WorldWideScience

Sample records for cell wall ultrastructure

  1. Characters of Fractal Ultrastructure in Wood Cell Wall

    Institute of Scientific and Technical Information of China (English)

    LI Beimei; ZHAO Guangjie

    2006-01-01

    Fractal theory was introduced in order to describe the ultrastructure of wood cell wall in this paper.The cellulose chain clusters around nano-scale were viewed as a fractal object that consists of many fibrillar structural units with different scales including microfibrils.On the basis of the morphological data of wood cell wall.fractal dimensions of multi-level fibrillar structural units were calculated by fractal-geometry approach,and then the morphological and structural characteristics of fibers as well as the influences on wood properties were investigated according to the dimensions.Besides,the fractal self-nesting character of the ultrastruture was also analyzed.

  2. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability.

    Science.gov (United States)

    Pattathil, Sivakumar; Ingwers, Miles W; Victoriano, Olivia L; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O; Aubrey, Doug P

    2016-01-01

    The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and the overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin-associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. To our knowledge, this is the first direct evidence, delineated by glycomic analyses, that

  3. [Ultrastructure of the cell walls and septa in glucuronate-positive species of Candida].

    Science.gov (United States)

    Golubev, V I; Loginova, T M; Tiurin, V S

    1980-01-01

    According to the ultrastructure of cell walls, glucuronate-positive species of the genus Candida include both ascomycetous organisms (C. ciferrii, C. incommunis, C. steatolytica) and basidiomycetous organisms (C. bogoriensis, C. curiosa, C. diffluens, C. javanica, C. marina). The character of budding and the structure of septa suggest that the perfect forms of glucuronate-positive ascomycetous Candida species should be looked for within the family Ascoideaceae.

  4. Cell wall ultrastructures of the Proterozoic acritarch Leiosphaeridia asperata and their implications for biological affinity

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Abundant sphaeroidal acritarch Leiosphaeridia asperata,with vesicle size ranging from 13 to 360 μm,occurred in the Proterozoic Liulaobei Formation shales in Huainan,Anhui Province.TEM/SEM studies of these sphaeroidal acritarchs have revealed complex ultrastructures,including ridges,bands,and possible trilaminar structures(TLS).Ridges,spaced ~1 μm apart,are distributed regularly on the vesicle internal surface of one specimen.Some specimens have alternating electron-dense and electron-tenuous bands that are perpendicular to vesicle walls.Some specimens have trilaminar structures(TLS),while a few others have both bands and TLS.These wall ultrastructures provide evidence that the Liulaobei leiosphaerids are of green microalgae.The variation in wall ultrastructures may represent various stages in a life cycle or developmental phases in the cyst formation analogous to some modern chlorophyceaen microalgae.

  5. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure

    OpenAIRE

    Coleman, Heather D.; Yan, Jimmy; Mansfield, Shawn D

    2009-01-01

    Overexpression of the Gossypium hirsutum sucrose synthase (SuSy) gene under the control of 2 promoters was examined in hybrid poplar (Populus alba × grandidentata). Analysis of RNA transcript abundance, enzyme activity, cell wall composition, and soluble carbohydrates revealed significant changes in the transgenic lines. All lines showed significantly increased SuSy enzyme activity in developing xylem. This activity manifested in altered secondary cell wall cellulose content per dry weight in...

  6. Anatomical structure and ultrastructure of the endocarp cell walls of Argania spinosa (L.) Skeels (Sapotaceae).

    Science.gov (United States)

    Sebaa, H S; Harche, M Kaid

    2014-12-01

    The anatomical and histochemical study of young and adult endocarps of Argania spinosa (sampled from Tindouf; Algeria) shows a general structure that is similar to that of majority of stone fruits. These samples consist of tissues that contain lignified and cellulosic cell walls. The majority of the tissues are composed of sclerenchyma cells; with very thick lignified cell walls and conducting tissues. Coniferyl lignins are abundant in the majority of the lignified tissues. However, the coniferyl lignins appear at the primary xylem during lignification. Syringyl lignins are present in small quantities. The electron microscopy observation of the sclerenchyma cell walls of the young endocarp shows polylamellate strates and, cellular microfibrils in arced patterns. This architecture is observed in the cell walls of the adult endocarp only after the incubation of the tissue in methylamine. These configurations (arcs) are the result of a regular and complete rotation with a 180° variation in the microfibril angle; the complete and symmetrical arcs show a helicoidal mode of construction. The observation of the sclerenchyma cells revealed the capacity of helicoidal morphogenesis to adjust itself under the influence of topological constraints, such as the presence of a large number of pit canals, which maintain symplastic transport. PMID:25125280

  7. Ultrastructural effects of lysozymes on the cell wall of Caryophanon latum.

    Science.gov (United States)

    Trentini, W C; Murray, R G

    1975-02-01

    When Caryophanon latum was exposed to egg white lysozyme in isotonic sucrose and observed by phase-contrast microscopy, protoplasts emerged along the length of the trichomes, apparently at sites corresponding to cross septa. Electron microscopy of sections revealed that this enzyme initially attacked the core of the septal peptidoglycan and delamination of septa resulted. The inner densely staining layer of the lateral and polar wall (considered to contain peptidoglycan as the major component) remained intact except for destruction at the advancing tip of partial septa; protoplasts or cell debris could escape from the gaps formed at developing septa. Treatment of intact trichomes with pronase, a lipase - phospholipase C mixture, EDTA, glutaraldehyde, or heat, before exposure to egg white lysozyme did not alter this pattern nor did it render the remaining peptidoglycan more susceptible to attack. The wall material external to the peptidoglycan was solubilized by pronase. The peptidoglycan remaining after lysozyme treatment was not morphologically changed by treatment with pronase. Lysozyme derived from Chalaropsis hydrolyzed incomplete septa initially, while the lateral and polar wall and complete septa were degraded later. Therefore, it is most probable that the inner dense layer does contain the peptidoglycan component and that some biochemical maturation distinguishes the substrate for these enzymes in the lateral wall and septa. PMID:803400

  8. Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations.

    Science.gov (United States)

    Porth, Ilga; Klápště, Jaroslav; Skyba, Oleksandr; Lai, Ben S K; Geraldes, Armando; Muchero, Wellington; Tuskan, Gerald A; Douglas, Carl J; El-Kassaby, Yousry A; Mansfield, Shawn D

    2013-02-01

    The increasing ecological and economical importance of Populus species and hybrids has stimulated research into the investigation of the natural variation of the species and the estimation of the extent of genetic control over its wood quality traits for traditional forestry activities as well as the emerging bioenergy sector. A realized kinship matrix based on informative, high-density, biallelic single nucleotide polymorphism (SNP) genetic markers was constructed to estimate trait variance components, heritabilities, and genetic and phenotypic correlations. Seventeen traits related to wood chemistry and ultrastructure were examined in 334 9-yr-old Populus trichocarpa grown in a common-garden plot representing populations spanning the latitudinal range 44° to 58.6°. In these individuals, 9342 SNPs that conformed to Hardy-Weinberg expectations were employed to assess the genomic pair-wise kinship to estimate narrow-sense heritabilities and genetic correlations among traits. The range-wide phenotypic variation in all traits was substantial and several trait heritabilities were > 0.6. In total, 61 significant genetic and phenotypic correlations and a network of highly interrelated traits were identified. The high trait variation, the evidence for moderate to high heritabilities and the identification of advantageous trait combinations of industrially important characteristics should aid in providing the foundation for the enhancement of poplar tree breeding strategies for modern industrial use. PMID:23278123

  9. Cell Wall

    OpenAIRE

    Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Albenne, Cécile; Pont-Lezica, Rafael F

    2008-01-01

    This chapter covers our present knowledge of cell wall proteomics highlighting the distinctive features of cell walls and cell wall proteins in relation to problems encountered for protein extraction, separation and identification. It provides clues to design strategies for efficient cell wall proteomic studies. It gives an overview of the kinds of proteins that have yet been identified: the expected proteins vs the identified proteins. Finally, the new vision of the cell wall proteome, and t...

  10. Ultrastructural observations reveal the presence of channels between cork cells.

    Science.gov (United States)

    Teixeira, Rita Teresa; Pereira, Helena

    2009-12-01

    The ultrastructure of phellem cells of Quercus suber L. (cork oak) and Calotropis procera (Ait) R. Br. were analyzed using electron transmission microscopy to determine the presence or absence of plasmodesmata (PD). Different types of Q. suber cork samples were studied: one year shoots; virgin cork (first periderm), reproduction cork (traumatic periderm), and wet cork. The channel structures of PD were found in all the samples crossing adjacent cell walls through the suberin layer of the secondary wall. Calotropis phellem also showed PD crossing the cell walls of adjacent cells but in fewer numbers compared to Q. suber. In one year stems of cork oak, it was possible to follow the physiologically active PD with ribosomic accumulation next to the aperture of the channel seen in the phellogen cells to the completely obstructed channels in the dead cells that characterize the phellem tissue.

  11. Ultrastructural studies on the sporogenous tissue and anther wall of Leucojum aestivum (amaryllidaceae) in different developmental stages.

    Science.gov (United States)

    Ekici, Nuran; Dane, Feruzan

    2012-12-01

    In this study, ultrastructures of anther wall and sporogenous tissue of Leucojum aestivum were investigated during different developmental stages. Cytomictic channels were seen between pollen mother cells during prophase I. Polar distribution was described in the organelle content of pollen mother cells and microspores in early phases of microsporogenesis and also in pollen mitosis. Active secretion was observed in tapetal cells. Previous reports about developmental stages of male gametophyte were compared with the results of this study.

  12. Structural and ultrastructural evaluation of the aortic wall after transplantation of bone marrow-derived cells (BMCs) in a model for atherosclerosis.

    Science.gov (United States)

    Felix, Alyne Souza; Monteiro, Nemesis; Rocha, Vinícius Novaes; Oliveira, Genilza; Nascimento, Ana Lucia; de Carvalho, Laís; Thole, Alessandra; Carvalho, Jorge

    2015-08-01

    Stem cells are characterized by their ability to differentiate into multiple cell lineages and display the paracrine effect. The aim of this work was to evaluate the effect of therapy with bone marrow-derived cells (BMCs) on glucose, lipid metabolism, and aortic wall remodeling in mice through the administration of a high-fat diet and subsequent BMCs transplantation. C57BL/6 mice were fed a control diet (CO group) or an atherogenic diet (AT group). After 16 weeks, the AT group was divided into 4 subgroups: an AT 14 days group and AT 21 days group that were given an injection of vehicle and sacrificed after 14 and 21 days, respectively, and an AT-BMC 14 days group and AT-BMC 21 days group that were given an injection of BMCs and sacrificed after 14 and 21 days, respectively. The BMCs transplant had reduced blood glucose, triglycerides, and total cholesterol. There was no significant difference in relation to body mass between the transplanted groups and non-transplanted groups, and all were different than CO. There was no significant difference in the glycemic curve among AT 14 days, AT-BMC 14 days, and AT 21 days, and these were different than the CO and the AT-BMC 21 days groups. The increased thickness of the aortic wall was observed in all atherogenic groups, but was significantly smaller in group AT-BMC 21 days compared to AT 14 days and AT 21 days. Vacuoles in the media tunic, delamination and the thinning of the elastic lamellae were observed in AT 14 days and AT 21 days. The smallest number of these was displayed on the AT-BMC 14 days and AT-BMC 21 days. Marking to CD105, CD133, and CD68 were observed in AT 14 days and AT 21 days. These markings were not observed in AT-BMC 14 days or in AT-BMC 21 days. Electron micrographs show the beneficial remodeling in AT-BMC 14 days and AT-BMC 21 days, and the structural organization was similar to the CO group. Vesicles of pinocytosis, projection of smooth muscle cells, and delamination of the internal elastic lamina

  13. Ultrastructural characteristics of the vascular wall components of ruptured atherosclerotic abdominal aortic aneurysm

    Directory of Open Access Journals (Sweden)

    Tanasković Irena

    2013-01-01

    Full Text Available The aim of this study was to determine the ultrastructural characteristics of cell populations and extracellular matrix components in the wall of ruptured atherosclerotic abdominal aortic aneurysm (AAA. We analyzed 20 samples of ruptured AAA. For orientation to the light microscopy, we used routine histochemical techniques by standard procedures. For ultrastructural analysis, we applied transmission electron microscopy (TEM. Our results have shown that ruptured AAA is characterized by the remains of an advanced atherosclerotic lesion in the intima followed by a complete absence of endothelial cells, the disruption of basal membrane and disruption of internal elastic lamina. On plaque margins as well as in the inner media we observed smooth muscle cells (SMCs that posses a euchromatic nucleus, a well-developed granulated endoplasmic reticulum around the nucleus and reduced myofilaments. The remains of the ruptured lipid core were acellular in all samples; however, on the lateral sides of ruptured plaque we observed a presence of two types of foam cells (FCs, spindle- and star-shaped. Fusiform FCs possess a well-differentiated basal lamina, caveolae and electron dense bodies, followed by a small number of lipid droplets in the cytoplasm. Star-shaped FCs contain a large number of lipid droplets and do not possess basal lamina. On the inner margins of the plaque, we observed a large number of cells undergoing apoptosis and necrosis, extracellular lipid droplets as well as a large number of lymphocytes. The media was thinned out with disorganized elastic lamellas, while the adventitia exhibited leukocyte infiltration. The presented results suggest that atherosclerotic plaque in ruptured AAA contains vascular SMC synthetic phenotype and two different types of FCs: some were derived from monocyte/macrophage lineage, while others were derived from SMCs of synthetic phenotype. The striking plaque hypocellularity was the result of apoptosis and necrosis

  14. The Lamportian cell wall

    Energy Technology Data Exchange (ETDEWEB)

    Keiliszewski, M.; Lamport, D. (Michigan State Univ. Plant Research Lab., East Lansing (United States))

    1991-05-01

    The Lamportian Warp-Weft hypothesis suggests a cellulose-extensin interpenetrating network where extensin mechanically couples the load-bearing cellulose microfibrils in a wall matrix that is best described as a microcomposite. This model is based on data gathered from the extensin-rich walls of tomato and sycamore cell suspension culture, wherein extensin precursors are insolubilized into the wall by undefined crosslinks. The authors recent work with cell walls isolated from intact tissue as well as walls from suspension cultured cells of the graminaceous monocots maize and rice, the non-graminaceous monocot asparagus, the primitive herbaceous dicot sugar beet, and the gymnosperm Douglas Fir indicate that although extensins are ubiquitous to all plant species examined, they are not the major structural protein component of most walls examined. Amino acid analyses of intact and HF-treated walls shows a major component neither an HRGP, nor directly comparable to the glycine-rich wall proteins such as those associated with seed coat walls or the 67 mole% glycine-rich proteins cloned from petunia and soybean. Clearly, structural wall protein alternatives to extensin exist and any cell wall model must take that into account. If we assume that extracellular matrices are a priori network structures, then new Hypless' structural proteins in the maize cell wall raise questions about the sort of network these proteins create: the kinds of crosslinks involved; how they are formed; and the roles played by the small amounts of HRGPs.

  15. Ultrastructure of sperm cells in the female gonoduct of Xiphinema.

    Science.gov (United States)

    Van De Velde, M C; Coomans, A; Van Ranst, L; De W Kruger, J C; Claeys, M

    1991-01-01

    The ultrastructure of the sperm cells in the female gonoduct of the nematodes Xiphinema theresiae and X. pinoides is described. The nucleus of the sperm cells is composed of several electron-dense clumps of chromatin that is not surrounded by a nuclear envelope. A layer of mitochondria, in which the mitochondrial cristae are only rarely visible, lies around the nuclear material. In the surrounding cytoplasm packets of electron-dense fibres are abundant. The sperm in the uterus have the following surface differentiations: highly intertwined protrusions between adjacent sperm cells, protrusions coinciding with the plication of the inner uterine wall and a slightly undulated surface towards the uterine lumen. It is argued that in the uterus, the sperm cells actively move in proximal direction by a mechanism resembling pseudopodial movement, in which the packets of fibres are involved. In the oviduct, the sperm cells loose their surface protrusions and the packets of fibres gradually become less abundant. Since the oviduct has no pre-formed lumen, the sperm cells appear to wedge their way along by forcing oviduct cells apart.

  16. Long clinostation influence on the ultrastructure of Funaria hygrometrica moss protonema cells

    Science.gov (United States)

    Nedukha, E. M.

    Changes in the ultrastructure of protonema cells of Funaria hygrometrica, cultivated during 20 days on a horizontal clinostat (2 rev/min), were determined by the electron microscopy method. About 20% of the cells were almost identical to those in the control, 20% were destructive cells, and in 60% ultrastructure changes were observed. The heterogeneity of the reaction demonstrated the evidence of sensitive cells on the clinostation process. Changes affected the ultrastructure of plastids, wall of the cell, and the form of the nucleus as well. Starch disappeared from chloroplasts practically completely, thylakoids swelled, granas frequently disappeared from plastids. Peroxisomes number in cells increased appreciably, width of cell walls decreased by almost half their size. Ca++-binding sites were revealed in cytoplasma of cells. Electronocytochemical exposure of ATPases activity with the presence of Mg++ and Ca++ ions showed that Mg2+-ATPase activity localization in clinosted cells was not too different from the control, while Ca2+-ATPase location presented differences in plasmalemma and Ca-sites. These changes are perhaps connected with the membranes permeability breaking and affect the plant cells adaptation to the influence of hypogravitation.

  17. Ultrastructure of interstitial cells in subserosa of human colon

    DEFF Research Database (Denmark)

    Rumessen, Jüri Johannes; Vanderwinden, Jean-Marie; Hansen, Alastair;

    2013-01-01

    processes, most densely arranged close to the longitudinal muscle cells. Caveolae, bundles of intermediate filaments and membrane-associated dense bands, often with a patchy basal lamina, were characteristic. Secretory organelles (granular endoplasmic reticulum, smooth endoplasmic reticulum, Golgi, coated......We studied the ultrastructure of interstitial cells in the subserosal/adventitial layer in human colon. An interstitial cell type with an ultrastructure intermediate between fibroblast-like cells (FLC) and interstitial cells of Cajal was identified (IC-SS). IC-SS had thin and flattened branching...... vesicles) were prominent. The IC-SS ultrastructure was different from that of FLC in the longitudinal layer, which had no caveolae and fewer intermediate filaments. Peg-and-socket junctions between IC-SS and between IC-SS and muscle cells were present, and IC-SS processes had close, selective appositions...

  18. THE ULTRASTRUCTURE OF SEPARATED AND CULTURED CELL OF PORPHYRA YEZOENSIS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    There are many reports that cells (protoplasts) separated from the thallus of Porphyra by enzyme can develop to normal leafy thalli in the same way as monospores. But there are few investigations on the subcellular structure of the isolated vegetative cell for comparison with the subcellular structure of monospores. To clarify whether the separated and cultured cells undergo the same or similar ultrastructure changes during culture and germination as monospores undergo in their formation and germination, we observed their ultrastructure, compared them with those of the monospore and found that the ultrastructure of separated and cultured cells did not have the characteristic feature as that of monospore formation, such as production of small and large fibrous vesicles, but was accompanied by vacuolation and starch mobilization like that in monospore germination. The paper also discusses the relations between monospores and separated and cultured cells.

  19. Changes in cell ultrastructure and morphology of Arabidopsis thaliana roots after coumarins treatment

    Directory of Open Access Journals (Sweden)

    Ewa Kupidłowska

    2014-02-01

    Full Text Available The ultrastructure and morphology of roots treated with coumarin and umbelliferone as well as the reversibility of the coumarins effects caused by exogenous GA, were studied in Arabidopsis thaliana. Both coumarins suppressed root elongation and appreciably stimulated radial expansion of epidermal and cortical cells in the upper part of the meristem and in the elongation zone. The gibberellic acid applied simultaneously with coumarins decreased their inhibitory effect on root elongation and reduced cells swelling.Microscopic observation showed intensive vacuolization of cells and abnormalities in the structure of the Golgi stacks and the nuclear envelope. The detection of active acid phosphatase in the cytosol of swollen cells indicated increased membrane permeability. Significant abnormalities of newly formed cell walls, e.g. the discontinuity of cellulose layer, uncorrect position of walls and the lack of their bonds with the mother cell wall suggest that coumarins affected the cytoskeleton.

  20. Cell Wall Biology: Perspectives from Cell Wall Imaging

    Institute of Scientific and Technical Information of China (English)

    Kieran J.D.Lee; Susan E.Marcus; J.Paul Knox

    2011-01-01

    Polysaccharide-rich plant cell walls are important biomaterials that underpin plant growth,are major repositories for photosynthetically accumulated carbon,and,in addition,impact greatly on the human use of plants. Land plant cell walls contain in the region of a dozen major polysaccharide structures that are mostly encompassed by cellulose,hemicelluloses,and pectic polysaccharides. During the evolution of land plants,polysaccharide diversification appears to have largely involved structural elaboration and diversification within these polysaccharide groups. Cell wall chemistry is well advanced and a current phase of cell wall science is aimed at placing the complex polysaccharide chemistry in cellular contexts and developing a detailed understanding of cell wall biology. Imaging cell wall glycomes is a challenging area but recent developments in the establishment of cell wall molecular probe panels and their use in high throughput procedures are leading to rapid advances in the molecular understanding of the spatial heterogeneity of individual cell walls and also cell wall differences at taxonomic levels. The challenge now is to integrate this knowledge of cell wall heterogeneity with an understanding of the molecular and physiological mechanisms that underpin cell wall properties and functions.

  1. Crohn's disease: ultrastructure of interstitial cells in colonic myenteric plexus

    DEFF Research Database (Denmark)

    Rumessen, Jüri J; Vanderwinden, Jean-Marie; Horn, Thomas

    2011-01-01

    The role of the interstitial cells of Cajal (ICC) in chronic inflammatory bowel disease, i.e., ulcerative colitis (UC) and Crohn's disease (CD), remains unclear. Ultrastructural alterations in ICC in the colonic myenteric plexus (ICC-MP) have been reported previously in UC, but descriptions of ICC......-MP and other interstitial cells in the myenteric region of the colon are lacking for CD. In the present study, we characterized the ultrastructure of interstitial cells, nerves, and glial cells in the myenteric region in Crohn's colitis (CC). In comparison with controls, varicosities of the myenteric bundles......-MP were similar in the various colonic regions. ICC-MP in CC showed no signs of degeneration or cytological changes. As in controls, fibroblast-like cells had abundant coated vesicles but lacked prominent intermediate filaments and caveolae. Macrophages also appeared as in controls. In comparison with ICC...

  2. Effects of Photodynamic Therapy on the Ultrastructure of Glioma Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To study the change in ultrastructure of C6 glioma cells after photodynamic therapy (PDT), to compare morphological differences in necrosis and apoptosis before and after PDT treatment, and to evaluate the effect of photodynamic therapy on the blood brain tumor barrier (BTB) of C6 glioma. Methods The model was produced by transplanting C6 glioma cells cultured in vitro using Peterson method into the caudate nuclei of Wister rats. The experiment group received PDT for two weeks after the operation. The sub-cellular structure, blood-brain-barrier (BBB) and BTB in both groups were observed under electron microscope. Results Apoptosis in different phases and necrosis could be observed in some C6 glioma cells.Swelling occurred on the ultrastructure of cellular organs such as mitochondria and endoplasmic reticulum in most of the cells.Damage to the BTB, reduction of the number of cellular organs in endothelial cells of the capillary blood vessels, stretch of the tight junction, and enlargement of the gaps between endothelial cells were also seen in the experiment group. Meanwhile,limited impact on the normal sub-cellular structures and BBB was observed. Conclusion PDT could induce apoptosis and necrosis of C6 glioma cells due to the damage to the ultrastructure of mitochondria and endoplasmic reticulum. The weakened function of C6 glioma BTB initiated by PDT makes it possible to perform a combined therapy of PDT and chemotherapy for glioma.

  3. Cutaneous postirradiation sarcoma. Ultrastructural evidence of pluripotential mesenchymal cell derivation

    International Nuclear Information System (INIS)

    A 75-year-old man developed synchronous multicentric cutaneous sarcomas and basal cell carcinoma of the face 57 years after receiving irradiation for acne. During the previous 30 years he had been treated many times for actinic keratoses and basal cell carcinomas. Surgical treatment had included total nasectomy, excision, and replacement of the skin of the upper and lower lips and the chin. Due to the multiplicity of morphologic patterns, it was difficult to subtype the sarcomas. Ultrastructural studies showed histiocyte-like, fibroblast-like and vasoformative cells suggesting an origin from a pluripotential mesenchymal stem cells

  4. Ultrastructural morphometry of parotid acinar cells following fractionated irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Grehn, A.-L.; Gustafsson, H.; Franzen, L.; Thornell, L.-E.; Henriksson, R. [Umeaa Univ. (Sweden)

    1997-01-01

    The aim of this study was to evaluate the long term effects on the ultrastructure of parotid glands after fractionated irradiation. The method implemented involved 5 x 6 Gy and 5 x 8 Gy, Monday to Friday 6 MV photons. By unilateral irradiation, the contralateral parotid gland served as a control. Although irradiation diminished the acinar cell density in light microscopic sections from 75 to 32% after 5 x 8 Gy of irradiation, ultrastructural morphometry could not detect any statistically significant differences in acinar cell size, nuclear size, nuclear density, granule area, mean granule size, or granule density. In general, greater differences were seen between rats receiving 30 or 40 Gy, on both the irradiated and the control side, than between the irradiated side and the control side. This was interpreted as due to differences in the nutritional state of the animals. This analysis concluded that individual acinar cells that survive irradiation seem not to be damaged in the long term when evaluated at the ultrastructural level. The study further stresses the importance of adequate sampling sizes and the use of adequate controls. (author).

  5. Ultrastructure of Escherichia coli cells under the action of a novel derivative of aryl aliphatic aminoalcohols

    Directory of Open Access Journals (Sweden)

    Dronova M.L.

    2014-12-01

    Full Text Available Background. Novel derivatives of aryl aliphatic aminoalcohols were examined for antimicrobial activity. Compound KVM-114 (4-(1,1,3,3-tetrabutyl phenoxy-3-dimethylamino-2-propanol hydrochloride was found as a selective against gram-negative bacteria. Objective. Investigation of compound KVM-114 influence on E. coli ultrastructure. Methods. Minimum inhibitory concentrations were determined by serial dilution method in Muller-Hinton broth. Bacteria (Escherichia coli for transmission electron microscopy samples preparation was grown to exponential phase and then was exposed to the subinhibitory concentration of KVM-114 for 1 h and 24 h. Results. Intact E. coli cells were rod-shaped with rounded ends. A light layer, allowing clear visualization of the cell wall, was observed between the сytoplasm and cytoplasmic membrane. Lipopolysaccharide layer was well distinguished as well. Cytoplasm was filled with ribosomes and polyribosomes. 1 hour exposition to KVM-114 at a subinhibitory concentration resulted in the absence of polyribosomes in the cytoplasm. Increase of electron density of lipopolysaccharide layer and cell wall indicate alteration of cell envelope. Prolongation of the incubation period to 24 hours led to cell recovery: no changes were observed, compared to control cells. The data obtained suggest compound’s ability to alter cell envelope and metabolic activity, however, subinhibitory concentration is apparently not sufficient for total inhibition of E. coli growth. Conclusion. The derivative of aryl aliphatic aminoalcohols, compound KVM-114, possesses inhibitory activity against gram-negative bacteria. E. coli treatment with this compound resulted in structural changes of the cell wall and alteration of intracellular processes. Citation: Dronova ML, Voychuk SI, Vrynchanu NO. [Ultrastructure of Escherichia coli cells under the action of a novel derivative of aryl aliphatic aminoalcohols]. Morphologia. 2014;8(4:26-9. Ukrainian.

  6. 蓝猪耳花粉管细胞壁超微结构的FESEM和AFM比较研究%Ultrastructure of Pollen Tube Cell Wall in Torenia fournieri L.Observed by FESEM and AFM

    Institute of Scientific and Technical Information of China (English)

    吴娟子

    2011-01-01

    [目的]比较场发射扫描电镜(FESEM)和原子力显微镜(AFM)观察蓝猪耳花粉管表面形貌和细胞壁中纤维素微纤丝排列的效果.[方法]蓝猪耳花粉离体培养2h后,利用FESEM和AFM原位观察无损的花粉管表面形貌和细胞壁的精细结构.[结果]FESEM可见花粉管表面粗糙的网状结构;AFM可获得花粉管的三维立体图像,并可见花粉管细胞壁物质的精细结构和纤维素微纤丝的排列情况.[结论]AFM是一种观察花粉管表面结构和细胞壁中纤维素微纤丝排向的有效手段.%[Objective] To compare the effects of FESEM and AFM observing the surface topography and cellulose microfibrils arrangement of pollen tube cell wall in Torenia foumieri L.. [ Method] After 2 h culture,the surface topography and cellulose microfibrils arrangement of pollen tubes were observed by FESEM and AFM. [ Result ] FESEM image revealed the rough network structure of pollen tube, AFM revealed the three-dimensional images of pollen tubes and the fine structure of cell wall and the cellulose microfilaments orientation. [ Conclusion ] AFM was a powerful technique for examining the surface topography and cellulose microfibrils arrangement of pollen tube wall.

  7. Ultrastructure of human neural stem/progenitor cells and neurospheres

    Institute of Scientific and Technical Information of China (English)

    Yaodong Zhao; Tianyi Zhang; Qiang Huang; Aidong Wang; Jun Dong; Qing Lan; Zhenghong Qin

    2009-01-01

    BACKGROUND: Biological and morphological characteristics of neural stern/progenitor cells (NSPCs) have been widely investigated.OBJECTIVE: To explore the ultrastructure of human embryo-derived NSPCs and neurospheres cultivated in vitro using electron microscopy.DESIGN, TIME AND SETTING: A cell biology experiment was performed at the Brain Tumor Laboratory of Soochow University, and Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University between August 2007 and April 2008.MATERIALS: Human fetal brain tissue was obtained from an 8-week-old aborted fetus; serum-free Dulbecco's modified Eagle's medium/F12 culture medium was provided by Gibco, USA; scanning electron microscope was provided by Hitachi instruments, Japan; transmission electron microscope was provided by JEOL, Japan.METHODS: NSPCs were isolated from human fetal brain tissue and cultivated in serum-free Dulbecco's modified Eagle's medium/F12 culture medium. Cells were passaged every 5-7 days. After three passages, NSPCs were harvested and used for ultrastructural examination.MAIN OUTCOME MEASURES: Ultrastructural examination of human NSPCs and adjacent cells in neurospheres.RESULTS: Individual NSPCs were visible as spherical morphologies with rough surfaces under scanning electron microscope. Generally, they had large nuclei and little cytoplasm. Nuclei were frequently globular with large amounts of euchromatin and a small quantity of heterochromatin, and most NSPCs had only one nucleolus. The Golgi apparatus and endoplasmic reticulum were underdeveloped; however, autophagosomes were clearly visible. The neurospheres were made up of NSPCs and non-fixiform material inside. Between adjacent cells and at the cytoplasmic surface of apposed plasma membranes, there were vesicle-like structures. Some membrane boundaries with high permeabilities were observed between some contiguous NSPCs in neurospheres, possibly attributable to plasmalemmal fusion between adjacent cells.CONCLUSION: A large number

  8. Cell wall proteomics of crops

    OpenAIRE

    Komatsu, Setsuko; Yanagawa, Yuki

    2013-01-01

    Cell wall proteins play key roles in cell structure and metabolism, cell enlargement, signal transduction, responses to environmental stress, and many other physiological events. Agricultural crops are often used for investigating stress tolerance because cultivars with differing degrees of tolerance are available. Abiotic and biotic stress factors markedly influence the geographical distribution and yields of many crop species. Crop cell wall proteomics is of particular importance for improv...

  9. Linking progression of fibrotic lung remodeling and ultrastructural alterations of alveolar epithelial type II cells in the amiodarone mouse model.

    Science.gov (United States)

    Birkelbach, Bastian; Lutz, Dennis; Ruppert, Clemens; Henneke, Ingrid; Lopez-Rodriguez, Elena; Günther, Andreas; Ochs, Matthias; Mahavadi, Poornima; Knudsen, Lars

    2015-07-01

    Chronic injury of alveolar epithelial type II cells (AE2 cells) represents a key event in the development of lung fibrosis in animal models and in humans, such as idiopathic pulmonary fibrosis (IPF). Intratracheal delivery of amiodarone to mice results in a profound injury and macroautophagy-dependent apoptosis of AE2 cells. Increased autophagy manifested in AE2 cells by disturbances of the intracellular surfactant. Hence, we hypothesized that ultrastructural alterations of the intracellular surfactant pool are signs of epithelial stress correlating with the severity of fibrotic remodeling. With the use of design-based stereology, the amiodarone model of pulmonary fibrosis in mice was characterized at the light and ultrastructural level during progression. Mean volume of AE2 cells, volume of lamellar bodies per AE2 cell, and mean size of lamellar bodies were correlated to structural parameters reflecting severity of fibrosis like collagen content. Within 2 wk amiodarone leads to an increase in septal wall thickness and a decrease in alveolar numbers due to irreversible alveolar collapse associated with alveolar surfactant dysfunction. Progressive hypertrophy of AE2 cells and increase in mean individual size and total volume of lamellar bodies per AE2 cell were observed. A high positive correlation of these AE2 cell-related ultrastructural changes and the deposition of collagen fibrils within septal walls were established. Qualitatively, similar alterations could be found in IPF samples with mild to moderate fibrosis. We conclude that ultrastructural alterations of AE2 cells including the surfactant system are tightly correlated with the progression of fibrotic remodeling. PMID:25957292

  10. Immobilization of cells via activated cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Markt, M.; Kas, J.; Valentova, O.; Demnerova, K.; Vodrazka, Z.

    1986-10-01

    Cell walls of Saccharomyces cerevisiae and S. uvarum were activated by periodate oxidation of vicinal diol groups in cell wall polysaccharides. The aldehyde groups thus generated allow the yeast cells to be covalently bound to modified bead cellulose or macroporous glycidyl methacrylate supports, or to enzymes such as glucose oxidase and catalase. 6 references.

  11. Alterations of Intracellular Ca2+ Concentration and Ultrastructure in Spruce Apical Bud Cells during Seasonal Transition

    Institute of Scientific and Technical Information of China (English)

    Jian Lingcheng; Sun Delan; Deng Jiangming; Song Yanmei; Paul H. Li

    2004-01-01

    Potassium antimonite was used to localize Ca2+ in the apical bud cells of spruce from July 1999 to May 2000. During the period of active growth (July 14), Calcium precipitates, an indication of Ca2+ localization, were mainly distributed in vacuoles, intercellular spaces and cell walls. Few Ca2+ deposits localized in the cytosol and nucleus, showing a low level of the cytosolic and nuclear Ca2+ concentration in the warm summer. In August, some Ca2+ deposits appeared in the cytosol and nuclei, indicating that Ca2+ influx occurred in the cytosol and nucleus as the day length became shorter. From September to November, high levels of the cytosolic and nuclear Ca2+ remained. During the mid-winter (December and January), the distribution of Ca2+ deposits and the ultrastructures in the cells were altered dramatically. Plasmolysis occurred in many cells due to the protoplasmic dehydration. In addition plasmalemma invagination and nuclear chromatin aggregation also occurred. A large number of Ca2+ deposits appeared in the space between the plasmalemma and the cell wall. And also some Ca2+ deposits were distributed in the plastids. However, few Ca2+ deposits were observed in the cytosol and nuclei. By spring of the next year (May), when plants were de-acclimated and resumed active growth, Ca2+ subcellular localization essentially restored to that observed in July of the last year, i.e., the cells contained low cytosolic and nuclear Ca2+ concentrations; Ca2+ deposits were mainly distributed in the vacuoles, cell walls and intercellular spaces. The relationships between the seasonal changes of intracellular Ca2+ concentration and the development of dormancy/cold acclimation, as well as plasmolysis associated with dormancy and cold hardiness were discussed.

  12. Cell Wall Integrity Signaling in Saccharomyces cerevisiae

    OpenAIRE

    Levin, David E.

    2005-01-01

    The yeast cell wall is a highly dynamic structure that is responsible for protecting the cell from rapid changes in external osmotic potential. The wall is also critical for cell expansion during growth and morphogenesis. This review discusses recent advances in understanding the various signal transduction pathways that allow cells to monitor the state of the cell wall and respond to environmental challenges to this structure. The cell wall integrity signaling pathway controlled by the small...

  13. Back wall solar cell

    Science.gov (United States)

    Brandhorst, H. W., Jr. (Inventor)

    1978-01-01

    A solar cell is disclosed which comprises a first semiconductor material of one conductivity type with one face having the same conductivity type but more heavily doped to form a field region arranged to receive the radiant energy to be converted to electrical energy, and a layer of a second semiconductor material, preferably highly doped, of opposite conductivity type on the first semiconductor material adjacent the first semiconductor material at an interface remote from the heavily doped field region. Instead of the opposite conductivity layer, a metallic Schottky diode layer may be used, in which case no additional back contact is needed. A contact such as a gridded contact, previous to the radiant energy may be applied to the heavily doped field region of the more heavily doped, same conductivity material for its contact.

  14. Accelerating forward genetics for cell wall deconstruction

    OpenAIRE

    Vidaurre, Danielle; Bonetta, Dario

    2012-01-01

    The elucidation of the genes involved in cell wall synthesis and assembly remains one of the biggest challenges of cell wall biology. Although traditional genetic approaches, using simple yet elegant screens, have identified components of the cell wall, many unknowns remain. Exhausting the genetic toolbox by performing sensitized screens, adopting chemical genetics or combining these with improved cell wall imaging, hold the promise of new gene discovery and function. With the recent introduc...

  15. Moss cell walls: structure and biosynthesis

    OpenAIRE

    Alison W. Roberts; Eric M Roberts; Haigler, Candace H.

    2012-01-01

    The genome sequence of the moss Physcomitrella patens has stimulated new research examining the cell wall polysaccharides of mosses and the glycosyl transferases that synthesize them as a means to understand fundamental processes of cell wall biosynthesis and plant cell wall evolution. The cell walls of mosses and vascular plants are composed of the same classes of polysaccharides, but with differences in side chain composition and structure. Similarly, the genomes of P. patens and angiosperm...

  16. Unique aspects of the grass cell wall

    Science.gov (United States)

    Grasses are amongst the most important crops worldwide, and the composition of their cell walls is critical for uses as food, feed, and energy crops. Grass cell walls differ dramatically from dicot cell walls in terms of the major structural polysaccharides present, how those polysaccharides are lin...

  17. The cell wall of Fusarium oxysporum

    NARCIS (Netherlands)

    Schoffelmeer, EAM; Klis, FM; Sietsma, JH; Cornelissen, BJC

    1999-01-01

    Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for 50

  18. Shape dynamics of growing cell walls

    CERN Document Server

    Banerjee, Shiladitya; Dinner, Aaron R

    2015-01-01

    We introduce a general theoretical framework to study the shape dynamics of actively growing and remodeling surfaces. Using this framework we develop a physical model for growing bacterial cell walls and study the interplay of cell shape with the dynamics of growth and constriction. The model allows us to derive constraints on cell wall mechanical energy based on the observed dynamics of cell shape. We predict that exponential growth in cell size requires a constant amount of cell wall energy to be dissipated per unit volume. We use the model to understand and contrast growth in bacteria with different shapes such as spherical, ellipsoidal, cylindrical and toroidal morphologies. Coupling growth to cell wall constriction, we predict a discontinuous shape transformation, from partial constriction to cell division, as a function of the chemical potential driving cell-wall synthesis. Our model for cell wall energy and shape dynamics relates growth kinetics with cell geometry, and provides a unified framework to d...

  19. Ultrastructure of Guerin's carcinoma cells after chemotherapy and local tumor irradiation

    International Nuclear Information System (INIS)

    It was established that administration of cisplatin (CP) resulted in pronounced disorders in Guerin's carcinoma cell ultrastructure and did not influence the number of mitoses in the tumor. Main effect of TT was significant reduction of mitotic activity in the tumor against a background of inconsiderable changes in the cell ultrastructure. Administration of CP followed by irradiation changed little in the structural functional state of Guerin's carcinoma cells while Taxotere administration prior to irradiation caused necroses of the tumor tissue and significant reduction of the number of mitoses in the survived cells

  20. The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii.

    Science.gov (United States)

    Voigt, Jürgen; Stolarczyk, Adam; Zych, Maria; Malec, Przemysław; Burczyk, Jan

    2014-02-01

    The green alga Scenedesmus obliquus contains a multilayered cell wall, ultrastructurally similar to that of Chlamydomonas reinhardtii, although its proportion of hydroxyproline is considerably lower. Therefore, we have investigated the polypeptide composition of the insoluble and the chaotrope-soluble wall fractions of S. obliquus. The polypeptide pattern of the chaotrope-soluble wall fraction was strongly modified by chemical deglycosylation with anhydrous hydrogen fluoride (HF) in pyridine indicating that most of these polypeptides are glycosylated. Polypeptide constituents of the chaotrope-soluble cell-wall fraction with apparent molecular masses of 240, 270, 265, and 135 kDa cross-reacted with a polyclonal antibody raised against the 100 kDa deglycosylation product of the C. reinhardtii cell-wall glycoprotein GP3B. Chemical deglycosylation of the chaotrope-soluble wall fraction resulted in a 135 kDa major polypeptide and a 106 kDa minor component reacting with the same antibody. This antibody recognized specific peptide epitopes of GP3B. When the insoluble wall fraction of S. obliquus was treated with anhydrous HF/pyridine, three polypeptides with apparent molecular masses of 144, 135, and 65 kDa were solubilized, which also occured in the deglycosylated chaotrope-soluble wall fraction. These findings indicate that theses glycoproteins are cross-linked to the insoluble wall fraction via HF-sensitive bonds. PMID:24388513

  1. Architecture of dermatophyte cell Walls: Electron microscopic and biochemical analysis

    Science.gov (United States)

    Nozawa, Y.; Kitajima, Y.

    1984-01-01

    A review with 83 references on the cell wall structure of dermatophytes is presented. Topics discussed include separation and preparation of cell walls; microstructure of cell walls by electron microscopy; chemical composition of cell walls; structural model of cell walls; and morphological structure of cell walls.

  2. Cell wall remodelling enzymes modulate fungal cell wall elasticity and osmotic stress resistance

    OpenAIRE

    Ene, Iuliana; Walker, Louise; Schiavone, Marion; Lee, Keunsook K.; Dague, Etienne; Gow, Neil A.R.; Munro, Carol A

    2015-01-01

    The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Ce...

  3. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    OpenAIRE

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to...

  4. Ultrastructure of neuronal-like cells differentiated from adult adipose-derived stromal cells

    Institute of Scientific and Technical Information of China (English)

    Changqing Ye; Xiaodong Yuan; Hui Liu; Yanan Cai; Ya Ou

    2010-01-01

    β-mercaptoethanol induces in vitro adult adipose-derived stromal cells (ADSCs) to differentiate into neurons. However, the ultrastructural features of the differentiated neuronal-like cells remain unknown. In the present study, inverted phase contrast microscopy was utilized to observe β-mercaptcethanol-induced differentiation of neuronal-like cells from human ADSCs, and immunocytochemistry and real-time polymerase chain reaction were employed to detect expression of a neural stem cells marker (nestin), a neuronal marker (neuron-specific enolase), and a glial marker (glial fibrillary acidic protein). In addition, ultrastructure of neuronal-like cells was observed by transmission election microscopy. Results revealed highest expression rate of nestin and neuron-specific enolase at 3 and 5 hours following induced differentiation; cells in the 5-hour induction group exhibited a neuronal-specific structure, i.e., Nissl bodies. However, when induction solution was replaced by complete culture medium after 8-hour induction, the differentiated cells reverted to the fibroblast-like morphology from day 1. These results demonstrate that β-mercaptoethanol-induced ADSCs induced differentiation into neural stem cells, followed by morphology of neuronal-like cells. However, this differentiation state was not stable.

  5. Ultrastructure of Cajal-like interstitial cells in the human detrusor

    DEFF Research Database (Denmark)

    Rasmussen, Helle; Rumessen, Jüri J; Hansen, Alastair;

    2009-01-01

    The aim of this ultrastructural study was to examine the human detrusor for interstitial cells of Cajal (ICC)-like cells (ICC-L) by conventional transmission electron microscopy (TEM) and immuno-transmission electron microscopy (I-TEM) with antibodies directed towards CD117 and CD34. Two main typ...

  6. 血管壁和血管内皮细胞超微结构在急性机械性脑血管痉挛早期的变化%Ultrastructural changes in vascular wall and vascular endothelial cells during early stage of acute mechanical cerebral vasospasm

    Institute of Scientific and Technical Information of China (English)

    陆菁菁; 张邵东; 翟晶; 万虹

    2007-01-01

    BACKGROUND:Cerebrovascular drag, occlusion and other mechanical stimulations inevitably occur during some craniocerebral operations, which cause acute mechanical cerebrovascular vasospasm. At present, the mechanism underlying the patho-physiology as well as the pathological prognosis of this acute mechanical vasospasm remains unclear.OBJECTIVE: To observe changes in the vascular diameter of the middle cerebral artery, cerebral blood flow (CBF), and ultrastructure of vascular wall and vascular endothelial cells, during the early stage (2 hours) of mechanical cerebral vasospasm in cats.DESIGN: Open experiment.SETTING: Department of Neurology, Beijing Tiantan Hospital, Capital Medical University; Beijing Institute of Neurosurgery.MATERIALS: Six healthy adult hybrid cats, of either gender, weighing from 2.5 to 3.5 kg, were provided by the China Medical Science Institute of Experimental Animals. Laser Doppler flowmetry (Periflux 5010, Sweden Perimed Company)was used.METHODS: This study was carried out in the Beijing Institute of Neurosurgery between August 2005 and March 2006. For all experimental surgical procedures, the cats were anesthetized by intraperitoneal injection of 200 g/L chloral hydrate, at 2 mL/kg, and then placed in a prone position. A median incision was made in the scalp and a square bone window, 8×10 mm, was opened at 1.5 cm posterior and 1.5 lateral to the anterior fontanel, after which the dura mater was pricked out. The fine detecting head of the Laser Doppler flowmetry was fixed to a region of the cerebral surfacewith no vessels or with only a few vessels. Subsequently, the cats were placed in lateral position. Under the surgical microscope, the right middle cerebral artery was exposed through a suborbital approach. Blunt apparatus was used to stimulate middle the middle cerebral artery repeatedly, at a frequency of 100 time/min within 30 minutes.The diameter of the middle cerebral artery was measured and a perfusion index of cortical brain tissue

  7. Tissue organization and cell ultrastructure in the roots of three Arabidopsis species grown at different zinc concentrations

    Directory of Open Access Journals (Sweden)

    M. Čiamporová

    2015-05-01

    Full Text Available The model plant Arabidopsis thaliana is known to be heavy metal-sensitive in contrast to its relative species A. arenosa and A. halleri classified as pseudometallophytes. Quantitative differences in primary root anatomy previously found between A. thaliana and the non-metallicolous (NM and metallicolous (M populations of the non-model Arabidopsis species necessitated further research at cellular and ultrastructural levels. Seedlings of A. thaliana, ecotype Columbia and a natural population Ratkovo, the NM and M populations of A. arenosa and A. halleri were grown on agar medium containing 10 μM (control and 1000 μM Zn2+ for 5 days. Light microscopy confirmed the higher number of cells in the endodermal, cortical and epidermal layers and a higher incidence of additional cell tiers, the so-called middle cortex (MC in the tolerant genotypes. Such differences were present in untreated plants and even more pronounced in plants exposed to excess of zinc (Zn. Electron microscopy of the root tissues at comparable distances from the root tip showed Casparian bands only in the radial cell walls of endodermis of A. halleri M population originating from severely (Cu, Cd and Pb contaminated site. Casparian bands were not differentiated yet in the roots of the other species and populations, and they were not formed in the cell walls between endodermis and MC cells. In the apical cytoplasm of trichoblast bulges, autophagic vacuoles were found only in the sensitive A. thaliana and small vacuoles in the other genotypes. The enhanced concentration of Zn confirmed the higher metal sensitivity of the model species and did not substantially disturb the root cell ultrastructure of the tolerant Arabidopsis species.

  8. Cell Wall Assembly in Saccharomyces cerevisiae

    OpenAIRE

    Lesage, Guillaume; Bussey, Howard

    2006-01-01

    An extracellular matrix composed of a layered meshwork of β-glucans, chitin, and mannoproteins encapsulates cells of the yeast Saccharomyces cerevisiae. This organelle determines cellular morphology and plays a critical role in maintaining cell integrity during cell growth and division, under stress conditions, upon cell fusion in mating, and in the durable ascospore cell wall. Here we assess recent progress in understanding the molecular biology and biochemistry of cell wall synthesis and it...

  9. How do plant cell walls extend?

    Science.gov (United States)

    Cosgrove, D. J.

    1993-01-01

    This article briefly summarizes recent work that identifies the biophysical and biochemical processes that give rise to the extension of plant cell walls. I begin with the biophysical notion of stress relaxation of the wall and follow with recent studies of wall enzymes thought to catalyze wall extension and relaxation. Readers should refer to detailed reviews for more comprehensive discussion of earlier literature (Taiz, 1984; Carpita and Gibeaut, 1993; Cosgrove, 1993).

  10. Acute respiratory bronchiolitis: an ultrastructural and autoradiographic study of epithelial cell injury and renewal in Rhesus monkeys exposed to ozone

    International Nuclear Information System (INIS)

    The pathogenesis of acute respiratory bronchiolitis was examined in Rhesus monkeys exposed to 0.8 ppM ozone for 4 to 50 hours. Epithelial injury and renewal were qualitatively and quantitatively characterized by correlated techniques of scanning and transmission electron microscopy as well as by light-microscopic autoradiography following labeling with tritiated thymidine. Extensive degeneration and necrosis of Type 1 epithelial cells occurred on the respiratory bronchiolar wall during the initial 4 to 12 hours of exposure. Increased numbers of labeled epithelial cells were present in this region after 18 hours of exposure, and the highest labeling index (18%) was measured after 50 hours of exposure. Most (67 to 80%) of the labeled cells and all the mitotic epithelial cells (22) observed ultrastructurally were cuboidal bronchiolar epithelial cells. Of the labeled epithelial cells, 20 to 33% were Type 2 epithelial cells. After 50 hours of exposure the respiratory bronchiolar epithelium was hyperplastic. The predominant inflammatory cell in respiratory bronchiolar exudate was the alveolar macrophage. Monkeys that were exposed for 50 hours and allowed to recover in unozonized air for 7 days had incomplete resolution of respiratory bronchiolar epithelial hyperplasia. The results indicate that Type 1 epithelial cells lining respiratory bronchioles are the cell types most sensitive to injury and that both cuboidal bronchiolar epithelial cells and Type 2 epithelial cells function as stem cells in epithelial renewal

  11. Microanalysis of Plant Cell Wall Polysaccharides

    Institute of Scientific and Technical Information of China (English)

    Nicolai Obel; Veronika Erben; Tatjana Schwarz; Stefan Kühne; Andrea Fodor; Markus Pauly

    2009-01-01

    Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first iso-lating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apo-plastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.

  12. Cell wall composition of chlorococcal algae

    OpenAIRE

    Blumreisinger, Maria; Meindl, Doris; Loos, Eckhard

    1983-01-01

    The cell walls of representatives of the genera Chlorella, Monoraphidium, Ankistrodesmus and Scenedesmus contained 24–74% neutral sugars, 1–24% uronic acids, 2–16% protein and 0–15% glucosamine. Two types of cell walls could be discerned containing as main sugars either rhamnose and galactose or mannose and glucose with a lack of galactose.

  13. WallProtDB, a database resource for plant cell wall proteomics

    OpenAIRE

    San Clemente, Hélène; Jamet, Elisabeth

    2015-01-01

    Background During the last fifteen years, cell wall proteomics has become a major research field with the publication of more than 50 articles describing plant cell wall proteomes. The WallProtDB database has been designed as a tool to facilitate the inventory, the interpretation of cell wall proteomics data and the comparisons between cell wall proteomes. Results WallProtDB (http://www.polebio.lrsv.ups-tlse.fr/WallProtDB/) presently contains 2170 proteins and ESTs identified experimentally i...

  14. Ultrastructural alterations in human lymphoblastoid B cell lines treated with tunicamycin.

    OpenAIRE

    Glassy, M C; Ferrone, S

    1981-01-01

    The ultrastructure of three human lymphoblastoid B cell lines, Raji, RPMI 4098, and WIL-2, was analyzed after the cells were incubated with tunicamycin, and antibiotic that selectively inhibits N-linked glycosylation of macromolecules. After a 24-hour exposure to 1.0 microgram/ml of tunicamycin, the lymphocytes lose their microvilli and become smooth spheres or develop a few blebs. Also, the cells show a dilation of the endoplasmic reticulum and an increase in myelin figures resulting from in...

  15. Ultrastructure characteristic of the endocrine cells of prostate in poorly differentiated adenocarcinoma

    OpenAIRE

    Prokopyuk O.V.; Volkov K.S.; Kurik O.G.

    2008-01-01

    A research purpose was a ultrastructural study of prostatic APUD-system at poorly differentiated adenocarcinoma. The electron-microscopic investigation of the endocrine cells of prostate in 6 patients with poorly differentiated adenocarcinoma and fragments of 3 prostates without a tumour process (control group) was performed. Both the increase of the morphofunctional activity and presence of dystrophic changes of endocrine cells of prostate was found. At tumours, built from dark cells, APUD-c...

  16. Ultrastructural characteristics of type A epithelioid cells during BCG-granulomatosis and treatment with lysosomotropic isoniazid.

    Science.gov (United States)

    Shkurupii, V A; Kozyaev, M A; Nadeev, A P

    2006-04-01

    We studied BCG-granulomas, their cellular composition, and ultrastructure of type A epithelioid cells in the liver of male BALB/c mice with spontaneous granulomatous inflammation. The animals received free isoniazid or isoniazid conjugated with lysosomotropic intracellularly prolonged matrix (dialdehyde dextran, molecular weight 65-75 kDa). Lysosomotropic isoniazid was accumulated in the vacuolar apparatus of epithelioid cells and produced a stimulatory effect on plastic processes in these cells.

  17. Cell wall proteins: a new insight through proteomics

    OpenAIRE

    Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Pont-Lezica, Rafael F

    2006-01-01

    Cell wall proteins are essential constituents of plant cell walls; they are involved in modifications of cell wall components, wall structure, signaling and interactions with plasma membrane proteins at the cell surface. The application of proteomic approaches to the cell wall compartment raises important questions: are there technical problems specific to cell wall proteomics? What kinds of proteins can be found in Arabidopsis walls? Are some of them unexpected? What sort of post-translation...

  18. Distribution and ultrastructure of Merkel cell of the fishing bat (Myotis ricketti)

    Institute of Scientific and Technical Information of China (English)

    YIN JiangXia; WANG HongMei; RACEY Paul; ZHANG ShuYi

    2009-01-01

    The distribution and ultrastructure of Merkel cells were described in detail in piscivorous bats through immunohistochemistry and transmission electron microscopy techniques. The findings indicated that Merkel cells are commonly found in raised-domes, hair follicles and in the basal epidermis of the skin from their back, abdomen, intercrural membranes, wing membranes and footpads. However, the density of Merkel cells is significantly higher in the footpad than in other places. These results suggested that there may be a link between Merkel cells and tactile sense, and also might imply that raised-domes with air-flow sensitive hairs played an important role in adjusting flying gestures by monitoring the air flow around the body. The ultrastructure of Merkel cells is similar to other vertebrates except having more intermediate filaments and larger granules.

  19. Distribution and ultrastructure of Merkel cell of the fishing bat (Myotis ricketti)

    Institute of Scientific and Technical Information of China (English)

    RACEY; Paul

    2009-01-01

    The distribution and ultrastructure of Merkel cells were described in detail in piscivorous bats through immunohistochemistry and transmission electron microscopy techniques. The findings indicated that Merkel cells are commonly found in raised-domes,hair follicles and in the basal epidermis of the skin from their back,abdomen,intercrural membranes,wing membranes and footpads. However,the density of Merkel cells is significantly higher in the footpad than in other places. These results suggested that there may be a link between Merkel cells and tactile sense,and also might imply that raised-domes with air-flow sensitive hairs played an important role in adjusting flying gestures by monitoring the air flow around the body. The ultrastructure of Merkel cells is similar to other vertebrates except having more intermediate filaments and larger granules.

  20. Improved sectioning and ultrastructure of bacteria and animal cells embedded in Lowicryl.

    Science.gov (United States)

    Bénichou, J C; Fréhel, C; Ryter, A

    1990-04-01

    Lowicryl K4M-embedded Gram-positive and Gram-negative bacteria have a tendency to separate between the cell surface and the resin. This often leads to distortion of bacteria and more especially of mycobacteria. We describe attempts made to overcome this technical problem. Different assays were made on Bacillus subtilis, Escherichia coli, and Mycobacterium avium: 1) Modification of the bacterial surface by coating of bacteria with proteinic compounds; 2) treatment of bacteria with metallic salts known to modify cell wall polysaccharides; and 3) comparison between Lowicryl K4M and HM20. Conditions have been found in which the separation of all bacterial species from the resin is abolished. The most important factor appeared to be the treatment of bacteria before dehydration, with 0.5% uranyl acetate for 30 min. The second most important factor, especially for M. avium and to a lower extent for Gram-negative bacteria, was the use of Lowicryl HM20. No differences were observed with Gram-positive bacteria between K4M and HM20. Pre-embedding in gelatin instead of agar improved sectioning of M. avium, but had no effects on the other bacterial species. These conditions applied to macrophages infected with Shigella dysenteriae or M. avium also gave excellent results. In addition to sectioning improvement of bacteria, uranyl acetate improved the ultrastructure of bacteria and macrophages. All organelles were more clearly delineated and, hence, more easily identified. Finally, it was shown that UA treatment did not affect immunogold labeling of a variety of antigens. PMID:2110246

  1. Ultrastructural and immunocytochemical characterization of interstitial cells in pre- and postnatal developing sheep pineal gland

    Directory of Open Access Journals (Sweden)

    E Redondo

    2009-12-01

    Full Text Available Pineal gland interstitial cells from 32 sheep embryos (from day 54 of gestation until birth and 18 sheep (from 1 month to >2 years were analysed using ultrastructural and immunohistochemical techniques. From day 98 of gestation and throughout postnatal development, a second cell type was observed in addition to pinealocytes; these cells displayed uniform ultrastructural features similar to those of CNS astrocytes. Ultrastructural homogeneity was not matched by the results of histochemical and immunohistochemical analysis. Expression of phosphotungstic acid hematoxylin, glial fibrillary acidic protein and vimentin indicates that the second cell population in the developing ovine pineal gland is, in fact, a combination of glial-astrocyte cells at varying stages of maturity. Pineal interstitial cells started to show signs of functional activity evident in vascular tropism; such activity, evident from around day 98 of gestation, appeared to relate to the exchange of substances between the pineal parenchyma and blood vessels and, though it continued throughout postnatal development, was most evident in animals slaughtered between 9 months and 2 years of age (group II. Morphologically, functional activi- ty in interstitial cells in this age-group was apparent in: 1, formation of specific contact sites between interstitial cells and nerve fibres in the perivascular space; and 2, the presence of numerous gap junctions between the bulbous endings of cytoplasmic processes.

  2. Accelerating forward genetics for cell wall deconstruction

    Directory of Open Access Journals (Sweden)

    Danielle eVidaurre

    2012-06-01

    Full Text Available One of the biggest challenges of cell wall biology is the elucidation of the genes involved the cell wall and their function due to the recalcitrance of the cell wall. Through traditional genetic approaches, many simple yet elegant screens have been able to identify components of the cell wall and their networks. Despite progress in the identification of several genes of the cell wall, there remain many unknown players whose function has yet to be determined. Exhausting the genetic toolbox by performing secondary screens on a genetically mutated background, chemical genetics using small molecules and improved cell wall imaging hold promise for new gene discovery and function. With the recent introduction of next-generation sequencing technologies, it is now possible to quickly and efficiently map and clone genes of interest in Arabidopsis and any model organism with a completed genome sequence. The combination of a classical genetics approach and cutting edge technology will propel cell wall biology of Arabidopsis and other useful crops forward into the future.

