. Neural androgen receptors affect the number of surviving new neurones in the adult dentate gyrus of male mice.

    Science.gov (United States)

    Swift-Gallant, A; Duarte-Guterman, P; Hamson, D K; Ibrahim, M; Monks, D A; Galea, L A M

    2018-04-01

    Adult hippocampal neurogenesis occurs in many mammalian species. In rats, the survival of new neurones within the hippocampus is modulated by the action of androgen via the androgen receptor (AR); however, it is not known whether this holds true in mice. Furthermore, the evidence is mixed regarding whether androgens act in neural tissue or via peripheral non-neural targets to promote new neurone survival in the hippocampus. We evaluated whether the action of androgen via AR underlies the survival of new neurones in mice, and investigated whether increasing AR selectively in neural tissue would increase new neurone survival in the hippocampus. We used the cre-loxP system to overexpress AR only in neural tissues (Nestin-AR). These males were compared with wild-type males, as well as control males with 1 of the 2 mutations required for overexpression. Mice were gonadectomised and injected with the DNA synthesis marker, bromodeoxyuridine (BrdU) and for 37 days (following BrdU injection), mice were treated with oil or dihydrotestosterone (DHT). Using immunohistochemistry, proliferation (Ki67) and survival (BrdU) of new neurones were both evaluated in the dorsal and ventral dentate gyrus. Dihydrotestosterone treatment increased the survival of new neurones in the entire hippocampus in wild-type mice and control mice that only have 1 of 2 necessary mutations for transgenic expression. However, DHT treatment did not increase the survival of new neurones in mice that overexpressed AR in neural tissue. Cell proliferation (Ki67) and cell death (pyknotic cells) were not affected by DHT treatment in wild-type or transgenic males. These results suggest that androgens act via neural AR to affect hippocampal neurogenesis by promoting cell survival; however, the relationship between androgen dose and new neurone survival is nonlinear. © 2018 British Society for Neuroendocrinology.

  15. IL-13-induced proliferation of airway epithelial cells: mediation by intracellular growth factor mobilization and ADAM17

    Directory of Open Access Journals (Sweden)

    Sandifer Tracy

    2007-07-01

    Full Text Available Abstract Background The pleiotrophic cytokine interleukin (IL-13 features prominently in allergic and inflammatory diseases. In allergic asthma, IL-13 is well established as an inducer of airway inflammation and tissue remodeling. We demonstrated previously that IL-13 induces release of transforming growth factor-α (TGFα from human bronchial epithelial cells, with proliferation of these cells mediated by the autocrine/paracrine action of this growth factor. TGFα exists as an integral membrane protein and requires proteolytic processing to its mature form, with a disintegrin and metalloproteinase (ADAM17 responsible for this processing in a variety of tissues. Methods In this study, normal human bronchial epithelial (NHBE cells grown in air/liquid interface (ALI culture were used to examine the mechanisms whereby IL-13 induces release of TGFα and cellular proliferation. Inhibitors and antisense RNA were used to examine the role of ADAM17 in these processes, while IL-13-induced changes in the intracellular expression of TGFα and ADAM17 were visualized by confocal microscopy. Results IL-13 was found to induce proliferation of NHBE cells, and release of TGFα, in an ADAM17-dependent manner; however, this IL-13-induced proliferation did not appear to result solely from ADAM17 activation. Rather, IL-13 induced a change in the location of TGFα expression from intracellular to apical regions of the NHBE cells. The apical region was also found to be a site of significant ADAM17 expression, even prior to IL-13 stimulation. Conclusion Results from this study indicate that ADAM17 mediates IL-13-induced proliferation and TGFα shedding in NHBE cells. Furthermore, they provide the first example wherein a cytokine (IL-13 induces a change in the intracellular expression pattern of a growth factor, apparently inducing redistribution of intracellular stores of TGFα to the apical region of NHBE cells where expression of ADAM17 is prominent. Thus, IL-13

  16. Androgen Signaling Disruption during Fetal and Postnatal Development Affects Androgen Receptor and Connexin 43 Expression and Distribution in Adult Boar Prostate

    Directory of Open Access Journals (Sweden)

    Anna Hejmej

    2013-01-01

    Full Text Available To date, limited knowledge exists regarding the role of the androgen signaling during specific periods of development in the regulation of androgen receptor (AR and connexin 43 (Cx43 in adult prostate. Therefore, in this study we examined mRNA and protein expression, and tissue distribution of AR and Cx43 in adult boar prostates following fetal (GD20, neonatal (PD2, and prepubertal (PD90 exposure to an antiandrogen flutamide (50 mg/kg bw. In GD20 and PD2 males we found the reduction of the luminal compartment, inflammatory changes, decreased AR and increased Cx43 expression, and altered localization of both proteins. Moreover, enhanced apoptosis and reduced proliferation were detected in the prostates of these animals. In PD90 males the alterations were less evident, except that Cx43 expression was markedly upregulated. The results presented herein indicate that in boar androgen action during early fetal and neonatal periods plays a key role in the maintenance of normal phenotype and functions of prostatic cells at adulthood. Furthermore, we demonstrated that modulation of Cx43 expression in the prostate could serve as a sensitive marker of hormonal disruption during different developmental stages.

  17. PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling

    International Nuclear Information System (INIS)

    Ferreira, Luciana Bueno; Gimba, Etel Rodrigues Pereira; Palumbo, Antonio; Mello, Kivvi Duarte de; Sternberg, Cinthya; Caetano, Mauricio S; Oliveira, Felipe Leite de; Neves, Adriana Freitas; Nasciutti, Luiz Eurico; Goulart, Luiz Ricardo

    2012-01-01

    PCA3 is a non-coding RNA (ncRNA) that is highly expressed in prostate cancer (PCa) cells, but its functional role is unknown. To investigate its putative function in PCa biology, we used gene expression knockdown by small interference RNA, and also analyzed its involvement in androgen receptor (AR) signaling. LNCaP and PC3 cells were used as in vitro models for these functional assays, and three different siRNA sequences were specifically designed to target PCA3 exon 4. Transfected cells were analyzed by real-time qRT-PCR and cell growth, viability, and apoptosis assays. Associations between PCA3 and the androgen-receptor (AR) signaling pathway were investigated by treating LNCaP cells with 100 nM dihydrotestosterone (DHT) and with its antagonist (flutamide), and analyzing the expression of some AR-modulated genes (TMPRSS2, NDRG1, GREB1, PSA, AR, FGF8, CdK1, CdK2 and PMEPA1). PCA3 expression levels were investigated in different cell compartments by using differential centrifugation and qRT-PCR. LNCaP siPCA3-transfected cells significantly inhibited cell growth and viability, and increased the proportion of cells in the sub G0/G1 phase of the cell cycle and the percentage of pyknotic nuclei, compared to those transfected with scramble siRNA (siSCr)-transfected cells. DHT-treated LNCaP cells induced a significant upregulation of PCA3 expression, which was reversed by flutamide. In siPCA3/LNCaP-transfected cells, the expression of AR target genes was downregulated compared to siSCr-transfected cells. The siPCA3 transfection also counteracted DHT stimulatory effects on the AR signaling cascade, significantly downregulating expression of the AR target gene. Analysis of PCA3 expression in different cell compartments provided evidence that the main functional roles of PCA3 occur in the nuclei and microsomal cell fractions. Our findings suggest that the ncRNA PCA3 is involved in the control of PCa cell survival, in part through modulating AR signaling, which may raise new

  18. Corepressive function of nuclear receptor coactivator 2 in androgen receptor of prostate cancer cells treated with antiandrogen

    International Nuclear Information System (INIS)

    Takeda, Keisuke; Hara, Noboru; Nishiyama, Tsutomu; Tasaki, Masayuki; Ishizaki, Fumio; Tomita, Yoshihiko

    2016-01-01

    Recruitment of cofactors in the interaction of the androgen receptor (AR) and AR ligands plays a critical role in determining androgenic/antiandrogenic effects of the AR ligand on signaling, but the functions of key cofactors, including nuclear receptor coactivator (NCOA), remain poorly understood in prostate cancer cells treated with AR ligands. We examined prostate cancer cell lines LNCaP and VCaP expressing mutated and wild-type ARs, respectively, to clarify the significance of NCOAs in the effect of antiandrogens. Hydroxyflutamide showed antagonistic activity against VCaP and an agonistic effect on LNCaP. Bicalutamide served as an antagonist for both. We analyzed mRNA transcription and protein expression of NCOAs in these cells pretreated with dihydrotestosterone and thereafter treated with the mentioned antiandrogens. Transcriptional silencing of candidate NCOAs and AR was performed using small interfering RNA (siRNA). Cell proliferation was evaluated with MTT assay. LNCaP treated with bicalutamide showed an about four-fold increase in the expression of NCOA2 mRNA compared to those pretreated with dihydrotestosterone alone (P <0.01). In VCaP pretreated with dihydrotestosterone, transcriptions of NCOA2 and NCOA7 were slightly increased with bicalutamide (1.96- and 2.42-fold, respectively) and hydroxyflutamide (1.33-fold in both). With Western blotting, the expression of NCOA2 protein also increased in LNCaP cells treated with bicalutamide compared with that in control cells pretreated with dihydrotestosterone alone. Following silencing with siRNA for NCOA2, PSA levels in media with LNCaP receiving bicalutamide were elevated compared with those in non-silencing controls (101.6 ± 4.2 vs. 87.8 ± 1.4 ng/mL, respectively, P =0.0495). In LNCaP cells treated with dihydrotestosterone and bicalutamide, NCOA2-silencing was associated with a higher proliferation activity compared with non-silencing control and AR-silencing. NCOA2, which has been thought to be recruited

  19. Saw Palmetto induces growth arrest and apoptosis of androgen-dependent prostate cancer LNCaP cells via inactivation of STAT 3 and androgen receptor signaling.

    Science.gov (United States)

    Yang, Yang; Ikezoe, Takayuki; Zheng, Zhixing; Taguchi, Hirokuni; Koeffler, H Phillip; Zhu, Wei-Guo

    2007-09-01

    PC-SPES is an eight-herb mixture that has an activity against prostate cancer. Recently, we purified Saw Palmetto (Serenoa repens) from PC-SPES and found that Saw Palmetto induced growth arrest of prostate cancer LNCaP, DU145, and PC3 cells with ED50s of approximately 2.0, 2.6, and 3.3 microl/ml, respectively, as measured by mitochondrial-dependent conversion of the the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Saw Palmetto induced apoptosis of LNCaP cells in a time- and dose-dependent manner as measured by TUNEL assays. Also, Saw Palmetto increased the expression of p21waf1 and p53 protein in LNCaP cells. In addition, we found that Saw Palmetto down-regulated DHT- or IL-6-induced expression of prostate specific antigen in conjunction with down-regulation of the level of androgen receptor in the nucleus as measured by Western blot analysis. Moreover, Saw Palmetto down-regulated the IL-6-induced level of the phosphorylated form of STAT 3 in LNCaP cells. Furthermore, Saw Palmetto inhibited the growth of LNCaP cells present as tumor xenografts in BALB/c nude mice without adverse effect. These results indicate that Saw Palmetto might be useful for the treatment of individuals with prostate cancer.

  20. Modulating and Measuring Intracellular H2O2 Using Genetically Encoded Tools to Study Its Toxicity to Human Cells.

    Science.gov (United States)

    Huang, Beijing K; Stein, Kassi T; Sikes, Hadley D

    2016-12-16

    Reactive oxygen species (ROS) such as H 2 O 2 play paradoxical roles in mammalian physiology. It is hypothesized that low, baseline levels of H 2 O 2 are necessary for growth and differentiation, while increased intracellular H 2 O 2 concentrations are associated with pathological phenotypes and genetic instability, eventually reaching a toxic threshold that causes cell death. However, the quantities of intracellular H 2 O 2 that lead to these different responses remain an unanswered question in the field. To address this question, we used genetically encoded constructs that both generate and quantify H 2 O 2 in a dose-response study of H 2 O 2 -mediated toxicity. We found that, rather than a simple concentration-response relationship, a combination of intracellular concentration and the cumulative metric of H 2 O 2 concentration multiplied by time (i.e., the area under the curve) determined the occurrence and level of cell death. Establishing the quantitative relationship between H 2 O 2 and cell toxicity promotes a deeper understanding of the intracellular effects of H 2 O 2 specifically as an individual reactive oxygen species, and it contributes to an understanding of its role in various redox-related diseases.

  1. Directed antigen delivery as a vaccine strategy for an intracellular bacterial pathogen

    Science.gov (United States)

    Bouwer, H. G. Archie; Alberti-Segui, Christine; Montfort, Megan J.; Berkowitz, Nathan D.; Higgins, Darren E.

    2006-03-01

    We have developed a vaccine strategy for generating an attenuated strain of an intracellular bacterial pathogen that, after uptake by professional antigen-presenting cells, does not replicate intracellularly and is readily killed. However, after degradation of the vaccine strain within the phagolysosome, target antigens are released into the cytosol for endogenous processing and presentation for stimulation of CD8+ effector T cells. Applying this strategy to the model intracellular pathogen Listeria monocytogenes, we show that an intracellular replication-deficient vaccine strain is cleared rapidly in normal and immunocompromised animals, yet antigen-specific CD8+ effector T cells are stimulated after immunization. Furthermore, animals immunized with the intracellular replication-deficient vaccine strain are resistant to lethal challenge with a virulent WT strain of L. monocytogenes. These studies suggest a general strategy for developing safe and effective, attenuated intracellular replication-deficient vaccine strains for stimulation of protective immune responses against intracellular bacterial pathogens. CD8+ T cell | replication-deficient | Listeria monocytogenes

  2. Conditional Expression of the Androgen Receptor Increases Susceptibility of Bladder Cancer in Mice.

    Directory of Open Access Journals (Sweden)

    Daniel T Johnson

    Full Text Available Bladder cancer represents a significant human tumor burden, accounting for about 7.7% and 2.4% of all cancer cases in males and females, respectively. While men have a higher risk of developing bladder cancer, women tend to present at a later stage of disease and with more aggressive tumors. Previous studies have suggested a promotional role of androgen signaling in enhancing bladder cancer development. To directly assess the role of androgens in bladder tumorigenesis, we have developed a novel transgenic mouse strain, R26hARLoxP/+:Upk3aGCE/+, in which the human AR transgene is conditionally expressed in bladder urothelium. Intriguingly, both male and female R26hARLoxP/+:Upk3aGCE/+ mice display a higher incidence of urothelial cell carcinoma (UCC than the age and sex matched control littermates in response to the carcinogen, N-butyl-N-(4-hydroxybutyl nitrosamine (BBN. We detect expression of the human AR transgene in CK5-positive and p63-positive basal cells in bladder urothelium. Further analyses of UCC tissues from R26hARLoxP/+:Upk3aGCE/+ mice showed that the majority of tumor cells are of urothelial basal cell origin. Positive immunostaining of transgenic AR protein was observed in the majority of tumor cells of the transgenic mice, providing a link between transgenic AR expression and oncogenic transformation. We observed an increase in Ki67 positive cells within the UCC lesions of transgenic AR mice. Manipulating endogenous androgen levels by castration and androgen supplementation directly affected bladder tumor development in male and female R26hARLoxP/+:Upk3aGCE/+ mice, respectively. Taken together, our data demonstrate for the first time that conditional activation of transgenic AR expression in bladder urothelium enhances carciongen-induced bladder tumor formation in mice. This new AR transgenic mouse line mimics certain features of human bladder cancer and can be used to study bladder tumorigenesis and for drug development.

  3. The Effect of Size and Species on Lens Intracellular Hydrostatic Pressure

    Science.gov (United States)

    Gao, Junyuan; Sun, Xiurong; Moore, Leon C.; Brink, Peter R.; White, Thomas W.; Mathias, Richard T.

    2013-01-01

    Purpose. Previous experiments showed that mouse lenses have an intracellular hydrostatic pressure that varied from 335 mm Hg in central fibers to 0 mm Hg in surface cells. Model calculations predicted that in larger lenses, all else equal, pressure should increase as the lens radius squared. To test this prediction, lenses of different radii from different species were studied. Methods. All studies were done in intact lenses. Intracellular hydrostatic pressures were measured with a microelectrode-manometer–based system. Membrane conductances were measured by frequency domain impedance analysis. Intracellular Na+ concentrations were measured by injecting the Na+-sensitive dye sodium-binding benzofuran isophthalate. Results. Intracellular hydrostatic pressures were measured in lenses from mice, rats, rabbits, and dogs with radii (cm) 0.11, 0.22, 0.49, and 0.57, respectively. In each species, pressure varied from 335 ± 6 mm Hg in central fiber cells to 0 mm Hg in surface cells. Further characterization of transport in lenses from mice and rats showed that the density of fiber cell gap junction channels was approximately the same, intracellular Na+ concentrations varied from 17 mM in central fiber cells to 7 mM in surface cells, and intracellular voltages varied from −45 mV in central fiber cells to −60 mV in surface cells. Fiber cell membrane conductance was a factor of 2.7 times larger in mouse than in rat lenses. Conclusions. Intracellular hydrostatic pressure is an important physiological parameter that is regulated in lenses from these different species. The most likely mechanism of regulation is to reduce the density of open Na+-leak channels in fiber cells of larger lenses. PMID:23211824

  4. The effects of red ginseng saponin fraction-A (RGSF-A) on phagocytosis and intracellular signaling in Brucella abortus infected RAW 264.7 cells.

