WorldWideScience

Sample records for cell water dynamics

  1. Modelling and Validation of Water Hydration of PEM Fuel Cell Membrane in Dynamic Operations

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh

    2015-01-01

    Fuel cells convert chemical energy of hydrogen and oxygen directly in to electricity. High efficiency and the possibility of zero emission operation have made them a prime candidate for powering the next generation of electric vehicles. PEM fuel cells require good hydration in order to deliver high...... performance and ensure long life operation. Water is essential for membrane proton conductivity which increases by nearly six orders of magnitude from dry to fully hydrated. Adequate water management in PEM fuel cell is crucial in order to avoid an imbalance between water production and water removal from...... non-Ficknian behavior of the cell membrane. The present model considers the absorption/desorption mechanism typical of dynamic process and for this reason it becomes useful when studying a PEM fuel cell system in dynamic conditions....

  2. Reversibility, Water-Mediated Switching, and Directed Cell Dynamics

    OpenAIRE

    J. C. Phillips

    2008-01-01

    Reversible switching of the complex network dynamics of proteins is mimicked in selected network glasses and compacted small carbohydrate molecules. Protein transitions occur on long time scales ~ us -ms, evocative of the exponentially large viscosities found in glass-forming supercooled liquids just above the glass transition; in searching for mechanisms for reversibly slowed "geared activation", Kauzmann was led from proteins to glasses. I show here that selected network glasses and small c...

  3. Collective dynamics of water in the living cell and in bulk liquid. New physical models and biological inferences

    OpenAIRE

    Preoteasa, Eugen A.; Apostol, Marian V.

    2008-01-01

    In the frame of collective dynamics in water, models built on elementary excitations and long-range electromagnetic interactions in the cell and bulk liquid are presented. Making use of the low effective mass of water coherence domains (CDs), we examined the relevance of simple quantum models to cellular characteristics. A hypothesis of CDs Bose-type condensation, and models of CD in spherical wells with impenetrable and semipenetrable walls, and of an isotropic oscillator consisting of two i...

  4. Collective dynamics of water in the living cell and in bulk liquid. New physical models and biologcial infereneces

    CERN Document Server

    Preoteasa, Eugen A

    2008-01-01

    In the frame of collective dynamics in water, models built on elementary excitations and long-range electromagnetic interactions in the cell and bulk liquid are presented. Making use of the low effective mass of water coherence domains (CDs), we examined the relevance of simple quantum models to cellular characteristics. A hypothesis of CDs Bose-type condensation, and models of CD in spherical wells with impenetrable and semipenetrable walls, and of an isotropic oscillator consisting of two interacting CDs were investigated. Estimated cellular volumes matched to medium-sized bacteria and small prokaryotes, and to some organelles in eukaryotic cells. Also, the cytotoxic effects of heavy water in eukaryotes were explained. In another approach we proposed a plasmon-like model of hydrogen-oxygen ionic plasma in liquid water. In addition to plasmonic oscillations, the model predicted sound-like non-equilibrium elementary excitations that we called densitons (the sound anomaly of water), the vaporization heat and t...

  5. Systems analysis of guard cell membrane transport for enhanced stomatal dynamics and water use efficiency.

    Science.gov (United States)

    Wang, Yizhou; Hills, Adrian; Blatt, Michael R

    2014-04-01

    Stomatal transpiration is at the center of a crisis in water availability and crop production that is expected to unfold over the next 20 to 30 years. Global water usage has increased 6-fold in the past 100 years, twice as fast as the human population, and is expected to double again before 2030, driven mainly by irrigation and agriculture. Guard cell membrane transport is integral to controlling stomatal aperture and offers important targets for genetic manipulation to improve crop performance. However, its complexity presents a formidable barrier to exploring such possibilities. With few exceptions, mutations that increase water use efficiency commonly have been found to do so with substantial costs to the rate of carbon assimilation, reflecting the trade-off in CO₂ availability with suppressed stomatal transpiration. One approach yet to be explored in detail relies on quantitative systems analysis of the guard cell. Our deep knowledge of transport and homeostasis in these cells gives real substance to the prospect for reverse engineering of stomatal responses, using in silico design in directing genetic manipulation for improved water use and crop yields. Here we address this problem with a focus on stomatal kinetics, taking advantage of the OnGuard software and models of the stomatal guard cell recently developed for exploring stomatal physiology. Our analysis suggests that manipulations of single transporter populations are likely to have unforeseen consequences. Channel gating, especially of the dominant K⁺ channels, appears the most favorable target for experimental manipulation. PMID:24596330

  6. Dynamic water management of polymer electrolyte membrane fuel cells using intermittent RH control

    KAUST Repository

    Hussaini, I.S.

    2010-06-01

    A novel method of water management of polymer electrolyte membrane (PEM) fuel cells using intermittent humidification is presented in this study. The goal is to maintain the membrane close to full humidification, while eliminating channel flooding. The entire cycle is divided into four stages: saturation and de-saturation of the gas diffusion layer followed by de-hydration and hydration of membrane. By controlling the duration of dry and humid flows, it is shown that the cell voltage can be maintained within a narrow band. The technique is applied on experimental test cells using both plain and hydrophobic materials for the gas diffusion layer and an improvement in performance as compared to steady humidification is demonstrated. Duration of dry and humid flows is determined experimentally for several operating conditions. © 2010 Elsevier B.V. All rights reserved.

  7. Dynamics and thermodynamics of water

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pradeep; Stanley, H Eugene [Center for Studies in Physics and Biology, Rockefeller University, New York, NY 10021 (United States); Franzese, Giancarlo [Departament de Fisica Fonamental, Universitat de Barcelona, Diagonal 647, Barcelona 08028 (Spain)], E-mail: pradeep.kumar@rockefeller.edu, E-mail: gfranzese@ub.edu, E-mail: hes@bu.edu

    2008-06-18

    On decreasing the temperature T, the correlation time {tau} of supercooled water displays a dynamic crossover from non-Arrhenius dynamics (with T-dependent activation energy) at high T to Arrhenius dynamics (with constant activation energy) at low T. Simulations for water models show that this crossover occurs at the locus of maximum isobaric specific heat in the pressure-temperature (P-T) plane. Results of simulations show also that at this locus there is a sharp change of local structure: more tetrahedral below the locus, and less tetrahedral above it. Furthermore, in water solutions with proteins or DNA, simulations show that in correspondence with this locus there is a crossover in the dynamics of the biomolecules, a phenomenon commonly known as the protein glass transition. To clarify the relation of the dynamic crossover with the thermodynamics of water, we study the dynamics of a cell model of water which can be tuned to exhibit: (1) a first-order phase transition line that separates the liquids of high and low densities at low temperatures; this phase transition line terminates at a liquid-liquid critical point (LLCP), from which departs the Widom line T{sub W}(P), i.e. the line of maximum isobaric specific heat in the P-T plane; (2) the singularity-free (SF) scenario, under which the system exhibits water-like anomalies but with no finite temperature liquid-liquid critical point. We find that the dynamic crossover is present in both the LLCP and the SF cases. Moreover, on the basis of the study of the probability p{sub B} of forming a bond, we propose and verify a relation between dynamics and thermodynamics that is able to show how the crossover is a consequence of a local relaxation process associated with breaking a bond and reorienting the molecule. We further find a distinct difference in pressure dependence of the dynamic crossover between the LLCP and SF scenarios, which may help in resolving which of the scenarios correctly explains the anomalous

  8. Dynamics and thermodynamics of water

    International Nuclear Information System (INIS)

    On decreasing the temperature T, the correlation time τ of supercooled water displays a dynamic crossover from non-Arrhenius dynamics (with T-dependent activation energy) at high T to Arrhenius dynamics (with constant activation energy) at low T. Simulations for water models show that this crossover occurs at the locus of maximum isobaric specific heat in the pressure-temperature (P-T) plane. Results of simulations show also that at this locus there is a sharp change of local structure: more tetrahedral below the locus, and less tetrahedral above it. Furthermore, in water solutions with proteins or DNA, simulations show that in correspondence with this locus there is a crossover in the dynamics of the biomolecules, a phenomenon commonly known as the protein glass transition. To clarify the relation of the dynamic crossover with the thermodynamics of water, we study the dynamics of a cell model of water which can be tuned to exhibit: (1) a first-order phase transition line that separates the liquids of high and low densities at low temperatures; this phase transition line terminates at a liquid-liquid critical point (LLCP), from which departs the Widom line TW(P), i.e. the line of maximum isobaric specific heat in the P-T plane; (2) the singularity-free (SF) scenario, under which the system exhibits water-like anomalies but with no finite temperature liquid-liquid critical point. We find that the dynamic crossover is present in both the LLCP and the SF cases. Moreover, on the basis of the study of the probability pB of forming a bond, we propose and verify a relation between dynamics and thermodynamics that is able to show how the crossover is a consequence of a local relaxation process associated with breaking a bond and reorienting the molecule. We further find a distinct difference in pressure dependence of the dynamic crossover between the LLCP and SF scenarios, which may help in resolving which of the scenarios correctly explains the anomalous behavior of

  9. Proton-Induced Trap States, Injection and Recombination Dynamics in Water-Splitting Dye-Sensitized Photoelectrochemical Cells.

    Science.gov (United States)

    McCool, Nicholas S; Swierk, John R; Nemes, Coleen T; Saunders, Timothy P; Schmuttenmaer, Charles A; Mallouk, Thomas E

    2016-07-01

    Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) utilize a sensitized metal oxide and a water oxidation catalyst in order to generate hydrogen and oxygen from water. Although the Faradaic efficiency of water splitting is close to unity, the recombination of photogenerated electrons with oxidized dye molecules causes the quantum efficiency of these devices to be low. It is therefore important to understand recombination mechanisms in order to develop strategies to minimize them. In this paper, we discuss the role of proton intercalation in the formation of recombination centers. Proton intercalation forms nonmobile surface trap states that persist on time scales that are orders of magnitude longer than the electron lifetime in TiO2. As a result of electron trapping, recombination with surface-bound oxidized dye molecules occurs. We report a method for effectively removing the surface trap states by mildly heating the electrodes under vacuum, which appears to primarily improve the injection kinetics without affecting bulk trapping dynamics, further stressing the importance of proton control in WS-DSPECs. PMID:27295276

  10. Dynamics of Water Entry

    CERN Document Server

    Truscott, Tadd T; Techet, Alexandra H

    2008-01-01

    The hydrodynamics associated with water-entry of spheres can be highly variable with respect to the material and kinematic properties of the sphere. This series of five fluid dynamics videos illustrates several subtle but interesting variations that can be seen. The first series of videos contrasts the nature of impact ($Fr = U_o/\\sqrt{gd} = 5.15$) between a hydrophilic (wetting angle of $\\alpha$ = 60$^\\circ$) and hydrophobic sphere ($\\alpha$ = 120$^\\circ$), and illustrates how surface coating can affect whether or not an air cavity is formed; the views from the side and from above are synchronized in time. The second video series illustrates how spin and surface treatments can alter the splash and cavity formation following water entry. The spinning sphere ($S = \\omega r / U_o = 1.7$; $Fr = 5.15$) causes a wedge of fluid to be drawn into the cavity due to the no-slip condition and follows a curved trajectory. The non-spinning sphere ($Fr = 5.15$) has two distinct surface treatments on the left and right hemi...

  11. Water management studies in PEM fuel cells, part III: Dynamic breakthrough and intermittent drainage characteristics from GDLs with and without MPLs

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zijie; Daino, Michael M.; Rath, Cody; Kandlikar, Satish G. [Mechanical Engineering Department, Rochester Institute of Technology, 76 Lomb Memorial Dr., Rochester, NY 14623 (United States)

    2010-05-15

    The transport of liquid water and gaseous reactants through a gas diffusion layer (GDL) is one of the most important water management issues in a proton exchange membrane fuel cell (PEMFC). In this work, the liquid water breakthrough dynamics, characterized by the capillary pressure and water saturation, across GDLs with and without a microporous layer (MPL) are studied in an ex-situ setup which closely simulates a real fuel cell configuration and operating conditions. The results reveal that recurrent breakthroughs are observed for all of the GDL samples tested, indicating the presence of an intermittent water drainage mechanism in the GDL. This is accounted for by the breakdown and redevelopment of the continuous water paths during water drainage as demonstrated by Haines jumps. For GDL samples without MPL, a dynamic change of breakthrough locations is observed, which originates from the rearrangement of the water configuration in the GDL following the drainage. For GDL samples with MPL, no dynamic change of breakthrough location can be found and the water saturation is significantly lower than the samples without MPL. These results suggest that the MPL not only limits the number of water entry locations into the GDL (such that the water saturation is drastically reduced), but also stabilizes the water paths (or morphology). The effect of MPL on the two-phase flow dynamics in gas channels is also studied with multi-channel flow experiments. The most important result is that GDL without MPL promotes film flow and shifts the slug-to-film flow transition to lower air flow rates, compared with the case of GDL with MPL. This is closely related to the larger number of water breakthrough locations through GDL without MPL, which promotes the formation of water film. (author)

  12. Dynamics of cell orientation

    Science.gov (United States)

    de, Rumi; Zemel, Assaf; Safran, Samuel A.

    2007-09-01

    Many physiological processes depend on the response of biological cells to mechanical forces generated by the contractile activity of the cell or by external stresses. Using a simple theoretical model that includes the forces due to both the mechanosensitivity of cells and the elasticity of the matrix, we predict the dynamics and orientation of cells in both the absence and presence of applied stresses. The model predicts many features observed in measurements of cellular forces and orientation including the increase with time of the cellular forces in the absence of applied stress and the consequent decrease of the force in the presence of quasi-static stresses. We also explain the puzzling observation of parallel alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency.

  13. Linking water and permafrost dynamics

    OpenAIRE

    Sjöberg, Ylva

    2015-01-01

    The extent and dynamics of permafrost are tightly linked to the distribution and movement of water in arctic landscapes. As the Arctic warms more rapidly than the global average, profound changes are expected in both permafrost and hydrology; however, much is still not known about the interactions between these two systems. The aim of this thesis is to provide new knowledge on the links between permafrost and hydrology under varying environmental conditions and across different scales. The ob...

  14. Microbial Cell Dynamics Lab (MCDL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Microbial Cell Dynamics Laboratory at PNNL enables scientists to study the molecular details of microbes under relevant environmental conditions. The MCDL seeks...

  15. Dynamic behaviour of fuel cells

    OpenAIRE

    Weydahl, Helge

    2006-01-01

    This thesis addresses the dynamic behaviour of proton exchange membrane fuel cells (PEMFCs) and alkaline fuel cells (AFCs). For successful implementation in automotive vehicles and other applications with rapidly varying power demands, the dynamic behaviour of the fuel cell is critical. Knowledge of the load variation requirements as well as the response time of the cell at load change is essential for identifying the need for and design of a buffer system.The transient response of a PEMFC su...

  16. Manual for Dynamic Triaxial Cell

    DEFF Research Database (Denmark)

    Pedersen, Thomas Schmidt; Ibsen, Lars Bo

    This report is a test report that describes the test setup for a dynamic triaxial cell at the Laboratory for Geotechnique at Aalborg University.......This report is a test report that describes the test setup for a dynamic triaxial cell at the Laboratory for Geotechnique at Aalborg University....

  17. Dynamized Preparations in Cell Culture

    Directory of Open Access Journals (Sweden)

    Ellanzhiyil Surendran Sunila

    2009-01-01

    Full Text Available Although reports on the efficacy of homeopathic medicines in animal models are limited, there are even fewer reports on the in vitro action of these dynamized preparations. We have evaluated the cytotoxic activity of 30C and 200C potencies of ten dynamized medicines against Dalton's Lymphoma Ascites, Ehrlich's Ascites Carcinoma, lung fibroblast (L929 and Chinese Hamster Ovary (CHO cell lines and compared activity with their mother tinctures during short-term and long-term cell culture. The effect of dynamized medicines to induce apoptosis was also evaluated and we studied how dynamized medicines affected genes expressed during apoptosis. Mother tinctures as well as some dynamized medicines showed significant cytotoxicity to cells during short and long-term incubation. Potentiated alcohol control did not produce any cytotoxicity at concentrations studied. The dynamized medicines were found to inhibit CHO cell colony formation and thymidine uptake in L929 cells and those of Thuja, Hydrastis and Carcinosinum were found to induce apoptosis in DLA cells. Moreover, dynamized Carcinosinum was found to induce the expression of p53 while dynamized Thuja produced characteristic laddering pattern in agarose gel electrophoresis of DNA. These results indicate that dynamized medicines possess cytotoxic as well as apoptosis-inducing properties.

  18. Dynamized preparations in cell culture.

    Science.gov (United States)

    Sunila, Ellanzhiyil Surendran; Kuttan, Ramadasan; Preethi, Korengath Chandran; Kuttan, Girija

    2009-06-01

    Although reports on the efficacy of homeopathic medicines in animal models are limited, there are even fewer reports on the in vitro action of these dynamized preparations. We have evaluated the cytotoxic activity of 30C and 200C potencies of ten dynamized medicines against Dalton's Lymphoma Ascites, Ehrlich's Ascites Carcinoma, lung fibroblast (L929) and Chinese Hamster Ovary (CHO) cell lines and compared activity with their mother tinctures during short-term and long-term cell culture. The effect of dynamized medicines to induce apoptosis was also evaluated and we studied how dynamized medicines affected genes expressed during apoptosis. Mother tinctures as well as some dynamized medicines showed significant cytotoxicity to cells during short and long-term incubation. Potentiated alcohol control did not produce any cytotoxicity at concentrations studied. The dynamized medicines were found to inhibit CHO cell colony formation and thymidine uptake in L929 cells and those of Thuja, Hydrastis and Carcinosinum were found to induce apoptosis in DLA cells. Moreover, dynamized Carcinosinum was found to induce the expression of p53 while dynamized Thuja produced characteristic laddering pattern in agarose gel electrophoresis of DNA. These results indicate that dynamized medicines possess cytotoxic as well as apoptosis-inducing properties. PMID:18955237

  19. Dynamics of Electron Injection in SnO2/TiO2 Core/Shell Electrodes for Water-Splitting Dye-Sensitized Photoelectrochemical Cells.

    Science.gov (United States)

    McCool, Nicholas S; Swierk, John R; Nemes, Coleen T; Schmuttenmaer, Charles A; Mallouk, Thomas E

    2016-08-01

    Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) rely on photoinduced charge separation at a dye/semiconductor interface to supply electrons and holes for water splitting. To improve the efficiency of charge separation and reduce charge recombination in these devices, it is possible to use core/shell structures in which photoinduced electron transfer occurs stepwise through a series of progressively more positive acceptor states. Here, we use steady-state emission studies and time-resolved terahertz spectroscopy to follow the dynamics of electron injection from a photoexcited ruthenium polypyridyl dye as a function of the TiO2 shell thickness on SnO2 nanoparticles. Electron injection proceeds directly into the SnO2 core when the thickness of the TiO2 shell is less than 5 Å. For thicker shells, electrons are injected into the TiO2 shell and trapped, and are then released into the SnO2 core on a time scale of hundreds of picoseconds. As the TiO2 shell increases in thickness, the probability of electron trapping in nonmobile states within the shell increases. Conduction band electrons in the TiO2 shell and the SnO2 core can be differentiated on the basis of their mobility. These observations help explain the observation of an optimum shell thickness for core/shell water-splitting electrodes.

  20. Epidermal stem cell dynamics

    OpenAIRE

    Sieber-Blum, Maya

    2011-01-01

    Wong and Reiter have explored the possibility that hair follicle stem cells can give rise to basal cell carcinoma (BCC). They expressed in mice an inducible human BCC-derived oncogenic allele of Smoothened, SmoM2, under the control of either the cytokeratin 14 (K14) or cytokeratin 15 (K15) promoter. Smoothened encodes a G-protein-coupled receptor protein in the hedgehog pathway, the misregulation of which is implicated in BCC and other human cancers. Chronic injury is thought to be a contribu...

  1. Transcription Dynamics in Living Cells.

    Science.gov (United States)

    Lenstra, Tineke L; Rodriguez, Joseph; Chen, Huimin; Larson, Daniel R

    2016-07-01

    The transcription cycle can be roughly divided into three stages: initiation, elongation, and termination. Understanding the molecular events that regulate all these stages requires a dynamic view of the underlying processes. The development of techniques to visualize and quantify transcription in single living cells has been essential in revealing the transcription kinetics. They have revealed that (a) transcription is heterogeneous between cells and (b) transcription can be discontinuous within a cell. In this review, we discuss the progress in our quantitative understanding of transcription dynamics in living cells, focusing on all parts of the transcription cycle. We present the techniques allowing for single-cell transcription measurements, review evidence from different organisms, and discuss how these experiments have broadened our mechanistic understanding of transcription regulation.

  2. Excess water dynamics in hydrotalcite: QENS study

    Indian Academy of Sciences (India)

    S Mitra; A Pramanik; D Chakrabarty; R Mukhopadhyay

    2004-08-01

    Results of the quasi-elastic neutron scattering (QENS) measurements on the dynamics of excess water in hydrotalcite sample with varied content of excess water are reported. Translational motion of excess water can be best described by random translational jump diffusion model. The observed increase in translational diffusivity with increase in the amount of excess water is attributed to the change in binding of the water molecules to the host layer.

  3. Dynamic Programming Applications in Water Resources

    Science.gov (United States)

    Yakowitz, Sidney

    1982-08-01

    The central intention of this survey is to review dynamic programming models for water resource problems and to examine computational techniques which have been used to obtain solutions to these problems. Problem areas surveyed here include aqueduct design, irrigation system control, project development, water quality maintenance, and reservoir operations analysis. Computational considerations impose severe limitation on the scale of dynamic programming problems which can be solved. Inventive numerical techniques for implementing dynamic programming have been applied to water resource problems. Discrete dynamic programming, differential dynamic programming, state incremental dynamic programming, and Howard's policy iteration method are among the techniques reviewed. Attempts have been made to delineate the successful applications, and speculative ideas are offered toward attacking problems which have not been solved satisfactorily.

  4. Dynamics of Water Jet in Water Jet Looms

    Institute of Scientific and Technical Information of China (English)

    李克让; 陈明

    2001-01-01

    On the base of the study on dynamics of water jet in water jet looms, the parameters of water jet mechanism which affect the speed of water jet are analyzed and optimized. So the stability of the water jet can be improved to raise the speed of water jet as well as weft insertion rate and to enlarge the width of woven fabrics a lot. At the same time it also points out that to increase water jet speed and to prolong its affective jet time depend mainly on the accretion of spring rate (constant)of stiffness and the diminution of plunger's cross sectional area respectively.

  5. Water losses dynamic modelling in water distribution networks

    Science.gov (United States)

    Puleo, Valeria; Milici, Barbara

    2015-12-01

    In the last decades, one of the main concerns of the water system managers have been the minimisation of water losses, that frequently reach values of 30% or even 70% of the volume supplying the water distribution network. The economic and social costs associated with water losses in modern water supply systems are rapidly rising to unacceptably high levels. Furthermore, the problem of the water losses assumes more and more importance mainly when periods of water scarcity occur or when not sufficient water supply takes part in areas with fast growth. In the present analysis, a dynamic model was used for estimating real and apparent losses of a real case study. A specific nodal demand model reflecting the user's tank installation and a specific apparent losses module were implemented. The results from the dynamic model were compared with the modelling estimation based on a steady-state approach.

  6. Fuel-Cell Water Separator

    Science.gov (United States)

    Burke, Kenneth Alan; Fisher, Caleb; Newman, Paul

    2010-01-01

    The main product of a typical fuel cell is water, and many fuel-cell configurations use the flow of excess gases (i.e., gases not consumed by the reaction) to drive the resultant water out of the cell. This two-phase mixture then exits through an exhaust port where the two fluids must again be separated to prevent the fuel cell from flooding and to facilitate the reutilization of both fluids. The Glenn Research Center (GRC) has designed, built, and tested an innovative fuel-cell water separator that not only removes liquid water from a fuel cell s exhaust ports, but does so with no moving parts or other power-consuming components. Instead it employs the potential and kinetic energies already present in the moving exhaust flow. In addition, the geometry of the separator is explicitly intended to be integrated into a fuel-cell stack, providing a direct mate with the fuel cell s existing flow ports. The separator is also fully scalable, allowing it to accommodate a wide range of water removal requirements. Multiple separators can simply be "stacked" in series or parallel to adapt to the water production/removal rate. GRC s separator accomplishes the task of water removal by coupling a high aspect- ratio flow chamber with a highly hydrophilic, polyethersulfone membrane. The hydrophilic membrane readily absorbs and transports the liquid water away from the mixture while simultaneously resisting gas penetration. The expansive flow path maximizes the interaction of the water particles with the membrane while minimizing the overall gas flow restriction. In essence, each fluid takes its corresponding path of least resistance, and the two fluids are effectively separated. The GRC fuel-cell water separator has a broad range of applications, including commercial hydrogen-air fuel cells currently being considered for power generation in automobiles.

  7. High-dynamic-range water window ptychography

    CERN Document Server

    Rose, Max; Senkbeil, Tobias; von Gundlach, Andreas R; Stuhr, Susan; Rumancev, Christoph; Besedin, Ilya; Skopintsev, Petr; Viefhaus, Jens; Rosenhahn, Axel; Vartanyants, Ivan A

    2016-01-01

    Ptychographic imaging with soft X-rays, especially in the water window energy range, suffers from limited detector dynamic range that directly influences the maximum spatial resolution achievable. High-dynamic-range data can be obtained by multiple exposures. By this approach we have increased the dynamic range of a ptychographic data set by a factor of 76 and obtained diffraction signal till the corners of the detector. The real space half period resolution was improved from 50 nm for the single exposure data to 18 nm for the high-dynamic-range data.

  8. Fluid dynamics: How water explodes

    Science.gov (United States)

    Allen, Susan Davis

    2016-10-01

    Micro-explosions triggered by the absorption of X-ray laser light in drops and jets of water result in shock waves and in rapid heating and expansion of the liquid -- as now revealed in state-of-the-art experiments.

  9. Wetting dynamics of a water nanodrop on graphene.

    Science.gov (United States)

    Andrews, Joseph Eugene; Sinha, Shayandev; Chung, Peter W; Das, Siddhartha

    2016-09-14

    Water-graphene wetting interactions are central to several applications such as desalination, water filtration, electricity generation, biochemical sensing, fabrication of fuel cells, and many more. While substantial attention has been devoted to probe the wetting statics of a water drop on graphene, unraveling the possible wetting translucency nature of graphene, very little research has been done on the dynamics of wetting of water drops on graphene-coated solids or free-standing graphene layers. In this paper, we employ molecular dynamics (MD) simulations to study the contact and the spreading of a water nanodrop, quantifying its wetting dynamics, on supported and free-standing graphene. We demonstrate that nanoscale water drops establish contact with graphene by forming patches on graphene, and this patch formation is hastened for graphene layer(s) supported on hydrophilic solids. More importantly, our results demonstrate that the nanodrop spreading dynamics, regardless of the number of graphene layers or the nature of the underlying solid, obey the half-power law, i.e., r∼t(1/2) (where r is the wetting contact radius and t is the spreading time) for the entire timespan of spreading except towards the very end of the spreading lifetime when the spreading stops. Such a spreading behavior is exactly analogous to the spreading dynamics of nanodroplets for standard solids - this is in sharp contrast to the wetting statics of graphene where the wetting translucency effect makes graphene different from other standard solids. PMID:27306955

  10. Vibrational dynamics of hydration water in amylose

    CERN Document Server

    Cavatorta, F; Albanese, G; Angelini, N

    2002-01-01

    We present a study of the dynamical properties of hydration water associated with amylose helices, based on low-temperature vibrational spectra collected using the TOSCA inelastic spectrometer at ISIS. The structural constraints of the polysaccharidic chains favour the formation of a high-density structure for water, which has been suggested by Imberty and Perez on the basis of conformational analysis. According to this model, hydration water can only enter the pores formed by six adjacent helices and completely fills the pores at a hydration level of about 0.27-g water/g dry amylose. Our measurements show that the dynamical behaviour of hydration water is similar to that observed in high-density amorphous ice. (orig.)

  11. Plant water balance with tritiated water-tracing dynamical method

    Institute of Scientific and Technical Information of China (English)

    曾文炳; 颉红梅; 魏宝文; 陈荷生; 冯金朝; 董家伦

    1996-01-01

    The conception of "metabolic pool" is introduced and an ecosystem model consisting of sand body metabolic pool, plant metabolic pool, atmospheric pool and their corresponding channels is established. In addition, the input and output terms of water balance including plant transpiration etc. are measured by tritiated water-tracing dynamical method, etc. and thus a water balance table is obtained. Finally, the plant water balance in the steppified desert environment of the Shapotou area at southeastern fringe of Tengger Desert in China is comprehensively analysed.

  12. Water dynamics in glass ionomer cements

    Science.gov (United States)

    Berg, M. C.; Jacobsen, J.; Momsen, N. C. R.; Benetti, A. R.; Telling, M. T. F.; Seydel, T.; Bordallo, H. N.

    2016-07-01

    Glass ionomer cements (GIC) are an alternative for preventive dentistry. However, these dental cements are complex systems where important motions related to the different states of the hydrogen atoms evolve in a confined porous structure. In this paper, we studied the water dynamics of two different liquids used to prepare either conventional or resin-modified glass ionomer cement. By combining thermal analysis with neutron scattering data we were able to relate the water structure in the liquids to the materials properties.

  13. Shape dynamics of growing cell walls

    CERN Document Server

    Banerjee, Shiladitya; Dinner, Aaron R

    2015-01-01

    We introduce a general theoretical framework to study the shape dynamics of actively growing and remodeling surfaces. Using this framework we develop a physical model for growing bacterial cell walls and study the interplay of cell shape with the dynamics of growth and constriction. The model allows us to derive constraints on cell wall mechanical energy based on the observed dynamics of cell shape. We predict that exponential growth in cell size requires a constant amount of cell wall energy to be dissipated per unit volume. We use the model to understand and contrast growth in bacteria with different shapes such as spherical, ellipsoidal, cylindrical and toroidal morphologies. Coupling growth to cell wall constriction, we predict a discontinuous shape transformation, from partial constriction to cell division, as a function of the chemical potential driving cell-wall synthesis. Our model for cell wall energy and shape dynamics relates growth kinetics with cell geometry, and provides a unified framework to d...

  14. Origin of subdiffusion of water molecules on cell membrane surfaces

    CERN Document Server

    Yamamoto, Eiji; Yasui, Masato; Yasuoka, Kenji

    2014-01-01

    Water molecules play an important role in providing unique environments for biological reactions on cell membranes. It is widely believed that water molecules form bridges that connect lipid molecules and stabilize cell membranes. Using all-atom molecular dynamics simulations, we show that translational and rotational diffusion of water molecules on lipid membrane surfaces exhibit subdiffusion. Moreover, we provide evidence that both divergent mean trapping time (continuous-time random walk) and long-correlated noise (fractional Brownian motion) contribute to this subdiffusion. These results suggest that subdiffusion on cell membranes causes the water retardation, an enhancement of cell membrane stability, and a higher reaction efficiency.

  15. Dynamic characteristics of an automotive fuel cell system for transitory load changes

    OpenAIRE

    Rabbani, Raja Abid; Rokni, Masoud

    2013-01-01

    A dynamic model of Polymer Electrolyte Membrane Fuel Cell (PEMFC) system is developed to investigate the behavior and transient response of a fuel cell system for automotive applications. Fuel cell dynamics are subjected to reactant flows, heat management and water transportation inside the fuel cell. Therefore, a control-oriented model has been devised in Aspen Plus Dynamics, which accommodates electrochemical, thermal, feed flow and water crossover models in addition to two-phase calculatio...

  16. Dynamics and reactivity of confined water

    International Nuclear Information System (INIS)

    In the context of new sustainable energy sources quest, the nuclear energy remains a key solution. However, with the development of nuclear technology, problems relating to nuclear waste disposal arise; thus, the radiolysis of water in confined media is extremely important with respect to matters related to long time storage of nuclear waste. Studies in model porous media would allow the projection of a confined water radiolysis simulator. A first step in this direction was made by studying the radiolysis of water confined in Vycor and CPG glasses; this study continues the trend set and investigates the effects of confinement in metal materials upon the water radiolysis allowing the understanding of metal - water radiation induced corrosion. A further/complete understanding of the radiolytic process under confinement requires knowledge of the effect of confinement upon the dynamics of confined molecules and on the evolution of the species produced upon ionizing radiation. In this respect, we have used the OH vibrator as a probe of the hydrogen bond network properties and thus investigated the dynamics of confined water using IR time resolved spectroscopy. The evolution of the hydrated electron under confinement was studied on a nano and picosecond time scale using UV pump - visible probe technique and single shot spectroscopy. (author)

  17. Numerical Simulations of Droplet Dynamics in PEM Fuel Cell Microchannels

    Science.gov (United States)

    Cauble, Eric; Owkes, Mark

    2015-11-01

    Proton exchange membrane (PEM) fuel cells are of beneficial interest due to their capability of producing clean energy with zero emissions. An important design challenge hindering the performance of fuel cells is controlling water removal to maintain a hydrated membrane while avoiding excess water that may lead to channel blockage. Fuel cell water management requires a detailed knowledge of multiphase flow dynamics within microchannels. Direct observation of gas-liquid flows is difficult due to the small scale and viewing obstructions of the channels within the fuel cell. Instead, this work uses a CFD approach to compute the formation and dynamics of droplets in fuel cell channels. The method leverages a conservative volume-of-fluid (VOF) formulation coupled with a novel methodology to track dynamic contact angles. We present details of the numerical approach and simulation results relevant to water management in PEM fuel cells. In particular, it is shown that variation of the contact hysteresis angle influences the wetting properties of the droplet and significantly impacts water transport throughout the a fuel cell channel.

  18. Simulation of Boiling Water Reactor dynamics

    International Nuclear Information System (INIS)

    This master thesis describes a mathematical model of a boiling water reactor and address the dynamic behaviour of the neutron kinetics, boilding dynamics and pressur stability. The simulation have been done using the SIMNON-program. The meaning were that the result from this work possibly would be adjust to supervision methods suitable for application in computer systems. This master thesis in automatic control has been done at the Department of Automatic Control, Lund Institute of Technology. The initiative to the work came from Sydkraft AB. (author)

  19. Dynamical Transition of Protein-Hydration Water

    Science.gov (United States)

    Doster, W.; Busch, S.; Gaspar, A. M.; Appavou, M.-S.; Wuttke, J.; Scheer, H.

    2010-03-01

    Thin layers of water on biomolecular and other nanostructured surfaces can be supercooled to temperatures not accessible with bulk water. Chen et al. [Proc. Natl. Acad. Sci. U.S.A. 103, 9012 (2006)]PNASA60027-842410.1073/pnas.0602474103 suggested that anomalies near 220 K observed by quasielastic neutron scattering can be explained by a hidden critical point of bulk water. Based on more sensitive measurements of water on perdeuterated phycocyanin, using the new neutron backscattering spectrometer SPHERES, and an improved data analysis, we present results that show no sign of such a fragile-to-strong transition. The inflection of the elastic intensity at 220 K has a dynamic origin that is compatible with a calorimetric glass transition at 170 K. The temperature dependence of the relaxation times is highly sensitive to data evaluation; it can be brought into perfect agreement with the results of other techniques, without any anomaly.

  20. Vibrational Spectroscopy and Dynamics of Water.

    Science.gov (United States)

    Perakis, Fivos; Marco, Luigi De; Shalit, Andrey; Tang, Fujie; Kann, Zachary R; Kühne, Thomas D; Torre, Renato; Bonn, Mischa; Nagata, Yuki

    2016-07-13

    We present an overview of recent static and time-resolved vibrational spectroscopic studies of liquid water from ambient conditions to the supercooled state, as well as of crystalline and amorphous ice forms. The structure and dynamics of the complex hydrogen-bond network formed by water molecules in the bulk and interphases are discussed, as well as the dissipation mechanism of vibrational energy throughout this network. A broad range of water investigations are addressed, from conventional infrared and Raman spectroscopy to femtosecond pump-probe, photon-echo, optical Kerr effect, sum-frequency generation, and two-dimensional infrared spectroscopic studies. Additionally, we discuss novel approaches, such as two-dimensional sum-frequency generation, three-dimensional infrared, and two-dimensional Raman terahertz spectroscopy. By comparison of the complementary aspects probed by various linear and nonlinear spectroscopic techniques, a coherent picture of water dynamics and energetics emerges. Furthermore, we outline future perspectives of vibrational spectroscopy for water researches. PMID:27096701

  1. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  2. Water dynamics in different biochar fractions.

    Science.gov (United States)

    Conte, Pellegrino; Nestle, Nikolaus

    2015-09-01

    Biochar is a carbonaceous porous material deliberately applied to soil to improve its fertility. The mechanisms through which biochar acts on fertility are still poorly understood. The effect of biochar texture size on water dynamics was investigated here in order to provide information to address future research on nutrient mobility towards plant roots as biochar is applied as soil amendment. A poplar biochar has been stainless steel fractionated in three different textured fractions (1.0-2.0 mm, 0.3-1.0 mm and Water-saturated fractions were analyzed by fast field cycling (FFC) NMR relaxometry. Results proved that 3D exchange between bound and bulk water predominantly occurred in the coarsest fraction. However, as porosity decreased, water motion was mainly associated to a restricted 2D diffusion among the surface-site pores and the bulk-site ones. The X-ray μ-CT imaging analyses on the dry fractions revealed the lowest surface/volume ratio for the coarsest fraction, thereby corroborating the 3D water exchange mechanism hypothesized by FFC NMR relaxometry. However, multi-micrometer porosity was evidenced in all the samples. The latter finding suggested that the 3D exchange mechanism cannot even be neglected in the finest fraction as previously excluded only on the basis of NMR relaxometry results. X-ray μ-CT imaging showed heterogeneous distribution of inorganic materials inside all the fractions. The mineral components may contribute to the water relaxation mechanisms by FFC NMR relaxometry. Further studies are needed to understand the role of the inorganic particles on water dynamics. PMID:25594163

  3. The dynamic crossover in water does not require bulk water.

    Science.gov (United States)

    Turton, David A; Corsaro, Carmelo; Martin, David F; Mallamace, Francesco; Wynne, Klaas

    2012-06-14

    Many of the anomalous properties of water may be explained by invoking a second critical point that terminates the coexistence line between the low- and high-density amorphous states in the liquid. Direct experimental evidence of this point, and the associated polyamorphic liquid-liquid transition, is elusive as it is necessary for liquid water to be cooled below its homogeneous-nucleation temperature. To avoid crystallization, water in the eutectic LiCl solution has been studied but then it is generally considered that "bulk" water cannot be present. However, recent computational and experimental studies observe cooperative hydration in which case it is possible that sufficient hydrogen-bonded water is present for the essential characteristics of water to be preserved. For femtosecond optical Kerr-effect and nuclear magnetic resonance measurements, we observe in each case a fractional Stokes-Einstein relation with evidence of the dynamic crossover appearing near 220 K and 250 K respectively. Spectra obtained in the glass state also confirm the complex nature of the hydrogen-bonding modes reported for neat room-temperature water and support predictions of anomalous diffusion due to "worm-hole" structure.

  4. Photonic water dynamically responsive to external stimuli.

    Science.gov (United States)

    Sano, Koki; Kim, Youn Soo; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Aida, Takuzo

    2016-01-01

    Fluids that contain ordered nanostructures with periodic distances in the visible-wavelength range, anomalously exhibit structural colours that can be rapidly modulated by external stimuli. Indeed, some fish can dynamically change colour by modulating the periodic distance of crystalline guanine sheets cofacially oriented in their fluid cytoplasm. Here we report that a dilute aqueous colloidal dispersion of negatively charged titanate nanosheets exhibits structural colours. In this 'photonic water', the nanosheets spontaneously adopt a cofacial geometry with an ultralong periodic distance of up to 675 nm due to a strong electrostatic repulsion. Consequently, the photonic water can even reflect near-infrared light up to 1,750 nm. The structural colour becomes more vivid in a magnetic flux that induces monodomain structural ordering of the colloidal dispersion. The reflective colour of the photonic water can be modulated over the entire visible region in response to appropriate physical or chemical stimuli. PMID:27572806

  5. Photonic water dynamically responsive to external stimuli

    Science.gov (United States)

    Sano, Koki; Kim, Youn Soo; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Aida, Takuzo

    2016-08-01

    Fluids that contain ordered nanostructures with periodic distances in the visible-wavelength range, anomalously exhibit structural colours that can be rapidly modulated by external stimuli. Indeed, some fish can dynamically change colour by modulating the periodic distance of crystalline guanine sheets cofacially oriented in their fluid cytoplasm. Here we report that a dilute aqueous colloidal dispersion of negatively charged titanate nanosheets exhibits structural colours. In this `photonic water', the nanosheets spontaneously adopt a cofacial geometry with an ultralong periodic distance of up to 675 nm due to a strong electrostatic repulsion. Consequently, the photonic water can even reflect near-infrared light up to 1,750 nm. The structural colour becomes more vivid in a magnetic flux that induces monodomain structural ordering of the colloidal dispersion. The reflective colour of the photonic water can be modulated over the entire visible region in response to appropriate physical or chemical stimuli.

  6. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  7. Regulation of Water in Plant Cells

    Science.gov (United States)

    Kowles, Richard V.

    2010-01-01

    Cell water relationships are important topics to be included in cell biology courses. Differences exist in the control of water relationships in plant cells relative to control in animal cells. One important reason for these differences is that turgor pressure is a consideration in plant cells. Diffusion and osmosis are the underlying factors…

  8. Structure and dynamics of interfacial water. Role of hydratation water in the globular proteins dynamics

    International Nuclear Information System (INIS)

    This memoir includes five chapters. In the first chapter, are given the elements of the neutrons scattering theory that is used in this study. the second chapter is devoted to a general presentation of the interaction between biological macro molecule and water. The third part is dedicated to the study of the structure and the dynamics of interfacial water in the neighbouring of model systems, the vycor and the amorphous carbon. The results presented in this part are compared with these one relative to water dynamics at the C-phycocyanin surface. This study makes the object of the fourth chapter. Then, in the fifth and last chapter are discussed the results relative to the role of hydratation on the parv-albumin dynamics for which have been combined the neutron quasi elastic incoherent scattering and the nuclear magnetic resonance of the carbon 13 solid in natural abundance

  9. Dynamic regulation of aquaporin-4 water channels in neurological disorders.

    Science.gov (United States)

    Hsu, Ying; Tran, Minh; Linninger, Andreas A

    2015-10-01

    Aquaporin-4 water channels play a central role in brain water regulation in neurological disorders. Aquaporin-4 is abundantly expressed at the astroglial endfeet facing the cerebral vasculature and the pial membrane, and both its expression level and subcellular localization significantly influence brain water transport. However, measurements of aquaporin-4 levels in animal models of brain injury often report opposite trends of change at the injury core and the penumbra. Furthermore, aquaporin-4 channels play a beneficial role in brain water clearance in vasogenic edema, but a detrimental role in cytotoxic edema and exacerbate cell swelling. In light of current evidence, we still do not have a complete understanding of the role of aquaporin-4 in brain water transport. In this review, we propose that the regulatory mechanisms of aquaporin-4 at the transcriptional, translational, and post-translational levels jointly regulate water permeability in the short and long time scale after injury. Furthermore, in order to understand why aquaporin-4 channels play opposing roles in cytotoxic and vasogenic edema, we discuss experimental evidence on the dynamically changing osmotic gradients between blood, extracellular space, and the cytosol during the formation of cytotoxic and vasogenic edema. We conclude with an emerging picture of the distinct osmotic environments in cytotoxic and vasogenic edema, and propose that the directions of aquaporin-4-mediated water clearance in these two types of edema are distinct. The difference in water clearance pathways may provide an explanation for the conflicting observations of the roles of aquaporin-4 in edema resolution. PMID:26526878

  10. Polarizable water model for Dissipative Particle Dynamics

    Science.gov (United States)

    Pivkin, Igor; Peter, Emanuel

    2015-11-01

    Dissipative Particle Dynamics (DPD) is an efficient particle-based method for modeling mesoscopic behavior of fluid systems. DPD forces conserve the momentum resulting in a correct description of hydrodynamic interactions. Polarizability has been introduced into some coarse-grained particle-based simulation methods; however it has not been done with DPD before. We developed a new polarizable coarse-grained water model for DPD, which employs long-range electrostatics and Drude oscillators. In this talk, we will present the model and its applications in simulations of membrane systems, where polarization effects play an essential role.

  11. THE INTERIOR DYNAMICS OF WATER PLANETS

    International Nuclear Information System (INIS)

    The ever-expanding catalog of detected super-Earths calls for theoretical studies of their properties in the case of a substantial water layer. This work considers such water planets with a range of masses and water mass fractions (2-5 MEarth, 0.02%-50% H2O). First, we model the thermal and dynamical structure of the near-surface for icy and oceanic surfaces, finding separate regimes where the planet is expected to maintain a subsurface liquid ocean and where it is expected to exhibit ice tectonics. Newly discovered exoplanets may be placed into one of these regimes given estimates of surface temperature, heat flux, and gravity. Second, we construct a parameterized convection model for the underlying ice mantle of higher ice phases, finding that materials released from the silicate-iron core should traverse the ice mantle on the timescale of 0.1 to 100 megayears. We present the dependence of the overturn times of the ice mantle and the planetary radius on total mass and water mass fraction. Finally, we discuss the implications of these internal processes on atmospheric observables.

  12. Salt—Water Dynamics in Soils:II.Effect of Precipitation on SaltWater Dynamics

    Institute of Scientific and Technical Information of China (English)

    YOUWEN-RUI; MENGFAN-HUA

    1992-01-01

    Through a simulation test carried out with soil columns (61.8cm in diameter),the effect of precipitation on salt-water dynamics in soils was studied by in-situ monitoring of salt-water dynamics using soil salinity sensors and tensioneters.The results show that in the profile of whole silty loam soil,the surface runoff volume due to precipitation and the salt-leaching role of infiltrated precipitation increased with the depth of ground water;and in the profile with an intercalated bed of clay or with a thick upper layer of clay,the amount of surface runoff was greater but the salt-leaching role of precipitation was smaller than those in the profile of whole silty loam soil.In case of soil water being supplemented by precipitation,the evaporation of groundwater in the soil columns reduced,resulting in a great decline of salt accumulation from soil profile to surface soil.The effect of precipitation on the water regime of soil profile was performed via both water infiltration and water pressure transfer.The direct infiltration depth of precipitation was less than 1m in general,but water pressure transfer could go up to groundwater surface directly.

  13. Non linear dynamics of boiling water reactor dynamical system

    International Nuclear Information System (INIS)

    The fifth order phenomenological model of March-Leuba for boiling water reactors include the point reactor kinetics equations for neutron balance and effective delayed neutron precursor groups with one node representation of the heat transfer process and channel thermal hydraulics. This nonlinear mathematical model consists five coupled nonlinear ordinary differential equations. The reactivity feedback (void coefficient of reactivity as well as the fuel temperature coefficient of reactivity), heat transfer process and momentum balance are major reasons for the appearance of nonlinearity in this dynamical system. The linear stability of a dynamical system with the existence of nonlinearity cannot predict a true picture of the stability characteristics of dynamical system; hence nonlinear stability analyses become an essential part to predict the global stable region on the stability map. The linear stable region is analyzed by the eigenvalues. In this stable region all the eigenvalues have negative real parts, but when pair of one of the complex eigenvalues passes transversely through imaginary axis, the dynamical system loses or gain its stability via a Hopf bifurcation and limit cycles emerges from the tip. The study of eigenvalues can predict a few bifurcations. The first Lyapunov coefficient and normal form coefficients can be used for the detection of other bifurcations in the systems. Stable or unstable limit cycles excite from these Hopf points. These limits cycles gains or loses their stability via limit point bifurcation of cycles, period doubling bifurcation of cycles and Neimark-Sacker bifurcation of cycles when one of the parameters of the nuclear dynamical system is varied. The stability of these limit cycles can be studied by Floquet theory and Lyapunov coefficient, but the bifurcations of limit cycles can be investigated only by critical Floquet multiplier which is basically the eigenvalue of the monodromy matrices. The cascade of period doubling

  14. Cell Division, Differentiation and Dynamic Clustering

    CERN Document Server

    Kaneko, K; Kaneko, Kunihiko; Yomo, Tetsuya

    1993-01-01

    A novel mechanism for cell differentiation is proposed, based on the dynamic clustering in a globally coupled chaotic system. A simple model with metabolic reaction, active transport of chemicals from media, and cell division is found to show three successive stages with the growth of the number of cells; coherent growth, dynamic clustering, and fixed cell differentiation. At the last stage, disparity in activities, germ line segregation, somatic cell differentiation, and homeochaotic stability against external perturbation are found. Our results, in consistency with the experiments of the preceding paper, imply that cell differentiation can occur without a spatial pattern. From dynamical systems viewpoint, the new concept of ``open chaos" is proposed, as a novel and general scenario for systems with growing numbers of elements, also seen in economics and sociology.A

  15. Dynamic modelling of Industrial Heavy Water Plant

    International Nuclear Information System (INIS)

    The dynamic behavior of the isotopic enrichment unites of the Industrial Heavy Water Plant, located in Arroyito, Neuquen, Argentina, was modeled and simulated in the present work. Dynamic models of the chemical and isotopic interchange processes existent in the plant, were developed. This served as a base to obtain representative models of the different unit and control systems. The developed models were represented in a modular code for each unit. Each simulator consists of approximately one hundred non-linear-first-order differential equations and some other algebraic equation, which are time resolved by the code. The different simulators allow to change a big number of boundary conditions and the control systems set point for each simulation, so that the program become very versatile. The output of the code allows to see the evolution through time of the variables of interest. An interface which facilitates the use of the first enrichment stage simulator was developed. This interface allows an easy access to generate wished events during the simulation and includes the possibility to plot evolution of the variables involved. The obtained results agree with the expected tendencies. The calculated nominal steady state matches by the manufacturer. The different steady states obtained, agree with previous works. The times and tendencies involved in the transients generated by the program, are in good agreement with the experience obtained at the plant. Based in the obtained results, it is concluded that the characteristic times of the plant are determined by the masses involved in the process. Different characteristics in the system dynamic behavior were generated with the different simulators, and were validated by plant personnel. This work allowed to understand the different process involved in the heavy water manufacture, and to develop a very useful tool for the personnel of the plant. (author). 14 refs., figs., tabs. plant. (author). 14 refs., figs., tabs

  16. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes.

    Science.gov (United States)

    Martinez, N; Michoud, G; Cario, A; Ollivier, J; Franzetti, B; Jebbar, M; Oger, P; Peters, J

    2016-01-01

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure. PMID:27595789

  17. Functional dynamics of cell surface membrane proteins

    Science.gov (United States)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  18. Dynamic culture improves cell reprogramming efficiency.

    Science.gov (United States)

    Sia, Junren; Sun, Raymond; Chu, Julia; Li, Song

    2016-06-01

    Cell reprogramming to pluripotency is an inefficient process and various approaches have been devised to improve the yield of induced pluripotent stem cells. However, the effect of biophysical factors on cell reprogramming is not well understood. Here we showed that, for the first time, dynamic culture with orbital shaking significantly improved the reprogramming efficiency in adherent cells. Manipulating the viscosity of the culture medium suggested that the improved efficiency is mainly attributed to convective mixing rather than hydrodynamic shear stress. Temporal studies demonstrated that the enhancement of reprogramming efficiency required the dynamic culture in the middle but not early phase. In the early phase, fibroblasts had a high proliferation rate, but as the culture became over-confluent in the middle phase, expression of p57 was upregulated to inhibit cell proliferation and consequently, cell reprogramming. Subjecting the over confluent culture to orbital shaking prevented the upregulation of p57, thus improving reprogramming efficiency. Seeding cells at low densities to avoid over-confluency resulted in a lower efficiency, and optimal reprogramming efficiency was attained at a high seeding density with dynamic culture. Our findings provide insight into the underlying mechanisms of how dynamic culture condition regulate cell reprogramming, and will have broad impact on cell engineering for regenerative medicine and disease modeling.

  19. Dissociation energy and dynamics of water clusters

    Science.gov (United States)

    Ch'ng, Lee Chiat

    The state-to-state vibrational predissociation (VP) dynamics of water clusters were studied following excitation of a vibrational mode of each cluster. Velocity-map imaging (VMI) and resonance-enhanced multiphoton ionization (REMPI) were used to determine pair-correlated center-of-mass translational energy distributions. Product energy distributions and dissociation energies were determined. Following vibrational excitation of the HCl stretch fundamental of the HCl-H2O dimer, HCl fragments were detected by 2 + 1 REMPI via the f 3□2(nu' = 0) ← X 1Sigma+(nu'' = 0) and V1Sigma + (nu' = 11 and 12) ← X1Sigma+ (nu'' = 0) transitions. REMPI spectra clearly show HCl from dissociation produced in the ground vibrational state with J'' up to 11. The fragments' center-of-mass translational energy distributions were determined from images of selected rotational states of HCl and were converted to rotational state distributions of the water cofragment. All the distributions could be fit well when using a dimer dissociation energy of bond dissociation energy D0 = 1334 +/- 10 cm--1. The rotational distributions in the water cofragment pair-correlated with specific rotational states of HCl appear nonstatistical when compared to predictions of the statistical phase space theory. A detailed analysis of pair-correlated state distributions was complicated by the large number of water rotational states available, but the data show that the water rotational populations increase with decreasing translational energy. H2O fragments of this dimer were detected by 2 + 1 REMPI via the C˜1B1(000) ← X˜1A1(000) transition. REMPI clearly shows that H2O from dissociation is produced in the ground vibrational state. The fragment's center-of-mass translational energy distributions were determined from images of selected rotational states of H2O and were converted to rotational state distributions of the HCl cofragment. The distributions gave D0 = 1334 +/- 10 cm --1 and show a clear

  20. American coot collective on-water dynamics

    CERN Document Server

    Trenchard, Hugh

    2012-01-01

    American coot (Fulica americana) flocks exhibit water surface (two-dimensional) collective dynamics that oscillate between two primary phases: a disordered phase of low density and non-uniform coot body orientations; a synchronized phase characterized by high density, uniform body orientations and speed. For this small-scale study, data was obtained for flocks of 10 to ~250 members for these phases. Approximate durations of phase occurrences were recorded for different flock sizes and for both relatively calm and severe weather conditions. Results indicate that for timed durations of up to ~ 2 hours, small flocks (10 coots) exhibit a comparatively high disordered/synchronized phase ratio (PR) in relatively warm and well-sheltered conditions (substantially >1); large flocks (~100 or more) generally exhibit a PR near 1, while large flocks spend comparatively more time in a disordered phase in relatively calm conditions (PR somewhat >1), and spend more time in a synchronized phase during severe conditions (PR &l...

  1. Hierarchic Theory of Condensed Matter Role of water in protein dynamics, function and cancer emergency

    CERN Document Server

    Kaivarainen, A

    2000-01-01

    1. Role of inter-domain water clusters in large-scale dynamics of proteins; 2. Description of large-scale dynamics of proteins based on generalized Stokes-Einstein and Eyring-Polany equation; 3. Dynamic model of protein-ligand complexes formation; 4. The life-time of quasiparticles and frequencies of their excitation; 5. Mesoscopic mechanism of enzyme catalysis; 6. The mechanism of ATP hydrolysis energy utilization in muscle contraction and protein polymerization; 7. Water activity as a regulative factor in the intra- and inter-cell processes; 8. Water and cancer.

  2. Tight Coupling of Metabolic Oscillations and Intracellular Water Dynamics in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Thoke, Henrik Seir; Tobiesen, Asger; Brewer, Jonathan R.;

    2015-01-01

    We detected very strong coupling between the oscillating concentration of ATP and the dynamics of intracellular water during glycolysis in Saccharomyces cerevisiae. Our results indicate that: i) dipolar relaxation of intracellular water is heterogeneous within the cell and different from dilute c...

  3. Dynamics and mechanism of ultrafast water-protein interactions.

    Science.gov (United States)

    Qin, Yangzhong; Wang, Lijuan; Zhong, Dongping

    2016-07-26

    Protein hydration is essential to its structure, dynamics, and function, but water-protein interactions have not been directly observed in real time at physiological temperature to our awareness. By using a tryptophan scan with femtosecond spectroscopy, we simultaneously measured the hydration water dynamics and protein side-chain motions with temperature dependence. We observed the heterogeneous hydration dynamics around the global protein surface with two types of coupled motions, collective water/side-chain reorientation in a few picoseconds and cooperative water/side-chain restructuring in tens of picoseconds. The ultrafast dynamics in hundreds of femtoseconds is from the outer-layer, bulk-type mobile water molecules in the hydration shell. We also found that the hydration water dynamics are always faster than protein side-chain relaxations but with the same energy barriers, indicating hydration shell fluctuations driving protein side-chain motions on the picosecond time scales and thus elucidating their ultimate relationship. PMID:27339138

  4. Electrolytic silver ion cell sterilizes water supply

    Science.gov (United States)

    Albright, C. F.; Gillerman, J. B.

    1968-01-01

    Electrolytic water sterilizer controls microbial contamination in manned spacecraft. Individual sterilizer cells are self-contained and require no external power or control. The sterilizer generates silver ions which do not impart an unpleasant taste to water.

  5. Nonlinear dynamics of cell orientation

    Science.gov (United States)

    Safran, S. A.; de, Rumi

    2009-12-01

    The nonlinear dependence of cellular orientation on an external, time-varying stress field determines the distribution of orientations in the presence of noise and the characteristic time, τc , for the cell to reach its steady-state orientation. The short, local cytoskeletal relaxation time distinguishes between high-frequency (nearly perpendicular) and low-frequency (random or parallel) orientations. However, τc is determined by the much longer, orientational relaxation time. This behavior is related to experiments for which we predict the angle and characteristic time as a function of frequency.

  6. Sensitivity Analysis of Centralized Dynamic Cell Selection

    DEFF Research Database (Denmark)

    Lopez, Victor Fernandez; Alvarez, Beatriz Soret; Pedersen, Klaus I.;

    2016-01-01

    and a suboptimal optimization algorithm that nearly achieves the performance of the optimal Hungarian assignment. Moreover, an exhaustive sensitivity analysis with different network and traffic configurations is carried out in order to understand what conditions are more appropriate for the use of the proposed...... with two different traffic models, and it is not necessary to be able to connect to a large number of cells in order to reap most of the benefits of the centralized dynamic cell selection....

  7. Cell-wall dynamics in growing bacteria

    Science.gov (United States)

    Furchtgott, Leon; Wingreen, Ned; Huang, Kerwyn Casey

    2010-03-01

    Bacterial cells come in a large variety of shapes, and cell shape plays an important role in the regulation of many biological functions. Cell shape in bacterial cells is dictated by a cell wall composed of peptidoglycan, a polymer made up of long, stiff glycan strands and flexible peptide crosslinks. Although much is understood about the structural properties of peptidoglycan, little is known about the dynamics of cell wall organization in bacterial cells. In particular, during cell growth, how does the bacterial cell wall continuously expand and reorganize while maintaining cell shape? In order to investigate this question quantitatively, we model the cell wall of the Gram-negative bacterium Escherichia coli using a simple elastic model, in which glycan and peptide subunits are treated as springs with different spring constants and relaxed lengths. We consider the peptidoglycan network as a single-layered network of these springs under tension due to an internal osmotic pressure. Within this model, we simulate possible hypotheses for cell growth as different combinations of addition of new springs and breakage of old springs.

  8. Sensitivity Analysis of Centralized Dynamic Cell Selection

    DEFF Research Database (Denmark)

    Lopez, Victor Fernandez; Alvarez, Beatriz Soret; Pedersen, Klaus I.;

    2016-01-01

    and a suboptimal optimization algorithm that nearly achieves the performance of the optimal Hungarian assignment. Moreover, an exhaustive sensitivity analysis with different network and traffic configurations is carried out in order to understand what conditions are more appropriate for the use of the proposed...... with two different traffic models, and it is not necessary to be able to connect to a large number of cells in order to reap most of the benefits of the centralized dynamic cell selection.......Centralized architectures with fronthauls can be used to deal with some of the problems inherently associated with dense small cell deployments. This study examines a joint cell assignment and scheduling solution for the downlink to increase the users’ data rates, based on cell switching...

  9. Retardation of Bulk Water Dynamics by Disaccharide Osmolytes

    CERN Document Server

    Shukla, Nimesh; Chen, Lee; Chergui, Majed; Othon, Christina M

    2016-01-01

    The bioprotective nature of disaccharides is hypothesized to derive from the modification of the hydrogen bonding network of water which protects biomolecules through lowered water activity at the protein interface. Using ultrafast fluorescence spectroscopy we measured the relaxation of bulk water dynamics around the induced dipole moment of two fluorescent probes (Lucifer Yellow Ethylenediamine and Tryptophan). Our results indicate a reduction in bulk water reorganization rate of approximately of 30%. We observe this retardation in the low concentration regime measured at 0.1M and 0.25 M, far below the onset of glassy dynamics. This reduction in water activity could be significant in crowded biological systems, contributing to global change in protein energy landscape, resulting in a significant enhancement of protein stability under environmental stress. We observed similar dynamic reduction for two disaccharide osmolytes, sucrose and trehalose, with trehalose being the more effective dynamic reducer.

  10. Diagnosis of PEM fuel cell stack dynamic behaviors

    Science.gov (United States)

    Chen, Jixin; Zhou, Biao

    In this study, the steady-state performance and dynamic behavior of a commercial 10-cell Proton Exchange Membrane (PEM) fuel cell stack was experimentally investigated using a self-developed PEM fuel cell test stand. The start-up characteristics of the stack to different current loads and dynamic responses after current step-up to an elevated load were investigated. The stack voltage was observed to experience oscillation at air excess coefficient of 2 due to the flooding/recovery cycle of part of the cells. In order to correlate the stack voltage with the pressure drop across the cathode/anode, fast Fourier transform was performed. Dominant frequency of pressure drop signal was obtained to indicate the water behavior in cathode/anode, thereby predicting the stack voltage change. Such relationship between frequency of pressure drop and stack voltage was found and summarized. This provides an innovative approach to utilize frequency of pressure drop signal as a diagnostic tool for PEM fuel cell stack dynamic behaviors.

