WorldWideScience

Sample records for cell wall type-ii

  1. Cell Wall Biomolecular Composition Plays a Potential Role in the Host Type II Resistance to Fusarium Head Blight in Wheat

    Science.gov (United States)

    Lahlali, Rachid; Kumar, Saroj; Wang, Lipu; Forseille, Li; Sylvain, Nicole; Korbas, Malgorzata; Muir, David; Swerhone, George; Lawrence, John R.; Fobert, Pierre R.; Peng, Gary; Karunakaran, Chithra

    2016-01-01

    Fusarium head blight (FHB) is a serious disease of wheat worldwide. Cultivar resistance to FHB depends on biochemical factors that confine the pathogen spread in spikes. Breeding for cultivar resistance is considered the most practical way to manage this disease. In this study, different spectroscopy and microscopy techniques were applied to discriminate resistance in wheat genotypes against FHB. Synchrotron-based spectroscopy and imaging techniques, including focal plane array infrared and X-ray fluorescence (XRF) spectroscopy were used to understand changes in biochemical and nutrients in rachis following FHB infection. Sumai3 and Muchmore were used to represent resistant and susceptible cultivars to FHB, respectively, in this study. The histological comparison of rachis showed substantial differences in the cell wall thickness between the cultivars after infection. Synchrotron-based infrared imaging emphasized substantial difference in biochemical composition of rachis samples between the two cultivars prior to visible symptoms; in the resistant Sumai3, infrared bands representing lignin and hemicellulose were stronger and more persistent compared to the susceptible cultivar. These bands may be the candidates of biochemical markers for FHB resistance. Focal plane array infrared imaging (FPA) spectra from the rachis epidermis and vascular bundles revealed a new band (1710 cm−1) related to the oxidative stress on the susceptible cultivar only. XRF spectroscopy data revealed differences in nutrients composition between cultivars, and between controls and inoculated samples, with substantial increases observed for Ca, K, Mn, Fe, Zn, and Si in the resistant cultivar. These nutrients are related to cell wall stability, metabolic process, and plant defense mechanisms such as lignification pathway and callose deposition. The combination of cell wall composition and lignification plays a role in the mechanism of type II host resistance to FHB. Biochemical profiling

  2. Cell Wall Biomolecular Composition Plays a Potential Role in the Host Type II Resistance to Fusarium Head Blight in Wheat.

    Science.gov (United States)

    Lahlali, Rachid; Kumar, Saroj; Wang, Lipu; Forseille, Li; Sylvain, Nicole; Korbas, Malgorzata; Muir, David; Swerhone, George; Lawrence, John R; Fobert, Pierre R; Peng, Gary; Karunakaran, Chithra

    2016-01-01

    Fusarium head blight (FHB) is a serious disease of wheat worldwide. Cultivar resistance to FHB depends on biochemical factors that confine the pathogen spread in spikes. Breeding for cultivar resistance is considered the most practical way to manage this disease. In this study, different spectroscopy and microscopy techniques were applied to discriminate resistance in wheat genotypes against FHB. Synchrotron-based spectroscopy and imaging techniques, including focal plane array infrared and X-ray fluorescence (XRF) spectroscopy were used to understand changes in biochemical and nutrients in rachis following FHB infection. Sumai3 and Muchmore were used to represent resistant and susceptible cultivars to FHB, respectively, in this study. The histological comparison of rachis showed substantial differences in the cell wall thickness between the cultivars after infection. Synchrotron-based infrared imaging emphasized substantial difference in biochemical composition of rachis samples between the two cultivars prior to visible symptoms; in the resistant Sumai3, infrared bands representing lignin and hemicellulose were stronger and more persistent compared to the susceptible cultivar. These bands may be the candidates of biochemical markers for FHB resistance. Focal plane array infrared imaging (FPA) spectra from the rachis epidermis and vascular bundles revealed a new band (1710 cm(-1)) related to the oxidative stress on the susceptible cultivar only. XRF spectroscopy data revealed differences in nutrients composition between cultivars, and between controls and inoculated samples, with substantial increases observed for Ca, K, Mn, Fe, Zn, and Si in the resistant cultivar. These nutrients are related to cell wall stability, metabolic process, and plant defense mechanisms such as lignification pathway and callose deposition. The combination of cell wall composition and lignification plays a role in the mechanism of type II host resistance to FHB. Biochemical profiling

  3. Hemoglobin is Expressed in Alveolar Epithelial Type II Cells

    OpenAIRE

    Bhaskaran, Manoj; Chen, Haifeng; Chen, Zhongmong; Liu, Lin

    2005-01-01

    Hemoglobin is the main oxygen carrying heme protein in erythrocytes. In an effort to study the differential gene expression of alveolar epithelial type I and type II cells using DNA microarray technique, we found that the mRNAs of hemoglobin α- and β-chains were expressed in type II cells, but not in type I cells. The microarray data were confirmed by RT-PCR. The mRNA expression of both chains decreased when type II cells trans-differentiated into type I-like cells. Immunocyto/histochemistry ...

  4. Uptake of palmitic acid by rabbit alveolar type II cells

    International Nuclear Information System (INIS)

    Alveolar type II cells require a source of palmitic acid for synthesis of dipalmitoyl phosphatidylcholine (DPPC), a major constituent of pulmonary surfactant. Previous studies indicated that maximal rates of DPPC synthesis are achieved only if exogenous palmitate is available to the type II cell. Little is known of the mechanisms by which fatty acids enter type II cells. To determine if uptake is mediated by a membrane carrier system, as described in other cell types, we examined the kinetics of palmitate uptake. Using freshly isolated rabbit type II cells, we demonstrated that radiolabeled palmitate uptake was maximal and linear for 45 s; after 1 min the apparent rate of uptake declined. The initial uptake phase was taken as a measure of cellular fatty acid influx because intracellular radiolabeled palmitate remained 80% nonesterified at this time but was 55% esterified by 2 min. Cellular influx of palmitate showed saturation kinetics with increasing concentration of nonalbumin bound palmitate. Michaelis constant was 52.6 nM, and maximum velocity was 152 pmol.10(6) cells-1.min-1. The hypothesis that saturable cellular influx of palmitate is likely linked to the previously identified membrane fatty acid binding protein (MFABP) was supported by Western-blot analysis of rat lung tissue with an antibody to MFABP that demonstrated the presence of this carrier protein in lung tissue. These data suggest that palmitate uptake by type II cells is saturable and may be mediated by a membrane-associated carrier as described in other cell types

  5. Glutathione synthesis and homeostasis in isolated type II alveolar cells

    International Nuclear Information System (INIS)

    After isolation of Type II cells from neonatal rat lung, the glutathione (GSH) levels in these cells were greatly depressed. The total glutathione content could be increased 5-fold within 12-24 h by incubating the cells in media containing sulfur amino acids. Similarly, the activity of γ-glutamyltranspeptidase was low immediately after isolation, but was increased 2-fold during the first 24 h culture. Addition of either GSH or GSSG to the culture media increased the GSH content of Type II cells 2-2.5-fold. Buthionine sulfoximine and NaF prevented this replenishment of GSH during 24 h culture. When the rates of de novo synthesis of GSH and GSSG from 35S-cysteine were measured, the amounts of newly formed GSH decreased to 80% in the presence of GSH or GSSG. This suggests that exogenous GSH/GSSG can be taken up by the Type II cells to replenish the intracellular pool of GSH. Methionine was not as effective as cysteine in the synthesis of GSH. These results suggest that GSH levels in the isolated Type II cell can be maintained by de novo synthesis or uptake of exogenous GSH. Most of the GSH synthesized from cysteine, however, was excreted into the media of the cultured cells indicative of a potential role for the type II cell in export of the non-protein thiol

  6. Lysosomes from rabbit type II cells catabolize surfactant lipids.

    Science.gov (United States)

    Rider, E D; Ikegami, M; Pinkerton, K E; Peake, J L; Jobe, A H

    2000-01-01

    The role of a lysosome fraction from rabbit type II cells in surfactant dipalmitoylphosphatidylcholine (DPPC) catabolism was investigated in vivo using radiolabeled DPPC and dihexadecylphosphatidylcholine (1, 2-dihexadecyl-sn-glycero-3-phosphocholine; DEPC), a phospholipase A(1)- and A(2)-resistant analog of DPPC. Freshly isolated type II cells were gently disrupted by shearing, and lysosomes were isolated with Percoll density gradients (density range 1.0591-1.1457 g/ml). The lysosome fractions were relatively free of contaminating organelles as determined by electron microscopy and organelle marker enzymes. After intratracheal injection of rabbits with [(3)H]DPPC and [(14)C]DEPC associated with a trace amount of natural rabbit surfactant, the degradation-resistant DEPC accumulated 16-fold compared with DPPC in lysosome fractions at 15 h. Lysosomes can be isolated from freshly isolated type II cells, and lysosomes from type II cells are the primary catabolic organelle for alveolar surfactant DPPC following reuptake by type II cells in vivo. PMID:10645892

  7. Alveolar epithelial type II cell: defender of the alveolus revisited

    OpenAIRE

    Fehrenbach Heinz

    2001-01-01

    Abstract In 1977, Mason and Williams developed the concept of the alveolar epithelial type II (AE2) cell as a defender of the alveolus. It is well known that AE2 cells synthesise, secrete, and recycle all components of the surfactant that regulates alveolar surface tension in mammalian lungs. AE2 cells influence extracellular surfactant transformation by regulating, for example, pH and [Ca2+] of the hypophase. AE2 cells play various roles in alveolar fluid balance, coagulation/fibrinolysis, a...

  8. Towards Optimal Diagnosis of Type II Germ Cell Tumors

    NARCIS (Netherlands)

    J.A. Stoop (Hans)

    2011-01-01

    textabstractThe aim of the work described in this thesis is to improve the understanding of the pathobiology of testicular cancer (type II Germ Cell Tumors) to create possibilities for optimalization of diagnosis for this type of malignancy in routine pathology laboratories. The different studies pr

  9. Assay and heterologous expression in Pichia pastoris of plant cell wall type-II membrane anchored glycosyltransferases

    DEFF Research Database (Denmark)

    Petersen, Bent; Egelund, Jack; Damager, Iben;

    2009-01-01

    Two Arabidopsis xylosyltransferases, designated RGXT1 and RGXT2, were recently expressed in Baculovirus transfected insect cells and by use of the free sugar assay shown to catalyse transfer of D-xylose from UDP-alpha-D-xylose to L-fucose and derivatives hereof. We have now examined expression of...... fractions. When incubated with 0.5 M L-fucose and UDP-D-xylose all four RGXT1 and RGXT2 variants catalyzed transfer of D-xylose onto L-fucose with estimated turnover numbers between 0.15 and 0.3 sec(-1), thus demonstrating that a free C-terminus is not required for activity. N- and O-glycanase treatment...

  10. Quark matter coupled to domain walls in Bianchi types II, VIII and IX Universes

    Indian Academy of Sciences (India)

    S D Katore; M M Sancheti; S P Hatkar

    2014-10-01

    In this study of Bianchi types II, VIII and IX Universes, quark matter coupled to domain walls in the context of general relativity are explored. To obtain deterministic solution of the Einstein’s field equations, various techniques are adopted. The features of the obtained solution are discussed.

  11. Repopulation of denuded tracheal grafts with alveolar type II cells

    International Nuclear Information System (INIS)

    Repopulation of denuded heterotopic tracheal grafts with populations of specific epithelial cell types is one approach to study the differentiation potential of various cell types. This technique has been adopted to delineate the differentiation pathways of alveolar type II cells isolated from rat lungs. Under the conditions of this experiment, the reestablished epithelial lining was alveolar-like, however, ultrastructural analysis of the cells showed them to be like Clara cells. These preliminary results suggest that the secretary cells of the lung parenchyma and terminal airways may share a common ancestry. (author)

  12. The role of alveolar type II cells in swine leptospirosis

    OpenAIRE

    Ângela P. Campos; Dayane F.H. Miranda; Geórgia B.B. Alves; Micherlene S. Carneiro; Prianti, Maria G; Larissa M.F. Gonçalves; Vanessa Castro; Francisco A.L. Costa

    2015-01-01

    Abstract: This study aimed to investigate a possible relationship between alveolar type II cells and the inflammatory response to infection with Leptospira spp., and thus comprise a further element that can be involved in the pathogenesis of lung injury in naturally infected pigs. The study group consisted of 73 adult pigs that were extensively reared and slaughtered in Teresina, Piauí state, and Timon, Maranhão state, Brazil. The diagnosis of leptospirosis was made using the microscopic aggl...

  13. The role of alveolar type II cells in swine leptospirosis

    Directory of Open Access Journals (Sweden)

    Ângela P. Campos

    2015-07-01

    Full Text Available Abstract: This study aimed to investigate a possible relationship between alveolar type II cells and the inflammatory response to infection with Leptospira spp., and thus comprise a further element that can be involved in the pathogenesis of lung injury in naturally infected pigs. The study group consisted of 73 adult pigs that were extensively reared and slaughtered in Teresina, Piauí state, and Timon, Maranhão state, Brazil. The diagnosis of leptospirosis was made using the microscopic agglutination test (MAT aided by immunohistochemistry and polymerase chain reaction. The MAT registered the occurrence of anti-Leptospira antibodies in 10.96% (8/73 of the pigs. Immunohistochemistry allowed for the visualization of the Leptospira spp. antigen in the lungs of 87.67% (64/73 of the pigs. There was hyperplasia of bronchus-associated lymphoid tissue and circulatory changes, such as congestion of alveolar septa, parenchymal hemorrhage and edema within the alveoli. Lung inflammation was more intense (p = 0.0312 in infected animals, which also showed increased thickening of the alveolar septa (p = 0.0006. Evaluation of alveolar type II (ATII cells using an anti-TTF-1 (Thyroid Transcription Factor-1 antibody showed that there were more immunostained cells in the non-infected pigs (53.8% than in the infected animals (46.2% and that there was an inverse correlation between TTF-1 positive cells and the inflammatory infiltrate. There was no amplification of Leptospira DNA in the lung samples, but leptospiral DNA amplification was observed in the kidneys. The results of this study showed that a relationship exists between a decrease in alveolar type II cells and a leptospire infection. Thus, this work points to the importance of studying the ATII cells as a potential marker of the level of lung innate immune response during leptospirosis in pigs.

  14. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  15. Alveolar epithelial type II cell: defender of the alveolus revisited

    Directory of Open Access Journals (Sweden)

    Fehrenbach Heinz

    2001-01-01

    Full Text Available Abstract In 1977, Mason and Williams developed the concept of the alveolar epithelial type II (AE2 cell as a defender of the alveolus. It is well known that AE2 cells synthesise, secrete, and recycle all components of the surfactant that regulates alveolar surface tension in mammalian lungs. AE2 cells influence extracellular surfactant transformation by regulating, for example, pH and [Ca2+] of the hypophase. AE2 cells play various roles in alveolar fluid balance, coagulation/fibrinolysis, and host defence. AE2 cells proliferate, differentiate into AE1 cells, and remove apoptotic AE2 cells by phagocytosis, thus contributing to epithelial repair. AE2 cells may act as immunoregulatory cells. AE2 cells interact with resident and mobile cells, either directly by membrane contact or indirectly via cytokines/growth factors and their receptors, thus representing an integrative unit within the alveolus. Although most data support the concept, the controversy about the character of hyperplastic AE2 cells, reported to synthesise profibrotic factors, proscribes drawing a definite conclusion today.

  16. Human alveolar epithelial type II cells in primary culture.

    Science.gov (United States)

    Mao, Pu; Wu, Songling; Li, Jianchun; Fu, Wei; He, Weiqun; Liu, Xiaoqing; Slutsky, Arthur S; Zhang, Haibo; Li, Yimin

    2015-02-01

    Alveolar epithelial type II (AEII) cells are a key structure and defender in the lung but also are the targets in many lung diseases, including acute respiratory distress syndrome, ventilator-induced lung injury, and pulmonary fibrosis. We sought to establish an optimized method for high yielding and long maintenance of characteristics of primary human AEII cells to facilitate the investigation of the mechanisms of lung diseases at the cellular and molecular levels. Adult human peripheral normal lung tissues of oncologic patients undergoing lung resection were collected. The AEII cells were isolated and identified by the expression of pro-surfactant protein (SP)C, epithelial sodium channel (αENaC) and cytokeratin (CK)-8, the lamellar bodies specific for AEII cells, and confirmed by the histology using electron microscopy. The phenotype of AEII cells was characterized by the expression of surfactant proteins (SP-A, SP-B, SP-C, SP-D), CK-8, KL-6, αENaC, and aquaporin (AQP)-3, which was maintained over 20 days. The biological activity of the primary human AEII cells producing SP-C, cytokines, and intercellular adhesion molecule-1 was vigorous in response to stimulation with tumor necrosis factor-α. We have modified previous methods and optimized a method for isolation of high purity and long maintenance of the human AEII cell phenotype in primary culture. This method provides an important tool for studies aiming at elucidating the molecular mechanisms of lung diseases exclusively in AEII cells. PMID:25677546

  17. Cell Wall

    OpenAIRE

    Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Albenne, Cécile; Pont-Lezica, Rafael F

    2008-01-01

    This chapter covers our present knowledge of cell wall proteomics highlighting the distinctive features of cell walls and cell wall proteins in relation to problems encountered for protein extraction, separation and identification. It provides clues to design strategies for efficient cell wall proteomic studies. It gives an overview of the kinds of proteins that have yet been identified: the expected proteins vs the identified proteins. Finally, the new vision of the cell wall proteome, and t...

  18. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells

    OpenAIRE

    Wang, Dachun; Haviland, David L.; Burns, Alan R.; Zsigmond, Eva; Wetsel, Rick A.

    2007-01-01

    Alveolar epithelial type II (ATII) cells are small, cuboidal cells that constitute ≈60% of the pulmonary alveolar epithelium. These cells are crucial for repair of the injured alveolus by differentiating into alveolar epithelial type I cells. ATII cells derived from human ES (hES) cells are a promising source of cells that could be used therapeutically to treat distal lung diseases. We have developed a reliable transfection and culture procedure, which facilitates, via genetic selection, the ...

  19. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells

    OpenAIRE

    Majumdar, Arnab; Arold, Stephen P.; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Suki, Béla

    2011-01-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less...

  20. Alveolar Type II cell transplantation restores pulmonary surfactant protein levels in lung fibrosis

    OpenAIRE

    Guillamat-Prats, Raquel; Gay-Jordi, Gemma; Xaubet, Antoni; Peinado, Victor; Serrano-Mollar, Anna

    2014-01-01

    Background Alveolar Type II cell transplantation has been proposed as a cell therapy for the treatment of idiopathic pulmonary fibrosis. Its long-term benefits include repair of lung fibrosis, but its success partly depends on the restoration of lung homeostasis. Our aim was to evaluate surfactant protein restoration after alveolar Type II cell transplantation in an experimental model of bleomycin-induced lung fibrosis in rats. Methods Lung fibrosis was induced by intratracheal instillation o...

  1. Membrane potential and ion transport in lung epithelial type II cells

    International Nuclear Information System (INIS)

    The alveolar type II pneumocyte is critically important to the function and maintenance of pulmonary epithelium. To investigate the nature of the response of type II cells to membrane injury, and describe a possible mechanism by which these cells regulate surfactant secretion, the membrane potential of isolated rabbit type II cells was characterized. This evaluation was accomplished by measurements of the accumulation of the membrane potential probes: [3H]triphenylmethylphosphonium ([3H]TPMP+), rubidium 86, and the fluorescent dye DiOC5. A compartmental analysis of probe uptake into mitochondrial, cytoplasmic, and non-membrane potential dependent stores was made through the use of selective membrane depolarizations with carbonycyanide M-chlorophenylhydrazone (CCCP), and lysophosphatidylcholine (LPC). These techniques and population analysis with flow cytometry, permitted the accurate evaluation of type II cell membrane potential under control conditions and under conditions which stimulated cell activity. Further analysis of ion transport by cells exposed to radiation or adrenergic stimulation revealed a common increase in Na+/K+ ATPase activity, and an increase in sodium influx across the plasma membrane. This sodium influx was found to be a critical step in the initiation of surfactant secretion. It is concluded that radiation exposure as well as other pulmonary toxicants can directly affect the membrane potential and ionic regulation of type II cells. Ion transport, particularly of sodium, plays an important role in the regulation of type II cell function

  2. Alveolar epithelial type II cells induce T cell tolerance to specific antigen

    DEFF Research Database (Denmark)

    Lo, Bernice; Hansen, Søren; Evans, Kathy; Heath, John K; Wright, Jo Rae

    2008-01-01

    The lungs face the immunologic challenge of rapidly eliminating inhaled pathogens while maintaining tolerance to innocuous Ags. A break in this immune homeostasis may result in pulmonary inflammatory diseases, such as allergies or asthma. The observation that alveolar epithelial type II cells (Ty...

  3. Vitamin E alters alveolar type II cell phospholipid synthesis in oxygen and air

    International Nuclear Information System (INIS)

    Newborn rats were injected with vitamin E or placebo daily until 6 days after birth. The effect of vitamin E pretreatment on in vitro surfactant phospholipid synthesis was examined in isolated type II cells exposed to oxygen or air form 24 h in vitro. Type II cells were also isolated from untreated 6-day-old rats and cultured for 24 h in oxygen or air with control medium or vitamin E supplemented medium. These cells were used to examine the effect of vitamin E exposure in vitro on type II cell phospholipid synthesis and ultrastructure. Phosphatidylcholine (PC) synthesis was reduced in cells cultured in oxygen as compared with air. This decrease was not prevented by in vivo pretreatment or in vitro supplementation with vitamin E. Vitamin E pretreatment increased the ratio of disaturated PC to total PC and increased phosphatidylglycerol synthesis. The volume density of lamellar bodies in type II cells was increased in cells maintained in oxygen. Vitamin E did not affect the volume density of lamellar bodies. We conclude that in vitro hyperoxia inhibits alveolar type II cell phosphatidylcholine synthesis without decreasing lamellar body volume density and that supplemental vitamin E does not prevent hyperoxia-induced decrease in phosphatidylcholine synthesis

  4. Vitamin E alters alveolar type II cell phospholipid synthesis in oxygen and air

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, K.A.; Snyder, J.M.; Stenzel, W.; Saito, K.; Warshaw, J.B. (Univ. of Texas Southwestern Medical School, Dallas (USA))

    1990-11-01

    Newborn rats were injected with vitamin E or placebo daily until 6 days after birth. The effect of vitamin E pretreatment on in vitro surfactant phospholipid synthesis was examined in isolated type II cells exposed to oxygen or air form 24 h in vitro. Type II cells were also isolated from untreated 6-day-old rats and cultured for 24 h in oxygen or air with control medium or vitamin E supplemented medium. These cells were used to examine the effect of vitamin E exposure in vitro on type II cell phospholipid synthesis and ultrastructure. Phosphatidylcholine (PC) synthesis was reduced in cells cultured in oxygen as compared with air. This decrease was not prevented by in vivo pretreatment or in vitro supplementation with vitamin E. Vitamin E pretreatment increased the ratio of disaturated PC to total PC and increased phosphatidylglycerol synthesis. The volume density of lamellar bodies in type II cells was increased in cells maintained in oxygen. Vitamin E did not affect the volume density of lamellar bodies. We conclude that in vitro hyperoxia inhibits alveolar type II cell phosphatidylcholine synthesis without decreasing lamellar body volume density and that supplemental vitamin E does not prevent hyperoxia-induced decrease in phosphatidylcholine synthesis.

  5. Cell Stress Induces Upregulation of Osteopontin via the ERK Pathway in Type II Alveolar Epithelial Cells

    OpenAIRE

    Aki Kato; Takafumi Okura; Chizuru Hamada; Seigo Miyoshi; Hitoshi Katayama; Jitsuo Higaki; Ryoji Ito

    2014-01-01

    Osteopontin (OPN) is a multifunctional protein that plays important roles in cell growth, differentiation, migration and tissue fibrosis. In human idiopathic pulmonary fibrosis and murine bleomycin-induced lung fibrosis, OPN is upregulated in type II alveolar epithelial cells (AEC II). However, the mechanism of OPN induction in AEC II is not fully understood. In this study, we demonstrate the molecular mechanism of OPN induction in AEC II and elucidate the functions of OPN in AEC II and lung ...

  6. Molecular Design of D-Tr-A Type II Organic Sensitizers for Dye Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    李士锋; 杨希川; 瞿定峰; 王维瀚; 王瑜; 孙立成

    2012-01-01

    Four new type II organic dyes with D-n-A structure (donor-n-conjugated-acceptor) and two typical type II sen- sitizers based on catechol as reference dyes are synthesized and applied in dye sensitized solar cells (DSCs). The four dyes can be adsorbed on TiO2 through hydroxyl group directly. Electron injection can occur not only through the anchoring group (hydroxyl group) but also through the electron-withdrawing group (-CN) located close to the semiconductor surface. Experimental results show that the type II sensitizers with a D-π-A system obviously out- perform the typical type II sensitizers providing much higher conversion efficiency due to the strong electronic push-pull effect. Among these dyes, LS223 gives the best solar energy conversion efficiency of 3.6%, with Jsc = 7.3 mAocm 2, Voc=0.69 V, FF=0.71, the maximum IPCE value reaches 74.9%.

  7. Participation of carnitine palmitoyltransferase in the synthesis of dipalmitoylphosphatidylcholine in rat alveolar type II cells.

    Science.gov (United States)

    Arduini, A; Zibellini, G; Ferrari, L; Magnanimi, L; Dottori, S; Lohninger, A; Carminati, P

    2001-02-01

    We have investigated the role of carnitine palmitoyltransferase (EC 2.3.1.21) in pulmonar type II pneumocyte, a lung cell responsible for the synthesis of surface active lipids. Adult type II pneumocytes were isolated from rat lung and purified by differential adherence. When these lung cells were incubated with radioactive palmitate, the percentage of radioactivity recovered into dipalmitoylphosphatidylcholine (DPPC), a major surface active lipid, was almost 60% with respect to total phosphatidylcholine (PC) molecular species. Cellular lysates from type II pneumocytes contained detectable amount of carnitine palmitoyltransferase (CPT) activity (1 nmol/min/mg). Most of the CPT activity found in these cells could be inhibited by incubating them for 60 min with 5 microM tetradecylglycidic acid (TDGA), a specific and irreversible CPT inhibitor of the malonyl-CoA sensitive CPT isoform (CPT I). TDGA treatment of adult type II pneumocytes caused a significant reduction in the incorporation of radioactive palmitate into PC, though this effect did not seem to be specific for DPPC. TDGA affected the incorporation of radioactive palmitate at the sn2 rather than the sn1 position of the glycerol backbone of PC. The incorporation of radioactive palmitate into DPPC was also observed when these lung cells were incubated with palmitate-labeled palmitoyl-L-carnitine. Our data suggest that type II pneumocyte CPT may play an important role in remodelling PC fatty acid composition and hence DPPC synthesis. PMID:11330841

  8. Isolation of alveolar epithelial type II progenitor cells from adult human lungs

    OpenAIRE

    Fujino, Naoya; Kubo, Hiroshi; Suzuki, Takaya; Ota, Chiharu; Hegab, Ahmed E.; He, Mei; Suzuki, Satoshi; Suzuki, Takashi; Yamada, Mitsuhiro; Kondo, Takashi; Kato, Hidemasa; Yamaya, Mutsuo

    2010-01-01

    Resident stem/progenitor cells in the lung are important for tissue homeostasis and repair. However, a progenitor population for alveolar type II (ATII) cells in adult human lungs has not been identified. The aim of this study is to isolate progenitor cells from adult human lungs with the ability to differentiate into ATII cells. We isolated colony-forming cells that had the capability for self-renewal and the potential to generate ATII cells in vitro. These undifferentiated progenitor cells ...

  9. High Cell Surface Death Receptor Expression Determines Type I Versus Type II Signaling*

    Science.gov (United States)

    Meng, Xue Wei; Peterson, Kevin L.; Dai, Haiming; Schneider, Paula; Lee, Sun-Hee; Zhang, Jin-San; Koenig, Alexander; Bronk, Steve; Billadeau, Daniel D.; Gores, Gregory J.; Kaufmann, Scott H.

    2011-01-01

    Previous studies have suggested that there are two signaling pathways leading from ligation of the Fas receptor to induction of apoptosis. Type I signaling involves Fas ligand-induced recruitment of large amounts of FADD (FAS-associated death domain protein) and procaspase 8, leading to direct activation of caspase 3, whereas type II signaling involves Bid-mediated mitochondrial perturbation to amplify a more modest death receptor-initiated signal. The biochemical basis for this dichotomy has previously been unclear. Here we show that type I cells have a longer half-life for Fas message and express higher amounts of cell surface Fas, explaining the increased recruitment of FADD and subsequent signaling. Moreover, we demonstrate that cells with type II Fas signaling (Jurkat or HCT-15) can signal through a type I pathway upon forced receptor overexpression and that shRNA-mediated Fas down-regulation converts cells with type I signaling (A498) to type II signaling. Importantly, the same cells can exhibit type I signaling for Fas and type II signaling for TRAIL (TNF-α-related apoptosis-inducing ligand), indicating that the choice of signaling pathway is related to the specific receptor, not some other cellular feature. Additional experiments revealed that up-regulation of cell surface death receptor 5 levels by treatment with 7-ethyl-10-hydroxy-camptothecin converted TRAIL signaling in HCT116 cells from type II to type I. Collectively, these results suggest that the type I/type II dichotomy reflects differences in cell surface death receptor expression. PMID:21865165

  10. Intratracheal transplantation of alveolar type II cells reverses bleomycin-induced lung fibrosis

    OpenAIRE

    Serrano-Mollar, Anna; Nácher, María; Gay-Jordi, Gemma; Closa, Daniel; Xaubet, Antoni; Bulbena, Oriol

    2007-01-01

    [Rationale]: Transplantation of stem cells has been proposed as a strategy for repair of lung fibrosis. Nevertheless, many studies have yielded controversial results that currently limit the potential use of these cells as an efficient treatment. Alveolar type II cells are the progenitor cells of the pulmonary epithelium and usually proliferate after epithelial cell injury. During lung fibrosis, however, the altered regeneration process leads to uncontrolled fibroblast proliferation. [Objecti...

  11. Arachidonate metabolism increases as rat alveolar type II cells differentiate in vitro

    International Nuclear Information System (INIS)

    Rat type II alveolar epithelial cells are known to undergo morphological and functional changes when maintained in culture for several days. Having previously demonstrated that these cells can deacylate free arachidonic acid (AA) and metabolize it to products of the cyclooxygenase pathway, the present study was undertaken to determine whether in vitro differentiation was accompanied by alterations in the availability and metabolism of AA. We assessed the constitutive and ionophore A23187-induced deacylation and metabolism of endogenous AA, as well as the metabolism of exogenously supplied AA, in primary cultures of rat type II cells at days 2, 4, and 7 after isolation. Levels of free endogenous AA were increased at day 4, whereas eicosanoid synthesis, predominantly prostaglandin E2 and prostacyclin, increased markedly only at day 7. A similar time course of augmentation of prostanoid release was seen in response to exogenous AA. Type II cells cultured on fibronectin, intended to hasten cell flattening and spreading, demonstrated accelerated increases in available free AA in response to A23187; cells cultured on basement membrane derived from Engelbreth-Holm-Swarm mouse sarcoma, known to maintain the type II phenotype, exhibited diminished levels of available free AA. From these findings, we conclude that alterations in arachidonate metabolism are linked to alterations in cellular phenotype. The potentiation of eicosanoid synthesis accompanying in vitro differentiation suggests a possible role for the alveolar epithelium in the modulation of inflammation and fibrosis in the distal lung

  12. Pulmonary surfactant and its components inhibit secretion of phosphatidylcholine from cultured rat alveolar type II cells

    International Nuclear Information System (INIS)

    Pulmonary surfactant is synthesized and secreted by alveolar type II cells. Radioactive phosphatidylcholine has been used as a marker for surfactant secretion. The authors report findings that suggest that surfactant inhibits secretion of 3H-labeled phosphatidylcholine by cultured rat type II cells. The lipid components and the surfactant protein group of M/sub r/ 26,000-36,000 (SP 26-36) inhibit secretion to different extents. Surfactant lipids do not completely inhibit release; in concentrations of 100 μg/ml, lipids inhibit stimulated secretion by 40%. SP 26-36 inhibits release with an EC50 of 0.1 μg/ml. At concentrations of 1.0 μg/ml, SP 26-36 inhibits basal secretion and reduces to basal levels secretion stimulated by terbutaline, phorbol 12-myristate 13-acetate, and the ionophore A23187. The inhibitory effect of SP 26-36 can be blocked by washing type II cells after adding SP 26-36, by heating the proteins to 1000C for 10 min, by adding antiserum specific to SP 26-36, or by incubating cells in the presence of 0.2 mM EGTA. SP 26-36 isolated from canine and human sources also inhibits phosphatidylcholine release from rat type II cells. Neither type I collagen nor serum apolipoprotein A-1 inhibits secretion. These findings are compatible with the hypothesis that surfactant secretion is under feedback regulatory control

  13. Expression and function of aquaporin-1 in hyperoxia-exposed alveolar epithelial type II cells

    OpenAIRE

    ZHANG, QIU-YUE; Fu, Jian-Hua(Department of Physics, Henan University of Technology, Zhengzhou 450001, China); XUE, XIN-DONG

    2014-01-01

    The aim of the present study was to investigate water transport dysfunction in alveolar epithelial type II cells (AECII), which were exposed to hyperoxia, and to investigate the mechanism of pulmonary edema resulting from hyperoxic lung injury. The lung cells of newborn rats were isolated for primary cell culture and divided into control and experimental groups. The control and experimental group cells were placed into a normoxic incubator (oxygen volume fraction, 0.21) or hyperoxic incubator...

  14. Hypoxia-Inducible Factor Regulates Expression of Surfactant Protein in Alveolar Type II Cells In Vitro

    OpenAIRE

    Ito, Yoko; Ahmad, Aftab; Kewley, Emily; Mason, Robert J

    2011-01-01

    Alveolar type II (ATII) cells cultured at an air–liquid (A/L) interface maintain differentiation, but they lose these properties when they are submerged. Others showed that an oxygen tension gradient develops in the culture medium as ATII cells consume oxygen. Therefore, we wondered whether hypoxia inducible factor (HIF) signaling could explain differences in the phenotypes of ATII cells cultured under A/L interface or submerged conditions. ATII cells were isolated from male Sprague-Dawley ra...

  15. Effects of ozone on phospholipid synthesis by alveolar type II cells isolated from adult rat lung

    International Nuclear Information System (INIS)

    Isolated alveolar type II cells were exposed to ozone by gas diffusion through the thin Teflon bottom of culture dishes. After exposure, type II cells were further incubated in the presence of labeled substrates to assess the capacity to synthesize surfactant lipids. The incorporation of [Me-14C]choline into both total and disaturated phosphatidylcholines in inhibited to 50% of the control values under conditions that result in a diffusion of 0.4 microgram O3/18 cm2-dish per 2.5 h. The incorporation rates of [1-14C]palmitate, [1-14C]acetate, D[U-14C]glucose, and [1,3-3H]glycerol into phosphatidylcholines are also lower after ozone exposure. Moreover, the synthesis of phosphatidylglycerols and phosphatidylethanolamines from these substrates is also inhibited by exposure of type II cells to ozone. These incorporation studies indicate that the effect of ozone is early in the biosynthetic pathway, probably at the step catalyzed by the enzyme glycerolphosphate acyltransferase. Determination of the activity of this enzyme after the ozone exposure shows that it is decreased, whereas the activity of lysophosphatidylcholine acyltransferase is increased. The activity of choline phosphotransferase also appears to be decreased after exposure of type II cells to ozone, although this enzyme was less susceptible than glycerolphosphate acyltransferase. Studies with the sulfhydryl reagent 5,5'-dithiobis (2-nitrobenzoic acid) indicate a positive correlation between the effect of this compound on enzyme activities in sonicated type II cells and the sensitivity of these enzymes in intact cells to ozone. This suggests that the effect of ozone on the synthesis of surfactant lipids is at least partially exerted via oxidation of the sulfhydryl groups of glycerolphosphate acyltransferase

  16. Paraquat-induced injury of type II alveolar cells. An in vitro model of oxidant injury

    International Nuclear Information System (INIS)

    Paraquat, a widely used herbicide, causes severe, often fatal lung damage. In vivo studies suggest the alveolar epithelial cells (types I and II) are specific targets of paraquat toxicity. This study used 51Cr-labeled type II cells to demonstrate that paraquat (10-5 M) resulted in type II cell injury in vitro, independent of interacting immune effector agents. With 51Cr release expressed as the cytotoxic index (Cl), type II cell injury was found to accelerate with increasing paraquat concentrations (10(-5) M, 10(-4) M, and 10(-3) M, resulting in a Cl of 12.5 +/- 2.2, 22.8 +/- 1.8, and 35.1 +/- 1.9, respectively). Paraquat-induced cytotoxicity (10(-4) M, with a Cl of 22.8 +/- 1.8) was effectively reduced by catalase 1,100 U/ml (Cl 8.0 +/- 3.2, p less than 0.001), superoxide dismutase, 300 U/ml (Cl 17.4 +/- 1.7, p less than 0.05), alpha tocopherol, 10 micrograms/ml (Cl 17.8 +/- 1.6, p less than 0.05). Paraquat toxicity (10(-3) M) was potentiated in the presence of 95% O2 with an increase in Cl from 31.1 +/- 1.7 to 36.4 +/- 2.3 (p less than 0.05). Paraquat-induced type II cell injury was noted as early as 4 h incubation by electron microscopic evidence of swelling of mitochondrial cristae and dispersion of nuclear chromatin. Thus, this in vitro model indicates that paraquat-induced type II cell injury can be quantified, confirmed by morphologic ultrastructural changes, significantly reduced by antioxidants, and potentiated by hyperoxia

  17. Alveolar type II cells possess the capability of initiating lung tumor development.

    Directory of Open Access Journals (Sweden)

    Chuwen Lin

    Full Text Available Identifying cells of tumor origin is a fundamental question in tumor biology. Answers to this central question will not only advance our understanding of tumor initiation and progression but also have important therapeutic implications. In this study, we aimed to uncover the cells of origin of lung adenocarcinoma, a major subtype of non-small cell lung cancer. To this end, we developed new mouse models of lung adenocarcinoma that enabled selective manipulation of gene activity in surfactant associated protein C (SPC-expressing cells, including alveolar type II cells and bronchioalveolar stem cells (BASCs that reside at the bronchioalveolar duct junction (BADJ. Our findings showed that activation of oncogenic Kras alone or in combination with the removal of the tumor suppressor p53 in SPC⁺ cells resulted in development of alveolar tumors. Similarly, sustained EGF signaling in SPC⁺ cells led to alveolar tumors. By contrast, BASCs failed to proliferate or produce tumors under these conditions. Importantly, in a mouse strain in which Kras/p53 activity was selectively altered in type II cells but not BASCs, alveolar tumors developed while BADJs retained normal architecture. These results confirm and extend previous findings and support a model in which lung adenocarcinoma can initiate in alveolar type II cells. Our results establish the foundation for elucidating the molecular mechanisms by which lung cancer initiates and progresses in a specific lung cell type.