    Science.gov (United States)

    Arayan, Lauren Togonon; Simborio, Hannah Leah; Reyes, Alisha Wehdnesday Bernardo; Hop, Huynh Tan; Min, WonGi; Lee, Hu Jang; Rhee, Man Hee; Chang, Hong Hee; Kim, Suk

    2015-06-01

    This study indicated that RGSF-A caused a marked reduction in the adherence, internalization and intracellular growth of Brucella abortus in RGSF-A-treated cells. Furthermore, a decline in the intensity of F-actin fluorescence was observed in RGSF-A-treated cells compared with untreated B. abortus-infected cells. In addition, an evaluation of phagocytic signaling proteins by Western blot analysis revealed an apparent reduction of ERK and p38α phosphorylation levels in B. abortus-infected RGSF-A-treated cells compared with the control. Upon intracellular trafficking of the pathogen, a higher number of B. abortus-containing phagosomes colocalized with LAMP-1 in RGSF-A-treated cells compared with control cells. These results strongly suggest that inhibition of B. abortus uptake could be mediated by suppression in the activation of MAPKs signaling proteins phospho-ERK 1/2, and p38 levels. On the other hand, inhibition of intracellular replication results from the enhancement of phagolysosome fusion in host macrophages. This study highlights the phagocytic and intracellular modulating effect of RGSF-A and its potential as an alternative remedy to control B. abortus infection. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella.

    Science.gov (United States)

    Xie, Shuyu; Yang, Fei; Tao, Yanfei; Chen, Dongmei; Qu, Wei; Huang, Lingli; Liu, Zhenli; Pan, Yuanhu; Yuan, Zonghui

    2017-01-23

    Enrofloxacin-loaded docosanoic acid solid lipid nanoparticles (SLNs) with different physicochemical properties were developed to enhance activity against intracellular Salmonella. Their cellular uptake, intracellular elimination and antibacterial activity were studied in RAW 264.7 cells. During the experimental period, SLN-encapsulated enrofloxacin accumulated in the cells approximately 27.06-37.71 times more efficiently than free drugs at the same extracellular concentration. After incubation for 0.5 h, the intracellular enrofloxacin was enhanced from 0.336 to 1.147 μg/mg of protein as the sizes of nanoparticles were increased from 150 to 605 nm, and from 0.960 to 1.147 μg/mg of protein when the charge was improved from -8.1 to -24.9 mv. The cellular uptake was more significantly influenced by the size than it was by the charge, and was not affected by whether the charge was positive or negative. The elimination of optimal SLN-encapsulated enrofloxacin from the cells was significantly slower than that of free enrofloxacin after removing extracellular drug. The inhibition effect against intracellular Salmonella CVCC541 of 0.24 and 0.06 μg/mL encapsulated enrofloxacin was stronger than 0.6 μg/mL free drug after all of the incubation periods and at 48 h, respectively. Docosanoic acid SLNs are thus considered as a promising carrier for intracellular bacterial treatment.

  6. Identification of Androgen Receptor-Specific Enhancer RNAs

    Science.gov (United States)

    2017-08-01

    SUPPLEMENTARY NOTES 14. ABSTRACT The major goal of this application is to determine whether prostate cancer cells express enhancer RNAs in response to...androgen treatment such that these enhancer RNAs may serve as novel biomarkers for prostate cancer diagnosis and prognosis. There are two Tasks in...biomarkers or therapeutic targets for prostate cancer , especially for castration resistant prostate cancer . 15. SUBJECT TERMS lncRNA, eRNA, biomarker

  7. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures.

    Science.gov (United States)

    Wesley-Smith, James; Berjak, Patricia; Pammenter, N W; Walters, Christina

    2014-03-01

    Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival. Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro. Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per μm(2) in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure. The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches.

  8. Rising Intracellular Zinc by Membrane Depolarization and Glucose in Insulin-Secreting Clonal HIT-T15 Beta Cells

    Directory of Open Access Journals (Sweden)

    Kira G. Slepchenko

    2012-01-01

    Full Text Available Zinc (Zn2+ appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30–60 mM was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells.

  9. Effect of incubation temperature and androgens on dopaminergic activity in the leopard gecko, Eublepharis macularius.

    Science.gov (United States)

    Dias, Brian George; Ataya, Ramona Sousan; Rushworth, David; Zhao, Jun; Crews, David

    2007-04-01

    Male leopard geckos that hatch from eggs incubated at a female-biased temperature (Tf) behave differently when compared with males hatching at a temperature which produces a male-biased sex ratio (Tm). We investigated the effect of incubation temperature and androgen implantation on aspects of the dopaminergic system of Tf and Tm males. Our data suggest that more dopamine (DA) is stored in the nucleus accumbens of naive Tf males compared with naïve Tm males when they encounter a receptive female conspecific across a barrier. No difference was measured in the preoptic area and the ventral tegmental area (VTA). This difference in intracellular DA levels in a motivation-related brain nucleus might be correlated with differences in sociosexual behavior observed between the two morphs. There were no differences in tyrosine hydroxylase (TH) expressing cell numbers in the VTA of cholesterol (CH)-implanted naive castrated Tf and Tm males. Only Tf males implanted with testosterone had significantly higher TH immunopositive cell numbers in the VTA compared with CH- and dihydrotestosterone-implanted Tf males. These data indicate that both the embryonic environment as well as the circulating hormonal milieu can modulate neurochemistry, which might in turn be a basis for individual variation in behavior. Copyright (c) 2007 Wiley Periodicals, Inc.

  10. Androgen circle of polycystic ovary syndrome.

    Science.gov (United States)

    Homburg, Roy

    2009-07-01

    Although the aetiology of polycystic ovary syndrome (PCOS) is still not known and the search for causative genes is proving elusive, it is generally agreed that hyperandrogenism is at the heart of the syndrome. Here, it is proposed that excess androgens are the root cause of PCOS starting from their influence on the female fetus in programming gene expression, producing the characteristic signs and symptoms which are then exacerbated by a propagation of excess ovarian androgen production from multiple small follicles, anovulation and insulin resistance in the reproductive life-span, thus setting up a vicious perpetual circle of androgen excess. This opinion paper, rather than being a full-scale review, is intentionally biased in support of this hypothesis that androgen excess is the 'root of all evil' in PCOS; in the hope that its acceptance could lead to more direct treatment of the syndrome in all its facets rather than the symptomatic treatment of side effects of androgen excess that we are addressing today.

  11. Sonic hedgehog stimulates the proliferation of rat gastric mucosal cells through ERK activation by elevating intracellular calcium concentration

    International Nuclear Information System (INIS)

    Osawa, Hiroyuki; Ohnishi, Hirohide; Takano, Koji; Noguti, Takasi; Mashima, Hirosato; Hoshino, Hiroko; Kita, Hiroto; Sato, Kiichi; Matsui, Hirofumi; Sugano, Kentaro

    2006-01-01

    Sonic Hedgehog (Shh), a member of hedgehog peptides family, is expressed in gastric gland epithelium. To elucidate Shh function to gastric mucosal cells, we examined the effect of Shh on the proliferation of a rat normal gastric mucosal cell line, RGM-1. RGM-1 cells express essential components of Shh receptor system, patched-1, and smoothened. Shh enhanced DNA synthesis in RGM-1 cells and elevated intracellular calcium concentration ([Ca 2+ ] i ). In addition, Shh as well as calcium ionophore A32187 rapidly activated ERK. However, Shh failed to activate ERK under calcium-free culture condition. Pretreatment of cells with PD98059 attenuated the DNA synthesis promoted by Shh. Moreover, when cells were pretreated with cyclopamine, Shh could not elevate [Ca 2+ ] i , activate ERK or promote DNA synthesis. On the other hand, although Shh induced Gli-1 nuclear accumulation in RGM-1 cells, Shh activated ERK even in cells pretreated with actinomycin D. These results indicate that Shh promotes the proliferation of RGM-1 cells through an intracellular calcium- and ERK-dependent but transcription-independent pathway via Patched/Smoothened receptor system

  12. The transcriptional programme of the androgen receptor (AR) in prostate cancer.

    Science.gov (United States)

    Lamb, Alastair D; Massie, Charlie E; Neal, David E

    2014-03-01

    The androgen receptor (AR) is essential for normal prostate and prostate cancer cell growth. AR transcriptional activity is almost always maintained even in hormone relapsed prostate cancer (HRPC) in the absence of normal levels of circulating testosterone. Current molecular techniques, such as chromatin-immunoprecipitation sequencing (ChIP-seq), have permitted identification of direct AR-binding sites in cell lines and human tissue with a distinct coordinate network evident in HRPC. The effectiveness of novel agents, such as abiraterone acetate (suppresses adrenal androgens) or enzalutamide (MDV3100, potent AR antagonist), in treating advanced prostate cancer underlines the on-going critical role of the AR throughout all stages of the disease. Persistent AR activity in advanced disease regulates cell cycle activity, steroid biosynthesis and anabolic metabolism in conjunction with regulatory co-factors, such as the E2F family, c-Myc and signal transducer and activator of transcription (STAT) transcription factors. Further treatment approaches must target these other factors. © 2013 The Authors. BJU International © 2013 BJU International.

  13. Integrated expression profiling and ChIP-seq analyses of the growth inhibition response program of the androgen receptor.

    Directory of Open Access Journals (Sweden)

    Biaoyang Lin

    2009-08-01

    Full Text Available The androgen receptor (AR plays important roles in the development of male phenotype and in different human diseases including prostate cancers. The AR can act either as a promoter or a tumor suppressor depending on cell types. The AR proliferative response program has been well studied, but its prohibitive response program has not yet been thoroughly studied.Previous studies found that PC3 cells expressing the wild-type AR inhibit growth and suppress invasion. We applied expression profiling to identify the response program of PC3 cells expressing the AR (PC3-AR under different growth conditions (i.e. with or without androgens and at different concentration of androgens and then applied the newly developed ChIP-seq technology to identify the AR binding regions in the PC3 cancer genome. A surprising finding was that the comparison of MOCK-transfected PC3 cells with AR-transfected cells identified 3,452 differentially expressed genes (two fold cutoff even without the addition of androgens (i.e. in ethanol control, suggesting that a ligand independent activation or extremely low-level androgen activation of the AR. ChIP-Seq analysis revealed 6,629 AR binding regions in the cancer genome of PC3 cells with an FDR (false discovery rate cut off of 0.05. About 22.4% (638 of 2,849 can be mapped to within 2 kb of the transcription start site (TSS. Three novel AR binding motifs were identified in the AR binding regions of PC3-AR cells, and two of them share a core consensus sequence CGAGCTCTTC, which together mapped to 27.3% of AR binding regions (1,808/6,629. In contrast, only about 2.9% (190/6,629 of AR binding sites contains the canonical AR matrix M00481, M00447 and M00962 (from the Transfac database, which is derived mostly from AR proliferative responsive genes in androgen dependent cells. In addition, we identified four top ranking co-occupancy transcription factors in the AR binding regions, which include TEF1 (Transcriptional enhancer factor

  14. [Subcutaneous transplants of juvenile rat testicular tissues continue to develop and secret androgen in adult rats].

    Science.gov (United States)

    Yu, Zhou; Wang, Tong; Cui, Jiangbo; Song, Yajuan; Ma, Xianjie; Su, Yingjun; Peng, Pai

    2017-12-01

    Objective To explore the effects of subcutaneous microenvironment of adult rats on survival, development and androgen secretion of Leydig cells of transplanted juvenile rat testis. Methods Healthy adult SD rats were randomly divided into control group, sham group, castrated group and non-castrated group. Rats in the control group were kept intact, no testis was transplanted subcutaneously after adult recipients were castrated in the sham group; 5-7-day juvenile rat testes were transplanted subcutaneously in the castrated group, with one testis per side; Testes resected from juvenile rats were directly transplanted subcutaneously on both sides of the recipients in the non-castrated group. The grafts were obtained and weighed 4 weeks later. Then the histological features of the grafts were examined by HE staining; the expression and distribution of hydroxysteroid 17-beta dehydrogenase 1 (HSD-17β1) were investigated by immunohistochemistry; and the serum androgen level was determined by ELISA. Results The average mass of grafts obtained from the castrated group was significantly higher than that of the non-castrated group. Immunohistochemistry indicated that Leydig cells were visible in the tissues from both the castrated and non-castrated groups, but the number of HSD-17β1-posotive cells in the castrated group was larger than that in the non-castrated group. ELISA results showed that the serum androgen level was higher in the control group and non-castrated group than in the sham group and castrated group, and compared with the sham group, the serum androgen level in the castrated group was significantly higher. Conclusion The juvenile rat testis subcutaneously transplanted could further develop under the adult recipient rat skin, and the Leydig cells of grafts harbored the ability to produce and secret androgen.

  15. Differentially expressed androgen-regulated genes in androgen-sensitive tissues reveal potential biomarkers of early prostate cancer.

    Directory of Open Access Journals (Sweden)

    Dogus Murat Altintas

    Full Text Available BACKGROUND: Several data favor androgen receptor implication in prostate cancer initiation through the induction of several gene activation programs. The aim of the study is to identify potential biomarkers for early diagnosis of prostate cancer (PCa among androgen-regulated genes (ARG and to evaluate comparative expression of these genes in normal prostate and normal prostate-related androgen-sensitive tissues that do not (or rarely give rise to cancer. METHODS: ARG were selected in non-neoplastic adult human prostatic epithelial RWPE-1 cells stably expressing an exogenous human androgen receptor, using RNA-microarrays and validation by qRT-PCR. Expression of 48 preselected genes was quantified in tissue samples (seminal vesicles, prostate transitional zones and prostate cancers, benign prostatic hypertrophy obtained from surgical specimens using TaqMan® low-density arrays. The diagnostic performances of these potential biomarkers were compared to that of genes known to be associated with PCa (i.e. PCA3 and DLX1. RESULTS AND DISCUSSION: By crossing expression studies in 26 matched PCa and normal prostate transitional zone samples, and 35 matched seminal vesicle and PCa samples, 14 genes were identified. Similarly, 9 genes were overexpressed in 15 benign prostatic hypertrophy samples, as compared to PCa samples. Overall, we selected 8 genes of interest to evaluate their diagnostic performances in comparison with that of PCA3 and DLX1. Among them, 3 genes: CRYAB, KCNMA1 and SDPR, were overexpressed in all 3 reference non-cancerous tissues. The areas under ROC curves of these genes reached those of PCA3 (0.91 and DLX1 (0.94. CONCLUSIONS: We identified ARG with reduced expression in PCa and with significant diagnostic values for discriminating between cancerous and non-cancerous prostatic tissues, similar that of PCA3. Given their expression pattern, they could be considered as potentially protective against prostate cancer. Moreover, they could

  16. Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target

    Science.gov (United States)

    Asim, Mohammad; Massie, Charles E.; Orafidiya, Folake; Pértega-Gomes, Nelma; Warren, Anne Y.; Esmaeili, Mohsen; Selth, Luke A.; Zecchini, Heather I.; Luko, Katarina; Qureshi, Arham; Baridi, Ajoeb; Menon, Suraj; Madhu, Basetti; Escriu, Carlos; Lyons, Scott; Vowler, Sarah L.; Zecchini, Vincent R.; Shaw, Greg; Hessenkemper, Wiebke; Russell, Roslin; Mohammed, Hisham; Stefanos, Niki; Lynch, Andy G.; Grigorenko, Elena; D’Santos, Clive; Taylor, Chris; Lamb, Alastair; Sriranjan, Rouchelle; Yang, Jiali; Stark, Rory; Dehm, Scott M.; Rennie, Paul S.; Carroll, Jason S.; Griffiths, John R.; Tavaré, Simon; Mills, Ian G.; McEwan, Iain J.; Baniahmad, Aria; Tilley, Wayne D.; Neal, David E.

    2016-01-01

    Background: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling. Methods: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ2 tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided. Results: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts. Conclusions: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa. PMID:26657335

  17. SOCS2 mediates the cross talk between androgen and growth hormone signaling in prostate cancer

    DEFF Research Database (Denmark)

    Iglesias Gato, Diego; Chuan, Yin Choy; Wikström, Pernilla

    2014-01-01

    ) as mediator of the cross talk between androgens and GH signals in the prostate and its potential role as tumor suppressor in prostate cancer (PCa). We observed that SOCS2 protein levels assayed by immunohistochemistry are elevated in hormone therapy-naive localized prostatic adenocarcinoma in comparison...... of transcription 5 protein (STAT5) and androgen receptor-dependent transcription. Consequentially, SOCS2 inhibits GH activation of Janus kinase 2, Src and STAT5 as well as both cell invasion and cell proliferation in vitro. In vivo, SOCS2 limits proliferation and production of IGF-1 in the prostate in response......Anabolic signals such as androgens and the growth hormone/insulin-like growth factor 1 (GH/IGF-1) axis play an essential role in the normal development of the prostate but also in its malignant transformation. In this study, we investigated the role of suppressor of cytokine signaling 2 (SOCS2...

  18. Pituitary Androgen Receptor Signalling Regulates Prolactin but Not Gonadotrophins in the Male Mouse

    Science.gov (United States)

    O’Hara, Laura; Curley, Michael; Tedim Ferreira, Maria; Cruickshanks, Lyndsey; Milne, Laura; Smith, Lee B.