  11. Transcriptome dynamics of Pseudomonas putida KT2440 under water stress.

    Science.gov (United States)

    Gülez, Gamze; Dechesne, Arnaud; Workman, Christopher T; Smets, Barth F

    2012-02-01

    Water deprivation can be a major stressor to microbial life in surface and subsurface soil. In unsaturated soils, the matric potential (Ψ(m)) is often the main component of the water potential, which measures the thermodynamic availability of water. A low matric potential usually translates into water forming thin liquid films in the soil pores. Little is known of how bacteria respond to such conditions, where, in addition to facing water deprivation that might impair their metabolism, they have to adapt their dispersal strategy as swimming motility may be compromised. Using the pressurized porous surface model (PPSM), which allows creation of thin liquid films by controlling Ψ(m), we examined the transcriptome dynamics of Pseudomonas putida KT2440. We identified the differentially expressed genes in cells exposed to a mild matric stress (-0.4 MPa) for 4, 24, or 72 h. The major response was detected at 4 h before gradually disappearing. Upregulation of alginate genes was notable in this early response. Flagellar genes were not downregulated, and the microarray data even suggested increasing expression as the stress prolonged. Moreover, we tested the effect of polyethylene glycol 8000 (PEG 8000), a nonpermeating solute often used to simulate Ψ(m), on the gene expression profile and detected a different profile than that observed by directly imposing Ψ(m). This study is the first transcriptome profiling of KT2440 under directly controlled Ψ(m) and also the first to show the difference in gene expression profiles between a PEG 8000-simulated and a directly controlled Ψ(m). PMID:22138988

  12. Hydrological dynamics of water sources in a Mediterranean lagoon

    Directory of Open Access Journals (Sweden)

    C. Stumpp

    2014-07-01

    Full Text Available Lagoons are important ecosystems occupying large coastal areas worldwide. Lagoons contain various mixtures of marine and freshwater sources which are highly dynamic in time. However, it often remains a challenge to identify and quantify dynamic changes of water sources, particularly in heterogeneous lagoon systems like the Köycegiz-Dalyan Lagoon (KDL, which is located at the southwest of Turkey on the Mediterranean Sea coast. The objective of this study was to quantify different contributions of potential water sources i.e. surface water, groundwater and seawater in the lagoon and how these water sources changed over time and space. In the wet and dry season stable isotopes of water, chloride concentration (Cl- and salinity were measured in two depths in the lagoon and surrounding water bodies (sea, lake, groundwater. Different components of water sources were quantified with a three component endmember mixing analysis. Differences in Cl- and stable isotopes over time indicated the dynamic behaviour of the system. Generally, none of the groundwater samples was impacted by water of the Mediterranean Sea. During the wet season, most of the lagoon water (>95% was influenced by freshwater and vertically well mixed. During the dry season, high Cl- in the deeper sampling locations indicated a high contribution of marine water throughout the entire lagoon system due to salt water intrusion. However, a distinct layering in the lagoon was obvious from low Cl- and depleted isotope contents close to the surface supporting freshwater inflow into the system even during the dry season. Besides temporal dynamics also spatial heterogeneities were identified. Changes in water sources were most evident in the main lagoon channel compared to more isolate lagoon lakes, which were influenced by marine water even in the wet season, and compared to side branches indicating slower turnover times. We found that environmental tracers helped to quantify contributions of

  13. Residential water use and landscape vegetation dynamics in Los Angeles

    OpenAIRE

    Mini, Caroline

    2013-01-01

    This research contributes to a better understanding of the dynamics of single-family water consumption associated with vegetation in semi-arid cities. The innovative research approach couples long-term water consumption data with remote-sensing based products, socio-demographic, land cover, landscaping and climate data analyzed with multidisciplinary techniques. Accurate water demand forecasting and long-term conservation planning are required to meet future urban water needs relying on a set...

  14. Anomalies of water and hydrogen bond dynamics in hydrophobic nanoconfinement

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pradeep [Center for Studies in Physics and Biology, Rockefeller University, 1230 York Avenue, New York, NY 10021 (United States); Han, Sungho; Stanley, H Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 (United States)

    2009-12-16

    Using molecular dynamic (MD) simulations of the TIP5P model of water, we investigate the effect of hydrophobic confinement on the anomalies of liquid water. For confinement length Lz = 1.1 nm, such that there are 2-3 molecular layers of water, we find the presence of the bulk-like density and diffusion anomaly in the lateral directions. However, the lines of these anomalies in the P-T plane are shifted to lower temperatures (DELTATapprox40 K) and pressures compared to bulk water. Furthermore, we introduce a method to calculate the effective diffusion constant along the confinement direction and find that the diffusion anomaly is absent. Moreover, we investigate the hydrogen bond dynamics of confined water and find that the hydrogen bond dynamics preserves the characteristics of HB dynamics in bulk water, such as a non-exponential behavior followed by an exponential tail of HB lifetime probability distributions and an Arrhenius temperature dependence of the average HB lifetime. The average number and lifetime of HBs decrease in confined water compared to bulk water at the same temperature. This reduction may be the origin of the reasons for the different physical properties of confined water from bulk water, such as the 40 K temperature shift.

  15. Phase transitions and dynamics of bulk and interfacial water

    Energy Technology Data Exchange (ETDEWEB)

    Franzese, G; Hernando-Martinez, A [Departament de Fisica Fonamental, Universitat de Barcelona, Diagonal 647, Barcelona 08028 (Spain); Kumar, P [Center for Studies in Physics and Biology, Rockefeller University, 1230 York Avenue, New York, NY 10021 (United States); Mazza, M G; Stokely, K; Strekalova, E G; Stanley, H E [Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 (United States); De los Santos, F, E-mail: gfranzese@ub.ed [Departamento de Electromagnetismo y Fisica de la Materia, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)

    2010-07-21

    New experiments on water at the surface of proteins at very low temperature display intriguing dynamic behaviors. The extreme conditions of these experiments make it difficult to explore the wide range of thermodynamic state points needed to offer a suitable interpretation. Detailed simulations suffer from the same problem, where equilibration times at low temperature become extremely long. We show how Monte Carlo simulations and mean field calculations using a tractable model of water help interpret the experimental results. Here we summarize the results for bulk water and investigate the thermodynamic and dynamic properties of supercooled water at an interface.

  16. Modelling soil water dynamics and crop water uptake at the field level

    NARCIS (Netherlands)

    Kabat, P.; Feddes, R.A.

    1995-01-01

    Parametrization approaches to model soil water dynamics and crop water uptake at field level were analysed. Averaging and numerical difficulties in applying numerical soil water flow models to heterogeneous soils are highlighted. Simplified parametrization approaches to the soil water flow, such as

  17. Dynamical Adaptation in Terrorist Cells/Networks

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki

    2010-01-01

    Typical terrorist cells/networks have dynamical structure as they evolve or adapt to changes which may occur due to capturing or killing of a member of the cell/network. Analytical measures in graph theory like degree centrality, betweenness and closeness centralities are very common and have long...... history of their successful use in revealing the importance of various members of the network. However, modeling of covert, terrorist or criminal networks through social graph dose not really provide the hierarchical structure which exist in these networks as these networks are composed of leaders...

  18. Hydrological dynamics of water sources in a Mediterranean lagoon

    Science.gov (United States)

    Stumpp, C.; Ekdal, A.; Gönenc, I. E.; Maloszewski, P.

    2014-12-01

    Lagoons are important ecosystems occupying large coastal areas worldwide. Lagoons contain various mixtures of marine and freshwater sources which are highly dynamic in time. However, it often remains a challenge to identify and quantify dynamic changes of water sources, particularly in heterogeneous lagoon systems like the Köycegiz-Dalyan lagoon (KDL), which is located at the south-west of Turkey on the Mediterranean Sea coast. The objective of this study was to quantify different contributions of potential water sources i.e. surface water, groundwater and seawater in the lagoon and how these water sources changed over time and space. In the wet- and dry-season stable isotopes of water, chloride concentration (Cl-) and salinity were measured in two depths in the lagoon and surrounding water bodies (sea, lake, groundwater). Different components of water sources were quantified with a three component endmember mixing analysis. Differences in Cl- and stable isotopes over time indicated the dynamic behaviour of the system. Generally, none of the groundwater samples was impacted by water of the Mediterranean Sea. During the wet season, most of the lagoon water (> 95%) was influenced by freshwater and vertically well mixed. During the dry season, high Cl- in the deeper sampling locations indicated a high contribution of marine water throughout the entire lagoon system due to saltwater intrusion. However, a distinct layering in the lagoon was obvious from low Cl- and depleted isotope contents close to the surface supporting freshwater inflow into the system even during the dry season. Besides temporal dynamics also spatial heterogeneities were identified. Changes in water sources were most evident in the main lagoon channel compared to more isolate lagoon lakes, which were influenced by marine water even in the wet season, and compared to side branches indicating slower turnover times. We found that environmental tracers helped to quantify highly dynamic and

  19. Dynamic combinatorial chemistry with diselenides and disulfides in water

    DEFF Research Database (Denmark)

    Rasmussen, Brian; Sørensen, Anne; Gotfredsen, Henrik;

    2014-01-01

    Diselenide exchange is introduced as a reversible reaction in dynamic combinatorial chemistry in water. At neutral pH, diselenides are found to mix with disulfides and form dynamic combinatorial libraries of diselenides, disulfides, and selenenylsulfides. This journal is © the Partner Organisations...

  20. Reorientation and Allied Dynamics in Water and Aqueous Solutions

    Science.gov (United States)

    Laage, Damien; Stirnemann, Guillaume; Sterpone, Fabio; Rey, Rossend; Hynes, James T.

    2011-05-01

    The reorientation of a water molecule is important for a host of phenomena, ranging over—in an only partial listing—the key dynamic hydrogen-bond network restructuring of water itself, aqueous solution chemical reaction mechanisms and rates, ion transport in aqueous solution and membranes, protein folding, and enzymatic activity. This review focuses on water reorientation and related dynamics in pure water, and for aqueous solutes with hydrophobic, hydrophilic, and amphiphilic character, ranging from tetra-methylurea to halide ions and amino acids. Attention is given to the application of theory, simulation, and experiment in the probing of these dynamics, in usefully describing them, and in assessing the description. Special emphasis is placed on a novel sudden, large-amplitude jump mechanism for water reorientation, which contrasts with the commonly assumed Debye rotational diffusion mechanism, characterized by small-amplitude angular motion. Some open questions and directions for further research are also discussed.

  1. Ultrafast dynamics of water at the water-air interface studied by femtosecond surface vibrational spectroscopy

    Directory of Open Access Journals (Sweden)

    Bakker Huib J.

    2013-04-01

    Full Text Available We study the dynamics of water molecules at the water-air interface, using surfacespecific two-dimensional infrared sum-frequency generation (2D-SFG spectroscopy. The data reveal the occurrence of surprisingly fast energy transfer and reorientational dynamics at aqueous interfaces.

  2. Dynamics of hydrogen bonds in water and consequences for the unusual behaviour of supercooled water

    Indian Academy of Sciences (India)

    José Teixeira

    2008-10-01

    The dynamics of liquid water is evaluated by the coherent quasi-elastic scattering at two different momentum transfers, in order to discriminate hydrogen bond life-time from molecular dynamics. The results indicate a possible issue for the puzzle of the behaviour of supercooled water.

  3. Dynamics of hydration water in protein

    International Nuclear Information System (INIS)

    Incoherent quasi-elastic neutron scattering studies of in vivo deuterated C-phycocyanin, at different levels of hydration, have been made. We show that the mobility at high temperature, (∝300 K) of the water molecules near the protein surface can be described by relatively simple models. At full hydration the high temperature data can be interpreted using a model where each water molecule is diffusing in a confined space of 3 A in radius. At low hydration, and 298 K, the diffusional behaviour is typical of jump diffusion with a residence time 10 times larger than the one in bulk water at the same temperature. (orig.)

  4. Protein Dynamics in Organic Media at Varying Water Activity Studied by Molecular Dynamics Simulation

    DEFF Research Database (Denmark)

    Wedberg, Nils Hejle Rasmus Ingemar; Abildskov, Jens; Peters, Günther H.J.

    2012-01-01

    In nonaqueous enzymology, control of enzyme hydration is commonly approached by fixing the thermodynamic water activity of the medium. In this work, we present a strategy for evaluating the water activity in molecular dynamics simulations of proteins in water/organic solvent mixtures. The method...

  5. Evaluating Water Conservation and Reuse Policies Using a Dynamic Water Balance Model

    Science.gov (United States)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R.

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  6. Soil Water Dynamics In Central Europe and Brazil

    DEFF Research Database (Denmark)

    Klein, Markus; Mahler, Claudio F.; Trapp, Stefan;

    2000-01-01

    The comprehension of the soil water dynamics is important for the study of environmental processes. Precipitation, temperature, and water balance of Rio de Janeiro, Southeast Brazil and locations in Germany, Central Europe, are significantly different. Experience from one region could not be used...

  7. Energy deposition dynamics of femtosecond pulses in water

    CERN Document Server

    Minardi, Stefano; Gopal, Amrutha; Tamošauskas, Gintaras; Milián, Carles; Couairon, Arnaud; Pertsch, Thomas; Dubietis, Audrius

    2014-01-01

    We exploit inverse Raman scattering and solvated electron absorption to perform a quantitative characterization of the energy loss and ionization dynamics in water with tightly focused near-infrared femtosecond pulses. A comparison between experimental data and numerical simulations suggests that the ionization energy of water is 8 eV, rather than the commonly used value of 6.5 eV.

  8. Molecular Dynamics Simulations of Water Droplets On Hydrophilic Silica Surfaces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    2009-01-01

    of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems. For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence of air. Hence...

  9. Structure and dynamics of supercooled water in neutral confinements

    Science.gov (United States)

    Klameth, F.; Vogel, M.

    2013-04-01

    We perform molecular dynamics simulations to study the structure and dynamics of liquid water in neutral nanopores, which are generated by pinning a suitable subset of water molecules in an equilibrium configuration of a bulk system. It is found that such neutral confinement does not disturb the structure of water, in particular, the local tetrahedral order, while it imposes a pronounced spatial inhomogeneity on the dynamics of water. Specifically, when the pore wall is approached, hopping motion sets in and water dynamics slows down. We show that the logarithm of the correlation time is an exponential function of the distance to the wall, indicating a tremendous gradient of water mobility across the confinement. Upon cooling, the length scale associated with this exponential distance dependence and, thus, the range of the wall effect increases, at least down to the critical temperature of mode coupling theory, Tc. Also, the temperature dependence of water dynamics varies across the pore, i.e., fragility is high in the pore center, while it is low near the pore wall. Due to all these effects, time-temperature superposition is violated. Our observations for a neutral confinement reveal that specific interactions at hydrophilic or hydrophobic walls are not the main cause of spatially inhomogeneous dynamics of confined water. In view of similarities with the behavior of Lennard-Jones liquids in neutral confinements, one may rather speculate that the effects observed for confined water are general and result from the existence of a static contribution to the energy landscape, which is imprinted by an immobile environment.

  10. Biological Water Dynamics and Entropy: A Biophysical Origin of Cancer and Other Diseases

    Directory of Open Access Journals (Sweden)

    Stephanie Seneff

    2013-09-01

    Full Text Available This paper postulates that water structure is altered by biomolecules as well as by disease-enabling entities such as certain solvated ions, and in turn water dynamics and structure affect the function of biomolecular interactions. Although the structural and dynamical alterations are subtle, they perturb a well-balanced system sufficiently to facilitate disease. We propose that the disruption of water dynamics between and within cells underlies many disease conditions. We survey recent advances in magnetobiology, nanobiology, and colloid and interface science that point compellingly to the crucial role played by the unique physical properties of quantum coherent nanomolecular clusters of magnetized water in enabling life at the cellular level by solving the “problems” of thermal diffusion, intracellular crowding, and molecular self-assembly. Interphase water and cellular surface tension, normally maintained by biological sulfates at membrane surfaces, are compromised by exogenous interfacial water stressors such as cationic aluminum, with consequences that include greater local water hydrophobicity, increased water tension, and interphase stretching. The ultimate result is greater “stiffness” in the extracellular matrix and either the “soft” cancerous state or the “soft” neurodegenerative state within cells. Our hypothesis provides a basis for understanding why so many idiopathic diseases of today are highly stereotyped and pluricausal.

  11. Dynamical Crossover in Hot Dense Water: The Hydrogen Bond Role.

    Science.gov (United States)

    Ranieri, Umbertoluca; Giura, Paola; Gorelli, Federico A; Santoro, Mario; Klotz, Stefan; Gillet, Philippe; Paolasini, Luigi; Koza, Michael Marek; Bove, Livia E

    2016-09-01

    We investigate the terahertz dynamics of liquid H2O as a function of pressure along the 450 K isotherm, by coupled quasielastic neutron scattering and inelastic X-ray scattering experiments. The pressure dependence of the single-molecule dynamics is anomalous in terms of both microscopic translation and rotation. In particular, the Stokes-Einstein-Debye equations are shown to be violated in hot water compressed to the GPa regime. The dynamics of the hydrogen bond network is only weakly affected by the pressure variation. The time scale of the structural relaxation driving the collective dynamics increases by a mere factor of 2 along the investigated isotherm, and the structural relaxation strength turns out to be almost pressure independent. Our results point at the persistence of the hydrogen bond network in hot dense water up to ice VII crystallization, thus questioning the long-standing perception that hydrogen bonds are broken in liquid water under the effect of compression. PMID:27479235

  12. Using Ethanol to Investigate Dynamic Soil Water Repellency

    Science.gov (United States)

    Smith, James E.; Beatty, Sarah M.

    2016-04-01

    Large gaps remain in our fundamental understanding of the behaviour of water in dynamically repellent soils. By investigating these systems using other miscible fluids that minimize or eliminate repellency, e.g. ethanol, we seek to better understand and quantify soil water repellency. The advantages of the enhanced wettability of water repellent soils to other miscible fluids, however, come with complications including shifts in effective pore water pressures induced through variable interfacial tensions as well as differences in fluid mobility due to variable fluid viscosities and densities. With these considerations in mind, we compare and contrast the observed behaviours of fluid infiltration and retention in dynamically hydrophobic soils and hydrophilic soils. We conducted field and laboratory studies using tension disc infiltrometers along with water and ethanol solutions to investigate dynamic repellency in post-wildfire soils from Northern Ontario, Canada. Tension infiltrometers maintain a constant negative liquid pressure at the surface which proved to be useful for isolating wettable behaviours sensitive to dynamic changes in wettability. We present the data and system conceptualised and explained through contact angle dynamics and variable fractional wettability of the soil. The limitations of extending hydrophilic concepts and hydraulic functions to hydrophobic soils are discussed along with persistent challenges to advance our ability to simulate and predict system behaviours in naturally occurring water repellent soils.

  13. Evolution of water dynamics in the Prussian blue

    Directory of Open Access Journals (Sweden)

    Mitra S.

    2015-01-01

    Full Text Available Crystal water plays a crucial role towards the multifunctional properties of Prussian blue and its analogue (PBA compounds. We have investigated the dynamics of crystal water in Prussian blue (PB, Fe(III4[Fe(II(CN6]3. 14 H2 O using Quasielastic Neutron Scattering (QENS. In PB, water molecules exist in the spherical cavity, created due to the vacant sites of Fe(CN6 units, and also at interstitial sites. QENS data showed that dynamics evolves with increase in temperature. The observed dynamics has been correlated quantitatively with the different water molecules that exist at different sites of the lattice. It is found that only the non-coordinated water molecules contribute to the dynamics at low temperature, and others start contributing progressively with increasing temperature. A detailed data analysis showed that the water molecules undergo a localized translational diffusion. The estimated spatial domain of dynamics is found to be compatible with the geometry of the structure.

  14. Molecular dynamics insights into human aquaporin 2 water channel.

    Science.gov (United States)

    Binesh, A R; Kamali, R

    2015-12-01

    In this study, the first molecular dynamics simulation of the human aquaporin 2 is performed and for a better understanding of the aquaporin 2 permeability performance, the characteristics of water transport in this protein channel and key biophysical parameters of AQP2 tetramer including osmotic and diffusive permeability constants and the pore radius are investigated. For this purpose, recently recovered high resolution X-ray crystal structure of` the human aquaporin 2 is used to perform twenty nanosecond molecular dynamics simulation of fully hydrated tetramer of this protein embedded in a lipid bilayer. The resulting water permeability characteristics of this protein channel showed that the water permeability of the human AQP2 is in a mean range in comparison with other human aquaporins family. Finally, the results reported in this research demonstrate that molecular dynamics simulation of human AQP2 provided useful insights into the mechanisms of water permeation and urine concentration in the human kidney. PMID:26489820

  15. Nonlinear Dynamic Characteristics of Oil-in-Water Emulsions

    Science.gov (United States)

    Yin, Zhaoqi; Han, Yunfeng; Ren, Yingyu; Yang, Qiuyi; Jin, Ningde

    2016-08-01

    In this article, the nonlinear dynamic characteristics of oil-in-water emulsions under the addition of surfactant were experimentally investigated. Firstly, based on the vertical upward oil-water two-phase flow experiment in 20 mm inner diameter (ID) testing pipe, dynamic response signals of oil-in-water emulsions were recorded using vertical multiple electrode array (VMEA) sensor. Afterwards, the recurrence plot (RP) algorithm and multi-scale weighted complexity entropy causality plane (MS-WCECP) were employed to analyse the nonlinear characteristics of the signals. The results show that the certainty is decreasing and the randomness is increasing with the increment of surfactant concentration. This article provides a novel method for revealing the nonlinear dynamic characteristics, complexity, and randomness of oil-in-water emulsions with experimental measurement signals.

  16. Dynamics and stability of a vertical water bridge

    CERN Document Server

    Namin, Reza Montazeri

    2013-01-01

    A vertical connection of water is formed when a high voltage electrode is dipped in and pulled out of a container of deionized water. We considered the formation, stability and dynamical characteristics of this vertical water bridge. For the first time in this field, we observed instabilities in the bridge that led to an oscillatory behaviour which is categorized in three dynamical regimes and supplied explanations on the physics behind these varied motions. We report the formation of macroscopic droplets during this motion, which their dynamics revealed that they are electrically charged. In some cases the droplets would be levitating when the electric force opposes the gravity. Also the steady bridge is thoroughly studied regarding its geometry and a set of quantitative data is presented using dimensionless numbers, which brings the possibility of direct quantitative comparison between theory and experiments. Our results shed light on the physics behind this phenomenon and the horizontal water bridge, which...

  17. Rotterdam: Dynamic Polder City = Land + Water + Culture

    NARCIS (Netherlands)

    Hooimeijer, F.L.

    2010-01-01

    The planning culture in the Netherlands is based on the experience of building cities on very wet and soft soils. The design of Dutch polder cities was from early on a balance between land and water: building site preparation. The relation between technological development and urban development can

  18. A dynamic analysis of water footprint of Jinghe River basin

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Water footprint in a region is defined as the volume of water needed for the production of goods and services consumed by the local people. Ecosystem services are a kind of important services, so ecological water use is one necessary component in water footprint. Water footprint is divided into green water footprint and blue water footprint but the former one is often ignored. In this paper water footprint includes blue water needed by agricultural irrigation, industrial and domestic water demand, and green water needed by crops, economic forests, livestock products, forestlands and grasslands. The study calculates the footprint of the Jinghe River basin in 1990,1995, 2000 and 2005 with quarto methods. Results of research show that water footprints reached 164.1 × 108m3, 175.69×108m3 and 178.45×108m3 respectively in 1990, 1995 and 2000 including that of ecological water use, but reached 77.68×108m3, 94.24×108m3, 92.92×108m3 and 111.36×108m3 respectively excluding that of ecological water use. Green water footprint is much more than blue water footprint: thereby, green water plays an important role in economic development and ecological construction. The dynamic change of water footprints stows that blue water use increases rapidly and that the ecological water use is occupied by economic and domestic water use. The change also shows that water use is transferred from primary industry to secondary industry. In primary industry, it is transferred from crops farming to forestry and animal agriculture. The factors impelling the change include development anticipation on economy, government policies, readjustment of the industrial structure, population growth, the raise of urbanization level, and structural change of consumption, low level of water-saving and poor ability of waste water treatment. With blue water use per unit, green water use per unit, blue water use structure and green water use structure, we analyzed the difference of the six ecological

  19. Dynamic characteristics of an automotive fuel cell system for transitory load changes

    DEFF Research Database (Denmark)

    Rabbani, Raja Abid; Rokni, Masoud

    2013-01-01

    cell. Therefore, a control-oriented model has been devised in Aspen Plus Dynamics, which accommodates electrochemical, thermal, feed flow and water crossover models in addition to two-phase calculations at fuel cell electrodes. The model parameters have been adjusted specifically for a 21.2 kW Ballard...

  20. Molecular Dynamics Simulation of Water Confined in Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    WANG Yan; YUAN Hong-Jun

    2007-01-01

    Molecular dynamics simulations are performed for water conGned in carbon nanotubes with various diameters (11.0-13.8 A). The simulations under an isobaric pressure (one atmosphere) by lowering temperatures from 300K to 190 K are carried out. Water molecules within variously sized tubes tend to transform from disorder to order with different configurations (four-water-molecule ring, six-water-molecule ring and seven-water-molecule ring) at phase transition temperatures, which may be lowered by the increasing tube radius. It is also found that the configurations of water in (10, 10) tube are not unique (seven-molecule ring and seven-molecule ring plus water chain).

  1. Mechanosensing Dynamics of Red blood Cells

    Science.gov (United States)

    Wan, Jiandi

    2015-11-01

    Mechanical stress-induced deformation of human red blood cells (RBCs) plays important physiopathological roles in oxygen delivery, blood rheology, transfusion, and malaria. Recent studies demonstrate that, in response to mechanical deformation, RBCs release adenosine-5'-triphosphate (ATP), suggesting the existence of mechanotransductive pathways in RBCs. Most importantly, the released ATP from RBCs regulates vascular tone and impaired release of ATP from RBCs has been linked to diseases such as type II diabetes and cystic fibrosis. To date, however, the mechanisms of mechanotransductive release of ATP from RBCs remain unclear. Given that RBCs experience shear stresses continuously during the circulation cycle and the released ATP plays a central role in vascular physiopathology, understanding the mechanotransductive release of ATP from RBCs will provide not only fundamental insights to the role of RBCs in vascular homeostasis but also novel therapeutic strategies for red cell dysfunction and vascular disease. This talk describes the main research in my group on integrating microfluidic-based approaches to study the mechanosensing dynamics of RBCs. Specifically, I will introduce a micro?uidic approach that can probe the dynamics of shear-induced ATP release from RBCs with millisecond resolution and provide quantitative understandings of the mechanosensitive ATP release processes in RBCs. Furthermore, I will also describe our recent findings about the roles of the Piezo1 channel, a newly discovered mechanosensitive cation channel in the mechanotransductive ATP release in RBCs. Last, possible functions of RBCs in the regulation of cerebral blood flow will be discussed.

  2. DNA Dynamics in A Water Drop

    CERN Document Server

    Mazur, A K

    2002-01-01

    Due to its polyionic character the DNA double helix is stable and biologically active only in salty aqueous media where its charge is compensated by solvent counterions. Monovalent metal ions are ubiquitous in DNA environment and they are usually considered as the possible driving force of sequence-dependent modulations of DNA structure that make it recognizable by proteins. In an effort to directly examine this hypothesis, MD simulations of DNA in a water drop surrounded by vacuum were carried out, which relieves the requirement of charge neutrality. Surprisingly, with zero concentration of counterions a dodecamer DNA duplex appears metastable and its structure remains similar to that observed in experiments.

  3. Communication: On the origin of the non-Arrhenius behavior in water reorientation dynamics.

    Science.gov (United States)

    Stirnemann, Guillaume; Laage, Damien

    2012-07-21

    We combine molecular dynamics simulations and analytic modeling to determine the origin of the non-Arrhenius temperature dependence of liquid water's reorientation and hydrogen-bond dynamics between 235 K and 350 K. We present a quantitative model connecting hydrogen-bond exchange dynamics to local structural fluctuations, measured by the asphericity of Voronoi cells associated with each water molecule. For a fixed local structure the regular Arrhenius behavior is recovered, and the global anomalous temperature dependence is demonstrated to essentially result from a continuous shift in the unimodal structure distribution upon cooling. The non-Arrhenius behavior can thus be explained without invoking an equilibrium between distinct structures. In addition, the large width of the homogeneous structural distribution is shown to cause a growing dynamical heterogeneity and a non-exponential relaxation at low temperature.

  4. On the dynamics of bubbles in boiling water

    International Nuclear Information System (INIS)

    Research highlights: → We devote this work to investigate the bubbles dynamics in boiling water. → A simple experiment of laser scattering was designed to obtain dynamical features. → Correlations and non-exponential distributions were found. → A simple model was able to describe several aspects of the system. - Abstract: We investigate the dynamics of many interacting bubbles in boiling water by using a laser scattering experiment. Specifically, we analyze the temporal variations of a laser intensity signal which passed through a sample of boiling water. Our empirical results indicate that the return interval distribution of the laser signal does not follow an exponential distribution; contrariwise, a heavy-tailed distribution has been found. Additionally, we compare the experimental results with those obtained from a minimalist phenomenological model, finding a good agreement.

  5. Water vapor and the dynamics of climate changes

    OpenAIRE

    Schneider, Tapio; O'Gorman, Paul A.; Levine, Xavier

    2009-01-01

    Water vapor is not only Earth's dominant greenhouse gas. Through the release of latent heat when it condenses, it also plays an active role in dynamic processes that shape the global circulation of the atmosphere and thus climate. Here we present an overview of how latent heat release affects atmosphere dynamics in a broad range of climates, ranging from extremely cold to extremely warm. Contrary to widely held beliefs, atmospheric circulation statistics can change nonmonotonically with globa...

  6. Hydrological dynamics of water sources in a Mediterranean lagoon

    OpenAIRE

    Stumpp, C.; A. Ekdal; Gönenc, I. E.; P. Maloszewski

    2014-01-01

    Lagoons are important ecosystems occupying large coastal areas worldwide. Lagoons contain various mixtures of marine and freshwater sources which are highly dynamic in time. However, it often remains a challenge to identify and quantify dynamic changes of water sources, particularly in heterogeneous lagoon systems like the Köycegiz–Dalyan lagoon (KDL), which is located at the south-west of Turkey on the Mediterranean Sea coast. The objective of this study was to quantify dif...

  7. Hydrological dynamics of water sources in a Mediterranean lagoon

    OpenAIRE

    Stumpp, C.; A. Ekdal; Gönenc, I. E.; P. Maloszewski

    2014-01-01

    Lagoons are important ecosystems occupying large coastal areas worldwide. Lagoons contain various mixtures of marine and freshwater sources which are highly dynamic in time. However, it often remains a challenge to identify and quantify dynamic changes of water sources, particularly in heterogeneous lagoon systems like the Köycegiz-Dalyan Lagoon (KDL), which is located at the southwest of Turkey on the Mediterranean Sea coast. The objective of this study was...

  8. Water and polymer dynamics in highly crosslinked polyamide membranes

    Science.gov (United States)

    Frieberg, Bradley; Chan, Edwin; Tyagi, Madhu; Stafford, Christopher; Soles, Christopher

    Highly crosslinked polyamides for reverse osmosis are the state-of-the-art active material in membranes for desalination. The thin film composite membrane structure that is used commercially has been empirically designed to selectively allow the passage of water molecules and minimize the passage of solutes such as salt. However, due to the large roughness and variability of the polyamide layer, there is a limited understanding of the structure-property relationship for these materials as well as the transport mechanism. To better understand the water transport mechanism we measure the water and polymer dynamics of polyamide membranes using quasi-elastic neutron scattering (QENS). By hydrating the membrane with deuterated water, we are able to isolate the dynamics of the hydrogenated membrane on the pico- and nanosecond time scales. By subsequently hydrating the membranes with hydrogenated water, the QENS measurements on the same times scales reveal information about both the translational and rotational dynamics of water confined within the polyamide membrane. Further understanding of the water diffusion mechanism will establish design rules in which the performance of future membrane materials can be improved.

  9. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Inman, Daniel; Warner, Ethan; Stright, Dana; Macknick, Jordan; Peck, Corey

    2016-07-01

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of many feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user

  10. Quantum tunneling and vibrational dynamics of ultra-confined water

    Science.gov (United States)

    Kolesnikov, Alexander I.; Anovitz, Lawrence M.; Ehlers, Georg; Mamontov, Eugene; Podlesnyak, Andrey; Prisk, Timothy R.; Seel, Andrew; Reiter, George F.

    2015-03-01

    Vibrational dynamics of ultra-confined water in single crystals beryl, the structure of which contains ~ 5 Å diameter channels along the c-axis was studied with inelastic (INS), quasi-elastic (QENS) and deep inelastic (DINS) neutron scattering. The results reveal significantly anisotropic dynamical behavior of confined water, and show that effective potential experienced by water perpendicular to the channels is significantly softer than along them. The observed 7 peaks in the INS spectra (at energies 0.25 to 15 meV), based on their temperature and momentum transfer dependences, are explained by transitions between the split ground states of water in beryl due to water quantum tunneling between the 6-fold equivalent positions across the channels. DINS study of beryl at T=4.3 K shows narrow, anisotropic water proton momentum distribution with corresponding kinetic energy, EK=95 meV, which is much less than was previously observed in bulk water (~150 meV). We believe that the exceptionally small EK in beryl is a result of water quantum tunneling ∖ delocalization in the nanometer size confinement and weak water-cage interaction. The neutron experiment at ORNL was sponsored by the Sci. User Facilities Div., BES, U.S. DOE. This research was sponsored by the Div. Chemical Sci, Geosciences, and Biosciences, BES, U.S. DOE. The STFC RAL is thanked for access to ISIS neutron facilities.

  11. Hydration water in dynamics of a hydrated beta-lactoglobulin

    Science.gov (United States)

    Yoshida, K.; Yamaguchi, T.; Bellissent-Funel, M.-C.; Longeville, S.

    2007-02-01

    Incoherent spin-echo signals of a hydrated β-lactoglobulin protein were investigated, at 275 and 293 K. The intermediate scattering functions I(Q,t) were divided in two contributions from surface water and protein, respectively. On one hand, the dynamics of the surface water follows a KWW stretched exponential function (the exponent is ~0.5), on the other hand, that of the protein follows a single exponential. The present results are consistent with our previous results of hydrated C-phycocyanin combining elastic and quasielastic neutron scattering and by molecular dynamics simulation.

  12. Hydrogen bond dynamics in liquid water: Ab initio molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheolhee; Kim, Eunae [College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Yeom, Min Sun [Korea Institute of Science and Technology Information, Daejeon (Korea, Republic of)

    2016-01-15

    The effect of intermolecular interaction on the distribution of the harmonic vibrational frequencies of water molecules was investigated through ab initio molecular dynamics simulations based on the Born-Oppenheimer approach. For single water, the effect of the dynamics of the oxygen atom in single water and the simulation time step on the frequency distribution were examined. The distributions of the OH stretching and HOH bending vibrational frequencies of liquid water were compared to those of single water. The probability distributions of the change in OH bond length and the lifetime of the dangling OH bond were also obtained. The distribution of the frequencies was strongly affected by the long lifetime of the dangling OH bond, resulting in the formation of hydrogen bonds between water molecules.

  13. Nonlinear dynamics of rotating shallow water methods and advances

    CERN Document Server

    Zeitlin, Vladimir

    2007-01-01

    The rotating shallow water (RSW) model is of wide use as a conceptual tool in geophysical fluid dynamics (GFD), because, in spite of its simplicity, it contains all essential ingredients of atmosphere and ocean dynamics at the synoptic scale, especially in its two- (or multi-) layer version. The book describes recent advances in understanding (in the framework of RSW and related models) of some fundamental GFD problems, such as existence of the slow manifold, dynamical splitting of fast (inertia-gravity waves) and slow (vortices, Rossby waves) motions, nonlinear geostrophic adjustment and wa

  14. Water Table Dynamics of a Rocky Mountain Riparian Area

    Science.gov (United States)

    Westbrook, C. J.

    2009-05-01

    Riparian areas in mountain valleys serve as collection points for local precipitation, hillslope runoff, deeper groundwater, and channel water. Little is known about how complex hydrological interactions among these water sources govern riparian water table dynamics, particularly on an event basis partly owing to a lack of high frequency spatial and temporal data. Herein I describe the magnitude and rate of change of groundwater storage in a 1.3 km2 Canadian Rocky Mountain peat riparian area. Weekly manual measurement of hydraulic heads in a network of 51 water table wells during the summers of 2006 and 2007 showed large temporal and spatial variations in well response. A near constant increase in the spatial heterogeneity of the water table was observed as the riparian area dried. Cluster analysis and principle components analysis were performed on these weekly data to objectively classify the riparian area into spatial response units. Results were classification of the standpipes into five distinct water table regimes. One well representing each water table regime was outfitted with a sensor in 2008 that measured hourly head, which was used to characterize temporal dynamics of water table response. In spring, snowmelt runoff combined with an ice lens 20-30 cm below the ground surface led to consistently high water tables throughout the riparian area. In summer, the water table fell throughout the riparian in response to declining hillslope inputs and increased evaporative demand, but rates of decline were highly variable among the water table regimes. Chloride concentrations suggest variability reflects differences in the degree to which the water table regimes are influenced by stream stage, hillslope inputs, and proximity to beaver dams. Water table regime responses to rain events were flashy, with dramatic rises and falls (up to 20 cm) in short periods of time (export and plant community composition.

  15. Fluorescent tags to explore cell wall structure and dynamics

    OpenAIRE

    Gonneau, Martine; Höfte, Herman; Vernhettes, Samantha

    2012-01-01

    Plant cell walls are highly dynamic and heterogeneous structures, which vary between cell types, growth stages but also between microdomains within a single cell wall. In this review, we summarize the imaging techniques using fluorescent tags that are currently being used and which should in the coming years revolutionize our understanding of the dynamics of cell wall architecture and the cellular processes involved in the synthesis of cell wall components.

  16. Optimizing basin-scale coupled water quantity and water quality management with stochastic dynamic programming

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo;

    2015-01-01

    Few studies address water quality in hydro-economic models, which often focus primarily on optimal allocation of water quantities. Water quality and water quantity are closely coupled, and optimal management with focus solely on either quantity or quality may cause large costs in terms of the oth......-er component. In this study, we couple water quality and water quantity in a joint hydro-economic catchment-scale optimization problem. Stochastic dynamic programming (SDP) is used to minimize the basin-wide total costs arising from water allocation, water curtailment and water treatment. The simple water...... quality module can handle conservative pollutants, first order depletion and non-linear reactions. For demonstration purposes, we model pollutant releases as biochemical oxygen demand (BOD) and use the Streeter-Phelps equation for oxygen deficit to compute the resulting min-imum dissolved oxygen...

  17. Ultrafast vibrational dynamics of water confined in phospholipid reverse micelles

    Directory of Open Access Journals (Sweden)

    Elsaesser T.

    2013-03-01

    Full Text Available We study the ultrafast dynamics of OH stretching and bending vibrations of water inside dioleoylphosphatidylcholine (DOPC reverse micelles in a wide range of hydration. A strong hydration level dependence for the spectral diffusion rates is found and explained by the distinctly different environment for single water molecules bound to the anionic phosphate group. We show that the energy relaxation pathway of the OH stretching vibration at low hydration level involves the OH bending.

  18. Molecular dynamics simulation of liquid water confined inside graphite channels: dielectric and dynamical properties.

    Science.gov (United States)

    Martí, J; Nagy, G; Guàrdia, E; Gordillo, M C

    2006-11-30

    Electric and dielectric properties and microscopic dynamics of liquid water confined between graphite slabs are analyzed by means of molecular dynamics simulations for several graphite-graphite separations at ambient conditions. The electric potential across the interface shows oscillations due to water layering, and the overall potential drop is about -0.28 V. The total dielectric constant is larger than the corresponding value for the bulklike internal region of the system. This is mainly due to the preferential orientations of water nearest the graphite walls. Estimation of the capacitance of the system is reported, indicating large variations for the different adsorption layers. The main trend observed concerning water diffusion is 2-fold: on one hand, the overall diffusion of water is markedly smaller for the closest graphite-graphite separations, and on the other hand, water molecules diffuse in interfaces slightly slower than those in the bulklike internal areas. Molecular reorientational times are generally larger than those corresponding to those of unconstrained bulk water. The analysis of spectral densities revealed significant spectral shifts, compared to the bands in unconstrained water, in different frequency regions, and associated to confinement effects. These findings are important because of the scarce information available from experimental, theoretical, and computer simulation research into the dielectric and dynamical properties of confined water.

  19. Evaluating water conservation and reuse policies using a dynamic water balance model.

    Science.gov (United States)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  20. Socioeconomic dynamics of water quality in the Egyptian Nile

    Science.gov (United States)

    Malik, Maheen; Nisar, Zainab; Karakatsanis, Georgios

    2016-04-01

    The Nile River remains the most important source of freshwater for Egypt as it accounts for nearly all of the country's drinking and irrigation water. About 95% of the total population is accounted to live along the Banks of the Nile(1). Therefore, water quality deterioration in addition to general natural scarcity of water in the region(2) is the main driver for carrying out this study. What further aggravates this issue is the water conflict in the Blue Nile region. The study evaluates different water quality parameters and their concentrations in the Egyptian Nile; further assessing the temporal dynamics of water quality in the area with (a) the Environmental Kuznets Curve (EKC)(3) and (b) the Jevons Paradox (JP)(4) in order to identify water quality improvements or degradations using selected socioeconomic variables(5). For this purpose various environmental indicators including BOD, COD, DO, Phosphorus and TDS were plotted against different economic variables including Population, Gross Domestic Product (GDP), Annual Fresh Water Withdrawal and Improved Water Source. Mathematically, this was expressed by 2nd and 3rd degree polynomial regressions generating the EKC and JP respectively. The basic goal of the regression analysis is to model and highlight the dynamic trend of water quality indicators in relation to their established permissible limits, which will allow the identification of optimal future water quality policies. The results clearly indicate that the dependency of water quality indicators on socioeconomic variables differs for every indicator; while COD was above the permissible limits in all the cases despite of its decreasing trend in each case, BOD and phosphate signified increasing concentrations for the future, if they continue to follow the present trend. This could be an indication of rebound effect explained by the Jevons Paradox i.e. water quality deterioration after its improvement, either due to increase of population or intensification

  1. Ordered water monolayer on ionic model substrates studied by molecular dynamics simulations

    International Nuclear Information System (INIS)

    The molecular behaviors of interfacial water molecules at the solid/liquid interface are of a fundamental significance in a diverse set of technical and scientific contexts, thus have drawn extensive attentions. On certain surfaces, the water monolayer may exhibit an ordered feature, which may result in the novel wetting phenomenon. In this article, based on the molecular dynamics simulations, we make a detailed structure analysis of the ordered water monolayer on ionic model surface with graphene-like hexagonal lattices under various charges and unit cell sizes. We carefully analyze the water density profiles and potential of mean force, which are the origin of the special hexagonal ordered water structures near the solid surface. The number of hydrogen bonds of the ordered water monolayer near the solid surface is carefully investigated. (authors)

  2. Dynamic water accounting in heavily committed river basins

    Science.gov (United States)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  3. Analysis of Dynamic Characteristics of Water Injection Pump

    International Nuclear Information System (INIS)

    Water injection pump outputs oil with high pressure during this process, seawater is injected into the well to recover the well pressure and maintain high productivity. A water injection pump has high productivity, and herefore, it serves as a key piece of equipment in marine plants. In this light, water injection pumps are being studied widely in industry. In this study, the rotor dynamics is analyzed to determine the natural frequency according to the bearing stiffness and operation speed change. This study aims to establish the pump reliability through critical speed, stability, and unbalance response analysis

  4. Static and dynamic properties of supercooled water in small nanotubes

    Science.gov (United States)

    Khademi, Mahdi; Sahimi, Muhammad

    2016-07-01

    The static and dynamic properties of water in small silicon-carbide and carbon nanotubes have been studied over the temperature range 100 K-298 K, using extensive molecular dynamics simulations. The computed properties include the radial distribution function, the cage correlation function, the space-time autocorrelation function, the velocity autocorrelation function, and the self-diffusivity. They all indicate that, under the conditions that we study, water does not freeze in small nanotubes; the Stokes-Einstein relation breaks down, and the self-diffusivity exhibits a transition around 230 K, very close to 228 K, the temperature at which a fragile-to-strong dynamic crossover is supposed to happen. The cage correlation function C(t) decays according to a stretched-exponential function, C(t) ˜ exp[ - (t/τ)β], where τ is a relaxation time and β is a topological exponent.

  5. Understanding the dynamics of water availability and use in China

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.P.; Conrad, S.H.; Jeppesen, D.M.; Engi, E.

    1997-07-01

    This report presents the preliminary results of an analysis of China`s water resources, part of an effort undertaken by the National Intelligence Council Medea scientists to improve the understanding of future food production and consumption in the People`s Republic of China. A dynamic water model was developed to simulate the hydrological budgetary processes in five river drainage basins located in northeastern, central, and southern China: the Chang Jiang (Yangtse River), Huanghe (Yellow River), Haihe, Huaihe, and Liaohe. The model was designed to assess the effects of changes in urban, industrial, and agricultural water use requirements on the availability of water in each basin and to develop estimates of the water surpluses and/or deficits in China through the year 2025. The model imposes a sustainable yield constraint, that is, groundwater extraction is not allowed to exceed the sustainable yield; if the available water does not meet the total water use requirements, a deficit results. An agronomic model was also developed to generate projections of the water required to service China`s agricultural sector and compare China`s projected grain production with projected grain consumption requirements to estimate any grain surplus and/or deficit. In future refinements, the agronomic model will interface directly with the water model to provide for the exchange of information on projected water use requirements and available water. The preliminary results indicate that the Chang Jiang basin will have a substantial surplus of water through 2025 and that the Haihe basin is in an ongoing situation. The agricultural water use requirements based on grain production indicate that an agricultural water deficit in the Haihe basin begins before the onset of the modeling period (1980) and steadily worsens through 2025. This assumption is confirmed by reports that groundwater mining is already under way in the most intensely cultivated and populated areas of northern China.

  6. Molecular dynamics study of the water/n-alkane interface

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Molecular dynamics simulations on the interface between liquid water and liquid n-alkane (including octane, nonane, decane, undecane and dodecane) have been performed with the purpose to study the interfacial properties: (Ⅰ) density profile; (Ⅱ) molecular orientation; (Ⅲ) interfacial tension and the temperature effect on the interfacial tension. Simulation results show that at the interface the structures of both water and n-alkane are different from those in the bulk. Water has an orientational preference due to the number of hydrogen bonds per molecule maximized. N-alkane has a more lateral orientation with respect to the interface in order to be in close contact with water. The calculated individual phase bulk density and interfacial tension of water/n-alkane systems are in good agreement with the corresponding experimental ones.

  7. Understanding water: Molecular dynamics simulations of solubilized and crystallized myoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Wei Gu; Garcia, A.E.; Schoenborn, B.P. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Molecular dynamics simulations were performed on CO myoglobin to evaluate the stability of the bound water molecules as determined in a neutron diffraction analysis. The myoglobin structure derived from the neutron analysis provided the starting coordinate set used in the simulations. The simulations show that only a few water molecules are tightly bound to protein atoms, while most solvent molecules are labile, breaking and reforming hydrogen bonds. Comparison between myoglobin in solution and in a single crystal highlighted some of the packing effects on the solvent structure and shows that water solvent plays an indispensable role in protein dynamics and structural stability. The described observations explain some of the differences in the experimental results of protein hydration as observed in NMR, neutron and X-ray diffraction studies.

  8. Dynamic Water Modeling and Application of Billet Continuous Casting

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-hong; XIE Zhi; JI Zhen-ping; WANG Biao; LAI Zhao-yi; JIA Guang-lin

    2008-01-01

    The continuous casting process is used for solidifying molten steel into semi-finished steel. The technology of secondary cooling is extremely important for output of the casting machine and billet quality. A dynamic water model was introduced, including solidification model in the secondary cooling, feedforward control strategy based on continuous temperature measurement in tundish, and feedback control strategy based on surface temperature measurement. The mathematical model of solidification process was developed according to the principle of solidification, and the solidification model was validated by measuring billet shell thickness through shooting nail and sulfur print. Primary water distribution was calculated by the solidification model according to procedure parameters, and it was adjusted by the other two control strategies online. The model was applied on some caster and billet quality was obviously improved, indicating that the dynamic water model is better than conventional ones.

  9. Mitochondrial dynamics and the cell cycle

    Directory of Open Access Journals (Sweden)

    Penny M.A. Kianian

    2014-05-01

    Full Text Available Nuclear-mitochondrial (NM communication impacts many aspects of plant development including vigor, sterility and viability. Dynamic changes in mitochondrial number, shape, size, and cellular location takes place during the cell cycle possibly impacting the process itself and leading to distribution of this organelle into daughter cells. The genes that underlie these changes are beginning to be identified in model plants such as Arabidopsis. In animals disruption of the drp1 gene, a homolog to the plant drp3A and drp3B, delays mitochondrial division. This mutation results in increased aneuploidy due to chromosome mis-segregation. It remains to be discovered if a similar outcome is observed in plants. Alloplasmic lines provide an opportunity to understand the communication between the cytoplasmic organelles and the nucleus. Examples of studies in these lines, especially from the extensive collection in wheat, point to the role of mitochondria in chromosome movement, pollen fertility and other aspects of development. Genes involved in NM interaction also are believed to play a critical role in evolution of species and interspecific cross incompatibilities.

  10. The Evolving Properties of Water in a Dynamic Protoplanetary Disk

    Science.gov (United States)

    Ciesla, Fred

    2015-08-01

    Protoplanetary disks are dynamic objects, through which mass and angular momentum are transported as part of the final stages of pre-main sequence evolution of their central stars. These disks are also rich chemical factories, in which materials inherited from the interstellar medium are transformed through a series of reactions (involving, gases, solids, ions, and photons) to the eventual building blocks of the planets.The chemical and physical evolution of a protoplanetary disk are intimately connected. Both solids and gases are subjected to large-scale motions associated with disk evolution and diffusion within the gas. Solids also settle toward the disk midplane and migrate inwards due to gravity and gas drag. This dynamical evolution exposes primitive materials to a range of physical conditions (pressure, temperature, radiation environment) within the disk. It is the integrated effects of these environments that define the physical and chemical properties of a solid grain prior to its incorporation into a planetesimal or planet.Water serves as an interesting tracer of this evolution, as it would be processed in a variety of ways within a protoplanetary disk. I will discuss new methods that allow us to trace the dynamical movement of water vapor and ice throughout the lifetime of a protoplanetary disk and to determine the physical environments to which the water would be exposed. In particular, I will show how the early evolution of a protoplanetary disk impacts the D/H ratio of the water inherited by planetary materials. I will also explore how photodesorption of water by UV photons can lead to the formation of amorphous ice and thus the trapping of noble gases and other volatiles at levels that are much greater than predicted by equilibrium chemistry models. These effects combine to lead to constantly evolving properties of water during the early stages of planet formation. I will also discuss how the observed properties of Solar System bodies constrain these

  11. Fluorescent tags to explore cell wall structure and dynamics.

    OpenAIRE

    Martine eGonneau; Herman eHöfte; Samantha eVernhettes

    2012-01-01

    Plant cell walls are highly dynamic and heterogeneic structures, which vary between celltypes, growth stages but also between microdomains within a single cell wall. In this review, we summarize the imaging techniques using fluorescent tags that are currently being used and which should in the coming years revolutionize our understanding of the dynamics of cell wall architecture and the cellular processes involved in synthesis of cell wall components.

  12. Does consideration of water routing affect simulated water and carbon dynamics in terrestrial ecosystems?

    Science.gov (United States)

    Tang, G.; Schneiderman, E. M.; Band, L. E.; Hwang, T.; Pierson, D. C.; Pradhanang, S. M.; Zion, M. S.

    2013-10-01

    The cycling of carbon in terrestrial ecosystems is closely coupled with the cycling of water. An important mechanism connecting ecological and hydrological processes in terrestrial ecosystems is lateral flow of water along landscapes. Few studies, however, have examined explicitly how consideration of water routing affects simulated water and carbon dynamics in terrestrial ecosystems. The objective of this study is to explore how consideration of water routing in a process-based hydroecological model affects simulated water and carbon dynamics. To achieve that end, we rasterized the regional hydroecological simulation systems (RHESSys) and employed the rasterized RHESSys (R-RHESSys) in a forested watershed. We performed and compared two contrasting simulations, one with and another without water routing. We found that R-RHESSys is able to correctly simulate major hydrological and ecological variables regardless of whether water routing is considered. When water routing was neglected, however, soil water table depth and saturation deficit were simulated to be smaller and spatially more homogeneous. As a result, evaporation, forest productivity and soil heterotrophic respiration also were simulated to be spatially more homogeneous compared to simulation with water routing. When averaged for the entire watershed, however, differences in simulated water and carbon fluxes are not significant between the two simulations. Overall, the study demonstrated that consideration of water routing enabled R-RHESSys to better capture our preconception of the spatial patterns of water table depth and saturation deficit across the watershed. Because the spatial pattern of soil moisture is fundamental to water efflux from land to the atmosphere, forest productivity and soil microbial activity, ecosystem and carbon cycle models, therefore, need to explicitly represent water routing in order to accurately quantify the magnitudes and patterns of water and carbon fluxes in terrestrial

  13. Orientational and translational dynamics of polyether/water solutions.

    Science.gov (United States)

    Sturlaugson, Adam L; Fruchey, Kendall S; Lynch, Stephen R; Aragón, Sergio R; Fayer, Michael D

    2010-04-29

    Optical heterodyne-detected optical Kerr effect (OHD-OKE) experiments and pulsed field-gradient spin-echo NMR (PFGSE-NMR) experiments were performed to measure the rotational and translational diffusion constants of a polyether, tetraethylene glycol dimethyl ether (TEGDE), in binary mixtures with water over concentrations ranging from pure TEGDE to approaching infinite dilution. In addition, hydrodynamic calculations of the rotational and translational diffusion constants for several rigid TEGDE conformations in the neat liquid and in the infinitely dilute solution were performed to supplement the experimental data. The rotational relaxation data follow the Debye-Stokes-Einstein (DSE) equation within experimental error over the entire water concentration range. The agreement with the DSE equation indicates that there is no significant structural change of the polyether as the water content is changed. In contrast to the rotational dynamics, the translational diffusion data show a distinct deviation from Stokes-Einstein (SE) behavior. As the water content of the mixture is reduced, the translational diffusion rate decreases less rapidly than the increase in viscosity alone predicts until the water/TEGDE mole ratio of 7:1 is reached. Upon further reduction of water content, the translational diffusion tracks the viscosity. Comparison of the translational data with the rotational data and the hydrodynamic computations shows that the translational dynamics cannot be explained by a molecular shape change and that the low water fraction solutions are the ones that deviate from hydrodynamic behavior. A conjecture is presented as a possible explanation for the different behaviors of the rotational and translational dynamics. PMID:20373773

  14. Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering

    CERN Document Server

    Drescher, Knut; Cisneros, Luis H; Ganguly, Sujoy; Goldstein, Raymond E; 10.1073/pnas.1019079108

    2011-01-01

    Bacterial processes ranging from gene expression to motility and biofilm formation are constantly challenged by internal and external noise. While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell-cell and cell-surface scattering - the elementary events that lead to swarming and collective swimming in active suspensions and to the formation of biofilms. Here, we report the first direct measurements of the bacterial flow field generated by individual swimming Escherichia coli both far from and near to a solid surface. These experiments allowed us to examine the relative importance of fluid dynamics and rotational diffusion for bacteria. For cell-cell interactions it is shown that thermal and intrinsic stochasticity drown the effects of long-range fluid dynamics, implying that physical interactions between bacteria are determined by steric collisions and near-field lubrication forces. This dom...

  15. Effects of Dimerization of Serratia marcescens Endonuclease on Water Dynamics.

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chuanying; Beck, Brian W.; Krause, Kurt; Weksberg, Tiffany E.; Pettitt, Bernard M.

    2007-02-15

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The dynamics and structure of Serratia marcescens endonuclease and its neighboring solvent are investigated by molecular dynamics (MD). Comparisons are made with structural and biochemical experiments. The dimer form is physiologic and functions more processively than the monomer. We previously found a channel formed by connected clusters of waters from the active site to the dimer interface. Here, we show that dimerization clearly changes correlations in the water structure and dynamics in the active site not seen in the monomer. Our results indicate that water at the active sites of the dimer is less affected compared with bulk solvent than in the monomer where it has much slower characteristic relaxation times. Given that water is a required participant in the reaction, this gives a clear advantage to dimerization in the absence of an apparent ability to use both active sites simultaneously.

  16. Discharging dynamics in an electrolytic cell

    Science.gov (United States)

    Feicht, Sarah E.; Frankel, Alexandra E.; Khair, Aditya S.

    2016-07-01

    We analyze the dynamics of a discharging electrolytic cell comprised of a binary symmetric electrolyte between two planar, parallel blocking electrodes. When a voltage is initially applied, ions in the electrolyte migrate towards the electrodes, forming electrical double layers. After the system reaches steady state and the external current decays to zero, the applied voltage is switched off and the cell discharges, with the ions eventually returning to a uniform spatial concentration. At voltages on the order of the thermal voltage VT=kBT /q ≃25 mV, where kB is Boltzmann's constant, T is temperature, and q is the charge of a proton, experiments on surfactant-doped nonpolar fluids observe that the temporal evolution of the external current during charging and discharging is not symmetric [V. Novotny and M. A. Hopper, J. Electrochem. Soc. 126, 925 (1979), 10.1149/1.2129195; P. Kornilovitch and Y. Jeon, J. Appl. Phys. 109, 064509 (2011), 10.1063/1.3554445]. In fact, at sufficiently large voltages (several VT), the current during discharging is no longer monotonic: it displays a "reverse peak" before decaying in magnitude to zero. We analyze the dynamics of discharging by solving the Poisson-Nernst-Planck equations governing ion transport via asymptotic and numerical techniques in three regimes. First, in the "linear regime" when the applied voltage V is formally much less than VT, the charging and discharging currents are antisymmetric in time; however, the potential and charge density profiles during charging and discharging are asymmetric. The current evolution is on the R C timescale of the cell, λDL /D , where L is the width of the cell, D is the diffusivity of ions, and λD is the Debye length. Second, in the (experimentally relevant) thin-double-layer limit ɛ =λD/L ≪1 , there is a "weakly nonlinear" regime defined by VT≲V ≲VTln(1 /ɛ ) , where the bulk salt concentration is uniform; thus the R C timescale of the evolution of the current magnitude

  17. Discharging dynamics in an electrolytic cell.

    Science.gov (United States)

    Feicht, Sarah E; Frankel, Alexandra E; Khair, Aditya S

    2016-07-01

    We analyze the dynamics of a discharging electrolytic cell comprised of a binary symmetric electrolyte between two planar, parallel blocking electrodes. When a voltage is initially applied, ions in the electrolyte migrate towards the electrodes, forming electrical double layers. After the system reaches steady state and the external current decays to zero, the applied voltage is switched off and the cell discharges, with the ions eventually returning to a uniform spatial concentration. At voltages on the order of the thermal voltage V_{T}=k_{B}T/q≃25 mV, where k_{B} is Boltzmann's constant, T is temperature, and q is the charge of a proton, experiments on surfactant-doped nonpolar fluids observe that the temporal evolution of the external current during charging and discharging is not symmetric [V. Novotny and M. A. Hopper, J. Electrochem. Soc. 126, 925 (1979)JESOAN0013-465110.1149/1.2129195; P. Kornilovitch and Y. Jeon, J. Appl. Phys. 109, 064509 (2011)JAPIAU0021-897910.1063/1.3554445]. In fact, at sufficiently large voltages (several V_{T}), the current during discharging is no longer monotonic: it displays a "reverse peak" before decaying in magnitude to zero. We analyze the dynamics of discharging by solving the Poisson-Nernst-Planck equations governing ion transport via asymptotic and numerical techniques in three regimes. First, in the "linear regime" when the applied voltage V is formally much less than V_{T}, the charging and discharging currents are antisymmetric in time; however, the potential and charge density profiles during charging and discharging are asymmetric. The current evolution is on the RC timescale of the cell, λ_{D}L/D, where L is the width of the cell, D is the diffusivity of ions, and λ_{D} is the Debye length. Second, in the (experimentally relevant) thin-double-layer limit ε=λ_{D}/L≪1, there is a "weakly nonlinear" regime defined by V_{T}≲V≲V_{T}ln(1/ε), where the bulk salt concentration is uniform; thus the RC timescale of

  18. Micro-dynamic Behavior and Self-adjusting Water Transmit Mechanism of Water-transferring Composite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zengzhi; XU Hongmei; MA Dandan; ZHAO Jin

    2011-01-01

    Constructional and micro-dynamic process of the water-transferring composite was analyzed.This composite can transmit water to soil with a self-adjustable speed to ensure the survival of seedlings in arid and semi-arid regions when it is embedded in soil around the roots of the seedlings.It is obtained from natural plant fiber coated with a colloid made by mixing a certain proportion of polyacrylamide and montmorillonite.The rules of water being transmitted to soil by the coating under different condition were tested by M-30 quick moisture measure instrument.The process of water-desorption of the coating material was investigated by a Perkin Elmer Diamond S Ⅱ thermal multi-analyzer.Moreover,the micro-dynamic behavior was detected by a FEIQuanta 2000 environment scanning electron microscope.The results demonstrate that montmorillonite has lower water-desorption energy barrier than polyacrylamide and can lose water more easily.montmorillonite particles bridge up to be the main water-transmit material at low water potential (when the soil relatively dry or when the temperature is high),and they break bridge at high water potential while the polyacrylamide acts as the main water-transmit material.

  19. Molecular Dynamics Investigation of Benzene in Supercritical Water

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Microscopic structure and diffusion properties of benzene in ambient water (298 K, 0.1 MPa) and super critical water (673-773 K, 25-35 MPa) are investigated by molecular dynamics simulation with site-site models. It is found that at the ambient condition, the water molecules surrounding a benzene molecule form a hydrogen bond network. The hydrogen bond interaction between supercritical water molecules decreases dramatically under supercritical conditions. The diffusion coefficients of both the solute molecule and solvent molecule at supercritical conditions increase by 30-180 times than those at the ambient condition. With the temperature approaching the critical temperature, the change of diffusion coefficient with pressure becomes pronounced.