  18. Collagen Type II Enhances Chondrogenesis in Adipose Tissue-Derived Stem Cells by Affecting Cell Shape

    NARCIS (Netherlands)

    Lu, ZuFu; Doulabi, Behrouz Zandieh; Huang, ChunLing; Bank, Ruud A.; Helder, Marco N.

    2010-01-01

    Ideally, biomaterials have inductive properties, favoring specific lineage differentiation. For chondrogenic induction, these properties have been attributed to collagen type II. However, the underlying mechanisms are largely unknown. This study aimed to investigate whether collagen type II favors c

  19. Collagen type II enhances chondrogenesis in adipose tissue-derived stem cells by affecting cell shape

    NARCIS (Netherlands)

    Z. Lu; B.Z. Doulabi; C. Huang; R.A. Bank; M.N. Helder

    2010-01-01

    Ideally, biomaterials have inductive properties, favoring specific lineage differentiation. For chondrogenic induction, these properties have been attributed to collagen type II. However, the underlying mechanisms are largely unknown. This study aimed to investigate whether collagen type II favors c

  20. Secretion of mucus proteinase inhibitor and elafin by Clara cell and type II pneumocyte cell lines.

    Science.gov (United States)

    Sallenave, J M; Silva, A; Marsden, M E; Ryle, A P

    1993-02-01

    The regulation of proteinases secreted by neutrophils is very important for the prevention of tissue injury. We recently described the isolation of elafin from bronchial secretions, a new elastase-specific inhibitor that is also found in the skin of patients with psoriasis. In this study, we investigated the secretion of elafin and mucus proteinase inhibitor (MPI), another inhibitor showing sequence similarity with elafin, in two lung carcinoma cell lines, NCI-H322 and A549, which have features of Clara cells and type II alveolar cells, respectively. The results presented show that the two inhibitors are produced when the cells are cultured either in serum-free or in serum-containing media. MPI was detected immunologically as a unique molecule of M(r) 14 kD, in accordance with previous studies. Conversely, one or two elafin-immunoreactive species were detected depending on the cell line: a 12- to 14-kD species was observed in the A549 cell line, regardless of the culture conditions, whereas in the NCI-H322 cell line we detected a 6-kD species in serum-containing (10% fetal calf serum) conditions and a 12- to 14-kD species in serum-free conditions. The 12- to 14-kD molecule probably represents an active precursor of elafin. Whether the cleavage of the 12- to 14-kD precursor giving rise to the elafin molecule is of any physiologic significance is not known. In showing for the first time that MPI and elafin (and its precursor) are secreted by the A549 cell line, this report implicates the type II alveolar cell in the defense of the peripheral lung against the neutrophil elastase secreted during inflammation. PMID:8427705

  1. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells.

    Science.gov (United States)

    Wang, Dachun; Haviland, David L; Burns, Alan R; Zsigmond, Eva; Wetsel, Rick A

    2007-03-13

    Alveolar epithelial type II (ATII) cells are small, cuboidal cells that constitute approximately 60% of the pulmonary alveolar epithelium. These cells are crucial for repair of the injured alveolus by differentiating into alveolar epithelial type I cells. ATII cells derived from human ES (hES) cells are a promising source of cells that could be used therapeutically to treat distal lung diseases. We have developed a reliable transfection and culture procedure, which facilitates, via genetic selection, the differentiation of hES cells into an essentially pure (>99%) population of ATII cells (hES-ATII). Purity, as well as biological features and morphological characteristics of normal ATII cells, was demonstrated for the hES-ATII cells, including lamellar body formation, expression of surfactant proteins A, B, and C, alpha-1-antitrypsin, and the cystic fibrosis transmembrane conductance receptor, as well as the synthesis and secretion of complement proteins C3 and C5. Collectively, these data document the successful generation of a pure population of ATII cells derived from hES cells, providing a practical source of ATII cells to explore in disease models their potential in the regeneration and repair of the injured alveolus and in the therapeutic treatment of genetic diseases affecting the lung. PMID:17360544

  2. Variable stretch pattern enhances surfactant secretion in alveolar type II cells in culture

    OpenAIRE

    Arold, Stephen P.; Bartolák-Suki, Erzsébet; Suki, Béla

    2009-01-01

    Secretion of pulmonary surfactant that maintains low surface tension within the lung is primarily mediated by mechanical stretching of alveolar epithelial type II (AEII) cells. We have shown that guinea pigs ventilated with random variations in frequency and tidal volume had significantly larger pools of surfactant in the lung than animals ventilated in a monotonous manner. Here, we test the hypothesis that variable stretch patterns imparted on the AEII cells results in enhanced surfactant se...

  3. Dichloroacetate Decreases Cell Health and Activates Oxidative Stress Defense Pathways in Rat Alveolar Type II Pneumocytes

    Directory of Open Access Journals (Sweden)

    Alexis Valauri-Orton

    2015-01-01

    Full Text Available Dichloroacetate (DCA is a water purification byproduct that is known to be hepatotoxic and hepatocarcinogenic and to induce peripheral neuropathy and damage macrophages. This study characterizes the effects of the haloacetate on lung cells by exposing rat alveolar type II (L2 cells to 0–24 mM DCA for 6–24 hours. Increasing DCA concentration and the combination of increasing DCA concentration plus longer exposures decrease measures of cellular health. Length of exposure has no effect on oxidative stress biomarkers, glutathione, SOD, or CAT. Increasing DCA concentration alone does not affect total glutathione or its redox ratio but does increase activity in the SOD/CAT oxidative stress defense pathway. These data suggest that alveolar type II cells rely on SOD and CAT more than glutathione to combat DCA-induced stress.

  4. Secretory activity and cell cycle alteration of alveolar type II cells in the early and late phase after irradiation

    International Nuclear Information System (INIS)

    Purpose: Type II cells and the surfactant system have been proposed to play a central role in pathogenesis of radiation pneumonitis. We analyzed the secretory function and proliferation parameters of alveolar type II cells in the early (until 24 h) and late phase (1-5 weeks) after irradiation (RT) in vitro and in vivo. Methods and Materials: Type II cells were isolated from rats according to the method of Dobbs. Stimulation of secretion was induced with terbutaline, adenosine triphosphate (ATP), and 12-O-tetradecanoylphorbol-13-acetate (TPA) for a 2-h period. Determination of secretion was performed using 3H-labeled phosphatidylcholine. For the early-phase analysis, freshly isolated and adherent type II cells were irradiated in vitro with 9-21 Gy (stepwise increase of 3 Gy). Secretion stimulation was initiated 1, 6, 24, and 48 h after RT. For late-phase analysis, type II cells were isolated 1-5 weeks after 18 Gy whole lung or sham RT. Each experiment was repeated at least fivefold. Flow cytometry was used to determine cell cycle distribution and proliferating cell nuclear antigen index. Results: During the early-phase (in vitro) analysis, we found a normal stimulation of surfactant secretion in irradiated, as well as unirradiated, cells. No change in basal secretion and no dose effect were seen. During the late phase, 1-5 weeks after whole lung RT, we observed enhanced secretory activity for all secretagogues and a small increase in basal secretion in Weeks 3 and 4 (pneumonitis phase) compared with controls. The total number of isolated type II cells, as well as the rate of viable cells, decreased after the second post-RT week. Cell cycle alterations suggesting an irreversible G2/M block occurred in the second post-RT week and did not resolve during the observation period. The proliferating cell nuclear antigen index of type II cells from irradiated rats did not differ from that of controls. Conclusion: In contrast to literature data, we observed no direct effect

  5. Targeted Injury of Type II Alveolar Epithelial Cells Induces Pulmonary Fibrosis

    OpenAIRE

    Sisson, Thomas H.; Mendez, Michael; Choi, Karen; Subbotina, Natalya; Courey, Anthony; Cunningham, Andrew; Dave, Aditi; Engelhardt, John F.; Liu, Xiaoming; White, Eric S.; Thannickal, Victor J.; Bethany B Moore; Christensen, Paul J; Simon, Richard H

    2009-01-01

    Rationale: Ineffective repair of a damaged alveolar epithelium has been postulated to cause pulmonary fibrosis. In support of this theory, epithelial cell abnormalities, including hyperplasia, apoptosis, and persistent denudation of the alveolar basement membrane, are found in the lungs of humans with idiopathic pulmonary fibrosis and in animal models of fibrotic lung disease. Furthermore, mutations in genes that affect regenerative capacity or that cause injury/apoptosis of type II alveolar ...

  6. Vacuolar ATPase Regulates Surfactant Secretion in Rat Alveolar Type II Cells by Modulating Lamellar Body Calcium

    OpenAIRE

    Chintagari, Narendranath Reddy; Mishra, Amarjit; Su, Lijing; Wang, Yang; Ayalew, Sahlu; Hartson, Steven D; Liu, Lin

    2010-01-01

    Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase) is the enzyme responsible for pumping H+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase) dominated the alveol...

  7. Identification and characterization of a lysophosphatidylcholine acyltransferase in alveolar type II cells

    OpenAIRE

    Chen, Xueni; Hyatt, Brian A.; Mucenski, Michael L; Mason, Robert J; Shannon, John M.

    2006-01-01

    Pulmonary surfactant is a complex of lipids and proteins produced and secreted by alveolar type II cells that provides the low surface tension at the air–liquid interface. The phospholipid most responsible for providing the low surface tension in the lung is dipalmitoylphosphatidylcholine. Dipalmitoylphosphatidylcholine is synthesized in large part by phosphatidylcholine (PC) remodeling, and a lysophosphatidylcholine (lysoPC) acyltransferase is thought to play a critical role in its synthesis...

  8. Glycogen accumulation in alveolar type II cells in 3-methylindole--induced pulmonary edema in goats.

    OpenAIRE

    Atwal, O. S.; Bray, T. M.

    1981-01-01

    The present study shows that intravenous infusion of 3-methylindole (3MI) induced acute pulmonary edema in goats. Edematous changes were seen in the alveoli and the interalveolar interstitium. At 72 hours after treatment, an accumulation of glycogen that had a pathognomonic appearance of alpha particles was observed in the alveolar Type II cells. A rich accumulation of glycogen particles and defective lamellar bodies containing triglycerides were the significant morphologic changes in the alv...

  9. Effect of inhaled 239PuO2 on alveolar Type II cells

    International Nuclear Information System (INIS)

    Morphological changes of rat alveolar type II (AT-II) cells were studied at 8 and 10 months following inhalation of 239PuO2 to elucidate the biological role of AT-II cells in the induction of lung tumours. TEM micrographs of random sections of lung were analysed qualitatively and quantitatively using an automatic image analyser. Eighteen morphometric parameters were obtained according to stereological principles. The results showed that, following the inhalation of 239PuO2, AT-II cells became less differentiated and the metabolism of the pulmonary surfactant in AT-II cells was disturbed. (author)

  10. Effect of inhaled 239PuO2 on alveolar type II cells

    International Nuclear Information System (INIS)

    Morphological changes of rat alveolar type II (AT-II) cells were studied at 8 and 10 months following inhalation of 239PuO2 to elucidate the biological role of At-II cells in the induction of lung tumours. TEM micrographs of random sections of lung were analysed qualitatively and quantitatively using an automatic image analyser. Eighteen morphometric parameters were obtained according to stereo logical principles. The results showed that, following the inhalation of 239PuO2, AT-II cells became less differentiated and the metabolism of the pulmonary surfactant in AT-II cells was disturbed

  11. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells.

    Science.gov (United States)

    Majumdar, Arnab; Arold, Stephen P; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Suki, Béla

    2012-03-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes. PMID:22033531

  12. Establishment and evaluation of a stable cattle type II alveolar epithelial cell line.

    Directory of Open Access Journals (Sweden)

    Feng Su

    Full Text Available Macrophages and dendritic cells are recognized as key players in the defense against mycobacterial infection. Recent research has confirmed that alveolar epithelial cells (AECs also play important roles against mycobacterium infections. Thus, establishing a stable cattle AEC line for future endogenous immune research on bacterial invasion is necessary. In the present study, we first purified and immortalized type II AECs (AEC II cells by transfecting them with a plasmid containing the human telomerase reverse trancriptase gene. We then tested whether or not the immortalized cells retained the basic physiological properties of primary AECs by reverse-transcription polymerase chain reaction and Western blot. Finally, we tested the secretion capacity of immortalized AEC II cells upon stimulation by bacterial invasion. The cattle type II alveolar epithelial cell line (HTERT-AEC II that we established retained lung epithelial cell characteristics: the cells were positive for surfactants A and B, and they secreted tumor necrosis factor-α and interleukin-6 in response to bacterial invasion. Thus, the cell line we established is a potential tool for research on the relationship between AECs and Mycobacterium tuberculosis.

  13. Alveolar type II cells express a high-affinity receptor for pulmonary surfactant protein A

    International Nuclear Information System (INIS)

    Primary cultures of rat alveolar type II cells bind radiolabeled pulmonary surfactant protein A (SP-A) with high affinity. The binding of 125I-labeled SP-A is time- and temperature-dependent and is not accompanied by significant degradation. The binding process is saturable at low concentrations of SP-A, and unlabeled SP-A readily competes with labeled SP-A for cellular binding sites. Subsequent to binding, two pools of cell-associated 125I-labeled SP-A can be identified based upon sensitivity to trypsin at 0 degree C. It is likely that the trypsin-sensitive pool comprises 125I-labeled SP-A bound to the cell surface and the trypsin-insensitive pool comprises the internalized protein. Scatchard analysis of cell surface binding of SP-A at 0.1-10 μg/ml shows positive cooperativity at concentrations between 0.1 and 1 μg/ml. Hill plots give nH = 1.34 ± 0.08 with an apparent dissociation constant K'd = 1.02 ± 0.32 μg/ml. The binding of SP-A to type II cells shows an absolute requirement for Ca2+. The putative receptor for SP-A is unaffected by treatment of type II cells with a variety of proteases and N-Glycanase. Alveolar macrophages also exhibit high-affinity binding of SP-A, but rat lung fibroblasts and the alveolar epithelial cell line L2 exhibit only nonspecific binding

  14. Effect of exogenous surfactants on viability and DNA synthesis in A549, immortalized mouse type II and isolated rat alveolar type II cells

    Directory of Open Access Journals (Sweden)

    Haller Thomas

    2011-02-01

    Full Text Available Abstract Background In mechanically ventilated preterm infants with respiratory distress syndrome (RDS, exogenous surfactant application has been demonstrated both to decrease DNA-synthesis but also and paradoxically to increase epithelial cell proliferation. However, the effect of exogenous surfactant has not been studied directly on alveolar type II cells (ATII cells, a key cell type responsible for alveolar function and repair. Objective The aim of this study was to investigate the effects of two commercially available surfactant preparations on ATII cell viability and DNA synthesis. Methods Curosurf® and Alveofact® were applied to two ATII cell lines (human A549 and mouse iMATII cells and to primary rat ATII cells for periods of up to 24 h. Cell viability was measured using the redox indicator resazurin and DNA synthesis was measured using BrdU incorporation. Results Curosurf® resulted in slightly decreased cell viability in all cell culture models. However, DNA synthesis was increased in A549 and rat ATII cells but decreased in iMATII cells. Alveofact® exhibited the opposite effects on A549 cells and had very mild effects on the other two cell models. Conclusion This study showed that commercially available exogenous surfactants used to treat preterm infants with RDS can have profound effects on cell viability and DNA synthesis.

  15. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Directory of Open Access Journals (Sweden)

    Narendranath Reddy Chintagari

    Full Text Available Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase is the enzyme responsible for pumping H(+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1, an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+ chelator, BAPTA-AM, the protein kinase C (PKC inhibitor, staurosporine, and the Ca(2+/calmodulin-dependent protein kinase II (CaMKII, KN-62. Baf A1 induced Ca(2+ release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+ pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+ mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion.

  16. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Science.gov (United States)

    Chintagari, Narendranath Reddy; Mishra, Amarjit; Su, Lijing; Wang, Yang; Ayalew, Sahlu; Hartson, Steven D; Liu, Lin

    2010-01-01

    Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase) is the enzyme responsible for pumping H(+) into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase) dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1), an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+) chelator, BAPTA-AM, the protein kinase C (PKC) inhibitor, staurosporine, and the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), KN-62. Baf A1 induced Ca(2+) release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+) pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+) mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion. PMID:20169059

  17. Reutilization of surfactant phosphatidylcholine by isolated adult rat type II cells in culture

    International Nuclear Information System (INIS)

    The reutilization of surfactant phospholipids by the mammalian lung has been demonstrated in vivo by other laboratories. The authors have reported the uptake of native surfactant labeled with radioisotopes or fluorescent fatty acids previously. This work has been extended to determine if surfactant lipids are utilized intact or metabolized and resynthesized. Adult rat type II cells were prepared by trypsin treatment and purified by albumin gradient centrifugation and differential adherence. After 22 hrs in culture the cells were incubated in serum-free medium containing 3% bovine serum albumin, rat lung surfactant (20 μM phosphatidylcholine), 1,2[1-14C]dipalmitoyl phosphatidylcholine and [3H-methyl-choline]dipalmitoyl phosphatidylcholine. After a 90 min incubation the cells were scraped from the culture dishes, disrupted by homogenization and lamellar bodies isolated from other cellular fractions. The ratio of the labeled lipids in the medium was compared to that in the lamellar body fractions and in the combined residual fractions. These experiments showed that the ratio of the lamellar body label to the medium label is 0.87 and that for the combined residual fractions the ratio is 1.05 suggesting that the phosphatidylcholine is taken up and reutilized as an intact molecule by the type II cells

  18. STAT3 Regulates ABCA3 Expression and Influences Lamellar Body Formation in Alveolar Type II Cells

    OpenAIRE

    Matsuzaki, Yohei; Besnard, Valérie; Clark, Jean C.; Xu, Yan; Wert, Susan E.; Ikegami, Machiko; Whitsett, Jeffrey A.

    2007-01-01

    ATP-Binding Cassette A3 (ABCA3) is a lamellar body associated lipid transport protein required for normal synthesis and storage of pulmonary surfactant in type II cells in the alveoli. In this study, we demonstrate that STAT3, activated by IL-6, regulates ABCA3 expression in vivo and in vitro. ABCA3 mRNA and immunostaining were decreased in adult mouse lungs in which STAT3 was deleted from the respiratory epithelium (Stat3Δ/Δ mice). Consistent with the role of STAT3, intratracheal IL-6 induce...

  19. Radiation induced secretion of surfactant from cell cultures of type II pneumocytes: an in vitro model of radiation toxicity

    International Nuclear Information System (INIS)

    The pathogenesis of pneumonitis and fibrosis secondary to lung irradiation is incompletely understood. The role of the type II alveolar epithelial pneumocyte in these processes has been under investigation. The type II pneumocyte has been shown in vivo to respond to radiation induced injury with release of pulmonary surfactant. The effect of irradiation on cell cultures of type II pneumocytes was studied to determine if this could be reproduced in vitro. Type II pneumocytes were found to release surfactant material with a threshold of radiation dose between 1000 and 1500 rad. This is similar to the dosage range over which the same effect has been demonstrated in vivo. Experimental results support the concept that the release of surfactant is not due to either cell disruption or non-specific release of phospholipid from cell membranes. Irradiation appears to trigger membrane receptor mediated surfactant release. In addition, irradiation abolishes the ability of cells to subsequently respond to a physiologic agonist, suggesting radiation induced damage to the secretory mechanism. These studies establish that surfactant release in response to irradiation in vivo is a direct effect on type II pneumocytes. Cell cultures of type II pneumocytes can serve as a laboratory model of lung cell radiation toxicity

  20. Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells

    Science.gov (United States)

    Sweeney, Sinbad; Theodorou, Ioannis G.; Zambianchi, Marta; Chen, Shu; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Shaffer, Milo S. P.; Ryan, Mary P.; Porter, Alexandra E.; Tetley, Teresa D.

    2015-06-01

    Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known. We investigated the cellular uptake and toxicity of silver nanowires (AgNWs; 70 nm diameter, 1.5 μm length) with human ATI-like cells (TT1), in the absence or presence of Curosurf® (a natural porcine pulmonary surfactant with a low amount of protein) or harvested primary human ATII cell secretions (HAS; containing both the complete lipid as well as the full protein complement of human pulmonary surfactant i.e. SP-A, SP-B, SP-C and SP-D). We hypothesised that Curosurf® or HAS would confer improved protection for TT1 cells, limiting the toxicity of AgNWs. In agreement with our hypothesis, HAS reduced the inflammatory and reactive oxygen species (ROS)-generating potential of AgNWs with exposed TT1 cells. For example, IL-8 release and ROS generation was reduced by 38% and 29%, respectively, resulting in similar levels to that of the non-treated controls. However in contrast to our hypothesis, Curosurf® had no effect. We found a significant reduction in AgNW uptake by TT1 cells in the presence of HAS but not Curosurf. Furthermore, we show that the SP-A and SP-D are likely to be involved in this process as they were found to be specifically bound to the AgNWs. While ATI cells appear to be protected by HAS, evidence suggested that ATII cells, despite no uptake, were vulnerable to AgNW exposure (indicated by increased IL-8 release and ROS generation and decreased intracellular SP-A levels one day post-exposure). This study provides unique findings that may be important for the study of lung epithelial-endothelial translocation of nanoparticles in general and associated toxicity within the alveolar unit.Inhaled nanoparticles have a high deposition rate in

  1. Linking progression of fibrotic lung remodeling and ultrastructural alterations of alveolar epithelial type II cells in the amiodarone mouse model.

    Science.gov (United States)

    Birkelbach, Bastian; Lutz, Dennis; Ruppert, Clemens; Henneke, Ingrid; Lopez-Rodriguez, Elena; Günther, Andreas; Ochs, Matthias; Mahavadi, Poornima; Knudsen, Lars

    2015-07-01

    Chronic injury of alveolar epithelial type II cells (AE2 cells) represents a key event in the development of lung fibrosis in animal models and in humans, such as idiopathic pulmonary fibrosis (IPF). Intratracheal delivery of amiodarone to mice results in a profound injury and macroautophagy-dependent apoptosis of AE2 cells. Increased autophagy manifested in AE2 cells by disturbances of the intracellular surfactant. Hence, we hypothesized that ultrastructural alterations of the intracellular surfactant pool are signs of epithelial stress correlating with the severity of fibrotic remodeling. With the use of design-based stereology, the amiodarone model of pulmonary fibrosis in mice was characterized at the light and ultrastructural level during progression. Mean volume of AE2 cells, volume of lamellar bodies per AE2 cell, and mean size of lamellar bodies were correlated to structural parameters reflecting severity of fibrosis like collagen content. Within 2 wk amiodarone leads to an increase in septal wall thickness and a decrease in alveolar numbers due to irreversible alveolar collapse associated with alveolar surfactant dysfunction. Progressive hypertrophy of AE2 cells and increase in mean individual size and total volume of lamellar bodies per AE2 cell were observed. A high positive correlation of these AE2 cell-related ultrastructural changes and the deposition of collagen fibrils within septal walls were established. Qualitatively, similar alterations could be found in IPF samples with mild to moderate fibrosis. We conclude that ultrastructural alterations of AE2 cells including the surfactant system are tightly correlated with the progression of fibrotic remodeling. PMID:25957292

  2. Isolation and characterization of alveolar epithelial type II cells derived from mouse embryonic stem cells.

    Science.gov (United States)

    Sun, Huanhuan; Quan, Yuan; Yan, Qing; Peng, Xinmiao; Mao, Zhengmei; Wetsel, Rick A; Wang, Dachun

    2014-06-01

    The use of embryonic stem cells (ESCs) to regenerate distal lung epithelia damaged by injuries or diseases requires development of safe and efficient methodologies that direct ESC differentiation into transplantable distal lung epithelial progenitors. Time-consuming culture procedure and low differentiation efficiency are major problems that are associated with conventional differentiation approaches via embryoid body formation. The use of a growth factor cocktail or a lung-specific cell-conditioned medium to enrich definitive endoderm for efficient differentiation of mouse ESCs (mESC) into alveolar epithelial progenitor type II cells (ATIICs) has been reported, but not yet successful for generating a homogenous population of ATIICs for tissue regeneration purpose, and it remains unclear whether or not those mESC-derived ATIICs possess normal biological functions. Here, we report a novel method using a genetically modified mESC line harboring an ATIIC-specific neomycin(R) transgene in Rosa 26 locus. We showed that ATIICs can be efficiently differentiated from mESCs as early as day 7 by culturing them directly on Matrigel-coated plates in DMEM containing 15% knockout serum replacement. With this culture condition, the genetically modified mESCs can be selectively differentiated into a homogenous population (>99%) of ATIICs. Importantly, the mESC-derived ATIICs (mESC-ATIICs) exhibited typical lamellar bodies and expressed surfactant protein A, B, and C as normal control ATIICs. When cultured with an air-liquid-interface culture system in Small Airway Epithelial Cell Growth Medium, the mESC-ATIICs can be induced to secrete surfactant proteins after being treated with dibutyryl cAMP+dexamethasone. These mESC-ATIICs can synthesize and secrete surfactant lipid in response to secretagogue, demonstrating active surfactant metabolism in mESC-ATIICs as that seen in normal control ATIICs. In addition, we demonstrated that the selected mESC-ATIICs can be maintained on Matrigel

  3. Overlapping, Additive and Counterregulatory Effects of Type II and I Interferons on Myeloid Dendritic Cell Functions

    Directory of Open Access Journals (Sweden)

    Loredana Frasca

    2011-01-01

    Full Text Available Dendritic cells (DCs are central player in immunity by bridging the innate and adaptive arms of the immune system (IS. Interferons (IFNs are one of the most important factors that regulate both innate and adaptive immunity too. Thus, the understanding of how type II and I IFNs modulate the immune-regulatory properties of DCs is a central issue in immunology. In this paper, we will address this point in the light of the most recent literature, also highlighting the controversial data reported in the field. According to the wide literature available, type II as well as type I IFNs appear, at the same time, to collaborate, to induce additive effects or overlapping functions, as well as to counterregulate each one's effects on DC biology and, in general, the immune response. The knowledge of these effects has important therapeutic implications in the treatment of infectious/autoimmune diseases and cancer and indicates strategies for using IFNs as vaccine adjuvants and in DC-based immune therapeutic approaches.

  4. Alveolar Type II Cells Escape Stress Failure Caused by Tonic Stretch through Transient Focal Adhesion Disassembly

    Directory of Open Access Journals (Sweden)

    Xiao-Yang Liu, Xiao-Fei Chen, Yan-Hong Ren, Qing-Yuan Zhan, Chen Wang, Chun Yang

    2011-01-01

    Full Text Available Mechanical ventilation-induced excessive stretch of alveoli is reported to induce cellular stress failure and subsequent lung injury, and is therefore an injurious factor to the lung. Avoiding cellular stress failure is crucial to ventilator-induced lung injury (VILI treatment. In the present study, primary rat alveolar type II (ATII cells were isolated to evaluate their viability and the mechanism of their survival under tonic stretch. By the annexin V/ PI staining and flow cytometry assay, we demonstrated that tonic stretch-induced cell death is an immediate injury of mechanical stress. In addition, immunofluorescence and immunoblots assay showed that the cells experienced an expansion-contraction-reexpansion process, accompanied by partial focal adhesion (FA disassembly during contraction. Manipulation of integrin adherent affinity by altering bivalent cation levels in the culture medium and applying an integrin neutralizing antibody showed that facilitated adhesion affinity promoted cell death under tonic stretch, while lower level of adhesion protected the cells from stretch-induced stress failure. Finally, a simplified numerical model was established to reveal that adequate disassembly of FAs reduced the forces transmitting throughout the cell. Taken together, these results indicate that ATII cells escape stress failure caused by tonic stretch via active cell morphological remodeling, during which cells transiently disassemble FAs to unload mechanical forces.

  5. Autophagy protects type II alveolar epithelial cells from Mycobacterium tuberculosis infection

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xu-Guang [Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Department of Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Ji, Tian-Xing [Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Xia, Yong, E-mail: gysyxy@gmail.com [Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Ma, Yue-Yun, E-mail: cmbmayy@fmmu.edu.cn [Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi' an (China)

    2013-03-08

    Highlights: ► We investigated the protective effect of autophagy pathway against MTB infection. ► MTB-infected A549 cells had higher LDH release. ► Inhibition of autophagy signaling significantly enhanced the MTB-induced necrosis. ► Autophagy prevents apoptosis and promotes cell survival in infected cells. -- Abstract: This study was designed to investigate the protective effect of the autophagy signaling pathway against Mycobacterium tuberculosis infection in type II alveolar epithelial cells. An in vitro M. tuberculosis system was established using human A549 cells. Infection-induced changes in the expression of the autophagic marker LC3 were assessed by reverse transcription-PCR and Western blotting. Morphological changes in autophagosomes were detected by transmission electron microscopy (TEM). The function of the autophagy signaling pathway during infection was assessed by measuring the level of cell death and the amount of lactate dehydrogenase (LDH) released in the presence or absence of the inhibitor 3-methyladenine (3-MA). In addition, effects on LDH release were assessed after the siRNA-mediated knockdown of the essential autophagosomal structural membrane protein Atg5. LC3 mRNA expression was significantly reduced in M.tuberculosis-infected A549 cells (16888.76 ± 1576.34 vs. uninfected: 12744.29 ± 1089.37; P < 0.05). TEM revealed M.tuberculosis bacilli-containing compartments that were surrounded by double membranes characteristic of the autophagic process. M.tuberculosis-infected A549 cells released more LDH (1.45 ± 0.12 vs. uninfected: 0.45 ± 0.04; P < 0.05). The inhibition of autophagy signaling significantly enhanced M.tuberculosis-induced necrosis (3-MA: 75 ± 5% vs. untreated: 15 ± 1%; P < 0.05) and LDH release (3-MA: 2.50 ± 0.24 vs. untreated: 0.45 ± 0.04; Atg5 knockdown: 3.19 ± 0.29 vs. untreated: 1.28 ± 0.11; P < 0.05). Our results indicate that autophagy signaling pathway prevents apoptosis in type II alveolar epithelial cells

  6. Autophagy protects type II alveolar epithelial cells from Mycobacterium tuberculosis infection

    International Nuclear Information System (INIS)

    Highlights: ► We investigated the protective effect of autophagy pathway against MTB infection. ► MTB-infected A549 cells had higher LDH release. ► Inhibition of autophagy signaling significantly enhanced the MTB-induced necrosis. ► Autophagy prevents apoptosis and promotes cell survival in infected cells. -- Abstract: This study was designed to investigate the protective effect of the autophagy signaling pathway against Mycobacterium tuberculosis infection in type II alveolar epithelial cells. An in vitro M. tuberculosis system was established using human A549 cells. Infection-induced changes in the expression of the autophagic marker LC3 were assessed by reverse transcription-PCR and Western blotting. Morphological changes in autophagosomes were detected by transmission electron microscopy (TEM). The function of the autophagy signaling pathway during infection was assessed by measuring the level of cell death and the amount of lactate dehydrogenase (LDH) released in the presence or absence of the inhibitor 3-methyladenine (3-MA). In addition, effects on LDH release were assessed after the siRNA-mediated knockdown of the essential autophagosomal structural membrane protein Atg5. LC3 mRNA expression was significantly reduced in M.tuberculosis-infected A549 cells (16888.76 ± 1576.34 vs. uninfected: 12744.29 ± 1089.37; P < 0.05). TEM revealed M.tuberculosis bacilli-containing compartments that were surrounded by double membranes characteristic of the autophagic process. M.tuberculosis-infected A549 cells released more LDH (1.45 ± 0.12 vs. uninfected: 0.45 ± 0.04; P < 0.05). The inhibition of autophagy signaling significantly enhanced M.tuberculosis-induced necrosis (3-MA: 75 ± 5% vs. untreated: 15 ± 1%; P < 0.05) and LDH release (3-MA: 2.50 ± 0.24 vs. untreated: 0.45 ± 0.04; Atg5 knockdown: 3.19 ± 0.29 vs. untreated: 1.28 ± 0.11; P < 0.05). Our results indicate that autophagy signaling pathway prevents apoptosis in type II alveolar epithelial cells

  7. Conditional deletion of Abca3 in alveolar type II cells alters surfactant homeostasis in newborn and adult mice

    OpenAIRE

    Besnard, Valérie; Matsuzaki, Yohei; Clark, Jean; Xu, Yan; Wert, Susan E.; Ikegami, Machiko; Stahlman, Mildred T.; Weaver, Timothy E.; Hunt, Alan N.; Postle, Anthony D.; Whitsett, Jeffrey A.

    2010-01-01

    ATP-binding cassette A3 (ABCA3) is a lipid transport protein required for synthesis and storage of pulmonary surfactant in type II cells in the alveoli. Abca3 was conditionally deleted in respiratory epithelial cells (Abca3Δ/Δ) in vivo. The majority of mice in which Abca3 was deleted in alveolar type II cells died shortly after birth from respiratory distress related to surfactant deficiency. Approximately 30% of the Abca3Δ/Δ mice survived after birth. Surviving Abca3Δ/Δ mice developed emphys...

  8. Overexpression of inosine 5'-monophosphate dehydrogenase type II mediates chemoresistance to human osteosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Jörg Fellenberg

    Full Text Available BACKGROUND: Chemoresistance is the principal reason for poor survival and disease recurrence in osteosarcoma patients. Inosine 5'-monophosphate dehydrogenase type II (IMPDH2 encodes the rate-limiting enzyme in the de novo guanine nucleotide biosynthesis and has been linked to cell growth, differentiation, and malignant transformation. In a previous study we identified IMPDH2 as an independent prognostic factor and observed frequent IMPDH2 overexpression in osteosarcoma patients with poor response to chemotherapy. The aim of this study was to provide evidence for direct involvement of IMPDH2 in the development of chemoresistance. METHODOLOGY/PRINCIPAL FINDINGS: Stable cell lines overexpressing IMPDH2 and IMPDH2 knock-down cells were generated using the osteosarcoma cell line Saos-2 as parental cell line. Chemosensitivity, proliferation, and the expression of apoptosis-related proteins were analyzed by flow cytometry, WST-1-assay, and western blot analysis. Overexpression of IMPDH2 in Saos-2 cells induced strong chemoresistance against cisplatin and methotrexate. The observed chemoresistance was mediated at least in part by increased expression of the anti-apoptotic proteins Bcl-2, Mcl-1, and XIAP, reduced activation of caspase-9, and, consequently, reduced cleavage of the caspase substrate PARP. Pharmacological inhibition of IMPDH induced a moderate reduction of cell viability and a strong decrease of cell proliferation, but no increase in chemosensitivity. However, chemoresistant IMPDH2-overexpressing cells could be resensitized by RNA interference-mediated downregulation of IMPDH2. CONCLUSIONS: IMPDH2 is directly involved in the development of chemoresistance in osteosarcoma cells, suggesting that targeting of IMPDH2 by RNAi or more effective pharmacological inhibitors in combination with chemotherapy might be a promising means of overcoming chemoresistance in osteosarcomas with high IMPDH2 expression.

  9. Stem cell-like gene expression in ovarian cancer predicts type II subtype and prognosis.

    Directory of Open Access Journals (Sweden)

    Matthew Schwede

    Full Text Available Although ovarian cancer is often initially chemotherapy-sensitive, the vast majority of tumors eventually relapse and patients die of increasingly aggressive disease. Cancer stem cells are believed to have properties that allow them to survive therapy and may drive recurrent tumor growth. Cancer stem cells or cancer-initiating cells are a rare cell population and difficult to isolate experimentally. Genes that are expressed by stem cells may characterize a subset of less differentiated tumors and aid in prognostic classification of ovarian cancer. The purpose of this study was the genomic identification and characterization of a subtype of ovarian cancer that has stem cell-like gene expression. Using human and mouse gene signatures of embryonic, adult, or cancer stem cells, we performed an unsupervised bipartition class discovery on expression profiles from 145 serous ovarian tumors to identify a stem-like and more differentiated subgroup. Subtypes were reproducible and were further characterized in four independent, heterogeneous ovarian cancer datasets. We identified a stem-like subtype characterized by a 51-gene signature, which is significantly enriched in tumors with properties of Type II ovarian cancer; high grade, serous tumors, and poor survival. Conversely, the differentiated tumors share properties with Type I, including lower grade and mixed histological subtypes. The stem cell-like signature was prognostic within high-stage serous ovarian cancer, classifying a small subset of high-stage tumors with better prognosis, in the differentiated subtype. In multivariate models that adjusted for common clinical factors (including grade, stage, age, the subtype classification was still a significant predictor of relapse. The prognostic stem-like gene signature yields new insights into prognostic differences in ovarian cancer, provides a genomic context for defining Type I/II subtypes, and potential gene targets which following further

  10. Carrier extraction behaviour in type II GaSb/GaAs quantum ring solar cells

    International Nuclear Information System (INIS)

    The introduction of quantum dot (QD) or quantum ring (QR) nanostructures into GaAs single-junction solar cells has shown enhanced photo-response above the GaAs absorption edge, because of sub-bandgap photon absorption. However, to further improve solar cell performance a better understanding of the mechanisms of photogenerated carrier extraction from QDs and QRs is needed. In this work we have used a direct excitation technique to study type II GaSb/GaAs quantum ring solar cells using a 1064 nm infrared laser, which enables us to excite electron–hole pairs directly within the GaSb QRs without exciting the GaAs host material. Temperature and laser intensity dependence of the current–voltage characteristics revealed that the thermionic emission process produced the dominant contribution to the photocurrent and accounts for 98.9% of total photocurrent at 0 V and 300 K. Although the tunnelling process gives only a low contribution to the photocurrent, an enhancement of the tunnelling current was clearly observed when an external electric field was applied. (paper)

  11. Hypoxia-inducible factor regulates expression of surfactant protein in alveolar type II cells in vitro.

    Science.gov (United States)

    Ito, Yoko; Ahmad, Aftab; Kewley, Emily; Mason, Robert J

    2011-11-01

    Alveolar type II (ATII) cells cultured at an air-liquid (A/L) interface maintain differentiation, but they lose these properties when they are submerged. Others showed that an oxygen tension gradient develops in the culture medium as ATII cells consume oxygen. Therefore, we wondered whether hypoxia inducible factor (HIF) signaling could explain differences in the phenotypes of ATII cells cultured under A/L interface or submerged conditions. ATII cells were isolated from male Sprague-Dawley rats and cultured on inserts coated with a mixture of rat-tail collagen and Matrigel, in medium including 5% rat serum and 10 ng/ml keratinocyte growth factor, with their apical surfaces either exposed to air or submerged. The A/L interface condition maintained the expression of surfactant proteins, whereas that expression was down-regulated under the submerged condition, and the effect was rapid and reversible. Under submerged conditions, there was an increase in HIF1α and HIF2α in nuclear extracts, mRNA levels of HIF inducible genes, vascular endothelial growth factor, glucose transporter-1 (GLUT1), and the protein level of pyruvate dehydrogenase kinase isozyme-1. The expression of surfactant proteins was suppressed and GLUT1 mRNA levels were induced when cells were cultured with 1 mM dimethyloxalyl glycine. The expression of surfactant proteins was restored under submerged conditions with supplemented 60% oxygen. HIF signaling and oxygen tension at the surface of cells appears to be important in regulating the phenotype of rat ATII cells. PMID:21454802

  12. MT1-MMP and type II collagen specify skeletal stem cells and their bone and cartilage progeny

    DEFF Research Database (Denmark)

    Szabova, L.; Yamada, S.S.; Wimer, H.;

    2009-01-01

    Skeletal formation is dependent on timely recruitment of skeletal stem cells and their ensuing synthesis and remodeling of the major fibrillar collagens, type I collagen and type II collagen, in bone and cartilage tissues during development and postnatal growth. Loss of the major collagenolytic...... activity associated with the membrane-type 1 matrix metalloproteinase (MT1-MMP) results in disrupted skeletal development and growth in both cartilage and bone, where MT1-MMP is required for pericellular collagen dissolution. We show here that reconstitution of MT1-MMP activity in the type II collagen......-expressing cells of the skeleton rescues not only diminished chondrocyte proliferation, but surprisingly, also results in amelioration of the severe skeletal dysplasia associated with MT1-MMP deficiency through enhanced bone formation. Consistent with this increased bone formation, type II collagen was identified...