    2015-01-01

    Production of the androgen testosterone is controlled by a negative feedback loop within the hypothalamic-pituitary-gonadal (HPG) axis. Stimulation of testicular Leydig cells by pituitary luteinising hormone (LH) is under the control of hypothalamic gonadotrophin releasing hormone (GnRH), while suppression of LH secretion by the pituitary is controlled by circulating testosterone. Exactly how androgens exert their feedback control of gonadotrophin secretion (and whether this is at the level of the pituitary), as well as the role of AR in other pituitary cell types remains unclear. To investigate these questions, we exploited a transgenic mouse line (Foxg1Cre/+; ARfl/y) which lacks androgen receptor in the pituitary gland. Both circulating testosterone and gonadotrophins are unchanged in adulthood, demonstrating that AR signalling is dispensable in the male mouse pituitary for testosterone-dependent regulation of LH secretion. In contrast, Foxg1Cre/+; ARfl/y males have a significant increase in circulating prolactin, suggesting that, rather than controlling gonadotrophins, AR-signalling in the pituitary acts to suppress aberrant prolactin production in males. PMID:25799562

  19. Effect of highly bioaccumulated polychlorinated biphenyl congeners on estrogen and androgen receptor activity

    DEFF Research Database (Denmark)

    Bonefeld-Jørgensen, E.C.; Andersen, H. R.; Rasmussen, T.H.

    2001-01-01

    pleiotropic effects on the estrogen- and androgen-receptor. In MCF-7 cells a slightly increased cell proliferation was observed at low concentrations (1-10 nM) in cells co-treated with 0.01 nM 17 beta -Estradiol. whereas the compounds inhibited cell growth significantly at 1 and 10 muM. In reporter gene (ERE-tk-CAT...

  20. The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells.

    Science.gov (United States)

    Zhang, Jie; Liu, Dan; Zhang, Mengjun; Sun, Yuqi; Zhang, Xiaojun; Guan, Guannan; Zhao, Xiuli; Qiao, Mingxi; Chen, Dawei; Hu, Haiyang

    2016-01-01

    Polyamidoamine dendrimers, which can deliver drugs and genetic materials to resistant cells, are attracting increased research attention, but their transportation behavior in resistant cells remains unclear. In this paper, we performed a systematic analysis of the cellular uptake, intracellular transportation, and efflux of PAMAM-NH2 dendrimers in multidrug-resistant breast cancer cells (MCF-7/ADR cells) using sensitive breast cancer cells (MCF-7 cells) as the control. We found that the uptake rate of PAMAM-NH2 was much lower and exocytosis of PAMAM-NH2 was much greater in MCF-7/ADR cells than in MCF-7 cells due to the elimination of PAMAM-NH2 from P-glycoprotein and the multidrug resistance-associated protein in MCF-7/ADR cells. Macropinocytosis played a more important role in its uptake in MCF-7/ADR cells than in MCF-7 cells. PAMAM-NH2 aggregated and became more degraded in the lysosomal vesicles of the MCF-7/ADR cells than in those of the MCF-7 cells. The endoplasmic reticulum and Golgi complex were found to participate in the exocytosis rather than endocytosis process of PAMAM-NH2 in both types of cells. Our findings clearly showed the intracellular transportation process of PAMAM-NH2 in MCF-7/ADR cells and provided a guide of using PAMAM-NH2 as a drug and gene vector in resistant cells.

  1. TBECH, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane, alters androgen receptor regulation in response to mutations associated with prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kharlyngdoh, Joubert Banjop; Asnake, Solomon; Pradhan, Ajay; Olsson, Per-Erik, E-mail: per-erik.olsson@oru.se

    2016-09-15

    Point mutations in the AR ligand-binding domain (LBD) can result in altered AR structures leading to changes of ligand specificity and functions. AR mutations associated to prostate cancer (PCa) have been shown to result in receptor activation by non-androgenic substances and anti-androgenic drugs. Two AR mutations known to alter the function of anti-androgens are the AR{sub T877A} mutation, which is frequently detected mutation in PCa tumors and the AR{sub W741C} that is rare and has been derived in vitro following exposure of cells to the anti-androgen bicalutamide. AR activation by non-androgenic environmental substances has been suggested to affect PCa progression. In the present study we investigated the effect of AR mutations (AR{sub W741C} and AR{sub T877A}) on the transcriptional activation following exposure of cells to an androgenic brominated flame retardant, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane (TBECH, also named DBE-DBCH). The AR mutations resulted in higher interaction energies and increased transcriptional activation in response to TBECH diastereomer exposures. The AR{sub T877A} mutation rendered AR highly responsive to low levels of DHT and TBECH and led to increased AR nuclear translocation. Gene expression analysis showed a stronger induction of AR target genes in LNCaP cells (AR{sub T877A}) compared to T-47D cells (AR{sub WT}) following TBECH exposure. Furthermore, AR knockdown experiments confirmed the AR dependency of these responses. The higher sensitivity of AR{sub T877A} and AR{sub W741C} to low levels of TBECH suggests that cells with these AR mutations are more susceptible to androgenic endocrine disrupters. - Highlights: • TBECH, is an endocrine disrupting compound that differ in activity depending on AR structure and sequence. • TBECH interaction with the human AR-LBD containing the mutations W741C and T877A is increased compared to the wild type receptor • The mutations, W741C and T877A, are more potent than the wild type

  2. Chronic ethanol exposure induces SK-N-SH cell apoptosis by increasing N-methyl-D-aspartic acid receptor expression and intracellular calcium.

    Science.gov (United States)

    Wang, Hongbo; Wang, Xiaolong; Li, Yan; Yu, Hao; Wang, Changliang; Feng, Chunmei; Xu, Guohui; Chen, Jiajun; You, Jiabin; Wang, Pengfei; Wu, Xu; Zhao, Rui; Zhang, Guohua

    2018-04-01

    It has been identified that chronic ethanol exposure damages the nervous system, particularly neurons. There is scientific evidence suggesting that neuronal loss caused by chronic ethanol exposure has an association with neuron apoptosis and intracellular calcium oscillation is one of the primary inducers of apoptosis. Therefore, the present study aimed to investigate the inductive effects of intracellular calcium oscillation on apoptosis in SK-N-SH human neuroblastoma cells and the protective effects of the N-methyl-D-aspartic acid receptor (NMDAR) antagonist, memantine, on SK-N-SH cell apoptosis caused by chronic ethanol exposure. SK-N-SH cells were treated with 100 mM ethanol and memantine (4 µM) for 2 days. Protein expression of NR1 was downregulated by RNA interference (RNAi). Apoptosis was detected by Annexin V/propidium iodide (PI) double-staining and flow cytometry and cell viability was detected using an MTS kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration and the levels of NR1 and caspase-3 were detected using western blotting. NR1 mRNA levels were also detected using qPCR. It was found that chronic ethanol exposure reduced neuronal cell viability and caused apoptosis of SK-N-SH cells, and the extent of damage in SK-N-SH cells was associated with ethanol exposure concentration and time. In addition, chronic ethanol exposure increased the concentration of intracellular calcium in SK-N-SH cells by inducing the expression of NMDAR, resulting in apoptosis, and memantine treatment reduced ethanol-induced cell apoptosis. The results of the present study indicate that the application of memantine may provide a novel strategy for the treatment of alcoholic dementia.

  3. Ketamine Metabolites Enantioselectively Decrease Intracellular D-Serine Concentrations in PC-12 Cells.

    Directory of Open Access Journals (Sweden)

    Nagendra S Singh

    Full Text Available D-Serine is an endogenous NMDA receptor co-agonist that activates synaptic NMDA receptors modulating neuronal networks in the cerebral cortex and plays a key role in long-term potentiation of synaptic transmission. D-serine is associated with NMDA receptor neurotoxicity and neurodegeneration and elevated D-serine concentrations have been associated with Alzheimer's and Parkinsons' diseases and amyotrophic lateral sclerosis. Previous studies have demonstrated that the ketamine metabolites (rac-dehydronorketamine and (2S,6S-hydroxynorketamine decrease intracellular D-serine concentrations in a concentration dependent manner in PC-12 cells. In the current study, PC-12 cells were incubated with a series of ketamine metabolites and the IC50 values associated with attenuated intracellular D-serine concentrations were determined. The results demonstrate that structural and stereochemical features of the studied compounds contribute to the magnitude of the inhibitory effect with (2S,6S-hydroxynorketamine and (2R,6R-hydroxynorketamine displaying the most potent inhibition with IC50 values of 0.18 ± 0.04 nM and 0.68 ± 0.09 nM. The data was utilized to construct a preliminary 3D-QSAR/pharmacophore model for use in the design of new and more efficient modulators of D-serine.

  4. Effects of sodium on cell surface and intracellular 3H-naloxone binding sites

    International Nuclear Information System (INIS)

    Pollack, A.E.; Wooten, G.F.

    1987-01-01

    The binding of the opiate antagonist 3 H-naloxone was examined in rat whole brain homogenates and in crude subcellular fractions of these homogenates (nuclear, synaptosomal, and mitochondrial fractions) using buffers that approximated intra- (low sodium concentration) and extracellular (high sodium concentration) fluids. Saturation studies showed a two-fold decrease in the dissociation constant (Kd) in all subcellular fractions examined in extracellular buffer compared to intracellular buffer. In contrast, there was no significant effect of the buffers on the Bmax. Thus, 3 H-naloxone did not distinguish between binding sites present on cell surface and intracellular tissues in these two buffers. These results show that the sodium effect of opiate antagonist binding is probably not a function of altered selection of intra- and extracellular binding sites. 17 references, 2 tables

  5. Prenatal and adult androgen activities in alcohol dependence.

    Science.gov (United States)

    Lenz, B; Mühle, C; Braun, B; Weinland, C; Bouna-Pyrrou, P; Behrens, J; Kubis, S; Mikolaiczik, K; Muschler, M-R; Saigali, S; Sibach, M; Tanovska, P; Huber, S E; Hoppe, U; Eichler, A; Heinrich, H; Moll, G H; Engel, A; Goecke, T W; Beckmann, M W; Fasching, P A; Müller, C P; Kornhuber, J

    2017-07-01

    Alcohol dependence is more prevalent in men than in women. The evidence for how prenatal and adult androgens influence alcohol dependence is limited. We investigated the effects of prenatal and adult androgen activity on alcohol dependence. Moreover, we studied how the behaviours of pregnant women affect their children's prenatal androgen load. We quantified prenatal androgen markers (e.g., second-to-fourth finger length ratio [2D : 4D]) and blood androgens in 200 early-abstinent alcohol-dependent in-patients and 240 controls (2013-2015, including a 12-month follow-up). We also surveyed 134 women during pregnancy (2005-2007) and measured the 2D : 4D of their children (2013-2016). The prenatal androgen loads were higher in the male alcohol-dependent patients compared to the controls (lower 2D : 4D, P = 0.004) and correlated positively with the patients' liver transaminase activities (P alcohol withdrawal severity (P = 0.019). Higher prenatal androgen loads and increasing androgen levels during withdrawal predicted earlier and more frequent 12-month hospital readmission in alcohol-dependent patients (P alcohol (P = 0.010) and tobacco consumption (P = 0.017), and lifetime stressors (P = 0.019) of women during pregnancy related positively to their children's prenatal androgen loads (lower 2D : 4D). Androgen activities in alcohol-dependent patients and behaviours of pregnant women represent novel preventive and therapeutic targets of alcohol dependence. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Suppression of the increasing level of acetylcholine-stimulated intracellular Ca2+ in guinea pig airway smooth muscle cells by mabuterol.

    Science.gov (United States)

    Song, Xirui; Zhao, Chao; Dai, Cailing; Ren, Yanxin; An, Nan; Wen, Huimin; Pan, L I; Cheng, Maosheng; Zhang, Yuyang

    2015-11-01

    The present study aimed to establish an effective method for the in vitro culture of guinea pig airway smooth muscle (ASM) cells, and also investigate the suppressive effect of mabuterol hydrochloride (Mab) on the increased level of intracellular Ca 2+ in ASM cells induced with acetylcholine (Ach). Two different methods, i.e. with or without collagenase to pretreat tracheal tissues, were applied to the manufacture of ASM cells. Cell viability was determined with the 3-(4,5-dimethylthinazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Immunocytochemistry and immunofluorescence were used for the identification of ASM cells. Different concentration levels (10 -3 , 10 -4 , 10 -5 , 10 -6 and 10 -7 mmol/l) of Mab were administered 5 min before Ach (10 -4 M) treatment, respectively. The Ca 2+ fluorescent probe, Fura-2/AM or Fluo-3/AM were applied to the inspection of Ca 2+ fluorescent intensity with Varioskan Flash, immunocytometry systems and an inverted system microscope, respectively. The results showed that the fresh method, in which isolated tracheal tissues were previously treated with collagenase for 20 min, was more advantageous for the preparation of guinea pig ASM cells compared to when the enzyme was not used. The time for the ASM cells to initially migrate out of the 'tissue blocks' and the culture having to be generated due to the thick cell density was significantly less. On identification with immunocytochemistry or immunofluorescent staining, >95% of the cells were ASM cells. Mab (10 -3 -10 -7 mmol/l) significantly suppressed the elevation of intracellular Ca 2+ induced by Ach in a concentration-dependent manner. The inhibitory rates of intracellular Ca 2+ by different concentrations of Mab, from low to high, were 14.93, 24.73, 40.06, 48.54 and 57.13%, respectively, when Varioskan Flash was used for determination. In conclusion, this novel method has a shorter harvesting period for ASM cells. Mab can suppress the increasing level of intracellular Ca 2

  7. Intracellular expression of toll-like receptor 4 in neuroblastoma cells and their unresponsiveness to lipopolysaccharide

    International Nuclear Information System (INIS)

    Hassan, Ferdaus; Islam, Shamima; Tumurkhuu, Gantsetseg; Naiki, Yoshikazu; Koide, Naoki; Mori, Isamu; Yoshida, Tomoaki; Yokochi, Takashi

    2006-01-01

    Recently it has been reported that, toll-like receptors (TLRs) are expressed on a series of tumor cells, such as colon cancer, breast cancer, prostate cancer, melanoma and lung cancer. Although some cancer cells like melanoma cells are known to respond to lipopolysaccharide (LPS) via TLR4, not all cancer cells are positive for TLR4. There is little information on the expression and function of TLR4 in neuroblastoma cells. In this study, we investigated the expression of TLR4 in human neuroblastoma NB-1 cell line. Expression and localization of TLR4 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometric analysis, respectively. Activation of nuclear factor (NF)-κB by LPS was detected by degradation of IκB-α and NF-κB luciferase assay. Activation and expression of mitogen-activated protein (MAP) kinase and interferon regulatory factor (IRF)-3 was detected by immunoblot analysis. Human NB-1 neuroblastoma cells expressed intracellular form of TLR4, but not the cell surface form. Further, NB-1 cells express CD14, MD2 and MyD88, which are required for LPS response. However, LPS did not significantly induce NF-κB activation in NB-1 cells although it slightly degraded IκB-α. NB-1 cells expressed no IRF-3, which plays a pivotal role on the MyD88-independent pathway of LPS signaling. Collectively, NB-1 cells are capable to avoid their response to LPS. Although human NB-1 neuroblastoma cells possessed all the molecules required for LPS response, they did not respond to LPS. It might be responsible for intracellular expression of TLR4 or lack of IRF-3

  8. Collective Dynamics of Intracellular Water in Living Cells

    International Nuclear Information System (INIS)

    Orecchini, A; Sebastiani, F; Paciaroni, A; Petrillo, C; Sacchetti, F; Jasnin, M; Francesco, A De; Zaccai, G; Moulin, M; Haertlein, M

    2012-01-01

    Water dynamics plays a fundamental role for the fulfillment of biological functions in living organisms. Decades of hydrated protein powder studies have revealed the peculiar dynamical properties of hydration water with respect to pure water, due to close coupling interactions with the macromolecule. In such a framework, we have studied coherent collective dynamics in protein and DNA hydration water. State-of-the-art neutron instrumentation has allowed us to observe the propagation of coherent density fluctuations within the hydration shell of the biomolecules. The corresponding dispersion curves resulted to be only slightly affected by the coupling with the macromolecules. Nevertheless, the effects of the interaction appeared as a marked increase of the mode damping factors, which suggested a destructuring of the water hydrogen-bond network. Such results were interpreted as the signature of a 'glassy' dynamical character of macromolecule hydration water, in agreement with indications from measurements of the density of vibrational states. Extending the investigations to living organisms at physiological conditions, we present here an in-vivo study of collective dynamics of intracellular water in Escherichia coli cells. The cells and water were fully deuterated to minimise the incoherent neutron scattering background. The water dynamics observed in the living cells is discussed in terms of the dynamics of pure bulk water and that of hydration water measured in powder samples.

  9. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  10. Enzalutamide inhibits proliferation of gemcitabine-resistant bladder cancer cells with increased androgen receptor expression.