  3. Ultrastructure of interstitial cells of Cajal in myenteric plexus of human colon

    DEFF Research Database (Denmark)

    Rumessen, Jüri Johannes; Vanderwinden, Jean-Marie; Rasmussen, Helle;

    2009-01-01

    , and close contacts (cells (FLC) were abundant showing well-developed secretory organelles, including coated vesicles, but lacked prominent intermediate filaments and caveolae. FLC had a patchy basal lamina, and peg and socket......The role of the interstitial cells of Cajal (ICC) associated with the myenteric plexus (ICC-MP) as regulators of the motility of the colonic external muscle remains unclear. Ultrastructural studies of myenteric interstitial cells are lacking in human colon. We therefore characterized...... the distinctive ultrastructure of these cells in the myenteric region of the colon by transmission electron microscopy of the region between the main muscle layers in all parts of the colon in unaffected areas of resected specimens from nine adult human patients. ICC-MP were similar in various colonic regions...

  4. Molecular regulation of plant cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  5. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    OpenAIRE

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell wa...

  6. 2003 Plant Cell Walls Gordon Conference

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Cosgrove

    2004-09-21

    This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

  7. Ultrastructural characteristics of nurse cell-larva complex of four species of Trichinella in several hosts

    OpenAIRE

    Sacchi L.; Corona S.; Gajadhar A.A.; Pozio E.

    2001-01-01

    The nurse cell-larva complex of nematodes of the genus Trichinella plays an Important role in the survival of the larva in decaying muscles, frequently favouring the transmission of the parasite in extreme environmental conditions. The ultrastructure of the nurse cell-larva complex in muscles from different hosts infected with T. nativa (a walrus and a polar bear), T. spiralis (horses and humans), T. pseudospiralis (a laboratory mouse) and T. papuae (a laboratory mouse) were examined. Analysi...

  8. Refractive index of plant cell walls

    Science.gov (United States)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  9. Peculiarities of ultrastructure of Chlorella cells growing aboard the Bion-10 during 12 days

    Science.gov (United States)

    Popova, A. F.; Sytnik, K. M.

    The ultrastructure of Chlorella cells grown in darkness on a solid agar medium with organic additions aboard the Bion-1O biosatellite was studied. Certain differences in submicroscopic organization of organelles in the experimental cells were revealed compared to the Earth control. The changes are registered mainly in ultrastructure of energetic organelles - mitochondria and plastids of the experimental cells, in particular, an increase of mitochondria and their cristae size, as well as an increase of the total volume of mitochondrion per cell were established. The decrease of the starch amount in the plastid stroma and the electron density of the latter was also observed. In many experimental cells, the increase of condensed chromatin in the nuclei has been noted. Ultrastructural rearrangements in cells after laboratory experiment realized according to the thermogram registered aboard the Bion-10 were insignificant compared to the flight experiment. Data obtained are compared to results of space flight experiments carried out aboard the Bion-9 (polycomponent aquatic system) and the orbital station Mir (solid agar medium).

  10. Potential ultrastructural changes in rat epididymal cell types induced by Boswellia papyrifera and Boswellia carterii incense.

    Science.gov (United States)

    Ahmed, Mukhtar; Al-Daghri, Nasser; Harrath, Abdul Halim; Alokail, Majed S; Aladakatti, Ravindranath H; Ghodesawar, Mukhtar Ahmed G; Alwasel, Saleh

    2013-08-01

    Boswellia papyrifera and Boswellia carterii, known as Arabian incense, diffuses smoke, contaminating the air, which adversely affects human health. Therefore, this study was designed to ascertain the effect of these plants on histopathological and ultrastructure changes in cauda epididymis of Albino rats. Animals were exposed to 4 g/kg body weight of B. papyrifera and B. carterii daily for 120 days along with suitable controls. Our study indicates a significant reduction in epithelial heights. Cells showed signs of degeneration. The ultrastructural study revealed that the cauda epididymis was affected, including its cell types. Furthermore, a decrease in the size of mitochondria, Golgi complex, and both ERs was observed. In all treated groups, plasma fructose decreased considerably, indicating the sign of reduced energy, vital for motility and other sperm functions. The results of this study suggest that these plants systematically affect cauda epididymal cell types and its lumen through its potential toxicity.

  11. Plexus muscularis profundus and associated interstitial cells. II. Ultrastructural studies of mouse small intestine

    DEFF Research Database (Denmark)

    Rumessen, J J; Thuneberg, L; Mikkelsen, H B

    1982-01-01

    The ultrastructure of plexus muscularis profundus (PMP) of the mouse small intestine was investigated subsequent to vascular perfusion with ruthenium red-containing and routine aldehyde fixatives. Four types of nerve terminals were revealed. Type I: numerous 500-A agranular vesicles and few 1,000-A...... A), synapse-like contacts to interstitial cells of Cajal (ICC-III). Presynaptic densities were frequent in type I endings. A direct innervation of muscle cells via PMP was only very occasionally suggested. ICC-III possessed a basal lamina and numerous caveolae associated with subsurface SER......, and the lack of caveolae and a basal lamina. FLC never participated in synaptic arrangements or gap junctions. Macrophage-like cells were occasionally encountered. It is concluded that possible efferent and afferent nerve terminals in PMP may chiefly, if not exclusively, innervate ICC-III, the ultrastructure...

  12. Glial cells of the central nervous system of Bothrops jararaca (Reptilia, Ofidae: an ultrastructural study

    Directory of Open Access Journals (Sweden)

    Eduardo F. Bondan

    2015-07-01

    Full Text Available Abstract Although ultrastructural characteristics of mature neuroglia in the central nervous system (CNS are very well described in mammals, much less is known in reptiles, especially serpents. In this context, two specimens of Bothrops jararaca were euthanized for morphological analysis of CNS glial cells. Samples from telencephalon, mesencephalon and spinal cord were collected and processed for light and transmission electron microscopy investigation. Astrocytes, oligodendrocytes, microglial cells and ependymal cells, as well as myelin sheaths, presented similar ultrastructural features to those already observed in mammals and tended to maintain their general aspect all over the distinct CNS regions observed. Morphological similarities between reptilian and mammalian glia are probably linked to their evolutionary conservation throughout vertebrate phylogeny.

  13. Homogenization of a viscoelastic model for plant cell wall biomechanics

    OpenAIRE

    Ptashnyk, Mariya; Seguin, Brian

    2015-01-01

    The microscopic structure of a plant cell wall is given by cellulose microfibrils embedded in a cell wall matrix. In this paper we consider a microscopic model for interactions between viscoelastic deformations of a plant cell wall and chemical processes in the cell wall matrix. We consider elastic deformations of the cell wall microfibrils and viscoelastic Kelvin--Voigt type deformations of the cell wall matrix. Using homogenization techniques (two-scale convergence and periodic unfolding me...

  14. Function of laccases in cell wall biosynthesis

    DEFF Research Database (Denmark)

    Larsen, Anders; Holm, Preben Bach; Andersen, Jeppe Reitan

    2011-01-01

    substrate specificities and expression patterns. As part of the strategic research centre Bio4Bio, the present project deals with laccase functions in relation to cell wall formation in grasses based on a study of the model species Brachypodium distachyon. Thirty-one isozymes have been retrieved from......Laccases are multicopper oxidases capable of polymerizing monolignols. Histochemical assays have shown temporal and spatial correlation with secondary cell wall formation in both herbs and woody perennials. However, in plants laccases constitutes a relatively large group of isoenzymes with unique...... hybridization. Specific isozymes that show high correlation with the process of secondary cell wall formation will be further studied in a reverse genetic study in which candidates will be knocked out using RNA interference. Phenotypes of knock-out mutants are to be described in relation to cell wall...

  15. Comparative ultrastructural study of endoplasmic reticulum in colorectal carcinoma cell lines with different degrees of differentiation

    Institute of Scientific and Technical Information of China (English)

    Shu Feng; Jin Dan Song

    2000-01-01

    The endoplasmic reticulum (ER) consists of a complex system of tubules, lamellae, and flattened vesicles, and has a variety of morphologies in different cells. It is believed to play a central role in the biosynthesis of cholesterol, phospholipids, steroids, prostaglandins, membrane and secretory proteins[1]. Cancer cells have different functions and ultrastmcture from their original cells[2-4]. The studies on ER membrane system of cancer cells are of great significance in understanding their malignant behavior. In the present work, the ultrastructural characteristics of ER in human colorectal carcinoma cell lines with different differentiation degrees were investigated.

  16. Cell wall remodeling under abiotic stress

    OpenAIRE

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted a...

  17. Cell-wall dynamics in growing bacteria

    Science.gov (United States)

    Furchtgott, Leon; Wingreen, Ned; Huang, Kerwyn Casey

    2010-03-01

    Bacterial cells come in a large variety of shapes, and cell shape plays an important role in the regulation of many biological functions. Cell shape in bacterial cells is dictated by a cell wall composed of peptidoglycan, a polymer made up of long, stiff glycan strands and flexible peptide crosslinks. Although much is understood about the structural properties of peptidoglycan, little is known about the dynamics of cell wall organization in bacterial cells. In particular, during cell growth, how does the bacterial cell wall continuously expand and reorganize while maintaining cell shape? In order to investigate this question quantitatively, we model the cell wall of the Gram-negative bacterium Escherichia coli using a simple elastic model, in which glycan and peptide subunits are treated as springs with different spring constants and relaxed lengths. We consider the peptidoglycan network as a single-layered network of these springs under tension due to an internal osmotic pressure. Within this model, we simulate possible hypotheses for cell growth as different combinations of addition of new springs and breakage of old springs.

  18. Structural Insight into Cell Wall Architecture of Micanthus sinensis cv. using Correlative Microscopy Approaches.

    Science.gov (United States)

    Ma, Jianfeng; Lv, Xunli; Yang, Shumin; Tian, Genlin; Liu, Xing'e

    2015-10-01

    Structural organization of the plant cell wall is a key parameter for understanding anisotropic plant growth and mechanical behavior. Four imaging platforms were used to investigate the cell wall architecture of Miscanthus sinensis cv. internode tissue. Using transmission electron microscopy with potassium permanganate, we found a great degree of inhomogeneity in the layering structure (4-9 layers) of the sclerenchymatic fiber (Sf). However, the xylem vessel showed a single layer. Atomic force microscopy images revealed that the cellulose microfibrils (Mfs) deposited in the primary wall of the protoxylem vessel (Pxv) were disordered, while the secondary wall was composed of Mfs oriented in parallel in the cross and longitudinal section. Furthermore, Raman spectroscopy images indicated no variation in the Mf orientation of Pxv and the Mfs in Pxv were oriented more perpendicular to the cell axis than that of Sfs. Based on the integrated results, we have proposed an architectural model of Pxv composed of two layers: an outermost primary wall composed of a meshwork of Mfs and inner secondary wall containing parallel Mfs. This proposed model will support future ultrastructural analysis of plant cell walls in heterogeneous tissues, an area of increasing scientific interest particularly for liquid biofuel processing. PMID:26358178

  19. Effects of 900 MHz electromagnetic radiation on ultrastructure of rats’ hippocampal neural stem cells in vitro

    Directory of Open Access Journals (Sweden)

    Hai-shui LUO

    2012-04-01

    Full Text Available Objective To investigate the effect of 900MHz electromagnetic radiation on the ultrastructure of rat hippocampal neural stem cells (NSCs in vitro in order to provide basic materials for studying the biological effects of electromagnetic wave on the central nervous system. Methods Rat NSCs were divided into sham group, Radi1 group and Radi2 group, and they were respectively exposed to 900 MHz electromagnetic wave at power density of 0, 1, and 3mW/cm2 in vitro. Cells in Radi1 group and Radi2 group were sub-grouped according to the way radiation was given: continuous irradiation, in which cells were exposed on the second day after culture for 2h per day for 6 consecutive days; single exposure to irradiation, in which cells were exposed for 12h on the sixth day after the culture. The ultrastructural changes on the surface of the cells were observed with atomic force microscope (AFM, whereas the ultrastructural changes in the cells were observed with transmission electron microscope (TEM. Results After 900 MHz electromagnetic radiation, when compared with the sham group (0mW/cm2, it was shown that the surface of neural stem cells in the exposure groups (1 and 3mW/cm2 became rough, and there were some changes such as "cavitation" and "fissure formation" in the membrane. The intracellular ultrastructure was found to have obviously disrupted in the exposure groups, such as homogenization of cytoplasm, obvious change organelle structure, morphological damage of structure of nucleus, nuclear membrane disappearance, and chromatin pyknosis, and the changes were more obvious in Radi2 group. Compared with the sham group, the surface roughness (Ra of cells in the exposure group was significantly intensified (P < 0.05, and it was higher in Radi2 group than that in Radi1 group (P < 0.05. Conclusion A 900MHz electromagnetic radiation may cause injury changes in NSCs membrane and ultrastructure in vitro, and the extent of injury may be related to the

  20. Ultrastructural study of long-term canine distemper virus infection in tissue culture cells.

    OpenAIRE

    Narang, H K

    1982-01-01

    The morphogenesis of canine distemper virus was studied in Vero cell cultures for 43 days post-inoculation. Active replication of the virus was observed by electron microscopy and assay from 12 h after inoculation on, and peak production was observed on days 5, 14, and 22. From day 28 on, constant but smaller amounts of infectious virus were detected. Two ultrastructural types of intracytoplasmic nucleoprotein filaments were observed; although they first appeared at different times, their sub...

  1. Morphological and ultrastructural changes in vegetative cells and heterocysts of Anabaena variabilis grown with fructose.

    OpenAIRE

    Lang, N. J.; Krupp, J M; Koller, A L

    1987-01-01

    The morphology and ultrastructure of Anabaena variabilis grown in medium with and without 40 mM fructose were compared. Vegetative cells and young heterocysts in fructose-supplemented medium were significantly larger, were filled with glycogen granules, and had fewer thylakoids. Developing heterocysts contained large numbers of glycogen granules well into mature stages, and envelope formation was precocious. As heterocysts enlarged in fructose medium, their shape became more broadly oblong co...

  2. Structure of xanthan gum and cell ultrastructure at different times of alkali stress

    OpenAIRE

    Márcia de Mello Luvielmo; Caroline Dellinghausen Borges; Daniela de Oliveira Toyama; Claire Tondo Vendruscolo; Adilma Regina Pippa Scamparini

    2016-01-01

    Abstract The effect of alkali stress on the yield, viscosity, gum structure, and cell ultrastructure of xanthan gum was evaluated at the end of fermentation process of xanthan production by Xanthomonas campestris pv. manihotis 280-95. Although greater xanthan production was observed after a 24 h-alkali stress process, a lower viscosity was observed when compared to the alkali stress-free gum, regardless of the alkali stress time. However, this outcome is not conclusive as further studies on g...

  3. Immunochemical and ultrastructural assessment of the nature of the pericellular basement membrane of human decidual cells

    DEFF Research Database (Denmark)

    Wewer, U M; Faber, M; Liotta, L A;

    1985-01-01

    Human decidual cells of early and late pregnancy were studied immunochemically and ultrastructurally with respect to the presence and nature of pericellular basement membrane material. The most prominent cell type in decidual tissue of both early and late pregnancy were large, mature epithelioid...... of stromal cells into decidual cells of the pregnant endometrium. Predecidualization of the human endometrium, which is seen in the late secretory phase of the normal menstrual cycle and in some states of hyperplasia, was also shown to be accompanied by the presence of deposits of laminin-positive material...

  4. An ultrastructural study of cell-cell interactions in capture organs of the nematophagous fungus Arthrobotrys oligospora

    NARCIS (Netherlands)

    Veenhuis, Marten; Nordbring-Hertz, Birgit; Harder, Willem

    1985-01-01

    A detailed ultrastructural analysis was made of interactions between individual cells within the same adhesive network (trap) of the nematophagous fungus Arthrobotrys oligospora. These interactions were confined to traps which had captured nematodes, and occurred concurrently with the fungus-nematod

  5. Modes of deformation of walled cells.

    Science.gov (United States)

    Dumais, Jacques

    2013-11-01

    The bewildering morphological diversity found in cells is one of the starkest illustrations of life's ability to self-organize. Yet the morphogenetic mechanisms that produce the multifarious shapes of cells are still poorly understood. The shared similarities between the walled cells of prokaryotes, many protists, fungi, and plants make these groups particularly appealing to begin investigating how morphological diversity is generated at the cell level. In this review, I attempt a first classification of the different modes of surface deformation used by walled cells. Five modes of deformation were identified: inextensional bending, equi-area shear, elastic stretching, processive intussusception, and chemorheological growth. The two most restrictive modes-inextensional and equi-area deformations-are embodied in the exine of pollen grains and the wall-like pellicle of euglenoids, respectively. For these modes, it is possible to express the deformed geometry of the cell explicitly in terms of the undeformed geometry and other easily observable geometrical parameters. The greatest morphogenetic power is reached with the processive intussusception and chemorheological growth mechanisms that underlie the expansive growth of walled cells. A comparison of these two growth mechanisms suggests a possible way to tackle the complexity behind wall growth.

  6. Effects of bile acids on proliferation and ultrastructural alteration of pancreatic cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Zheng Wu; Yi Lüi; Bo Wang; Chang Liu; Zuo-Ren Wang,

    2003-01-01

    AIM: Pancreatic cancer in the head is frequently accompanied by jaundice and high bile acid level in serum. This study focused on the direct effects of bile acids on proliferation and ultrastructural alteration of pancreatic cancer.METHODS: Pancreatic cancer cell lines PANC-1, MIA PaCa2 and PGHAM-1 were explored in this study. The cell lines were cultured in media supplemented with certain bile acids,CA, DCA, LCA, TCDC, TDCA and GCA. Their influence on cell growth was measured with MTT assay after 72 h of incubation. Cell cycles of PANC-1 cells in 40 μM of bile acids media were analyzed by flow cytometry. Ultrastructural alteration of PANC-1 cells induced by DCA was observed using scanning and transmission electron microscope (SEM and TEM).RESULTS: At various concentrations of bile acids and incubation time, no enhanced effects of bile acids on cell proliferation were observed. Significant inhibitory effects were obtained in almost all media with bile acids. DCA and CA increased the percentage of G0+G1 phase cells, while GCA and TDCA elevated the S phase cell number. After 48 h of incubation in DCA medium, PANC-1 cells showed some structural damages such as loss of their microvilli and vacuolization of organelles in cytoplasm.CONCLUSION: Bile acids can reduce proliferation of pancreatic cancer cells due to their direct cytotoxicity. This result implies that elevation of bile acids in jaundiced serum may inhibit pancreatic cancer progression.

  7. Autophagy as an ultrastructural marker of heavy metal toxicity in human cord blood hematopoietic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Di Gioacchino, Mario [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Medicine and Science of Ageing University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy)], E-mail: m.digioacchino@unich.it; Petrarca, Claudia; Perrone, Angela [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Medicine and Science of Ageing University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy); Farina, Massimo; Sabbioni, Enrico; Hartung, Thomas [Oncology and Neurosciences University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy); Martino, Simone [Department of Experimental Medicine, University La Sapienza, Viale Regina Elena 324, 00161 Rome (Italy); Esposito, Diana L. [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Oncology and Neurosciences University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy); Lotti, Lavinia Vittoria [Department of Experimental Medicine, University La Sapienza, Viale Regina Elena 324, 00161 Rome (Italy); Mariani-Costantini, Renato [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Oncology and Neurosciences University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy)

    2008-03-15

    Stem cells are a key target of environmental toxicants, but little is known about their toxicological responses. We aimed at developing an in-vitro model based on adult human stem cells to identify biomarkers of heavy metal exposure. To this end we investigated the responses of human CD34+ hematopoietic progenitor cells to hexavalent chromium (Cr[VI]) and cadmium (Cd). Parallel cultures of CD34+ cells isolated from umbilical cord blood were exposed for 48 h to 0.1 {mu}M and 10 {mu}M Cr(VI) or Cd. Cultures treated with 10 {mu}M Cr(VI) or Cd showed marked cell loss. Ultrastructural analysis of surviving cells revealed prominent autophagosomes/autophagolysosomes, which is diagnostic of autophagy, associated with mitochondrial damage and replication, dilatation of the rough endoplasmic reticulum and Golgi complex, cytoplasmic lipid droplets and chromatin condensation. Treated cells did not show the morphologic hallmarks of apoptosis. Treatment with 0.1 {mu}M Cr(VI) or Cd did not result in cell loss, but at the ultrastructural level cells showed dilated endoplasmic reticulum and evidence of mitochondrial damage. We conclude that autophagy is implicated in the response of human hematopoietic stem cells to toxic concentrations of Cr(VI) and Cd. Autophagy, which mediates cell survival and death under stress, deserves further evaluation to be established as biomarker of metal exposure.

  8. "Steiner trees" between cell walls of sisal

    Institute of Scientific and Technical Information of China (English)

    LI GuanShi; YIN YaJun; LI Yan; ZHONG Zheng

    2009-01-01

    Through careful analysis on the cross-section of sisal fibers,it is found that the middle lamellae between the cell walls have clear geometric characteristics:between the cell walls of three neighboring cells,the middle lamellae form a three-way junction with 120°symmetry. If the neighboring three-way junctions are connected,a network of Steiner tree with angular symmetry and topological invariability is formed. If more and more Steiner trees are connected,a network of Steiner rings is generated. In another word,idealized cell walls and the middle lamellae are dominated by the Steiner geometry. This geometry not only depicts the geometric symmetry,the topological invariability and minimal property of the middle lamellae,but also controls the mechanics of sisal fibers.

  9. The Ultrastructure of Secretory Cells of the Islets of Langerhans in South American Catfish Rhamdia quelen

    Directory of Open Access Journals (Sweden)

    Laura Luchini

    2015-01-01

    Full Text Available The present work shows that a detailed description of the ultrastructure of the secretory cells of the South American catfish Rhamdia quelen pancreatic islets is presented. Evidence is offered to support the contention that the α-granules consist of a central and an outer portion of different electron densities and solubilities, that the δ-cells are most probably morphologically altered but viable α-cells, and that the β-granules possibly possess a repeating substructure and may therefore represent an intracellular crystalline storage form of insulin.

  10. Morphological and ultrastructural changes in the cell structure of enterohaemorrhagic Escherichia coli O157:H7 following treatment with Quercus infectoria nut galls.

    Science.gov (United States)

    Suwalak, Sakol; Voravuthikunchai, Supayang P

    2009-10-01

    Some information is available on the oak (Quercus infectoria) nut gall as an effective medicinal plant against Shiga toxin-producing Escherichia coli (STEC) O157:H7. However, its antibacterial mechanisms have not yet been elucidated. In this study, some antibacterial actions against STEC O157:H7 were investigated by observing cell viability as well as morphological and ultrastructural changes. An ethanolic extract of Q. infectoria demonstrated inhibitory and bactericidal effects on all of the strains tested with minimal inhibition concentrations (MICs) at 0.78-1.56 mg ml(-1) and minimal bactericidal concentrations (MBCs) at 1.56-3.12 mg ml(-1). Cell numbers treated with 4MIC of the extract decreased at least two log-fold within 4 h and were completely killed within 12 h. Scanning electron microscopy illustrated a complete loss of surface appendages and pronounced morphological changes at MIC and 2MIC. The whole cell collapsed at 4MIC. Ultrastructural changes from corresponding transmission electron micrographs further verified that damages in the treated cells increased with the increase in the extract concentrations. At MIC (0.78 mg ml(-1)), there was some evidence that the cytoplasmic membranes of the treated E. coli were bulging and/or ruptured, and the cells appeared to be discharging intracellular materials. At 2MIC, the outer membrane of the treated E. coli which was attached to the cell wall became separated from the wall. Disruption in the outer wall and cytoplasmic membranes, especially at the polar regions of the cells occurred and some vacuolization appeared. At 4MIC, the damage to E. coli cells was extensive, and there was loss of their cellular integrity. PMID:19451663

  11. Effects of Shuanghuangbu on the total protein content and ultrastructure in cultured human periodontal ligament cells

    Institute of Scientific and Technical Information of China (English)

    许彦枝; 邹慧儒; 王小玲; 刘世正; 王永军

    2004-01-01

    Background Successful periodontal regeneration depends on the migration, proliferation and differentiation of periodontal ligament cells in periodontal defects. The total protein content and the ultrastructure demonstrate the metabolizability and activity of periodontal ligament cells. This study was conducted to observe the effects of Shuanghuangbu, a mixture of medicinal herbs, on the total protein content and the ultrastructure of human periodontal ligament cells.Methods Periodontal ligament cells were grown to confluence and then cultured in Dulbecco's modified eagle medium (DMEM) supplemented with Shuanghuangbu over the concentration range of 0 to 1000 μg/ml. The total protein content in cultured cells was determined by using Coommasie brilliant blue technique. Periodontal ligament cells were incubated in 0 and 100 μg/ml Shuanghuangbu decoction for 5 days, then observed through transmission electron microscope.Results The total protein content of human periodontal ligament cells increased in each experiment group added 10-1000 μg/ml Shuanghuangbu respectively, and the effect of 100 μg/ml was excellent. Under the transmission electron microscope, there were more rough endoplasmic reticulums and mitochodrias in the experiment group than those in the control group. Conclusion Shuanghuangbu stimulates the protein synthesis of human periodontal ligament cells and improves human periodontal ligament cells' metabolizability and activity.

  12. Ultrastructural and molecular distinctions between the porcine inner cell mass and epiblast reveal unique pluripotent cell states

    DEFF Research Database (Denmark)

    Hall, V. J.; Jacobsen, Janus Valentin; Rasmussen, M. A.;

    2010-01-01

    Characterization of the pluripotent cell populations within the porcine embryo is essential for understanding pluripotency and self-renewal regulation in the inner cell mass (ICM) and epiblast. In this study, we perform detailed ultrastructural and molecular characterization of the developing...... pluripotent cell population as it develops from the ICM to the late epiblast. The ultrastructural observations revealed that the outer cells of the ICM have a high nuclear:cytoplasmic ratio but are transcriptionally inactive and contain mitochondria with few cristae. In contrast, the epiblast cells have...... a reduced nuclear:cytoplasmic ratio, are more transcriptionally active, and contain abundant cellular organelles. This study also revealed cavitation and potential unfolding of the epiblast. As the ICM forms the epiblast, SSEA1 is lost and VIMENTIN is lost and re-expressed. The D6 blastocyst expressed high...

  13. Ultrastructural appearance and cytoskeletal architecture of the clear, chromophilic, and chromophobe types of human renal cell carcinoma in vitro.

    OpenAIRE

    Gerharz, C D; Moll, R.; Störkel, S.; Ramp, U; Thoenes, W.; Gabbert, H E

    1993-01-01

    The clear, chromophilic, and chromophobe types of human renal cell carcinoma have been defined as distinct morphological entities and can be clearly separated by differences of ultrastructural appearance, cytoskeletal architecture, enzyme synthesis, and cytogenetic aberrations. In this report, the cytomorphological aspects of these tumor types are compared in vitro, showing that essential ultrastructural and cytoskeletal characteristics of each tumor type are expressed even after prolonged in...

  14. Ultrastructural Aspects of the Prenatal Bovine Ovary Differentiation with a Special Focus on the Interstitial Cells.

    Science.gov (United States)

    Kenngott, R A-M; Scholz, W; Sinowatz, F

    2016-10-01

    The aim of this investigation was to study the ultrastructural features during the development of fetal bovine ovaries (crown rump length ranging from 11.4 to 94.0 cm). An interesting observation was the occurrence of big elongated cells containing a variety of electron dense granules and light homogenous vacuoles/bodies. They were located between the stroma cells surrounding the germ cell cord ends, adjacent to the first formed primordial follicles, typically situated near blood vessels. ER alpha and ER beta receptor positive cells could be detected in the same regions by means of immunohistochemistry. Intercellular bridges linked the germ cells nests oogonia. Germ cell cords consisted of centrally located, large, pale oogonia, surrounded by elongated somatic cells with very long cytoplasm extensions. Primordial follicles with flat pale follicular cells could be observed on the inner end of the cords. Extrusions of the outer nuclear membrane could often been recognised in voluminous oocytes.

  15. Effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of summer maize.

    Science.gov (United States)

    Ren, Baizhao; Cui, Haiyan; Camberato, James J; Dong, Shuting; Liu, Peng; Zhao, Bin; Zhang, Jiwang

    2016-08-01

    A field experiment was conducted to study the effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of two summer maize hybrids Denghai605 (DH605) and Zhengdan958 (ZD958). The ambient sunlight treatment was used as control (CK) and shading treatments (40 % of ambient sunlight) were applied at different growth stages from silking (R1) to physiological maturity (R6) (S1), from the sixth leaf stage (V6) to R1 (S2), and from seeding to R6 (S3), respectively. The net photosynthetic rate (P n) was significantly decreased after shading. The greatest reduction of P n was found at S3 treatment, followed by S1 and S2 treatments. P n of S3 was decreased by 59 and 48 % for DH605, and 39 and 43 % for ZD958 at tasseling and milk-ripe stages, respectively, compared to that of CK. Additionally, leaf area index (LAI) and chlorophyll content decreased after shading. In terms of mesophyll cell ultrastructure, chloroplast configuration of mesophyll cells dispersed, and part of chloroplast swelled and became circular. Meanwhile, the major characteristics of chloroplasts showed poorly developed thylakoid structure at the early growth stage, blurry lamellar structure, loose grana, and a large gap between slices and warping granum. Then, plasmolysis occurred in mesophyll cells and the endomembrane system was destroyed, which resulted in the dissolution of cell membrane, karyotheca, mitochondria, and some membrane structures. The damaged mesophyll cell ultrastructure led to the decrease of photosynthetic capacity, and thus resulted in significant yield reduction by 45, 11, and 84 % in S1, S2, and S3 treatments, respectively, compared to that of CK. PMID:27437706

  16. Nuclear DNA content and ultrastructure of secretory cells of Vicia faba L. stigma

    Directory of Open Access Journals (Sweden)

    Bogdan Wróbel

    2014-02-01

    Full Text Available The object of study was the level of nuclear DNA and the ultrastructural transformations in the secretory cells of the stigma in Vicia faba L. It has been found that the stigmal cells which are active in biogenesis and exudate secretion are diploid cells whose differentiation starts from 2C DNA level. The presence of a population of nuclei with an amount DNA of about 2.5 C suggests that the metabolic activity of those cells may be regulated through supplementary incomplete replication. The ultrastructural transformations of secretory cells point to three stages of biogenesis and secretion of exudate. Stage I, before the start of the cell's secretory functions, is characterized by the development of the protein synthesizing apparatus and the activity of dictyosomes. In development stage II vesicular electron-transparent exudate is secreted. Stage III of exudate biogenesis is production of lipids. They form mainly in the plastids and are secreted with the involvement of the cell's vacuolar system.

  17. Changes in Cell Ultrastructure in Maize Leaves Infected by Maize Dwarf Mosaic Virus

    Institute of Scientific and Technical Information of China (English)

    GUO Xing-qi; ZHU Xiao-ping; ZHANG Jie-dao; GUO Yan-kui

    2003-01-01

    Ultrastructural alterations in foliar cells were studied in leaves of resistant maize varietyLuyu16 and susceptible maize inbred line Luyuan92 infected by maize dwarf mosaic virus Shandong isolate(MDMV-SD), respectively. The results showed that marked cytopathological alterations were observed both inresistant plants and in susceptible plants, compared with that in healthy plants. However, some ultrastructur-al alterations, which observed in resistant plants, were different from those in susceptible plants. In resistantplants, which infected with the virus, the main organelles, including chloroplasts and mitochondria, wereslightly destroyed, the amount of mitochondria and peroxisome were increased. A few or no plasmodesmatawere observed. There were three kinds of inclusions including pinwheel, bundle and laminated aggregate, andthe virus particles in the cytoplasm. In susceptible plants, which infected with the virus, the chloroplasts wereheavily disrupted, including thylakoid swelling and envelope broking. The virus particles were more than thosein the resistant variety. Four kinds of inclusions including pinwheel, bundle, laminated aggregate and highelecton-dense body appeared in cytoplasm. Plasmodesmata and plasma membrane were abundant, and therewere frequent invaginations of the plasma membrane that led to the formation of vesicles and myelin-likestructures.

  18. Ultrastructural characteristic of cells and pigment analysis in floating and submerged leaves of Trapa natans L.

    Directory of Open Access Journals (Sweden)

    Оlena M. Nedukha

    2012-03-01

    Full Text Available The comparative analysis of ultrastructure of the photosynthetic cells and pigment content of Trapa natans in both floating and submerged leaves at vegetative phase were conducted. It has shown that the changes of cell ultrasructure and pigment content in leaves are depended from the location of leaves above or under water surface. It has ascertained that submersion of the leaves under water lead to: 1 increase of thylakoid number in grana; 2 decrease of number of the chloroplasts with starch grains; 3 decrease of the relation between chlorophylls (Chlа/ Chlb and of the sum of chlorophylls (Chlа+ Chlb in comparison with analogical parameters in floating leaves

  19. Ultrastructural analysis of different human mesenchymal stem cells after in vitro expansion: a technical review

    Directory of Open Access Journals (Sweden)

    M. Miko

    2015-10-01

    Full Text Available Transmission electron microscopy reveals ultrastructural details of cells, and it is a valuable method for studying cell organelles. That is why we used this method for detailed morphological description of different adult tissuederived stem cells, focusing on the morphological signs of their functions (proteosynthetic activity, exchange with external environment, etc. and their comparison. Preparing a specimen from the cell culture suitable for transmission electron microscopy is, however, much more challenging than routine tissue processing for normal histological examination. There are several issues that need to be solved while working with cell pellets instead of solid tissue. Here we describe a simple protocol for the isolation and culture of mesenchymal stem cells from different adult tissues, with applications to stem cell biology and regenerative medicine. Since we are working with population of cells that was obtained after many days of passaging, very efficient and gentle procedures are highly necessary. We demonstrated that our semi-conservative approach regarding to histological techniques and processing of cells for transmission electron microscopy is a well reproducible procedure which results in quality pictures and images of cell populations with minimum distortions and artifacts. We also commented about riskiest steps and histochemical issues (e.g., precise pH, temperature while preparing the specimen. We bring full and detailed procedures of fixation, post-fixation, infiltration, embedding, polymerization and contrasting of cell obtained from in vitro cell and tissue cultures, with modifications according to our experience. All this steps are essential for us to know more about adult stem cells derived from different sources or about other random cell populations. The knowledge about detailed ultra-structure of adult stem cells cultured in vitro are also essential for their using in regenerative medicine and tissue engineering.

  20. Ultrastructure of Zika virus particles in cell cultures

    Directory of Open Access Journals (Sweden)

    Debora Ferreira Barreto-Vieira

    2016-01-01

    Full Text Available Zika virus (ZIKV has infected thousands of Brazilian people and spread to other American countries since 2015. The introduction of ZIKV brought a strong impact to public health in Brazil. It is of utmost importance to identify a susceptible cell line that will enable the isolation and identification of the virus from patient samples, viral mass production, and testing of drug and vaccine candidates. Besides real-time reverse transcriptase polymerase chain reaction diagnosis for detecting the viral genome, virus isolation in cell lines was useful in order to study the structure of the viral particle and its behaviour inside cells. Analysis of ZIKV infected cell lines was achieved using transmission electron microscopy (TEM. Blood was obtained from a Brazilian patient during the first days after presenting with signs of the disease, and ZIKV from the patient’s blood was isolated in the C6/36 mosquito cell line. Afterwards, Vero cells were inoculated with the viral suspension, fixed six days after inoculation, embedded in polymers, and ultra-thin cut. Like dengue viruses, this flavivirus showed numerous virus particles present inside cellular vesicles thereby confirming the susceptibility of the Vero cell line to ZIKV replication. TEM is a unique technique available to make the virus visible.

  1. Ultrastructure of Zika virus particles in cell cultures

    Science.gov (United States)

    Barreto-Vieira, Debora Ferreira; Barth, Ortrud Monika; da Silva, Marcos Alexandre Nunes; Santos, Carolina Cardoso; Santos, Aline da Silva; F, Joaquim Batista; de Filippis, Ana Maria Bispo

    2016-01-01

    Zika virus (ZIKV) has infected thousands of Brazilian people and spread to other American countries since 2015. The introduction of ZIKV brought a strong impact to public health in Brazil. It is of utmost importance to identify a susceptible cell line that will enable the isolation and identification of the virus from patient samples, viral mass production, and testing of drug and vaccine candidates. Besides real-time reverse transcriptase polymerase chain reaction diagnosis for detecting the viral genome, virus isolation in cell lines was useful in order to study the structure of the viral particle and its behaviour inside cells. Analysis of ZIKV infected cell lines was achieved using transmission electron microscopy (TEM). Blood was obtained from a Brazilian patient during the first days after presenting with signs of the disease, and ZIKV from the patient’s blood was isolated in the C6/36 mosquito cell line. Afterwards, Vero cells were inoculated with the viral suspension, fixed six days after inoculation, embedded in polymers, and ultra-thin cut. Like dengue viruses, this flavivirus showed numerous virus particles present inside cellular vesicles thereby confirming the susceptibility of the Vero cell line to ZIKV replication. TEM is a unique technique available to make the virus visible.

  2. Ultrastructure of Zika virus particles in cell cultures.

    Science.gov (United States)

    Barreto-Vieira, Debora Ferreira; Barth, Ortrud Monika; Silva, Marcos Alexandre Nunes da; Santos, Carolina Cardoso; Santos, Aline da Silva; F, Joaquim Batista; Filippis, Ana Maria Bispo de

    2016-08-01

    Zika virus (ZIKV) has infected thousands of Brazilian people and spread to other American countries since 2015. The introduction of ZIKV brought a strong impact to public health in Brazil. It is of utmost importance to identify a susceptible cell line that will enable the isolation and identification of the virus from patient samples, viral mass production, and testing of drug and vaccine candidates. Besides real-time reverse transcriptase polymerase chain reaction diagnosis for detecting the viral genome, virus isolation in cell lines was useful in order to study the structure of the viral particle and its behaviour inside cells. Analysis of ZIKV infected cell lines was achieved using transmission electron microscopy (TEM). Blood was obtained from a Brazilian patient during the first days after presenting with signs of the disease, and ZIKV from the patient's blood was isolated in the C6/36 mosquito cell line. Afterwards, Vero cells were inoculated with the viral suspension, fixed six days after inoculation, embedded in polymers, and ultra-thin cut. Like dengue viruses, this flavivirus showed numerous virus particles present inside cellular vesicles thereby confirming the susceptibility of the Vero cell line to ZIKV replication. TEM is a unique technique available to make the virus visible. PMID:27581122

  3. Roles of membrane trafficking in plant cell wall dynamics

    OpenAIRE

    Ebine, Kazuo; Ueda, Takashi

    2015-01-01

    The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transpor...

  4. Adaptive response to starvation in the fish pathogen Flavobacterium columnare: cell viability and ultrastructural changes

    Directory of Open Access Journals (Sweden)

    Arias Covadonga R

    2012-11-01

    Full Text Available Abstract Background The ecology of columnaris disease, caused by Flavobacterium columnare, is poorly understood despite the economic losses that this disease inflicts on aquaculture farms worldwide. Currently, the natural reservoir for this pathogen is unknown but limited data have shown its ability to survive in water for extended periods of time. The objective of this study was to describe the ultrastructural changes that F. columnare cells undergo under starvation conditions. Four genetically distinct strains of this pathogen were monitored for 14 days in media without nutrients. Culturability and cell viability was assessed throughout the study. In addition, cell morphology and ultrastructure was analyzed using light microscopy, scanning electron microscopy, and transmission electron microscopy. Revival of starved cells under different nutrient conditions and the virulence potential of the starved cells were also investigated. Results Starvation induced unique and consistent morphological changes in all strains studied. Cells maintained their length and did not transition into a shortened, coccus shape as observed in many other Gram negative bacteria. Flavobacterium columnare cells modified their shape by morphing into coiled forms that comprised more than 80% of all the cells after 2 weeks of starvation. Coiled cells remained culturable as determined by using a dilution to extinction strategy. Statistically significant differences in cell viability were found between strains although all were able to survive in absence of nutrients for at least 14 days. In later stages of starvation, an extracellular matrix was observed covering the coiled cells. A difference in growth curves between fresh and starved cultures was evident when cultures were 3-months old but not when cultures were starved for only 1 month. Revival of starved cultures under different nutrients revealed that cells return back to their original elongated rod shape upon

  5. Ultrastructural characterization of mesenchymal stromal cells labeled with ultrasmall superparamagnetic iron-oxide nanoparticles for clinical tracking studies

    DEFF Research Database (Denmark)

    Hansen, Louise; Hansen, Alastair B; Mathiasen, Anders B;

    2014-01-01

    INTRODUCTION: To evaluate survival and engraftment of mesenchymal stromal cells (MSCs) in vivo, it is necessary to track implanted cells non-invasively with a method, which does not influence cellular ultrastructure and functional characteristics. Iron-oxide particles have been applied for cell...

  6. Analysis of the changes in the basal cell region of oral lichen planus: An ultrastructural study

    Directory of Open Access Journals (Sweden)

    Mayura Paul

    2013-01-01

    Full Text Available Context: Oral lichen planus (OLP affects 0.5-1% of the total world′s population. The histological features of oral lichen planus were first described by Dubreuill in 1906. Despite the advent of various techniques, the etiology of lichen planus remains obscure, although many theories for the etiology have been proposed. Aims: By studying OLP electron microscopically, we shall be emphasizing on the cells and its interactions in specific/altered surroundings which would help us in hypothesizing the effects of its specific cell-to-cell interactions. Materials and Methods: A total of 20 cases of oral lichen planus were selected and categorized into erosive and nonerosive forms based upon clinical pattern and confirmed as lichen planus by histopathological analysis. Tissue specimens thus obtained were cut into two halves and fixed in appropriate fixatives, i.e., neutral buffered formalin for paraffin-embedded hematoxylin and eosin stained sections and 2.5% glutaraldehyde and 2% paraformaldehyde for electron microscopic purpose respectively. Results: Ultrastructural comparison among the two forms showed significant differences between them. The basal layer showed cytoplasmic processes, intercellular spaces, desmosomes, nuclei, and signs of degeneration. The erosive form showed elongated, narrow or irregular cytoplasmic projections whereas the nonerosive showed short and broad based projections. Conclusions: The present study confirms the ultrastructural findings of basal cells in OLP with previous authors findings. Besides this, the categorization of the ultrastructural differences between erosive and nonerosive has raised the question of difference in the probable cellular and molecular mechanism between erosive and nonerosive forms.

  7. Ultrastructure of interstitial cells of Cajal associated with deep muscular plexus of human small intestine

    DEFF Research Database (Denmark)

    Rumessen, J J; Mikkelsen, H B; Thuneberg, L

    1992-01-01

    a continuous basal lamina, caveolae, intermediate filaments, dense bodies, dense bands, and a well-developed subsurface smooth endoplasmic reticulum), but the arrangement of organelles was clearly different, and cisternae of granular endoplasmic reticulum were abundant. Interstitial cells of Cajal were......Evidence showing that interstitial cells of Cajal have important regulatory functions in the gut musculature is accumulating. In the current study, the ultrastructure of the deep muscular plexus and associated interstial cells of Cajal in human small intestine were studied to provide a reference...... for identification and further physiological or pathological studies. The deep muscular plexus was sandwiched between a thin inner layer of smooth muscle (one to five cells thick) and the bulk of the circular muscle. Interstitial cells of Cajal in this region very much resembled smooth muscle cells (with...

  8. Sodium butyrate-induced apoptosis and ultrastructural changes in MCF-7 breast cancer cells.

    Science.gov (United States)

    Wang, Ying; Hu, Peng-Chao; Ma, Yan-Bin; Fan, Rong; Gao, Fang-Fang; Zhang, Jing-Wei; Wei, Lei

    2016-01-01

    This study investigated the effects of sodium butyrate (NaB) on Michigan Cancer Foundation-7 (MCF-7) breast cancer cells and analyzed the relevant mechanism. Here, we demonstrated that a certain concentration of NaB effectively induced MCF-7 cell apoptosis. Cell counting kit-8 (CCK-8) assay was used to detect cell viability and the apoptosis rate. Western blotting was used to detect changes in the Bcl-2 expression level. We observed cell shape changes with microscopy. Immunofluorescence revealed some apoptotic nuclei. Electron microscopy revealed thick nucleoli, chromatin margination, reduced mitochondria, and dramatic vacuoles. Collectively, our findings elucidated the morphological mechanism by which NaB changed the ultrastructure of MCF-7 cells.

  9. Ultrastructural changes in tracheal epithelial cells exposed to oxygen

    Science.gov (United States)

    Philpott, D. E.; Harrison, G. A.; Turnbill, C.; Black, S.

    1977-01-01

    White albino rats were sacrificed after 24, 36, 48, 72, and 96 h of exposure to 100% O2 at 1 atm. Tissue was prepared for the scanning electron microscope (SEM) by Critical Point Drying and for the transmission electron microscope (TEM) by plastic embedding. Scanning microscopy showed a loss of microvilli after 48 h of exposure. Cilia appeared relatively normal with SEM, but TEM revealed changes in the outer membrane. In TEM, nonciliated cells appeared swollen and often encroached on the ciliated cells. A heavy mucous blanket remained even after processing. All the changes observed that are induced by oxygen exposure contribute to mucostasis, reducing and/or halting mucociliary clearance.

  10. Microanalysis of Plant Cell Wall Polysaccharides

    NARCIS (Netherlands)

    Obel, N.; Erben, V.; Schwarz, T.; Kühnel, S.; Fodor, A.; Pauly, M.

    2009-01-01

    Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the s

  11. Ultrastructural localization of active genes in Allium cepa cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By using the anti-RNA/DNA hybrid antibody as the probe, we labeled and analyzed the precise transcriptional sites of active genes in Allium cepa cells in situ. The results showed that the location of labeled signals appeared in mitochondrion was the same as that in chloroplast, generally concentrated at the central matrix space where there were no cristae and thylakoids. In the extranucleolar regions of nucleus, the labeled signals of transcriptional sites were situated at the perichromatin fibrils, which decondensed and stretched out from the chromosome territories. Our results also displayed the concentrations of labeled signals in a cer-tain region of nucleus, and this means that the gene tran-scription rich region actually existed in Allium cepa cells. In nucleolus, the synthetic sites of rRNA were localized not only to the periphery of fibrillar centers but also to the DFC near FC.

  12. Ultrastructural study of the blood cells of the coelacanth Latimeria chalumnae (Rhipidistia: Coelacanthini).

    Science.gov (United States)

    Jarial, M S

    2005-04-01

    The blood cells in the renal capillaries of the coelacanth Latimeria chalumnae Smith were studied by transmission electron microscopic methods. On the basis of ultrastructural similarities of cytoplasmic granules of the leukocytes and by comparison with those of the fish and mammalian cells, erythrocytes and three types of granular leukocytes, namely neutrophils, eosinophils and basophils, and three types of agranular leukocytes, i.e., lymphocytes, monocytes and thrombocytes are characterized. The presence of granular and agranular leukocytes in the blood of Latimeria suggests that these cells appeared early in vertebrate evolution. The display of nuclear blebs on the cytoplasmic phase of the nuclear membrane and the presence of nuclear fragments in the cytoplasm of some erythrocytes suggest that these cells undergo apoptosis in order to delete older erythrocytes from the blood stream. The relatively small size of its nucleated erythrocytes and the striking resemblance of the ultrastructural features of its leukocytes to those of higher vertebrate leukocytes support the view that Latimeria is a close living relative of tetrapods.

  13. Calcium Forms,Subcelluar Distribution and Ultrastructure of Pulp Cells as Influenced by Calcium Deficiency in Apple (Malus pumila) Fruits

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-hui; ZHOU Wei

    2004-01-01

    Calcium in Red Fuji and Starkrimson apples during storage were fractionated by sequent extracting. Localization and distribution of calcium and influence of calcium nutrition on cell ultrastructure were observed by transmission electron microscopy combined with in situ precipitation of calcium with an improved method of potassium pyroantimonate technique. Results indicated that spraying calcium solution on surface of young fruits increased contents of calcium in all forms. During storage, contents of soluble calcium and pectic calcium declined and thosein calcium phosphate, calcium oxalate and calcium silicate increased. Calcium contents of Red Fuji in all forms were higher than those of Starkrimson, indicating that calcium accumulating capability of Red Fuji fruits preceded that of Starkrimson. Under transmission electron microscopy, calcium antimonite precipitates (CaAP) was mainly distributed in cell wall, tonoplast, nuclear membrane and nucleoplasm,much more CaAP deposited in vacuole. Calcium deficiency during storage leads to decrease of CaAP in locations mentioned above, disappearance of compartmentation, and entrance of CaAP to cytoplasm. Transformation from soluble calcium and pectic calcium to calcium phosphate,oxalate and damages of biomembranes structuraly and functionally resulted from calcium deficiency during storage were the crucial causation of physiological disorder.

  14. Ultrastructure and function of follicle cell in the ovary of Branchiostoma belcheri

    Institute of Scientific and Technical Information of China (English)

    Ulrich Welsch; 方永强

    1997-01-01

    The ultrastructure of follicle cells in the ovary at different developmental stages of Branchiostoma has been observed in detail with a transmission electron microscope. The results indicate that only one kind of follicle cell exists with structural features related to steroid hormone biosynthesis: (i) oval or round mitochondria with tubules; (ii) smooth surfaced endoplasmic reticulum; (iii) several large lipid droplets in the cytoplasm; (iv) a well de-veloped Golgi complex and tubular rough surfaced endoplasmic reticulum, as can be found in mammalian theca interna cells. In addition, as steroid hormone synthesizing cells, they obviously play an important role in the phagocytosis of relict gametes and cellular debris and may have a nutritive function for the oocytes. They can produce abundant secre-tory granules in stages III-IV ovaries. In mature ovaries they transform into flat epithelial cells with numerous micro-filaments which may play a role in ovulation.

  15. Characterization of the Sclerotinia sclerotiorum cell wall proteome.

    Science.gov (United States)

    Liu, Longzhou; Free, Stephen J

    2016-08-01

    We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes. PMID:26661933

  16. Cell Wall Heterogeneity in Root Development of Arabidopsis

    Science.gov (United States)

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  17. Cell Wall Heterogeneity in Root Development of Arabidopsis.

    Science.gov (United States)

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  18. Ultrastructural analysis of midgut cells from Culex quinquefasciatus (Diptera: Culicidae) larvae resistant to Bacillus sphaericus.

    Science.gov (United States)

    de Melo, Janaina Viana; Vasconcelos, Romero Henrique Teixeira; Furtado, André Freire; Peixoto, Christina Alves; Silva-Filha, Maria Helena Neves Lobo

    2008-12-01

    The larvicidal action of the entomopathogen Bacillus sphaericus towards Culex quinquefasciatus is due to the binary (Bin) toxin present in crystals, which are produced during bacterial sporulation. The Bin toxin needs to recognize and bind specifically to a single class of receptors, named Cqm1, which are 60-kDa alpha-glucosidases attached to the apical membrane of midgut cells by a glycosylphosphatidylinositol anchor. C. quinquefasciatus resistance to B. sphaericus has been often associated with the absence of the alpha-glucosidase Cqm1 in larvae midgut microvilli. In this work, we aimed to investigate, at the ultrastructural level, the midgut cells from C. quinquefasciatus larvae whose resistance relies on the lack of the Cqm1 receptor. The morphological analysis showed that midgut columnar cells from the resistant larvae are characterized by a pronounced production of lipid inclusions, throughout the 4th instar. At the end of this stage, resistant larvae had an increased size and number of these inclusions in the midgut cells, while only a small number were observed in the cells from susceptible larvae. The morphological differences in the midgut cells of resistant larvae found in this work suggested that the lack of the Cqm1 receptor, which also has a physiological role as being an alpha-glucosidase, can be related to changes in the cell metabolism. The ultrastructural effects of Bin toxin on midgut epithelial cells from susceptible and resistant larvae were also investigated. The cytopathological alterations observed in susceptible larvae treated with a lethal concentration of toxin included breakdown of the endoplasmic reticulum, mitochondrial swelling, microvillar disruption and vacuolization. Some effects were observed in cells from resistant larvae, although those alterations did not lead to larval death, indicating that the receptor Cqm1 is essential to mediate the larvicidal action of the toxin. This is the first ultrastructural study to show differences

  19. Arrangement of peptidoglycan in the cell wall of Staphylococcus spp.

    OpenAIRE

    Amako, K; Umeda, A.; Murata, K

    1982-01-01

    The arrangement of peptidoglycan in the cell wall of Staphylococcus was observed with the newly developed freeze-fracture technique, using n-octanol instead of water as the freezing medium. The replica of the trichloroacetic acid-extracted cell wall (TCA-wall) showed two areas. One of them has a concentric circular structure, a characteristic surface structure of the staphylococcal cell wall, and the other showed an irregular and rough surface. The chemical analysis of the wall revealed that ...

  20. Ultrastructure of Kupffer cells and hepatocytes in the Dubin-Johnson syndrome: A case report

    Institute of Scientific and Technical Information of China (English)

    Maria Elzbieta Sobaniec-Lotowska; Dariusz Marek Lebensztejn

    2006-01-01

    Ultrastructure of Kupffer cells and hepatocytes in liver bioptate was evaluated in a 17-year-old boy with Dubin -Johnson syndrome (DJS). The liver tissue obtained by needle biopsy was fixed in glutaraldehyde and paraformaldehyde and routinely processed for electron microscopic analysis. The ultrastructural examinations of liver bioptate revealed the accumulation of membranebound, electron-dense lysosomal granules within the cytoplasm of hepatocytes, characteristic of DJS. They were located mainly in the vicinity of the biliary pole, and preferentially in the centrilobular region that corresponded to the pigment deposits seen under light microscope. The presence of the granules was accompanied by dilated elements of the granular endoplasmic reticulum and paracrystalline mitochondrial inclusions as well as dilation of the bile canaliculi. The changes in hepatocytes coexisted with marked stimulation and enhanced phagocytic activity of Kupffer cells. This was manifested in the accumulation of pigment deposits within their cytoplasm that corresponded to those observed in hepatocytes.Hyperactive pericentral Kupffer cells which are involved in the response to pigmentary material originating from disintegrated hepatocytes may play an essential role in the development of DJS.

  1. Ultrastructural observation of human neutrophils during apoptotic cell death triggered by Entamoeba histolytica.

    Science.gov (United States)

    Sim, Seobo; Kim, Kyeong Ah; Yong, Tai-Soon; Park, Soon-Jung; Im, Kyung-il; Shin, Myeong Heon

    2004-12-01

    Neutrophils are important effector cells against protozoan extracellular parasite Entamoeba histolytica, which causes amoebic colitis and liver abscess in human beings. Apoptotic cell death of neutrophils is an important event in the resolution of inflammation and parasite's survival in vivo. This study was undertaken to investigate the ultrastructural aspects of apoptotic cells during neutrophil death triggered by Entamoeba histolytica. Isolated human neutrophils from the peripheral blood were incubated with or without live trophozoites of E. histolytica and examined by transmission electron microscopy (TEM). Neutrophils incubated with E. histolytica were observed to show apoptotic characteristics, such as compaction of the nuclear chromatin and swelling of the nuclear envelop. In contrast, neutrophils incubated in the absence of the amoeba had many protrusions of irregular cell surfaces and heterogenous nuclear chromatin. Therefore, it is suggested that Entamoeba-induced neutrophil apoptosis contribute to prevent unwanted tissue inflammation and damage in the amoeba-invaded lesions in vivo.

  2. Hairy cell leukemia: enzyme-histochemical and ultrastructural investigation of one case.

    Science.gov (United States)

    Pilotti, S; Carbone, A; Lombardi, L; Tavolato, C; Rilke, F

    1978-10-31

    The investigation was carried out on blood smears, bone marrow aspirates, one lymph node biopsy, and the surgically removed spleen of a 53-year-old man with hairy cell leukemia. In the blood smears stained with May-Grünwald-Giemsa, 60 to 70% of the hairy cells contained tubular inclusions that corresponded to the ribosome-lamella complexes demonstrated at electron microscopy. In blood smears, imprints and cryostatic sections of the lymph node and of the spleen, hairy cells revealed tartrate-resistant acid phosphatase, beta-glucuronidase and adenosine-triphosphatase activity. In the spleen neutral esterase and alkaline phosphatase demonstrated the numerical increase of the histiocytes, which ultrastructurally displayed phagocytic activity. The presence in the spleen of pseudosinuses lined by hairy cells was confirmed by electron microscopy as well as by cytoenzymology.

  3. Fluorescent tags to explore cell wall structure and dynamics

    OpenAIRE

    Gonneau, Martine; Höfte, Herman; Vernhettes, Samantha

    2012-01-01

    Plant cell walls are highly dynamic and heterogeneous structures, which vary between cell types, growth stages but also between microdomains within a single cell wall. In this review, we summarize the imaging techniques using fluorescent tags that are currently being used and which should in the coming years revolutionize our understanding of the dynamics of cell wall architecture and the cellular processes involved in the synthesis of cell wall components.

  4. Expression of mitochondrial fission protein locus Fisl and ultrastructural changes in the renal cells of rats with chronic fluorosis

    Institute of Scientific and Technical Information of China (English)

    秦双立

    2013-01-01

    Objective To observe the expression of mitochondrial fission protein locus Fis1 and ultrastructural changes in the renal cells of rats with chronic fluorosis,and to reveal the mechanism in mitochondrial damage of the renal cells.Methods Sixty SD rats were randomly divided into 3 groups according

  5. Interconnections between cell wall polymers, wall mechanics, and cortical microtubules: Teasing out causes and consequences.

    Science.gov (United States)

    Xiao, Chaowen; Anderson, Charles T

    2016-09-01

    In plants, cell wall components including cellulose, hemicelluloses, and pectins interact with each other to form complex extracellular network structures that control cell growth and maintain cell shape. However, it is still not clear exactly how different wall polymers interact, how the conformations and interactions of cell wall polymers relate to wall mechanics, and how these factors impinge on intracellular structures such as the cortical microtubule cytoskeleton. Here, based on studies of Arabidopsis thaliana xxt1 xxt2 mutants, which lack detectable xyloglucan in their walls and display aberrant wall mechanics, altered cellulose patterning and biosynthesis, and reduced cortical microtubule stability, we discuss the potential relationships between cell wall biosynthesis, wall mechanics, and cytoskeletal dynamics in an effort to better understand their roles in controlling plant growth and morphogenesis.

  6. Interconnections between cell wall polymers, wall mechanics, and cortical microtubules: Teasing out causes and consequences.

    Science.gov (United States)

    Xiao, Chaowen; Anderson, Charles T

    2016-09-01

    In plants, cell wall components including cellulose, hemicelluloses, and pectins interact with each other to form complex extracellular network structures that control cell growth and maintain cell shape. However, it is still not clear exactly how different wall polymers interact, how the conformations and interactions of cell wall polymers relate to wall mechanics, and how these factors impinge on intracellular structures such as the cortical microtubule cytoskeleton. Here, based on studies of Arabidopsis thaliana xxt1 xxt2 mutants, which lack detectable xyloglucan in their walls and display aberrant wall mechanics, altered cellulose patterning and biosynthesis, and reduced cortical microtubule stability, we discuss the potential relationships between cell wall biosynthesis, wall mechanics, and cytoskeletal dynamics in an effort to better understand their roles in controlling plant growth and morphogenesis. PMID:27611066

  7. Ultra-structural morphology of long-term cultivated white adipose tissue-derived stem cells.

    Science.gov (United States)

    Varga, Ivan; Miko, Michal; Oravcová, Lenka; Bačkayová, Tatiana; Koller, Ján; Danišovič, Ľuboš

    2015-12-01

    White adipose tissue was long perceived as a passive lipid storage depot but it is now considered as an active and important endocrine organ. It also harbours not only adipocytes and vascular cells but also a wide array of immunologically active cells, including macrophages and lymphocytes, which may induce obesity-related inflammation. Recently, adipose tissue has been reported as a source of adult mesenchymal stem cells with wide use in regenerative medicine and tissue engineering. Their relatively non-complicated procurement and collection (often performed as liposuction during aesthetic surgery) and grand plasticity support this idea even more. We focused our research on exploring the issues of isolation and long-term cultivation of mesenchymal stem cells obtained from adipose tissue. Ultra-structural morphology of the cells cultivated in vitro has been studied and analysed in several cultivation time periods and following serial passages--up to 30 passages. In the first passages they had ultra-structural characteristics of cells with high proteosynthetic activity. Within the cytoplasm, big number of small lipid droplets and between them, sparsely placed, small and inconspicuous, electron-dense, lamellar bodies, which resembled myelin figures were observed. The cells from the later passages contained high number of lamellar electron-dense structures, which filled out almost the entire cytoplasm. In between, mitochondria were often found. These bodies were sometimes small and resembled myelin figures, but several of them reached huge dimensions (more than 1 µm) and their lamellar structure was not distinguishable. We did not have an answer to the question about their function, but they probably represented the evidence of active metabolism of lipids present in the cytoplasm of these cells or represented residual bodies, which arise after the breakdown of cellular organelles, notably mitochondria during long-term cultivation.