  13. Effect of recombinant IL-10 on cultured fetal rat alveolar type II cells exposed to 65%-hyperoxia

    Directory of Open Access Journals (Sweden)

    Lee Hyeon-Soo

    2011-05-01

    Full Text Available Abstract Background Hyperoxia plays an important role in the genesis of lung injury in preterm infants. Although alveolar type II cells are the main target of hyperoxic lung injury, the exact mechanisms whereby hyperoxia on fetal alveolar type II cells contributes to the genesis of lung injury are not fully defined, and there have been no specific measures for protection of fetal alveolar type II cells. Objective The aim of this study was to investigate (a cell death response and inflammatory response in fetal alveolar type II cells in the transitional period from canalicular to saccular stages during 65%-hyperoxia and (b whether the injurious stimulus is promoted by creating an imbalance between pro- and anti-inflammatory cytokines and (c whether treatment with an anti-inflammatory cytokine may be effective for protection of fetal alveolar type II cells from injury secondary to 65%-hyperoxia. Methods Fetal alveolar type II cells were isolated on embryonic day 19 and exposed to 65%-oxygen for 24 h and 36 h. Cells in room air were used as controls. Cellular necrosis was assessed by lactate dehydrogenase-release and flow cytometry, and apoptosis was analyzed by TUNEL assay and flow cytometry, and cell proliferation was studied by BrdU incorporation. Release of cytokines including VEGF was analyzed by ELISA, and their gene expressions were investigated by qRT-PCR. Results 65%-hyperoxia increased cellular necrosis, whereas it decreased cell proliferation in a time-dependent manner compared to controls. 65%-hyperoxia stimulated IL-8-release in a time-dependent fashion, whereas the anti-inflammatory cytokine, IL-10, showed an opposite response. 65%-hyperoxia induced a significant decrease of VEGF-release compared to controls, and similar findings were observed on IL-8/IL-10/VEGF genes expression. Preincubation of recombinant IL-10 prior to 65%-hyperoxia decreased cellular necrosis and IL-8-release, and increased VEGF-release and cell proliferation

  14. Interactions of Francisella tularensis with Alveolar Type II Epithelial Cells and the Murine Respiratory Epithelium.

    Directory of Open Access Journals (Sweden)

    Matthew Faron

    Full Text Available Francisella tularensis is classified as a Tier 1 select agent by the CDC due to its low infectious dose and the possibility that the organism can be used as a bioweapon. The low dose of infection suggests that Francisella is unusually efficient at evading host defenses. Although ~50 cfu are necessary to cause human respiratory infection, the early interactions of virulent Francisella with the lung environment are not well understood. To provide additional insights into these interactions during early Francisella infection of mice, we performed TEM analysis on mouse lungs infected with F. tularensis strains Schu S4, LVS and the O-antigen mutant Schu S4 waaY::TrgTn. For all three strains, the majority of the bacteria that we could detect were observed within alveolar type II epithelial cells at 16 hours post infection. Although there were no detectable differences in the amount of bacteria within an infected cell between the three strains, there was a significant increase in the amount of cellular debris observed in the air spaces of the lungs in the Schu S4 waaY::TrgTn mutant compared to either the Schu S4 or LVS strain. We also studied the interactions of Francisella strains with human AT-II cells in vitro by characterizing the ability of these three strains to invade and replicate within these cells. Gentamicin assay and confocal microscopy both confirmed that F. tularensis Schu S4 replicated robustly within these cells while F. tularensis LVS displayed significantly lower levels of growth over 24 hours, although the strain was able to enter these cells at about the same level as Schu S4 (1 organism per cell, as determined by confocal imaging. The Schu S4 waaY::TrgTn mutant that we have previously described as attenuated for growth in macrophages and mouse virulence displayed interesting properties as well. This mutant induced significant airway inflammation (cell debris and had an attenuated growth phenotype in the human AT-II cells. These

  15. In vivo autoradiographic demonstration of β-adrenergic binding sites in adult rat type II alveolar epithelial cells

    International Nuclear Information System (INIS)

    Adult male rats were injected intravenously with the muscarinic binding probe 3H-Quinuclidinyl benzilate (QNB) or the β-adrenergic probe 3H-dihydroalprenolol (DHA). Other rats were pre-treated with an intraperitoneal injection of a 500-fold excess of L-isoproterenol prior to the DHA. Light microscopic autoradiography of 0.5 μm sections of lung from the QNB group demonstrated very little labelling even after 6 months of exposure. In constrast, trachealis smooth muscle from these animals contained substantial labelling. Autoradiographs of lung from rats injected with DHA demonstrated labelling which was well localized over alveolar septa and concentrated over the cytoplasm of type II cells. Quantitative analysis of labelling in the DHA groups indicated a significant reduction of labelling in animals treated with L-isoproterenol prior to DHA, in both the alveolar parenchyma in general and over type II cells. The results of this study provide morphologic evidence for the uptake and specific binding of β-adrenergic antagonists by the adult lung in vivo, while failing to demonstrate similar binding of a muscarinic probe. In addition, the results demonstrate specific β-adrenergic receptors on type II cells in vivo and substantiate the view of a direct effect of β-adrenergic agonists on alveolar type II cells

  16. Glycosylation of type II collagen is of major importance for T cell tolerance and pathology in collagen-induced arthritis

    DEFF Research Database (Denmark)

    Bäcklund, Johan; Treschow, Alexandra; Bockermann, Robert;

    2002-01-01

    Type II collagen (CII) is a candidate cartilage-specific autoantigen, which can become post-translationally modified by hydroxylation and glycosylation. T cell recognition of CII is essential for the development of murine collagen-induced arthritis (CIA) and also occurs in rheumatoid arthritis (RA...

  17. MT1-MMP and type II collagen specify skeletal stem cells and their bone and cartilage progeny

    DEFF Research Database (Denmark)

    Szabova, Ludmila; Yamada, Susan S; Wimer, Helen;

    2009-01-01

    Skeletal formation is dependent on timely recruitment of skeletal stem cells and their ensuing synthesis and remodeling of the major fibrillar collagens, type I collagen and type II collagen, in bone and cartilage tissues during development and postnatal growth. Loss of the major collagenolytic a...

  18. Protein kinase C stimulation of phospholipid synthesis in a type II pneumocyte derived cell line

    International Nuclear Information System (INIS)

    In the Type II pneumocyte-derived cell line, A549, addition of 50 nM 12-O-tetradecanoyl phorbol-13-acetate (TPA) and phorbol-12, 13-dibutyrate more than doubled the rate of de novo synthesis of phophatidylcholine (PC). A similar increase was observed with the addition of the exogenous diacylglycerol, 1-oleoyl-2-acetylglycerol. These results suggest a role for the activation of protein kinase C(PKC) in the stimulation of PC biosynthesis. The modulation of CTP:phosphocholine cytidyltransferase activity was examined as the locus for TPA mediated effects. Pulse chase experiments showed TPA caused a significant increase in the rate of utilization of phosphocholine. The observed effect of TPA on CT activity may be due to its nonspecific promotion of binding of the enzyme to the endoplasmic reticulum or a specific consequence of PKC activation and phosphorylation. Preincubation of cells with Compound 48/80, an inhibitor of PKC, reduced TPA stimulation of PC synthesis by 40-45%. Incubation with 4α-phorbol 12,13 didecanoate (PDD) which does not activate PKC had little stimulatory effect. Treatment of intact cells with TPA for 60 min increased CT from 0.401 nmol/min/mg to 0.787 nmol/min/mg. Preincubation with 48/80 prior to TPA reduced the increase in CT activity over 50%. Incubation with PDD only increased CT by 17%. These results strongly suggest that the phorbol ester stimulation of phospholipid synthesis is a specific effect due to its ability to activate PKC

  19. Large basolateral processes on type II hair cells comprise a novel processing unit in mammalian vestibular organs

    OpenAIRE

    Pujol, Rémy; Pickett, Sarah B.; Nguyen, Tot Bui; Stone, Jennifer S.

    2014-01-01

    Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here, we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes t...

  20. Pulmonary surfactant preserves viability of alveolar type II cells exposed to polymyxin B in vitro.

    Directory of Open Access Journals (Sweden)

    Guido Stichtenoth

    Full Text Available BACKGROUND: Exogenous surfactant derived from animal lungs is applied for treatment of surfactant deficiency. By means of its rapid spreading properties, it could transport pharmaceutical agents to the terminal air spaces. The antimicrobial peptide Polymyxin B (PxB is used as a topical antibiotic for inhalation therapy. Whereas it has been shown that PxB mixed with surfactant is not inhibiting surface activity while antimicrobiotic activity is preserved, little is known concerning the effects on synthesis of endogenous surfactant in alveolar type II cells (ATIIC. OBJECTIVE: To investigate ATIIC viability and surfactant-exocytosis depending on PxB and/or surfactant exposure. METHODS: ATIIC were isolated from rat lungs as previously described and were cultivated for 48 h. After incubation for a period of 1-5 h with either PxB (0.05 or 0.1 mg/ml, modified porcine surfactant (5 or 10 mg/ml or mixtures of both, viability and exocytosis (spontanously and after stimulation were determined by fluorescence staining of intracellular surfactant. RESULTS: PxB 0.1 mg/ml, but not porcine surfactant or porcine surfactant plus PxB reduces ATIIC-viability. Only PxB alone, but not in combination with porcine surfactant, rapidly reduces fluorescence in ATIIC at maximum within 3 h, indicating stimulation of exocytosis. Subsequent ionomycin-stimulation does not further increase exocytosis of PxB incubated ATIIC. In presence of surfactant, stimulating effects of PxB and ionomycin on exocytosis are reduced. CONCLUSION: PxB alone shows negative effects on ATIIC, which are counterbalanced in mixtures with surfactant. So far, our studies found no results discouraging the concept of a combined treatment with PxB and surfactant mixtures.

  1. Truncated recombinant human SP-D attenuates emphysema and type II cell changes in SP-D deficient mice

    Directory of Open Access Journals (Sweden)

    Mühlfeld Christian

    2007-10-01

    Full Text Available Abstract Background Surfactant protein D (SP-D deficient mice develop emphysema-like pathology associated with focal accumulations of foamy alveolar macrophages, an excess of surfactant phospholipids in the alveolar space and both hypertrophy and hyperplasia of alveolar type II cells. These findings are associated with a chronic inflammatory state. Treatment of SP-D deficient mice with a truncated recombinant fragment of human SP-D (rfhSP-D has been shown to decrease the lipidosis and alveolar macrophage accumulation as well as production of proinflammatory chemokines. The aim of this study was to investigate if rfhSP-D treatment reduces the structural abnormalities in parenchymal architecture and type II cells characteristic of SP-D deficiency. Methods SP-D knock-out mice, aged 3 weeks, 6 weeks and 9 weeks were treated with rfhSP-D for 9, 6 and 3 weeks, respectively. All mice were sacrificed at age 12 weeks and compared to both PBS treated SP-D deficient and wild-type groups. Lung structure was quantified by design-based stereology at the light and electron microscopic level. Emphasis was put on quantification of emphysema, type II cell changes and intracellular surfactant. Data were analysed with two sided non-parametric Mann-Whitney U-test. Main Results After 3 weeks of treatment, alveolar number was higher and mean alveolar size was smaller compared to saline-treated SP-D knock-out controls. There was no significant difference concerning these indices of pulmonary emphysema within rfhSP-D treated groups. Type II cell number and size were smaller as a consequence of treatment. The total volume of lamellar bodies per type II cell and per lung was smaller after 6 weeks of treatment. Conclusion Treatment of SP-D deficient mice with rfhSP-D leads to a reduction in the degree of emphysema and a correction of type II cell hyperplasia and hypertrophy. This supports the concept that rfhSP-D might become a therapeutic option in diseases that are

  2. Human mast cells decrease SLPI levels in type II – like alveolar cell model, in vitro

    Directory of Open Access Journals (Sweden)

    Nyström Max

    2003-08-01

    Full Text Available Abstract Background Mast cells are known to accumulate at sites of inflammation and upon activation to release their granule content, e.g. histamine, cytokines and proteases. The secretory leukocyte protease inhibitor (SLPI is produced in the respiratory mucous and plays a role in regulating the activity of the proteases. Result We have used the HMC-1 cell line as a model for human mast cells to investigate their effect on SLPI expression and its levels in cell co-culture experiments, in vitro. In comparison with controls, we found a significant reduction in SLPI levels (by 2.35-fold, p Conclusion These results indicate that SLPI-producing cells may assist mast cell migration and that the regulation of SLPI release and/or consumption by mast cells requires interaction between these cell types. Therefore, a "local relationship" between mast cells and airway epithelial cells might be an important step in the inflammatory response.

  3. Early release of surfactant following lung irradiation of alveolar type II cells

    International Nuclear Information System (INIS)

    At 1 hour, 24 hours, and 1 week following irradiation, studies utilizing LAF 1/J mouse lung showed increase of disaturated alveolar phosphatidylcholine (PC) by radiolabelling and alveolar lavage, thus indicating PC as a nearly immediate post-irradiation biomarker. A corresponding decrease of PC in lung tissue following alveolar lavage correlated with an early decrease of lamellar bodies in type II pneumocytes after irrdiation

  4. Fusion pore expansion is a slow, discontinuous, and Ca2+ -dependent process regulating secretion from alveolar type II cells

    OpenAIRE

    Haller, Thomas; Dietl, Paul; Pfaller, Kristian; Frick, Manfred; Mair, Norbert; Paulmichl, Markus; Hess, Michael W.; Fürst, Johannes; Maly, Karl

    2001-01-01

    In alveolar type II cells, the release of surfactant is considerably delayed after the formation of exocytotic fusion pores, suggesting that content dispersal may be limited by fusion pore diameter and subject to regulation at a postfusion level. To address this issue, we used confocal FRAP and N-(3-triethylammoniumpropyl)-4-(4-[dibutylamino]styryl) pyridinium dibromide (FM 1-43), a dye yielding intense localized fluorescence of surfactant when entering the vesicle lumen through the fusion po...

  5. Adiponectin ameliorates the apoptotic effects of paraquat on alveolar type II cells via improvements in mitochondrial function

    Science.gov (United States)

    HE, YARONG; ZOU, LIQUN; ZHOU, YAXIONG; HU, HAI; YAO, RONG; JIANG, YAOWEN; LAU, WAYNE BOND; YUAN, TUN; HUANG, WEN; ZENG, ZHI; CAO, YU

    2016-01-01

    Previous studies have demonstrated that excessive reactive oxygen/nitrogen species (ROS/RNS)-induced apoptosis is an important feature of the injury to the lung epithelium in paraquat (PQ) poisoning. However the precise mechanisms of PQ-induced dysfunction of the mitochondria, where ROS/RNS are predominantly produced, remain to be fully elucidated. Whether globular adiponectin (gAd), a potent molecule protective to mitochondria, regulates the mitochondrial function of alveolar type II cells to reduce PQ-induced ROS/RNS production remains to be investigated. The current study aimed to investigate the precise mechanisms of PQ poisoning in the mitochondria of alveolar type II cells, and to elucidate the role of gAd in protecting against PQ-induced lung epithelium injury. Therefore, lung epithelial injury was induced by PQ co-culture of alveolar type II A549 cells for 24 h. gAd was administrated to and removed from the injured cells in after 24 h. PQ was observed to reduce cell viability and increase apoptosis by ~1.5 fold in A549 cells. The oxidative/nitrative stress, resulting from ROS/RNS and disordered mitochondrial function were evidenced by increased O2−., NO production and reduced mitochondrial membrane potential (ΔΨ), adenosine 5′-triphosphate (ATP) content in PQ-poisoned A549 cells. gAd treatment significantly reversed the PQ-induced cell injury and mitochondrial dysfunction in A549 cells. The protective effects of gAd were partly abrogated by an adenosine 5′-monophosphate-activated protein kinase (AMPK) inhibitor, compound C. The results suggest that reduced ΔΨ and ATP content may result in PQ-induced mitochondrial dysfunction of the lung epithelium, which constitutes a novel mechanism for gAd exerting pulmonary protection against PQ poisoning via AMPK activation. PMID:27220901

  6. CD4+ type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes

    DEFF Research Database (Denmark)

    Kadri, Nadir; Korpos, Eva; Gupta, Shashank;

    2012-01-01

    exhibited a memory phenotype including high ICOS expression, increased cytokine production, and limited display of NK cell markers, compared with double-negative 24aß NKT cells. Blocking of ICOS or the programmed death-1/programmed death ligand 1 pathway was shown to abolish the regulation that occurred......Type 1 diabetes (T1D) is a chronic autoimmune disease that results from T cell-mediated destruction of pancreatic ß cells. CD1d-restricted NKT lymphocytes have the ability to regulate immunity, including autoimmunity. We previously demonstrated that CD1d-restricted type II NKT cells, which carry...... diverse TCRs, prevented T1D in the NOD mouse model for the human disease. In this study, we show that CD4(+) 24aß type II NKT cells, but not CD4/CD8 double-negative NKT cells, were sufficient to downregulate diabetogenic CD4(+) BDC2.5 NOD T cells in adoptive transfer experiments. CD4(+) 24aß NKT cells...

  7. Modulation pf pulmonary surfactant secretion from alveolar type II cells by cytoplasmic free calcium ([Ca2+]/sub i/)

    International Nuclear Information System (INIS)

    Ca2+ is regulator of a variety of cellular functions including exocytosis. TPA and terbutaline have been shown to stimulate surfactant secretion from alveolar type II cells. The authors examined changes in [Ca2+]/sub i/ and surfactant secretion by secretagogues in primary culture of alveolar type II cells. Cells were isolated from adult rats and were cultured for 24 h with 3H-choline to label phosphatidylcholine. Percent secretion was determined by counting the lipids of cells and medium; cytotoxicity was excluded by measuring lactate dehydrogenase as cells and medium. [Ca2+]/sub i/ was determined by measuring quin2 fluroescence of cells cultured on a glass coverslip. Ionomycin increased secretion as well as [Ca2+] in dose dependent manner at the concentration from 25 to 400 nM. Ionomycin (50 nM) increased terbutaline-induced secretion in a synergistic manner but only increased TPA-induced secretion in an additive manner. Terbutaline mobilized [Ca2+]/sub i/ from intracellular stores and increased [Ca2+]/sub i/ by 20% from a basal level of 140 nM. TPA itself did not change [Ca2+]/sub i/ but inhibited the effect of terbutaline on [Ca2+]/sub i/. Loading of quin2 in the absence of extracellular calcium lowered [Ca2+]/sub i/ from 143 nM to 31 nM. Lowering [Ca2+]/sub i/ inhibited TPA- or terbutaline-induced secretion by 22% and 40% respectively. These results indicate that [Ca2+]/sub i/ effects cAMp-induced secretion more than protein kinase C-mediated secretion in alveolar type II cells

  8. Modulation pf pulmonary surfactant secretion from alveolar type II cells by cytoplasmic free calcium ((Ca/sup 2 +/)/sub i/)

    Energy Technology Data Exchange (ETDEWEB)

    Sano, K.; Voelker, D.R.; Mason, R.J.

    1986-05-01

    Ca/sup 2 +/ is regulator of a variety of cellular functions including exocytosis. TPA and terbutaline have been shown to stimulate surfactant secretion from alveolar type II cells. The authors examined changes in (Ca/sup 2 +/)/sub i/ and surfactant secretion by secretagogues in primary culture of alveolar type II cells. Cells were isolated from adult rats and were cultured for 24 h with /sup 3/H-choline to label phosphatidylcholine. Percent secretion was determined by counting the lipids of cells and medium; cytotoxicity was excluded by measuring lactate dehydrogenase as cells and medium. (Ca/sup 2 +/)/sub i/ was determined by measuring quin2 fluroescence of cells cultured on a glass coverslip. Ionomycin increased secretion as well as (Ca/sup 2 +/) in dose dependent manner at the concentration from 25 to 400 nM. Ionomycin (50 nM) increased terbutaline-induced secretion in a synergistic manner but only increased TPA-induced secretion in an additive manner. Terbutaline mobilized (Ca/sup 2 +/)/sub i/ from intracellular stores and increased (Ca/sup 2 +/)/sub i/ by 20% from a basal level of 140 nM. TPA itself did not change (Ca/sup 2 +/)/sub i/ but inhibited the effect of terbutaline on (Ca/sup 2 +/)/sub i/. Loading of quin2 in the absence of extracellular calcium lowered (Ca/sup 2 +/)/sub i/ from 143 nM to 31 nM. Lowering (Ca/sup 2 +/)/sub i/ inhibited TPA- or terbutaline-induced secretion by 22% and 40% respectively. These results indicate that (Ca/sup 2 +/)/sub i/ effects cAMp-induced secretion more than protein kinase C-mediated secretion in alveolar type II cells.

  9. Open-circuit voltage recovery in type II GaSb/GaAs quantum ring solar cells under high concentration

    OpenAIRE

    Fujita, Hiromi; Peter J. Carrington; Wagener, Magnus C.; Botha, Johannes R.; Andrew R.J. Marshall; James, Juanita; Krier, Anthony; Lee, Kan-Hua; Ekins-Daukes, Nicholas John

    2015-01-01

    We report on the open-circuit voltage recovery in GaSb quantum ring (QR) solar cells under high solar concentration up to 2500 suns. The detailed behaviour of type II GaSb/GaAs QR solar cells under solar concentration, using different temperatures and light illumination conditions, is analysed through optical and electrical measurements. Although enhancement of the short-circuit current was observed because of sub-bandgap photon absorption in the QR, the thermionic emission rate of holes was ...

  10. Multiple Sites of Type II Site Ligand (Luteolin and BMHPC) Regulation of Gene Expression in PC-3 Cells.

    Science.gov (United States)

    Markaverich, Barry M; Vijjeswarapu, Mary

    2012-12-01

    Type II [(3)H]estradiol binding site ligands including luteolin (a naturally occurring bioflavonoid) and synthetic compounds such as 2,6-bis((3-methoxy-4-hydroxyphenyl)methylene)cyclohexanone (BMHPC) inhibit normal and malignant prostate cell (PC-3, LNCaP, DU-145) proliferation in vitro and in vivo. Type II sites represent a binding domain on histone H4 possibly involved in an epigenetic mechanism for controlling gene transcription. Treatment of PC-3 human prostate cancer cells with luteolin or BMHPC modulated the expression of a number of genes in the epidermal growth factor receptor signaling pathway (EGFRSP) and cell cycle pathway (CCP). Pronounced stimulation (400-2000% of control) of c-FOS and p21 RNA expression was observed, suggesting that these were primary sites of action. Both compounds also caused irreversible G2/M arrest (pinhibition of PC-3 cell proliferation. Thus, although c-FOS and p21 are known to modulate the expression of genes in the ESGRSP (EGFR, SOS, GRB2, JNK1, MKK4, RasGAP) and CCP (CCNA2, CCNE2, CDC25A, CDKN1A, CDKN1B, p27, PLK1) involved in the regulation of cell proliferation by luteolin and BMHPC, the c-FOS and p21 siRNA knockdown studies reported here suggest that c-FOS and p21 may be secondary bystanders in the overall response to these ligands in the regulation of PC-3 cell proliferation. PMID:23675277

  11. Photocapacitance study of type-II GaSb/GaAs quantum ring solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, M. C.; Botha, J. R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Carrington, P. J.; Krier, A. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2014-01-07

    In this study, the density of states associated with the localization of holes in GaSb/GaAs quantum rings are determined by the energy selective charging of the quantum ring distribution. The authors show, using conventional photocapacitance measurements, that the excess charge accumulated within the type-II nanostructures increases with increasing excitation energies for photon energies above 0.9 eV. Optical excitation between the localized hole states and the conduction band is therefore not limited to the Γ(k = 0) point, with pseudo-monochromatic light charging all states lying within the photon energy selected. The energy distribution of the quantum ring states could consequently be accurately related from the excitation dependence of the integrated photocapacitance. The resulting band of localized hole states is shown to be well described by a narrow distribution centered 407 meV above the GaAs valence band maximum.

  12. Photocapacitance study of type-II GaSb/GaAs quantum ring solar cells

    International Nuclear Information System (INIS)

    In this study, the density of states associated with the localization of holes in GaSb/GaAs quantum rings are determined by the energy selective charging of the quantum ring distribution. The authors show, using conventional photocapacitance measurements, that the excess charge accumulated within the type-II nanostructures increases with increasing excitation energies for photon energies above 0.9 eV. Optical excitation between the localized hole states and the conduction band is therefore not limited to the Γ(k = 0) point, with pseudo-monochromatic light charging all states lying within the photon energy selected. The energy distribution of the quantum ring states could consequently be accurately related from the excitation dependence of the integrated photocapacitance. The resulting band of localized hole states is shown to be well described by a narrow distribution centered 407 meV above the GaAs valence band maximum

  13. Involvement of sphingosine in mitochondria-dependent Fas-induced apoptosis of type II Jurkat T cells.

    Science.gov (United States)

    Cuvillier, O; Edsall, L; Spiegel, S

    2000-05-26

    Exposure to anti-Fas antibody in Jurkat cells (type II cells), which are characterized by a weak caspase-8 activation at the death-inducing signaling complex (DISC), induced a biphasic increase in ceramide levels. The early generation of ceramide preceded transient activation of acidic ceramidase and subsequent production of sphingosine, followed by cytochrome c release, activation of caspases-2, -3, -6, -7, -8, and -9, Bid cleavage, and a later sustained ceramide accumulation. The caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone inhibited early increases of ceramide and sphingosine, whereas overexpression of Bcl-x(L) had no effect, and both prevented the later sustained ceramide accumulation. Exogenous sphingosine, as well as cell-permeable C(2)-ceramide, induced cytochrome c release from mitochondria in a caspase-independent fashion leading to activation of caspase-9 and executioner caspases and, surprisingly, activation of the initiator caspase-8 and processing of its substrate Bid. These effects were also completely abolished by Bcl-x(L) overexpression. Our results suggest that sphingosine might also be involved in the mitochondria-mediated pathway of Fas-induced cell death in type II cells. PMID:10747891

  14. Transsynaptic transport of wheat germ agglutinin expressed in a subset of type II taste cells of transgenic mice

    Directory of Open Access Journals (Sweden)

    Mosinger Bedrich

    2008-10-01

    Full Text Available Abstract Background Anatomical tracing of neural circuits originating from specific subsets of taste receptor cells may shed light on interactions between taste cells within the taste bud and taste cell-to nerve interactions. It is unclear for example, if activation of type II cells leads to direct activation of the gustatory nerves, or whether the information is relayed through type III cells. To determine how WGA produced in T1r3-expressing taste cells is transported into gustatory neurons, transgenic mice expressing WGA-IRES-GFP driven by the T1r3 promoter were generated. Results Immunohistochemistry showed co-expression of WGA, GFP and endogenous T1r3 in the taste bud cells of transgenic mice: the only taste cells immunoreactive for WGA were the T1r3-expressing cells. The WGA antibody also stained intragemmal nerves. WGA, but not GFP immunoreactivity was found in the geniculate and petrosal ganglia of transgenic mice, indicating that WGA was transported across synapses. WGA immunoreactivity was also found in the trigeminal ganglion, suggesting that T1r3-expressing cells make synapses with trigeminal neurons. In the medulla, WGA was detected in the nucleus of the solitary tract but also in the nucleus ambiguus, the vestibular nucleus, the trigeminal nucleus and in the gigantocellular reticular nucleus. WGA was not detected in the parabrachial nucleus, or the gustatory cortex. Conclusion These results show the usefulness of genetically encoded WGA as a tracer for the first and second order neurons that innervate a subset of taste cells, but not for higher order neurons, and demonstrate that the main route of output from type II taste cells is the gustatory neuron, not the type III cells.

  15. Dissociated Presenilin-1 and TACE Processing of ErbB4 in Lung Alveolar Type II Cell Differentiation

    OpenAIRE

    Fiaturi, Najla; Ritzkat, Anika; Dammann, Christiane E. L.; Castellot, John J.; Nielsen, Heber C.

    2014-01-01

    Neuregulin (NRG) stimulation of ErbB4 signaling is important for type II cell surfactant synthesis. ErbB4 may mediate gene expression via a non-canonical pathway involving enzymatic cleavage releasing its intracellular domain (4ICD) for nuclear trafficking and gene regulation. The accepted model for release of 4ICD is consecutive cleavage by Tumor necrosis factor alpha Converting Enzyme (TACE) and γ-secretase enzymes. Here, we show that 4ICD mediates surfactant synthesis and its release by γ-...

  16. Exogenous surfactant application in a rat lung ischemia reperfusion injury model: effects on edema formation and alveolar type II cells

    Directory of Open Access Journals (Sweden)

    Richter Joachim

    2008-01-01

    Full Text Available Abstract Background Prophylactic exogenous surfactant therapy is a promising way to attenuate the ischemia and reperfusion (I/R injury associated with lung transplantation and thereby to decrease the clinical occurrence of acute lung injury and acute respiratory distress syndrome. However, there is little information on the mode by which exogenous surfactant attenuates I/R injury of the lung. We hypothesized that exogenous surfactant may act by limiting pulmonary edema formation and by enhancing alveolar type II cell and lamellar body preservation. Therefore, we investigated the effect of exogenous surfactant therapy on the formation of pulmonary edema in different lung compartments and on the ultrastructure of the surfactant producing alveolar epithelial type II cells. Methods Rats were randomly assigned to a control, Celsior (CE or Celsior + surfactant (CE+S group (n = 5 each. In both Celsior groups, the lungs were flush-perfused with Celsior and subsequently exposed to 4 h of extracorporeal ischemia at 4°C and 50 min of reperfusion at 37°C. The CE+S group received an intratracheal bolus of a modified natural bovine surfactant at a dosage of 50 mg/kg body weight before flush perfusion. After reperfusion (Celsior groups or immediately after sacrifice (Control, the lungs were fixed by vascular perfusion and processed for light and electron microscopy. Stereology was used to quantify edematous changes as well as alterations of the alveolar epithelial type II cells. Results Surfactant treatment decreased the intraalveolar edema formation (mean (coefficient of variation: CE: 160 mm3 (0.61 vs. CE+S: 4 mm3 (0.75; p 3 (0.90 vs. CE+S: 0 mm3; p 3 (0.39 vs. CE+S: 268 mm3 (0.43; p 3(0.10 and CE+S (481 μm3(0.10 compared with controls (323 μm3(0.07; p Conclusion Intratracheal surfactant application before I/R significantly reduces the intraalveolar edema formation and development of atelectases but leads to an increased development of

  17. Design-based stereological analysis of the lung parenchymal architecture and alveolar type II cells in surfactant protein A and D double deficient mice

    DEFF Research Database (Denmark)

    Jung, A; Allen, L; Nyengaard, Jens Randel;

    2005-01-01

    (-)D(-) mice have fewer and larger alveoli, an increase in the number and size of type II cells, as well as more numerous and larger alveolar macrophages. More surfactant-storing lamellar bodies are seen in type II cells, leading to a threefold increase in the total volume of lamellar bodies per lung, but the......Alveolar epithelial type II cells synthesize and secrete surfactant. The surfactant-associated proteins A and D (SP-A and SP-D), members of the collectin protein family, participate in pulmonary immune defense, modulation of inflammation, and surfactant metabolism. Both proteins are known to have...... overlapping as well as distinct functions. The present study provides a design-based stereological analysis of adult mice deficient in both SP-A and SP-D (A(-)D(-)) with special emphasis on parameters characterizing alveolar architecture and surfactant-producing type II cells. Compared to wild-type, A...

  18. The perfused isolated lung as a possible model for the study of lipid synthesis by type II cells in their natural environment

    International Nuclear Information System (INIS)

    The incorporation of radioactively labeled palmitate and acetate into total and disaturated phosphatidylcholines was studied in the perfused whole lung, in surfactant secreted during perfusion, and in isolated alveolar type II cells. Exogenously added palmitate was found to be incorporated preferentially into the 2-position of total and disaturated phosphatidylcholines in all cases. Acetate, when supplied at a high concentration, was incorporated preferentially into the 2-position in all cases. However, acetate supplied at a low concentration was incorporated preferentially into the 2-position in type II cells and in surfactant, but preferentially into the 1-position in the whole lung. The dissimilarity in incorporation of acetate between isolated type II cells and perfused whole lung and the similarity in this respect between isolated type II cells and surfactant indicate that the perfused isolated lung may only be a good model for studying the synthesis of surfactant components by the type II cells in their natural environment if the products of processes in type II cells are separated from products of other cells after the perfusion. Both in surfactant and in lavaged lung tissue, labeled palmitate and acetate incorporated mainly into the 2-position of phosphatidylglycerol. This indicates that remodeling reactions are involved in the synthesis of dipalmitoylphosphatidylglycerol

  19. Type II GaSb/GaAs quantum dot/ring stacks with extended photoresponse for efficient solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, Peter James, E-mail: p.carrington@lancaster.ac.uk [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom); Mahajumi, Abu Syed [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom); Wagener, Magnus C.; Botha, Johannes Reinhardt [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Zhuang Qian; Krier, Anthony [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2012-05-15

    We report on the fabrication of GaAs based p-i-n solar cells containing 5 and 10 layers of type II GaSb quantum rings grown by molecular beam epitaxy. Solar cells containing quantum rings show improved efficiency at longer wavelengths into the near-IR extending up to 1500 nm and show enhanced short-circuit current under 1 sun illumination compared to a GaAs control cell. A reduction in the open-circuit voltage is observed due to the build-up of internal strain. The MBE growth, formation and photoluminescence of single and stacked layers of GaSb/GaAs quantum rings are also presented.

  20. Mechanical strain of alveolar type II cells in culture: changes in the transcellular cytokeratin network and adaptations.

    Science.gov (United States)

    Felder, Edward; Siebenbrunner, Marcus; Busch, Tobias; Fois, Giorgio; Miklavc, Pika; Walther, Paul; Dietl, Paul

    2008-11-01

    Mechanical forces exert multiple effects in cells, ranging from altered protein expression patterns to cell damage and death. Despite undisputable biological importance, little is known about structural changes in cells subjected to strain ex vivo. Here, we undertake the first transmission electron microscopy investigation combined with fluorescence imaging on pulmonary alveolar type II cells that are subjected to equibiaxial strain. When cells are investigated immediately after stretch, we demonstrate that curved cytokeratin (CK) fibers are straightened out at 10% increase in cell surface area (CSA) and that this is accompanied by a widened extracellular gap of desmosomes-the insertion points of CK fibers. Surprisingly, a CSA increase by 20% led to higher fiber curvatures of CK fibers and a concurrent return of the desmosomal gap to normal values. Since 20% CSA increase also induced a significant phosphorylation of CK8-ser431, we suggest CK phosphorylation might lower the tensile force of the transcellular CK network, which could explain the morphological observations. Stretch durations of 5 min caused membrane injury in up to 24% of the cells stretched by 30%, but the CK network remained surprisingly intact even in dead cells. We conclude that CK and desmosomes constitute a strong transcellular scaffold that survives cell death and hypothesize that phosphorylation of CK fibers is a mechano-induced adaptive mechanism to maintain epithelial overall integrity. PMID:18708634

  1. Platelet activating factor (PAF) stimulates the secretion of surfactant by rat type II cells with the same increment and time course as tetradecanol phorbol acetate (TPA)

    International Nuclear Information System (INIS)

    TPA induces a 5 to 6 fold increase in surfactant secretion by Type II cells in primary culture. To date however, a natural secretatogue for surfactant using the pathway activated by TPA has not been described. Since TPA may exert its effects on Type II cells through protein kinase C, which, in platelets, may also be activated by PAF, the authors reasoned that PAF might influence the metabolic activities of Type II cells. Rat alveolar Type II cells in primary culture for 24 hours were washed and presented with 32P/sub i/ and either 10-9M PAF, 10-6M TPA or solvent. Incorporation of 32P/sub i/ into total PC of cells and media was quantified at 2, 4, and 6 hours. The authors found that the secretion of total PC was stimulated over control by 5 to 6 fold by both PAF and TPA, and the effects exerted by the two substances followed similar time courses. The authors had previously found that these cell cultures incorporated 3H-lyso-glycerylether phosphocholine into PAF, and they contained 0.2- 1 pmol PAF per 106 cells. These results present the possibility that Type II cells may synthesize PAF and use it in the regulation of surfactant metabolism, perhaps through a pathway similar to that exerted by TPA

  2. Cell cycle is disturbed in mucopolysaccharidosis type II fibroblasts, and can be improved by genistein.

    Science.gov (United States)

    Moskot, Marta; Gabig-Cimińska, Magdalena; Jakóbkiewicz-Banecka, Joanna; Węsierska, Magdalena; Bocheńska, Katarzyna; Węgrzyn, Grzegorz

    2016-07-01

    Mucopolysaccharidoses (MPSs) are inherited metabolic diseases caused by mutations resulting in deficiency of one of enzymes involved in degradation of glycosaminoglycans (GAGs). These compounds accumulate in cells causing their dysfunctions. Genistein is a molecule previously found to both modify GAG metabolism and modulate cell cycle. Therefore, we investigated whether the cell cycle is affected in MPS cells and if genistein can influence this process. Fibroblasts derived from patients suffering from MPS types I, II, IIIA and IIIB, as well as normal human fibroblasts (the HDFa cell line) were investigated. MTT assay was used for determination of cell proliferation, and the cell cycle was analyzed by using the MUSE® Cell Analyzer. While effects of genistein on cell proliferation were similar in both normal and MPS fibroblasts, fractions of cells in the G0/G1 phase were higher, and number of cells entering the S and G2/M phases was considerably lower in MPS II fibroblasts relative to control cells. Somewhat similar tendency, though significantly less pronounced, could be noted in MPS I, but only at longer times of incubation. However, this was not observed in MPS IIIA and MPS IIIB fibroblasts. Genistein (5, 7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) was found to be able to partially correct the disturbances in the MPS II cell cycle, and to some extent in MPS I, at higher concentrations of this compound. The tendency to increase the fractions of cells entering the S and G2/M phases was also observed in MPS IIIA and IIIB fibroblasts treated with genistein. In conclusion, this is the first report indicating that the cell cycle can be impaired in MPS cells. The finding that genistein can improve the MPS II (and to some extent also MPS I) cell cycle provides an input to our knowledge on the molecular mechanisms of action of this compound. PMID:27016302

  3. Persistence of collagen type II-specific T-cell clones in the synovial membrane of a patient with rheumatoid arthritis

    International Nuclear Information System (INIS)

    Rheumatoid arthritis is an autoimmune disease characterized by T-cell infiltration of the synovium of joints. Analysis of the phenotype and antigen specificity of the infiltrating cells may thus provide insight into the pathogenesis of rheumatoid arthritis. T cells were cloned with interleukin 2, a procedure that selects for in vivo-activated cells. All clones had the CD4 CDW29 phenotype. Their antigen specificity was tested by using a panel of candidate joint autoantigens. Four of 17 reacted against autologous blood mononuclear cells. Two clones proliferated in response to collagen type II. After 21 months, another set of clones was derived from synovial tissue of the same joint. One of eight clones tested showed a strong proliferative response against collagen type II. The uncloned synovial T cells of a third operation from another joint also responded to collagen type II. The persistence of collagen type II-specific T cells in active rheumatoid joints over a period of 3 years suggests that collagen type II could be one of the autoantigens involved in perpetuating the inflammatory process in rheumatoid arthritis

  4. Human Decidua-Derived Mesenchymal Stem Cells Differentiate into Functional Alveolar Type II-Like Cells that Synthesize and Secrete Pulmonary Surfactant Complexes

    OpenAIRE

    Cerrada, Alejandro; de la Torre, Paz; Grande, Jesús; Haller, Thomas; Flores, Ana I.; Pérez-Gil, Jesús

    2014-01-01

    Lung alveolar type II (ATII) cells are specialized in the synthesis and secretion of pulmonary surfactant, a lipid-protein complex that reduces surface tension to minimize the work of breathing. Surfactant synthesis, assembly and secretion are closely regulated and its impairment is associated with severe respiratory disorders. At present, well-established ATII cell culture models are not available. In this work, Decidua-derived Mesenchymal Stem Cells (DMSCs) have been differentiated into Alv...