    Science.gov (United States)

    Kameyama, Koji; Horie, Kengo; Mizutani, Kosuke; Kato, Taku; Fujita, Yasunori; Kawakami, Kyojiro; Kojima, Toshio; Miyazaki, Tatsuhiko; Deguchi, Takashi; Ito, Masafumi

    2017-01-01

    Advanced bladder cancer is treated mainly with gemcitabine and cisplatin, but most patients eventually become resistance. Androgen receptor (AR) signaling has been implicated in bladder cancer as well as other types of cancer including prostate cancer. In this study, we investigated the expression and role of AR in gemcitabine-resistant bladder cancer cells and also the potential of enzalutamide, an AR inhibitor, as a therapeutic for the chemoresistance. First of all, we established gemcitabine-resistant T24 cells (T24GR) from T24 bladder cancer cells and performed gene expression profiling. Microarray analysis revealed upregulation of AR expression in T24GR cells compared with T24 cells. AR mRNA and protein expression was confirmed to be increased in T24GR cells, respectively, by quantitative RT-PCR and western blot analysis, which was associated with more potent AR transcriptional activity as measured by luciferase reporter assay. The copy number of AR gene in T24GR cells determined by PCR was twice as many as that of T24 cells. AR silencing by siRNA transfection resulted in inhibition of proliferation of T24GR cells. Cell culture in charcoal-stripped serum and treatment with enzalutamide inhibited growth of T24GR cells, which was accompanied by cell cycle arrest. AR transcriptional activity was found to be reduced in T24GR cells by enzalutamide treatment. Lastly, enzalutamide also inhibited cell proliferation of HTB5 bladder cancer cells that express AR and possess intrinsic resistance to gemcitabine. Our results suggest that enzalutamide may have the potential to treat patients with advanced gemcitabine-resistant bladder cancer with increased AR expression.

  11. Androgen receptor expression on circulating tumor cells in metastatic breast cancer.

    Directory of Open Access Journals (Sweden)

    Takeo Fujii

    Full Text Available Androgen receptor (AR is frequently detected in breast cancers, and AR-targeted therapies are showing activity in AR-positive (AR+ breast cancer. However, the role of AR in breast cancers is still not fully elucidated and the biology of AR in breast cancer remains incompletely understood. Circulating tumor cells (CTCs can serve as prognostic and diagnostic tools, prompting us to measure AR protein expression and conduct genomic analyses on CTCs in patients with metastatic breast cancer.Blood samples from patients with metastatic breast cancer were deposited on glass slides, subjected to nuclear staining with DAPI, and reacted with fluorescent-labeled antibodies to detect CD45, cytokeratin (CK, and biomarkers of interest (AR, estrogen receptor [ER], and HER2 on all nucleated cells. The stained slides were scanned and enumerated by non-enrichment-based non-biased approach independent of cell surface epithelial cell adhesion molecule (EpCAM using the Epic Sciences CTC platform. Data were analyzed using established digital pathology algorithms.Of 68 patients, 51 (75% had at least 1 CTC, and 49 of these 51 (96% had hormone-receptor-positive (HR+/HER2-negative primary tumors. AR was expressed in CK+ CTCs in 10 patients. Of these 10 patients, 3 also had ER expression in CK+ CTCs. Single cell genomic analysis of 78 CTCs from 1 of these 3 patients identified three distinct copy number patterns. AR+ cells had a lower frequency of chromosomal changes than ER+ and HER2+ cells.CTC enumeration and analysis using no enrichment or selection provides a non-biased approach to detect AR expression and chromosomal aberrations in CTCs in patients with metastatic breast cancer. The heterogeneity of intrapatient AR expression in CTCs leads to the new hypothesis that patients with AR+ CTCs have heterogeneous disease with multiple drivers. Further studies are warranted to investigate the clinical applicability of AR+ CTCs and their heterogeneity.

  12. Growth Inhibition by Testosterone in an Androgen Receptor Splice Variant-Driven Prostate Cancer Model.

    Science.gov (United States)

    Nakata, Daisuke; Nakayama, Kazuhide; Masaki, Tsuneo; Tanaka, Akira; Kusaka, Masami; Watanabe, Tatsuya

    2016-12-01

    Castration resistance creates a significant problem in the treatment of prostate cancer. Constitutively active splice variants of androgen receptor (AR) have emerged as drivers for resistance to androgen deprivation therapy, including the next-generation androgen-AR axis inhibitors abiraterone and enzalutamide. In this study, we describe the characteristics of a novel castration-resistant prostate cancer (CRPC) model, designated JDCaP-hr (hormone refractory). JDCaP-hr was established from an androgen-dependent JDCaP xenograft model after surgical castration. The expression of AR and its splice variants in JDCaP-hr was evaluated by immunoblotting and quantitative reverse transcription-polymerase chain reaction. The effects of AR antagonists and testosterone on JDCaP-hr were evaluated in vivo and in vitro. The roles of full-length AR (AR-FL) and AR-V7 in JDCaP-hr cell growth were evaluated using RNA interference. JDCaP-hr acquired a C-terminally truncated AR protein during progression from the parental JDCaP. The expression of AR-FL and AR-V7 mRNA was upregulated by 10-fold in JDCaP-hr compared with that in JDCaP, indicating that the JDCaP and JDCaP-hr models simulate castration resistance with some clinical features, such as overexpression of AR and its splice variants. The AR antagonist bicalutamide did not affect JDCaP-hr xenograft growth, and importantly, testosterone induced tumor regression. In vitro analysis demonstrated that androgen-independent prostate-specific antigen secretion and cell proliferation of JDCaP-hr were predominantly mediated by AR-V7. JDCaP-hr cell growth displayed a bell-shaped dependence on testosterone, and it was suppressed by physiological concentrations of testosterone. Testosterone induced rapid downregulation of both AR-FL and AR-V7 expression at physiological concentrations and suppressed expression of the AR target gene KLK3. Our findings support the clinical value of testosterone therapy, including bipolar androgen therapy, in the

  13. A Novel Dietary Flavonoid Fisetin Inhibits Androgen Receptor Signaling and Tumor Growth in Athymic Nude Mice

    Science.gov (United States)

    Khan, Naghma; Asim, Mohammad; Afaq, Farrukh; Zaid, Mohammad Abu; Mukhtar, Hasan

    2010-01-01

    Androgen receptor (AR)–mediated signaling plays an important role in the development and progression of prostate cancer (PCa). Hormonal therapies, mainly with combinations of antiandrogens and androgen deprivation, are the mainstay treatment for advanced disease. However, emergence of androgen resistance largely due to inefficient antihormone action limits their therapeutic usefulness. Here, we report that fisetin, a novel dietary flavonoid, acts as a novel AR ligand by competing with the high-affinity androgen to interact with the ligand binding domain of AR. We show that this physical interaction results in substantial decrease in AR stability and decrease in amino-terminal/carboxyl-terminal (N-C) interaction of AR. This results in blunting of AR-mediated transactivation of target genes including prostate-specific antigen (PSA). In addition, treatment of LNCaP cells with fisetin decreased AR protein levels, in part, by decreasing its promoter activity and by accelerating its degradation. Fisetin also synergized with Casodex in inducing apoptosis in LNCaP cells. Treatment with fisetin in athymic nude mice implanted with AR-positive CWR22Rυ1 human PCa cells resulted in inhibition of tumor growth and reduction in serum PSA levels. These data identify fisetin as an inhibitor of AR signaling axis and suggest that it could be a useful chemopreventive and chemotherapeutic agent to delay progression of PCa. PMID:18922931

  14. Skeletal (stromal) stem cells: an update on intracellular signaling pathways controlling osteoblast differentiation.

    Science.gov (United States)

    Abdallah, Basem M; Jafari, Abbas; Zaher, Walid; Qiu, Weimin; Kassem, Moustapha

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy for identifying druggable targets for enhancing bone formation. This review will discuss the functions and the molecular mechanisms of action on osteoblast differentiation and bone formation; of a number of recently identified regulatory molecules: the non-canonical Notch signaling molecule Delta-like 1/preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Neural protein gamma-synuclein interacting with androgen receptor promotes human prostate cancer progression

    International Nuclear Information System (INIS)

    Chen, Junyi; Jiao, Li; Xu, Chuanliang; Yu, Yongwei; Zhang, Zhensheng; Chang, Zheng; Deng, Zhen; Sun, Yinghao

    2012-01-01

    Gamma-synuclein (SNCG) has previously been demonstrated to be significantly correlated with metastatic malignancies; however, in-depth investigation of SNCG in prostate cancer is still lacking. In the present study, we evaluated the role of SNCG in prostate cancer progression and explored the underlying mechanisms. First, alteration of SNCG expression in LNCaP cell line to test the ability of SNCG on cellular properties in vitro and vivo whenever exposing with androgen or not. Subsequently, the Dual-luciferase reporter assays were performed to evaluate whether the role of SNCG in LNCaP is through AR signaling. Last, the association between SNCG and prostate cancer progression was assessed immunohistochemically using a series of human prostate tissues. Silencing SNCG by siRNA in LNCaP cells contributes to the inhibition of cellular proliferation, the induction of cell-cycle arrest at the G1 phase, the suppression of cellular migration and invasion in vitro, as well as the decrease of tumor growth in vivo with the notable exception of castrated mice. Subsequently, mechanistic studies indicated that SNCG is a novel androgen receptor (AR) coactivator. It interacts with AR and promotes prostate cancer cellular growth and proliferation by activating AR transcription in an androgen-dependent manner. Finally, immunohistochemical analysis revealed that SNCG was almost undetectable in benign or androgen-independent tissues prostate lesions. The high expression of SNCG is correlated with peripheral and lymph node invasion. Our data suggest that SNCG may serve as a biomarker for predicting human prostate cancer progression and metastasis. It also may become as a novel target for biomedical therapy in advanced prostate cancer

  16. Drosophila heart cell movement to the midline occurs through both cell autonomous migration and dorsal closure.

    Science.gov (United States)

    Haack, Timm; Schneider, Matthias; Schwendele, Bernd; Renault, Andrew D

    2014-12-15

    The Drosophila heart is a linear organ formed by the movement of bilaterally specified progenitor cells to the midline and adherence of contralateral heart cells. This movement occurs through the attachment of heart cells to the overlying ectoderm which is undergoing dorsal closure. Therefore heart cells are thought to move to the midline passively. Through live imaging experiments and analysis of mutants that affect the speed of dorsal closure we show that heart cells in Drosophila are autonomously migratory and part of their movement to the midline is independent of the ectoderm. This means that heart formation in flies is more similar to that in vertebrates than previously thought. We also show that defects in dorsal closure can result in failure of the amnioserosa to properly degenerate, which can physically hinder joining of contralateral heart cells leading to a broken heart phenotype. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Poly[3-(3, 4-dihydroxyphenyl) glyceric acid] from Comfrey exerts anti-cancer efficacy against human prostate cancer via targeting androgen receptor, cell cycle arrest and apoptosis.

    Science.gov (United States)

    Shrotriya, Sangeeta; Gagan, Deep; Ramasamy, Kumaraguruparan; Raina, Komal; Barbakadze, Vakhtang; Merlani, Maia; Gogilashvili, Lali; Amiranashvili, Lela; Mulkijanyan, Karen; Papadopoulos, Kyriakos; Agarwal, Chapla; Agarwal, Rajesh

    2012-08-01

    The major obstacles in human prostate cancer (PCA) treatment are the development of resistance to androgen ablation therapy leading to hormone-refractory state and the toxicity associated with chemotherapeutic drugs. Thus, the identification of additional non-toxic agents that are effective against both androgen-dependent and androgen-independent PCA is needed. In the present study, we investigated the efficacy of a novel phytochemical poly[3-(3, 4-dihydroxyphenyl)glyceric acid] (p-DGA) from Caucasian species of comfrey (Symphytum caucasicum) and its synthetic derivative syn-2, 3-dihydroxy-3-(3, 4-dihydroxyphenyl) propionic acid (m-DGA) against PCA LNCaP and 22Rv1 cells. We found that both p-DGA and m-DGA suppressed the growth and induced death in PCA cells, with comparatively lesser cytotoxicity towards non-neoplastic human prostate epithelial cells. Furthermore, we also found that both p-DGA and m-DGA caused G(1) arrest in PCA cells through modulating the expression of cell cycle regulators, especially an increase in CDKIs (p21 and p27). In addition, p-DGA and m-DGA induced apoptotic death by activating caspases, and also strongly decreased AR and PSA expression. Consistent with in vitro results, our in vivo study showed that p-DGA feeding strongly inhibited 22Rv1 tumors growth by 76% and 88% at 2.5 and 5mg/kg body weight doses, respectively, without any toxicity, together with a strong decrease in PSA level in plasma; and a decrease in PCNA, AR and PSA expression but increase in p21/p27 expression and apoptosis in tumor tissues from p-DGA-fed mice. Overall, present study identifies p-DGA as a potent agent against PCA without any toxicity, and supports its clinical application.

  18. Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hnida, Christina; Larsen, John Christian

    2000-01-01

    Nine structurally different polycyclic aromatic hydrocarbons (PAHs) were tested for their ability to either agonize or antagonize the human androgen receptor (hAR) in a sensitive reporter gene assay based on CHO cells transiently cotransfected with a hAR vector and an MMTV-LUC vector. Benz...

  19. A dual character of flavonoids in influenza A virus replication and spread through modulating cell-autonomous immunity by MAPK signaling pathways

    Science.gov (United States)

    Dong, Wenjuan; Wei, Xiuli; Zhang, Fayun; Hao, Junfeng; Huang, Feng; Zhang, Chunling; Liang, Wei

    2014-01-01

    Flavonoids are well known as a large class of polyphenolic compounds, which have a variety of physiological activities, including anti-influenza virus activity. The influenza A/WSN/33 infected A549 cells have been used to screen anti-influenza virus drugs from natural flavonoid compounds library. Unexpectedly, some flavonoid compounds significantly inhibited virus replication, while the others dramatically promoted virus replication. In this study, we attempted to understand these differences between flavonoid compounds in their antivirus mechanisms. Hesperidin and kaempferol were chosen as representatives of both sides, each of which exhibited the opposite effects on influenza virus replication. Our investigation revealed that the opposite effects produced by hesperidin and kaempferol on influenza virus were due to inducing the opposite cell-autonomous immune responses by selectively modulating MAP kinase pathways: hesperidin up-regulated P38 and JNK expression and activation, thus resulting in the enhanced cell-autonomous immunity; while kaempferol dramatically down-regulated p38 and JNK expression and activation, thereby suppressing cell-autonomous immunity. In addition, hesperidin restricted RNPs export from nucleus by down-regulating ERK activation, but kaempferol promoted RNPs export by up-regulating ERK activation. Our findings demonstrate that a new generation of anti-influenza virus drugs could be developed based on selective modulation of MAP kinase pathways to stimulate cell-autonomous immunity. PMID:25429875

  20. Expression of orphan G-protein coupled receptor GPR174 in CHO cells induced morphological changes and proliferation delay via increasing intracellular cAMP

    Energy Technology Data Exchange (ETDEWEB)

    Sugita, Kazuya; Yamamura, Chiaki; Tabata, Ken-ichi [Laboratory of Pharmacoinformatics, Graduate School of Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Fujita, Norihisa, E-mail: nori@ph.ritsumei.ac.jp [Laboratory of Pharmacoinformatics, Graduate School of Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); School of Pharmacy, Ristumeikan University, Kusatsu, Shiga 525-8577 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Expression of GPR174 in CHO cells induces morphological changes and proliferation delay. Black-Right-Pointing-Pointer These are due to increase in intracellular cAMP concentration. Black-Right-Pointing-Pointer Lysophosphatidylserine was identified to stimulate GPR174 leading to activate ACase. Black-Right-Pointing-Pointer The potencies of fatty acid moiety on LysoPS were oleoyl Greater-Than-Or-Slanted-Equal-To stearoyl > palmitoyl. Black-Right-Pointing-Pointer We propose that GPR174 is a lysophosphatidylserine receptor. -- Abstract: We established cell lines that stably express orphan GPCR GPR174 using CHO cells, and studied physiological and pharmacological features of the receptor. GPR174-expressing cells showed cell-cell adhesion with localization of actin filaments to cell membrane, and revealed significant delay of cell proliferation. Since the morphological changes of GPR174-cells were very similar to mock CHO cells treated with cholera toxin, we measured the concentration of intracellular cAMP. The results showed the concentration was significantly elevated in GPR174-cells. By measuring intracellular cAMP concentration in GPR174-cells, we screened lipids and nucleotides to identify ligands for GPR174. We found that lysophosphatidylserine (LysoPS) stimulated increase in intracellular cAMP in a dose-dependent manner. Moreover, phosphorylation of Erk was elevated by LysoPS in GPR174 cells. These LysoPS responses were inhibited by NF449, an inhibitor of G{alpha}{sub s} protein. These results suggested that GPR174 was a putative LysoPS receptor conjugating with G{alpha}{sub s}, and its expression induced morphological changes in CHO cells by constitutively activating adenylyl cycles accompanied with cell conjunctions and delay of proliferation.

  1. Microwave mediated radiosynthesis of [F-18] FLT and its in-vitro study with androgen independent human prostate cancer cell line (PC-3)

    International Nuclear Information System (INIS)

    Ponde, D.E.; Dence, C.S.; Oyama, N.; Welch, M.J.