  20. Short time dynamics of water coalescence on a flat water pool

    CERN Document Server

    Lim, Su Jin; Fezzaa, Kamel; Weon, Byung Mook

    2016-01-01

    Coalescence is an important hydrodynamic event that frequently takes place in nature as well as in industry. Here we provide an experimental study on short time dynamics of water coalescence, particularly when a water droplet comes in contact with a flat water surface, by utilizing high-resolution high-penetration ultrafast X-ray microscopy. Our results demonstrate a possibility that an extreme curvature difference between a drop and a flat surface can significantly modify the hydrodynamics of water coalescence, which is unexpected in the existing theory. We suggest a plausible explanation for why coalescence can be modified by an extreme curvature difference.

  1. Dynamic Ice-Water Interactions Form Europa's Chaos Terrains

    Science.gov (United States)

    Blankenship, D. D.; Schmidt, B. E.; Patterson, G. W.; Schenk, P.

    2011-12-01

    Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. We present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. This model is consistent with key observations of chaos, predicts observables for future missions, and indicates that the surface is likely still active today[1]. We apply lessons from ice-water interaction in the terrestrial cryosphere to hypothesize a dynamic lense-collapse model to for Europa's chaos terrain. Chaos terrain morphology, like that of Conamara chaos and Thera Macula, suggests a four-phase formation [1]: 1) Surface deflection occurs as ice melts over ascending thermal plumes, as regularly occurs on Earth as subglacial volcanoes activate. The same process can occur at Europa if thermal plumes cause pressure melt as they cross ice-impurity eutectics. 2) Resulting hydraulic gradients and driving forces produce a sealed, pressurized melt lense, akin to the hydraulic sealing of subglacial caldera lakes. On Europa, the water cannot escape the lense due to the horizontally continuous ice shell. 3) Extension of the brittle ice lid above the lense opens cracks, allowing for the ice to be hydrofractured by pressurized water. Fracture, brine injection and percolation within the ice and possible iceberg toppling produces ice-melange-like granular matrix material. 4) Refreezing of the melt lense and brine-filled pores and cracks within the matrix results in raised chaos. Brine soaking and injection concentrates the ice in brines and adds water volume to the shell. As this englacial water freezes, the now water-filled ice will expand, not unlike the process of forming pingos and other "expansion ice" phenomena on Earth. The refreezing can raise the surface and create the oft-observed matrix "domes" In this presentation, we describe how catastrophic ice-water interactions on Earth have

  2. Sampling dynamics for pressurized electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Dufek, Eric J.; Lister, Tedd E.; Stone, Simon G.

    2014-07-01

    A model describing the gas distribution within a constant pressure electrolysis system and how the distribution impacts electrochemical efficiencies is presented. The primary system of interest is the generation of syngas (CO and H2) associated with the co-electrolysis of H2O and CO2. The model developed for this system takes into account the primary process variables of operation including total system pressure, applied current, the in-flow of reactant gases. From these, and the chemical equilibria within the system, the impact on electrochemically generated gases is presented. Comparing the predicted and measured faradaic efficiency of electrode processes with the expected efficiency from experimental data indicates an offset between the two exists. Methods to minimize and account for the discrepancy are presented with the goal of being able to discern, in a real time manner, degradation of electrode performance. Comparison of the model to experimental data shows a strong correlation between the two with slight variation in experimental data which is attributed to reversible system dynamics such as wetting of the gas diffusion electrode used as the cell cathode.

  3. Energy deposition dynamics of femtosecond pulses in water

    Energy Technology Data Exchange (ETDEWEB)

    Minardi, Stefano, E-mail: stefano@stefanominardi.eu; Pertsch, Thomas [Institute of Applied Physics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Milián, Carles; Couairon, Arnaud [Centre de Physique Théorique, CNRS, École Polytechnique, F-91128 Palaiseau (France); Majus, Donatas; Tamošauskas, Gintaras; Dubietis, Audrius [Department of Quantum Electronics, Vilnius University, Sauletekio 9, bldg. 3, LT-10222 Vilnius (Lithuania); Gopal, Amrutha [Institute of Optics and Quantum Electronics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

    2014-12-01

    We exploit inverse Raman scattering and solvated electron absorption to perform a quantitative characterization of the energy loss and ionization dynamics in water with tightly focused near-infrared femtosecond pulses. A comparison between experimental data and numerical simulations suggests that the ionization energy of water is 8 eV, rather than the commonly used value of 6.5 eV. We also introduce an equation for the Raman gain valid for ultra-short pulses that validates our experimental procedure.

  4. Dynamic modeling and analysis of a 20-cell PEM fuel cell stack considering temperature and two-phase effects

    Science.gov (United States)

    Park, Sang-Kyun; Choe, Song-Yul

    2008-05-01

    Dynamic characteristics and performance of a PEM fuel cell stack are crucial factors to ensure safe, effective and efficient operation. In particular, water and heat at varying loads are important factors that directly influence the stack performance and reliability. Herein, we present a new dynamic model that considers temperature and two-phase effects and analyze these effects on the characteristics of a stack. First, a model for a two-cell stack was developed and the simulated results were compared with experimental results. Next, a model for a 20-cell stack was constructed to investigate start-up and transient behavior. Start-up behavior under different conditions where the amplitudes and slopes of a load current, the temperature and flow rate of the coolant, and extra heating of end plates were varied were also analyzed. The transient analyses considered the dynamics of temperature, oxygen and vapor concentration in the gas diffusion media, liquid water saturation, and the variations of water content in the membranes at a multi-step load. Comparative studies revealed that the two-phase effect of water predominantly reduces oxygen concentration in the catalysts and subsequently increases the activation over-potential, while temperature gradients in the cells directly affect the ohmic over-potential. The results showed that the heat-up time at start-up to achieve a given reference working temperature was inversely proportional to the amplitude of the current density applied and the flow rate and temperature of the coolants. In addition, the asymmetric profile of the stack temperature in the stack was balanced when the temperature of the coolant supplied was reheated and elevated. Analyses of transient behaviors for a 20-cell stack showed that strong temperature gradients formed in the last four end cells, while temperature, oxygen concentration, vapor concentration, liquid water saturation, and membrane water content in the rest of the cells were uniform.

  5. Shock induced phase transition of water: Molecular dynamics investigation

    Energy Technology Data Exchange (ETDEWEB)

    Neogi, Anupam, E-mail: anupamneogi@atdc.iitkgp.ernet.in [Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Mitra, Nilanjan, E-mail: nilanjan@civil.iitkgp.ernet.in [Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2016-02-15

    Molecular dynamics simulations were carried out using numerous force potentials to investigate the shock induced phenomenon of pure bulk liquid water. Partial phase transition was observed at single shock velocity of 4.0 km/s without requirement of any external nucleators. Change in thermodynamic variables along with radial distribution function plots and spectral analysis revealed for the first time in the literature, within the context of molecular dynamic simulations, the thermodynamic pathway leading to formation of ice VII from liquid water on shock loading. The study also revealed information for the first time in the literature about the statistical time-frame after passage of shock in which ice VII formation can be observed and variations in degree of crystallinity of the sample over the entire simulation time of 100 ns.

  6. Shock induced phase transition of water: Molecular dynamics investigation

    Science.gov (United States)

    Neogi, Anupam; Mitra, Nilanjan

    2016-02-01

    Molecular dynamics simulations were carried out using numerous force potentials to investigate the shock induced phenomenon of pure bulk liquid water. Partial phase transition was observed at single shock velocity of 4.0 km/s without requirement of any external nucleators. Change in thermodynamic variables along with radial distribution function plots and spectral analysis revealed for the first time in the literature, within the context of molecular dynamic simulations, the thermodynamic pathway leading to formation of ice VII from liquid water on shock loading. The study also revealed information for the first time in the literature about the statistical time-frame after passage of shock in which ice VII formation can be observed and variations in degree of crystallinity of the sample over the entire simulation time of 100 ns.

  7. Shock induced phase transition of water: Molecular dynamics investigation

    International Nuclear Information System (INIS)

    Molecular dynamics simulations were carried out using numerous force potentials to investigate the shock induced phenomenon of pure bulk liquid water. Partial phase transition was observed at single shock velocity of 4.0 km/s without requirement of any external nucleators. Change in thermodynamic variables along with radial distribution function plots and spectral analysis revealed for the first time in the literature, within the context of molecular dynamic simulations, the thermodynamic pathway leading to formation of ice VII from liquid water on shock loading. The study also revealed information for the first time in the literature about the statistical time-frame after passage of shock in which ice VII formation can be observed and variations in degree of crystallinity of the sample over the entire simulation time of 100 ns

  8. Protein-water dynamics in antifreeze protein III activity

    Science.gov (United States)

    Xu, Yao; Bäumer, Alexander; Meister, Konrad; Bischak, Connor G.; DeVries, Arthur L.; Leitner, David M.; Havenith, Martina

    2016-03-01

    We combine Terahertz absorption spectroscopy (THz) and molecular dynamics (MD) simulations to investigate the underlying molecular mechanism for the antifreeze activity of one class of antifreeze protein, antifreeze protein type III (AFP-III) with a focus on the collective water hydrogen bond dynamics near the protein. After summarizing our previous work on AFPs, we present a new investigation of the effects of cosolutes on protein antifreeze activity by adding sodium citrate to the protein solution of AFP-III. Our results reveal that for AFP-III, unlike some other AFPs, the addition of the osmolyte sodium citrate does not affect the hydrogen bond dynamics at the protein surface significantly, as indicated by concentration dependent THz measurements. The present data, in combination with our previous THz measurements and molecular simulations, confirm that while long-range solvent perturbation is a necessary condition for the antifreeze activity of AFP-III, the local binding affinity determines the size of the hysteresis.

  9. Microscopic dynamics of nanoparticle monolayers at air-water interface.

    Science.gov (United States)

    Bhattacharya, R; Basu, J K

    2013-04-15

    We present results of surface mechanical and particle tracking measurements of nanoparticles trapped at the air-water interface as a function of their areal density. We monitor both the surface pressure (Π) and isothermal compression modulus (ϵ) as well as the dynamics of nanoparticle clusters, using fluorescence confocal microscopy while they are compressed to very high density near the two dimensional close packing density Φ∼0.82. We observe non-monotonic variation in both ϵ and the dynamic heterogeneity, characterized by the dynamical susceptibility χ4 with Φ, in such high density monolayers. We provide insight into the underlying nature of such transitions in close packed high density nanoparticle monolayers in terms of the morphology and flexibility of these soft colloidal particles. We discuss the significance our results in the context of related studies on two dimensional granular or colloidal systems. PMID:23411354

  10. Dynamics of Gravity-Capillary Solitary Waves in Deep Water

    CERN Document Server

    Wang, Zhan

    2012-01-01

    The dynamics of solitary gravity-capillary water waves propagating on the surface of a three-dimensional fluid domain is studied numerically. In order to accurately compute complex time dependent solutions, we simplify the full potential flow problem by taking a cubic truncation of the scaled Dirichlet-to-Neumann operator for the normal velocity on the free surface. This approximation agrees remarkably well with the full equations for the bifurcation curves, wave profiles and the dynamics of solitary waves for a two-dimensional fluid domain. Fully localised solitary waves are then computed in the three-dimensional problem and the stability and interaction of both line and localized solitary waves are investigated via numerical time integration of the equations. The solitary wave branches are indexed by their finite energy at small amplitude, and the dynamics of the solitary waves is complex involving nonlinear focussing of wave packets, quasi-elastic collisions, and the generation of propagating, spatially lo...

  11. Dynamic modeling of an air source heat pump water heater

    OpenAIRE

    Fardoun, Farouk; Ibrahim, Oussama; Zoughaib, Assaad

    2011-01-01

    International audience This paper presents a dynamic simulation model to predict the performance of an air source heat pump water heater (ASHPWH). The mathematical model consists of submodels of the basic system components i.e. evaporator, condenser, compressor, and expansion valve. These submodels were built based on fundamental principles of heat transfer, thermodynamics, fluid mechanics, empirical relationships and manufacturer's data as necessary. The model simulation was carried out u...

  12. Estimation of water diffusivity parameters on grape dynamic drying

    OpenAIRE

    Ramos, Inês N.; Miranda, João M.R.; Brandão, Teresa R. S.; Cristina L.M. Silva

    2010-01-01

    A computer program was developed, aiming at estimating water diffusivity parameters in a dynamic drying process with grapes, assessing the predictability of corresponding non-isothermal drying curves. It numerically solves Fick’s second law for a sphere, by explicit finite differences, in a shrinking system, with anisotropic properties and changing boundary conditions. Experiments were performed in a pilot convective dryer, with simulated air conditions observed in a solar dryer, for modellin...

  13. Dynamics of Ice/Water Confined in Nanoporous Alumina.

    Science.gov (United States)

    Suzuki, Yasuhito; Steinhart, Martin; Graf, Robert; Butt, Hans-Jürgen; Floudas, George

    2015-11-19

    Dielectric (DS), IR spectroscopy, and (1)H MAS NMR are employed in the study of ice/water confined in nanoporous alumina with pore diameters ranging from 400 nm down to 25 nm. Within nanoporous alumina there is a transformation from heterogeneous nucleation of hexagonal ice in the larger pores to homogeneous nucleation of cubic ice in the smaller pores. DS and IR show excellent agreement in the temperature interval and pore size dependence of the transformation. DS further revealed two dynamic processes under confinement. The "fast" and "slow" processes with an Arrhenius temperature dependence are attributed to ice and supercooled water relaxation, respectively. The main relaxation process of ice under confinement ("slow" process) has an activation energy of 44 ± 2 kJ/mol. The latter is in agreement with the reported relaxation times and activation energy of cubic ice prepared following a completely different route (by pressure). (1)H MAS NMR provided new insight in the state of ice structures as well as of supercooled water. Under confinement, a layer of liquid-like water coexists with ice structures. In addition, both ice structures under confinement appear to be more ordered than bulk hexagonal ice. Supercooled water in the smaller pores is different from bulk water. It shows a shift of the signal toward higher chemical shift values which may suggest stronger hydrogen bonding between the water molecules or increasing interactions with the AAO walls. PMID:26511073

  14. Water savings potentials of irrigation systems: dynamic global simulation

    Science.gov (United States)

    Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.

    2015-04-01

    Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatio-temporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a dynamic representation of the three major irrigation systems (surface, sprinkler, and drip) into a process-based bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded worldmap of dynamically retrieved irrigation efficiencies reflecting differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with lowest values ( 60%) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2396 km3 (2004-2009 average); irrigation water consumption is calculated to be 1212 km3, of which 511 km3 are non-beneficially consumed, i.e. lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76%, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15%, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global quantification of irrigation systems while providing a framework for assessing potential

  15. Dynamics of the global virtual water trade network

    Science.gov (United States)

    Dalin, C.; Konar, M.; Hanasaki, N.; Rodriguez-Iturbe, I.

    2011-12-01

    Water resources are under increasing pressure from population growth, socio-economic development and climate change. Since agriculture is by far the most freshwater-consuming process, the international food trade may be a way of transferring water resources to water-scarce countries, and of saving water globally by encouraging trade from water-efficient countries to less water-efficient countries. We applied complex network theory to analyze the dynamics of the global virtual water trade network. Our goal was to assess how the properties of the virtual water trade network changed in time, and how these changes are related to national policies, economic and weather conditions or events. We found that, on average, the number of trade partners of each country in the network doubled from 1986 to 2007, while the volume of water associated with food trade tripled. Despite this growth of the network, we found that the shape of the network properties distributions remained similar: for all years studied, the degree distribution is well fitted by an exponential distribution and the strength distribution compares well with a stretched exponential distribution, indicating high heterogeneity of flows between nations. Other global network structure characteristics, such as the power law relationship between node strength and node degree, dissasortative behavior and weighted rich club phenomenon were also stable through the 22 year-period. However, there are significant changes at the country and link scale of analysis. The USA has remained the world's top exporter of virtual water, while, since 2001, China has been the world's largest virtual water importer, a position formerly occupied by Russia and Japan. The sharp increase in China's virtual water imports is mostly due to its increased soybean imports, following a domestic policy shift regarding the soy trade in 2000 and 2001. Importantly, the food trade has led to enhanced savings in global water resources over the last few

  16. Dynamics of water and solute transport in polymeric reverse osmosis membranes via molecular dynamics simulations

    CERN Document Server

    Shen, Meng; Lueptow, Richard M

    2016-01-01

    The Angstrom-scale transport characteristics of water and six different solutes, methanol, ethanol, 2-propanol, urea, Na+, and Cl-, were studied for a polyamide reverse osmosis (RO) membrane, FT-30, using non-equilibrium molecular dynamics (NEMD) simulations. Results indicate that water transport increases with an increasing fraction of connected percolated free volume, or water-accessible open space, in the membrane polymer structure. This free volume is enhanced by the dynamic structure of the membrane at the molecular level as it swells when hydrated and vibrates due to molecular collisions allowing a continuous path connecting the opposite membrane surfaces. The tortuous paths available for transport of solutes result in Brownian motion of solute molecules and hopping from pore to pore as they pass through the polymer network structure of the membrane. The transport of alcohol solutes decreases for solutes with larger Van der Waals volume, which corresponds to less available percolated free volume, or sol...

  17. Structural relaxation of acridine orange dimer in bulk water and inside a single live lung cell

    Science.gov (United States)

    Chowdhury, Rajdeep; Nandi, Somen; Halder, Ritaban; Jana, Biman; Bhattacharyya, Kankan

    2016-02-01

    Structural relaxation of the acridine orange (AO) dimer in bulk water and inside a single live lung cell is studied using time resolved confocal microscopy and molecular dynamics (MD) simulations. The emission maxima ( λem max ˜ 630 nm) of AO in a lung cancer cell (A549) and a non-cancer lung fibroblast cell (WI38) suggest that AO exists as a dimer inside the cell. Time-dependent red shift in emission maximum indicates dynamic relaxation of the AO dimer (in the excited state) with a time constant of 500-600 ps, both in bulk water and inside the cell. We have calculated the equilibrium relaxation dynamics of the AO dimer in the ground state using MD simulations and found a slow component of time scale ˜350 ps. The intra- and inter-molecular components of the total relaxation dynamics of the AO dimer reveal the presence of a slow component of the order of a few hundred picoseconds. Upon restricting intra-molecular dye dynamics by harmonic constraint between AO monomers, the slow component vanishes. Combining the experimental observations and MD simulation results, we ascribe the slow component of the dynamic relaxation of the AO dimer to the structural relaxation, namely, fluctuations in the distance between the two monomers and associated fluctuation in the number of water molecules.

  18. Nonequilibrium population dynamics of phenotype conversion of cancer cells.

    Directory of Open Access Journals (Sweden)

    Joseph Xu Zhou

    Full Text Available Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection or by environment-instructed transitions (Lamarckism induction. This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance.

  19. Water dynamics in the rhizosphere - a new model of coupled water uptake and mucilage exudation

    Science.gov (United States)

    Kroener, Eva; Holz, Maire; Ahmed, Mutez; Zarebanadkouki, Mohsen; Bittelli, Marco; Carminati, Andrea

    2016-04-01

    The flow of water from soil to plant roots is affected by the narrow region of soil close to the roots, the so-called rhizosphere. The rhizosphere is influenced by mucilage, a polymeric gel exuded by roots that alters the hydraulic properties of the rhizosphere. Here we present a model that accounts for: (a) an increase in equilibrium water retention curve caused by the water holding capacity of mucilage, (b) a reduction of hydraulic conductivity at a given water content due to the higher viscosity of mucilage and (c) the swelling and shrinking dynamics by decoupling water content and water potential and introducing a non-equilibrium water retention curve. The model has been tested for mixtures of soil and mucilage and we applied it to simulate observations of previous experiments with real plants growing in soil that show evidences of altered hydraulic dynamics in the rhizosphere. Furthermore we present results about how the parameters of the model depend on soil texture and root age. Finally we couple our hydraulic model to a diffusion model of mucilage into the soil. Opposed to classical solute transport models here the water flow in the rhizosphere is affected by the concentration distribution of mucilage.

  20. Molecular dynamics of a water jet from a carbon nanotube.

    Science.gov (United States)

    Hanasaki, Itsuo; Yonebayashi, Toru; Kawano, Satoyuki

    2009-04-01

    A carbon nanotube (CNT) can be viewed as a molecular nozzle. It has a cylindrical shape of atomistic regularity, and the diameter can be even less than 1 nm. We have conducted molecular-dynamics simulations of water jet from a (6,6) CNT that confines water in a form of single-file molecular chain. The results show that the water forms nanoscale clusters at the outlet and they are released intermittently. The jet breakup is dominated by the thermal fluctuations, which leads to the strong dependence on the temperature. The cluster size n decreases and the release frequency f increases at higher temperatures. The f roughly follows the reaction kinetics by the transition state theory. The speed of a cluster is proportional to the 1/sqrt[n] because of the central limit theorem. These properties make great contrast with the macroscopic liquid jets. PMID:19518333

  1. Dynamics of charged microparticles at oil-water interfaces.

    Science.gov (United States)

    Wu, Chih-Yuan; Tarimala, Sowmitri; Dai, Lenore L

    2006-02-28

    Solid-stabilized emulsions have been used as a model system to investigate the dynamics of charged microparticles with diameters of 1.1 microm at oil-water interfaces. Using confocal microscopy, we investigated the influences of interfacial curvature, cluster size, and temperature on the diffusion of solid particles. Our work suggests that a highly curved emulsion interface slows the motion of solid particles. This qualitatively supports the theoretical work by Danov et al. (Danov, K. D.; Dimova, R.; Pouligny, B. Phys. Fluids 2000, 12, 2711); however, the interfacial curvature effect decreases with increasing oil-phase viscosity. The diffusion of multiparticle clusters at oil-water interfaces is a strong function of cluster size and oil-phase viscosity and can be quantitatively related to fractal dimension. Finally, we report the influence of temperature and quantify the diffusion activation energy and friction factor of the particles at the investigated oil-water interfaces.

  2. A molecular dynamics study on surface properties of supercooled water

    Institute of Scientific and Technical Information of China (English)

    L(U) Yongjun; WEI Bingbo

    2006-01-01

    Molecular dynamics simulations were performed to study the surface properties of water in a temperature range from 228 to 293 K by using the extended simple point charge (SPC/E) and four-site TIP4P potentials. The calculated surface tension increases with the decrease of temperature, and moreover the slopes of the surface tension-temperature curves show a weak rise below 273 K, whereas no obvious anomalies appear near 228 K, which accords with the previous experiments. Compared with the measured values, the SPC/E potential shows a good agreement, and the TIP4P potential scription of the surface structure of supercooled water for the SPC/E. When simulating the orientational distributions of water molecules near the surface, the SPC/E potential produces higher ordering and larger surface potentials than the TIP4P potential.

  3. Non-Equilibrium Water-Glassy Polymer Dynamics

    Science.gov (United States)

    Davis, Eric; Minelli, Matteo; Baschetti, Marco; Sarti, Giulio; Elabd, Yossef

    2012-02-01

    For many applications (e.g., medical implants, packaging), an accurate assessment and fundamental understanding of the dynamics of water-glassy polymer interactions is of great interest. In this study, sorption and diffusion of pure water in several glassy polymers films, such as poly(styrene) (PS), poly(methyl methacrylate) (PMMA), poly(lactide) (PLA), were measured over a wide range of vapor activities and temperatures using several experimental techniques, including quartz spring microbalance (QSM), quartz crystal microbalance (QCM), and time-resolved Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy. Non-Fickian behavior (diffusion-relaxation phenomena) was observed by all three techniques, while FTIR-ATR spectroscopy also provides information about the distribution of the states of water and water transport mechanisms on a molecular-level. Specifically, the states of water are significantly different in PS compared to PMMA and PLA. Additionally, a purely predictive non-equilibrium lattice fluid (NELF) model was applied to predict the sorption isotherms of water in these glassy polymers.

  4. Salt—Water Dynamics in Soils:I.Salt—Water Dynamics in Unsaturated Soils Under Stable Evaporation Condition

    Institute of Scientific and Technical Information of China (English)

    YOUWEN-RUI; MENGFAN-HUA; 等

    1992-01-01

    A long term simulation test on salt-water dynamics in unsaturated soils with different groundwater depths and soil texture profiles under stable evaporation condition was conducted.Salinity sensors and tensiometers were used to monitor salt and water variation in soils.The experiment revealed that in the process of fresh groundwater moving upwards by capillary rise in the column,the salts in subsoil were brought upwards and accumulated in the surface soil,and consequently the salinization of surface soil took place.The rate of salt accumulation is determined mainly by the volume of capillary water flow and the conditions of salts contained in the soil profile.Water flux in soils decreased obviously when groundwater depths fell below 1.5m.When there was an interbedded clay layer 30cm in thickness in the silty loam soil profile or a clay layer 100cm in thickness at the top layer,the water flux was 3-5 times less than in the soil profile of homogeneous silty loam soil.Therefore,the rate of salt accumulation was decreased and the effect of variation of groundwater depth on the water flux in soils was weakened comparatively.If there was precipitation or irrigation supplying water to the soil,the groundwater could rarely take a direct part in the process of salt accumulation in surface soil,especially,in soil profiles with an interbedded stratum or a clayey surface soil layer.

  5. Multispectral fingerprinting for improved in vivo cell dynamics analysis

    Directory of Open Access Journals (Sweden)

    Cooper Cameron HJ

    2010-09-01

    Full Text Available Abstract Background Tracing cell dynamics in the embryo becomes tremendously difficult when cell trajectories cross in space and time and tissue density obscure individual cell borders. Here, we used the chick neural crest (NC as a model to test multicolor cell labeling and multispectral confocal imaging strategies to overcome these roadblocks. Results We found that multicolor nuclear cell labeling and multispectral imaging led to improved resolution of in vivo NC cell identification by providing a unique spectral identity for each cell. NC cell spectral identity allowed for more accurate cell tracking and was consistent during short term time-lapse imaging sessions. Computer model simulations predicted significantly better object counting for increasing cell densities in 3-color compared to 1-color nuclear cell labeling. To better resolve cell contacts, we show that a combination of 2-color membrane and 1-color nuclear cell labeling dramatically improved the semi-automated analysis of NC cell interactions, yet preserved the ability to track cell movements. We also found channel versus lambda scanning of multicolor labeled embryos significantly reduced the time and effort of image acquisition and analysis of large 3D volume data sets. Conclusions Our results reveal that multicolor cell labeling and multispectral imaging provide a cellular fingerprint that may uniquely determine a cell's position within the embryo. Together, these methods offer a spectral toolbox to resolve in vivo cell dynamics in unprecedented detail.

  6. Desmosome dynamics in migrating epithelial cells requires the actin cytoskeleton

    Science.gov (United States)

    Roberts, Brett J.; Pashaj, Anjeza; Johnson, Keith R.; Wahl, James K.

    2011-01-01

    Re-modeling of epithelial tissues requires that the cells in the tissue rearrange their adhesive contacts in order to allow cells to migrate relative to neighboring cells. Desmosomes are prominent adhesive structures found in a variety of epithelial tissues that are believed to inhibit cell migration and invasion. Mechanisms regulating desmosome assembly and stability in migrating cells are largely unknown. In this study we established a cell culture model to examine the fate of desmosomal components during scratch wound migration. Desmosomes are rapidly assembled between epithelial cells at the lateral edges of migrating cells and structures are transported in a retrograde fashion while the structures become larger and mature. Desmosome assembly and dynamics in this system are dependent on the actin cytoskeleton prior to being associated with the keratin intermediate filament cytoskeleton. These studies extend our understanding of desmosome assembly and provide a system to examine desmosome assembly and dynamics during epithelial cell migration. PMID:21945137

  7. Internal dynamics of a living cell nucleus investigated by dynamic light scattering

    Science.gov (United States)

    Suissa, M.; Place, C.; Goillot, E.; Freyssingeas, E.

    2008-08-01

    Recent progresses in cellular biology have shown that the nucleus of a living cell is a structured integration of many functional domains with a complex spatial organization. This organization, as well as molecular and biochemical processes, is time regulated. In the past years many investigations have been performed using fluorescent microscopy techniques to study the internal dynamics of the nucleus of a living cell. These investigations, however, have never focussed on the global internal dynamics of the nucleus, which is still unknown. In this article we present an original light scattering experimental device that we built to investigate this dynamics during biological processes. By means of this experimental set-up, we investigated the global dynamics of the nucleus of a living cell treated with a DNA replication inhibitor. This dynamics presents different and independent kinds of relaxation well separated in time that vary as a function of the cell cycle phases.

  8. Vibration-rotation-tunneling dynamics in small water clusters

    Energy Technology Data Exchange (ETDEWEB)

    Pugliano, N.

    1992-11-01

    The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm{sup {minus}1} intermolecular vibration of the water dimer-d{sub 4}. Each of the VRT subbands originate from K{sub a}{double_prime}=0 and terminate in either K{sub a}{prime}=0 or 1. These data provide a complete characterization of the tunneling dynamics in the vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A{prime} rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K{sub a}{prime} quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a{prime} symmetry, and the vibration is assigned as the {nu}{sub 12} acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D{sub 2}O-DOH isotopomer.

  9. Vibration-rotation-tunneling dynamics in small water clusters

    Energy Technology Data Exchange (ETDEWEB)

    Pugliano, N.

    1992-11-01

    The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm[sup [minus]1] intermolecular vibration of the water dimer-d[sub 4]. Each of the VRT subbands originate from K[sub a][double prime]=0 and terminate in either K[sub a][prime]=0 or 1. These data provide a complete characterization of the tunneling dynamics in the vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A[prime] rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K[sub a][prime] quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a[prime] symmetry, and the vibration is assigned as the [nu][sub 12] acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D[sub 2]O-DOH isotopomer.

  10. Single cell migration dynamics mediated by geometric confinement.

    Science.gov (United States)

    Zhang, Hua; Hou, Ruixia; Xiao, Peng; Xing, Rubo; Chen, Tao; Han, Yanchun; Ren, Penggang; Fu, Jun

    2016-09-01

    The migration dynamics of cells plays a key role in tissue engineering and regenerative medicine. Previous studies mostly focus on regulating stem cell fate and phenotype by biophysical cues. In contrast, less is known about how the geometric cues mediate the migration dynamics of cells. Here, we fabricate graphene oxide (GO) microstripes on cell non-adhesive PEG substrate by using micromolding in capillary (MIMIC) method. Such micropatterns with alternating cell adhesion and cell resistance enable an effective control of selective adhesion and migration of single cells. The sharp contrast in cell adhesion minimizes the invasion of cells into the PEG patterns, and thereby strongly confines the cells on GO microstripes. As a result, the cells are forced to adapt highly polarized, elongated, and oriented geometry to fit the patterns. A series of pattern widths have been fabricated to modulate the extent of cell deformation and polarization. Under strong confinement, the cytoskeleton contractility, intracellular traction, and actin filament elongation are highly promoted, which result in enhanced cell migration along the patterns. This work provides an important insight into developing combinatorial graphene-based patterns for the control of cell migration dynamics, which is of great significance for tissue engineering and regenerative medicine. PMID:27137805

  11. Salt—Water Dynamics in Highly Salinized Topsoil of Salt—Affected Soil During Water Infiltration

    Institute of Scientific and Technical Information of China (English)

    WANGXUE-FENG; YOUWEN-RUI; 等

    1991-01-01

    Continuous monitoring of salt and water movement in the soil profile of highly salinized topsoil under steadystate infiltration was conducted.It gives that salt and water dynamics during convection-diffusion period can be divided into three stages:1.formation of a salt peak,2.the salt peak moving downwards till the appearance of the summit of the salt peak,3.the salt peak moving further downwards with the peak value decreasing.Results show that the maximum salt peak appears at the same depth if soil texture and outflow condition are the same.Factors affecting salt and water movement and ion components in the outflow solution underinfiltration are discussed.

  12. Electrochemical Cell with Improved Water or Gas Management

    Science.gov (United States)

    Smith, William F. (Inventor); McElroy, James F. (Inventor); LaGrange, Jay W. (Inventor)

    2015-01-01

    An electrochemical cell having a water/gas porous separator prepared from a polymeric material and one or more conductive cell components that pass through, or are located in close proximity to, the water/gas porous separator, is provided. The inventive cell provides a high level of in-cell electrical conductivity.

  13. Improving dynamic performance of proton-exchange membrane fuel cell system using time delay control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Bae [Mechanical Engineering Department, Chonnam National University, Gwangju (Korea)

    2010-10-01

    Transient behaviour is a key parameter for the vehicular application of proton-exchange membrane (PEM) fuel cell. The goal of this presentation is to construct better control technology to increase the dynamic performance of a PEM fuel cell. The PEM fuel cell model comprises a compressor, an injection pump, a humidifier, a cooler, inlet and outlet manifolds, and a membrane-electrode assembly. The model includes the dynamic states of current, voltage, relative humidity, stoichiometry of air and hydrogen, cathode and anode pressures, cathode and anode mass flow rates, and power. Anode recirculation is also included with the injection pump, as well as anode purging, for preventing anode flooding. A steady-state, isothermal analytical fuel cell model is constructed to analyze the mass transfer and water transportation in the membrane. In order to prevent the starvation of air and flooding in a PEM fuel cell, time delay control is suggested to regulate the optimum stoichiometry of oxygen and hydrogen, even when there are dynamical fluctuations of the required PEM fuel cell power. To prove the dynamical performance improvement of the present method, feed-forward control and Linear Quadratic Gaussian (LQG) control with a state estimator are compared. Matlab/Simulink simulation is performed to validate the proposed methodology to increase the dynamic performance of a PEM fuel cell system. (author)

  14. Hydro-dynamic damping theory in flowing water

    Science.gov (United States)

    Monette, C.; Nennemann, B.; Seeley, C.; Coutu, A.; Marmont, H.

    2014-03-01

    Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid-head to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon always has to be considered carefully during the design phase to avoid operational issues later on. The RSI dynamic response amplitudes are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. The prediction of the two first factors has been largely documented in the literature. However, the prediction of fluid damping has received less attention in spite of being critical when the runner is close to resonance. Experimental damping measurements in flowing water on hydrofoils were presented previously. Those results showed that the hydro-dynamic damping increased linearly with the flow. This paper presents development and validation of a mathematical model, based on momentum exchange, to predict damping due to fluid structure interaction in flowing water. The model is implemented as an analytical procedure for simple structures, such as cantilever beams, but is also implemented in more general ways using three different approaches for more complex structures such as runner blades: a finite element procedure, a CFD modal work based approach and a CFD 1DOF approach. The mathematical model and all three implementation approaches are shown to agree well with experimental results.

  15. Dynamically slow processes in supercooled water confined between hydrophobic plates

    Energy Technology Data Exchange (ETDEWEB)

    Franzese, Giancarlo [Departamento de Fisica Fundamental, Universidad de Barcelona, Diagonal 647, Barcelona 08028 (Spain); Santos, Francisco de los, E-mail: gfranzese@ub.ed, E-mail: fdlsant@ugr.e [Departamento de Electromagnetismo y Fisica de la Materia, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)

    2009-12-16

    We study the dynamics of water confined between hydrophobic flat surfaces at low temperature. At different pressures, we observe different behaviors that we understand in terms of the hydrogen bond dynamics. At high pressure, the formation of the open structure of the hydrogen bond network is inhibited and the surfaces can be rapidly dried (dewetted) by formation of a large cavity with decreasing temperature. At lower pressure we observe strong non-exponential behavior of the correlation function, but with no strong increase of the correlation time. This behavior can be associated, on the one hand, to the rapid ordering of the hydrogen bonds that generates heterogeneities and, on the other hand, to the lack of a single timescale as a consequence of the cooperativity in the vicinity of the liquid-liquid critical point that characterizes the phase diagram at low temperature of the water model considered here. At very low pressures, the gradual formation of the hydrogen bond network is responsible for the large increase of the correlation time and, eventually, the dynamical arrest of the system, with a strikingly different dewetting process, characterized by the formation of many small cavities.

  16. Structure and dynamics of water in crowded environments slows down peptide conformational changes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Cheng; Prada-Gracia, Diego; Rao, Francesco, E-mail: francesco.rao@frias.uni-freiburg.de [Freiburg Institute for Advanced Studies, School of Soft Matter Research, Albertstrasse 19, 79104 Freiburg im Breisgau (Germany)

    2014-07-28

    The concentration of macromolecules inside the cell is high with respect to conventional in vitro experiments or simulations. In an effort to characterize the effects of crowding on the thermodynamics and kinetics of disordered peptides, molecular dynamics simulations were run at different concentrations by varying the number of identical weakly interacting peptides inside the simulation box. We found that the presence of crowding does not influence very much the overall thermodynamics. On the other hand, peptide conformational dynamics was found to be strongly affected, resulting in a dramatic slowing down at larger concentrations. The observation of long lived water bridges between peptides at higher concentrations points to a nontrivial role of the solvent in the altered peptide kinetics. Our results reinforce the idea for an active role of water in molecular crowding, an effect that is expected to be relevant for problems influenced by large solvent exposure areas like in intrinsically disordered proteins.

  17. Dynamic Adsorptive Removal of Toxic Chemicals for Purification of Water

    Directory of Open Access Journals (Sweden)

    Amit Saxena

    2005-04-01

    Full Text Available To determine the efficiency of carbon column for the removal of toxic chemicals from water, the adsorption of phenol in concentration range from 0.600 glt to 1.475 gll was studied on activecarbon of 80 CTC grade, 12 X 30 BSS particle size, 1280 m2/g surface area, and of coconut shell origin, under dynamic conditions at space velocity from 0.318 min-' to 4.24 min-' at 25 'C. The carbon column of 100 cm length and 2 cm diameter was found to be removing phenol from the aqueous solution of concentration 1.475 gll up to 84 min at 0.678 min-' space velocity at 5.0 ppm phenol breakthrough concentration. However, no phenol was observed in carbon-treated water after 80 min. The service life of carbon column (100 cm lengthX25 cm diameter was assessed through the water purification system developed at the Defence Laboratory, Jodhpur and was determined to be 4.095 days with twoas factor of safety for 10 ppm initial concentration of phenol at 0.678 min-' space velocity (corresponding to water flow rate. Effects of carbon bed length, water flow rate, and the phenol concentration were also studied.

  18. A dynamic knowledge model for water management in maize

    Institute of Scientific and Technical Information of China (English)

    GUO Yinqiao; LIN Yuping; ZHAO Chuande; WANG Wenxin; LI Cundong

    2007-01-01

    Farmland irrigation management and model establishment are always core and difficult contents in crop simulation.This research was focused on exerting the establishment theory of knowledge model,and applying the systematic analysis method and mathematic modeling technology to knowledge expression system of maize water management.Based on soil water balance,a dynamic knowledge model with systematic and wide-application characteristics for maize water management was developed,after periodically quantifying the relationship of irrigation ration between cultivars' characteristics and environmental factors.Cases were studied on the knowledge model with the data sets of normal year in different eco-sites and those of different rain years in the same eco-sites.The results showed that there was no difference in water saving in normal years under different eco-sites,irrigation schedule changes with eco-sites greatly;but a more obvious difference in different rain years of the same eco-sites existing,with 8.6% and 31.9% of water saving in both more rainfall and normal rainfall years,respectively.Additionally,irrigation in the seedling stage did not change with year types,but it did in Knurling and filling stages.This can be concluded that the irrigation regime designed by the model is well coherent to the actual planting system,which indicated that the model had good decision-making and applicability.

  19. Cell lipids: from isolation to functional dynamics

    NARCIS (Netherlands)

    Veldman, R.JJ; Pecheur, EL; van Ijzendoorn, Sven; Kok, Jan Willem; Hoekstra, Dirk

    2003-01-01

    81. Veldman RJ, Pécheur EI., Van IJzendoorn SCD., Kok JW. and Hoekstra D. (2003) . In: Essential Cell Biology. Cell Structure (Davey, J. and Lord, M. eds.) Oxford University Press, Oxford. Vol. 1, pp.

  20. Exploring Neural Cell Dynamics with Digital Holographic Microscopy

    KAUST Repository

    Marquet, Pierre

    2013-04-21

    In this talk, I will present how digital holographic microscopy, as a powerful quantitative phase technique, can non-invasively measure cell dynamics and especially resolve local neuronal network activity through simultaneous multiple site optical recording.

  1. Rotor dynamic investigation of a pressurized water reactor coolant pump

    International Nuclear Information System (INIS)

    As a result of high vibration levels of Westinghouse Reactor Coolant Pumps installed at a large Northeast utility plant, Rotor Dynamic studies were conducted coupled with on site measurements. Stability analysis, non-synchronous response and synchronous investigations were completed. It was concluded that the high vibration levels were primarily due to excessive impeller unbalance which was aggravated by the tendency of the rotor to whirl in the 360 degree plain water lubricated journal bearing. The analysis indicated that vibration frequencies can vary along the rotor. Specifically, a predominant synchronous response at the coupling does not rule out a dominant half frequency whirl at the bearing and the impeller. Thus, measurements made at the coupling could be misleading. A tilting-pad design was analytically tested and was predicted to provide whirl-free response and improve overall dynamic characteristics. However, tight clearances are required to limit unbalance response

  2. Saline Water Irrigation Scheduling Through a Crop-Water-Salinity Production Function and a Soil-Water-Salinity Dynamic Model

    Institute of Scientific and Technical Information of China (English)

    WANG Yang-Ren; KANG Shao-Zhong; LI Fu-heng; ZHANG Lu; ZHANG Jian-Hua

    2007-01-01

    Using a crop-water-salinity production function and a soil-water-salinity dynamic model, optimal irrigation scheduling was developed to maximize net return per irrigated area. Plot and field experiments were used to obtain the crop water sensitivity index, the salinity sensitivity index, and other parameters. Using data collected during 35 years to calculate the 10-day mean precipitation and evaporation, the variation in soil salinity concentrations and in the yields of winter wheat and cotton were simulated for 49 irrigation scheduling that were combined from 7 irrigation schemes over 3 irrigation dates and 7 salinity concentrations of saline irrigation water (fresh water and 6 levels of saline water). Comparison of predicted results with irrigation data obtained from a large area of the field showed that the model was valid and reliable. Based on the analysis of the investment cost of the irrigation that employed deep tube wells or shallow tube wells, a saline water irrigation schedule and a corresponding strategy for groundwater development and utilization were proposed. For wheat or cotton, if the salinity concentration was higher than 7.0 g L-1 in groundwater, irrigation was needed with only fresh water; if about 5.0 g L-1, irrigation was required twice with fresh water and once with saline water; and if not higher than 3.0 g L-1, irrigation could be solely with saline water.

  3. Protein dynamics in individual human cells: experiment and theory.

    Directory of Open Access Journals (Sweden)

    Ariel Aharon Cohen

    Full Text Available A current challenge in biology is to understand the dynamics of protein circuits in living human cells. Can one define and test equations for the dynamics and variability of a protein over time? Here, we address this experimentally and theoretically, by means of accurate time-resolved measurements of endogenously tagged proteins in individual human cells. As a model system, we choose three stable proteins displaying cell-cycle-dependant dynamics. We find that protein accumulation with time per cell is quadratic for proteins with long mRNA life times and approximately linear for a protein with short mRNA lifetime. Both behaviors correspond to a classical model of transcription and translation. A stochastic model, in which genes slowly switch between ON and OFF states, captures measured cell-cell variability. The data suggests, in accordance with the model, that switching to the gene ON state is exponentially distributed and that the cell-cell distribution of protein levels can be approximated by a Gamma distribution throughout the cell cycle. These results suggest that relatively simple models may describe protein dynamics in individual human cells.

  4. Solvation structures and dynamics of alkaline earth metal halides in supercritical water: A molecular dynamics study

    Science.gov (United States)

    Keshri, Sonanki; Mandal, Ratnamala; Tembe, B. L.

    2016-09-01

    Constrained molecular dynamics simulations of alkaline earth metal halides have been carried out to investigate their structural and dynamical properties in supercritical water. Potentials of mean force (PMFs) for all the alkaline earth metal halides in supercritical water have been computed. Contact ion pairs (CIPs) are found to be more stable than all other configurations of the ion pairs except for MgI2 where solvent shared ion pair (SShIP) is more stable than the CIP. There is hardly any difference in the PMFs between the M2+ (M = Mg, Ca, Sr, Ba) and the X- (X = F, Cl, Br, I) ions whether the second X- ion is present in the first coordination shell of the M2+ ion or not. The solvent molecules in the solvation shells diffuse at a much slower rate compared to the bulk. Orientational distribution functions of solvent molecules are sharper for smaller ions.

  5. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Demontis, Pierfranco; Suffritti, Giuseppe B. [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Gulín-González, Jorge [Grupo de Matemática y Física Computacionales, Universidad de las Ciencias Informáticas (UCI), Carretera a San Antonio de los Baños, Km 21/2, La Lisa, La Habana (Cuba); Masia, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Istituto Officina dei Materiali del CNR, UOS SLACS, Via Vienna 2, 07100 Sassari (Italy); Sant, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy)

    2015-06-28

    In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130–350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between “fragile” (at higher temperatures) and “strong” (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between “fragile” (at lower temperatures) and “strong” (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T{sup ∗} ∼ 315 ± 5 K, was spotted at T{sup ∗} ∼ 283 K and T{sup ∗} ∼ 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible

  6. Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming.

    Science.gov (United States)

    Buck, Michael D; O'Sullivan, David; Klein Geltink, Ramon I; Curtis, Jonathan D; Chang, Chih-Hao; Sanin, David E; Qiu, Jing; Kretz, Oliver; Braas, Daniel; van der Windt, Gerritje J W; Chen, Qiongyu; Huang, Stanley Ching-Cheng; O'Neill, Christina M; Edelson, Brian T; Pearce, Edward J; Sesaki, Hiromi; Huber, Tobias B; Rambold, Angelika S; Pearce, Erika L

    2016-06-30

    Activated effector T (TE) cells augment anabolic pathways of metabolism, such as aerobic glycolysis, while memory T (TM) cells engage catabolic pathways, like fatty acid oxidation (FAO). However, signals that drive these differences remain unclear. Mitochondria are metabolic organelles that actively transform their ultrastructure. Therefore, we questioned whether mitochondrial dynamics controls T cell metabolism. We show that TE cells have punctate mitochondria, while TM cells maintain fused networks. The fusion protein Opa1 is required for TM, but not TE cells after infection, and enforcing fusion in TE cells imposes TM cell characteristics and enhances antitumor function. Our data suggest that, by altering cristae morphology, fusion in TM cells configures electron transport chain (ETC) complex associations favoring oxidative phosphorylation (OXPHOS) and FAO, while fission in TE cells leads to cristae expansion, reducing ETC efficiency and promoting aerobic glycolysis. Thus, mitochondrial remodeling is a signaling mechanism that instructs T cell metabolic programming. PMID:27293185

  7. A molecular dynamics study on surface properties of supercooled water

    Institute of Scientific and Technical Information of China (English)

    Lü; Yongjun

    2006-01-01

    [1]Basu J K,Hazra S,Sanyal M K.Growth mechanism of Langmuir-Blodgett films.Phys Rev Lett,1999,82:4675-4678[2]Taylor R S,Shields R L.Molecular-dynamics simulations of the ethanol liquid-vapor interface.J Chem Phys,2003,119:12569-12576[3]Velev O D,Gurkov T D,Ivanov I B,et al.Abnormal thickness and stability of nonequilibrium liquid films.Phys Rev Lett,1995,75:264-267[4]Weng J G,Park S,Lukes J R,et al.Molecular dynamics investigation of thickness effect on liquid films.J Chem Phys,2000,113:5917-5923[5]Zakharov V V,Brodskaya E N,Laaksonen A.Surface tension of water droplets:A molecular dynamics study of model and size dependencies.J Chem Phys,1997,107:10675-10683[6]Wang J Z,Chen M,Guo Z Y.A two-dimensional molecular dynamics simulation of liquid-vapor nucleation.Chin Sci Bull,2003,48(7):623-626[7]Guissani Y,Guillot B.A computer simulation study of the liquid-vapor coexistence curve of water.J Chem Phys,1993,98:8221-8235[8]Wilson M A,Pohorille A,Pratt L R.Surface potential of the water liquid-vapor interface.J Chem Phys,1988,88:3281-3285[9]Alejandre J,Tildesley D J,Chapela G A.Molecular dynamics simulation of the orthobaric densities and surface tension of water.J Chem Phys,1995,102:4574-4583[10]Matsumoto M,Kataoka Y.Study on liquid-vapor interface of water (Ⅰ):Simulational results of thermodynamic properties and orientational structure.J Chem Phys,1988,88:3233-3245[11]Floriano M A,Angell C A.Surface tension and molar surface free energy and entropy of water to-27.2℃.J Phys Chem,1990,94:4199-4202[12]Jorgensen W L,Chandrasekhar J,Madura J D.Comparison of simple potential functions for simulating liquid water.J Chem Phys,1993,79:926-935[13]Berendsen H J C,Grigera J R,Straatsma T P.The missing term in effective pair potentials.J Phys Chem,1987,91:6269-6271[14]Arbuckle B W,Clancy P.Effects of the Ewald sum on the free energy of the extended simple point charge model for water.J Chem Phys,2002,116:5090-5098[15]Tarazona P,Chacon E,Reinaldo-Falagan M,et al

  8. Constrained-Hamiltonian Shallow-Water Dynamics on the Sphere

    CERN Document Server

    Beron-Vera, F J

    2003-01-01

    Salmon's nearly geostrophic model for rotating shallow-water flow is derived in full spherical geometry. The model, which results upon constraining the velocity field to the height field in Hamilton's principle for rotating shallow-water dynamics, constitutes an important prototype of Hamiltonian balanced models. Instead of Salmon's original approach, which consists in taking variations of particle paths at fixed Lagrangian labels and time, Holm's approach is considered here, namely variations are taken on Lagrangian particle labels at fixed Eulerian positions and time. Unlike the classical quasigeostrophic model, Salmon's is found to be sensitive to the differences between geographic and geodesic coordinates. One consequence of this result is that the $\\beta $ plane approximation, which is included in Salmon's original derivation, is not consistent for this class of model.

  9. Dynamics of water trimer in femtosecond laser pulses

    Science.gov (United States)

    Wang, Zhiping; Zhang, Fengshou; Xu, Xuefeng; Wang, Yanbiao; Qian, Chaoyi

    2016-07-01

    With the help of the time-dependent local-density approximation (TDLDA) coupled non-adiabatically to molecular dynamics (MD), we studied both the static properties and irradiation dynamics of water trimer subject to the short and intense femtosecond laser field. It is shown that the optimized geometry and the optical absorption strength of the water trimer accord well with results in literature. Three typical possible irradiated scenarios of water trimer which are “normal oscillation”, “dissociation and formation” and “pure OH dissociation” are exhibited by investigating the ionization and the level depletion related to electrons as well as the OH bonds, proton-transfer, the intermolecular distance and the kinetic energy connected with ions. In three scenarios, the behaviors of water trimer can be attributed to the sequential combination of responses of the electrons emission, the proton-transfer, OH vibration and rotation, OH dissociation and hydroxyl formation, respectively. The relevant time scales of the first proton-transfer and OH dissociation are identified as 13 fs and 10-20 fs, respectively. The study of kinetic energies of ions show that the kinetic energies of the remaining ions are all below 4.5 eV and outgoing hydrogen ions carry a kinetic energy about 5-12 eV. Furthermore, it is found that in the tunneling ionization situations the depletion is fairly shared between the various levels except the most deep occupied electronic level while in the multiphotonic ionization case the electron loss comes from all single-electron levels and the HOMO level contributes the most.

  10. Dynamics of groundwater-surface water interactions in urban streams

    Science.gov (United States)

    Musolff, A.; Schmidt, C.; Fleckenstein, J. H.

    2010-12-01

    In industrialized countries the majority of streams and rivers have been subject to changes in the hydrological regime and alteration of the channel morphology. Urban streams are typically characterized by “flashier” hydrographs as a result of more direct runoff from impervious surfaces. Channel structure and complexity are often impaired compared to pristine streams. As a consequence the potential for bedform-driven water flow in the streambed is reduced. The downward transport of oxygen by advective flow in the streambed is known to be of great ecological importance for the hyporheic macro and micro fauna and facilitates nutrient cycling and the degradation of organic pollutants. We studied the dynamics of groundwater-surface water exchange of two anthropogenically impacted streams in urban areas to examine the effects of variable hydrologic boundary conditions on water flux and redox conditions in the streambed. The first stream is fed by groundwater as well as storm-water from a large industrial area. Here, we monitored the variability of vertical hydraulic gradients, streambed temperature and redox conditions in the streambed over the course of 5 months. The second stream is frequently polluted by combined sewer overflows (CSO) from an urban watershed. Here, we measured the vertical hydraulic gradients, streambed temperature and electrical conductivity (EC) in the stream, the streambed and in the adjacent aquifer. Both streams are characterized by strong variations in hydraulic gradients due to the dynamic hydrographs as well as the variations in total head in the shallow aquifer. Therefore, magnitude and direction of water flux through the streambed changed significantly over time. At the first site long-term variations of redox conditions in the shallow streambed (0.1 m) were related to the direction of water fluxes. Downward water flow resulted in increased redox potentials. However, the high short-term variability of redox conditions could not be

  11. Water condensation in Gas Diffusion Layers of PEM Fuel cells

    OpenAIRE

    Straubhaar, Benjamin; Pauchet, Joël; Prat, Marc

    2015-01-01

    The fundamental understanding of water transport in PEMFCs is still a major challenge in direct relation with the water management issue, i.e., the ability to maintain a good dynamic balance of water in the membrane-electrode assembly during operation. In the present effort we concentrate on the water transfer mechanisms occurring in the gas diffusion layer (GDL) on the cathode side. In – situ visualizations of liquid water in GDL [1] and evaluations of temperature variations across the GDL [...

  12. Chicago's water market: Dynamics of demand, prices and scarcity rents

    Science.gov (United States)

    Ipe, V.C.; Bhagwat, S.B.

    2002-01-01

    Chicago and its suburbs are experiencing an increasing demand for water from a growing population and economy and may experience water scarcity in the near future. The Chicago metropolitan area has nearly depleted its groundwater resources to a point where interstate conflicts with Wisconsin could accompany an increased reliance on those sources. Further, the withdrawals from Lake Michigan is limited by the Supreme Court decree. The growing demand and indications of possible scarcity suggest a need to reexamine the pricing policies and the dynamics of demand. The study analyses the demand for water and develops estimates of scarcity rents for water in Chicago. The price and income elasticities computed at the means are -0.002 and 0.0002 respectively. The estimated scarcity rents ranges from $0.98 to $1.17 per thousand gallons. The results indicate that the current prices do not fully account for the scarcity rents and suggest a current rate with in the range $1.53 to $1.72 per thousand gallons.

  13. OTEC Cold Water Pipe-Platform Subsystem Dynamic Interaction Validation

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Robert [Lockheed Martin Corporation, Manassas, VA (United States); Halkyard, John [John Halkyard and Associates, Houston, TX (United States); Johnson, Peter [BMT Scientific Marine Services, Inc., Houston, TX (United States); Shi, Shan [Houston Offshore Engineering, Houston, TX (United States); Marinho, Thiago [Federal Univ. of Rio de Janeiro (Brazil). LabOceano

    2014-05-09

    A commercial floating 100-megawatt (MW) ocean thermal energy conversion (OTEC) power plant will require a cold water pipe (CWP) with a diameter of 10-meter (m) and length of up to 1,000 m. The mass of the cold water pipe, including entrained water, can exceed the mass of the platform supporting it. The offshore industry uses software-modeling tools to develop platform and riser (pipe) designs to survive the offshore environment. These tools are typically validated by scale model tests in facilities able to replicate real at-sea meteorological and ocean (metocean) conditions to provide the understanding and confidence to proceed to final design and full-scale fabrication. However, today’s offshore platforms (similar to and usually larger than those needed for OTEC applications) incorporate risers (or pipes) with diameters well under one meter. Secondly, the preferred construction method for large diameter OTEC CWPs is the use of composite materials, primarily a form of fiber-reinforced plastic (FRP). The use of these material results in relatively low pipe stiffness and large strains compared to steel construction. These factors suggest the need for further validation of offshore industry software tools. The purpose of this project was to validate the ability to model numerically the dynamic interaction between a large cold water-filled fiberglass pipe and a floating OTEC platform excited by metocean weather conditions using measurements from a scale model tested in an ocean basin test facility.

  14. Integrated system dynamics toolbox for water resources planning.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don (University of Chicago, Chicago, IL); Hanson, Jason (University of New Mexico, Albuquerque, NM); Grimsrud, Kristine (University of New Mexico, Albuquerque, NM); Thacher, Jennifer (University of New Mexico, Albuquerque, NM); Broadbent, Craig (University of New Mexico, Albuquerque, NM); Brookshire, David (University of New Mexico, Albuquerque, NM); Chemak, Janie (University of New Mexico, Albuquerque, NM); Cockerill, Kristan (Cockeril Consulting, Boone, NC); Aragon, Carlos (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Hallett, Heather (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Vivoni, Enrique (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Roach, Jesse

    2006-12-01

    Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward

  15. Dynamics of flood water infiltration and ground water recharge in hyperarid desert.

    Science.gov (United States)

    Dahan, Ofer; Tatarsky, Boaz; Enzel, Yehouda; Kulls, Christoph; Seely, Mary; Benito, Gererdo

    2008-01-01

    A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.

  16. Evidence on dynamic effects in the water content – water potential relation of building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2008-01-01

    the required material functions, i.e. the moisture storage characteristic and the liquid water conductivity, from measured basic properties. The current state of the art in material modelling as well as the corresponding transport theory implies that the moisture transport function is unique...... and that the moisture storage characteristic is process dependent with varying significance for the numerical simulation. On the basis of different building materials, a comprehensive instantaneous profile measurement study has been accomplished. Profiles of water content and relative humidity were obtained during...... a series of adsorption and desorption processes. The data provides clear evidence that the water content – water potential relationship is not only dependent on the process history, but also on the process dynamics. The higher moisture potential gradients were induced, the larger was the deviation between...

  17. Global dynamical behaviors in a physical shallow water system

    Science.gov (United States)

    Tchakoutio Nguetcho, Aurélien Serge; Li, Jibin; Bilbault, Jean-Marie

    2016-07-01

    The theory of bifurcations of dynamical systems is used to investigate the behavior of travelling wave solutions in an entire family of shallow water wave equations. This family is obtained by a perturbative asymptotic expansion for unidirectional shallow water waves. According to the parameters of the system, this family can lead to different sets of known equations such as Camassa-Holm, Korteweg-de Vries, Degasperis and Procesi and several other dispersive equations of the third order. Looking for possible travelling wave solutions, we show that different phase orbits in some regions of parametric planes are similar to those obtained with the model of the pressure waves studied by Li and Chen. Many other exact explicit travelling waves solutions are derived as well, some of them being in perfect agreement with solutions obtained in previous works by researchers using different methods. When parameters are varied, the conditions under which the above solutions appear are also shown. The dynamics of singular nonlinear travelling system is completely determined for each of the above mentioned equations. Moreover, we define sufficient conditions leading to the existence of propagating wave solutions and demonstrate how and why travelling waves lose their smoothness and develop into solutions with compact support or breaking waves.

  18. A Multiagent Dynamic Assessment Approach for Water Quality Based on Improved Q-Learning Algorithm

    OpenAIRE

    Jianjun Ni; Li Ren; Minghua Liu; Daqi Zhu

    2013-01-01

    The dynamic water quality assessment is a challenging and critical issue in water resource management systems. To deal with this complex problem, a dynamic water assessment model based on multiagent technology is proposed, and an improved Q-learning algorithm is used in this paper. In the proposed Q-learning algorithm, a fuzzy membership function and a punishment mechanism are introduced to improve the learning speed of Q-learning algorithm. The dynamic water quality assessment for different ...

  19. Relation Between the Cell Volume and the Cell Cycle Dynamics in Mammalian cell

    Science.gov (United States)

    Magno, A. C. G.; Oliveira, I. L.; Hauck, J. V. S.

    2016-08-01

    The main goal of this work is to add and analyze an equation that represents the volume in a dynamical model of the mammalian cell cycle proposed by Gérard and Goldbeter (2011) [1]. The cell division occurs when the cyclinB/Cdkl complex is totally degraded (Tyson and Novak, 2011)[2] and it reaches a minimum value. At this point, the cell is divided into two newborn daughter cells and each one will contain the half of the cytoplasmic content of the mother cell. The equations of our base model are only valid if the cell volume, where the reactions occur, is constant. Whether the cell volume is not constant, that is, the rate of change of its volume with respect to time is explicitly taken into account in the mathematical model, then the equations of the original model are no longer valid. Therefore, every equations were modified from the mass conservation principle for considering a volume that changes with time. Through this approach, the cell volume affects all model variables. Two different dynamic simulation methods were accomplished: deterministic and stochastic. In the stochastic simulation, the volume affects every model's parameters which have molar unit, whereas in the deterministic one, it is incorporated into the differential equations. In deterministic simulation, the biochemical species may be in concentration units, while in stochastic simulation such species must be converted to number of molecules which are directly proportional to the cell volume. In an effort to understand the influence of the new equation a stability analysis was performed. This elucidates how the growth factor impacts the stability of the model's limit cycles. In conclusion, a more precise model, in comparison to the base model, was created for the cell cycle as it now takes into consideration the cell volume variation

  20. Local Nucleosome Dynamics Facilitate Chromatin Accessibility in Living Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Saera Hihara

    2012-12-01

    Full Text Available Genome information, which is three-dimensionally organized within cells as chromatin, is searched and read by various proteins for diverse cell functions. Although how the protein factors find their targets remains unclear, the dynamic and flexible nature of chromatin is likely crucial. Using a combined approach of fluorescence correlation spectroscopy, single-nucleosome imaging, and Monte Carlo computer simulations, we demonstrate local chromatin dynamics in living mammalian cells. We show that similar to interphase chromatin, dense mitotic chromosomes also have considerable chromatin accessibility. For both interphase and mitotic chromatin, we observed local fluctuation of individual nucleosomes (∼50 nm movement/30 ms, which is caused by confined Brownian motion. Inhibition of these local dynamics by crosslinking impaired accessibility in the dense chromatin regions. Our findings show that local nucleosome dynamics drive chromatin accessibility. We propose that this local nucleosome fluctuation is the basis for scanning genome information.