  5. Chondrocytes expressing intracellular collagen type II enter the cell cycle and co-express collagen type I in monolayer culture.

    Science.gov (United States)

    Tekari, Adel; Luginbuehl, Reto; Hofstetter, Willy; Egli, Rainer J

    2014-11-01

    For autologous chondrocyte transplantation, articular chondrocytes are harvested from cartilage tissue and expanded in vitro in monolayer culture. We aimed to characterize with a cellular resolution the synthesis of collagen type II (COL2) and collagen type I (COL1) during expansion in order to further understand why these cells lose the potential to form cartilage tissue when re-introduced into a microenvironment that supports chondrogenesis. During expansion for six passages, levels of transcripts encoding COL2 decreased to COL2/COL1-double positive phenotype during expansion, and the COL2 positive cells were able to enter the cell cycle. While the fraction of COL2 positive cells decreased from 70% to 95%. In parallel to the decrease of the fraction of COL2 positive cells, the cells' potential to form cartilage-like tissue in pellet cultures steadily decreased. Intracellular staining for COL2 enables for characterization of chondrocyte lineage cells in more detail with a cellular resolution, and it may allow predicting the effectiveness of expanded chondrocytes to form cartilage-like tissue. PMID:25043137

  6. Endothelial-monocyte activating polypeptide II disrupts alveolar epithelial type II to type I cell transdifferentiation

    Directory of Open Access Journals (Sweden)

    Chen Yao

    2012-01-01

    Full Text Available Abstract Background Distal alveolar morphogenesis is marked by differentiation of alveolar type (AT-II to AT-I cells that give rise to the primary site of gas exchange, the alveolar/vascular interface. Endothelial-Monocyte Activating Polypeptide (EMAP II, an endogenous protein with anti-angiogenic properties, profoundly disrupts distal lung neovascularization and alveolar formation during lung morphogenesis, and is robustly expressed in the dysplastic alveolar regions of infants with Bronchopulmonary dysplasia. Determination as to whether EMAP II has a direct or indirect affect on ATII→ATI trans-differentiation has not been explored. Method In a controlled nonvascular environment, an in vitro model of ATII→ATI cell trans-differentiation was utilized to demonstrate the contribution that one vascular mediator has on distal epithelial cell differentiation. Results Here, we show that EMAP II significantly blocked ATII→ATI cell transdifferentiation by increasing cellular apoptosis and inhibiting expression of ATI markers. Moreover, EMAP II-treated ATII cells displayed myofibroblast characteristics, including elevated cellular proliferation, increased actin cytoskeleton stress fibers and Rho-GTPase activity, and increased nuclear:cytoplasmic volume. However, EMAP II-treated cells did not express the myofibroblast markers desmin or αSMA. Conclusion Our findings demonstrate that EMAP II interferes with ATII → ATI transdifferentiation resulting in a proliferating non-myofibroblast cell. These data identify the transdifferentiating alveolar cell as a possible target for EMAP II's induction of alveolar dysplasia.

  7. In vivo type II T-helper cells shift in schizophrenia compared to sex- and age-matched healthy controls

    Directory of Open Access Journals (Sweden)

    Sonnig Sue Whei Chiang

    2011-12-01

    Full Text Available Background and Objectives: Over-production of the type II T-helper cells (Th2-shfit has been suggested as a candidate mechanism for the etiology in at least one subgroup of schizophrenia. Hitherto, empirical evidence is derived mostly from in vitro cytokine production. Due to frequently undetectable serum levels of the major Th2 cytokine Interleukin-4 (IL-4, direct evidence, measured as a ratio between Th1/Th2 (type I/type II T-helper cells characteristic cytokines, is rare. This study aimed at examining whether a serum Th2-shift occurs in schizophrenia. Th2-shift was defined as markedly decreased serum IFN-γ/IL-4 and/or IFN-γ/IL-10 and/or IL-2/IL-4 ratios, compared with healthy subjects. Methods: Totally 74 subjects were recruited: 37 drug-free subjects with schizophrenia according to ICD-10 and DSM-IV as well as 37 age- and sex-matched healthy controls. Cytometric Bead Array, which enables a simultaneous measurement of 6 cytokines with the same volume of test sample, was used to assess serum Th1/Th2 ratios and cytokine levels. Non-parametric Mann-Whitney U test was utilized to detect the diversities in serum Th1/Th2 ratios and cytokine levels between both diagnostic groups. Results: Subjects with schizophrenia showed significantly reduced serum IFN-γ/IL-4 and IFN-γ/IL-10 ratios if compared to healthy controls. If both sexes analyzed separately, males with schizophrenia had significantly reduced serum IFN-γ/IL-10 ratios, while female patients showed markedly decreased serum IFN-γ/IL-4 ratios. Conclusions: A clear Th2-shift was observed in schizophrenia. Males and females with schizophrenia seemed to have different profiles of Th2-shift. Th1/Th2 ratios appeared to play different roles in the pathology of males and females with schizophrenia.

  8. Type II universal spacetimes

    Science.gov (United States)

    Hervik, S.; Málek, T.; Pravda, V.; Pravdová, A.

    2015-12-01

    We study type II universal metrics of the Lorentzian signature. These metrics simultaneously solve vacuum field equations of all theories of gravitation with the Lagrangian being a polynomial curvature invariant constructed from the metric, the Riemann tensor and its covariant derivatives of an arbitrary order. We provide examples of type II universal metrics for all composite number dimensions. On the other hand, we have no examples for prime number dimensions and we prove the non-existence of type II universal spacetimes in five dimensions. We also present type II vacuum solutions of selected classes of gravitational theories, such as Lovelock, quadratic and L({{Riemann}}) gravities.

  9. Anti-Müllerian hormone (AMH) receptor type II expression and AMH activity in bovine granulosa cells.

    Science.gov (United States)

    Poole, Daniel H; Ocón-Grove, Olga M; Johnson, Alan L

    2016-09-15

    Anti-Müllerian hormone (AMH) produced by granulosa cells has previously been proposed to play a role in regulating granulosa cell differentiation and follicle selection. Although AMH receptor type II (AMHR2) dimerizes with a type I receptor to initiate AMH signaling, little is known about the regulation of AMHR2 expression in bovine granulosa cells and the role of AMH in follicle development. The primary objectives of this study were to: (1) characterize AMHR2 expression in granulosa cells during follicle development; (2) identify factors that regulate AMHR2 mRNA expression in granulosa cells; and (3) examine the role of AMH signaling in granulosa cell differentiation and proliferation. Bovine granulosa cells were isolated from 5- to 8-mm follicles before selection and deviation, as well as from 9- to 12-mm and 13- to 24-mm follicles after selection. Analyses revealed that expression of AMHR2 was greater in 5- to 8-mm follicles compared with 13- to 24-mm follicles (P AMH was greater in granulosa cells cultured with BMP2, BMP6, or BMP15 when compared with controls (P AMH, in vitro, inhibited CYP19A1 expression in a dose-related (10-100 ng/mL) fashion, and reduced granulosa cell proliferation at 48 and 72 hours (P AMH signaling plays a role in both regulating granulosa cell proliferation and preventing granulosa cells from 5- to 8-mm follicles from undergoing premature differentiation before follicle selection. PMID:27268296

  10. Presenilin-1 Processing of ErbB4 in Fetal Type II Cells is Necessary for Control of Fetal Lung Maturation

    OpenAIRE

    Hoeing, Kristina; Zscheppang, Katja; Mujahid, Sana; Murray, Sandy; Volpe, MaryAnn V; Dammann, Christiane E. L.; Nielsen, Heber C.

    2010-01-01

    Maturation of pulmonary fetal type II cells to initiate adequate surfactant production is crucial for postnatal respiratory function. Little is known about specific mechanisms of signal transduction controlling type II cell maturation. The ErbB4 receptor and its ligand neuregulin (NRG) are critical for lung development. ErbB4 is cleaved at the cell membrane by the γ-secretase enzyme complex whose active component is either presenilin-1 (PSEN-1) or presenilin-2. ErbB4 cleavage releases the 80 ...

  11. rIL-10 enhances IL-10 signalling proteins in foetal alveolar type II cells exposed to hyperoxia.

    Science.gov (United States)

    Lee, Hyeon-Soo; Lee, Dong Gun

    2015-07-01

    Although the mechanisms by which hyperoxia promotes bronchopulmonary dysplasia are not fully defined, the inability to maintain optimal interleukin (IL)-10 levels in response to injury secondary to hyperoxia seems to play an important role. We previously defined that hyperoxia decreased IL-10 production and pre-treatment with recombinant IL-10 (rIL-10) protected these cells from injury. The objectives of these studies were to investigate the responses of IL-10 receptors (IL-10Rs) and IL-10 signalling proteins (IL-10SPs) in hyperoxic foetal alveolar type II cells (FATIICs) with and without rIL-10. FATIICs were isolated on embryonic day 19 and exposed to 65%-oxygen for 24 hrs. Cells in room air were used as controls. IL-10Rs protein and mRNA were analysed by ELISA and qRT-PCR, respectively. IL-10SPs were assessed by Western blot using phospho-specific antibodies. IL-10Rs protein and mRNA increased significantly in FATIICs during hyperoxia, but JAK1 and TYK2 phosphorylation showed the opposite pattern. To evaluate the impact of IL-8 (shown previously to be increased) and the role of IL-10Rs, IL-10SPs were reanalysed in IL-8-added normoxic cells and in the IL-10Rs' siRNA-treated hyperoxic cells. The IL-10Rs' siRNA-treated hyperoxic cells and IL-8-added normoxic cells showed the same pattern in IL10SPs with the hyproxic cells. And pre-treatment with rIL-10 prior to hyperoxia exposure increased phosphorylated IL-10SPs, compared to the rIL-10-untreated hyperoxic cells. These studies suggest that JAK1 and TYK2 were significantly suppressed during hyperoxia, where IL-8 may play a role, and rIL-10 may have an effect on reverting the suppressed JAK1 and TYK2 in FATIICs exposed to hyperoxia. PMID:26059905

  12. Fusion pore expansion is a slow, discontinuous, and Ca2+-dependent process regulating secretion from alveolar type II cells.

    Science.gov (United States)

    Haller, T; Dietl, P; Pfaller, K; Frick, M; Mair, N; Paulmichl, M; Hess, M W; Furst, J; Maly, K

    2001-10-15

    In alveolar type II cells, the release of surfactant is considerably delayed after the formation of exocytotic fusion pores, suggesting that content dispersal may be limited by fusion pore diameter and subject to regulation at a postfusion level. To address this issue, we used confocal FRAP and N-(3-triethylammoniumpropyl)-4-(4-[dibutylamino]styryl) pyridinium dibromide (FM 1-43), a dye yielding intense localized fluorescence of surfactant when entering the vesicle lumen through the fusion pore (Haller, T., J. Ortmayr, F. Friedrich, H. Volkl, and P. Dietl. 1998. Proc. Natl. Acad. Sci. USA. 95:1579-1584). Thus, we have been able to monitor the dynamics of individual fusion pores up to hours in intact cells, and to calculate pore diameters using a diffusion model derived from Fick's law. After formation, fusion pores were arrested in a state impeding the release of vesicle contents, and expanded at irregular times thereafter. The expansion rate of initial pores and the probability of late expansions were increased by elevation of the cytoplasmic Ca2+ concentration. Consistently, content release correlated with the occurrence of Ca2+ oscillations in ATP-treated cells, and expanded fusion pores were detectable by EM. This study supports a new concept in exocytosis, implicating fusion pores in the regulation of content release for extended periods after initial formation. PMID:11604423

  13. Deletion of Scap in alveolar type II cells influences lung lipid homeostasis and identifies a compensatory role for pulmonary lipofibroblasts.

    Science.gov (United States)

    Besnard, Valérie; Wert, Susan E; Stahlman, Mildred T; Postle, Anthony D; Xu, Yan; Ikegami, Machiko; Whitsett, Jeffrey A

    2009-02-01

    Pulmonary function after birth is dependent upon surfactant lipids that reduce surface tension in the alveoli. The sterol-responsive element-binding proteins (SREBPs) are transcription factors regulating expression of genes controlling lipid homeostasis in many tissues. To identify the role of SREBPs in the lung, we conditionally deleted the SREBP cleavage-activating protein gene, Scap, in respiratory epithelial cells (ScapDelta/Delta) in vivo. Prior to birth (E18.5), deletion of Scap decreased the expression of both SREBPs and a number of genes regulating fatty acid and cholesterol metabolism. Nevertheless, ScapDelta/Delta mice survived postnatally, surfactant and lung tissue lipids being substantially normalized in adult ScapDelta/Delta mice. Although phospholipid synthesis was decreased in type II cells from adult ScapDelta/Delta mice, lipid storage, synthesis, and transfer by lung lipofibroblasts were increased. mRNA microarray data indicated that SCAP influenced two major gene networks, one regulating lipid metabolism and the other stress-related responses. Deletion of the SCAP/SREBP pathway in respiratory epithelial cells altered lung lipid homeostasis and induced compensatory lipid accumulation and synthesis in lung lipofibroblasts. PMID:19074148

  14. Effect of substratum, serum and linoleic acid on the lipid synthesis of isolated alveolar type II cells

    International Nuclear Information System (INIS)

    The authors examined the effect of cellular substratum (plastic or amnionic basement membrane (ABM)) and serum additive (fetal bovine (FBS), pork, horse, rat or human) on phospholipid synthesis in alveolar type II cells. The cells were isolated from adult rats, cultured for 48 hours under the various substratum and serum conditions, and then incubated for an additional 2 hours with [1-14C] acetate. ABM consistently caused a significant increase in the percent of radiolabel incorporated into phosphatidylcholine (PC) and/or phosphatidylglycerol (PG). Serum also had a significant effect with the highest values of PC and saturated PC being obtained with rat serum and the highest PG values with horse serum. The fatty acid composition of the sera used varied according to species with the largest variations in percent linoleic acid. Supplementing media with linoleic acid resulted in a marked increase in saturated PC values and a fall in PG values. Therefore, they conclude that: 1) ABM improves differentiated function, 2) FBS supplementation may not be optimal, and 3) the different effects of linoleic acid supplementation on PC, saturated PC, and PG values suggests an independent regulation of synthesis for these lipid species in vitro

  15. Cell Wall Biology: Perspectives from Cell Wall Imaging

    Institute of Scientific and Technical Information of China (English)

    Kieran J.D.Lee; Susan E.Marcus; J.Paul Knox

    2011-01-01

    Polysaccharide-rich plant cell walls are important biomaterials that underpin plant growth,are major repositories for photosynthetically accumulated carbon,and,in addition,impact greatly on the human use of plants. Land plant cell walls contain in the region of a dozen major polysaccharide structures that are mostly encompassed by cellulose,hemicelluloses,and pectic polysaccharides. During the evolution of land plants,polysaccharide diversification appears to have largely involved structural elaboration and diversification within these polysaccharide groups. Cell wall chemistry is well advanced and a current phase of cell wall science is aimed at placing the complex polysaccharide chemistry in cellular contexts and developing a detailed understanding of cell wall biology. Imaging cell wall glycomes is a challenging area but recent developments in the establishment of cell wall molecular probe panels and their use in high throughput procedures are leading to rapid advances in the molecular understanding of the spatial heterogeneity of individual cell walls and also cell wall differences at taxonomic levels. The challenge now is to integrate this knowledge of cell wall heterogeneity with an understanding of the molecular and physiological mechanisms that underpin cell wall properties and functions.

  16. Quantification of beta-cell function during IVGTT in Type II and non-diabetic subjects: assessment of insulin secretion by mathematical methods

    DEFF Research Database (Denmark)

    Kjems, L L; Vølund, A; Madsbad, Sten

    2001-01-01

    AIMS/HYPOTHESIS: We compared four methods to assess their accuracy in measuring insulin secretion during an intravenous glucose tolerance test in patients with Type II (non-insulin-dependent) diabetes mellitus and with varying beta-cell function and matched control subjects. METHODS: Eight control...... subjects and eight Type II diabetic patients underwent an intravenous glucose tolerance test with tolbutamide and an intravenous bolus injection of C-peptide to assess C-peptide kinetics. Insulin secretion rates were determined by the Eaton deconvolution (reference method), the Insulin SECretion method...... first-phase insulin response (r = 0.78). The two-compartment combined model failed to provide reliable estimates of insulin secretion in three of the control subjects and in two patients with Type II diabetes. The four methods were accurate with respect to mean basal and first-phase secretion response...

  17. Regulation of extracellular matrix synthesis by TNF-alpha and TGF-beta1 in type II cells exposed to coal dust.

    Science.gov (United States)

    Lee, Y C; Rannels, D E

    1998-10-01

    Type II pulmonary epithelial cells respond to anthracite coal dust PSOC 867 with increased synthesis of extracellular matrix (ECM) components. Alveolar macrophages modulate this response by pathways that may involve soluble mediators, including tumor necrosis factor-alpha (TNF-alpha) or transforming growth factor-beta1 (TGF-beta1). The effects of TNF-alpha (10 ng/ml) and/or TGF-beta1 (2 ng/ml) were thus investigated in dust-exposed primary type II cell cultures. In control day 1 or day 3 cultures, TNF-alpha and/or TGF-beta1 had little or no effect on the synthesis of type II cellular proteins, independent of whether the cells were exposed to dust. With PSOC 867 exposure, where ECM protein synthesis is elevated, TNF-alpha and TGF-beta1 further increased both the absolute and relative rates of ECM synthesis on day 3 but had little effect on day 1. Each mediator increased expression of fibronectin mRNA, as well as of ECM fibronectin content, in a manner qualitatively similar to their effects on synthesis. Thus TNF-alpha and TGF-beta1 modulate both ECM synthesis and fibronectin content in coal dust-exposed type II cell cultures. PMID:9755095

  18. Human decidua-derived mesenchymal stem cells differentiate into functional alveolar type II-like cells that synthesize and secrete pulmonary surfactant complexes.

    Science.gov (United States)

    Cerrada, Alejandro; de la Torre, Paz; Grande, Jesús; Haller, Thomas; Flores, Ana I; Pérez-Gil, Jesús

    2014-01-01

    Lung alveolar type II (ATII) cells are specialized in the synthesis and secretion of pulmonary surfactant, a lipid-protein complex that reduces surface tension to minimize the work of breathing. Surfactant synthesis, assembly and secretion are closely regulated and its impairment is associated with severe respiratory disorders. At present, well-established ATII cell culture models are not available. In this work, Decidua-derived Mesenchymal Stem Cells (DMSCs) have been differentiated into Alveolar Type II- Like Cells (ATII-LCs), which display membranous cytoplasmic organelles resembling lamellar bodies, the organelles involved in surfactant storage and secretion by native ATII cells, and accumulate disaturated phospholipid species, a surfactant hallmark. Expression of characteristic ATII cells markers was demonstrated in ATII-LCs at gene and protein level. Mimicking the response of ATII cells to secretagogues, ATII-LCs were able to exocytose lipid-rich assemblies, which displayed highly surface active capabilities, including faster interfacial adsorption kinetics than standard native surfactant, even in the presence of inhibitory agents. ATII-LCs could constitute a highly useful ex vivo model for the study of surfactant biogenesis and the mechanisms involved in protein processing and lipid trafficking, as well as the packing and storage of surfactant complexes. PMID:25333871

  19. Human decidua-derived mesenchymal stem cells differentiate into functional alveolar type II-like cells that synthesize and secrete pulmonary surfactant complexes.

    Directory of Open Access Journals (Sweden)

    Alejandro Cerrada

    Full Text Available Lung alveolar type II (ATII cells are specialized in the synthesis and secretion of pulmonary surfactant, a lipid-protein complex that reduces surface tension to minimize the work of breathing. Surfactant synthesis, assembly and secretion are closely regulated and its impairment is associated with severe respiratory disorders. At present, well-established ATII cell culture models are not available. In this work, Decidua-derived Mesenchymal Stem Cells (DMSCs have been differentiated into Alveolar Type II- Like Cells (ATII-LCs, which display membranous cytoplasmic organelles resembling lamellar bodies, the organelles involved in surfactant storage and secretion by native ATII cells, and accumulate disaturated phospholipid species, a surfactant hallmark. Expression of characteristic ATII cells markers was demonstrated in ATII-LCs at gene and protein level. Mimicking the response of ATII cells to secretagogues, ATII-LCs were able to exocytose lipid-rich assemblies, which displayed highly surface active capabilities, including faster interfacial adsorption kinetics than standard native surfactant, even in the presence of inhibitory agents. ATII-LCs could constitute a highly useful ex vivo model for the study of surfactant biogenesis and the mechanisms involved in protein processing and lipid trafficking, as well as the packing and storage of surfactant complexes.

  20. The demonstration of a highly efficient SiGe Type-II hetero-junction solar cell with an optimal stress design

    International Nuclear Information System (INIS)

    Highly efficient surface-textured SiGe-based solar cell with top surface trench structure and optimized SiGe/Si type-II hetero-junction design is proposed. The surface-textured structure results in a significant reduction of the surface reflectance from 32% to ∼ 10% in the visible light region with an obvious photonic crystal effect, which can be simulated by finite differential time domain calculations. By varying the top surface trench spacing, broadband antireflection can be realized and total absorption rate greatly enhanced. Moreover, SiGe/Si hetero-structure substrate has also been implemented to enhance the solar cell efficiency by an additional 3% in this work, not only due to the originally higher absorption rate in the SiGe-based material but also due to the enhanced SiGe/Si type-II hetero-structure substrate design. The offset and discontinuousness of the energy band between the Si substrate and the strained Si0.9Ge0.1 type-II hetero-junction structure resulted in higher local electron-hole carrier concentration, which is confined in the Si cap and SiGe quantum well structure, and the longer non-radiative Auger carrier recombination lifetime as measured by femtosecond transient absorption measurements. The integration of these two key technologies-nano-level surface trench structure and optimization of the SiGe/Si type-II hetero-structure, led to highly efficient (∼ 18% for the stable production and 21% for the peak record) nano-surface textured SiGe-based solar cell being achieved and demonstrated in this work. - Highlights: • Highly efficient solar cell. • Surface structure design. • SiGe type II junction

  1. CCR2 and CXCR3 agonistic chemokines are differently expressed and regulated in human alveolar epithelial cells type II

    Directory of Open Access Journals (Sweden)

    Prasse Antje

    2005-07-01

    Full Text Available Abstract The attraction of leukocytes from circulation to inflamed lungs depends on the activation of both the leukocytes and the resident cells within the lung. In this study we determined gene expression and secretion patterns for monocyte chemoattractant protein-1 (MCP-1/CCL2 and T-cell specific CXCR3 agonistic chemokines (Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11 in TNF-α-, IFN-γ-, and IL-1β-stimulated human alveolar epithelial cells type II (AEC-II. AEC-II constitutively expressed high level of CCL2 mRNA in vitro and in situ , and released CCL2 protein in vitro . Treatment of AEC-II with proinflammatory cytokines up-regulated both CCL2 mRNA expression and release of immunoreactive CCL2, whereas IFN-γ had no effect on CCL2 release. In contrast, CXCR3 agonistic chemokines were not detected in freshly isolated AEC-II or in non-stimulated epithelial like cell line A549. IFN-γ, alone or in combination with IL-1β and TNF-α resulted in an increase in CXCL10, CXCL11, and CXCL9 mRNA expression and generation of CXCL10 protein by AEC-II or A549 cells. CXCL10 gene expression and secretion were induced in dose-dependent manner after cytokine-stimulation of AEC-II with an order of potency IFN-γ>>IL-1β ≥ TNF-α. Additionally, we localized the CCL2 and CXCL10 mRNAs in human lung tissue explants by in situ hybridization, and demonstrated the selective effects of cytokines and dexamethasone on CCL2 and CXCL10 expression. These data suggest that the regulation of the CCL2 and CXCL10 expression exhibit significant differences in their mechanisms, and also demonstrate that the alveolar epithelium contributes to the cytokine milieu of the lung, with the ability to respond to locally generated cytokines and to produce potent mediators of the local inflammatory response.

  2. Optimization of Streptomyces bacteriophage φC31 integrase system to prevent post integrative gene silencing in pulmonary type II cells

    OpenAIRE

    Aneja, Manish Kumar; Geiger, Johannes; Imker, Rabea; Üzgün, Senta; Kormann, Michael; Hasenpusch, Guenther; Maucksch, Christof; Rudolph, Carsten

    2009-01-01

    φC31 integrase has emerged as a potent tool for achieving long-term gene expression in different tissues. The present study aimed at optimizing elements of φC31 integrase system for alveolar type II cells. Luciferase and β-galactosidase activities were measured at different time points post transfection. 5-Aza-2'deoxycytidine (AZA) and trichostatin A (TSA) were used to inhibit DNA methyltransferase and histone deacetylase complex (HDAC) respectively. In A549 cells, expression of the integrase...

  3. A Novel Approach for Ovine Primary Alveolar Epithelial Type II Cell Isolation and Culture from Fresh and Cryopreserved Tissue Obtained from Premature and Juvenile Animals

    OpenAIRE

    Marcinkiewicz, Mariola M.; Baker, Sandy T.; Jichuan Wu; Terrence L Hubert; Wolfson, Marla R.

    2016-01-01

    The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII) cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established ...

  4. Expression of cyclin D{sub 1} during endotoxin-induced aleveolar type II cell hyperplasia in rat lung and the detection of apoptotic cells during the remodeling process

    Energy Technology Data Exchange (ETDEWEB)

    Tesfaigzi, J.; Wood, M.B.; Johnson, N.F.

    1995-12-01

    Our studies have shown that endotoxin intratracheally instilled into the rat lung induces proliferation of alveolar type II cells. In that study, the alveolar type II cells. In that study, the alveolar type II cell hyperplasia occurred 2 d after instillation of endotoxin and persisted for a further 2 d. After hyperplasia, the lung remodeled and returned to a normal state within 24-48 h. Understanding the mechanisms involved in the remodeling process of this transient hyperplasia may be useful to identify molecular changes that are altered in neoplasia. The purpose of the present study was to corroborate induction of epithelial cell hyperplasia by endotoxin and to delineate mechanisms involved in tissue remodeling after endotoxin-induced alveolar type II cell hyperplasia. In conclusion, immonostaining with cyclin D1 and cytokeratin shows that endotoxin induced epithelial cell proliferation and resulted in hyperplasia in the lung which persisted through 4 d post-instillation.

  5. Type-II Leptogenesis

    CERN Document Server

    Kim, Jihn E

    2016-01-01

    I will talk on our new theory on baryogenesis through type-II leptogenesis which is different from the well-known type-I leptogenesis. I will comment on the Jarlskog phases, $\\delta_{\\rm CKM}$ and $\\delta_{\\rm PMNS}$, in the CKM and PMNS matrices. In the type-II leptogenesis, the PMNS phase is used for Sakharov's condition on the global quantum number generation in the Universe. For this to be effective, the SU(2)$\\times$U(1) gauge symmetry must be broken during the leptogenesis epoch.

  6. Sensitized solar cell from type-II CdTe/CdSe core/shell nanocrystals synthesized without seed purification at low temperature

    International Nuclear Information System (INIS)

    Highlights: • Type-II CdTe/CdSe core/shell nanocrystals synthesized using straightforward method. • This is low temperature (∼80 °C), aqueous synthesis method without seed purification steps. • Type-II heterostructure nanocrystals augment charge separation of photo-generated carriers. • These core/shell nanocrystals used as sensitizers in photo-electrochemical cells. • Highest efficiency found using thickest shell nanocrystals is ∼2%. - Abstract: Quicker and simpler chemical fabrication route is always desirable for synthesis of technologically important nanocrystals. Here we propose simple aqueous method for synthesis of type-II heterostructure of CdTe/CdSe core/shell nanocrystals without purification of CdTe seed at a relatively lower temperature of ∼80 °C. These core/shell nanocrystals show structural and optical properties comparable to the nanocrystals synthesized using purified CdTe seed nanocrystals. Longer photoluminescence lifetime with thicker shells are observed in such CdTe/CdSe core/shell heterostructures grown by both procedures which indicates more non-radiative decay channels are being added with increasing thickness of shell layer. Sensitized solar cells are fabricated using these good quality unpurified core/shell nanocrystals. We found that efficiency of solar cell is a strong function of shell thickness as the charge carrier separation is also function of shell thickness in these type-II heterostructure nanoparticles. The increment in short circuit current density in nanocrystals having thickest shell is ∼300% compared to the core–shell nanocrystals having the thinnest shell prepared by us. We also found that sintering of photo-anode sensitized with these CdTe/CdSe nanocrystals is very important for achieving higher efficiency. Calculated maximum efficiency of the solar cell fabricated using core/shell nanocrystals with thickest CdSe shell is ∼2% with JSC = 8.9 mA/cm2 and VOC = 0.53 V

  7. Type II PKAs are anchored to mature insulin secretory granules in INS-1 β-cells and required for cAMP-dependent potentiation of exocytosis.

    Science.gov (United States)

    Villalpando, Sabrina; Cazevieille, Chantal; Fernandez, Anne; Lamb, Ned J; Hani, El-Habib

    2016-06-01

    Specificity of the cAMP-dependent protein kinase (PKA) pathway relies on an extremely sophisticated compartmentalization mechanism of the kinase within a given cell, based on high-affinity binding of PKA tetramer pools to different A-Kinase Anchoring Proteins (AKAPs). We and others have previously shown that AKAPs-dependent PKA subcellular targeting is a requisite for optimal cAMP-dependent potentiation of insulin exocytosis. We thus hypothesized that a PKA pool may directly anchor to the secretory compartment to potentiate insulin exocytosis. Here, using immunofluorescence analyses combined to subcellular fractionations and purification of insulin secretory granules (ISGs), we identified discrete subpools of type II PKAs, RIIα and RIIβ PKAs, along with the catalytic subunit, physically associated with ISGs within pancreatic insulin-secreting β-cells. Ultrastructural analysis of native rodent β-cells confirmed in vivo the occurrence of PKA on dense-core ISGs. Isoform-selective disruption of binding of PKAs to AKAPs reinforced the requirement of type II PKA isoforms for cAMP potentiation of insulin exocytosis. This granular localization of PKA was of critical importance since siRNA-mediated depletion of either RIIα or RIIβ PKAs resulted in a significant reduction of cAMP-dependent potentiation of insulin release. The present work provides evidence for a previously unrecognized pool of type II PKAs physically anchored to the β-cell ISGs compartment and supports a non-redundant function for type II PKAs during cAMP potentiation of exocytosis. PMID:26898328

  8. MiR-125b promotes proliferation and migration of type II endometrial carcinoma cells through targeting TP53INP1 tumor suppressor in vitro and in vivo

    International Nuclear Information System (INIS)

    Our previous studies have identified that miR-125b was overexpressed in type II endometrial carcinoma (EC) cells compared with type I using microRNAs microarray. Although recent studies have shown the important role of miR-125b in several tumors and overexpression of miR-125b in advanced EC, its function in this disease has not yet been defined. In the present study, we tried to confirm the result of microRNAs microarray and further investigated the functions of miR-125b in EC, and tried to find new downstream targets of miR-125b. Differential expression of miR-125b was detected between type II EC cells (KLE, AN3CA) with ER negative and type I EC cells (ishikawa, RL95-2) with ER positive by qRT-PCR and northern blotting. The effects of miR-125b of on proliferation, migration, and target protein expression were evaluated by CCK8 assay, wound healing assay, transwell migration assay, western blotting, and Tumorigenicity assays in nude mice. In addition, luciferase reporter plasmid was constructed to demonstrate the direct target of miR-125b. MiR-125b was overexpressed in type II EC cells compared with type I. Exogenous miR-125b expression increased proliferation and migration of ishikawa cells and abrogating expression of miR-125b suppressed proliferation, and migration of AN3CA cells in vitro. In addition, in vivo tumor formation assay confirmed that forced miR-125b expression promoted proliferation potential of ishikawa cells, and tumor suppressor gene Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) was identified to be the direct target of miR-125b. TP53INP1 was newly identified to be the direct downstream target of miR-125b. MiR-125b, which was overexpressed in type II EC cells compared with type I, contributes to malignancy of type II EC possibly through down-regulating TP53INP1

  9. Cell wall proteomics of crops

    OpenAIRE

    Komatsu, Setsuko; Yanagawa, Yuki

    2013-01-01

    Cell wall proteins play key roles in cell structure and metabolism, cell enlargement, signal transduction, responses to environmental stress, and many other physiological events. Agricultural crops are often used for investigating stress tolerance because cultivars with differing degrees of tolerance are available. Abiotic and biotic stress factors markedly influence the geographical distribution and yields of many crop species. Crop cell wall proteomics is of particular importance for improv...

  10. Interdependent TTF1 - ErbB4 interactions are critical for surfactant protein-B homeostasis in primary mouse lung alveolar type II cells

    OpenAIRE

    Marten, Elger; Nielsen, Heber C.; Dammann, Christiane E. L.

    2015-01-01

    ErbB4 receptor and thyroid transcription factor (TTF)-1 are important modulators of fetal alveolar type II (ATII) cell development and injury. ErbB4 is an upstream regulator of TTF-1, promoting its expression in MLE-12 cells, an ATII cell line. Both proteins are known to promote surfactant protein-B gene (SftpB) and protein (SP-B) expression, but their feedback interactions on each other are not known. We hypothesized that TTF-1 expression has a feedback effect on ErbB4 expression in an in-vi...

  11. The Chlamydomonas cell wall: characterization of the wall framework

    OpenAIRE

    1985-01-01

    The cell wall of the biflagellate alga Chlamydomonas reinhardtii is a multilayered, extracellular matrix composed of carbohydrates and 20-25 polypeptides. To learn more about the forces responsible for the integrity of this cellulose-deficient cell wall, we have begun studies to identify and characterize the framework of the wall and to determine the effects of the cell wall-degrading enzyme, lysin, on framework structure and protein composition. In these studies we used walls released into t...

  12. Inactivation of the transforming growth factor beta type II receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Hougaard, S; Nørgaard, P; Abrahamsen, N; Moses, H L; Spang-Thomsen, M; Skovgaard Poulsen, H

    cancer (SCLC). The purpose of this study was to examine the cause of absent RII expression in SCLC cell lines. Northern blot analysis showed that RII RNA expression was very weak in 16 of 21 cell lines. To investigate if the absence of RII transcript was due to mutations, we screened the poly-A tract for...... hypermethylation. Southern blot analysis of the RII promoter did not show altered methylation patterns. The restriction endonuclease pattern of the RII gene was altered in two SCLC cell lines when digested with Smal. However, treatment with 5-aza-2'-deoxycytidine did not induce expression of RII mRNA. Our results...

  13. Human YKL39 (chitinase 3-like protein 2), an osteoarthritis-associated gene, enhances proliferation and type II collagen expression in ATDC5 cells

    International Nuclear Information System (INIS)

    Highlights: ► hYKL-39 expression is increased in osteoarthritic articular chondrocytes. ► To examine the molecular functions of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in chondrocytic ATDC5 cells. ► hYKL-39 enhanced proliferation and colony formation in ATDC5 cells. ► hYKL-39 increased type II collagen expression in ATDC5 cells treated with chondrogenic medium. -- Abstract: Human YKL39 (chitinase 3-like protein 2/CHI3L2) is a secreted 39 kDa protein produced by articular chondrocytes and synoviocytes. Recent studies showed that hYKL-39 expression is increased in osteoarthritic articular chondrocytes suggesting the involvement of hYKL-39 in the progression of osteoarthritis (OA). However little is known regarding the molecular function of hYKL-39 in joint homeostasis. Sequence analyses indicated that hYKL-39 has significant identity with the human chitotorisidase family molecules, although it is considered that hYKL-39 has no enzymatic activity since it lacks putative chitinase catalytic motif. In this study, to examine the molecular function of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in ATDC5 cells. Here we report that hYKL-39 enhances colony forming activity, cell proliferation, and type II collagen expression in these cells. These data suggest that hYKL-39 is a novel growth and differentiation factor involved in cartilage homeostasis

  14. Deleted in malignant brain tumors 1 (DMBT1) elicits increased VEGF and decreased IL-6 production in type II lung epithelial cells

    DEFF Research Database (Denmark)

    Müller, Hanna; Nagel, Christian; Weiss, Christel;

    2015-01-01

    between VEGF and IL-6 levels to DMBT1 expression in the lungs of preterm and term infants and in lung epithelial cells in vitro. METHODS: We examined by ELISA VEGF levels in 120 tracheal aspirates of 57 preterm and term infants and tested for correlation with different perinatal factors as well as with...... DMBT1 levels. To examine the effect of DMBT1 on VEGF and IL-6 expression we compared type II lung epithelial A549 cells stably transfected with a DMBT1 expression plasmid (DMBT1+ cells) to A549 cells stably transfected with an empty expression plasmid (DMBT1- cells). The concentrations of VEGF and IL-6...... that DMBT1 promotes VEGF and suppresses IL-6 production in alveolar tissues, which could point to DMBT1 having a possible role in the transition from inflammation to regeneration and being a potentially useful clinical marker....