    2003-01-01

    The aim of this work was to improve the radiosynthesis of [F-18] FLT and to study its usefulness in monitoring change of proliferative activity of prostate cancer cells in the early phase of therapy. Method: Starting with anhydrothymidine, [F-18] FLT was synthesized by microwave mediated nucleophilic displacement by fluoride ion followed by acid hydrolysis in a synthesis time of just 55 minutes, which included Oasis solid phase and HPLC purification. The total radiochemical yield was 10-15% (at EOS), and the radiochemical purity was >99%. An in vitro study was carried out with androgen-independent human prostate cancer cell line PC-3. Two X 10e5 cells were seeded in 6 well plates with Ham's F-12K medium with 2 mM L-glutamine adjusted to contain 1.5 g/L sodium bicarbonate supplemented with 10% heat activated FBS. One day later, PC-3 cells were at 50% confluent, the media was removed and the cells divided into two groups. In one group, cells were suspended in fresh media as above with 10% FBS, whereas in the other group cells were suspended in fresh media as above but without serum. Twenty-four hours later, [F-18] FLT was added to each flask (n=3). The cell-associated uptake of [F-18] FLT at 37 deg C was determined at 0, 1, 3, and 6 h after incubation. [F-18] FLT uptake in PC-3 cells decreased by 55% (from 9% to 4%) after 24h incubation with serum free media, indicating its potential usefulness to monitor cell proliferation in androgen-independent human prostate cancer. Studies to ascertain the uptake-mechanism are in the way. NIH grant HL13851

  2. The sexually dimorphic adipose fin is an androgen target tissue in the brown trout (Salmo trutta fario).

    Science.gov (United States)

    Hisar, Olcay; Sönmez, Adem Yavuz; Hisar, Şükriye Aras; Budak, Harun; Gültepe, Nejdet

    2013-04-01

    An investigation has been described on the relationship of body length, age and sex with adipose fin length and the number of androgen receptor (AR)-containing cells in the adipose fin as a secondary sexual characteristic for brown trout (Salmo trutta fario). Firstly, body and adipose fin lengths of 2- to 5-year-old brown trout were measured. Thereafter, these fish were killed by decapitation, then their sexes were determined, and adipose fins were excised. The cellular bases of AR binding activities in the adipose fins were analyzed with an antibody against human/rat AR peptide. Immunocytochemistry and western blotting techniques were performed with this antibody. Analysis of morphological measurements indicated that body length and age had a linear relationship with adipose fin length. The coefficients of determination for the body length and age were 0.92 and 0.85 in the male fish and 0.76 and 0.73 in the female fish against the adipose fin length, respectively. At 2 years of age, cells in the adipose fin did not exhibit AR immunoreactivity. However, AR-immunopositive cells were abundant in the adipose fin of 3- to 5-year-old fish. Moreover, the number of AR-immunopositive cells was significantly (P brown trout is a probable target for androgen action and that tissue function or development may to some extent be androgen dependent. In addition, it is likely that such an effect will be mediated by specific androgen receptors.

  3. Determination of Intracellular Vitrification Temperatures for Unicellular Micro Organisms under Conditions Relevant for Cryopreservation.

    Science.gov (United States)

    Fonseca, Fernanda; Meneghel, Julie; Cenard, Stéphanie; Passot, Stéphanie; Morris, G John

    2016-01-01

    During cryopreservation ice nucleation and crystal growth may occur within cells or the intracellular compartment may vitrify. Whilst previous literature describes intracellular vitrification in a qualitative manner, here we measure the intracellular vitrification temperature of bacteria and yeasts under conditions relevant to cryopreservation, including the addition of high levels of permeating and nonpermeating additives and the application of rapid rates of cooling. The effects of growth conditions that are known to modify cellular freezing resistance on the intracellular vitrification temperature are also examined. For bacteria a plot of the activity on thawing against intracellular glass transition of the maximally freeze-concentrated matrix (Tg') shows that cells with the lowest value of intracellular Tg' survive the freezing process better than cells with a higher intracellular Tg'. This paper demonstrates the role of the physical state of the intracellular environment in determining the response of microbial cells to preservation and could be a powerful tool to be manipulated to allow the optimization of methods for the preservation of microorganisms.

  4. Evidence for an intracellular niche for Bordetella pertussis in broncho-alveolar lavage cells of mice

    NARCIS (Netherlands)

    Hellwig, SMM; Hazenbos, WLW; van de Winkel, JGJ; Mooi, FR

    1999-01-01

    Bordetella pertussis can attach, invade and survive intracellularly in human macrophages in vitro. To study the significance of this bacterial feature in vivo, we analyzed the presence of viable bacteria in broncho-alveolar lavage (BAL) cells of mice infected with B, pertussis. We found B. pertussis

  5. Expression of Androgen Receptor Is Negatively Regulated By p53

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-12-01

    Full Text Available Increased expression of androgen receptor (AR in prostate cancer (PC is associated with transition to androgen independence. Because the progression of PC to advanced stages is often associated with the loss of p53 function, we tested whether the p53 could regulate the expression of AR gene. Here we report that p53 negatively regulates the expression of AR in prostate epithelial cells (PrECs. We found that in LNCaP human prostate cancer cells that express the wild-type p53 and AR and in human normal PrECs, the activation of p53 by genotoxic stress or by inhibition of p53 nuclear export downregulated the expression of AR. Furthermore, forced expression of p53 in LNCaP cells decreased the expression of AR. Conversely, knockdown of p53 expression in LNCaP cells increased the AR expression. Consistent with the negative regulation of AR expression by p53, the p53-null HCT116 cells expressed higher levels of AR compared with the isogenic HCT116 cells that express the wildtype p53. Moreover, we noted that in etoposide treated LNCaP cells p53 bound to the promoter region of the AR gene, which contains a potential p53 DNA-binding consensus sequence, in chromatin immunoprecipitation assays. Together, our observations provide support for the idea that the loss of p53 function in prostate cancer cells contributes to increased expression of AR.

  6. Inhibitory effect of red ginseng acidic polysaccharide from Korean red ginseng on phagocytic activity and intracellular replication of Brucella abortus in RAW 264.7 cells.

    Science.gov (United States)

    Reyes, Alisha Wehdnesday Bernardo; Simborio, Hannah Leah Tadeja; Hop, Huynh Tan; Arayan, Lauren Togonon; Min, Won Gi; Lee, Hu Jang; Rhee, Man Hee; Chang, Hong Hee; Kim, Suk

    2016-09-30

    Korean red ginseng (KRG) has long been used in traditional Korean and Oriental medicine. However, the anti-bacterial mechanism and therapeutic efficiency of KGR for intracellular Brucella infection are still unclear. In this study, the bactericidal activity of Korean red ginseng acidic polysaccharide (RGAP) on Brucella (B.) abortus and its cytotoxic effects on RAW 264.7 cells were evaluated. In addition, B. abortus internalization and intracellular replication in macrophages were investigated after RGAP treatment. RGAP-incubated cells displayed a marked reduction in the adherence, internalization and intracellular growth of B. abortus in macrophages. Furthermore, decreased F-actin fluorescence was observed relative to untreated B. abortus-infected cells. Western blot analysis of intracellular signaling proteins revealed reduced ERK, JNK and p38α phosphorylation levels in B. abortus-infected RGAP-treated cells compared to the control. Moreover, elevated co-localization of B. abortus-containing phagosomes with lysosome-associated membrane protein 1 (LAMP-1) were observed in RGAP-treated cells compared with the control. Overall, the results of this study suggest that RGAP can disrupt phagocytic activity of B. abortus via suppression of mitogen-activated protein kinases (MAPKs) signaling proteins ERK, JNK and p38 levels and inhibit intracellular replication of B. abortus by enhancing phagolysosome fusion, which may provide an alternative control of brucellosis.

  7. Antisense-MDM2 Sensitizes LNCaP Prostate Cancer Cells to Androgen Deprivation, Radiation, and the Combination In Vivo

    International Nuclear Information System (INIS)

    Stoyanova, Radka; Hachem, Paul; Hensley, Harvey; Khor, L.-Y.; Mu Zhaomei; Hammond, M. Elizabeth H.; Agrawal, Sudhir; Pollack, Alan

    2007-01-01

    Purpose: To test the effects of antisense (AS)-MDM2 alone and with androgen deprivation (AD), radiotherapy (RT), and AD + RT on wild-type LNCaP cells in an orthotopic in vivo model. Methods: Androgen-sensitive LNCaP cells were grown in the prostates of nude mice. Magnetic resonance imaging-based tumor volume and serum prostate-specific antigen (PSA) measurements were used to assess effects on tumor response. Tumor response was measured by biochemical and tumor volume failure definitions and doubling time estimates from fitted PSA and tumor volume growth curves. Expression of MDM2, p53, p21, and Ki-67 was quantified using immunohistochemical staining and image analysis of formalin-fixed tissue, analogous to methods used clinically. Results: Antisense-MDM2 significantly inhibited the growth of LNCaP tumors over the mismatch controls. The most significant increase in tumor growth delay and tumor doubling time was from AS-MDM2 + AD + RT, although the effect of AS-MDM2 + AD was substantial. Expression of MDM2 was significantly reduced by AS-MDM2 in the setting of RT. Conclusions: This is the first in vivo investigation of the effects of AS-MDM2 in an orthotopic model and the first to demonstrate incremental sensitization when added to AD and AD + RT. The results with AD underscore the potential to affect micrometastatic disease, which is probably responsible for treatment failure in 30-40% of men with high-risk disease

  8. Genetics Home Reference: androgen insensitivity syndrome

    Science.gov (United States)

    ... Androgen insensitivity syndrome is a condition that affects sexual development before birth and during puberty. People with this ... characteristics or signs of both male and female sexual development. Complete androgen insensitivity syndrome occurs when the body ...

  9. Androgen regulated genes in human prostate xenografts in mice: relation to BPH and prostate cancer.

    Directory of Open Access Journals (Sweden)

    Harold D Love

    2009-12-01

    Full Text Available Benign prostatic hyperplasia (BPH and prostate carcinoma (CaP are linked to aging and the presence of androgens, suggesting that androgen regulated genes play a major role in these common diseases. Androgen regulation of prostate growth and development depends on the presence of intact epithelial-stromal interactions. Further, the prostatic stroma is implicated in BPH. This suggests that epithelial cell lines are inadequate to identify androgen regulated genes that could contribute to BPH and CaP and which could serve as potential clinical biomarkers. In this study, we used a human prostate xenograft model to define a profile of genes regulated in vivo by androgens, with an emphasis on identifying candidate biomarkers. Benign transition zone (TZ human prostate tissue from radical prostatectomies was grafted to the sub-renal capsule site of intact or castrated male immunodeficient mice, followed by the removal or addition of androgens, respectively. Microarray analysis of RNA from these tissues was used to identify genes that were; 1 highly expressed in prostate, 2 had significant expression changes in response to androgens, and, 3 encode extracellular proteins. A total of 95 genes meeting these criteria were selected for analysis and validation of expression in patient prostate tissues using quantitative real-time PCR. Expression levels of these genes were measured in pooled RNAs from human prostate tissues with varying severity of BPH pathologic changes and CaP of varying Gleason score. A number of androgen regulated genes were identified. Additionally, a subset of these genes were over-expressed in RNA from clinical BPH tissues, and the levels of many were found to correlate with disease status. Our results demonstrate the feasibility, and some of the problems, of using a mouse xenograft model to characterize the androgen regulated expression profiles of intact human prostate tissues.

  10. Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1

    OpenAIRE

    Lin, Hui-Ping; Lin, Ching-Yu; Huo, Chieh; Hsiao, Ping-Hsuan; Su, Liang-Cheng; Jiang, Shih Sheng; Chan, Tzu-Min; Chang, Chung-Ho; Chen, Li-Tzong; Kung, Hsing-Jien; Wang, Horng-Dar; Chuu, Chih-Pin

    2015-01-01

    Prostate cancer (PCa) patients receiving the androgen ablation therapy ultimately develop recurrent castration-resistant prostate cancer (CRPC) within 1?3 years. Treatment with caffeic acid phenethyl ester (CAPE) suppressed cell survival and proliferation via induction of G1 or G2/M cell cycle arrest in LNCaP 104-R1, DU-145, 22Rv1, and C4?2 CRPC cells. CAPE treatment also inhibited soft agar colony formation and retarded nude mice xenograft growth of LNCaP 104-R1 cells. We identified that CAP...

  11. Mutation of androgen receptor N-terminal phosphorylation site Tyr-267 leads to inhibition of nuclear translocation and DNA binding.

    Directory of Open Access Journals (Sweden)

    Mehmet Karaca

    Full Text Available Reactivation of androgen receptor (AR may drive recurrent prostate cancer in castrate patients. Ack1 tyrosine kinase is overexpressed in prostate cancer and promotes castrate resistant xenograft tumor growth and enhances androgen target gene expression and AR recruitment to enhancers. Ack1 phosphorylates AR at Tyr-267 and possibly Tyr-363, both in the N-terminal transactivation domain. In this study, the role of these phosphorylation sites was investigated by characterizing the phosphorylation site mutants in the context of full length and truncated AR lacking the ligand-binding domain. Y267F and Y363F mutants showed decreased transactivation of reporters. Expression of wild type full length and truncated AR in LNCaP cells increased cell proliferation in androgen-depleted conditions and increased colony formation. However, the Y267F mutant of full length and truncated AR was defective in stimulating cell proliferation. The Y363F mutant was less severely affected than the Y267F mutant. The full length AR Y267F mutant was defective in nuclear translocation induced by androgen or Ack1 kinase. The truncated AR was constitutively localized to the nucleus. Chromatin immunoprecipitation analysis showed that it was recruited to the target enhancers without androgen. The truncated Y267F AR mutant did not exhibit constitutive nuclear localization and androgen enhancer binding activity. These results support the concept that phosphorylation of Tyr-267, and to a lesser extent Tyr-363, is required for AR nuclear translocation and recruitment and DNA binding and provide a rationale for development of novel approaches to inhibit AR activity.

  12. Releasing intracellular product to prepare whole cell biocatalyst for biosynthesis of Monascus pigments in water-edible oil two-phase system.

    Science.gov (United States)

    Hu, Minglue; Zhang, Xuehong; Wang, Zhilong

    2016-11-01

    Selective releasing intracellular product in Triton X-100 micelle aqueous solution to prepare whole cell biocatalyst is a novel strategy for biosynthesis of Monascus pigments, in which cell suspension culture exhibits some advantages comparing with the corresponding growing cell submerged culture. In the present work, the nonionic surfactant Triton X-100 was successfully replaced by edible plant oils for releasing intracellular Monascus pigments. High concentration of Monascus pigments (with absorbance nearly 710 AU at 470 nm in the oil phase, normalized to the aqueous phase volume approximately 142 AU) was achieved by cell suspension culture in peanut oil-water two-phase system. Furthermore, the utilization of edible oil as extractant also fulfills the demand for application of Monascus pigments as natural food colorant.

  13. Intracellular expression of toll-like receptor 4 in neuroblastoma cells and their unresponsiveness to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Mori Isamu

    2006-12-01

    Full Text Available Abstract Background Recently it has been reported that, toll-like receptors (TLRs are expressed on a series of tumor cells, such as colon cancer, breast cancer, prostate cancer, melanoma and lung cancer. Although some cancer cells like melanoma cells are known to respond to lipopolysaccharide (LPS via TLR4, not all cancer cells are positive for TLR4. There is little information on the expression and function of TLR4 in neuroblastoma cells. In this study, we investigated the expression of TLR4 in human neuroblastoma NB-1 cell line. Methods Expression and localization of TLR4 were detected by reverse transcription-polymerase chain reaction (RT-PCR and flow cytometric analysis, respectively. Activation of nuclear factor (NF-κB by LPS was detected by degradation of IκB-α and NF-κB luciferase assay. Activation and expression of mitogen-activated protein (MAP kinase and interferon regulatory factor (IRF-3 was detected by immunoblot analysis. Results Human NB-1 neuroblastoma cells expressed intracellular form of TLR4, but not the cell surface form. Further, NB-1 cells express CD14, MD2 and MyD88, which are required for LPS response. However, LPS did not significantly induce NF-κB activation in NB-1 cells although it slightly degraded IκB-α. NB-1 cells expressed no IRF-3, which plays a pivotal role on the MyD88-independent pathway of LPS signaling. Collectively, NB-1 cells are capable to avoid their response to LPS. Conclusion Although human NB-1 neuroblastoma cells possessed all the molecules required for LPS response, they did not respond to LPS. It might be responsible for intracellular expression of TLR4 or lack of IRF-3.

  14. Hypochlorite Oxidation of Select Androgenic Steroids

    Science.gov (United States)

    Steroid hormones are vital for regulation of various biological functions including sexual development. Elevated concentrations of natural and synthetic androgenic steroids have been shown to adversely affect normal development in indigenous aqueous species. Androgens and their s...

  15. Selective deletion of Pten in theca-interstitial cells leads to androgen excess and ovarian dysfunction in mice.

    Science.gov (United States)

    Lan, Zi-Jian; Krause, M S; Redding, S D; Li, X; Wu, G Z; Zhou, H X; Bohler, H C; Ko, C; Cooney, A J; Zhou, Junmei; Lei, Z M

    2017-03-15

    Theca cell-selective Pten mutation (tPtenMT) in mice resulted in increases in PDK1 and Akt phosphorylation, indicating an over-activation of PI3K signaling in the ovaries. These mice displayed elevated androgen levels, ovary enlargement, antral follicle accumulation, early fertility loss and increased expression of Lhcgr and genes that are crucial to androgenesis. These abnormalities were partially reversed by treatments of PI3K or Akt inhibitor. LH actions in Pten deficient theca cells were potentiated. The phosphorylation of Foxo1 was increased, while the binding of Foxo1 to forkhead response elements in the Lhcgr promoter was reduced in tPtenMT theca cells, implying a mechanism by which PI3K/Akt-induced upregulation of Lhcgr in theca cells might be mediated by reducing the inhibitory effect of Foxo1 on the Lhcgr promoter. The phenotype of tPtenMT females is reminiscent of human PCOS and suggests that dysregulated PI3K cascade in theca cells may be involved in certain types of PCOS pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The androgen receptor malignancy shift in prostate cancer.