  8. Temporal development of GABA agonist induced alterations in ultrastructure and GABA receptor expression in cultured cerebellar granule cells

    DEFF Research Database (Denmark)

    Hansen, G H; Belhage, B; Schousboe, A;

    1987-01-01

    The temporal development of the effect of THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) on the ultrastructure composition and GABA receptor expression in cerebellar granule cells was investigated by quantitative electron microscopy (morphometric analysis) and GABA binding assays...... exposed to THIP (150 microM) for 3 hr low affinity GABA receptors were induced. These findings show that the effect of THIP on the ultrastructure composition and GABA receptor expression in cultured cerebellar granule cells may be interrelated and moreover it is likely that the turn-over of GABA receptors...

  9. Temporal development of GABA agonist induced alterations in ultrastructure and GABA receptor expression in cultured cerebellar granule cells

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Belhage, B; Schousboe, A;

    1987-01-01

    The temporal development of the effect of THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) on the ultrastructure composition and GABA receptor expression in cerebellar granule cells was investigated by quantitative electron microscopy (morphometric analysis) and GABA binding assays. It was...... exposed to THIP (150 microM) for 3 hr low affinity GABA receptors were induced. These findings show that the effect of THIP on the ultrastructure composition and GABA receptor expression in cultured cerebellar granule cells may be interrelated and moreover it is likely that the turn-over of GABA receptors...

  10. Plant Cell Wall Matrix Polysaccharide Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Ajay Pal S. Sandhu; Gursharn S. Randhawa; Kanwarpal S. Dhugga

    2009-01-01

    The wall of an expanding plant cell consists primarily of cellulose microfibrils embedded in a matrix of hemi-cellulosic and pectic polysaccharides along with small amounts of structural and enzymatic proteins. Matrix polysacchar-ides are synthesized in the Golgi and exported to the cell wall by exocytosis, where they intercalate among cellulose microfibrUs, which are made at the plasma membrane and directly deposited into the cell wall. Involvement of Golgi glucan synthesis in auxin-induced cell expansion has long been recognized; however, only recently have the genes corresponding to glucan synthases been identified. Biochemical purification was unsuccessful because of the labile nature and very low abundance of these enzymes. Mutational genetics also proved fruitless. Expression of candidate genes identified through gene expression profiling or comparative genomics in heterologous systems followed by functional characterization has been relatively successful. Several genes from the cellulose synthase-like (Cs/) family have been found to be involved in the synthesis of various hemicellulosic glycans. The usefulness of this approach, however, is limited to those enzymes that probably do not form complexes consisting of unrelated proteins. Nonconventional approaches will continue to incre-mentally unravel the mechanisms of Golgi polysaccharide biosynthesis.

  11. Ultrastructural Study of Alveolar Epithelial Type II Cells by High-Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    Xiaofei Qin

    2013-01-01

    Full Text Available Alveolar epithelial type II cells (AECIIs containing lamellar bodies (LBs are alveolar epithelial stem cells that have important functions in the repair of lung structure and function after lung injury. The ultrastructural changes in AECIIs after high-frequency oscillatory ventilation (HFOV with a high lung volume strategy or conventional ventilation were evaluated in a newborn piglet model with acute lung injury (ALI. After ALI with saline lavage, newborn piglets were randomly assigned into five study groups (three piglets in each group, namely, control (no mechanical ventilation, conventional ventilation for 24 h, conventional ventilation for 48 h, HFOV for 24 h, and HFOV for 48 h. The lower tissues of the right lung were obtained to observe the AECII ultrastructure. AECIIs with reduced numbers of microvilli, decreased LBs electron density, and vacuole-like LBs deformity were commonly observed in all five groups. Compared with conventional ventilation groups, the decrease in numbers of microvilli and LBs electron density, as well as LBs with vacuole-like appearance and polymorphic deformity, was less severe in HFOV with high lung volume strategy groups. AECIIs were injured during mechanical ventilation. HFOV with a high lung volume strategy resulted in less AECII damage than conventional ventilation.

  12. Advanced technologies for plant cell wall evolution and diversity

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik

    Plant cell walls consist of polysaccharides, glycoproteins and phenolic polymers interlinked together in a highly complex network. The detailed analysis of cell walls is challenging because of their inherent complexity and heterogeneity. Also, complex carbohydrates, unlike proteins and nucleotide...

  13. Alfalfa stem tissues: Cell wall deposition, composition, and degradability

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.

    2002-01-01

    Declining cell wall degradability of alfalfa (Medicago sativa L.) stems with maturation limits the nutritional value of alfalfa for ruminants. This study characterized changes in cell wall concentration, composition, and degradability by rumen microbes resulting from alfalfa stem tissue proliferatio

  14. He-Ne laser irradiation causes changes in mitochondria ultrastructure in successive generations of yeast cells

    International Nuclear Information System (INIS)

    Changes in the mitochondria ultrastructural organization in the Torulopsis sphaerica yeast cells, cultivated in 18 hours after irradiation by the He-Ne laser, are studied. Two doses - 460 and 1150 J/m2 were chosen, while irradiation in low doses optimally stimulates the given culture growth (the biomass increases up to 141.2 %). The studies were conducted on the cells of 4-5 generation after irradiation. It is shown, that laser irradiation in the yeast cells effects the ATP-ase synthesis not only through the mechanism of fast respiratory control but also through the synthesis of mitochondrial fermentation complexes (slow respiratory control), which is regulated at the genetic level

  15. Ultrastructural characteristics of nurse cell-larva complex of four species of Trichinella in several hosts

    Directory of Open Access Journals (Sweden)

    Sacchi L.

    2001-06-01

    Full Text Available The nurse cell-larva complex of nematodes of the genus Trichinella plays an Important role in the survival of the larva in decaying muscles, frequently favouring the transmission of the parasite in extreme environmental conditions. The ultrastructure of the nurse cell-larva complex in muscles from different hosts infected with T. nativa (a walrus and a polar bear, T. spiralis (horses and humans, T. pseudospiralis (a laboratory mouse and T. papuae (a laboratory mouse were examined. Analysis with transmission electron microscope showed that the typical nurse cell structure was present in all examined samples, irrespective of the species of larva, of the presence of a collagen capsule, of the age of infection and of the host species, suggesting that there exists a molecular mechanism that in the first stage of larva invasion is similar for encapsulated and non-encapsulated species.

  16. ULTRASTRUCTURAL CHANGES OF THYROTROPIC CELLS IN THE DYNAMICS OF EXPERIMENTAL IMMUNOSTIMULATION

    Directory of Open Access Journals (Sweden)

    Inessa Bobrysheva

    2013-06-01

    Full Text Available The endocrine and immune systems are interrelated via a bidirectional network.Thyroid-stimulating hormone plays a critical role as an endogenous mediator of immune activity. Purpose of study was to determine the dynamics of changes of thyrotropic cells ultrastructure in modeling immunostimulation in mature male rats by subcutaneous injection of imunofan in a dosage 0,7 mg/kg of body weight.The pituitary samples were taken on 1st, 7th, 15th, 30th and 60th, day after treatment and thenfixed in glutaraldehyde for electron microscope. The study showed theincrease of functional activity of the thyrotropic cells. The significant increase of areas of the cells and their nuclei, area of mitochondria and secretory granules was established since 7th day after imunofan treatment.

  17. Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Bartley, Laura [Univ. of Oklahoma, Norman, OK (United States). Dept. of Microbiology and Plant Biology; Wu, Y. [Oklahoma State Univ., Stillwater, OK (United States); Zhu, L. [Oklahoma State Univ., Stillwater, OK (United States); Brummer, E. C. [Noble Foundation, Ardmore, OK (United States); Saha, M. [Noble Foundation, Ardmore, OK (United States)

    2016-05-31

    Inefficient conversion of biomass to biofuels is one of the main barriers for biofuel production from such materials. Approximately half of polysaccharides in biomass remain unused by typical biochemical conversion methods. Conversion efficiency is influenced by the composition and structure of cell walls of biomass. Grasses such as wheat, maize, and rice, as well as dedicated perennial bioenergy crops, like switchgrass, make up ~55% of biomass that can be produced in the United States. Grass cell walls have a different composition and patterning compared with dicotyledonous plants, including the well-studied model plant, Arabidopsis. This project identified genetic determinants of cell wall composition in grasses using both naturally occurring genetic variation of switchgrass and gene network reconstruction and functional assays in rice. In addition, the project linked functional data in rice and other species to switchgrass improvement efforts through curation of the most abundant class of regulators in the switchgrass genome. Characterizing natural diversity of switchgrass for variation in cell wall composition and properties, also known as quality, provides an unbiased avenue for identifying biologically viable diversity in switchgrass cell walls. To characterizing natural diversity, this project generated cell wall composition and enzymatic deconstruction data for ~450 genotypes of the Switchgrass Southern Association Collection (SSAC), a diverse collection composed of 36 switchgrass accessions from the southern U.S. distribution of switchgrass. Comparing these data with other measures of cell wall quality for the same samples demonstrated the complementary nature of the diverse characterization platforms now being used for biomass characterization. Association of the composition data with ~3.2K single nucleotide variant markers identified six significant single nucleotide variant markers co-associated with digestibility and another compositional trait. These

  18. Fluorescent tags to explore cell wall structure and dynamics.

    OpenAIRE

    Martine eGonneau; Herman eHöfte; Samantha eVernhettes

    2012-01-01

    Plant cell walls are highly dynamic and heterogeneic structures, which vary between celltypes, growth stages but also between microdomains within a single cell wall. In this review, we summarize the imaging techniques using fluorescent tags that are currently being used and which should in the coming years revolutionize our understanding of the dynamics of cell wall architecture and the cellular processes involved in synthesis of cell wall components.

  19. Bio-based composites that mimic the plant cell wall

    OpenAIRE

    Li, Zhuo

    2009-01-01

    Nature creates high performance materials under modest conditions, i.e., neutral pH and ambient temperature and pressure. One of the most significant materials is the plant cell wall. The plant cell wall is a composite of oriented cellulose microfibrils reinforcing a lignin/hemicellulose matrix. In principle, the plant cell wall composite is designed much like a synthetic fiber-reinforced polymer composite. Unlike synthetic composites, the plant cell wall has an excellent combination of h...

  20. Comparison of pigment cell ultrastructure and organisation in the dermis of marble trout and brown trout, and first description of erythrophore ultrastructure in salmonids.

    Science.gov (United States)

    Djurdjevič, Ida; Kreft, Mateja Erdani; Sušnik Bajec, Simona

    2015-11-01

    Skin pigmentation in animals is an important trait with many functions. The present study focused on two closely related salmonid species, marble trout (Salmo marmoratus) and brown trout (S. trutta), which display an uncommon labyrinthine (marble-like) and spot skin pattern, respectively. To determine the role of chromatophore type in the different formation of skin pigment patterns in the two species, the distribution and ultrastructure of chromatophores was examined with light microscopy and transmission electron microscopy. The presence of three types of chromatophores in trout skin was confirmed: melanophores; xanthophores; and iridophores. In addition, using correlative microscopy, erythrophore ultrastructure in salmonids was described for the first time. Two types of erythrophores are distinguished, both located exclusively in the skin of brown trout: type 1 in black spot skin sections similar to xanthophores; and type 2 with a unique ultrastructure, located only in red spot skin sections. Morphologically, the difference between the light and dark pigmentation of trout skin depends primarily on the position and density of melanophores, in the dark region covering other chromatophores, and in the light region with the iridophores and xanthophores usually exposed. With larger amounts of melanophores, absence of xanthophores and presence of erythrophores type 1 and type L iridophores in the black spot compared with the light regions and the presence of erythrophores type 2 in the red spot, a higher level of pigment cell organisation in the skin of brown trout compared with that of marble trout was demonstrated. Even though the skin regions with chromatophores were well defined, not all the chromatophores were in direct contact, either homophilically or heterophilically, with each other. In addition to short-range interactions, an important role of the cellular environment and long-range interactions between chromatophores in promoting adult pigment pattern

  1. 银杏小孢子囊壁发育的超微结构观察%Ultrastructural observation of the microsporangial wall in Ginkgo biloba L.

    Institute of Scientific and Technical Information of China (English)

    陆彦; 郝敬超; 陈义芳; 周卫东; 程芳梅; 王莉

    2014-01-01

    vacuole. The cell walls wrinkled in the endothecium while the middle-layer cells produced longitudinal stretching. At the mitosis stage, the organelle in the epidermis and endothecium generally decreased, the middle layers disintegrated and the endothecium exhibited fibrous thickenings. (2) The type of tapetum in G. biloba is secretory. The organelle of tapetal cells took place dramatic changes at the ultrastructural level: when microsporocyte just formed, the organelles including plastid, endoplasmic reticulum, mitochondria, dictyosome and golgi vesicles were abundant and prominent. Following meiosis, endoplasmic reticulum population rapidly increased and underwent highly active. Up to the free microspore stage, there were abundant of endoplasmic reticulum in the cytoplasm. At this time, the tapetum secreted the ubisch bodies, which were integrated into the extine. At the end of meiosis, the tapetum disintegrated. Longitudinal slit formation occurred at the early stage of meiotic division. All these results indicate that the microsporangial wall plays an important role in nutrition support and protection during the developmental processes of microspore.

  2. Ultrastructural changes produced in Ehrlich ascites carcinoma cells by ultraviolet-visible radiation in the presence of melanins

    Energy Technology Data Exchange (ETDEWEB)

    Lea, P.J.; Pawlowski, A.; Persad, S.D.; Menon, I.A.; Haberman, H.F.

    1988-01-01

    Irradiation of Ehrlich ascites carcinoma (EAC) cells in the presence of pheomelanin, i.e., red hair melanin (RHM), has been reported to produce extensive cell lysis. Irradiation in the presence of eumelanin, i.e., black hair melanin (BHM), or irradiation in the absence of either type of melanin did not produce this effect. We observed that RHM particles penetrated the cell membrane without apparent structural damage to the cell or the cell membrane. Irradiation of the cells in the absence of melanin did not produce any changes in the ultrastructure of the cells. Incubation of the cells in the dark in the presence of RHM produced only minor structural, mainly cytoplasmic changes. Irradiation of the cells in the presence of RHM produced extensive ultrastructural changes prior to complete cell lysis; these changes were more severe than the effects of incubation of the cells in the dark in the presence of RHM. When the cells incubated in the dark or irradiated in the presence of latex particles or either one of the eumelanins particles, viz. BHM or synthetic dopa melanin, these particles did not penetrate into the cells or produce any ultrastructural changes. These particles were in fact not even ingested by the cells.

  3. Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Bartley, Laura [Univ. of Oklahoma, Norman, OK (United States). Dept. of Microbiology and Plant Biology; Wu, Y. [Oklahoma State Univ., Stillwater, OK (United States); Zhu, L. [Oklahoma State Univ., Stillwater, OK (United States); Brummer, E. C. [Noble Foundation, Ardmore, OK (United States); Saha, M. [Noble Foundation, Ardmore, OK (United States)

    2016-05-31

    Inefficient conversion of biomass to biofuels is one of the main barriers for biofuel production from such materials. Approximately half of polysaccharides in biomass remain unused by typical biochemical conversion methods. Conversion efficiency is influenced by the composition and structure of cell walls of biomass. Grasses such as wheat, maize, and rice, as well as dedicated perennial bioenergy crops, like switchgrass, make up ~55% of biomass that can be produced in the United States. Grass cell walls have a different composition and patterning compared with dicotyledonous plants, including the well-studied model plant, Arabidopsis. This project identified genetic determinants of cell wall composition in grasses using both naturally occurring genetic variation of switchgrass and gene network reconstruction and functional assays in rice. In addition, the project linked functional data in rice and other species to switchgrass improvement efforts through curation of the most abundant class of regulators in the switchgrass genome. Characterizing natural diversity of switchgrass for variation in cell wall composition and properties, also known as quality, provides an unbiased avenue for identifying biologically viable diversity in switchgrass cell walls. To characterizing natural diversity, this project generated cell wall composition and enzymatic deconstruction data for ~450 genotypes of the Switchgrass Southern Association Collection (SSAC), a diverse collection composed of 36 switchgrass accessions from the southern U.S. distribution of switchgrass. Comparing these data with other measures of cell wall quality for the same samples demonstrated the complementary nature of the diverse characterization platforms now being used for biomass characterization. Association of the composition data with ~3.2K single nucleotide variant markers identified six significant single nucleotide variant markers co-associated with digestibility and another compositional trait. These

  4. Wall relaxation and the driving forces for cell expansive growth

    Science.gov (United States)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  5. Plant cell wall dynamics and wall-related susceptibility in plant–pathogen interactions

    OpenAIRE

    Bellincampi, Daniela; Cervone, Felice; Lionetti, Vincenzo

    2014-01-01

    The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteri...

  6. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions

    OpenAIRE

    Daniela eBellincampi; Felice eCervone; Vincenzo eLionetti

    2014-01-01

    The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteri...

  7. Ultrastructural proof of polyomavirus in Merkel cell carcinoma tumour cells and its absence in small cell carcinoma of the lung.

    Directory of Open Access Journals (Sweden)

    Charlotte T A H Wetzels

    Full Text Available BACKGROUND: A new virus called the Merkel Cell Polyomavirus (MCPyV has recently been found in Merkel Cell Carcinoma (MCC. MCC is a rare aggressive small cell neuroendocrine carcinoma primarily derived from the skin, morphologically indistinguishable from small cell lung carcinoma (SCLC. So far the actual presence of the virus in MCC tumour cells on a morphological level has not been demonstrated, and the presence of MCPyV in other small cell neuroendocrine carcinomas has not been studied yet. METHODOLOGY/PRINCIPAL FINDINGS: We investigated MCC tissue samples from five patients and SCLCs from ten patients for the presence of MCPyV-DNA by PCR and sequencing. Electron microscopy was used to search ultrastructurally for morphological presence of the virus in MCPyV-DNA positive samples. MCPyV was detected in two out of five primary MCCs. In one MCC patient MCPyV-DNA was detected in the primary tumour as well as in the metastasis, strongly suggesting integration of MCPyV in the cellular DNA of the tumour in this patient. In the primary MCC of another patient viral particles in tumour cell nuclei and cytoplasm were identified by electron microscopy, indicating active viral replication in the tumour cells. In none of the SCLCs MCPyV-DNA was detected. CONCLUSIONS/SIGNIFICANCE: Our results strongly suggest that MCPyV is an oncogenic polyomavirus in humans, and is potentially causally related to the development of MCC but not to the morphological similar SCLC.

  8. Beyond growth: novel functions for bacterial cell wall hydrolases.

    Science.gov (United States)

    Wyckoff, Timna J; Taylor, Jennifer A; Salama, Nina R

    2012-11-01

    The peptidoglycan cell wall maintains turgor pressure and cell shape of most bacteria. Cell wall hydrolases are essential, together with synthases, for growth and daughter cell separation. Recent work in diverse organisms has uncovered new cell wall hydrolases that act autonomously or on neighboring cells to modulate invasion of prey cells, cell shape, innate immune detection, intercellular communication, and competitor lysis. The hydrolases involved in these processes catalyze the cleavage of bonds throughout the sugar and peptide moities of peptidoglycan. Phenotypes associated with these diverse hydrolases reveal new functions of the bacterial cell wall beyond growth and division.

  9. Fermentation of the endosperm cell walls of monocotyledon and dicotyledon plant species: The relationship between cell wall characteristics and fermentability

    NARCIS (Netherlands)

    Laar, van H.; Tamminga, S.; Williams, B.A.; Verstegen, M.W.A.

    2000-01-01

    Cell walls from the endosperm of four monocotyledons (maize, wheat, rye, and rice) and four dicotyledons (soya bean, lupin, faba bean, and pea) seeds were studied to relate cell wall composition and structure with fermentation characteristics. Cell wall material was isolated from the endosperm of th

  10. The ultrastructure of tumor cells in patients with rectal cancer after pre-operative irradiation and intra-operative cryotherapy

    International Nuclear Information System (INIS)

    Electronic microscopy of the tumor cells was performed to confirm the efficacy of combined pre-operative gamma-therapy and intraoperative cryotherapy (CT). Pre-operative irradiation at the dose of 20 Gy accompanied by intra-operative cryotherapy caused the changes in the ultrastructure, the depth and degree of which allow to consider them destructive and irreversible

  11. Ultrastructural Observation of the Skin Chloride Cells of Japanese Flounder Paralichthys olivaceus and Turbot Scophthamus maximus Larvae

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The ultrastructures of skin chloride cells in cultured Japanese flounder and turbot larvae in metamorphosis, which grow in the same feeding conditions, are examined with a transmission electron microscope. These developed skin chloride cells were shaped like flattened ellipsoids and similar in morphology and ultrastructure to typical chloride cells of euryhaline fish gill. They locate in the epidermis and contract with the extra and interior environment through the apical pit and narrow channels. The cytoplasm of cell is full of numerous mitochondria and a ramifying network of tubules. The degeneration of skin chloride cells is observed with development of Japanese flounder larvae. Skin chloride cells of turbot are less developmental than those of Japanese flounder in the same developmental stage.

  12. Hippocampal ultrastructural changes and apoptotic cell death in rats following endurance training and acute exhaustive exercise

    Institute of Scientific and Technical Information of China (English)

    Jianjun Zhang

    2008-01-01

    BACKGROUND: Exhaustive exercise can lead to apoptosis of skeletal muscle cells and myocardial cells as a result of pathological changes in the corresponding cellular ultrastructure. It is hypothesized that such changes could also occur in neurons. OBJECTIVE: To observe brain cell apoptosis and ultrastmctural changes in hippocampal neurons in rats following endurance training and acute exhaustive exercise. DESIGN, TIME AND SETTING: A randomized, controlled, morphological analysis was performed at the Medical Laboratory Center of Zhengzhou University between July and November 2007. MATERIALS: Forty male, 8-week-old, Sprague Dawley rats were included in this study. METHODS: Endurance training consisted of treadmill running once a day, 6 days a week, for 4 weeks. For acute exhaustive exercise, graded treadmill running was conducted. Rats were exposed to exercise at an increasing speed (10 m/min, increasing to 20 and 36 m/min for moderate- and high-intensity exhaustive exercise, respectively, and then was continued until exhaustion). A total of 40 rats were evenly distributed into the following 4 groups: Group A-rats were not exercised; Group B- rats were not trained but sacrificed 24 hours after acute exhaustive treadmill running exercise; Group C rats were subjected to endurance training and sacrificed immediately after acute exhaustive treadmill running exercise; Group D-rats were subjected to endurance training and sacrificed 24 hours after acute exhaustive treadmill running exercise. MAIN OUTCOME MEASURES: Apoptotic cell death was detected by the TUNEL method and hippocampal neuronal ultrastructural change was observed through using transmission electron microscopy. RESULTS: All 40 rats were included in the final analysis. Subsequent to exhaustive exercise, rat cerebral cortex and hippocampal neurons appeared contracted and degenerated. In addition, high amount of lipofuscin was visible in the hippocampal region. Necrotic neurons encased by glial cells appeared in

  13. 3D Ultrastructural Organization of Whole Chlamydomonas reinhardtii Cells Studied by Nanoscale Soft X-Ray Tomography

    OpenAIRE

    Hummel, Eric; Guttmann, Peter; Werner, Stephan; Tarek, Basel; SCHNEIDER, Gerd; Kunz, Michael; Frangakis, Achilleas S.; Westermann, Benedikt

    2012-01-01

    The complex architecture of their structural elements and compartments is a hallmark of eukaryotic cells. The creation of high resolution models of whole cells has been limited by the relatively low resolution of conventional light microscopes and the requirement for ultrathin sections in transmission electron microscopy. We used soft x-ray tomography to study the 3D ultrastructural organization of whole cells of the unicellular green alga Chlamydomonas reinhardtii at unprecedented spatial re...

  14. 3D ultrastructural organization of whole Chlamydomonas reinhardtii cells studied by nanoscale soft x-ray tomography

    OpenAIRE

    Hummel, Eric; Guttmann, Peter; Werner, Stephan; Tarek, Basel; SCHNEIDER, Gerd; Kunz, Michael; Frangakis, Achilleas S.; Westermann, Benedikt

    2012-01-01

    The complex architecture of their structural elements and compartments is a hallmark of eukaryotic cells. The creation of high resolution models of whole cells has been limited by the relatively low resolution of conventional light microscopes and the requirement for ultrathin sections in transmission electron microscopy. We used soft x-ray tomography to study the 3D ultrastructural organization of whole cells of the unicellular green alga Chlamydomonas reinhardtii at unprecedented spatial re...

  15. Ultrastructural study of the mast cells of the human duodenal mucosa.

    Science.gov (United States)

    Moneret-Vautrin, D A; de Korwin, J D; Tisserant, J; Grignon, M; Claudot, N

    1984-09-01

    The ultrastructure of the process of degranulation of mast cells of human duodenal mucosa was examined. In normal controls little degranulation was seen, but in persons with false food allergy (pseudo-allergy) considerable degranulation of mast cells was detected. This is consistent with the hypothesis that some persons have an abnormal fragility of duodenal mast cells in the presence of histamine-releasing substances. Incubation of duodenal biopsy material with various histamine-releasing agents (compound 48/80, Concanavalin A, the calcium ionophore A 23187, and anti-IgE) confirmed the susceptibility of duodenal mast cells for antigen non-specific release of histamine, or that mediated by IgE. In a group of patients with immediate-type, anaphylactic, food allergy, mast cells in the absence of antigen are in a normal state, but degranulation occurs on exposure in vitro or in vivo to specific antigen. The susceptibility to degranulation continues in persons cured of their food allergy. This suggests that a clinical cure is not due to a change of susceptibility of duodenal mast cells to release histamine, but is possibly associated with formation of blocking antibodies, and/or a modification in reactivity of basophils and mast cells of other organs. PMID:6207955

  16. 阿米卡星致聋大鼠鼓阶壁上皮超微结构的改变%Ultrastructural changes of epithelium on wall of scala tympani in rats with Amikacin induced hearing loss

    Institute of Scientific and Technical Information of China (English)

    李登科; 赵立东; 孙建和; 刘慧占; 杨仕明

    2012-01-01

    Objective To investigate ultrastructural changes of epithelium attached to the bony wall of scala tympani in rat cochleae after amikacin sulfate administration and the structural basis for migration of transplanted mouse embryonic stem cells. Methods Rats were randomly divided into an experiment group (n=20) and a control group(n=10).For rats in the experiment group, amikacin sulfate was injected hypodermically at a dose of 200 mg/kg/day for seven days, while rats in the control group received physiological saline of the same volume instead. The cochlea was removed on Od, 7d, 14, 21d and 28d after amikacin administration was finished. Cochlea on one randomly selected side was prepared for SEM observation and the other co-chlear for HE examination. Results Amikacin sulfate administred to rats induced hearing loss. Epithelia on the bony wall of scala tympani underwent serial ultrastructural changes, including inflammatory exudation and increase of the intercellular spaces, which recovered in a time dependent manner. Conclusion Besides injury and loss of the hair cells in the Organ of Corti, amikacin sulfate treatment can also induce ultrastructural changes on the bony wall of scala tympani which may be the structural base for transplanted stem cell migration from scala tympani in the cochlea. Our results show the time window for inner ear stem cell therapy after ototoxic drugs injury.%目的 观察大鼠经氨基糖苷类抗生素硫酸阿米卡星注射致聋后,耳蜗鼓阶壁上皮超微结构的改变;探索干细胞移植进入鼓阶后,干细胞在内耳发生迁移的结构基础.方法 出生7天的SD大鼠30只,随机分为实验组(20只)与对照组(10只).实验组连续7天经腹腔按照200mg/kg/day的剂量腹腔注射硫酸阿米卡星注射液;对照组注射相同体积的生理盐水.在停药后0天、7天、14天、21天、28天取耳蜗组织,随机选择其中一侧行扫描电镜观察耳蜗底回鼓阶的上皮的变化,另一侧耳蜗

  17. Cell wall integrity signaling and innate immunity in plants

    OpenAIRE

    Nühse, Thomas S.

    2012-01-01

    All plant pathogens and parasites have had to develop strategies to overcome cell walls in order to access the host’s cytoplasm. As a mechanically strong, multi-layered composite exoskeleton, the cell wall not only enables plants to grow tall but also protects them from such attacks. Many plant pathogens employ an arsenal of cell wall degrading enzymes, and it has long been thought that the detection of breaches in wall integrity contributes to the induction of defense. Cell wall fragments ar...

  18. Ultrastructure and Membrane Traffic During Cell Division in the Marine Pennate Diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Tanaka, Atsuko; De Martino, Alessandra; Amato, Alberto; Montsant, Anton; Mathieu, Benjamin; Rostaing, Philippe; Tirichine, Leila; Bowler, Chris

    2015-11-01

    The marine pennate diatom Phaeodactylum tricornutum has become a model for diatom biology, due to its ease of culture and accessibility to reverse genetics approaches. While several features underlying the molecular mechanisms of cell division have been described, morphological analyses are less advanced than they are in other diatoms. We therefore examined cell ultrastructure changes prior to and during cytokinesis. Following chloroplast division, cleavage furrows are formed at both longitudinal ends of the cell and are accompanied by significant vesicle transport. Although neither spindle nor microtubules were observed, the nucleus appeared to be split by the furrow after duplication of the Golgi apparatus. Finally, centripetal cytokinesis was completed by fusion of the furrows. Additionally, F-actin formed a ring structure and its diameter became smaller, accompanying the ingrowing furrows. To further analyse vesicular transport during cytokinesis, we generated transgenic cells expressing yellow fluorescent protein (YFP) fusions with putative diatom orthologs of small GTPase Sec4 and t-SNARE protein SyntaxinA. Time-lapse observations revealed that SyntaxinA-YFP localization expands from both cell tips toward the center, whereas Sec4-YFP was found in the Golgi and subsequently relocalizes to the future division plane. This work provides fundamental new information about cell replication processes in P. tricornutum.

  19. Morphological and ultrastructural characteristics of extracellular matrix changes in oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Usha Agrawal

    2011-01-01

    Full Text Available Background: The biology of oral squamous cell carcinoma (OSCC, including its progression from dysplasia to carcinoma, "field effects", genetic changes in tumor associated mucosa (TAM and effect of matrix metalloproteinases in breaking down of matrix proteins to facilitate invasion, has been well documented. However, what remains to be done is to extrapolate this knowledge to improve patient care. Aim: The aim of this study was to observe the extracellular matrix (ECM changes with the routine histochemical stains available to most histopathologists. Materials and Methods: The study includes 72 cases of OSCC in which the tumor and adjacent normal appearing areas were sampled to study the ECM changes with hematoxylin and eosin (H and E and Verhoeff′s-Van Gieson elastic stain (VVG. Results: Basophilic fragmentation of collagen (H and E and clumped short elastic fibers (VVG were seen in 12 (16.7% cases. Of the remaining cases, 18 (25% had a dense lymphocytic infiltrate and had no demonstrable elastic fibers. Those cases with H and E changes were further studied and compared with normal mucosa for ultrastructural changes. The ultrastructural study demonstrated an increase in oxytalan, elaunin and elastic fibers and decrease in collagen fibers with some transformation changes associated with OSCCs and lymph node metastasis. Conclusion: Changes in transformation of collagen to elastic fibers and also the loss of both the fibers in areas of lymphocytic infiltration possibly indicate degradation of ECM fibers by factors released from the lymphocytes or tumor cells and the limiting effect on the tumor by ECM remodeling.

  20. Ultrastructure and phylogeny of Glugea nagelia sp. n. (Microsporidia: Glugeidae), infecting the intestinal wall of the yellowfin hind, Cephalopholis hemistiktos (Actinopterygii: Serranidae), from the Red Sea.

    Science.gov (United States)

    Abdel-Baki, Abdel-Azeem S; Al-Quraishy, Saleh; Rocha, Sonia; Dkhil, Mohamed A; Casal, Graca; Azevedo, Carlos

    2015-01-01

    A new microsporidian species of the genus Glugea Thélohan, 1891 parasitising the marine teleost fish Cephalopholis hemistiktos Rüppell, collected from the Red Sea in Saudi Arabia, is described on the basis of microscopic and molecular procedures. Spherical and whitish xenoma were observed adhering to the intestinal wall. The numerous spores contained within these xenoma, were ovoid to pyriform and measured 4.3-6.0 µm (5.1 µm) in length and 1.8-2.9 µm (2.2 µm) in width. The spore's wall was composed of two thick layers, which were thinner in the area contacting the anchoring disk. The latter appeared at the spore's anterior pole, in an eccentric position to the longitudinal axis. A lamellar polaroplast surrounded the uncoiled portion of the polar filament projected to the basal region of the spore, giving rise to 26-29 turns with winding from the base to the anterior zone of the spore. The posterior vacuole, located at the spore's posterior pole, and surrounded by the polar filament coils, was irregular and composed of light material. Molecular analysis of the rRNA genes, including the ITS region, was performed using maximum parsimony, neighbour-joining and maximum likelihood methods. The ultrastructural features observed, combined with the phylogenetic data analysed, suggest this parasite to be a new species of the genus Glugea. This is the first species of this genus to be reported from Saudi Arabia and is herein named Glugea nagelia sp. n. PMID:25960551

  1. Enzymes and other agents that enhance cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1999-01-01

    Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.

  2. Anthocyanins influence tannin-cell wall interactions.

    Science.gov (United States)

    Bautista-Ortín, Ana Belén; Martínez-Hernández, Alejandro; Ruiz-García, Yolanda; Gil-Muñoz, Rocío; Gómez-Plaza, Encarna

    2016-09-01

    The rate of tannin extraction was studied in a vinification of red grapes and the results compared with another vinification made with white grapes fermented as for typical red wine, in the presence of skins and seeds. Even though the grapes presented a quite similar skin and seed tannin content, the differences in tannin concentration between both vinifications was very large, despite the fact that the only apparent difference between the phenolic composition of both wines was the anthocyanin content. This suggests that anthocyanins play an important role in tannin extractability, perhaps because they affect the extent of the tannin-cell wall interaction, a factor that largely controls the resulting quantity of tannins in wines. To confirm this observation, the effect of anthocyanins on the tannin extractability from grape seeds and skin and on the interaction between tannins and grape cell walls suspended in model solutions were studied. The results indicated that anthocyanins favored skin and seed tannin extraction and that there is a competition for the adsorption sites between anthocyanins and tannins that increases the tannin content when anthocyanins are present. PMID:27041322

  3. [Effects of BaP exposure on ultrastructures of hepatic cells of Boleophthalmus pectinirostris].

    Science.gov (United States)

    Feng, Tao; Zheng, Weiyun; Ouyang, Gaoliang; Hong, Wanshu

    2003-10-01

    The changes of ultrastructures of hepatic cells of Boleophthalmus pectinirostris were investigated after the fish were exposed under benzo(a) pyrene in different concentrations under experimental condition. The results showed that the organelles in hepatic cells of B. pectinirostris were damaged to different extents after the fish was exposed under lower concentration of BaP (0.5 mg.L-1) for up to 7 d, in which, mitochondria and endoplasmic reticulum were the chief organelles affected by BaP exposure. While the fish was exposed under higher concentration of BaP (5 mg.L-1) for 2 h, almost all of the organelles including mitochondria and endoplasmic reticulum in hepatic cells of B. pectinirostr were affected by BaP exposure. The structures of liver cells were seriously damaged. It was demonstrated that BaP could produce multiorganalle lesions in hepatic cells of B. pectinirostris, and the severity extent of such lesions was dependent on the concentration level of BaP.

  4. Temperature dependence of anisotonic NaC1 effect on radiosensitization and ultrastructure of V79 Chinese hamster cells.

    Science.gov (United States)

    Szekely, J G; Raaphorst, G P; Lobreau, A U; Azzam, E I; Copps, T P

    1983-01-01

    Isodose radiation survival of V79 Chinese hamster cells, pretreated with strongly hypertonic concentrations of NaC1 at 22 degrees C, or at 37 degrees C, has been determined and correlated with ultrastructural changes within the nucleus. After an exposure of less than 10 min to 1.5 M NaC1, at both temperatures, the cells are radioprotected, but after longer exposures, the cells treated at 37 degrees C are radiosensitive, whereas those treated at 22 degrees C still show protection. The cells are radiosensitized at both temperatures by pretreatment with 0.5 M and 0.05 M NaC1. The ultrastructure of the nucleus observed after the anisotonic treatments suggests that contraction or swelling of chromatin may be associated with the observed variation in radiation sensitivity.

  5. Pectic substances from soybean cell walls distinguish themselves from other plant cell wall pectins

    NARCIS (Netherlands)

    Huisman, M.M.H.; Schols, H.A.; Voragen, A.G.J.

    2003-01-01

    The uncommon structural features of soybean cell wall pectic substances explain their resistance to degradation by enzymes generally used to degrade this kind of polymers, and indicates that a search for new enzymes is required to enable enzymatic modification of these polysaccharides

  6. Ultrastructure and histochemistry of rat myocardial capillary endothelial cells in response to diabetes and hypertension

    Institute of Scientific and Technical Information of China (English)

    Ludmila OKRUHLICOVA; Narcis TRIBULOVA; Peter WEISMANN; Ruzena SOTNIKOVA

    2005-01-01

    Insufficient growth and rarefaction of capillaries,followed by endothelial dysfunction may represent one of the most critical mechanisms involved in heart damage.In this study we examined histochemical and ultrastructural changes in myocardial capillary endothelium in two models of heart failure streptozotocin-induced diabetes mellitus (STZ) and NOdeficient hypertension in male Wistar rats.Diabetes was induced by a single i.v.dose of STZ (45 mg/kg) and chronic 9-week stage was analysed.To induce NO-deficient hypertension,animals were treated with inhibitor of NO synthase Lnitroarginine methylester (L-NAME) (40 mg/kg) for 4 weeks.Left ventricular tissue was processed for enzyme catalytic histochemistry of capillary alkaline phosphatase (AlPh),dipeptidyl peptidase Ⅳ (DPP Ⅳ),and endothelial NO synthase/NADPH-diaphorase (NOS) and for ultrastructural analysis.In diabetic and hypertensive rats,lower/absent AlPh and DPP Ⅳ activities were found in focal micro-areas.NOS activity was significantly reduced and persisted only locally.Quantitative evaluation demonstrated reduction of reaction product intensity of AlPh,DPP and NOS by 49.50%,74.36%,20.05% in diabetic and 62.93%,82.71%,37.65% in hypertensive rats.Subcellular alterations of endothelial cells were found in heart of both groups suggesting injury of capillary function as well as compensatory processes.Endothelial injury was more significant in diabetic animals,in contrast the adaptation was more evident in hypertensive ones.Concluding: both STZ-induced diabetes- and NO-deficient hypertension-related cardiomyopathy were accompanied by similar features of structural remodelling of cardiac capillary network manifested as angiogenesis and angiopathy.The latter was however,predominant and may accelerate disappearance of capillary endothelium contributing to myocardial dysfunction.

  7. Effects of Waterlogging on Leaf Mesophyll Cell Ultrastructure and Photosynthetic Characteristics of Summer Maize.

    Science.gov (United States)

    Ren, Baizhao; Zhang, Jiwang; Dong, Shuting; Liu, Peng; Zhao, Bin

    2016-01-01

    A field experiment was performed to study the effects of waterlogging on the leaf mesophyll cell ultrastructure, chlorophyll content, gas exchange parameters, chlorophyll fluorescence, and malondialdehyde (MDA) content of summer maize (Zea mays L.) hybrids Denghai605 (DH605) and Zhengdan958 (ZD958). The waterlogging treatments were implemented for different durations (3 and 6 days) at the third leaf stage (V3), the sixth leaf stage (V6), and the 10th day after the tasseling stage (10VT). Leaf area index (LAI), chlorophyll content, photosynthetic rate (Pn), and actual photochemical efficiency (ΦPSII) were reduced after waterlogging, indicating that waterlogging significantly decreased photosynthetic capacity. The chloroplast shapes changed from long and oval to elliptical or circular after waterlogging. In addition, the internal structures of chloroplasts were degenerated after waterlogging. After waterlogging for 6 d at V3, the number of grana and grana lamellae of the third expanded leaf in DH605 were decreased by 26.83% and 55.95%, respectively, compared to the control (CK). Those in ZD958 were reduced by 30.08% and 31.94%, respectively. Waterlogging increased MDA content in both hybrids, suggesting an impact of waterlogging on membrane integrity and thus membrane deterioration. Waterlogging also damaged the biological membrane structure and mitochondria. Our results indicated that the physiological reactions to waterlogging were closely related to lower LAI, chlorophyll content, and Pn and to the destruction of chloroplast ultrastructure. These negative effects resulted in the decrease of grain yield in response to waterlogging. Summer maize was the most susceptible to damage when waterlogging occurred at V3, followed by V6 and 10VT, with damage increasing in the wake of waterlogging duration increasing. PMID:27583803

  8. Effects of Waterlogging on Leaf Mesophyll Cell Ultrastructure and Photosynthetic Characteristics of Summer Maize

    Science.gov (United States)

    Ren, Baizhao; Zhang, Jiwang; Dong, Shuting; Liu, Peng; Zhao, Bin

    2016-01-01

    A field experiment was performed to study the effects of waterlogging on the leaf mesophyll cell ultrastructure, chlorophyll content, gas exchange parameters, chlorophyll fluorescence, and malondialdehyde (MDA) content of summer maize (Zea mays L.) hybrids Denghai605 (DH605) and Zhengdan958 (ZD958). The waterlogging treatments were implemented for different durations (3 and 6 days) at the third leaf stage (V3), the sixth leaf stage (V6), and the 10th day after the tasseling stage (10VT). Leaf area index (LAI), chlorophyll content, photosynthetic rate (Pn), and actual photochemical efficiency (ΦPSII) were reduced after waterlogging, indicating that waterlogging significantly decreased photosynthetic capacity. The chloroplast shapes changed from long and oval to elliptical or circular after waterlogging. In addition, the internal structures of chloroplasts were degenerated after waterlogging. After waterlogging for 6 d at V3, the number of grana and grana lamellae of the third expanded leaf in DH605 were decreased by 26.83% and 55.95%, respectively, compared to the control (CK). Those in ZD958 were reduced by 30.08% and 31.94%, respectively. Waterlogging increased MDA content in both hybrids, suggesting an impact of waterlogging on membrane integrity and thus membrane deterioration. Waterlogging also damaged the biological membrane structure and mitochondria. Our results indicated that the physiological reactions to waterlogging were closely related to lower LAI, chlorophyll content, and Pn and to the destruction of chloroplast ultrastructure. These negative effects resulted in the decrease of grain yield in response to waterlogging. Summer maize was the most susceptible to damage when waterlogging occurred at V3, followed by V6 and 10VT, with damage increasing in the wake of waterlogging duration increasing. PMID:27583803

  9. Inflammation and Cell Death in Age-Related Macular Degeneration: An Immunopathological and Ultrastructural Model.

    Science.gov (United States)

    Ardeljan, Christopher P; Ardeljan, Daniel; Abu-Asab, Mones; Chan, Chi-Chao

    2014-01-01

    The etiology of Age-related Macular Degeneration (AMD) remains elusive despite the characterization of many factors contributing to the disease in its late-stage phenotypes. AMD features an immune system in flux, as shown by changes in macrophage polarization with age, expression of cytokines and complement, microglial accumulation with age, etc. These point to an allostatic overload, possibly due to a breakdown in self vs. non-self when endogenous compounds and structures acquire the appearance of non-self over time. The result is inflammation and inflammation-mediated cell death. While it is clear that these processes ultimately result in degeneration of retinal pigment epithelium and photoreceptor, the prevalent type of cell death contributing to the various phenotypes is unknown. Both molecular studies as well as ultrastructural pathology suggest pyroptosis, and perhaps necroptosis, are the predominant mechanisms of cell death at play, with only minimal evidence for apoptosis. Herein, we attempt to reconcile those factors identified by experimental AMD models and integrate these data with pathology observed under the electron microscope-particularly observations of mitochondrial dysfunction, DNA leakage, autophagy, and cell death. PMID:25580276

  10. Inflammation and Cell Death in Age-Related Macular Degeneration: An Immunopathological and Ultrastructural Model

    Directory of Open Access Journals (Sweden)

    Christopher P. Ardeljan

    2014-12-01

    Full Text Available The etiology of Age-related Macular Degeneration (AMD remains elusive despite the characterization of many factors contributing to the disease in its late-stage phenotypes. AMD features an immune system in flux, as shown by changes in macrophage polarization with age, expression of cytokines and complement, microglial accumulation with age, etc. These point to an allostatic overload, possibly due to a breakdown in self vs. non-self when endogenous compounds and structures acquire the appearance of non-self over time. The result is inflammation and inflammation-mediated cell death. While it is clear that these processes ultimately result in degeneration of retinal pigment epithelium and photoreceptor, the prevalent type of cell death contributing to the various phenotypes is unknown. Both molecular studies as well as ultrastructural pathology suggest pyroptosis, and perhaps necroptosis, are the predominant mechanisms of cell death at play, with only minimal evidence for apoptosis. Herein, we attempt to reconcile those factors identified by experimental AMD models and integrate these data with pathology observed under the electron microscope—particularly observations of mitochondrial dysfunction, DNA leakage, autophagy, and cell death.

  11. Structure of xanthan gum and cell ultrastructure at different times of alkali stress

    Science.gov (United States)

    de Mello Luvielmo, Márcia; Borges, Caroline Dellinghausen; de Oliveira Toyama, Daniela; Vendruscolo, Claire Tondo; Scamparini, Adilma Regina Pippa

    2016-01-01

    The effect of alkali stress on the yield, viscosity, gum structure, and cell ultrastructure of xanthan gum was evaluated at the end of fermentation process of xanthan production by Xanthomonas campestris pv. manihotis 280-95. Although greater xanthan production was observed after a 24 h-alkali stress process, a lower viscosity was observed when compared to the alkali stress-free gum, regardless of the alkali stress time. However, this outcome is not conclusive as further studies on gum purification are required to remove excess sodium, verify the efficiency loss and the consequent increase in the polymer viscosity. Alkali stress altered the structure of xanthan gum from a polygon-like shape to a star-like form. At the end of the fermentation, early structural changes in the bacterium were observed. After alkali stress, marked structural differences were observed in the cells. A more vacuolated cytoplasm and discontinuities in the membrane cells evidenced the cell lysis. Xanthan was observed in the form of concentric circles instead of agglomerates as observed prior to the alkali stress. PMID:26887232

  12. Ultrastructural and physiological changes in piglet oxyntic cells during histamine stimulation and metabolic inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Forte, T.M.; Machen, T.E.; Forte, J.G.

    1975-01-01

    Neonatal pig gastric mucosa was studied in order to correlate electrophysiological and secretory parameters with ultrastructural changes in membrane components of oxyntic cells. The non-stimulated tissue had a transmucosal resistance of about 130..cap omega.. . cm/sup 2/ while the oxyntic cells were characterized by numerous cytoplasmic tubulovesicles and short microvilli extending into patent glandular and canalicular lumina. Upon histamine-stimulation, the average rate of H/sup +/ secretion was 8.1 ..mu..eq . cm/sup -2/ . hr/sup -1/ and the resistance decreased to 77..cap omega.. . cm/sup 2/. The changes were coupled with an immense elaboration of oxyntic cell apical and canalicular surfaces with a concomitant decrease of tubulovesicles. Thus, the observed decrease in resistance was correlated to large increases in secretory membrane area. Anoxia inhibited H/sup +/ secretion while resistance increased to 211..cap omega.. . cm/sup 2/. Anoxic oxyntic cells were characterized by swollen mitochondria and occlusion of the lateral intercellular space and basal infoldings. Little change in the configuration of the secretory surfaces was noted, thereby suggesting that restriction of lateral and basal membranes might be responsible for the observed resistance increase. An electrical analogue of gastric mucosa is proposed on the basis of these morphological observations.

  13. Structure of xanthan gum and cell ultrastructure at different times of alkali stress.

    Science.gov (United States)

    Luvielmo, Márcia de Mello; Borges, Caroline Dellinghausen; Toyama, Daniela de Oliveira; Vendruscolo, Claire Tondo; Scamparini, Adilma Regina Pippa

    2016-01-01

    The effect of alkali stress on the yield, viscosity, gum structure, and cell ultrastructure of xanthan gum was evaluated at the end of fermentation process of xanthan production by Xanthomonas campestris pv. manihotis 280-95. Although greater xanthan production was observed after a 24h-alkali stress process, a lower viscosity was observed when compared to the alkali stress-free gum, regardless of the alkali stress time. However, this outcome is not conclusive as further studies on gum purification are required to remove excess sodium, verify the efficiency loss and the consequent increase in the polymer viscosity. Alkali stress altered the structure of xanthan gum from a polygon-like shape to a star-like form. At the end of the fermentation, early structural changes in the bacterium were observed. After alkali stress, marked structural differences were observed in the cells. A more vacuolated cytoplasm and discontinuities in the membrane cells evidenced the cell lysis. Xanthan was observed in the form of concentric circles instead of agglomerates as observed prior to the alkali stress. PMID:26887232

  14. Two endogenous proteins that induce cell wall extension in plants

    Science.gov (United States)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  15. In situ microscopy reveals reversible cell wall swelling in kelp sieve tubes: one mechanism for turgor generation and flow control?

    Science.gov (United States)

    Knoblauch, Jan; Tepler Drobnitch, Sarah; Peters, Winfried S; Knoblauch, Michael

    2016-08-01

    Kelps, brown algae (Phaeophyceae) of the order Laminariales, possess sieve tubes for the symplasmic long-distance transport of photoassimilates that are evolutionarily unrelated but structurally similar to the tubes in the phloem of vascular plants. We visualized sieve tube structure and wound responses in fully functional, intact Bull Kelp (Nereocystis luetkeana [K. Mertens] Postels & Ruprecht 1840). In injured tubes, apparent slime plugs formed but were unlikely to cause sieve tube occlusion as they assembled at the downstream side of sieve plates. Cell walls expanded massively in the radial direction, reducing the volume of the wounded sieve elements by up to 90%. Ultrastructural examination showed that a layer of the immediate cell wall characterized by circumferential cellulose fibrils was responsible for swelling and suggested that alginates, abundant gelatinous polymers of the cell wall matrix, were involved. Wall swelling was rapid, reversible and depended on intracellular pressure, as demonstrated by pressure-injection of silicon oil. Our results revive the concept of turgor generation and buffering by swelling cell walls, which had fallen into oblivion over the last century. Because sieve tube transport is pressure-driven and controlled physically by tube diameter, a regulatory role of wall swelling in photoassimilate distribution is implied in kelps. PMID:26991892

  16. Ultrastructural and immunohistochemical studies on Trichomonas vaginalis adhering to and phagocytizing genitourinary epithelial cells

    Institute of Scientific and Technical Information of China (English)

    陈文列; 陈金富; 钟秀容; 梁平; 林炜

    2004-01-01

    Background Trichomonas vaginalis (T. vaginalis) belongs to a common sexually transmitted disease pathogen causing genitourinary trichomoniasis in both sexes. We investigated the pathogenetic mechanism of genitourinary trichomoniasis.Methods Cultured T. vaginalis bodies were injected into the vaginas of rats, or incubated with genitourinary epithelial cells of female subjects, male subjects, and sperm. The ultrastructural and microscopic changes were observed via transmission and scanning electron microscopy and through microscopic histochemistry.Results Groups of T.vaginalis adhered to PAS positive columnar cells at the surface of stratified epithelium in the middle and upper portions of the vaginas. They also traversed under these cells. The parasites were shown to be PAS, cathepsin D, and actin positive, and they could release hydrolase into the cytoplasm of adhered epithelial cells. In the amebiform T.vaginalis, microfilaments were arranged into reticular formation. Similar phenomena were found during the interaction of T.vaginalis with host cells, both in vitro and in vivo. Usually several protozoa adhered to an epithelial cell and formed polymorphic pseudopodia or surface invaginations to surround and phagocytize the microvilli or other parts of the epithelial cytoplasm. Adhesion and phagocytosis of sperm by the protozoa occurred at 15-30 minutes of incubation. Digestion of sperm was found at 45-75 minutes and was complete at 90-105 minutes.Conclusions T.vaginalis tends to parasitize at the fornix of the vagina, because this is the site where columnar cells are rich in mucinogen granules and their microvilli are helpful for adhesion and nibbling. T.vaginalis possesses some invading and attacking abilities. Shape change, canalization, encystation, phagocytosis, digestion, the cell coat, cytoskeleton, and lysosome all play important roles in the process of adhesion. They have two methods of phagocytosis: nibbling and ingestion. Genitourinary epithelium may be

  17. Integrin VLA-3: ultrastructural localization at cell-cell contact sites of human cell cultures

    OpenAIRE

    1989-01-01

    The integrin VLA-3 is a cell surface receptor, which binds to fibronectin, laminin, collagen type I and VI (Takada, Y., E. A. Wayner, W. G. Carter, and M. E. Hemler. 1988. J. Cell. Biochem. 37:385-393) and is highly expressed in substrate adherent cultures of almost all human cell types. The ligand specificity of VLA-3 and the inhibition of cell adhesion by anti-VLA-3 monoclonal antibodies suggest its involvement in cell-substrate interaction. In normal tissues, VLA-3 is restricted to few cel...

  18. Characterisation of cell wall polysaccharides in bilberries and black currants

    OpenAIRE

    Hilz, H

    2007-01-01

    During berry juice production, polysaccharides are released from the cell walls and cause thickening and high viscosity when the berries are mashed. Consequences are a low juice yield and a poor colour. This can be prevented by the use of enzymes that degrade these polysaccharides. To use these enzymes most efficiently, the structure and composition of the cell walls had to be known. This thesis describes a detailed composition of the cell walls of bilberries and black currants. The obtained ...

  19. An arabidopsis gene regulatory network for secondary cell wall synthesis

    Science.gov (United States)

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptiona...

  20. Cosegregation of cell wall and DNA in Bacillus subtilis.

    OpenAIRE

    Schlaeppi, J M; Karamata, D

    1982-01-01

    Cosegregation of cell wall and DNA of a lysis-negative mutant of Bacillus subtilis was examined by continuously labeling (i) cell wall, (ii) DNA, and (iii) both cell wall and DNA. After four to five generations of chase in liquid media it was found by light microscope autoradiography that the numbers of wall segregation units per cell are 29 and 9 in rich and minimal medium, respectively. Under the same conditions the numbers of segregation units of DNA were almost 50% lower: 15 and 5, respec...

  1. Cell wall sorting of lipoproteins in Staphylococcus aureus.

    OpenAIRE

    Navarre, W W; Daefler, S; Schneewind, O

    1996-01-01

    Many surface proteins are thought to be anchored to the cell wall of gram-positive organisms via their C termini, while the N-terminal domains of these molecules are displayed on the bacterial surface. Cell wall anchoring of surface proteins in Staphylococcus aureus requires both an N-terminal leader peptide and a C-terminal cell wall sorting signal. By fusing the cell wall sorting of protein A to the C terminus of staphylococcal beta-lactamase, we demonstrate here that lipoproteins can also ...

  2. Cell wall degradation in the autolysis of filamentous fungi.

    Science.gov (United States)

    Perez-Leblic, M I; Reyes, F; Martinez, M J; Lahoz, R

    1982-12-27

    A systematic study on autolysis of the cell walls of fungi has been made on Neurospora crassa, Botrytis cinerea, Polystictus versicolor, Aspergillus nidulans, Schizophyllum commune, Aspergillus niger, and Mucor mucedo. During autolysis each fungus produces the necessary lytic enzymes for its autodegradation. From autolyzed cultures of each fungus enzymatic precipitates were obtained. The degree of lysis of the cell walls, obtained from non-autolyzed mycelia, was studied by incubating these cell walls with and without a supply of their own lytic enzymes. The degree of lysis increased with the incubation time and generally was higher with a supply of lytic enzymes. Cell walls from mycelia of different ages were obtained. A higher degree of lysis was always found, in young cell walls than in older cell walls, when exogenous lytic enzymes were present. In all the fungi studied, there is lysis of the cell walls during autolysis. This is confirmed by the change of the cell wall structure as well as by the degree of lysis reached by the cell wall and the release of substances, principally glucose and N-acetylglucosamine in the medium.

  3. Nanosurgery: observation of peptidoglycan strands in Lactobacillus helveticus cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Firtel, Max; Henderson, Grant; Sokolov, Igor

    2004-11-15

    The internal cell wall structure of the bacterium Lactobacillus helveticus has been observed in situ in aqueous solution using an atomic force microscope (AFM). The AFM tip was used not only for imaging but presumably to remove mechanically large patches of the outer cell wall after appropriate chemical treatment, which typically leaves the bacteria alive. The surface exposed after this 'surgery' revealed {approx}26 nm thick twisted strands within the cell wall. The structure and location of the observed strands are consistent with the glycan backbone of peptidoglycan fibers that give strength to the cell wall. The structural organization of these fibers has not been observed previously.

  4. Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia

    Directory of Open Access Journals (Sweden)

    Georgeault Sonia

    2009-08-01

    Full Text Available Abstract Background Aspergillus fumigatus is the most common agent of invasive aspergillosis, a feared complication in severely immunocompromised patients. Despite the recent commercialisation of new antifungal drugs, the prognosis for this infection remains uncertain. Thus, there is a real need to discover new targets for therapy. Particular attention has been paid to the biochemical composition and organisation of the fungal cell wall, because it mediates the host-fungus interplay. Conidia, which are responsible for infections, have melanin as one of the cell wall components. Melanin has been established as an important virulence factor, protecting the fungus against the host's immune defences. We suggested that it might also have an indirect role in virulence, because it is required for correct assembly of the cell wall layers of the conidia. Results We used three A. fumigatus isolates which grew as white or brown powdery colonies, to demonstrate the role of melanin. Firstly, sequencing the genes responsible for biosynthesis of melanin (ALB1, AYG1, ARP1, ARP2, ABR1 and ABR2 showed point mutations (missense mutation, deletion or insertion in the ALB1 gene for pigmentless isolates or in ARP2 for the brownish isolate. The isolates were then shown by scanning electron microscopy to produce numerous, typical conidial heads, except that the conidia were smooth-walled, as previously observed for laboratory mutants with mutations in the PKSP/ALB1 gene. Flow cytometry showed an increase in the fibronectin binding capacity of conidia from mutant isolates, together with a marked decrease in the binding of laminin to the conidial surface. A marked decrease in the electronegative charge of the conidia and cell surface hydrophobicity was also seen by microelectrophoresis and two-phase partitioning, respectively. Ultrastructural studies of mutant isolates detected considerable changes in the organisation of the conidial wall, with the loss of the outermost

  5. Small molecule probes for plant cell wall polysaccharide imaging

    Directory of Open Access Journals (Sweden)

    Ian eWallace

    2012-05-01

    Full Text Available Plant cell walls are composed of interlinked polymer networks consisting of cellulose, hemicelluloses, pectins, proteins, and lignin. The ordered deposition of these components is a dynamic process that critically affects the development and differentiation of plant cells. However, our understanding of cell wall synthesis and remodeling, as well as the diverse cell wall architectures that result from these processes, has been limited by a lack of suitable chemical probes that are compatible with live-cell imaging. In this review, we summarize the currently available molecular toolbox of probes for cell wall polysaccharide imaging in plants, with particular emphasis on recent advances in small molecule-based fluorescent probes. We also discuss the potential for further development of small molecule probes for the analysis of cell wall architecture and dynamics.

  6. Cell wall structure and biogenesis in Aspergillus species.

    Science.gov (United States)

    Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu

    2016-09-01

    Aspergillus species are among the most important filamentous fungi from the viewpoints of industry, pathogenesis, and mycotoxin production. Fungal cells are exposed to a variety of environmental stimuli, including changes in osmolality, temperature, and pH, which create stresses that primarily act on fungal cell walls. In addition, fungal cell walls are the first interactions with host cells in either human or plants. Thus, understanding cell wall structure and the mechanism of their biogenesis is important for the industrial, medical, and agricultural fields. Here, we provide a systematic review of fungal cell wall structure and recent findings regarding the cell wall integrity signaling pathways in aspergilli. This accumulated knowledge will be useful for understanding and improving the use of industrial aspergilli fermentation processes as well as treatments for some fungal infections. PMID:27140698

  7. Cellulose synthesis in two secondary cell wall processes in a single cell type

    OpenAIRE

    Mendu, Venugopal; Stork, Jozsef; Harris, Darby; DeBolt, Seth

    2011-01-01

    Plant cells have a rigid cell wall that constrains internal turgor pressure yet extends in a regulated and organized manner to allow the cell to acquire shape. The primary load-bearing macromolecule of a plant cell wall is cellulose, which forms crystalline microfibrils that are organized with respect to a cell's function and shape requirements. A primary cell wall is deposited during expansion whereas secondary cell wall is synthesized post expansion during differentiation. A complex form of...