  15. Three-dimensional scaffold of type II collagen promote the differentiation of adipose-derived stem cells into a nucleus pulposus-like phenotype.

    Science.gov (United States)

    Zhou, Xiaopeng; Tao, Yiqing; Wang, Jingkai; Liu, Dongyu; Liang, Chengzhen; Li, Hao; Chen, Qixin

    2016-07-01

    Type II collagen is reported to have the capability of guiding adipose-derived stem cells (ADSCs) to differentiate towards a nucleus pulposus (NP)-like phenotype. So this study aimed to establish a three-dimensional (3D) collagen scaffold using N,N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide and N-hydroxysuccinimide (EDAC/NHS) to increase the efficiency of ADSC differentiation into NP-like cells. Physical properties, such as porosity, biodegradation, and microstructure, and biological characteristics such as cytotoxicity, cell proliferation, and expression of relevant genes and proteins were measured to evaluate the efficacy of different scaffolds. Collagen scaffolds cross-linked with EDAC/NHS exhibited higher biological stability, better spatial structure, and higher gene and protein expression of functional markers such as aggrecan, SOX9 and COL2 than those of other groups. Based on the results, freeze-dried type II collagen cross-linked with EDAC/NHS formed the best 3D scaffold, for inducing ADSC proliferation and differentiation toward a NP-like phenotype. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1687-1693, 2016. PMID:26940048

  16. Reduced IL-10 production in fetal type II epithelial cells exposed to mechanical stretch is mediated via activation of IL-6-SOCS3 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Michael A Hokenson

    Full Text Available An imbalance between pro-inflammatory and anti-inflammatory cytokines is a key factor in the lung injury of premature infants exposed to mechanical ventilation. Previous studies have shown that lung cells exposed to stretch produces reduced amounts of the anti-inflammatory cytokine IL-10. The objective of these studies was to analyze the signaling mechanisms responsible for the decreased IL-10 production in fetal type II cells exposed to mechanical stretch. Fetal mouse type II epithelial cells isolated at embryonic day 18 were exposed to 20% stretch to simulate lung injury. We show that IL-10 receptor gene expression increased with gestational age. Mechanical stretch decreased not only IL-10 receptor gene expression but also IL-10 secretion. In contrast, mechanical stretch increased release of IL-6. We then investigated IL-10 signaling pathway-associated proteins and found that in wild-type cells, mechanical stretch decreased activation of JAK1 and TYK2 and increased STAT3 and SOCS3 activation. However, opposite effects were found in cells isolated from IL-10 knockout mice. Reduction in IL-6 secretion by stretch was observed in cells isolated from IL-10 null mice. To support the idea that stretch-induced SOCS3 expression via IL-6 leads to reduced IL-10 expression, siRNA-mediated inhibition of SOCS3 restored IL-10 secretion in cells exposed to stretch and decreased IL-6 secretion. Taken together, these studies suggest that the inhibitory effect of mechanical stretch on IL-10 secretion is mediated via activation of IL-6-STAT3-SOCS3 signaling pathway. SOCS3 could be a therapeutic target to increase IL-10 production in lung cells exposed to mechanical injury.

  17. Leptin promotes fetal lung maturity and upregulates SP-A expression in pulmonary alveoli type-II epithelial cells involving TTF-1 activation.

    Directory of Open Access Journals (Sweden)

    Hui Chen

    Full Text Available The placental hormone leptin has important functions in fetal and neonatal growth, and prevents depressed respiration in leptin-deficient mice. The effect of leptin on respiratory distress suffered by low birth weight and premature infants has been studied. However, it is unclear how leptin enhances lung maturity in the fetus and ameliorates neonatal respiratory distress. In the present study, we found that antenatal treatment with leptin for 2 d significantly enhanced the relative alveolus area and improved the maturity of fetal lungs in a rat model of fetal growth restriction (FGR. Mean birth weight and lung wet weight were higher in the leptin-treated group than in the PBS-treated group, indicating promotion of fetal growth. Leptin upregulated the intracellular expression and extracellular secretion of surfactant protein (SP A in type-II alveolar epithelial cells (AECs in vivo and in vitro. Dual positive effects of leptin were found on protein expression and transcriptional activity of thyroid transcription factor-1 (TTF-1, a nuclear transcription essential for branching morphogenesis of the lung and expression of SP-A in type-II AECs. Knockdown of TTF-1 by RNA interference indicated that TTF-1 may play a vital role in leptin-induced SP-A expression. These results suggest that leptin may have great therapeutic potential for the treatment of FGR, and leptin-mediated SP-A induction and lung maturity of the fetus are TTF-1 dependent.

  18. Cell Wall Integrity Signaling in Saccharomyces cerevisiae

    OpenAIRE

    Levin, David E.

    2005-01-01

    The yeast cell wall is a highly dynamic structure that is responsible for protecting the cell from rapid changes in external osmotic potential. The wall is also critical for cell expansion during growth and morphogenesis. This review discusses recent advances in understanding the various signal transduction pathways that allow cells to monitor the state of the cell wall and respond to environmental challenges to this structure. The cell wall integrity signaling pathway controlled by the small...

  19. Back wall solar cell

    Science.gov (United States)

    Brandhorst, H. W., Jr. (Inventor)

    1978-01-01

    A solar cell is disclosed which comprises a first semiconductor material of one conductivity type with one face having the same conductivity type but more heavily doped to form a field region arranged to receive the radiant energy to be converted to electrical energy, and a layer of a second semiconductor material, preferably highly doped, of opposite conductivity type on the first semiconductor material adjacent the first semiconductor material at an interface remote from the heavily doped field region. Instead of the opposite conductivity layer, a metallic Schottky diode layer may be used, in which case no additional back contact is needed. A contact such as a gridded contact, previous to the radiant energy may be applied to the heavily doped field region of the more heavily doped, same conductivity material for its contact.

  20. Expression of ABCA3, a causative gene for fatal surfactant deficiency, is up-regulated by glucocorticoids in lung alveolar type II cells

    International Nuclear Information System (INIS)

    We have shown previously that the ATP-binding cassette transporter ABCA3 is expressed predominantly at the limiting membrane of the lamellar bodies in lung alveolar type II cells. Very recently, an ABCA3 gene mutation was reported in human newborns with fatal surfactant deficiency. In the present study, we have shown in rat lung that expression of the ABCA3 protein is dramatically increased after embryonic day (E) 20.5 just before birth. Expression was also markedly induced even at E18.5 when dexamethasone (Dex), which is known to accelerate surfactant formation, was administered to pregnant female rats for 3 days from E15.5. Since Dex increased the ABCA3 mRNA expression level in human alveolar type II cell line A549 cells 4-fold, we cloned and characterized the promoter region of the human ABCA3 gene. Promoter activity of the 5'-flanking region of the ABCA3 gene, which contains a potential glucocorticoid-responsive element (GRE), was up-regulated about 2-fold. Up-regulation by Dex was not observed when the GRE-containing region was deleted or when a point mutation was introduced into the GRE, and electrophoretic mobility shift assay using Dex-treated A549 nuclear extracts demonstrated specific binding of the glucocorticoid receptor to the GRE. These findings demonstrate that glucocorticoid-induced up-regulation of ABCA3 expression in vivo is mediated by transcriptional activation through the GRE in the promoter, and suggest that ABCA3 plays an important role in the formation of pulmonary surfactant, probably by transporting lipids such as cholesterol

  1. Adoptive transfer of suppression of arthritis in the mouse model of collagen-induced arthritis. Evidence for a type II collagen-specific suppressor T cell.

    OpenAIRE

    Kresina, T F; Moskowitz, R W

    1985-01-01

    This study details the suppressive mechanism involved in the antigen-specific suppression of collagen-induced arthritis. Intravenous injection of 500 micrograms of soluble native type II collagen 3 d before immunization with native type II collagen emulsified in complete Freund's adjuvant resulted in animals with decreased in vitro cellular and humoral immune response to native and denatured type II collagen compared with control groups. Control groups were composed of animals preinoculated w...

  2. Hyperoxia-mediated LC3B activation contributes to the impaired transdifferentiation of type II alveolar epithelial cells (AECIIs) to type I cells (AECIs).

    Science.gov (United States)

    Zhang, Liang; Zhao, Shuang; Yuan, Lijie; Wu, Hongmin; Jiang, Hong; Luo, Gang

    2016-09-01

    Life-saving mechanical ventilation can also cause lung injury through the overproduction of reactive oxygen species (ROS), leading to bronchopulmonary dysplasia (BPD)-like symptoms in preterm infants. It is reported that the autophagic protein microtubule-associated protein-1 light chain (LC)-3B can confer protection against hyperoxia-induced DNA damage in lung alveolar epithelium. However, its role in the transdifferentiation of type II alveolar epithelial cells (AECIIs) to type I cells (AECIs) is unclear and requires further investigation. In this study, newborn Sprague-Dawley rats were exposed to 90% oxygen for up to 14 days to mimic BPD in human infants, with neonatal pups exposed to room air (21% oxygen) as controls. Primary rat AECIIs were cultured under hyperoxic conditions for up to 24 hours to further investigate the underlying mechanisms. This study found that hyperoxia promoted a significant and time-dependent increase of AECII marker surfactant protein (SP)-C in the lung. The increase of AECI marker T1α was repressed by hyperoxia during lung development. These results indicated an impaired AECII transdifferentiation. Pulmonary ROS concentration and expression of autophagic protein LC-3B were increased gradually in response to hyperoxia exposure. Furthermore, AECIIs produced more ROS when cultured under hyperoxic conditions in vitro. Both the LC3B expression and the conversion from LC3BI to LC3BII were enhanced in hyperoxic AECs. Interestingly, inhibition of LC3B either by ROS inhibitor N-acetyl-l-cysteine (NAC) or adenovirus-mediated LC3B shRNA could partly restore AECII transdifferentiation under hyperoxia condition. In summary, the current study reveals a novel role of activated LC3B induced by hyperoxia in AECII transdifferentiation. PMID:27187184

  3. High value of the radiobiological parameter Dq correlates to expression of the transforming growth factor beta type II receptor in a panel of small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Hougaard, S; Krarup, M; Nørgaard, P; Damstrup, L; Spang-Thomsen, M; Poulsen, H S

    1998-01-01

    Our panel of SCLC cell lines have previously been examined for their radiobiological characteristics and sensitivity to treatment with TGF beta 1. In this study we examined the possible correlations between radiobiological parameters and the expression of the TGF beta type II receptor (TGF beta...... role for the repair of radiation induced DNA damage in SCLC....

  4. Disseminated Bacillus Calmette-Guérin (BCG) infection following allogeneic hematopoietic stem cell transplant in a patient with Bare Lymphocyte Syndrome type II

    Science.gov (United States)

    Abu-Arja, R.F.; Gonzalez, B.E.; Jacobs, M.R.; Cabral, L.; Egler, R.; Auletta, J.; Arnold, J.; Cooke, K.R.

    2016-01-01

    We describe the first case, to our knowledge, of disseminated Mycobacterium bovis Bacillus Calmette-Guérin infection in a child with Bare Lymphocyte Syndrome type II after undergoing hematopoietic stem cell transplantation (HSCT). The patient presented 30 days post HSCT with fever and lymphadenitis. Lymph node, blood, and gastric aspirates were positive for M. bovis. The patient received a prolonged treatment course with a combination of isoniazid, levofloxacin, and ethambutol. Her course was further complicated by granulomatous lymphadenitis and otitis media associated with M. bovis that developed during immune suppression taper and immune reconstitution. Ultimately, the patient recovered fully, in association with restoration of immune function, and has completed 12 months of therapy. PMID:24995715

  5. Type I and Type II Interferon Coordinately Regulate Suppressive Dendritic Cell Fate and Function during Viral Persistence

    Science.gov (United States)

    Cunningham, Cameron R.; Champhekar, Ameya; Tullius, Michael V.; Dillon, Barbara Jane; Zhen, Anjie; de la Fuente, Justin Rafael; Herskovitz, Jonathan; Elsaesser, Heidi; Snell, Laura M.; Wilson, Elizabeth B.; de la Torre, Juan Carlos; Kitchen, Scott G.; Horwitz, Marcus A.; Bensinger, Steven J.; Smale, Stephen T.; Brooks, David G.

    2016-01-01

    Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV) to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs) during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I) then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections. PMID:26808628

  6. A Novel Approach for Ovine Primary Alveolar Epithelial Type II Cell Isolation and Culture from Fresh and Cryopreserved Tissue Obtained from Premature and Juvenile Animals.

    Directory of Open Access Journals (Sweden)

    Mariola M Marcinkiewicz

    Full Text Available The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established in vitro submerged and air-liquid interface cultures of primary ovine ATII cells isolated from fresh or cryopreserved lung tissues obtained from mechanically ventilated sheep (128 days gestation-6 months of age. Presence, abundance, and mRNA expression of surfactant proteins was assessed by immunocytochemistry, Western Blot, and quantitative PCR respectively on the day of isolation, and throughout the 7 day cell culture study period. All biomarkers were significantly greater from cells isolated from fresh than cryopreserved tissue, and those cultured in air-liquid interface as compared to submerged culture conditions at all time points. Surfactant protein expression remained in the air-liquid interface culture system while that of cells cultured in the submerged system dissipated over time. Despite differences in biomarker magnitude between cells isolated from fresh and cryopreserved tissue, cells isolated from cryopreserved tissue remained metabolically active and demonstrated a similar response as cells from fresh tissue through 72 hr period of hyperoxia. These data demonstrate a cell culture methodology using fresh or cryopreserved tissue to support study of ovine primary ATII cell function and responses, to support expanded use of biobanked tissues, and to further understanding of mechanisms that contribute to in vivo function of the lung.

  7. A Novel Approach for Ovine Primary Alveolar Epithelial Type II Cell Isolation and Culture from Fresh and Cryopreserved Tissue Obtained from Premature and Juvenile Animals.

    Science.gov (United States)

    Marcinkiewicz, Mariola M; Baker, Sandy T; Wu, Jichuan; Hubert, Terrence L; Wolfson, Marla R

    2016-01-01

    The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII) cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established in vitro submerged and air-liquid interface cultures of primary ovine ATII cells isolated from fresh or cryopreserved lung tissues obtained from mechanically ventilated sheep (128 days gestation-6 months of age). Presence, abundance, and mRNA expression of surfactant proteins was assessed by immunocytochemistry, Western Blot, and quantitative PCR respectively on the day of isolation, and throughout the 7 day cell culture study period. All biomarkers were significantly greater from cells isolated from fresh than cryopreserved tissue, and those cultured in air-liquid interface as compared to submerged culture conditions at all time points. Surfactant protein expression remained in the air-liquid interface culture system while that of cells cultured in the submerged system dissipated over time. Despite differences in biomarker magnitude between cells isolated from fresh and cryopreserved tissue, cells isolated from cryopreserved tissue remained metabolically active and demonstrated a similar response as cells from fresh tissue through 72 hr period of hyperoxia. These data demonstrate a cell culture methodology using fresh or cryopreserved tissue to support study of ovine primary ATII cell function and responses, to support expanded use of biobanked tissues, and to further understanding of mechanisms that contribute to in vivo function of the lung. PMID:26999050

  8. Accelerating forward genetics for cell wall deconstruction

    OpenAIRE

    Vidaurre, Danielle; Bonetta, Dario

    2012-01-01

    The elucidation of the genes involved in cell wall synthesis and assembly remains one of the biggest challenges of cell wall biology. Although traditional genetic approaches, using simple yet elegant screens, have identified components of the cell wall, many unknowns remain. Exhausting the genetic toolbox by performing sensitized screens, adopting chemical genetics or combining these with improved cell wall imaging, hold the promise of new gene discovery and function. With the recent introduc...

  9. Moss cell walls: structure and biosynthesis

    OpenAIRE

    Alison W. Roberts; Eric M Roberts; Haigler, Candace H.

    2012-01-01

    The genome sequence of the moss Physcomitrella patens has stimulated new research examining the cell wall polysaccharides of mosses and the glycosyl transferases that synthesize them as a means to understand fundamental processes of cell wall biosynthesis and plant cell wall evolution. The cell walls of mosses and vascular plants are composed of the same classes of polysaccharides, but with differences in side chain composition and structure. Similarly, the genomes of P. patens and angiosperm...

  10. Multiple tissue-specific isoforms of sulfatide activate CD1d-restricted type II NKT cells

    DEFF Research Database (Denmark)

    Blomqvist, Maria; Rhost, Sara; Teneberg, Susann;

    2009-01-01

    relevant isoforms C24:1 and C24:0, major constituents of the myelin sheet of the nervous system, and C16:0, prominent in the pancreatic islet beta-cells. The most potent sulfatide isoform was lysosulfatide (lacking a fatty acid). Shortened fatty acid chain length (C24:1 versus C18:1), or saturation of the...... mixture of sulfatide isoforms, i.e. sulfatide molecules with different long-chain bases and fatty acid chain lengths and saturation. Here, we demonstrate that sulfatide-specific CD1d-restricted murine NKT hybridomas recognized several different sulfatide isoforms. These included the physiologically...... long fatty acid (C24:0), resulted in reduced stimulatory capacity, and fatty acid hydroxylation abolished the response. Moreover, sulfatide was not responsible for the natural autoreactivity toward splenocytes by XV19 T hybridoma cells. Our results reveal a promiscuity in the recognition of sulfatide...

  11. The Role of Neonatal Carnitine Palmitoyl Transferase Deficiency Type II on Proliferation of Neuronal Progenitor Cells and Layering of the Cerebral Cortex in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Heepeel Chang

    2007-06-01

    Full Text Available Neonatal Carnitine Palmitoyl Transferase Deficiency Type II, characterized by the absence of CPT II enzyme, is one of the lethal disorders of mitochondrial fatty acid oxidation. CPT II regulates the conversion of long chain fatty acids, so that its product, acyl-CoA esters, can enter the Krebs cycle and generate energy. Neonatal mutations of CPT II lead to severe disruption of the metabolism of long-chain fatty acids and result in dysmorphic features, cystic renal dysplasia, and neuronal migration defects. Examination of the brain from an approximately 15-week gestation human fetus with CPT II deficiency revealed premature formation of cerebral cortical gyri and sulci and significantly lower levels of neuronal cell proliferation in the ventricular and subventricular zones as compared to the reference cases. We used immunohistochemical markers to further characterize the effect of CPT II deficiency on progenitor cell proliferation and layering of neurons. These studies demonstrated a premature generation of layer 5 cortical neurons. In addition, both the total number and percentage of progenitor cells proliferating in the ventricular zone were markedly reduced in the CPT II case in comparison to a reference case. Our results indicate that CPT II deficiency alters the normal program of cellular proliferation and differentiation in the cortex, with early differentiation of progenitor cells associated with premature cortical maturation.

  12. The cell wall of Fusarium oxysporum

    NARCIS (Netherlands)

    Schoffelmeer, EAM; Klis, FM; Sietsma, JH; Cornelissen, BJC

    1999-01-01

    Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for 50

  13. Unique aspects of the grass cell wall

    Science.gov (United States)

    Grasses are amongst the most important crops worldwide, and the composition of their cell walls is critical for uses as food, feed, and energy crops. Grass cell walls differ dramatically from dicot cell walls in terms of the major structural polysaccharides present, how those polysaccharides are lin...

  14. Human neutrophil elastase regulates the expression and secretion of elafin (elastase-specific inhibitor) in type II alveolar epithelial cells.

    Science.gov (United States)

    Reid, P T; Marsden, M E; Cunningham, G A; Haslett, C; Sallenave, J M

    1999-08-20

    Elafin is a low molecular weight antiproteinase believed to be important in the regulation of elastase mediated tissue damage. The expression of elafin is known to be regulated by proinflammatory cytokines such as interleukin-1 beta and tumour necrosis factor but little was known regarding the effect of human neutrophil elastase (HNE). Employing a chloramphenicol acetyltransferase reporter construct of the human elafin gene, reverse transcription PCR from total cellular RNA and ELISA techniques, we have examined the effect of human neutrophil elastase on the transcription and secretion of human elafin in the pulmonary epithelial A549 cell line. Stimulation with HNE at concentrations of 10(-10) and 10(-11) M resulted in a significant upregulation of elafin promoter activity. Similarly, transcription of the endogenous human elafin gene was upregulated with HNE concentrations ranging from 10(-10) to 10(-12) M. In addition, we demonstrate that stimulation with HNE at concentrations ranging from 10(-9) and 10(-12) M resulted in a significant reduction in the secreted elafin protein as measured in the cell supernatant. These results provide further evidence for a role of elafin in the regulation of HNE driven proteolysis of the extracellular matrix. PMID:10486558

  15. Shape dynamics of growing cell walls

    OpenAIRE

    Banerjee, Shiladitya; Scherer, Norbert F.; Dinner, Aaron R.

    2015-01-01

    We introduce a general theoretical framework to study the shape dynamics of actively growing and remodeling surfaces. Using this framework we develop a physical model for growing bacterial cell walls and study the interplay of cell shape with the dynamics of growth and constriction. The model allows us to derive constraints on cell wall mechanical energy based on the observed dynamics of cell shape. We predict that exponential growth in cell size requires a constant amount of cell wall energy...

  16. Successful Allogeneic Hematopoietic Stem Cell Transplantation of a Patient Suffering from Type II Congenital Dyserythropoietic Anemia A Rare Case Report from Western India

    Science.gov (United States)

    Modi, Gaurang; Shah, Sandip; Panchal, Harsha; Patel, Apurva; Uparkar, Urmila; Anand, Asha; Parikh, Sonia; Patel, Kinnari; Shah, Kamlesh; Revannasiddaiah, Swaroop

    2015-01-01

    The most frequent form of congenital dyserythropoiesis (CDA) is congenital dyserythropoietic anemia II (CDA II). CDA II is a rare genetic anemia in humans, inherited in an autosomally recessive mode, characterized by hepatosplenomegaly normocytic anemia and hemolytic jaundice. Patients are usually transfusion-independent except in severe type. We are here reporting a case of severe transfusion-dependent type II congenital dyserythropoietic anemia in a 5-year-old patient who has undergone allogeneic hematopoietic stem cell transplantation (HSCT) at our bone marrow transplantation centre. Patient has had up until now more than 14 mL/kg/month of packed cell volume (PCV), which he required every 15 to 20 days to maintain his hemoglobin of 10 gm/dL and hematocrit of 30%. His pre-HSCT serum ferritin was 1500 ng/mL and he was on iron chelating therapy. Donor was HLA identical sibling (younger brother). The preparative regimen used was busulfan, cyclophosphamide, and antithymocyte globulin (Thymoglobulin). Cyclosporine and short-term methotrexate were used for graft versus host disease (GVHD) prophylaxis. Engraftment of donor cells was quick and the posttransplant course was uneventful. The patient is presently alive and doing well and he has been transfusion-independent for the past 33 months after HSCT. PMID:25692053

  17. Successful Allogeneic Hematopoietic Stem Cell Transplantation of a Patient Suffering from Type II Congenital Dyserythropoietic Anemia A Rare Case Report from Western India

    Directory of Open Access Journals (Sweden)

    Gaurang Modi

    2015-01-01

    Full Text Available The most frequent form of congenital dyserythropoiesis (CDA is congenital dyserythropoietic anemia II (CDA II. CDA II is a rare genetic anemia in humans, inherited in an autosomally recessive mode, characterized by hepatosplenomegaly normocytic anemia and hemolytic jaundice. Patients are usually transfusion-independent except in severe type. We are here reporting a case of severe transfusion-dependent type II congenital dyserythropoietic anemia in a 5-year-old patient who has undergone allogeneic hematopoietic stem cell transplantation (HSCT at our bone marrow transplantation centre. Patient has had up until now more than 14 mL/kg/month of packed cell volume (PCV, which he required every 15 to 20 days to maintain his hemoglobin of 10 gm/dL and hematocrit of 30%. His pre-HSCT serum ferritin was 1500 ng/mL and he was on iron chelating therapy. Donor was HLA identical sibling (younger brother. The preparative regimen used was busulfan, cyclophosphamide, and antithymocyte globulin (Thymoglobulin. Cyclosporine and short-term methotrexate were used for graft versus host disease (GVHD prophylaxis. Engraftment of donor cells was quick and the posttransplant course was uneventful. The patient is presently alive and doing well and he has been transfusion-independent for the past 33 months after HSCT.

  18. Osteoarthropathy in mucopolysaccharidosis type II

    OpenAIRE

    2013-01-01

    Introduction Mucopolysaccharidosis type II (MPS type II, Hunter syndrome) is a rare (~ 1/1500.000), X-linked inherited disorder (affects boys) due to deficiency of the lysosomal enzyme iduronate sulfatase (Xq.28). The complex clinical picture includes osteoarthropathy with a tendency to flexion stiffness and disability. In our country, the specific diagnosis and enzyme replacement therapy (ERT), are recently available in the Center for Genetic Pathology Cluj. Objectives Assessment of clinical...

  19. Shape dynamics of growing cell walls

    CERN Document Server

    Banerjee, Shiladitya; Dinner, Aaron R

    2015-01-01

    We introduce a general theoretical framework to study the shape dynamics of actively growing and remodeling surfaces. Using this framework we develop a physical model for growing bacterial cell walls and study the interplay of cell shape with the dynamics of growth and constriction. The model allows us to derive constraints on cell wall mechanical energy based on the observed dynamics of cell shape. We predict that exponential growth in cell size requires a constant amount of cell wall energy to be dissipated per unit volume. We use the model to understand and contrast growth in bacteria with different shapes such as spherical, ellipsoidal, cylindrical and toroidal morphologies. Coupling growth to cell wall constriction, we predict a discontinuous shape transformation, from partial constriction to cell division, as a function of the chemical potential driving cell-wall synthesis. Our model for cell wall energy and shape dynamics relates growth kinetics with cell geometry, and provides a unified framework to d...

  20. Transcriptomic profiles of peripheral white blood cells in type II diabetes and racial differences in expression profiles

    Directory of Open Access Journals (Sweden)

    Mao Jinghe

    2011-12-01

    Full Text Available Abstract Background Along with obesity, physical inactivity, and family history of metabolic disorders, African American ethnicity is a risk factor for type 2 diabetes (T2D in the United States. However, little is known about the differences in gene expression and transcriptomic profiles of blood in T2D between African Americans (AA and Caucasians (CAU, and microarray analysis of peripheral white blood cells (WBCs from these two ethnic groups will facilitate our understanding of the underlying molecular mechanism in T2D and identify genetic biomarkers responsible for the disparities. Results A whole human genome oligomicroarray of peripheral WBCs was performed on 144 samples obtained from 84 patients with T2D (44 AA and 40 CAU and 60 healthy controls (28 AA and 32 CAU. The results showed that 30 genes had significant difference in expression between patients and controls (a fold change of 1.4 with a P value Conclusions These newly identified genetic markers in WBCs provide valuable information about the pathophysiology of T2D and can be used for diagnosis and pharmaceutical drug design. Our results also found that AA and CAU patients with T2D express genes and pathways differently.

  1. Type II VLDLR promotes cell migration by up-regulation of VEGF, MMP2 and MMP7 in breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Lei He; Yanjun Lu; Jianli Guo

    2013-01-01

    Objective:Very low density lipoprotein receptor (VLDLR) has been considered as a multiple function receptor due to binding numerous ligands, causing endocytosis and regulating cel ular signaling. Our group previously reported that type II VLDLR overexpression in breast cancer tissues. The purpose of this study is to characterize type II VLDLR activities during cel migration using breast cancer cel lines. Methods:Western blotting was used to test protein expression. Cel migration was analyzed by Scratch wound assay. The mRNA expression was tested by realtime-PCR. Reporter assay was to test the transcription activity. Results:Scratch wound and Report assay indicated up-regulated VLDLR II expression promotes cel migration via activating Wnt/β-catenin pathway. The target genes such as VEGF, MMP2 and MMP7 were upregulated in VLDLR II overexpressed cel s. On the contrary, cel s treated with TFPI had an inhibition ef ect of cel migration response to down-regulation of VLDLR II. Conclusion:Type II VLDLR conferred a migration and invasion advantage by activating Wnt/β-catenin pathway, then up-regulating VEGF, MMP2 and MMP7 in breast cancer cel s.

  2. Transient in utero disruption of Cystic Fibrosis Transmembrane Conductance Regulator causes phenotypic changes in Alveolar Type II cells in adult rats

    Directory of Open Access Journals (Sweden)

    Larson Janet E

    2009-03-01

    Full Text Available Abstract Background Mechanicosensory mechanisms regulate cell differentiation during lung organogenesis. We have previously demonstrated that cystic fibrosis transmembrane conductance regulator (CFTR was integral to stretch-induced growth and development and that transient expression of antisense-CFTR (ASCFTR had negative effects on lung structure and function. In this study, we examined adult alveolar type II (ATII cell phenotype after transient knock down of CFTR by adenovirus-directed in utero expression of ASCFTR in the fetal lung. Results In comparison to (reporter gene-treated Controls, ASCFTR-treated adult rat lungs showed elevated phosphatidylcholine (PC levels in the large but not in the small aggregates of alveolar surfactant. The lung mRNA levels for SP-A and SP-B were lower in the ASCFTR rats. The basal PC secretion in ATII cells was similar in the two groups. However, compared to Control ATII cells, the cells in ASCFTR group showed higher PC secretion with ATP or phorbol myristate acetate. The cell PC pool was also larger in the ASCFTR group. Thus, the increased surfactant secretion in ATII cells could cause higher PC levels in large aggregates of surfactant. In freshly isolated ATII cells, the expression of surfactant proteins was unchanged, suggesting that the lungs of ASCFTR rats contained fewer ATII cells. Gene array analysis of RNA of freshly isolated ATII cells from these lungs showed altered expression of several genes including elevated expression of two calcium-related genes, Ca2+-ATPase and calcium-calmodulin kinase kinase1 (CaMkk1, which was confirmed by real-time PCR. Western blot analysis showed increased expression of calmodulin kinase I, which is activated following phosphorylation by CaMkk1. Although increased expression of calcium regulating genes would argue in favor of Ca2+-dependent mechanisms increasing surfactant secretion, we cannot exclude contribution of alternate mechanisms because of other phenotypic

  3. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells

    International Nuclear Information System (INIS)

    Highlights: → We analyzed Phosphatidylinositol 5-phosphate kinase IIβ (PIPKIIβ) function in cancer. → PIPKIIβ is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. → PIPKIIβ suppresses cellular motility through E-cadherin induction in SW480 cells. → Nuclear PIP2 but not plasma membrane-localized PIP2 mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) has anti-cancer activity in several colon cancers. 1α,25(OH)2D3 induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however, its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKIIβ) but not PIPKIIα is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLCδ1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLCδ1 PHD inhibited 1α,25(OH)2D3-induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P2 production mediates E-cadherin expression through PIPKIIβ in a VDR-dependent manner. PIPKIIβ is also involved in the suppression of the cell motility induced by 1α,25(OH)2D3. These results indicate that PIPKIIβ-mediated PI(4,5)P2 signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.

  4. Genetics Home Reference: mucopolysaccharidosis type II

    Science.gov (United States)

    ... Understand Genetics Home Health Conditions mucopolysaccharidosis type II mucopolysaccharidosis type II Enable Javascript to view the expand/ ... boxes. Print All Open All Close All Description Mucopolysaccharidosis type II (MPS II), also known as Hunter ...

  5. Minimal type II seesaw model

    International Nuclear Information System (INIS)

    We propose a minimal type II seesaw model by introducing only one right-handed neutrino besides the SU(2)L triplet Higgs to the standard model. In the usual type II seesaw models with several right-handed neutrinos, the contributions of the right-handed neutrinos and the triplet Higgs to the CP asymmetry, which stems from the decay of the lightest right-handed neutrino, are proportional to their respective contributions to the light neutrino mass matrix. However, in our minimal type II seesaw model, this CP asymmetry is just given by the one-loop vertex correction involving the triplet Higgs, even though the contribution of the triplet Higgs does not dominate the light neutrino masses. For illustration, the Fritzsch-type lepton mass matrices are considered

  6. Cell wall remodelling enzymes modulate fungal cell wall elasticity and osmotic stress resistance

    OpenAIRE

    Ene, Iuliana; Walker, Louise; Schiavone, Marion; Lee, Keunsook K.; Dague, Etienne; Gow, Neil A.R.; Munro, Carol A

    2015-01-01

    The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Ce...

  7. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    OpenAIRE

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to...

  8. Architecture of dermatophyte cell Walls: Electron microscopic and biochemical analysis

    Science.gov (United States)

    Nozawa, Y.; Kitajima, Y.

    1984-01-01

    A review with 83 references on the cell wall structure of dermatophytes is presented. Topics discussed include separation and preparation of cell walls; microstructure of cell walls by electron microscopy; chemical composition of cell walls; structural model of cell walls; and morphological structure of cell walls.

  9. Gentamicin Blocks the ACh-Induced BK Current in Guinea Pig Type II Vestibular Hair Cells by Competing with Ca2+ at the l-Type Calcium Channel

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2014-04-01

    Full Text Available Type II vestibular hair cells (VHCs II contain big-conductance Ca2+-dependent K+ channels (BK and L-type calcium channels. Our previous studies in guinea pig VHCs II indicated that acetylcholine (ACh evoked the BK current by triggering the influx of Ca2+ ions through l-type Ca2+ channels, which was mediated by M2 muscarinic ACh receptor (mAChRs. Aminoglycoside antibiotics, such as gentamicin (GM, are known to have vestibulotoxicity, including damaging effects on the efferent nerve endings on VHCs II. This study used the whole-cell patch clamp technique to determine whether GM affects the vestibular efferent system at postsynaptic M2-mAChRs or the membrane ion channels. We found that GM could block the ACh-induced BK current and that inhibition was reversible, voltage-independent, and dose-dependent with an IC50 value of 36.3 ± 7.8 µM. Increasing the ACh concentration had little influence on GM blocking effect, but increasing the extracellular Ca2+ concentration ([Ca2+]o could antagonize it. Moreover, 50 µM GM potently blocked Ca2+ currents activated by (--Bay-K8644, but did not block BK currents induced by NS1619. These observations indicate that GM most likely blocks the M2 mAChR-mediated response by competing with Ca2+ at the l-type calcium channel. These results provide insights into the vestibulotoxicity of aminoglycoside antibiotics on mammalian VHCs II.

  10. Cell Wall Assembly in Saccharomyces cerevisiae

    OpenAIRE

    Lesage, Guillaume; Bussey, Howard

    2006-01-01

    An extracellular matrix composed of a layered meshwork of β-glucans, chitin, and mannoproteins encapsulates cells of the yeast Saccharomyces cerevisiae. This organelle determines cellular morphology and plays a critical role in maintaining cell integrity during cell growth and division, under stress conditions, upon cell fusion in mating, and in the durable ascospore cell wall. Here we assess recent progress in understanding the molecular biology and biochemistry of cell wall synthesis and it...

  11. Outcome in tyrosinaemia type II.

    OpenAIRE

    Barr, D G; Kirk, J. M.; Laing, S C

    1991-01-01

    Tyrosinaemia type II was diagnosed in a boy with failure to thrive and in his sister on neonatal screening. On diet the outcome, at 12 and 10 years respectively, has been excellent in respect of oculocutaneous sequelae, growth, and psychomotor development, contrasting with the generally unfavourable outcome in most reported cases.

  12. How do plant cell walls extend?

    Science.gov (United States)

    Cosgrove, D. J.

    1993-01-01

    This article briefly summarizes recent work that identifies the biophysical and biochemical processes that give rise to the extension of plant cell walls. I begin with the biophysical notion of stress relaxation of the wall and follow with recent studies of wall enzymes thought to catalyze wall extension and relaxation. Readers should refer to detailed reviews for more comprehensive discussion of earlier literature (Taiz, 1984; Carpita and Gibeaut, 1993; Cosgrove, 1993).

  13. Alterations of alveolar type II cells and intraalveolar surfactant after bronchoalveolar lavage and perfluorocarbon ventilation. An electron microscopical and stereological study in the rat lung

    Directory of Open Access Journals (Sweden)

    Burkhardt Wolfram

    2007-06-01

    Full Text Available Abstract Background Repeated bronchoalveolar lavage (BAL has been used in animals to induce surfactant depletion and to study therapeutical interventions of subsequent respiratory insufficiency. Intratracheal administration of surface active agents such as perfluorocarbons (PFC can prevent the alveolar collapse in surfactant depleted lungs. However, it is not known how BAL or subsequent PFC administration affect the intracellular and intraalveolar surfactant pool. Methods Male wistar rats were surfactant depleted by BAL and treated for 1 hour by conventional mechanical ventilation (Lavaged-Gas, n = 5 or partial liquid ventilation with PF 5080 (Lavaged-PF5080, n = 5. For control, 10 healthy animals with gas (Healthy-Gas, n = 5 or PF5080 filled lungs (Healthy-PF5080, n = 5 were studied. A design-based stereological approach was used for quantification of lung parenchyma and the intracellular and intraalveolar surfactant pool at the light and electron microscopic level. Results Compared to Healthy-lungs, Lavaged-animals had more type II cells with lamellar bodies in the process of secretion and freshly secreted lamellar body-like surfactant forms in the alveoli. The fraction of alveolar epithelial surface area covered with surfactant and total intraalveolar surfactant content were significantly smaller in Lavaged-animals. Compared with Gas-filled lungs, both PF5080-groups had a significantly higher total lung volume, but no other differences. Conclusion After BAL-induced alveolar surfactant depletion the amount of intracellularly stored surfactant is about half as high as in healthy animals. In lavaged animals short time liquid ventilation with PF5080 did not alter intra- or extracellular surfactant content or subtype composition.

  14. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kouchi, Zen, E-mail: zkouchi@toyaku.ac.jp [Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-city, Tokyo 192-0392 (Japan); Fujiwara, Yuki [Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-city, Tokyo 192-0392 (Japan); Yamaguchi, Hideki [Division of Metastasis and Invasion Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-city, Saitama 332-0012 (Japan); Nakamura, Yoshikazu; Fukami, Kiyoko [Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-city, Tokyo 192-0392 (Japan)

    2011-05-20

    Highlights: {yields} We analyzed Phosphatidylinositol 5-phosphate kinase II{beta} (PIPKII{beta}) function in cancer. {yields} PIPKII{beta} is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. {yields} PIPKII{beta} suppresses cellular motility through E-cadherin induction in SW480 cells. {yields} Nuclear PIP{sub 2} but not plasma membrane-localized PIP{sub 2} mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1{alpha},25-dihydroxyvitamin D{sub 3} (1{alpha},25(OH){sub 2}D{sub 3}) has anti-cancer activity in several colon cancers. 1{alpha},25(OH){sub 2}D{sub 3} induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however, its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKII{beta}) but not PIPKII{alpha} is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLC{delta}1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P{sub 2}) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLC{delta}1 PHD inhibited 1{alpha},25(OH){sub 2}D{sub 3}-induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P{sub 2} production mediates E-cadherin expression through PIPKII{beta} in a VDR-dependent manner. PIPKII{beta} is also involved in the suppression of the cell motility induced by 1{alpha},25(OH){sub 2}D{sub 3}. These results indicate that PIPKII{beta}-mediated PI(4,5)P{sub 2} signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.