    Science.gov (United States)

    Copeland, Ben T; Pal, Sumanta K; Bolton, Eric C; Jones, Jeremy O

    2018-05-01

    Androgens and the androgen receptor (AR) are necessary for the development, function, and homeostatic growth regulation of the prostate gland. However, once prostate cells are transformed, the AR is necessary for the proliferation and survival of the malignant cells. This change in AR function appears to occur in nearly every prostate cancer. We have termed this the AR malignancy shift. In this review, we summarize the current knowledge of the AR malignancy shift, including the DNA-binding patterns that define the shift, the transcriptome changes associated with the shift, the putative drivers of the shift, and its clinical implications. In benign prostate epithelial cells, the AR primarily binds consensus AR binding sites. In carcinoma cells, the AR cistrome is dramatically altered, as the AR associates with FOXA1 and HOXB13 motifs, among others. This shift leads to the transcription of genes associated with a malignant phenotype. In model systems, some mutations commonly found in localized prostate cancer can alter the AR cistrome, consistent with the AR malignancy shift. Current evidence suggests that the AR malignancy shift is necessary but not sufficient for transformation of prostate epithelial cells. Reinterpretation of prostate cancer genomic classification systems in light of the AR malignancy shift may improve our ability to predict clinical outcomes and treat patients appropriately. Identifying and targeting the molecular factors that contribute to the AR malignancy shift is not trivial but by doing so, we may be able to develop new strategies for the treatment or prevention of prostate cancer. © 2018 Wiley Periodicals, Inc.

  17. Activation of β-catenin signaling in androgen receptor-negative prostate cancer cells.

    Science.gov (United States)

    Wan, Xinhai; Liu, Jie; Lu, Jing-Fang; Tzelepi, Vassiliki; Yang, Jun; Starbuck, Michael W; Diao, Lixia; Wang, Jing; Efstathiou, Eleni; Vazquez, Elba S; Troncoso, Patricia; Maity, Sankar N; Navone, Nora M

    2012-02-01

    To study Wnt/β-catenin in castrate-resistant prostate cancer (CRPC) and understand its function independently of the β-catenin-androgen receptor (AR) interaction. We carried out β-catenin immunocytochemical analysis, evaluated TOP-flash reporter activity (a reporter of β-catenin-mediated transcription), and sequenced the β-catenin gene in MDA prostate cancer 118a, MDA prostate cancer 118b, MDA prostate cancer 2b, and PC-3 prostate cancer cells. We knocked down β-catenin in AR-negative MDA prostate cancer 118b cells and carried out comparative gene-array analysis. We also immunohistochemically analyzed β-catenin and AR in 27 bone metastases of human CRPCs. β-Catenin nuclear accumulation and TOP-flash reporter activity were high in MDA prostate cancer 118b but not in MDA prostate cancer 2b or PC-3 cells. MDA prostate cancer 118a and MDA prostate cancer 118b cells carry a mutated β-catenin at codon 32 (D32G). Ten genes were expressed differently (false discovery rate, 0.05) in MDA prostate cancer 118b cells with downregulated β-catenin. One such gene, hyaluronan synthase 2 (HAS2), synthesizes hyaluronan, a core component of the extracellular matrix. We confirmed HAS2 upregulation in PC-3 cells transfected with D32G-mutant β-catenin. Finally, we found nuclear localization of β-catenin in 10 of 27 human tissue specimens; this localization was inversely associated with AR expression (P = 0.056, Fisher's exact test), suggesting that reduced AR expression enables Wnt/β-catenin signaling. We identified a previously unknown downstream target of β-catenin, HAS2, in prostate cancer, and found that high β-catenin nuclear localization and low or no AR expression may define a subpopulation of men with bone metastatic prostate cancer. These findings may guide physicians in managing these patients.

  18. Activation of Beta-Catenin Signaling in Androgen Receptor–Negative Prostate Cancer Cells

    Science.gov (United States)

    Wan, Xinhai; Liu, Jie; Lu, Jing-Fang; Tzelepi, Vassiliki; Yang, Jun; Starbuck, Michael W.; Diao, Lixia; Wang, Jing; Efstathiou, Eleni; Vazquez, Elba S.; Troncoso, Patricia; Maity, Sankar N.; Navone, Nora M.

    2012-01-01

    Purpose To study Wnt/beta-catenin in castrate-resistant prostate cancer (CRPC) and understand its function independently of the beta-catenin–androgen receptor (AR) interaction. Experimental Design We performed beta-catenin immunocytochemical analysis, evaluated TOP-flash reporter activity (a reporter of beta-catenin–mediated transcription), and sequenced the beta-catenin gene in MDA PCa 118a, MDA PCa 118b, MDA PCa 2b, and PC-3 prostate cancer (PCa) cells. We knocked down beta-catenin in AR-negative MDA PCa 118b cells and performed comparative gene-array analysis. We also immunohistochemically analyzed beta-catenin and AR in 27 bone metastases of human CRPCs. Results Beta-catenin nuclear accumulation and TOP-flash reporter activity were high in MDA PCa 118b but not in MDA PCa 2b or PC-3 cells. MDA PCa 118a and 118b cells carry a mutated beta-catenin at codon 32 (D32G). Ten genes were expressed differently (false discovery rate, 0.05) in MDA PCa 118b cells with downregulated beta-catenin. One such gene, hyaluronan synthase 2 (HAS2), synthesizes hyaluronan, a core component of the extracellular matrix. We confirmed HAS2 upregulation in PC-3 cells transfected with D32G-mutant beta-catenin. Finally, we found nuclear localization of beta-catenin in 10 of 27 human tissue specimens; this localization was inversely associated with AR expression (P = 0.056, Fisher’s exact test), suggesting that reduced AR expression enables Wnt/beta-catenin signaling. Conclusion We identified a previously unknown downstream target of beta-catenin, HAS2, in PCa, and found that high beta-catenin nuclear localization and low or no AR expression may define a subpopulation of men with bone-metastatic PCa. These findings may guide physicians in managing these patients. PMID:22298898

  19. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium.

    Science.gov (United States)

    Walker, Nancy M; Liu, Jinghua; Stein, Sydney R; Stefanski, Casey D; Strubberg, Ashlee M; Clarke, Lane L

    2016-01-15

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. Copyright © 2016 the American Physiological Society.

  20. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium

    Science.gov (United States)

    Walker, Nancy M.; Liu, Jinghua; Stein, Sydney R.; Stefanski, Casey D.; Strubberg, Ashlee M.

    2015-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl− and HCO3− efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3−)-loading proteins and upregulation of the basolateral membrane HCO3−-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl−/HCO3− exchange with maximized gradients, it also had increased intracellular Cl− concentration relative to wild-type. Pharmacological reduction of intracellular Cl− concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl− and HCO3− efflux, which impairs pHi regulation by Ae2. Retention of Cl− and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. PMID:26542396

  1. Dehydroepiandrosterone substitution in female adrenal failure: no impact on endothelial function and cardiovascular parameters despite normalization of androgen status

    DEFF Research Database (Denmark)

    Christiansen, Jens Juel; Andersen, Niels Holmark; Sørensen, Keld E

    2007-01-01

    because of skin side effects and anxiety, respectively. All patients had low circulating androgens baseline and normal range androgens during DHEA treatment. We examined patients with noninvasive endothelial cell function, magnetic resonance imaging (MRI)-based cardiac output, echocardiography, ambulatory...... 24-h blood pressure and maximal oxygen consumption. RESULTS: DHEA treatment normalized androgen status to levels seen in healthy women. DHEA and placebo treatment had no effect on echocardiographic parameters of myocardial dimensions or systolic and diastolic function, noninvasive endothelial cell...... in vascular endothelium has been described and in vitro studies have shown involvement of DHEA in NO dependent pathways. AIM: To evaluate effects of DHEA substitution on cardiovascular parameters. DESIGN: Six months randomized, double-blind, placebo-controlled crossover study. Treatment consisted of DHEA 50...

  2. Androgenic alopecia; the risk–benefit ratio of Finasteride

    Directory of Open Access Journals (Sweden)

    David L. Rowland

    2018-04-01

    Full Text Available Finasteride is currently approved and largely used as a therapeutic option for androgenetic alopecia. Apparently a safe drug and effective at the onset, several concerns appeared over time regarding the frequency and magnitude of finasteride adverse effects, which in some cases seem to be even irreversible. This paper presents administration of finasteride in androgenic alopecia from two distinct perspectives. On one hand, androgenic alopecia is a condition that affects especially the self-image and esteem, aspects that are subjective, namely changeable and thus relative. On the other hand, this condition presents a multifactorial etiology, androgens being only in part involved. In addition, androgens have their own physiological roles within the body, so that any androgenic suppression should be carefully advised. Yet, adverse effects induced by Finasteride are only in part documented and treatable. Finally, alternative therapeutic approaches (like topical finasteride become available, so that the oral administration of Finasteride for androgenic alopecia should be in our opinion reevaluated. As a conclusion, a very detailed and informed discussion should take place with such patients accepting to start a therapy with finasteride for androgenic alopecia.

  3. Occurrence of testicular microlithiasis in androgen insensitive hypogonadal mice

    Directory of Open Access Journals (Sweden)

    De Gendt Karl

    2009-08-01

    Full Text Available Abstract Background Testicular microliths are calcifications found within the seminiferous tubules. In humans, testicular microlithiasis (TM has an unknown etiology but may be significantly associated with testicular germ cell tumors. Factors inducing microlith development may also, therefore, act as susceptibility factors for malignant testicular conditions. Studies to identify the mechanisms of microlith development have been hampered by the lack of suitable animal models for TM. Methods This was an observational study of the testicular phenotype of different mouse models. The mouse models were: cryptorchid mice, mice lacking androgen receptors (ARs on the Sertoli cells (SCARKO, mice with a ubiquitous loss of androgen ARs (ARKO, hypogonadal (hpg mice which lack circulating gonadotrophins, and hpg mice crossed with SCARKO (hpg.SCARKO and ARKO (hpg.ARKO mice. Results Microscopic TM was seen in 94% of hpg.ARKO mice (n = 16 and the mean number of microliths per testis was 81 +/- 54. Occasional small microliths were seen in 36% (n = 11 of hpg testes (mean 2 +/- 0.5 per testis and 30% (n = 10 of hpg.SCARKO testes (mean 8 +/- 6 per testis. No microliths were seen in cryptorchid, ARKO or SCARKO mice. There was no significant effect of FSH or androgen on TM in hpg.ARKO mice. Conclusion We have identified a mouse model of TM and show that lack of endocrine stimulation is a cause of TM. Importantly, this model will provide a means with which to identify the mechanisms of TM development and the underlying changes in protein and gene expression.

  4. Modulation of Androgen Receptor Transcriptional Activity

    NARCIS (Netherlands)

    H.Y. Wong (Hao Yun)

    2009-01-01

    textabstractAndrogens, testosterone (T) and 5a-dihydrotestosterone (DHT), are important for male and female physiology, in particular for male sexual differentiation, development of secondary male characteristics and spermatogenesis. These hormones exert their actions by binding to the androgen

  5. Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy.

    Science.gov (United States)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N

    2017-08-01

    To target bacterial pathogens that invade and proliferate inside host cells, it is necessary to design intervention strategies directed against bacterial attachment, cellular invasion and intracellular proliferation. We present an automated microscopy-based, fast, high-throughput method for analyzing size and number of intracellular bacterial colonies in infected tissue culture cells. Cells are seeded in 48-well plates and infected with a GFP-expressing bacterial pathogen. Following gentamicin treatment to remove extracellular pathogens, cells are fixed and cell nuclei stained. This is followed by automated microscopy and subsequent semi-automated spot detection to determine the number of intracellular bacterial colonies, their size distribution, and the average number per host cell. Multiple 48-well plates can be processed sequentially and the procedure can be completed in one working day. As a model we quantified intracellular bacterial colonies formed by uropathogenic Escherichia coli (UPEC) during infection of human kidney cells (HKC-8). Urinary tract infections caused by UPEC are among the most common bacterial infectious diseases in humans. UPEC can colonize tissues of the urinary tract and is responsible for acute, chronic, and recurrent infections. In the bladder, UPEC can form intracellular quiescent reservoirs, thought to be responsible for recurrent infections. In the kidney, UPEC can colonize renal epithelial cells and pass to the blood stream, either via epithelial cell disruption or transcellular passage, to cause sepsis. Intracellular colonies are known to be clonal, originating from single invading UPEC. In our experimental setup, we found UPEC CFT073 intracellular bacterial colonies to be heterogeneous in size and present in nearly one third of the HKC-8 cells. This high-throughput experimental format substantially reduces experimental time and enables fast screening of the intracellular bacterial load and cellular distribution of multiple

  6. Avicequinone C Isolated from Avicennia marina Exhibits 5α-Reductase-Type 1 Inhibitory Activity Using an Androgenic Alopecia Relevant Cell-Based Assay System

    Directory of Open Access Journals (Sweden)

    Ruchy Jain

    2014-05-01

    Full Text Available Avicennia marina (AM exhibits various biological activities and has been traditionally used in Egypt to cure skin diseases. In this study, the methanolic heartwood extract of AM was evaluated for inhibitory activity against 5α-reductase (5α-R [E.C.1.3.99.5], the enzyme responsible for the over-production of 5α-dihydrotestosterone (5α-DHT causing androgenic alopecia (AGA. An AGA-relevant cell-based assay was developed using human hair dermal papilla cells (HHDPCs, the main regulator of hair growth and the only cells within the hair follicle that are the direct site of 5α-DHT action, combined with a non-radioactive thin layer chromatography (TLC detection technique. The results revealed that AM is a potent 5α-R type 1 (5α-R1 inhibitor, reducing the 5α-DHT production by 52% at the final concentration of 10 µg/mL. Activity-guided fractionation has led to the identification of avicequinone C, a furanonaphthaquinone, as a 5α-R1 inhibitor with an IC50 of 9.94 ± 0.33 µg/mL or 38.8 ± 1.29 µM. This paper is the first to report anti-androgenic activity through 5α-R1 inhibition of AM and avicequinone C.

  7. Intracellular zinc flux causes reactive oxygen species mediated mitochondrial dysfunction leading to cell death in Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Anjali Kumari

    Full Text Available Leishmaniasis caused by Leishmania parasite is a global threat to public health and one of the most neglected tropical diseases. Therefore, the discovery of novel drug targets and effective drug is a major challenge and an important goal. Leishmania is an obligate intracellular parasite that alternates between sand fly and human host. To survive and establish infections, Leishmania parasites scavenge and internalize nutrients from the host. Nevertheless, host cells presents mechanism like nutrient restriction to inhibit microbial growth and control infection. Zinc is crucial for cellular growth and disruption in its homeostasis hinders growth and survival in many cells. However, little is known about the role of zinc in Leishmania growth and survival. In this study, the effect of zinc on the growth and survival of L.donovani was analyzed by both Zinc-depletion and Zinc-supplementation using Zinc-specific chelator N, N, N', N'-tetrakis (2-pyridylmethyl ethylenediamine (TPEN and Zinc Sulfate (ZnSO4. Treatment of parasites with TPEN rather than ZnSO4 had significantly affected the growth in a dose- and time-dependent manner. The pre-treatment of promastigotes with TPEN resulted into reduced host-parasite interaction as indicated by decreased association index. Zn depletion resulted into flux in intracellular labile Zn pool and increased in ROS generation correlated with decreased intracellular total thiol and retention of plasma membrane integrity without phosphatidylserine exposure in TPEN treated promastigotes. We also observed that TPEN-induced Zn depletion resulted into collapse of mitochondrial membrane potential which is associated with increase in cytosolic calcium and cytochrome-c. DNA fragmentation analysis showed increased DNA fragments in Zn-depleted cells. In summary, intracellular Zn depletion in the L. donovani promastigotes led to ROS-mediated caspase-independent mitochondrial dysfunction resulting into apoptosis-like cell death

  8. Association of Androgen Excess with Glucose Intolerance in Women with Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Bingjie Zhang

    2018-01-01

    Full Text Available Women with polycystic ovary syndrome (PCOS show high prevalence of glucose intolerance. This study aimed to investigate the association of androgen excess with glucose intolerance in PCOS. A total of 378 women with PCOS participated in the study. Free androgen index (FAI was selected as indicator of hyperandrogenism. Insulin sensitivity was assessed by 1/homeostasis model assessment of insulin resistance (1/HOMA-IR and Matsuda insulin sensitivity index (ISIM; β-cell function was assessed by disposition index (DI. We found that women with glucose intolerance had higher FAI levels compared to women with normal glucose tolerance (NGT (prediabetes 6.2, T2DM 7.9 versus NGT 5.0, resp.; p<0.001. Furthermore, there was a direct association between FAI levels and frequency of glucose intolerance (OR = 2.480, 95% CI 1.387–4.434, even after adjusting for age, BMI, waist circumference, hypertension, fasting insulin, testosterone, SHBG, and family history of diabetes. In addition, with FAI increase, glycosylated hemoglobin (HbA1c, plasma glucose concentrations, and serum insulin levels increased, while insulin sensitivity and β-cell function decreased. Our results suggested that androgen excess indicated by high FAI levels might serve as indicator of glucose intolerance, as it might promote insulin resistance and β-cell dysfunction in women with PCOS.