  1. Effect of supercritical water shell on cavitation bubble dynamics

    Science.gov (United States)

    Shao, Wei-Hang; Chen, Wei-Zhong

    2015-05-01

    Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water (SCW) shell surrounding the bubble. Theoretical investigations show that the SCW shell apparently slows down the oscillation of the bubble and cools the gas temperature inside the collapsing bubble. Furthermore, the model is simplified to a Rayleigh-Plesset-like equation for a thin SCW shell. The dependence of the bubble dynamics on the thickness and density of the SCW shell is studied. The results show the bubble dynamics depends on the thickness but is insensitive to the density of the SCW shell. The thicker the SCW shell is, the smaller are the wall velocity and the gas temperature in the bubble. In the authors’ opinion, the SCW shell works as a buffering agent. In collapsing, it is compressed to absorb a good deal of the work transformed into the bubble internal energy during bubble collapse so that it weakens the bubble oscillations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174145 and 11334005).

  2. [Functionally-relevant conformational dynamics of water-soluble proteins].

    Science.gov (United States)

    Novikov, G V; Sivozhelezov, V S; Shaĭtan, K V

    2013-01-01

    A study is reported of the functional-relevant dynamics of three typical water-soluble proteins: Calmodulin, Src-tyrosine kinase as well as repressor of Trp operon. Application of the state-of-art methods of structural bioinformatics allowed to identify dynamics seen in the X-ray structures of the investigated proteins associated with their specific biological functions. In addition, Normal Mode analysis technique revealed the most probable directions of the functionally-relevant motions for all that proteins were also predicted. Importantly, overall type of the motions observed on the lowest-frequency modes was very similar to the motions seen from the analysis of the X-ray data of the examined macromolecules. Thereby it was shown that the large-scale as well as local conformational motions of the proteins might be predetermined already at the level of their tertiary structures. In particular, the determining factor might be the specific fold of the alpha-helixes. Thus functionally-relevant in vivo dynamics of the investigated proteins might be evolutionally formed by means of natural selection at the level of the spatial topology. PMID:23705506

  3. Antigen dynamics of follicular dendritic cells

    NARCIS (Netherlands)

    Heesters, B.A.

    2015-01-01

    Stromal-derived follicular dendritic cells (FDCs) are a major depot for antigen that are essential for formation of germinal centers, the site where memory and effector B cells differentiate and high-affinity antibody production takes place. Historically, FDCs have been characterized as ‘accessory’

  4. Thermodynamic study on dynamic water vapor sorption in Sylgard-184.

    Science.gov (United States)

    Harley, Stephen J; Glascoe, Elizabeth A; Maxwell, Robert S

    2012-12-01

    The dynamic and equilibrium water vapor sorption properties of Sylgard-184, a commercially available poly(dimethylsiloxane) elastomer (PDMS), were determined via gravimetric analysis from 30 to 70 °C. Described here is a methodology for quantitatively assessing how water vapor diffuses and ad/absorbs into polymeric materials that are traditionally considered hydrophobic. PDMS materials are frequently chosen for their moisture barrier properties; our results, however, demonstrate that moisture is able to penetrate the material over a range of temperatures and humidities. The sorption values measured here ranged from ca. 0.1 to 1.4 cm(3) (STP) H(2)O/g Sylgard. The isotherms exhibited sigmoidal character and were fit to a triple mode sorption model. Asymptotic behavior at low water activities was characterized using a Langmuir type adsorption model, linear behavior was fit to a Henry's law type dependence, and the convex portion at higher activities was fit with good agreement to Park's equation for pooling or clustering. The thermal dependence of these sorption modes was also explored and reported. The dynamics of the sorption process were fit to a Fickian model and effective diffusivities are reported along with corresponding activation energies. The diffusivity values measured here ranged from ca. 0.5 to 3.5 × 10(-5) cm(2)/s depending on the temperature and relative humidity. The concentration dependence of the diffusivity showed a direct correlation with the three modes of uptake obtained from the isotherms. Corrections to the diffusivities were calculated using existing models that take into account adsorption and pooling. PMID:23153278

  5. Observation of dynamic water microadsorption on Au surface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaokang, E-mail: xiaokang.huang@tqs.com; Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold [TriQuint Semiconductor, Inc., 500 W Renner Road, Richardson, Texas 75080 (United States)

    2014-05-15

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12 μm{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  6. Thermodynamic study on dynamic water vapor sorption in Sylgard-184.

    Science.gov (United States)

    Harley, Stephen J; Glascoe, Elizabeth A; Maxwell, Robert S

    2012-12-01

    The dynamic and equilibrium water vapor sorption properties of Sylgard-184, a commercially available poly(dimethylsiloxane) elastomer (PDMS), were determined via gravimetric analysis from 30 to 70 °C. Described here is a methodology for quantitatively assessing how water vapor diffuses and ad/absorbs into polymeric materials that are traditionally considered hydrophobic. PDMS materials are frequently chosen for their moisture barrier properties; our results, however, demonstrate that moisture is able to penetrate the material over a range of temperatures and humidities. The sorption values measured here ranged from ca. 0.1 to 1.4 cm(3) (STP) H(2)O/g Sylgard. The isotherms exhibited sigmoidal character and were fit to a triple mode sorption model. Asymptotic behavior at low water activities was characterized using a Langmuir type adsorption model, linear behavior was fit to a Henry's law type dependence, and the convex portion at higher activities was fit with good agreement to Park's equation for pooling or clustering. The thermal dependence of these sorption modes was also explored and reported. The dynamics of the sorption process were fit to a Fickian model and effective diffusivities are reported along with corresponding activation energies. The diffusivity values measured here ranged from ca. 0.5 to 3.5 × 10(-5) cm(2)/s depending on the temperature and relative humidity. The concentration dependence of the diffusivity showed a direct correlation with the three modes of uptake obtained from the isotherms. Corrections to the diffusivities were calculated using existing models that take into account adsorption and pooling.

  7. Computational Fluid Dynamics Analysis of Canadian Supercritical Water Reactor (SCWR)

    Science.gov (United States)

    Movassat, Mohammad; Bailey, Joanne; Yetisir, Metin

    2015-11-01

    A Computational Fluid Dynamics (CFD) simulation was performed on the proposed design for the Canadian SuperCritical Water Reactor (SCWR). The proposed Canadian SCWR is a 1200 MW(e) supercritical light-water cooled nuclear reactor with pressurized fuel channels. The reactor concept uses an inlet plenum that all fuel channels are attached to and an outlet header nested inside the inlet plenum. The coolant enters the inlet plenum at 350 C and exits the outlet header at 625 C. The operating pressure is approximately 26 MPa. The high pressure and high temperature outlet conditions result in a higher electric conversion efficiency as compared to existing light water reactors. In this work, CFD simulations were performed to model fluid flow and heat transfer in the inlet plenum, outlet header, and various parts of the fuel assembly. The ANSYS Fluent solver was used for simulations. Results showed that mass flow rate distribution in fuel channels varies radially and the inner channels achieve higher outlet temperatures. At the outlet header, zones with rotational flow were formed as the fluid from 336 fuel channels merged. Results also suggested that insulation of the outlet header should be considered to reduce the thermal stresses caused by the large temperature gradients.

  8. (17)O NMR Investigation of Water Structure and Dynamics.

    Science.gov (United States)

    Keeler, Eric G; Michaelis, Vladimir K; Griffin, Robert G

    2016-08-18

    The structure and dynamics of the bound water in barium chlorate monohydrate were studied with (17)O nuclear magnetic resonance (NMR) spectroscopy in samples that are stationary and spinning at the magic-angle in magnetic fields ranging from 14.1 to 21.1 T. (17)O NMR parameters of the water were determined, and the effects of torsional oscillations of the water molecule on the (17)O quadrupolar coupling constant (CQ) were delineated with variable temperature MAS NMR. With decreasing temperature and reduction of the librational motion, we observe an increase in the experimentally measured CQ explaining the discrepancy between experiments and predictions from density functional theory. In addition, at low temperatures and in the absence of (1)H decoupling, we observe a well-resolved (1)H-(17)O dipole splitting in the spectra, which provides information on the structure of the H2O molecule. The splitting arises because of the homogeneous nature of the coupling between the two (1)H-(17)O dipoles and the (1)H-(1)H dipole. PMID:27454747

  9. Membrane Organization and Dynamics in Cell Polarity

    OpenAIRE

    Orlando, Kelly; Guo, Wei

    2009-01-01

    The establishment and maintenance of cell polarity is important to a wide range of biological processes ranging from chemotaxis to embryogenesis. An essential feature of cell polarity is the asymmetric organization of proteins and lipids in the plasma membrane. In this article, we discuss how polarity regulators such as small GTP-binding proteins and phospholipids spatially and kinetically control vesicular trafficking and membrane organization. Conversely, we discuss how membrane trafficking...

  10. Spatial stochastic dynamics enable robust cell polarization.

    Directory of Open Access Journals (Sweden)

    Michael J Lawson

    Full Text Available Although cell polarity is an essential feature of living cells, it is far from being well-understood. Using a combination of computational modeling and biological experiments we closely examine an important prototype of cell polarity: the pheromone-induced formation of the yeast polarisome. Focusing on the role of noise and spatial heterogeneity, we develop and investigate two mechanistic spatial models of polarisome formation, one deterministic and the other stochastic, and compare the contrasting predictions of these two models against experimental phenotypes of wild-type and mutant cells. We find that the stochastic model can more robustly reproduce two fundamental characteristics observed in wild-type cells: a highly polarized phenotype via a mechanism that we refer to as spatial stochastic amplification, and the ability of the polarisome to track a moving pheromone input. Moreover, we find that only the stochastic model can simultaneously reproduce these characteristics of the wild-type phenotype and the multi-polarisome phenotype of a deletion mutant of the scaffolding protein Spa2. Significantly, our analysis also demonstrates that higher levels of stochastic noise results in increased robustness of polarization to parameter variation. Furthermore, our work suggests a novel role for a polarisome protein in the stabilization of actin cables. These findings elucidate the intricate role of spatial stochastic effects in cell polarity, giving support to a cellular model where noise and spatial heterogeneity combine to achieve robust biological function.

  11. Collective Calcium Dynamics in Networks of Communicating Cells

    Science.gov (United States)

    Byrd, Tommy; Potter, Garrett; Sun, Bo; Mugler, Andrew

    Cells can sense and encode information about their environment with remarkable precision. These properties have been studied extensively for single cells, but intercellular communication is known to be important for both single- and multicellular organisms. Here, we examine calcium dynamics of fibroblast cells exposed to external ATP stimuli, and the effects of communication and stimulus strength on cells' response. Experimental results show that increasing communication strength induces a greater fraction of cells to exhibit oscillatory calcium dynamics, but the frequencies of oscillation do not systematically shift with ATP strength. We developed a model of calcium signaling by adding noise, communication, and cell-to-cell variability to the model of Tang and Othmer. This model reproduces cells' increased tendency to oscillate as a function of communication strength, and frequency encoding is nearly removed at the global level. Our model therefore suggests that the propensity of cells to oscillate, rather than frequency encoding, determines the response to external ATP. These results suggest that the system lies near a critical boundary separating non-oscillatory and oscillatory calcium dynamics.

  12. Coupling all-atom molecular dynamics simulations of ions in water with Brownian dynamics

    CERN Document Server

    Erban, Radek

    2015-01-01

    Molecular dynamics (MD) simulations of ions (K$^+$, Na$^+$, Ca$^{2+}$ and Cl$^-$) in aqueous solutions are investigated. Water is described using the SPC/E model. A stochastic coarse-grained description for ion behaviour is presented and parameterized using MD simulations. It is given as a system of coupled stochastic and ordinary differential equations, describing the ion position, velocity and acceleration. The stochastic coarse-grained model provides an intermediate description between all-atom MD simulations and Brownian dynamics (BD) models. It is used to develop a multiscale method which uses all-atom MD simulations in parts of the computational domain and (less detailed) BD simulations in the remainder of the domain.

  13. Modeling water table dynamics in managed and restored peatlands

    Science.gov (United States)

    Cresto Aleina, Fabio; Rasche, Livia; Hermans, Renée; Subke, Jens-Arne; Schneider, Uwe; Brovkin, Victor

    2016-04-01

    European peatlands have been extensively managed over past centuries. Typical management activities consisted of drainage and afforestation, which lead to considerable damage to the peat and potentially significant carbon loss. Recent efforts to restore previously managed peatlands have been carried out throughout Europe. These restoration efforts have direct implications for water table depth and greenhouse gas emissions, thus impacting on the ecosystem services provided by peatland areas. In order to quantify the impact of peatland restoration on water table depth and greenhouse gas budget, We coupled the Environmental Policy Integrated Climate (EPIC) model to a process-based model for methane emissions (Walter and Heimann, 2000). The new model (EPIC-M) can potentially be applied at the European and even at the global scale, but it is yet to be tested and evaluated. We present results of this new tool from different peatlands in the Flow Country, Scotland. Large parts of the peatlands of the region have been drained and afforested during the 1980s, but since the late 1990s, programs to restore peatlands in the Flow Country have been enforced. This region offers therefore a range of peatlands, from near pristine, to afforested and drained, with different resoration ages in between, where we can apply the EPIC-M model and validate it against experimental data from all land stages of restoration Goals of this study are to evaluate the EPIC-M model and its performances against in situ measurements of methane emissions and water table changes in drained peatlands and in restored ones. Secondly, our purpose is to study the environmental impact of peatland restoration, including methane emissions, due to the rewetting of drained surfaces. To do so, we forced the EPIC-M model with local meteorological and soil data, and simulated soil temperatures, water table dynamics, and greenhouse gas emissions. This is the first step towards a European-wide application of the EPIC

  14. Water Plan 2030: A Dynamic Education Model for Teaching Water Management Issues

    Science.gov (United States)

    Rupprecht, C.; Washburne, J.; Lansey, K.; Williams, A.

    2006-12-01

    Dynamic educational tools to assist teachers and students in recognizing the impacts of water management decisions in a realistic context are not readily available. Water policy issues are often complex and difficult for students trying to make meaningful connections between system components. To fill this need, we have developed a systems modeling-based educational decision support system (DSS) with supplementary materials. This model, called Water Plan 2030, represents a general semi-arid watershed; it allows users to examine water management alternatives by changing input values for various water uses and basin conditions and immediately receive graphical outputs to compare decisions. The main goal of our DSS model is to foster students' abilities to make knowledgeable decisions with regard to water resources issues. There are two reasons we have developed this model for traditional classroom settings. First, the DSS model provides teachers with a mechanism for educating students about inter-related hydrologic concepts, complex systems and facilitates discussion of water resources issues. Second, Water Plan 2030 encourages student discovery of cause/effect relationships in a dynamic, hands-on environment and develops the ability to realize the implications of water management alternatives. The DSS model has been utilized in an undergraduate, non-major science class for 5 course hours, each of the past 4 semesters. Accompanying the PC-based model are supplementary materials to improve the effectiveness of implementation by emphasizing important concepts and guiding learners through the model components. These materials include in-class tutorials, introductory questions, role-playing activities and homework extensions that have been revised after each user session, based on student and instructor feedback. Most recently, we have developed individual lessons that teach specific model functions and concepts. These modules provide teachers the flexibility to adapt

  15. Dynamics of tightly focused femtosecond laser pulses in water

    Science.gov (United States)

    Sreeja, S.; Leela, Ch; Rakesh Kumar, V.; Bagchi, Suman; Shuvan Prashant, T.; Radhakrishnan, P.; Tewari, Surya P.; Venugopal Rao, S.; Kiran, P. Prem

    2013-10-01

    The dynamics of tightly focused ultrashort (40 fs) pulses manifested in terms of supercontinuum emission (SCE) and cavitation-induced bubbles (CIB) resulting from propagation in water over a wide range of input powers (6 mW-1.8 W) are presented. The effect of linear polarization (LP) and circular polarization (CP) on SCE in different external focal geometries (f/6, f/7.5 and f/10) is investigated and the results are discussed. SCE with higher efficiency and a considerable spectral blue shift is observed under tight focusing conditions (f/6) compared to loose focusing conditions (f/10). At higher input powers, CIB along the axis of propagation are observed to be assisting deeper propagation of these short pulses and enhanced SCE.

  16. Single-cell dynamics of mast cell-CD4+ CD25+ regulatory T cell interactions.

    Science.gov (United States)

    Frossi, Barbara; D'Incà, Federica; Crivellato, Enrico; Sibilano, Riccardo; Gri, Giorgia; Mongillo, Marco; Danelli, Luca; Maggi, Laura; Pucillo, Carlo E

    2011-07-01

    The biological behavior of immune cells is determined by their intrinsic properties and interactions with other cell populations within their microenvironment. Several studies have confirmed the existence of tight spatial interactions between mast cells (MCs) and Tregs in different settings. For instance, we have recently identified the functional cross-talk between MCs and Tregs, through the OX40L-OX40 axis, as a new mechanism of reciprocal influence. However, there is scant information regarding the single-cell dynamics of this process. In this study, time-lapse video microscopy revealed direct interactions between Tregs and MCs in both murine and human cell co-cultures, resulting in the inhibition of the MC degranulation response. MCs incubated with WT, but not OX40-deficient, Tregs mediated numerous and long-lasting interactions and displayed different morphological features lacking the classical signs of exocytosis. MC degranulation and Ca2+ mobilization upon activation were inhibited by Tregs on a single-cell basis, without affecting overall cytokine secretion. Transmission electron microscopy showed ultrastructural evidence of vesicle-mediated secretion reconcilable with the morphological pattern of piecemeal degranulation. Our results suggest that MC morphological and functional changes following MC-Treg interactions can be ascribed to cell-cell contact and represent a transversal, non-species-specific mechanism of immune response regulation. Further research, looking at the molecular composition of this interaction will broaden our understanding of its contribution to immunity. PMID:21509780

  17. Intergenerational continuity of cell shape dynamics in Caulobacter crescentus

    Science.gov (United States)

    Wright, Charles S.; Banerjee, Shiladitya; Iyer-Biswas, Srividya; Crosson, Sean; Dinner, Aaron R.; Scherer, Norbert F.

    2015-03-01

    We investigate the intergenerational shape dynamics of single Caulobacter crescentus cells using a novel combination of imaging techniques and theoretical modeling. We determine the dynamics of cell pole-to-pole lengths, cross-sectional widths, and medial curvatures from high accuracy measurements of cell contours. Moreover, these shape parameters are determined for over 250 cells across approximately 10000 total generations, which affords high statistical precision. Our data and model show that constriction is initiated early in the cell cycle and that its dynamics are controlled by the time scale of exponential longitudinal growth. Based on our extensive and detailed growth and contour data, we develop a minimal mechanical model that quantitatively accounts for the cell shape dynamics and suggests that the asymmetric location of the division plane reflects the distinct mechanical properties of the stalked and swarmer poles. Furthermore, we find that the asymmetry in the division plane location is inherited from the previous generation. We interpret these results in terms of the current molecular understanding of shape, growth, and division of C. crescentus.

  18. OTEC Cold Water Pipe-Platform Subsystem Dynamic Interaction Validation

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Robert [Lockheed Martin Corporation; Halkyard, John [John Halkyard and Associates; Johnson, Peter [BMT Scientific Marine Services Inc; Shi, Shan [Houston Offshore Engineering; Marinho, Thiago [Universidade Federal do Rio de Janeiro, LabOceano

    2014-05-09

    Ocean Thermal Energy Conversion (OTEC) was a subject of intense research in the late 1970s and early 1980s, principally in response to an historical jump in oil prices starting from the 1973 oil embargo. As part of the response to high oil prices, renewable energies such as OTEC were investigated. Researchers in the early 1980s developed programs to analyze the couple response of a platform and OTEC cold water pipe. Oil prices fell and interest in renewable energy including OTEC evaporated. Fast forward to the 2000s and the price of oil skyrocketed again, and OTEC research saw a rebirth. Lockheed Martin, and others, have been working on new OTEC designs over the last several years. As was the case 35 years ago, the cold water pipe remains as a key technical challenge. A commercial scale OTEC plant requires a pipe with a diameter of about 10 m and a length of 1000 m to pump about half the average discharge of the Colorado River from the deep ocean to near the surface and through heat exchangers. For the semi-submersible platform selected for this study, the mass of the cold water pipe with its entrained water is twice the mass of the semi-submersible supporting it when OTEC power modules are removed, or over 1/3rd the mass of the platform with OTEC power modules. Clearly the dynamic response of the OTEC CWP and the platform can only be considered as a coupled system. This conclusion is not new, but is worthy of repeating and doubly important to consider when the supporting platform is a semi-submersible as opposed to a large water-plane ship shaped vessel. A new generation of software is available to analyze the cold water pipe-platform responses, including the important effect of the fluid flow inside the pipe and the local effects at the connection of the pipe to the platform. The US DoE and Lockheed Martin recently sponsored a 1:50 scale model test of the commercial OTEC platform and an elastically scaled model of a 10-m pipe. The purpose of the test was to

  19. Reaction dynamics following electron capture of chlorofluorocarbon adsorbed on water cluster : a direct density functional theory molecular dynamics study

    OpenAIRE

    Tachikawa, Hiroto; ABE, Shigeaki

    2007-01-01

    The electron capture dynamics of halocarbon and its water complex have been investigated by means of the full dimensional direct density functional theory molecular dynamics method in order to shed light on the mechanism of electron capture of a halocarbon adsorbed on the ice surface. The CF2Cl2 molecule and a cyclic water trimer (H2O)3 were used as halocarbon and water cluster, respectively. The dynamics calculation of CF2Cl2 showed that both C–Cl bonds are largely elongated after the electr...

  20. Vegetation dynamics and soil water balance in a water-limited Mediterranean ecosystem on Sardinia, Italy

    Directory of Open Access Journals (Sweden)

    N. Montaldo

    2008-01-01

    Full Text Available Mediterranean ecosystems are commonly heterogeneous savanna-like ecosystems, with contrasting plant functional types (PFTs, e.g., grass and woody vegetation competing for the water use. Mediterranean ecosystems are also commonly characterized by strong inter-annual rainfall variability, which influences the distributions of PFTs that vary spatially and temporally. With the objective to investigate interactions between vegetation dynamics, soil water budget and land-surface fluxes in a water-limited ecosystem, an extensive field campaign in a Mediterranean setting was performed. Also a vegetation dynamic model (VDM is coupled to a 3-component (bare soil, grass and woody vegetation Land surface model (LSM. The case study is in Orroli, situated in the mid-west of Sardegna within the Flumendosa river basin. The landscape is a mixture of Mediterranean patchy vegetation types: trees, including wild olives and cork oaks, different shrubs and herbaceous species. Land surface fluxes, soil moisture and vegetation growth were monitored during the May 2003–June 2006 period. Interestingly, hydrometeorological conditions of the monitored years strongly differ, with dry and wet years in turn, such that a wide range of hydrometeorological conditions can be analyzed. The coupled VDM-LSM model is successfully tested for the case study, demonstrating high model performance for the wide range of eco-hydrologic conditions. The use of the VDM in the LSM is demonstrated to be essential when studying the climate-soil-vegetation interactions of these water-limited ecosystems. Results demonstrate also that vegetation dynamics are strongly influenced by the inter-annual variability of atmospheric forcing, with grass leaf area index changing significantly each spring season according to seasonal rainfall amount.

  1. Ionization dynamics of water dimer on ice surface

    Science.gov (United States)

    Tachikawa, Hiroto

    2016-05-01

    The solid surface provides an effective two-dimensional reaction field because the surface increases the encounter probability of bi-molecular collision reactions. Also, the solid surface stabilizes a reaction intermediate because the excess energy generated by the reaction dissipates into the bath modes of surface. The ice surface in the universe is one of the two dimensional reaction fields. However, it is still unknown how the ice surface affects to the reaction mechanism. In the present study, to elucidate the specific property of the ice surface reaction, ionization dynamics of water dimer adsorbed on the ice surface was theoretically investigated by means of direct ab-initio molecular dynamics (AIMD) method combined with ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) technique, and the result was compared with that of gas phase reaction. It was found that a proton is transferred from H2O+ to H2O within the dimer and the intermediate complex H3O+(OH) is formed in both cases. However, the dynamic features were different from each other. The reaction rate of the proton transfer on the ice surface was three times faster than that in the gas phase. The intermediate complex H3O+(OH) was easily dissociated to H3O+ and OH radical on the ice surface, and the lifetime of the complex was significantly shorter than that of gas phase (100 fs vs. infinite). The reason why the ice surface accelerates the reaction was discussed in the present study.

  2. A dynamic two-dimensional heterogeneous model for water gas shift reactors

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Thomas A. II.; Barton, Paul I. [Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge MA 02139 (United States)

    2009-11-15

    A dynamic, heterogeneous, two-dimensional model for packed-bed water gas shift reactors is presented. It can be applied to both high and low temperature shifts, and at scales ranging from industrial (for power plant applications) to small (such as automotive fuel cell applications). The model is suitable for any catalyst for which kinetic data are available, and shows excellent agreement with available experimental data for non-equilibrium conditions. The model is applied to an IGCC-TIGAS polygeneration plant to examine the dynamic behavior of the WGS units. The development of catalyst hot-spots is predicted during start-up or transition between steady states under certain conditions. (author)

  3. Dynamic Change of Water Quality in Hyporheic Zone at Water Curtain Cultivation Area, Cheongju, Korea

    Science.gov (United States)

    Moon, S. H.; Kim, Y.

    2015-12-01

    There has been recently growing numbers of facilities for water curtain cultivation of strawberry and lettuce in Korea. These areas are nearly all located in the fluvial deposits near streams which can replenish water resources into exhausted groundwater aquifers during peak season. The purpose of this study is on groundwater chemistry and the change in physical and chemical properties due to stream-groundwater exchange or mixing in the representative agricultural area among the Jurassic granitic terrain of Korea. In the study area, groundwater level continuously decreased from November through March due to intensive use of groundwater, which forced stream water into aquifer. After March, groundwater level was gradually recovered to the original state. To evaluate the extent and its variations of stream water mixing into aquifer, field parameters including T, pH, EC and DO values, concentrations of major ions and oxygen and hydrogen stable isotopic ratios were used. Field measurements and water sample collections were performed several times from 2012 to 2015 mainly during peak time of groundwater use. To compare the temporal variations and areal differences, 21 wells from four cross sections perpendicular to stream line were used. While water temperature, EC values and concentrations of Ca, Mg, Si, HCO3 showed roughly gradual increase from stream line to 150 m distance, pH and DO values showed reverse phenomenon. This can be used to evaluate the extent and limit of stream water introduction into aquifer. However, individual wells showed yearly variations in those parameters and this dynamic and unstable feature indicates that mixing intensity of stream water over groundwater in this hyporheic zone varied year by year according to amounts of groundwater use and decrease of groundwater level.

  4. Photodesorption of water ice: a molecular dynamics study

    CERN Document Server

    Andersson, S

    2008-01-01

    Absorption of ultraviolet radiation by water ice coating interstellar grains can lead to dissociation and desorption of the ice molecules. These processes are thought to be important in the gas-grain chemistry in molecular clouds and protoplanetary disks, but very few quantitative studies exist. We compute the photodesorption efficiencies of amorphous water ice and elucidate the mechanisms by which desorption occurs. Classical molecular dynamics calculations were performed for a compact amorphous ice surface at 10 K thought to be representative of interstellar ice. Dissociation and desorption of H2O molecules in the top six monolayers are considered following absorption into the first excited electronic state with photons in the 1300-1500 Angstrom range. The trajectories of the H and OH photofragments are followed until they escape or become trapped in the ice. The probability for H2O desorption per absorbed UV photon is 0.5-1% in the top three monolayers, then decreases to 0.03% in the next two monolayers, a...

  5. Plastids: dynamic components of plant cell development

    Science.gov (United States)

    Guikema, J. A.; Gallegos, G. L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The gravitropic bending of maize roots, as a response to reorientation of the root within a gravitational field, was examined for sensitivity to exogenous applications of the cytoskeletal inhibitor, cytochalasin D. Agar blocks were impregnated with this inhibitor, and were applied either to the root cap or to the zone of root cell elongation. Root growth was normal with either treatment, if the roots were not repositioned with respect to the gravitational vector. When untreated roots were placed in a horizontal position with respect to gravity, a 40 degree bending response was observed within one hour. This bending also occurred when cytochalasin D was applied at high concentrations to the zone of root cell elongation. However, when cytochalasin D above 40 micrograms/ml was applied to the root cap, roots lost the ability of directional reorientation within the gravitational field, causing a random bending.

  6. Online Soft Sensor of Humidity in PEM Fuel Cell Based on Dynamic Partial Least Squares

    OpenAIRE

    Rong Long; Qihong Chen; Liyan Zhang; Longhua Ma; Shuhai Quan

    2013-01-01

    Online monitoring humidity in the proton exchange membrane (PEM) fuel cell is an important issue in maintaining proper membrane humidity. The cost and size of existing sensors for monitoring humidity are prohibitive for online measurements. Online prediction of humidity using readily available measured data would be beneficial to water management. In this paper, a novel soft sensor method based on dynamic partial least squares (DPLS) regression is proposed and applied to humidity prediction i...

  7. Dynamics of phytoplankton pigments in water and surface sediments of a large shallow lake

    Directory of Open Access Journals (Sweden)

    Ilmar Tõnno

    2011-06-01

    Full Text Available Our aim was to find out to which extent fossil phytoplankton pigments in the large shallow and turbid Lake Võrtsjärv carry information on the history of phytoplankton communities. For this purpose we examined how the changes in the pigment composition of surface sediments follow their changes in the water column. Depth-integrated lake water and surface sediment samples were collected weekly in May–October 2007. Considering cyanobacterial and diatom dominance in phytoplankton, we analysed fucoxanthin, diadinoxanthin and diatoxanthin as marker pigments for diatoms, zeaxanthin as a marker pigment for total cyanobacteria and canthaxanthin as a marker pigment for colonial cyanobacteria. Chlorophyll a and its derivative pheophytin a were applied as indicators for total phytoplankton. The dynamics of phytoplankton pigments in surface sediments generally did not follow their dynamics in the water column, possibly due to intensive resuspension and a high sedimentation rate in a large and shallow lake. It was noticed that the surface sediment carries information on pigment degradation intensity and on weight and size characteristics of phytoplankton cells, which affect their sinking and floating velocities. Higher pigment contents of sediment in spring were presumably caused by lower resuspension due to high water level and slower degradation in cold water. Pheophytin a and the marker pigments of cyanobacteria were found to be persistent against degradation in upper sediment layers, which makes them useful indicators for tracking the historical changes in phytoplankton communities also in a shallow lake. Sharp decrease in chemically unstable pigment contents between the sediment surface and deeper layers indicates that only the uppermost sediment surface is resuspended in Lake Võrtsjärv. The transformation of the diatom marker carotenoid diadinoxanthin to diatoxanthin was found to occur mainly in sediments and not in the water column, and the

  8. Preparation of cell lines for single-cell analysis of transcriptional activation dynamics.

    Science.gov (United States)

    Rafalska-Metcalf, Ilona U; Janicki, Susan M

    2013-01-01

    Imaging molecularly defined regions of chromatin in single living cells during transcriptional activation has the potential to provide new insight into gene regulatory mechanisms. Here, we describe a method for isolating cell lines with multi-copy arrays of reporter transgenes, which can be used for real-time high-resolution imaging of transcriptional activation dynamics in single cells.

  9. Colon stem cell and crypt dynamics exposed by cell lineage reconstruction.

    Directory of Open Access Journals (Sweden)

    Yitzhak Reizel

    2011-07-01

    Full Text Available Stem cell dynamics in vivo are often being studied by lineage tracing methods. Our laboratory has previously developed a retrospective method for reconstructing cell lineage trees from somatic mutations accumulated in microsatellites. This method was applied here to explore different aspects of stem cell dynamics in the mouse colon without the use of stem cell markers. We first demonstrated the reliability of our method for the study of stem cells by confirming previously established facts, and then we addressed open questions. Our findings confirmed that colon crypts are monoclonal and that, throughout adulthood, the process of monoclonal conversion plays a major role in the maintenance of crypts. The absence of immortal strand mechanism in crypts stem cells was validated by the age-dependent accumulation of microsatellite mutations. In addition, we confirmed the positive correlation between physical and lineage proximity of crypts, by showing that the colon is separated into small domains that share a common ancestor. We gained new data demonstrating that colon epithelium is clustered separately from hematopoietic and other cell types, indicating that the colon is constituted of few progenitors and ruling out significant renewal of colonic epithelium from hematopoietic cells during adulthood. Overall, our study demonstrates the reliability of cell lineage reconstruction for the study of stem cell dynamics, and it further addresses open questions in colon stem cells. In addition, this method can be applied to study stem cell dynamics in other systems.

  10. Towards dynamic metabolic flux analysis in CHO cell cultures.

    Science.gov (United States)

    Ahn, Woo Suk; Antoniewicz, Maciek R

    2012-01-01

    Chinese hamster ovary (CHO) cells are the most widely used mammalian cell line for biopharmaceutical production, with a total global market approaching $100 billion per year. In the pharmaceutical industry CHO cells are grown in fed-batch culture, where cellular metabolism is characterized by high glucose and glutamine uptake rates combined with high rates of ammonium and lactate secretion. The metabolism of CHO cells changes dramatically during a fed-batch culture as the cells adapt to a changing environment and transition from exponential growth phase to stationary phase. Thus far, it has been challenging to study metabolic flux dynamics in CHO cell cultures using conventional metabolic flux analysis techniques that were developed for systems at metabolic steady state. In this paper we review progress on flux analysis in CHO cells and techniques for dynamic metabolic flux analysis. Application of these new tools may allow identification of intracellular metabolic bottlenecks at specific stages in CHO cell cultures and eventually lead to novel strategies for improving CHO cell metabolism and optimizing biopharmaceutical process performance. PMID:22102428

  11. Observation of bubble formation in water during microwave irradiation by dynamic light scattering

    Science.gov (United States)

    Asakuma, Yusuke; Munenaga, Takuya; Nakata, Ryosuke

    2015-10-01

    A microwave reactor was designed for in situ observation of nano- and micro-bubbles, and size profiles during and after irradiation were measured with respect to irradiation power and time. Bubble formation in water during irradiation was observed even at temperatures below the boiling point of water. The maximum size strongly depended on radiation power and time, even at a given temperature. Nano-particles in the dispersion medium were found to play an important role in achieving more stable nucleation of bubbles around particles, and stable size distributions were obtained from clear autocorrelation by a dynamic light scattering system. Moreover, a combination of microwave induction heating and the addition of nano-particles to the dispersion medium can prevent heterogeneous nucleation of bubbles on the cell wall. Quantitative nano-bubble size profiles obtained by in situ observation provide useful information regarding microwave-based industrial processes for nano-particle production.

  12. Observation of bubble formation in water during microwave irradiation by dynamic light scattering

    Science.gov (United States)

    Asakuma, Yusuke; Munenaga, Takuya; Nakata, Ryosuke

    2016-09-01

    A microwave reactor was designed for in situ observation of nano- and micro-bubbles, and size profiles during and after irradiation were measured with respect to irradiation power and time. Bubble formation in water during irradiation was observed even at temperatures below the boiling point of water. The maximum size strongly depended on radiation power and time, even at a given temperature. Nano-particles in the dispersion medium were found to play an important role in achieving more stable nucleation of bubbles around particles, and stable size distributions were obtained from clear autocorrelation by a dynamic light scattering system. Moreover, a combination of microwave induction heating and the addition of nano-particles to the dispersion medium can prevent heterogeneous nucleation of bubbles on the cell wall. Quantitative nano-bubble size profiles obtained by in situ observation provide useful information regarding microwave-based industrial processes for nano-particle production.

  13. Alteration of mammalian cell metabolism by dynamic nutrient feeding

    OpenAIRE

    Zhou, Weichang; Rehm, Jutta; Europa, Anna; Hu, Wei-Shou

    1997-01-01

    The metabolism of hybridoma cells was controlled to reduce metabolic formation in fed-batch cultures by dynamically feeding a salt-free nutrient concentrate. For this purpose, on-line oxygen uptake rate (OUR) measurement was used to estimate the metabolic demand of hybridoma cells and to determine the feeding rate of a concentrated solution of salt-free DMEM/F12 medium supplemented with other medium components. The ratios among glucose, glutamine and other medium components in the feeding nut...

  14. Computational investigation of epithelial cell dynamic phenotype in vitro

    OpenAIRE

    Debnath Jayanta; Mostov Keith; Park Sunwoo; Kim Sean HJ; Hunt C Anthony

    2009-01-01

    Abstract Background When grown in three-dimensional (3D) cultures, epithelial cells typically form cystic organoids that recapitulate cardinal features of in vivo epithelial structures. Characterizing essential cell actions and their roles, which constitute the system's dynamic phenotype, is critical to gaining deeper insight into the cystogenesis phenomena. Methods Starting with an earlier in silico epithelial analogue (ISEA1) that validated for several Madin-Darby canine kidney (MDCK) epith...

  15. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    OpenAIRE

    Laura-Roxana Stingaciu; Hugh O’Neill; Michelle Liberton; Urban, Volker S.; Himadri B. Pakrasi; Michael Ohl

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membran...

  16. Continuous cell-to-cell mapping and dynamic PSA

    International Nuclear Information System (INIS)

    A current challenge in probabilistic safety analysis is the study of the dynamic behavior of systems. Several methods have been used, each one having its own drawbacks. The discrete Markovian approach (CCMT) especially suffers from modelling problems (e.g. introduction of control laws). A continuous Markovian approach (CCCMT) allows to get rid of such problems. The CCCMT is described in this paper and is applied to the well-known heated tank problem. Comparisons between CCCMT and CCMT are also given

  17. Dynamics of biofilm formation in a model drinking water distribution system

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik;

    2002-01-01

    The dynamics of biofilm formation in non-chlorinated groundwater-based drinking water was studied in a model distribution system. The formation of biofilm was closely monitored for a period of 522 days by total bacterial counts (AODC), heterotrophic plate counts (R2A media), and ATP content...... determinations. The biofilm grew at a rate of 0.030±0.002 day−1 reaching quasi-stationary state at 2.6×106 cells/cm2 after approximately 200 days. The low substrate level in the bulk phase (AOC at approximately 6 g ac-C/l) most likely caused the relatively slow biofilm formation rate observed. During...... the maturation of the biofilm, the bacterial community changed properties in terms of cell-specific ATP content and culturability of the bacteria....

  18. Effects of Water on Structure and Dynamics of Trehalose Glasses at Low Water Contents and its Relationship to Preservation Outcomes

    Science.gov (United States)

    Weng, Lindong; Ziaei, Shima; Elliott, Gloria D.

    2016-07-01

    Dry preservation of biologics in sugar glasses is regarded as a promising alternative to conventional cryopreservation. Evidence from various studies has suggested that there is a critical range of water content beyond which the viability of preserved biologics can be greatly compromised. In this study the viability of T-cells was determined as a function of end water content after microwave-assisted drying in trehalose solutions. Hydrogen-bonding and clustering phenomena in trehalose solutions of the same moisture content were also evaluated using molecular dynamics simulation. Post-rehydration viability decreased dramatically within the range of 0.1–1 gH2O/gdw. Molecular modeling revealed that as the water content approached 0.1 gH2O/gdw the matrix formed a large interconnected trehalose skeleton with a minimal number of bound water molecules scattered in the bulk. The diffusion coefficients of trehalose oxygen atoms most distant from the glycosidic linkage fluctuated around 7.5 × 10‑14 m2/s within the range of 0.02–0.1 gH2O/gdw and increased again to ~1.13 × 10‑13 m2/s at 0.01 gH2O/gdw and below due to the loss of water in the free volume between trehalose molecules. These insights can guide the optimal selection of final moisture contents to advance dry preservation methods.

  19. Effects of Water on Structure and Dynamics of Trehalose Glasses at Low Water Contents and its Relationship to Preservation Outcomes

    Science.gov (United States)

    Weng, Lindong; Ziaei, Shima; Elliott, Gloria D.

    2016-07-01

    Dry preservation of biologics in sugar glasses is regarded as a promising alternative to conventional cryopreservation. Evidence from various studies has suggested that there is a critical range of water content beyond which the viability of preserved biologics can be greatly compromised. In this study the viability of T-cells was determined as a function of end water content after microwave-assisted drying in trehalose solutions. Hydrogen-bonding and clustering phenomena in trehalose solutions of the same moisture content were also evaluated using molecular dynamics simulation. Post-rehydration viability decreased dramatically within the range of 0.1-1 gH2O/gdw. Molecular modeling revealed that as the water content approached 0.1 gH2O/gdw the matrix formed a large interconnected trehalose skeleton with a minimal number of bound water molecules scattered in the bulk. The diffusion coefficients of trehalose oxygen atoms most distant from the glycosidic linkage fluctuated around 7.5 × 10-14 m2/s within the range of 0.02-0.1 gH2O/gdw and increased again to ~1.13 × 10-13 m2/s at 0.01 gH2O/gdw and below due to the loss of water in the free volume between trehalose molecules. These insights can guide the optimal selection of final moisture contents to advance dry preservation methods.

  20. MODELING OF WATER DYNAMICS AND POLLUTANT SPREADING IN THE LUOMAHU RESERVOIR FOR WATER TRANSFER FORM SOUTH TO NORTH OF CHINA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Water quality is the key problem of the East-Line Project of Water Transfer from South to North China. In this paper, the principles of a 1D and 2D-integrated mathematical model for describing the dynamics of water in a flow-through river, canals and lakes was worked out. The numerical method and model algorithm were developed. The efficiency of the model was estimated by applying it to studying water dynamics in the Luomahu reservoir and simulating the spreading process of a polluted water mass and the evolution of the concentration. The results of calculations are used to assess water environmental quality and to manage water resource in the Luomahu reservoir and the Jinghang-Canal for the Project of Water Transfer from South to North China.

  1. The role of ice dynamics in shaping vegetation in flowing waters.

    Science.gov (United States)

    Lind, Lovisa; Nilsson, Christer; Polvi, Lina E; Weber, Christine

    2014-11-01

    Ice dynamics is an important factor affecting vegetation in high-altitude and high-latitude streams and rivers. During the last few decades, knowledge about ice in streams and rivers has increased significantly and a respectable body of literature is now available. Here we review the literature on how ice dynamics influence riparian and aquatic vegetation. Traditionally, plant ecologists have focused their studies on the summer period, largely ignoring the fact that processes during winter also impact vegetation dynamics. For example, the freeze-up period in early winter may result in extensive formation of underwater ice that can restructure the channel, obstruct flow, and cause flooding and thus formation of more ice. In midwinter, slow-flowing reaches develop a surface-ice cover that accumulates snow, protecting habitats under the ice from formation of underwater ice but also reducing underwater light, thus suppressing photosynthesis. Towards the end of winter, ice breaks up and moves downstream. During this transport, ice floes can jam up and cause floods and major erosion. The magnitudes of the floods and their erosive power mainly depend on the size of the watercourse, also resulting in different degrees of disturbance to the vegetation. Vegetation responds both physically and physiologically to ice dynamics. Physical action involves the erosive force of moving ice and damage caused by ground frost, whereas physiological effects - mostly cell damage - happen as a result of plants freezing into the ice. On a community level, large magnitudes of ice dynamics seem to favour species richness, but can be detrimental for individual plants. Human impacts, such as flow regulation, channelisation, agriculturalisation and water pollution have modified ice dynamics; further changes are expected as a result of current and predicted future climate change. Human impacts and climate change can both favour and disfavour riverine vegetation dynamics. Restoration of streams

  2. Single Cell Proteolytic Assays to Investigate Cancer Clonal Heterogeneity and Cell Dynamics Using an Efficient Cell Loading Scheme

    Science.gov (United States)

    Chen, Yu-Chih; Cheng, Yu-Heng; Ingram, Patrick; Yoon, Euisik

    2016-06-01

    Proteolytic degradation of the extracellular matrix (ECM) is critical in cancer invasion, and recent work suggests that heterogeneous cancer populations cooperate in this process. Despite the importance of cell heterogeneity, conventional proteolytic assays measure average activity, requiring thousands of cells and providing limited information about heterogeneity and dynamics. Here, we developed a microfluidic platform that provides high-efficiency cell loading and simple valveless isolation, so the proteolytic activity of a small sample (10–100 cells) can be easily characterized. Combined with a single cell derived (clonal) sphere formation platform, we have successfully demonstrated the importance of microenvironmental cues for proteolytic activity and also investigated the difference between clones. Furthermore, the platform allows monitoring single cells at multiple time points, unveiling different cancer cell line dynamics in proteolytic activity. The presented tool facilitates single cell proteolytic analysis using small samples, and our findings illuminate the heterogeneous and dynamic nature of proteolytic activity.

  3. Myosins and cell dynamics in cellular slime molds.

    Science.gov (United States)

    Yumura, Shigehiko; Uyeda, Taro Q P

    2003-01-01

    Myosin is a mechanochemical transducer and serves as a motor for various motile activities such as cell migration, cytokinesis, maintenance of cell shape, phagocytosis, and morphogenesis. Nonmuscle myosin in vivo does not either stay static at specific subcellular regions or construct highly organized structures, such as sarcomere in skeletal muscle cells. The cellular slime mold Dictyostelium discoideum is an ideal "model organism" for the investigation of cell movement and cytokinesis. The advantages of this organism prompted researchers to carry out pioneering cell biological, biochemical, and molecular genetic studies on myosin II, which resulted in elucidation of many fundamental features of function and regulation of this most abundant molecular motor. Furthermore, recent molecular biological research has revealed that many unconventional myosins play various functions in vivo. In this article, how myosins are organized and regulated in a dynamic manner in Dictyostelium cells is reviewed and discussed. PMID:12722951

  4. Dynamic simulation of a direct carbonate fuel cell power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, J.B. [Fluor Daniel, Inc., Irvine, CA (United States); Ghezel-Ayagh, H.; Kush, A.K. [Fuel Cell Engineering, Danbury, CT (United States)

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  5. Real space Dynamical Super Cell Approximation for interacting disordered systems

    OpenAIRE

    Moradian, Rostam

    2004-01-01

    Effective medium super-cell approximation method which is introduced for disordered systems is extended to a general case of interacting disordered systems. We found that the dynamical cluster approximation (DCA) and also the non local coherent potential approximation (NLCPA) are two simple case of this technique. Whole equations of this formalism derived by using the effective medium theory in real space.

  6. Dynamic heterogeneity and DNA methylation in embryonic stem cells.

    KAUST Repository

    Singer, Zakary S

    2014-07-01

    Cell populations can be strikingly heterogeneous, composed of multiple cellular states, each exhibiting stochastic noise in its gene expression. A major challenge is to disentangle these two types of variability and to understand the dynamic processes and mechanisms that control them. Embryonic stem cells (ESCs) provide an ideal model system to address this issue because they exhibit heterogeneous and dynamic expression of functionally important regulatory factors. We analyzed gene expression in individual ESCs using single-molecule RNA-FISH and quantitative time-lapse movies. These data discriminated stochastic switching between two coherent (correlated) gene expression states and burst-like transcriptional noise. We further showed that the "2i" signaling pathway inhibitors modulate both types of variation. Finally, we found that DNA methylation plays a key role in maintaining these metastable states. Together, these results show how ESC gene expression states and dynamics arise from a combination of intrinsic noise, coherent cellular states, and epigenetic regulation.

  7. Mechanobiology of cell migration in the context of dynamic two-way cell-matrix interactions.

    Science.gov (United States)

    Kurniawan, Nicholas A; Chaudhuri, Parthiv Kant; Lim, Chwee Teck

    2016-05-24

    Migration of cells is integral in various physiological processes in all facets of life. These range from embryonic development, morphogenesis, and wound healing, to disease pathology such as cancer metastasis. While cell migratory behavior has been traditionally studied using simple assays on culture dishes, in recent years it has been increasingly realized that the physical, mechanical, and chemical aspects of the matrix are key determinants of the migration mechanism. In this paper, we will describe the mechanobiological changes that accompany the dynamic cell-matrix interactions during cell migration. Furthermore, we will review what is to date known about how these changes feed back to the dynamics and biomechanical properties of the cell and the matrix. Elucidating the role of these intimate cell-matrix interactions will provide not only a better multi-scale understanding of cell motility in its physiological context, but also a more holistic perspective for designing approaches to regulate cell behavior.

  8. Stochastic dynamics of interacting haematopoietic stem cell niche lineages.

    Directory of Open Access Journals (Sweden)

    Tamás Székely

    2014-09-01

    Full Text Available Since we still know very little about stem cells in their natural environment, it is useful to explore their dynamics through modelling and simulation, as well as experimentally. Most models of stem cell systems are based on deterministic differential equations that ignore the natural heterogeneity of stem cell populations. This is not appropriate at the level of individual cells and niches, when randomness is more likely to affect dynamics. In this paper, we introduce a fast stochastic method for simulating a metapopulation of stem cell niche lineages, that is, many sub-populations that together form a heterogeneous metapopulation, over time. By selecting the common limiting timestep, our method ensures that the entire metapopulation is simulated synchronously. This is important, as it allows us to introduce interactions between separate niche lineages, which would otherwise be impossible. We expand our method to enable the coupling of many lineages into niche groups, where differentiated cells are pooled within each niche group. Using this method, we explore the dynamics of the haematopoietic system from a demand control system perspective. We find that coupling together niche lineages allows the organism to regulate blood cell numbers as closely as possible to the homeostatic optimum. Furthermore, coupled lineages respond better than uncoupled ones to random perturbations, here the loss of some myeloid cells. This could imply that it is advantageous for an organism to connect together its niche lineages into groups. Our results suggest that a potential fruitful empirical direction will be to understand how stem cell descendants communicate with the niche and how cancer may arise as a result of a failure of such communication.

  9. Horizontal soil water potential heterogeneity: simplifying approaches for crop water dynamics models

    Science.gov (United States)

    Couvreur, V.; Vanderborght, J.; Beff, L.; Javaux, M.

    2014-05-01

    use of 1-D spatial discretisation to represent soil-plant water dynamics is a worthy choice for densely seeded crops. For wide-row crops, e.g. maize, further theoretical developments that better account for horizontal SWP heterogeneity might be needed in order to properly predict soil-plant hydrodynamics in 1-D.

  10. Dynamic neural network controller model of PEM fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Hatti, Mustapha [Nuclear Technologies Division, Nuclear Research Center of Birine, Ain Oussera, B.P 180, 17200 Djelfa (Algeria); Tioursi, Mustapha [Electrical Engineering Department, University of Sciences and Technology of Oran, B.P 1505, El M' Naouar, 31000 Oran (Algeria)

    2009-06-15

    This paper presents the artificial intelligence techniques to control a proton exchange membrane fuel cell system process, using particularly a methodology of dynamic neural network. In this work a dynamic neural network control model is obtained by introducing a delay line in the input of the neural network. A static production system including a PEMFC is subjected to variations of active and reactive power. Therefore the goal is to make the system follow these imposed variations. The simulation requires the modelling of the principal element (PEMFC) in dynamic mode. The simulation results demonstrate that the model-based dynamic neural network control scheme is appropriate for controlling, the stability of the identification and the tracking error were analyzed, and some reasons for the usefulness of this methodology are given. (author)

  11. Photon Counts Statistics in Leukocyte Cell Dynamics

    International Nuclear Information System (INIS)

    In the present experiment ultra-weak photon emission/chemiluminescence from isolated neutrophils was recorded. It is associated with the production of reactive oxygen species (ROS) in the 'respiratory burst' process which can be activated by PMA (Phorbol 12-Myristate 13-Acetate). Commonly, the reaction is demonstrated utilizing the enhancer luminol. However, with the use of highly sensitive photomultiplier equipment it is also recorded without enhancer. In that case, it can be hypothesized that photon count statistics may assist in understanding the underlying metabolic activity and cooperation of these cells. To study this hypothesis leukocytes were stimulated with PMA and increased photon signals were recorded in the quasi stable period utilizing Fano factor analysis at different window sizes. The Fano factor is defined by the variance over the mean of the number of photon within the observation time. The analysis demonstrated that the Fano factor of true signal and not of the surrogate signals obtained by random shuffling increases when the window size increased. It is concluded that photon count statistics, in particular Fano factor analysis, provides information regarding leukocyte interactions. It opens the perspective to utilize this analytical procedure in (in vivo) inflammation research. However, this needs further validation.

  12. Effects of hydrogen-bond environment on single particle and pair dynamics in liquid water

    Indian Academy of Sciences (India)

    Amalendu Chandra; Snehasis Chowdhuri

    2001-10-01

    We have performed molecular dynamics simulations of liquid water at 298 and 258 K to investigate the effects of hydrogen-bond environment on various single-particle and pair dynamical properties of water molecules at ambient and supercooled conditions. The water molecules are modelled by the extended simple point charge (SPC/E) model. We first calculate the distribution of hydrogen-bond environment in liquid water at both temperatures and then investigate how the selfdiffusion and orientational relaxation of a single water molecule and also the relative diffusion and relaxation of the hydrogen-bond of a water pair depend on the nature of the hydrogen-bond environment of the tagged molecules. We find that the various dynamical quantities depend significantly on the hydrogen-bond environment, especially at the supercooled temperature. The present study provides a molecular-level insight into the dynamics of liquid water under ambient and supercooled conditions.

  13. Monitoring of chromosome dynamics of single yeast cells in a microfluidic platform with aperture cell traps.

    Science.gov (United States)

    Jin, Si Hyung; Jang, Sung-Chan; Lee, Byungjin; Jeong, Heon-Ho; Jeong, Seong-Geun; Lee, Sung Sik; Kim, Keun Pil; Lee, Chang-Soo

    2016-04-12

    Chromosome movement plays important roles in DNA replication, repair, genetic recombination, and epigenetic phenomena during mitosis and meiosis. In particular, chromosome movement in the nuclear space is essential for the reorganization of the nucleus. However, conventional methods for analyzing the chromosome movements in vivo have been limited by technical constraints of cell trapping, cell cultivation, oxygenation, and in situ imaging. Here, we present a simple microfluidic platform with aperture-based cell trapping arrays to monitor the chromosome dynamics in single living cells for a desired period of time. Under the optimized conditions, our microfluidic platform shows a single-cell trapping efficiency of 57%. This microfluidic approach enables in situ imaging of intracellular dynamics in living cells responding to variable input stimuli under the well-controlled microenvironment. As a validation of this microfluidic platform, we investigate the fundamental features of the dynamic cellular response of the individual cells treated with different stimuli and drug. We prove the basis for dynamic chromosome movement in single yeast cells to be the telomere and nuclear envelope ensembles that attach to and move in concert with nuclear actin cables. Therefore, these results illustrate the monitoring of cellular functions and obtaining of dynamic information at a high spatiotemporal resolution through the integration of a simple microfluidic platform. PMID:26980179

  14. Dynamics of Hydration Water around Native and Misfolded α-Lactalbumin.

    Science.gov (United States)

    Brotzakis, Z F; Groot, C C M; Brandeburgo, W H; Bakker, H J; Bolhuis, P G

    2016-06-01

    As water is an essential ingredient in protein structure, dynamics, and functioning, knowledge of its behavior near proteins is crucial. We investigate water dynamics around bovine α-lactalbumin by combining molecular dynamics simulations with polarization-resolved femtosecond infrared (fs-IR) spectroscopy. We identify slowly reorienting surface waters and establish their hydrogen-bond lifetime and reorientation dynamics, which we compare to the experimentally measured anisotropy decay. The calculated number of slow surface waters is in reasonable agreement with the results of fs-IR experiments. While surface waters form fewer hydrogen bonds than the bulk, within the hydration layer water is slower when donating more hydrogen bonds. At concave sites the protein-water hydrogen bonds break preferably via translational diffusion rather than via a hydrogen-bond jump mechanism. Water molecules reorient slower near these sites than at convex water-exposed sites. Protein misfolding leads to an increased exposure of hydrophobic groups, inducing relatively faster surface water dynamics. Nevertheless, the larger exposed surface slows down a larger amount of water. While for native proteins hydrating water is slower near hydrophobic than near hydrophilic residues, mainly due to stronger confinement, misfolding causes hydrophobic water to reorient relatively faster because exposure of hydrophobic groups destroys concave protein cavities with a large excluded volume. PMID:27137845

  15. A stochastic dynamic programming model for stream water quality management

    Indian Academy of Sciences (India)

    P P Mujumdar; Pavan Saxena

    2004-10-01

    This paper deals with development of a seasonal fraction-removal policy model for waste load allocation in streams addressing uncertainties due to randomness and fuzziness. A stochastic dynamic programming (SDP) model is developed to arrive at the steady-state seasonal fraction-removal policy. A fuzzy decision model (FDM) developed by us in an earlier study is used to compute the system performance measure required in the SDP model. The state of the system in a season is defined by streamflows at the headwaters during the season and the initial DO deficit at some pre-specified checkpoints. The random variation of streamflows is included in the SDP model through seasonal transitional probabilities. The decision vector consists of seasonal fraction-removal levels for the effluent dischargers. Uncertainty due to imprecision (fuzziness) associated with water quality goals is addressed using the concept of fuzzy decision. Responses of pollution control agencies to the resulting end-of-season DO deficit vector and that of dischargers to the fraction-removal levels are treated as fuzzy, and modelled with appropriate membership functions. Application of the model is illustrated with a case study of the Tungabhadra river in India.

  16. Dynamics of aluminum leaching from water purification sludge.

    Science.gov (United States)

    Cheng, Wen-Po; Fu, Chi-Hua; Chen, Ping-Hung; Yu, Ruey-Fang

    2012-05-30

    In this investigation, the shrinking core model is used to study the rate of aluminum salt leaching from water purification sludge (WPS). This model, which describes the aluminum leaching rate, can be developed to maximize the Al(III) recovering efficiency. Laboratory results indicate that when the mixing speed exceeds 80rpm, the effect of film diffusion control on the leaching process is greatly reduced, such that any further increase in the mixing speed does not affect the Al(III) leaching rate. Additionally, increasing the temperature or acid concentration improves Al(III) leaching rate. The laboratory data were verified by using the shrinking core model to confirm that the leaching of Al(III) from WPS is consistent with the inert-layer diffusion control model. This finding reveals that large amounts of SiO(2), Al(2)O(3) and other inert constituents will form an inter diffusion layer in the WPS and thus become the major limiting factors that control the Al(III) leaching process. The dynamic equation can be expressed as 1-3(1-x)(2/3)+2(1-x)=(2707.3 exp(-3887.6/T))t, in which the apparent activation energy and pre-exponential factors are 32.32 kJ/mol and 2707.3 min(-1), respectively, as determined by solving the Arrhenius equation.

  17. Optimization of conventional water treatment plant using dynamic programming.

    Science.gov (United States)

    Mostafa, Khezri Seyed; Bahareh, Ghafari; Elahe, Dadvar; Pegah, Dadras

    2015-12-01

    In this research, the mathematical models, indicating the capability of various units, such as rapid mixing, coagulation and flocculation, sedimentation, and the rapid sand filtration are used. Moreover, cost functions were used for the formulation of conventional water and wastewater treatment plant by applying Clark's formula (Clark, 1982). Also, by applying dynamic programming algorithm, it is easy to design a conventional treatment system with minimal cost. The application of the model for a case reduced the annual cost. This reduction was approximately in the range of 4.5-9.5% considering variable limitations. Sensitivity analysis and prediction of system's feedbacks were performed for different alterations in proportion from parameters optimized amounts. The results indicated (1) that the objective function is more sensitive to design flow rate (Q), (2) the variations in the alum dosage (A), and (3) the sand filter head loss (H). Increasing the inflow by 20%, the total annual cost would increase to about 12.6%, while 20% reduction in inflow leads to 15.2% decrease in the total annual cost. Similarly, 20% increase in alum dosage causes 7.1% increase in the total annual cost, while 20% decrease results in 7.9% decrease in the total annual cost. Furthermore, the pressure decrease causes 2.95 and 3.39% increase and decrease in total annual cost of treatment plants.

  18. Direct Visualization of DNA Replication Dynamics in Zebrafish Cells.

    Science.gov (United States)

    Kuriya, Kenji; Higashiyama, Eriko; Avşar-Ban, Eriko; Tamaru, Yutaka; Ogata, Shin; Takebayashi, Shin-ichiro; Ogata, Masato; Okumura, Katsuzumi

    2015-12-01

    Spatiotemporal regulation of DNA replication in the S-phase nucleus has been extensively studied in mammalian cells because it is tightly coupled with the regulation of other nuclear processes such as transcription. However, little is known about the replication dynamics in nonmammalian cells. Here, we analyzed the DNA replication processes of zebrafish (Danio rerio) cells through the direct visualization of replicating DNA in the nucleus and on DNA fiber molecules isolated from the nucleus. We found that zebrafish chromosomal DNA at the nuclear interior was replicated first, followed by replication of DNA at the nuclear periphery, which is reminiscent of the spatiotemporal regulation of mammalian DNA replication. However, the relative duration of interior DNA replication in zebrafish cells was longer compared to mammalian cells, possibly reflecting zebrafish-specific genomic organization. The rate of replication fork progression and ori-to-ori distance measured by the DNA combing technique were ∼ 1.4 kb/min and 100 kb, respectively, which are comparable to those in mammalian cells. To our knowledge, this is a first report that measures replication dynamics in zebrafish cells.

  19. Modeling dynamics of HIV infected cells using stochastic cellular automaton

    Science.gov (United States)

    Precharattana, Monamorn; Triampo, Wannapong

    2014-08-01

    Ever since HIV was first diagnosed in human, a great number of scientific works have been undertaken to explore the biological mechanisms involved in the infection and progression of the disease. Several cellular automata (CA) models have been introduced to gain insights into the dynamics of the disease progression but none of them has taken into account effects of certain immune cells such as the dendritic cells (DCs) and the CD8+ T lymphocytes (CD8+ T cells). In this work, we present a CA model, which incorporates effects of the HIV specific immune response focusing on the cell-mediated immunities, and investigate the interaction between the host immune response and the HIV infected cells in the lymph nodes. The aim of our work is to propose a model more realistic than the one in Precharattana et al. (2010) [10], by incorporating roles of the DCs, the CD4+ T cells, and the CD8+ T cells into the model so that it would reproduce the HIV infection dynamics during the primary phase of HIV infection.