  15. Microanalysis of Plant Cell Wall Polysaccharides

    Institute of Scientific and Technical Information of China (English)

    Nicolai Obel; Veronika Erben; Tatjana Schwarz; Stefan Kühne; Andrea Fodor; Markus Pauly

    2009-01-01

    Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first iso-lating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apo-plastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.

  16. Glycoprotein component of plant cell walls

    International Nuclear Information System (INIS)

    The primary wall surrounding most dicotyledonous plant cells contains a hydroxyproline-rich glycoprotein (HRGP) component named extensin. A small group of glycopeptides solubilized from isolated cell walls by proteolysis contained a repeated pentapeptide glycosylated by tri- and tetraarabinosides linked to hydroxyproline and, by galactose, linked to serine. Recently, two complementary approaches to this problem have provided results which greatly increase the understanding of wall extensin. In this paper the authors describe what is known about the structure of soluble extensin secreted into the walls of the carrot root cells

  17. Surfactant protein group with molecular weights 28,000 to 36,000 daltons (SP 28-36) increases the association of phospholipids with freshly isolated type II cells

    International Nuclear Information System (INIS)

    Previous studies demonstrated that intratracheally-instilled radiolabelled subfractions of alveolar surfactant which contain SP 28-36 were incorporated into lamellar bodies to a greater extent than were SP 28-36-poor subfractions. The authors have characterized the effects of isolated SP 28-36 on the association of a mixture of surfactant-like synthetic lipids with isolated type II cells. Rat SP 28-36 was isolated according to modifications of the method of Hawgood et al., type II cells were isolated by differential adherence and averaged 84% pure. 267 nmol of lipid was incubated with 2.5 x 106 cells in 1ml of medium for 60 min. In the absence of added SP 28-36, the association of labelled dipalmitoylphosphatidylcholine (DPPC) averaged 0.67 (+/-.16) nmol DPPC/106 cells. SP 28-36 (15μg) increased the association of DPPC to 5.01 (+/- 0.94) nmol/106 cells (n=4). The association was dependent on protein concentration and reached a maximum at 10μg SP 28-36/ml. The effect was inhibited by the addition of polyclonal antibodies against SP 28-36. These results are consistent with a hypothesis that SP 28-36 mediates uptake of surfactant-like lipids by isolated type II cells

  18. Cell wall composition of chlorococcal algae

    OpenAIRE

    Blumreisinger, Maria; Meindl, Doris; Loos, Eckhard

    1983-01-01

    The cell walls of representatives of the genera Chlorella, Monoraphidium, Ankistrodesmus and Scenedesmus contained 24–74% neutral sugars, 1–24% uronic acids, 2–16% protein and 0–15% glucosamine. Two types of cell walls could be discerned containing as main sugars either rhamnose and galactose or mannose and glucose with a lack of galactose.

  19. WallProtDB, a database resource for plant cell wall proteomics

    OpenAIRE

    San Clemente, Hélène; Jamet, Elisabeth

    2015-01-01

    Background During the last fifteen years, cell wall proteomics has become a major research field with the publication of more than 50 articles describing plant cell wall proteomes. The WallProtDB database has been designed as a tool to facilitate the inventory, the interpretation of cell wall proteomics data and the comparisons between cell wall proteomes. Results WallProtDB (http://www.polebio.lrsv.ups-tlse.fr/WallProtDB/) presently contains 2170 proteins and ESTs identified experimentally i...

  20. The effect of interleukin-13 (IL-13 and interferon-γ (IFN-γ on expression of surfactant proteins in adult human alveolar type II cells in vitro

    Directory of Open Access Journals (Sweden)

    Mason Robert J

    2010-11-01

    Full Text Available Abstract Background Surfactant proteins are produced predominantly by alveolar type II (ATII cells, and the expression of these proteins can be altered by cytokines and growth factors. Th1/Th2 cytokine imbalance is suggested to be important in the pathogenesis of several adult lung diseases. Recently, we developed a culture system for maintaining differentiated adult human ATII cells. Therefore, we sought to determine the effects of IL-13 and IFN-γ on the expression of surfactant proteins in adult human ATII cells in vitro. Additional studies were done with rat ATII cells. Methods Adult human ATII cells were isolated from deidentified organ donors whose lungs were not suitable for transplantation and donated for medical research. The cells were cultured on a mixture of Matrigel and rat-tail collagen for 8 d with differentiation factors and human recombinant IL-13 or IFN-γ. Results IL-13 reduced the mRNA and protein levels of surfactant protein (SP-C, whereas IFN-γ increased the mRNA level of SP-C and proSP-C protein but not mature SP-C. Neither cytokine changed the mRNA level of SP-B but IFN-γ slightly decreased mature SP-B. IFN-γ reduced the level of the active form of cathepsin H. IL-13 also reduced the mRNA and protein levels of SP-D, whereas IFN-γ increased both mRNA and protein levels of SP-D. IL-13 did not alter SP-A, but IFN-γ slightly increased the mRNA levels of SP-A. Conclusions We demonstrated that IL-13 and IFN-γ altered the expression of surfactant proteins in human adult ATII cells in vitro. IL-13 decreased SP-C and SP-D in human ATII cells, whereas IFN-γ had the opposite effect. The protein levels of mature SP-B were decreased by IFN-γ treatment, likely due to the reduction in active form cathpesin H. Similarly, the active form of cathepsin H was relatively insufficient to fully process proSP-C as IFN-γ increased the mRNA levels for SP-C and proSP-C protein, but there was no increase in mature SP-C. These observations

  1. Safranine fluorescent staining of wood cell walls.

    Science.gov (United States)

    Bond, J; Donaldson, L; Hill, S; Hitchcock, K

    2008-06-01

    Safranine is an azo dye commonly used for plant microscopy, especially as a stain for lignified tissues such as xylem. Safranine fluorescently labels the wood cell wall, producing green/yellow fluorescence in the secondary cell wall and red/orange fluorescence in the middle lamella (ML) region. We examined the fluorescence behavior of safranine under blue light excitation using a variety of wood- and fiber-based samples of known composition to interpret the observed color differentiation of different cell wall types. We also examined the basis for the differences in fluorescence emission using spectral confocal microscopy to examine lignin-rich and cellulose-rich cell walls including reaction wood and decayed wood compared to normal wood. Our results indicate that lignin-rich cell walls, such as the ML of tracheids, the secondary wall of compression wood tracheids, and wood decayed by brown rot, tend to fluoresce red or orange, while cellulose-rich cell walls such as resin canals, wood decayed by white rot, cotton fibers and the G-layer of tension wood fibers, tend to fluoresce green/yellow. This variation in fluorescence emission seems to be due to factors including an emission shift toward red wavelengths combined with dye quenching at shorter wavelengths in regions with high lignin content. Safranine fluorescence provides a useful way to differentiate lignin-rich and cellulose-rich cell walls without counterstaining as required for bright field microscopy. PMID:18802812

  2. Cell wall proteins: a new insight through proteomics

    OpenAIRE

    Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Pont-Lezica, Rafael F

    2006-01-01

    Cell wall proteins are essential constituents of plant cell walls; they are involved in modifications of cell wall components, wall structure, signaling and interactions with plasma membrane proteins at the cell surface. The application of proteomic approaches to the cell wall compartment raises important questions: are there technical problems specific to cell wall proteomics? What kinds of proteins can be found in Arabidopsis walls? Are some of them unexpected? What sort of post-translation...

  3. Prenatal diagnosis of vitamin D-dependent rickets, type II: response to 1,25-dihydroxyvitamin D in amniotic fluid cells and fetal tissues.

    Science.gov (United States)

    Weisman, Y; Jaccard, N; Legum, C; Spirer, Z; Yedwab, G; Even, L; Edelstein, S; Kaye, A M; Hochberg, Z

    1990-10-01

    Vitamin D-dependent rickets type II (VDDR-II; hereditary resistance to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]), an autosomal recessive genetic disease that results from a failure to respond to 1,25-(OH)2D3, is characterized by severe rickets, hypocalcemia, growth retardation, and high prevalence of alopecia. We used amniotic fluid cells in the 17th week of gestation to detect VDDR-II in fetuses at risk for the defect. First, we demonstrated in cells obtained from 15 control pregnancies the presence of a specific high affinity 1,25-(OH)2D3 receptor (Kd = 0.3 x 10(-11) mol/L; maximal number of binding sites, 6.1 fmol/mg protein) and 1,25-(OH)2D3-induced 25-hydroxyvitamin D3-24-hydroxylase activity (up to 30-fold increase). Amniotic fluid cells from a woman who had already given birth to a child with VDDR-II contained receptors that bound [3H]1,25-(OH)2D3 normally and responded to 1,25-(OH)2D3 stimulation with a 10-fold increase in 24-hydroxylase activity. The fetus was, therefore, judged unaffected, and a normal baby girl was born. At the age of 16 months she did not demonstrate clinical or biochemical features of VDDR-II. Amniotic fluid cells from another mother of a child with VDDR-II were unable to bind [3H]1,25-(OH)2D3, and the hormone failed to stimulate 24-hydroxylase activity. VDDR-II in this fetus was confirmed after termination of pregnancy by the total inability of 1,25-(OH)2D3 to stimulate 24-hydroxylase activity in tissue explants and cell cultures prepared from the fetus's kidney and skin. In contrast, tissues from dead control fetuses responded to stimulation by 1,25-(OH)2D3 with a 3- to 10-fold increase in 24-hydroxylase activity. Fetal kidney and skin explants and cell cultures also synthesized a [3H]1,25-(OH)2D3-like metabolite from [3H]25-OHD3 as early as the 17th week of gestation. 1,25-(OH)2D3 (10 nM) decreased the in vitro synthesis of the [3H]1,25-(OH)2D3-like metabolite in tissues from dead control fetuses, but not from the affected fetus. Thus

  4. Leukocyte Adhesion Deficiency Type II is a generalized defect of de novo GDP-fucose biosynthesis. Endothelial cell fucosylation is not required for neutrophil rolling on human nonlymphoid endothelium.

    OpenAIRE

    Karsan, A.; Cornejo, C J; Winn, R K; Schwartz, B R; Way, W; Lannir, N; Gershoni-Baruch, R; Etzioni, A; Ochs, H. D.; Harlan, J. M.

    1998-01-01

    Leukocyte Adhesion Deficiency Type II (LAD II) is a recently described syndrome and the two patients with this defect lack fucosylated glycoconjugates. These glycoconjugates include the selectin ligand, sialyl LewisX, and various fucosylated blood group antigens. To date, the molecular anomaly in these patients has not been identified. We localized the defect in LAD II to the de novo pathway of GDP-fucose biosynthesis, by inducing cell-surface expression of fucosylated glycoconjugates after e...

  5. Role of alveolar type II cells and of surfactant-associated protein C mRNA levels in the pathogenesis of respiratory distress in mink kits infected with Aleutian mink disease parvovirus.

    OpenAIRE

    Viuff, B; Aasted, B; Alexandersen, S.

    1994-01-01

    Neonatal mink kits infected with Aleutian mink disease parvovirus (ADV) develop an acute interstitial pneumonia with clinical symptoms and pathological lesions that resemble those seen in preterm human infants with respiratory distress syndrome and in human adults with adult respiratory distress syndrome. We have previously suggested that ADV replicates in the alveolar type II epithelial cells of the lung. By using double in situ hybridization, with the simultaneous use of a probe to detect A...

  6. Molecular regulation of plant cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  7. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    OpenAIRE

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell wa...

  8. 2003 Plant Cell Walls Gordon Conference

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Cosgrove

    2004-09-21

    This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

  9. Refractive index of plant cell walls

    Science.gov (United States)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  10. Isolation and Culture of Human Alveolar Type II Pneumocytes.

    Science.gov (United States)

    Witherden, I R; Tetley, T D

    2001-01-01

    Alveolar type II pneumocytes (alveolar type II cells; TII cells) play an important role in the homeostasis of the alveolar unit. They are the progenitor cells to the type I pneumocyte and are therefore responsible for regeneration of alveolar epithelium following alveolar epithelial cell damage. The type I cell covers over 90% of the alveolar surface, reflecting its capacity to stretch into a flattened cell with very little depth (approx. 0.1 µm), but with a large surface area, to facilitate gas exchange. Nevertheless, the type II cell outnumbers type I cells, estimated to be by 2:1 in rodents. Most of the type II cell lies buried in the interstitium of the alveolus, with only the apical tip of the cell reaching into the airspace, through which another crucial function, provision of alveolar surfactant, occurs. Surfactant synthesis and secretion is a unique feature of type II cells; surfactant consists of a high proportion of phospholipids (approx. 90%) and a small proportion of protein (approx. 10%), which contains surfactant apoprotein (SP), of which four have so far been described, SP-A, SP-B, SP-C, and SP-D (1,2). Surfactant is highly surface active and is essential to prevent alveolar collapse. In addition, surfactant has many other roles, including pulmonary host defense. Compromised surfactant synthesis and function are believed to be a feature of numerous disease states (1,2), including infant respiratory distress syndrome, adult respiratory distress syndrome, alveolar proteinosis, and microbial infection. PMID:21336897

  11. Homogenization of a viscoelastic model for plant cell wall biomechanics

    OpenAIRE

    Ptashnyk, Mariya; Seguin, Brian

    2015-01-01

    The microscopic structure of a plant cell wall is given by cellulose microfibrils embedded in a cell wall matrix. In this paper we consider a microscopic model for interactions between viscoelastic deformations of a plant cell wall and chemical processes in the cell wall matrix. We consider elastic deformations of the cell wall microfibrils and viscoelastic Kelvin--Voigt type deformations of the cell wall matrix. Using homogenization techniques (two-scale convergence and periodic unfolding me...

  12. Molecular cloning of complementary DNAs encoding the heavy chain of the human 4F2 cell-surface antigen: a type II membrane glycoprotein involved in normal and neoplastic cell growth

    International Nuclear Information System (INIS)

    Complementary DNA (cDNA) clones encoding the heavy chain of the heterodimeric human membrane glycoprotein 4F2 have been isolated by immunoscreening of a λgt11 expression library. The identity of these clones has been confirmed by hybridization to RNA and DNA prepared from mouse L-cell transfectants, which were produced by whole cell gene transfer and selected for cell-surface expression of the human 4F2 heavy chain. DNA sequence analysis suggest that the 4F2 heavy-chain cDNAs encode an approximately 526-amino acid type II membrane glycoprotein, which is composed of a large C-terminal extracellular domain, a single potential transmembrane region, and a 50-81 amino acid N-terminal intracytoplasmic domain. Southern blotting experiments have shown that the 4F2 heavy-chain cDNAs are derived from a single-copy gene that has been highly conserved during mammalian evolution

  13. Function of laccases in cell wall biosynthesis

    DEFF Research Database (Denmark)

    Larsen, Anders; Holm, Preben Bach; Andersen, Jeppe Reitan

    2011-01-01

    Laccases are multicopper oxidases capable of polymerizing monolignols. Histochemical assays have shown temporal and spatial correlation with secondary cell wall formation in both herbs and woody perennials. However, in plants laccases constitutes a relatively large group of isoenzymes with unique...... substrate specificities and expression patterns. As part of the strategic research centre Bio4Bio, the present project deals with laccase functions in relation to cell wall formation in grasses based on a study of the model species Brachypodium distachyon. Thirty-one isozymes have been retrieved from the...... hybridization. Specific isozymes that show high correlation with the process of secondary cell wall formation will be further studied in a reverse genetic study in which candidates will be knocked out using RNA interference. Phenotypes of knock-out mutants are to be described in relation to cell wall...

  14. Cell wall remodeling under abiotic stress

    OpenAIRE

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted a...

  15. Cell-wall dynamics in growing bacteria

    Science.gov (United States)

    Furchtgott, Leon; Wingreen, Ned; Huang, Kerwyn Casey

    2010-03-01

    Bacterial cells come in a large variety of shapes, and cell shape plays an important role in the regulation of many biological functions. Cell shape in bacterial cells is dictated by a cell wall composed of peptidoglycan, a polymer made up of long, stiff glycan strands and flexible peptide crosslinks. Although much is understood about the structural properties of peptidoglycan, little is known about the dynamics of cell wall organization in bacterial cells. In particular, during cell growth, how does the bacterial cell wall continuously expand and reorganize while maintaining cell shape? In order to investigate this question quantitatively, we model the cell wall of the Gram-negative bacterium Escherichia coli using a simple elastic model, in which glycan and peptide subunits are treated as springs with different spring constants and relaxed lengths. We consider the peptidoglycan network as a single-layered network of these springs under tension due to an internal osmotic pressure. Within this model, we simulate possible hypotheses for cell growth as different combinations of addition of new springs and breakage of old springs.

  16. Growth suppression by transforming growth factor beta 1 of human small-cell lung cancer cell lines is associated with expression of the type II receptor

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Rygaard, K;

    1994-01-01

    observed in two cell lines expressing only type III receptor and in TGF-beta-r negative cell lines. In two cell lines expressing all three receptor types, growth suppression was accompanied by morphological changes. To evaluate the possible involvement of the retinoblastoma protein (pRb) in mediating the...

  17. "Steiner trees" between cell walls of sisal

    Institute of Scientific and Technical Information of China (English)

    LI GuanShi; YIN YaJun; LI Yan; ZHONG Zheng

    2009-01-01

    Through careful analysis on the cross-section of sisal fibers,it is found that the middle lamellae between the cell walls have clear geometric characteristics:between the cell walls of three neighboring cells,the middle lamellae form a three-way junction with 120°symmetry. If the neighboring three-way junctions are connected,a network of Steiner tree with angular symmetry and topological invariability is formed. If more and more Steiner trees are connected,a network of Steiner rings is generated. In another word,idealized cell walls and the middle lamellae are dominated by the Steiner geometry. This geometry not only depicts the geometric symmetry,the topological invariability and minimal property of the middle lamellae,but also controls the mechanics of sisal fibers.

  18. Increased ectodomain shedding of cell adhesion molecule 1 as a cause of type II alveolar epithelial cell apoptosis in patients with idiopathic interstitial pneumonia

    OpenAIRE

    Yoneshige, Azusa; Hagiyama, Man; Inoue, Takao; Mimae, Takahiro; Kato, Takashi; Okada, Morihito; Enoki, Eisuke; Ito, Akihiko

    2015-01-01

    Background Lung alveolar epithelial cell (AEC) apoptosis has attracted attention as an early pathogenic event in the development of idiopathic interstitial pneumonia (IIP); however, the causative mechanism remains unclear. Cell adhesion molecule 1 (CADM1) is an AEC adhesion molecule in the immunoglobulin superfamily. It generates a membrane-associated C-terminal fragment, αCTF, through protease-mediated ectodomain shedding, termed α-shedding. Increased CADM1 α-shedding contributes to AEC apop...

  19. Phagocytic properties of lung alveolar wall cells

    Directory of Open Access Journals (Sweden)

    Tanaka,Akisuke

    1974-04-01

    Full Text Available For the purpose to define the mechanism of heavy metal intoxication by inhalation, morphologic observations were made on rat lungs after nasal instillation of iron colloid particles of positive and negative electric charges. Histochemical observation was also made on the liver and spleen of these animals. The instilled iron colloid particles reach the alveolar cavity easily, as can be seen in the tissue sections stained by Prussian blue reaction. Alveolar macrophages do take up them avidly both of positive and negative charges, though much less the positive particles than negative ones. In contrast, the alveolar epithelial cells take up solely positive particles by phagocytosis but not negative ones. Electron microscope observation revealed that the positive particles are ingested by Type I epithelial cells by pinocytosis and by Type II cells by phagocytosis as well. Then the iron colloid particles are transferred into the basement membrane by exocytosis. Travelling through the basement membrane they are again taken up by capillary endothelial cells by phagocytosis. Some particles were found in the intercellular clefts of capillary endothelial cells but not any iron colloid particles in the intercellular spaces of epithelial cells and in the capillary lumen. However, the liver and spleen tissues of the animals given iron colloid showed a strong positive iron reaction. On the basis of these observations, the mechanism of acute intoxication by inhaling heavy metal dusts like lead fume is discussed from the view point of selective uptake of alveolar epithelial and capillary endothelial cells for the particles of the positive electric cha'rge.

  20. Roles of membrane trafficking in plant cell wall dynamics

    OpenAIRE

    Ebine, Kazuo; Ueda, Takashi

    2015-01-01

    The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transpor...

  1. Characterization of the Sclerotinia sclerotiorum cell wall proteome.

    Science.gov (United States)

    Liu, Longzhou; Free, Stephen J

    2016-08-01

    We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes. PMID:26661933

  2. The Divergent CD8+ T Cell Adjuvant Properties of LT-IIb and LT-IIc, Two Type II Heat-Labile Enterotoxins, Are Conferred by Their Ganglioside-Binding B Subunits.

    Directory of Open Access Journals (Sweden)

    John C Hu

    Full Text Available Poor immune responses elicited by vaccine antigens can be enhanced by the use of appropriate adjuvants. Type II heat-labile enterotoxins (HLT produced by Escherichia coli are extremely potent adjuvants that augment both humoral and cellular immunity to co-administered antigens. Recent findings demonstrate that LT-IIb and LT-IIc, two type II HLT adjuvants, exhibit potent, yet distinguishable CD8(+ T cell adjuvant properties. While LT-IIc elicits a robust and rapid response at one week after administration, LT-IIb engenders a more gradual and slower expansion of antigen-specific CD8(+ T cells that correlates with improved immunity. The variations in immune effects elicited by the HLT adjuvants have been generally attributed to their highly divergent B subunits that mediate binding to various gangliosides on cell surfaces. Yet, HLT adjuvants with point mutations in the B subunit that significantly alter ganglioside binding retain similar adjuvant functions. Therefore, the contribution of the B subunits to adjuvanticity remains unclear. To investigate the influence of the B subunits on the enhancement of immune responses by LT-IIb and LT-IIc, chimeric HLT were engineered in which the B subunits of the two adjuvants were exchanged. Comparing the immune potentiating characteristics of both native and chimeric HLT adjuvants, it was found that not all the adjuvant characteristics of the HLT adjuvants were modulated by the respective B subunits. Specifically, the differences in the CD8(+ T cell kinetics and protective responses elicited by LT-IIb and LT-IIc did indeed followed their respective B subunits. However, induction of IL-1 from macrophages and the capacity to intoxicate cells in a mouse Y1 adrenal cell bioassay did not correlate with the B subunits. Therefore, it is likely that additional factors other than the B subunits contribute to the effects elicited by the HLT adjuvants.

  3. Suppression of type II collagen-induced arthritis by intragastric administration of soluble type II collagen.

    OpenAIRE

    NAGLER-ANDERSON, C; Bober, L A; Robinson, M E; Siskind, G W; Thorbecke, G. J.

    1986-01-01

    Although oral administration of protein antigens may lead to specific immunologic unresponsiveness, this method of immunoregulation has not been applied to models of autoimmune disease. Type II collagen-induced arthritis is an animal model of polyarthritis induced in susceptible mice and rats by immunization with type II collagen, a major component of cartilage. Intragastric administration of soluble type II collagen, prior to immunization with type II collagen in adjuvant, suppresses the inc...

  4. Cell Wall Heterogeneity in Root Development of Arabidopsis.

    Science.gov (United States)

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  5. Arrangement of peptidoglycan in the cell wall of Staphylococcus spp.

    OpenAIRE

    Amako, K; Umeda, A.; Murata, K

    1982-01-01

    The arrangement of peptidoglycan in the cell wall of Staphylococcus was observed with the newly developed freeze-fracture technique, using n-octanol instead of water as the freezing medium. The replica of the trichloroacetic acid-extracted cell wall (TCA-wall) showed two areas. One of them has a concentric circular structure, a characteristic surface structure of the staphylococcal cell wall, and the other showed an irregular and rough surface. The chemical analysis of the wall revealed that ...

  6. Fluorescent tags to explore cell wall structure and dynamics

    OpenAIRE

    Gonneau, Martine; Höfte, Herman; Vernhettes, Samantha

    2012-01-01

    Plant cell walls are highly dynamic and heterogeneous structures, which vary between cell types, growth stages but also between microdomains within a single cell wall. In this review, we summarize the imaging techniques using fluorescent tags that are currently being used and which should in the coming years revolutionize our understanding of the dynamics of cell wall architecture and the cellular processes involved in the synthesis of cell wall components.

  7. Measuring in vitro extensibility of growing plant cell walls.

    Science.gov (United States)

    Cosgrove, Daniel J

    2011-01-01

    This article summarizes the theory and practical aspects of measuring cell wall properties by four different extensometer techniques and how the results of these methods relate to the concept and ideal measurement of cell wall extensibility in the context of cell growth. These in vivo techniques are particularly useful for studies of the molecular basis of cell wall extension. Measurements of breaking strength, elastic compliance, and plastic compliance may be informative about changes in cell wall structure, whereas measurements of wall stress relaxation and creep are sensitive to both changes in wall structure and wall-loosening processes, such as those mediated by expansins and some lytic enzymes. A combination of methods is needed to obtain a broader view of cell wall behavior and properties connected with the concept of cell wall extensibility. PMID:21222092

  8. Plant Cell Wall Matrix Polysaccharide Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Ajay Pal S. Sandhu; Gursharn S. Randhawa; Kanwarpal S. Dhugga

    2009-01-01

    The wall of an expanding plant cell consists primarily of cellulose microfibrils embedded in a matrix of hemi-cellulosic and pectic polysaccharides along with small amounts of structural and enzymatic proteins. Matrix polysacchar-ides are synthesized in the Golgi and exported to the cell wall by exocytosis, where they intercalate among cellulose microfibrUs, which are made at the plasma membrane and directly deposited into the cell wall. Involvement of Golgi glucan synthesis in auxin-induced cell expansion has long been recognized; however, only recently have the genes corresponding to glucan synthases been identified. Biochemical purification was unsuccessful because of the labile nature and very low abundance of these enzymes. Mutational genetics also proved fruitless. Expression of candidate genes identified through gene expression profiling or comparative genomics in heterologous systems followed by functional characterization has been relatively successful. Several genes from the cellulose synthase-like (Cs/) family have been found to be involved in the synthesis of various hemicellulosic glycans. The usefulness of this approach, however, is limited to those enzymes that probably do not form complexes consisting of unrelated proteins. Nonconventional approaches will continue to incre-mentally unravel the mechanisms of Golgi polysaccharide biosynthesis.

  9. X-Chromosome Inactivation Analysis in Different Cell Types and Induced Pluripotent Stem Cells Elucidates the Disease Mechanism in a Rare Case of Mucopolysaccharidosis Type II in a Female.

    Science.gov (United States)

    Řeboun, M; Rybová, J; Dobrovolný, R; Včelák, J; Veselková, T; Štorkánová, G; Mušálková, D; Hřebíček, M; Ledvinová, J; Magner, M; Zeman, J; Pešková, K; Dvořáková, L

    2016-01-01

    Mucopolysaccharidosis type II (MPS II) is an X-linked lysosomal storage disorder resulting from deficiency of iduronate-2-sulphatase activity. The disease manifests almost exclusively in males; only 16 symptomatic heterozygote girls have been reported so far. We describe the results of X-chromosome inactivation analysis in a 5-year-old girl with clinically severe disease and heterozygous mutation p.Arg468Gln in the IDS gene. X inactivation analysed at three X-chromosome loci showed extreme skewing (96/4 to 99/1) in two patient's cell types. This finding correlated with exclusive expression of the mutated allele. Induced pluripotent stem cells (iPSC) generated from the patient's peripheral blood demonstrated characteristic pluripotency markers, deficiency of enzyme activity, and mutation in the IDS gene. These cells were capable of differentiation into other cell types (cardiomyocytes, neurons). In MPS II iPSC clones, the X inactivation ratio remained highly skewed in culture conditions that led to partial X inactivation reset in Fabry disease iPSC clones. Our data, in accordance with the literature, suggest that extremely skewed X inactivation favouring the mutated allele is a crucial condition for manifestation of MPS II in females. This suggests that the X inactivation status and enzyme activity have a prognostic value and should be used to evaluate MPS II in females. For the first time, we show generation of iPSC from a symptomatic MPS II female patient that can serve as a cellular model for further research of the pathogenesis and treatment of this disease. PMID:27187040

  10. Alfalfa stem tissues: Cell wall deposition, composition, and degradability

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.

    2002-01-01

    Declining cell wall degradability of alfalfa (Medicago sativa L.) stems with maturation limits the nutritional value of alfalfa for ruminants. This study characterized changes in cell wall concentration, composition, and degradability by rumen microbes resulting from alfalfa stem tissue proliferatio

  11. Structure-property relationships in vegetable cell wall suspensions

    OpenAIRE

    Sankaran, Ashwin Karthik

    2015-01-01

    Plant cell wall suspensions are widely present in daily food, such as soups, dressings and sauces. Cell walls of edible plants are made up of an intricate biopolymer network of mainly cellulose microfibrils, pectins, and hemicelluloses. Foodsnbsp;as soups, ketchup, etc are made up of cell wall components. Modern processing methods alter the chemical and physical nature of the cell wall which in turn affect the properties of the end product. There is a need in the industry to build a fundament...

  12. Bio-based composites that mimic the plant cell wall

    OpenAIRE

    Li, Zhuo

    2009-01-01

    Nature creates high performance materials under modest conditions, i.e., neutral pH and ambient temperature and pressure. One of the most significant materials is the plant cell wall. The plant cell wall is a composite of oriented cellulose microfibrils reinforcing a lignin/hemicellulose matrix. In principle, the plant cell wall composite is designed much like a synthetic fiber-reinforced polymer composite. Unlike synthetic composites, the plant cell wall has an excellent combination of h...

  13. Fluorescent tags to explore cell wall structure and dynamics.

    OpenAIRE

    Martine eGonneau; Herman eHöfte; Samantha eVernhettes

    2012-01-01

    Plant cell walls are highly dynamic and heterogeneic structures, which vary between celltypes, growth stages but also between microdomains within a single cell wall. In this review, we summarize the imaging techniques using fluorescent tags that are currently being used and which should in the coming years revolutionize our understanding of the dynamics of cell wall architecture and the cellular processes involved in synthesis of cell wall components.

  14. Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Bartley, Laura [Univ. of Oklahoma, Norman, OK (United States). Dept. of Microbiology and Plant Biology; Wu, Y. [Oklahoma State Univ., Stillwater, OK (United States); Zhu, L. [Oklahoma State Univ., Stillwater, OK (United States); Brummer, E. C. [Noble Foundation, Ardmore, OK (United States); Saha, M. [Noble Foundation, Ardmore, OK (United States)

    2016-05-31

    Inefficient conversion of biomass to biofuels is one of the main barriers for biofuel production from such materials. Approximately half of polysaccharides in biomass remain unused by typical biochemical conversion methods. Conversion efficiency is influenced by the composition and structure of cell walls of biomass. Grasses such as wheat, maize, and rice, as well as dedicated perennial bioenergy crops, like switchgrass, make up ~55% of biomass that can be produced in the United States. Grass cell walls have a different composition and patterning compared with dicotyledonous plants, including the well-studied model plant, Arabidopsis. This project identified genetic determinants of cell wall composition in grasses using both naturally occurring genetic variation of switchgrass and gene network reconstruction and functional assays in rice. In addition, the project linked functional data in rice and other species to switchgrass improvement efforts through curation of the most abundant class of regulators in the switchgrass genome. Characterizing natural diversity of switchgrass for variation in cell wall composition and properties, also known as quality, provides an unbiased avenue for identifying biologically viable diversity in switchgrass cell walls. To characterizing natural diversity, this project generated cell wall composition and enzymatic deconstruction data for ~450 genotypes of the Switchgrass Southern Association Collection (SSAC), a diverse collection composed of 36 switchgrass accessions from the southern U.S. distribution of switchgrass. Comparing these data with other measures of cell wall quality for the same samples demonstrated the complementary nature of the diverse characterization platforms now being used for biomass characterization. Association of the composition data with ~3.2K single nucleotide variant markers identified six significant single nucleotide variant markers co-associated with digestibility and another compositional trait. These

  15. Genetics Home Reference: glutaric acidemia type II

    Science.gov (United States)

    ... blood and tissues to become too acidic (metabolic acidosis). Glutaric acidemia type II usually appears in infancy ... sudden episode called a metabolic crisis, in which acidosis and low blood sugar (hypoglycemia) cause weakness, behavior ...

  16. Wall relaxation and the driving forces for cell expansive growth

    Science.gov (United States)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  17. Plant cell wall dynamics and wall-related susceptibility in plant–pathogen interactions

    OpenAIRE

    Bellincampi, Daniela; Cervone, Felice; Lionetti, Vincenzo

    2014-01-01

    The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteri...

  18. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions

    OpenAIRE

    Daniela eBellincampi; Felice eCervone; Vincenzo eLionetti

    2014-01-01

    The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteri...

  19. Excitonic molecules in type-II superlattices

    Science.gov (United States)

    Tsuchiya, T.; Katayama, S.; Ando, T.

    1998-01-01

    Excitonic molecules in GaAs/AlAs type-II superlattices are numerically investigated. In spite of large difference of electronic structures between type-II and type-I superlattices, variational calculations show that the configuration of particles is similar to that in type-I superlattices. This is because the layer width is smaller than the extent of excitonic wavefunctions in the direction parallel to the layers in the present superlattices.

  20. beta-1,3-Glucan-Induced Host Phospholipase D Activation Is Involved in Aspergillus fumigatus Internalization into Type II Human Pneumocyte A549 Cells

    NARCIS (Netherlands)

    Han, Xuelin; Yu, Rentao; Zhen, Dongyu; Tao, Sha; Schmidt, Martina; Han, Li

    2011-01-01

    The internalization of Aspergillus fumigatus into lung epithelial cells is a process that depends on host cell actin dynamics. The host membrane phosphatidylcholine cleavage driven by phospholipase D (PLD) is closely related to cellular actin dynamics. However, little is known about the impact of PL

  1. The Role of Alveolar Epithelial Type II-Like Cells in Uptake of Structurally Different Antigens and in Polarisation of Local Immune Responses

    Czech Academy of Sciences Publication Activity Database

    Akgün, J.; Schabussova, I.; Schwarzer, Martin; Kozáková, Hana; Kundi, M.; Wiedermann, U.

    2015-01-01

    Roč. 10, č. 4 (2015). E-ISSN 1932-6203 Institutional support: RVO:61388971 Keywords : BIRCH POLLEN ALLERGEN * DENDRITIC CELLS * AIRWAY INFLAMMATION Subject RIV: EC - Immunology Impact factor: 3.234, year: 2014

  2. Posttranslational Modification of Collagen Type II : Effects on Antigen-Specific T-cell Tolerance and Autoreactivity in Collagen-Induced Arthritis

    OpenAIRE

    Merky, Patrick

    2011-01-01

    Rheumatoid arthritis (RA) is a common chronic inflammatory disease affecting peripheral joints in approximately 1% of the world population. Immunization of susceptible strains with CII, leads to development of collagen-induced arthritis (CIA), an animal model for RA. The aim of this thesis was to investigate mechanisms involved in regulation of immunological T-cell tolerance in CIA by studying availability of joint-specific CII for presentation to autoreactive T cell...

  3. Increased peripheral T cell reactivity to microbial antigens and collagen type II in rheumatoid arthritis after treatment with soluble TNFα receptors

    OpenAIRE

    Berg, L; Lampa, J; Rogberg, S; van Vollenhoven, R; Klareskog, L

    2001-01-01

    OBJECTIVE—Peripheral T cells from patients with rheumatoid arthritis (RA) are hyporesponsive when stimulated with antigen or mitogen in vitro, possibly owing to increased production of proinflammatory cytokines such as tumour necrosis factor α (TNFα). This study sought to find out if and how RA T cell reactivity is affected during treatment with etanercept (Enbrel), a soluble TNFα receptor.
METHODS—Heparinised blood was collected from patients with RA at baseline, after four and eight weeks o...

  4. Aqueous synthesis of type-II CdTe/CdSe core-shell quantum dots for fluorescent probe labeling tumor cells

    International Nuclear Information System (INIS)

    In this paper, we report a two-step aqueous synthesis of highly luminescent CdTe/CdSe core/shell quantum dots (QDs) via a simple method. The emission range of the CdTe/CdSe QDs can be tuned from 510 to 640 nm by controlling the thickness of the CdSe shell. Accordingly, the photoluminescence quantum yield (PL QY) of CdTe/CdSe QDs with an optimized thickness of the CdSe shell can reach up to 40%. The structures and compositions of the core/shell QDs were characterized by transmission electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy experiments, and their formation mechanism is discussed. Furthermore, folate conjugated CdTe/CdSe QDs in Hela cells were assessed with a fluorescence microscope. The results show that folate conjugated CdTe/CdSe QDs could enter tumor cells efficiently.

  5. DNA damage and cytotoxicity in type II lung epithelial (A549) cell cultures after exposure to diesel exhaust and urban street particles

    DEFF Research Database (Denmark)

    Danielsen, Pernille Høgh; Loft, Steffen; Møller, Peter

    2008-01-01

    ABSTRACT: BACKGROUND: Exposure to air pollution particles has been acknowledged to be associated with excess generation of oxidative damage to DNA in experimental model systems and humans. The use of standard reference material (SRM), such as SRM1650 and SRM2975, is advantageous because experiments...... due to the much higher level of transition metals. CONCLUSION: Authentic street particles and SRMs differ in their ability to oxidize DNA in a cell-free environment, whereas cell culture experiments indicate that the particle preparations elicit a similar alteration of the level of DNA damage and...... can be reproduced independently, but exposure to such samples may not mimic the effects observed after exposure to authentic air pollution particles. This study was designed to compare the DNA oxidizing effects of authentic street particles with SRM1650 and SRM2975. The authentic street particles were...

  6. Glycosytransferases involved in arabinosylation of cell wall extensins

    DEFF Research Database (Denmark)

    Petersen, Bent L; Harholt, Jesper; Jørgensen, Bodil;

    2011-01-01

    Extensins are a group of ancient hydroxyproline rich cell wall glycoproteins that are found in some chlorophyte algae (such as Chlamydomonas), where they constitute the main wall building block, as well as in higher plant cell walls, where they constitute a relatively minor component of particular...

  7. Deletion of Scap in Alveolar Type II Cells Influences Lung Lipid Homeostasis and Identifies a Compensatory Role for Pulmonary Lipofibroblasts*S⃞

    OpenAIRE

    Besnard, Valérie; Wert, Susan E.; Stahlman, Mildred T.; Postle, Anthony D.; Xu, Yan; Ikegami, Machiko; Whitsett, Jeffrey A.