  9. A PRACTICAL APPROACH TO THE DETECTION OF ANDROGEN RECEPTOR GENE-MUTATIONS AND PEDIGREE ANALYSIS IN FAMILIES WITH X-LINKED ANDROGEN INSENSITIVITY

    NARCIS (Netherlands)

    RISSTALPERS, C; HOOGENBOEZEM, T; SLEDDENS, HFBM; VERLEUNMOOIJMAN, MCT; DEGENHART, HJ; DROP, SLS; HALLEY, DJJ; Oosterwijk, Jan; HODGINS, MB; TRAPMAN, J; BRINKMANN, AO

    Androgen insensitivity syndrome (AIS) is an X-linked disorder in which defects in the androgen receptor gene have prevented the normal development of both internal and external male structures in 46,XY individuals. This survey reports the analysis of 11 AIS subjects. The androgen receptor gene of

  10. A practical approach to the detection of androgen receptor gene mutations and pedigree analysis in families with x-linked androgen insensitivity

    NARCIS (Netherlands)

    Ris-Stalpers, C.; Hoogenboezem, T.; Sleddens, H. F.; Verleun-Mooijman, M. C.; Degenhart, H. J.; Drop, S. L.; Halley, D. J.; Oosterwijk, J. C.; Hodgins, M. B.; Trapman, J.

    1994-01-01

    Androgen insensitivity syndrome (AIS) is an X-linked disorder in which defects in the androgen receptor gene have prevented the normal development of both internal and external male structures in 46,XY individuals. This survey reports the analysis of 11 AIS subjects. The androgen receptor gene of

  11. Androgens as double-edged swords: Induction and suppression of follicular development.

    Science.gov (United States)

    Pan, Jie-Xue; Zhang, Jun-Yu; Ke, Zhang-Hong; Wang, Fang-Fang; Barry, John A; Hardiman, Paul J; Qu, Fan

    2015-01-01

    Androgens, which are mediated via the androgen receptor (AR), play important roles in normal follicular development and female fertility. However, just like a double-edged sword, besides the positive effects of androgen on follicular development, abnormal androgen levels, especially as in hyperandrogenism, seriously suppress normal follicular development. A crucial balance exists between the importance of androgens in follicular development and their negative effects when in excess. As the first meiotic division and epigenetic reprogramming are two critical events in oogenesis, abnormal androgen levels or deficiency in androgen/AR signaling in the ovary may affect these vital events. Oocytes have a tendency to develop genomic instability, thus resulting in an increasing incidence of unpredictable adult diseases. Although many studies have explored the effects of androgens and AR on follicular development, the conclusions are controversial and there has been no thorough review of this topic. This review focuses on the roles of androgens in the physiological process of follicular development, summarizes new insights into the roles of androgens in the arrested development of follicles, and discusses the potential risk of adult diseases originating from abnormal follicular androgen levels or androgen receptor signals, which may determine areas for future studies.

  12. Androgens regulate gene expression in avian skeletal muscles.

    Directory of Open Access Journals (Sweden)

    Matthew J Fuxjager

    Full Text Available Circulating androgens in adult reproductively active male vertebrates influence a diversity of organ systems and thus are considered costly. Recently, we obtained evidence that androgen receptors (AR are expressed in several skeletal muscles of three passeriform birds, the golden-collared manakin (Manacus vitellinus, zebra finch (Taenopygia guttata, and ochre-bellied flycatcher (Mionectes oleagieus. Because skeletal muscles that control wing movement make up the bulk of a bird's body mass, evidence for widespread effects of androgen action on these muscles would greatly expand the functional impact of androgens beyond their well-characterized effects on relatively discrete targets throughout the avian body. To investigate this issue, we use quantitative PCR (qPCR to determine if androgens alter gene mRNA expression patterns in wing musculature of wild golden-collared manakins and captive zebra finches. In manakins, the androgen testosterone (T up-regulated expression of parvalbumin (PV and insulin-like growth factor I (IGF-I, two genes whose products enhance cellular Ca(2+ cycling and hypertrophy of skeletal muscle fibers. In T-treated zebra finches, the anti-androgen flutamide blunted PV and IGF-I expression. These results suggest that certain transcriptional effects of androgen action via AR are conserved in passerine skeletal muscle tissue. When we examined wing muscles of manakins, zebra finches and ochre-bellied flycatchers, we found that expression of PV and IGF-I varied across species and in a manner consistent with a function for AR-dependent gene regulation. Together, these findings imply that androgens have the potential to act on avian muscle in a way that may enhance the physicality required for successful reproduction.

  13. Targeting androgen receptor and JunD interaction for prevention of prostate cancer progression.

    Science.gov (United States)

    Mehraein-Ghomi, Farideh; Kegel, Stacy J; Church, Dawn R; Schmidt, Joseph S; Reuter, Quentin R; Saphner, Elizabeth L; Basu, Hirak S; Wilding, George

    2014-05-01

    Multiple studies show that reactive oxygen species (ROS) play a major role in prostate cancer (PCa) development and progression. Previously, we reported an induction of Spermidine/Spermine N(1) -Acetyl Transferase (SSAT) by androgen-activated androgen receptor (AR)-JunD protein complex that leads to over-production of ROS in PCa cells. In our current research, we identify small molecules that specifically block AR-JunD in this ROS-generating metabolic pathway. A high throughput assay based on Gaussia Luciferase reconstitution was used to identify inhibitors of the AR-JunD interaction. Selected hits were further screened using a fluorescence polarization competitor assay to eliminate those that bind to the AR Ligand Binding Domain (LBD), in order to identify molecules that specifically target events downstream to androgen activation of AR. Eleven molecules were selected for studies on their efficacy against ROS generation and growth of cultured human PCa cells by DCFH dye-oxidation assay and DNA fluorescence assay, respectively. In situ Proximity Ligation Assay (PLA), SSAT promoter-luciferase reporter assay, and western blotting of apoptosis and cell cycle markers were used to study mechanism of action of the lead compound. Selected lead compound GWARJD10 with EC(50) 10 μM against ROS production was shown to block AR-JunD interaction in situ as well as block androgen-induced SSAT gene expression at IC(50) 5 μM. This compound had no effect on apoptosis markers, but reduced cyclin D1 protein level. Inhibitor of AR-JunD interaction, GWARJD10 shows promise for prevention of progression of PCa at an early stage of the disease by blocking growth and ROS production. © 2014 Wiley Periodicals, Inc.

  14. Mobilization of Intracellular Copper by Gossypol and Apogossypolone Leads to Reactive Oxygen Species-Mediated Cell Death: Putative Anticancer Mechanism

    Directory of Open Access Journals (Sweden)

    Haseeb Zubair

    2016-06-01

    Full Text Available There is compelling evidence that serum, tissue and intracellular levels of copper are elevated in all types of cancer. Copper has been suggested as an important co-factor for angiogenesis. It is also a major metal ion present inside the nucleus, bound to DNA bases, particularly guanine. We have earlier proposed that the interaction of phenolic-antioxidants with intracellular copper leads to the generation of reactive oxygen species (ROS that ultimately serve as DNA cleaving agents. To further validate our hypothesis we show here that the antioxidant gossypol and its semi-synthetic derivative apogossypolone induce copper-mediated apoptosis in breast MDA-MB-231, prostate PC3 and pancreatic BxPC-3 cancer cells, through the generation of ROS. MCF10A breast epithelial cells refractory to the cytotoxic property of these compounds become sensitized to treatment against gossypol, as well as apogossypolone, when pre-incubated with copper. Our present results confirm our earlier findings and strengthen our hypothesis that plant-derived antioxidants mobilize intracellular copper instigating ROS-mediated cellular DNA breakage. As cancer cells exist under significant oxidative stress, this increase in ROS-stress to cytotoxic levels could be a successful anticancer approach.

  15. Intracellular calcium signal at the leading edge regulates mesodermal sheet migration during Xenopus gastrulation.

    Science.gov (United States)

    Hayashi, Kentaro; Yamamoto, Takamasa S; Ueno, Naoto

    2018-02-05

    During the gastrulation stage in animal embryogenesis, the cells leading the axial mesoderm migrate toward the anterior side of the embryo, vigorously extending cell protrusions such as lamellipodia. It is thought that the leading cells sense gradients of chemoattractants emanating from the ectodermal cells and translate them to initiate and maintain the cell movements necessary for gastrulation. However, it is unclear how the extracellular information is converted to the intracellular chemical reactions that lead to motion. Here we demonstrated that intracellular Ca 2+ levels in the protrusion-forming leading cells are markedly higher than those of the following cells and the axial mesoderm cells. We also showed that inhibiting the intracellular Ca 2+ significantly retarded the gastrulation cell movements, while increasing the intracellular Ca 2+ with an ionophore enhanced the migration. We further found that the ionophore treatment increased the active form of the small GTPase Rac1 in these cells. Our results suggest that transient intracellular Ca 2+ signals play an essential role in the active cell migration during gastrulation.

  16. Androgen receptor or estrogen receptor-beta blockade alters DHEA-, DHT-, and E(2)-induced proliferation and PSA production in human prostate cancer cells.

    Science.gov (United States)

    Arnold, Julia T; Liu, Xunxian; Allen, Jeffrey D; Le, Hanh; McFann, Kimberly K; Blackman, Marc R

    2007-08-01

    Dehydroepiandrosterone (DHEA) is an endogenous steroid that is metabolized to androgens and/or estrogens in the human prostate. DHEA levels decline with age, and use of DHEA supplements to retard the aging process is of unproved effectiveness and safety. LNCaP and LAPC-4 prostate cancer cells were used to determine whether DHEA-modulated proliferation and prostate specific antigen (PSA) production were mediated via the androgen receptor (AR) and/or ERbeta. Cells were treated with DHEA, DHT, or E(2) and antagonists to AR (Casodex-bicalutamide) or ER (ICI 182,780) or siRNA to the respective receptors. Proliferation was assessed by MTT assay and PSA mRNA and protein secretion were measured by quantitative real-time PCR and ELISA. Associations of AR and ERbeta were analyzed by co-immunoprecipitation studies and fluorescent confocal microscopy. DHEA-, T-, and E(2)-induced proliferation of LNCaP cells was blunted by Casodex but not by ICI treatment. In LNCaP cells, Casodex and ICI suppressed hormone-induced PSA production. In LAPC-4 cells, DHT-stimulated PSA mRNA was inhibited by Casodex and ICI, and the minimal stimulation by DHEA was inhibited by ICI. Use of siRNAs confirmed involvement of AR and ERbeta in hormone-induced PSA production while AR-ERbeta co-association was suggested by immunoprecipitation and nuclear co-localization. These findings support involvement of both AR and ERbeta in mediating DHEA-, DHT-, and E(2)-induced PSA expression in prostate cancer cells. (c) 2007 Wiley-Liss, Inc.

  17. hESC Differentiation toward an Autonomic Neuronal Cell Fate Depends on Distinct Cues from the Co-Patterning Vasculature

    Directory of Open Access Journals (Sweden)

    Lisette M. Acevedo

    2015-06-01

    Full Text Available To gain insight into the cellular and molecular cues that promote neurovascular co-patterning at the earliest stages of human embryogenesis, we developed a human embryonic stem cell model to mimic the developing epiblast. Contact of ectoderm-derived neural cells with mesoderm-derived vasculature is initiated via the neural crest (NC, not the neural tube (NT. Neurovascular co-patterning then ensues with specification of NC toward an autonomic fate requiring vascular endothelial cell (EC-secreted nitric oxide (NO and direct contact with vascular smooth muscle cells (VSMCs via T-cadherin-mediated homotypic interactions. Once a neurovascular template has been established, NT-derived central neurons then align themselves with the vasculature. Our findings reveal that, in early human development, the autonomic nervous system forms in response to distinct molecular cues from VSMCs and ECs, providing a model for how other developing lineages might coordinate their co-patterning.

  18. Increase of Intracellular Cyclic AMP by PDE4 Inhibitors Affects HepG2 Cell Cycle Progression and Survival.

    Science.gov (United States)

    Massimi, Mara; Cardarelli, Silvia; Galli, Francesca; Giardi, Maria Federica; Ragusa, Federica; Panera, Nadia; Cinque, Benedetta; Cifone, Maria Grazia; Biagioni, Stefano; Giorgi, Mauro

    2017-06-01

    Type 4 cyclic nucleotide phosphodiesterases (PDE4) are major members of a superfamily of enzymes (PDE) involved in modulation of intracellular signaling mediated by cAMP. Broadly expressed in most human tissues and present in large amounts in the liver, PDEs have in the last decade been key therapeutic targets for several inflammatory diseases. Recently, a significant body of work has underscored their involvement in different kinds of cancer, but with no attention paid to liver cancer. The present study investigated the effects of two PDE4 inhibitors, rolipram and DC-TA-46, on the growth of human hepatoma HepG2 cells. Treatment with these inhibitors caused a marked increase of intracellular cAMP level and a dose- and time-dependent effect on cell growth. The concentrations of inhibitors that halved cell proliferation to about 50% were used for cell cycle experiments. Rolipram (10 μM) and DC-TA-46 (0.5 μM) produced a decrease of cyclin expression, in particular of cyclin A, as well as an increase in p21, p27 and p53, as evaluated by Western blot analysis. Changes in the intracellular localization of cyclin D1 were also observed after treatments. In addition, both inhibitors caused apoptosis, as demonstrated by an Annexin-V cytofluorimetric assay and analysis of caspase-3/7 activity. Results demonstrated that treatment with PDE4 inhibitors affected HepG2 cell cycle and survival, suggesting that they might be useful as potential adjuvant, chemotherapeutic or chemopreventive agents in hepatocellular carcinoma. J. Cell. Biochem. 118: 1401-1411, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Power optimization in body sensor networks: the case of an autonomous wireless EMG sensor powered by PV-cells.

    Science.gov (United States)

    Penders, J; Pop, V; Caballero, L; van de Molengraft, J; van Schaijk, R; Vullers, R; Van Hoof, C

    2010-01-01

    Recent advances in ultra-low-power circuits and energy harvesters are making self-powered body sensor nodes a reality. Power optimization at the system and application level is crucial in achieving ultra-low-power consumption for the entire system. This paper reviews system-level power optimization techniques, and illustrates their impact on the case of autonomous wireless EMG monitoring. The resulting prototype, an Autonomous wireless EMG sensor power by PV-cells, is presented.

  20. Molecular analysis of the androgen-receptor gene in a family with receptor-positive partial androgen insensitivity: an unusual type of intronic mutation

    NARCIS (Netherlands)

    H.T. Brüggenwirth (Hennie); A.L.M. Boehmer (Annemie); S. Ramnarain; M.C. Verleun-Mooijman; D.P.E. Satijn (David); J. Trapman (Jan); J.A. Grootegoed (Anton); A.O. Brinkmann (Albert)

    1997-01-01

    textabstractIn the coding part and the intron-exon boundaries of the androgen-receptor gene of a patient with partial androgen insensitivity, no mutation was found. The androgen receptor of this patient displayed normal ligand-binding parameters and migrated as a

  1. Chlropyrifos-methyl shows anti-androgenic activity without estrogenic activity in rats

    International Nuclear Information System (INIS)

    Kang, Hwan Goo; Jeong, Sang Hee; Cho, Joon Hyoung; Kim, Dong Gyu; Park, Jong Myung; Cho, Myung Haing

    2004-01-01

    Chlorpyrifos-methyl (CPM), an organophosphate insecticide, widely used for grain storage and agriculture, has been suspected as endocrine disrupter by a few in vitro studies. This study was performed to investigate the (anti-) estrogenicity and (anti-) androgenicity of CPM in vivo using immature rat uterotrophic assay and rat Hershberger assay. CPM with or without 17β-estradiol were administered to 20 days old female rats to investigate its (anti-) estrogenic activity. Uterine and vaginal weight, uterine epithelial cell height were not affected by the treatment of CPM (2, 10, 50, 250 mg/kg). CPM 250 mg/kg potentiated relative vagina weight in 17β-estradiol treated immature female rats without any changing of uterine weight. Relative liver weight was increased with decrease of body weight by CPM 250 mg/kg treatment. Uterine cell proliferation tested with bromodeoxyuridine labeling index was not observed in CPM treated rats. CPM with or without testosterone propionate were administered to castrated rat of 51 days old for 10 days to investigate the (anti-)androgenic activity,. The weight of relative and absolute androgen-dependent accessory sex organs; seminal vesicle with coagulating glands (SV/CG), ventral prostate gland (VP), glans penis (GP), levator ani plus bulbocarvernosus muscle (LABC) and Cowper's gland (CG,) were unchanged by the treatment of CPM alone. While CPM induced the increase of relative adrenal gland weight, CPM 50 mg/kg decreased the weights of CV/CG, VP, CG and LABC without change of GP without changing of GP when it was treated with TP. In conclusion, CPM dose not show estrogenic and anti-estrogenic activity in immature female rats, but it represents anti-androgenic activity by inhibition of the TP-stimulated increase of the weight of accessory sex organs

  2. Pathogenic mechanisms of intracellular bacteria.

    Science.gov (United States)

    Niller, Hans Helmut; Masa, Roland; Venkei, Annamária; Mészáros, Sándor; Minarovits, Janos

    2017-06-01

    We wished to overview recent data on a subset of epigenetic changes elicited by intracellular bacteria in human cells. Reprogramming the gene expression pattern of various host cells may facilitate bacterial growth, survival, and spread. DNA-(cytosine C5)-methyltransferases of Mycoplasma hyorhinis targeting cytosine-phosphate-guanine (CpG) dinucleotides and a Mycobacterium tuberculosis methyltransferase targeting non-CpG sites methylated the host cell DNA and altered the pattern of gene expression. Gene silencing by CpG methylation and histone deacetylation, mediated by cellular enzymes, also occurred in M. tuberculosis-infected macrophages. M. tuberculosis elicited cell type-specific epigenetic changes: it caused increased DNA methylation in macrophages, but induced demethylation, deposition of euchromatic histone marks and activation of immune-related genes in dendritic cells. A secreted transposase of Acinetobacter baumannii silenced a cellular gene, whereas Mycobacterium leprae altered the epigenotype, phenotype, and fate of infected Schwann cells. The 'keystone pathogen' oral bacterium Porphyromonas gingivalis induced local DNA methylation and increased the level of histone acetylation in host cells. These epigenetic changes at the biofilm-gingiva interface may contribute to the development of periodontitis. Epigenetic regulators produced by intracellular bacteria alter the epigenotype and gene expression pattern of host cells and play an important role in pathogenesis.