  8. Measurement of streptococcal cell wall in tissues of rats resistant or susceptible to cell wall-induced chronic erosive arthritis.

    OpenAIRE

    Anderle, S K; Allen, J B; Wilder, R L; Eisenberg, R A; Cromartie, W J; Schwab, J. H.

    1985-01-01

    The quantity of streptococcal cell wall localized in the joints of rats of strains which are either susceptible (Sprague-Dawley, LEW/N, M520/N) or resistant (Buffalo, WKY/N, F344/N) to cell wall-induced chronic erosive arthritis was measured after intraperitoneal injection of group A streptococcal cell wall fragments. Susceptibility or resistance was not associated with a difference in the amount of cell wall localized in limbs or other tissues. It is concluded that although localization of c...

  9. Ultrastructure and phylogeny of Ustilago coicis

    Institute of Scientific and Technical Information of China (English)

    Jing-ze ZHANG; Pei-gang GUAN; Gang TAO; Mohammad Reza OJAGHIAN; Kevin David HYDE

    2013-01-01

    Ustilago coicis causes serious smut on Coix lacryma-jobi in Dayang Town,Jinyun County,Zhejiang Province of China.In this paper,ultrastructural assessments on fungus-host interactions and teliospore development are presented,and molecular phylogenetic analyses have been done to elucidate the phylogenetic placement of the taxon.Hyphal growth within infected tissues was both intracellular and intercellular and on the surface of fungus-host interaction,and the fungal cell wall and the invaginated host plasma membrane were separated by a sheath comprising two distinct layers between the fungal cell wall and the invaginated host plasma membrane.Ornamentation development of teliospore walls was unique as they appeared to be originated from the exosporium.In addition,internal transcribed spacer (ITS) and large subunit (LSU) sequence data showed that U.coicis is closely related to Ustilago trichophora which infects grass species of the genus Echinochloa (Poaceae).

  10. Micropipette aspiration on the outer hair cell lateral wall.

    OpenAIRE

    Sit, P S; Spector, A A; Lue, A J; Popel, A S; Brownell, W.E.

    1997-01-01

    The mechanical properties of the lateral wall of the guinea pig cochlear outer hair cell were studied using the micropipette aspiration technique. A fire-polished micropipette with an inner diameter of approximately 4 microm was brought into contact with the lateral wall and negative pressure was applied. The resulting deformation of the lateral wall was recorded on videotape and subjected to morphometric analysis. The relation between the length of the aspirated portion of the cell and aspir...

  11. Assembly and enlargement of the primary cell wall in plants

    Science.gov (United States)

    Cosgrove, D. J.

    1997-01-01

    Growing plant cells are shaped by an extensible wall that is a complex amalgam of cellulose microfibrils bonded noncovalently to a matrix of hemicelluloses, pectins, and structural proteins. Cellulose is synthesized by complexes in the plasma membrane and is extruded as a self-assembling microfibril, whereas the matrix polymers are secreted by the Golgi apparatus and become integrated into the wall network by poorly understood mechanisms. The growing wall is under high tensile stress from cell turgor and is able to enlarge by a combination of stress relaxation and polymer creep. A pH-dependent mechanism of wall loosening, known as acid growth, is characteristic of growing walls and is mediated by a group of unusual wall proteins called expansins. Expansins appear to disrupt the noncovalent bonding of matrix hemicelluloses to the microfibril, thereby allowing the wall to yield to the mechanical forces generated by cell turgor. Other wall enzymes, such as (1-->4) beta-glucanases and pectinases, may make the wall more responsive to expansin-mediated wall creep whereas pectin methylesterases and peroxidases may alter the wall so as to make it resistant to expansin-mediated creep.

  12. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Darvill, Alan [Univ. of Georgia, Athens, GA (United States); Hahn, Michael G. [Univ. of Georgia, Athens, GA (United States); O' Neill, Malcolm A. [Univ. of Georgia, Athens, GA (United States); York, William S. [Univ. of Georgia, Athens, GA (United States)

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  13. Characterising the cellulose synthase complexes of cell walls

    NARCIS (Netherlands)

    Mansoori Zangir, N.

    2012-01-01

    One of the characteristics of the plant kingdom is the presence of a structural cell wall. Cellulose is a major component in both the primary and secondary cell walls of plants. In higher plants cellulose is synthesized by so called rosette protein complexes with cellulose synthases (CESAs) as the c

  14. Hemicellulose biosynthesis and degradation in tobacco cell walls

    NARCIS (Netherlands)

    Compier, M.G.M.

    2005-01-01

    Natural fibres have a wide range of technological applications, such as in paper and textile industries. The basic properties and the quality of plant fibres are determined by the composition of the plant cell wall. Characteristic for fibres are thick secondary cell walls, which consist of cellulose

  15. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    Directory of Open Access Journals (Sweden)

    Kouki eYoshida

    2013-10-01

    Full Text Available Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs can regulate secondary wall formation in rice (Oryza sativa and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S has very low transcriptional activation ability, but the longer protein (OsSWN2L and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  16. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation.

    Science.gov (United States)

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka

    2013-01-01

    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications. PMID:24098302

  17. Simultaneous ultrastructural analysis of fluorochrome-photoconverted diaminobenzidine and gold immunolabeling in cultured cells

    Directory of Open Access Journals (Sweden)

    M. Malatesta

    2013-09-01

    Full Text Available Diaminobenzidine photoconversion is a technique by which a fluorescent dye is transformed into a stably insoluble, brown, electrondense signal, thus enabling examination at both bright field light microscopy and transmission electron microscopy. In this work, a procedure is proposed for combining photoconversion and immunoelectron microscopy: in vitro cell cultures have been first submitted to photoconversion to analyse the intracellular fate of either fluorescent nanoparticles or photosensitizing molecules, then processed for transmission electron microscopy; different fixative solutions and embedding media have been used, and the ultrathin sections were finally submitted to post-embedding immunogold cytochemistry. Under all conditions the photoconversion reaction product and the target antigen were properly detected in the same section; Epon-embedded, osmicated samples required a pre-treatment with sodium metaperiodate to unmask the antigenic sites. This simple and reliable procedure exploits a single sample to simultaneously localise the photoconversion product and a variety of antigens allowing a specific identification of subcellular organelles at the ultrastructural level.

  18. The role of wall calcium in the extension of cell walls of soybean hypocotyls

    Science.gov (United States)

    Virk, S. S.; Cleland, R. E.

    1990-01-01

    Calcium crosslinks are load-bearing bonds in soybean (Glycine max (L.) Merr.) hypocotyl cell walls, but they are not the same load-bearing bonds that are broken during acid-mediated cell elongation. This conclusion is reached by studying the relationship between wall calcium, pH and the facilitated creep of frozen-thawed soybean hypocotyl sections. Supporting data include the following observations: 1) 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[car boxymethyl]aminoquinoline (Quin 2) and ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) caused only limited facilitated creep as compared with acid, despite removal of comparable or larger amounts of wall calcium; 2) the pH-response curves for calcium removal and acid-facilitated creep were different; 3) reversible acid-extension occurred even after removal of almost all wall calcium with Quin 2; and 4) growth of abraded sections did not involve a proportional loss of wall calcium. Removal of wall calcium, however, increased the capacity of the walls to undergo acid-facilitated creep. These data indicate that breakage of calcium crosslinks is not a major mechanism of cell-wall loosening in soybean hypocotyl tissues.

  19. On-Off Switches for Secondary Cell Wall Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Huan-Zhong Wang; Richard A.Dixon

    2012-01-01

    Secondary cell walls provide plants with rigidity and strength to support their body weight and ensure water and nutrient transport.They also provide textiles,timber,and potentially second-generation biofuels for human use.Genes responsible for synthesis of the different cell wall components,namely cellulose,hemicelluloses,and lignin,are coordinately expressed and under transcriptional regulation.In the past several years,cell wall-related NAC and MYB transcription factors have been intensively investigated in different species and shown to be master switches of secondary cell wall biosynthesis.Positive and negative regulators,which function upstream of NAC master switches,have also been identified in different plant tissues.Further elucidation of the regulatory mechanisms of cell wall synthesis will facilitate the engineering of plant feedstocks suitable for biofuel production.

  20. On-off switches for secondary cell wall biosynthesis.

    Science.gov (United States)

    Wang, Huan-Zhong; Dixon, Richard A

    2012-03-01

    Secondary cell walls provide plants with rigidity and strength to support their body weight and ensure water and nutrient transport. They also provide textiles, timber, and potentially second-generation biofuels for human use. Genes responsible for synthesis of the different cell wall components, namely cellulose, hemicelluloses, and lignin, are coordinately expressed and under transcriptional regulation. In the past several years, cell wall-related NAC and MYB transcription factors have been intensively investigated in different species and shown to be master switches of secondary cell wall biosynthesis. Positive and negative regulators, which function upstream of NAC master switches, have also been identified in different plant tissues. Further elucidation of the regulatory mechanisms of cell wall synthesis will facilitate the engineering of plant feedstocks suitable for biofuel production. PMID:22138968

  1. Biochemistry and cell ultrastructure changes during senescence of Beta vulgaris L. leaf.

    Science.gov (United States)

    Romanova, Alla K; Semenova, Galina A; Ignat'ev, Alexander R; Novichkova, Natalia S; Fomina, Irina R

    2016-05-01

    The comparative study of biochemical and ultrastructure features in senescing sugar beet (Beta vulgaris L.) leaves was carried out. One group of plants was grown under normal conditions in washed river sand and poured in turn with nitrate-containing mineral solution or water (N plants). Another group of plants, after 1 month of normal growth, was further grown with nitrate omitted in the nutritive solution (defN plants). The starting point of normal leaf senescence in N plants was identified by the maximal content of soluble protein. Soluble carbohydrate pools were statistically constant in senescing N plants, whereas glucose pools varied noticeably. A decrease in the contents of soluble protein and chlorophyll (a + b) in the course of senescing was typical for N plant leaves. The cell membrane in N plant leaves remained mostly intact; the central vacuoles in the leaf cells were large, and their membranes remained intact. The chloroplasts and mitochondria in senescing N plant leaves became swollen. The vesicles that were present in the cytoplasm of N plant leaves were especially large in the oldest leaves. It was concluded that senescing of sugar beet leaves at sufficient nitrate nutrition occurs according to a "vacuolar" scenario. In the case of nitrate deficiency, the content of soluble carbohydrates in defN leaves first reached maximum and then decreased in older leaves; the protein and chlorophyll (a + b) contents were totally lower than those in normal leaves and continuously decreased during the experiments. Chloroplasts in mesophyll cells of defN plant leaves became more rounded; starch grains in chloroplasts degraded and the number and size of lipid globules increased. The multitude of membrane impairments and lots of large vesicles-"crystals" appeared during the experiment. The results showed the controlling action of nitrogen nutrition in the senescing of sugar beet leaves. PMID:26666552

  2. 3D Ultrastructural organization of whole Chlamydomonas reinhardtii cells studied by nanoscale soft x-ray tomography.

    Directory of Open Access Journals (Sweden)

    Eric Hummel

    Full Text Available The complex architecture of their structural elements and compartments is a hallmark of eukaryotic cells. The creation of high resolution models of whole cells has been limited by the relatively low resolution of conventional light microscopes and the requirement for ultrathin sections in transmission electron microscopy. We used soft x-ray tomography to study the 3D ultrastructural organization of whole cells of the unicellular green alga Chlamydomonas reinhardtii at unprecedented spatial resolution. Intact frozen hydrated cells were imaged using the natural x-ray absorption contrast of the sample without any staining. We applied different fiducial-based and fiducial-less alignment procedures for the 3D reconstructions. The reconstructed 3D volumes of the cells show features down to 30 nm in size. The whole cell tomograms reveal ultrastructural details such as nuclear envelope membranes, thylakoids, basal apparatus, and flagellar microtubule doublets. In addition, the x-ray tomograms provide quantitative data from the cell architecture. Therefore, nanoscale soft x-ray tomography is a new valuable tool for numerous qualitative and quantitative applications in plant cell biology.

  3. Effects of High Temperature Stress on Microscopic and Ultrastructural Characteristics of Mesophyll Cells in Flag Leaves of Rice

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gui-lian; CHEN Li-yun; ZHANG Shun-tang; ZHENG Hua; LIU Guo-hua

    2009-01-01

    The microscopic and ultrastructural characteristics of mesophyll cells in flag leaves of two rice lines (a thermo- sensitive line 4628 and a thermo-resistant line 996) under high temperature stress (37°C during 8:00-17:00 and 30°C during 17:00-8:00) were investigated using an optical and a transmission electron microscopy. The membrane permeability and malondialdehyde content increased under the high temperature stress, and the increase of both variables was greater in the line 4628 than in the line 996. Under the high temperature stress, the line 996 showed tightly arranged mesophyll cells in flag leaves, fully developed vascular bundles and some closed stomata, whereas the line 4628 suffered from injury because of undeveloped vascular bundles, loosely arranged mesophyll cells and opened stomata. The mesophyll cells in flag leaves of the line 4628 were severely damaged under the high temperature stress, i.e. the chloroplast envelope became blurred, the grana thylakoid layer was arranged loosely and irregularly, the stroma layer disappeared, many osmiophilic granules appeared within the chloroplast, the outer membrane of mitochondria and the nucleus disintegrated and became blurred, the nucleolus disappeared, and much fibrillar-granular materials appeared within the nucleus. In contrast, the mesophyll cells in flag leaves of the line 996 maintained an intact ultrastructure under the high temperature stress. From these results, it is suggested that the ultrastructural modification of the cell membrane system is the primary plant response to high temperature stress and can be used as an index to evaluate the crop heat tolerance.

  4. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis.

    Science.gov (United States)

    De Souza, Amanda P; Alvim Kamei, Claire L; Torres, Andres F; Pattathil, Sivakumar; Hahn, Michael G; Trindade, Luisa M; Buckeridge, Marcos S

    2015-07-01

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how they interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. Different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis. PMID:25908240

  5. Identification and Ultrastructural Characterization of a Novel Nuclear Degradation Complex in Differentiating Lens Fiber Cells.

    Science.gov (United States)

    Costello, M Joseph; Brennan, Lisa A; Mohamed, Ashik; Gilliland, Kurt O; Johnsen, Sönke; Kantorow, Marc

    2016-01-01

    An unresolved issue in structural biology is how the encapsulated lens removes membranous organelles to carry out its role as a transparent optical element. In this ultrastructural study, we establish a mechanism for nuclear elimination in the developing chick lens during the formation of the organelle-free zone. Day 12-15 chick embryo lenses were examined by high-resolution confocal light microscopy and thin section transmission electron microscopy (TEM) following fixation in 10% formalin and 4% paraformaldehyde, and then processing for confocal or TEM as described previously. Examination of developing fiber cells revealed normal nuclei with dispersed chromatin and clear nucleoli typical of cells in active ribosome production to support protein synthesis. Early signs of nuclear degradation were observed about 300 μm from the lens capsule in Day 15 lenses where the nuclei display irregular nuclear stain and prominent indentations that sometimes contained a previously undescribed macromolecular aggregate attached to the nuclear envelope. We have termed this novel structure the nuclear excisosome. This complex by confocal is closely adherent to the nuclear envelope and by TEM appears to degrade the outer leaflet of the nuclear envelope, then the inner leaflet up to 500 μm depth. The images suggest that the nuclear excisosome separates nuclear membrane proteins from lipids, which then form multilamellar assemblies that stain intensely in confocal and in TEM have 5 nm spacing consistent with pure lipid bilayers. The denuded nucleoplasm then degrades by condensation and loss of structure in the range 600 to 700 μm depth producing pyknotic nuclear remnants. None of these stages display any classic autophagic vesicles or lysosomes associated with nuclei. Uniquely, the origin of the nuclear excisosome is from filopodial-like projections of adjacent lens fiber cells that initially contact, and then appear to fuse with the outer nuclear membrane. These filopodial

  6. Ultrastructural appearance and cytoskeletal architecture of the clear, chromophilic, and chromophobe types of human renal cell carcinoma in vitro.

    Science.gov (United States)

    Gerharz, C D; Moll, R; Störkel, S; Ramp, U; Thoenes, W; Gabbert, H E

    1993-03-01

    The clear, chromophilic, and chromophobe types of human renal cell carcinoma have been defined as distinct morphological entities and can be clearly separated by differences of ultrastructural appearance, cytoskeletal architecture, enzyme synthesis, and cytogenetic aberrations. In this report, the cytomorphological aspects of these tumor types are compared in vitro, showing that essential ultrastructural and cytoskeletal characteristics of each tumor type are expressed even after prolonged in vitro cultivation. The pattern of intermediate filament proteins of each tumor type was preserved in vitro, permitting the separation of exclusively cytokeratin-positive chromophobe tumor cells from clear and chromophilic tumor cells with a co-expression of vimentin and cytokeratins. In vitro, the chromophobe tumor cells continued to exhibit abundant cytoplasmatic microvesicles and sparsely distributed "studded" vesicles, which are known to be characteristic features of this tumor type in vivo. This observation confirmed the structural similarity of the chromophobe cell to the 'intercalated cell' of the cortical collecting duct and provided further evidence for the histogenetic derivation of this tumor subtype from the collecting duct system.

  7. Extracellular matrix synthesis and ultrastructural changes of degenerative disc cells transfected by Ad/CMV-hTGF-β1

    Institute of Scientific and Technical Information of China (English)

    谭延斌; 胡有谷; 谭江威

    2003-01-01

    Objective To determine whether the synthesis of proteoglycan, collagen and associated ultrastructure are related to the adenovirus-mediated gene transferred to adult degenerative cells.Methods Adenovirus/cytomegalovirus human transforming growth fector-β1 (Ad/CMV-hTGF-β1) was used to transfect degenerative cells. Antonopulos method, Miamine method and transmission electrion microscopy were conducted to study the synthesis of proteoglycan, collagen, and ultrastructure, respectively. Cell cultures were established from the nucleus pulpous and annulus fibrosus tissues, which were taken from surgery.Results Nucleus pulpous and annulus fibrosus cells were efficiently transduced by the adenoviral vector carrying hTGF-β1 gene. The synthesis of proteoglycan and collagen increased compared with the control group (P<0.05). The metabolism of cells was slightly improved. No significant toxic effects were found.Conclusions Expression of hTGF-β1 gene is efficient to accelerates proteoglycan synthesis and thus accelerates the improvement of collagen. The function and structure of degenerative cells are improved. Ad/CMV-hTGF-β1 may be suitable for treating disc degeneration.

  8. Gamma-aminobutyric acid agonist-induced alterations in the ultrastructure of cultured cerebellar granule cells is restricted to early development

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Belhage, B; Schousboe, A;

    1988-01-01

    The effect of 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol (THIP) on the ultrastructural composition of cultured cerebellar granule cells was investigated during development by quantitative electron microscopy (morphometric analysis). Granule cells were exposed to THIP (150 microM) for 6 h aft...... of these organelles was observed in 14-day-old cultures exposed to THIP for 6 h. These findings show that the effect of THIP on the ultrastructural composition of cultured cerebellar granule cells is restricted to early development.......The effect of 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol (THIP) on the ultrastructural composition of cultured cerebellar granule cells was investigated during development by quantitative electron microscopy (morphometric analysis). Granule cells were exposed to THIP (150 microM) for 6 h after...

  9. A proteomic and genetic analysis of the Neurospora crassa conidia cell wall proteins identifies two glycosyl hydrolases involved in cell wall remodeling.

    Science.gov (United States)

    Ao, Jie; Aldabbous, Mash'el; Notaro, Marysa J; Lojacono, Mark; Free, Stephen J

    2016-09-01

    A proteomic analysis of the conidial cell wall identified 35 cell wall proteins. A comparison with the proteome of the vegetative hyphae showed that 16 cell wall proteins were shared, and that these shared cell wall proteins were cell wall biosynthetic proteins or cell wall structural proteins. Deletion mutants for 34 of the genes were analyzed for phenotypes indicative of conidial cell wall defects. Mutants for two cell wall glycosyl hydrolases, the CGL-1 β-1,3-glucanase (NCU07523) and the NAG-1 exochitinase (NCU10852), were found to have a conidial separation phenotype. These two enzymes function in remodeling the cell wall between adjacent conidia to facilitate conidia formation and dissemination. Using promoter::RFP and promoter::GFP constructs, we demonstrated that the promoters for 15 of the conidia-specific cell wall genes, including cgl-1 and nag-1, provided for conidia-specific gene expression or for a significant increase in their expression during conidiation. PMID:27381444

  10. Mechanical properties of plant cell walls probed by relaxation spectra

    DEFF Research Database (Denmark)

    Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola;

    2011-01-01

    type. This may be due to the plant’s ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply...... a method, determination of relaxation spectra, which probes, and can separate, the viscoelastic properties of different cell wall components (i.e. those properties that depend on the elastic behavior of load-bearing wall polymers combined with viscous interactions between them). A computer program, Bayes......Relax, that deduces relaxation spectra from appropriate rheological measurements is presented and made accessible through a Web interface. BayesRelax models the cell wall as a continuum of relaxing elements, and the ability of the method to resolve small differences in cell wall mechanical properties is demonstrated...

  11. Glycosytransferases involved in arabinosylation of cell wall extensins

    DEFF Research Database (Denmark)

    Petersen, Bent L; Harholt, Jesper; Jørgensen, Bodil;

    2011-01-01

    Extensins are a group of ancient hydroxyproline rich cell wall glycoproteins that are found in some chlorophyte algae (such as Chlamydomonas), where they constitute the main wall building block, as well as in higher plant cell walls, where they constitute a relatively minor component of particular...... al (2007) Molecular characterization of two Arabidopsis thaliana glycosyltransferase mutants, rra-1 and -2, which have a reduced content of arabinose in a polymer tightly associated with the cellulose residue. Plant Mol. Biol. 64:439-451 Gille et al (2009) Identification of plant cell wall mutants...... importance to wall assembly. The GlycosylTransferase family 77 (GT-family-77) rra1-2 (Egelund et al. 2007) and xeg113 (Gille et al. 2009) Arabidopsis, mutants have been suggested to be arabinosyltransferases involved in arabinosylation of extensins. We have now isolated extensins from these mutants and a new...

  12. Cell Wall Metabolism in Response to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Hyacinthe Le Gall

    2015-02-01

    Full Text Available This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic, transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i an increased level in xyloglucan endotransglucosylase/hydrolase (XTH and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  13. 2D-immunoblotting analysis of Sporothrix schenckii cell wall

    Directory of Open Access Journals (Sweden)

    Estela Ruiz-Baca

    2011-03-01

    Full Text Available We utilized two-dimensional gel electrophoresis and immunoblotting (2D-immunoblotting with anti-Sporothrix schenckii antibodies to identify antigenic proteins in cell wall preparations obtained from the mycelial and yeast-like morphologies of the fungus. Results showed that a 70-kDa glycoprotein (Gp70 was the major antigen detected in the cell wall of both morphologies and that a 60-kDa glycoprotein was present only in yeast-like cells. In addition to the Gp70, the wall from filament cells showed four proteins with molecular weights of 48, 55, 66 and 67 kDa, some of which exhibited several isoforms. To our knowledge, this is the first 2D-immunoblotting analysis of the S. schenckii cell wall.

  14. Ultrastructural characterization (morphological and topochemical) of wood pulp fibres

    OpenAIRE

    Fernando, Dinesh

    2007-01-01

    Different electron microscopy techniques including SEM (scanning electron microscopy), FE-SEM (field emission-scanning electron microscopy), TEM (transmission electron microscopy) and Immuno-gold TEM (immuno-gold transmission electron microscopy) were applied in order to gain a better understanding of the influence of the native softwood fibre cell wall ultrastructure including morphology and topochemistry (i.e. lignin and glucomannan distribution) during mechanical pulping. In thermomechanic...

  15. Ultrastructural maturation of human bone marrow mesenchymal stem cells-derived cardiomyocytes under alternative induction of 5-azacytidine.

    Science.gov (United States)

    Piryaei, Abbas; Soleimani, Masoud; Heidari, Mohammad Hassan; Saheli, Mona; Rohani, Razieh; Almasieh, Mohammadali

    2015-05-01

    Adult cardiomyocytes lack the ability to proliferate and are unable to repair damaged heart tissue, therefore differentiation of stem cells to cardiomyocytes represents an exceptional opportunity to study cardiomyocytes in vitro and potentially provides a valuable source for replacing damaged tissue. However, characteristic maturity of the in vitro differentiated cardiomyocytes and methods to achieve it are yet to be optimized. In this study, differentiation of human bone marrow-mesenchymal stem cells (hBM-MSCs) into cardiomyocytes is accomplished and the process investigated ultrastructurally. The hBM-MSCs were alternatively treated with 5 μM of 5-azacytidine (5-aza) for 8 weeks resulting in differentiation to cardiomyocytes. Expressions of cardiomyocyte-specific genes [cardiac α-actinin, cardiac β-myosin heavy chain (MHC) and connexin-43] and proteins (cardiac α-actinin, cardiac troponin and connexin-43) were confirmed in a time-dependent manner from the first to the fifth weeks post-induction. Ultrastructural maturation of hBM-MSCs-derived cardiomyocyte (MSCs-CM) corresponded with increase in number and organization of myofilaments in cells over time. Starting from week five, organized myofibrils along with developing sarcomeres were detectable. Later on, MSCs-CM were characterized by the presence of sarcoplasmic reticulum, T-tubules and diads as cardiomyocytes connected to each other by intercalated disc-like structures. Here, we showed the potential of hBM-MSCs as a source for the production of cardiomyocytes and confirmed mature ultrastructural characteristics of these cells using our alternative incubation method. PMID:25573851

  16. Effect of gamma radiation on Aspergillus flavus and Aspergillus ochraceus ultrastructure and mycotoxin production

    International Nuclear Information System (INIS)

    The aim of this work was to study the effect of gamma radiation (2 kGy) on Aspergillus flavus and Aspergillus ochraceus ultrastructure. Moreover, the influence on aflatoxin B1 and ochratoxin A production was also observed. Irradiated A. flavus strain showed a dull orangish colony while control strain showed the typical green color. Minor differences were observed on stipes, metulae and conidia size between control and irradiated A. flavus and A. ochraceus strains. Irradiated fungi showed ultrastructural changes on cell wall, plasmalema and cytoplasm levels. The levels of mycotoxins produced by irradiated strains were two times greater than those produced by control strains. Successive transferences of irradiated strains on malt extract agar allowed the fungus to recuperate morphological characteristics. Although minor changes in the fungal morphology were observed, ultrastructural changes at cell wall level and the increase of mycotoxin production ability were observed. Inappropriate storage of irradiated food and feed would allow the development of potentially more toxicogenic fungal propagules.

  17. Effect of gamma radiation on Aspergillus flavus and Aspergillus ochraceus ultrastructure and mycotoxin production

    Science.gov (United States)

    Ribeiro, J.; Cavaglieri, L.; Vital, H.; Cristofolini, A.; Merkis, C.; Astoreca, A.; Orlando, J.; Carú, M.; Dalcero, A.; Rosa, C. A. R.

    2011-05-01

    The aim of this work was to study the effect of gamma radiation (2 kGy) on Aspergillus flavus and Aspergillus ochraceus ultrastructure. Moreover, the influence on aflatoxin B 1 and ochratoxin A production was also observed. Irradiated A. flavus strain showed a dull orangish colony while control strain showed the typical green color. Minor differences were observed on stipes, metulae and conidia size between control and irradiated A. flavus and A. ochraceus strains. Irradiated fungi showed ultrastructural changes on cell wall, plasmalema and cytoplasm levels. The levels of mycotoxins produced by irradiated strains were two times greater than those produced by control strains. Successive transferences of irradiated strains on malt extract agar allowed the fungus to recuperate morphological characteristics. Although minor changes in the fungal morphology were observed, ultrastructural changes at cell wall level and the increase of mycotoxin production ability were observed. Inappropriate storage of irradiated food and feed would allow the development of potentially more toxicogenic fungal propagules.

  18. Up against the wall: is yeast cell wall integrity ensured by mechanosensing in plasma membrane microdomains?

    Science.gov (United States)

    Kock, Christian; Dufrêne, Yves F; Heinisch, Jürgen J

    2015-02-01

    Yeast cell wall integrity (CWI) signaling serves as a model of the regulation of fungal cell wall synthesis and provides the basis for the development of antifungal drugs. A set of five membrane-spanning sensors (Wsc1 to Wsc3, Mid2, and Mtl1) detect cell surface stress and commence the signaling pathway upon perturbations of either the cell wall structure or the plasma membrane. We here summarize the latest advances in the structure/function relationship primarily of the Wsc1 sensor and critically review the evidence that it acts as a mechanosensor. The relevance and physiological significance of the information obtained for the function of the other CWI sensors, as well as expected future developments, are discussed.

  19. Ultrastructural alteration of the cell surface of Staphylococcus aureus cultured in a different salt condition

    Directory of Open Access Journals (Sweden)

    Kanemasa,Yasuhiro

    1974-10-01

    Full Text Available Staphylococcus aureus growing in a normal NaGI medium has a specific NaGI tolerance property to grow in the medium contain. ing NaGl in as high a concentration as over 10%. In our comparative study of the cells proliferating in the normal NaGI medium and 10% NaGl medium, we have observed the following differences aside from the changes of lipid composition in the cytoplasmic membrane previously reported. 1. S. aureus grown in high NaGl medium undergoes changes as to increase its size and reduce its surface area. 2. The thickness and weight of cell wall are increased to about 1. 7 times and 1. 32 times, respectively. 3. The protoplast prepared from S. aureus growing in the high NaGI medium shows a weaker resistance to hypotonic condition than that from normal cell.

  20. Modification of cell wall polysaccharides during retting of cassava roots.

    Science.gov (United States)

    Ngolong Ngea, Guillaume Legrand; Guillon, Fabienne; Essia Ngang, Jean Justin; Bonnin, Estelle; Bouchet, Brigitte; Saulnier, Luc

    2016-12-15

    Retting is an important step in traditional cassava processing that involves tissue softening of the roots to transform the cassava into flour and various food products. The tissue softening that occurs during retting was attributed to the degradation of cell wall pectins through the action of pectin-methylesterase and pectate-lyase that possibly originated from a microbial source or the cassava plant itself. Changes in cell wall composition were investigated during retting using chemical analysis, specific glycanase degradation and immuno-labelling of cell wall polysaccharides. Pectic 1,4-β-d-galactan was the main cell wall polysaccharide affected during the retting of cassava roots. This result suggested that better control of pectic galactan degradation and a better understanding of the degradation mechanism by endogenous endo-galactanase and/or exogenous microbial enzymes might contribute to improve the texture properties of cassava products. PMID:27451197

  1. Plant cell walls: New insights from ancient species

    DEFF Research Database (Denmark)

    Sørensen, Iben; Willats, William George Tycho

    2008-01-01

    Cell walls are a defining feature of plants and have numerous crucial roles in growth and development. They are also the largest source of terrestrial biomass and have many important industrial applications - ranging from bulk products to functional food ingredients. There is considerable interest...... in the structure and functions of cell walls, and in the evolution of their remarkably complex polysaccharide structures. The grasses and cereals (order Poales), have long been regarded as being unique in that their cell walls contain an unbranched homopolymer, (1¿3)(1¿4)-ß-D-glucan, in which short blocks of (1...... in horsetails (Equisetales order) was therefore significant and has prompted a re-evaluation of some of the current views on cell wall evolution and structural diversity. Addendum to: Sørensen I, Pettolino FA, Wilson SM, Doblin MS, Johansen B, Bacic A, Willats WGT. Mixed-linkage (1¿3),(1¿4)-ß...

  2. Immunocytochemical characterization of the cell walls of bean cell suspensions during habituation and dehabituation to dichlobenil

    DEFF Research Database (Denmark)

    Garcia-Angulo, P.; Willats, W. G. T.; Encina, A. E.;

    2006-01-01

    and fluorochrome labelling of resin-embedded sections, and immunodot assays (IDAs) of cell wall fractions. The cell walls from bean cell suspensions with initial levels of habituation to dichlobenil had decreased levels of cellulose, but this effect lessened with increasing numbers of subcultures. All cell walls...... in habituated cells also diminished with the increasing number of subcultures. Habituated cells also liberated less extensin into the medium. In habituated cells, a decrease in the cell wall arabinogalactan protein (AGP) labelling was observed both in cell walls and in the culture medium. The increase...... in the number of subcultures in 0.3 µM dichlobenil was accompanied by an increment in some pectic epitopes (JIM5 and LM5) and a decrease in other pectic and in protein epitopes (JIM7, PAM1, LM6, LM2 and MAC207), indicating a re-structuring of cell walls throughout the habituation procedure. Dehabituated cells...

  3. Ultrastructure of the extended ribonucleic acid molecules from purified ribosomes of Rous sarcoma virus-induced mouse ascites sarcoma cells

    Directory of Open Access Journals (Sweden)

    Yamamoto,Goki

    1974-04-01

    Full Text Available To clarify the ultrastructure of the extended ribosomal RNA molecules, electron microscopic observations were carried out on the RNA molecules extracted from purified ribosomes of mouse ascites sarcoma cells. By the treatment with ethylenediamine-tetraacetate agglomerated rRNA molecules were elongated to thread-like structure by partial unfolding. The lengths of thread-like molecules were measured as less than Iii. The strand of RNA molecules stained with uranyl acetate was observed approximately l5A in width.

  4. Analyzing the complex machinery of cell wall biosynthesis

    OpenAIRE

    Timmers, J.F.P.

    2009-01-01

    The plant cell wall polymers make up most of the plant biomass and provide the raw material for many economically important products including food, feed, bio-materials, chemicals, textiles, and biofuel. This broad range of functions and applications make the biosynthesis of these polysaccharides a highly interesting target of scientific research. In this thesis a protein-protein interaction strategy was used to gain insight in the cell wall biosynthesis of Arabidopsis thaliana and to identif...

  5. Patterns of expression of cell wall related genes in sugarcane

    Directory of Open Access Journals (Sweden)

    Lima D.U.

    2001-01-01

    Full Text Available Our search for genes related to cell wall metabolism in the sugarcane expressed sequence tag (SUCEST database (http://sucest.lbi.dcc.unicamp.br resulted in 3,283 reads (1% of the total reads which were grouped into 459 clusters (potential genes with an average of 7.1 reads per cluster. To more clearly display our correlation coefficients, we constructed surface maps which we used to investigate the relationship between cell wall genes and the sugarcane tissues libraries from which they came. The only significant correlations that we found between cell wall genes and/or their expression within particular libraries were neutral or synergetic. Genes related to cellulose biosynthesis were from the CesA family, and were found to be the most abundant cell wall related genes in the SUCEST database. We found that the highest number of CesA reads came from the root and stem libraries. The genes with the greatest number of reads were those involved in cell wall hydrolases (e.g. beta-1,3-glucanases, xyloglucan endo-beta-transglycosylase, beta-glucosidase and endo-beta-mannanase. Correlation analyses by surface mapping revealed that the expression of genes related to biosynthesis seems to be associated with the hydrolysis of hemicelluloses, pectin hydrolases being mainly associated with xyloglucan hydrolases. The patterns of cell wall related gene expression in sugarcane based on the number of reads per cluster reflected quite well the expected physiological characteristics of the tissues. This is the first work to provide a general view on plant cell wall metabolism through the expression of related genes in almost all the tissues of a plant at the same time. For example, developing flowers behaved similarly to both meristematic tissues and leaf-root transition zone tissues. Besides providing a basis for future research on the mechanisms of plant development which involve the cell wall, our findings will provide valuable tools for plant engineering in the

  6. Protection of ultrastructure in chilling-stressed banana leaves by salicylic acid

    Institute of Scientific and Technical Information of China (English)

    KANG Guo-zhang; WANG Zheng-xun; XIA Kuai-fei; SUN Gu-chou

    2007-01-01

    Objective: Chilling tolerance of salicylic acid (SA) in banana seedlings (Musa acuminata cv., Williams 8818) was investigated by changes in ultrastructure in this study. Methods: Light and electron microscope observation. Results: Pretreatment with 0.5 mmol/L SA under normal growth conditions (30/22 ℃) by foliar spray and root irrigation resulted in many changes in ultrastructure of banana cells, such as cells separation from palisade parenchymas, the appearance of crevices in cell walls, the swelling of grana and stromal thylakoids, and a reduction in the number of starch granules. These results implied that SA treatment at 30/22 ℃ could be a type of stress. During 3 d of exposure to 7 ℃ chilling stress under low light, however, cell ultrastructure of SA-pretreated banana seedlings showed less deterioration than those of control seedlings (distilled water-pretreated). Conclusion:SA could provide some protection for cell structure of chilling-stressed banana seedling.

  7. Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA

    OpenAIRE

    Qiuqiang Gao; Liang-Chun Liou; Qun Ren; Xiaoming Bao; Zhaojie Zhang

    2015-01-01

    The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ0). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ0 c...

  8. AFM of the ultrastructural and mechanical properties of lipid-raft-disrupted and/or cold-treated endothelial cells.

    Science.gov (United States)

    Wu, Li; Huang, Jie; Yu, Xiaoxue; Zhou, Xiaoqing; Gan, Chaoye; Li, Ming; Chen, Yong

    2014-02-01

    The nonionic detergent extraction at 4 °C and the cholesterol-depletion-induced lipid raft disruption are the two widely used experimental strategies for lipid raft research. However, the effects of raft disruption and/or cold treatment on the ultrastructural and mechanical properties of cells are still unclear. Here, we evaluated the effects of raft disruption and/or cold (4 °C) treatment on these properties of living human umbilical vein endothelial cells (HUVECs). At first, the cholesterol-depletion-induced raft disruption was visualized by confocal microscopy and atomic force microscopy (AFM) in combination with fluorescent quantum dots. Next, the cold-induced cell contraction and the formation of end-branched filopodia were observed by confocal microscopy and AFM. Then, the cell-surface ultrastructures were imaged by AFM, and the data showed that raft disruption and cold treatment induced opposite effects on cell-surface roughness (a significant decrease and a significant increase, respectively). Moreover, the cell-surface mechanical properties (stiffness and adhesion force) of raft-disrupted- and/or cold-treated HUVECs were measured by the force measurement function of AFM. We found that raft disruption and cold treatment induced parallel effects on cell stiffness (increase) or adhesion force (decrease) and that the combination of the two treatments caused dramatically strengthened effects. Finally, raft disruption was found to significantly impair cell migration as previously reported, whereas temporary cold treatment only caused a slight but nonsignificant decrease in cell migration performed at physiological temperature. Although the mechanisms for causing these results might be complicated and more in-depth studies will be needed, our data may provide important information for better understanding the effects of raft disruption or cold treatment on cells and the two strategies for lipid raft research.

  9. Pectin, a versatile polysaccharide present in plant cell walls

    NARCIS (Netherlands)

    Voragen, A.G.J.; Coenen, G.J.; Verhoef, R.P.; Schols, H.A.

    2009-01-01

    Pectin or pectic substances are collective names for a group of closely associated polysaccharides present in plant cell walls where they contribute to complex physiological processes like cell growth and cell differentiation and so determine the integrity and rigidity of plant tissue. They also pla

  10. Metal ion effects on hydraulic conductivity of bacterial cellulose-pectin composites used as plant cell wall analogs.

    Science.gov (United States)

    McKenna, Brigid A; Kopittke, Peter M; Wehr, J Bernhard; Blamey, F Pax C; Menzies, Neal W

    2010-02-01

    Low concentrations of some trace metals markedly reduce root elongation rate and cause ruptures to root rhizodermal and outer cortical cells in the elongation zone. The interactions between the trace metals and plant components responsible for these effects are not well understood but may be linked to changes in water uptake, cell turgor and cell wall extensibility. An experiment was conducted to investigate the effects of Al, La, Cu, Gd, Sc and Ru on the saturated hydraulic conductivity of bacterial cellulose (BC)-pectin composites, used as plant cell wall analogs. Hydraulic conductivity was reduced to approximately 30% of the initial flow rate by 39 microM Al and 0.6 microM Cu, approximately 40% by 4.6 microM La, 3 microM Sc and 4.4 microM Ru and approximately 55% by 3.4 microM Gd. Scanning electron microscopy (SEM) revealed changes in the ultrastructure of the composites. The results suggest that trace metal binding decreases the hydraulic conductivity through changes in pectin porosity. The experiment illustrates the importance of metal interactions with pectin, and the implications of such an interaction in plant metal toxicity and in normal cell wall processes. PMID:20053181

  11. Ultrastructural changes in chloroplasts of mesophyll cells of chlorotic and prematurely yellowed leaves of Betula pendula Rothr

    Directory of Open Access Journals (Sweden)

    Krystyna Przybył

    2011-04-01

    Full Text Available The ultrastructure of chloroplasts was studied in mesophyll cells of the leaves of silver birch (Betula pendula showing interveinal chlorosis or premature yellowing, in comparison with leaves without symptoms or exhibiting symptoms of natural senescence. The leaves were collected between May 26 to June 7 and additionally in the September 10-12 from the upper part of the crown, from increments of the past four years. No major difference in ultrastructure of chloroplasts was found between spongy and palisade mesophyll cells. The following senescencerelated changes were observed in chloroplasts of prematurely yellowed leaves and showing inteveinal chlorosis: reduced chloroplast size, degeneration of the membrane systems of thylakoids and increased electron density of plastoglobuli. The most electron dark globules (lipid droplets were found together with starch grains in cells of spongy mesophyll of leaves showing interveinal chlorosis. Abnormal, spherical and rounded chloroplasts with electron-dark inside of thylakoids or the electron-dark stroma between thylakoids were found only in yellowed and chlorotic leaves in spring.

  12. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria.

    OpenAIRE

    Mistou, Michel-Yves; Sutcliffe, Iain; van Sorge, Nina

    2016-01-01

    The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall te...

  13. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Directory of Open Access Journals (Sweden)

    Lori B Huberman

    Full Text Available Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  14. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Science.gov (United States)

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  15. Determining the polysaccharide composition of plant cell walls.

    Science.gov (United States)

    Pettolino, Filomena A; Walsh, Cherie; Fincher, Geoffrey B; Bacic, Antony

    2012-09-01

    The plant cell wall is a chemically complex structure composed mostly of polysaccharides. Detailed analyses of these cell wall polysaccharides are essential for our understanding of plant development and for our use of plant biomass (largely wall material) in the food, agriculture, fabric, timber, biofuel and biocomposite industries. We present analytical techniques not only to define the fine chemical structures of individual cell wall polysaccharides but also to estimate the overall polysaccharide composition of cell wall preparations. The procedure covers the preparation of cell walls, together with gas chromatography-mass spectrometry (GC-MS)-based methods, for both the analysis of monosaccharides as their volatile alditol acetate derivatives and for methylation analysis to determine linkage positions between monosaccharide residues as their volatile partially methylated alditol acetate derivatives. Analysis time will vary depending on both the method used and the tissue type, and ranges from 2 d for a simple neutral sugar composition to 2 weeks for a carboxyl reduction/methylation linkage analysis. PMID:22864200

  16. Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls

    Directory of Open Access Journals (Sweden)

    Canut Hervé

    2006-05-01

    Full Text Available Abstract Background The ultimate goal of proteomic analysis of a cell compartment should be the exhaustive identification of resident proteins; excluding proteins from other cell compartments. Reaching such a goal closely depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific difficulties: (i the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP during the isolation procedure, (ii polysaccharide networks of cellulose, hemicelluloses and pectins form potential traps for contaminants such as intracellular proteins. Several reported procedures to isolate cell walls for proteomic analyses led to the isolation of a high proportion (more than 50% of predicted intracellular proteins. Since isolated cell walls should hold secreted proteins, one can imagine alternative procedures to prepare cell walls containing a lower proportion of contaminant proteins. Results The rationales of several published procedures to isolate cell walls for proteomics were analyzed, with regard to the bioinformatic-predicted subcellular localization of the identified proteins. Critical steps were revealed: (i homogenization in low ionic strength acid buffer to retain CWP, (ii purification through increasing density cushions, (iii extensive washes with a low ionic strength acid buffer to retain CWP while removing as many cytosolic proteins as possible, and (iv absence of detergents. A new procedure was developed to prepare cell walls from etiolated hypocotyls of Arabidopsis thaliana. After salt extraction, a high proportion of proteins predicted to be secreted was released (73%, belonging to the same functional classes as proteins identified using previously described protocols. Finally, removal of intracellular proteins was obtained using detergents, but their amount represented less than 3% in mass of the total protein extract, based on protein quantification. Conclusion The

  17. Strategies for Cd accumulation in Dittrichia viscosa (L.) Greuter: role of the cell wall, non-protein thiols and organic acids.

    Science.gov (United States)

    Fernández, R; Fernández-Fuego, D; Bertrand, A; González, A

    2014-05-01

    Dittrichia viscosa (L.) Greuter is plant species commonly found in degraded zones of Asturias (Spain), where it accumulates high levels of Cd, but the mechanisms involved in this response in non-model plants have not been elucidated. In this way, we analysed the fraction of the total Cd bound to the cell walls, the ultrastructural localization of this metal, and non-protein thiol and organic acid concentrations of two clones of D. viscosa: DV-A (from a metal-polluted soil) and DV-W (from a non-polluted area). After 10 days of hydroponic culture with Cd, fractionation and ultrastructural localisation studies showed that most of the Cd accumulated by D. viscosa was kept in the cell wall. The non-protein thiol content rose in D. viscosa with Cd exposure, especially in the non-metallicolous DV-W clone, and in both clones we found with Cd exposure a synthesis de novo of phytochelatins PC2 and PC3 in shoots and roots and also of other phytochelatin-related compounds, particularly in roots. Regarding organic acids, their concentration in both clones decreased in shoots after Cd treatment, but increased in roots, mainly due to changes in the citric acid concentration. Thus, retention of Cd in the cell wall seems to be the first strategy in response to metal entry in D. viscosa and once inside cells non-protein thiols and organic acids might also participate in Cd tolerance.

  18. Another brick in the cell wall: biosynthesis dependent growth model.

    Directory of Open Access Journals (Sweden)

    Adelin Barbacci

    Full Text Available Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  19. Altered cell wall disassembly during ripening of Cnr tomato fruit : implications for cell wall adhesion and fruit softening

    NARCIS (Netherlands)

    Orfila, C.; Huisman, M.M.H.; Willats, W.G.T.; Alebeek, van G.J.W.M.; Schols, H.A.; Seymour, G.B.; Knox, J.P.

    2002-01-01

    The Cnr (Colourless non-ripening) tomato (Lycopersicon esculentum Mill.) mutant has an aberrant fruit-ripening phenotype in which fruit do not soften and have reduced cell adhesion between pericarp cells. Cell walls from Cnr fruit were analysed in order to assess the possible contribution of pectic

  20. Effects of tebuconazole on morphology, structure, cell wall components and trichothecene production of Fusarium culmorum in vitro.

    Science.gov (United States)

    Kang, Z; Huang, L; Krieg, U; Mauler-Machnik, A; Buchenauer, H

    2001-06-01

    The effects of tebuconazole, a systemic fungicide, on the morphology, structure, cell wall components and toxin production of Fusarium culmorum were investigated in vitro. Treatment was by application of four filter paper strips (0.75 cm x 5.0 cm) soaked in 20 micrograms ml-1 fungicide placed around a point inoculum in Petri dishes. Mycelial growth was strongly inhibited by fungicide treatment. Scanning electron microscopic observations showed that the fungicide caused irregular swelling and excessive branching of hyphae. The morphological changes induced by the fungicide at the ultrastructural level included considerable thickening of the hyphal cell walls, excessive septation, the formation of the incomplete septa, extensive vacuolisation, accumulation of lipid bodies and progressing necrosis or degeneration of the hyphal cytoplasm. Non-membrane inclusion bodies were often detected in the hyphal cytoplasm. Furthermore, the formation of new hyphae (daughter hyphae) inside collapsed hyphal cells was common following treatment. The daughter hyphae also displayed severe alterations such as irregular thickening of the cell walls and necrosis of the cytoplasm. Using cytochemical techniques, the labelling densities of chitin and beta-1,3-glucan in the cell walls of the fungicide-treated hyphae were more pronounced than in those of the control hyphae. Moreover, immunogold labelling with antiserum against deoxynivalenol (DON) revealed that Fusarium toxin DON was localized in the cell walls, cytoplasm, mitochondria and vacuoles of the hyphae from the control and the fungicide treatment, but the labelling density in the fungicide-treated hyphae decreased dramatically compared with the control hyphae, indicating that tebuconazole reduced Fusarium toxin production of the fungus.

  1. Cell wall proteomics of the green alga Haematococcus pluvialis (Chlorophyceae).

    Science.gov (United States)

    Wang, Sheng-Bing; Hu, Qiang; Sommerfeld, Milton; Chen, Feng

    2004-03-01

    The green microalga Haematococcus pluvialis can synthesize and accumulate large amounts of the ketocarotenoid astaxanthin, and undergo profound changes in cell wall composition and architecture during the cell cycle and in response to environmental stresses. In this study, cell wall proteins (CWPs) of H. pluvialis were systematically analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) coupled with peptide mass fingerprinting (PMF) and sequence-database analysis. In total, 163 protein bands were analyzed, which resulted in positive identification of 81 protein orthologues. The highly complex and dynamic composition of CWPs is manifested by the fact that the majority of identified CWPs are differentially expressed at specific stages of the cell cycle along with a number of common wall-associated 'housekeeping' proteins. The detection of cellulose synthase orthologue in the vegetative cells suggested that the biosynthesis of cellulose occurred during primary wall formation, in contrast to earlier observations that cellulose was exclusively present in the secondary wall of the organism. A transient accumulation of a putative cytokinin oxidase at the early stage of encystment pointed to a possible role in cytokinin degradation while facilitating secondary wall formation and/or assisting in cell expansion. This work represents the first attempt to use a proteomic approach to investigate CWPs of microalgae. The reference protein map constructed and the specific protein markers obtained from this study provide a framework for future characterization of the expression and physiological functions of the proteins involved in the biogenesis and modifications in the cell wall of Haematococcus and related organisms. PMID:14997492

  2. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells

    DEFF Research Database (Denmark)

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall......Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective...... with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain...

  3. Human cord blood lymphocytes. Ultrastructural and immunologic surface marker characteristics: a comparison with B- and T-cell lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Hamburg, A.; Brynes, R.K.; Reese, C.; Golomb, H.M.

    1976-01-01

    The ultrastructural and surface marker characteristics of human cord blood lymphocytes were studied. These properties were compared with those in cells of patients in the leukemic phase of both malignant lymphoma, poorly differentiated lymphocytic type, and mycosis fungoides. Nuclear folding in cord blood lymphocytes was similar to that seen in lymphocytes of patients with malignant lymphoma, poorly differentiated lymphocytic type and mycosis fungoides. Surface marker characteristics of cord blood lymphocytes included increased percentages of surface IgD on cells bearing surface immunoglobulins and decreased percentages of E-rosette-forming cells. The hypothesis that both malignant lymphoma, poorly differentiated lymphocytic type and mycosis fungoides represent an arrest in the normal lymphocyte maturation sequence is discussed.

  4. Inhibitors targeting on cell wall biosynthesis pathway of MRSA.

    Science.gov (United States)

    Hao, Haihong; Cheng, Guyue; Dai, Menghong; Wu, Qinghua; Yuan, Zonghui

    2012-11-01

    Methicillin resistant Staphylococcus aureus (MRSA), widely known as a type of new superbug, has aroused world-wide concern. Cell wall biosynthesis pathway is an old but good target for the development of antibacterial agents. Peptidoglycan and wall teichoic acids (WTAs) biosynthesis are two main processes of the cell wall biosynthesis pathway (CWBP). Other than penicillin-binding proteins (PBPs), some key factors (Mur enzymes, lipid I or II precursor, etc.) in CWBP are becoming attractive molecule targets for the discovery of anti-MRSA compounds. A number of new compounds, with higher affinity for PBPs or with inhibitory activity on such molecule targets in CWBP of MRSA, have been in the pipeline recently. This review concludes recent research achievements and provides a complete picture of CWBP of MRSA, including the peptidoglycan and wall teichoic acids synthesis pathway. The potential inhibitors targeting on CWBP are subsequently presented to improve development of novel therapeutic strategies for MRSA. PMID:22898792

  5. Sperm-cell ultrastructure of North American sturgeons. IV. The pallid sturgeon (Scaphirhynchus albus Forbes and Richardson, 1905)

    Science.gov (United States)

    DiLauro, M.N.; Walsh, R.A.; Peiffer, M.; Bennett, R.M.

    2001-01-01

    Sperm-cell morphology and ultrastructure in the pallid sturgeon (Scaphirhynchus albus) were examined using transmission and scanning electron microscopy. Metrics and structure were compared with similar metrics obtained from other published descriptions of sturgeon sperm cells. General morphology was found to be similar to that of sperm cells of the white (Acipenser transmontanus), lake (A. fulvescens), stellate (A. stellatus), Chinese (A. sinensis), Russian (A. gueldenstaedti colchicus), and shortnose (A. brevirostrum) sturgeons, which all shared a gradual tapering of the nuclear diameter from posterior to anterior, unlike that of the Atlantic sturgeon (A. oxyrhynchus). The sperm cell of the pallid sturgeon was similar in size to that of the Atlantic sturgeon, being only slightly larger. The sperm cell of the pallid sturgeon differed from those of other sturgeons chiefly in the acrosomal region, where the posterolateral projections (PLP) have the shape of an acute triangle and are arranged in a spiral about the longitudinal axis of the cell. The PLP were longer than those of other sturgeons, being twice the length of those of the Atlantic sturgeon and 58% longer than those of the lake sturgeon. Also, in cross section the acrosome had the shape of a hollow cone rather than the cap of an oak tree acorn, as was found in ultrastructural studies of other sturgeons. In addition, we were able to confirm that the structural arrangement of the distal centriole of the midpiece is identical with that of the proximal centriole: nine sets of microtubular triplets around the periphery of the centriole. This information is of potential use to fishery biologists, forensic biologists, zoologists, reproductive physiologists, taxonomists, evolutionary biologists, and aquaculturists.

  6. Co-delivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation.

    Science.gov (United States)

    Schuster, Martin; Martin-Urdiroz, Magdalena; Higuchi, Yujiro; Hacker, Christian; Kilaru, Sreedhar; Gurr, Sarah J; Steinberg, Gero

    2016-01-01

    Fungal cells are surrounded by an extracellular cell wall. This complex matrix of proteins and polysaccharides protects against adverse stresses and determines the shape of fungal cells. The polysaccharides of the fungal wall include 1,3-β-glucan and chitin, which are synthesized by membrane-bound synthases at the growing cell tip. A hallmark of filamentous fungi is the class V chitin synthase, which carries a myosin-motor domain. In the corn smut fungus Ustilago maydis, the myosin-chitin synthase Mcs1 moves to the plasma membrane in secretory vesicles, being delivered by kinesin-1 and myosin-5. The myosin domain of Mcs1 enhances polar secretion by tethering vesicles at the site of exocytosis. It remains elusive, however, how other cell-wall-forming enzymes are delivered and how their activity is coordinated post secretion. Here, we show that the U. maydis class VII chitin synthase and 1,3-β-glucan synthase travel in Mcs1-containing vesicles, and that their apical secretion depends on Mcs1. Once in the plasma membrane, anchorage requires enzyme activity, which suggests co-synthesis of chitin and 1,3-β-glucan polysaccharides at sites of exocytosis. Thus, delivery of cell-wall-forming enzymes in Mcs1 vesicles ensures local foci of fungal cell wall formation. PMID:27563844

  7. Simulated microgravity inhibits cell wall regeneration of Penicillium decumbens protoplasts

    Science.gov (United States)

    Zhao, C.; Sun, Y.; Yi, Z. C.; Rong, L.; Zhuang, F. Y.; Fan, Y. B.

    2010-09-01

    This work compares cell wall regeneration from protoplasts of the fungus Penicillium decumbens under rotary culture (simulated microgravity) and stationary cultures. Using an optimized lytic enzyme mixture, protoplasts were successfully released with a yield of 5.3 × 10 5 cells/mL. Under simulated microgravity conditions, the protoplast regeneration efficiency was 33.8%, lower than 44.9% under stationary conditions. Laser scanning confocal microscopy gave direct evidence for reduced formation of polysaccharides under simulated conditions. Scanning electron microscopy showed the delayed process of cell wall regeneration by simulated microgravity. The delayed regeneration of P. decumbens cell wall under simulated microgravity was likely caused by the inhibition of polysaccharide synthesis. This research contributes to the understanding of how gravitational loads affect morphological and physiological processes of fungi.

  8. Magnetic domain wall conduits for single cell applications

    DEFF Research Database (Denmark)

    Donolato, Marco; Torti, A.; Kostesha, Natalie;

    2011-01-01

    The ability to trap, manipulate and release single cells on a surface is important both for fundamental studies of cellular processes and for the development of novel lab-on-chip miniaturized tools for biological and medical applications. In this paper we demonstrate how magnetic domain walls...... generated in micro- and nano-structures fabricated on a chip surface can be used to handle single yeast cells labeled with magnetic beads. In detail, first we show that the proposed approach maintains the microorganism viable, as proven by monitoring the division of labeled yeast cells trapped by domain...... walls over 16 hours. Moreover, we demonstrate the controlled transport and release of individual yeast cells via displacement and annihilation of individual domain walls in micro- and nano-sized magnetic structures. These results pave the way to the implementation of magnetic devices based on domain...

  9. Primary Cell Wall Structure in the Evolution of Land Plants

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Investigation of the primary cell walls of lower plants improves our understanding of the cell biology of these organisms but also has the potential to improve our understanding of cell wall structure and function in angiosperms that evolved from lower plants. Cell walls were prepared from eight species, ranging from a moss to advanced gymnosperms, and subjected to sequential chemical extraction to separate the main polysaccharide fractions. The glycosyl compositions of these fractions were then determined by gas chromatography. The results were compared among the eight plants and among data from related studies reported in the existing published reports to identify structural features that have been either highly conserved or clearly modified during evolution. Among the highly conserved features are the presence of a cellulose framework, the presence of certain hemicelluloses such as xyloglucan, and the presence of rhamnogalacturonan Ⅱ, a domain in pectic polysaccharides. Among the modified features are the abundance of mannosyl-containing hemicelluloses and the presence of methylated sugars.

  10. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis

    NARCIS (Netherlands)

    Souza, De Amanda P.; Lessa Alvim Kamei, Claire; Torres Salvador, Andres Francisco; Pattathil, Sivakumar; Hahn, Michael G.; Trindade, Luisa M.; Buckeridge, Marcos S.

    2015-01-01

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell wal

  11. Alterations in auxin homeostasis suppress defects in cell wall function.

    Directory of Open Access Journals (Sweden)

    Blaire J Steinwand

    Full Text Available The plant cell wall is a highly dynamic structure that changes in response to both environmental and developmental cues. It plays important roles throughout plant growth and development in determining the orientation and extent of cell expansion, providing structural support and acting as a barrier to pathogens. Despite the importance of the cell wall, the signaling pathways regulating its function are not well understood. Two partially redundant leucine-rich-repeat receptor-like kinases (LRR-RLKs, FEI1 and FEI2, regulate cell wall function in Arabidopsis thaliana roots; disruption of the FEIs results in short, swollen roots as a result of decreased cellulose synthesis. We screened for suppressors of this swollen root phenotype and identified two mutations in the putative mitochondrial pyruvate dehydrogenase E1α homolog, IAA-Alanine Resistant 4 (IAR4. Mutations in IAR4 were shown previously to disrupt auxin homeostasis and lead to reduced auxin function. We show that mutations in IAR4 suppress a subset of the fei1 fei2 phenotypes. Consistent with the hypothesis that the suppression of fei1 fei2 by iar4 is the result of reduced auxin function, disruption of the WEI8 and TAR2 genes, which decreases auxin biosynthesis, also suppresses fei1 fei2. In addition, iar4 suppresses the root swelling and accumulation of ectopic lignin phenotypes of other cell wall mutants, including procuste and cobra. Further, iar4 mutants display decreased sensitivity to the cellulose biosynthesis inhibitor isoxaben. These results establish a role for IAR4 in the regulation of cell wall function and provide evidence of crosstalk between the cell wall and auxin during cell expansion in the root.

  12. Structure, function, and biosynthesis of plant cell walls: proceedings of the seventh annual symposium in botany

    Energy Technology Data Exchange (ETDEWEB)

    Dugger, W.M.; Bartnicki-Garcia, S. (eds.)