    2009-01-01

    Pulmonary function after birth is dependent upon surfactant lipids that reduce surface tension in the alveoli. The sterol-responsive element-binding proteins (SREBPs) are transcription factors regulating expression of genes controlling lipid homeostasis in many tissues. To identify the role of SREBPs in the lung, we conditionally deleted the SREBP cleavage-activating protein gene, Scap, in respiratory epithelial cells (ScapΔ/Δ) in vivo. Prior to birth (E18.5), dele...

  8. n-Linear Algebra of type II

    CERN Document Server

    Kandasamy, W B Vasantha

    2009-01-01

    This book is a continuation of the book n-linear algebra of type I and its applications. Most of the properties that could not be derived or defined for n-linear algebra of type I is made possible in this new structure: n-linear algebra of type II which is introduced in this book. In case of n-linear algebra of type II we are in a position to define linear functionals which is one of the marked difference between the n-vector spaces of type I and II. However all the applications mentioned in n-linear algebras of type I can be appropriately extended to n-linear algebras of type II. Another use of n-linear algebra (n-vector spaces) of type II is that when this structure is used in coding theory we can have different types of codes built over different finite fields whereas this is not possible in the case of n-vector spaces of type I. Finally in the case of n-vector spaces of type II, we can obtain n-eigen values from distinct fields; hence, the n-characteristic polynomials formed in them are in distinct differ...

  9. Cell wall integrity signaling and innate immunity in plants

    OpenAIRE

    Nühse, Thomas S.

    2012-01-01

    All plant pathogens and parasites have had to develop strategies to overcome cell walls in order to access the host’s cytoplasm. As a mechanically strong, multi-layered composite exoskeleton, the cell wall not only enables plants to grow tall but also protects them from such attacks. Many plant pathogens employ an arsenal of cell wall degrading enzymes, and it has long been thought that the detection of breaches in wall integrity contributes to the induction of defense. Cell wall fragments ar...

  10. Mucopolysaccharidosis type II, Hunter's syndrome.

    Science.gov (United States)

    Tylki-Szymańska, Anna

    2014-09-01

    Hunter syndrome is caused by deficiency of the lysososmal enzyme iduronate-2-sulphatase that cleaves O-linked sulphate moieties from dermatan sulphate and heparan sulphate and leads to accumulation of GAGs. The disease is a X-linked condition affecting males and rarely females, clinically divided into severe (2/3) and attenuated types. Children with severe form, diagnosed at 12-36 months, have coarse facial feature, short stature, joint stiffness, short neck, broad chest, large head circumference, watery diarrhea, skeletal changes, progressive and profound mental retardation, retinal degeneration' hearing loss, cardiomyopathy, valvular involvement, with progressive thickening and stiffening of the valve leaflets leading to mitral and aortic regurgitation and stenosis . Recurrent and prolonged rhinitis with persistent nasal discharge are the first symptoms of airway disease that manifests itself as noisy breathing and later sleep apnea. Some patients develop ivory-colored skin lesions on the upper back and sides of the upper arms, pathogenomic of Hunter syndrome. The scalp hair becomes coarse, straight and bristly. Inguinal and umbilical hernias occur caused by the disturbed structure of connective tissue and increased liver and spleen volume. Patients with attenuated form have normal intelligence and a milder phenotype. Physical features diagnosed later are similar but less pronounced but progress to severe disease. Sceening is by quantitative assessment of urinary GAGs excretion. Qualitative assessment of GAG by electrophoresis can distinguish the type of mucopolysaccharidosis. Definitive diagnosis is based on enzyme activity assay in leukocytes, fibroblasts or plasma. Molecular testing is recommended mainly for genetic counseling and carrier detection. Limited experience of Haematopoietic stem cell therapy in MPS II showed progressive neurodegeneration. Recombinant 125 Idursulfase, is indicated for long-term treatment. The response appears to depend on the

  11. DNA damage and cytotoxicity in type II lung epithelial (A549 cell cultures after exposure to diesel exhaust and urban street particles

    Directory of Open Access Journals (Sweden)

    Møller Peter

    2008-04-01

    Full Text Available Abstract Background Exposure to air pollution particles has been acknowledged to be associated with excess generation of oxidative damage to DNA in experimental model systems and humans. The use of standard reference material (SRM, such as SRM1650 and SRM2975, is advantageous because experiments can be reproduced independently, but exposure to such samples may not mimic the effects observed after exposure to authentic air pollution particles. This study was designed to compare the DNA oxidizing effects of authentic street particles with SRM1650 and SRM2975. The authentic street particles were collected at a traffic intensive road in Copenhagen, Denmark. Results All of the particles generated strand breaks and oxidized purines in A549 lung epithelial cells in a dose-dependent manner and there were no overt differences in their potency. The exposures also yielded dose-dependent increase of cytotoxicity (as lactate dehydrogenase release and reduced colony forming ability with slightly stronger cytotoxicity of SRM1650 than of the other particles. In contrast, only the authentic street particles were able to generate 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG in calf thymus DNA, which might be due to the much higher level of transition metals. Conclusion Authentic street particles and SRMs differ in their ability to oxidize DNA in a cell-free environment, whereas cell culture experiments indicate that the particle preparations elicit a similar alteration of the level of DNA damage and small differences in cytotoxicity. Although it cannot be ruled out that SRMs and authentic street particles might elicit different effects in animal experimental models, this study indicates that on the cellular level, SRM1650 and SRM2975 are suitable surrogate samples for the study of authentic street particles.

  12. Downregulation of TGF-beta receptor types II and III in oral squamous cell carcinoma and oral carcinoma-associated fibroblasts

    OpenAIRE

    Zhang Lin; He Xin; Chen Sixiu; Wu Lanyan; Xia Qingjie; Meng Wenxia; Gao Qinghong; Zhou Hongmei

    2011-01-01

    Abstract Background The purpose of this study was to assess the expression levels for TβRI, TβRII, and TβRIII in epithelial layers of oral premalignant lesions (oral leukoplakia, OLK) and oral squamous cell carcinoma (OSCC), as well as in oral carcinoma-associated fibroblasts (CAFs), with the final goal of exploring the roles of various types of TβRs in carcinogenesis of oral mucosa. Methods Normal oral tissues, OLK, and OSCC were obtained from 138 previously untreated patients. Seven primary...

  13. Enzymes and other agents that enhance cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1999-01-01

    Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.

  14. Efficiency Enhanced Colloidal Mn-Doped Type II Core/Shell ZnSe/CdS Quantum Dot Sensitized Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    A. Jamshidi

    2015-01-01

    Full Text Available Colloidal Mn-doped ZnSe/CdS core/shell quantum dots (QDs are synthesized for the first time and employed as a strategy to boost the power conversion efficiency of quantum dot sensitized solar cells. By using Mn-doping as a band gap engineering tool for core/shell QDs an effective improvement of absorption spectra could be obtained. The mid-states generated by a proper Mn content alleviate carrier separation and enhance the electron injection rate, thus facilitating electron transport to the TiO2 substrate. It is demonstrated that a device constructed with 0.25% Mn-doped ZnSe/CdS leads to an enhancement of the electron injection rate and power conversion efficiency by 4 times and 1.3, respectively.

  15. Downregulation of TGF-beta receptor types II and III in oral squamous cell carcinoma and oral carcinoma-associated fibroblasts

    International Nuclear Information System (INIS)

    The purpose of this study was to assess the expression levels for TβRI, TβRII, and TβRIII in epithelial layers of oral premalignant lesions (oral leukoplakia, OLK) and oral squamous cell carcinoma (OSCC), as well as in oral carcinoma-associated fibroblasts (CAFs), with the final goal of exploring the roles of various types of TβRs in carcinogenesis of oral mucosa. Normal oral tissues, OLK, and OSCC were obtained from 138 previously untreated patients. Seven primary human oral CAF lines and six primary normal fibroblast (NF) lines were established successfully via cell culture. The three receptors were detected using immunohistochemical (IHC), quantitative RT-PCR, and Western blot approaches. IHC signals for TβRII and TβRIII in the epithelial layer decreased in tissue samples with increasing disease aggressiveness (P < 0.05); no expression differences were observed for TβRI, in OLK and OSCC (P > 0.05); and TβRII and TβRIII were significantly downregulated in CAFs compared with NFs, at the mRNA and protein levels (P < 0.05). Exogenous expression of TGF-β1 led to a remarkable decrease in the expression of TβRII and TβRIII in CAFs (P < 0.05). This study provides the first evidence that the loss of TβRII and TβRIII expression in oral epithelium and stroma is a common event in OSCC. The restoration of the expression of TβRII and TβRIII in oral cancerous tissues may represent a novel strategy for the treatment of oral carcinoma

  16. Anthocyanins influence tannin-cell wall interactions.

    Science.gov (United States)

    Bautista-Ortín, Ana Belén; Martínez-Hernández, Alejandro; Ruiz-García, Yolanda; Gil-Muñoz, Rocío; Gómez-Plaza, Encarna

    2016-09-01

    The rate of tannin extraction was studied in a vinification of red grapes and the results compared with another vinification made with white grapes fermented as for typical red wine, in the presence of skins and seeds. Even though the grapes presented a quite similar skin and seed tannin content, the differences in tannin concentration between both vinifications was very large, despite the fact that the only apparent difference between the phenolic composition of both wines was the anthocyanin content. This suggests that anthocyanins play an important role in tannin extractability, perhaps because they affect the extent of the tannin-cell wall interaction, a factor that largely controls the resulting quantity of tannins in wines. To confirm this observation, the effect of anthocyanins on the tannin extractability from grape seeds and skin and on the interaction between tannins and grape cell walls suspended in model solutions were studied. The results indicated that anthocyanins favored skin and seed tannin extraction and that there is a competition for the adsorption sites between anthocyanins and tannins that increases the tannin content when anthocyanins are present. PMID:27041322

  17. DO GIANT PLANETS SURVIVE TYPE II MIGRATION?

    International Nuclear Information System (INIS)

    Planetary migration is one of the most serious problems to systematically understand the observations of exoplanets. We clarify that the theoretically predicted type II, migration (like type I migration) is too fast, by developing detailed analytical arguments in which the timescale of type II migration is compared with the disk lifetime. In the disk-dominated regime, the type II migration timescale is characterized by a local viscous diffusion timescale, while the disk lifetime is characterized by a global diffusion timescale that is much longer than the local one. Even in the planet-dominated regime where the inertia of the planet mass reduces the migration speed, the timescale is still shorter than the disk lifetime except in the final disk evolution stage where the total disk mass decays below the planet mass. This suggests that most giant planets plunge into the central stars within the disk lifetime, and it contradicts the exoplanet observations that gas giants are piled up at r ∼> 1 AU. We examine additional processes that may arise in protoplanetary disks: dead zones, photoevaporation of gas, and gas flow across a gap formed by a type II migrator. Although they make the type II migration timescale closer to the disk lifetime, we show that none of them can act as an effective barrier for rapid type II migration with the current knowledge of these processes. We point out that gas flow across a gap and the fraction of the flow accreted onto the planets are uncertain and they may have the potential to solve the problem. Much more detailed investigation for each process may be needed to explain the observed distribution of gas giants in extrasolar planetary systems

  18. DO GIANT PLANETS SURVIVE TYPE II MIGRATION?

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10641, Taiwan (China); Ida, Shigeru, E-mail: yasu@asiaa.sinica.edu.tw, E-mail: ida@geo.titech.ac.jp [Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2013-09-10

    Planetary migration is one of the most serious problems to systematically understand the observations of exoplanets. We clarify that the theoretically predicted type II, migration (like type I migration) is too fast, by developing detailed analytical arguments in which the timescale of type II migration is compared with the disk lifetime. In the disk-dominated regime, the type II migration timescale is characterized by a local viscous diffusion timescale, while the disk lifetime is characterized by a global diffusion timescale that is much longer than the local one. Even in the planet-dominated regime where the inertia of the planet mass reduces the migration speed, the timescale is still shorter than the disk lifetime except in the final disk evolution stage where the total disk mass decays below the planet mass. This suggests that most giant planets plunge into the central stars within the disk lifetime, and it contradicts the exoplanet observations that gas giants are piled up at r {approx}> 1 AU. We examine additional processes that may arise in protoplanetary disks: dead zones, photoevaporation of gas, and gas flow across a gap formed by a type II migrator. Although they make the type II migration timescale closer to the disk lifetime, we show that none of them can act as an effective barrier for rapid type II migration with the current knowledge of these processes. We point out that gas flow across a gap and the fraction of the flow accreted onto the planets are uncertain and they may have the potential to solve the problem. Much more detailed investigation for each process may be needed to explain the observed distribution of gas giants in extrasolar planetary systems.

  19. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension.

    Science.gov (United States)

    McQueen-Mason, S; Cosgrove, D J

    1994-07-01

    Plant cell enlargement is controlled by the ability of the constraining cell wall to expand. This ability has been postulated to be under the control of polysaccharide hydrolases or transferases that weaken or rearrange the loadbearing polymeric networks in the wall. We recently identified a family of wall proteins, called expansins, that catalyze the extension of isolated plant cell walls. Here we report that these proteins mechanically weaken pure cellulose paper in extension assays and stress relaxation assays, without detectable cellulase activity (exo- or endo- type). Because paper derives its mechanical strength from hydrogen bonding between cellulose microfibrils, we conclude that expansins can disrupt hydrogen bonding between cellulose fibers. This conclusion is further supported by experiments in which expansin-mediated wall extension (i) was increased by 2 M urea (which should weaken hydrogen bonding between wall polymers) and (ii) was decreased by replacement of water with deuterated water, which has a stronger hydrogen bond. The temperature sensitivity of expansin-mediated wall extension suggests that units of 3 or 4 hydrogen bonds are broken by the action of expansins. In the growing cell wall, expansin action is likely to catalyze slippage between cellulose microfibrils and the polysaccharide matrix, and thereby catalyze wall stress relaxation, followed by wall surface expansion and plant cell enlargement. PMID:11607483

  20. [Oxidative stress, the functional activity of beta-cells, and the content of tumor necrosis factor alpha in patients with type II diabetes mellitus].

    Science.gov (United States)

    Klebanova, E M

    2006-01-01

    The purpose of the study was to investigate the effects of dietotherapy on oxidative stress (OS) condition, the fl-cell functional activity (BCFA), insulin resistance index (IRI), and the serum tumor necrosis factor alpha (alpha-TNF) level in patients with type 2 diabetes mellitus (DM 2). The subjects, 30 patients with DM 2 (9 men, 21 women), aged 42 to 70 (mean age 58.77 +/- 8.86 years), were examined. The duration of DM 2 in the subjects was from 1 month to 5 years. OS parameters, IRI and BCFA, as well as serum alpha-TNF were measured before the study and after 3 months of observation. The tests performed after the end of the study showed that hydrocarbonate exchange remained compensated, and IRI and BCFA were moderately lowered in DM 2 patients on dietotherapy. There was an insignificant elevation of serum alpha-TNF, while the condition of hydrocarbonate exchange had bettered. Changes in OS parameters in patients on dietotherapy evidence that the reserve activity of anti-oxidative system enzymes decreases. Thus, the compensation of hydrocarbonate exchange in DM 2 patients on dietotherapy retains, which is accompanied by a decrease in IRI and BCFA, while serum alpha-TNFincreases insignificantly, and reserved anti-oxidative system enzyme activity decreases moderately. PMID:17087190

  1. Scalar dark matter with type II seesaw

    International Nuclear Information System (INIS)

    We study the possibility of generating tiny neutrino mass through a combination of type I and type II seesaw mechanism within the framework of an abelian extension of standard model. The model also provides a naturally stable dark matter candidate in terms of the lightest neutral component of a scalar doublet. We compute the relic abundance of such a dark matter candidate and also point out how the strength of type II seesaw term can affect the relic abundance of dark matter. Such a model which connects neutrino mass and dark matter abundance has the potential of being verified or ruled out in the ongoing neutrino, dark matter, as well as accelerator experiments

  2. Lipoteichoic acid induces surfactant protein-A biosynthesis in human alveolar type II epithelial cells through activating the MEK1/2-ERK1/2-NF-κB pathway

    Directory of Open Access Journals (Sweden)

    Liu Feng-Lin

    2012-10-01

    Full Text Available Abstract Background Lipoteichoic acid (LTA, a gram-positive bacterial outer membrane component, can cause septic shock. Our previous studies showed that the gram-negative endotoxin, lipopolysaccharide (LPS, could induce surfactant protein-A (SP-A production in human alveolar epithelial (A549 cells. Objectives In this study, we further evaluated the effect of LTA on SP-A biosynthesis and its possible signal-transducing mechanisms. Methods A549 cells were exposed to LTA. Levels of SP-A, nuclear factor (NF-κB, extracellular signal-regulated kinase 1/2 (ERK1/2, and mitogen-activated/extracellular signal-regulated kinase kinase (MEK1 were determined. Results Exposure of A549 cells to 10, 30, and 50 μg/ml LTA for 24 h did not affect cell viability. Meanwhile, when exposed to 30 μg/ml LTA for 1, 6, and 24 h, the biosynthesis of SP-A mRNA and protein in A549 cells significantly increased. As to the mechanism, LTA enhanced cytosolic and nuclear NF-κB levels in time-dependent manners. Pretreatment with BAY 11–7082, an inhibitor of NF-κB activation, significantly inhibited LTA-induced SP-A mRNA expression. Sequentially, LTA time-dependently augmented phosphorylation of ERK1/2. In addition, levels of phosphorylated MEK1 were augmented following treatment with LTA. Conclusions Therefore, this study showed that LTA can increase SP-A synthesis in human alveolar type II epithelial cells through sequentially activating the MEK1-ERK1/2-NF-κB-dependent pathway.

  3. Alternative Splicing of Type II Procollagen: IIB or not IIB?

    OpenAIRE

    McAlinden, Audrey

    2014-01-01

    Over two decades ago, two isoforms of the type II procollagen gene (COL2A1) were discovered. These isoforms, named IIA and IIB, are generated in a developmentally-regulated manner by alternative splicing of exon 2. Chondroprogenitor cells synthesize predominantly IIA isoforms (containing exon 2) while differentiated chondrocytes produce mainly IIB transcripts (devoid of exon 2). Importantly, this IIA-to-IIB alternative splicing switch occurs only during chondrogenesis. More recently, two othe...

  4. Autoantibody recognition of collagen type II in arthritis

    OpenAIRE

    Lindh, Ingrid

    2013-01-01

    Autoantibodies against collagen type II (CII), a protein localized in the joint cartilage, play a major role in collagen-induced arthritis (CIA), one of the most commonly used animal models for rheumatoid arthritis (RA). The studies included in this thesis were undertaken to elucidate structural and functional requirements for B and T cells to recognize native CII structures during experimental arthritis as well as in human RA. To reveal in detail how CII-specific autoantibodies recognize CII...

  5. Two endogenous proteins that induce cell wall extension in plants

    Science.gov (United States)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  6. Advanced technologies for plant cell wall evolution and diversity

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik

    cannot really be synthesised or sequenced. The work described in this thesis is focused to a large extent on the development of a microarray-based high-throughput method for cell wall analysis known as Comprehensive microarray polymer profiling or CoMPP. The procedure uses highly specific molecular...... produced has provided new insight into cell wall evolution and biosynthesis and has contributed to the commercial development of cell wall materials. A major focus of the work has been the wide scale sampling of cell wall diversity across the plant kingdom, from unicellular algae to highly evolved......Plant cell walls consist of polysaccharides, glycoproteins and phenolic polymers interlinked together in a highly complex network. The detailed analysis of cell walls is challenging because of their inherent complexity and heterogeneity. Also, complex carbohydrates, unlike proteins and nucleotides...

  7. WAARDENBURG SYNDROME TYPE II: A CASE REPORT

    OpenAIRE

    Santosh Kumar; Sunil Kumar; Anand

    2014-01-01

    Waardenburg syndrome is a rare syndrome, characterized by lateral displacement of the medial canthi combined with dystopia of the lacrimal punctum and blepharophimosis, prominent broad nasal root, hypertrichosis of the medial part of the eyebrows, white forelock, heterochromia iridis, and deaf mutism. A four months old girl with waardenburg syndrome type II, who had the characterstic features of the syndrome, is reported.

  8. Generalized geometry lectures on type II backgrounds

    CERN Document Server

    Tsimpis, Dimitrios

    2016-01-01

    The first part of these notes is a self-contained introduction to generalized complex geometry. It is intended as a `user manual' for tools used in the study of supersymmetric backgrounds of supergravity. In the second part we review some past and recent results on the generalized complex structure of supersymmetric type II vacua in various dimensions.

  9. Characterisation of cell wall polysaccharides in bilberries and black currants

    OpenAIRE

    Hilz, H

    2007-01-01

    During berry juice production, polysaccharides are released from the cell walls and cause thickening and high viscosity when the berries are mashed. Consequences are a low juice yield and a poor colour. This can be prevented by the use of enzymes that degrade these polysaccharides. To use these enzymes most efficiently, the structure and composition of the cell walls had to be known. This thesis describes a detailed composition of the cell walls of bilberries and black currants. The obtained ...

  10. Composition of lignin in outer cell-wall layers

    OpenAIRE

    Christiernin, Maria

    2006-01-01

    The composition of lignin in the outer cell-wall layers of spruce and poplar has been studied and the data obtained have been compared with those of the mature reference wood in which the secondary cell wall predominates. Materials with exclusively or predominantly outer cell-wall layers were examined. Accurate data relating to the lignin monomer composition and the number of β-O-4´ bonds were obtained from pure middle lamella/primary cell wall lignin. Firstly, a 10 000 year old white spruce ...

  11. Cosegregation of cell wall and DNA in Bacillus subtilis.

    OpenAIRE

    Schlaeppi, J M; Karamata, D

    1982-01-01

    Cosegregation of cell wall and DNA of a lysis-negative mutant of Bacillus subtilis was examined by continuously labeling (i) cell wall, (ii) DNA, and (iii) both cell wall and DNA. After four to five generations of chase in liquid media it was found by light microscope autoradiography that the numbers of wall segregation units per cell are 29 and 9 in rich and minimal medium, respectively. Under the same conditions the numbers of segregation units of DNA were almost 50% lower: 15 and 5, respec...

  12. Cell wall sorting of lipoproteins in Staphylococcus aureus.

    OpenAIRE

    Navarre, W W; Daefler, S; Schneewind, O

    1996-01-01

    Many surface proteins are thought to be anchored to the cell wall of gram-positive organisms via their C termini, while the N-terminal domains of these molecules are displayed on the bacterial surface. Cell wall anchoring of surface proteins in Staphylococcus aureus requires both an N-terminal leader peptide and a C-terminal cell wall sorting signal. By fusing the cell wall sorting of protein A to the C terminus of staphylococcal beta-lactamase, we demonstrate here that lipoproteins can also ...

  13. "Signal-on" photoelectrochemical biosensor for sensitive detection of human T-Cell lymphotropic virus type II DNA: dual signal amplification strategy integrating enzymatic amplification with terminal deoxynucleotidyl transferase-mediated extension.

    Science.gov (United States)

    Shen, Qingming; Han, Li; Fan, Gaochao; Zhang, Jian-Rong; Jiang, Liping; Zhu, Jun-Jie

    2015-01-01

    A novel "signal-on" photoelectrochemical (PEC) biosensor for sensitive detection of human T-cell lymphotropic virus type II (HTLV-II) DNA was developed on the basis of enzymatic amplification coupled with terminal deoxynucleotidyl transferase (TdT)-mediated extension strategy. The intensity of the photocurrent signal was proportional to the concentration of the HTLV-II DNA-target DNA (tDNA) by dual signal amplification. In this protocol, GR-CdS:Mn/ZnS nanocomposites were used as photoelectric conversion material, while pDNA was used as the tDNA recognizing unit. Moreover, the TdT-mediated extension and the enzymatic signal amplification technique were used to enhance the sensitivity of detection. Using this novel dual signal amplification strategy, the prototype of PEC DNA sensor can detect as low as ∼0.033 fM of HTLV-II DNA with a linear range of 0.1-5000 fM, with excellent differentiation ability even for single-base mismatches. This PEC DNA assay opens a promising platform to detect various DNA targets at ultralow levels for early diagnoses of different diseases. PMID:25871300

  14. Cell wall structure and biogenesis in Aspergillus species.

    Science.gov (United States)

    Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu

    2016-09-01

    Aspergillus species are among the most important filamentous fungi from the viewpoints of industry, pathogenesis, and mycotoxin production. Fungal cells are exposed to a variety of environmental stimuli, including changes in osmolality, temperature, and pH, which create stresses that primarily act on fungal cell walls. In addition, fungal cell walls are the first interactions with host cells in either human or plants. Thus, understanding cell wall structure and the mechanism of their biogenesis is important for the industrial, medical, and agricultural fields. Here, we provide a systematic review of fungal cell wall structure and recent findings regarding the cell wall integrity signaling pathways in aspergilli. This accumulated knowledge will be useful for understanding and improving the use of industrial aspergilli fermentation processes as well as treatments for some fungal infections. PMID:27140698

  15. Cellulose synthesis in two secondary cell wall processes in a single cell type

    OpenAIRE

    Mendu, Venugopal; Stork, Jozsef; Harris, Darby; DeBolt, Seth

    2011-01-01

    Plant cells have a rigid cell wall that constrains internal turgor pressure yet extends in a regulated and organized manner to allow the cell to acquire shape. The primary load-bearing macromolecule of a plant cell wall is cellulose, which forms crystalline microfibrils that are organized with respect to a cell's function and shape requirements. A primary cell wall is deposited during expansion whereas secondary cell wall is synthesized post expansion during differentiation. A complex form of...

  16. Autoimmunity to citrullinated type II collagen in rheumatoid arthritis

    OpenAIRE

    Yoshida, Mamoru; TSUJI, Michiko; Kurosaka, Daitaro; Kurosaka, Daisaburo; Yasuda, Jun; Ito, Yoshitaka; Nishizawa, Tetsuro; Yamada, Akio

    2006-01-01

    The production of autoantibodies to citrullinated type II collagen and the citrullination of type II collagen were analyzed in rheumatoid arthritis. Autoantibodies to citrullinated type II collagen were detected in 78.5% of serum samples from 130 rheumatoid arthritis patients. Autoantibodies to native noncitrullinated type II collagen were detected in 14.6% of serum samples, all of which were positive for anti-citrullinated type II collagen antibodies. Serum samples were also positive for ant...

  17. Measurement of streptococcal cell wall in tissues of rats resistant or susceptible to cell wall-induced chronic erosive arthritis.

    OpenAIRE

    Anderle, S K; Allen, J B; Wilder, R L; Eisenberg, R A; Cromartie, W J; Schwab, J. H.

    1985-01-01

    The quantity of streptococcal cell wall localized in the joints of rats of strains which are either susceptible (Sprague-Dawley, LEW/N, M520/N) or resistant (Buffalo, WKY/N, F344/N) to cell wall-induced chronic erosive arthritis was measured after intraperitoneal injection of group A streptococcal cell wall fragments. Susceptibility or resistance was not associated with a difference in the amount of cell wall localized in limbs or other tissues. It is concluded that although localization of c...

  18. Micropipette aspiration on the outer hair cell lateral wall.

    OpenAIRE

    Sit, P S; Spector, A A; Lue, A J; Popel, A S; Brownell, W.E.

    1997-01-01

    The mechanical properties of the lateral wall of the guinea pig cochlear outer hair cell were studied using the micropipette aspiration technique. A fire-polished micropipette with an inner diameter of approximately 4 microm was brought into contact with the lateral wall and negative pressure was applied. The resulting deformation of the lateral wall was recorded on videotape and subjected to morphometric analysis. The relation between the length of the aspirated portion of the cell and aspir...

  19. Regulation of Meristem Morphogenesis by Cell Wall Synthases in Arabidopsis

    OpenAIRE

    Yang, Weibing; Schuster, Christoph; Beahan, Cherie T.; Charoensawan, Varodom; Peaucelle, Alexis; Bacic, Antony; Doblin, Monika S.; Wightman, Raymond; Meyerowitz, Elliot M.

    2016-01-01

    The cell walls of the shoot apical meristem (SAM), containing the stem cell niche that gives rise to the above-ground tissues, are crucially involved in regulating differentiation. It is currently unknown how these walls are built and refined or their role, if any, in influencing meristem developmental dynamics. We have combined polysaccharide linkage analysis, immuno-labeling, and transcriptome profiling of the SAM to provide a spatiotemporal plan of the walls of this dynamic structure. We f...

  20. WAARDENBURG SYNDROME TYPE II: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Santosh Kumar

    2014-10-01

    Full Text Available Waardenburg syndrome is a rare syndrome, characterized by lateral displacement of the medial canthi combined with dystopia of the lacrimal punctum and blepharophimosis, prominent broad nasal root, hypertrichosis of the medial part of the eyebrows, white forelock, heterochromia iridis, and deaf mutism. A four months old girl with waardenburg syndrome type II, who had the characterstic features of the syndrome, is reported.

  1. Ankle reconstruction in type II fibular hemimelia

    OpenAIRE

    El-Tayeby, Hazem Mossad; Ahmed, Amin Abdel Razek Youssef

    2012-01-01

    Ankle reconstruction prior to limb lengthening for was performed in 13 patients with fibular hemimelia with complete radiological absence of the fibula (type II). There were different degrees of absence of metatarsal rays. The hindfoot deformity was a heel valgus in 12 patients and equinovarus in 1 patient. The patients’ ages ranged from 9 to 26 months. Excision of the fibular anlage was performed with lateral subtalar and ankle soft tissue releases to restore the ankle and subtalar joint rel...

  2. Assembly and enlargement of the primary cell wall in plants

    Science.gov (United States)

    Cosgrove, D. J.

    1997-01-01

    Growing plant cells are shaped by an extensible wall that is a complex amalgam of cellulose microfibrils bonded noncovalently to a matrix of hemicelluloses, pectins, and structural proteins. Cellulose is synthesized by complexes in the plasma membrane and is extruded as a self-assembling microfibril, whereas the matrix polymers are secreted by the Golgi apparatus and become integrated into the wall network by poorly understood mechanisms. The growing wall is under high tensile stress from cell turgor and is able to enlarge by a combination of stress relaxation and polymer creep. A pH-dependent mechanism of wall loosening, known as acid growth, is characteristic of growing walls and is mediated by a group of unusual wall proteins called expansins. Expansins appear to disrupt the noncovalent bonding of matrix hemicelluloses to the microfibril, thereby allowing the wall to yield to the mechanical forces generated by cell turgor. Other wall enzymes, such as (1-->4) beta-glucanases and pectinases, may make the wall more responsive to expansin-mediated wall creep whereas pectin methylesterases and peroxidases may alter the wall so as to make it resistant to expansin-mediated creep.

  3. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Darvill, Alan [Univ. of Georgia, Athens, GA (United States); Hahn, Michael G. [Univ. of Georgia, Athens, GA (United States); O' Neill, Malcolm A. [Univ. of Georgia, Athens, GA (United States); York, William S. [Univ. of Georgia, Athens, GA (United States)

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  4. Hemicellulose biosynthesis and degradation in tobacco cell walls

    NARCIS (Netherlands)

    Compier, M.G.M.

    2005-01-01

    Natural fibres have a wide range of technological applications, such as in paper and textile industries. The basic properties and the quality of plant fibres are determined by the composition of the plant cell wall. Characteristic for fibres are thick secondary cell walls, which consist of cellulose

  5. Characterising the cellulose synthase complexes of cell walls

    NARCIS (Netherlands)

    Mansoori Zangir, N.

    2012-01-01

    One of the characteristics of the plant kingdom is the presence of a structural cell wall. Cellulose is a major component in both the primary and secondary cell walls of plants. In higher plants cellulose is synthesized by so called rosette protein complexes with cellulose synthases (CESAs) as the c

  6. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    Directory of Open Access Journals (Sweden)

    Kouki eYoshida

    2013-10-01

    Full Text Available Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs can regulate secondary wall formation in rice (Oryza sativa and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S has very low transcriptional activation ability, but the longer protein (OsSWN2L and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  7. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation.

    Science.gov (United States)

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka

    2013-01-01

    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications. PMID:24098302

  8. On-Off Switches for Secondary Cell Wall Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Huan-Zhong Wang; Richard A.Dixon

    2012-01-01

    Secondary cell walls provide plants with rigidity and strength to support their body weight and ensure water and nutrient transport.They also provide textiles,timber,and potentially second-generation biofuels for human use.Genes responsible for synthesis of the different cell wall components,namely cellulose,hemicelluloses,and lignin,are coordinately expressed and under transcriptional regulation.In the past several years,cell wall-related NAC and MYB transcription factors have been intensively investigated in different species and shown to be master switches of secondary cell wall biosynthesis.Positive and negative regulators,which function upstream of NAC master switches,have also been identified in different plant tissues.Further elucidation of the regulatory mechanisms of cell wall synthesis will facilitate the engineering of plant feedstocks suitable for biofuel production.

  9. The role of wall calcium in the extension of cell walls of soybean hypocotyls

    Science.gov (United States)

    Virk, S. S.; Cleland, R. E.

    1990-01-01

    Calcium crosslinks are load-bearing bonds in soybean (Glycine max (L.) Merr.) hypocotyl cell walls, but they are not the same load-bearing bonds that are broken during acid-mediated cell elongation. This conclusion is reached by studying the relationship between wall calcium, pH and the facilitated creep of frozen-thawed soybean hypocotyl sections. Supporting data include the following observations: 1) 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[car boxymethyl]aminoquinoline (Quin 2) and ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) caused only limited facilitated creep as compared with acid, despite removal of comparable or larger amounts of wall calcium; 2) the pH-response curves for calcium removal and acid-facilitated creep were different; 3) reversible acid-extension occurred even after removal of almost all wall calcium with Quin 2; and 4) growth of abraded sections did not involve a proportional loss of wall calcium. Removal of wall calcium, however, increased the capacity of the walls to undergo acid-facilitated creep. These data indicate that breakage of calcium crosslinks is not a major mechanism of cell-wall loosening in soybean hypocotyl tissues.

  10. Pectin, a versatile polysaccharide present in plant cell walls

    OpenAIRE

    Voragen, A.G.J.; Coenen, G.J.; Verhoef, R.P.; Schols, H.A.

    2009-01-01

    Pectin or pectic substances are collective names for a group of closely associated polysaccharides present in plant cell walls where they contribute to complex physiological processes like cell growth and cell differentiation and so determine the integrity and rigidity of plant tissue. They also play an important role in the defence mechanisms against plant pathogens and wounding. As constituents of plant cell walls and due to their anionic nature, pectic polysaccharides are considered to be ...

  11. The state of cell wall pectin monitored by wall associated kinases: A model

    OpenAIRE

    Kohorn, Bruce D

    2015-01-01

    The Wall Associated Kinases (WAKs) bind to both cross-linked polymers of pectin in the plant cell wall, but have a higher affinity for smaller fragmented pectins that are generated upon pathogen attack or wounding. WAKs are required for cell expansion during normal seedling development and this involves pectin binding and a signal transduction pathway involving MPK3 and invertase induction. Alternatively WAKs bind pathogen generated pectin fragments to activate a distinct MPK6 dependent stres...

  12. Glucuronoarabinoxylan structure in the walls of Aechmea leaf chlorenchyma cells is related to wall strength.

    Science.gov (United States)

    Ceusters, Johan; Londers, Elsje; Brijs, Kristof; Delcour, Jan A; De Proft, Maurice P

    2008-09-01

    In CAM-plants rising levels of malic acid in the early morning cause elevated turgor pressures in leaf chlorenchyma cells. Under specific conditions this process is lethal for sensitive plants resulting in chlorenchyma cell burst while other species can cope with these high pressures and do not show cell burst under comparable conditions. The non-cellulosic polysaccharide composition of chlorenchyma cell walls was investigated and compared in three cultivars of Aechmea with high sensitivity for chlorenchyma cell burst and three cultivars with low sensitivity. Chlorenchyma layers were cut from the leaf and the non-cellulosic carbohydrate fraction of the cell wall fraction was analyzed by gas-liquid chromatography. Glucuronoarabinoxylans (GAXs) were the major non-cellulosic polysaccharides in Aechmea. The fine structure of these GAXs was strongly related to chlorenchyma wall strength. Chlorenchyma cell walls from cultivars with low sensitivity to cell burst were characterized by an A/X ratio of ca. 0.13 while those from cultivars with high sensitivity showed an A/X ratio of ca. 0.23. Xylose chains from cultivars with high cell burst sensitivity were ca. 40% more substituted with arabinose compared to cultivars with low sensitivity for cell burst. The results indicate a relationship in vivo between glucuronoarabinoxylan fine structure and chlorenchyma cell wall strength in Aechmea. The evidence obtained supports the hypothesis that GAXs with low degrees of substitution cross-link cellulose microfibrils, while GAXs with high degrees of substitution do not. A lower degree of arabinose substitution on the xylose backbone implies stronger cell walls and the possibility of withstanding higher internal turgor pressures without cell bursting. PMID:18632122

  13. Ubiquitous Torsional Motions in Type II Spicules

    Science.gov (United States)

    De Pontieu, B.; Carlsson, M.; Rouppe van der Voort, L. H. M.; Rutten, R. J.; Hansteen, V. H.; Watanabe, H.

    2012-06-01

    Spicules are long, thin, highly dynamic features that jut out ubiquitously from the solar limb. They dominate the interface between the chromosphere and corona and may provide significant mass and energy to the corona. We use high-quality observations with the Swedish 1 m Solar Telescope to establish that so-called type II spicules are characterized by the simultaneous action of three different types of motion: (1) field-aligned flows of order 50-100 km s-1, (2) swaying motions of order 15-20 km s-1, and (3) torsional motions of order 25-30 km s-1. The first two modes have been studied in detail before, but not the torsional motions. Our analysis of many near-limb and off-limb spectra and narrowband images using multiple spectral lines yields strong evidence that most, if not all, type II spicules undergo large torsional modulation and that these motions, like spicule swaying, represent Alfvénic waves propagating outward at several hundred km s-1. The combined action of the different motions explains the similar morphology of spicule bushes in the outer red and blue wings of chromospheric lines, and needs to be taken into account when interpreting Doppler motions to derive estimates for field-aligned flows in spicules and determining the Alfvénic wave energy in the solar atmosphere. Our results also suggest that large torsional motion is an ingredient in the production of type II spicules and that spicules play an important role in the transport of helicity through the solar atmosphere.