  3. Expression and function of androgen receptor coactivator p44/Mep50/WDR77 in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Martin Ligr

    Full Text Available Hormones, including estrogen and progesterone, and their receptors play an important role in the development and progression of ovarian carcinoma. Androgen, its receptor and coactivators have also been implicated in these processes. p44/Mep50/WDR77 was identified as a subunit of the methylosome complex and lately characterized as a steroid receptor coactivator that enhances androgen receptor as well as estrogen receptor-mediated transcriptional activity in a ligand-dependent manner. We previously described distinct expression and function of p44 in prostate, testis, and breast cancers. In this report, we examined the expression and function of p44 in ovarian cancer. In contrast to findings in prostate and testicular cancer and similar to breast cancer, p44 shows strong cytoplasmic localization in morphologically normal ovarian surface and fallopian tube epithelia, while nuclear p44 is observed in invasive ovarian carcinoma. We observed that p44 can serve as a coactivator of both androgen receptor (AR and estrogen receptor (ER in ovarian cells. Further, overexpression of nuclear-localized p44 stimulates proliferation and invasion in ovarian cancer cells in the presence of estrogen or androgen. These findings strongly suggest that p44 plays a role in mediating the effects of hormones during ovarian tumorigenesis.

  4. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen C

    2006-01-01

    .... The experiments proposed in this application are based upon the hypothesis that Stat3 activation alters androgen receptor signaling pathways which in turn results in the loss of growth control in prostate cancer cells...

  5. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen

    2004-01-01

    .... The experiments proposed in this application are based upon the hypothesis that stat3 activation alters androgen receptor signaling pathways, that in turn results in the loss of growth control in prostate cancer cells...

  6. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen

    2002-01-01

    .... The experiments proposed in this application are based upon the hypothesis that Stat3 activation alters androgen receptor signaling pathways, that in turn results in the loss of growth control in prostate cancer cells...

  7. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen C

    2005-01-01

    .... The experiments proposed in this application are based upon the hypothesis that Stat3 activation alters androgen receptor signaling pathways, that in turn results in the loss of growth control in prostate cancer cells...

  8. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen

    2003-01-01

    .... The experiments proposed in this application are based upon the hypothesis that Stat3 activation alters androgen receptor signaling pathways, that in turn results in the loss of growth control in prostate cancer cells...

  9. Enlightening intracellular complexity of living cells with quantitative phase microscopy

    Science.gov (United States)

    Martinez Torres, C.; Laperrousaz, B.; Berguiga, L.; Boyer Provera, E.; Elezgaray, J.; Nicolini, F. E.; Maguer-Satta, V.; Arneodo, A.; Argoul, F.

    2016-03-01

    The internal distribution of refractive indices (RIs) of a living cell is much more complex than usually admitted in multi-shell models. The reconstruction of RI maps from single phase images has rarely been achieved for several reasons: (i) we still have very little knowledge of the impact of internal macromolecular complexes on the local RI and (ii) phase changes produced by light propagation through the sample are mixed with diffraction effects by internal cell bodies. We propose the implementation a 2D wavelet-based contour chain detection method to distinguish internal boundaries thanks to their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are morphological indicators for distinguishing cells of different origins and to follow their transformation in pathologic situations. We use this method to compare non adherent blood cells from primary and laboratory culture origins, in healthy and pathological situations (chronic myelogenous leukaemia). In a second part of this presentation, we concentrate on the temporal dynamics of the phase contour chains and we discuss the spectral decomposition of their dynamics in both health and disease.

  10. Molecular mechanisms of androgen receptor functions

    NARCIS (Netherlands)

    K. Steketee (Karine)

    2007-01-01

    textabstractThe androgens testosterone (T) and dihydrotestosterone (DHT) are steroid hormones, which are necessary for development and maintenance of the functions of the male sex organs, including the prostate. Androgens also play an important role in benign abnormalities of the prostate and in the

  11. Relationship between intracellular pH, metabolic co-factors and caspase-3 activation in cancer cells during apoptosis.

    Science.gov (United States)

    Sergeeva, Tatiana F; Shirmanova, Marina V; Zlobovskaya, Olga A; Gavrina, Alena I; Dudenkova, Varvara V; Lukina, Maria M; Lukyanov, Konstantin A; Zagaynova, Elena V

    2017-03-01

    A complex cascade of molecular events occurs in apoptotic cells but cell-to-cell variability significantly complicates determination of the order and interconnections between different processes. For better understanding of the mechanisms of programmed cell death, dynamic simultaneous registration of several parameters is required. In this paper we used multiparameter fluorescence microscopy to analyze energy metabolism, intracellular pH and caspase-3 activation in living cancer cells in vitro during staurosporine-induced apoptosis. We performed metabolic imaging of two co-factors, NAD(P)H and FAD, and used the genetically encoded pH-indicator SypHer1 and the FRET-based sensor for caspase-3 activity, mKate2-DEVD-iRFP, to visualize these parameters by confocal fluorescence microscopy and two-photon fluorescence lifetime imaging microscopy. The correlation between energy metabolism, intracellular pH and caspase-3 activation and their dynamic changes were studied in CT26 cancer cells during apoptosis. Induction of apoptosis was accompanied by a switch to oxidative phosphorylation, cytosol acidification and caspase-3 activation. We showed that alterations in cytosolic pH and the activation of oxidative phosphorylation are relatively early events associated with the induction of apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Intracellular trafficking of new anticancer therapeutics: antibody–drug conjugates

    Science.gov (United States)

    Kalim, Muhammad; Chen, Jie; Wang, Shenghao; Lin, Caiyao; Ullah, Saif; Liang, Keying; Ding, Qian; Chen, Shuqing; Zhan, Jinbiao

    2017-01-01

    Antibody–drug conjugate (ADC) is a milestone in targeted cancer therapy that comprises of monoclonal antibodies chemically linked to cytotoxic drugs. Internalization of ADC takes place via clathrin-mediated endocytosis, caveolae-mediated endocytosis, and pinocytosis. Conjugation strategies, endocytosis and intracellular trafficking optimization, linkers, and drugs chemistry present a great challenge for researchers to eradicate tumor cells successfully. This inventiveness of endocytosis and intracellular trafficking has given considerable momentum recently to develop specific antibodies and ADCs to treat cancer cells. It is significantly advantageous to emphasize the endocytosis and intracellular trafficking pathways efficiently and to design potent engineered conjugates and biological entities to boost efficient therapies enormously for cancer treatment. Current studies illustrate endocytosis and intracellular trafficking of ADC, protein, and linker strategies in unloading and also concisely evaluate practically applicable ADCs. PMID:28814834

  13. Intracellular trafficking of new anticancer therapeutics: antibody-drug conjugates.

    Science.gov (United States)

    Kalim, Muhammad; Chen, Jie; Wang, Shenghao; Lin, Caiyao; Ullah, Saif; Liang, Keying; Ding, Qian; Chen, Shuqing; Zhan, Jinbiao

    2017-01-01

    Antibody-drug conjugate (ADC) is a milestone in targeted cancer therapy that comprises of monoclonal antibodies chemically linked to cytotoxic drugs. Internalization of ADC takes place via clathrin-mediated endocytosis, caveolae-mediated endocytosis, and pinocytosis. Conjugation strategies, endocytosis and intracellular trafficking optimization, linkers, and drugs chemistry present a great challenge for researchers to eradicate tumor cells successfully. This inventiveness of endocytosis and intracellular trafficking has given considerable momentum recently to develop specific antibodies and ADCs to treat cancer cells. It is significantly advantageous to emphasize the endocytosis and intracellular trafficking pathways efficiently and to design potent engineered conjugates and biological entities to boost efficient therapies enormously for cancer treatment. Current studies illustrate endocytosis and intracellular trafficking of ADC, protein, and linker strategies in unloading and also concisely evaluate practically applicable ADCs.

  14. Induction of Intracellular Ca2+ and pH Changes in Sf9 Insect Cells by Rhodojaponin-III, A Natural Botanic Insecticide Isolated from Rhododendron molle

    Directory of Open Access Journals (Sweden)

    Yan-Bo Zhang

    2011-04-01

    Full Text Available Many studies on intracellular calcium ([Ca2+]i and intracellular pH (pHi have been carried out due to their importance in regulation of different cellular functions. However, most of the previous studies are focused on human or mammalian cells. The purpose of the present study was to characterize the effect of Rhodojaponin-III (R-III on [Ca2+]i and pHi and the proliferation of Sf9 cells. R-III strongly inhibited Sf9 cells proliferation with a time- and dose-dependent manner. Flow cytometry established that R-III interfered with Sf9 cells division and arrested them in G2/M. By using confocal scanning technique, effects of R-III on intracellular free calcium ([Ca2+]i and intracellular pH (pHi in Sf9 cells were determined. R-III induced a significant dose-dependent (1, 10, 100, 200 μg/mL increase in [Ca2+]i and pHi of Sf9 cells in presence of Ca2+-containing solution (Hanks and an irreversible decrease in the absence of extra cellular Ca2+. We also found that both extra cellular Ca2+ and intracellular Ca2+ stores contributed to the increase of [Ca2+]i, because completely treating Sf9 cells with CdCl2 (5 mM, a Ca2+ channels blocker, R-III (100 μg/mL induced a transient elevation of [Ca2+]i in case of cells either in presence of Ca2+ containing or Ca2+ free solution. In these conditions, pHi showed similar changes with that of [Ca2+]i on the whole. Accordingly, we supposed that there was a certain linkage for change of [Ca2+]i, cell cycle arrest, proliferation inhibition in Sf9 cells induced by R-III.

  15. Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells.

    Science.gov (United States)

    Furuse, Yuki; Finethy, Ryan; Saka, Hector A; Xet-Mull, Ana M; Sisk, Dana M; Smith, Kristen L Jurcic; Lee, Sunhee; Coers, Jörn; Valdivia, Raphael H; Tobin, David M; Cullen, Bryan R

    2014-01-01

    MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼ 23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin.

  16. Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells.

    Directory of Open Access Journals (Sweden)

    Yuki Furuse

    Full Text Available MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼ 23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin.

  17. Amphiphile-induced heart muscle-cell (myocyte) injury: effects of intracellular fatty acid overload.

    Science.gov (United States)

    Janero, D R; Burghardt, C; Feldman, D

    1988-10-01

    Lipid amphiphile toxicity may be an important contributor to myocardial injury, especially during ischemia/reperfusion. In order to investigate directly the potential biochemical and metabolic effects of amphiphile overload on the functioning heart muscle cell (myocyte), a novel model of nonesterified fatty acid (NEFA)-induced myocyte damage has been defined. The model uses intact, beating neonatal rat myocytes in primary monolayer culture as a study object and 5-(tetradecyloxy)-2-furoic acid (TOFA) as a nonmetabolizable fatty acid. Myocytes incubated with TOFA accumulated it as NEFA, and the consequent NEFA amphiphile overload elicited a variety of cellular defects (including decreased beating rate, depletion of high-energy stores and glycogen pools, and breakdown of myocyte membrane phospholipid) and culminated in cell death. The amphiphile-induced cellular pathology could be reversed by removing TOFA from the culture medium, which resulted in intracellular TOFA "wash-out." Although the development and severity of amphiphile-induced myocyte injury could be correlated with both the intracellular TOFA/NEFA content (i.e., the level of TOFA to which the cells were exposed) and the duration of this exposure, removal of amphiphile overload did not inevitably lead to myocyte recovery. TOFA had adverse effects on myocyte mitochondrial function in situ (decoupling of oxidative phosphorylation, impairing respiratory control) and on myocyte oxidative catabolism (transiently increasing fatty acid beta oxidation, citric acid cycle flux, and glucose oxidation). The amphiphile-induced bioenergetic abnormalities appeared to constitute a state of "metabolic anoxia" underlying the progression of myocyte injury to cell death. This anoxic state could be ameliorated to some extent, but not prevented, by carbohydrate catabolism.

  18. Connexin43 hemichannels contributes to the disassembly of cell junctions through modulation of intracellular oxidative status

    Directory of Open Access Journals (Sweden)

    Yuan Chi

    2016-10-01

    Full Text Available Connexin (Cx hemichannels regulate many cellular processes with little information available regarding their mechanisms. Given that many pathological factors that activate hemichannels also disrupts the integrity of cellular junctions, we speculated a potential participation of hemichannels in the regulation of cell junctions. Here we tested this hypothesis. Exposure of renal tubular epithelial cells to Ca2+-free medium led to disassembly of tight and adherens junctions, as indicated by the reduced level of ZO-1 and cadherin, disorganization of F-actin, and severe drop in transepithelial electric resistance. These changes were preceded by an activation of Cx43 hemichannels, as revealed by extracellular efflux of ATP and intracellular influx of Lucifer Yellow. Inhibition of hemichannels with chemical inhibitors or Cx43 siRNA greatly attenuated the disassembly of cell junctions. Further analysis using fetal fibroblasts derived from Cx43 wide-type (Cx43+/+, heterozygous (Cx43+/- and knockout (Cx43-/- littermates showed that Cx43-positive cells (Cx43+/+ exhibited more dramatic changes in cell shape, F-actin, and cadherin in response to Ca2+ depletion, as compared to Cx43-null cells (Cx43-/-. Consistently, these cells had higher level of protein carbonyl modification and phosphorylation, and much stronger activation of P38 and JNK. Hemichannel opening led to extracellular loss of the major antioxidant glutathione (GSH. Supplement of cells with exogenous GSH or inhibition of oxidative sensitive kinases largely prevented the above-mentioned changes. Taken together, our study indicates that Cx43 hemichannels promote the disassembly of cell junctions through regulation of intracellular oxidative status.

  19. Effect of Saw Palmetto Supplements on Androgen-Sensitive LNCaP Human Prostate Cancer Cell Number and Syrian Hamster Flank Organ Growth

    Directory of Open Access Journals (Sweden)

    Alexander B. Opoku-Acheampong

    2016-01-01

    Full Text Available Saw palmetto supplements (SPS are commonly consumed by men with prostate cancer. We investigated whether SPS fatty acids and phytosterols concentrations determine their growth-inhibitory action in androgen-sensitive LNCaP cells and hamster flank organs. High long-chain fatty acids-low phytosterols (HLLP SPS ≥ 750 nM with testosterone significantly increased and ≥500 nM with dihydrotestosterone significantly decreased LNCaP cell number. High long-chain fatty acids-high phytosterols (HLHP SPS ≥ 500 nM with dihydrotestosterone and high medium-chain fatty acids-low phytosterols (HMLP SPS ≥ 750 nM or with androgens significantly decreased LNCaP cell number (n=3; p<0.05. Five- to six-week-old, castrated male Syrian hamsters were randomized to control (n=4, HLLP, HLHP, and HMLP SPS (n=6 groups. Testosterone or dihydrotestosterone was applied topically daily for 21 days to the right flank organ; the left flank organ was treated with ethanol and served as the control. Thirty minutes later, SPS or ethanol was applied to each flank organ in treatment and control groups, respectively. SPS treatments caused a notable but nonsignificant reduction in the difference between left and right flank organ growth in testosterone-treated SPS groups compared to the control. The same level of inhibition was not seen in dihydrotestosterone-treated SPS groups (p<0.05. Results may suggest that SPS inhibit 5α-reductase thereby preventing hamster flank organ growth.

  20. Effect of Saw Palmetto Supplements on Androgen-Sensitive LNCaP Human Prostate Cancer Cell Number and Syrian Hamster Flank Organ Growth.

    Science.gov (United States)

    Opoku-Acheampong, Alexander B; Penugonda, Kavitha; Lindshield, Brian L

    2016-01-01

    Saw palmetto supplements (SPS) are commonly consumed by men with prostate cancer. We investigated whether SPS fatty acids and phytosterols concentrations determine their growth-inhibitory action in androgen-sensitive LNCaP cells and hamster flank organs. High long-chain fatty acids-low phytosterols (HLLP) SPS ≥ 750 nM with testosterone significantly increased and ≥500 nM with dihydrotestosterone significantly decreased LNCaP cell number. High long-chain fatty acids-high phytosterols (HLHP) SPS ≥ 500 nM with dihydrotestosterone and high medium-chain fatty acids-low phytosterols (HMLP) SPS ≥ 750 nM or with androgens significantly decreased LNCaP cell number (n = 3; p < 0.05). Five- to six-week-old, castrated male Syrian hamsters were randomized to control (n = 4), HLLP, HLHP, and HMLP SPS (n = 6) groups. Testosterone or dihydrotestosterone was applied topically daily for 21 days to the right flank organ; the left flank organ was treated with ethanol and served as the control. Thirty minutes later, SPS or ethanol was applied to each flank organ in treatment and control groups, respectively. SPS treatments caused a notable but nonsignificant reduction in the difference between left and right flank organ growth in testosterone-treated SPS groups compared to the control. The same level of inhibition was not seen in dihydrotestosterone-treated SPS groups (p < 0.05). Results may suggest that SPS inhibit 5α-reductase thereby preventing hamster flank organ growth.