    1984-01-01

    Papers in the following areas were included in these symposium proceedings: (1) cell wall chemistry and biosynthesis; (2) cell wall hydrolysis and associated physiology; (3) cellular events associated with cell wall biosynthesis; and (4) interactions of plant cell walls with pathogens and related responses. Papers have been individually abstracted for the data base. (ACR)

  13. The Structure of Plant Cell Walls: II. The Hemicellulose of the Walls of Suspension-cultured Sycamore Cells.

    Science.gov (United States)

    Bauer, W D; Talmadge, K W; Keegstra, K; Albersheim, P

    1973-01-01

    The molecular structure, chemical properties, and biological function of the xyloglucan polysaccharide isolated from cell walls of suspension-cultured sycamore (Acer pseudoplatanus) cells are described. The sycamore wall xyloglucan is compared to the extracellular xyloglucan secreted by suspension-cultured sycamore cells into their culture medium and is also compared to the seed "amyloid" xyloglucans.Xyloglucan-or fragments of xyloglucan-and acidic fragments of the pectic polysaccharides are released from endopolygalacturonase-pretreated sycamore walls by treatment of these walls with 8 m urea, endoglucanase, or 0.5 n NaOH. Some of the xyloglucan thus released is found to cochromatograph with the acidic pectic fragments on diethylaminoethyl Sephadex. The chemical or enzymic treatments required for the release of xyloglucan from the walls and the cochromatography of xyloglucan with the acidic pectic fragments indicate that xyloglucan is covalently linked to the pectic polysaccharides and is noncovalently bound to the cellulose fibrils of the sycamore cell wall.The molecular structure of sycamore xyloglucan was characterized by methylation analysis of the oligosaccharides obtained by endoglucanase treatment of the polymer. The structure of the polymer is based on a repeating heptasaccharide unit which consists of 4 residues of beta-1-4-linked glucose and 3 residues of terminal xylose. A single xylose residue is glycosidically linked to carbon 6 of 3 of the glucosyl residues.

  14. The Interplay between Cell Wall Mechanical Properties and the Cell Cycle in Staphylococcus aureus

    OpenAIRE

    Bailey, Richard G.; Turner, Robert D.; Mullin, Nic; Clarke, Nigel,; Foster, Simon J.; Hobbs, Jamie K.

    2014-01-01

    The nanoscale mechanical properties of live Staphylococcus aureus cells during different phases of growth were studied by atomic force microscopy. Indentation to different depths provided access to both local cell wall mechanical properties and whole-cell properties, including a component related to cell turgor pressure. Local cell wall properties were found to change in a characteristic manner throughout the division cycle. Splitting of the cell into two daughter cells followed a local softe...

  15. Changes of lipid domains in Bacillus subtilis cells with disrupted cell wall peptidoglycan

    OpenAIRE

    Muchová, Katarína; Wilkinson, Anthony J.; Barák, Imrich

    2011-01-01

    The cell wall is responsible for cell integrity and the maintenance of cell shape in bacteria. The Gram-positive bacterial cell wall consists of a thick peptidoglycan layer located on the outside of the cytoplasmic membrane. Bacterial cell membranes, like eukaryotic cell membranes, are known to contain domains of specific lipid and protein composition. Recently, using the membrane-binding fluorescent dye FM4-64, helix-like lipid structures extending along the long axis of the cell and consist...

  16. Echinococcus multilocularis Leuckart, 1863 (Taeniidae): new data on sperm ultrastructure.

    Science.gov (United States)

    Miquel, Jordi; Świderski, Zdzisław; Azzouz-Maache, Samira; Pétavy, Anne-Françoise

    2016-06-01

    The present study establishes the ultrastructural organisation of the mature spermatozoon of Echinococcus multilocularis, which is essential for future research on the location of specific proteins involved in the sperm development in this species and also in Echinococcus granulosus. Thus, the ultrastructural characteristics of the sperm cell are described by means of transmission electron microscopy. The spermatozoon of E. multilocularis is a filiform cell, which is tapered at both extremities and lacks mitochondria. It exhibits all the characteristics of type VII spermatozoon of tapeworms, namely a single axoneme, crested bodies, spiralled cortical microtubules and nucleus, a periaxonemal sheath and intracytoplasmic walls. Other characteristics observed in the male gamete are the presence of a >900-nm long apical cone in its anterior extremity and only the axoneme in its posterior extremity. The ultrastructural characters of the spermatozoon of E. multilocularis are compared with those of other cestodes studied to date, with particular emphasis on representatives of the genus Taenia. The most interesting finding concerns the presence of two helical crested bodies in E. multilocularis while in the studied species of Taenia, there is only one crested body. Future ultrastructural studies of other species of the genus Echinococcus would be of particular interest in order to confirm whether or not the presence of two crested bodies is a characteristic of this genus. PMID:26960958

  17. Ultrastructure of Single Cells, Callus-like and Monosore-like Cells in Porphyra yezoensis Ueda on Semi solid Culture Medium

    Institute of Scientific and Technical Information of China (English)

    梅俊学; 沈颂东; 姜明; 费修绠

    2003-01-01

    It had been demonstrated that individual cells or protoplasts isolated from Porphyra thallus by enzyme could develop into normal leafy thalli in the same way as monospores, and that isolated cells develop in different way in liquid and on semi solid media. The authors observed the ultrastructure of isolated vegetative cells cultured on semi solid media and compared them with those of monospores and isolated cells cultured in liquid media. The results showed that subcellular structures were quite different among cells in different conditions. In their development, isolated cells on semi solid media did not show the characteristic subcellular feature of monospore formation, such as production of fibrous vesicles. Callus like cells formed on semi solid media underwent a distinctive modification in cellular organization. They developed characteristic cell inclusions and a special 2 layer cell covering. Golgi bodies, ER, starch grains, mitochondria. Vacuoles were not commonly found in them.

  18. Ultrastructural and histological changes induced by ivermectin in the ovary of Argas persicus after feeding

    OpenAIRE

    Hamdy, H.Swelim; Aleya, S.Marzouk;Ashraf,A.M.Montasser

    2003-01-01

    The ovarian wall of A.persicus consists of primary oocytes of three developmental stages namely , young , previtellogenic and vitellogenic in addition to interstitial cells . After feeding and mating , the three stages and interstitial cells , particularly funicle cells that carry oocytes , markedly increased in size and their cytoplasmic organelles exhibit notable changes correlated with yolk and egg shell formation . The present study examined the hitological and ultrastructural aspects dur...

  19. Synthesis and Application of Plant Cell Wall Oligogalactans

    DEFF Research Database (Denmark)

    Andersen, Mathias Christian Franch

    The plant cell walls represent almost 50% of the biomass found in plants and are therefore one of the main targets for biotechnological research. Major motivators are their potential as a renewable energy source for transport fuels, as functional foods, and as a source of raw materials to generate...... chemical building blocks for industrial processes. To achieve a sustainable development it is necessary to optimize plant production and utilization. This will require a better understanding of the cell wall structure and function at the molecular level. The cell wall is composed by an intricate network...... of the arabinogalactans series. The fragments were applied in the characterization of a glycosyl transferase, a hydrolase and to study the important cancer biomarker galectin-3. The work done during an external stay at University of Oxford is also presented. This concerns isolation and modification...

  20. Cell wall integrity signalling in human pathogenic fungi.

    Science.gov (United States)

    Dichtl, Karl; Samantaray, Sweta; Wagener, Johannes

    2016-09-01

    Fungi are surrounded by a rigid structure, the fungal cell wall. Its plasticity and composition depend on active regulation of the underlying biosynthesis and restructuring processes. This involves specialised signalling pathways that control gene expression and activities of biosynthetic enzymes. The cell wall integrity (CWI) pathway is the central signalling cascade required for the adaptation to a wide spectrum of cell wall perturbing conditions, including heat, oxidative stress and antifungals. In the recent years, great efforts were made to analyse the CWI pathway of diverse fungi. It turned out that the CWI signalling cascade is mostly conserved in the fungal kingdom. In this review, we summarise as well as compare the current knowledge on the canonical CWI pathway in the human pathogenic fungi Candida albicans, Candida glabrata, Aspergillus fumigatus and Cryptococcus neoformans. Understanding the differences and similarities in the stress responses of these organisms could become a key to improving existing or developing new antifungal therapies. PMID:27155139

  1. Fluorescent Probes for Exploring Plant Cell Wall Deconstruction: A Review

    Directory of Open Access Journals (Sweden)

    Gabriel Paës

    2014-07-01

    Full Text Available Plant biomass is a potential resource of chemicals, new materials and biofuels that could reduce our dependency on fossil carbon, thus decreasing the greenhouse effect. However, due to its chemical and structural complexity, plant biomass is recalcitrant to green biological transformation by enzymes, preventing the establishment of integrated bio-refineries. In order to gain more knowledge in the architecture of plant cell wall to facilitate their deconstruction, many fluorescent probes bearing various fluorophores have been devised and used successfully to reveal the changes in structural motifs during plant biomass deconstruction, and the molecular interactions between enzymes and plant cell wall polymers. Fluorescent probes are thus relevant tools to explore plant cell wall deconstruction.

  2. Transcriptional Wiring of Cell Wall-Related Genes in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Marek Mutwil; Colin Ruprecht; Federico M. Giorgi; Martin Bringmann; Bj(o)rn Usadel; Staffan Persson

    2009-01-01

    Transcriptional coordination, or co-expression, of genes may signify functional relatedness of the correspond-ing proteins. For example, several genes involved in secondary cell wall cellulose biosynthesis are co-expressed with genes engaged in the synthesis of xylan, which is a major component of the secondary cell wall. To extend these types of anal-yses, we investigated the co-expression relationships of all Carbohydrate-Active enZYmes (CAZy)-related genes for Arabidopsis thaliana. Thus, the intention was to transcriptionally link different cell wall-related processes to each other, and also to other biological functions. To facilitate easy manual inspection, we have displayed these interactions as networks and matrices, and created a web-based interface (http://aranet.mpimp-golm.mpg.de/corecarb) containing downloadable files for all the transcriptional associations.

  3. The role of the cell wall in plant immunity

    DEFF Research Database (Denmark)

    Malinovsky, Frederikke Gro; Fangel, Jonatan Ulrik; Willats, William George Tycho

    2014-01-01

    The battle between plants and microbes is evolutionarily ancient, highly complex, and often co-dependent. A primary challenge for microbes is to breach the physical barrier of host cell walls whilst avoiding detection by the plant's immune receptors. While some receptors sense conserved microbial...... features, others monitor physical changes caused by an infection attempt. Detection of microbes leads to activation of appropriate defense responses that then challenge the attack. Plant cell walls are formidable and dynamic barriers. They are constructed primarily of complex carbohydrates joined...... by numerous distinct connection types, and are subject to extensive post-synthetic modification to suit prevailing local requirements. Multiple changes can be triggered in cell walls in response to microbial attack. Some of these are well described, but many remain obscure. The study of the myriad of subtle...

  4. Histochemical effects of γ radiation on soft fruit cell walls

    International Nuclear Information System (INIS)

    Irradiation effects in peaches, tomatoes, cherries and grapes on the composition of cell wall polysaccharides were investigated by histochemical techniques. Cell wall polysaccharides, separated by a modified Jensen's method were pectins, hemicellulose, non-cellulosic polysaccharides and cellulose. The extinction values of Periodic Acid Schiff stained tissues was measured by microscopical photometry. Irradiation induced highly significant changes in polysaccharide composition of mesocarp cell walls; these changes were found to be a function of time of irradiation after harvest and of the species tested. A general influence on polysaccharide molecules was not found. Variations produced by irradiation are postulated to be an interference with a regulatory system rather than a breakdown of a functional molecule (metabolic enzyme or polysaccharide. (author)

  5. Stem and progenitor cells in biostructure of blood vessel walls

    Directory of Open Access Journals (Sweden)

    Krzysztof Korta

    2013-09-01

    Full Text Available Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, “anchored” in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC. Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as “subendothelial or vasculogenic zones”. Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.

  6. Bacterial Cell Wall-Induced Arthritis: Chemical Composition and Tissue Distribution of Four Lactobacillus Strains

    OpenAIRE

    Šimelyte, Egle; Rimpiläinen, Marja; Lehtonen, Leena; Zhang, Xiang; Toivanen, Paavo

    2000-01-01

    To study what determines the arthritogenicity of bacterial cell walls, cell wall-induced arthritis in the rat was applied, using four strains of Lactobacillus. Three of the strains used proved to induce chronic arthritis in the rat; all were Lactobacillus casei. The cell wall of Lactobacillus fermentum did not induce chronic arthritis. All arthritogenic bacterial cell walls had the same peptidoglycan structure, whereas that of L. fermentum was different. Likewise, all arthritogenic cell walls...

  7. Particle Trajectories in Rotating Wall Cell Culture Devices

    Science.gov (United States)

    Ramachandran N.; Downey, J. P.

    1999-01-01

    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.

  8. Ultrastructure of oval cells in children with chronic hepatitis B, with special emphasis on the stage of liver fibrosis: The first pediatric study

    Institute of Scientific and Technical Information of China (English)

    Maria Elzbieta Sobaniec-Lotowska; Joanna Maria Lotowska; Dariusz Marek Lebensztejn

    2007-01-01

    AIM: To investigate the ultrastructure of oval ceils in children with chronic hepatitis B, with special emphasis on their location in areas of collagen fibroplasia.METHODS: Morphological investigations were conducted on biopsy material obtained from 40 children,aged 3-16 years with chronic hepatitis B. The stage of fibrosis was assessed histologically using the arbitrary semiquantitative numerical scoring system proposed by Ishak et al. The material for ultrastructural investigation was fixed in glutaraldehyde and paraformaldehyde and processed for transmission-electron microscopic analysis.RESULTS: Ultrastructural examination of biopsy specimens obtained from children with chronic hepatitis B showed the presence of two types of oval cells, the hepatic progenitor cells and intermediate hepatic-like cells. These cells were present in the parenchyma and were seen most commonly in areas of intense periportal fibrosis (at least stage 2 according to Ishak et al) and in the vicinity of the limiting plate of the lobule. The activated nonparenchymal hepatic cells, i.e. transformed hepatic stellate cells and Kupffer cells were seen in close proximity to the intermediate hepatic-like cells.CONCLUSION: We found a distinct relationship between the prevalence of oval cells (hepatic progenitor cells and intermediate hepatocyte-like cells) and fibrosis stage in pediatric patients with chronic hepatitis B.

  9. Phagocytic properties of lung alveolar wall cells

    Directory of Open Access Journals (Sweden)

    Tanaka,Akisuke

    1974-04-01

    Full Text Available For the purpose to define the mechanism of heavy metal intoxication by inhalation, morphologic observations were made on rat lungs after nasal instillation of iron colloid particles of positive and negative electric charges. Histochemical observation was also made on the liver and spleen of these animals. The instilled iron colloid particles reach the alveolar cavity easily, as can be seen in the tissue sections stained by Prussian blue reaction. Alveolar macrophages do take up them avidly both of positive and negative charges, though much less the positive particles than negative ones. In contrast, the alveolar epithelial cells take up solely positive particles by phagocytosis but not negative ones. Electron microscope observation revealed that the positive particles are ingested by Type I epithelial cells by pinocytosis and by Type II cells by phagocytosis as well. Then the iron colloid particles are transferred into the basement membrane by exocytosis. Travelling through the basement membrane they are again taken up by capillary endothelial cells by phagocytosis. Some particles were found in the intercellular clefts of capillary endothelial cells but not any iron colloid particles in the intercellular spaces of epithelial cells and in the capillary lumen. However, the liver and spleen tissues of the animals given iron colloid showed a strong positive iron reaction. On the basis of these observations, the mechanism of acute intoxication by inhaling heavy metal dusts like lead fume is discussed from the view point of selective uptake of alveolar epithelial and capillary endothelial cells for the particles of the positive electric cha'rge.

  10. Cell Wall Polysaccharides of Candida albicans Induce Mast Cell Degranulation in the Gut

    OpenAIRE

    Sakurai, Atsuko; Yamaguchi, Natsu; Sonoyama, Kei

    2012-01-01

    We investigated Candida albicans-induced mast cell degranulation in vitro and in vivo. Cell wall fraction but not culture supernatant and cell membrane fraction prepared from hyphally grown C. albicans induced β-hexosaminidase release in RBL-2H3 cells. Cell wall mannan and soluble β-glucan fractions also induced β-hexosaminidase release. Histological examination of mouse forestomach showed that C. albicans gut colonization induces mast cell degranulation. However, intragastric administration ...

  11. A model of cell wall expansion based on thermodynamics of polymer networks

    Science.gov (United States)

    Veytsman, B. A.; Cosgrove, D. J.

    1998-01-01

    A theory of cell wall extension is proposed. It is shown that macroscopic properties of cell walls can be explained through the microscopic properties of interpenetrating networks of cellulose and hemicellulose. The qualitative conclusions of the theory agree with the existing experimental data. The dependence of the cell wall yield threshold on the secretion of the wall components is discussed.

  12. The Cellulose System in the Cell Wall of Micrasterias

    Science.gov (United States)

    Kim; Herth; Vuong; Chanzy

    1996-11-01

    The cellulose system of the cell wall of Micrasterias denticulata and Micrasterias rotata was analyzed by diffraction contrast transmission electron microscopy, electron diffraction, and X-ray analysis. The studies, achieved on disencrusted cell ghosts, confirmed that the cellulose microfibrils occurred in crisscrossed bands consisting of a number of parallel ribbon-like microfibrils. The individual microfibrils had thicknesses of 5 nm for a width of around 20 nm, but in some instances, two or three microfibrils merged into one another to yield larger monocrystalline domains reaching up to 60 nm in lateral size. The orientation of the cellulose of Micrasterias is very unusual, as it was found that in the cell wall, the equatorial crystallographic planes of cellulose having a d-spacing of 0.60 nm [(11;0) in the Ibeta cellulose unit cell defined by Sugiyama et al., 1991, Macromolecules 24, 4168-4175] were oriented perpendicular to the cell wall surface. Up to now, such orientation has been found only in Spirogyra, another member of the Zygnemataceae group. The unusual structure of the secondary wall cellulose of Micrasterias may be tentatively correlated with the unique organization of the terminal complexes, which in this alga occur as hexagonal arrays of rosettes. PMID:8986649

  13. The metabolic enzyme ManA reveals a link between cell wall integrity and chromosome morphology.

    OpenAIRE

    Maya Elbaz; Sigal Ben-Yehuda

    2010-01-01

    Author Summary The bacterial cell is resistant to extremes of osmotic pressure and protected against mechanical damages by the existence of a rigid outer shell defined as the cell wall. The strength of the cell wall is achieved by the presence of long glycan strands cross-linked by peptide side bridges. The cell wall is a dynamic structure continuously being synthesized and modified to allow for cell growth and division. Damaging the cell wall leads to abnormal cellular morphologies and cell ...

  14. Active caspase-3 and ultrastructural evidence of apoptosis in spontaneous and induced cell death in bovine in vitro produced pre-implantation embryos

    DEFF Research Database (Denmark)

    Gjørret, Jakob O.; Fabian, Dusan; Avery, Birthe;

    2007-01-01

    In this study we investigated chronological onset and involvement of active caspase-3, apoptotic nuclear morphology, and TUNEL-labeling, as well as ultrastructural evidence of apoptosis, in both spontaneous and induced cell death during pre-implantation development of bovine in vitro produced...... staining for detection of apoptotic nuclear morphology, and subjected to fluorescence microscopy. Additionally, treated and untreated blastocysts were fixed and processed for ultrastructural identification of apoptosis. Untreated embryos revealed no apoptotic features at 2- and 4-cell stages. However......, active caspase-3 and apoptotic nuclear morphology were observed in an untreated 8-cell stage, and TUNEL-labeling was observed from the 16-cell stage. Blastomeres concurrently displaying all apoptotic features were present in a few embryos at 16-cell and morula stages and in all blastocysts. All three...

  15. Catalysts of plant cell wall loosening [version 1; referees: 2 approved

    OpenAIRE

    Cosgrove, Daniel J.

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyl...

  16. An emerging role of pectic rhamnogalacturonanII for cell wall integrity

    OpenAIRE

    Reboul, Rebecca; Tenhaken, Raimund

    2012-01-01

    The plant cell wall is a complex network of different polysaccharides and glycoproteins, showing high diversity in nature. The essential components, tethering cell wall are under debate, as novel mutants challenge established models. The mutant ugd2,3 with a reduced supply of the important wall precursor UDP-glucuronic acid reveals the critical role of the pectic compound rhamnogalacturonanII for cell wall stability. This polymer seems to be more important for cell wall integrity than the pre...

  17. Environmental stability of stem cell wall traits in alfalfa

    Science.gov (United States)

    The concentration of stem cell wall constituents in alfalfa, Medicago sativa L., herbage can affect dry matter intake and energy availability in dairy and beef production systems and impact energy conversion efficiency when alfalfa is used to produce biofuels. Stem Klason lignin, glucose, xylose, an...

  18. Evidence for a Melanin Cell Wall Component in Pneumocystis carinii

    OpenAIRE

    Icenhour, Crystal R.; Kottom, Theodore J.; Limper, Andrew H.

    2003-01-01

    Fluorescein isothiocyanate-labeled monoclonal antibodies specific for fungal melanin were used in this study to visualize melanin-like components of the Pneumocystis carinii cell wall. A colorimetric enzyme assay confirmed these findings. This is the first report of melanin-like pigments in Pneumocystis.

  19. Characterisation of cell-wall polysaccharides from mandarin segment membranes

    NARCIS (Netherlands)

    Coll-Almela, L.; Saura-Lopez, D.; Laencina-Sanchez, J.; Schols, H.A.; Voragen, A.G.J.; Ros-García, J.M.

    2015-01-01

    In an attempt to develop a process of enzymatic peeling of mandarin segments suitable for use on an industrial scale, the cell wall fraction of the segment membrane of Satsuma mandarin fruits was extracted to obtain a chelating agent-soluble pectin fraction (ChSS), a dilute sodium hydroxide-soluble

  20. The identification of cell wall degrading enzymes in Globodera rostochiensis

    NARCIS (Netherlands)

    Popeijus, H.E.

    2002-01-01

    This thesis describes the identification of cell wall degrading enzymes of the potato cyst nematode Globodera rostochiensis . A robust method using expressed sequence tags (ESTs) was applied to identify new parasitism related enzymes. One of the ESTs revealed the first pectate lyase from a metazoan

  1. Characterisation of cell wall polysaccharides in bilberries and black currants

    NARCIS (Netherlands)

    Hilz, H.

    2007-01-01

    During berry juice production, polysaccharides are released from the cell walls and cause thickening and high viscosity when the berries are mashed. Consequences are a low juice yield and a poor colour. This can be prevented by the use of enzymes that degrade these polysaccharides. To use these enzy

  2. Analyzing the complex machinery of cell wall biosynthesis

    NARCIS (Netherlands)

    Timmers, J.F.P.

    2009-01-01

    The plant cell wall polymers make up most of the plant biomass and provide the raw material for many economically important products including food, feed, bio-materials, chemicals, textiles, and biofuel. This broad range of functions and applications make the biosynthesis of these polysaccharides a

  3. Microstructural study of carbonized wood after cell wall sectioning

    NARCIS (Netherlands)

    Ishimaru, Kengo; Hata, Toshimitsu; Bronsveld, Paul; Imamura, Yuji

    2007-01-01

    Wooden blocks of Japanese cedar (Cryptomeria japonica) were carbonized at 700 and 1,800 degrees C. The microstructure was analyzed by transmission electron microscopy (TEM) and mu-Raman spectroscopy of the inner planes of wood cell walls. The predominant structure was of a turbostratic nature and no

  4. Hetero-oligomeric cell wall channels (porins) of Nocardia farcinica.

    Science.gov (United States)

    Kläckta, Christian; Knörzer, Philipp; Riess, Franziska; Benz, Roland

    2011-06-01

    The cell wall of Nocardia farcinica contains a cation-selective cell wall channel, which may be responsible for the limited permeability of the cell wall of N. farcinica for negatively charged antibiotics. Based on partial sequencing of the protein responsible for channel formation derived from N. farcinica ATTC 3318 we were able to identify the corresponding genes (nfa15890 and nfa15900) within the known genome of N. farcinica IFM 10152. The corresponding genes of N. farcinica ATTC 3318 were separately expressed in the Escherichia coli BL21DE3Omp8 strain and the N-terminal His10-tagged proteins were purified to homogeneity using immobilized metal affinity chromatography. The pure proteins were designated NfpANHis and NfpBNHis, for N. farcinica porin A and N. farcinica porin B. The two proteins were checked separately for channel formation in lipid bilayers. Our results clearly indicate that the proteins NfpANHis and NfpBNHis expressed in E. coli could only together form a channel in lipid bilayer membranes. This means that the cell wall channel of N. farcinica is formed by a heterooligomer. NfpA and NfpB form together a channel that may structurally be related to MspA of Mycobacterium smegmatis based on amino acid comparison and renaturation procedure. PMID:21092733

  5. Polymer mobility in cell walls of cucumber hypocotyls

    Science.gov (United States)

    Fenwick, K. M.; Apperley, D. C.; Cosgrove, D. J.; Jarvis, M. C.

    1999-01-01

    Cell walls were prepared from the growing region of cucumber (Cucumis sativus) hypocotyls and examined by solid-state 13C NMR spectroscopy, in both enzymically active and inactivated states. The rigidity of individual polymer segments within the hydrated cell walls was assessed from the proton magnetic relaxation parameter, T2, and from the kinetics of cross-polarisation from 1H to 13C. The microfibrils, including most of the xyloglucan in the cell wall, as well as cellulose, behaved as very rigid solids. A minor xyloglucan fraction, which may correspond to cross-links between microfibrils, shared a lower level of rigidity with some of the pectic galacturonan. Other pectins, including most of the galactan side-chain residues of rhamnogalacturonan I, were much more mobile and behaved in a manner intermediate between the solid and liquid states. The only difference observed between the enzymically active and inactive cell walls, was the loss of a highly mobile, methyl-esterified galacturonan fraction, as the result of pectinesterase activity.

  6. The digestion of yeast cell wall polysaccharides in veal calves

    NARCIS (Netherlands)

    Gaillard, B.D.E.; Weerden, van E.J.

    1976-01-01

    1. The digestibility of the cell wall polysaccharides of an alkane-grown yeast in different parts of the digestive tract of two veal calves fitted with re-entrant cannulas at the end of the ileum was studied by replacing part of the skim-milk powder of their ‘normal’, milk-substitute (all-milk-prote

  7. A Phosphorylated Pseudokinase Complex Controls Cell Wall Synthesis in Mycobacteria

    OpenAIRE

    Gee, Christine L.; Papavinasasundaram, Kadamba G.; Blair, Sloane R.; Baer, Christina E.; Falick, Arnold M.; King, David S.; Griffin, Jennifer E.; Venghatakrishnan, Harene; Zukauskas, Andrew; Wei, Jun-Rong; Dhiman, Rakesh K.; Crick, Dean C.; Rubin, Eric J.; Sassetti, Christopher M.; Alber, Tom

    2012-01-01

    Prokaryotic cell wall biosynthesis is coordinated with cell growth and division, but the mechanisms regulating this dynamic process remain obscure. Here, we describe a phosphorylation-dependent regulatory complex that controls peptidoglycan (PG) biosynthesis in Mycobacterium tuberculosis. We found that PknB, a PG-responsive Ser-Thr protein kinase (STPK), initiates complex assembly by phosphorylating a kinase-like domain in the essential PG biosynthetic protein, MviN. This domain was structura...

  8. Structure of Plant Cell Walls: XI. GLUCURONOARABINOXYLAN, A SECOND HEMICELLULOSE IN THE PRIMARY CELL WALLS OF SUSPENSION-CULTURED SYCAMORE CELLS.

    Science.gov (United States)

    Darvill, J E; McNeil, M; Darvill, A G; Albersheim, P

    1980-12-01

    The isolation, purification, and partial characterization of a glucuronoarabinoxylan, a previously unobserved component of the primary cell walls of dicotyledonous plants, are described. The glucuronoarabinoxylan constitutes approximately 5% of the primary walls of suspension-cultured sycamore cells. This glucuronoarabinoxylan possesses many of the structural characteristics of analogous polysaccharides that have been isolated from the primary and secondary cell walls of monocots as well as from the secondary cell walls of dicots. The glucuronoarabinoxylan of primary dicot cell walls has a linear beta-1,4-linked d-xylopyranosyl backbone with both neutral and acidic sidechains attached at intervals along its length. The acidic sidechains are terminated with glucuronosyl or 4-O-methyl glucuronosyl residues, whereas the neutral sidechains are composed of arabinosyl and/or xylosyl residues.

  9. Crushing Strength of Aluminum Honeycomb with Thinning Cell Wall

    Science.gov (United States)

    Ogasawara, Nagahisa; Chiba, Norimasa; Kobayashi, Eiji; Kikuchi, Yuji

    To evaluate the crash safety of automobiles, various collision tests are performed by the auto industry. In the offset frontal collision test and the side collision test, the target is an aluminum honeycomb material which has thinning cell walls. In this study, based on the analyses of the shock absorption mechanism, a new crushing strength formula is proposed. First, load-displacement curves obtained from compression tests in quasi-static condition showed an almost linear relation between a thinning rate of cell walls and a crushing strength. Second, based on Wierzbicki's theory, a new formula was proposed, which can estimate a crushing strength of a honeycomb material with thinning wall. In addition, a correcting equation which considered an elastic deformation was also proposed. Third, parametric analyses were carried out with a FE model which can simulate a delamination between cell walls. The results obtained from the theory and FEM almost corresponded to each other for a wide range of the thinning rate. Fourth, impact tests were carried out, in which the weight was dropped freely at the speed used for the automobile tests. Those results almost agreed well with the sum of the theoretical crush strength and the inside air pressure.

  10. In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions

    OpenAIRE

    Shigeru Deguchi; Kaoru Tsujii; Koki Horikoshi

    2015-01-01

    Recent findings of intact chitin in fossil records suggest surprisingly high recalcitrance of this biopolymer during hydrothermal treatments. We also know in the experience of everyday life that mushroom, cells of which have chitinous cell walls, do not fall apart however long they are simmered. We used in situ optical microscopy to examine chitin and fungal cells with chitinous cell walls during hydrothermal treatments, and obtained direct evidence that they remained undegraded at temperatur...

  11. Ultrastructural observations of fibroblast-like cells forming gap junctions in the W/W(nu) mouse small intestine.

    Science.gov (United States)

    Horiguchi, K; Komuro, T

    2000-05-12

    The ultrastructure of the wild-type (+/+) mice small intestine was compared with c-kit mutant (W/W(nu)) mice which only have few interstitial cells of Cajal (ICC) associated with Auerbach's plexus, in order to elucidate whether the specialized membrane contacts are general features of so-called fibroblast-like cells that are widely distributed in the tunica muscularis of the alimentary tract. Fibroblast-like cells in the Auerbach region were found in approximately equal number in W/W(nu) mice as in +/+ mice, while ICC associated with Auerbach's plexus (ICC-AP) could not be demonstrated in W/W(nu) mice in the present investigation. Fibroblast-like cells were characterized by cytoplasm of moderate to high electron density, well developed rough endoplasmic reticulum and nuclei with thick peripheral accumulations of heterochromatin. There were no basal lamina and caveolae along the cell membrane. It was observed that single fibroblast-like cells formed probable small gap junctions with muscle cells of both circular and longitudinal layers. Fibroblast-like cells with the same features were also observed in the region of the deep muscular plexus in both +/+ and W/W(nu) mice. The present observation, together with our previous studies on rats and guinea-pigs, suggest the common presence of gap junctions or gap junction-like structures on fibroblast-like cells in the gastrointestinal musculature and their involvement in the regulatory system of gastrointestinal motility by passing electrical or molecular signals to influence the state of muscle tonus.

  12. Identification of Cell Wall Synthesis Regulatory Genes Controlling Biomass Characteristics and Yield in Rice (Oryza Sativa)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhaohua PEng [Mississippi State University; Ronald, Palmela [UC-Davis; Wang, Guo-Liang [The Ohio State University

    2013-04-26

    This project aims to identify the regulatory genes of rice cell wall synthesis pathways using a cell wall removal and regeneration system. We completed the gene expression profiling studies following the time course from cell wall removal to cell wall regeneration in rice suspension cells. We also completed, total proteome, nuclear subproteome and histone modification studies following the course from cell wall removal and cell wall regeneration process. A large number of differentially expressed regulatory genes and proteins were identified. Meanwhile, we generated RNAi and over-expression transgenic rice for 45 genes with at least 10 independent transgenic lines for each gene. In addition, we ordered T-DNA and transposon insertion mutants for 60 genes from Korea, Japan, and France and characterized the mutants. Overall, we have mutants and transgenic lines for over 90 genes, exceeded our proposed goal of generating mutants for 50 genes. Interesting Discoveries a) Cell wall re-synthesis in protoplasts may involve a novel cell wall synthesis mechanism. The synthesis of the primary cell wall is initiated in late cytokinesis with further modification during cell expansion. Phragmoplast plays an essential role in cell wall synthesis. It services as a scaffold for building the cell plate and formation of a new cell wall. Only one phragmoplast and one new cell wall is produced for each dividing cell. When the cell wall was removed enzymatically, we found that cell wall re-synthesis started from multiple locations simultaneously, suggesting that a novel mechanism is involved in cell wall re-synthesis. This observation raised many interesting questions, such as how the starting sites of cell wall synthesis are determined, whether phragmoplast and cell plate like structures are involved in cell wall re-synthesis, and more importantly whether the same set of enzymes and apparatus are used in cell wall re-synthesis as during cytokinesis. Given that many known cell wall

  13. Surface Analyses and Immune Reactivities of Major Cell Wall-Associated Proteins of Group A Streptococcus

    OpenAIRE

    Cole, Jason N; Ramirez, Ruben D.; Currie, Bart J.; Cordwell, Stuart J.; Djordjevic, Steven P.; Mark J Walker

    2005-01-01

    A proteomic analysis was undertaken to identify cell wall-associated proteins of Streptococcus pyogenes. Seventy-four distinct cell wall-associated proteins were identified, 66 of which were novel. Thirty-three proteins were immunoreactive with pooled S. pyogenes-reactive human antisera. Biotinylation of the GAS cell surface identified 23 cell wall-associated proteins that are surface exposed.

  14. Pectic arabinan side chains are essential for pollen cell wall integrity during pollen development

    NARCIS (Netherlands)

    Cankar, K.; Kortstee, A.J.; Toonen, M.A.J.; Wolters-Arts, M.; Houbein, R.; Mariani, C.; Ulvskov, P.; Jorgensen, B.; Schols, H.A.; Visser, R.G.F.; Trindade, L.M.

    2014-01-01

    Pectin is a complex polysaccharide and an integral part of the primary plant cell wall and middle lamella, contributing to cell wall mechanical strength and cell adhesion. To understand the structure–function relationships of pectin in the cell wall, a set of transgenic potato lines with altered pec

  15. Targeted and non-targeted effects in cell wall polysaccharides from transgenetically modified potato tubers

    NARCIS (Netherlands)

    Huang, J.H.

    2016-01-01

    The plant cell wall is a chemically complex network composed mainly of polysaccharides. Cell wall polysaccharides surround and protect plant cells and are responsible for the stability and rigidity of plant tissue. Pectin is a major component of primary cell wall and the middle lamella of plants. Ho

  16. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures

    Institute of Scientific and Technical Information of China (English)

    Hugo Melida; Antonio Encina; Asier Largo-Gosens; Esther Novo-Uzal; Rogelio Santiago; Federico Pomar; Pedro Garca; Penelope Garca-Angulo; Jose Luis Acebes; Jesus Alvarez

    2015-01-01

    Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment.

  17. Orbital wall infarction in child with sickle cell disease.

    Science.gov (United States)

    Janssens, C; Claeys, L; Maes, P; Boiy, T; Wojciechowski, M

    2015-12-01

    We present the case of a 17-year-old boy, known with homozygous sickle cell disease, who was admitted because of generalised pain. He developed bilateral periorbital oedema and proptosis, without pain or visual disturbances. In addition to hyperhydration, oxygen and analgesia IV antibiotics were started, to cover a possible osteomyelitis. Patients with sickle cell disease are at risk for vaso-occlusive crises, when the abnormally shaped red blood cells aggregate and block the capillaries. Such a crisis typically presents at a location with high bone marrow activity, as the vertebrae and long bones. At an early age, the bone marrow is still active at other sites, for example the orbital wall, and thus infarction can also occur there. Thus, in young persons with sickle cell disease, it is important to consider orbital wall infarction in the differential diagnosis, since the approach is different from osteomyelitis. If the disease is complicated by an orbital compression syndrome, corticosteroids or surgical intervention may be necessary to preserve the vision. In our patient, an MRI of the orbitae demonstrated periorbital oedema with bone anomalies in the orbital and frontal bones, confirming orbital wall infarction. Ophthalmological examination revealed no signs of pressure on the nervus opticus. The patient recovered gradually with conservative treatment.

  18. Orbital wall infarction in child with sickle cell disease.

    Science.gov (United States)

    Janssens, C; Claeys, L; Maes, P; Boiy, T; Wojciechowski, M

    2015-12-01

    We present the case of a 17-year-old boy, known with homozygous sickle cell disease, who was admitted because of generalised pain. He developed bilateral periorbital oedema and proptosis, without pain or visual disturbances. In addition to hyperhydration, oxygen and analgesia IV antibiotics were started, to cover a possible osteomyelitis. Patients with sickle cell disease are at risk for vaso-occlusive crises, when the abnormally shaped red blood cells aggregate and block the capillaries. Such a crisis typically presents at a location with high bone marrow activity, as the vertebrae and long bones. At an early age, the bone marrow is still active at other sites, for example the orbital wall, and thus infarction can also occur there. Thus, in young persons with sickle cell disease, it is important to consider orbital wall infarction in the differential diagnosis, since the approach is different from osteomyelitis. If the disease is complicated by an orbital compression syndrome, corticosteroids or surgical intervention may be necessary to preserve the vision. In our patient, an MRI of the orbitae demonstrated periorbital oedema with bone anomalies in the orbital and frontal bones, confirming orbital wall infarction. Ophthalmological examination revealed no signs of pressure on the nervus opticus. The patient recovered gradually with conservative treatment. PMID:26790559

  19. Electron microscopy of the germ cells and the ovarian wall in Xiphinema (Nematoda).

    Science.gov (United States)

    Van de Velde, M C; Coomans, A

    1988-01-01

    The ovary of Xiphinema theresiae is studied ultrastructurally. It consists of two cell types, the ovarian epithelial cells and the germ cells. The ovarian epithelial cells form a thin layer around the germ cells. Their nuclei are located in between the germ cells. At some sites, processes of the ovarian epithelial cells migrate inward and form a central cytoplasmic mass. The germ cells have a large lobated nucleus, with an eccentric nucleolus, and are considered to represent young previtellogenic oocytes. In contact with the central cytoplasmic mass, the germ cells develop two membrane derived features, the villi and the small coated bulges, which most probably play a role in transport.

  20. A new nidovirus (NamDinh virus NDiV): Its ultrastructural characterization in the C6/36 mosquito cell line

    Energy Technology Data Exchange (ETDEWEB)

    Thuy, Nguyen Thanh, E-mail: ngtthuy02@yahoo.com [National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hai Ba Trung District, Hanoi (Viet Nam); Huy, Tran Quang, E-mail: huytq@nihe.org.vn [National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hai Ba Trung District, Hanoi (Viet Nam); Nga, Phan Thi [National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hai Ba Trung District, Hanoi (Viet Nam); Morita, Kouichi [Department of Virology, Institute of Tropical Medicine, Global COE Program, Nagasaki University, Nagasaki (Japan); Dunia, Irene; Benedetti, Lucio [Institut Jacques Monod, UMR7592 Université Paris Diderot/CNRS, Paris (France)

    2013-09-15

    We describe the ultrastructure of the NamDinh virus (NDiV), a new member of the order Nidovirales grown in the C6/36 mosquito cell line. Uninfected and NDiV-infected cells were investigated by electron microscopy 24–48 h after infection. The results show that the viral nucleocapsid-like particles form clusters concentrated in the vacuoles, the endoplasmic reticulum, and are scattered in the cytoplasm. Mature virions of NDiV were released as budding particles on the cell surface where viral components appear to lie beneath and along the plasma membrane. Free homogeneous virus particles were obtained by ultracentrifugation on sucrose gradients of culture fluids. The size of the round-shaped particles with a complete internal structure was 80 nm in diameter. This is the first study to provide information on the morphogenesis and ultrastructure of the first insect nidovirus NDiV, a missing evolutionary link in the emergence of the viruses with the largest RNA genomes. - Highlights: • NamDinh virus (NDiV), a new member of the order Nidovirales was tested in cultured cell line. • The morphogenesis and ultrastructure of NDiV were investigated by electron microscopy. • The viral nucleocapsid-like particles clustered and scattered in the cytoplasm. • NDiVs were released as budding particles on the cell surface. • The size of the viral particles with a complete internal structure was 80 nm in diameter.

  1. [Ultrastructural analysis of anastomosis group 9 of Rhizoctonia solani].

    Science.gov (United States)

    Cedeño, L; Palacios Prü, E

    1996-01-01

    The ultrastructure of R. solani AG-9 (S-21, ATCC 62804) was investigated with transmission electron microscopy (TEM). The most important characteristics were those related with cell wall thickness, cytoplasmic matrix composition, number of nuclei and nucleoli and secretory material production. The majority of examined hyphae showed lateral cell walls thinner than those recorded before. The cytoplasmic matrix consistently appeared differentiated into two classes, one formed by a highly electron dense granular fine material and the other one showing a coloidal substance of very low density which give these cells a 'tiger-like' aspect. The grannular dense matrix always had abundant free ribosomes and usually surrounded the cytoplasmic organelles and the septal pore apparatus. The somatic cells showed up to 5 nuclei, some of which with three nucleoli. Masses of secretory material surrounded by membrane were regularly seen in the cytoplasm, with sizes similar to those of nuclei. PMID:9334448

  2. Ultrastructural analysis of anastomosis group 9 of Rhizoctonia solani

    International Nuclear Information System (INIS)

    The ultrastructure of R. solani AG-9 (S-21, ATCC 62804) was investigated with transmission electron microscopy (TEM). The most important characteristics were those related with cell wall thickness, cytoplasmic matrix composition, number of nuclei and nucleoli and secretory material production. The majority of examined hyphae showed lateral cell walls thinner than those recorded before. The cytoplasmic matrix consistently appeared differentiated into two classes, one formed by a highly electron dense granular fine material and the other one showing a coloidal substance of very low density which give these cells a 'tiger-like' aspect. The granular dense matrix always had abundant free ribosomes and usually surrounded the cytoplasmic organelles and the septal pore apparatus. The somatic cells showed up to 5 nuclei, some of which with three nucleoli. Masses of secretory material surrounded by membrane were regularly seen in the cytoplasm, with sizes similar to those of nuclei

  3. Antigenicity and immunogenicity of an extract from the cell wall and cell membrane of Histoplasma capsulatum yeast cells.

    OpenAIRE

    Gómez, A M; Rhodes, J C; Deepe, G S

    1991-01-01

    In order to identify T-cell antigens from Histoplasma capsulatum yeast cells, we prepared a detergent extract of the cell wall and cell membrane of yeast-phase H. capsulatum G217B and analyzed its antigenicity and immunogenicity. Mice injected with viable H. capsulatum yeast cells or with 500 or 1,000 micrograms of the extract mounted a delayed-type hypersensitivity response to solubilized cell wall and cell membrane. Vaccination with this antigenic preparation conferred a protective immune r...

  4. Distribution and ultrastructure of pigment cells in the skins of normal and albino adult turbot, Scophthalmus Maximus

    Institute of Scientific and Technical Information of China (English)

    GUO Huarong; HUANG Bing; QI Fei; ZHANG Shicui

    2007-01-01

    The distribution and ultrastructure of pigment cells in skins of normal and albino adult turbots were examined with transmission electron microscopy (TEM). Three types of pigment cells of melanophore, iridophore and xanthophore have been recognized in adult turbot skins. The skin color depends mainly on the amount and distribution of melanophore and iridophore, as xanthophore is quite rare. No pigment cells can be found in the epidermis of the skins. In the pigmented ocular skin of the turbot, melanophore and iridophore are usually co-localized in the dermis. This is quite different from the distribution in larvae skin. In albino and white blind skins of adult turbots, however, only iridophore monolayer still exists, while the melanophore monolayer disappears. This cytological evidence explains why the albino adult turbot, unlike its larvae, could never resume its body color no matter what environmental and nutritional conditions were provided. Endocytosis is quite active in the cellular membrane of the iridophore. This might be related to the formation of reflective platelet and stability of the iridophore.

  5. EffectS Of Synergism Between PVY and PVX on Vi rus Titer and Cell Ultrastructure in Tobacco Plants

    Institute of Scientific and Technical Information of China (English)

    LI Han; GUO Xing-qi; LI Xiang-dong; GUO Heng-jun; LI Zhao-hui

    2003-01-01

    The viruses titer and the ultrastructure of infected cells in tobacco host (Nicotiana tabacum cv.Samsun), which doubly infected with potato virus Y necrosis strain (PVYN) and potato virus X (PVX), were studied under greenhouse conditions. The results indicated that PVYN and PVX interacted synergistically, and tobacco plants which doubly infected with PVX and PVYN could greatly increase symptom severity as compared with that induced by the single virus. As determined by triple antibody sandwich enzyme-linked immunosorbent assay (TAS-ELISA), the titer of PVX in the tobacco leaves infected with both PVYN and PVX was up to 9.10 times higher than the plants infected with PVX only. No significant differences in PVYN titer were detected between singly and doubly infected plants. The enhancement of PVX titer in doubly infected plants was evident in greenhouse and was independent of the virus strains, tested seasons, intervals between PVYN and PVX inoculation. When sections of doubly infected leaves were examined with an electron microscope, it could be frequently found that cells contained pinwheels and large masses of PVX-like particles, pinwheels and laminate inclusions, or all three structures, most of them were swollen, and their chloroplast and other organella were destructed heavily. This suggested that doubly infected cells were involved in the enhancement phenomenon,which seemed to be the result of an increase in the amount of PVX synthesized in them.

  6. Cell wall bound anionic peroxidases from asparagus byproducts.

    Science.gov (United States)

    Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael

    2014-10-01

    Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters.

  7. Cytoplasmic streaming in plant cells: the role of wall slip.

    Science.gov (United States)

    Wolff, K; Marenduzzo, D; Cates, M E

    2012-06-01

    We present a computer simulation study, via lattice Boltzmann simulations, of a microscopic model for cytoplasmic streaming in algal cells such as those of Chara corallina. We modelled myosin motors tracking along actin lanes as spheres undergoing directed motion along fixed lines. The sphere dimension takes into account the fact that motors drag vesicles or other organelles, and, unlike previous work, we model the boundary close to which the motors move as walls with a finite slip layer. By using realistic parameter values for actin lane and myosin density, as well as for endoplasmic and vacuole viscosity and the slip layer close to the wall, we find that this simplified view, which does not rely on any coupling between motors, cytoplasm and vacuole other than that provided by viscous Stokes flow, is enough to account for the observed magnitude of streaming velocities in intracellular fluid in living plant cells.

  8. Roles of tRNA in cell wall biosynthesis

    DEFF Research Database (Denmark)

    Dare, Kiley; Ibba, Michael

    2012-01-01

    responsible for cell wall modifications, aminoacyl-phosphatidylglycerol synthases (aaPGSs) and Fem, were discovered some time ago, they have recently become of intense interest for their roles in the antimicrobial resistance of pathogenic microorganisms. The addition of positively charged amino acids...... to phosphatidylglycerol (PG) by aaPGSs neutralizes the lipid bilayer making the bacteria less susceptible to positively charged antimicrobial agents. Fem transferases utilize aa-tRNA to form peptide bridges that link strands of peptidoglycan. These bridges vary among the bacterial species in which they are present...... and play a role in resistance to antibiotics that target the cell wall. Additionally, the formation of truncated peptides results in shorter peptide bridges and loss of branched linkages which makes bacteria more susceptible to antimicrobials. A greater understanding of the structure and substrate...

  9. Effects of spaceflight on polysaccharides of Saccharomyces cerevisiae cell wall.

    Science.gov (United States)

    Liu, Hong-Zhi; Wang, Qiang; Liu, Xiao-Yong; Tan, Sze-Sze

    2008-12-01

    Freeze-dried samples of four Saccharomyces cerevisiae strains, namely, FL01, FL03, 2.0016, and 2.1424, were subjected to spaceflight. After the satellite's landing on Earth, the samples were recovered and changes in yeast cell wall were analyzed. Spaceflight strains of all S. cerevisiae strains showed significant changes in cell wall thickness (P growth curve analysis showed spaceflight S. cerevisiae 2.0016 had a faster growth rate, shorter lag phase periods, higher final biomass, and higher content of beta-glucan. Genetic stability analysis showed that prolonged subculturing of spaceflight strain S. cerevisiae 2.0016 did not lead to the appearance of variants, indicating that the genetic stability of S. cerevisiae 2.0016 mutant could be sufficient for its exploitation of beta-glucan production. PMID:18797865

  10. Regulation of plant cells, cell walls and development by mechanical signals

    Energy Technology Data Exchange (ETDEWEB)

    Meyerowitz, Elliot M. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2016-06-14

    The overall goal of the revised scope of work for the final year of funding was to characterize cell wall biosynthesis in developing cotyledons and in the shoot apical meristem of Arabidopsis thaliana, as a way of learning about developmental control of cell wall biosynthesis in plants, and interactions between cell wall biosynthesis and the microtubule cytoskeleton. The proposed work had two parts – to look at the effect of mutation in the SPIRAL2 gene on microtubule organization and reorganization, and to thoroughly characterize the glycosyltransferase genes expressed in shoot apical meristems by RNA-seq experiments, by in situ hybridization of the RNAs expressed in the meristem, and by antibody staining of the products of the glycosyltransferases in meristems. Both parts were completed; the spiral2 mutant was found to speed microtubule reorientation after ablation of adjacent cells, supporting our hypothesis that reorganization correlates with microtubule severing, the rate of which is increased by the mutation. The glycosyltransferase characterization was completed and published as Yang et al. (2016). Among the new things learned was that primary cell wall biosynthesis is strongly controlled both by cell type, and by stage of cell cycle, implying not only that different, even adjacent, cells can have different sugar linkages in their (nonshared) walls, but also that a surprisingly large proportion of glycosyltransferases is regulated in the cell cycle, and therefore that the cell cycle regulates wall maturation to a degree previously unrecognized.

  11. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

    Directory of Open Access Journals (Sweden)

    Ying Luo

    Full Text Available The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.

  12. REGULATION OF PLANT CELLS, CELL WALLS AND DEVELOPMENT BY MECHANICAL SIGNALS

    Energy Technology Data Exchange (ETDEWEB)

    Meyerowitz, Elliot M [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2016-08-22

    The overall goal of the revised scope of work for the final year of funding was to characterize cell wall biosynthesis in developing cotyledons and in the shoot apical meristem of Arabidopsis thaliana, as a way of learning about developmental control of cell wall biosynthesis in plants, and interactions between cell wall biosynthesis and the microtubule cytoskeleton. The proposed work had two parts – to look at the effect of mutation in the SPIRAL2 gene on microtubule organization and reorganization, and to thoroughly characterize the glycosyltransferase genes expressed in shoot apical meristems by RNA-seq experiments, by in situ hybridization of the RNAs expressed in the meristem, and by antibody staining of the products of the glycosyltransferases in meristems. Both parts were completed; the spiral2 mutant was found to speed microtubule reorientation after ablation of adjacent cells, supporting our hypothesis that reorganization correlates with microtubule severing, the rate of which is increased by the mutation. The glycosyltransferase characterization was completed and published as Yang et al. (2016). Among the new things learned was that primary cell wall biosynthesis is strongly controlled both by cell type, and by stage of cell cycle, implying not only that different, even adjacent, cells can have different sugar linkages in their (nonshared) walls, but also that a surprisingly large proportion of glycosyltransferases is regulated in the cell cycle, and therefore that the cell cycle regulates wall maturation to a degree previously unrecognized.

  13. Cell wall perturbation sensitizes fungi to the antimalarial drug chloroquine

    OpenAIRE

    Islahudin, Farida; Khozoie, Combiz; Bates, Steven; Ting, Kang-Nee; Pleass, Richard J.; Avery, Simon V.

    2013-01-01

    Chloroquine (CQ) has been a mainstay of antimalarial drug treatment for several decades. Additional therapeutic actions of CQ have been described, including some reports of fungal inhibition. Here we investigated the action of CQ in fungi, including the yeast model Saccharomyces cerevisiae. A genomewide yeast deletion strain collection was screened against CQ, revealing that bck1Δ and slt2Δ mutants of the cell wall integrity pathway are CQ hypersensitive. This phenotype was rescued with sorbi...

  14. Life behind cell walls: paradigm lost, paradigm regained.

    Science.gov (United States)

    Lamport, D T

    2001-09-01

    This review of the living cell wall and its protein components is in two parts. The first is anecdotal. A personal account spanning over 40 years research may perhaps be an antidote to one stereotypical view of scientists as detached and humorless. The second part deals with the meaning of function, particularly as it applies to hydroxyproline-rich glycoproteins. Function is a difficult word to define objectively. However, with help from such luminaries as Humpty Dumpty: "A word means what I want it to mean, neither more nor less," and Wittgenstein: "Giving examples of usage ... is the only way to talk about meaning," it is possible to construct a ziggurat representing increasingly complex levels of organization from molecular structure to ecology. Forty years ago I suggested that hydroxyproline-rich structural proteins played a key role in cell wall functioning. But because the bulk of the wall is carbohydrate, there has been an understandable resistance to paradigm change. Expansins, paradoxically, contribute greatly to this resistance because their modus operandi as cell-wall-loosening proteins is based on the idea that they break hydrogen bonds between polysaccharide chains allowing slippage. However, this view is not consistent with the recent discovery [Grobe et al. (1999) Eur. J. Biochem 263: 33-40] that beta-expansins may be proteases, as it implies that the extensin network is not a straightjacket but a substrate for expansin in muro. Such a direct role for extensins in both negative and positive regulation of cell expansion and elongation may constitute a major morphogenetic mechanism operating at all levels of plant growth and development.

  15. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    OpenAIRE

    Thygesen, Lisbeth G; Thybring, Emil E.; Johansen, Katja S.; Claus Felby

    2014-01-01

    Mechanical agitation during enzymatic hydrolysis of insoluble plant biomass at high dry matter contents is indispensable for the initial liquefaction step in biorefining. It is known that particle size reduction is an important part of liquefaction, but the mechanisms involved are poorly understood. Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic ...

  16. Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves

    OpenAIRE

    Mediesse Kengne Francine; Woguia Alice Louise; Fogue Souopgui Pythagore; Atogho-Tiedeu Barbara; Simo Gustave; Thaddée Boudjeko

    2014-01-01

    Objective: To examine the total phenolic and protein contents, and the antioxidant activities of cell wall polysaccharide fractions of Stevia rebaudiana leaves. Methods: Three different polysaccharide-enriched fractions, namely FPE (extract with 50 mmol/ L ethylene diamine tetra acetic acid), FPK (extract with 0.05 mol/L KOH) and FH (extract with 4 mol/L KOH) were extracted from Stevia rebaudiana leaves. The antioxidant activity of these fractions was evaluated based on thei...

  17. Enzyme Amplified Detection of Microbial Cell Wall Components

    Science.gov (United States)

    Wainwright, Norman R.

    2004-01-01

    This proposal is MBL's portion of NASA's Johnson Space Center's Astrobiology Center led by Principal Investigator, Dr. David McKay, entitled: 'Institute for the Study of Biomarkers in Astromaterials.' Dr. Norman Wainwright is the principal investigator at MBL and is responsible for developing methods to detect trace quantities of microbial cell wall chemicals using the enzyme amplification system of Limulus polyphemus and other related methods.

  18. Cell-wall hemicelluloses as mobile carbon stores in plants

    OpenAIRE

    Schädel, Christina

    2009-01-01

    Hemicelluloses are the second most abundant polysaccharide in nature after cellulose. So far, the chemical heterogeneity of cell-wall hemicelluloses and the relatively large sample-volume required in existing methods represent major obstacles for large-scale, cross-species analyses of this important plant compounds. Here, we apply a new micro-extraction method to analyse hemicelluloses and the ratio of ‘cellulose and lignin’ to hemicelluloses in different tissues of 28 plant species comprisin...

  19. 黄瓜黑星病菌致病机理的研究Ⅲ细胞壁降解酶和毒素对寄主超微结构的影响及其协同作用%PATHOGENIC MECHANISM OF SCAB OF CUCUMBER CAUSED BY Cladosporium cucumerinum Ⅲ EFFECTS AND SYNERGISM OF CELL WALL-DEGRADING ENZYMES ANDTOXIN PRODUCED BY C. cucumerinum ON ULTRASTRUCTURE OF CUCUMBER

    Institute of Scientific and Technical Information of China (English)

    李宝聚; 周长力; 赵奎华; 李凤云; 黄国坤

    2001-01-01

    本文通过透射电镜和扫描电镜观察,初步明确了果胶酶、纤维素酶及毒素对黄瓜叶组织超微结构的影响。在致病过程中,3种致病因子起着各自独立又相互联系的作用。3种致病因子对寄主超微结构的影响中,纤维素酶分解细胞壁能力最强,毒素对细胞质膜的作用最大,3种致病因子均可造成质壁分离,液泡、内质网受损。而叶绿体的被膜、片层结构主要被纤维素酶降解,线粒体的被膜主要被果胶酶降解,3种致病因子均能使叶绿体、线粒体内部空泡化。在分解叶表皮的过程中,所研究的3种致病因子首先是果胶酶降解果胶层,然后是纤维素酶、果胶酶、毒素对栅栏组织的分解,最后是纤维素酶、毒素作用于薄壁细胞壁,毒素、纤维素酶、果胶酶协同作用于细胞内部组织。%The effects of the cellulase, pectinase and toxin produced by Cladosporium cucumerinum on the leaf cell of cucumber were studied by TEM and SEM. The results indicated that the three pathogenic factors played independent and symplastic roles. The cellulase and pectinase played leading roles respectively in decomposition of cell wall and plasma membrane. The three factors could all result in plasmolysis and damage vacuoles and endoplasmic reticulum. Chloroplast envelope and lamellae structure were mainly digested by cellulase, whiles, mitochondrion envelope was chiefly digested by the pectinase. Each of the three factors could cause vacuolation in chloroplast and mitochondria. During the process of breach up the structure of epidermis of leaf, the cellulase acted on reticulate region, then the pectinase dissolved pectic layer.Following this, palisade tissue was damaged by the cellulase, pectinase and toxin. Finally,parenchyma was destroyed by cellulase and toxin,successively.

  20. Progress Towards the Tomato Fruit Cell Wall Proteome

    Directory of Open Access Journals (Sweden)

    Eliel eRuiz May

    2013-05-01

    Full Text Available The plant cell wall (CW compartment, or apoplast, is host to a highly dynamic proteome, comprising large numbers of both enzymatic and structural proteins. This reflects its importance as the interface between adjacent cells and the external environment, the presence of numerous extracellular metabolic and signaling pathways, and the complex nature of wall structural assembly and remodeling during cell growth and differentiation. Tomato fruit ontogeny, with its distinct phases of rapid growth and ripening, provides a valuable experimental model system for CW proteomic studies, in that it involves substantial wall assembly, remodeling and coordinated disassembly. Moreover, diverse populations of secreted proteins must be deployed to resist microbial infection and protect against abiotic stresses. Tomato fruits also provide substantial amounts of biological material, which is a significant advantage for many types of biochemical analyses, and facilitates the detection of lower abundance proteins. In this review we describe a variety of orthogonal techniques that have been applied to identify CW localized proteins from tomato fruit, including approaches that: target the proteome of the CW and the overlying cuticle; functional ‘secretome’ screens; lectin affinity chromatography; and computational analyses to predict proteins that enter the secretory pathway. Each has its merits and limitations, but collectively they are providing important insights into CW proteome composition and dynamics, as well as some potentially controversial issues, such as the prevalence of non-canonical protein secretion.