  20. An Endothelial Planar Cell Model for Imaging Immunological Synapse Dynamics.

    Science.gov (United States)

    Martinelli, Roberta; Carman, Christopher V

    2015-12-24

    Adaptive immunity is regulated by dynamic interactions between T cells and antigen presenting cells ('APCs') referred to as 'immunological synapses'. Within these intimate cell-cell interfaces discrete sub-cellular clusters of MHC/Ag-TCR, F-actin, adhesion and signaling molecules form and remodel rapidly. These dynamics are thought to be critical determinants of both the efficiency and quality of the immune responses that develop and therefore of protective versus pathologic immunity. Current understanding of immunological synapses with physiologic APCs is limited by the inadequacy of the obtainable imaging resolution. Though artificial substrate models (e.g., planar lipid bilayers) offer excellent resolution and have been extremely valuable tools, they are inherently non-physiologic and oversimplified. Vascular and lymphatic endothelial cells have emerged as an important peripheral tissue (or stromal) compartment of 'semi-professional APCs'. These APCs (which express most of the molecular machinery of professional APCs) have the unique feature of forming virtually planar cell surface and are readily transfectable (e.g., with fluorescent protein reporters). Herein a basic approach to implement endothelial cells as a novel and physiologic 'planar cellular APC model' for improved imaging and interrogation of fundamental antigenic signaling processes will be described.

  1. Molecular dynamics simulation of water between two charged layers of dipalmitoylphosphatidylserine

    NARCIS (Netherlands)

    Cascales, J.J.L.; Berendsen, H.J.C.; delaTorre, J.G.

    1996-01-01

    A molecular dynamics simulation of water between two charged layers of dipalmitoylphosphatidylserine in its liquid-crystalline state with atomic detail was carried out. From an analysis of a trajectory of 184 ps of length, we obtained information about the dynamics and structure of water between suc

  2. System Dynamics Approach to Urban Water Demand Forecasting A Case Study of Tianjin

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hongwei; ZHANG Xuehua; ZHANG Baoan

    2009-01-01

    A system dynamics approach to urban water demand forecasting was developed based on the analysis of urban water resources system.which was characterized by multi.feedback and nonlinear interactions among system elements.As an example,Tianjin water resources system dynamic model was set up to forecast water resources demand of the planning years.The practical verification showed that the relative error was lower than 1O%.Furthermore,through the comparison and analysis of the simulation results under different development modes presented in this paper.the forecasting results ofthe water resources demand ofTianiin was achieved based on sustainable utilization strategy of water resources.

  3. Unusual dynamic properties of water near the ice-binding plane of hyperactive antifreeze protein

    Energy Technology Data Exchange (ETDEWEB)

    Kuffel, Anna; Czapiewski, Dariusz; Zielkiewicz, Jan, E-mail: jaz@chem.pg.gda.pl [Department of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80–233 Gdansk (Poland)

    2015-10-07

    The dynamical properties of solvation water of hyperactive antifreeze protein from Choristoneura fumiferana (CfAFP) are analyzed and discussed in context of its antifreeze activity. The protein comprises of three well-defined planes and one of them binds to the surface of ice. The dynamical properties of solvation water around each of these planes were analyzed separately; the results are compared with the dynamical properties of solvation water of ice around its two crystallographic planes: basal and prism. Three main conclusions are inferred from our investigations. The first one is that the solvation shell of CfAFP does not seem to be particularly far-ranged, at least not beyond what is usually observed for proteins that do not interact with ice. Therefore, it does not appear to us that the antifreeze activity is enhanced by a long-ranged retardation of water mobility. Also the correlation between the collective mobility of water and the collective mobility of protein atoms highly resembles the one measured for the protein that does not interact with ice. Our second conclusion is that the dynamical properties of solvation water of CfAFP are non-uniform. The dynamics of solvation water of ice-binding plane is, in some respects, different from the dynamics of solvation water of the two remaining planes. The feature that distinguishes the dynamics of solvation water of the three planes is the activation energy of diffusion process. The third conclusion is that—from the three analyzed solvation shells of CfAFP—the dynamical properties of solvation water of the ice-binding plane resemble the most the properties of solvation water of ice; note, however, that these properties still clearly differ from the dynamic properties of solvation water of ice.

  4. Unusual dynamic properties of water near the ice-binding plane of hyperactive antifreeze protein

    International Nuclear Information System (INIS)

    The dynamical properties of solvation water of hyperactive antifreeze protein from Choristoneura fumiferana (CfAFP) are analyzed and discussed in context of its antifreeze activity. The protein comprises of three well-defined planes and one of them binds to the surface of ice. The dynamical properties of solvation water around each of these planes were analyzed separately; the results are compared with the dynamical properties of solvation water of ice around its two crystallographic planes: basal and prism. Three main conclusions are inferred from our investigations. The first one is that the solvation shell of CfAFP does not seem to be particularly far-ranged, at least not beyond what is usually observed for proteins that do not interact with ice. Therefore, it does not appear to us that the antifreeze activity is enhanced by a long-ranged retardation of water mobility. Also the correlation between the collective mobility of water and the collective mobility of protein atoms highly resembles the one measured for the protein that does not interact with ice. Our second conclusion is that the dynamical properties of solvation water of CfAFP are non-uniform. The dynamics of solvation water of ice-binding plane is, in some respects, different from the dynamics of solvation water of the two remaining planes. The feature that distinguishes the dynamics of solvation water of the three planes is the activation energy of diffusion process. The third conclusion is that—from the three analyzed solvation shells of CfAFP—the dynamical properties of solvation water of the ice-binding plane resemble the most the properties of solvation water of ice; note, however, that these properties still clearly differ from the dynamic properties of solvation water of ice

  5. Microenvironment-Centred Dynamics in Aggressive B-Cell Lymphomas

    Directory of Open Access Journals (Sweden)

    Matilde Cacciatore

    2012-01-01

    Full Text Available Aggressive B-cell lymphomas share high proliferative and invasive attitudes and dismal prognosis despite heterogeneous biological features. In the interchained sequence of events leading to cancer progression, neoplastic clone-intrinsic molecular events play a major role. Nevertheless, microenvironment-related cues have progressively come into focus as true determinants for this process. The cancer-associated microenvironment is a complex network of nonneoplastic immune and stromal cells embedded in extracellular components, giving rise to a multifarious crosstalk with neoplastic cells towards the induction of a supportive milieu. The immunological and stromal microenvironments have been classically regarded as essential partners of indolent lymphomas, while considered mainly negligible in the setting of aggressive B-cell lymphomas that, by their nature, are less reliant on external stimuli. By this paper we try to delineate the cardinal microenvironment-centred dynamics exerting an influence over lymphoid clone progression in aggressive B-cell lymphomas.

  6. Stochastic and coherent dynamics of single and coupled beta cells

    DEFF Research Database (Denmark)

    phenomenon, modeled by a slow-fast nonlinear system of ordinary differential equations (ODEs). The single cell oscillations are complex as the dynamical behavior is a result of traversing a series of saddle node and homoclinic bifurcations, controlled by the slow variable. We shall present results...... through gap-junctions within the islets of Langerhans. Thereby the beta cells form a network of complex oscillators. The network of beta-cells could be viewed as a prototype example of complexity nets and hence constitute an example of broader interest than for biology. We shall present results on coupled...... beta cells in the simple one dimensional case and show how wave patterns can arise and propagate along the chain. These wave patterns can be blocked by inhomogeneous glucose concentration along the chain, and we shall show how the coupled cell model can be connected to the Fishers equation, which...

  7. Charge-Dependent Dynamics of Polyelectrolyte Dendrimer and Its Correlation with Invasive Water

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ren [ORNL; Hong, Kunlun [ORNL; Li, Xin [ORNL; Liu, Emily [Rensselaer Polytechnic Institute (RPI); Liu, Yun [National Institute of Standards and Technology (NIST); Porcar, L. [National Institute of Standards and Technology (NIST); Smith, Gregory Scott [ORNL; Wu, Bin [ORNL; Mamontov, Eugene [ORNL; Egami, T. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Kolesnikov, Alexander I [ORNL; Diallo, Souleymane Omar [Oak Ridge National Laboratory (ORNL)

    2013-01-01

    Atomistic molecular dynamics (MD) simulations were carried out to investigate the local dynamics of polyelectrolyte dendrimers dissolved in deuterium oxide (D2O) and its dependence on molecular charge. Enhanced segmental dy-namics upon increase in molecular charge is observed, consistent with quasielastic neutron scattering (QENS) measurements. A strong coupling between the intra-dendrimer local hydration level and segmental dynamics is also revealed. Compelling evidence shows these findings originate from the electrostatic interaction between the hydrocarbon components of dendrimer and invasive water. This combined study provides fundamental insight into the dynamics of charged polyelectrolytes and the solvating water molecules.

  8. Coupling of the hydration water dynamics and the internal dynamics of actin detected by quasielastic neutron scattering

    International Nuclear Information System (INIS)

    Highlights: ► Quasielastic neutron scattering spectra of F-actin and G-actin were measured. ► Analysis of the samples in D2O and H2O provided the spectra of hydration water. ► The first layer hydration water around F-actin is less mobile than around G-actin. ► This difference in hydration water is in concert with the internal dynamics of actin. ► Water outside the first layer behaves bulk-like but influenced by the first layer. -- Abstract: In order to characterize dynamics of water molecules around F-actin and G-actin, quasielastic neutron scattering experiments were performed on powder samples of F-actin and G-actin, hydrated either with D2O or H2O, at hydration ratios of 0.4 and 1.0. By combined analysis of the quasielastic neutron scattering spectra, the parameter values characterizing the dynamics of the water molecules in the first hydration layer and those of the water molecules outside of the first layer were obtained. The translational diffusion coefficients (DT) of the hydration water in the first layer were found to be 1.2 × 10−5 cm2/s and 1.7 × 10−5 cm2/s for F-actin and G-actin, respectively, while that for bulk water was 2.8 × 10−5 cm2/s. The residence times were 6.6 ps and 5.0 ps for F-actin and G-actin, respectively, while that for bulk water was 0.62 ps. These differences between F-actin and G-actin, indicating that the hydration water around G-actin is more mobile than that around F-actin, are in concert with the results of the internal dynamics of F-actin and G-actin, showing that G-actin fluctuates more rapidly than F-actin. This implies that the dynamics of the hydration water is coupled to the internal dynamics of the actin molecules. The DT values of the water molecules outside of the first hydration layer were found to be similar to that of bulk water though the residence times are strongly affected by the first hydration layer. This supports the recent observation on intracellular water that shows bulk-like behavior

  9. Simulations of structural and dynamic anisotropy in nano-confined water between parallel graphite plates.

    Science.gov (United States)

    Mosaddeghi, Hamid; Alavi, Saman; Kowsari, M H; Najafi, Bijan

    2012-11-14

    We use molecular dynamics simulations to study the structure, dynamics, and transport properties of nano-confined water between parallel graphite plates with separation distances (H) from 7 to 20 Å at different water densities with an emphasis on anisotropies generated by confinement. The behavior of the confined water phase is compared to non-confined bulk water under similar pressure and temperature conditions. Our simulations show anisotropic structure and dynamics of the confined water phase in directions parallel and perpendicular to the graphite plate. The magnitude of these anisotropies depends on the slit width H. Confined water shows "solid-like" structure and slow dynamics for the water layers near the plates. The mean square displacements (MSDs) and velocity autocorrelation functions (VACFs) for directions parallel and perpendicular to the graphite plates are calculated. By increasing the confinement distance from H = 7 Å to H = 20 Å, the MSD increases and the behavior of the VACF indicates that the confined water changes from solid-like to liquid-like dynamics. If the initial density of the water phase is set up using geometric criteria (i.e., distance between the graphite plates), large pressures (in the order of ~10 katm), and large pressure anisotropies are established within the water. By decreasing the density of the water between the confined plates to about 0.9 g cm(-3), bubble formation and restructuring of the water layers are observed.

  10. Optimizing conjunctive use of surface water and groundwater resources with stochastic dynamic programming

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xinguo;

    2014-01-01

    Optimal management of conjunctive use of surface water and groundwater has been attempted with different algorithms in the literature. In this study, a hydro-economic modelling approach to optimize conjunctive use of scarce surface water and groundwater resources under uncertainty is presented....... A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due...... to head-dependent pumping costs. These dynamic pumping costs strongly affect the total costs and can lead to non-convexity of the future cost function. The water user groups (agriculture, industry, domestic) are characterized by inelastic demands and fixed water allocation and water supply curtailment...

  11. Dynamic cell performance of kW-grade proton exchange membrane fuel cell stack with dead-ended anode

    International Nuclear Information System (INIS)

    Highlights: • A kW-grade fuel cell stack with anode dead-ended mode was examined. • The dead-ended anode is achieved by controlling the anode outlet solenoid valve. • Results indicated an optimal purge interval and duration for cell performance. - Abstract: This paper examines the dynamic cell performance of a kW-grade proton exchange membrane fuel cell stack with anode dead-ended mode fuel supply. A self-made kW-grade 40 cells stack with reaction area of 112.85 cm2 has been used in the experiment. A single-chip (DSPIC30F4011) is utilized for establishing a control circuit to monitor the voltage and current with constant-current loading. The stack temperature is controlled at a low-level temperature rise. To enhance the hydrogen utilization and reduce the water flooding in the fuel cell stack, the dead-ended anode operation is accomplished by controlling the open or close of the anode outlet solenoid valve. As the loading is heavy, the anode outlet solenoid valve is purged frequently to force the water to flow out. While a light load, the anode outlet solenoid valve is shut down for a period time for hydrogen saving. The solenoid valve is controlled to be opened, referred as purge interval, reaching the discharge amount for 1000 C, 1500 C, and 2000 C as parameter, respectively. The open period of solenoid valve, referred as purge duration, is set as 1 s, 3 s, and 5 s for this study. Experimental results indicate an optimal purge interval and duration for water management and cell performance of the fuel cell stack

  12. A decision support tool for sustainable planning of urban water systems: presenting the Dynamic Urban Water Simulation Model.

    Science.gov (United States)

    Willuweit, Lars; O'Sullivan, John J

    2013-12-15

    Population growth, urbanisation and climate change represent significant pressures on urban water resources, requiring water managers to consider a wider array of management options that account for economic, social and environmental factors. The Dynamic Urban Water Simulation Model (DUWSiM) developed in this study links urban water balance concepts with the land use dynamics model MOLAND and the climate model LARS-WG, providing a platform for long term planning of urban water supply and water demand by analysing the effects of urbanisation scenarios and climatic changes on the urban water cycle. Based on potential urbanisation scenarios and their effects on a city's water cycle, DUWSiM provides the functionality for assessing the feasibility of centralised and decentralised water supply and water demand management options based on forecasted water demand, stormwater and wastewater generation, whole life cost and energy and potential for water recycling. DUWSiM has been tested using data from Dublin, the capital of Ireland, and it has been shown that the model is able to satisfactorily predict water demand and stormwater runoff.

  13. Quantitative analysis of impact measurements using dynamic load cells

    Directory of Open Access Journals (Sweden)

    Brent J. Maranzano

    2016-03-01

    Full Text Available A mathematical model is used to estimate material properties from a short duration transient impact force measured by dropping spheres onto rectangular coupons fixed to a dynamic load cell. The contact stress between the dynamic load cell surface and the projectile are modeled using Hertzian contact mechanics. Due to the short impact time relative to the load cell dynamics, an additional Kelvin–Voigt element is included in the model to account for the finite response time of the piezoelectric crystal. Calculations with and without the Kelvin–Voigt element are compared to experimental data collected from combinations of polymeric spheres and polymeric and metallic surfaces. The results illustrate that the inclusion of the Kelvin–Voigt element qualitatively captures the post impact resonance and non-linear behavior of the load cell signal and quantitatively improves the estimation of the Young's elastic modulus and Poisson's ratio. Mathematically, the additional KV element couples one additional differential equation to the Hertzian spring-dashpot equation. The model can be numerically integrated in seconds using standard numerical techniques allowing for its use as a rapid technique for the estimation of material properties.

  14. Femtosecond vibrational dynamics in water nano-droplets

    NARCIS (Netherlands)

    Cringus, Gheorghe Dan

    2008-01-01

    Water is probably the most researched substance on Earth. The interest in water, and redominantly in liquid water, is due to its importance on both macro- and microscopic scales. Although people have been trying to understand water for centuries, this ubiquitous liquid is still surrounded by mystery

  15. A Versatile Bioreactor for Dynamic Suspension Cell Culture. Application to the Culture of Cancer Cell Spheroids.

    Science.gov (United States)

    Massai, Diana; Isu, Giuseppe; Madeddu, Denise; Cerino, Giulia; Falco, Angela; Frati, Caterina; Gallo, Diego; Deriu, Marco A; Falvo D'Urso Labate, Giuseppe; Quaini, Federico; Audenino, Alberto; Morbiducci, Umberto

    2016-01-01

    A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future. PMID:27144306

  16. Experimental investigation of fuel cell dynamic response and control

    Science.gov (United States)

    Williams, Keith A.; Keith, Warren T.; Marcel, Michael J.; Haskew, Timothy A.; Shepard, W. Steve; Todd, Beth A.

    An experimental study of the dynamic response of a commercial fuel cell system is presented in this work. The primary goal of the research is an examination of the feasibility for using fuel cells in a load-following mode for vehicular applications, where load-following implies that the fuel cell system provides the power necessary for transient responses without the use of additional energy storage elements, such as batteries or super-capacitors. The dynamic response of fuel cell systems used in the load-following mode may have implications for safe and efficient operation of vehicles. To that end, a DC-DC converter was used to port the power output of the fuel cell to a resistive load using a pulse-width-modulating circuit. Frequency responses of the system were evaluated at a variety of DC offsets and AC amplitudes of the PWM duty cycle from 1 out to 400 Hz. Open-loop transient responses are then evaluated using transitions from 10% to 90% duty cycle levels, followed by dwells at the 90% level and then transitions back to the 10% level. A classical proportional-integral controller was then developed and used to close the loop around the system, with the result that the fuel cell system was driven to track the same transient. The controller was then used to drive the fuel cell system according to a reference power signal, which was a scaled-down copy of the simulated power output from an internal combustion engine powering a conventional automobile through the Federal Urban Driving Schedule (FUDS). The results showed that the fuel cell system is capable of tracking transient signals with sufficient fidelity such that it should be applicable for use in a load-following mode for vehicular applications. The results also highlight important issues that must be addressed in considering vehicular applications of fuel cells, such as the power conditioning circuit efficiency and the effect of stack heating on the system response.

  17. The dynamic relationship between property rights, water resource management and poverty in the Lake Victoria Basin.

    OpenAIRE

    Orindi, V.; Huggins, C.

    2005-01-01

    This review aims to synthesize information on the dynamic relationships between property rights to land and natural resources, water resource management and poverty in the Lake Victoria Basin of East Africa. It focuses on the way in which water management systems, under the conceptual umbrella of Integrated Water Resources Management (IWRM), address customary claims to land and water. The water sector in all the three countries is being reformed, decentralized and liberalized to improve effic...

  18. Single-Cell DNA Methylome Sequencing and Bioinformatic Inference of Epigenomic Cell-State Dynamics

    Directory of Open Access Journals (Sweden)

    Matthias Farlik

    2015-03-01

    Full Text Available Methods for single-cell genome and transcriptome sequencing have contributed to our understanding of cellular heterogeneity, whereas methods for single-cell epigenomics are much less established. Here, we describe a whole-genome bisulfite sequencing (WGBS assay that enables DNA methylation mapping in very small cell populations (μWGBS and single cells (scWGBS. Our assay is optimized for profiling many samples at low coverage, and we describe a bioinformatic method that analyzes collections of single-cell methylomes to infer cell-state dynamics. Using these technological advances, we studied epigenomic cell-state dynamics in three in vitro models of cellular differentiation and pluripotency, where we observed characteristic patterns of epigenome remodeling and cell-to-cell heterogeneity. The described method enables single-cell analysis of DNA methylation in a broad range of biological systems, including embryonic development, stem cell differentiation, and cancer. It can also be used to establish composite methylomes that account for cell-to-cell heterogeneity in complex tissue samples.

  19. Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of stability, and escape.

    Science.gov (United States)

    Li, Qin; Wennborg, Anders; Aurell, Erik; Dekel, Erez; Zou, Jie-Zhi; Xu, Yuting; Huang, Sui; Ernberg, Ingemar

    2016-03-01

    The observed intercellular heterogeneity within a clonal cell population can be mapped as dynamical states clustered around an attractor point in gene expression space, owing to a balance between homeostatic forces and stochastic fluctuations. These dynamics have led to the cancer cell attractor conceptual model, with implications for both carcinogenesis and new therapeutic concepts. Immortalized and malignant EBV-carrying B-cell lines were used to explore this model and characterize the detailed structure of cell attractors. Any subpopulation selected from a population of cells repopulated the whole original basin of attraction within days to weeks. Cells at the basin edges were unstable and prone to apoptosis. Cells continuously changed states within their own attractor, thus driving the repopulation, as shown by fluorescent dye tracing. Perturbations of key regulatory genes induced a jump to a nearby attractor. Using the Fokker-Planck equation, this cell population behavior could be described as two virtual, opposing influences on the cells: one attracting toward the center and the other promoting diffusion in state space (noise). Transcriptome analysis suggests that these forces result from high-dimensional dynamics of the gene regulatory network. We propose that they can be generalized to all cancer cell populations and represent intrinsic behaviors of tumors, offering a previously unidentified characteristic for studying cancer. PMID:26929366

  20. Transcriptome Dynamics of Pseudomonas putida KT2440 under Water Stress

    OpenAIRE

    Gülez, Gamze; Dechesne, Arnaud; Workman, Christopher T.; Smets, Barth F

    2012-01-01

    Water deprivation can be a major stressor to microbial life in surface and subsurface soil. In unsaturated soils, the matric potential (Ψm) is often the main component of the water potential, which measures the thermodynamic availability of water. A low matric potential usually translates into water forming thin liquid films in the soil pores. Little is known of how bacteria respond to such conditions, where, in addition to facing water deprivation that might impair their metabolism, they hav...

  1. Modelling water policies with sustainability constraints: a dynamic accounting analysis

    OpenAIRE

    Fabio Fiorillo; Antonio Palestrini; Paolo Polidori; Claudio Socci

    2006-01-01

    The EU Directive 2000/60/EC, also known as the “Framework directive in the field of water policy”, stresses the importance of water in human development processes and states that EU members should coordinate water policies towards a sustainable use of this resource; hence, water has a strategic role both for present and future generations and should be managed using a systemic approach. Sustainable policies for the management of water resources must also foresee the setting up of complex syst...

  2. Intact plant MRI for the study of cell water relations, membrane permeability, cell-to-cell and long distance water transport

    NARCIS (Netherlands)

    As, van H.

    2007-01-01

    Water content and hydraulic conductivity, including transport within cells, over membranes, cell-to-cell, and long-distance xylem and phloem transport, are strongly affected by plant water stress. By being able to measure these transport processes non-invasely in the intact plant situation in relati

  3. Molecular dynamics simulation of the behaviour of water in nano-confined ionic liquid-water mixtures

    Science.gov (United States)

    Docampo-Álvarez, B.; Gómez-González, V.; Montes-Campos, H.; Otero-Mato, J. M.; Méndez-Morales, T.; Cabeza, O.; Gallego, L. J.; Lynden-Bell, R. M.; Ivaništšev, V. B.; Fedorov, M. V.; Varela, L. M.

    2016-11-01

    This work describes the behaviour of water molecules in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid under nanoconfinement, between graphene sheets. By means of molecular dynamics simulations, the adsorption of water molecules at the graphene surface is studied. A depletion of water molecules in the vicinity of the neutral and negatively charged graphene surfaces, and their adsorption at the positively charged surface are observed in line with the preferential hydration of the ionic liquid anions. The findings are appropriately described using a two-level statistical model. The confinement effect on the structure and dynamics of the mixtures is thoroughly analyzed using the density and the potential of mean force profiles, as well as by the vibrational densities of the states of water molecules near the graphene surface. The orientation of water molecules and the water-induced structural transitions in the layer closest to the graphene surface are also discussed.

  4. Dynamics of water solutions of natural polysaccharides by fast field cycling nmr relaxometry

    Science.gov (United States)

    Prusova, Alena; Conte, Pellegrino; Kucerik, Jiri; de Pasquale, Claudio; Alonzo, Giuseppe

    2010-05-01

    Cryobiology studies the effect of low temperatures on living systems such as microorganisms and plants. In particular, plants growing in cold or frozen environments can survive such extreme conditions due to the cold hardening process. Hardening is a three step process during which, first, translocation of polysaccharides to the plant roots affects water structure in the cell-soil surface. For this reason, increase of cell-membrane permeability and resistance to temperatures from -5°C to -10°C is achieved. In a second step, chemical alteration of cell membrane arises and resistance to temperatures up to -20°C is obtained. The last hardening step consists in the vitrification of the plant tissues which allow plants to survive at temperatures as low as -50°C. Since polysaccharides play a very important role in the initial part of the cold hardening process, it is of paramount importance to study the effect of such natural biopolymers on water structure. Here, we present preliminary data obtained by fast field cycling NMR relaxometry on the effect of hyaluronan (an anionic, non-sulfated glycosaminoglycan) on water structure at different concentrations of the polysaccharide. Although hyaluronan is a polysaccharide found exceptionally in animal, human or bacterial bodies, in the present work it was used as a model "pilot" compound. In fact, it has an unique ability to hold water and it contains both polysaccharide and protein-like acetamido functionalities. For this reason, hyaluronan promotes the future research on other plant biopolymers such as, for instance, starch and other very specific proteins. Results revealed that different water-structure systems surround the molecule of hyaluronan in diluted and semidiluted systems. Namely, at the lowest hyaluronan concentration, three hydration shells can be recognized. The first hydration shell is made by bound water (BW) which is strongly fixed to the hyaluronan surface mainly through electrostatic interactions. A

  5. Exploring neural cell dynamics with digital holographic microscopy

    KAUST Repository

    Marquet, Pierre

    2013-07-11

    In this review, we summarize how the new concept of digital optics applied to the field of holographic microscopy has allowed the development of a reliable and flexible digital holographic quantitative phase microscopy (DH-QPM) technique at the nanoscale particularly suitable for cell imaging. Particular emphasis is placed on the original biological ormation provided by the quantitative phase signal. We present the most relevant DH-QPM applications in the field of cell biology, including automated cell counts, recognition, classification, three-dimensional tracking, discrimination between physiological and pathophysiological states, and the study of cell membrane fluctuations at the nanoscale. In the last part, original results show how DH-QPM can address two important issues in the field of neurobiology, namely, multiple-site optical recording of neuronal activity and noninvasive visualization of dendritic spine dynamics resulting from a full digital holographic microscopy tomographic approach. Copyright © 2013 by Annual Reviews.

  6. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...... parts, where also the temperatures are measured. The heat balance of the system involves a fuel cell model to describe the heat added by the fuel cells when a current is drawn. Furthermore the model also predicts the temperatures, when heating the stack with external heating elements for start-up, heat......The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...

  7. Molecular dynamics simulation study of water adsorption on hydroxylated graphite surfaces.

    Science.gov (United States)

    Picaud, Sylvain; Collignon, B; Hoang, Paul N M; Rayez, J C

    2006-04-27

    In this paper, we present results from molecular dynamic simulations devoted to the characterization of the interaction between water molecules and hydroxylated graphite surfaces considered as models for surfaces of soot emitted by aircraft. The hydroxylated graphite surfaces are modeled by anchoring several OH groups on an infinite graphite plane. The molecular dynamics simulations are based on a classical potential issued from quantum chemical calculations. They are performed at three temperatures (100, 200, and 250 K) to provide a view of the structure and dynamics of water clusters on the model soot surface. These simulations show that the water-OH sites interaction is quite weak compared to the water-water interaction. This leads to the clustering of the water molecules above the surface, and the corresponding water aggregate can only be trapped by the OH sites when the temperature is sufficiently low, or when the density of OH sites is sufficiently high.

  8. Cell size dynamics and viability of cells exposed to hypotonic treatment and electroporation for electrofusion optimization:

    OpenAIRE

    Hudej, Rosana; Kandušer, Maša; Miklavčič, Damijan; Trontelj, Katja; Ušaj, Marko

    2009-01-01

    Background. Various electrofusion parameters have to be adjusted to obtain theoptimal electrofusion efficiency. Based on published data, good electrofusion conditions can be achieved with the hypotonic treatment. However, the duration of the hypotonic treatment before electroporation and buffer hypoosmolarity have to be adjusted in order to cause cell swelling, to avoid regulatory volume decrease and to preserve cell viability. The aims of our study were to determine cell size dynamics and vi...

  9. Cell size dynamics and viability of cells exposed to hypotonic treatment and electroporation for electrofusion optimization

    OpenAIRE

    Trontelj, Katja; Kandušer, Maša; Miklavčič, Damijan; Hudej, Rosana; Ušaj, Marko

    2015-01-01

    Background. Various electrofusion parameters have to be adjusted to obtain theoptimal electrofusion efficiency. Based on published data, good electrofusion conditions can be achieved with the hypotonic treatment. However, the duration of the hypotonic treatment before electroporation and buffer hypoosmolarity have to be adjusted in order to cause cell swelling, to avoid regulatory volume decrease and to preserve cell viability. The aims of our study were to determine cell size dynamics and vi...

  10. Improved generalized cell mapping for global analysis of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Three main parts of generalized cell mapping are improved for global analysis. A simple method, which is not based on the theory of digraphs, is presented to locate complete self-cycling sets that corre- spond to attractors and unstable invariant sets involving saddle, unstable periodic orbit and chaotic saddle. Refinement for complete self-cycling sets is developed to locate attractors and unstable in- variant sets with high degree of accuracy, which can start with a coarse cell structure. A nonuniformly interior-and-boundary sampling technique is used to make the refinement robust. For homeomorphic dissipative dynamical systems, a controlled boundary sampling technique is presented to make gen- eralized cell mapping method with refinement extremely accurate to obtain invariant sets. Recursive laws of group absorption probability and expected absorption time are introduced into generalized cell mapping, and then an optimal order for quantitative analysis of transient cells is established, which leads to the minimal computational work. The improved method is applied to four examples to show its effectiveness in global analysis of dynamical systems.

  11. Cell Stability Analysis of Conventional 6T Dynamic 8T SRAM Cell in 45NM Technology

    Directory of Open Access Journals (Sweden)

    K. Dhanumjaya

    2012-04-01

    Full Text Available A SRAM cell must meet requirements for operation in submicron/nano ranges. The scaling of CMOS technology has significant impact on SRAM cell -- random fluctuation of electrical characteristics and substantial leakage current. In this paper we present dynamic column based power supply 8 T SRAM cell and comparing the proposed SRAM cell with respect to conventional SRAM 6T in various aspects. To verify read stability and write ability analysis we use N-curve metric. Simulation results affirmed that proposed 8T SRAM cell achieved improved read stability, read current, and leakage current in 45nm Technology comparing with conventional 6T SRAM using cadence virtuoso tool.

  12. Dynamic properties of high structural integrity auxetic open cell foam

    Science.gov (United States)

    Scarpa, F.; Ciffo, L. G.; Yates, J. R.

    2004-02-01

    This paper illustrates various dynamic characteristics of open cell compliant polyurethane foam with auxetic (negative Poisson's ratio) behaviour. The foam is obtained from off-the-shelf open cell polyurethane grey foam with a manufacturing process based on mechanical deformation on a mould in a temperature-controlled oven. The Poisson's ratio is measured with an image processing technique based on edge detection with wavelet methods. Foam samples have been tested in a viscoelastic analyser tensile test machine to determine the Young's modulus and loss factor for small dynamic strains. The same samples have also been tested in an acoustic impedance tube to measure acoustic absorption and specific acoustic resistance and reactance with a transmissibility technique. Another set of tests has been set up on a cam plastometer machine for constant strain rate dynamic crushing analysis. All the tests have been carried out on auxetic and normal foam samples to provide a comparison between the two types of cellular solids. The results from the experimental tests are discussed and interpreted using microstructure models for cellular materials existing in the literature. The negative Poisson's ratio foam presented in this paper shows an overall superiority regarding damping and acoustic properties compared to the original conventional foam. Its dynamic crushing performance is also significantly superior to the normal foam, suggesting a possible use in structural integrity compliant elements.

  13. Analysing the dynamics of transitions in residential water consumption in the Netherlands

    NARCIS (Netherlands)

    Agudelo-Vera, C.M.; Blokker, E.J.M.; Buscher, C.H.; Vreeburg, J.H.G.

    2014-01-01

    Water infrastructure is inherently a socio-technical system. Rapidly changing urban trends and long-term uncertainties make water infrastructure management complex. This paper analyses the dynamics of residential water consumption in the Netherlands since 1900. During this period, different drivers

  14. Hybrid bright-field and hologram imaging of cell dynamics

    Science.gov (United States)

    Byeon, Hyeokjun; Lee, Jaehyun; Doh, Junsang; Lee, Sang Joon

    2016-09-01

    Volumetric observation is essential for understanding the details of complex biological phenomena. In this study, a bright-field microscope, which provides information on a specific 2D plane, and a holographic microscope, which provides information spread over 3D volumes, are integrated to acquire two complementary images simultaneously. The developed system was successfully applied to capture distinct T-cell adhesion dynamics on inflamed endothelial layers, including capture, rolling, crawling, transendothelial migration, and subendothelial migration.

  15. Nanodomain stabilization dynamics in plasma membranes of biological cells

    Science.gov (United States)

    Das, Tamal; Maiti, Tapas K.; Chakraborty, Suman

    2011-02-01

    We discover that a synergistically amplifying role of stabilizing membrane proteins and continuous lipid recycling can explain the physics governing the stability, polydispersity, and dynamics of lipid raft domains in plasma membranes of biological cells. We establish the conjecture using a generalized order parameter based on theoretical formalism, endorsed by detailed scaling arguments and domain mapping. Quantitative agreements with morphological distributions of raft complexes, as obtained from Förster resonance energy transfer based visualization, support the present theoretical conjecture.

  16. Dynamic electrical behavior of halide perovskite based solar cells

    OpenAIRE

    Nemnes, George Alexandru; Besleaga, Cristina; Tomulescu, Andrei Gabriel; Pintilie, Ioana; Pintilie, Lucian; Torfason, Kristinn; Manolescu, Andrei

    2016-01-01

    A dynamic electrical model is introduced to investigate the hysteretic effects in the I-V characteristics of perovskite based solar cells. By making a simple ansatz for the polarization relaxation, our model is able to reproduce qualitatively and quantitatively detailed features of measured I-V characteristics. Pre-poling effects are discussed, pointing out the differences between initially over- and under-polarized samples. In particular, the presence of the current over-shoot observed in th...

  17. Water dynamics in hectorite clays: Influence of temperature studied by coupling neutron spin echo and molecular dynamics

    International Nuclear Information System (INIS)

    Within the wider context of water behavior in soils, and with a particular emphasis on clays surrounding underground radioactive waste packages, we present here the translational dynamics of water in clays in low hydrated states as studied by coupling molecular dynamics (MD) simulations and quasielastic neutron scattering experiments by neutron spin echo (NSE). A natural montmorillonite clay of interest is modeled by a synthetic clay which allows us to understand the determining parameters from MD simulations by comparison with the experimental values.We focus on temperatures between 300 and 350 K, i.e., the range relevant to the highlighted application. The activation energy Ea experimentally determined is 6.6 kJ/mol higher than that for bulk water. Simulations are in good agreement with experiments for the relevant set of conditions, and they give more insight into the origin of the observed dynamics. (authors)

  18. Dynamic Switch Between Two Adhesion Phenotypes in Colorectal Cancer Cells.

    Science.gov (United States)

    Geng, Yue; Chandrasekaran, Siddarth; Agastin, Sivaprakash; Li, Jiahe; King, Michael R

    2014-01-01

    The hematogenous metastatic cascade is mediated by the interaction of cancer cells and the endothelial cell lining of blood vessels. In this work, we examine the colon cancer cell line COLO 205, which grows simultaneously in both adherent and suspended states in culture and can serve as a good model for studying tumor heterogeneity. The two subpopulations of cells have different molecular characteristics despite being from the same parent cell line. We found that the ratio of adherent to suspended cells in culture is maintained at 7:3 (equilibrium ratio). The ratio was maintained even when we separate the two populations and culture them separately. After 8 h in culture the equilibrium was achieved only from either adherent or suspended population. The adherent cells were found to express less E-selectin binding glycans and demonstrated significantly weaker interaction with E-selectin under flow than the suspended cells. Manipulation of the epithelial-mesenchymal transition (EMT) markers β-catenin and E-cadherin expression, either by siRNA knockdown of β-catenin or incubation with E-cadherin antibody-coated microbeads, shifted the ratio of adherent to suspended cells to 9:1. Interestingly, human plasma supplemented media shifted the ratio of adherent to suspended cells in the opposite direction to 1:9, favoring the suspended state. The dynamic COLO 205 population switch presents unique differential phenotypes of their subpopulations and could serve as a good model for studying cell heterogeneity and the EMT process in vitro. PMID:24575161

  19. The structure and dynamics of water inside armchair carbon nanotube

    Institute of Scientific and Technical Information of China (English)

    Zhou Xiao-Yan; Lu Hang-Jun

    2007-01-01

    In this paper we present some simulation results about the behaviour of water molecules inside a single wall carbon nanotube (SWNT). We find that the confinement of water in an SWNT can induce a wave-like pattern distribution along the channel axis, similar phenomena are also observed in biological water channels. Carbon nanotubes(CNTs)can serve as simple nonpolar water channels. Molecular transport through narrow CNTs is highly collective because of tight hydrogen bonds in the protective environment of the pore. The hydrogen bond net is important for proton and other signal transports. The average dipoles of water molecules inside CNTs (7,7), (8,8) and (9,9) are discussed in detail. Simulation results indicate that the states of dipole are affected by the diameter of SWNT. The number of hydrogen bonds, the water-water interaction and water-CNT interaction are also studied in this paper.

  20. The scale-free dynamics of eukaryotic cells.

    Directory of Open Access Journals (Sweden)

    Miguel A Aon

    Full Text Available Temporal organization of biological processes requires massively parallel processing on a synchronized time-base. We analyzed time-series data obtained from the bioenergetic oscillatory outputs of Saccharomyces cerevisiae and isolated cardiomyocytes utilizing Relative Dispersional (RDA and Power Spectral (PSA analyses. These analyses revealed broad frequency distributions and evidence for long-term memory in the observed dynamics. Moreover RDA and PSA showed that the bioenergetic dynamics in both systems show fractal scaling over at least 3 orders of magnitude, and that this scaling obeys an inverse power law. Therefore we conclude that in S. cerevisiae and cardiomyocytes the dynamics are scale-free in vivo. Applying RDA and PSA to data generated from an in silico model of mitochondrial function indicated that in yeast and cardiomyocytes the underlying mechanisms regulating the scale-free behavior are similar. We validated this finding in vivo using single cells, and attenuating the activity of the mitochondrial inner membrane anion channel with 4-chlorodiazepam to show that the oscillation of NAD(PH and reactive oxygen species (ROS can be abated in these two evolutionarily distant species. Taken together these data strongly support our hypothesis that the generation of ROS, coupled to redox cycling, driven by cytoplasmic and mitochondrial processes, are at the core of the observed rhythmicity and scale-free dynamics. We argue that the operation of scale-free bioenergetic dynamics plays a fundamental role to integrate cellular function, while providing a framework for robust, yet flexible, responses to the environment.

  1. Structure, dynamics and stability of water/scCO2/mineral interfaces from ab initio molecular dynamics simulations

    OpenAIRE

    Mal-Soon Lee; B. Peter McGrail; Roger Rousseau; Vassiliki-Alexandra Glezakou

    2015-01-01

    The boundary layer at solid-liquid interfaces is a unique reaction environment that poses significant scientific challenges to characterize and understand by experimentation alone. Using ab initio molecular dynamics (AIMD) methods, we report on the structure and dynamics of boundary layer formation, cation mobilization and carbonation under geologic carbon sequestration scenarios (T = 323 K and P = 90 bar) on a prototypical anorthite (001) surface. At low coverage, water film formation is ent...

  2. Application of quasi-elastic neutron scattering to dynamics study of confined water

    International Nuclear Information System (INIS)

    Background: Quasi-elastic neutron scattering (QENS) is an important experiment for dynamics study of confined water. It is significant to study the dynamics of confined water in cement paste. Purpose: In this paper, we have two aims. One is to present a reviewer of QENS study on dynamics of confined water in cement paste in recent years. The other is to illustrate the QENS application to the study on dynamics of confined water based on cement paste. Method: Relaxing cage model (RCM) is specially introduced for the analyses of QENS spectra. Results: Based on RCM, several parameters for describing the dynamics of confined water in cement paste, can be obtained from the analyses of QENS spectra: a fraction of mobile 'glassy' water molecules embedded in amorphous gel region surrounding the hydration products, 1-p, the capture time of confined water molecule in some place-τ0, the average translational relaxation time-<τ>, the self-diffusion coefficient-D, and a phenomenological shape parameter describing the uniform of amorphous in cement paste-β. Conclusion: All these provide a practical method for QENS study on dynamics of confined water in cement paste. (authors)

  3. Critical behavior of 2,6-dimethylpyridine-water: Measurements of specific heat, dynamic light scattering, and shear viscosity

    DEFF Research Database (Denmark)

    Mirzaev, S. Z.; Behrends, R.; Heimburg, Thomas Rainer;

    2006-01-01

    2,6-dimethylpyridine-water, specific heat, dynamic light scattering, shear viscosity Udgivelsesdato: 14 April......2,6-dimethylpyridine-water, specific heat, dynamic light scattering, shear viscosity Udgivelsesdato: 14 April...

  4. Transcriptome Dynamics of Pseudomonas putida KT2440 under Water Stress

    DEFF Research Database (Denmark)

    Gülez, Gamze; Dechesne, Arnaud; Workman, Christopher;

    2012-01-01

    Water deprivation can be a major stressor to microbial life in surface and subsurface soil. In unsaturated soils, the matric potential (Ψm) is often the main component of the water potential, which measures the thermodynamic availability of water. A low matric potential usually translates...

  5. Global Dynamics of a Virus Dynamical Model with Cell-to-Cell Transmission and Cure Rate

    Science.gov (United States)

    Zhang, Tongqian; Meng, Xinzhu; Zhang, Tonghua

    2015-01-01

    The cure effect of a virus model with both cell-to-cell transmission and cell-to-virus transmission is studied. By the method of next generation matrix, the basic reproduction number is obtained. The locally asymptotic stability of the virus-free equilibrium and the endemic equilibrium is considered by investigating the characteristic equation of the model. The globally asymptotic stability of the virus-free equilibrium is proved by constructing suitable Lyapunov function, and the sufficient condition for the globally asymptotic stability of the endemic equilibrium is obtained by constructing suitable Lyapunov function and using LaSalle invariance principal. PMID:26504489

  6. Global Dynamics of a Virus Dynamical Model with Cell-to-Cell Transmission and Cure Rate

    Directory of Open Access Journals (Sweden)

    Tongqian Zhang

    2015-01-01

    Full Text Available The cure effect of a virus model with both cell-to-cell transmission and cell-to-virus transmission is studied. By the method of next generation matrix, the basic reproduction number is obtained. The locally asymptotic stability of the virus-free equilibrium and the endemic equilibrium is considered by investigating the characteristic equation of the model. The globally asymptotic stability of the virus-free equilibrium is proved by constructing suitable Lyapunov function, and the sufficient condition for the globally asymptotic stability of the endemic equilibrium is obtained by constructing suitable Lyapunov function and using LaSalle invariance principal.

  7. Automated three-dimensional single cell phenotyping of spindle dynamics, cell shape, and volume

    CERN Document Server

    Plumb, Kemp; Pelletier, Vincent; Kilfoil, Maria L

    2015-01-01

    We present feature finding and tracking algorithms in 3D in living cells, and demonstrate their utility to measure metrics important in cell biological processes. We developed a computational imaging hybrid approach that combines automated three-dimensional tracking of point-like features with surface determination from which cell (or nuclear) volume, shape, and planes of interest can be extracted. After validation, we applied the technique to real space context-rich dynamics of the mitotic spindle, and cell volume and its relationship to spindle length, in dividing living cells. These methods are additionally useful for automated segregation of pre-anaphase and anaphase spindle populations in budding yeast. We found that genetic deletion of the yeast kinesin-5 mitotic motor cin8 leads to large mother and daughter cells that were indistinguishable based on size, and that in those cells the spindle length becomes uncorrelated with cell size. The technique can be used to visualize and quantify tracked feature c...

  8. Deep water provenance and dynamics of the (de)glacial Atlantic meridional overturning circulation

    Science.gov (United States)

    Lippold, Jörg; Gutjahr, Marcus; Blaser, Patrick; Christner, Emanuel; de Carvalho Ferreira, Maria Luiza; Mulitza, Stefan; Christl, Marcus; Wombacher, Frank; Böhm, Evelyn; Antz, Benny; Cartapanis, Olivier; Vogel, Hendrik; Jaccard, Samuel L.

    2016-07-01

    Reconstructing past modes of ocean circulation is an essential task in paleoclimatology and paleoceanography. To this end, we combine two sedimentary proxies, Nd isotopes (εNd) and the 231Pa/230Th ratio, both of which are not directly involved in the global carbon cycle, but allow the reconstruction of water mass provenance and provide information about the past strength of overturning circulation, respectively. In this study, combined 231Pa/230Th and εNd down-core profiles from six Atlantic Ocean sediment cores are presented. The data set is complemented by the two available combined data sets from the literature. From this we derive a comprehensive picture of spatial and temporal patterns and the dynamic changes of the Atlantic Meridional Overturning Circulation over the past ∼25 ka. Our results provide evidence for a consistent pattern of glacial/stadial advances of Southern Sourced Water along with a northward circulation mode for all cores in the deeper (>3000 m) Atlantic. Results from shallower core sites support an active overturning cell of shoaled Northern Sourced Water during the LGM and the subsequent deglaciation. Furthermore, we report evidence for a short-lived period of intensified AMOC in the early Holocene.

  9. Dynamic load balancing algorithm for molecular dynamics based on Voronoi cells domain decompositions

    Energy Technology Data Exchange (ETDEWEB)

    Fattebert, J.-L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Richards, D.F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glosli, J.N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-12-01

    We present a new algorithm for automatic parallel load balancing in classical molecular dynamics. It assumes a spatial domain decomposition of particles into Voronoi cells. It is a gradient method which attempts to minimize a cost function by displacing Voronoi sites associated with each processor/sub-domain along steepest descent directions. Excellent load balance has been obtained for quasi-2D and 3D practical applications, with up to 440·106 particles on 65,536 MPI tasks.

  10. Factors Affecting Water Dynamics and Their Assessment in Agricultural Landscapes

    International Nuclear Information System (INIS)

    The intensification and extension of agriculture have contributed significantly to the global food production in the last five decades. However, intensification without due attention to the ecosystem services and sustainability of soil and water resources contributed to land and water quality degradation such as soil erosion, decreased soil fertility and quality, salinization and nutrient discharge to surface and ground waters. Land use change from forests to crop lands altered the vegetation pattern and hydrology of landscapes with increased nutrient discharge from crop lands to riverine environment. Global climate change will increase the amount of water required for agriculture in addition to water needed for further irrigation development causing water scarcity in many dry, arid and semi-arid regions. The water and nutrient use efficiencies of agricultural production systems are still below 40% in many regions across the globe. Nitrogen (N) and phosphorus (P) fertilizer use in agriculture have accelerated the cycling of these nutrients in the landscape and contributed to water quality degradation. Such nutrient pollution has a wide array of consequences including eutrophication of inland waters and marine ecosystems. While intensifying drought conditions, increasing water consumption and environmental pollution in many parts of the world threatens agricultural productivity and livelihood, these also provided opportunities for farmers to use improved land and water management technologies and practices to make agriculture resilient to external shocks

  11. Dynamics of high Weber number drops impacting on hydrophobic surfaces with closed micro-cells.

    Science.gov (United States)

    Zhang, Rui; Hao, Pengfei; Zhang, Xiwen; He, Feng

    2016-06-29

    The impact dynamics and bouncing performance of high Weber number drops on hydrophobic surfaces with open and closed micro-cells are investigated. Central wetted rings are observed on both closed-cell and open-cell surfaces under high Weber number collisions, which are proposed to constitute the key element affecting the bouncing behaviour. It is found that the drops rebound on closed-cell surfaces where the central area is in the "hybrid wetting state" at high Weber numbers, while the drops adhere to the open-cell surfaces where the central region is in the Wenzel state. A theoretical model is developed to explain this interesting phenomenon, in which the liquid cannot reach the bottom of the closed-cell hydrophobic surfaces since the air stored in micro-cavities prevents the sliding motion of the liquid film and functions as a "gas spring" lifting the liquid lamella. This indicates that the hydrophobic surface with simple micro cavities can maintain the water-repellent characteristics under drop impacts at high Weber numbers. These findings are expected to be crucial to a fundamental understanding of the rapid collisions between drops and micro-structured surfaces, as well as a valuable strategy to guide the fabrication of novel super water-repellant and anti-icing surfaces. PMID:27306824

  12. Water-mass dynamics of an Arctic cold-water coral reef: First results from a new ocean observatory system

    Science.gov (United States)

    Flögel, Sascha; Karstensen, Johannes; Linke, Peter; Pfannkuche, Olaf; Ashastina, Kseniia; Dullo, Christian

    2015-04-01

    Cold-water coral reefs occur at various sites along the European continental margin, like in the Mediterranean Sea, on carbonate mounds West off Ireland, or at shallower depths between 100 and 350 m on the Norwegian shelf. Their occurrence is related to different physical parameters like temperature, salinity, seawater density, dissolved oxygen, and to other environmental parameters such as internal wave activity, nutrient supply, strong currents, which keep sediment input low, etc. Here, we present first results from a long-term observation in one of the nortnermost cold-water coral reefs at 70.5°N - the Stjernsund in northern Norway. The Stjernsund is a 30 km long and up to 3.5 km wide sound connecting the open North Atlantic with a fjord system. A deep-seated SW-NE oriented morainic sill with varying depths (203-236 m) splits the more than 400 m deep sound into two troughs. Living Lophelia pertusa dominated reef complexes occur on the NW slope between 235 and 305 m water depths and on the SE slope between 245 and 280 m. To investigate the dominating physical and biogeochemical boundary conditions a new modular seafloor observatory, MoLab, consisting of five sea-floor observatories and two moorings was deployed for 100 days during the summer of 2012. The various lander systems and moorimgs were equipped with sensors to measure current velocities and directions, temperature, salinity, pressure, pH, turbidity, fluorescence, oxygen concentration and saturation. Results showed that near-bottom salinities, temperature and current velocities are dominated by a semi-diurnal tidal forcing (pronounced M2 constituent), which cause vertical water mass movements of up to 100 m. These influence large parts of the living reef. Closer examination revealed overturning cells on the south-eastern slope of the sill during high tide, when Atlantic Water flows over the sill. The appearance of living cold-water corals is limited to a density envelope of sigma-theta=27.25-27.50 kg/m-3

  13. Structure and dynamics of metalloproteins in live cells.

    Science.gov (United States)

    Cook, Jeremy D; Penner-Hahn, James E; Stemmler, Timothy L

    2008-01-01

    X-ray absorption spectroscopy (XAS) has emerged as one of the premier tools for investigating the structure and dynamic properties of metals in cells and in metal containing biomolecules. Utilizing the high flux and broad energy range of X-rays supplied by synchrotron light sources, one can selectively excite core electronic transitions in each metal. Spectroscopic signals from these electronic transitions can be used to dissect the chemical architecture of metals in cells, in cellular components, and in biomolecules at varying degrees of structural resolution. With the development of ever-brighter X-ray sources, X-ray methods have grown into applications that can be utilized to provide both a cellular image of the relative distribution of metals throughout the cell as well as a high-resolution picture of the structure of the metal. As these techniques continue to grow in their capabilities and ease of use, so too does the demand for their application by chemists and biochemists interested in studying the structure and dynamics of metals in cells, in cellular organelles, and in metalloproteins.

  14. Tracking the mechanical dynamics of human embryonic stem cell chromatin

    Directory of Open Access Journals (Sweden)

    Hinde Elizabeth

    2012-12-01

    Full Text Available Abstract Background A plastic chromatin structure has emerged as fundamental to the self-renewal and pluripotent capacity of embryonic stem (ES cells. Direct measurement of chromatin dynamics in vivo is, however, challenging as high spatiotemporal resolution is required. Here, we present a new tracking-based method which can detect high frequency chromatin movement and quantify the mechanical dynamics of chromatin in live cells. Results We use this method to study how the mechanical properties of chromatin movement in human embryonic stem cells (hESCs are modulated spatiotemporally during differentiation into cardiomyocytes (CM. Notably, we find that pluripotency is associated with a highly discrete, energy-dependent frequency of chromatin movement that we refer to as a ‘breathing’ state. We find that this ‘breathing’ state is strictly dependent on the metabolic state of the cell and is progressively silenced during differentiation. Conclusions We thus propose that the measured chromatin high frequency movements in hESCs may represent a hallmark of pluripotency and serve as a mechanism to maintain the genome in a transcriptionally accessible state. This is a result that could not have been observed without the high spatial and temporal resolution provided by this novel tracking method.

  15. Cell-based therapy - navigating troubled waters.

    Science.gov (United States)

    Pepper, Michael S

    2010-05-04

    Cells and engineered tissue can be used to treat an increasing number of diseases. This development, together with promising pre-clinical data in regenerative medicine, has raised the expectations of many patients. However, this situation tends to make people vulnerable to the lures of companies that abuse the stem cell promise. The problem is compounded by people's propensity to believe that the healing powers of positive thinking, large sums of money and foreign institutions are greater than those of therapies developed through well-tested, properly constructed, clinical trials.

  16. Solid oxide electrolysis cell for decomposition of tritiated water

    International Nuclear Information System (INIS)

    The decomposition of tritiated water vapor with solid oxide electrolysis cell was proposed for the application to the D-T fusion reactor system. This method is essentially free from problems such as large tritium inventory, radiation damage, and generation of solid waste, so it is expected to be a promising one. Electrolysis of water vapor in argon carrier was performed using tube-type stabilized zirconia cell with porous platinum electrodes in the temperature range of 5000C to 9500C. High conversion ratio from water to hydrogen up to 99.9% was achieved. The characteristics of the cell is deduced from the Nernst's equation and conversion ratio is described as the function of the open circuit voltage. Experimental results agreed with the equation. Isotope effect in electrolysis is also discussed and experiments with heavy water were carried out. Obtained separation factor was slightly higher than the theoretical value

  17. Calibration of Mineralization Degree for Dynamic Pure-water Measurement in Horizontal Oil-water Two-phase Flow

    Science.gov (United States)

    Kong, Weihang; Li, Lei; Kong, Lingfu; Liu, Xingbin

    2016-08-01

    In order to solve the problem of dynamic pure-water electrical conductivity measurement in the process of calculating water content of oil-water two-phase flow of production profile logging in horizontal wells, a six-group local-conductance probe (SGLCP) is proposed to measure dynamic pure-water electrical conductivity in horizontal oil-water two-phase flow. The structures of conductance sensors which include the SGLCP and ring-shaped conductance probe (RSCP) are analyzed by using the finite-element method (FEM). In the process of simulation, the electric field distribution generated by the SGLCP and RSCP are investigated, and the responses of the measuring electrodes are calculated under the different values of the water resistivity. The static experiments of the SGLCP and RSCP under different mineralization degrees in horizontal oil-water two-phase flow are carried out. Results of simulation and experiments demonstrate a nice linearity between the SGLCP and RSCP under different mineralization degrees. The SGLCP has also a good adaptability to stratified flow, stratified flow with mixing at the interface and dispersion of oil in water and water flow. The validity and feasibility of pure-water electrical conductivity measurement with the designed SGLCP under different mineralization degrees are verified by experimental results.

  18. Investigating cell membrane structure and dynamics with TCSPC-FLIM

    Science.gov (United States)

    Le Marois, Alix; Owen, Dylan M.; Suhling, Klaus

    2015-03-01

    We report the use of Time-Correlated Single Photon Counting (TCSPC) in a polarization-resolved Fluorescence Lifetime Imaging (FLIM) setup for the investigation of cell membrane structural and dynamic properties. This technique allows us to study the orientation and mobility of fluorescent membrane dyes, namely di-4-ANEPPDHQ and DiO, in model bilayers of different lipid compositions. Dipole alignment and extent of rotational motion can be linked to membrane order and fluidity. Comparison of the time-resolved anisotropy decays of the two fluorescent dyes suggests that rotational motion of membrane constituents is restricted in liquid-ordered phases, and appears to be limited to the region of aliphatic tails in liquid-disordered phases. In living cells, understanding the membrane structure provides crucial information on its functional properties, such as exo- and endocytosis, cell mobility and signal transduction.

  19. DYNAMICS OF WATER CONSUMPTION CHANGES IN A TOURIST RESORT

    Directory of Open Access Journals (Sweden)

    Izabela Bartkowska

    2014-10-01

    Over 2011–2012 water extraction to the municipal water supply network was studied. The volume of water extracted every day was analyzed and the gathered volumes were analyzed statistically. The varying water extraction was also studied. The obtained results were presented in a graphic form. Basing on the descriptive stats and prepared diagrams certain general conclusions were drawn and the collected study figures and facts were summed up. This allowed to determine days of the highest and lowest water consumption. Also months of extreme water extraction and consumption were determined. The water extraction ranged from 1641 m3/24h to 2607 m3/24h, at an average value of 2077.4 m3/24h. Over the period under study the day of the largest water extraction and consumption was in July and the day of the lowest water extraction and consumption in December. During a week inhabitants used the highest water amount on Saturdays and the lowest on Sundays and other feast-days. Basing on the conducted measurements also the coefficient of water consumption per capita was determined. The fluctuation of this coefficient was identical as that for the water consumption. Within the period of study it ranged from 73.3 l/M 24h to 116.5 l/M 24h. The average value of the specific water consumption was 92.8 l/M 24h. For the sake of discussion the obtained results were compared with observations across the country.

  20. Molecular Dynamics Simulation of Diffusion Coefficients of Oxygen, Nitrogen and Sodium Chloride in Supercritical Water

    Institute of Scientific and Technical Information of China (English)

    肖吉; 陆九芳; 陈健; 李以圭

    2001-01-01

    Molecular dynamics simulation has been performed to determine the infinite-dilution diffusion coefficients of oxygen and nitrogen, and the diffusion coefficients of NaCl in supercritical water from 703.2- 763.2 K and 30-45 MPa.The results obtained show that the diffusion coefficients in supercritical water increase with temperature, while decreasing with pressure. Nevertheless, the diffusion coefficients in supercritical water are much larger than those in normal water.

  1. Dynamic Assessment of Water Quality Based on a Variable Fuzzy Pattern Recognition Model

    OpenAIRE

    Shiguo Xu; Tianxiang Wang; Suduan Hu

    2015-01-01

    Water quality assessment is an important foundation of water resource protection and is affected by many indicators. The dynamic and fuzzy changes of water quality lead to problems for proper assessment. This paper explores a method which is in accordance with the water quality changes. The proposed method is based on the variable fuzzy pattern recognition (VFPR) model and combines the analytic hierarchy process (AHP) model with the entropy weight (EW) method. The proposed method was applied ...

  2. Computational investigation of epithelial cell dynamic phenotype in vitro

    Directory of Open Access Journals (Sweden)

    Debnath Jayanta

    2009-05-01

    Full Text Available Abstract Background When grown in three-dimensional (3D cultures, epithelial cells typically form cystic organoids that recapitulate cardinal features of in vivo epithelial structures. Characterizing essential cell actions and their roles, which constitute the system's dynamic phenotype, is critical to gaining deeper insight into the cystogenesis phenomena. Methods Starting with an earlier in silico epithelial analogue (ISEA1 that validated for several Madin-Darby canine kidney (MDCK epithelial cell culture attributes, we built a revised analogue (ISEA2 to increase overlap between analogue and cell culture traits. Both analogues used agent-based, discrete event methods. A set of axioms determined ISEA behaviors; together, they specified the analogue's operating principles. A new experimentation framework enabled tracking relative axiom use and roles during simulated cystogenesis along with establishment of the consequences of their disruption. Results ISEA2 consistently produced convex cystic structures in a simulated embedded culture. Axiom use measures provided detailed descriptions of the analogue's dynamic phenotype. Dysregulating key cell death and division axioms led to disorganized structures. Adhering to either axiom less than 80% of the time caused ISEA1 to form easily identified morphological changes. ISEA2 was more robust to identical dysregulation. Both dysregulated analogues exhibited characteristics that resembled those associated with an in vitro model of early glandular epithelial cancer. Conclusion We documented the causal chains of events, and their relative roles, responsible for simulated cystogenesis. The results stand as an early hypothesis–a theory–of how individual MDCK cell actions give rise to consistently roundish, cystic organoids.

  3. Produced Water Treatment Using Microbial Fuel Cell Technology

    Energy Technology Data Exchange (ETDEWEB)

    Borole, A. P.; Campbell, R. [Campbell Applied Physics

    2011-05-20

    ORNL has developed a treatment for produced water using a combination of microbial fuel cells and electrosorption. A collaboration between Campbell Applied Physics and ORNL was initiated to further investigate development of the technology and apply it to treatment of field produced water. The project successfully demonstrated the potential of microbial fuel cells to generate electricity from organics in produced water. A steady voltage was continuously generated for several days using the system developed in this study. In addition to the extraction of electrical energy from the organic contaminants, use of the energy at the representative voltage was demonstrated for salts removal or desalination of the produced water. Thus, the technology has potential to remove organic as well as ionic contaminants with minimal energy input using this technology. This is a novel energy-efficient method to treat produced water. Funding to test the technology at larger scale is being pursued to enable application development.

  4. Molecular Dynamics Simulation on Charge Transfer Relaxation between Myoglobin and Water

    Institute of Scientific and Technical Information of China (English)

    CHENG Wei; ZHANG Feng-Shou; ZHANG Bo-Yang; ZHOU Hong-Yu

    2007-01-01

    Dynamical processes of myoglobin after photon-excited charge transfer between Fe ion and surrounding water anion ale simulated by a molecular dynamics model.The roles of Coulomb interaction effect and water effect in the relaxation process are discussed.It is found that the relaxations before and after charge transfer are similar.Strong Coulomb interactions and less water mobility decrease Coulomb energy fluctuations.An extra transferred charge of Fe ion has impact on water packing with a distance up to 0.86nm.

  5. Molecular Dynamics implementation of BN2D or 'Mercedes Benz' water model

    Science.gov (United States)

    Scukins, Arturs; Bardik, Vitaliy; Pavlov, Evgen; Nerukh, Dmitry

    2015-05-01

    Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.

  6. Modeling the Dynamic Water Resource Needs of California's Coastal Watersheds

    Science.gov (United States)

    Alford, C.

    2009-12-01

    Many watersheds face formidable water supply challenges when it comes to managing water availability to meet diverse water supply and ecosystem management objectives. California’s central coast watersheds are no exception, and both the scarcity of water resources during drier water years and mandates to establish minimum instream flows for salmon habitat have prompted interests in reassessing water management strategies for several of these watersheds. Conventional supply-oriented hydrologic models, however, are not adequate to fully investigate and describe the reciprocal implications of surface water demands for human use and the maintenance of instream flows for salmon habitat that vary both temporally and spatially within a watershed. In an effort to address this issue I developed a coastal watershed management model based on the San Gregorio watershed utilizing the Water Evaluation and Planning (WEAP) system, which permits demand-side prioritization at a time step interval and spatial resolution that captures functional supply and demand relationships. Physiographic input data such as soil type, land cover, elevation, habitat, and water demand sites were extrapolated at a sub-basin level in a GIS. Time-series climate data were collected and processed utilizing the Berkeley Water Center Data Cube at daily time steps for the period 1952 through September 2009. Recent synoptic flow measurements taken at seven tributary sites during the 2009 water year, water depth measured by pressure transducers at six sites within the watershed from September 2005 through September 2009, and daily gauge records from temporary gauges installed in 1981 were used to assess the hydrologic patterns of sub-basins and supplement historic USGS gauge flow records. Empirical functions were used to describe evapotranspiration, surface runoff, sub-surface runoff, and deep percolation. Initial model simulations carried out under both dry and wet water year scenarios were able to capture

  7. Testing the effects of basic numerical implementations of water migration on models of subduction dynamics

    Directory of Open Access Journals (Sweden)

    M. E. T. Quinquis

    2014-06-01

    Full Text Available Subduction of oceanic lithosphere brings water into the Earth's upper mantle. Previous numerical studies have shown how slab dehydration and mantle hydration can impact the dynamics of a subduction system by allowing a more vigorous mantle flow and promoting localisation of deformation in the lithosphere and mantle. The depths at which dehydration reactions occur in the hydrated portions of the slab are well constrained in these models by thermodynamic calculations. However, computational models use different numerical schemes to simulate the migration of free water. We aim to show the influence of the numerical scheme of free water migration on the dynamics of the upper mantle and more specifically the mantle wedge. We investigate the following three simple migration schemes with a finite-element model: (1 element-wise vertical migration of free water, occurring independent of the flow of the solid phase; (2 an imposed vertical free water velocity; and (3 a Darcy velocity, where the free water velocity is a function of the pressure gradient caused by the difference in density between water and the surrounding rocks. In addition, the flow of the solid material field also moves the free water in the imposed vertical velocity and Darcy schemes. We first test the influence of the water migration scheme using a simple model that simulates the sinking of a cold, hydrated cylinder into a dry, warm mantle. We find that the free water migration scheme has only a limited impact on the water distribution after 1 Myr in these models. We next investigate slab dehydration and mantle hydration with a thermomechanical subduction model that includes brittle behaviour and viscous water-dependent creep flow laws. Our models demonstrate that the bound water distribution is not greatly influenced by the water migration scheme whereas the free water distribution is. We find that a bound water-dependent creep flow law results in a broader area of hydration in the

  8. Dynamic modeling of a three-stage low-temperature ethanol reformer for fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Vanesa M.; Serra, Maria [Institut de Robotica i Informatica Industrial (CSIC-UPC), Llorens i Artigas 4-6, 08028 Barcelona (Spain); Lopez, Eduardo; Llorca, Jordi [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, ed. ETSEIB, 08028 Barcelona (Spain)

    2009-07-01

    A low-temperature ethanol reformer based on a cobalt catalyst for the production of hydrogen has been designed aiming the feed of a fuel cell for an autonomous low-scale power production unit. The reformer comprises three stages: ethanol dehydrogenation to acetaldehyde and hydrogen over SnO{sub 2} followed by acetaldehyde steam reforming over Co(Fe)/ZnO catalyst and water gas shift reaction. Kinetic data have been obtained under different experimental conditions and a dynamic model has been developed for a tubular reformer loaded with catalytic monoliths for the production of the hydrogen required to feed a 1 kW PEMFC. (author)

  9. Molecular dynamics simulations of trehalose as a 'dynamic reducer' for solvent water molecules in the hydration shell.

    Science.gov (United States)

    Choi, Youngjin; Cho, Kum Won; Jeong, Karpjoo; Jung, Seunho

    2006-06-12

    Systematic computational work for a series of 13 disaccharides was performed to provide an atomic-level insight of unique biochemical role of the alpha,alpha-(1-->1)-linked glucopyranoside dimer over the other glycosidically linked sugars. Superior osmotic and cryoprotective abilities of trehalose were explained on the basis of conformational and hydration characteristics of the trehalose molecule. Analyses of the hydration number and radial distribution function of solvent water molecules showed that there was very little hydration adjacent to the glycosidic oxygen of trehalose and that the dynamic conformation of trehalose was less flexible than any of the other sugars due to this anisotropic hydration. The remarkable conformational rigidity that allowed trehalose to act as a sugar template was required for stable interactions with hydrogen-bonded water molecules. Trehalose made an average of 2.8 long-lived hydrogen bonds per each MD step, which was much larger than the average of 2.1 for the other sugars. The stable hydrogen-bond network is derived from the formation of long-lived water bridges at the expense of decreasing the dynamics of the water molecules. Evidence for this dynamic reduction of water by trehalose was also established based on each of the lowest translational diffusion coefficients and the lowest intermolecular coulombic energy of the water molecules around trehalose. Overall results indicate that trehalose functions as a 'dynamic reducer' for solvent water molecules based on its anisotropic hydration and conformational rigidity, suggesting that macroscopic solvent properties could be modulated by changes in the type of glycosidic linkages in sugar molecules.

  10. A Reactive Molecular Dynamics Simulation Of The Silica-Water Interface

    OpenAIRE

    Fogarty, Joseph C.; Aktulga, Hasan Metin; Grama, Ananth Y.; van Duin, Adri C. T.; Pandit, Sagar A.

    2010-01-01

    We report our study of a silica-water interface using reactive molecular dynamics. This first-of-its-kind simulation achieves length and time scales required to investigate the detailed chemistry of the system. Our molecular dynamics approach is based on the ReaxFF force field of van Duin [J. Phys. Chem. A 107, 3803 (2003)]. The specific ReaxFF implementation (SERIALREAX) and force fields are first validated on structural properties of pure silica and water systems. Chemical reactions between...

  11. Short-Term Water Dynamics in Chihuahua City, Mexico

    OpenAIRE

    Thomas M Fullerton Jr; Ana Cecilia Nava

    2004-01-01

    Linear transfer ARIMA analysis of monthly per meter water consumption is conducted for Chihuahua City, Mexico. Sample data from January 1988 to December 2000 are analyzed. Time series utilized include water system revenue, climate, and industrial production data. Out-of-sample simulations are used to confirm the reliability of the in-sample estimation results.

  12. Arrangement and dynamics of water in natural zeolites

    International Nuclear Information System (INIS)

    Elastic, inelastic and quasielastic neutron scattering experiments are performed on natural zeolites. Hydrogen atoms at the water molecules could be located in the fibrous zeolites natrolite and edingtonite. Inelastic neutron spectra can be divided into translational (δE -5 cm sec-1 at T = 295 K for the full amount of water. (author) 6 refs., 4 figs., 1 tab

  13. Dynamic maintenance of stochastic molecular clusters on cell membranes

    Science.gov (United States)

    Mugler, Andrew; Wehrens, Martijn; Ten Wolde, Pieter Rein

    2015-03-01

    Clustering of molecules on cell membranes is a widely observed phenomenon. A key example is the oncoprotein Ras. Maintenance of Ras clusters has been linked to proper Ras signaling. Yet, the mechanism by which Ras clusters are maintained remains unclear. Recently it was discovered that activated Ras promotes further Ras activation. We show using particle-based simulation that this positive feedback link is sufficient to produce persistent clusters of active Ras molecules via a dynamic nucleation mechanism. The cluster statistics are consistent with experimental observations. Interestingly, our model does not support a Turing regime of macroscopic reaction-diffusion patterning. This means that the clustering we observe is a purely stochastic effect, arising from the coupling of the positive feedback network with the discrete nature of individual molecules. These findings underscore the importance of stochastic and dynamic properties of reaction diffusion systems for biological behavior.

  14. Dynamic monitoring of single cell lysis in an impedance-based microfluidic device.

    Science.gov (United States)

    Zhou, Ying; Basu, Srinjan; Laue, Ernest D; Seshia, Ashwin A

    2016-08-01

    A microfluidic device that is capable of trapping and sensing dynamic variations in the electrical properties of individual cells is demonstrated. The device is applied to the real-time recording of impedance measurements of mouse embryonic stem cells (mESCs) during the process of membrane lysis, with the resulting changes in the electrical properties of cells during this process being quantitatively tracked over time. It is observed that the impedance magnitude decreases dramatically after cell membrane lysis. A significant shift in the phase spectrum is also observed during the time course of this process. By fitting experimental data to physical models, the electrical parameters of cells can be extracted and parameter variations quantified during the process. In the cell lysis experiments, the equivalent conductivity of the cell membrane is found to increase significantly due to pore formation in the membrane during lysis. An increase in the specific capacitance of the membrane is also observed. On the other hand, the conductivity of the cytoplasm is observed to decrease, which may be explained the fact that excess water enters the cell through the gradual permeabilization of the membrane during lysis. Cells can be trapped in the device for periods up to several days, and their electrical response can be monitored by real-time impedance measurements in a label-free and non-invasive manner. Furthermore, due to the highly efficient single cell trapping capacity of the device, a number of cells can be trapped and held in separate wells for concurrent parallel experiments, allowing for the possibility of stepped parametric experiments and studying cell heterogeneity by combining measurements across the array. PMID:27299468

  15. Computer simulation study of structure and dynamics of supercooled water in silica nanopores

    Science.gov (United States)

    Kuon, Nicholas; Ladanyi, Branka

    2014-03-01

    In narrow hydrophilic pores, interactions with pore walls and confinement dimensions allow water to remain liquid well below the normal freezing point. We investigate the properties of nanoconfined supercooled water by means of molecular simulation. The focus of our study is confinement in approximately cylindrical silica pores, with diameters in the 20-40 Å range, a model for MCM-41 materials. We use Gibbs-ensemble Monte Carlo method to determine water density in the pores in equilibrium with the bulk and molecular dynamics simulation to study the properties of confined water. We study the translational and rotational mobilities of molecules in different interfacial layers and the effects on water dynamics of interfacial hydrogen bonding. We make contact with quasi-elastic neutron scattering experiments on supercooled water in MCM-14 silica pores by calculating and analyzing self-intermediate scattering functions of water hydrogens. This research was supported by NSF grant number 1213682.

  16. Optical assessment of colored dissolved organic matter and its related parameters in dynamic coastal water systems

    Science.gov (United States)

    Shanmugam, Palanisamy; Varunan, Theenathayalan; Nagendra Jaiganesh, S. N.; Sahay, Arvind; Chauhan, Prakash

    2016-06-01

    Prediction of the curve of the absorption coefficient of colored dissolved organic matter (CDOM) and differentiation between marine and terrestrially derived CDOM pools in coastal environments are hampered by a high degree of variability in the composition and concentration of CDOM, uncertainties in retrieved remote sensing reflectance and the weak signal-to-noise ratio of space-borne instruments. In the present study, a hybrid model is presented along with empirical methods to remotely determine the amount and type of CDOM in coastal and inland water environments. A large set of in-situ data collected on several oceanographic cruises and field campaigns from different regional waters was used to develop empirical methods for studying the distribution and dynamics of CDOM, dissolved organic carbon (DOC) and salinity. Our validation analyses demonstrated that the hybrid model is a better descriptor of CDOM absorption spectra compared to the existing models. Additional spectral slope parameters included in the present model to differentiate between terrestrially derived and marine CDOM pools make a substantial improvement over those existing models. Empirical algorithms to derive CDOM, DOC and salinity from remote sensing reflectance data demonstrated success in retrieval of these products with significantly low mean relative percent differences from large in-situ measurements. The performance of these algorithms was further assessed using three hyperspectral HICO images acquired simultaneously with our field measurements in productive coastal and lagoon waters on the southeast part of India. The validation match-ups of CDOM and salinity showed good agreement between HICO retrievals and field observations. Further analyses of these data showed significant temporal changes in CDOM and phytoplankton absorption coefficients with a distinct phase shift between these two products. Healthy phytoplankton cells and macrophytes were recognized to directly contribute to the

  17. Comparison of Dynamic Visual Acuity between Water Polo Players and Sedentary Students

    Science.gov (United States)

    Quevedo-Junyent, Lluisa; Aznar-Casanova, Jose Antonio; Merindano-Encina, Dolores; Cardona, Genis; Sole-Forto, Joan

    2011-01-01

    In this study, we examined differences in dynamic visual acuity between elite and subelite water polo players and sedentary students. To measure dynamic visual acuity binocularly, we asked participants to indicate the orientation of a broken ring, similar to the Landolt C, which increased in size as it moved across a computer screen. Two different…

  18. Hydrophobic Molecules Slow Down the Hydrogen-Bond Dynamics of Water

    NARCIS (Netherlands)

    Bakulin, Artem A.; Pshenichnikov, Maxim S.; Bakker, Huib J.; Petersen, Christian

    2011-01-01

    We study the spectral and orientational dynamics of HDO molecules in solutions of tertiarybutyl-alcohol (TBA), trimethyl-amine-oxide (TMAO), and tetramethylurea (TMU) in isotopically diluted water (HDO:D(2)O and HDO:H(2)O). The spectral dynamics are studied with femtosecond two-dimensional infrared

  19. Development of a dynamic model for cleaning ultra filtration membranes fouled by surface water

    NARCIS (Netherlands)

    Zondervan, Edwin; Betlem, Ben H.L.; Roffel, Brian

    2007-01-01

    In this paper, a dynamic model for cleaning ultra filtration membranes fouled by surface water is proposed. A model that captures the dynamics well is valuable for the optimization of the cleaning process. The proposed model is based on component balances and contains three parameters that can be de

  20. Dynamics of water molecules in the active-site cavity of human cytochromes P450

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Rod, Thomas Holm; Olsen, Lars;

    2007-01-01

    We have studied the dynamics of water molecules in six crystal structures of four human cytochromes P450, 2A6, 2C8, 2C9, and 3A4, with molecular dynamics simulations. In the crystal structures, only a few water molecules are seen and the reported sizes of the active-site cavity vary a lot. In the...... molecules close to the heme iron ion in these simulations of the high-spin ferric state (the average distance to the closest water molecule is 3.3-5 A), and there are few ordered water molecules in the active sites, none of which is conserved in all proteins.......We have studied the dynamics of water molecules in six crystal structures of four human cytochromes P450, 2A6, 2C8, 2C9, and 3A4, with molecular dynamics simulations. In the crystal structures, only a few water molecules are seen and the reported sizes of the active-site cavity vary a lot....... In the simulations, the cavities are completely filled with water molecules, although with approximately 20% lower density than in bulk water. The 2A6 protein differs from the other three in that it has a very small cavity with only two water molecules and no exchange with the surroundings. The other three proteins...

  1. Dynamics of biological water: insights from molecular modeling of light scattering in aqueous trehalose solutions.

    Science.gov (United States)

    Lupi, Laura; Comez, Lucia; Paolantoni, Marco; Fioretto, Daniele; Ladanyi, Branka M

    2012-06-28

    Extended depolarized light scattering (EDLS) measurements have been recently employed to investigate the dynamics of water solvating biological molecules, giving evidence of the presence of two different dynamical regimes among water molecules. An interpretation of EDLS has been proposed that provides an independent estimate of the retardation factor of slowdown with respect to fast water molecules and of the number of solvent molecules affected by this slowing down. Nevertheless this measure is an inherently complex one, due to the collective nature of the physical property probed. In the present work a molecular dynamics (MD) approach has been used to more deeply understand experimental results. Time correlation functions of the collective polarizability anisotropy have been calculated for the prototype disaccharide trehalose in aqueous solutions as a function of concentration. The unique capability of MD to disentangle the contributions to the dynamics arising from solute, solvent, and cross terms between the two allowed us to check the reliability of an interpretation that assumes a spectral separation of water and sugar dynamics, as well as to highlight the very presence of two distinct relaxation processes in water. The two processes have been attributed to the dynamics of bulk and hydration water, respectively. A retardation factor of ~5 and concentration dependent hydration numbers have been observed, in good agreement with experimental results [Paolantoni, M.; et al. J. Phys. Chem. B 2009, 113, 7874-7878].

  2. Water dynamics: relation between hydrogen bond bifurcations, molecular jumps, local density & hydrophobicity.

    Science.gov (United States)

    Titantah, John Tatini; Karttunen, Mikko

    2013-10-21

    Structure and dynamics of water remain a challenge. Resolving the properties of hydrogen bonding lies at the heart of this puzzle. We employ ab initio Molecular Dynamics (AIMD) simulations over a wide temperature range. The total simulation time was ≈ 2 ns. Both bulk water and water in the presence of a small hydrophobic molecule were simulated. We show that large-angle jumps and bond bifurcations are fundamental properties of water dynamics and that they are intimately coupled to both local density and hydrogen bond strength oscillations in scales from about 60 to a few hundred femtoseconds: Local density differences are the driving force for bond bifurcations and the consequent large-angle jumps. The jumps are intimately connected to the recently predicted hydrogen bond energy asymmetry. Our analysis also appears to confirm the existence of the so-called negativity track provided by the lone pairs of electrons on the oxygen atom to enable water rotation.

  3. Dynamics of Water Associated with Lithium Ions Distributed in Polyethylene Oxide

    Science.gov (United States)

    Zhang, Zhe; Ohl, Michael; Diallo, Souleymane O.; Jalarvo, Niina H.; Hong, Kunlun; Han, Youngkyu; Smith, Gregory S.; Do, Changwoo

    2015-11-01

    The dynamics of water in polyethylene oxide (PEO)/LiCl solution has been studied with quasielastic neutron scattering experiments and molecular dynamics (MD) simulations. Two different time scales of water diffusion representing interfacial water and bulk water dynamics have been identified. The measured diffusion coefficient of interfacial water remained 5-10 times smaller than that of bulk water, but both were slowed by approximately 50% in the presence of Li+ . Detailed analysis of MD trajectories suggests that Li+ is favorably found at the surface of the hydration layer, and the probability to find the caged Li+ configuration formed by the PEO is lower than for the noncaged Li+-PEO configuration. In both configurations, however, the slowing down of water molecules is driven by reorienting water molecules and creating water-Li+ hydration complexes. Performing the MD simulation with different ions (Na+ and K+ ) revealed that smaller ionic radius of the ions is a key factor in disrupting the formation of PEO cages by allowing spaces for water molecules to come in between the ion and PEO.

  4. Phase resetting reveals network dynamics underlying a bacterial cell cycle.

    Directory of Open Access Journals (Sweden)

    Yihan Lin

    Full Text Available Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS.

  5. Ibuprofen regulation of microtubule dynamics in cystic fibrosis epithelial cells.

    Science.gov (United States)

    Rymut, Sharon M; Kampman, Claire M; Corey, Deborah A; Endres, Tori; Cotton, Calvin U; Kelley, Thomas J

    2016-08-01

    High-dose ibuprofen, an effective anti-inflammatory therapy for the treatment of cystic fibrosis (CF), has been shown to preserve lung function in a pediatric population. Despite its efficacy, few patients receive ibuprofen treatment due to potential renal and gastrointestinal toxicity. The mechanism of ibuprofen efficacy is also unclear. We have previously demonstrated that CF microtubules are slower to reform after depolymerization compared with respective wild-type controls. Slower microtubule dynamics in CF cells are responsible for impaired intracellular transport and are related to inflammatory signaling. Here, it is identified that high-dose ibuprofen treatment in both CF cell models and primary CF nasal epithelial cells restores microtubule reformation rates to wild-type levels, as well as induce extension of microtubules to the cell periphery. Ibuprofen treatment also restores microtubule-dependent intracellular transport monitored by measuring intracellular cholesterol transport. These effects are specific to ibuprofen as other cyclooxygenase inhibitors have no effect on these measures. Effects of ibuprofen are mimicked by stimulation of AMPK and blocked by the AMPK inhibitor compound C. We conclude that high-dose ibuprofen treatment enhances microtubule formation in CF cells likely through an AMPK-related pathway. These findings define a potential mechanism to explain the efficacy of ibuprofen therapy in CF. PMID:27317686

  6. Dynamics of Tetrahymena macronuclear lamina during cell division

    Institute of Scientific and Technical Information of China (English)

    CHENBIN; ZHONGHEZHAI

    1994-01-01

    During mitosis,the nuclear lamina in higher eukaryotic cells undergoes a distinctly morphological change.It breaks down into lamin polymers or monomers at prophase.At telophase,the lamins reassemble around the condensed chromatin to form the layer of lamina.Using antiserum to mammalian lamins,we studied the dynamics of lamina during cell division in the macronuleus of Tetrahymena shanghaiensis,which divided in the way of amitosis.In contrast to those in higher animal cells,the typical perinuclear lamin distribution in the macronucleus persisted throughout the whole cell cycle.It was further found that in some synchronized cells,the lamin distribution bisplayed an unusual pattern consisting of a series of spots within the macronucleus.Using South-western hybridization,we found that the purified 66 KD lamin in Tetrahymena showed specific affinity with the telomere DNA sequence in the same species.Therefore,we propose that pattern of immunofluorescence may be due to the interaction of lamin protein with the nucleoli and the condensed chromatins in the macronucleus.

  7. Development of some intestinal endocrine cell populations in water buffalo

    Directory of Open Access Journals (Sweden)

    L. Castaldo

    2010-02-01

    Full Text Available The occurrence and distribution of different endocrine cell types in the gastrointestinal tract of large and small domestic mammals have been extensively studied (Ceccarelli et al. 1995; Agungpriyono et al.2000. Some studies have been also carried out on the ontogeny of gut endocrine cells in mammals (Ono et al. 1994, and only few in ruminant. (Kitamura et al. 1985; Guilloteau et al. 1997. In order to complete a previous study regarding postnatal development of intestinal endocrine cells (Lucini et al. 1999, in this study we report the appearance and distribution of some endocrine cell types in the gut of water buffalo during foetal development.

  8. Energetic and molecular water permeation mechanisms of the human red blood cell urea transporter B.

    Directory of Open Access Journals (Sweden)

    Slim Azouzi

    Full Text Available Urea transporter B (UT-B is a passive membrane channel that facilitates highly efficient permeation of urea. In red blood cells (RBC, while the major function of UT-B is to transport urea, it is assumed that this protein is able to conduct water. Here, we have revisited this last issue by studying RBCs and ghosts from human variants with defects of aquaporin 1 (AQP1 or UT-B. We found that UT-B's osmotic water unit permeability (pfunit is similar to that of AQP1. The determination of diffusional permeability coefficient (Pd allowed the calculation of the Pf/Pd ratio, which is consistent with a single-file water transport. Molecular dynamic simulations of water conduction through human UT-B confirmed the experimental finding. From these results, we propose an atomistic description of water-protein interactions involved in this permeation. Inside the UT-B pore, five water molecules were found to form a single-file and move rapidly along a channel by hydrogen bond exchange involving two critical threonines. We further show that the energy barrier for water located in the central region coincides with a water dipole reorientation, which can be related to the proton exclusion observed experimentally. In conclusion, our results indicate that UT-B should be considered as a new member of the water channel family.

  9. MEMS-based dynamic cell-to-cell culture platforms using electrochemical surface modifications

    International Nuclear Information System (INIS)

    MEMS-based biological platforms with the capability of both spatial placements and time releases of living cells for cell-to-cell culture experiments have been designed and demonstrated utilizing electrochemical surface modification effects. The spatial placement is accomplished by electrochemical surface modification of substrate surfaces to be either adhesive or non-adhesive for living cells. The time control is achieved by the electrical activation of the selective indium tin oxide co-culture electrode to allow the migration of living cells onto the electrode to start the cell-to-cell culture studies. Prototype devices have a three-electrode design with an electrode size of 50 × 50 µm2 and the separation gaps of 2 µm between them. An electrical voltage of −1.5 V has been used to activate the electrodes independently and sequentially to demonstrate the dynamic cell-to-cell culture experiments of NIH 3T3 fibroblast and Madin Darby canine kidney cells. As such, this MEMS platform could be a basic yet versatile tool to characterize transient cell-to-cell interactions

  10. Dynamic behavior of gasoline fuel cell electric vehicles

    Science.gov (United States)

    Mitchell, William; Bowers, Brian J.; Garnier, Christophe; Boudjemaa, Fabien

    As we begin the 21st century, society is continuing efforts towards finding clean power sources and alternative forms of energy. In the automotive sector, reduction of pollutants and greenhouse gas emissions from the power plant is one of the main objectives of car manufacturers and innovative technologies are under active consideration to achieve this goal. One technology that has been proposed and vigorously pursued in the past decade is the proton exchange membrane (PEM) fuel cell, an electrochemical device that reacts hydrogen with oxygen to produce water, electricity and heat. Since today there is no existing extensive hydrogen infrastructure and no commercially viable hydrogen storage technology for vehicles, there is a continuing debate as to how the hydrogen for these advanced vehicles will be supplied. In order to circumvent the above issues, power systems based on PEM fuel cells can employ an on-board fuel processor that has the ability to convert conventional fuels such as gasoline into hydrogen for the fuel cell. This option could thereby remove the fuel infrastructure and storage issues. However, for these fuel processor/fuel cell vehicles to be commercially successful, issues such as start time and transient response must be addressed. This paper discusses the role of transient response of the fuel processor power plant and how it relates to the battery sizing for a gasoline fuel cell vehicle. In addition, results of fuel processor testing from a current Renault/Nuvera Fuel Cells project are presented to show the progress in transient performance.

  11. Dynamic Cell Formation based on Multi-objective Optimization Model

    Directory of Open Access Journals (Sweden)

    Guozhu Jia

    2013-08-01

    Full Text Available In this paper, a multi-objective model is proposed to address the dynamic cellular manufacturing (DCM formation problem. This model considers four conflicting objectives: relocation cost, machine utilization, material handling cost and maintenance cost. The model also considers the situation that some machines could be shared by more than one cell at the same period. A genetic algorithm is applied to get the solution of this mathematical model. Three numerical examples are simulated to evaluate the validity of this model.  

  12. Dynamics and Synchrony of Pancreatic beta-cells and Islets

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram

    2006-01-01

    biological hypotheses. The subjects addressed are: Quasi-steady-state approximations of enzyme reactions, the effect of noise on bursting electrical behavior, exciation wave propagation in pancreatic islets, intra- and inter-islet synchronization and pulsatile insulin secretion, and mitochondrial dynamics.......Pancreatic beta-cells secrete insulin in response to raised glucose levels. Malfunctioning of this system plays an important role in the metabolic disease diabetes. The biological steps from glucose stimulus to the final release of insulin are incompletely understood, and a more complete...

  13. Analysis of the dynamics of a boiling water nuclear reactor

    International Nuclear Information System (INIS)

    The March-Leuba lineal reduced model is represented mathematically by a differential equations system, which corresponds to the direct transfer function, punctual kinetics approximation, neutron field dynamics, heat transfer in fuels, and channel dynamics approximation that relates the fuel temperature changes to the reactivity changes by vacuums. The model presents significant differences in one of the equation coefficients. The Pade order approximation used for the equation deduction for the channel has a different behavior to the exponential one for long periods of bubble residence. (Author)

  14. Dynamic Enhanced Inter-Cell Interference Coordination for Realistic Networks

    DEFF Research Database (Denmark)

    Pedersen, Klaus I.; Alvarez, Beatriz Soret; Barcos, Sonia;

    2016-01-01

    area. Rather than the classical semi-static and network-wise configuration, the importance of having highly dynamic and distributed mechanisms that are able to adapt to local environment conditions is revealed. We propose two promising cell association algorithms: one aiming at pure load balancing...... user association to offload more users to the picocells. However, its application to realistic irregular deployments opens a number of research questions. In this paper, we investigate the operation of eICIC in a realistic deployment based on three-dimensional data from a dense urban European capital...... and an opportunistic approach exploiting the varying cell conditions. Moreover, an autonomous fast distributed muting algorithm is presented, which is simple, robust, and well suited for irregular network deployments. Performance results for realistic network deployments show that the traditional semi-static e...

  15. Quantitative single cell analysis of cell population dynamics during submandibular salivary gland development and differentiation

    Directory of Open Access Journals (Sweden)

    Deirdre A. Nelson

    2013-04-01

    Epithelial organ morphogenesis involves reciprocal interactions between epithelial and mesenchymal cell types to balance progenitor cell retention and expansion with cell differentiation for evolution of tissue architecture. Underlying submandibular salivary gland branching morphogenesis is the regulated proliferation and differentiation of perhaps several progenitor cell populations, which have not been characterized throughout development, and yet are critical for understanding organ development, regeneration, and disease. Here we applied a serial multiplexed fluorescent immunohistochemistry technology to map the progressive refinement of the epithelial and mesenchymal cell populations throughout development from embryonic day 14 through postnatal day 20. Using computational single cell analysis methods, we simultaneously mapped the evolving temporal and spatial location of epithelial cells expressing subsets of differentiation and progenitor markers throughout salivary gland development. We mapped epithelial cell differentiation markers, including aquaporin 5, PSP, SABPA, and mucin 10 (acinar cells; cytokeratin 7 (ductal cells; and smooth muscle α-actin (myoepithelial cells and epithelial progenitor cell markers, cytokeratin 5 and c-kit. We used pairwise correlation and visual mapping of the cells in multiplexed images to quantify the number of single- and double-positive cells expressing these differentiation and progenitor markers at each developmental stage. We identified smooth muscle α-actin as a putative early myoepithelial progenitor marker that is expressed in cytokeratin 5-negative cells. Additionally, our results reveal dynamic expansion and redistributions of c-kit- and K5-positive progenitor cell populations throughout development and in postnatal glands. The data suggest that there are temporally and spatially discreet progenitor populations that contribute to salivary gland development and homeostasis.

  16. Non-periodic molecular dynamics simulations of coarse grained lipid bilayer in water

    DEFF Research Database (Denmark)

    Kotsalis, E. M.; Hanasaki, I.; Walther, Jens Honore;

    2010-01-01

    We present a multiscale algorithm that couples coarse grained molecular dynamics (CGMD) with continuum solver. The coupling requires the imposition of non-periodic boundary conditions on the coarse grained Molecular Dynamics which, when not properly enforced, may result in spurious fluctuations of...... the material properties of the system represented by CGMD. In this paper we extend a control algorithm originally developed for atomistic simulations [3], to conduct simulations involving coarse grained water molecules without periodic boundary conditions. We demonstrate the applicability of our...... method in simulating more complex systems by performing a non-periodic Molecular Dynamics simulation of a DPPC lipid in liquid coarse grained water....

  17. Dynamic modeling and controllability analysis of an ethanol reformer for fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Vanesa M.; Serra, Maria; Riera, Jordi [Institut de Robotica i Informatica Industrial (CSIC-UPC), Llorens i Artigas 4-6, 08028 Barcelona (Spain); Lopez, Eduardo [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, ed. ETSEIB, 08028 Barcelona (Spain); Planta Piloto de Ingenieria Quimica (CONICET-UNS), Camino de la Carrindanga km7, 8000 Bahia Blanca (Argentina); Llorca, Jordi [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, ed. ETSEIB, 08028 Barcelona (Spain)

    2010-09-15

    This work presents a controllability analysis of a low temperature ethanol reformer based on a cobalt catalyst for fuel cell application. The study is based on a non-linear dynamic model of a reformer which operates in three separate stages: ethanol dehydrogenation to acetaldehyde and hydrogen, acetaldehyde steam reforming, and water-gas-shift reaction. The controllability analysis is focused on the rapid dynamics due to mass balances and is based on a linearization of the complex non-linear model of the reformer. RGA, CN and MRI analysis tools are applied to the linear model suggesting that a good performance can be obtained with decentralized control for frequencies up to 0.1 rad s{sup -1}. (author)

  18. Nutrients and phytoplankton dynamics in the fishing grounds off Tiruchendur coastal waters, Gulf of Mannar, India.

    Science.gov (United States)

    Pitchaikani, J Selvin; Lipton, A P

    2016-01-01

    Nutrients and phytoplankton dynamics in the traditional fishing grounds off Tiruchendur coast, Gulf of Mannar, India revealed a clear seasonal trend influenced by prevailing monsoon system in east coast of India. A total of 73 species of phytoplankton were identified from the fishing grounds, revealed higher abundance in summer months compared to other seasons. Among the three stations, maximum phytoplankton abundance was recorded in station 2 followed by stations 1 and 3. The phytoplankton abundance ranged from 2.85 × 10(4) to 6.34 × 10(4) cells/l, with higher and lower value observed during summer and post monsoon season respectively. Chl-a showed similar seasonal trend with phytoplankton abundance and fluctuated from 0.4 to 6.8 mg/m(3) with high concentrates were recorded during summer. Primary productivity was ranged from 13.8 to 28.7 mg, C/m(2)/day with maximum and minimum during summer and monsoon respectively. It was understood from the study, ammonia could be acting as the limiting nutrient for phytoplankton growth, while the role of nitrate, nitrite, phosphate and silicate remained insignificant. At the time of diatom population proliferates there was a drop in the nutrient levels was observed during the study. The water current flowing from north to south during the northeast monsoon, nutrient rich fresh water discharged from Tamirabarani River influencing the nutrient dynamics in the fishing grounds that are ultimately increasing the nutrients concentration during northeast monsoon. PMID:27610324

  19. Water-oil drainage dynamics in oil-wet random microfluidic porous media analogs

    CERN Document Server

    Xu, Wei; Neeves, Keith; Yin, Xiaolong

    2012-01-01

    Displacement experiments carried out in microfluidic porous media analogs show that reduced surface tension leads to a more stable displacement, opposite to the process in Hele-Shaw cells where surface tension stabilizes the displacement of a more viscous fluid by a less viscous fluid. In addition, geometry of porous media is observed to play an important role. Three random microfluidic porous media analogs were made to study water-oil drainage dynamics, featuring a pattern of randomly connected channels with a uniform width, a pattern with Gaussian channel width distribution, and a pattern with large isolated pores. The microfluidic chips fabricated using Polydimenthylsiloxane with glass covers have the internal surface treated by Trichlorosilane to achieve a uniform oil-wet condition. The aqueous phase displaces the oil phase, with a viscosity ratio of about 1:40 and a density ratio of 1:0.85. Videos 1-3 show water flooding processes. It is observed that both channel size distribution (Video 2) and heteroge...

  20. Molecular dynamics approach to water structure of HII mesophase of monoolein

    Science.gov (United States)

    Kolev, Vesselin; Ivanova, Anela; Madjarova, Galia; Aserin, Abraham; Garti, Nissim

    2012-02-01

    The goal of the present work is to study theoretically the structure of water inside the water cylinder of the inverse hexagonal mesophase (HII) of glyceryl monooleate (monoolein, GMO), using the method of molecular dynamics. To simplify the computational model, a fixed structure of the GMO tube is maintained. The non-standard cylindrical geometry of the system required the development and application of a novel method for obtaining the starting distribution of water molecules. A predictor-corrector schema is employed for generation of the initial density of water. Molecular dynamics calculations are performed at constant volume and temperature (NVT ensemble) with 1D periodic boundary conditions applied. During the simulations the lipid structure is kept fixed, while the dynamics of water is unrestrained. Distribution of hydrogen bonds and density as well as radial distribution of water molecules across the water cylinder show the presence of water structure deep in the cylinder (about 6 Å below the GMO heads). The obtained results may help understanding the role of water structure in the processes of insertion of external molecules inside the GMO/water system. The present work has a semi-quantitative character and it should be considered as the initial stage of more comprehensive future theoretical studies.

  1. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinglong [ORNL; Baudry, Jerome Y [ORNL

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  2. Molecular vibrational dynamics in water studied by femtosecond coherent anti-Stokes Raman spectroscopy

    Science.gov (United States)

    Zhao, Yang; Zhang, Sheng; Zhou, Boyang; Dong, Zhiwei; Chen, Deying; Zhang, Zhonghua; Xia, Yuanqin

    2014-10-01

    We utilized femtosecond time-resolved coherent anti-Stokes Raman spectroscopy (CARS) to study the ultrafast vibrational dynamics in distilled water at room temperature. The CARS signals from the broad OH-stretching modes between 3100 cm-1 and 3700 cm-1 were obtained and analyzed. The dephasing times of four Raman modes in water were detected and compared.

  3. 78 FR 34090 - New Hampshire Water Resources Board, Hydro Dynamics Corporation; Notice of Transfer of Exemption

    Science.gov (United States)

    2013-06-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission New Hampshire Water Resources Board, Hydro Dynamics Corporation; Notice of Transfer of Exemption 1. By letter filed April 16, 2013, New Hampshire Water Resources Board...

  4. PREFACE: Dynamic crossover phenomena in water and other glass-forming liquids Dynamic crossover phenomena in water and other glass-forming liquids

    Science.gov (United States)

    Chen, Sow-Hsin; Baglioni, Piero

    2012-02-01

    This special section has been inspired by the workshop on Dynamic Crossover Phenomena in Water and Other Glass-Forming Liquids, held during November 11-13, 2010 at Pensione Bencistà, Fiesole, Italy, a well-preserved 14th century Italian villa tucked high in the hills overlooking Florence. The meeting, an assembly of world renowned scientists, was organized as a special occasion to celebrate the 75th birthday of Professor Sow-Hsin Chen of MIT, a pioneer in several aspects of complex fluids and soft matter physics. The workshop covered a large variety of experimental and theoretical research topics of current interest related to dynamic crossover phenomena in water and, more generally, in other glass-forming liquids. The 30 invited speakers/lecturers and approximately 60 participants were a select group of prominent physicists and chemists from the USA, Europe, Asia and Mexico, who are actively working in the field. Some highlights of this special issue include the following works. Professor Yamaguchi's group and their collaborators present a neutron spin echo study of the coherent intermediate scattering function of heavy water confined in cylindrical pores of MCM-41-C10 silica material in the temperature range 190-298 K. They clearly show that a fragile-to-strong (FTS) dynamic crossover occurs at about 225 K. They attribute the FTS dynamic crossover to the formation of a tetrahedral-like structure, which is preserved in the bulk-like water confined to the central part of the cylindrical pores. Mamontov and Kolesnikov et al study the collective excitations in an aqueous solution of lithium chloride over a temperature range of 205-270 K using neutron and x-ray Rayleigh-Brillouin (coherent) scattering. They detect both the low-frequency and the high-frequency sounds known to exist in pure bulk water above the melting temperature. They also perform neutron (incoherent) and x-ray (coherent) elastic intensity scan measurements. Clear evidence of the crossover in the

  5. How relevant is the interannual vegetation's dynamic in the water cycle at catchment scale?

    Science.gov (United States)

    Echeverría Martinez, Carlos Antonio; Ruiz-Pérez, Guiomar; Francés, Félix

    2016-04-01

    To effectively analyse a portion of the Earth's surface from a hydrological perspective, it is important to understand that water cycle and vegetation dynamics are strongly connected. Vegetation holds an important role in land surface water balance, in particular considering that vegetation physiology and spatial parameters are dynamic in time. A traditional hydrological model considerates vegetation as a static parameter through years, representing very well observed streamflow. Nowadays, the tendency is to include the vegetation as a state variable. In this way, we obtain a better simulation of both, blue water and green water, as well as the ratio between them. Applying the hydrological distributed model TETIS, this work presents the comparison of considering static vegetation or dynamics vegetation. The study catchment was characterized by a good availability of input data in the analysis period (from 1990 to 2011) and it is mainly covered by forested areas. The selected basin is the upper part of the Turia River, up to the Benageber Reservoir, analyzing if is relevant to use dynamics vegetation instead of static vegetation for the water resources evaluation in semiarid Mediterranean catchments. Both model variations were applied in three different scenarios: a dry year, a normal year and a wet year. In each scenario the model was applied considering both static vegetation and vegetation dynamics. At the catchment scale, considering vegetation as an stationary parameter both, green water and the ratio between blue and green water, were underestimated. Consequently, not considering the vegetation's dynamic in semiarid conditions can produce the underestimation of the amount of green water, which introduces a higher uncertainty in the resulting water balance in present conditions but also in future climate change scenarios.

  6. Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters.

    Science.gov (United States)

    Hugoni, Mylène; Taib, Najwa; Debroas, Didier; Domaizon, Isabelle; Jouan Dufournel, Isabelle; Bronner, Gisèle; Salter, Ian; Agogué, Hélène; Mary, Isabelle; Galand, Pierre E

    2013-04-01

    Marine Archaea are important players among microbial plankton and significantly contribute to biogeochemical cycles, but details regarding their community structure and long-term seasonal activity and dynamics remain largely unexplored. In this study, we monitored the interannual archaeal community composition of abundant and rare biospheres in northwestern Mediterranean Sea surface waters by pyrosequencing 16S rDNA and rRNA. A detailed analysis of the rare biosphere structure showed that the rare archaeal community was composed of three distinct fractions. One contained the rare Archaea that became abundant at different times within the same ecosystem; these cells were typically not dormant, and we hypothesize that they represent a local seed bank that is specific and essential for ecosystem functioning through cycling seasonal environmental conditions. The second fraction contained cells that were uncommon in public databases and not active, consisting of aliens to the studied ecosystem and representing a nonlocal seed bank of potential colonizers. The third fraction contained Archaea that were always rare but actively growing; their affiliation and seasonal dynamics were similar to the abundant microbes and could not be considered a seed bank. We also showed that the major archaeal groups, Thaumarchaeota marine group I and Euryarchaeota group II.B in winter and Euryarchaeota group II.A in summer, contained different ecotypes with varying activities. Our findings suggest that archaeal diversity could be associated with distinct metabolisms or life strategies, and that the rare archaeal biosphere is composed of a complex assortment of organisms with distinct histories that affect their potential for growth.

  7. Complex network analysis of phase dynamics underlying oil-water two-phase flows

    Science.gov (United States)

    Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De

    2016-06-01

    Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows.

  8. Pressure Dependence of the Dynamic Crossover Temperatures in Protein and its Hydration Water

    CERN Document Server

    Chu, Xiang-qiang; Kim, Chansoo; Fratini, Emiliano; Baglioni, Piero; Leao, Juscelino B; Chen, Sow-Hsin

    2008-01-01

    Recently we have shown experimental evidence for a fragile-to-strong dynamic crossover (FSC) phenomenon in hydration water around a globular protein (lysozyme) at ambient pressure. In this letter we show that when applying pressure to the protein-water system, the FSC crossover temperatures in hydration water of lysozyme tracks the similar Widom line emanating from the existence of a liquid-liquid critical point in a 1-D confined water (in MCM-41-S). The mean squared displacements (MSD) of hydrogen atoms in lysozyme and in its hydration water show a sudden change of slopes at the same characteristic temperature, which decreases with an increasing pressure. These results taken together give support of the idea that the dynamic crossover (or so-called glass transition) of the protein is a function of both temperature and pressure, following the FSC of its hydration water.

  9. Analysis and numerical simulation of dynamic effect on rock under high pressure water jet

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-hong; SI Hu; WANG Dan-dan

    2008-01-01

    Based on continuum mechanics and rock dynamics, analyzed the micro-structure damage of rock and the impulsive effect under high pressure water jet and developed the dynamic model. Further, on the assumption of that rock was homogeneous and isotropic, a computational model was established based on nonlinear finite element and Arbitrary Lagrangian-Eulerian(ALE) method. The dynamic effect impacted on rock under high pressure water jet was simulated by the dynamic contact method. The propagation of stress wave in rock was numerically simulated at different impacting velocity. The results show that the propagation velocity of stress wave is proportional to the impacting velocity of high pressure water jet. The faster the impacting velocity is, the quicker the comedown of stress wave.

  10. Dynamics of an electrochemical biosensor for the detection of toxic substances in water

    Science.gov (United States)

    Simon, Laurent; Ospina, Juan

    2016-05-01

    A proposed analytical method focuses on electrolyte transport to the electrode of an electrochemical cell. The recombinant Escherichia coli whole-cell biosensor detects toxicity in water based on a set of biochemical reactors. Previous contributions elucidated the kinetics of product formation and validated a mathematical model for its diffusion in the chamber. This work introduces an approach to investigate the dynamics of the probe using Laplace transforms and an effective time constant. The transfer function between the electrolyte production and the total current revealed a faster response for larger electrode radii. Both the first-order and effective time constants increased with the chamber height and radius. Separation of variables yields closed-form solutions and helps estimate the kinetics of p-aminophenol generation. When the bacteria were exposed to phenol concentrations of 1.6, 8.3 and 16 ppm, the corresponding overall rate constants were 5.11x10-7, 1.13x10-6 and 1.99x10-6 (product concentration unit/s2), respectively. In addition to parameter estimation, the method can be applied to perform sensitivity analysis and aid manufacturers in meeting design specifications of biosensors.

  11. Lipid signalling dynamics at the β-cell plasma membrane.

    Science.gov (United States)

    Wuttke, Anne

    2015-04-01

    Pancreatic β-cells are clustered in islets of Langerhans and secrete insulin in response to increased concentrations of circulating glucose. Insulin in turn acts on liver, muscle and fat tissue to store energy and normalize the blood glucose level. Inappropriate insulin release may lead to impaired glucose tolerance and diabetes. In addition to glucose, other nutrients, neural stimuli and hormonal stimuli control insulin secretion. Many of these signals are perceived at the plasma membrane, which is also the site where insulin granules undergo exocytosis. Therefore, it is not surprising that membrane lipids play an important role in the regulation of insulin secretion. β-cells release insulin in a pulsatile fashion. Signalling lipids integrate the nutrient and neurohormonal inputs to fine-tune, shape and co-ordinate the pulsatility. An important group of signalling lipids are phosphoinositides and their downstream messengers. This MiniReview will discuss new insights into lipid signalling dynamics in β-cells obtained from live-cell imaging experiments with fluorescent translocation biosensors. The plasma membrane concentration of several phosphoinositides and of their downstream messengers changes rapidly upon nutrient or neurohormonal stimulation. Glucose induces the most complex spatio-temporal patterns, typically involving oscillations of messenger concentrations, which sometimes are locally restricted. The tightly controlled levels of lipid messengers can mediate specific binding of downstream effectors to the plasma membrane, contributing to the appropriate regulation of insulin secretion.

  12. Effect of tritiated water on germ cells

    International Nuclear Information System (INIS)

    As part of a study investigating the biological effects of tritiated water (HTO), the relative biological effectiveness (RBE) of HTO was sought by comparison with the results of tritium simulation using Cs-137 and with the results of Co-60 gamma ray and fission neutron (Cf-252) irradiation, using as index the lethal effect on mouse newborn oocytes which are highly sensitive to radiation. As method, HTO was injected into the abdominal cavity of newborn ICR strain mice once on the 14th day after birth in a concentration of 46, 92, 184, or 276 μCi/10 g B.W. and the ovary was removed two weeks later (accumulated dose equivalent to 3.9, 7.7, 15.9, and 24.6 rad, respectively). The survival rates of premature oocytes in serial sections were calculated and compared with the results of tritium simulation using Cs-137 at the same dose rate. The results showed that the number of surviving oocytes decreased exponentially dependent on HTO and Cs-137 dose and gave 1.1 - 3.5 as the RBE of HTO to standard γ ray of Cs-137. As regards the results of irradiation with Co-60 (1 rad/min.) and Cf-252 (1 rad/min.) the lethal effect on oocytes was stronger in the order of Cf-252, HTO, Co-60, and Cs-137, and 1.6 - 2.4 was obtained as the RBE of Cf-252 to standard γ ray of Co-60. (author)

  13. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    Science.gov (United States)

    Stingaciu, Laura-Roxana; O'Neill, Hugh; Liberton, Michelle; Urban, Volker S.; Pakrasi, Himadri B.; Ohl, Michael

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.

  14. Nitrogen Dynamics Variation in Overlying Water of Jinshan Lake, China

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhou

    2015-01-01

    Full Text Available Jinshan Lake is a famous urban landscape lake with approximately 8.8 km2 water area, which is located on the north of Zhenjiang, of Jiangsu Province, China. Eighteen sampled sites were selected and overlying water was sampled from 2013 to 2014 to study the seasonal and spatial variation of nitrogen in overlying water of Jinshan Lake. Results showed that physicochemical characteristics of temperature, pH, and DO showed high seasonal variation, whereas they had no significant spatial differences in the 18 sampling points (P>0.05 in overlying water of Jinshan Lake. Nitrogen concentrations showed strong seasonal variation trends. The ranked order of TN was as follows: spring > summer > autumn > winter; the order of NH4+-N was as follows: spring > autumn > summer > winter, whereas NO3--N concentrations revealed an inverse seasonal pattern, with maxima occurring in winter and minimal values occurring in spring. Nitrogen concentrations had dramatic spatial changes in 18 sampling points of Jinshan Lake. Physicochemical parameter difference, domestic wastes pollution, and rainfall runoff source may have led to seasonal and spatial fluctuation variations of nitrogen in overlying water of Jinshan Lake, China.

  15. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balance

    Directory of Open Access Journals (Sweden)

    G. Tang

    2012-01-01

    Full Text Available Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM, and (ii test the model's performance in simulating actual evapotranspiration (ET, soil moisture and surface runoff for the coterminous United States (US. Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ DGVM instead of dynamically simulating them. We then ran LH using historical (1982–2006 climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p < 0.01 in the Everglades of Florida over the years 1996–2001. The modeled monthly soil moisture for Illinois of the US agrees well (R2 = 0.79, p < 0.01 with the observed over the years 1984–2001. The modeled monthly stream flow for most 12 major rivers in the US is consistent R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficients >0.52 with observed values over the years 1982–2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating

  16. Hoxb1b controls oriented cell division, cell shape and microtubule dynamics in neural tube morphogenesis.

    Science.gov (United States)

    Zigman, Mihaela; Laumann-Lipp, Nico; Titus, Tom; Postlethwait, John; Moens, Cecilia B

    2014-02-01

    Hox genes are classically ascribed to function in patterning the anterior-posterior axis of bilaterian animals; however, their role in directing molecular mechanisms underlying morphogenesis at the cellular level remains largely unstudied. We unveil a non-classical role for the zebrafish hoxb1b gene, which shares ancestral functions with mammalian Hoxa1, in controlling progenitor cell shape and oriented cell division during zebrafish anterior hindbrain neural tube morphogenesis. This is likely distinct from its role in cell fate acquisition and segment boundary formation. We show that, without affecting major components of apico-basal or planar cell polarity, Hoxb1b regulates mitotic spindle rotation during the oriented neural keel symmetric mitoses that are required for normal neural tube lumen formation in the zebrafish. This function correlates with a non-cell-autonomous requirement for Hoxb1b in regulating microtubule plus-end dynamics in progenitor cells in interphase. We propose that Hox genes can influence global tissue morphogenesis by control of microtubule dynamics in individual cells in vivo.

  17. Cell receptor and surface ligand density effects on dynamic states of adhering circulating tumor cells.

    Science.gov (United States)

    Zheng, Xiangjun; Cheung, Luthur Siu-Lun; Schroeder, Joyce A; Jiang, Linan; Zohar, Yitshak

    2011-10-21

    Dynamic states of cancer cells moving under shear flow in an antibody-functionalized microchannel are investigated experimentally and theoretically. The cell motion is analyzed with the aid of a simplified physical model featuring a receptor-coated rigid sphere moving above a solid surface with immobilized ligands. The motion of the sphere is described by the Langevin equation accounting for the hydrodynamic loadings, gravitational force, receptor-ligand bindings, and thermal fluctuations; the receptor-ligand bonds are modeled as linear springs. Depending on the applied shear flow rate, three dynamic states of cell motion have been identified: (i) free motion, (ii) rolling adhesion, and (iii) firm adhesion. Of particular interest is the fraction of captured circulating tumor cells, defined as the capture ratio, via specific receptor-ligand bonds. The cell capture ratio decreases with increasing shear flow rate with a characteristic rate. Based on both experimental and theoretical results, the characteristic flow rate increases monotonically with increasing either cell-receptor or surface-ligand density within certain ranges. Utilizing it as a scaling parameter, flow-rate dependent capture ratios for various cell-surface combinations collapse onto a single curve described by an exponential formula.

  18. Calculation of the coefficient and dynamics of water diffusion in graphite joints

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; LIU Wen-bin

    2006-01-01

    The coefficient and dynamics of water diffusion in adhesive-graphite joints were calculated insitu with energy dispersive X-ray (EDX) analysis, a method that is significantly simpler than elemental analysis. Water diffusion coefficient and dynamics of adhesive-graphite joints treated by different surface treatment methods were also investigated. Calculation results indicated that the water diffusion rate in adhesive-graphite joints treated by sandpaper was higher than that treated by chemical oxidation or by silane couple agent. Also the durability of graphite joints treated by coupling agent is superior to that treated by chemical oxidation or sandpaper burnishing.

  19. Water Collective Dynamics in Whole Photosynthetic Green Algae as Affected by Protein Single Mutation.

    Science.gov (United States)

    Russo, Daniela; Rea, Giuseppina; Lambreva, Maya D; Haertlein, Michael; Moulin, Martine; De Francesco, Alessio; Campi, Gaetano

    2016-07-01

    In the context of the importance of water molecules for protein function/dynamics relationship, the role of water collective dynamics in Chlamydomonas green algae carrying both native and mutated photosynthetic proteins has been investigated by neutron Brillouin scattering spectroscopy. Results show that single point genetic mutation may notably affect collective density fluctuations in hydrating water providing important insight on the transmission of information possibly correlated to biological functionality. In particular, we highlight that the damping factor of the excitations is larger in the native compared to the mutant algae as a signature of a different plasticity and structure of the hydrogen bond network. PMID:27300078

  20. Molecular dynamics simulation studies on some topics of water molecules on hydrophobic surfaces

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Molecular dynamics simulations have been used to study two topics of water molecules on hydrophobic surfaces. Some properties of the nanobubbles with different ingredients and behavior of single water chains in single-walled carbon nanochannels are exploited. Molecular simulations show that the density of the N2 and H2 are quite high, which is critical for the stability of the nanobubbles and may have potential applications, such as hydrogen storage, incorporated with recent experimental method to controllably produce hydrogen nanobubbles. The water molecules inside the nanochannel show an unexpected directed motion with long time period, which is indispensable in the future study of the dynamics of biological channels.

  1. Hydration of methanol in water. A DFT-based molecular dynamics study

    CERN Document Server

    Van Erp, T S; Erp, Titus S. van; Meijer, Evert Jan

    2000-01-01

    We studied the hydration of a single methanol molecule in aqueous solution by first-principle DFT-based molecular dynamics simulation. The calculations show that the local structural and short-time dynamical properties of the water molecules remain almost unchanged by the presence of the methanol, confirming the observation from recent experimental structural data for dilute solutions. We also see, in accordance with this experimental work, a distinct shell of water molecules that consists of about 15 molecules. We found no evidence for a strong tangential ordering of the water molecules in the first hydration shell.

  2. Static and dynamic length scales in supercooled liquids: insights from molecular dynamics simulations of water and tri-propylene oxide.

    Science.gov (United States)

    Klameth, F; Henritzi, P; Vogel, M

    2014-04-14

    We perform molecular dynamics simulations to study static and dynamic length scales in molecular supercooled liquids, in particular, water. For a determination of these scales, we use equilibrium configurations and pin appropriate subsets of molecules so as to obtain random matrices, cylindrical pores, and slit confinements. Static length scales ξ(s) are determined by analyzing overlap correlation functions for various fractions of pinned molecules or distances to the confining walls. For water in all confinements and for propylene oxide trimers in random geometry, a linear increase of ξ(s) with inverse temperature is found. Dynamic length scales ξ(d) are determined by analogous analysis of fraction-dependent or position-resolved correlation times of structural relaxation. While ξ(d) continuously grows upon cooling in the cylindrical and slit confinements, we find no evidence for a temperature dependence in random matrices, implying that molecular dynamics in parsed volumes is qualitatively different from that in bulk liquids. Finally, we study possible connections between the growth of the static and dynamic length scales and the slowdown of the structural relaxation of the supercooled bulk liquids. For water, we observe a linear relation between ln τ(α) and ξ(s)²/T in the whole accessible range down to the critical temperature of mode-coupling theory, T(c). In the weakly supercooled regime, the same relation holds also for ξ(d), as obtained from cylindrical and slit confinements, but deviations from this behavior are observed near T(c). The results are discussed in connection with random first-order theory and experimental studies of liquid dynamics in nanoscopic confinements and binary mixtures.

  3. Dynamic modeling of a photovoltaic hydrogen fuel cell hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J.J.; Lai, L.K. [Department of Greenergy, National University of Tainan, Tainan 700 (China); Wu, W. [Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 640 (China); Chang, W.R. [Department of Landscape Architecture, Fu Jen Catholic University, Taipei 242 (China)

    2009-12-15

    The objective of this paper is to mathematically model a stand-alone renewable power system, referred to as ''Photovoltaic-Fuel Cell (PVFC) hybrid system'', which maximizes the use of a renewable energy source. It comprises a photovoltaic generator (PV), a water electrolyzer, a hydrogen tank, and a proton exchange membrane (PEM) fuel cell generator. A multi-domain simulation platform Simplorer is employed to model the PVFC hybrid systems. Electrical power from the PV generator meets the user loads when there is sufficient solar radiation. The excess power from the PV generator is then used for water electrolysis to produce hydrogen. The fuel cell generator works as a backup generator to supplement the load demands when the PV energy is deficient during a period of low solar radiation, which keeps the system's reliability at the same level as for the conventional system. Case studies using the present model have shown that the present hybrid system has successfully tracked the daily power consumption in a typical family. It also verifies the effectiveness of the proposed management approach for operation of a stand-alone hybrid system, which is essential for determining a control strategy to ensure efficient and reliable operation of each part of the hybrid system. The present model scheme can be helpful in the design and performance analysis of a complex hybrid-power system prior to practical realization. (author)

  4. Water Scarcity in South Asia: A Dynamic Computable General Equilibrium Analysis

    OpenAIRE

    Narayanan, Badri G.; Taheripour, Farzad; Hertel, Thomas W.; Sahin, Sebnem; Escurra, Jorge J.

    2015-01-01

    The economy of South Asia faces serious challenges in water availability, which are expected to aggravate over the coming decades. In this context, we assess the long-run economy-wide impact of potential water scarcity in South Asia within a global context. This paper uses a dynamic Computable General Equilibrium (CGE) model, in tandem with an advanced comparative static CGE model, to examine the differences in economic growth possibilities in South Asia with and without water scarcity. Alter...

  5. Effects of hydrogen bonding on supercooled liquid dynamics and the implications for supercooled water

    OpenAIRE

    Mattsson, Johan; Bergman, Rikard; Jacobsson, Per; Börjesson, Lars

    2008-01-01

    The supercooled state of bulk water is largely hidden by unavoidable crystallization, which creates an experimentally inaccessible temperature regime - a 'no man's land'. We address this and circumvent the crystallization problem by systematically studying the supercooled dynamics of hydrogen bonded oligomeric liquids (glycols), where water corresponds to the chain-ends alone. This novel approach permits a 'dilution of water' by altering the hydrogen bond concentration via variations in chain...

  6. Sox17-Mediated XEN Cell Conversion Identifies Dynamic Networks Controlling Cell-Fate Decisions in Embryo-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Angela C.H. McDonald

    2014-10-01

    Full Text Available Little is known about the gene regulatory networks (GRNs distinguishing extraembryonic endoderm (ExEn stem (XEN cells from those that maintain the extensively characterized embryonic stem cell (ESC. An intriguing network candidate is Sox17, an essential transcription factor for XEN derivation and self-renewal. Here, we show that forced Sox17 expression drives ESCs toward ExEn, generating XEN cells that contribute to ExEn when placed back into early mouse embryos. Transient Sox17 expression is sufficient to drive this fate change during which time cells transit through distinct intermediate states prior to the generation of functional XEN-like cells. To orchestrate this conversion process, Sox17 acts in autoregulatory and feedforward network motifs, regulating dynamic GRNs directing cell fate. Sox17-mediated XEN conversion helps to explain the regulation of cell-fate changes and reveals GRNs regulating lineage decisions in the mouse embryo.

  7. In-situ measurement of the height of condensed water in steam pipes with dynamic flow

    Science.gov (United States)

    Lih, Shyh-Shiuh; Lee, Hyeong Jae; Bar-Cohen, Yoseph

    2016-04-01

    A method based on the use of enhanced filtered Hilbert envelope of the wave signal was developed in order to monitor the height of condensed water through the wall of steam pipes having dynamic flow conditions. A prototype testbed was designed and fabricated in this study to simulate the dynamic flow conditions including the air stream flowing above the water and bubble induced disturbance. A dual-transducer was used to perform the test as a basis for the multiple transducers system to facilitate the detectability and reliability for long term monitoring of the condensed water height in dynamic conditions. The results demonstrated that the method of measuring the water height using multiple-transducer system employing the developed novel signal processing technique is an efficient and accurate tool for practical applications.