  1. Cell wall proteins in seedling cotyledons of Prosopis chilensis.

    Science.gov (United States)

    Rodríguez, J G; Cardemil, L

    1994-01-01

    Four cell wall proteins of cotyledons of Prosopis chilensis seedlings were characterized by PAGE and Western analyses using a polyclonal antibody, generated against soybean seed coat extensin. These proteins had M(r)s of 180,000, 126,000, 107,000 and 63,000, as determined by SDS-PAGE. The proteins exhibited a fluorescent positive reaction with dansylhydrazine suggesting that they are glycoproteins; they did not show peroxidase activity. The cell wall proteins were also characterized by their amino acid composition and by their amino-terminal sequence. These analyses revealed that there are two groups of related cell wall proteins in the cotyledons. The first group comprises the proteins of M(r)s 180,000, 126,000, 107,000 which are rich in glutamic acid/glutamine and aspartic acid/asparagine and they have almost identical NH2-terminal sequences. The second group comprises the M(r) 63,000 protein which is rich in proline, glycine, valine and tyrosine, with an NH2-terminal sequence which was very similar to that of soybean proline-rich proteins.

  2. Protein transport across the cell wall of monoderm Gram-positive bacteria

    OpenAIRE

    Forster, Brian M.; Marquis, Hélène

    2012-01-01

    In monoderm (single membrane) Gram-positive bacteria, the majority of secreted proteins are first translocated across the cytoplasmic membrane into the inner wall zone. For a subset of these proteins, final destination is within the cell envelope either as membrane-anchored or cell wall-anchored proteins, whereas another subset of proteins is destined to be transported across the cell wall into the extracellular milieu. Although the cell wall is a porous structure, there is evidence that, for...

  3. The cell wall and endoplasmic reticulum stress responses are coordinately regulated in Saccharomyces cerevisiae

    OpenAIRE

    Krysan, Damian J.

    2009-01-01

    The unfolded protein response (UPR) is an intracellular signaling pathway that regulates the cellular response to the accumulation of misfolded proteins in eukaryotes. Our group has demonstrated that cell wall stress activates UPR in yeast through signals transmitted by the cell wall integrity (CWI) mitogen-activated protein (MAP) kinase cascade. The UPR is required to maintain cell wall integrity; mutants lacking a functional UPR have defects in cell wall biosynthesis and are hypersensitive ...

  4. Homogenization of a system of elastic and reaction-diffusion equations modelling plant cell wall biomechanics

    OpenAIRE

    Ptashnyk, Mariya; Seguin, Brian

    2014-01-01

    In this paper we present a derivation and multiscale analysis of a mathematical model for plant cell wall biomechanics that takes into account both the microscopic structure of a cell wall coming from the cellulose microfibrils and the chemical reactions between the cell wall's constituents. Particular attention is paid to the role of pectin and the impact of calcium-pectin cross-linking chemistry on the mechanical properties of the cell wall. We prove the existence and uniqueness of the stro...

  5. Xenotransplanted human prostate carcinoma (DU145) cells develop into carcinomas and cribriform carcinomas: ultrastructural aspects.

    Science.gov (United States)

    Gilloteaux, Jacques; Jamison, James M; Neal, Deborah R; Summers, Jack L; Taper, Henryk S

    2012-10-01

    Androgen-independent, human prostate carcinoma cells (DU145) develop into solid, carcinomatous xenotransplants on the diaphragm of nu/nu mice. Tumors encompass at least two poorly differentiated cell types: a rapidly dividing, eosinophilic cell comprises the main cell population and a few, but large basophilic cells able to invade the peritoneal stroma, the muscular tissue, lymph vessels. Poor cell contacts, intracytoplasmic lumina, and signet cells are noted. Lysosomal activities are reflected by entoses and programmed cell deaths forming cribriform carcinomas. In large tumors, degraded cells may align with others to facilitate formation of blood supply routes. Malignant cells would spread via ascites and through lymphatics.

  6. The Basal Level Ethylene Response is Important to the Wall and Endomembrane Structure in the Hypocotyl Cells of Etiolated Arabidopsis Seedlings

    Institute of Scientific and Technical Information of China (English)

    Chan Xu; Xiaoyan Gao; Xiaobin Sun; Chi-Kuang Wen

    2012-01-01

    The sub-cellular events that occur during the ethylene-modulated cell elongation were characterized by examining the ultra-structure of etiolated Arabidopsis seedling hypocotyl cells.Preventing the basal level ethylene response facilitated cell elongation,and the cells exhibited wall loosening and separation phenotype.Nearby the wall separation sites were frequently associated with an increase in the cortical rough endoplasmic reticulum (rER) membranes,the presence of paramural bodies,and the circular Golgi formation.The cortical rER proliferation and circular Golgi phenotype were reverted by the protein biosynthesis inhibitor cycloheximide.The cortical rER membranes were longer when the ethylene response was prevented and shortened with elevated ethylene responses.Proteomic changes between wild type and the ethylene-insensitive mutant ethylene insensitive2 (ein2) seedling hypocotyls indicated that distinct subsets of proteins involving endomembrane trafficking,remodeling,and wall modifications were differentially expressed.FM4-64 staining supported the proteomic changes,which indicated reduced endocytosis activity with alleviation of the ethylene response.The basal level ethylene response has an important role in endomembrane trafficking,biological materials transport and maintenance of the endomembrane organization.It is possible that endomembrane alterations may partly associate with the wall modifications,though the biological significance of the alterations should be addressed in future studies.

  7. The basal level ethylene response is important to the wall and endomembrane structure in the hypocotyl cells of etiolated Arabidopsis seedlings.

    Science.gov (United States)

    Xu, Chan; Gao, Xiaoyan; Sun, Xiaobin; Wen, Chi-Kuang

    2012-07-01

    The sub-cellular events that occur during the ethylene-modulated cell elongation were characterized by examining the ultra-structure of etiolated Arabidopsis seedling hypocotyl cells. Preventing the basal level ethylene response facilitated cell elongation, and the cells exhibited wall loosening and separation phenotype. Nearby the wall separation sites were frequently associated with an increase in the cortical rough endoplasmic reticulum (rER) membranes, the presence of paramural bodies, and the circular Golgi formation. The cortical rER proliferation and circular Golgi phenotype were reverted by the protein biosynthesis inhibitor cycloheximide. The cortical rER membranes were longer when the ethylene response was prevented and shortened with elevated ethylene responses. Proteomic changes between wild type and the ethylene-insensitive mutant ethylene insensitive2 (ein2) seedling hypocotyls indicated that distinct subsets of proteins involving endomembrane trafficking, remodeling, and wall modifications were differentially expressed. FM4-64 staining supported the proteomic changes, which indicated reduced endocytosis activity with alleviation of the ethylene response. The basal level ethylene response has an important role in endomembrane trafficking, biological materials transport and maintenance of the endomembrane organization. It is possible that endomembrane alterations may partly associate with the wall modifications, though the biological significance of the alterations should be addressed in future studies. PMID:22591458

  8. A new type of 3-D peripheral ultrastructure in Glaucocystis (Glaucocystales, Glaucophyta) as revealed by ultra-high voltage electron microscopy.

    Science.gov (United States)

    Takahashi, Toshiyuki; Nishida, Tomoki; Saito, Chieko; Yasuda, Hidehiro; Nozaki, Hisayoshi

    2016-06-01

    The coccoid glaucophyte genus Glaucocystis is characterized by having a thick cell wall, which has to date prohibited examination of the native ultrastructural features of the protoplast periphery. Recently, however, the three-dimensional (3-D) ultrastructure of the protoplast periphery was revealed in two divergent Glaucocystis species, with the world's most powerful ultra-high voltage electron microscope (UHVEM). The two species exhibit morphological diversity in terms of their 3-D ultrastructural features. However, these two types do not seem to encompass actual ultrastructural diversity in the genetically diverse genus Glaucocystis. Here, we report a new type of peripheral 3-D ultrastructure resolved in "G. incrassata" SAG 229-2 cells by 3-D modeling based on UHVEM tomography using high-pressure freezing and freeze-substitution fixation. The plasma membrane and underlying flattened vesicles in "G. incrassata" SAG 229-2 exhibited grooves at intervals of 200-600 nm, and the flattened vesicles often overlapped one another at the protoplast periphery. This 3-D ultrastructure differs from those of the two types previously reported in other species of Glaucocystis. The possibility of classification of Glaucocystis species based on the 3-D ultrastructure of the protoplast periphery is discussed. PMID:27273537

  9. Plectasin, a Fungal Defensin, Targets the Bacterial Cell Wall Precursor Lipid II

    DEFF Research Database (Denmark)

    Schneider, Tanja; Kruse, Thomas; Wimmer, Reinhard;

    2010-01-01

    that plectasin, a fungal defensin, acts by directly binding the bacterial cell-wall precursor Lipid II. A wide range of genetic and biochemical approaches identify cell-wall biosynthesis as the pathway targeted by plectasin. In vitro assays for cell-wall synthesis identified Lipid II as the specific cellular...

  10. Effect of plagiochin E, an antifungal macrocyclic bis(bibenzyl), on cell wall chitin synthesis in Candida albicans

    Institute of Scientific and Technical Information of China (English)

    Xiu-zhen WU; Ai-xia CHENG; Ling-mei SUN; Hong-xiang LOU

    2008-01-01

    Aim: To investigate the effect of plagiochin E (PLE), an antifungal macrocyclic bis(bibenzyl) isolated from liverwort Marchantia polymorpha L, on cell wall chitin synthesis in Candida albicans. Methods: The effect of PLE on chitin synthesis in Candida albicans was investigated at the cellular and molecular lev-els. First, the ultrastructural changes were observed under transmission electron microscopy (TEM). Second, the effects of PLE on chitin synthetase (Chs) activi-ties in vitro were assayed using 6-O-dansyl-N-acetylglucosamine as a fluorescent substrate, and its effect on chitin synthesis in situ was assayed by spheroplast regeneration. Finally, real-time RT-PCR was performed to assay its effect on the expression of Chs genes (CHS). Results: Observation under TEM showed that the structure of the cell wall in Candida albicans was seriously damaged, which suggested that the antifungal activity of PLE was associated with its effect on the cell wail. Enzymatic assays and spheroplast regeneration showed that PLE inhibited chitin synthesis in vitro and in situ. The results of the PCR showed that PLE significantly downregulated the expression of CHS1, and upregulated the expression of CHS2 and CHS3. Because different Chs is regulated at different stages of transcription and post-translation, the downregulation of CHS1 would decrease the level of Chs 1 and inhibit its activity, and the inhibitory effects of PLE on Chs2 and Chs3 would be at the post-translational level or by the inhibi-tion on the enzyme-active center. Conclusion: These results indicate that the antifungal activity of PLE would be attributed to its inhibitory effect on cell wall chitin synthesis in Candida albicans.

  11. Staphylococcus aureus Cell Wall Stress Stimulon Gene-lacZ Fusion Strains: Potential for Use in Screening for Cell Wall-Active Antimicrobials▿

    OpenAIRE

    Steidl, Rebecca; Pearson, Stacy; Stephenson, Robert E.; Ledala, Nagender; Sitthisak, Sutthirat; Wilkinson, Brian J; Jayaswal, Radheshyam K.

    2008-01-01

    lacZ fusion strains were constructed using the promoters of five cell wall stress stimulon genes: pbp2, tcaA, vraSR, sgtB, and lytR. All fusion strains were induced only in the presence of cell wall-active antibiotics, suggesting the potential of these strains for use in high-throughput screening for new cell wall-active agents.

  12. The Unfolded Protein Response Is Induced by the Cell Wall Integrity Mitogen-activated Protein Kinase Signaling Cascade and Is Required for Cell Wall Integrity in Saccharomyces cerevisiae

    OpenAIRE

    Scrimale, Thomas; DiDone, Louis; de Mesy Bentley, Karen L.; Krysan, Damian J.

    2009-01-01

    The yeast cell wall is an extracellular structure that is dependent on secretory and membrane proteins for its construction. We investigated the role of protein quality control mechanisms in cell wall integrity and found that the unfolded protein response (UPR) and, to a lesser extent, endoplasmic reticulum (ER)-associated degradation (ERAD) pathways are required for proper cell wall construction. Null mutation of IRE1, double mutation of ERAD components (hrd1Δ and ubc7Δ) and ire1Δ, or expres...

  13. Distribution and ultrastructure of interstitial cells of Cajal in the mouse colon, using antibodies to Kit and Kit(W-lacZ) mice

    DEFF Research Database (Denmark)

    Vanderwinden, J M; Rumessen, J J; Bernex, F;

    2000-01-01

    place of the first exon of the Kit gene. In the subserosa, the interstitial cells of Cajal formed a two-dimensional plexus. In the myenteric area, the interstitial cells of Cajal formed a dense plexus that gradually merged with the interstitial cells of Cajal in the outer half of the circular muscle...... kinase receptor Kit as a marker. Sections and whole mounts were studied by confocal microscopy after double immunofluorescence with specific antibodies. The ultrastructure of Kit-expressing cells was examined by electron microcopy in KitW-lacz/+ transgenic mice, which carry the lacz gene inserted in...

  14. Stress analysis for wall structure in mobile hot cell design

    Energy Technology Data Exchange (ETDEWEB)

    Bahrin, Muhammad Hannan, E-mail: hannan@nuclearmalaysia.gov.my; Rahman, Anwar Abdul, E-mail: anwar@nuclearmalaysia.gov.my; Hamzah, Mohd Arif, E-mail: arif@nuclearmalaysia.gov.my; Mamat, Mohd Rizal; Azman, Azraf; Hasan, Hasni [Prototype and Plant Development Centre, Technical Services Division, Malaysian Nuclear Agency (Malaysia)

    2016-01-22

    Malaysian Nuclear Agency is developing a Mobile Hot Cell (MHC) in order to handle and manage Spent High Activity Radioactive Sources (SHARS) such as teletherapy heads and irradiators. At present, there are only two units of MHC in the world, in South Africa and China. Malaysian Mobile Hot cell is developed by Malaysian Nuclear Agency with the assistance of IAEA expert, based on the design of South Africa and China, but with improved features. Stress analysis has been performed on the design in order to fulfil the safety requirement in operation of MHC. This paper discusses the loading analysis effect from the sand to the MHC wall structure.

  15. Effect of Wall Charge on Striation in Plasma Display Cells

    Institute of Scientific and Technical Information of China (English)

    HE Feng; OUYANG Jiting; CAO Jing; FENG Shuo; MIAO Jinsong; WANG Jianqi

    2007-01-01

    Different configurations and driving voltages have been employed to investigate the effect of the wall charge on the striations in macroscopic plasma display panel (PDP) cells.The experimental results show that a discharge channel near the dielectric layer is indispensable to striation occurring in the anode area during a discharge,while the pre-accumulated charge on the dielectric layer and the surface state are not important.The origin of the striation is related only to the physical process in the cell.The dielectric layer acts as a charge collector during a PDP discharge.

  16. Ultrastructure of modified root-tip cells in Ficus carica, induced by the ectoparasitic nematode Xiphinema index.

    Science.gov (United States)

    Wyss, U; Lehmann, H; Jank-Ladwig, R

    1980-02-01

    The migratory ectoparasitic root nematode Xiphinema index, added to Ficus carica seedlings in sterile agar culture, fed exclusively on the tips of the roots. As a response the tips started to swell and became transformed into terminal galls as long as feeding was continued. When the cytology of swollen root-tips was examined 24 h after the first nematode attack, necrotic cells, scattered singly or in small groups within the root apex, were found in ultrathin sections. These cells, whose protoplasts showed features of a hypersensitive reaction, were most probably those fed upon by nematodes. Each necrotic cell was surrounded by several enlarged, mostly binucleate cells with dense cytoplasm. One day later the binucleate cells were multinucleate, containing 4 or even 8 nuclei. The clear-cut demarcation between necrotic and modified cells indicated that only the stimulus for the induction of modified cells but not the stimulus for cell necrosis passed into neighbouring cells. Root-tip galls that provided the appropriate food for egg production in nematodes contained greatly enlarged multinucleate cells between necrotic cells. The modified cells showed features of high metabolic activities, expressed in nuclear and nucleolar hypertrophy, invagination of the nuclear envelope, increased cytoplasmic density, abundance of mitochondria, plastids and rough endoplasmic reticulum. Wall ingrowths, typical of transfer cells, were rare and if present occurred only adjacent to necrotic cells. In older modified cells new cell plates, surrounded by phragmoplasts, were formed.

  17. In situ analysis of cell wall polymers associated with phloem fibre cells in stems of hemp, Cannabis sativa L.

    Science.gov (United States)

    Blake, Anthony W; Marcus, Susan E; Copeland, James E; Blackburn, Richard S; Knox, J Paul

    2008-06-01

    A study of stem anatomy and the sclerenchyma fibre cells associated with the phloem tissues of hemp (Cannabis sativa L.) plants is of interest for both understanding the formation of secondary cell walls and for the enhancement of fibre utility as industrial fibres and textiles. Using a range of molecular probes for cell wall polysaccharides we have surveyed the presence of cell wall components in stems of hemp in conjunction with an anatomical survey of stem and phloem fibre development. The only polysaccharide detected to occur abundantly throughout the secondary cell walls of phloem fibres was cellulose. Pectic homogalacturonan epitopes were detected in the primary cell walls/intercellular matrices between the phloem fibres although these epitopes were present at a lower level than in the surrounding parenchyma cell walls. Arabinogalactan-protein glycan epitopes displayed a diversity of occurrence in relation to fibre development and the JIM14 epitope was specific to fibre cells, binding to the inner surface of secondary cell walls, throughout development. Xylan epitopes were found to be present in the fibre cells (and xylem secondary cell walls) and absent from adjacent parenchyma cell walls. Analysis of xylan occurrence in the phloem fibre cells of hemp and flax indicated that xylan epitopes were restricted to the primary cell walls of fibre cells and were not present in the secondary cell walls of these cells.

  18. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    OpenAIRE

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell...

  19. Quantification of endocrine cells and ultrastructural study of insulin granules in the large intestine of opossum Didelphis aurita (Wied-Neuwied, 1826).

    Science.gov (United States)

    dos Santos, Daiane Cristina Marques; Cupertino, Marli do Carmo; Fialho, Maria do Carmo Queiroz; Barbosa, Alfredo Jose Afonso; Fonseca, Cláudio Cesar; Sartori, Sirlene Souza Rodrigues; da Matta, Sérgio Luis Pinto

    2014-02-01

    This study aimed to investigate the distribution of argyrophil, argentaffin, and insulin-immunoreactive endocrine cells in the large intestine of opossums (Didelphis aurita) and to describe the ultrastructure of the secretory granules of insulin-immunoreactive endocrine cells. Fragments of the large intestine of 10 male specimens of D. aurita were collected, processed, and subjected to staining, immunohistochemistry, and transmission electron microscopy. The argyrophil, the argentaffin, and the insulin-immunoreactive endocrine cells were sparsely distributed in the intestinal glands of the mucous layer, among other cell types of the epithelium in all regions studied. Proportionally, the argyrophil, the argentaffin, and the insulin-immunoreactive endocrine cells represented 62.75%, 36.26%, and 0.99% of the total determined endocrine cells of the large intestine, respectively. Quantitatively, there was no difference between the argyrophil and the argentaffin endocrine cells, whereas insulin-immunoreactive endocrine cells were less numerous. The insulin-immunoreactive endocrine cells were elongated or pyramidal, with rounded nuclei of irregularly contoured, and large amounts of secretory granules distributed throughout the cytoplasm. The granules have different sizes and electron densities and are classified as immature and mature, with the mature granules in predominant form in the overall granular population. In general, the granule is shown with an external electron-lucent halo and electron-dense core. The ultrastructure pattern in the granules of the insulin-immunoreactive endocrine cells was similar to that of the B cells of pancreatic islets in rats. PMID:24359801

  20. Expansins are among plant cell wall modifying agents specifically expressed during development of nematode-induced syncytia

    OpenAIRE

    Fudali, Sylwia; Sobczak, Miroslaw; Janakowski, Slawomir; Griesser, Michaela; Grundler, Florian MW; Golinowski, Wladyslaw

    2008-01-01

    Cyst nematodes are economically important pests. As obligatory biotrophic endoparasites they invade host roots and induce formation of syncytia, structures that serve them as the only source of nutrients. During syncytium development, extensive cell wall modifications take place. Cell wall dissolution occurs during cell wall opening formation, cell walls expand during hypertrophy of syncytial elements and local cell wall synthesis leads to the thickening of syncytial cell wall and the formati...

  1. Isolated adrenocortical cells of the domestic fowl (Gallus domesticus): steroidogenic and ultrastructural properties.

    Science.gov (United States)

    Carsia, R V; Scanes, C G; Malamed, S

    1985-02-01

    Isolated adrenocortical cells from White Leghorn chickens (Gallus domesticus) were compared to those from rats (Rattus norvegicus). Cells were prepared from collagenase-dispersed adrenal glands of sexually mature male animals. Corticosterone was measured by radioimmunoassay after incubation for 2 h with steroidogenic agents. Of the four ACTH analogues used, three were 6-17 times more potent with rat cells than with fowl cells (potencies were indicated by half-maximal steroidogenic concentrations). However, 9-tryptophan (O-nitrophenylsulfenyl) ACTH was 8 times more potent with fowl cells than with rat cells, thus suggesting that ACTH receptor differences exist between the two cell types. In addition, cAMP analogues were 10 times more potent with rat cells than with fowl cells suggesting that fowl corticosteroidogenesis is less dependent on cAMP than is rat corticosteroidogenesis. At equal cell concentrations, rat cells secreted 20-40 times more corticosterone than did chicken cells when they were maximally stimulated. Although rat cells converted 8 times more pregnenolone to corticosterone than did fowl cells, the half-maximal steroidogenic concentration for pregnenolone-supported corticosterone synthesis was the same for both cell types (about 5 microM). This suggests that fowl cells have lower steroidogenic enzyme content rather than lower steroidogenic enzyme activity. An unusual feature seen in the isolated fowl adrenocortical cells was an abundance of intracellular filaments.

  2. Pressure Dependent Wall Relaxation in Polarized $^3$He Gaseous Cells

    CERN Document Server

    Peng, C; Chu, P -H; Gao, H; Zhang, Y

    2013-01-01

    Pressure dependence of longitudinal relaxation time (T$_1$) due to the cell wall was observed previously at both room temperature and low temperature in valved Rb-coated refillable $^3$He gaseous cells in \\cite{Zheng2}. The diffusion of $^3$He from measurement cell through a capillary tube to the valve and the subsequent depolarization on the surface of the valve was proposed to possibly explain such a pressure dependence at room temperature \\cite{Saam}. In this paper, we investigate this diffusion effect through measurements of T$_1$ with newly designed Rb-coated Pyrex glass cells at 295 K as well as finite element analysis (FEA) studies. Both the experimental results and FEA studies show that the diffusion effect is insufficient to explain the observed linear pressure-dependent behavior of T$_1$.

  3. Clear Cell Adenocarcinoma Arising from Abdominal Wall Endometriosis

    Directory of Open Access Journals (Sweden)

    Thouraya Achach

    2008-01-01

    Full Text Available Endometriosis is a frequent benign disorder. Malignancy arising in extraovarian endometriosis is a rare event. A 49-year-old woman is presented with a large painful abdominal wall mass. She underwent a myomectomy, 20 years before, for uterus leiomyoma. Computed tomography suggested that this was a desmoid tumor and she underwent surgery. Histological examination showed a clear cell adenocarcinoma associated with endometriosis foci. Pelvic ultrasound, computed tomography, and endometrial curettage did not show any malignancy or endometriosis in the uterus and ovaries. Adjuvant chemotherapy was recommended, but the patient was lost to follow up. Six months later, she returned with a recurrence of the abdominal wall mass. She was given chemotherapy and then she was reoperated.

  4. Cell wall pH and auxin transport velocity

    Science.gov (United States)

    Hasenstein, K. H.; Rayle, D.

    1984-01-01

    According to the chemiosmotic polar diffusion hypothesis, auxin pulse velocity and basal secretion should increase with decreasing cell wall pH. Experiments were designed to test this prediction. Avena coleoptile sections were preincubated in either fusicoccin (FC), cycloheximide, pH 4.0, or pH 8.0 buffer and subsequently their polar transport capacities were determined. Relative to controls, FC enhanced auxin (IAA) uptake while CHI and pH 8.0 buffer reduced IAA uptake. Nevertheless, FC reduced IAA pulse velocity while cycloheximide increased velocity. Additional experiments showed that delivery of auxin to receivers is enhanced by increased receiver pH. This phenomenon was overcome by a pretreatment of the tissue with IAA. Our data suggest that while acidic wall pH values facilitate cellular IAA uptake, they do not enhance pulse velocity or basal secretion. These findings are inconsistent with the chemiosmotic hypothesis for auxin transport.

  5. Ultrastructure of interstitial cells of Cajal in circular muscle of human small intestine

    DEFF Research Database (Denmark)

    Rumessen, J J; Mikkelsen, H B; Qvortrup, Klaus;

    1993-01-01

    Interstitial cells of Cajal (ICC) may be important regulatory cells in gut muscle layers. This study examined ICC within the circular muscle of human small intestine.......Interstitial cells of Cajal (ICC) may be important regulatory cells in gut muscle layers. This study examined ICC within the circular muscle of human small intestine....

  6. Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment

    OpenAIRE

    Sun, Qining; Foston, Marcus; Meng, Xianzhi; Sawada, Daisuke; Pingali, Sai Venkatesh; O’Neill, Hugh M; Li, Hongjia; Wyman, Charles E; Langan, Paul; Art J. Ragauskas; Kumar, Rajeev

    2014-01-01

    Background Obtaining a better understanding of the complex mechanisms occurring during lignocellulosic deconstruction is critical to the continued growth of renewable biofuel production. A key step in bioethanol production is thermochemical pretreatment to reduce plant cell wall recalcitrance for downstream processes. Previous studies of dilute acid pretreatment (DAP) have shown significant changes in cellulose ultrastructure that occur during pretreatment, but there is still a substantial kn...

  7. Mitochondrial ultrastructural and atpase changes during the life cycle of Ascaris Suum

    OpenAIRE

    Rodrick, G E; S. D. Long; W. A. Sodeman Junior; Smith, D. L.

    1982-01-01

    Ultrastructural morphology and ATPase specific activities of mitochondria isolated from 1-celled fertilized egg, 10-day embryo, 21-day infective larvae and adult body wall muscle of Ascaris suum and rat liver were determined and compared. Although cristae of both muscle and egg mitochondria contained numerous elementary particles with head pieces of conventional diameter (85 A), each muscle mitochondrion contained relatively few, short cristae with a diminished frequency of elementary particl...

  8. Scattering properties of microalgae: the effect of cell size and cell wall

    Science.gov (United States)

    Svensen, Øyvind; Frette, Øyvind; Rune Erga, Svein

    2007-08-01

    The main objective of this work was to investigate how the cell size and the presence of a cell wall influence the scattering properties of the green microalgae Chlamydomonas reinhardtii. The growth cycle of two strains, one with a cell wall and one without, was synchronized to be in the same growth phase. Measurements were conducted at two different phases of the growth cycle on both strains of the algae. It was found that the shape of the scattering phase function was very similar for both strains at both growth phases, but the regular strain with a cell wall scatters more strongly than the wall-less mutant. It was also found that the mutant strain has a stronger increase in scattering than the regular strain, as the algae grow, and that the scattering from the regular strain is more wavelength dependent than from the mutant strain.

  9. Penium margaritaceum: A Unicellular Model Organism for Studying Plant Cell Wall Architecture and Dynamics

    OpenAIRE

    Domozych, David S

    2014-01-01

    Penium margaritaceum is a new and valuable unicellular model organism for studying plant cell wall structure and developmental dynamics. This charophyte has a cell wall composition remarkably similar to the primary cell wall of many higher plants and clearly-defined inclusive zones containing specific polymers. Penium has a simple cylindrical phenotype with a distinct region of focused wall synthesis. Specific polymers, particularly pectins, can be identified using monoclonal antibodies rais...

  10. Change in wall composition of transfer and aleurone cells during wheat grain development.

    Science.gov (United States)

    Robert, P; Jamme, F; Barron, C; Bouchet, B; Saulnier, L; Dumas, P; Guillon, F

    2011-02-01

    In addition to the starchy endosperm, a specialized tissue accumulating storage material, the endosperm of wheat grain, comprises the aleurone layer and the transfer cells next to the crease. The transfer cells, located at the ventral region of the grain, are involved in nutrient transfer from the maternal tissues to the developing endosperm. Immunolabeling techniques, Raman spectroscopy, and synchrotron infrared micro-spectroscopy were used to study the chemistry of the transfer cell walls during wheat grain development. The kinetic depositions of the main cell wall polysaccharides of wheat grain endosperm, arabinoxylan, and (1-3)(1-4)-β-glucan in transfer cell walls were different from kinetics previously observed in the aleurone cell walls. While (1-3)(1-4)-β-glucan appeared first in the aleurone cell walls at 90°D, arabinoxylan predominated in the transfer cell walls from 90 to 445°D. Both aleurone and transfer cell walls were enriched in (1-3)(1-4)-β-glucan at the mature stage of wheat grain development. Arabinoxylan was more substituted in the transfer cell walls than in the aleurone walls. However, arabinoxylan was more feruloylated in the aleurone than in the transfer cell walls, whatever the stage of grain development. In the transfer cells, the ferulic acid was less abundant in the outer periclinal walls while para-coumarate was absent. Possible implications of such differences are discussed.

  11. [Hydroxyproline: Rich glycoproteins of the plant and cell wall

    Energy Technology Data Exchange (ETDEWEB)

    Varner, J.E.

    1993-01-01

    Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a number of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H[sub 2]O[sub 2] production reinforce the earlier ideas of others that H[sub 2]O[sub 2] is involved in normal lignification.

  12. The influenza fingerprints: NS1 and M1 proteins contribute to specific host cell ultrastructure signatures upon infection by different influenza A viruses

    International Nuclear Information System (INIS)

    Influenza A are nuclear replicating viruses which hijack host machineries in order to achieve optimal infection. Numerous functional virus–host interactions have now been characterized, but little information has been gathered concerning their link to the virally induced remodeling of the host cellular architecture. In this study, we infected cells with several human and avian influenza viruses and we have analyzed their ultrastructural modifications by using electron and confocal microscopy. We discovered that infections lead to a major and systematic disruption of nucleoli and the formation of a large number of diverse viral structures showing specificity that depended on the subtype origin and genomic composition of viruses. We identified NS1 and M1 proteins as the main actors in the remodeling of the host ultra-structure and our results suggest that each influenza A virus strain could be associated with a specific cellular fingerprint, possibly correlated to the functional properties of their viral components.

  13. The influenza fingerprints: NS1 and M1 proteins contribute to specific host cell ultrastructure signatures upon infection by different influenza A viruses

    Energy Technology Data Exchange (ETDEWEB)

    Terrier, Olivier; Moules, Vincent; Carron, Coralie; Cartet, Gaeelle [Equipe VirCell, Laboratoire de Virologie et Pathologie Humaine, VirPath EMR 4610, Universite de Lyon, Universite Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculte de medecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon (France); Frobert, Emilie [Laboratoire de Virologie, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, F-69677 Bron Cedex, Lyon (France); Yver, Matthieu; Traversier, Aurelien [Equipe VirCell, Laboratoire de Virologie et Pathologie Humaine, VirPath EMR 4610, Universite de Lyon, Universite Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculte de medecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon (France); Wolff, Thorsten [Division of Influenza/Respiratory Viruses, Robert Koch Institute, Nordufer 20, D-13353 Berlin (Germany); Riteau, Beatrice [Laboratoire de Virologie et Pathologie Humaine, VirPath EMR 4610, Universite de Lyon, Universite Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculte de medecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon (France); Naffakh, Nadia [Institut Pasteur, Unite de Genetique Moleculaire des Virus Respiratoires, URA CNRS 3015, EA302 Universite Paris Diderot, Paris (France); and others

    2012-10-10

    Influenza A are nuclear replicating viruses which hijack host machineries in order to achieve optimal infection. Numerous functional virus-host interactions have now been characterized, but little information has been gathered concerning their link to the virally induced remodeling of the host cellular architecture. In this study, we infected cells with several human and avian influenza viruses and we have analyzed their ultrastructural modifications by using electron and confocal microscopy. We discovered that infections lead to a major and systematic disruption of nucleoli and the formation of a large number of diverse viral structures showing specificity that depended on the subtype origin and genomic composition of viruses. We identified NS1 and M1 proteins as the main actors in the remodeling of the host ultra-structure and our results suggest that each influenza A virus strain could be associated with a specific cellular fingerprint, possibly correlated to the functional properties of their viral components.

  14. Serial section scanning electron microscopy (S3EM on silicon wafers for ultra-structural volume imaging of cells and tissues.

    Directory of Open Access Journals (Sweden)

    Heinz Horstmann

    Full Text Available High resolution, three-dimensional (3D representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM, complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S(3EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm(3 volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S(3EM, for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S(3EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation.

  15. Induction kinetics of the Staphylococcus aureus cell wall stress stimulon in response to different cell wall active antibiotics

    Directory of Open Access Journals (Sweden)

    Berger-Bächi Brigitte

    2011-01-01

    Full Text Available Abstract Background Staphylococcus aureus activates a protective cell wall stress stimulon (CWSS in response to the inhibition of cell wall synthesis or cell envelope damage caused by several structurally and functionally different antibiotics. CWSS induction is coordinated by the VraSR two-component system, which senses an unknown signal triggered by diverse cell wall active agents. Results We have constructed a highly sensitive luciferase reporter gene system, using the promoter of sas016 (S. aureus N315, which detects very subtle differences in expression as well as measuring > 4 log-fold changes in CWSS activity, to compare the concentration dependence of CWSS induction kinetics of antibiotics with different cell envelope targets. We compared the effects of subinhibitory up to suprainhibitory concentrations of fosfomycin, D-cycloserine, tunicamycin, bacitracin, flavomycin, vancomycin, teicoplanin, oxacillin, lysostaphin and daptomycin. Induction kinetics were both strongly antibiotic- and concentration-dependent. Most antibiotics triggered an immediate response with induction beginning within 10 min, except for tunicamycin, D-cycloserine and fosfomycin which showed lags of up to one generation before induction commenced. Induction characteristics, such as the rate of CWSS induction once initiated and maximal induction reached, were strongly antibiotic dependent. We observed a clear correlation between the inhibitory effects of specific antibiotic concentrations on growth and corresponding increases in CWSS induction kinetics. Inactivation of VraR increased susceptibility to the antibiotics tested from 2- to 16-fold, with the exceptions of oxacillin and D-cycloserine, where no differences were detected in the methicillin susceptible S. aureus strain background analysed. There was no apparent correlation between the induction capacity of the various antibiotics and the relative importance of the CWSS for the corresponding resistance phenotypes

  16. Direct measurement of cell wall stress-stiffening and turgor pressure in live bacterial cells

    CERN Document Server

    Deng, Yi; Shaevitz, Joshua W

    2011-01-01

    The mechanical properties of gram-negative bacteria are governed by a rigid peptidoglycan (PG) cell wall and the turgor pressure generated by the large concentration of solutes in the cytoplasm. The elasticity of the PG has been measured in bulk and in isolated sacculi and shown to be compliant compared to the overall stiffness of the cell itself. However, the stiffness of the cell wall in live cells has not been measured. In particular, the effects that pressure-induced stress might have on the stiffness of the mesh-like PG network have not been addressed even though polymeric materials often exhibit large amounts of stress-stiffening. We study bulging Escherichia coli cells using atomic force microscopy to separate the contributions of the cell wall and turgor pressure to the overall cell stiffness. We find strong evidence of power-law stress-stiffening in the E. coli cell wall, with an exponent of $1.07 \\pm 0.25$, such that the wall is significantly stiffer in live cells ($E\\sim32\\pm10$ MPa) than in unpres...

  17. Crohn's disease of the colon: ultrastructural changes in submuscular interstitial cells of Cajal

    DEFF Research Database (Denmark)

    Rumessen, Jüri J; Vanderwinden, Jean-Marie; Horn, Thomas

    2011-01-01

    Interstitial cells of Cajal (ICC) at the submuscular border of the human colon (ICC-SMP) are the proposed pacemaker cells of the musculature. In patients with Crohn's disease (CD) of the colon, ICC-SMP showed characteristic cytological changes from controls. The changes comprised secondary...... but were also demonstrable in uninvolved colonic segments. Relationships of ICC to other cells were undisturbed. The changes were selective to ICC-SMP, as glial cells, muscle cells and fibroblast-like cells at the submuscular border showed no cytological alterations compared with controls. Varicosities...

  18. Chromatin and Cell Wall Staining of Schizosaccharomyces pombe.

    Science.gov (United States)

    Hagan, Iain M

    2016-01-01

    Fission yeasts grow by tip extension, maintaining a constant width until they reach a critical size threshold and divide. Division by medial fission-which gives these yeast their name-generates a new end that arises from the site of cytokinesis. The old end, which was produced during the previous cell cycle, initiates progression of the new cell cycle, and in G2, the new end is activated in a process termed new-end takeoff (NETO). In this protocol, the fluorescent stains calcofluor and 4',6-diamidino-2-phenylindole (DAPI) are used to give a rapid and informative assessment of morphogenesis and cell-cycle progression in the fission yeast Schizosaccharomyces pombe Calcofluor reveals the timing of NETO because it stains the birth scars that are generated at new ends by cytokinesis less efficiently than the rest of the cell wall. Intense calcofluor staining of the septum and measurement of cell length are also widely used to identify dividing cells and to gauge the timing of mitotic commitment. Staining nuclei with DAPI identifies mono- and binucleated cells and complements the calcofluor staining procedure to evaluate the stages of the cell cycle and identify mitotic errors. Equally simple DAPI staining procedures reveal chromatin structure in higher resolution, facilitating more accurate staging of mitotic progression and characterization of mitotic errors. PMID:27250942

  19. Profiling the Hydrolysis of Isolated Grape Berry Skin Cell Walls by Purified Enzymes.

    Science.gov (United States)

    Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Vivier, Melané A

    2015-09-23

    The unraveling of crushed grapes by maceration enzymes during winemaking is difficult to study because of the complex and rather undefined nature of both the substrate and the enzyme preparations. In this study we simplified both the substrate, by using isolated grape skin cell walls, and the enzyme preparations, by using purified enzymes in buffered conditions, to carefully follow the impact of the individual and combined enzymes on the grape skin cell walls. By using cell wall profiling techniques we could monitor the compositional changes in the grape cell wall polymers due to enzyme activity. Extensive enzymatic hydrolysis, achieved with a preparation of pectinases or pectinases combined with cellulase or hemicellulase enzymes, completely removed or drastically reduced levels of pectin polymers, whereas less extensive hydrolysis only opened up the cell wall structure and allowed extraction of polymers from within the cell wall layers. Synergistic enzyme activity was detectable as well as indications of specific cell wall polymer associations.

  20. Structure and ultrastructure of the pigmented cells in the adult dog pineal gland.

    OpenAIRE

    Calvo, J.; Boya, J; Garcia-Mauriño, J E; Lopez-Carbonell, A

    1988-01-01

    The light and electron microscopic features of pigmented cells in the adult dog pineal gland have been described. The presence of pigmented cells was a constant characteristic of the dog pineal gland, though wide variations in the amount of pigment could be found among different animals. Conversely, the localisation of pigmented cells was very constant on the basal surface of the proximal region of the pineal gland. Frequently, clusters of pigmented cells were seen in the posterior commissure...

  1. Members of the Hsp70 family of proteins in the cell wall of Saccharomyces cerevisiae.

    OpenAIRE

    López-Ribot, J L; Chaffin, W L

    1996-01-01

    Western blot (immunoblot) analysis of cell wall and cytosolic extracts obtained from parental and ssa1 and ssa2 single- and double-mutant strains of Saccharomyces cerevisiae showed that the heat shock protein 70 (Hsp70) products of these genes, previously thought to be restricted to the cell interior, are also present in the cell wall. A cell wall location was further confirmed by indirect immunofluorescence with intact cells and biotinylation of extracellular Hsp70. Hsp70s have been implicat...

  2. Cellulose-hemicellulose interaction in wood secondary cell-wall

    Science.gov (United States)

    Zhang, Ning; Li, Shi; Xiong, Liming; Hong, Yu; Chen, Youping

    2015-12-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.

  3. Nutrient depletion modifies cell wall adsorption activity of wine yeast.

    Science.gov (United States)

    Sidari, R; Caridi, A

    2016-06-01

    Yeast cell wall is a structure that helps yeasts to manage and respond to many environmental stresses. The mannosylphosphorylation is a modification in response to stress that provides the cell wall with negative charges able to bind compounds present in the environment. Phenotypes related to the cell wall modification such as the filamentous growth in Saccharomyces cerevisiae are affected by nutrient depletion. The present work aimed at describing the effect of carbon and/or nitrogen limitation on the aptitude of S. cerevisiae strains to bind coloured polyphenols. Carbon- and nitrogen-rich or deficient media supplemented with grape polyphenols were used to simulate different grape juice conditions-early, mid, 'adjusted' for nitrogen, and late fermentations. In early fermentation condition, the R+G+B values range from 106 (high adsorption, strain Sc1128) to 192 (low adsorption, strain Σ1278b), in mid-fermentation the values range from 111 (high adsorption, strain Sc1321) to 258 (low adsorption, strain Sc2306), in 'adjusted' for nitrogen conditions the values range from 105 (high adsorption, strain Sc1321) to 194 (low adsorption, strain Sc2306) while in late fermentation conditions the values range from 101 (high adsorption, strain Sc384) to 293 (low adsorption, strain Sc2306). The effect of nutrient availability is not univocal for all the strains and the different media tested modified the strains behaviour. In all the media the strains show significant differences. Results demonstrate that wine yeasts decrease/increase their parietal adsorption activity according to the nutrient availability. The wide range of strain variability observed could be useful in selecting wine starters. PMID:27116955

  4. A radioimmunoassay for lignin in plant cell walls

    International Nuclear Information System (INIS)

    Lignin detection and determination in herbaceous tissue requires selective, specific assays which are not currently available. A radioimmunoassay (RIA) was developed to study lignin metabolism in these tissues. A β-aryl ether lignin model compound was synthesized, linked to keyhole limpet hemocyanin using a water-soluble carbodiimide, and injected into rabbits. The highest titer of the antiserum obtained was 34 ηg/mL of model derivatized BSA. An in vitro system was developed to characterize the RIA. The model compound was linked to amino activated polyacrylamide beads to mimic lignin in the cell walls. 125I Radiolabelled protein A was used to detect IgG antibody binding. The RIA was shown in the in vitro system to exhibit saturable binding. The amount of antibody bound decreased when the serum was diluted. Immunoelectrophoresis and competitive binding experiments confirmed that both aromatic rings of the lignin model compound had been antigenic. Chlorogenic acid, a phenolic known to be present in plant cells, did not compete for antibody binding. The RIA was used to measure lignin in milled plant samples and barley seedlings. Antiserum binding to wheat cell walls and stressed barley segments was higher than preimmune serum binding. Antibody binding to stressed barley tissue decreased following NaClO2 delignification. The RIA was found to be less sensitive than expected, so several avenues for improving the method are discussed

  5. Lignification in poplar tension wood lignified cell wall layers.

    Science.gov (United States)

    Yoshinaga, Arata; Kusumoto, Hiroshi; Laurans, Françoise; Pilate, Gilles; Takabe, Keiji

    2012-09-01

    The lignification process in poplar tension wood lignified cell wall layers, specifically the S(1) and S(2) layers and the compound middle lamella (CML), was analysed using ultraviolet (UV) and transmission electron microscopy (TEM). Variations in the thickness of the gelatinous layer (G-layer) were also measured to clarify whether the lignified cell wall layers had completed their lignification before the deposition of G-layers, or, on the contrary, if lignification of these layers was still active during G-layer formation. Observations using UV microscopy and TEM indicated that both UV absorbance and the degree of potassium permanganate staining increased in the CML and S(1) and S(2) layers during G-layer formation, suggesting that the lignification of these lignified layers is still in progress during G-layer formation. In the context of the cell-autonomous monolignol synthesis hypothesis, our observations suggest that monolignols must go through the developing G-layer during the lignification of CML and the S(1) and S(2) layers. The alternative hypothesis of external synthesis (in the rays) does not require that monolignols go through the G-layer before being deposited in the CML, or the S(1) and S(2) layers. Interestingly, the previous observation of lignin in the poplar G-layer was not confirmed with the microscopy techniques used in the present study. PMID:22933655

  6. Absence of correlation between rates of cell wall turnover and autolysis shown by Bacillus subtilis mutants.

    OpenAIRE

    Vitković, L; Cheung, H. Y.; Freese, E

    1984-01-01

    Bacillus subtilis mutants with reduced rates of cell wall autolysis reached a constant rate of wall turnover after a longer lag than the standard strain but eventually showed the same turnover rate. In reverse, a turnover-deficient mutant autolysed at a slightly higher rate than the standard strain. Consequently, there is no correlation between the rates of cell wall turnover and autolysis.

  7. Ultrastructural Evidence of Exosome Secretion by Progenitor Cells in Adult Mouse Myocardium and Adult Human Cardiospheres

    Directory of Open Access Journals (Sweden)

    Lucio Barile

    2012-01-01

    Full Text Available The demonstration of beneficial effects of cell therapy despite the persistence of only few transplanted cells in vivo suggests secreted factors may be the active component of this treatment. This so-called paracrine hypothesis is supported by observations that culture media conditioned by progenitor cells contain growth factors that mediate proangiogenic and cytoprotective effects. Cardiac progenitor cells in semi-suspension culture form spherical clusters (cardiospheres that deliver paracrine signals to neighboring cells. A key component of paracrine secretion is exosomes, membrane vesicles that are stored intracellularly in endosomal compartments and are secreted when these structures fuse with the cell plasma membrane. Exosomes have been identified as the active component of proangiogenic effects of bone marrow CD34+ stem cells in mice and the regenerative effects of embryonic mesenchymal stem cells in infarcted hearts in pigs and mice. Here, we provide electron microscopic evidence of exosome secretion by progenitor cells in mouse myocardium and human cardiospheres. Exosomes are emerging as an attractive vector of paracrine signals delivered by progenitor cells. They can be stored as an “off-the-shelf” product. As such, exosomes have the potential for circumventing many of the limitations of viable cells for therapeutic applications in regenerative medicine.

  8. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; E. Thybring, Emil; Johansen, Katja Salomon;

    2014-01-01

    Mechanical agitation during enzymatic hydrolysis of insoluble plant biomass at high dry matter contents is indispensable for the initial liquefaction step in biorefining. It is known that particle size reduction is an important part of liquefaction, but the mechanisms involved are poorly understood....... Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic bonds. This study illustrates that basic material science insights are relevant also within biochemistry...

  9. Chitosan Obtained from Cell Wall of Aspergillus Niger Mycelium

    Institute of Scientific and Technical Information of China (English)

    HUANG Hui-li; LIN Wen-luan; LIN Jian-ming

    2004-01-01

    Chitin from cell walls of Aspergillus Niger mycelium was prepared. A new method for the preparation of high deacetylation degree chitosan was studied in a dilute sodium hydroxide solution at a high pressure. The experimental results indicate that the deacetylation degree of the chitosan can reach 80% under the condition of a 5.00 mol/L sodium hydroxide solution at 0.1 MPa of pressure for 1 h. This method shows the advantages of the applications in the industry production and environment protection.

  10. Mass spectrometry for characterizing plant cell wall polysaccharides

    Directory of Open Access Journals (Sweden)

    Stefan eBauer

    2012-03-01

    Full Text Available Mass spectrometry is a selective and powerful technique to obtain identification and structural information on compounds present in complex mixtures. Since it requires only small sample amount it is an excellent tool for researchers interested in detecting changes in composition of complex carbohydrates of plants. This mini-review gives an overview of common mass spectrometry techniques applied to the analysis of plant cell wall carbohydrates. It presents examples in which mass spectrometry has been used to elucidate the structure of oligosaccharides derived from hemicelluloses and pectins and illustrates how information on sequence, linkages, branching and modifications are obtained from characteristic fragmentation patterns.

  11. wall

    Directory of Open Access Journals (Sweden)

    Irshad Kashif

    2016-01-01

    Full Text Available Maintaining indoor climatic conditions of buildings compatible with the occupant comfort by consuming minimum energy, especially in a tropical climate becomes a challenging problem for researchers. This paper aims to investigate this problem by evaluating the effect of different kind of Photovoltaic Trombe wall system (PV-TW on thermal comfort, energy consumption and CO2 emission. A detailed simulation model of a single room building integrated with PV-TW was modelled using TRNSYS software. Results show that 14-35% PMV index and 26-38% PPD index reduces as system shifted from SPV-TW to DGPV-TW as compared to normal buildings. Thermal comfort indexes (PMV and PPD lie in the recommended range of ASHARE for both DPV-TW and DGPV-TW except for the few months when RH%, solar radiation intensity and ambient temperature were high. Moreover PVTW system significantly reduces energy consumption and CO2 emission of the building and also 2-4.8 °C of temperature differences between indoor and outdoor climate of building was examined.

  12. Glucose-6-phosphate dehydrogenase in rat lung alveolar epithelial cells. An ultrastructural enzyme-cytochemical study

    Directory of Open Access Journals (Sweden)

    S Matsubara

    2010-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is the key enzyme of the pentose phosphate pathway in carbohydrate metabolism, and it plays an important role in cell proliferation and antioxidant regulation within cells in various organs. Although marked cell proliferation and oxidant/antioxidant metabolism occur in lung alveolar epithelial cells, definite data has been lacking as to whether cytochemically detectable G6PD is present in alveolar epithelial cells. The distribution pattern of G6PD within these cells, if it is present, is also unknown. The purpose of the present study was to investigate the subcellular localization of G6PD in alveolar cells in the rat lung using a newly- developed enzyme-cytochemistry (copper-ferrocyanide method. Type I cells and stromal endothelia and fibroblasts showed no activities. Electron-dense precipitates indicating G6PD activity were clearly visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of type II alveolar epithelial cells. The cytochemical controls ensured specific detection of enzyme activity. This enzyme may play a role in airway defense by delivering substances for cell proliferation and antioxidant forces, thus maintaining the airway architecture.

  13. [Effect of terrazol on the ultrastructure of Mucor mucedo].

    Science.gov (United States)

    Casperson, G; Lyr, H

    1975-01-01

    Terrazol, a systemic fungicide showing high specifity to oomycetes, inhibits the apical growth of hyphae and promotes at lower concentrations the thickening of the cell wall in Mucor mucedo. As revealed by ultrastructural analysis, particularly the fine structure of some membrane systems is influenced. In the first place the inner membrane of the mitochondria is attacked leading to a complete lysis of mitochondria. However, the sensitivities within a given population are different. The plasmalemma enlarges, forms several invaginations, partly redraws from the cell wall, but remains intact. Only after an extensive treatment with relatively high concentrations of terrazol the nuclear envelope shows vesicles between the double membranes. The mechanism of action of terrazol is discussed.

  14. Cardiomyocytes derived from human embryonic and induced pluripotent stem cells: comparative ultrastructure

    OpenAIRE

    Gherghiceanu, Mihaela; Barad, Lili; Novak, Atara; Reiter, Irina; Itskovitz-Eldor, Joseph; Binah, Ofer; Popescu, LM

    2011-01-01

    Abstract Induced pluripotent stem cells (iPSC) are generated from fully differentiated somatic cells that were reprogrammed into a pluripotent state. Human iPSC which can be obtained from various types of somatic cells such as fibroblasts or keratinocytes can differentiate into cardiomyocytes (iPSC-CM), which exhibit cardiac-like transmembrane action potentials, intracellular Ca2+ transients and contractions. While major features of the excitation-contraction coupling of iPSC-CM have been wel...

  15. Carcinoma in situ of the testis. Some ultrastructural characteristics of germ cells

    DEFF Research Database (Denmark)

    Albrechtsen, R; Nielsen, M H; Skakkebaek, N E;

    1982-01-01

    The two cytoplasmic organelles, dense-cored vesicles and "nuages" have been considered to allow positive identification of primordial germ cells in rodents, but no use of these potential markers has been applied to human material. We have observed dense-cored vesicles and "nuages" in the abnormal...... germ cells of carcinoma in situ of the testis and thus brought further evidence for the germ cell origin of this lesion. These organelles may be useful cytoplasmic markers in the study of germ cell tumors....

  16. Ultrastructural Observations of the Vitelline Cells of Metamicrocotyla macracantha (Monogenea, Microcotylidae

    Directory of Open Access Journals (Sweden)

    Maria de Fatima D Baptista-Farias

    1998-07-01

    Full Text Available An electron microscopic study of the vitelline follicles of Metamicrocotyla macracantha (Alexander, 1954 Koratha,1955 showed that they are composed of cells in different stages of development. The immature cells have a large nucleus, nucleolus, cytoplasm with free ribosomes and few mitochondria. The developing vitelline cells present granules which are small in the early stages, increasing with maturity. The mature cells have an extensive granular endoplasmic reticulum and droplets of shell-protein; with maturation, clusters of shell protein and yolk bodies are formed and released in the ciliated vitelline ducts. Vitelline development is continuous and all of the cellular stages involved can be found in each follicle.

  17. Determination of the pore size of cell walls of living plant cells

    Energy Technology Data Exchange (ETDEWEB)

    Carpita, N.; Sabularse, D.; Montezinos, D.; Delmer, D.P.

    1979-09-14

    The limiting diameter of pores in the walls of living plant cells through which molecules can freely pass has been determined by a solute exclusion technique to be 35 to 38 angstroms for hair cells of Raphanus sativus roots and fibers of Gossypium hirsutum, 38 to 40 angstroms for cultured cells of Acer pseudoplatanus, and 45 to 52 angstroms for isolated palisade parenchyma cells of the leaves of Xanthium strumarium and Commelina communis. These results indicate that molecules with diameters larger than these pores would be restricted in their ability to penetrate such a cell wall, and that such a wall may represent a more significant barrier to cellular communication than has been previously assumed.

  18. Ultrastructure observation on the cells at different life history stages of Cryptocaryon irritans (Ciliophora: Prostomatea), a parasitic ciliate of marine fishes.

    Science.gov (United States)

    Ma, Rui; Ni, Bing; Fan, Xinpeng; Warren, Alan; Yin, Fei; Gu, Fukang

    2016-09-01

    Cells of Cryptocaryon irritans at different life history stages were studied using both light and electron microscopy. The characteristics of several organelles were revealed for the first time at the ultrastructural level. It was confirmed that the cytostome of trophonts, protomonts and theronts was surrounded by cilium-palp triplets rather than ciliary triplets. The nematodesmata underlying the circumoral dikinetids were single bundles, whereas these were always paired in Prorodontids. Toxicysts were present in late-stage tomonts and theronts, but were absent in trophonts and protomonts. We posited that toxicysts might play a role in infection and invasion of host-fish tissue by theronts. The adoral brosse was unlike that of any other family of the class Prostomatea based on its location and morphology. Membranous folds were present in trophonts, protomonts and theronts. These folds were longer and more highly developed in C. irritans than in exclusively free-living prostome ciliates suggesting that they might be linked to parasitism in C. irritans. Trophonts, protomonts and theronts had multiple contractile vacuoles. The basic ultrastructure of the contractile vacuole of C. irritans was similar to that of other kinetofragminophoran ciliates. They might play different roles in different stages of the life cycle since their ultrastructure varied among trophonts, protomonts and theronts. PMID:27460894

  19. [Ultrastructure of the subepithelial capillaries and venules in the forestomach of sheep].

    Science.gov (United States)

    Karmona, Kh; Kovachev, G

    1986-01-01

    Described is the ultrastructure of the subepithelial capillaries and venules in the forestomach, of sheep. The vessels have proved to be fenestrated, with an entire endothelial lining, the fenestrae being closed by a well contoured membrane (diaphragm). Certain differences were established in the wall of the subepithelial vessels of the individual compartments of the forestomach. The fenestral portions are usually located at the side that is closer to the basal epithelium, while within the deeper layers they are replaced by nonfenestrated endothelium. A well defined pericapillary space, full of cross, olblique, and longitudinal collagen fibres was found between capillaries and epithelial basal cells. There were a number of ultrastructural findings in the walls of the capillaries, venules, and epithelium, which could be referred to as morphologic indices of the active transport of metabolic substances. PMID:3727386

  20. The ultrastructural changes in the liver cells induced by high doses of Benzodiazepine Tranquilizing drugs: An experimental transmission electron microscopic study on male guinea pigs

    International Nuclear Information System (INIS)

    Benzodiazepines are tranquilizing psychotropic drugs. Unfortunately, despite their therapeutic benefits, they are illegally consumed in high doses by some addicts to reach a sedative, exhilarative and euphoria state similar to that produced by narcotic substances. The present study, using transmission electron microscope on male guinea pigs, aims to investigate the potential ultrastructural changes in the liver cells induced by the high doses of Benzodiazepines. Animals in three treated groups administrated a daily combined dose consisted of (10mg Alprazolam with 10mg Diazepam/day/animal) for three different treatment periods: 7, 15, and 25 days. The ultrastructural examination of the hepatocytes of the animals treated for 15 days showed limited changes in the form of marginal heterochromatine accompanied with marginal nucleoli enlargement. On the other hand, severe ultrastructural damages are observed in the animals treated for 25 days, which appeared in the following various patterns: fatty degeneration of the hepatocytes as indicated by the accumulation of large number of lipid droplets in the cytoplasm, marked nuclear atrophy in some necrotic hepatocytes, massive nuclear degeneration in other hepatocytes, mitochondrial damages in the form of cristea destruction accompanied with abnormal oval shape, massive lysis of the cytoplasmic organelles with severe plasma membrane rupture. In conclusion, the observed ultrastructural damages in the present study may refer to the potential hepatotoxic effects of the high dose of Benzodiazepins. It is recommended that much more official restrictions should be applied on the pharmacies sector to prevent any illegal selling of these drugs in order to prevent abusers from obtaining them, as unfortunately in some developing countries the illegal selling of these drugs is known to occur due to the absence of official control. (author)

  1. Ultrastructure of interstitial cells of Cajal at the colonic submuscular border in patients with ulcerative colitis

    DEFF Research Database (Denmark)

    Rumessen, J J

    1996-01-01

    Submuscular interstitial cells of Cajal (ICC) are putative pacemaker cells of the colonic external muscle. Although motility disturbances and smooth muscle dysfunction are prevalent in patients with ulcerative colitis (UC), ICC have never been studied in this disease. The aim of this study was to...

  2. Rhizobium sp. Degradation of Legume Root Hair Cell Wall at the Site of Infection Thread Origin

    OpenAIRE

    Ridge, Robert W.; Rolfe, Barry G.

    1985-01-01

    Using a new microinoculation technique, we demonstrated that penetration of Rhizobium sp. into the host root hair cell occurs at 20 to 22 h after inoculation. It did this by dissolving the cell wall maxtrix, leaving a layer of depolymerized wall microfibrils. Colony growth pressure “stretched” the weakened wall, forming a bulge into an interfacial zone between the wall and plasmalemma. At the same time vesicular bodies, similar to plasmalemmasomes, accumulated at the penetration site in a man...

  3. Antiproliferative effect of linalool on RPMI 7932 human melanoma cell line: ultrastructural studies.

    Science.gov (United States)

    Cerchiara, Teresa; Straface, Serafina Vittoria; Brunelli, Elvira; Tripepi, Sandro; Gallucci, Maria Caterina; Chidichimo, Giuseppe

    2015-04-01

    Linalool, a small monoterpene molecule, is used widely for its flavoring and fragrant properties in many cosmetic products. In this work, we investigated the antiproliferative effect of two different linalool solutions on RPMI 7932 human melanoma and NCTC 2544 normal keratinocites cell lines using the trypan blue method. Morphological changes in cells were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, apoptosis was evaluated using caspase 3-antibody. Linalool showed a selective inhibitory effect on the growth of melanoma cells in a concentrationdependent manner, inducing several morphological changes, as revealed by SEM and TEM analysis. Moreover, the labelling for caspase-3 is abundant in the melanoma cells and almost absent in the normal keratinocites cells. The results suggest that linalool could be used as drug and/or as model drug for developing potential therapeutic agents for melanoma.