  8. Molecular dynamics modeling of a nanomaterials-water surface interaction

    Science.gov (United States)

    Nejat Pishkenari, Hossein; Keramati, Ramtin; Abdi, Ahmad; Minary-Jolandan, Majid

    2016-04-01

    In this article, we study the formation of nanomeniscus around a nanoneedle using molecular dynamics simulation approach. The results reveal three distinct phases in the time-evolution of meniscus before equilibrium according to the contact angle, meniscus height, and potential energy. In addition, we investigated the correlation between the nanoneedle diameter and nanomeniscus characteristics. The results have applications in various fields such as scanning probe microscopy and rheological measurements.

  9. Soil structure dynamics: Effects of management and water content

    OpenAIRE

    Munkholm, Lars J; Schjønning, Per; Elmholt, Susanne

    2002-01-01

    A review is given of the last 5 years research on soil structure dynamics carried out at the Danish Institute of Agricultural Sciences. The studies were initiated as part of a large programme focussing on the development of organic farming in Denmark. In organic farming a healthy and living soil is highly valued. Holistic thinking is also a key element in the organic farming concept. In order to integrate a holistic thinking in our soil structure research a multidisciplinary approach was adap...

  10. Uncertainty Analysis of Phytoplankton Dynamics in Coastal Waters

    OpenAIRE

    Niu, L.

    2015-01-01

    There is an increasing concern about the interactions between phytoplankton and coastal ecosystems, especially on the negative effects from coastal eutrophication and phytoplankton blooms. As the key indicator of the coastal ecosystem, phytoplankton plays an important role in the whole impact-effect chain. Primary production by phytoplankton forms the basic link in the food-chain. A lot of effort has been paid to the investigation of phytoplankton dynamics on the basis of literature surveys, ...

  11. Single-particle dynamics of hydration water in protein

    International Nuclear Information System (INIS)

    Incoherent quasi-elastic and inelastic neutron scattering studies of in vivo deuterated C-phycocyanin have been made. At full hydration the high-temperature data can be interpreted using a model where each water molecule is diffusing in a confined space of 3 A in radius. The excess elastic intensity at large Q indicates that a relatively low fraction of a water molecules attached to the immediate vicinity of the protein surface is immobile, in agreement with computer simulation. The translational and librational density of states show slight up-shifts from the corresponding bulk cases. (orig.)

  12. Single-particle dynamics of hydration water in protein

    Energy Technology Data Exchange (ETDEWEB)

    Bellissent-Funel, M.C.; Teixeira, J. (Lab. Leon Brillouin (CEA-CNRS), CEN-Saclay, 91 - Gif-sur-Yvette (France)); Bradley, K.F.; Chen, S.H. (Nuclear Engineering Dept., M.I.T., Cambridge, MA (United States)); Crespi, H.L. (Chemistry Div., Argonne National Lab., IL (United States))

    1992-06-01

    Incoherent quasi-elastic and inelastic neutron scattering studies of in vivo deuterated C-phycocyanin have been made. At full hydration the high-temperature data can be interpreted using a model where each water molecule is diffusing in a confined space of 3 A in radius. The excess elastic intensity at large Q indicates that a relatively low fraction of a water molecules attached to the immediate vicinity of the protein surface is immobile, in agreement with computer simulation. The translational and librational density of states show slight up-shifts from the corresponding bulk cases. (orig.).

  13. Short-term water consumption dynamics in El Paso, Texas

    Science.gov (United States)

    Fullerton, Thomas M.; ElíAs, Arturo

    2004-08-01

    Time series analysis of water consumption patterns has been the subject of increasing attention in recent years. For many municipalities such efforts offer a means for developing potentially useful planning tools. Because data requirements are not extensive, model development is feasible for markets where information is limited. The work at hand examines the applicability of such a tool in El Paso, Texas, a growing metropolitan economy located in a semiarid region. Sample data are from January 1994 through December 2002. In addition to estimating a linear transfer function equation of water consumption in this city the model is subjected to a series of simulation benchmark tests.

  14. Self-Regulating Water-Separator System for Fuel Cells

    Science.gov (United States)

    Vasquez, Arturo; McCurdy, Kerri; Bradley, Karla F.

    2007-01-01

    proposed system would perform multiple coordinated functions in regulating the pressure of the oxidant gas (usually, pure oxygen) flowing to a fuelcell stack and in removing excess product water that is generated in the normal fuel-cell operation. The system could function in the presence or absence of gravitation, and in any orientation in a gravitational field. Unlike some prior systems for removing product water, the proposed system would not depend on hydrophobicity or hydrophilicity of surfaces that are subject to fouling and, consequently, to gradual deterioration in performance. Also unlike some prior systems, the proposed system would not include actively controlled electric motors for pumping; instead, motive power for separation and pumping away of product water would be derived primarily from the oxidant flow and perhaps secondarily from the fuel flow. The net effect of these and other features would be to make the proposed system more reliable and safer, relative to the prior systems. The proposed system (see figure) would include a pressure regulator and sensor in the oxidant supply just upstream from an ejector reactant pump. The pressure of the oxidant supply would depend on the consumption flow. In one of two control subsystems, the pressure of oxidant flowing from the supply to the ejector would be sensed and used to control the speed of a set of a reciprocating constant-displacement pump so that the volumetric flow of nominally incompressible water away from the system would slightly exceed the rate at which water was produced by the fuel cell(s). The two-phase (gas/liquid water) outlet stream from the fuel cell(s) would enter the water separator, a turbinelike centrifugal separator machine driven primarily by the oxidant gas stream. A second control subsystem would utilize feedback derived from the compressibility of the outlet stream: As the separator was emptied of liquid water, the compressibility of the pumped stream would increase. The

  15. Dynamics of depletion and replenishment of water storage in stem and roots of black spruce measured by dendrometers

    Directory of Open Access Journals (Sweden)

    Audrey eTurcotte

    2011-06-01

    Full Text Available In the short term, trees rely on the internal storage of water because it affects their ability to sustain photosynthesis and growth. However, water is not rapidly available for transpiration from all the compartments of the plant and the living tissues of the stem act as a buffer to preclude low water potentials during peaks of transpiration. In this paper, electronic dendrometers were used from mid-June to mid-September 2008 to compare the radius variations in stem and roots of black spruce [Picea mariana (Mill. B.S.P.] in two sites of the boreal forest of Quebec, Canada, with different soil characteristics and water retention. The duration of the daily cycles was similar between sites and measurement heights but greater amplitudes of contraction and expansion were observed on the stem and in the site with the shallowest soil organic layer. The expansion phase had higher amplitudes and lasted longer than contraction. On average, the contraction phase occurred between 07:00 and 16:30 (legal time, while expansion lasted 14.5 h. The roots in the site with the deepest organic layer showed a wider variation in the onset of contraction, which could be as late as 13:00. The probability of observing the contraction phase depended on precipitation. With a precipitation <0.5 mm h-1, the bivariate posterior probabilities estimated >60% probability of observing contraction between 05:00 and 21:00, decreasing to 20% with precipitation >1.1 mm h-1. These findings demonstrated that the depth of the organic layer plays an important role in maintaining the internal water reserve of trees. The dynamics of water depletion and replenishment can modify the water potential of xylem and cell turgor during the enlargement phase, thus affecting radial growth. Changes in temperature and precipitation regime could influence the dynamics of internal water storage in trees growing on shallower and drier soils.

  16. Dynamics of Depletion and Replenishment of Water Storage in Stem and Roots of Black Spruce Measured by Dendrometers

    Science.gov (United States)

    Turcotte, Audrey; Rossi, Sergio; Deslauriers, Annie; Krause, Cornelia; Morin, Hubert

    2011-01-01

    In the short term, trees rely on the internal storage of water because it affects their ability to sustain photosynthesis and growth. However, water is not rapidly available for transpiration from all the compartments of the plant and the living tissues of the stem act as a buffer to preclude low water potentials during peaks of transpiration. In this paper, electronic dendrometers were used from mid-June to mid-September 2008 to compare the radius variations in stem and roots of black spruce [Picea mariana (Mill.) B.S.P.] in two sites of the boreal forest of Quebec, Canada, with different soil characteristics and water retention. The duration of the daily cycles was similar between sites and measurement heights but greater amplitudes of contraction and expansion were observed on the stem and in the site with the shallowest soil organic layer. The expansion phase had higher amplitudes and lasted longer than contraction. On average, the contraction phase occurred between 07:00 and 16:30 (legal time), while expansion lasted 14.5 h. The roots in the site with the deepest organic layer showed a wider variation in the onset of contraction, which could be as late as 13:00. The probability of observing the contraction phase depended on precipitation. With a precipitation 60% probability of observing contraction between 05:00 and 21:00, decreasing to 20% with precipitation >1.1 mm h−1. These findings demonstrated that the depth of the organic layer plays an important role in maintaining the internal water reserve of trees. The dynamics of water depletion and replenishment can modify the water potential of xylem and cell turgor during the enlargement phase, thus affecting radial growth. Changes in temperature and precipitation regime could influence the dynamics of internal water storage in trees growing on shallower and drier soils. PMID:22639583

  17. Characterizing dynamic hysteresis and fractal statistics of chaotic two-phase flow and application to fuel cells

    Science.gov (United States)

    Burkholder, Michael B.; Litster, Shawn

    2016-05-01

    In this study, we analyze the stability of two-phase flow regimes and their transitions using chaotic and fractal statistics, and we report new measurements of dynamic two-phase pressure drop hysteresis that is related to flow regime stability and channel water content. Two-phase flow dynamics are relevant to a variety of real-world systems, and quantifying transient two-phase flow phenomena is important for efficient design. We recorded two-phase (air and water) pressure drops and flow images in a microchannel under both steady and transient conditions. Using Lyapunov exponents and Hurst exponents to characterize the steady-state pressure fluctuations, we develop a new, measurable regime identification criteria based on the dynamic stability of the two-phase pressure signal. We also applied a new experimental technique by continuously cycling the air flow rate to study dynamic hysteresis in two-phase pressure drops, which is separate from steady-state hysteresis and can be used to understand two-phase flow development time scales. Using recorded images of the two-phase flow, we show that the capacitive dynamic hysteresis is related to channel water content and flow regime stability. The mixed-wettability microchannel and in-channel water introduction used in this study simulate a polymer electrolyte fuel cell cathode air flow channel.

  18. Semiquantum molecular dynamics simulation of liquid water by time-dependent Hartree approach.

    Science.gov (United States)

    Kim, Hyeon-Deuk; Ando, Koji

    2009-08-14

    Semiquantum liquid water molecular dynamics simulation was developed using the time-dependent Hartree approach. The classical intra- and intermolecular potential functions of water were extended to describe the wave packet (WP) hydrogen atoms. The equations of motion with an extended phase space including auxiliary coordinates and momenta representing the hydrogen WP widths were derived and solved. The molecular dynamics simulation of semiquantum water demonstrated that the semiquantum hydrogen atoms make the liquid water less structured and the hydrogen bonds weakened. The poor structurization in liquid water was inferred from the increased mobility of a water molecule and the redshift of OH stretching frequency. The zero-point energy introduced by the semiquantum hydrogens enhances the anharmonic potential effects and contributes to the redshifted OH stretching vibration. We found a significant peak around 4400 cm(-1) in the absorption spectrum resulting from the energy exchange between the WP width dynamics and the coupling of the OH stretching mode and the rotational motion of each water. We proposed that a liquid free energy landscape is smoothed due to semiquantum hydrogen atoms, and influences the liquid structure and dynamics. PMID:19691391

  19. Characterization of dynamic change of Fan-delta reservoir properties in water-drive development

    Energy Technology Data Exchange (ETDEWEB)

    Wu Shenghe; Xiong Qihua; Liu Yuhong [Univ. of Petroleum Changping, Beijing (China)

    1997-08-01

    Fan-delta reservoir in Huzhuangji oil field of east China, is a typical highly heterogeneous reservoir. The oil field has been developed by water-drive for 10 years, but the oil recovery is less than 12%, and water cut is over 90%, resulting from high heterogeneity and serious dynamic change of reservoir properties. This paper aims at the study of dynamic change of reservoir properties in water-drive development. Through quantitative imaging analysis and mercury injection analysis of cores from inspection wells, the dynamic change of reservoir pore structure in water-drive development was studied. The results show that the {open_quotes}large pore channels{close_quotes} develop in distributary channel sandstone and become larger in water-drive development, resulting in more serious pore heterogeneity. Through reservoir sensitivity experiments, the rock-fluid reaction in water-drive development is studied. The results show the permeability of some distal bar sandstone and deserted channel sandstone becomes lower due to swelling of I/S clay minerals in pore throats. OD the other hand, the permeability of distributary channel and mouth bar sandstone become larger because the authigenic Koalinites in pore throats are flushed away with the increase of flow rate of injection water. Well-logging analysis of flooded reservoirs are used to study the dynamic change of reservoir properties in various flow units. The distribution of remaining oil is closely related to the types and distribution of flow units.

  20. Molecular Dynamics Simulations of Water Nanodroplets on Silica Surfaces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    2009-01-01

    Wetting is essential and ubiquitous in a variety of natural and technological processes.1,2,3 Silicon dioxides-water systems are abundant in nature and play fundamental roles in a vast variety of novel science and engineering activities such as silicon based devices, nanoscale lab on a chip syste...

  1. Several Dynamical Properties for a Nonlinear Shallow Water Equation

    Directory of Open Access Journals (Sweden)

    Ls Yong

    2014-01-01

    Full Text Available A nonlinear third order dispersive shallow water equation including the Degasperis-Procesi model is investigated. The existence of weak solutions for the equation is proved in the space L1(R∩BV (R under certain assumptions. The Oleinik type estimate and L2N(R  (N is a natural number estimate for the solution are obtained.

  2. Water dynamics in fresh and frozen yeasted dough.

    Science.gov (United States)

    Loveday, Simon M; Huang, Victor T; Reid, David S; Winger, Ray J

    2012-01-01

    Water is an integral part of wheat flour dough-the amount, physical state, and location of water are crucial to the formation of a dough that will hold gas and produce an open, aerated crumb structure in the final product. This has been understood for centuries by craft bakers, who were highly attuned to the "feel" of dough in their hands. In the 20th century, empirical instruments were invented that simulated part of the breadmaking process, and their limited predictive capacity made them valuable quality control tools. During the latter decades of the 20th century the cost and availability of advanced instrumental methods for characterizing foods improved dramatically, and facilitated a "fundamental science" approach to food research. The physicochemical mechanisms by which water exerts such a strong influence on the character of dough are now better understood. This review contrasts the empirical and fundamental view points, and summarizes recent knowledge about the roles of water in the manufacture of fresh and frozen yeasted dough. PMID:22369259

  3. Mitochondrial dynamics and cell death in heart failure.

    Science.gov (United States)

    Marín-García, José; Akhmedov, Alexander T

    2016-03-01

    The highly regulated processes of mitochondrial fusion (joining), fission (division) and trafficking, collectively called mitochondrial dynamics, determine cell-type specific morphology, intracellular distribution and activity of these critical organelles. Mitochondria are critical for cardiac function, while their structural and functional abnormalities contribute to several common cardiovascular diseases, including heart failure (HF). The tightly balanced mitochondrial fusion and fission determine number, morphology and activity of these multifunctional organelles. Although the intracellular architecture of mature cardiomyocytes greatly restricts mitochondrial dynamics, this process occurs in the adult human heart. Fusion and fission modulate multiple mitochondrial functions, ranging from energy and reactive oxygen species production to Ca(2+) homeostasis and cell death, allowing the heart to respond properly to body demands. Tightly controlled balance between fusion and fission is of utmost importance in the high energy-demanding cardiomyocytes. A shift toward fission leads to mitochondrial fragmentation, while a shift toward fusion results in the formation of enlarged mitochondria and in the fusion of damaged mitochondria with healthy organelles. Mfn1, Mfn2 and OPA1 constitute the core machinery promoting mitochondrial fusion, whereas Drp1, Fis1, Mff and MiD49/51 are the core components of fission machinery. Growing evidence suggests that fusion/fission factors in adult cardiomyocytes play essential noncanonical roles in cardiac development, Ca(2+) signaling, mitochondrial quality control and cell death. Impairment of this complex circuit causes cardiomyocyte dysfunction and death contributing to heart injury culminating in HF. Pharmacological targeting of components of this intricate network may be a novel therapeutic modality for HF treatment. PMID:26872674

  4. Resting stage cells of diatoms in deep waters in Kumano-

    OpenAIRE

    AKIRA, ISHIKAWA; Shingo, Kitami; Ken-Ichiro, Ishii; Toru, NAKAMURA; ICHIRO, IMAI

    2011-01-01

    The abundance and species composition of viable resting stage cells of diatoms were investigated in deep waters (200,500 and 1,000 m depths) collected at neighboring stations in Kumano-Nada, central part of Japan, in April, August and October 2006. Viable resting stage cells were enumerated by the modified extinction dilution method [most probable number (MPN) method] based on incubation. Resting stage cells were detected from all samples, except at 500 m depth in August, in a range of abunda...

  5. Root responses to soil physical conditions; growth dynamics from field to cell.

    Science.gov (United States)

    Bengough, A Glyn; Bransby, M Fraser; Hans, Joachim; McKenna, Stephen J; Roberts, Tim J; Valentine, Tracy A

    2006-01-01

    Root growth in the field is often slowed by a combination of soil physical stresses, including mechanical impedance, water stress, and oxygen deficiency. The stresses operating may vary continually, depending on the location of the root in the soil profile, the prevailing soil water conditions, and the degree to which the soil has been compacted. The dynamics of root growth responses are considered in this paper, together with the cellular responses that underlie them. Certain root responses facilitate elongation in hard soil, for example, increased sloughing of border cells and exudation from the root cap decreases friction; and thickening of the root relieves stress in front of the root apex and decreases buckling. Whole root systems may also grow preferentially in loose versus dense soil, but this response depends on genotype and the spatial arrangement of loose and compact soil with respect to the main root axes. Decreased root elongation is often accompanied by a decrease in both cell flux and axial cell extension, and recent computer-based models are increasing our understanding of these processes. In the case of mechanical impedance, large changes in cell shape occur, giving rise to shorter fatter cells. There is still uncertainty about many aspects of this response, including the changes in cell walls that control axial versus radial extension, and the degree to which the epidermis, cortex, and stele control root elongation. Optical flow techniques enable tracking of root surfaces with time to yield estimates of two-dimensional velocity fields. It is demonstrated that these techniques can be applied successfully to time-lapse sequences of confocal microscope images of living roots, in order to determine velocity fields and strain rates of groups of cells. In combination with new molecular approaches this provides a promising way of investigating and modelling the mechanisms controlling growth perturbations in response to environmental stresses.

  6. Replicator Dynamics of of Cancer Stem Cell; Selection in the Presence of Differentiation and Plasticity

    OpenAIRE

    Kaveh, Kamran; Kohandel, Mohammad; Sivaloganathan, Siv

    2014-01-01

    Stem cells have the potential to produce lineages of non-stem cell populations (differentiated cells) via a ubiquitous hierarchal division scheme. Differentiation of a stem cell into (partially) differentiated cells can happen either symmetrically or asymmetrically. The selection dynamics of a mutant cancer stem cell should be investigated in the light of a stem cell proliferation hierarchy and presence of a non-stem cell population. By constructing a three-compartment Moran-type model compos...

  7. Influence of decenylsuccinic Acid on water permeability of plant cells.

    Science.gov (United States)

    Lee, O Y; Stadelmann, E J; Weiser, C J

    1972-11-01

    Decenylsuccinic acid altered permeability to water of epidermal cells of bulb scales of Allium cepa and of the leaf midrib of Rhoeo discolor. Water permeability, as determined by deplasmolysis time measurements, was related to the dose of undissociated decenylsuccinic acid (mm undissociated decenylsuccinic acid x minute). No relationship was found between permeability and total dose of decenylsuccinic acid, or dose of dissociated decenylsuccinic acid, suggesting that the undissociated molecule was the active factor in permeability changes and injury.At doses which did not damage cells (0.0008 to 0.6 [mm of the undissociated molecule x minute]) decenylsuccinic acid decreased water permeability. At higher doses (e.g., 4 to 8 [mm x minute]) injury to cells was common and decenylsuccinic acid increased permeability. Doses above the 10 to 20 (mm x minute) range were generally lethal. The plasmolysis form of uninjured cells was altered and protoplasmic swelling occasionally was observed. The dose-dependent reversal of water permeability changes (decreased to increased permeability) may reflect decenylsuccinic acid-induced changes in membrane structure. Reported effects of decenylsuccinic acid on temperature dependence of permeability and frost resistance were not verified. PMID:16658227

  8. Dynamic Thermal Model And Control Of A Pem Fuel Cell System

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh

    2013-01-01

    A lumped parameter dynamic model is developed for predicting the stack performance, temperatures of the exit reactant gases and coolant liquid outlet in a proton-exchange membrane fuel cell (PEMFC) system. The air compressor, humidifier and cooling heat exchanger models are integrated to study...... the fuel cell system. A PID temperature control is implemented to study the effect of stack temperature on settling times of other variables such as stack voltage, air flow rate, oxygen excess ratio and net power of the stack. The model allows an assessment of the effect of operating parameters (stack...... power output, cooling water flow rate, air flow rate, and environmental temperature) and parameter interactions on the system thermal performance. The model represents a useful tool to determine the operating temperatures of the various components of the thermal system, and thus to fully assess...

  9. Dynamical modeling of the cell cycle and cell fate emergence in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    César Quiñones-Valles

    Full Text Available The division of Caulobacter crescentus, a model organism for studying cell cycle and differentiation in bacteria, generates two cell types: swarmer and stalked. To complete its cycle, C. crescentus must first differentiate from the swarmer to the stalked phenotype. An important regulator involved in this process is CtrA, which operates in a gene regulatory network and coordinates many of the interactions associated to the generation of cellular asymmetry. Gaining insight into how such a differentiation phenomenon arises and how network components interact to bring about cellular behavior and function demands mathematical models and simulations. In this work, we present a dynamical model based on a generalization of the Boolean abstraction of gene expression for a minimal network controlling the cell cycle and asymmetric cell division in C. crescentus. This network was constructed from data obtained from an exhaustive search in the literature. The results of the simulations based on our model show a cyclic attractor whose configurations can be made to correspond with the current knowledge of the activity of the regulators participating in the gene network during the cell cycle. Additionally, we found two point attractors that can be interpreted in terms of the network configurations directing the two cell types. The entire network is shown to be operating close to the critical regime, which means that it is robust enough to perturbations on dynamics of the network, but adaptable to environmental changes.

  10. Dynamical modeling of the cell cycle and cell fate emergence in Caulobacter crescentus.

    Science.gov (United States)

    Quiñones-Valles, César; Sánchez-Osorio, Ismael; Martínez-Antonio, Agustino

    2014-01-01

    The division of Caulobacter crescentus, a model organism for studying cell cycle and differentiation in bacteria, generates two cell types: swarmer and stalked. To complete its cycle, C. crescentus must first differentiate from the swarmer to the stalked phenotype. An important regulator involved in this process is CtrA, which operates in a gene regulatory network and coordinates many of the interactions associated to the generation of cellular asymmetry. Gaining insight into how such a differentiation phenomenon arises and how network components interact to bring about cellular behavior and function demands mathematical models and simulations. In this work, we present a dynamical model based on a generalization of the Boolean abstraction of gene expression for a minimal network controlling the cell cycle and asymmetric cell division in C. crescentus. This network was constructed from data obtained from an exhaustive search in the literature. The results of the simulations based on our model show a cyclic attractor whose configurations can be made to correspond with the current knowledge of the activity of the regulators participating in the gene network during the cell cycle. Additionally, we found two point attractors that can be interpreted in terms of the network configurations directing the two cell types. The entire network is shown to be operating close to the critical regime, which means that it is robust enough to perturbations on dynamics of the network, but adaptable to environmental changes.

  11. Water Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    Science.gov (United States)

    Qin, C.; Hassanizadeh, S. M.

    2015-12-01

    In this work, a recently developed dynamic pore-network model is presented [1]. The model explicitly solves for both water pressure and capillary pressure. A semi-implicit scheme is used in updating water saturation in each pore body, which considerably increases the numerical stability at low capillary number values. Furthermore, a multiple-time-step algorithm is introduced to reduce the computational effort. A number of case studies of water transport in the micro porous layer (MPL) and gas diffusion layer (GDL) are conducted. We illustrate the role of MPL in reducing water flooding in the GDL. Also, the dynamic water transport through the MPL-GDL interface is explored in detail. This information is essential to the reduced continua model (RCM), which was developed for multiphase flow through thin porous layers [2, 3]. C.Z. Qin, Water transport in the gas diffusion layer of a polymer electrolyte fuel cell: dynamic pore-network modeling, J Electrochimical. Soci., 162, F1036-F1046, 2015. C.Z. Qin and S.M. Hassanizadeh, Multiphase flow through multilayers of thin porous media: general balance equations and constitutive relationships for a solid-gas-liquid three-phase system, Int. J. Heat Mass Transfer, 70, 693-708, 2014. C.Z. Qin and S.M. Hassanizadeh, A new approach to modeling water flooding in a polymer electrolyte fuel cell, Int. J. Hydrogen Energy, 40, 3348-3358, 2015.

  12. Dynamics of two-dimensional monolayer water confined in hydrophobic and charged environments.

    Science.gov (United States)

    Kumar, Pradeep; Han, Sungho

    2012-09-21

    We perform molecular dynamics simulations to study the effect of charged surfaces on the intermediate and long time dynamics of water in nanoconfinements. Here, we use the transferable interaction potential with five points (TIP5P) model of a water molecule confined in both hydrophobic and charged surfaces. For a single molecular layer of water between the surfaces, we find that the temperature dependence of the lateral diffusion constant of water up to very high temperatures remains Arrhenius with a high activation energy. In case of charged surfaces, however, the dynamics of water in the intermediate time regime is drastically modified presumably due to the transient coupling of dipoles of water molecules with electric field fluctuations induced by charges on the confining surfaces. Specifically, the lateral mean square displacements display a distinct super-diffusive behavior at intermediate time scale, defined as the time scale between ballistic and diffusive regimes. This change in the intermediate time-scale dynamics in the charged confinement leads to the enhancement of long-time dynamics as reflected in increasing diffusion constant. We introduce a simple model for a possible explanation of the super-diffusive behavior and find it to be in good agreement with our simulation results. Furthermore, we find that confinement and the surface polarity enhance the low frequency vibration in confinement compared to bulk water. By introducing a new effective length scale of coupling between translational and orientational motions, we find that the length scale increases with the increasing strength of the surface polarity. Further, we calculate the correlation between the diffusion constant and the excess entropy and find a disordering effect of polar surfaces on the structure of water. Finally, we find that the empirical relation between the diffusion constant and the excess entropy holds for a monolayer of water in nanoconfinement. PMID:22998274

  13. Proton Exchange Membrane Fuel Cell Design and Dynamic Modeling in MATLAB

    OpenAIRE

    S.V.T.Abirami; G.Samuel Muthura

    2015-01-01

    The alternatives to combustion engines in future will be fuel cells. The dynamic behavior of fuel cells for changing load conditions show poor voltage regulation. For improving the voltage regulation of PEM fuel cell, efficient control system should be designed. If the dynamic behavior of the fuel cell is known, the cost in designing the control system is greatly reduced .The behavior of the fuel cell for various load conditions and for changing pressure and temperature can be fou...

  14. Water supply dynamics and quality of alternative water sources in low-income areas of Lilongwe City, Malawi

    Science.gov (United States)

    Chidya, Russel C. G.; Mulwafu, Wapulumuka O.; Banda, Sembeyawo C. T.

    2016-06-01

    Recent studies in many developing countries have shown that Small Scale Independent Providers (SSIPs) in low-income areas (LIAs) are practical alternatives to water utilities. This study explored supply dynamics and quality of alternative water sources in four LIAs of Lilongwe City in Malawi using qualitative and quantitative methods. Household-level surveys (n = 120) and transect walks were employed to determine the socio-economic activities in the areas. One-on-one discussions were made with water source owners (SSIPs) (n = 24). Data on policy and institutional frameworks was collected through desktop study and Key Informant Interviews (n = 25). Quality of the water sources (shallow wells and boreholes) was determined by collecting grab samples (n = 24) in triplicate using 500 mL bottles. Selected physico-chemical and microbiological parameters were measured: pH, EC, TDS, turbidity, water temperature, salinity, K, Na, Ca, Mg, Cl-, F-, NO3-, alkalinity, water hardness, Fecal coliform (FC) and Faecal Streptococci (FS) bacteria. Water quality data was compared with Malawi Bureau of Standards (MBS) and World Health Organization (WHO) guidelines for drinking water. Shallow wells were reported (65%, n = 120) to be the main source of water for household use in all areas. Some policies like prohibition of boreholes and shallow wells in City locations were in conflict with other provisions of water supply, sanitation and housing. High levels of FC (0-2100 cfu/100 mL) and FS (0-1490 cfu/100 mL) at several sites (>90%, n = 24) suggest water contamination likely to impact on human health. This calls for upgrading and recognition of the water sources for improved water service delivery.

  15. Dynamics of Coalescence-Induced Jumping Water Droplets

    CERN Document Server

    Miljkovic, Nenad; Enright, Ryan; Wang, Evelyn N

    2013-01-01

    This fluid dynamics video shows the different interaction mechanisms of coalescence-induced droplet jumping during condensation on a nanostructured superhydrophobic surface. High speed imaging was used to show jumping behavior on superhydrophobic copper oxide and carbon nanotube surfaces. Videos demonstrating multi-jumping droplets, jumping droplet return to the surface, and droplet-droplet electrostatic repulsions were analyzed. Experiments using external electric fields in conjunction with high speed imaging in a custom built experimental chamber were used to show that all coalescence-induced jumping droplets on superhydrophobic surfaces become positively charged upon leaving the surface, which is detailed in the video.

  16. Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in Alpine Sandy Land, Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Yajuan Zhu

    Full Text Available Water is a limiting factor for plant growth and vegetation dynamics in alpine sandy land of the Tibetan Plateau, especially with the increasing frequency of extreme precipitation events and drought caused by climate change. Therefore, a relatively stable water source from either deeper soil profiles or ground water is necessary for plant growth. Understanding the water use strategy of dominant species in the alpine sandy land ecosystem is important for vegetative rehabilitation and ecological restoration. The stable isotope methodology of δD, δ18O, and δ13C was used to determine main water source and long-term water use efficiency of Salix psammophila and S. cheilophila, two dominant shrubs on interdune of alpine sandy land in northeastern Tibetan Plateau. The root systems of two Salix shrubs were investigated to determine their distribution pattern. The results showed that S. psammophila and S. cheilophila absorbed soil water at different soil depths or ground water in different seasons, depending on water availability and water use strategy. Salix psammophila used ground water during the growing season and relied on shallow soil water recharged by rain in summer. Salix cheilophila used ground water in spring and summer, but relied on shallow soil water recharged by rain in spring and deep soil water recharged by ground water in fall. The two shrubs had dimorphic root systems, which is coincident with their water use strategy. Higher biomass of fine roots in S. psammophila and longer fine roots in S. cheilophila facilitated to absorb water in deeper soil layers. The long-term water use efficiency of two Salix shrubs increased during the dry season in spring. The long-term water use efficiency was higher in S. psammophila than in S. cheilophila, as the former species is better adapted to semiarid climate of alpine sandy land.

  17. Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in Alpine Sandy Land, Tibetan Plateau.

    Science.gov (United States)

    Zhu, Yajuan; Wang, Guojie; Li, Renqiang

    2016-01-01

    Water is a limiting factor for plant growth and vegetation dynamics in alpine sandy land of the Tibetan Plateau, especially with the increasing frequency of extreme precipitation events and drought caused by climate change. Therefore, a relatively stable water source from either deeper soil profiles or ground water is necessary for plant growth. Understanding the water use strategy of dominant species in the alpine sandy land ecosystem is important for vegetative rehabilitation and ecological restoration. The stable isotope methodology of δD, δ18O, and δ13C was used to determine main water source and long-term water use efficiency of Salix psammophila and S. cheilophila, two dominant shrubs on interdune of alpine sandy land in northeastern Tibetan Plateau. The root systems of two Salix shrubs were investigated to determine their distribution pattern. The results showed that S. psammophila and S. cheilophila absorbed soil water at different soil depths or ground water in different seasons, depending on water availability and water use strategy. Salix psammophila used ground water during the growing season and relied on shallow soil water recharged by rain in summer. Salix cheilophila used ground water in spring and summer, but relied on shallow soil water recharged by rain in spring and deep soil water recharged by ground water in fall. The two shrubs had dimorphic root systems, which is coincident with their water use strategy. Higher biomass of fine roots in S. psammophila and longer fine roots in S. cheilophila facilitated to absorb water in deeper soil layers. The long-term water use efficiency of two Salix shrubs increased during the dry season in spring. The long-term water use efficiency was higher in S. psammophila than in S. cheilophila, as the former species is better adapted to semiarid climate of alpine sandy land. PMID:27243772

  18. Calcium dynamics in the secretory granules of neuroendocrine cells.

    Science.gov (United States)

    Alvarez, Javier

    2012-01-01

    Cellular Ca(2+)signaling results from a complex interplay among a variety of Ca(2+) fluxes going across the plasma membrane and across the membranes of several organelles, together with the buffering effect of large numbers of Ca(2+)-binding sites distributed along the cell architecture. Endoplasmic and sarcoplasmic reticulum, mitochondria and even nucleus have all been involved in cellular Ca(2+) signaling, and the mechanisms for Ca(2+) uptake and release from these organelles are well known. In neuroendocrine cells, the secretory granules also constitute a very important Ca(2+)-storing organelle, and the possible role of the stored Ca(2+) as a trigger for secretion has attracted considerable attention. However, this possibility is frequently overlooked, and the main reason for that is that there is still considerable uncertainty on the main questions related with granular Ca(2+) dynamics, e.g., the free granular [Ca(2+)], the physical state of the stored Ca(2+) or the mechanisms for Ca(2+) accumulation and release from the granules. This review will give a critical overview of the present state of knowledge and the main conflicting points on secretory granule Ca(2+) homeostasis in neuroendocrine cells.

  19. Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling.

    Directory of Open Access Journals (Sweden)

    Song Li

    2006-10-01

    Full Text Available Plants both lose water and take in carbon dioxide through microscopic stomatal pores, each of which is regulated by a surrounding pair of guard cells. During drought, the plant hormone abscisic acid (ABA inhibits stomatal opening and promotes stomatal closure, thereby promoting water conservation. Dozens of cellular components have been identified to function in ABA regulation of guard cell volume and thus of stomatal aperture, but a dynamic description is still not available for this complex process. Here we synthesize experimental results into a consistent guard cell signal transduction network for ABA-induced stomatal closure, and develop a dynamic model of this process. Our model captures the regulation of more than 40 identified network components, and accords well with previous experimental results at both the pathway and whole-cell physiological level. By simulating gene disruptions and pharmacological interventions we find that the network is robust against a significant fraction of possible perturbations. Our analysis reveals the novel predictions that the disruption of membrane depolarizability, anion efflux, actin cytoskeleton reorganization, cytosolic pH increase, the phosphatidic acid pathway, or K(+ efflux through slowly activating K(+ channels at the plasma membrane lead to the strongest reduction in ABA responsiveness. Initial experimental analysis assessing ABA-induced stomatal closure in the presence of cytosolic pH clamp imposed by the weak acid butyrate is consistent with model prediction. Simulations of stomatal response as derived from our model provide an efficient tool for the identification of candidate manipulations that have the best chance of conferring increased drought stress tolerance and for the prioritization of future wet bench analyses. Our method can be readily applied to other biological signaling networks to identify key regulatory components in systems where quantitative information is limited.

  20. Molecular-dynamic studies of carbon-water-carbon composite nanotubes.

    Science.gov (United States)

    Zou, Jian; Ji, Baohua; Feng, Xi-Qiao; Gao, Huajian

    2006-11-01

    We recently reported the discovery via molecular-dynamic simulations that single-walled carbon nanotubes (SWCNTs) with different diameters, lengths, and chiralities can coaxially self-assemble into multi-walled carbon nanotubes (MWCNTs) in water via the spontaneous insertion of smaller tubes into larger ones. Here, we extend that study to investigate the various water structures formed between two selected SWCNTs after such coaxial assembly. Depending on the tube geometry, typical water structures, besides the bulk phase, include a one-dimensional (1D) ordered water chain inside the smaller tube, a uniform or nonuniform water shell between the two tubes, and a "boundary layer" of water near the exterior wall of the larger tube. It was found that a concentric water shell consisting of up to three layers of water molecules can form between the two SWCNTs, which leads to a class of carbon-water-carbon composite nanotubes. Analysis of the potential energy of the SWCNT-water system indicated that the composite nanotubes are stabilized by both the tube-tube and tube-water van der Waals interactions. Geometrically confined between the two SWCNTs, water mono- and bilayers are found to be stable, highly condensed, and ordered, although the average number of hydrogen bonds per water molecule is reduced. In contrast, a water trilayer between the two CNTs can be easily disrupted by thermal fluctuations.

  1. Forest - water dynamics in a Mediterranean mountain environment.

    Science.gov (United States)

    Eliades, Marinos; Bruggeman, Adriana; Lange, Manfred; Camera, Corrado; Christou, Andreas

    2015-04-01

    In semi-arid Mediterranean mountain environments, the soil layer is very shallow or even absent due to the steep slopes. Soil moisture in these environments is limited, but still vegetation thrives. There is limited knowledge about where the vegetation extracts the water from, how much water it uses, and how it interacts with other processes in the hydrological cycle. The main objective of this study is to quantify the water balance components of a Pinus brutia forest at tree level, by measuring the tree transpiration and the redistribution of the water from trees to the soil and the bedrock fractures. The study area is located on a forested hill slope on the outside edge of Peristerona watershed in Cyprus. The site was mapped with the use of a total station and a differentially-corrected GPS, in order to create a high resolution DEM and soil depth map of the area. Soil depth was measured at a 1-m grid around the trees. Biometric measurements were taken from a total of 45 trees. Four trees were selected for monitoring. Six sap flow sensors are installed in the selected trees for measuring transpiration and reverse flows. Two trees have two sensors each to assess the variability. Four volumetric soil moisture sensors are installed around each tree at distances 1 m and 2 m away from the tree trunk. An additional fifth soil moisture sensor is installed in soil depths exceeding 20-cm depth. Four throughfall rain gauges were installed randomly around each tree to compute interception losses. Stemflow is measured by connecting an opened surface plastic tube collar at 1.6 m height around each tree trunk. The trunk surface gaps were filled with silicon glue in order to avoid any stemflow losses. The plastic collar is connected to a sealed surface rain gauge. A weather station monitors all meteorological variables on an hourly basis. Results showed a maximum sap flow volume of 77.9 L/d, from November to January. The sensors also measured a maximum negative flow of 7.9 L

  2. Dynamics of CO in Amorphous Water Ice Environments

    CERN Document Server

    Karssemeijer, L J; van Hemert, M C; van der Avoird, A; Allodi, M A; Blake, G A; Cuppen, H M

    2013-01-01

    The long-timescale behavior of adsorbed carbon monoxide on the surface of amorphous water ice is studied under dense cloud conditions by means of off-lattice, on-the-fly, kinetic Monte Carlo simula- tions. It is found that the CO mobility is strongly influenced by the morphology of the ice substrate. Nanopores on the surface provide strong binding sites which can effectively immobilize the adsorbates at low coverage. As the coverage increases, these strong binding sites are gradually occupied leav- ing a number of admolecules with the ability to diffuse over the surface. Binding energies, and the energy barrier for diffusion are extracted for various coverages. Additionally, the mobility of CO is determined from isothermal desorption experiments. Reasonable agreement on the diffusivity of CO is found with the simulations. Analysis of the 2152 cm$^{-1}$, polar CO band supports the computational findings that the pores in the water ice provide the strongest binding sites and dominate diffusion at low temperatur...

  3. An analytical model for predicting water table dynamics during drainage and evaporation

    Science.gov (United States)

    Cook, F. J.; Rassam, D. W.

    2002-06-01

    Water table dynamics in tile-drained fields have been thoroughly investigated by numerous researchers. Recent studies have highlighted the importance of incorporating the effects of evaporation into the design of such drainage systems. In tropical areas, evaporation plays a particularly crucial role in lowering the water table in finely textured soils. In this paper, water table dynamics are investigated for the case of coupled drainage and evaporation. A simple analytical model that determines the relative contribution of the drainage component to the draw down of the water table is proposed. The model's estimates compare reasonably well to field data, as well as those derived from numerical simulations conducted for various evaporation rates and soil types. When presented in a non-dimensional form, the model's results can provide a quick estimate of the relative contribution of drainage to lowering the water table, which is highly relevant to the hydrology of acid sulphate soils.

  4. Molecular Dynamics Study of Water Molecules in Interlayer of 14 ^|^Aring; Tobermorite

    KAUST Repository

    Yoon, Seyoon

    2013-01-01

    The molecular structure and dynamics of interlayer water of 14 Å tobermorite are investigated based on molecular dynamics (MD) simulations. Calculated structural parameters of the interlayer water configuration are in good agreement with current knowledge of the refined structure. The MD simulations provide detailed information on the position and mobility of the hydrogen and oxygen of interlayer water, as well as its self-diffusion coefficient, through the interlayer of 14 Å tobermorite. Comparison of the MD simulation results at 100 and 300 K demonstrates that water molecules in the interlayer maintain their structure but change their mobility. The dominant configuration and self-diffusion coefficient of interlayer water are obtained in this study. Copyright © 2013 Japan Concrete Institute.

  5. Time-Domain Nuclear Magnetic Resonance Investigation of Water Dynamics in Different Ginger Cultivars.

    Science.gov (United States)

    Huang, Chongyang; Zhou, Qi; Gao, Shan; Bao, Qingjia; Chen, Fang; Liu, Chaoyang

    2016-01-20

    Different ginger cultivars may contain different nutritional and medicinal values. In this study, a time-domain nuclear magnetic resonance method was employed to study water dynamics in different ginger cultivars. Significant differences in transverse relaxation time T2 values assigned to the distribution of water in different parts of the plant were observed between Henan ginger and four other ginger cultivars. Ion concentration and metabolic analysis showed similar differences in Mn ion concentrations and organic solutes among the different ginger cultivars, respectively. On the basis of Pearson's correlation analysis, many organic solutes and 6-gingerol, the main active substance of ginger, exhibited significant correlations with water distribution as determined by NMR T2 relaxation, suggesting that the organic solute differences may impact water distribution. Our work demonstrates that low-field NMR relaxometry provides useful information about water dynamics in different ginger cultivars as affected by the presence of different organic solutes.

  6. A DYNAMIC ANALYSIS OF WATER SAVINGS FROM ADVANCED IRRIGATION TECHNOLOGY

    OpenAIRE

    Hornbaker, Robert H.; Mapp, Harry P., Jr.

    1988-01-01

    A computerized grain sorghum plant growth model is combined with recursive programming to analyze the potential irrigation water savings from adopting irrigation scheduling and low pressure center pivot irrigation technology. Results indicate that irrigation pumping can be reduced with increased yields and net returns by adopting low energy precision application (LEPA) irrigation systems. Variations in input and output prices affect optimal irrigation quantities for low pressure irrigation sy...

  7. Time Resolved Broadband Terahertz Relaxation Dynamics of Electron in Water

    DEFF Research Database (Denmark)

    Wang, Tianwu; Iwaszczuk, Krzysztof; Cooke, David G.;

    We investigated the transient response of the solvated electron in water ejected by photodetachment from potassium ferrocyanide using time resolved terahertz spectroscopy (TSTS). Ultrabroadband THz transients are generated and detected by a two-color femtosecond-induced air plasma and air biased...... coherent detection, respectively. We find that the measured frequency dependent conductivity can be well described by a Drude-Smith model, supplemented by a Lorentz model oscillating near 5 THz....

  8. Love and fear of water: Water dynamics around charged and apolar solutes

    NARCIS (Netherlands)

    S.T. van der Post

    2014-01-01

    Water molecules are deceptively simple considering their importance to many (biological) processes. The interesting properties of water and its role in these processes can be attributed to the ability of water molecules to form up to four hydrogen-bonds. This hydrogen-bond network is altered in the

  9. Structural Phase Transitions and Water Dynamics in Uranyl Fluoride Hydrates.

    Science.gov (United States)

    Miskowiec, Andrew; Kirkegaard, Marie C; Huq, Ashfia; Mamontov, Eugene; Herwig, Kenneth W; Trowbridge, Lee; Rondinone, Adam; Anderson, Brian

    2015-12-10

    We report a novel production method for uranium oxyfluoride [(UO2)7F14(H2O)7]·4H2O, referred to as structure D. Structure D is produced as a product of hydrating anhydrous uranyl fluoride, UO2F2, through the gas phase at ambient temperatures followed by desiccation by equilibration with a dry environment. We follow the structure of [(UO2)7F14(H2O)7]·4H2O through an intermediate, liquid-like phase, wherein the coordination number of the uranyl ion is reduced to 5 (from 6 in the anhydrous structure), and a water molecule binds as an equatorial ligand to the uranyl ion. Quasielastic neutron scattering results compare well with previous measurements of mineral hydrates. The two groups of structurally distinct water molecules in D perform restricted motion on a length scale commensurate with the O-H bond (r = 0.92 Å). The more tightly bound equatorial ligand waters rotate slower (Dr = 2.2 ps(-1)) than their hydrogen-bonded partners (Dr = 28.7 ps(-1)). PMID:26575434

  10. Semiquantal molecular dynamics simulations of hydrogen-bond dynamics in liquid water using multi-dimensional Gaussian wave packets.

    Science.gov (United States)

    Ono, Junichi; Ando, Koji

    2012-11-01

    A semiquantal (SQ) molecular dynamics (MD) simulation method based on an extended Hamiltonian formulation has been developed using multi-dimensional thawed gaussian wave packets (WPs), and applied to an analysis of hydrogen-bond (H-bond) dynamics in liquid water. A set of Hamilton's equations of motion in an extended phase space, which includes variance-covariance matrix elements as auxiliary coordinates representing anisotropic delocalization of the WPs, is derived from the time-dependent variational principle. The present theory allows us to perform real-time and real-space SQMD simulations and analyze nuclear quantum effects on dynamics in large molecular systems in terms of anisotropic fluctuations of the WPs. Introducing the Liouville operator formalism in the extended phase space, we have also developed an explicit symplectic algorithm for the numerical integration, which can provide greater stability in the long-time SQMD simulations. The application of the present theory to H-bond dynamics in liquid water is carried out under a single-particle approximation in which the variance-covariance matrix and the corresponding canonically conjugate matrix are reduced to block-diagonal structures by neglecting the interparticle correlations. As a result, it is found that the anisotropy of the WPs is indispensable for reproducing the disordered H-bond network compared to the classical counterpart with the use of the potential model providing competing quantum effects between intra- and intermolecular zero-point fluctuations. In addition, the significant WP delocalization along the out-of-plane direction of the jumping hydrogen atom associated with the concerted breaking and forming of H-bonds has been detected in the H-bond exchange mechanism. The relevance of the dynamical WP broadening to the relaxation of H-bond number fluctuations has also been discussed. The present SQ method provides the novel framework for investigating nuclear quantum dynamics in the many

  11. Water Usage for In-Situ Oil Shale Retorting – A Systems Dynamics Model

    Energy Technology Data Exchange (ETDEWEB)

    Earl D. Mattson; Larry Hull; Kara Cafferty

    2012-12-01

    A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9™ software package. Three phases of an insitu retort were consider; a construction phase primarily accounts for water needed for drilling and water produced during dewatering, an operation phase includes the production of water from the retorting process, and a remediation phase water to remove heat and solutes from the subsurface as well as return the ground surface to its natural state. Throughout these three phases, the water is consumed and produced. Consumption is account for through the drill process, dust control, returning the ground water to its initial level and make up water losses during the remedial flushing of the retort zone. Production of water is through the dewatering of the retort zone, and during chemical pyrolysis reaction of the kerogen conversion. The major water consumption was during the remediation of the insitu retorting zone.

  12. Two structural relaxations in protein hydration water and their dynamic crossovers.

    Science.gov (United States)

    Camisasca, G; De Marzio, M; Corradini, D; Gallo, P

    2016-07-28

    We study the translational single particle dynamics of hydration water of lysozyme upon cooling by means of molecular dynamics simulations. We find that water close to the protein exhibits two distinct relaxations. By characterizing their behavior upon cooling, we are able to assign the first relaxation to the structural α-relaxation also present in bulk water and in other glass-forming liquids. The second, slower, relaxation can be ascribed to a dynamic coupling of hydration water motions to the fluctuations of the protein structure. Both relaxation times exhibit crossovers in the behavior upon cooling. For the α-process, we find upon cooling a crossover from a fragile behavior to a strong behavior at a temperature which is about five degrees higher than that of bulk water. The long-relaxation time appears strictly connected to the protein motion as it shows upon cooling a temperature crossover from a strong behavior with a lower activation energy to a strong behavior with a higher activation energy. The crossover temperature coincides with the temperature of the protein dynamical transition. These findings can help experimentalists to disentangle the different information coming from total correlators and to better characterize hydration water relaxations in different biomolecules. PMID:27475377

  13. Water of Hydration Dynamics in Minerals Gypsum and Bassanite: Ultrafast 2D IR Spectroscopy of Rocks.

    Science.gov (United States)

    Yan, Chang; Nishida, Jun; Yuan, Rongfeng; Fayer, Michael D

    2016-08-01

    Water of hydration plays an important role in minerals, determining their crystal structures and physical properties. Here ultrafast nonlinear infrared (IR) techniques, two-dimensional infrared (2D IR) and polarization selective pump-probe (PSPP) spectroscopies, were used to measure the dynamics and disorder of water of hydration in two minerals, gypsum (CaSO4·2H2O) and bassanite (CaSO4·0.5H2O). 2D IR spectra revealed that water arrangement in freshly precipitated gypsum contained a small amount of inhomogeneity. Following annealing at 348 K, water molecules became highly ordered; the 2D IR spectrum became homogeneously broadened (motional narrowed). PSPP measurements observed only inertial orientational relaxation. In contrast, water in bassanite's tubular channels is dynamically disordered. 2D IR spectra showed a significant amount of inhomogeneous broadening caused by a range of water configurations. At 298 K, water dynamics cause spectral diffusion that sampled a portion of the inhomogeneous line width on the time scale of ∼30 ps, while the rest of inhomogeneity is static on the time scale of the measurements. At higher temperature, the dynamics become faster. Spectral diffusion accelerates, and a portion of the lower temperature spectral diffusion became motionally narrowed. At sufficiently high temperature, all of the dynamics that produced spectral diffusion at lower temperatures became motionally narrowed, and only homogeneous broadening and static inhomogeneity were observed. Water angular motions in bassanite exhibit temperature-dependent diffusive orientational relaxation in a restricted cone of angles. The experiments were made possible by eliminating the vast amount of scattered light produced by the granulated powder samples using phase cycling methods. PMID:27385320

  14. A simplified model for dynamics of cell rolling and cell-surface adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Cimrák, Ivan, E-mail: ivan.cimrak@fri.uniza.sk [Cell-in-fluid Research Group, http://cell-in-fluid.fri.uniza.sk Faculty of Management Science and Informatics, University of Žilina Univerzitná 8215/1, 010 26 Žilina (Slovakia)

    2015-03-10

    We propose a three dimensional model for the adhesion and rolling of biological cells on surfaces. We study cells moving in shear flow above a wall to which they can adhere via specific receptor-ligand bonds based on receptors from selectin as well as integrin family. The computational fluid dynamics are governed by the lattice-Boltzmann method. The movement and the deformation of the cells is described by the immersed boundary method. Both methods are fully coupled by implementing a two-way fluid-structure interaction. The adhesion mechanism is modelled by adhesive bonds including stochastic rules for their creation and rupture. We explore a simplified model with dissociation rate independent of the length of the bonds. We demonstrate that this model is able to resemble the mesoscopic properties, such as velocity of rolling cells.

  15. Galectin-9: From cell biology to complex disease dynamics.

    Science.gov (United States)

    John, Sebastian; Mishra, Rashmi

    2016-09-01

    Galectins is a family of non-classically secreted, beta-galactoside-binding proteins that has recently received considerable attention in the spatio-temporal regulation of surface 'signal lattice' organization, membrane dynamics, cell-adhesion and disease therapeutics. Galectin-9 is a unique member of this family, with two non-homologous carbohydrate recognition domains joined by a linker peptide sequence of variable lengths, generating isoforms with distinct properties and functions in both physiological and pathological settings, such as during development, immune reaction, neoplastic transformations and metastasis. In this review, we summarize the latest knowledge on the structure, receptors, cellular targets, trafficking pathways and functional properties of galectin-9 and discuss how galectin-9-mediated signalling cascades can be exploited in cancers and immunotherapies. PMID:27581941

  16. Hazard function for cancer patients and cancer cell dynamics.

    Science.gov (United States)

    Horová, Ivana; Pospísil, Zdenek; Zelinka, Jirí

    2009-06-01

    The aim of the paper is to develop a procedure for an estimate of an analytical form of a hazard function for cancer patients. Although a deterministic approach based on cancer cell population dynamics yields the analytical expression, it depends on several parameters which should be estimated. On the other hand, a kernel estimate is an effective nonparametric method for estimating hazard functions. This method provides the pointwise estimate of the hazard function. Our procedure consists of two steps: in the first step we find the kernel estimate of the hazard function and in the second step the parameters in the deterministic model are obtained by the least squares method. A simulation study with different types of censorship is carried out and the developed procedure is applied to real data.

  17. Galectin-9: From cell biology to complex disease dynamics.

    Science.gov (United States)

    John, Sebastian; Mishra, Rashmi

    2016-09-01

    Galectins is a family of non-classically secreted, beta-galactoside-binding proteins that has recently received considerable attention in the spatio-temporal regulation of surface 'signal lattice' organization, membrane dynamics, cell-adhesion and disease therapeutics. Galectin-9 is a unique member of this family, with two non-homologous carbohydrate recognition domains joined by a linker peptide sequence of variable lengths, generating isoforms with distinct properties and functions in both physiological and pathological settings, such as during development, immune reaction, neoplastic transformations and metastasis. In this review, we summarize the latest knowledge on the structure, receptors, cellular targets, trafficking pathways and functional properties of galectin-9 and discuss how galectin-9-mediated signalling cascades can be exploited in cancers and immunotherapies.

  18. Galectin-9: From cell biology to complex disease dynamics

    Indian Academy of Sciences (India)

    SEBASTIAN JOHN; RASHMI MISHRA

    2016-09-01

    Galectins is a family of non-classically secreted, β-galactoside-binding proteins that has recently received considerableattention in the spatio-temporal regulation of surface ‘signal lattice’ organization, membrane dynamics, cell-adhesionand disease therapeutics. Galectin-9 is a unique member of this family, with two non-homologous carbohydraterecognition domains joined by a linker peptide sequence of variable lengths, generating isoforms with distinctproperties and functions in both physiological and pathological settings, such as during development, immunereaction, neoplastic transformations and metastasis. In this review, we summarize the latest knowledge on thestructure, receptors, cellular targets, trafficking pathways and functional properties of galectin-9 and discuss howgalectin-9-mediated signalling cascades can be exploited in cancers and immunotherapies.

  19. A cell dynamical system model of chemical turbulence

    Science.gov (United States)

    Oono, Y.; Yeung, C.

    1987-08-01

    A cellular-automaton-like caricature of chemical turbulence on an infinite one-dimensional lattice is studied. The model exhibits apparently "turbulent" space-time patterns. To make this statement precise, the following problems or points are discussed: (1) The infinite-system-size limit of such cell-dynamical systems and its observability is defined. (2) It is proved that the invariant state in the large-system-size limit of the "turbulent" phase exhibits spatial patterns governed by a Gibbs random field. (3) Potential characteristics of "turbulent" space-time patterns are critically surveyed and a working definition of (weak) turbulence is proposed. (4) It is proved that the invariant state of the `turbulent" phase is actually (weak) turbulent. Furthermore, we conjecture that the turbulent phase of our model is an example of a K system that is not Bernoulli.

  20. Carrier injection dynamics in heterojunction solar cells with bipolar molecule

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yosuke; Yonezawa, Kouhei [Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba 305-8571 (Japan); Yasuda, Takeshi, E-mail: YASUDA.Takeshi@nims.go.jp, E-mail: moritomo.yutaka.gf@u.tsukuba.ac.jp [Photovoltaic Materials Unit, National Institute for Materials Science (NIMS), Tsukuba 305-0047 (Japan); Moritomo, Yutaka, E-mail: YASUDA.Takeshi@nims.go.jp, E-mail: moritomo.yutaka.gf@u.tsukuba.ac.jp [Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba 305-8571 (Japan); Center for Integrated Research in Fundamental Science and Engineering (CiRfSE), University of Tsukuba, Tsukuba 305-8571 (Japan)

    2015-03-23

    A boron subphthalocyanine chloride (SubPc) is a bipolar molecule and is used in hetero-junction organic solar cells. Here, we investigated the carrier injection dynamics from the donor α-sexithiophene (6T) or acceptor C{sub 60} layers to the bipolar SubPc layer by means of the femtosecond time-resolved spectroscopy. We observed gradual increase of the SubPc{sup –} (SubPc{sup +}) species within ≈300 ps. The increases are interpreted in terms of the exciton diffusion within the 6T (C{sub 60}) layer and subsequent electron (hole) injection at the interface. In 6T/SubPc heterojunction, the electron injection is observed even at 80 K. The robust electron injection is ascribed to the efficient charge separation within the 6T layer under photo exciation at 400 nm.

  1. Radon exchange dynamics in a karst system investigated by radon continuous measurements in water: first results.

    Science.gov (United States)

    Peano, G; Vigna, B; Villavecchia, E; Agnesod, G

    2011-05-01

    In 2008 the underground Karst Laboratory of Bossea Cave started research on radon exchange dynamics between bedrock, cave waters (main collector and percolations) and indoor underground atmosphere. Radon air concentrations, normally high, increase more and more during the collector's floods. An explanation of this is a radon-water solubilisation process more effective in flood events, because of a greater rock-water contact surface. Radon is then carried by water into the cave and released into the air. To verify this, continuous measurements of radon concentration are needed not only in the air, but also in the waters of the cave. So a new device for continuous radon monitoring in water was tested, connected to the AlphaGuard radon monitor. For the first 6 months of 2010, for different sections of the cave, the correlations between radon in the air, radon in the waters and the collector's stream flow fluctuations were presented and discussed. PMID:21586541

  2. Radon exchange dynamics in a Karst system investigated by radon continuous measurements in water: First results

    International Nuclear Information System (INIS)

    In 2008 the underground Karst Laboratory of Bossea Cave started research on radon exchange dynamics between bedrock, cave waters (main collector and percolations) and indoor underground atmosphere. Radon air concentrations, normally high, increase more and more during the collector's floods. An explanation of this is a radon-water solubilisation process more effective in flood events, because of a greater rock-water contact surface. Radon is then carried by water into the cave and released into the air. To verify this, continuous measurements of radon concentration are needed not only in the air, but also in the waters of the cave. So a new device for continuous radon monitoring in water was tested, connected to the AlphaGuard radon monitor. For the first 6 months of 2010, for different sections of the cave, the correlations between radon in the air, radon in the waters and the collector's stream flow fluctuations were presented and discussed. (authors)

  3. A New Method for Water Desalination Using Microbial Desalination Cells

    KAUST Repository

    Cao, Xiaoxin

    2009-09-15

    Current water desalination techniques are energy intensive and some use membranes operated at high pressures. It is shownhere that water desalination can be accomplished without electrical energy input or high water pressure by using a source of organic matter as the fuel to desalinate water. A microbial fuel cell was modified by placing two membranes between the anode and cathode, creating a middle chamber for water desalination between the membranes. An anion exchange membrane was placed adjacent to the anode, and a cation exchange membrane was positioned next to the cathode. When current was produced by bacteria on the anode, ionic species in the middle chamber were transferred into the two electrode chambers, desalinating the water in the middle chamber. Proof-of-concept experiments for this approach, using what we call a microbial desalination cell (MDC), was demonstrated using water at different initial salt concentrations (5, 20, and 35 g/L) with acetate used as the substrate for the bacteria. The MDC produced a maximum of 2 W/m2 (31 W/m3) while at the same time removing about 90% of the salt in a single desalination cycle. As the salt was removed from the middle chamber the ohmic resistance of the MDC (measured using electrochemical impedance spectroscopy) increased from 25 Ω to 970 Ω at the end of the cycle. This increased resistance was reflected by a continuous decrease in the voltage produced over the cycle. These results demonstrate for the first time the possibility for a new method for water desalination and power production that uses only a source of biodegradable organic matter and bacteria. © 2009 American Chemical Society.

  4. Molecular dynamics studies of pathways of water movement in cyanobacterial photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Gabdulkhakov, A. G., E-mail: azat@vega.protres.ru; Kljashtorny, V. G.; Dontsova, M. V. [Russian Academy of Sciences, Institute of Protein Research (Russian Federation)

    2015-01-15

    Photosystem II (PSII) catalyzes the light-induced generation of oxygen from water. The oxygen-evolving complex is buried deep in the protein on the lumenal side of PSII, and water molecules need to pass through protein subunits to reach the active site—the manganese cluster. Previous studies on the elucidation of water channels in PSII were based on an analysis of the cavities in the static PSII structure determined by X-ray diffraction. In the present study, we perform molecular dynamics simulations of the water movement in the transport system of PSII.

  5. Observation of the dynamical change in a water monolayer adsorbed on a ZnO surface.

    Science.gov (United States)

    Dulub, Olga; Meyer, Bernd; Diebold, Ulrike

    2005-09-23

    A combined scanning tunneling microscopy and density-functional theory (DFT) study shows a rich structure of water monolayers adsorbed on ZnO(1010) at room temperature. Most of the water is in a lowest-energy configuration where every second molecule is dissociated. It coexists with an energetically almost degenerate configuration consisting of a fully molecular water monolayer. Parts of the layer continuously switch back and forth between these two states. DFT calculations reveal that water molecules repeatedly associate and dissociate in this sustained dynamical process. PMID:16197151

  6. Reconstructing dynamic molecular states from single-cell time series.

    Science.gov (United States)

    Huang, Lirong; Pauleve, Loic; Zechner, Christoph; Unger, Michael; Hansen, Anders S; Koeppl, Heinz

    2016-09-01

    The notion of state for a system is prevalent in the quantitative sciences and refers to the minimal system summary sufficient to describe the time evolution of the system in a self-consistent manner. This is a prerequisite for a principled understanding of the inner workings of a system. Owing to the complexity of intracellular processes, experimental techniques that can retrieve a sufficient summary are beyond our reach. For the case of stochastic biomolecular reaction networks, we show how to convert the partial state information accessible by experimental techniques into a full system state using mathematical analysis together with a computational model. This is intimately related to the notion of conditional Markov processes and we introduce the posterior master equation and derive novel approximations to the corresponding infinite-dimensional posterior moment dynamics. We exemplify this state reconstruction approach using both in silico data and single-cell data from two gene expression systems in Saccharomyces cerevisiae, where we reconstruct the dynamic promoter and mRNA states from noisy protein abundance measurements. PMID:27605167

  7. Planning for Regional Water Resources in Northwest China Using a Dynamic Simulation Model

    Science.gov (United States)

    Chen, C.; Kalra, A.; Ahmad, S.

    2014-12-01

    Problem of water scarcity is prominent in northwest China due to its typical desert climate. Exceedence of sustainable yield of groundwater resources has resulted in groundwater depletion, which has raised a series of issues such as drying wells, increasing pumping costs and environmental damage. With a rapid agricultural and economic development, population increase has added extra stress on available water resources by increasing municipal, agricultural and industrial demands. This necessitates efficient water resources management strategies with better understanding of the causes of water stress and options for sustainable development of economy and management of environment. This study focuses on simulating the water supply and demand, under the influence of changing climate, for Shanshan County, located in northwest of China. A dynamic simulation model is developed using the modeling tool Stella for monthly water balance for the period ranging from 2000-2030. Different future water demand and supply scenarios are developed to represent: (1) base scenario- with current practices; (2) change of the primary water source; (3) improvement of irrigation efficiency; (4) reduction of irrigation area; and (5) reduction of industrial water demand. The results indicate that besides growing demand, the low water use efficiency and low level of water reuse are the primary concerns for water scarcity. Groundwater recharge and abstraction could be balanced by 2030, by reducing industrial demand by 50% and using high efficiency irrigation for agriculture. The model provided a better understanding of the effect of different policies and can help in identifying water resources management strategies.

  8. Dynamics simulation of the interaction between serine and water

    Science.gov (United States)

    Liu, Yang; Zhang, Peng; Lu, Ying-Bo; Han, Sheng-Hao; Yu, Hui

    2013-05-01

    Using the first principles density functional theory (DFT), we simulated the neutron scattering spectra of the hydration dynamics of serine. Experimental data analyses have shown that dissociative H2O molecules were more likely to form hydrogen bonds (H-bonds) with an -OH group in monohydrated serine and easily shift to a -NH_3 ^ + group at a higher hydration level [P. Zhang, Y. Zhang, S. H. Han, Q. W. Yan, R. C. Ford, and J. C. Li, J. Phys. Chem. A 110, 5000 (2006), 10.1021/jp0569741]. We set the 1:1 ratio hydrated compounds at the two positions and found that the H2O could be optimized to form H-bonds with -OH and -NH3+ separately. When the simulated phonon signals of the -OH…H2O and -NH3+…H2O combinations were summed on a 3:1 scale, the calculating spectra were in good agreement with the experimental results, especially for the peak at 423 cm-1 of the -OH…H2O combination and the peak at 367 cm-1 of the -NH3+…H2O combination, which mutually complemented the real spectrum. We confirm that H2O may break the intermolecular H-bonds of the interlaced binding -OH to form a new structure, and that with the skeleton deformation of serine, H2O forms stronger H-bonds more often with the -NH3+ side indicating the flexible dynamic mechanism of the serine hydration process.

  9. Population dynamics and exploitation of Metapenaeus affinis in Kuwaiti waters

    OpenAIRE

    Mohammed, H.M.

    1995-01-01

    Length-frequency data of Metapenaeus affinis collected from the trawl catches of R/V Bahith in Kuwaiti waters from 1985 to 1989 were combined with estimates of monthly total catch by the commercial and small-scale fleets operating in Kuwait, and analyzed using the Compleat ELEFAN software package. A major recruitment pulse of M. affinis occurs in spring and a minor one in autumn. Optimum relative yield per recruit (Y'/R) is obtained with the length-at-first capture (L sub(c)) of 24.4 cm CL fo...

  10. Dynamics of Nano-Confined Water under Pressure

    OpenAIRE

    Diallo, S. O.; Jazdzewska, M.; Palmer, J C; Mamontov, E.; Gubbins, K. E.; Sliwinska-Bartkowiak, M.

    2013-01-01

    We report a study of the effects of pressure on the diffusivity of water molecules confined in single- wall carbon nanotubes (SWNT) with average mean pore diameter of 16 Angstroms. The measurements were carried out using high-resolution neutron scattering, over the temperature range 220 < T < 260 K, and at two pressure conditions: ambient and elevated pressure. The high pressure data were collected at constant volume on cooling, with P varying from 1.92 kbar at temperature T = 260 K to 1.85 k...

  11. The hydrophobic effect: Molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Mouritsen, Ole G.; Peters, Günther H.J.

    2004-01-01

    Structural and dynamic properties of water confined between two parallel, extended, either hydrophobic or hydrophilic crystalline surfaces of n-alkane C36H74 or n-alcohol C35H71OH, are studied by molecular dynamics simulations. Electron density profiles, directly compared with corresponding...... experimental data from x-ray reflectivity measurements, reveal a uniform weak de-wetting characteristic for the extended hydrophobic surface, while the hydrophilic surface is weakly wetted. These microscopic data are consistent with macroscopic contact angle measurements. Specific water orientation is present...... at both surfaces. The ordering is characteristically different between the surfaces and of longer range at the hydrophilic surface. Furthermore, the dynamic properties of water are different at the two surfaces and different from the bulk behavior. In particular, at the hydrophobic surface, time...

  12. Optimizing basin-scale coupled water quantity and water quality man-agement with stochastic dynamic programming

    Science.gov (United States)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Engelund Holm, Peter; Trapp, Stefan; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2015-04-01

    Few studies address water quality in hydro-economic models, which often focus primarily on optimal allocation of water quantities. Water quality and water quantity are closely coupled, and optimal management with focus solely on either quantity or quality may cause large costs in terms of the oth-er component. In this study, we couple water quality and water quantity in a joint hydro-economic catchment-scale optimization problem. Stochastic dynamic programming (SDP) is used to minimize the basin-wide total costs arising from water allocation, water curtailment and water treatment. The simple water quality module can handle conservative pollutants, first order depletion and non-linear reactions. For demonstration purposes, we model pollutant releases as biochemical oxygen demand (BOD) and use the Streeter-Phelps equation for oxygen deficit to compute the resulting min-imum dissolved oxygen concentrations. Inelastic water demands, fixed water allocation curtailment costs and fixed wastewater treatment costs (before and after use) are estimated for the water users (agriculture, industry and domestic). If the BOD concentration exceeds a given user pollution thresh-old, the user will need to pay for pre-treatment of the water before use. Similarly, treatment of the return flow can reduce the BOD load to the river. A traditional SDP approach is used to solve one-step-ahead sub-problems for all combinations of discrete reservoir storage, Markov Chain inflow clas-ses and monthly time steps. Pollution concentration nodes are introduced for each user group and untreated return flow from the users contribute to increased BOD concentrations in the river. The pollutant concentrations in each node depend on multiple decision variables (allocation and wastewater treatment) rendering the objective function non-linear. Therefore, the pollution concen-tration decisions are outsourced to a genetic algorithm, which calls a linear program to determine the remainder of the decision

  13. Planning for Water Resources of South Florida: A system dynamics modeling approach

    Science.gov (United States)

    Ahmad, S.

    2006-12-01

    With enormous growth in population, changes in land use, substantial agriculture activity, and need to protect vital environmental resources such as Everglades, south Florida presents a very challenging case for water resources planning. Working with stakeholders to meet challenges of water resources planning in south Florida, we are exploring important questions: (a) What are some major changes in terms of population growth, land use, water demand, and water availability that can be expected in south Florida in the short and long term?; (b) What would be the major hydrologic effects of climate variability and change on south Florida's water system?; (c) How could Florida's water system adapt to anticipated population growth, urban sprawl, and climate change?; and (d) What are the most promising (cost effective) policies for south Florida's water management in response to growth and climate change? We are developing a decision support (DS) framework, using system dynamics modeling approach, to evaluate and compare different short and long term water management policies. Besides climate information, the integrated DS framework considers other major factors that influence water demand and availability including: demographic changes, land use changes, economy, and environment. We analyze how increased or better use of climate information can lead to better, more cost-effective decisions for sustainable management of water resources. Using games/scenarios involving decision makers, we evaluate cost-effectiveness of different policy choices for short and long term water management in the region. We evaluate policies based on both demand side management through efficiency and conservation (low flow appliances, xeriscaping, pricing) and supply side management (desalination, water reuse). The outcome is a framework for exploring cost-effectiveness of alternative water management policies. The research advances work on water resources planning considering the impacts of

  14. Translational dynamics of water in a nanoporous layered silicate

    Science.gov (United States)

    Nair, Sankar; Chowdhuri, Zema; Peral, Inmaculada; Neumann, Dan A.; Dickinson, L. Charles; Tompsett, Geoffrey; Jeong, Hae-Kwon; Tsapatsis, Michael

    2005-03-01

    Neutron time-of-flight and backscattering spectroscopy have been used to study the translational diffusion of water molecules in the unusual layered material AMH-3, which consists of (zeolitelike) three-dimensionally nanoporous silicate layers spaced by (claylike) interlayer regions. The synthesis of AMH-3 and its characterization by Si29 NMR, Raman, and infrared spectroscopy, are described. An analysis of quasielastic neutron scattering (QENS) spectra using the random jump diffusion model reveals two translational diffusive motions clearly separated in time scales: a fast process ( Dtilde 10-9m2/s at 300 K), and a much slower process ( Dtilde 10-11m2/s at 300 K). Considering the structural model of AMH-3 and the transport properties extracted from the QENS data, it is suggested that the slower motion corresponds to diffusion by water molecules in the interlayer spaces whereas the fast process involves diffusion in the silicate layer. This first investigation of transport phenomena in nanoporous layered silicates like AMH-3 indicates that they have the potential to offer mass transport properties different from zeolite materials and layered clays.

  15. On the composition dependence of thermodynamic, dynamic and dielectric properties of water-methanol model mixtures. Molecular dynamics simulation results

    Directory of Open Access Journals (Sweden)

    E. Galicia-Andrés

    2015-12-01

    Full Text Available We have investigated thermodynamic and dynamic properties as well as the dielectric constant of water-methanol model mixtures in the entire range of composition by using constant pressure molecular dynamics simulations at ambient conditions. The SPC/E and TIP4P/Ew water models are used in combination with the OPLS united atom modelling for methanol. Changes of the average number of hydrogen bonds between particles of different species and of the fractions of differently bonded molecules are put in correspondence with the behavior of excess mixing volume and enthalpy, of self-diffusion coefficients and rotational relaxation times. From the detailed analyses of the results obtained in this work, we conclude that an improvement of the description of an ample set of properties of water-methanol mixtures can possibly be reached, if a more sophisticated, carefully parameterized, e.g., all atom, model for methanol is used. Moreover, exploration of parametrization of the methanol force field, with simultaneous application of different combination rules for methanol-water cross interactions, is required.

  16. A system dynamics computer model for long-term water quality planning

    OpenAIRE

    Smith, Edwin L.

    1985-01-01

    The objective of this study was to develop a comprehensive, basin-wide, water-quality-planning model using system dynamics methodology. Later, the model was to be interfaced with a more conventional system dynamics model: one simulating social, technological, economic, and political interactions. By doing so, it is envisioned that such management policies as zoning, abatement facilities, and best management practices may be simulated together.

  17. A novel tracer technique for the assessment of fine sediment dynamics in urban water management systems.

    Science.gov (United States)

    Spencer, K L; Droppo, I G; He, C; Grapentine, L; Exall, K

    2011-04-01

    Urban storm water run off can reduce the quality of receiving waters due to high sediment load and associated sediment-bound contaminants. Consequently, urban water management systems, such as detention ponds, that both modify water quantity through storage and improve water quality through sediment retention are frequently-used best management practices. To manage such systems effectively and to improve their efficiency, there is a need to understand the dynamics (transport and settling) of sediment, and in particular the fine sediment fraction (modelling the transport behaviour of fine-grained and cohesive sediment is problematic and field-based measurements can be costly, time-consuming and unrepresentative. The aim of this study was to test the application of a novel cohesive sediment tracer and to determine fine sediment transport dynamics within a storm water detention pond. The cohesive sediment tracer used was a holmium labelled montmorillonite clay which flocculated and had similar size and settling velocity to the natural pond sediment it was intended to mimic. The tracer demonstrated that fine sediment was deposited across the entire pond, with the presence of reed beds and water depth being important factors for maximising sediment retention. The results of the sediment tracer experiment were in good agreement with those of a mathematical sediment transport model. Here, the deposited sediment tracer was sampled by collecting and analysing surface pond sediments for holmium. However, analysis and sampling of the three dimensional suspended tracer 'cloud' may provide more accurate information regarding internal pond sediment dynamics. PMID:21420140

  18. Salt-Water Transport in Unsaturated Soils Under Crop Planting: Dynamics and Numerical Simulation

    Institute of Scientific and Technical Information of China (English)

    XU Li-Gang; YANG Jing-Song; ZHANG Qi; LIU Guang-Ming

    2005-01-01

    A laboratory salt-water dynamics experiment using unsaturated soils in packed silt loam and clay soil columns with different soil texture profiles and groundwater levels under crops were conducted to study the changes of salt-water dynamics induced by water uptake of crops and to propose the theoretical basis for the regulation and control of saltwater dynamics as well as to predict salinity levels. The HYDRUS 1D model was applied to simulate the one-dimensional movement of water and salt transport in the soil columns. The results showed that the salts mainly accumulated in the plow layer in the soil columns under crops. Soil water and salt both moved towards the plow layer due to soil water absorption by the crop root system. The salt contents in the column with lower groundwater were mostly greater than those with high groundwater. The water contents in the soil columns increased from top to the bottom due to plant root water uptake. The changes in groundwater level had little influence on water content of the root zone in the soil columns with crop planting. Comparison between the simulated and the determined values showed that model simulation results were ideal, so it is practicable to do numerical simulation of soil salt and water transport by the HYDRUS 1D model.Furthermore, if the actual movement of salt and water in fields is to be described in detail, much work needs to be done.The most important thing is to refine the parameters and select precise boundary conditions.

  19. A DYNAMIC APPROACH TO CALCULATE SHADOW PRICES OF WATER RESOURCES FOR NINE MAJOR RIVERS IN CHINA

    Institute of Scientific and Technical Information of China (English)

    Jing HE; Xikang CHEN; Yong SHI

    2006-01-01

    China is experiencing from serious water issues. There are many differences among the Nine Major Rivers basins of China in the construction of dikes, reservoirs, floodgates, flood discharge projects, flood diversion projects, water ecological construction, water conservancy management, etc.The shadow prices of water resources for Nine Major Rivers can provide suggestions to the Chinese government. This article develops a dynamic shadow prices approach based on a multiperiod input-output optimizing model. Unlike previous approaches, the new model is based on the dynamic computable general equilibrium (DCGE) model to solve the problem of marginal long-term prices of water resources.First, definitions and algorithms of DCGE are elaborated. Second, the results of shadow prices of water resources for Nine Major Rivers in 1949-2050 in China using the National Water Conservancy input-holding-output table for Nine Major Rivers in 1999 are listed. A conclusion of this article is that the shadow prices of water resources for Nine Major Rivers are largely based on the extent of scarcity.Selling prices of water resources should be revised via the usage of parameters representing shadow prices.

  20. Combined Use of Neutron Thermalization and Electromagnetic Sensing in Assessing Soil Water Dynamics

    International Nuclear Information System (INIS)

    Agriculture is by far the largest consumer of available fresh water accounting for 70% of withdrawals worldwide. Meeting increased future demands for food and fibre will, by and large, need to be met by improving the efficient use of both irrigation and precipitation for crop production (FAO, 2002). Field research aimed at evaluating the efficiency of water use by crops invariably requires monitoring changes in soil water with time (e.g. Ibragimov et al., 2011). Such monitoring integrates the irrigation, precipitation, evapotranspiration and deep drainage history that affects the aggregate response of the system, which is manifested as soil water storage. These dynamic processes are important in evaluating the efficiency with which crop cultivars, irrigation strategies, cropping and tillage systems utilize available soil water for grain and biomass production. The neutron probe has been particularly effective in estimating soil water content because of its large measurement volume and linear response to changes in soil water (Hignett and Evett, 2002). However, neutron thermalization techniques suffer from poor spatial resolution which is problematic near the surface where there are steep soil water content gradients. Data acquisition at sub-daily intervals using the neutron probe is also impractical and restricts measurements to temporal resolutions that are unable to capture highly dynamic hydrological processes. When properly calibrated, automated soil water monitoring with proven electromagnetic (EM) sensors can facilitate measurements at short time scales associated with infiltration and evaporation processes near the surface.

  1. Documentation of INL’s In Situ Oil Shale Retorting Water Usage System Dynamics Model

    Energy Technology Data Exchange (ETDEWEB)

    Earl D Mattson; Larry Hull

    2012-12-01

    A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9™ software package. Three phases of an in situ retort were consider; a construction phase primarily accounts for water needed for drilling and water produced during dewatering, an operation phase includes the production of water from the retorting process, and a remediation phase water to remove heat and solutes from the subsurface as well as return the ground surface to its natural state. Throughout these three phases, the water is consumed and produced. Consumption is account for through the drill process, dust control, returning the ground water to its initial level and make up water losses during the remedial flushing of the retort zone. Production of water is through the dewatering of the retort zone, and during chemical pyrolysis reaction of the kerogen conversion. The document discusses each of the three phases used in the model.

  2. Joint operation and dynamic control of flood limiting water levels for mixed cascade reservoir systems

    Science.gov (United States)

    Zhou, Yanlai; Guo, Shenglian; Liu, Pan; Xu, Chongyu

    2014-11-01

    Reservoirs are one of the most efficient infrastructures for integrated water resources development and management; and play a more and more important role in flood control and conservation. Dynamic control of the reservoir flood limiting water level (FLWL) is a valuable and effective approach to compromise the flood control, hydropower generation and comprehensive utilization of water resources of river basins during the flood season. The dynamic control models of FLWL for a single reservoir and cascade reservoirs have been extended for a mixed reservoir system in this paper. The proposed model consists of a dynamic control operation module for a single reservoir, a dynamic control operation module for cascade reservoirs, and a joint operation module for mixed cascade reservoir systems. The Three Gorges and Qingjiang cascade reservoirs in the Yangtze River basin of China are selected for a case study. Three-hour inflow data series for representative hydrological years are used to test the model. The results indicate that the proposed model can make an effective tradeoff between flood control and hydropower generation. Joint operation and dynamic control of FLWL can generate 26.4 × 108 kW h (3.47%) more hydropower for the mixed cascade reservoir systems and increase the water resource utilization rate by 3.72% for the Three Gorges reservoir and 2.42% for the Qingjiang cascade reservoirs without reducing originally designed flood prevention standards.

  3. Design of Compact Photoelectrochemical Cells for Water Splitting

    Directory of Open Access Journals (Sweden)

    Bosserez Tom

    2015-09-01

    Full Text Available Solar driven water splitting can be achieved by coupling electrolyzers with PhotoVoltaics (PV. Integration of both functions in a compact PhotoElectroChemical (PEC cell is an attractive option but presents significant scientific challenges. In this work, the design of single- and dual-compartment PEC cells for research purposes is discussed. The fabrication of separator-electrode assemblies is an important aspect, and upscaling of these architectures even to centimeter scale is not trivial. The layout of a new dual-compartment compact PEC cell with in-situ monitoring of pH, temperatures, and oxygen and hydrogen evolution for research purposes is presented. Finally, a prospect of future PEC cells for practical applications is presented.

  4. Credibility theory based dynamic control bound optimization for reservoir flood limited water level

    Science.gov (United States)

    Jiang, Zhiqiang; Sun, Ping; Ji, Changming; Zhou, Jianzhong

    2015-10-01

    The dynamic control operation of reservoir flood limited water level (FLWL) can solve the contradictions between reservoir flood control and beneficial operation well, and it is an important measure to make sure the security of flood control and realize the flood utilization. The dynamic control bound of FLWL is a fundamental key element for implementing reservoir dynamic control operation. In order to optimize the dynamic control bound of FLWL by considering flood forecasting error, this paper took the forecasting error as a fuzzy variable, and described it with the emerging credibility theory in recent years. By combining the flood forecasting error quantitative model, a credibility-based fuzzy chance constrained model used to optimize the dynamic control bound was proposed in this paper, and fuzzy simulation technology was used to solve the model. The FENGTAN reservoir in China was selected as a case study, and the results show that, compared with the original operation water level, the initial operation water level (IOWL) of FENGTAN reservoir can be raised 4 m, 2 m and 5.5 m respectively in the three division stages of flood season, and without increasing flood control risk. In addition, the rationality and feasibility of the proposed forecasting error quantitative model and credibility-based dynamic control bound optimization model are verified by the calculation results of extreme risk theory.

  5. Dynamics of the Oxygen, Carbon Dioxide, and Water Interaction across the Insect Spiracle

    Directory of Open Access Journals (Sweden)

    S. M. Simelane

    2014-01-01

    Full Text Available This paper explores the dynamics of respiratory gases interactions which are accompanied by the loss of water through an insect’s spiracle. Here we investigate and analyze this interaction by deriving a system of ordinary differential equations for oxygen, carbon dioxide, and water vapor. The analysis is carried out in continuous time. The purpose of the research is to determine bounds for the gas volumes and to discuss the complexity and stability of the equilibria. Numerical simulations also demonstrate the dynamics of our model utilizing the new conditions for stability and instability.

  6. Wetting kinetics of water nano-droplet containing non-surfactant nanoparticles: A molecular dynamics study

    International Nuclear Information System (INIS)

    In this Letter, dynamic wetting of water nano-droplets containing non-surfactant gold nanoparticles on a gold substrate is examined via molecular dynamics simulations. The results show that the addition of non-surfactant nanoparticles hinders the nano-second droplet wetting process, attributed to the increases in both surface tension of the nanofluid and friction between nanofluid and substrate. The droplet wetting kinetics decreases with increasing nanoparticle loading and water-particle interaction energy. The observed wetting suppression and the absence of nanoparticle ordering near the contact line of nano-sized droplets differ from the wetting behaviors reported from nanofluid droplets of micron size or larger

  7. Wetting kinetics of water nano-droplet containing non-surfactant nanoparticles: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Gui [Key Laboratory for Thermal Science and Power Engineering of MOE, Beijing Key Laboratory for CO2 Utilization and Reduction Technology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Hu, Han; Sun, Ying, E-mail: yyduan@tsinghua.edu.cn, E-mail: ysun@coe.drexel.edu [Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Duan, Yuanyuan, E-mail: yyduan@tsinghua.edu.cn, E-mail: ysun@coe.drexel.edu [Key Laboratory for Thermal Science and Power Engineering of MOE, Beijing Key Laboratory for CO2 Utilization and Reduction Technology, Tsinghua University, Beijing 100084 (China)

    2013-12-16

    In this Letter, dynamic wetting of water nano-droplets containing non-surfactant gold nanoparticles on a gold substrate is examined via molecular dynamics simulations. The results show that the addition of non-surfactant nanoparticles hinders the nano-second droplet wetting process, attributed to the increases in both surface tension of the nanofluid and friction between nanofluid and substrate. The droplet wetting kinetics decreases with increasing nanoparticle loading and water-particle interaction energy. The observed wetting suppression and the absence of nanoparticle ordering near the contact line of nano-sized droplets differ from the wetting behaviors reported from nanofluid droplets of micron size or larger.

  8. Laboratory and Field Investigations of Dynamic Effects in Soil Water Retention Curve

    Science.gov (United States)

    Chiu, Yung-Chia; Tseng, Yen-Huiang; Ye, Jiun-Yan

    2015-04-01

    The unsaturated soil is a multi-phase system and the embedded physical mechanisms and chemical reactions are very complicated. The characteristics of groundwater flow and mechanisms of mass transport are still ambiguous so far. In order to fully understand the flow and transport in the unsaturated zone, the soil water retention curve plays an important role in description of water flow. However, the measurements and calculations of soil water retention curve are usually obtained under the static condition or steady state (equilibrium), in which the dynamic effects (non-equilibrium) are not considered, and the obtained relationship between capillary pressure and saturation is skeptical. Therefore, the sandbox experiments and field tests will be conducted to discuss the dynamic effects in the soil water retention curve and hysteresis effect in this study. In the laboratory, the relations between capillary pressure, saturation, the rate of change of water content, and dynamic constant are evaluated through different setting of boundary conditions and different sizes of particles. In the field, the tests are conducted to describe the soil water retention curve through the rain simulator and artificial evaporation. Besides, the dynamic dewpoint potentiameter is used to analyze the hysteresis effect of soil samples, and its results are compared with the results obtained from sandbox and field experiments. Finally, through a series of experiments, the relationship between capillary pressure and saturation under the dynamic effects is established, and the associated theories and mechanisms are discussed. The works developed in this study can provide as reference tools for the hydrogeological investigation and contaminated site remediation in the future. Keywords: capillary pressure, saturation, soil water retention curve, hysteresis, sandbox experiment, field test

  9. Dynamic simulation of a boiling water nuclear reactor

    International Nuclear Information System (INIS)

    For the application of modern control theory, specifically optimal control, to the boiling water reactor, it is necessary to have a linear model that is validated. The nonlinear model of the BWR derived on the basis of physical laws and empirical relations is linearized around an operating point and the model if verified against experimental results by simulating various tests such as the pressure transient test, change in power to recirculating pump etc. The transport delay occurring in the model is approximated by various representations and the results are compared with the exact delay representation. Validation such as discussed in the paper forms the basis for devising appropriate control strategies in the presence of disturbances. (author)

  10. Parameter identification in dynamical models of anaerobic waste water treatment.

    Science.gov (United States)

    Müller, T G; Noykova, N; Gyllenberg, M; Timmer, J

    2002-01-01

    Biochemical reactions can often be formulated mathematically as ordinary differential equations. In the process of modeling, the main questions that arise are concerned with structural identifiability, parameter estimation and practical identifiability. To clarify these questions and the methods how to solve them, we analyze two different second order models for anaerobic waste water treatment processes using two data sets obtained from different experimental setups. In both experiments only biogas production rate was measured which complicates the analysis considerably. We show that proving structural identifiability of the mathematical models with currently used methods fails. Therefore, we introduce a new, general method based on the asymptotic behavior of the maximum likelihood estimator to show local structural identifiability. For parameter estimation we use the multiple shooting approach which is described. Additionally we show that the Hessian matrix approach to compute confidence intervals fails in our examples while a method based on Monte Carlo Simulation works well. PMID:11965253

  11. Dynamic Fluctuation of Circulating Tumor Cells during Cancer Progression

    International Nuclear Information System (INIS)

    Circulating tumor cells (CTCs) are a promising diagnostic and prognostic biomarker for metastatic tumors. We demonstrate that CTCs’ diagnostic value might be increased through real-time monitoring of CTC dynamics. Using preclinical animal models of breast cancer and melanoma and in vivo flow cytometry with photoacoustic and fluorescence detection schematics, we show that CTC count does not always correlate with the primary tumor size. Individual analysis elucidated many cases where the highest level of CTCs was detected before the primary tumor starts progressing. This phenomenon could be attributed to aggressive tumors developing from cancer stem cells. Furthermore, real-time continuous monitoring of CTCs reveals that they occur at highly variable rates in a detection point over a period of time (e.g., a range of 0–54 CTCs per 5 min). These same fluctuations in CTC numbers were observed in vivo in epithelial and non-epithelial metastatic tumors, in different stages of tumor progression, and in different vessels. These temporal CTC fluctuations can explain false negative results of a one-time snapshot test in humans. Indeed, we observed wide variations in the number of CTCs in subsequent blood samples taken from the same metastatic melanoma patient, with some samples being CTC-free. If these phenomena are confirmed in our ongoing in vivo clinical trials, this could support a personalized strategy of CTC monitoring for cancer patients

  12. Dynamic Fluctuation of Circulating Tumor Cells during Cancer Progression

    Directory of Open Access Journals (Sweden)

    Mazen A. Juratli

    2014-01-01

    Full Text Available Circulating tumor cells (CTCs are a promising diagnostic and prognostic biomarker for metastatic tumors. We demonstrate that CTCs’ diagnostic value might be increased through real-time monitoring of CTC dynamics. Using preclinical animal models of breast cancer and melanoma and in vivo flow cytometry with photoacoustic and fluorescence detection schematics, we show that CTC count does not always correlate with the primary tumor size. Individual analysis elucidated many cases where the highest level of CTCs was detected before the primary tumor starts progressing. This phenomenon could be attributed to aggressive tumors developing from cancer stem cells. Furthermore, real-time continuous monitoring of CTCs reveals that they occur at highly variable rates in a detection point over a period of time (e.g., a range of 0–54 CTCs per 5 min. These same fluctuations in CTC numbers were observed in vivo in epithelial and non-epithelial metastatic tumors, in different stages of tumor progression, and in different vessels. These temporal CTC fluctuations can explain false negative results of a one-time snapshot test in humans. Indeed, we observed wide variations in the number of CTCs in subsequent blood samples taken from the same metastatic melanoma patient, with some samples being CTC-free. If these phenomena are confirmed in our ongoing in vivo clinical trials, this could support a personalized strategy of CTC monitoring for cancer patients.

  13. Dynamic Fluctuation of Circulating Tumor Cells during Cancer Progression

    Energy Technology Data Exchange (ETDEWEB)

    Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A. [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Melerzanov, Alexander V. [Moscow Institute of Physics and Technology (MIPT), Moscow Region, 141700 (Russian Federation); Zharov, Vladimir P. [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Moscow Institute of Physics and Technology (MIPT), Moscow Region, 141700 (Russian Federation); Galanzha, Ekaterina I., E-mail: egalanzha@uams.edu [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2014-01-15

    Circulating tumor cells (CTCs) are a promising diagnostic and prognostic biomarker for metastatic tumors. We demonstrate that CTCs’ diagnostic value might be increased through real-time monitoring of CTC dynamics. Using preclinical animal models of breast cancer and melanoma and in vivo flow cytometry with photoacoustic and fluorescence detection schematics, we show that CTC count does not always correlate with the primary tumor size. Individual analysis elucidated many cases where the highest level of CTCs was detected before the primary tumor starts progressing. This phenomenon could be attributed to aggressive tumors developing from cancer stem cells. Furthermore, real-time continuous monitoring of CTCs reveals that they occur at highly variable rates in a detection point over a period of time (e.g., a range of 0–54 CTCs per 5 min). These same fluctuations in CTC numbers were observed in vivo in epithelial and non-epithelial metastatic tumors, in different stages of tumor progression, and in different vessels. These temporal CTC fluctuations can explain false negative results of a one-time snapshot test in humans. Indeed, we observed wide variations in the number of CTCs in subsequent blood samples taken from the same metastatic melanoma patient, with some samples being CTC-free. If these phenomena are confirmed in our ongoing in vivo clinical trials, this could support a personalized strategy of CTC monitoring for cancer patients.

  14. Water age and stream solute dynamics at the Hubbard Brook Experimental Forest (US)

    Science.gov (United States)

    Botter, Gianluca; Benettin, Paolo; McGuire, Kevin; Rinaldo, Andrea

    2016-04-01

    The contribution discusses experimental and modeling results from a headwater catchment at the Hubbard Brook Experimental Forest (New Hampshire, USA) to explore the link between stream solute dynamics and water age. A theoretical framework based on water age dynamics, which represents a general basis for characterizing solute transport at the catchment scale, is used to model both conservative and weathering-derived solutes. Based on the available information about the hydrology of the site, an integrated transport model was developed and used to estimate the relevant hydrochemical fluxes. The model was designed to reproduce the deuterium content of streamflow and allowed for the estimate of catchment water storage and dynamic travel time distributions (TTDs). Within this framework, dissolved silicon and sodium concentration in streamflow were simulated by implementing first-order chemical kinetics based explicitly on dynamic TTD, thus upscaling local geochemical processes to catchment scale. Our results highlight the key role of water stored within the subsoil glacial material in both the short-term and long-term solute circulation at Hubbard Brook. The analysis of the results provided by the calibrated model allowed a robust estimate of the emerging concentration-discharge relationship, streamflow age distributions (including the fraction of event water) and storage size, and their evolution in time due to hydrologic variability.

  15. Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration

    International Nuclear Information System (INIS)

    Fullerene C60 sub-colloidal particle with diameter ∼1 nm represents a boundary case between small and large hydrophobic solutes on the length scale of hydrophobic hydration. In the present paper, a molecular dynamics simulation is performed to investigate this complex phenomenon for bare C60 fullerene and its amphiphilic/charged derivatives, so called shape amphiphiles. Since most of the unique properties of water originate from the pattern of hydrogen bond network and its dynamics, spatial, and orientational aspects of water in solvation shells around the solute surface having hydrophilic and hydrophobic regions are analyzed. Dynamical properties such as translational-rotational mobility, reorientational correlation and occupation time correlation functions of water molecules, and diffusion coefficients are also calculated. Slower dynamics of solvent molecules—water retardation—in the vicinity of the solutes is observed. Both the topological properties of hydrogen bond pattern and the “dangling” –OH groups that represent surface defects in water network are monitored. The fraction of such defect structures is increased near the hydrophobic cap of fullerenes. Some “dry” regions of C60 are observed which can be considered as signatures of surface dewetting. In an effort to provide molecular level insight into the thermodynamics of hydration, the free energy of solvation is determined for a family of fullerene particles using thermodynamic integration technique

  16. Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration

    Energy Technology Data Exchange (ETDEWEB)

    Varanasi, S. R., E-mail: s.raovaranasi@uq.edu.au, E-mail: guskova@ipfdd.de; John, A. [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Guskova, O. A., E-mail: s.raovaranasi@uq.edu.au, E-mail: guskova@ipfdd.de [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden D-01069 (Germany); Sommer, J.-U. [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden D-01069 (Germany); Institut für Theoretische Physik, Technische Universität Dresden, Zellescher Weg 17, Dresden D-01069 (Germany)

    2015-06-14

    Fullerene C{sub 60} sub-colloidal particle with diameter ∼1 nm represents a boundary case between small and large hydrophobic solutes on the length scale of hydrophobic hydration. In the present paper, a molecular dynamics simulation is performed to investigate this complex phenomenon for bare C{sub 60} fullerene and its amphiphilic/charged derivatives, so called shape amphiphiles. Since most of the unique properties of water originate from the pattern of hydrogen bond network and its dynamics, spatial, and orientational aspects of water in solvation shells around the solute surface having hydrophilic and hydrophobic regions are analyzed. Dynamical properties such as translational-rotational mobility, reorientational correlation and occupation time correlation functions of water molecules, and diffusion coefficients are also calculated. Slower dynamics of solvent molecules—water retardation—in the vicinity of the solutes is observed. Both the topological properties of hydrogen bond pattern and the “dangling” –OH groups that represent surface defects in water network are monitored. The fraction of such defect structures is increased near the hydrophobic cap of fullerenes. Some “dry” regions of C{sub 60} are observed which can be considered as signatures of surface dewetting. In an effort to provide molecular level insight into the thermodynamics of hydration, the free energy of solvation is determined for a family of fullerene particles using thermodynamic integration technique.

  17. Exploring water cycle dynamics by sampling multiple stable water isotope pools in a developed landscape in Germany

    Science.gov (United States)

    Orlowski, Natalie; Kraft, Philipp; Pferdmenges, Jakob; Breuer, Lutz

    2016-09-01

    A dual stable water isotope (δ2H and δ18O) study was conducted in the developed (managed) landscape of the Schwingbach catchment (Germany). The 2-year weekly to biweekly measurements of precipitation, stream, and groundwater isotopes revealed that surface and groundwater are isotopically disconnected from the annual precipitation cycle but showed bidirectional interactions between each other. Apparently, snowmelt played a fundamental role for groundwater recharge explaining the observed differences to precipitation δ values. A spatially distributed snapshot sampling of soil water isotopes at two soil depths at 52 sampling points across different land uses (arable land, forest, and grassland) revealed that topsoil isotopic signatures were similar to the precipitation input signal. Preferential water flow paths occurred under forested soils, explaining the isotopic similarities between top- and subsoil isotopic signatures. Due to human-impacted agricultural land use (tilling and compression) of arable and grassland soils, water delivery to the deeper soil layers was reduced, resulting in significant different isotopic signatures. However, the land use influence became less pronounced with depth and soil water approached groundwater δ values. Seasonally tracing stable water isotopes through soil profiles showed that the influence of new percolating soil water decreased with depth as no remarkable seasonality in soil isotopic signatures was obvious at depths > 0.9 m and constant values were observed through space and time. Since classic isotope evaluation methods such as transfer-function-based mean transit time calculations did not provide a good fit between the observed and calculated data, we established a hydrological model to estimate spatially distributed groundwater ages and flow directions within the Vollnkirchener Bach subcatchment. Our model revealed that complex age dynamics exist within the subcatchment and that much of the runoff must has been stored

  18. Path integral Liouville dynamics: Applications to infrared spectra of OH, water, ammonia, and methane

    International Nuclear Information System (INIS)

    Path integral Liouville dynamics (PILD) is applied to vibrational dynamics of several simple but representative realistic molecular systems (OH, water, ammonia, and methane). The dipole-derivative autocorrelation function is employed to obtain the infrared spectrum as a function of temperature and isotopic substitution. Comparison to the exact vibrational frequency shows that PILD produces a reasonably accurate peak position with a relatively small full width at half maximum. PILD offers a potentially useful trajectory-based quantum dynamics approach to compute vibrational spectra of molecular systems

  19. Path integral Liouville dynamics: Applications to infrared spectra of OH, water, ammonia, and methane.

    Science.gov (United States)

    Liu, Jian; Zhang, Zhijun

    2016-01-21

    Path integral Liouville dynamics (PILD) is applied to vibrational dynamics of several simple but representative realistic molecular systems (OH, water, ammonia, and methane). The dipole-derivative autocorrelation function is employed to obtain the infrared spectrum as a function of temperature and isotopic substitution. Comparison to the exact vibrational frequency shows that PILD produces a reasonably accurate peak position with a relatively small full width at half maximum. PILD offers a potentially useful trajectory-based quantum dynamics approach to compute vibrational spectra of molecular systems. PMID:26801034

  20. Path integral Liouville dynamics: Applications to infrared spectra of OH, water, ammonia, and methane

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian, E-mail: jianliupku@pku.edu.cn [Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Zhang, Zhijun [Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2016-01-21

    Path integral Liouville dynamics (PILD) is applied to vibrational dynamics of several simple but representative realistic molecular systems (OH, water, ammonia, and methane). The dipole-derivative autocorrelation function is employed to obtain the infrared spectrum as a function of temperature and isotopic substitution. Comparison to the exact vibrational frequency shows that PILD produces a reasonably accurate peak position with a relatively small full width at half maximum. PILD offers a potentially useful trajectory-based quantum dynamics approach to compute vibrational spectra of molecular systems.

  1. Charge carrier dynamics in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Strothkaemper, Christian

    2013-06-24

    This work investigates the charge carrier dynamics in three different technological approaches within the class of thin film solar cells: radial heterojunctions, the dye solar cell, and microcrystalline CuInSe{sub 2}, focusing on charge transport and separation at the electrode, and the relaxation of photogenerated charge carriers due to recombination and energy dissipation to the phonon system. This work relies mostly on optical-pump terahertz-probe (OPTP) spectroscopy, followed by transient absorption (TA) and two-photon photoemission (2PPE). The charge separation in ZnO-electrode/In{sub 2}S{sub 3}-absorber core/shell nanorods, which represent a model system of a radial heterojunction, is analyzed by OPTP. It is concluded, that the dynamics in the absorber are determined by multiple trapping, which leads to a dispersive charge transport to the electrode that lasts over hundreds of picoseconds. The high trap density on the order of 10{sup 19}/cm{sup 3} is detrimental for the injection yield, which exhibits a decrease with increasing shell thickness. The heterogeneous electron transfer from a series of model dyes into ZnO proceeds on a time-scale of 200 fs. However, the photoconductivity builds up just on a 2-10 ps timescale, and 2PPE reveals that injected electrons are meanwhile localized spatially and energetically at the interface. It is concluded that the injection proceeds through adsorbate induced interface states. This is an important result because the back reaction from long lived interface states can be expected to be much faster than from bulk states. While the charge transport in stoichiometric CuInSe{sub 2} thin films is indicative of free charge carriers, CuInSe{sub 2} with a solar cell grade composition (Cu-poor) exhibits signs of carrier localization. This detrimental effect is attributed to a high density of charged defects and a high degree of compensation, which together create a spatially fluctuating potential that inhibits charge transport. On

  2. Effect of Porosity and Cell Size on the Dynamic Compressive Properties of Aluminum Alloy Foams

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The dynamic mechanical properties of open-cell aluminum alloy foams with different relative densities and cell sizeshave been investigated by compressive tests. The strain rates varied from 700 s-1 to 2600 s-1. The experimentalresults showed that the dynamic compressive stress-strain curves exhibited a typical three-stage behavior: elastic,plateau and densification. The dynamic compressive strength of foams is affected not only by the relative densitybut also by the strain rate and cell size. Aluminum alloy foams with higher relative density or smaller cell size aremore sensitive to the strain rate than foams with lower relative density or larger cell size.

  3. Isobaric first-principles molecular dynamics of liquid water with nonlocal van der Waals interactions

    CERN Document Server

    Miceli, Giacomo; Pasquarello, Alfredo

    2016-01-01

    We investigate the structural properties of liquid water at near ambient conditions using first-principles molecular dynamics simulations based on a semilocal density functional augmented with nonlocal van der Waals interactions. The adopted scheme offers the advantage of simulating liquid water at essentially the same computational cost of standard semilocal functionals. Applied to the water dimer and to ice Ih, we find that the hydrogen-bond energy is only slightly enhanced compared to a standard semilocal functional. We simulate liquid water through molecular dynamics in the NpH statistical ensemble allowing for fluctuations of the system density. The structure of the liquid departs from that found with a semilocal functional leading to more compact structural arrangements. This indicates that the directionality of the hydrogen-bond interaction has a diminished role as compared to the overall attractions, as expected when dispersion interactions are accounted for. This is substantiated through a detailed a...

  4. Blood cell telomere length is a dynamic feature.

    Directory of Open Access Journals (Sweden)

    Ulrika Svenson

    Full Text Available There is a considerable heterogeneity in blood cell telomere length (TL for individuals of similar age and recent studies have revealed that TL changes by time are dependent on TL at baseline. TL is partly inherited, but results from several studies indicate that e.g. life style and/or environmental factors can affect TL during life. Collectively, these studies imply that blood cell TL might fluctuate during a life time and that the actual TL at a defined time point is the result of potential regulatory mechanism(s and environmental factors. We analyzed relative TL (RTL in subsequent blood samples taken six months apart from 50 individuals and found significant associations between RTL changes and RTL at baseline. Individual RTL changes per month were more pronounced than the changes recorded in a previously studied population analyzed after 10 years' follow up. The data argues for an oscillating TL pattern which levels out at longer follow up times. In a separate group of five blood donors, a marked telomere loss was demonstrated within a six month period for one donor where after TL was stabilized. PCR determined RTL changes were verified by Southern blotting and STELA (single telomere elongation length analysis. The STELA demonstrated that for the donor with a marked telomere loss, the heterogeneity of the telomere distribution decreased considerably, with a noteworthy loss of the largest telomeres. In summary, the collected data support the concept that individual blood cell telomere length is a dynamic feature and this will be important to recognize in future studies of human telomere biology.

  5. Dynamic relationship between the VOC emissions from a Scots pine stem and the tree water relations

    Science.gov (United States)

    Vanhatalo, Anni; Chan, Tommy; Aalto, Juho; Kolari, Pasi; Rissanen, Kaisa; Hakola, Hannele; Hölttä, Teemu; Bäck, Jaana

    2013-04-01

    The stems of coniferous trees contain huge storages of oleoresin. The composition of oleoresin depends on e.g. tree species, age, provenance, health status, and environmental conditions. Oleoresin is under pressure in the extensive network of resin ducts in wood and needles. It flows out from a mechanically damaged site to protect the tree by sealing the wounded site. Once in contact with air, volatile parts of oleoresin evaporate, and the residual compounds harden to make a solid protective seal over damaged tissues. The hardening time of the resin depends on evaporation rate of the volatiles which in turn depends on temperature. The storage is also toxic to herbivores and attracts predators that restrict the herbivore damage. Despite abundant knowledge on emissions of volatile isoprenoids from foliage, very little is known about their emissions from woody plant parts. We set up an experiment to measure emissions of isoprene and monoterpenes as well as two oxygenated VOCs, methanol and acetone, from a Scots pine (Pinus sylvestris) stem and branches. The measurements were started in early April and continued until mid-June, 2012. Simultaneously, we measured the dynamics of whole stem and xylem diameter changes, stem sap flow rate and foliage transpiration rate. These measurements were used to estimate A) pressure changes inside the living stem tissue and the water conducting xylem, B) the refilling of stem water stores after winter dehydration (the ratio of sap flow at the stem base to water loss by foliage), and C) the increase in tree water transport capacity (the ratio of maximum daily sap flow rate to the diurnal variation in xylem pressure) during spring due to winter embolism refilling and/or the temperature dependent root water uptake capacity. The results show that already very early in spring, significant VOC emissions from pine stem can be detected, and that they exhibit a diurnal cycle similar to that of ambient temperature. During the highest emission

  6. Power-law Growth and Punctuated Equilibrium Dynamics in Water Resources Systems

    Science.gov (United States)

    Parolari, A.; Katul, G. G.; Porporato, A. M.

    2015-12-01

    The global rise in population-driven water scarcity and recent appreciation of strong dynamic coupling between human and natural systems has called for new approaches to predict the future sustainability of regional and global water resources systems. The dynamics of coupled human-water systems are driven by a complex set of social, environmental, and technological factors. Present projections of water resources systems range from a finite carrying capacity regulated by accessible freshwater, or `peak renewable water,' to punctuated evolution with new supplied and improved efficiency gained from technological and social innovation. However, these projections have yet to be quantified from observations or in a comprehensive theoretical framework. Using data on global water withdrawals and storage capacity of regional water supply systems, non-trivial dynamics are identified in water resources systems development over time, including power-law growth and punctuated equilibria. Two models are introduced to explain this behavior: (1) a delay differential equation and (2) a power-law with log-periodic oscillations, both of which rely on past conditions (or system memory) to describe the present rate of growth in the system. In addition, extension of the first model demonstrates how system delays and punctuated equilibria can emerge from coupling between human population growth and associated resource demands. Lastly, anecdotal evidence is used to demonstrate the likelihood of power-law growth in global water use from the agricultural revolution 3000 BC to the present. In a practical sense, the presence of these patterns in models with delayed oscillations suggests that current decision-making related to water resources development results from the historical accumulation of resource use decisions, technological and social changes, and their consequences.

  7. Dynamic combinatorial synthesis of a catenane based on donor–acceptor interactions in water

    Science.gov (United States)

    Au-Yeung, Ho Yu; Pantoş, G. Dan; Sanders, Jeremy K. M.

    2009-01-01

    A new type of neutral donor–acceptor [2]-catenane, containing both complementary units in the same ring was synthesized from a dynamic combinatorial library in water. The yield of the water soluble [2]-catenane is enhanced by increasing either building-block concentrations or ionic strength, or by the addition of an electron-rich template. NMR spectroscopy demonstrates that the template is intercalated between the 2 electron-deficient naphthalenediimide units of the catenane. PMID:19171892

  8. Molecular Dynamical Simulation of Water/Ice Phase Transitions within Carbon Nanotubes under Various Pressures

    Institute of Scientific and Technical Information of China (English)

    YIN Bing; DONG Shun-Le

    2009-01-01

    A molecular dynamics simulation is performed for water confined within carbon nanotubes with diameters 11.00 (A) and 12.38 (A).Under pressures from 0.1 MPa to 500MPa the simulations are carried out by cooling from 300K to 240 K.Water molecules tend to transform from disordered to ordered with different configurations (square,pentagonal,hexagonal and hexagonal plus a chain).It is concluded that denser structures may appear under high pressures.

  9. Dynamics of thraustochytrid protists in the water column of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.; Ramaiah, N.; Raghukumar, C.

    ). Thraustochytrids were present in substantial numbers throughout the 150 m water column in all the stations investigated during the end of the biologically productive summer and winter monsoons (0 to 1313 x 10 sup(3) and 3.7 to 183 x 10 sup(3) cells l sup(-1) water...

  10. Bromide space, total body water, and sick cell syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Schober, O.; Hundeshagen, H.; Lehr, L.

    1982-01-01

    Displacements of the bromide space (Br-82-C, as a marker for the extracellular fluid compartment) are caused by an enhanced anatomical space and/or increased permeability of cells to bromide. The ratio Br-82-C: total body water (TBW) was evaluated to be 0.83 +- 0.17 in critically ill patients (n = 38) compared with the normal value of 0.46 +- 0.04 (n = 10). Because of normal TBW in critically ill patients (TBW = 505 +- 68 ml/kg), an increased bromide penetration into cells seems to be responsible for the enlarged ratio Br-82-C: TBW. Taking into consideration measurements in patients with malabsorption (Br-82-C: TBW = 0.56 +- 0.13; n = 13) and carcinoma of the rectum and colon (Br-82-C: TBW = 0.66 +- 0.24; n = 18) we think that the bromide space is a good measurement of the effective extracellular water.

  11. Coupled Soil-Plant Water Dynamics During Drought-Rewetting Transitions

    Science.gov (United States)

    Volkmann, T. H.; Haberer, K.; Gessler, A.; Weiler, M.

    2013-12-01

    The predicted climate and land-use changes could have dramatic effects on the water balance of the soil-vegetation system, particularly under frequent drought and subsequent rewetting conditions. Yet, estimation of these effects and associated consequences for the structure and functioning of ecosystems, groundwater recharge, drinking water availability, and the water cycle is currently impeded by gaps in our understanding of the spatiotemporal dynamics of soil water in the rooted soil horizons, the dynamics and driving physiological processes of plant water acquisition, and the transpiration from plant leaves under changing environmental conditions. Combining approaches from the disciplines of plant ecophysiology and soil and isotope hydrology, this work aims to fill this gap by quantitatively characterizing the interaction between plant water use - as affected by rooting patterns and ecophysiology of different plant functional groups - and the water balance of variably complex ecosystems with emphasis on drought and rewetting phases. Results from artificial drought and subsequent rewetting in field experiments using isotopically and dye (Brilliant Blue FCF) labeled water conducted on plots of various surface cover (bare soil, grass, beech, oak, vine) established on luvisol on loess in southwestern Germany are presented. Detailed spatiotemporal insights into the coupled short-term (hours to days) dynamics of soil and plant water during the experiments is facilitated by the application of newly developed techniques for high-frequency in-situ monitoring of stable isotope signatures in both pore water and transpired water using commercial laser-based spectrometers in conjunction with plant ecophysiological, soil physical state, and dye staining observations. On the one hand, the spatiotemporal patterns of plant water uptake are assessed and related to morphological and physiological traits driving plant water uptake, functional adaptations of plants to changes of

  12. Po River (Italy) channel water resource management: Dynamic processes

    International Nuclear Information System (INIS)

    For Italy's Po River hydrological basin, artificial reservoirs have a great importance; water reserve is about 1600 million cubic meters for the hydroelectric reservoirs and about 76 million cubic meters for irrigation. Historical analyses show that the Po River channel patterns and evolutionary trend remained practically unchanged for a period of 150 years until the 1960's with a progressive increase of channel length. Starting from 1960, this trend appears to have been reversed, essentially by human activities; the river bed was deepened by dredging, channelized, and its length reduced, with a decrease in sediment supply. Under the current morphologic conditions, the hydro-system response to very high flow rates is, as yet, undetermined, because in the last 40 years peak discharges have always been lower than any previous maximum floods. Between 1801 and 1951, the Po alluvial plain was flooded once every 10-12 years, with flood levels progressively rising (the highest having been recorded in 1951), as a result of the existing embankment system being continuously extended and strengthened

  13. Modeling Water Management in Polymer-Electrolyte Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Department of Chemical Engineering, University of California, Berkeley; Weber, Adam; Weber, Adam Z.; Balliet, Ryan; Gunterman, Haluna P.; Newman, John

    2007-09-07

    Fuel cells may become the energy-delivery devices of the 21st century with realization of a carbon-neutral energy economy. Although there are many types of fuel cells, polymerelectrolyte fuel cells (PEFCs) are receiving the most attention for automotive and small stationary applications. In a PEFC, hydrogen and oxygen are combined electrochemically to produce water, electricity, and waste heat. During the operation of a PEFC, many interrelated and complex phenomena occur. These processes include mass and heat transfer, electrochemical reactions, and ionic and electronic transport. Most of these processes occur in the through-plane direction in what we term the PEFC sandwich as shown in Figure 1. This sandwich comprises multiple layers including diffusion media that can be composite structures containing a macroporous gas-diffusion layer (GDL) and microporous layer (MPL), catalyst layers (CLs), flow fields or bipolar plates, and a membrane. During operation fuel is fed into the anode flow field, moves through the diffusion medium, and reacts electrochemically at the anode CL to form hydrogen ions and electrons. The oxidant, usually oxygen in air, is fed into the cathode flow field, moves through the diffusion medium, and is electrochemically reduced at the cathode CL by combination with the generated protons and electrons. The water, either liquid or vapor, produced by the reduction of oxygen at the cathode exits the PEFC through either the cathode or anode flow field. The electrons generated at the anode pass through an external circuit and may be used to perform work before they are consumed at the cathode. The performance of a PEFC is most often reported in the form of a polarization curve, as shown in Figure 2. Roughly speaking, the polarization curve can be broken down into various regions. First, it should be noted that the equilibrium potential differs from the open-circuit voltage due mainly to hydrogen crossover through the membrane (i.e., a mixed potential

  14. Dynamical Models of Interactions between Herds Forage and Water Resources in Sahelian Region

    Directory of Open Access Journals (Sweden)

    Jean Jules Tewa

    2014-01-01

    Full Text Available Optimal foraging is one of the capital topics nowadays in Sahelian region. The vast majority of feed consumed by ruminants in Sahelian region is still formed by natural pastures. Pastoral constraints are the high variability of available forage and drinking water in space and especially in time (highly seasonal, interannual variability and the scarcity of water resources. The mobility is the main functional and opportunistic adaptation to these constraints. Our goal in this paper is to formalize two dynamical models for interactions between a herd of domesticate animals, forage resources, and water resources inside a given Sahelian area, in order to confirm, explain, and predict by mathematical models some observations about pastoralism in Sahelian region. These models in some contexts can be similar to predator-prey models as forage and water resources can be considered as preys and herd’s animals as predators. These models exhibit very rich dynamics, since it predicts abrupt changes in consumer behaviour and disponibility of forage or water resources. The dynamics exhibits a possible coexistence between herd, resources, and water with alternative peaks in their trajectories.

  15. Expansion dynamics of supercritical water probed by picosecond time-resolved photoelectron spectroscopy.

    Science.gov (United States)

    Gladytz, Thomas; Abel, Bernd; Siefermann, Katrin R

    2015-02-21

    Vibrational excitation of liquid water with femtosecond laser pulses can create extreme states of water. Yet, the dynamics directly after initial sub-picosecond delocalization of molecular vibrations remain largely unclear. We study the ultrafast expansion dynamics of an accordingly prepared supercritical water phase with a picosecond time resolution. Our experimental setup combines vacuum-compatible liquid micro-jet technology and a table top High Harmonic light source driven by a femtosecond laser system. An ultrashort laser pulse centered at a wavelength of 2900 nm excites the OH-stretch vibration of water molecules in the liquid. The deposited energy corresponds to a supercritical phase with a temperature of about 1000 K and a pressure of more than 1 GPa. We use a time-delayed extreme ultraviolet pulse centered at 38.6 eV, and obtained via High Harmonic generation (HHG), to record valence band photoelectron spectra of the expanding water sample. The series of photoelectron spectra is analyzed with noise-corrected target transform fitting (cTTF), a specifically developed multivariate method. Together with a simple fluid dynamics simulation, the following picture emerges: when a supercritical phase of water expands into vacuum, temperature and density of the first few nanometers of the expanding phase drop below the critical values within a few picoseconds. This results in a supersaturated phase, in which condensation seeds form and grow from small clusters to large clusters on a 100 picosecond timescale.

  16. Integrated Modeling and Design of Photoelectrochemical Water-Splitting Cells

    OpenAIRE

    Berger, Alan

    2014-01-01

    The photoelectrochemical production of fuels is an interesting research topic that aims to provide a low-cost method for storing solar energy. A one-dimensional model of a photoelectrochemical cell for solar water splitting has been developed, with applicability to both wired and wireless designs. The model of the light absorber handles electron and hole transport. The model of the electrolyte accounts for mass transport through regions of aqueous solution, including stagnant diffusion lay...

  17. Single-cell protein dynamics reproduce universal fluctuations in cell populations

    CERN Document Server

    Brenner, Naama; Rotella, James S; Salman, Hanna

    2015-01-01

    Protein fluctuations in cell populations have recently been shown to exhibit a universal distribution shape under a broad range of biological realizations. Here, measuring protein content in individual bacteria continuously over ~70 generations, we show that single-cell trajectories fluctuate around their average with the same distribution shape as the population, i.e. their relative fluctuations are ergodic. Analysis of these temporal trajectories reveals that one effective random variable, sampled once each cell cycle, suffices to reconstruct the distribution from the trajectory. This in turn implies that cellular microscopic processes are strongly buffered and population-level protein distributions are insensitive to details of the intracellular dynamics. Probing them thus requires searching for novel universality-breaking experimental perturbations.

  18. Spatiotemporal dynamics of spring and stream water chemistry in a high-mountain area

    Energy Technology Data Exchange (ETDEWEB)

    Zelazny, Miroslaw, E-mail: miroslaw.zelazny@uj.edu.pl [Jagiellonian University, Institute of Geography and Spatial Management, Department of Hydrology, 7 Gronostajowa Str., 30-387 Cracow (Poland); Astel, Aleksander, E-mail: astel@apsl.edu.pl [Environmental Chemistry Research Unit, Biology and Environmental Protection Institute, Pomeranian Academy, 22a Arciszewskiego Str., Slupsk, 76-200 (Poland); Wolanin, Anna [Jagiellonian University, Institute of Geography and Spatial Management, Department of Hydrology, 7 Gronostajowa Str., 30-387 Cracow (Poland); Malek, Stanislaw, E-mail: rlmalek@cyf-kr.edu.pl [Department of Forest Ecology, Forest Faculty, Agricultural University of Cracow, 46 29 Listopada Ave., Cracow, 31-425 (Poland)

    2011-05-15

    The present study deals with the application of the self-organizing map (SOM) technique in the exploration of spatiotemporal dynamics of spring and stream water samples collected in the Chocholowski Stream Basin located in the Tatra Mountains (Poland). The SOM-based classification helped to uncover relationships between physical and chemical parameters of water samples and factors determining the quality of water in the studied high-mountain area. In the upper part of the Chocholowski Stream Basin, located on the top of the crystalline core of the Tatras, concentrations of the majority of ionic substances were the lowest due to limited leaching. Significantly higher concentration of ionic substances was detected in spring and stream samples draining sedimentary rocks. The influence of karst-type springs on the quality of stream water was also demonstrated. - Highlights: > We use SOM approach to explore physiochemical data for mountain waters. > Geologic structure and hydrological events impact water chemistry. > Limited leaching, typical of crystalline core, reflects in low water mineralization. > Sedimentary rocks are susceptible for leaching. > Eutrophication has not been shown to be a threat in the Chocholowska Valley. - Spatiotemporal dynamics of spring and stream water chemistry in unique high-mountain area was evaluated by the self-organizing map technique.

  19. Salt—Water Dynamics in Soils:Ⅲ.Effect of Crop Planting

    Institute of Scientific and Technical Information of China (English)

    YOUWEN-RUI; MENGFAN-HUA

    1993-01-01

    Through a simulation test conducted with soil columns (61.8cm in diameter) in field condition,effect of crop planting upon the regulation of salt-water dynamics in soils was studied by monitoring of salt-water dynamics in situ,using soil salinity sensors and tensiometers.The results indicated that the amount of water absorbed by crops from the soil was generally larger than the decrement of water consumption from soil surface evaporation reduced by the crop covering the soil surface and improving the soil structure,therefore,under the conditions of crop growing and non-irrigation,water content in soil profile was less than that without crop growing,and the gradient of negative pressure of soil water in soil profile especially in the root zone was enlarged,thus causing the water flowing from subsoils into root zone and increasing the groundwater moving upwards into soil layer via capillary rise,so that the groundwater evaporation increased.Consequently,under the condition of crop growing,the salt was mainly accumulated towards the root zone rather than to the top soil.the accumulating rate of salt in groundwater via capillary rise of soil water to subsoils was increased thereby.

  20. Structure and Dynamics of the Instantaneous Water/Vapor Interface Revisited by Path-Integral and Ab-Initio Molecular Dynamics Simulations

    CERN Document Server

    Kessler, Jan; Spura, Thomas; Karhan, Kristof; Partovi-Azar, Pouya; Hassanali, Ali A; Kühne, Thomas D

    2015-01-01

    The structure and dynamics of the water/vapor interface is revisited by means of path-integral and second-generation Car-Parrinello ab-initio molecular dynamics simulations in conjunction with an instantaneous surface definition [A. P. Willard and D. Chandler, J. Phys. Chem. B 114, 1954 (2010)]. In agreement with previous studies, we find that one of the OH bonds of the water molecules in the topmost layer is pointing out of the water into the vapor phase, while the orientation of the underlying layer is reversed. Therebetween, an additional water layer is detected, where the molecules are aligned parallel to the instantaneous water surface.