  4. Extended Ultrastructural Characterization of Chordoma Cells: The Link to New Therapeutic Options

    Science.gov (United States)

    Kolb, Dagmar; Pritz, Elisabeth; Steinecker-Frohnwieser, Bibiane; Lohberger, Birgit; Deutsch, Alexander; Kroneis, Thomas; El-Heliebi, Amin; Dohr, Gottfried; Meditz, Katharina; Wagner, Karin; Koefeler, Harald; Leitinger, Gerd; Leithner, Andreas; Liegl-Atzwanger, Bernadette; Zweytick, Dagmar; Rinner, Beate

    2014-01-01

    Chordomas are rare bone tumors, developed from the notochord and largely resistant to chemotherapy. A special feature of this tumor is the heterogeneity of its cells. By combining high pressure freezing (HPF) with electron tomography we were able to illustrate the connections within the cells, the cell-cell interface, and the mitochondria-associated endoplasmic reticulum membrane complex that appears to play a special role among the characteristics of chordoma. These lipid raft-like regions are responsible for lipid syntheses and for calcium signaling. Compared to other tumor cells, chordoma cells show a close connection of rough endoplasmic reticulum and mitochondria, which may influence the sphingolipid metabolism and calcium release. We quantified levels of ceramide and glycosylceramide species by the methyl tert-butyl ether extraction method and we assessed the intracellular calcium concentration with the ratiometric fluorescent dye Fura-2AM. Measurements of the changes in the intracellular calcium concentration revealed an increase in calcium due to the application of acetylcholine. With regard to lipid synthesis, glucosylceramide levels in the chordoma cell line were significantly higher than those in normal healthy cells. The accumulation of glycosylceramide in drug resistant cancer cells has been confirmed in many types of cancer and may also account for drug resistance in chordoma. This study aimed to provide a deep morphological description of chordoma cells, it demonstrated that HPF analysis is useful in elucidating detailed structural information. Furthermore we demonstrate how an accumulation of glycosylceramide in chordoma provides links to drug resistance and opens up the field for new research options. PMID:25479055

  5. Extended ultrastructural characterization of chordoma cells: the link to new therapeutic options.

    Directory of Open Access Journals (Sweden)

    Dagmar Kolb

    Full Text Available Chordomas are rare bone tumors, developed from the notochord and largely resistant to chemotherapy. A special feature of this tumor is the heterogeneity of its cells. By combining high pressure freezing (HPF with electron tomography we were able to illustrate the connections within the cells, the cell-cell interface, and the mitochondria-associated endoplasmic reticulum membrane complex that appears to play a special role among the characteristics of chordoma. These lipid raft-like regions are responsible for lipid syntheses and for calcium signaling. Compared to other tumor cells, chordoma cells show a close connection of rough endoplasmic reticulum and mitochondria, which may influence the sphingolipid metabolism and calcium release. We quantified levels of ceramide and glycosylceramide species by the methyl tert-butyl ether extraction method and we assessed the intracellular calcium concentration with the ratiometric fluorescent dye Fura-2AM. Measurements of the changes in the intracellular calcium concentration revealed an increase in calcium due to the application of acetylcholine. With regard to lipid synthesis, glucosylceramide levels in the chordoma cell line were significantly higher than those in normal healthy cells. The accumulation of glycosylceramide in drug resistant cancer cells has been confirmed in many types of cancer and may also account for drug resistance in chordoma. This study aimed to provide a deep morphological description of chordoma cells, it demonstrated that HPF analysis is useful in elucidating detailed structural information. Furthermore we demonstrate how an accumulation of glycosylceramide in chordoma provides links to drug resistance and opens up the field for new research options.

  6. Chemical Profiling of the Plant Cell Wall through Raman Microspectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ju; Singh, Seema; Sun, Lan; Simmons, Blake; Auer, Manfred; Parvin, Bahram

    2010-03-02

    This paper presents a computational framework for chemical pro.ling of the plant cell wall through the Raman spectroscopy. The system enables query of known spectral signatures and clustering of spectral data based on intrinsic properties. As a result, presence and relative concentration of speci.c chemical bonds can be quanti.ed. The primary contribution of this paper is in representation of raman pro.le in terms of .uorescence background and multiscale peak detection at each grid point (voxel). Such a representation allows ef.cient spatial segmentation based on the coupling between high-level salient properties and low-level symbolic representation at each voxel. The high-level salient properties refer to preferred peaks and their attributes for the entire image. The low-level symbolic representations are based on .uorescence background, spectral peak locations, and their attributes. We present results on a corn stover tissue section that is imaged through Raman microscopy, and the results are consistent with the literature. In addition, automatic clustering indicates several distinct layers of the cell walls with different spectral signatures.

  7. Murein and pseudomurein cell wall binding domains of bacteria and archaea-a comparative view

    NARCIS (Netherlands)

    Visweswaran, Ganesh Ram R.; Dijkstra, Bauke W.; Kok, Jan

    2011-01-01

    The cell wall, a major barrier protecting cells from their environment, is an essential compartment of both bacteria and archaea. It protects the organism from internal turgor pressure and gives a defined shape to the cell. The cell wall serves also as an anchoring surface for various proteins and a

  8. Lectin histochemistry and ultrastructure of microgranular cells in Cinachyra tarentina (Porifera, Demospongiae).

    Science.gov (United States)

    Sciscioli, M; Ferri, D; Liquori, G E; Lepore, E; Santarelli, G

    2000-05-01

    A histochemical study is described that characterizes microgranular cells of the demosponge Cinachyra tarentina (C. tarentina) with the use of routine staining methods for mucosubstances, lectin histochemistry and electron microscopy. Microgranular cells are rare or absent in other species of sponges, but abundant in this species. Microgranular cells are present in both ectosome and mesohyl, particularly along the canal of the aquiferous system and around spicule holes. Inclusions of microgranular cells and the extracellular matrix were particularly positive for acidic glycoproteins with abundant sulfated ester groups and glycosidic residues containing GalNAc and Galbeta1,3GalNAc. Terminal L-fucose bound to the penultimate GalNAc residues and/or difucosylated oligosaccharides were present as well. Our results suggest that soybean lectin (SBA), peanut lectin (PNA), and winged pea lectin (WPA) are valuable markers for identifying microgranular cells of C. tarentina. Electron microscopy revealed some of the microgranular cells to contain small smooth cytoplasmic vesicles originating from the Golgi complex and few electron-dense granules, others were characterized by numerous secretory granules and vacuoles formed by vesicle fusion and connected with the plasma membrane. Our results suggest that microgranular cells in C. tarentina contribute to the synthesis of glycoprotein components of the extracellular matrix.

  9. Cell wall proteins of Sporothrix schenckii as immunoprotective agents.

    Science.gov (United States)

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; López-Romero, Everardo; Cuéllar-Cruz, Mayra; Ruiz-Baca, Estela

    2014-01-01

    Sporothrix schenckii is the etiological agent of sporotrichosis, an endemic subcutaneous mycosis in Latin America. Cell wall (CW) proteins located on the cell surface are inducers of cellular and humoral immune responses, potential candidates for diagnosis purposes and to generate vaccines to prevent fungal infections. This mini-review emphasizes the potential use of S. schenckii CW proteins as protective and therapeutic immune response inducers against sporotrichosis. A number of pathogenic fungi display CW components that have been characterized as inducers of protective cellular and humoral immune responses against the whole pathogen from which they were originally purified. The isolation and characterization of immunodominant protein components of the CW of S. schenckii have become relevant because of their potential in the development of protective and therapeutic immune responses against sporotrichosis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).

  10. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation

    Science.gov (United States)

    Yang, Jung Hyun; Wang, Huanzhong

    2016-01-01

    Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW biosynthesis has seen rapid progress due to the importance of these processes to plant biology and to the biofuel industry. Plant hormones, transcriptional regulators and peptide signaling regulate procambium/cambium proliferation, vascular patterning, and xylem differentiation. Transcriptional regulatory pathways play a pivot role in SCW biosynthesis. Although most of these discoveries are derived from research in Arabidopsis, many genes have shown conserved functions in biofuel feedstock species. Here, we review the recent advances in our understanding of vascular development and SCW formation and discuss potential biotechnological uses. PMID:27047525

  11. Ultra-structural changes and expression of chondrogenic and hypertrophic genes during chondrogenic differentiation of mesenchymal stromal cells in alginate beads

    Science.gov (United States)

    Dashtdar, Havva; Selvaratnam, Lakshmi; Balaji Raghavendran, Hanumantharao; Suhaeb, Abdulrazzaq Mahmod; Ahmad, Tunku Sara

    2016-01-01

    Chondrogenic differentiation of mesenchymal stromal cells (MSCs) in the form of pellet culture and encapsulation in alginate beads has been widely used as conventional model for in vitro chondrogenesis. However, comparative characterization between differentiation, hypertrophic markers, cell adhesion molecule and ultrastructural changes during alginate and pellet culture has not been described. Hence, the present study was conducted comparing MSCs cultured in pellet and alginate beads with monolayer culture. qPCR was performed to assess the expression of chondrogenic, hypertrophic, and cell adhesion molecule genes, whereas transmission electron microscopy (TEM) was used to assess the ultrastructural changes. In addition, immunocytochemistry for Collagen type II and aggrecan and glycosaminoglycan (GAG) analysis were performed. Our results indicate that pellet and alginate bead cultures were necessary for chondrogenic differentiation of MSC. It also indicates that cultures using alginate bead demonstrated significantly higher (p < 0.05) chondrogenic but lower hypertrophic (p < 0.05) gene expressions as compared with pellet cultures. N-cadherin and N-CAM1 expression were up-regulated in second and third weeks of culture and were comparable between the alginate bead and pellet culture groups, respectively. TEM images demonstrated ultrastructural changes resembling cell death in pellet cultures. Our results indicate that using alginate beads, MSCs express higher chondrogenic but lower hypertrophic gene expression. Enhanced production of extracellular matrix and cell adhesion molecules was also observed in this group. These findings suggest that alginate bead culture may serve as a superior chondrogenic model, whereas pellet culture is more appropriate as a hypertrophic model of chondrogenesis. PMID:26966647

  12. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

    OpenAIRE

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J.; Kim, Jae-Yean

    2015-01-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Ba...

  13. Cell wall and lipid composition of Isosphaera pallida, a budding eubacterium from hot springs.

    OpenAIRE

    Giovannoni, S J; Godchaux, W; Schabtach, E; Castenholz, R W

    1987-01-01

    Isosphaera pallida is an unusual gliding, budding eubacterium recently isolated from North American hot springs. Electron micrographs of ultrathin sections revealed a cell wall atypical of eubacteria: two electrondense layers separated by an electron-transparent layer, with no evident peptidoglycan layer. Growth was not inhibited by penicillin. Cell walls were isolated from sheared cells by velocity sedimentation. The rigid-layer fraction, prepared from cell walls by treatment with boiling 10...

  14. Binding of paraquat to cell walls of paraquat resistant and susceptible biotypes of Hordeum glaucum

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, H.M.; Preston, C.; Powles, S.B. [University of Adeilaide, Glen Osmond, SA (Australia). CRC for Weed Management Systems and Department of Crop Protection

    1997-12-31

    Full text: Paraquat is a widely used, non-selective, light activated contact herbicide acting as a photosystem electron acceptor. Resistance to paraquat in weed species has occurred in Australia and world-wide following extensive use of this herbicide. The mechanism of resistance to paraquat in `Hordeum glaucum` is correlated with reduced herbicide translocation and may be due to sequestration of herbicide away from its site of action by either binding to cell walls or other means. We measured paraquat binding to a cell wall fraction in resistant and susceptible biotypes of H. glaucum to determine whether differences in binding of paraquat to cell walls could explain herbicide resistance. The cell wall fraction was isolated from leaves of resistant and susceptible biotypes and incubated with {sup 14}C-labelled paraquat. Of the total paraquat - absorbed by a cell wall preparation, about 80% remains strongly bind to the cell wall and doesn`t readily exchange with solution in the absence of divalent cations. Divalent cations (Ca{sup 2+},putrescine and paraquat) can competitively exchange for paraquat tightly bound to the cell wall. From kinetic experiments it seems that there are two types of binding sites in the cell wall with different affinities for paraquat. No significant differences between cell wall, characteristics of resistant and susceptible biotypes of H. glaucum have been found in any of our experiments. Therefore, increased binding of paraquat to the cell wall appears not to be a mechanism for exclusion of paraquat in resistant biotype

  15. The digestive cells of the hepatopancreas in Aplysia depilans (Mollusca, Opisthobranchia): ultrastructural and cytochemical study.

    Science.gov (United States)

    Lobo-da-Cunha, A

    2000-02-01

    Digestive cells are the most abundant cell type in the digestive diverticula of Aplysia depilans. These are tall columnar or club shaped cells, covered with microvilli on their apical surface. A large number of endocytic vesicles containing electron-dense substances can be found in the apical zone, but the presence of many heterolysosomes of large diameter is the main feature of these cells. Glycogen particles and some lipid droplets were also observed. Peroxisomes with a circular or oval profile were common, but crystalline nucleoids were not detected in them, although a dense spot in the matrix was observed in a few cases. These organelles were strongly stained after cytochemical detection of catalase activity. The Golgi stacks are formed by 4 or 5 cisternae, with dilated zones containing electron dense material. Arylsulphatase activity was detected in the Golgi stacks and also in lysosomes. Cells almost entirely occupied by a very large vacuole containing a residual dense mass seem to be digestive cells in advanced stages of maturation. The observation of semithin and ultrathin sections indicates that these very large vacuoles are the result of a fusion among the smaller lysosomes. Some images suggest that the content of these large vacuoles is extruded into the lumen of the digestive diverticula. PMID:10798317

  16. Ultrastructural Localization of Endogenous Exchange Factor for ARF6 in Adrenocortical Cells In Situ of Mice.

    Science.gov (United States)

    Chomphoo, Surang; Mothong, Wilaiwan; Sawatpanich, Tarinee; Kanla, Pipatphong; Sakagami, Hiroyuki; Kondo, Hisatake; Hipkaeo, Wiphawi

    2016-06-28

    EFA6 (exchange factor for ARF6) activates Arf6 (ADP ribosylation factor 6) by exchanging ADP to ATP, and the resulting activated form of Arf6 is involved in the membrane dynamics and actin re-organization of cells. The present study was attempted to localize EFA6 type D (EFA6D) in mouse adrenocortical cells in situ whose steroid hormone secretion is generally considered not to depend on the vesicle-involved regulatory mechanism. In immunoblotting, an immunoreactive band with the same size as brain EFA6D was detected in homogenates of adrenal cortical tissues almost free of adrenal capsules and medulla. In immuno-light microscopy, EFA6D-immunoreactivity was positive in adrenocortical cells and it was often distinct along the plasmalemma, especially along portions of the cell columns facing the interstitium. In immuno-electron microscopy, the gold-labeling was more dense in the peripheral intracellular domains than the central domain of the immunopositive cells. The labeling was deposited on the plasma membranes in a discontinuous pattern and in cytoplasmic domains rich in filaments. It was also associated with some, but not all, of pleiomorphic vesicles and coated pits/vesicles. No labeling was seen in association with lipid droplets or smooth endoplasmic reticulum. The present finding is in support of the importance of EFA6D for activation of Arf6 in adrenocortical cells. PMID:27462133

  17. Soya beans and Maize : The effect of chemical and physical structure of cell wall polysaccharides on fermentation kinetics

    OpenAIRE

    Laar, van de, P.

    2000-01-01

    The analysis of the relationship between cell wall composition and fermentation of endosperm cell walls of soya beans and maize was approached from three different angles. Firstly, the fermentation (rate and extent of fermentation, the sugar degradation pattern, and volatile fatty acid production) of soya bean and maize cell walls was analysed, both in situ and in vitro. This analysis revealed that the physical structure of the cell wall (particle size and cell wall thickness) influences cell...

  18. Response of the common cutworm Spodoptera litura to zinc stress: Zn accumulation, metallothionein and cell ultrastructure of the midgut

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Yinghua [Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642 (China); Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642 (China); Institute of Tropical and Subtropical Ecology, South China Agricultural University, Guangzhou 510642 (China); State Key Laboratory of Biological Control and Institute of Entomology, Sun Yat-sen University, Guangzhou 510275 (China); Zhang, Guren [State Key Laboratory of Biological Control and Institute of Entomology, Sun Yat-sen University, Guangzhou 510275 (China); Wang, Jianwu, E-mail: wangjw@scau.edu.cn [Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642 (China); Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642 (China); Institute of Tropical and Subtropical Ecology, South China Agricultural University, Guangzhou 510642 (China)

    2012-11-01

    By exposing the common cutworm Spodoptera litura Fabricius larvae to a range of Zinc (Zn) stress, we investigated the effects of dietary Zn on Zn accumulation, metallothionein (MT), and on the ultrastructure of the midgut. The techniques we used were inductively coupled plasma-atomic emission spectrometer (ICP-AES), real-time PCR combined with cadmium-hemoglobin total saturation, and transmission electron microscopy (TEM), respectively. There was a significant dose-response relationship between the Zn accumulations in the midgut of the larvae and the Zn concentrations in the diet. Furthermore, both MT content and MT gene expression in the midgut were significantly induced in the 50-500 mg Zn/kg treatments, and were significantly positively correlated with the Zn accumulations in the midgut. When S. litura larvae were fed with the diet treated with 500 mg Zn/kg, Zn accumulation and MT content in the midgut was 4450.85 mg Zn/kg and 372.77 mg/kg, respectively, thereafter there was a little increase; the level of MT gene expression was maximal, thereafter there was a sharp decrease. TEM showed that numerous electron-dense granules (EDGs) and vacuoles appeared in the cytoplasm of the midgut cells, their number and size being closely correlated with the Zn accumulations in the midgut. Moreover, the nuclei were strongly influenced by Zn stress, evidenced by chromatin condensation and irregular nuclear membranes. Therefore, after being exposed to Zn in the threshold (500 mg Zn/kg) range, S. litura larvae could accumulate Zn in the midgut, which led to the induction of MT and changes in cell ultrastructure (mainly the presence of EDGs). The induction of MT and precipitation of Zn in EDGs may be the effective detoxification mechanisms by which the herbivorous insect S. litura defends itself against heavy metals. -- Graphical abstract: When the herbivorous insect Spodoptera litura Fabricius larvae were fed on the artificial diet with different concentrations of Zn, amounts of

  19. Hematopoietic Stem Cells Expansion in Rotating Wall Vessel

    Institute of Scientific and Technical Information of China (English)

    Yang LIU; Tian-Qing LIU; Xiu-Bo FAN; Dan GE; Zhan-Feng CUI; Xue-Hu MA

    2005-01-01

    @@ 1 Introduction Clinical trials have demonstrated that ex vivo expanded hematopoietic stem cells (HSCs) and progenitors offer great promise in reconstituting in vivo hematopoiesis in patients who have undergone intensive chemotherapy.It is therefore necessary to develop a clinical-scale culture system to provide the expanded HSCs and progenitors.Static culture systems such as T-flasks and gas-permeable blood bags are the most widely used culture devices for expanding hematopoietic cells. But they reveal several inherent limitations: ineffective mixing, lack of control options for dissolved oxygen and pH and difficulty in continuous feeding, which restricts the usefulness of static systems. Several advanced bioreactors have been used in the field of HSCs expansion. But hematopoietic cells are extremely sensitive to shear, so cells in bioreactors such as stirred and perfusion culture systems may suffer physical damage. This problem will be improved by applying the rotating wall vessel (RWV) bioreactor in clinic because of its low shear and unique structure. In this research, cord blood (CB) HSCs were expanded by means of a cell-dilution feeding protocol in RWV.

  20. The connection of cytoskeletal network with plasma membrane and the cell wall

    Institute of Scientific and Technical Information of China (English)

    Zengyu Liu; Staffan Persson; Yi Zhang

    2015-01-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosyn-thesis and modifications, and aim to provide a platform for further studies in this field.

  1. [Effects of low temperature at 10 degrees C on some antioxidant enzyme activities and ultrastructures of hypocotylar cells in mung bean and garden pea].

    Science.gov (United States)

    Chen, Xu-Wei; Yang, Ling; Zhang, Yi; Gong, Ju-Fang

    2005-10-01

    Mung bean (Phaseolus radiatus Linn.) and garden pea (Pisum satium Linn.), which were stressed 4 days under a low temperature of 10 degrees C, were used as materials to study the cold tolerance of plant with different resistance. On the 2nd and 3rd day under 10 degrees C stress, both the malondialdehyde (MDA) content and the superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities increased significantly in hypocotylar cells of mung bean, so did SOD activity in garden pea, but other physiological indexes in garden pea were not different from the non-treatment groups (Figs. 1-5). In hypocotylar cells of mung bean, SOD activity always maintain at the highest level in a period of time,and so does POD activity (Figs. 3, 4). Ultrastructural results after stress indicated as follows: (1) Plastids in hypocotylar cells of mung bean accumulated much starch (Plate I-6), whereas the form of plastids in hypocotylar cells of garden pea changed maskedly to become dumb-bell-shaped, round or irregular, with the last one being the most common form (Plate I-8, 12); (2) In both mung bean and garden pea, central vacuole was divided into small vacuoles (Plate I-4, 10), and the number of mitochondria increased and became aggregated (Plate I-3, 11, 12). Judging from the activities of protective enzymes and ultrastructures, 10 degrees C low temperature caused non-lethal, temporary injuries to hypocotyls ultrastructures in mung bean, but no visible injury at all, and even improved its cold tolerance to a certain degree in garden pea.

  2. Ultrastructural changes of bone marrow cells exposed for xenogenous cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Shaymardanova L.R.

    2010-01-01

    Full Text Available Due to the scientifical investigations xenogenous cerebrospinal fluid was considered as possible substance for theproduction of powerful adaptogen of biological origin. One of the representative research in these field demonstrates morphologicaland functional changes of bone marrow as the central hemopoetic and immune organ. The article shows the ultramicroscopicchanges of bone marrow cells after the xenogenous cerebrospinal fluid exposure in Vistar rats of differentage. It was revealed the activation of synthetic processes in bone marrow cells of the first three age groups and exhaustion ofactivating mechanisms in the fourth age group, that was manifested in swelling and destruction of mytochondria, vacuolisationof cytoplasm, invagination of caryolemma.

  3. Effects of hypothyroidism on the ultrastructure of rat pancreatic acinar cells: a stereological analysis

    OpenAIRE

    Blanco-Molina, A.; González-Reyes, J. A.; Torre-Cisneros, J; López-Miranda, J.; Nicolás, M.; Pérez-Jiménez, F.

    1991-01-01

    The morphological and stereological characteristics of the exocrine pancreas subcellular organelles from healthy and thyroidectomized rats have been studied. The acinar tissue from hypothyroid rats showed an interstitial edema and evidence of degenerative processes. Stereological parameters of zymogen granules were significantly reduced in thyroidectomized rats. The hypothyroidism induced degenerative changes in the pancreatic acinar cells as well as a decr...

  4. Bacterial vaginosis (clue cell-positive discharge) : diagnostic, ultra-structural and therapeutic aspects

    NARCIS (Netherlands)

    W.I. van der Meijden (Willem)

    1987-01-01

    textabstractThis thesis deals with several aspects of (abnormal) vaginal discharge, focusing especially on clue cell-positive discharge (bacterial vaginosis, nonspecific vaginitis). It reports data on epidemiology and clinical features, pathogenesis, and treatment of this vaginal disease entity, as

  5. Ultrastructural features of organization of the cell and pirenoids in Stichococcus-like algae

    Directory of Open Access Journals (Sweden)

    Victoria M. Karbovska

    2014-04-01

    Full Text Available The results of SEM study of cell organization and some feature of the structure of pyrenoids in several authentic strains of the genus Stichococcus Nägeli from ACKU collection are reported. Our results showed a variety of organizations of the pyrenoid in this group of green microalgae and allowed to describe five main types of pyrenoids.

  6. Primary culture of endothelial cells from atherosclerotic human aorta. Part 1. Identification, morphological and ultrastructural characteristics of two endothelial cell subpopulations.

    Science.gov (United States)

    Antonov, A S; Nikolaeva, M A; Klueva, T S; Romanov YuA; Babaev, V R; Bystrevskaya, V B; Perov, N A; Repin, V S; Smirnov, V N

    1986-01-01

    Endothelial cells (EC) were harvested by 0.1% collagenase treatment for adult human thoracic aortas obtained 1-3 h after sudden death. At least 35-70% of EC were removed from the intimal surface of aorta, 90-95% of them being viable. Plating efficiency was 70-80%. Monolayer formation was achieved at a seeding density of 5-8 X 10(2) cells/mm2. The cells were identified as endothelium by the presence of Factor VIII antigen, Weigel-Palade bodies and typically endothelial morphology at confluence. Unlike endothelial cultures derived from human umbilical veins and infant aortas, primary cultures obtained from human adult aortas contain multinuclear EC with Factor VIII antigen and Weibel-Palade bodies. The number of multinuclear EC in cultures isolated from aortas affected by atherosclerosis was 2-fold higher (P less than 0.05) than in cultures obtained from grossly normal aortas taken from donors of the same age. EC with numerous lipid inclusions revealed by oil-red-O staining were present in all the EC primary cultures derived from aortas affected by atherosclerosis. No oil-red-O-positive cells were detected among the EC cultured from infant aorta, aorta of young donors, and umbilical vein. An electron microscopic examination of EC from atherosclerotic aorta in culture and in situ failed to reveal any ultrastructural peculiarities distinguishing multinuclear EC from the mononuclear EC. PMID:3004520

  7. Area Expansivity Moduli of Regenerating Plant Protoplast Cell Walls Exposed to Shear Flows

    Science.gov (United States)

    Fujimura, Yuu; Iino, Masaaki; Watanabe, Ugai

    2005-05-01

    To control the elasticity of the plant cell wall, protoplasts isolated from cultured Catharanthus roseus cells were regenerated in shear flows of 115 s-1 (high shear) and 19.2 s-1 (low shear, as a control). The surface area expansivity modulus and the surface breaking strength of these regenerating protoplasts were measured by a micropipette aspiration technique. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye. High shear exposure for 3 h doubled both the surface area modulus and breaking strength observed under low shear, significantly decreased cell wall synthesis, and roughly quadrupled the moduli of the cell wall. Based on the cell wall synthesis data, we estimated the three-dimensional modulus of the cell wall to be 4.1± 1.2 GPa for the high shear, and 0.35± 0.2 GPa for the low shear condition, using the surface area expansivity modulus divided by the cell wall thickness, which is identical with the Young’s modulus divided by 2(1-σ), where σ is Poisson's ratio. We concluded that high shear exposure considerably strengthens the newly synthesized cell wall.

  8. Aqueous Diffusion Pathways as a Part of the Ventricular Cell Ultrastructure

    OpenAIRE

    Parfenov, A. S.; Salnikov, V.; Lederer, W.J.; Lukyánenko, V.

    2005-01-01

    The physical organization of the ventricular myocyte includes barriers for the movement of objects of varying dimensions ranging from ions to solid particles. There are two kinds of diffusion in the cell: lateral (in membranes) and aqueous. Here we examine the size constraints of aqueous diffusion pathways and discuss their impact on cellular physiology. Calibrated gold nanoparticles were used to probe the accessibility of the entire transverse-axial tubular system (TATS), the sarcoplasm, and...

  9. Towards an atlas of mammalian cell ultrastructure by cryo soft X-ray tomography

    OpenAIRE

    Müller, Waltraud G.; Heymann, J. Bernard; Nagashima, Kunio; Guttmann, Peter; Werner, Stephan; Rehbein, Stefan; Schneider, Gerd; McNally, James G

    2011-01-01

    We provide a catalog of 3D cryo soft X-ray tomography (cryo-SXT) images obtained from ~6–12 µm thick mouse adenocarcinoma cells. Included are multiple representative images of nuclei, nucleoli, nuclear membrane, nuclear membrane channels, mitochondria, lysosomes, endoplasmic reticulum, filaments and plasma membrane, plus three structures not previously described by cryo-SXT, namely Golgi, microvilli and nuclear-membrane blebs. Sections from the 3D cryo-SXT tomograms for all the preceding stru...

  10. Ultrastructural and biochemical studies of two dynamically expressed cell surface determinants on Candida albicans.

    OpenAIRE

    Brawner, D L; Cutler, J E

    1986-01-01

    Variability in the expression of two different cell surface carbohydrate determinants was examined with two agglutinating immunoglobulin M monoclonal antibodies (H9 and C6) and immunoelectron microscopy during growth of three strains of Candida albicans. A single strain of Candida parapsilosis did not express either antigen at any time during growth. Antigens were detected on the surface of C. albicans by agglutination tests with either H9 or C6 over a 48-h growth period. The difference in sp...

  11. Targeted changes of the cell wall proteome influence Candida albicans ability to form single- and multi-strain biofilms.

    Directory of Open Access Journals (Sweden)

    Vitor Cabral

    2014-12-01

    Full Text Available Biofilm formation is an important virulence trait of the pathogenic yeast Candida albicans. We have combined gene overexpression, strain barcoding and microarray profiling to screen a library of 531 C. albicans conditional overexpression strains (∼10% of the genome for genes affecting biofilm development in mixed-population experiments. The overexpression of 16 genes increased strain occupancy within a multi-strain biofilm, whereas overexpression of 4 genes decreased it. The set of 16 genes was significantly enriched for those encoding predicted glycosylphosphatidylinositol (GPI-modified proteins, namely Ihd1/Pga36, Phr2, Pga15, Pga19, Pga22, Pga32, Pga37, Pga42 and Pga59; eight of which have been classified as pathogen-specific. Validation experiments using either individually- or competitively-grown overexpression strains revealed that the contribution of these genes to biofilm formation was variable and stage-specific. Deeper functional analysis of PGA59 and PGA22 at a single-cell resolution using atomic force microscopy showed that overexpression of either gene increased C. albicans ability to adhere to an abiotic substrate. However, unlike PGA59, PGA22 overexpression led to cell cluster formation that resulted in increased sensitivity to shear forces and decreased ability to form a single-strain biofilm. Within the multi-strain environment provided by the PGA22-non overexpressing cells, PGA22-overexpressing cells were protected from shear forces and fitter for biofilm development. Ultrastructural analysis, genome-wide transcript profiling and phenotypic analyses in a heterologous context suggested that PGA22 affects cell adherence through alteration of cell wall structure and/or function. Taken together, our findings reveal that several novel predicted GPI-modified proteins contribute to the cooperative behaviour between biofilm cells and are important participants during C. albicans biofilm formation. Moreover, they illustrate the power

  12. Cell wall antibiotics provoke accumulation of anchored mCherry in the cross wall of Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Wenqi Yu

    Full Text Available A fluorescence microscopy method to directly follow the localization of defined proteins in Staphylococcus was hampered by the unstable fluorescence of fluorescent proteins. Here, we constructed plasmid (pCX encoded red fluorescence (RF mCherry (mCh hybrids, namely mCh-cyto (no signal peptide and no sorting sequence, mCh-sec (with signal peptide, and mCh-cw (with signal peptide and cell wall sorting sequence. The S. aureus clones targeted mCh-fusion proteins into the cytosol, the supernatant and the cell envelope respectively; in all cases mCherry exhibited bright fluorescence. In staphylococci two types of signal peptides (SP can be distinguished: the +YSIRK motif SP(lip and the -YSIRK motif SP(sasF. mCh-hybrids supplied with the +YSIRK motif SP(lip were always expressed higher than those with -YSIRK motif SP(sasF. To study the location of the anchoring process and also the influence of SP type, mCh-cw was supplied on the one hand with +YSIRK motif (mCh-cw1 and the other hand with -YSIRK motif (mCh-cw2. MCh-cw1 preferentially localized at the cross wall, while mCh-cw2 preferentially localized at the peripheral wall. Interestingly, when treated with sub-lethal concentrations of penicillin or moenomycin, both mCh-cw1 and mCh-cw2 were concentrated at the cross wall. The shift from the peripheral wall to the cross wall required Sortase A (SrtA, as in the srtA mutant this effect was blunted. The effect is most likely due to antibiotic mediated increase of free anchoring sites (Lipid II at the cross wall, the substrate of SrtA, leading to a preferential incorporation of anchored proteins at the cross wall.

  13. Cell wall sorting signals in surface proteins of gram-positive bacteria.

    OpenAIRE

    Schneewind, O; Mihaylova-Petkov, D; Model, P

    1993-01-01

    Staphylococcal protein A is anchored to the cell wall, a unique cellular compartment of Gram-positive bacteria. The sorting signal sufficient for cell wall anchoring consists of an LPXTG motif, a C-terminal hydrophobic domain and a charged tail. Homologous sequences are found in many surface proteins of Gram-positive bacteria and we explored the universality of these sequences to serve as cell wall sorting signals. We show that several signals are able to anchor fusion proteins to the staphyl...

  14. In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth

    OpenAIRE

    Müller, Kerstin; Linkies, Ada; Vreeburg, Robert A. M.; Fry, Stephen C; Krieger-Liszkay, Anja; Leubner-Metzger, Gerhard

    2009-01-01

    Loosening of cell walls is an important developmental process in key stages of plant life cycles, including seed germination, elongation growth and fruit ripening. Here we report direct in vivo evidence for hydroxyl radical (•OH)-mediated cell wall loosening during plant seed germination and seedling growth. We used electron paramagnetic resonance (EPR)-spectroscopy to show that •OH is generated in the cell wall during radicle elongation and weakening of the endosperm of cress (Lepidium sativ...

  15. Cell Wall Microstructure Analysis Implicates Hemicellulose Polysaccharides in Cell Adhesion in Tomato Fruit Pericarp Parenchyma

    Institute of Scientific and Technical Information of China (English)

    Jose J. Ordaz-Ortiz; Susan E. Marcus; J. Paul Knox

    2009-01-01

    Methods developed to isolate intact cells from both unripe and ripe tomato fruit pericarp parenchyma have allowed the cell biological analysis of polysaccharide epitopes at the surface of separated cells. The LM7 pectic homoga-lacturonan epitope is a marker of the junctions of adhesion planes and intercellular spaces in parenchyma systems. The LM7 epitope persistently marked the former edge of adhesion planes at the surface of cells separated from unripe and ripened tomato fruit and also from fruits with the Cnr mutation. The LM 11 xylan epitope was associated, in sections, with cell walls lining intercellular space but the epitope was not detected at the surface of isolated cells, being lost during cell isolation. The LM15 xyloglucan epitope was present at the surface of cells isolated from unripe fruit in a pattern reflecting the former edge of cell adhesion planes/intercellular space but with gaps and apparent breaks, An equivalent pattern ofLM15 epitope occurrence was revealed at the surface of cells isolated by pectate lyase action but was not present in cells isolated from ripe fruit or from Cnr fruit. In contrast to wild-type cells, the LM5 galactan and LM21 mannan epitopes oc-curred predominantly in positions reflecting intercellular space in Cnr, suggesting a concerted alteration in cell wall mi-crostructure in response to this mutation. Galactanase and mannanase, along with pectic homogalacturonan-degrading enzymes, were capable of releasing cells from unripe fruit parenchyma. These observations indicate that hemicellulose polymers are present in architectural contexts reflecting cell adhesion and that several cell wall polysaccharide classes are likely to contribute to cell adhesion/cell separation in tomato fruit pericarp parenchyma.

  16. X-ray and proton induced ultrastructural changes in Chlamydomonas reinhardi, with special reference to the dividing cell

    International Nuclear Information System (INIS)

    Liquid cultures were exposed to 9000 R x-irradiation delivered at approximately 600 R/min. This produced 69 percent mortality in the 137c wild type strain and 71 percent mortality in the acetate-requiring strain ac-31. Irradiated and control cells were fixed for electron microscopic examination at intervals up to five days post exposure. Proton-irradiations using a positive ion Van de Graff accelerator were administered to monolayers of cells attached to Millipore filters. Irradiated and control cells were later resuspended and incubated in liquid culture medium. The dose rate was approximately 20 kilorad/second for thin targets with the dose monitored with a solid state detector. Distinctive fine structural responses were observed for the two kinds of radiation at the indicated exposure levels. Alterations affecting the nucleus were prominent after x-irradiation. Nuclei were observed in which non-nucleolar condensations and swollen nuclear envelopes were evident. Nuclear envelope rupture was noted when cells were in an advanced state of disorganization. Multiple nuclei per cell were also observed. Proton-irradiation often resulted in both live and dead daughter cells within the same mother cell wall. Changes in the chloroplast and mitochondria were seen after both types of irradiation. Two features absent in control cells were of special interest. Following x- and proton-irradiation, cells were observed which remained joined in configurations closely resembling division profiles or division conformations. Irradiated cells also possessed chromosomes and spindle fibers at a time not characteristic for such events in control cells

  17. Single Wall Carbon Nanotube-polymer Solar Cells

    Science.gov (United States)

    Bailey, Sheila G.; Castro, Stephanie L.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2005-01-01

    Investigation of single wall carbon nanotube (SWNT)-polymer solar cells has been conducted towards developing alternative lightweight, flexible devices for space power applications. Photovoltaic devices were constructed with regioregular poly(3-octylthiophene)-(P3OT) and purified, >95% w/w, laser-generated SWNTs. The P3OT composites were deposited on ITO-coated polyethylene terapthalate (PET) and I-V characterization was performed under simulated AM0 illumination. Fabricated devices for the 1.0% w/w SWNT-P3OT composites showed a photoresponse with an open-circuit voltage (V(sub oc)) of 0.98 V and a short-circuit current density (I(sub sc)) of 0.12 mA/sq cm. Optimization of carrier transport within these novel photovoltaic systems is proposed, specifically development of nanostructure-SWNT complexes to enhance exciton dissociation.

  18. Two cationic peroxidases from cell walls of Araucaria araucana seeds.

    Science.gov (United States)

    Riquelme, A; Cardemil, L

    1995-05-01

    We have previously reported the purification and partial characterization of two cationic peroxidases from the cell walls of seeds and seedlings of the South American conifer, Araucaria araucana. In this work, we have studied the amino acid composition and NH2-terminal sequences of both enzymes. We also compare the data obtained from these analyses with those reported for other plant peroxidases. The two peroxidases are similar in their amino acid compositions. Both are particularly rich in glycine, which comprises more than 30% of the amino acid residues. The content of serine is also high, ca 17%. The two enzymes are different in their content of arginine, alanine, valine, phenylalanine and threonine. Both peroxidases have identical NH2-terminal sequences, indicating that the two proteins are genetically related and probably are isoforms of the same kind of peroxidase. The amino acid composition and NH2-terminal sequence analyses showed marked differences from the cationic peroxidases from turnip and horseradish. PMID:7786490

  19. Composition and architecture of the cell walls of grasses and the mechanisms of synthesis of cell wall polysaccharides. Final report for period September 1, 1988 - April 30, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Carpita, Nicholas C.

    2001-10-18

    This program was devoted toward complete understanding of the polysaccharide structure and architecture of the primary cell walls grasses and cereals, and the biosynthesis of the mixed-linkage beta-glucane, a cellulose interacting polymer that is synthesized uniquely by grass species and close relatives. With these studies as focal point, the support from DOE was instrumental in the development of new analytical means that enabled us to characterize carbohydrate structure, to reveal new features of cell wall dynamics during cell growth, and to apply these techniques in other model organisms. The support by DOE in these basic studies was acknowledged on numerous occasions in review articles covering current knowledge of cell wall structure, architecture, dynamics, biosynthesis, and in all genes related to cell wall biogenesis.

  20. In-vitro fermentability of cell walls as influenced by lignin composition and cross-linking.

    Science.gov (United States)

    We assessed how diverse modifications in lignin composition and reductions in ferulate-lignin cross-linking influence the degradability of cell walls. Cell walls from nonlignified maize cell suspensions were artificially lignified with varying ratios of normal monolignols (coniferyl and sinapyl alco...

  1. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    Science.gov (United States)

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. PMID:27107260

  2. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    Science.gov (United States)

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation.

  3. Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves

    Directory of Open Access Journals (Sweden)

    Mediesse Kengne Francine

    2014-12-01

    Full Text Available Objective: To examine the total phenolic and protein contents, and the antioxidant activities of cell wall polysaccharide fractions of Stevia rebaudiana leaves. Methods: Three different polysaccharide-enriched fractions, namely FPE (extract with 50 mmol/ L ethylene diamine tetra acetic acid, FPK (extract with 0.05 mol/L KOH and FH (extract with 4 mol/L KOH were extracted from Stevia rebaudiana leaves. The antioxidant activity of these fractions was evaluated based on their ability to scavenge DPPH (1, 1-diphenyl-2-picryl hydrazyl free radical, to reduce ferric power, to chelate ferrous ion and to protect human DNA. Results: The results indicated that protein content was found to be higher in FPK polysaccharide enriched fraction (47.48 µg per mg of FPK. Furthermore, the phenolic compound analysis according to the Folin-Ciocalteu method was higher in FPK (17.71 µg ferulic acid. The DPPH maximal inhibition percentage of the three polysaccharide-enriched fractions at 400 µg/mL was 27.66%, 59.90% and 23.21% respectively for FPE, FPK and FH. All the polysaccharide fractions exhibited a ferric reducing power except the FH one. The three fractions also exhibited lipid peroxidation inhibition, and they completely reverted the DNA damage induced by H2O2/FeCl2. FPK showed the strongest scavenging activity against the DPPH radical, the best chelating ability and lipid peroxidation inhibition. Conclusions: Stevia cell wall polysaccharide fractions are potent protective agents against oxidative stress. The analysis revealed major differences in the antioxidant activity in the three polysaccharides fractions. However, the 0.05 mol/L KOH pectin fraction (FPK showed better antioxidant activity.

  4. Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves

    Institute of Scientific and Technical Information of China (English)

    Mediesse Kengne Francine; Woguia Alice Louise; Fogue Souopgui Pythagore; Atogho-Tiedeu Barbara; Simo Gustave; Thadde Boudjeko

    2014-01-01

    Objective: To examine the total phenolic and protein contents, and the antioxidant activities of cell wall polysaccharide fractions of Stevia rebaudiana leaves.Methods:L ethylene diamine tetra acetic acid), FPK (extract with 0.05 mol/L KOH) and FH (extract with 4 mol/L KOH) were extracted from Stevia rebaudiana leaves. The antioxidant activity of these fractions was evaluated based on their ability to scavenge DPPH (1, 1-diphenyl-2-picryl hydrazyl) free radical, to reduce ferric power, to chelate ferrous ion and to protect human DNA. Three different polysaccharide-enriched fractions, namely FPE (extract with 50 mmol/Results: The results indicated that protein content was found to be higher in FPK polysaccharide enriched fraction (47.48 µg per mg of FPK). Furthermore, the phenolic compound analysis according to the Folin-Ciocalteu method was higher in FPK (17.71 µg ferulic acid). The DPPH maximal inhibition percentage of the three polysaccharide-enriched fractions at 400 µg/mL was 27.66%, 59.90% and 23.21% respectively for FPE, FPK and FH. All the polysaccharide fractions exhibited a ferric reducing power except the FH one. The three fractions also exhibited lipid peroxidation inhibition, and they completely reverted the DNA damage induced by H2O2/FeCl2. FPK showed the strongest scavenging activity against the DPPH radical, the best chelating ability and lipid peroxidation inhibition.Conclusions: Stevia cell wall polysaccharide fractions are potent protective agents against oxidative stress. The analysis revealed major differences in the antioxidant activity in the three polysaccharides fractions. However, the 0.05 mol/L KOH pectin fraction (FPK) showed better antioxidant activity.

  5. A 3-D Model of a Perennial Ryegrass Primary Cell Wall and Its Enzymatic Degradation

    OpenAIRE

    Indrakumar Vetharaniam; Kelly, William J.; Graeme T. Attwood; Harris, Philip J.

    2014-01-01

    We have developed a novel 3-D, agent-based model of cell-wall digestion to improve our understanding of ruminal cell-wall digestion. It offers a capability to study cell walls and their enzymatic modification, by providing a representation of cellulose microfibrils and non-cellulosic polysaccharides and by simulating their spatial and catalytic interactions with enzymes. One can vary cell-wall composition and the types and numbers of enzyme molecules, allowing the model to be applied to a ran...

  6. Plant cell walls throughout evolution: towards a molecular understanding of their design principles

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    2009-02-16

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche,which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.

  7. Genome-Wide Association Mapping for Cell Wall Composition and Properties in Temperate Grasses

    DEFF Research Database (Denmark)

    Bellucci, Andrea

    -glucans. Plant cell wall biosynthesis is regulated by a large number of genes and regulatory factors but very few of these are known and characterized. This PhD project aimed to the identification of putative candidate genes involved in plant cell wall composition and properties using a genome wide (GWAS...... with a wide range of chemical bounds. At present the interest in plant cell wall is growing due to the possibility to convert ligno-cellulosic biomass (e.g. agricultural residues) into bioethanol but also for the benefits to human health of some cell wall constituents found in cereals, in particular beta...

  8. Principles of bacterial cell-size determination revealed by cell wall synthesis perturbations

    OpenAIRE

    Carolina Tropini; Timothy K. Lee; Jen Hsin; Samantha M. Desmarais; Tristan Ursell; Russell D. Monds; Kerwyn Casey Huang

    2014-01-01

    Although bacterial cell morphology is tightly controlled, the principles of size regulation remain elusive. In Escherichia coli, perturbation of cell-wall synthesis often results in similar morphologies, making it difficult to deconvolve the complex genotype-phenotype relationships underlying morphogenesis. Here we modulated cell width through heterologous expression of sequences encoding the essential enzyme PBP2 and through sublethal treatments with drugs that inhibit PBP2 and the MreB cyto...

  9. ARSENIC INDUCES SUSTAINED IMPAIRMENT OF SKELETAL MUSCLE AND MUSCLE PROGENITOR CELL ULTRASTRUCTURE AND BIOENERGETICS

    Science.gov (United States)

    Fabrisia, Ambrosio; Elke, Brown; Donna, Stolz; Ricardo, Ferrari; Bret, Goodpaster; Bridget, Deasy; Giovanna, Distefano; Alexandra, Roperti; Amin, Cheikhi; Yesica, Garciafigueroa; Aaron, Barchowsky

    2014-01-01

    Over 4 million individuals in the US, and over 140 million individuals worldwide, are exposed daily to arsenic-contaminated drinking water. Human exposures can range from below the current limit of 10 µg/L to over 1 mg/L, with 100 µg/L promoting disease in a large portion of those exposed. Although increased attention has recently been paid to myopathy following arsenic exposure, the pathogenic mechanisms underlying clinical symptoms remain poorly understood. This study tested the hypothesis that arsenic induces lasting muscle mitochondrial dysfunction and impairs metabolism. When compared to non-exposed controls, mice exposed to drinking water containing 100µg/L arsenite for 5 weeks demonstrated impaired muscle function, mitochondrial myopathy, and altered oxygen consumption that were concomitant with increased mitochondrial fusion gene transcription. There was no difference in levels of inorganic arsenic or its mononomethyl- and dimethyl- metabolites between controls and exposed muscles, confirming that arsenic does not accumulate in muscle. Nevertheless, muscle progenitor cells isolated from exposed mice recapitulated the aberrant myofiber phenotype and were more resistant to oxidative stress, generated more reactive oxygen species, and displayed autophagic mitochondrial morphology, as compared to cells isolated from non-exposed mice. These pathological changes from a possible maladaptive oxidative stress response provide insight into declines in muscle functioning caused by exposure to this common environmental contaminant. PMID:24960579

  10. CELL-WALL GROWTH AND PROTEIN SECRETION IN FUNGI

    NARCIS (Netherlands)

    SIETSMA, JH; WOSTEN, HAB; WESSELS, JGH

    1995-01-01

    Secretion of proteins is a vital process in fungi. Because hyphal walls form a diffusion barrier for proteins, a mechanism different from diffusion probably exist to transport proteins across the wall. In Schizophyllum commune, evidence has been obtained for synthesis at the hyphal apex of wall comp

  11. Analysis of Cell Wall Teichoic Acids in Staphylococcus aureus.

    Science.gov (United States)

    Covas, Gonçalo; Vaz, Filipa; Henriques, Gabriela; Pinho, Mariana G; Filipe, Sérgio R

    2016-01-01

    Most bacterial cells are surrounded by a surface composed mainly of peptidoglycan (PGN), a glycopolymer responsible for ensuring the bacterial shape and a telltale molecule that betrays the presence of bacteria to the host immune system. In Staphylococcus aureus, as in most gram-positive bacteria, peptidoglycan is concealed by covalently linked molecules of wall teichoic acids (WTA)-phosphate rich molecules made of glycerol and ribitol phosphates which may be tailored by different amino acids and sugars.In order to analyze and compare the composition of WTA produced by different S. aureus strains, we describe methods to: (1) quantify the total amount of WTA present at the bacterial cell surface, through the determination of the inorganic phosphate present in phosphodiester linkages of WTA; (2) identify which sugar constituents are present in the assembled WTA molecules, by detecting the monosaccharides, released by acid hydrolysis, through an high-performance anion exchange chromatography analysis coupled with pulsed amperometric detection (HPAEC-PAD) and (3) compare the polymerization degree of WTA found at the cell surface of different S. aureus strains, through their different migration in a polyacrylamide gel electrophoresis (PAGE). PMID:27311674

  12. A phosphorylated pseudokinase complex controls cell wall synthesis in mycobacteria.

    Science.gov (United States)

    Gee, Christine L; Papavinasasundaram, Kadamba G; Blair, Sloane R; Baer, Christina E; Falick, Arnold M; King, David S; Griffin, Jennifer E; Venghatakrishnan, Harene; Zukauskas, Andrew; Wei, Jun-Rong; Dhiman, Rakesh K; Crick, Dean C; Rubin, Eric J; Sassetti, Christopher M; Alber, Tom

    2012-01-24

    Prokaryotic cell wall biosynthesis is coordinated with cell growth and division, but the mechanisms regulating this dynamic process remain obscure. Here, we describe a phosphorylation-dependent regulatory complex that controls peptidoglycan (PG) biosynthesis in Mycobacterium tuberculosis. We found that PknB, a PG-responsive Ser-Thr protein kinase (STPK), initiates complex assembly by phosphorylating a kinase-like domain in the essential PG biosynthetic protein, MviN. This domain was structurally diverged from active kinases and did not mediate phosphotransfer. Threonine phosphorylation of the pseudokinase domain recruited the FhaA protein through its forkhead-associated (FHA) domain. The crystal structure of this phosphorylated pseudokinase-FHA domain complex revealed the basis of FHA domain recognition, which included unexpected contacts distal to the phosphorylated threonine. Conditional degradation of these proteins in mycobacteria demonstrated that MviN was essential for growth and PG biosynthesis and that FhaA regulated these processes at the cell poles and septum. Controlling this spatially localized PG regulatory complex is only one of several cellular roles ascribed to PknB, suggesting that the capacity to coordinate signaling across multiple processes is an important feature conserved between eukaryotic and prokaryotic STPK networks. PMID:22275220

  13. Wall extensibility: its nature, measurement and relationship to plant cell growth

    Science.gov (United States)

    Cosgrove, D. J.

    1993-01-01

    Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.

  14. DBIO Best Thesis Award: Mechanics, Dynamics, and Organization of the Bacterial Cytoskeleton and Cell Wall

    Science.gov (United States)

    Wang, Siyuan

    2012-02-01

    Bacteria come in a variety of shapes. While the peptidoglycan (PG) cell wall serves as an exoskeleton that defines the static cell shape, the internal bacterial cytoskeleton mediates cell shape by recruiting PG synthesis machinery and thus defining the pattern of cell-wall synthesis. While much is known about the chemistry and biology of the cytoskeleton and cell wall, much of their biophysics, including essential aspects of the functionality, dynamics, and organization, remain unknown. This dissertation aims to elucidate the detailed biophysical mechanisms of cytoskeleton guided wall synthesis. First, I find that the bacterial cytoskeleton MreB contributes nearly as much to the rigidity of an Escherichia coli cell as the cell wall. This conclusion implies that the cytoskeletal polymer MreB applies meaningful force to the cell wall, an idea favored by theoretical modeling of wall growth, and suggests an evolutionary origin of cytoskeleton-governed cell rigidity. Second, I observe that MreB rotates around the long axis of E. coli, and the motion depends on wall synthesis. This is the first discovery of a cell-wall assembly driven molecular motor in bacteria. Third, I prove that both cell-wall synthesis and the PG network have chiral ordering, which is established by the spatial pattern of MreB. This work links the molecular structure of the cytoskeleton and of the cell wall with organismal-scale behavior. Finally, I develop a mathematical model of cytoskeleton-cell membrane interactions, which explains the preferential orientation of different cytoskeleton components in bacteria.

  15. Dynamic distribution of TTK in HeLa cells: insights from an ultrastructural study

    Institute of Scientific and Technical Information of China (English)

    ZHEN DOU; AKIRA SAWAGECHI; JIE ZHANG; HONG LUO; LAWRENCE BRAKO; XUE BIAO YAO

    2003-01-01

    Entry into mitosis is driven by signaling cascades of mitotic kinases.Our recent studies show that TTK,a kinetochore-associated protein kinase,interacts with CENP-E,a mitotic kinesin located to corona fiber ofkinetochore.Using immunoelectron microscopy,here we show that TTK is present at the nuclear pore adjacent complex of interphase HeLa cells.Upon nuclear envelope fragmentation,TTK targets to the outermostregion of the developing kinetochores ofmonoorient chromosome as well as to spindle poles.After stable attachment,throughout chromosome congression,TTK is a constituent of the corona fibers,extending up to 90 nm away from the kinetochore outer plate.Upon metaphase alignment,TTK departs from the kinetochore and migrates toward the centrosomes.Taken together,this evidence strongly supports a model in which TTK functions in spindle checkpoint signaling cascades at both kinetochore and centrosome.

  16. Effects of Electroacupuncture on Interstitial Cells of Cajal (ICC) Ultrastructure and Connexin 43 Protein Expression in the Gastrointestinal Tract of Functional Dyspepsia (FD) Rats.

    Science.gov (United States)

    Zhang, Guoshan; Xie, Shen; Hu, Wei; Liu, Yuer; Liu, Mailan; Liu, Mi; Chang, Xiaorong

    2016-01-01

    BACKGROUND Gastrointestinal motility disorder is the main clinical manifestation in functional dyspepsia (FD) patients. Electroacupuncture is effective in improving gastrointestinal motility disorder in FD; however, the underlying mechanism remains unclear. It has been demonstrated that interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal tract, and the pacemaker potential is transmitted to nearby cells through gap junctions between ICC or ICC and the smooth muscle. Therefore, this study aimed to assess the effects of electroacupuncture on ICC ultrastructure and expression of the gap junction protein connexin 43 (Cx43) in FD rats. MATERIAL AND METHODS The animals were randomized into 3 groups: control, model, and electroacupuncture. Electroacupuncture was applied at Zusanli (ST36) in the electroacupuncture group daily for 10 days, while no electroacupuncture was applied to model group animals. RESULTS Ultrastructure of ICC recovered normally in gastric antrum and small intestine specimens was improved, with Cx43 expression levels in these tissues significantly increased in the electroacupuncture group compared with the model group. CONCLUSIONS These findings indicated that electroacupuncture is effective in alleviating ICC damage and reduces Cx43 levels in FD rats, and suggest that ICC and Cx43 are involved in electroacupuncture treatment in rats with FD to improve gastrointestinal motility disorders.

  17. GABA agonist induced changes in ultrastructure and GABA receptor expression in cerebellar granule cells is linked to hyperpolarization of the neurons

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Schousboe, A

    1990-01-01

    GABA has been shown to exert a neurotrophic like activity by enhancing the morphological and functional maturation of neurons. Mechanisms involved in this effect of GABA are largely unknown but since GABA has been shown to mediate a hyperpolarizing action on neurons it can be assumed...... that this action might be important. In order to investigate this possibility, the ability to mimic the trophic actions of GABA of different agents known to influence the membrane potential or the GABA gated chloride channels was studied. Hence, GABA receptor expression as well as the ultrastructure of cerebellar...... granule cells were monitored after exposure of the cells in culture to either bromide, valinomycin or picrotoxin. It was found that cells which at early developmental stages (4 days in culture) were exposed to bromide or valinomycin expressed low affinity GABA receptors similar to cells treated...

  18. GABA agonist induced changes in ultrastructure and GABA receptor expression in cerebellar granule cells is linked to hyperpolarization of the neurons

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Schousboe, A

    1990-01-01

    GABA has been shown to exert a neurotrophic like activity by enhancing the morphological and functional maturation of neurons. Mechanisms involved in this effect of GABA are largely unknown but since GABA has been shown to mediate a hyperpolarizing action on neurons it can be assumed that this...... action might be important. In order to investigate this possibility, the ability to mimic the trophic actions of GABA of different agents known to influence the membrane potential or the GABA gated chloride channels was studied. Hence, GABA receptor expression as well as the ultrastructure of cerebellar...... granule cells were monitored after exposure of the cells in culture to either bromide, valinomycin or picrotoxin. It was found that cells which at early developmental stages (4 days in culture) were exposed to bromide or valinomycin expressed low affinity GABA receptors similar to cells treated with the...

  19. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis

    DEFF Research Database (Denmark)

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha;

    2013-01-01

    . The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco) mannan, and xyloglucan as well as overall cell wall acetylation is affected differently...

  20. Restrictive glycosylphosphatidylinositol anchor synthesis in cwh6/gpi3 yeast cells causes aberrant biogenesis of cell wall proteins.

    OpenAIRE

    Vossen, J.H.; Müller, W. H.; Lipke, P N; Klis, F. M.

    1997-01-01

    We previously reported that the defects in the Saccharomyces cerevisiae cwh6 Calcofluor white-hypersensitive cell wall mutant are caused by a mutation in SPT14/GPI3, a gene involved in glycosylphosphatidylinositol (GPI) anchor biosynthesis. Here we describe the effect of cwh6/spt14/gpi3 on the biogenesis of cell wall proteins. It was found that the release of precursors of cell wall proteins from the endoplasmic reticulum (ER) was retarded. This was accompanied by proliferation of ER structur...

  1. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants

    OpenAIRE

    Nakano, Yoshimi; Yamaguchi, Masatoshi; Endo, Hitoshi; Rejab, Nur Ardiyana; Ohtani, Misato

    2015-01-01

    Plant cells biosynthesize primary cell walls (PCW) in all cells and produce secondary cell walls (SCWs) in specific cell types that conduct water and/or provide mechanical support, such as xylem vessels and fibers. The characteristic mechanical stiffness, chemical recalcitrance, and hydrophobic nature of SCWs result from the organization of SCW-specific biopolymers, i.e., highly ordered cellulose, hemicellulose, and lignin. Synthesis of these SCW-specific biopolymers requires SCW-specific enz...

  2. FINITE ELEMENT ANALYSIS OF THE FATIGUE BEHAVIOR OF WOOD FIBER CELL WALLS

    Directory of Open Access Journals (Sweden)

    Phichit Somboon

    2008-11-01

    Full Text Available The fatigue behavior of the wood fiber cell wall under mechanical treatment in refining was simulated dynamically using a finite element method. The effect of the amplitude and frequency of impacts on the mechanical breakdown of the fiber wall structure was examined. The proposed model of the fiber cell wall was constructed from elementary microfibrils in various orientations embedded in isotropic lignin. The fatigue of the cell wall was simulated under normal refiner mechanical pulping conditions. A cyclic load was applied on the model fiber through a hemispherical grit proposed to be applied on the surface on refiner segments. Changes in the elastic modulus of the cell wall were analyzed to determine the potential for cell wall breakdown. An increase in the amplitude of applied forces and frequency of impacts was found to have a significant influence on the reduction of the elastic modulus of the wall structure. A high frequency of impacts increased the stiffness of the cell wall, but resulted in faster reduction of the elastic modulus. At a lower amplitude of impacts, efficient breakdown of the cell wall using grits was achieved with a high frequency of impacts or a high rotational speed of refiners.

  3. Primary abdominal wall clear cell carcinoma arising from incisional endometriosis

    Institute of Scientific and Technical Information of China (English)

    Burcu Gundogdu; Isin Ureyen; Gunsu Kimyon; Hakan Turan; Nurettin Boran; Gokhan Tulunay; Dilek Bulbul; Taner Turan; M Faruk Kose

    2013-01-01

    A 49 year-old patient with the complaint of a mass located in the caesarean scar was admitted. There was a fixed mass 30í30 mm in diameter with regular contour located at the right corner of the pfannenstiel incision. Computed tomography revealed a (40í50í50) mm solid mass lesion with margins that cannot be distinguished from the uterus, bladder and small intestines and a heterogeneous mass lesion (50í45í55) mm in diameter, located in the right side of the anterior abdominal wall. Cytoreductive surgery including total abdominal hysterectomy and bilateral salpingo-oophorectomy was performed. Final pathology was clear cell carcinoma. Clear cell carcinoma arising from an extraovarian endometriotic focus was diagnosed and the patient received 6 cycles paclitaxel-carboplatin chemotherapy as adjuvant treatment. The patient who was lost to follow-up applied to our clinic 2 years after surgery with a recurrent mass in the left inguinal region. After 3 cycles of chemotherapy, the patient's tumoral mass in the left inguinal region was excised. The result of the pathology was carcinoma metastasis. It is decided that the following treatment of the patient should be palliative radiation therapy. The patient who underwent palliative radiation therapy died of disease after 4 months of the second operation.

  4. Arthritis by autoreactive T cell lines obtained from rats after injection of intestinal bacterial cell wall fragments

    NARCIS (Netherlands)

    I. Klasen (Ina); J. Kool (Jeanette); M.J. Melief; I. Loeve (I.); W.B. van den Berg (Wim); A.J. Severijnen; M.P.H. Hazenberg (Maarten)

    1992-01-01

    markdownabstract__Abstract__ T cell lines (B13, B19) were isolated from the lymph nodes of Lewis rats 12 days after an arthritogenic injection of cell wall fragments of Eubacterium aerofaciens (ECW), a major resident of the human intestinal flora. These cell wall fragments consist of peptidoglycan

  5. Building and degradation of secondary cell walls: are there common patterns of lamellar assembly of cellulose microfibrils and cell wall delamination?

    Science.gov (United States)

    De Micco, Veronica; Ruel, Katia; Joseleau, Jean-Paul; Aronne, Giovanna

    2010-08-01

    During cell wall formation and degradation, it is possible to detect cellulose microfibrils assembled into thicker and thinner lamellar structures, respectively, following inverse parallel patterns. The aim of this study was to analyse such patterns of microfibril aggregation and cell wall delamination. The thickness of microfibrils and lamellae was measured on digital images of both growing and degrading cell walls viewed by means of transmission electron microscopy. To objectively detect, measure and classify microfibrils and lamellae into thickness classes, a method based on the application of computerized image analysis combined with graphical and statistical methods was developed. The method allowed common classes of microfibrils and lamellae in cell walls to be identified from different origins. During both the formation and degradation of cell walls, a preferential formation of structures with specific thickness was evidenced. The results obtained with the developed method allowed objective analysis of patterns of microfibril aggregation and evidenced a trend of doubling/halving lamellar structures, during cell wall formation/degradation in materials from different origin and which have undergone different treatments. PMID:20532796

  6. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls

    Directory of Open Access Journals (Sweden)

    Pedersen Henriette L

    2008-05-01

    Full Text Available Abstract Background Molecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure. Results Using a neoglycoprotein approach, in which a XXXG heptasaccharide of tamarind seed xyloglucan was coupled to BSA to produce an immunogen, we have generated a rat monoclonal antibody (designated LM15 to the XXXG structural motif of xyloglucans. The specificity of LM15 has been confirmed by the analysis of LM15 binding using glycan microarrays and oligosaccharide hapten inhibition of binding studies. The use of LM15 for the analysis of xyloglucan in the cell walls of tamarind and nasturtium seeds, in which xyloglucan occurs as a storage polysaccharide, indicated that the LM15 xyloglucan epitope occurs throughout the thickened cell walls of the tamarind seed and in the outer regions, adjacent to middle lamellae, of the thickened cell walls of the nasturtium seed. Immunofluorescence analysis of LM15 binding to sections of tobacco and pea stem internodes indicated that the xyloglucan epitope was restricted to a few cell types in these organs. Enzymatic removal of pectic homogalacturonan from equivalent sections resulted in the abundant detection of distinct patterns of the LM15 xyloglucan epitope across these organs and a diversity of occurrences in relation to the cell wall microstructure of a range of cell types. Conclusion These observations support ideas that xyloglucan is associated with pectin in plant cell walls. They also indicate that documented patterns of cell wall epitopes in relation to cell

  7. Impact of Cell Wall Composition on Maize Resistance to Pests and Diseases

    OpenAIRE

    Malvar, Rosa A.; Rogelio Santiago; Jaime Barros-Rios

    2013-01-01

    In cereals, the primary cell wall is built of a skeleton of cellulosic microfibrils embedded in a matrix of hemicelluloses and smaller amounts of pectins, glycoproteins and hydroxycinnamates. Later, during secondary wall development, p-coumaryl, coniferyl and sinapyl alcohols are copolymerized to form mixed lignins. Several of these cell wall components show a determinative role in maize resistance to pest and diseases. However, defense mechanisms are very complex and vary among t...

  8. The effect of AgNO{sub 3} on the bioenergetic processes and the ultrastructure of Chlorella and Dunaliella cells exposed to different saline conditions

    Energy Technology Data Exchange (ETDEWEB)

    Loseva, N.L. [Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111 (Russian Federation)]. E-mail: loseva@mail.knc.ru; Alyabyev, A.Ju. [Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111 (Russian Federation); Gordon, L.Kh. [Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111 (Russian Federation); Andreyeva, I.N. [Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111 (Russian Federation); Kolesnikov, O.P. [Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111 (Russian Federation); Ponomareva, A.A. [Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111 (Russian Federation); Kemp, R.B. [Institute of Biological Sciences, Edward Llwyd Building, Penglais, University of Wales, Aberystwyth SY23 3DA (United Kingdom)

    2007-06-25

    The effect of AgNO{sub 3}, an inhibitor of the H{sup +} pump in the plasma membrane, on the bioenergetic processes and on the ultrastructure of the microalgae Chlorella vulgaris (salt sensitive) and Dunaliella maritima (salt resistant) was examined under varying salt concentrations. Differences between them were observed in changes of the cellular energy metabolism depending on their salt sensitivity and the inhibition of the H{sup +} pump activity. A decrease was observed in the rates of heat production (about 45%), O{sub 2} uptake (greater than 40-50% of the control) and particularly photosynthesis (more than 80%) in Chlorella cells under the simultaneous action of NaCl and AgNO{sub 3}. Dunaliella cells showed small to moderate rate increases for heat production (less than 7%), O{sub 2} uptake (10-15%) and O{sub 2} evolution (40%) in higher salt concentrations and under the action of AgNO{sub 3}. The production of active oxygen species was studied as an early unspecific response of microalgal cells to possible unfavorable conditions, including salt stress. The amount of superoxide formed by the Dunaliella cells was higher than that by the Chlorella cells. However, Ag{sup +} ions increased the generation rate of superoxide radicals considerably in both Chlorella and Dunaliella cells. The electron microscopy showed that changes of the algal ultrastructure of cells exposed to the action of Ag{sup +} ions were connected with the observed physiological changes and to a large extent with the alteration of the bioenergetic processes in them.

  9. Plumbagin, a plant-derived naphthoquinone metabolite induces mitochondria mediated apoptosis-like cell death in Leishmania donovani: an ultrastructural and physiological study.

    Science.gov (United States)

    Awasthi, Bhanu Priya; Kathuria, Manoj; Pant, Garima; Kumari, Neema; Mitra, Kalyan

    2016-08-01

    Naphthoquinones are known to exhibit a broad range of biological activities against microbes, cancer and parasitic diseases and have been widely used in Indian traditional medicine. Plumbagin is a plant-derived naphthoquinone metabolite (5-hydroxy-2-methyl-1,4-naphthoquinone) reported to inhibit trypanothione reductase, the principal enzyme and a validated drug target involved in detoxification of oxidative stress in Leishmania. Here, we report the mechanistic aspects of cell death induced by plumbagin including physiological effects in the promastigote form and ultrastructural alterations in both promastigote and amastigote forms of Leishmania donovani which till now remained largely unknown. Our observations show that oxidative stress induced by plumbagin resulted in depolarization of the mitochondrial membrane, depletion in ATP levels, elevation of cytosolic calcium, increase in caspase 3/7-like protease activity and lipid peroxidation in promastigotes. Apoptosis-like cell death induction post plumbagin treatment was confirmed by biochemical assays like Annexin V/FITC staining, TUNEL as well as morphological and ultrastructural studies. These findings collectively highlight the mode of action and importance of oxidative stress inducing agents in effectively killing both forms of the Leishmania parasite and opens up the possibility of exploring plumbagin and its derivatives as promising candidates in the chemotherapy of Leishmaniasis. PMID:27315817

  10. Effects of Temperature Acclimation Pretreatment on the Ultrastructure of Mesophyll Cells in Young Grape Plants (Vitis vinifera L. cv. Jingxiu) Under Cross-Temperature Stresses

    Institute of Scientific and Technical Information of China (English)

    Jun-Huan ZHANG; Wei-Dong HUANG; Yue-Ping LIU; Qiu-Hong PAN

    2005-01-01

    Leaves from annual young grape plants (Vitis vinifera L. cv. Jingxiu) were used as experimentalmaterials. The ultrastructural characteristics of mesophyll cells in chilling-treated plants after heat acclima-tion (HA) and in heat-treated plants after cold acclimation (CA) were observed and compared using trans-mission electron microscopy. The results showed that slight injury appeared in the ultrastructure of meso-phyll cells after either HA (38℃ for 10 h) or CA (8℃ for 2.5 d), but the tolerance to subsequent extremetemperature stress was remarkably improved by HA or CA pretreatment. The increases in membrane perme-ability and malondialdehyde concentration under chilling (0℃) or heat (45℃) stress were markedly inhib-ited by HA or CA pretreatment. The mesophyll cells of plants not pretreated with HA were markedly dam-aged following chilling stress. The chloroplasts appeared irregular in shape, the arrangement of the stromalamellae was disordered, and no starch granules were present. The cristae of the mitochondria were dis-rupted and became empty. The nucleus became irregular in shape and the nuclear membrane was digested.In contrast, the mesophyll cells of HA-pretreated plants maintained an intact ultrastructure under chillingstress. The mesophyll cells of control plants were also severely damaged under heat stress. The chloroplastbecame round in shape, the stroma lamellae became swollen, and the contents of vacuoles formed clumps.In the case of mitochondria of control plants subjected to heat stress, the outer envelope was digested andthe cristae were disrupted and became many small vesicles. Compared with cellular organelles in controlplants, those in CA plant cells always maintained an integrated state during whole heat stress, except for thechloroplasts, which became round in shape after 10 h heat stress. From these data, we suggest that thestability of mesophyll cells under chilling stress can be increased by HA pretreatment. Similarly, CA pretreat

  11. Immuno and affinity cytochemical analysis of cell wall composition in the moss Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Berry

    2016-03-01

    Full Text Available In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into several different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalacturonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogeneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants.

  12. Immuno and Affinity Cytochemical Analysis of Cell Wall Composition in the Moss Physcomitrella patens.

    Science.gov (United States)

    Berry, Elizabeth A; Tran, Mai L; Dimos, Christos S; Budziszek, Michael J; Scavuzzo-Duggan, Tess R; Roberts, Alison W

    2016-01-01

    In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into several different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalactuonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants. PMID:27014284

  13. Immuno and Affinity Cytochemical Analysis of Cell Wall Composition in the Moss Physcomitrella patens.

    Science.gov (United States)

    Berry, Elizabeth A; Tran, Mai L; Dimos, Christos S; Budziszek, Michael J; Scavuzzo-Duggan, Tess R; Roberts, Alison W

    2016-01-01

    In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into several different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalactuonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants.

  14. [The ultrastructural manifestations of the regenerative processes in the Sertoli cells under the action of low-intensity electromagnetic radiation in the rats subjected to stress].

    Science.gov (United States)

    Korolev, Yu N; Geniatulina, M S; Nikulina, L A; Mikhailik, L V

    2015-01-01

    The experiments on the outbred female rats using the electron microscopic technique have demonstrated that the application of ultrahigh frequency low-intensity electromagnetic radiation (LIEMR) with a flux density below 1 mCW/Cm2 and a frequency of approximately 1,000 MHz in the regime of primary prophylaxis and therapeutic-preventive action suppressed the development of the post-stress pathological ultrastructural changes and increased the activity of the regenerative processes in the Sertoli cells. It was shown that the developing adaptive and compensatory changes in the Sertoli cells most frequently involve the energy-producing structures (mitochondria) that undergo the enlargement of their average and total dimensions. Simultaneously, the amount of granular endoplasmic reticulum and the number of ribosomes increased while the intracellular links between the organelles strengthened and the reserve potential of the cells improved. It is concluded that the observed effects may be due to the action of both local and systemic regulation mechanisms.

  15. Ultrastructure of ovarian follicular epithelium of the amazonian fish Pseudotylosurus microps (Gunther (Teleostei, Belonidae: I. the follicular cells cycle of development

    Directory of Open Access Journals (Sweden)

    Carminda da Cruz-Landim

    2001-03-01

    Full Text Available The present paper deals with the changes on ultrastructural features of the follicular cells along the growth of the oocyte of Pseudotylosurus microps (Gunther, 1868. The epithelium pass from single squamous to pseudostratified and finally cylindric. Remarkable are the changes in the nuclear shapes, the increasing amount of rough endoplasmic reticulum and the formation of large lipid deposits in the follicular cells by the end of vitellogenic phase. Very peculiar intercellular deposits forms between the perinucleolar and vitellogenic phase of oocyte maturation. Although largely referred to in the specialized literature, our attempts to correlate the follicular cells changes with the formation of the oocyte envelopes or even with an endocrine function are not supported by conclusive evidences in the present paper.

  16. Effect of gamma radiation on Aspergillus flavus and Aspergillus ochraceus ultrastructure and mycotoxin production

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, J. [Departamento de Microbiologia e Inmunologia Veterinaria, Universidad Federal Rural de Rio de Janeiro (UFRRJ) (Brazil); Cavaglieri, L., E-mail: lcavaglieri@arnet.com.a [Departamento de Microbiologia e Inmunologia, Universidad Nacional de Rio Cuarto (UNRC), Rio Cuarto, Cordoba (Argentina); Member of Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CIC-CONICET) (Argentina); Vital, H. [Centro Tecnologico do Exercito (CTEx), Secao de Defesa Nuclear, Rio de Janeiro (Brazil); Cristofolini, A.; Merkis, C. [Departamento de Microscopia Electronica, Universidad Nacional de Rio Cuarto. Ruta 36 km 601 (5800) Rio Cuarto (Argentina); Astoreca, A. [Departamento de Microbiologia e Inmunologia, Universidad Nacional de Rio Cuarto (UNRC), Rio Cuarto, Cordoba (Argentina); Member of Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CIC-CONICET) (Argentina); Orlando, J.; Caru, M. [Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Dalcero, A. [Departamento de Microbiologia e Inmunologia, Universidad Nacional de Rio Cuarto (UNRC), Rio Cuarto, Cordoba (Argentina); Member of Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CIC-CONICET) (Argentina); Rosa, C.A.R. [Departamento de Microbiologia e Inmunologia Veterinaria, Universidad Federal Rural de Rio de Janeiro (UFRRJ) (Brazil); Member of Consejo Nacional de Pesquisas (CNPq) (Brazil)

    2011-05-15

    The aim of this work was to study the effect of gamma radiation (2 kGy) on Aspergillus flavus and Aspergillus ochraceus ultrastructure. Moreover, the influence on aflatoxin B{sub 1} and ochratoxin A production was also observed. Irradiated A. flavus strain showed a dull orangish colony while control strain showed the typical green color. Minor differences were observed on stipes, metulae and conidia size between control and irradiated A. flavus and A. ochraceus strains. Irradiated fungi showed ultrastructural changes on cell wall, plasmalema and cytoplasm levels. The levels of mycotoxins produced by irradiated strains were two times greater than those produced by control strains. Successive transferences of irradiated strains on malt extract agar allowed the fungus to recuperate morphological characteristics. Although minor changes in the fungal morphology were observed, ultrastructural changes at cell wall level and the increase of mycotoxin production ability were observed. Inappropriate storage of irradiated food and feed would allow the development of potentially more toxicogenic fungal propagules.

  17. Cell wall growth during elongation and division : one ring to bind them?

    NARCIS (Netherlands)

    Scheffers, Dirk-Jan

    2007-01-01

    The role of the cell division protein FtsZ in bacterial cell wall (CW) synthesis is believed to be restricted to localizing proteins involved in the synthesis of the septal wall. Elsewhere, compelling evidence is provided that in Caulobacter crescentus, FtsZ plays an additional role in CW synthesis

  18. Detection of 2 immunoreactive antigens in the cell wall of Sporothrix brasiliensis and Sporothrix globosa.

    Science.gov (United States)

    Ruiz-Baca, Estela; Hernández-Mendoza, Gustavo; Cuéllar-Cruz, Mayra; Toriello, Conchita; López-Romero, Everardo; Gutiérrez-Sánchez, Gerardo

    2014-07-01

    The cell wall of members of the Sporothrix schenckii complex contains highly antigenic molecules which are potentially useful for the diagnosis and treatment of sporotrichosis. In this study, 2 immunoreactive antigens of 60 (Gp60) and 70 kDa (Gp70) were detected in the cell wall of the yeast morphotypes of Sporothrix brasiliensis and Sporothrix globosa.

  19. Cell wall composition and candidate biosynthesis gene expression during rice development

    DEFF Research Database (Denmark)

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra;

    2016-01-01

    strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically...

  20. CONSTITUTIVE MELANIN IN THE CELL WALL OF THE ETIOLOGIC AGENT OF LOBO'S DISEASE

    Directory of Open Access Journals (Sweden)

    TABORDA Valeria B.A.

    1999-01-01

    Full Text Available Lobo's disease is a chronic granulomatous disease caused by the obligate pathogenic fungus, whose cell walls contain constitutive melanin. In contrast, melanin does not occur in the cell walls of Paracoccidioides brasiliensis when stained by the Fontana-Masson stain.

  1. Consolidated pretreatment and hydrolysis of plant biomass expressing cell wall degrading enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Raab, R. Michael; Zhang, Dongcheng; Bougri, Oleg

    2016-02-02

    Methods for consolidated pretreatment and hydrolysis of genetically engineered plants expressing cell wall degrading enzymes are provided. Expression cassettes and vectors for making transgenic plants are described. Plants engineered to express one or more cell wall degrading enzymes using expression cassettes and vectors of the invention are also provided.

  2. Structure of Plant Cell Walls : XXVI. The Walls of Suspension-Cultured Sycamore Cells Contain a Family of Rhamnogalacturonan-I-Like Pectic Polysaccharides.

    Science.gov (United States)

    Ishii, T; Thomas, J; Darvill, A; Albersheim, P

    1989-02-01

    Considerable information has been obtained about the primary structures of suspension-cultured sycamore (Acer pseudoplatanus) cell-wall pectic polysaccharides, i.e. rhamnogalacturonan I, rhamnogalacturonan II, and homogalacturonan. However, these polysaccharides, which are solubilized from the walls by endo-alpha-1,4-polygalacturonase, account for only about half of the pectic polysaccharides known to be present in sycamore cell walls. We now report that, after exhaustive treatment with endo-alpha-1,4-polygalacturonase, additional pectic polysaccharides were extracted from sycamore cell walls by treatment with Na(2)CO(3) at 1 and 22 degrees C. These previously uncharacterized polysaccharides accounted for approximately 4% of the cell wall. Based on the glycosyl and glycosyl-linkage compositions and the nature of the products obtained by treating the quantitatively predominant NaCO(3)-extracted polysaccharides with lithium metal dissolved in ethylenediamine, the polysaccharides were found to strongly resemble rhamnogalacturonan I. However, unlike rhamnogalacturonan I that characteristically had equal amounts of 2- and 2,4-linked rhamnosyl residues in its backbone, the polysaccharides extracted in Na(2)CO(3) at 1 degrees C had markedly disparate ratios of 2- to 2,4-linked rhamnosyl residues. We concluded that polysaccharides similar to rhamnogalacturonan I but with different degrees of branching are present in the walls of suspension-cultured sycamore cells.

  3. Trans-Golgi Network-An Intersection of Trafficking Cell Wall Components

    Institute of Scientific and Technical Information of China (English)

    Natasha Worden; Eunsook Park; Georgia Drakakaki

    2012-01-01

    The cell wall,a crucial cell compartment,is composed of a network of polysaccharides and proteins,providing structural support and protection from external stimuli.While the cell wall structure and biosynthesis have been extensively studied,very little is known about the transport of polysaccharides and other components into the developing cell wall.This review focuses on endomembrane trafficking pathways involved in cell wall deposition.Cellulose synthase complexes are assembled in the Golgi,and are transported in vesicles to the plasma membrane.Non-cellulosic polysaccharides are synthesized in the Golgi apparatus,whereas cellulose is produced by enzyme complexes at the plasma membrane.Polvsaccharides and enzymes that are involved in cell wall modification and assembly are transported by distinct vesicle types to their destinations; however,the precise mechanisms involved in selection,sorting and delivery remain to be identified.The endomembrane system orchestrates the delivery of Golgi-derived and possibly endocytic vesicles carrying cell wall and cell membrane components to the newly-formed cell plate.However,the nature of these vesicles,their membrane compositions,and the timing of their delivery are largely unknown.Emerging technologies such as chemical genomics and proteomics are promising avenues to gain insight into the trafficking of cell wall components.

  4. Structure of the cell wall of mango after application of ionizing radiation

    International Nuclear Information System (INIS)

    Cells of the mesocarp of mango cultivar Tommy Atkins were analyzed by Transmission Electron Microscope—TEM to evaluate the effects of doses of 0.5 and 1.0 kGy applied immediately after the fruit and after storage for twenty days at a temperature of 12 °C followed by 5 days of simulated marketing at a temperature of 21 °C. No alteration was found in the structure of the cell wall, middle lamella, and plasma membrane of fruits when analyzed immediately after application of doses. The mesocarp cell structure of the cell wall, middle lamella, and the plasma membrane did however undergo changes after storage. Fruits that received a dose of 0.5 kGy displayed slight changes in cell wall structure and slight disintegration of the middle lamella. Fruits that received a dose of 1.0 kGy displayed more severe changes in the structure of the cell wall, greater middle lamella degradation, and displacement of the plasma membrane. - Highlights: ► Mesocarp cells were analyzed by Transmission Electron Microscope—TEM. ► No change in cell wall structure, middle lamella and plasma membrane was found in fruits immediately after irradiation. ► Changes in cell wall structure, middle lamella and plasma membrane happened after storage. ► Fruits subjected to 0.5 kGy showed smaller cell wall change.

  5. Clinostation influence on regeneration of cell wall in Solanum Tuberosum L. protoplasts

    Science.gov (United States)

    Nedukha, Elena M.; Sidorov, V. A.; Samoylov, V. M.

    1994-08-01

    Regeneration of cell walls in protoplasts was investigated using light- and electronmicroscopic methods. The protoplasts were isolated from mesophyll of Solanum tuberosum leaves and were cultivated on the horizontal low rotating clinostat (2 rpm) and in control for 10 days. Using a fluorescent method (with Calcofluor white) it was demonstrated that changes in vector gravity results in an regeneration inhibition of cell wall. With electron-microscopical and electro-cytochemical methods (staining with alcianum blue) dynamics of the regeneration of cell walls in protoplasts was studied; carbohydrate matrix of cell walls is deposited at the earliest stages of this process. The influence of microgravity on the cell wall regeneration is discussed in higher plants.

  6. Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production.

    Science.gov (United States)

    Kukavica, Biljana; Mojovic, Milos; Vuccinic, Zeljko; Maksimovic, Vuk; Takahama, Umeo; Jovanovic, Sonja Veljovic

    2009-02-01

    The hydroxyl radical produced in the apoplast has been demonstrated to facilitate cell wall loosening during cell elongation. Cell wall-bound peroxidases (PODs) have been implicated in hydroxyl radical formation. For this mechanism, the apoplast or cell walls should contain the electron donors for (i) H(2)O(2) formation from dioxygen; and (ii) the POD-catalyzed reduction of H(2)O(2) to the hydroxyl radical. The aim of the work was to identify the electron donors in these reactions. In this report, hydroxyl radical (.OH) generation in the cell wall isolated from pea roots was detected in the absence of any exogenous reductants, suggesting that the plant cell wall possesses the capacity to generate .OH in situ. Distinct POD and Mn-superoxide dismutase (Mn-SOD) isoforms different from other cellular isoforms were shown by native gel electropho-resis to be preferably bound to the cell walls. Electron paramagnetic resonance (EPR) spectroscopy of cell wall isolates containing the spin-trapping reagent, 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO), was used for detection of and differentiation between .OH and the superoxide radical (O(2)(-).). The data obtained using POD inhibitors confirmed that tightly bound cell wall PODs are involved in DEPMPO/OH adduct formation. A decrease in DEPMPO/OH adduct formation in the presence of H(2)O(2) scavengers demonstrated that this hydroxyl radical was derived from H(2)O(2). During the generation of .OH, the concentration of quinhydrone structures (as detected by EPR spectroscopy) increased, suggesting that the H(2)O(2) required for the formation of .OH in isolated cell walls is produced during the reduction of O(2) by hydroxycinnamic acids. Cell wall isolates in which the proteins have been denaturated (including the endogenous POD and SOD) did not produce .OH. Addition of exogenous H(2)O(2) again induced the production of .OH, and these were shown to originate from the Fenton reaction with tightly bound metal ions

  7. [Transfer of T-DNA from agrobacteria into plant cells through cell walls and membranes].

    Science.gov (United States)

    Chumakov, M I

    2001-01-01

    Discusses probable routes of agrobacterial penetration through the plant integumental tissues, cell wall, and plant cell plasmodesma. Analyzes the contribution of extracellular structures of agrobacteria in penetration through barriers of a plant cell, primary contact (adhesion), and during DNA transfer from bacterial (E. coli, A. tumefaciens) to recipient (bacterial or plant) cells. Discusses the relationship between donor cell adhesion to recipient cell surface and the infectious and conjugation processes. Considers the probable role of piles in conjugative transfer of agrobacterial DNA through membranes of donor and recipient (bacterial and plant) cells. Analyzes the contribution of the plant cell cytoskeleton to T-DNA transfer. Suggests a model of transport of T-DNA-VirD2 complex and VirE2 proteins through independent channels consisting of vir-coded proteins. PMID:11236737

  8. Immunoprofiling reveals unique cell-specific patterns of wall epitopes in the expanding Arabidopsis stem.

    Science.gov (United States)

    Hall, Hardy C; Cheung, Jingling; Ellis, Brian E

    2013-04-01

    The Arabidopsis inflorescence stem undergoes rapid directional growth, requiring massive axial cell-wall extension in all its tissues, but, at maturity, these tissues are composed of cell types that exhibit markedly different cell-wall structures. It is not clear whether the cell-wall compositions of these cell types diverge rapidly following axial growth cessation, or whether compositional divergence occurs at earlier stages in differentiation, despite the common requirement for cell-wall extensibility. To examine this question, seven cell types were assayed for the abundance and distribution of 18 major cell-wall glycan classes at three developmental stages along the developing inflorescence stem, using a high-throughput immunolabelling strategy. These stages represent a phase of juvenile growth, a phase displaying the maximum rate of stem extension, and a phase in which extension growth is ceasing. The immunolabelling patterns detected demonstrate that the cell-wall composition of most stem tissues undergoes pronounced changes both during and after rapid extension growth. Hierarchical clustering of the immunolabelling signals identified cell-specific binding patterns for some antibodies, including a sub-group of arabinogalactan side chain-directed antibodies whose epitope targets are specifically associated with the inter-fascicular fibre region during the rapid cell expansion phase. The data reveal dynamic, cell type-specific changes in cell-wall chemistry across diverse cell types during cell-wall expansion and maturation in the Arabidopsis inflorescence stem, and highlight the paradox between this structural diversity and the uniform anisotropic cell expansion taking place across all tissues during stem growth.

  9. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Nathan T Reem

    2016-05-01

    Full Text Available The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity and function remains unclear. Modifications of cell wall composition can induce plant responses known as Cell Wall Integrity control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, increased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant cell wall integrity, which contributes to plant resistance to necrotrophic pathogens.

  10. A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: Confirmed actors and newcomers

    OpenAIRE

    Jamet Elisabeth; Pont-Lezica Rafael; Borderies Gisèle; Canut Hervé; Irshad Muhammad

    2008-01-01

    Abstract Background Cell elongation in plants requires addition and re-arrangements of cell wall components. Even if some protein families have been shown to play roles in these events, a global picture of proteins present in cell walls of elongating cells is still missing. A proteomic study was performed on etiolated hypocotyls of Arabidopsis used as model of cells undergoing elongation followed by growth arrest within a short time. Results Two developmental stages (active growth and after g...

  11. Single-Wall Carbon Nanotube Anodes for Lithium Cells

    Science.gov (United States)

    Hepp, Aloysius F.; Raffaelle, Ryne; Gennett, Tom; Kumta, Prashant; Maranchi, Jeff; Heben, Mike

    2006-01-01

    In recent experiments, highly purified batches of single-wall carbon nanotubes (SWCNTs) have shown promise as superior alternatives to the graphitic carbon-black anode materials heretofore used in rechargeable thin-film lithium power cells. The basic idea underlying the experiments is that relative to a given mass of graphitic carbon-black anode material, an equal mass of SWCNTs can be expected to have greater lithium-storage and charge/discharge capacities. The reason for this expectation is that whereas the microstructure and nanostructure of a graphitic carbon black is such as to make most of the interior of the material inaccessible for intercalation of lithium, a batch of SWCNTs can be made to have a much more open microstructure and nanostructure, such that most of the interior of the material is accessible for intercalation of lithium. Moreover, the greater accessibility of SWCNT structures can be expected to translate to greater mobilities for ion-exchange processes and, hence, an ability to sustain greater charge and discharge current densities.

  12. Modifications of Saccharomyces pastorianus cell wall polysaccharides with brewing process.

    Science.gov (United States)

    Bastos, Rita; Coelho, Elisabete; Coimbra, Manuel A

    2015-06-25

    The cell wall polysaccharides of brewers spent yeast Saccharomyces pastorianus (BSY) and the inoculum yeast (IY) were studied in order to understand the changes induced by the brewing process. The hot water and alkali extractions performed solubilized mainly mannoproteins, more branched for BSY than those of IY. Also, (31)P solid state NMR showed that the BSY mannoproteins were 3 times more phosphorylated. By electron microscopy it was observed that the final residues of alkali sequential extraction until 4M KOH preserved the yeast three-dimensional structure. The final residues, composed mainly by glucans (92%), showed that the BSY, when compared with IY, contained higher amount of (1→4)-linked Glc (43% for BSY and 16% for IY) and lower (1→3)-linked Glc (17% for BSY and 42% for IY). The enzymatic treatment of final residue showed that both BSY and IY had (α1→4)-linked Glc and (β1→4)-linked Glc, in a 2:1 ratio, showing that S. pastorianus increases their cellulose-like linkages with the brewing process.

  13. Ultrastructural Islet Study of Early Fibrosis in the Ren2 Rat Model of Hypertension. Emerging Role of the Islet Pancreatic Pericyte-Stellate Cell

    Directory of Open Access Journals (Sweden)

    Melvin R Hayden

    2007-11-01

    Full Text Available Context Type 2 diabetes mellitus is a multifactorial disease with polygenic and environmental stressors resulting in multiple metabolic toxicities and islet oxidative stress. We have integrated the role of the islet reninangiotensin system (RAS in the pathogenesis of early islet fibrosis utilizing the transgenic (mRen227 rodent model of hypertension and tissue RAS overexpression. Objective The Ren2 pancreatic islet tissue was evaluated with transmission electron microscopy to study both early cellular and extracellular matrix remodeling. Animals Four 9- to 10-week-old male Ren2 untreated models and four Sprague Dawley sex and age matched controls were used. Design Ultrastructural study to compare pancreatic islet tissue. Main outcome measures Only qualitative and observational transmission electron microscopy findings are reported. Results Major remodeling differences in the Ren2 model were found to be located within the islet exocrine interface, including deposition of early fibrillar-banded collagen (fibrosis and cellular remodeling of the pericyte suggesting proliferation, migration, hypertrophy and activation as compared to the Sprague Dawley controls. Conclusion This study points to the possibility of the pericyte cell being one of many contributors to the fibrogenic pool of cells important for peri-islet fibrosis as a result of excess angiotensin II at the local tissue level in the Ren2 model. These findings suggest that the pericyte may be capable of differentiating into the pancreatic stellate cell. This islet ultrastructure study supports the notion that pericyte cells could be the link between islet vascular oxidative stress and peri-islet fibrosis. Pericyte-endothelialpancreatic stellate cell associations and morphology are discussed.

  14. The cell wall-targeting antibiotic stimulon of Enterococcus faecalis.

    Directory of Open Access Journals (Sweden)

    Jacqueline Abranches

    Full Text Available Enterococcus faecalis is an opportunistic nosocomial pathogen that is highly resistant to a variety of environmental insults, including an intrinsic tolerance to antimicrobials that target the cell wall (CW. With the goal of determining the CW-stress stimulon of E. faecalis, the global transcriptional profile of E. faecalis OG1RF exposed to ampicillin, bacitracin, cephalotin or vancomycin was obtained via microarrays. Exposure to the β-lactams ampicillin and cephalotin resulted in the fewest transcriptional changes with 50 and 192 genes differentially expressed 60 min after treatment, respectively. On the other hand, treatment with bacitracin or vancomycin for 60 min affected the expression of, respectively, 377 and 297 genes. Despite the differences in the total number of genes affected, all antibiotics induced a very similar gene expression pattern with an overrepresentation of genes encoding hypothetical proteins, followed by genes encoding proteins associated with cell envelope metabolism as well as transport and binding proteins. In particular, all drug treatments, most notably bacitracin and vancomycin, resulted in an apparent metabolic downshift based on the repression of genes involved in translation, energy metabolism, transport and binding. Only 19 genes were up-regulated by all conditions at both the 30 and 60 min time points. Among those 19 genes, 4 genes encoding hypothetical proteins (EF0026, EF0797, EF1533 and EF3245 were inactivated and the respective mutant strains characterized in relation to antibiotic tolerance and virulence in the Galleria mellonella model. The phenotypes obtained for two of these mutants, ΔEF1533 and ΔEF3245, support further characterization of these genes as potential candidates for the development of novel preventive or therapeutic approaches.

  15. Identification of the cell wall receptor for Candida nodaensis Killer toxin

    OpenAIRE

    Silva, Sónia Carina; Aguiar, Cristina; Veríssimo, P.; Pires, E.; Lucas, Cândida

    2004-01-01

    Comunicação efectuada no XIV Congresso Nacional de Bioquímica em Vilamoura (Portugal), 2004. The biological action of the K toxins involves a first step in the killing process, which correspond to the adsorption the toxin to the cell wall of sensitive cells. Here we describe the work performed towards the identification of the cell wall receptor for the zymocin under this study. For this purpose, the main cell wall components of the sensitive yeast Pichia guilliermondii were extracted. Th...

  16. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.

    Science.gov (United States)

    Wang, Yanting; Fan, Chunfen; Hu, Huizhen; Li, Ying; Sun, Dan; Wang, Youmei; Peng, Liangcai

    2016-01-01

    Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology. PMID:27269671

  17. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.

    Science.gov (United States)

    Wang, Yanting; Fan, Chunfen; Hu, Huizhen; Li, Ying; Sun, Dan; Wang, Youmei; Peng, Liangcai

    2016-01-01

    Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology.

  18. Comparative study of effects of magnesium and taurine on electrical parameters of natural and artificial membranes. VIII. Effect on the ultrastructure of human amniotic epithelial cells.

    Science.gov (United States)

    Guiet-Bara, A; Bara, M; Durlach, J

    1991-03-01

    The ultrastructure of human amniotic epithelial cells from normal pregnancies, at term, was studied using transmission electron microscopy. The results were analysed by a stereological method which indicates the ratio between the volume of the intercellular space (R1, the microvilli (R2), and the podocytes (R3) versus the cell volume. At low concentration (2 mM), MgCl2 decreased R1 and R3 and had no significant effect on R2. In contrast, taurine (2 mM) increased R1 and had no significant effect on R2 and R3. There is no vicarious action between Mg and taurine. These data are in contrast to the results obtained after electrophysiological studies, which indicates that the structural targets for Mg and taurine are different from the targets responsible for ionic transfer.

  19. Immunogold localization of xyloglucan and rhamnogalacturonan I in the cell walls of suspension-cultured sycamore cells.

    Science.gov (United States)

    Moore, P J; Darvill, A G; Albersheim, P; Staehelin, L A

    1986-11-01

    PLANT CELL WALLS SERVE SEVERAL FUNCTIONS: they impart rigidity to the plant, provide a physical and chemical barrier between the cell and its environment, and regulate the size and shape of each cell. Chemical studies have provided information on the biochemical composition of the plant cell walls as well as detailed knowledge of individual cell wall molecules. In contrast, very little is known about the distribution of specific cell wall components around individual cells and throughout tissues. To address this problem, we have produced polyclonal antibodies against two cell wall matrix components; rhamnogalacturonan I (RG-I), a pectic polysaccharide, and xyloglucan (XG), a hemicellulose. By using the antibiodies as specific markers we have been able to localize these polymers on thin sections of suspension-cultured sycamore cells (Acer pseudoplatanus). Our results reveal that each molecule has a unique distribution. XG is localized throughout the entire wall and middle lamella. RG-I is restricted to the middle lamella and is especially evident in the junctions between cells. These observations indicate that plant cell walls may have more distinct chemical (and functional?) domains than previously envisaged.

  20. Stereomicroscopic and ultrastructural characterization of propionitrile-induced duodenal ulcer in the rat

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1978-01-01

    Acute duodenal ulcer produced by subcutaneous injection of propionitrile in rats was studied by stereo, light, and electron microscopy in order to gain insight into the localization and mechanism of initial cell injury. Stereomicroscopy revealed an initial fissuring and splitting of the tips......: the first and larger ulcer was on the antimesenteric side of the duodenum, and the other, a small and more superficial one, was on the opposite wall. Ultrastructural lesions appeared in the absorptive epithelial cells of the proximal duodenum within 5 hours following a single dose of propionitrile...

  1. Impact of Cell Wall Composition on Maize Resistance to Pests and Diseases

    Science.gov (United States)

    Santiago, Rogelio; Barros-Rios, Jaime; Malvar, Rosa A.

    2013-01-01

    In cereals, the primary cell wall is built of a skeleton of cellulosic microfibrils embedded in a matrix of hemicelluloses and smaller amounts of pectins, glycoproteins and hydroxycinnamates. Later, during secondary wall development, p-coumaryl, coniferyl and sinapyl alcohols are copolymerized to form mixed lignins. Several of these cell wall components show a determinative role in maize resistance to pest and diseases. However, defense mechanisms are very complex and vary among the same plant species, different tissues or even the same tissue at different developmental stages. Thus, it is important to highlight that the role of the cell wall components needs to be tested in diverse genotypes and specific tissues where the feeding or attacking by the pathogen takes place. Understanding the role of cell wall constituents as defense mechanisms may allow modifications of crops to withstand pests and diseases. PMID:23535334

  2. A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: Confirmed actors and newcomers

    Directory of Open Access Journals (Sweden)

    Jamet Elisabeth

    2008-09-01

    Full Text Available Abstract Background Cell elongation in plants requires addition and re-arrangements of cell wall components. Even if some protein families have been shown to play roles in these events, a global picture of proteins present in cell walls of elongating cells is still missing. A proteomic study was performed on etiolated hypocotyls of Arabidopsis used as model of cells undergoing elongation followed by growth arrest within a short time. Results Two developmental stages (active growth and after growth arrest were compared. A new strategy consisting of high performance cation exchange chromatography and mono-dimensional electrophoresis was established for separation of cell wall proteins. This work allowed identification of 137 predicted secreted proteins, among which 51 had not been identified previously. Apart from expected proteins known to be involved in cell wall extension such as xyloglucan endotransglucosylase-hydrolases, expansins, polygalacturonases, pectin methylesterases and peroxidases, new proteins were identified such as proteases, proteins related to lipid metabolism and proteins of unknown function. Conclusion This work highlights the CWP dynamics that takes place between the two developmental stages. The presence of proteins known to be related to cell wall extension after growth arrest showed that these proteins may play other roles in cell walls. Finally, putative regulatory mechanisms of protein biological activity are discussed from this global view of cell wall proteins.

  3. Delineation of six species of the primitive algal genus Glaucocystis based on in situ ultrastructural characteristics.

    Science.gov (United States)

    Takahashi, Toshiyuki; Nishida, Tomoki; Tuji, Akihiro; Saito, Chieko; Matsuzaki, Ryo; Sato, Mayuko; Toyooka, Kiminori; Yasuda, Hidehiro; Nozaki, Hisayoshi

    2016-01-01

    The field of microbiology was established in the 17(th) century upon the discovery of microorganisms by Antonie van Leeuwenhoek using a single-lens microscope. Now, the detailed ultrastructures of microorganisms can be elucidated in situ using three-dimensional electron microscopy. Since the availability of electron microscopy, the taxonomy of microscopic organisms has entered a new era. Here, we established a new taxonomic system of the primitive algal genus Glaucocystis (Glaucophyta) using a new-generation electron microscopic methodology: ultra-high-voltage electron microscopy (UHVEM) and field-emission scanning electron microscopy (FE-SEM). Various globally distributed Glaucocystis strains were delineated into six species, based on differences in in situ ultrastructural features of the protoplast periphery under UHVEM tomography and in the mother cell wall by FE-SEM, as well as differences in the light microscopic characteristics and molecular phylogenetic results. The present work on Glaucocystis provides a model case of new-generation taxonomy.

  4. Delineation of six species of the primitive algal genus Glaucocystis based on in situ ultrastructural characteristics.

    Science.gov (United States)

    Takahashi, Toshiyuki; Nishida, Tomoki; Tuji, Akihiro; Saito, Chieko; Matsuzaki, Ryo; Sato, Mayuko; Toyooka, Kiminori; Yasuda, Hidehiro; Nozaki, Hisayoshi

    2016-01-01

    The field of microbiology was established in the 17(th) century upon the discovery of microorganisms by Antonie van Leeuwenhoek using a single-lens microscope. Now, the detailed ultrastructures of microorganisms can be elucidated in situ using three-dimensional electron microscopy. Since the availability of electron microscopy, the taxonomy of microscopic organisms has entered a new era. Here, we established a new taxonomic system of the primitive algal genus Glaucocystis (Glaucophyta) using a new-generation electron microscopic methodology: ultra-high-voltage electron microscopy (UHVEM) and field-emission scanning electron microscopy (FE-SEM). Various globally distributed Glaucocystis strains were delineated into six species, based on differences in in situ ultrastructural features of the protoplast periphery under UHVEM tomography and in the mother cell wall by FE-SEM, as well as differences in the light microscopic characteristics and molecular phylogenetic results. The present work on Glaucocystis provides a model case of new-generation taxonomy. PMID:27383831

  5. [Effect of pentachloronitrobenzene (PCNB) on the ultrastructure of Mucor mucedo and Phytophthora cactorum].

    Science.gov (United States)

    Casperson, G; Lyr, H

    1982-01-01

    The effect of PCNB in various concentrations on the ultrastructure of Mucor mucedo and phytophthora cactorum was analyzed after an incubation period of 2 hours. The most striking effect in both fungi was a diffuse lysis of the internal structure of the mitochondria which differs markedly from the lysis induced by etridiazol (terrazol). Moreover an enlargement of the perinuclear space and an increased formation of vacuoles was observed. In Mucor mucedo, but not in Phytophthora cactorum a pathological thickening of the cell wall was observed. Although after 2 hours incubation with PCNB Phytophthora gave similar ultrastructural reactions in the mitochondria as Mucor, in growth experiments on agar dishes this species was 5-10 times less sensitive to PCNB compared to Mucor.

  6. Anhydrobiosis in yeast: cell wall mannoproteins are important for yeast Saccharomyces cerevisiae resistance to dehydration.

    Science.gov (United States)

    Borovikova, Diana; Teparić, Renata; Mrša, Vladimir; Rapoport, Alexander

    2016-08-01

    The state of anhydrobiosis is linked with the reversible delay of metabolism as a result of strong dehydration of cells, and is widely distributed in nature. A number of factors responsible for the maintenance of organisms' viability in these conditions have been revealed. This study was directed to understanding how changes in cell wall structure may influence the resistance of yeasts to dehydration-rehydration. Mutants lacking various cell wall mannoproteins were tested to address this issue. It was revealed that mutants lacking proteins belonging to two structurally and functionally unrelated groups (proteins non-covalently attached to the cell wall, and Pir proteins) possessed significantly lower cell resistance to dehydration-rehydration than the mother wild-type strain. At the same time, the absence of the GPI-anchored cell wall protein Ccw12 unexpectedly resulted in an increase of cell resistance to this treatment; this phenomenon is explained by the compensatory synthesis of chitin. The results clearly indicate that the cell wall structure/composition relates to parameters strongly influencing yeast viability during the processes of dehydration-rehydration, and that damage to cell wall proteins during yeast desiccation can be an important factor leading to cell death. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Investigating the effect of carbon nanotube diameter and wall number in carbon nanotube/silicon heterojunction solar cells

    OpenAIRE

    Tom Grace; LePing Yu; Christopher Gibson; Daniel Tune; Huda Alturaif; Zeid Al Othman; Joseph Shapter

    2016-01-01

    Suspensions of single-walled, double-walled and multi-walled carbon nanotubes (CNTs) were generated in the same solvent at similar concentrations. Films were fabricated from these suspensions and used in carbon nanotube/silicon heterojunction solar cells and their properties were compared with reference to the number of walls in the nanotube samples. It was found that single-walled nanotubes generally produced more favorable results; however, the double and multi-walled nanotube films used in...

  8. Ultra-estrutura dos mastócitos de diferentes tipos histológicos de mastocitoma em cães Mast cell ultrastructure in different types of canine mast cell tumor

    Directory of Open Access Journals (Sweden)

    F.A.R. Sueiro

    2002-06-01

    Full Text Available Este trabalho teve por objetivo estudar as diferenças ultraestruturais de mastócitos neoplásicos de diferentes tipos histológicos de mastocitoma em cães, usando microscopia eletrônica de transmissão Os resultados mostraram que o núcleo e os grânulos citoplasmáticos são as estruturas mais indicadas para se avaliar o grau de anaplasia celular e o estádio de indiferenciação do tumor.The objective of this work was study the ultrastructural differences among the different histologic types of mast cell tumors in dogs collected in vivo. The ultrastructural analyses showed that the nuclei and cytoplasmic granules characteristics are the best structures to be appointed on evaluating the undifferentiation stage of this tumor.

  9. Altered cell wall properties are responsible for ammonium-reduced aluminium accumulation in rice roots.

    Science.gov (United States)

    Wang, Wei; Zhao, Xue Qiang; Chen, Rong Fu; Dong, Xiao Ying; Lan, Ping; Ma, Jian Feng; Shen, Ren Fang

    2015-07-01

    The phytotoxicity of aluminium (Al) ions can be alleviated by ammonium (NH4(+)) in rice and this effect has been attributed to the decreased Al accumulation in the roots. Here, the effects of different nitrogen forms on cell wall properties were compared in two rice cultivars differing in Al tolerance. An in vitro Al-binding assay revealed that neither NH4(+) nor NO3(-) altered the Al-binding capacity of cell walls, which were extracted from plants not previously exposed to N sources. However, cell walls extracted from NH4(+)-supplied roots displayed lower Al-binding capacity than those from NO3(-)-supplied roots when grown in non-buffered solutions. Fourier-transform infrared microspectroscopy analysis revealed that, compared with NO3(-)-supplied roots, NH4(+)-supplied roots possessed fewer Al-binding groups (-OH and COO-) and lower contents of pectin and hemicellulose. However, when grown in pH-buffered solutions, these differences in the cell wall properties were not observed. Further analysis showed that the Al-binding capacity and properties of cell walls were also altered by pHs alone. Taken together, our results indicate that the NH4(+)-reduced Al accumulation was attributed to the altered cell wall properties triggered by pH decrease due to NH4(+) uptake rather than direct competition for the cell wall binding sites between Al(3+) and NH4(+).

  10. Xyloglucans from flaxseed kernel cell wall: Structural and conformational characterisation.

    Science.gov (United States)

    Ding, Huihuang H; Cui, Steve W; Goff, H Douglas; Chen, Jie; Guo, Qingbin; Wang, Qi

    2016-10-20

    The structure of ethanol precipitated fraction from 1M KOH extracted flaxseed kernel polysaccharides (KPI-EPF) was studied for better understanding the molecular structures of flaxseed kernel cell wall polysaccharides. Based on methylation/GC-MS, NMR spectroscopy, and MALDI-TOF-MS analysis, the dominate sugar residues of KPI-EPF fraction comprised of (1,4,6)-linked-β-d-glucopyranose (24.1mol%), terminal α-d-xylopyranose (16.2mol%), (1,2)-α-d-linked-xylopyranose (10.7mol%), (1,4)-β-d-linked-glucopyranose (10.7mol%), and terminal β-d-galactopyranose (8.5mol%). KPI-EPF was proposed as xyloglucans: The substitution rate of the backbone is 69.3%; R1 could be T-α-d-Xylp-(1→, or none; R2 could be T-α-d-Xylp-(1→, T-β-d-Galp-(1→2)-α-d-Xylp-(1→, or T-α-l-Araf-(1→2)-α-d-Xylp-(1→; R3 could be T-α-d-Xylp-(1→, T-β-d-Galp-(1→2)-α-d-Xylp-(1→, T-α-l-Fucp-(1→2)-β-d-Galp-(1→2)-α-d-Xylp-(1→, or none. The Mw of KPI-EPF was calculated to be 1506kDa by static light scattering (SLS). The structure-sensitive parameter (ρ) of KPI-EPF was calculated as 1.44, which confirmed the highly branched structure of extracted xyloglucans. This new findings on flaxseed kernel xyloglucans will be helpful for understanding its fermentation properties and potential applications. PMID:27474598

  11. Navigating the transcriptional roadmap regulating plant secondary cell wall deposition

    Directory of Open Access Journals (Sweden)

    Steven Grant Hussey

    2013-08-01

    Full Text Available The current status of lignocellulosic biomass as an invaluable resource in industry, agriculture and health has spurred increased interest in understanding the transcriptional regulation of secondary cell wall (SCW biosynthesis. The last decade of research has revealed an extensive network of NAC, MYB and other families of transcription factors regulating Arabidopsis SCW biosynthesis, and numerous studies have explored SCW-related transcription factors in other dicots and monocots. Whilst the general structure of the Arabidopsis network has been a topic of several reviews, they have not comprehensively represented the detailed protein-DNA and protein-protein interactions described in the literature, and an understanding of network dynamics and functionality has not yet been achieved for SCW formation. Furthermore the methodologies employed in studies of SCW transcriptional regulation have not received much attention, especially in the case of non-model organisms. In this review, we have reconstructed the most exhaustive literature-based network representations to date of SCW transcriptional regulation in Arabidopsis. We include a manipulable Cytoscape representation of the Arabidopsis SCW transcriptional network to aid in future studies, along with a list of supporting literature for each documented interaction. Amongst other topics, we discuss the various components of the network, its evolutionary conservation in plants, putative modules and dynamic mechanisms that may influence network function, and the approaches that have been employed in network inference. Future research should aim to better understand network function and its response to dynamic perturbations, whilst the development and application of genome-wide approaches such as ChIP-seq and systems genetics are in progress for the study of SCW transcriptional regulation in non-model organisms.

  12. Malignant transformation of ectopic pancreatic cells in the duodenal wall

    Institute of Scientific and Technical Information of China (English)

    Roberto; Bini; Paolo; Voghera; Alberto; Tapparo; Raffaele; Nunziata; Andrea; Demarchi; Matteo; Capocefalo; Renzo; Leli

    2010-01-01

    Ectopic pancreas (EP) is the relatively uncommon presence of pancreatic tissue outside the normal location of the pancreas. This condition is usually asymptomatic and rarely complicated by pancreatitis and malignant transformation. A few cases of neoplastic phenomena that developed from EP into the duodenal wall are described in the literature. Herein we report a case of gastric outlet obstruction due to adenocarcinoma arising from EP of the duodenal wall. The patient underwent a Whipple's procedure and had...

  13. Evaluation of Chlorella (Chlorophyta) as Source of Fermentable Sugars via Cell Wall Enzymatic Hydrolysis

    OpenAIRE

    Marcoaurélio Almenara Rodrigues; Elba Pinto da Silva Bon

    2011-01-01

    The cell wall of Chlorella is composed of up to 80% carbohydrates including cellulose. In this study, Chlorella homosphaera and Chlorella zofingiensis were evaluated as source of fermentable sugars via their cell wall enzymatic degradation. The algae were cultivated in inorganic medium, collected at the stationary growth phase and centrifuged. The cell pellet was suspended in citrate buffer, pH 4.8 and subjected to 24 hours hydrolysis at 50°C using a cellulases, xylanases, and amylases ble...

  14. Identification of a Streptococcus salivarius Cell Wall Component Mediating Coaggregation with Veillonella alcalescens VI

    Science.gov (United States)

    Weerkamp, Anton H.; McBride, Barry C.

    1981-01-01

    Cell walls of Streptococcus salivarius HB aggregated Veillonella alcalescens V1, but cell walls of the mutant S. salivarius HB-V5 did not. We found no correlation between the presence of fimbriae on streptococcal walls and the ability to aggregate Veillonella strains. Treatment of the walls with lysozyme solubilized a fraction which possessed Veillonella-aggregating activity. Solubilized cell wall preparations of strain HB contained three major (glyco)proteins as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and at least four antigens as determined by immunoelectrophoresis with antiserum prepared against strain HB walls. A specific antiserum, which was obtained by adsorption of anti-HB serum on strain HB-V5 cells, contained monospecific antibody that reacted with the solubilized strain HB wall preparation. Similar fractions prepared from strain HB-V5 cell walls did not possess aggregating activity and lacked one protein band (protein I) after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and one antigen (antigen b) after immunoelectrophoresis. The same antigen was absent when lysozyme-solubilized wall preparations of strain HB were reacted with anti-HB-V5 serum. Crossed-immunoisoelectric focusing indicated that this specific (glyco)protein and this antigen were identical and had an isoelectric point of 4.60. Protein I and antigen b were specifically adsorbed when solubilized strain HB cell walls were incubated with V. alcalescens V1 but were not adsorbed by nonaggregating Veillonella parvula ATCC 10790 cells. Culture supernatants of strain HB contained V. alcalescens V1-aggregating activity. Antigen b was present in the culture supernatant, but was not found in cultures of strain HB-V5. A total of 18 S. salivarius isolates possessing the streptococcal group K antigen released aggregating activity and antigen b into the culture medium, but 11 strains which lacked the K-antigen did not. Images PMID:7251145

  15. Effect of Xiaoer Fuxie Waifu powder on the ultrastructure of intestinal Cajal cells and expression of neurotransmitter receptor VIP-R1 in rats with diarrhea

    Directory of Open Access Journals (Sweden)

    Si-wei CHEN

    2015-04-01

    Full Text Available Objective To investigate the effect of Xiaoer Fuxie Waifu powder on intestinal Cajal cells (ICC and the expression of vasoactive peptide receptor 1 (VIP-R1 in rats with diarrhea. Methods Thirty Wistar rats were divided randomly into three groups: control group, model group, and treatment group (10 each. Folium sennae (2ml/100g was gavaged to reproduce the diarrheal model. Xiaoer Fuxie Waifu powder was applied topically in the treatment group. Transmission electron microscope was used to observe the changes in ultrastructure of ICC after application of the drug. Immunohistochemistry was used to observe the distribution of VIP-R1 in the intestine of diarrheic rats. RT-PCR and Western blotting were used to determine the expressions of mRNA and protein of VIP-R1. Results The ultrastructure of ICC showed that the drug treatment could normalize the cellular morphology and gap junction. VIP-R1 was found to be distributed mainly between circular muscle and longitudinal muscle, in the myenteric nerve plexus of the small intestine, and was found around the epithelial cells in the mucosal layer of the colon and lamina propria cells. Xiaoer Fuxie Waifu powder inhibited the secretion of VIP-R1 and down-regulated the mRNA and protein expression of VIP-R1. Conclusion Xiaoer Fuxie Waifu powder can repair the injured ICC of diarrheic rats and cure diarrhea by down-regulating the expression of VIP-R1. DOI: 10.11855/j.issn.0577-7402.2015.01.05

  16. 'Strengthening the fungal cell wall through chitin-glucan cross-links: effects on morphogenesis and cell integrity'.

    Science.gov (United States)

    Arroyo, Javier; Farkaš, Vladimír; Sanz, Ana Belén; Cabib, Enrico

    2016-09-01

    The cross-linking of polysaccharides to assemble new cell wall in fungi requires transglycosylation mechanisms by which preexisting glycosidic linkages are broken and new linkages are created between the polysaccharides. The molecular mechanisms for these processes, which are essential for fungal cell biology, are only now beginning to be elucidated. Recent development of in vivo and in vitro biochemical approaches has allowed characterization of important aspects about the formation of chitin-glucan covalent cell wall cross-links by cell wall transglycosylases of the CRH family and their biological function. Covalent linkages between chitin and glucan mediated by Crh proteins control morphogenesis and also play important roles in the remodeling of the fungal cell wall as part of the compensatory responses necessary to counterbalance cell wall stress. These enzymes are encoded by multigene families of redundant proteins very well conserved in fungal genomes but absent in mammalian cells. Understanding the molecular basis of fungal adaptation to cell wall stress through these and other cell wall remodeling enzymatic activities offers an opportunity to explore novel antifungal treatments and to identify potential fungal virulence factors. PMID:27185288

  17. Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell suspension cultures: a critical analysis.

    OpenAIRE

    Borderies, Gisèle; Jamet, Elisabeth; Lafitte, Claude; Rossignol, Michel; Jauneau, Alain; Boudart, Georges; Monsarrat, Bernard; Esquerré-Tugayé, Marie-Thérèse; Boudet, Alain; Pont-Lezica, Rafael

    2003-01-01

    The complete sequencing of the Arabidopsis thaliana genome allows the use of the recently developed mass spectrometry techniques to identify the cell wall proteins (CWPs). Most proteomic approaches depend on the quality of sample preparation. Extraction of CWPs is particularly complex since the proteins may be free in the apoplast or are embedded in a polysaccharide matrix where they are retained by Van der Waals interactions, hydrogen bonds, hydrophobic or ionic interactions, or cross-linked...

  18. [The effect of cytochalasin A on the composition of subcellular fractions of hyphae in the growth of Mucor mucedo. II. Composition of the cell wall].

    Science.gov (United States)

    el Mougith, A A; Fonvieille, J L; Dargent, R; Rami, J; Touzé-Soulet, J M

    1988-11-01

    Walls of young hyphae of Mucor mucedo L. growing in the presence or absence of cytochalasin A were isolated and their chemical content determined. Cytochalasin A induced modified proportions of various monomers resulting in a reduction of the (neutral sugars + glucuronic acid)/glucosamine ratio. The walls contained less proteins but more chitin-chitosan and phosphate. These modifications are discussed in relation to ultrastructural changes described previously.

  19. Comparative characterization of stromal vascular cells derived from three types of vascular wall and adipose tissue.

    Science.gov (United States)

    Yang, Santsun; Eto, Hitomi; Kato, Harunosuke; Doi, Kentaro; Kuno, Shinichiro; Kinoshita, Kahori; Ma, Hsu; Tsai, Chi-Han; Chou, Wan-Ting; Yoshimura, Kotaro

    2013-12-01

    Multipotent stem/progenitor cells localize perivascularly in many organs and vessel walls. These tissue-resident stem/progenitor cells differentiate into vascular endothelial cells, pericytes, and other mesenchymal lineages, and participate in physiological maintenance and repair of vasculatures. In this study, we characterized stromal vascular cells obtained through the explant culture method from three different vessel walls in humans: arterial wall (ART; >500 μm in diameter), venous wall (VN; >500 μm in diameter), and small vessels in adipose tissue (SV; arterioles and venules, adipose-derived stem/stromal cells (ASCs). All stromal vascular cells of different origins presented fibroblast-like morphology and we could not visually discriminate one population from another. Flow cytometry showed that the cultured population heterogeneously expressed a variety of surface antigens associated with stem/progenitor cells, but CD105 was expressed by most cells in all groups, suggesting that the cells generally shared the characteristics of mesenchymal stem cells. Our histological and flow cytometric data suggested that the main population of vessel wall-derived stromal vascular cells were CD34(+)/CD31(-) and came from the tunica adventitia and areola tissue surrounding the adventitia. CD271 (p75NTR) was expressed by the vasa vasorum in the VN adventitia and by a limited population in the adventitia of SV. All three populations differentiated into multiple lineages as did ASCs. ART cells induced the largest quantity of calcium formation in the osteogenic medium, whereas ASCs showed the greatest adipogenic differentiation. SV and VN stromal cells had greater potency for network formation than did ART stromal cells. In conclusion, the three stromal vascular populations exhibited differential functional properties. Our results have clinical implications for vascular diseases such as arterial wall calcification and possible applications to regenerative therapies

  20. Temperature Gradients on the Cell Wall in the Critical Viscosity Experiment

    Science.gov (United States)

    Berg, Robert F.; Moldover, Michael R.

    1993-01-01

    Because of the diverging susceptibility delta rho/delta Tau near the liquid-vapor critical point, temperature gradients must be kept small to maintain adequate sample homogeneity. In our Science Requirements Document we paid particular attention to radial density gradients caused by equilibration of the xenon sample. Axial density gradients were addressed through the requirement that the cell's copper wall have a gradient less than 22 microK/m. This report re-examines the cell wall's temperature distribution in more detail by estimating all known significant contributions to temperature differences on the cell's wall.