  14. Hepatic Iron In Type II Diabetes

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Bazid*, Abd Al-Monem H. Barrak*, Hani Abu Zeid*, Mohamad

    2004-03-01

    Full Text Available The present work was carried on forty patients with type II diabetes of variable durations of the disease . They were selected from Internal Medicine Department, Sayed, Galal Al-Azhar University Hospital. They were 18 males and 22 females and their age ranged from 41 to 65 years. Twenty normal volunteer subjects were selected as a control group ( 9 males and 11 females and their age ranged from 45 to 65 years. A full clinical evaluation was done. Labaratory investigations were also performed that included measurement of plasma fasting and postprandial glucose, urea, creatinine, alanine amino transferase (ALT, aspartate aminotransferase (AST , bilirubin (total and direct, ANA, iron, ferritin, insulin ( fasting and postgrandial as well as hepatitis markers (HbsAg and HCVAb. Liver biopsy was taken for assessment of hepatic tissue iron concentration and histologic assessment. The results revealed that there is a significant difference between cases with type II diabetes and normal control as regarding insulin level (P<0.05. Also a significant relation was noted between high fasting insulin level and increased body mass index (BMI especially above 30 . Also cases with type II diabetes with steatosis or steatohepatitis had significantly higher fasting insulin level than cases without ( P<0.05. Our results showed that there is a significant high hepatic iron concentration, serum ferritin and serum fasting insulin in patients compared with control group (P<0.05. Also there is a significant increase in HIC and serum ferritin among cases with longer duration of diabetes, together with significant increase in steatosis and steatohepatitis among those cases. In addition, elevated serum ferritin in female cases were of high significance (P<0.01 in comparison to significant elevation in male cases [P<0.05], this may be explained by the fact that females have higher BMI than males.

  15. Measuring type II stresses using 3DXRD

    DEFF Research Database (Denmark)

    Oddershede, Jette; Schmidt, Søren; Poulsen, Henning Friis;

    2010-01-01

    An algorithm is presented for characterization of the grain resolved (type II) stress states in a polycrystalline sample based on monochromatic X-ray diffraction data. The algorithm is a robust 12-parameter-per-grain fit of the centre-of-mass grain positions, orientations and stress tensors...... including error estimation and outlier rejection. As examples of use results from two experiments – one on interstitial free (IF) steel and one on copper – will be presented. In the first experiment 96 grains in one layer of IF steel were monitored during elastic loading and unloading. Very consistent...

  16. Generalised geometry and type II supergravity

    International Nuclear Information System (INIS)

    Ten-dimensional type II supergravity can be reformulated as a generalised geometrical analogue of Einstein gravity, defined by an O(9,1) x O(1,9) is contained in O(10,10) x R + structure on the generalised tangent space. To leading order in the fermion fields, this allow one to rewrite the action, equations of motion and supersymmetry variations in a simple, manifestly Spin(9,1) x Spin(1,9)-covariant form. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Electric field in type II superconductors

    OpenAIRE

    Kolacek, J.; Lipavsky, P.; Spicka, V.

    1999-01-01

    Generally it is accepted that electric field E in type II superconductors is created by the vortex motion, so that it is proportional to the vortex velocity v_L. This assertion is based on the Josephson relation E = - v_L x B, which was derived and is valid if no transport current is present. We present arguments showing that if transport current is present, static electric field is proportional to the relative velocity of vortices in respect to the velocity of superconducting fluid v_s, so t...

  18. Minkowski flux vacua of type II supergravities

    CERN Document Server

    Andriot, David; Van Riet, Thomas

    2016-01-01

    We study flux compactifications of 10d type II supergravities to 4d Minkowski space-time, supported by parallel orientifold Op-planes with 3 $\\leq$ p $\\leq$ 8. Upon few geometric restrictions, the 4d Ricci scalar can be written as a negative sum of squares involving BPS-like conditions. Setting all squares to zero provides automatically a solution to 10d equations of motion. This way, we characterise a broad class, if not the complete set, of Minkowski flux vacua. We also conjecture an extension to include non-geometric fluxes. None of our results rely on supersymmetry.

  19. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis.

    Science.gov (United States)

    De Souza, Amanda P; Alvim Kamei, Claire L; Torres, Andres F; Pattathil, Sivakumar; Hahn, Michael G; Trindade, Luisa M; Buckeridge, Marcos S

    2015-07-01

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how they interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. Different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis. PMID:25908240

  20. Messenger Functions of the Bacterial Cell Wall-derived Muropeptides

    OpenAIRE

    Boudreau, Marc A.; Fisher, Jed F.; Mobashery, Shahriar

    2012-01-01

    Bacterial muropeptides are soluble peptidoglycan structures central to recycling of the bacterial cell wall, and messengers in diverse cell-signaling events. Bacteria sense muropeptides as signals that antibiotics targeting cell-wall biosynthesis are present, and eukaryotes detect muropeptides during the innate immune response to bacterial infection. This review summarizes the roles of bacterial muropeptides as messengers, with a special emphasis on bacterial muropeptide structures and the re...

  1. Nature and specificity of the immune response to collagen in type II collagen-induced arthritis in mice.

    OpenAIRE

    Stuart, J. M.; Townes, A S; Kang, A H

    1982-01-01

    To determine the role of collagen-immunity in the development of collagen-induced arthritis, DBA/1 mice were immunized with type II collagen and observed for the development of polyarthritis. 96% of the mice immunized with native type II collagen developed inflammatory arthritis between 4 and 5 wk after primary immunization. Immunization with denatured type II collagen in exactly the same manner was not effective in inducing arthritis. Cell-mediated immunity in arthritic mice was assessed by ...

  2. 骨髓源性肥大细胞对软骨细胞表达Ⅱ型胶原及糖胺多糖的影响%Effects of bone marrow- derived mast cells on expressions of type II collagen and glycosaminoglycan in co-cultured chondrocytes

    Institute of Scientific and Technical Information of China (English)

    欧阳晴晴; 赵进军; 杨敏

    2014-01-01

    Objective To investigate the influence of the bone marrow-derived mast cells (BMMCs) on the expression of type II collagen and glycosaminoglycan (GAG) in chondrocytes co-cultured with BMMCs. Methods Primarily cultured mouse BMMCs at 4 weeks and the second passage of chondrocytes were plated in a Transwell co-cultured system at a ratio of 1∶10 in the presence or absence of sodium cromoglycate (DSCG) or compound 48/80 (C48/80). The chondrocytes were harvested and lysed for detecting type II collagen expression with ELISA and Western blotting and GAG expression using 1,9 dimethylmethylene blue (DBM). Results After a 24-hour culture, the chondrocytes co-cultured with BMMCs showed similar expression levels of type II collagen and GAG to the control group regardless of the presence of DSCG (P>0.05). Compared with chondrocytes cultured alone or with BMMCs, the co- cultured chondrocytes in the presence of C48/80 showed significantly lower expressions of type II collagen and GAG (P0.05),C48/80组Ⅱ型胶原与GAG含量相对于对照组和BMMCs组显著降低(P0.05)。结论C48/80激活的BMMCs可降低软骨细胞Ⅱ型胶原以及GAG表达。

  3. Notch maintains Drosophila type II neuroblasts by suppressing expression of the Fez transcription factor Earmuff.

    Science.gov (United States)

    Li, Xiaosu; Xie, Yonggang; Zhu, Sijun

    2016-07-15

    Notch signaling is crucial for maintaining neural stem cell (NSC) self-renewal and heterogeneity; however, the underlying mechanism is not well understood. In Drosophila, loss of Notch prematurely terminates the self-renewal of larval type II neuroblasts (NBs, the Drosophila NSCs) and transforms type II NBs into type I NBs. Here, we demonstrate that Notch maintains type II NBs by suppressing the activation of earmuff (erm) by Pointed P1 (PntP1). We show that loss of Notch or components of its canonical pathway leads to PntP1-dependent ectopic Erm expression in type II NBs. Knockdown of Erm significantly rescues the loss-of-Notch phenotypes, and misexpression of Erm phenocopies the loss of Notch. Ectopically expressed Erm promotes the transformation of type II NBs into type I NBs by inhibiting PntP1 function and expression in type II NBs. Our work not only elucidates a key mechanism of Notch-mediated maintenance of type II NB self-renewal and identity, but also reveals a novel function of Erm. PMID:27151950

  4. Enhanced proliferation of primary rat type II pneumocytes by Jaagsiekte sheep retrovirus envelope protein

    International Nuclear Information System (INIS)

    Jaagsiekte sheep retrovirus (JSRV) is the causative agent of a contagious lung cancer in sheep. The envelope protein (Env) is the oncogene, as it can transform cell lines in culture and induce tumors in animals, although the mechanisms for transformation are not yet clear because a system to perform transformation assays in differentiated type II pneumocytes does not exist. In this study we report culture of primary rat type II pneumocytes in conditions that favor prolonged expression of markers for type II pneumocytes. Env-expressing cultures formed more colonies that were larger in size and were viable for longer periods of time compared to vector control samples. The cells that remained in culture longer were confirmed to be derived from type II pneumocytes because they expressed surfactant protein C, cytokeratin, displayed alkaline phosphatase activity and were positive for Nile red. This system will be useful to study JSRV Env in the targets of transformation.

  5. Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism

    Science.gov (United States)

    Balestrini, Raffaella; Bonfante, Paola

    2014-01-01

    Cell walls are deeply involved in the molecular talk between partners during plant and microbe interactions, and their role in mycorrhizae, i.e., the widespread symbiotic associations established between plant roots and soil fungi, has been investigated extensively. All mycorrhizal interactions achieve full symbiotic functionality through the development of an extensive contact surface between the plant and fungal cells, where signals and nutrients are exchanged. The exchange of molecules between the fungal and the plant cytoplasm takes place both through their plasma membranes and their cell walls; a functional compartment, known as the symbiotic interface, is thus defined. Among all the symbiotic interfaces, the complex intracellular interface of arbuscular mycorrhizal (AM) symbiosis has received a great deal of attention since its first description. Here, in fact, the host plasma membrane invaginates and proliferates around all the developing intracellular fungal structures, and cell wall material is laid down between this membrane and the fungal cell surface. By contrast, in ectomycorrhizae (ECM), where the fungus grows outside and between the root cells, plant and fungal cell walls are always in direct contact and form the interface between the two partners. The organization and composition of cell walls within the interface compartment is a topic that has attracted widespread attention, both in ecto- and endomycorrhizae. The aim of this review is to provide a general overview of the current knowledge on this topic by integrating morphological observations, which have illustrated cell wall features during mycorrhizal interactions, with the current data produced by genomic and transcriptomic approaches. PMID:24926297

  6. A proteomic and genetic analysis of the Neurospora crassa conidia cell wall proteins identifies two glycosyl hydrolases involved in cell wall remodeling.

    Science.gov (United States)

    Ao, Jie; Aldabbous, Mash'el; Notaro, Marysa J; Lojacono, Mark; Free, Stephen J

    2016-09-01

    A proteomic analysis of the conidial cell wall identified 35 cell wall proteins. A comparison with the proteome of the vegetative hyphae showed that 16 cell wall proteins were shared, and that these shared cell wall proteins were cell wall biosynthetic proteins or cell wall structural proteins. Deletion mutants for 34 of the genes were analyzed for phenotypes indicative of conidial cell wall defects. Mutants for two cell wall glycosyl hydrolases, the CGL-1 β-1,3-glucanase (NCU07523) and the NAG-1 exochitinase (NCU10852), were found to have a conidial separation phenotype. These two enzymes function in remodeling the cell wall between adjacent conidia to facilitate conidia formation and dissemination. Using promoter::RFP and promoter::GFP constructs, we demonstrated that the promoters for 15 of the conidia-specific cell wall genes, including cgl-1 and nag-1, provided for conidia-specific gene expression or for a significant increase in their expression during conidiation. PMID:27381444

  7. Mechanical Properties of Plant Cell Walls Probed by Relaxation Spectra

    DEFF Research Database (Denmark)

    Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola;

    2011-01-01

    type. This may be due to the plant’s ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply a...... method, determination of relaxation spectra, which probes, and can separate, the viscoelastic properties of different cell wall components (i.e. those properties that depend on the elastic behavior of load-bearing wall polymers combined with viscous interactions between them). A computer program, Bayes......Relax, that deduces relaxation spectra from appropriate rheological measurements is presented and made accessible through a Web interface. BayesRelax models the cell wall as a continuum of relaxing elements, and the ability of the method to resolve small differences in cell wall mechanical properties is...

  8. Regulation of Meristem Morphogenesis by Cell Wall Synthases in Arabidopsis.

    Science.gov (United States)

    Yang, Weibing; Schuster, Christoph; Beahan, Cherie T; Charoensawan, Varodom; Peaucelle, Alexis; Bacic, Antony; Doblin, Monika S; Wightman, Raymond; Meyerowitz, Elliot M

    2016-06-01

    The cell walls of the shoot apical meristem (SAM), containing the stem cell niche that gives rise to the above-ground tissues, are crucially involved in regulating differentiation. It is currently unknown how these walls are built and refined or their role, if any, in influencing meristem developmental dynamics. We have combined polysaccharide linkage analysis, immuno-labeling, and transcriptome profiling of the SAM to provide a spatiotemporal plan of the walls of this dynamic structure. We find that meristematic cells express only a core subset of 152 genes encoding cell wall glycosyltransferases (GTs). Systemic localization of all these GT mRNAs by in situ hybridization reveals members with either enrichment in or specificity to apical subdomains such as emerging flower primordia, and a large class with high expression in dividing cells. The highly localized and coordinated expression of GTs in the SAM suggests distinct wall properties of meristematic cells and specific differences between newly forming walls and their mature descendants. Functional analysis demonstrates that a subset of CSLD genes is essential for proper meristem maintenance, confirming the key role of walls in developmental pathways. PMID:27212401

  9. Ubiquitous torsional motions in type II spicules

    CERN Document Server

    De Pontieu, B; van der Voort, L H M Rouppe; Rutten, R J; Hansteen, V H; Watanabe, H

    2012-01-01

    Spicules are long, thin, highly dynamic features that jut out ubiquitously from the solar limb. They dominate the interface between the chromosphere and corona and may provide significant mass and energy to the corona. We use high-quality observations with the Swedish 1-m Solar Telescope to establish that so-called type II spicules are characterized by the simultaneous action of three different types of motion: 1. field-aligned flows of order 50-100 km/s, 2. swaying motions of order 15-20 km/s, and 3. torsional motions of order 25-30 km/s. The first two modes have been studied in detail before, but not the torsional motions. Our analysis of many near-limb and off-limb spectra and narrow-band images yields strong evidence that most, if not all, type-II spicules undergo large torsional modulation and that these motions, like spicule swaying, represent Alfvenic waves propagating outward at several hundred km/s. The combined action of the different motions explains the similar morphology of spicule bushes in the ...

  10. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth

    Directory of Open Access Journals (Sweden)

    Jean-Claude Mollet

    2013-03-01

    Full Text Available The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed.

  11. Proliferation of type II pneumonocytes after X-irradiation

    International Nuclear Information System (INIS)

    Preliminary data are presented on the proliferative response of type II cells in mouse lung five-months after external thoracic doses of 2, 5, 10 and 12 Gy of X-rays. The DNA labelling index (LI) of control (O Gy) mice was at all times 0.3-0.4%. The LI after 2 and 5 Gy showed a slight though transient fall below controls during the first week post-irradiation, and thereafter LIs were similar to controls for the 5 months of the experiment. The LI after 10 and 12 Gy again showed a significant depression during the first week, but a significant increase followed (P = 0.01) in LI which peaked at 4 weeks after irradiation. LI returned to control values at 3-4 months and again rose significantly (P = 0.05) at 5 months. The first wave of proliferation corresponds to data showing an increase in surfactant in alveolar fluids within 2-6 weeks of 10-15 Gy of X rays; the second wave coincides with the pneumonitic phase, consistent with a delay before the alveolar epithelial continuity is sufficiently compromised by low rates of type I cell loss to trigger a compensatory wave of type II cell divisions. (author)

  12. Fetuin-A and type II diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Lamyaa Ismail Ahmed

    2014-01-01

    Conclusion We concluded that fetuin-A may play a role in the pathogenesis of type II DM, and high serum fetuin-A has a strong association with IR and glycemic control in type II diabetic patients. Future studies are recommended to establish the possibility of using fetuin-A as a predictor of insulin resistance in type II diabetic patients.

  13. Modification of cell wall polysaccharides during retting of cassava roots.

    Science.gov (United States)

    Ngolong Ngea, Guillaume Legrand; Guillon, Fabienne; Essia Ngang, Jean Justin; Bonnin, Estelle; Bouchet, Brigitte; Saulnier, Luc

    2016-12-15

    Retting is an important step in traditional cassava processing that involves tissue softening of the roots to transform the cassava into flour and various food products. The tissue softening that occurs during retting was attributed to the degradation of cell wall pectins through the action of pectin-methylesterase and pectate-lyase that possibly originated from a microbial source or the cassava plant itself. Changes in cell wall composition were investigated during retting using chemical analysis, specific glycanase degradation and immuno-labelling of cell wall polysaccharides. Pectic 1,4-β-d-galactan was the main cell wall polysaccharide affected during the retting of cassava roots. This result suggested that better control of pectic galactan degradation and a better understanding of the degradation mechanism by endogenous endo-galactanase and/or exogenous microbial enzymes might contribute to improve the texture properties of cassava products. PMID:27451197

  14. Roles of tRNA in cell wall biosynthesis

    DEFF Research Database (Denmark)

    Dare, Kiley; Ibba, Michael

    2012-01-01

    Recent research into various aspects of bacterial metabolism such as cell wall and antibiotic synthesis, degradation pathways, cellular stress, and amino acid biosynthesis has elucidated roles of aminoacyl-transfer ribonucleic acid (aa-tRNA) outside of translation. Although the two enzyme families...... specificity of this diverse enzymatic family is necessary to aid current efforts in designing potential bactericidal agents. These two enzyme families are linked only by the substrate with which they modify the cell wall, aa-tRNA; their structure, cell wall modification processes and the physiological changes...... responsible for cell wall modifications, aminoacyl-phosphatidylglycerol synthases (aaPGSs) and Fem, were discovered some time ago, they have recently become of intense interest for their roles in the antimicrobial resistance of pathogenic microorganisms. The addition of positively charged amino acids to...

  15. Purification and crystallization of a multimodular heterotrimeric complex containing both type I and type II cohesin–dockerin interactions from the cellulosome of Clostridium thermocellum

    International Nuclear Information System (INIS)

    A multimodular heterotrimeric complex encompassing a trimodular C-terminal fragment of the cellulosomal scaffoldin CipA from C. thermocellum bound to the type II cohesin module of SdbA and the type I dockerin module of CelD has been crystallized by the hanging-drop vapour-diffusion method and initial X-ray diffraction data analysis has been conducted. The multimodular scaffoldin subunit CipA is the central component of the cellulosome, a multienzyme plant cell-wall-degrading complex, from Clostridium thermocellum. It captures secreted cellulases and hemicellulases and anchors the entire complex to the cell surface via high-affinity calcium-dependent interactions between cohesin and dockerin modules termed type I and type II interactions. The crystallization of a heterotrimeric complex comprising the type II cohesin module from the cell-surface protein SdbA, a trimodular C-terminal fragment of the scaffoldin CipA and the type I dockerin module from the CelD cellulase is reported. The crystals belonged to space group P212121, with unit-cell parameters a = 119.37, b = 186.31, c = 191.17 Å. The crystals diffracted to 2.7 Å resolution with four or eight molecules of the ternary protein complex in the asymmetric unit

  16. Patterns of expression of cell wall related genes in sugarcane

    Directory of Open Access Journals (Sweden)

    Lima D.U.

    2001-01-01

    Full Text Available Our search for genes related to cell wall metabolism in the sugarcane expressed sequence tag (SUCEST database (http://sucest.lbi.dcc.unicamp.br resulted in 3,283 reads (1% of the total reads which were grouped into 459 clusters (potential genes with an average of 7.1 reads per cluster. To more clearly display our correlation coefficients, we constructed surface maps which we used to investigate the relationship between cell wall genes and the sugarcane tissues libraries from which they came. The only significant correlations that we found between cell wall genes and/or their expression within particular libraries were neutral or synergetic. Genes related to cellulose biosynthesis were from the CesA family, and were found to be the most abundant cell wall related genes in the SUCEST database. We found that the highest number of CesA reads came from the root and stem libraries. The genes with the greatest number of reads were those involved in cell wall hydrolases (e.g. beta-1,3-glucanases, xyloglucan endo-beta-transglycosylase, beta-glucosidase and endo-beta-mannanase. Correlation analyses by surface mapping revealed that the expression of genes related to biosynthesis seems to be associated with the hydrolysis of hemicelluloses, pectin hydrolases being mainly associated with xyloglucan hydrolases. The patterns of cell wall related gene expression in sugarcane based on the number of reads per cluster reflected quite well the expected physiological characteristics of the tissues. This is the first work to provide a general view on plant cell wall metabolism through the expression of related genes in almost all the tissues of a plant at the same time. For example, developing flowers behaved similarly to both meristematic tissues and leaf-root transition zone tissues. Besides providing a basis for future research on the mechanisms of plant development which involve the cell wall, our findings will provide valuable tools for plant engineering in the

  17. Transformation of Abdominal Wall Endometriosis to Clear Cell Carcinoma

    OpenAIRE

    Maria Paula Ruiz; Darryl Lewis Wallace; Matthew Thomas Connell

    2015-01-01

    Clear cell carcinoma is the least common of the malignant transformations reported in nonpelvic sites of endometriosis. Two cases with clear cell carcinoma transformation arising from endometriosis in abdominal wall scars are presented. These patients underwent total abdominal hysterectomy with bilateral salpingo-oophorectomy, pelvic washings, and abdominal wall lesion resection. The first case had initial treatment with chemotherapy, while chemotherapy and radiation therapy were given for th...

  18. Analyzing the complex machinery of cell wall biosynthesis

    OpenAIRE

    Timmers, J.F.P.

    2009-01-01

    The plant cell wall polymers make up most of the plant biomass and provide the raw material for many economically important products including food, feed, bio-materials, chemicals, textiles, and biofuel. This broad range of functions and applications make the biosynthesis of these polysaccharides a highly interesting target of scientific research. In this thesis a protein-protein interaction strategy was used to gain insight in the cell wall biosynthesis of Arabidopsis thaliana and to identif...

  19. Biosynthetic origin of mycobacterial cell wall arabinosyl residues.

    OpenAIRE

    Scherman, M.; Weston, A; Duncan, K; Whittington, A; Upton, R; Deng, L.; Comber, R; Friedrich, J D; McNeil, M

    1995-01-01

    Designing new drugs that inhibit the biosynthesis of the D-arabinan moiety of the mycobacterial cell wall arabinogalactan is one important basic approach for treatment of mycobacterial diseases. However, the biosynthetic origin of the D-arabinosyl monosaccharide residues themselves is not known. To obtain information on this issue, mycobacteria growing in culture were fed glucose labeled with 14C or 3H in specific positions. The resulting radiolabeled cell walls were isolated and hydrolyzed, ...

  20. Perturbative type II amplitudes for BPS interactions

    CERN Document Server

    Basu, Anirban

    2015-01-01

    We consider the perturbative contributions to the R^4, D^4 R^4 and D^6 R^4 interactions in toroidally compactified type II string theory. These BPS interactions do not receive perturbative contributions beyond genus three. We derive Poisson equations satisfied by these moduli dependent string amplitudes. These T--duality invariant equations have eigenvalues that are completely determined by the structure of the integrands of the multi--loop amplitudes. The source terms are given by boundary terms of the moduli space of Riemann surfaces corresponding to both separating and non--separating nodes. These are determined directly from the string amplitudes, as well as from the logarithmic divergences of maximal supergravity. We explicitly solve these Poisson equations in nine and eight dimensions.

  1. Pectin, a versatile polysaccharide present in plant cell walls

    NARCIS (Netherlands)

    Voragen, A.G.J.; Coenen, G.J.; Verhoef, R.P.; Schols, H.A.

    2009-01-01

    Pectin or pectic substances are collective names for a group of closely associated polysaccharides present in plant cell walls where they contribute to complex physiological processes like cell growth and cell differentiation and so determine the integrity and rigidity of plant tissue. They also pla

  2. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria.

    OpenAIRE

    Mistou, Michel-Yves; Sutcliffe, Iain; van Sorge, Nina

    2016-01-01

    The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall te...

  3. Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls

    Directory of Open Access Journals (Sweden)

    Canut Hervé

    2006-05-01

    Full Text Available Abstract Background The ultimate goal of proteomic analysis of a cell compartment should be the exhaustive identification of resident proteins; excluding proteins from other cell compartments. Reaching such a goal closely depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific difficulties: (i the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP during the isolation procedure, (ii polysaccharide networks of cellulose, hemicelluloses and pectins form potential traps for contaminants such as intracellular proteins. Several reported procedures to isolate cell walls for proteomic analyses led to the isolation of a high proportion (more than 50% of predicted intracellular proteins. Since isolated cell walls should hold secreted proteins, one can imagine alternative procedures to prepare cell walls containing a lower proportion of contaminant proteins. Results The rationales of several published procedures to isolate cell walls for proteomics were analyzed, with regard to the bioinformatic-predicted subcellular localization of the identified proteins. Critical steps were revealed: (i homogenization in low ionic strength acid buffer to retain CWP, (ii purification through increasing density cushions, (iii extensive washes with a low ionic strength acid buffer to retain CWP while removing as many cytosolic proteins as possible, and (iv absence of detergents. A new procedure was developed to prepare cell walls from etiolated hypocotyls of Arabidopsis thaliana. After salt extraction, a high proportion of proteins predicted to be secreted was released (73%, belonging to the same functional classes as proteins identified using previously described protocols. Finally, removal of intracellular proteins was obtained using detergents, but their amount represented less than 3% in mass of the total protein extract, based on protein quantification. Conclusion The

  4. DCB-adapted plant cells possess unique wall structure

    Energy Technology Data Exchange (ETDEWEB)

    Shedletzky, E.; Shmuel, M. (Hebrew Univ., Jerusalem (Israel)); Delmer, D. (Hebrew Univ., Jerusalem (Israel) Michigan State Univ., East Lansing (USA)); Lamport, D. (Michigan State Univ., East Lansing (USA))

    1990-05-01

    Suspension-cultured cells of tomato (Lycopersicon esculentum VF 36) haven been adapted to growth on high concentrations of 2,6-dichloro-benzonitrile (DCB), an herbicide which inhibits cellulose biosynthesis. The mechanism of adaptation appears to rest largely on the ability of thee cells to divide and expand in the virtual absence of a cellulose-xyloglucan network. Walls of adapted cells growing on DCB also differ from non-adapted cells by having reduced levels of hydroxyproline in protein, both in bound and salt-elutable form, and in having a much higher proportion of homogalacturonon and rhamnogalacturonan-like polymers. Most of these latter polymers are apparently cross-linked in the wall via phenolic-esters and/or phenolic ether linkages, and these polymers appear to represent the major load-bearing network in thee unusual cell walls. The surprising finding that plant cells can survive in the virtual absence of a major load-bearing network in their primary cell walls indicates that plants possess remarkable flexibility for tolerating changes in wall composition.

  5. Another brick in the cell wall: biosynthesis dependent growth model.

    Directory of Open Access Journals (Sweden)

    Adelin Barbacci

    Full Text Available Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  6. In vivo metabolism of pulmonary alveolar epithelial type II pneumonocytes and macrophages from Syrian hamsters

    International Nuclear Information System (INIS)

    Young adult Syrian hamsters were injected intraperitoneally with 14C-glycerol and 3H-palmitate 17 hr before they were sacrificed and pulmonary alveolar epithelial type II cells and pulmonary alveolar macrophages (PAM) were isolated. Incorporation of the two labeled components into the cellular lipids showed that the 3H-specific activity of the phospholipids from the type II cells was three times that of the PAM and the utilization of 14C-glycerol into phosphatidyl choline (PC) was 50% greater than incorporation into the PC from PAMs. The PC from type II cells showed that 30% was disaturated and from PAMs 21% was disaturated. Another phosphatide, phosphatidyl glycerol contained about one-third of the molecules in disaturated form. These data are consistent with the view that both type II cells and PAMs can synthesize surface-active phospholipids but it is generally accepted that only the pulmonary alveolar epithelial type II cells excrete the disaturated phospholipids which comprise the surface-active components of pulmonary surfactant

  7. Cell wall proteomics of the green alga Haematococcus pluvialis (Chlorophyceae).

    Science.gov (United States)

    Wang, Sheng-Bing; Hu, Qiang; Sommerfeld, Milton; Chen, Feng

    2004-03-01

    The green microalga Haematococcus pluvialis can synthesize and accumulate large amounts of the ketocarotenoid astaxanthin, and undergo profound changes in cell wall composition and architecture during the cell cycle and in response to environmental stresses. In this study, cell wall proteins (CWPs) of H. pluvialis were systematically analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) coupled with peptide mass fingerprinting (PMF) and sequence-database analysis. In total, 163 protein bands were analyzed, which resulted in positive identification of 81 protein orthologues. The highly complex and dynamic composition of CWPs is manifested by the fact that the majority of identified CWPs are differentially expressed at specific stages of the cell cycle along with a number of common wall-associated 'housekeeping' proteins. The detection of cellulose synthase orthologue in the vegetative cells suggested that the biosynthesis of cellulose occurred during primary wall formation, in contrast to earlier observations that cellulose was exclusively present in the secondary wall of the organism. A transient accumulation of a putative cytokinin oxidase at the early stage of encystment pointed to a possible role in cytokinin degradation while facilitating secondary wall formation and/or assisting in cell expansion. This work represents the first attempt to use a proteomic approach to investigate CWPs of microalgae. The reference protein map constructed and the specific protein markers obtained from this study provide a framework for future characterization of the expression and physiological functions of the proteins involved in the biogenesis and modifications in the cell wall of Haematococcus and related organisms. PMID:14997492

  8. Inhibitors targeting on cell wall biosynthesis pathway of MRSA.

    Science.gov (United States)

    Hao, Haihong; Cheng, Guyue; Dai, Menghong; Wu, Qinghua; Yuan, Zonghui

    2012-11-01

    Methicillin resistant Staphylococcus aureus (MRSA), widely known as a type of new superbug, has aroused world-wide concern. Cell wall biosynthesis pathway is an old but good target for the development of antibacterial agents. Peptidoglycan and wall teichoic acids (WTAs) biosynthesis are two main processes of the cell wall biosynthesis pathway (CWBP). Other than penicillin-binding proteins (PBPs), some key factors (Mur enzymes, lipid I or II precursor, etc.) in CWBP are becoming attractive molecule targets for the discovery of anti-MRSA compounds. A number of new compounds, with higher affinity for PBPs or with inhibitory activity on such molecule targets in CWBP of MRSA, have been in the pipeline recently. This review concludes recent research achievements and provides a complete picture of CWBP of MRSA, including the peptidoglycan and wall teichoic acids synthesis pathway. The potential inhibitors targeting on CWBP are subsequently presented to improve development of novel therapeutic strategies for MRSA. PMID:22898792

  9. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells

    OpenAIRE

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast...

  10. Co-delivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation.

    Science.gov (United States)

    Schuster, Martin; Martin-Urdiroz, Magdalena; Higuchi, Yujiro; Hacker, Christian; Kilaru, Sreedhar; Gurr, Sarah J; Steinberg, Gero

    2016-01-01

    Fungal cells are surrounded by an extracellular cell wall. This complex matrix of proteins and polysaccharides protects against adverse stresses and determines the shape of fungal cells. The polysaccharides of the fungal wall include 1,3-β-glucan and chitin, which are synthesized by membrane-bound synthases at the growing cell tip. A hallmark of filamentous fungi is the class V chitin synthase, which carries a myosin-motor domain. In the corn smut fungus Ustilago maydis, the myosin-chitin synthase Mcs1 moves to the plasma membrane in secretory vesicles, being delivered by kinesin-1 and myosin-5. The myosin domain of Mcs1 enhances polar secretion by tethering vesicles at the site of exocytosis. It remains elusive, however, how other cell-wall-forming enzymes are delivered and how their activity is coordinated post secretion. Here, we show that the U. maydis class VII chitin synthase and 1,3-β-glucan synthase travel in Mcs1-containing vesicles, and that their apical secretion depends on Mcs1. Once in the plasma membrane, anchorage requires enzyme activity, which suggests co-synthesis of chitin and 1,3-β-glucan polysaccharides at sites of exocytosis. Thus, delivery of cell-wall-forming enzymes in Mcs1 vesicles ensures local foci of fungal cell wall formation. PMID:27563844

  11. Primary Cell Wall Structure in the Evolution of Land Plants

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Investigation of the primary cell walls of lower plants improves our understanding of the cell biology of these organisms but also has the potential to improve our understanding of cell wall structure and function in angiosperms that evolved from lower plants. Cell walls were prepared from eight species, ranging from a moss to advanced gymnosperms, and subjected to sequential chemical extraction to separate the main polysaccharide fractions. The glycosyl compositions of these fractions were then determined by gas chromatography. The results were compared among the eight plants and among data from related studies reported in the existing published reports to identify structural features that have been either highly conserved or clearly modified during evolution. Among the highly conserved features are the presence of a cellulose framework, the presence of certain hemicelluloses such as xyloglucan, and the presence of rhamnogalacturonan Ⅱ, a domain in pectic polysaccharides. Among the modified features are the abundance of mannosyl-containing hemicelluloses and the presence of methylated sugars.

  12. Simulated microgravity inhibits cell wall regeneration of Penicillium decumbens protoplasts

    Science.gov (United States)

    Zhao, C.; Sun, Y.; Yi, Z. C.; Rong, L.; Zhuang, F. Y.; Fan, Y. B.

    2010-09-01

    This work compares cell wall regeneration from protoplasts of the fungus Penicillium decumbens under rotary culture (simulated microgravity) and stationary cultures. Using an optimized lytic enzyme mixture, protoplasts were successfully released with a yield of 5.3 × 10 5 cells/mL. Under simulated microgravity conditions, the protoplast regeneration efficiency was 33.8%, lower than 44.9% under stationary conditions. Laser scanning confocal microscopy gave direct evidence for reduced formation of polysaccharides under simulated conditions. Scanning electron microscopy showed the delayed process of cell wall regeneration by simulated microgravity. The delayed regeneration of P. decumbens cell wall under simulated microgravity was likely caused by the inhibition of polysaccharide synthesis. This research contributes to the understanding of how gravitational loads affect morphological and physiological processes of fungi.

  13. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis

    NARCIS (Netherlands)

    Souza, De Amanda P.; Lessa Alvim Kamei, Claire; Torres Salvador, Andres Francisco; Pattathil, Sivakumar; Hahn, Michael G.; Trindade, Luisa M.; Buckeridge, Marcos S.

    2015-01-01

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell wal

  14. Alterations in auxin homeostasis suppress defects in cell wall function.

    Directory of Open Access Journals (Sweden)

    Blaire J Steinwand

    Full Text Available The plant cell wall is a highly dynamic structure that changes in response to both environmental and developmental cues. It plays important roles throughout plant growth and development in determining the orientation and extent of cell expansion, providing structural support and acting as a barrier to pathogens. Despite the importance of the cell wall, the signaling pathways regulating its function are not well understood. Two partially redundant leucine-rich-repeat receptor-like kinases (LRR-RLKs, FEI1 and FEI2, regulate cell wall function in Arabidopsis thaliana roots; disruption of the FEIs results in short, swollen roots as a result of decreased cellulose synthesis. We screened for suppressors of this swollen root phenotype and identified two mutations in the putative mitochondrial pyruvate dehydrogenase E1α homolog, IAA-Alanine Resistant 4 (IAR4. Mutations in IAR4 were shown previously to disrupt auxin homeostasis and lead to reduced auxin function. We show that mutations in IAR4 suppress a subset of the fei1 fei2 phenotypes. Consistent with the hypothesis that the suppression of fei1 fei2 by iar4 is the result of reduced auxin function, disruption of the WEI8 and TAR2 genes, which decreases auxin biosynthesis, also suppresses fei1 fei2. In addition, iar4 suppresses the root swelling and accumulation of ectopic lignin phenotypes of other cell wall mutants, including procuste and cobra. Further, iar4 mutants display decreased sensitivity to the cellulose biosynthesis inhibitor isoxaben. These results establish a role for IAR4 in the regulation of cell wall function and provide evidence of crosstalk between the cell wall and auxin during cell expansion in the root.

  15. Type I vs type II spiral ganglion neurons exhibit differential survival and neuritogenesis during cochlear development

    Directory of Open Access Journals (Sweden)

    Housley Gary D

    2011-10-01

    Full Text Available Abstract Background The mechanisms that consolidate neural circuitry are a major focus of neuroscience. In the mammalian cochlea, the refinement of spiral ganglion neuron (SGN innervation to the inner hair cells (by type I SGNs and the outer hair cells (by type II SGNs is accompanied by a 25% loss of SGNs. Results We investigated the segregation of neuronal loss in the mouse cochlea using β-tubulin and peripherin antisera to immunolabel all SGNs and selectively type II SGNs, respectively, and discovered that it is the type II SGN population that is predominately lost within the first postnatal week. Developmental neuronal loss has been attributed to the decline in neurotrophin expression by the target hair cells during this period, so we next examined survival of SGN sub-populations using tissue culture of the mid apex-mid turn region of neonatal mouse cochleae. In organotypic culture for 48 hours from postnatal day 1, endogenous trophic support from the organ of Corti proved sufficient to maintain all type II SGNs; however, a large proportion of type I SGNs were lost. Culture of the spiral ganglion as an explant, with removal of the organ of Corti, led to loss of the majority of both SGN sub-types. Brain-derived neurotrophic factor (BDNF added as a supplement to the media rescued a significant proportion of the SGNs, particularly the type II SGNs, which also showed increased neuritogenesis. The known decline in BDNF production by the rodent sensory epithelium after birth is therefore a likely mediator of type II neuron apoptosis. Conclusion Our study thus indicates that BDNF supply from the organ of Corti supports consolidation of type II innervation in the neonatal mouse cochlea. In contrast, type I SGNs likely rely on additional sources for trophic support.

  16. Axion from Quivers in Type II Superstrings

    CERN Document Server

    Belhaj, Adil; del Moral, Maria Pilar Garcia

    2015-01-01

    We investigate a string-inspired axion extension of the standard model obtained from Type II superstrings using quiver method. In the first part, we discuss intersecting Type IIA D6-branes wrapping non trivial 3-cycles in the presence of the Peccei-Quinn symmetry U(1)$_{PQ}$. Concretely, a complex scalar field $\\phi =\\rho exp(\\frac{i\\sigma}{f_{\\sigma}})$, where $\\sigma$ is a closed string axion generates a general fermion Yukawa coupling weighted by a flavor-dependent power $n_{f}$ taking specific values. Using string theory and standard model data, we find that the corresponding axion window is in the allowed range $10^{9}GeV\\leq f_{\\sigma}\\leq 10^{12}GeV $ matching with the recent cosmological results. Then, we extend these results to the case of the hyperbolic quiver whose the moduli is related to the stringy axion using root systems of ADE Lie algebras. For the hyperbolic quiver case, we observe that the closed axion decay constant becomes disentangled from the string scale.

  17. Multispectral imaging with type II superlattice detectors

    Science.gov (United States)

    Ariyawansa, Gamini; Duran, Joshua M.; Grupen, Matt; Scheihing, John E.; Nelson, Thomas R.; Eismann, Michael T.

    2012-06-01

    Infrared (IR) focal plane arrays (FPAs) with multispectral detector elements promise significant advantages for airborne threat warning, surveillance, and targeting applications. At present, the use of type II superlattice (T2SL) structures based on the 6.1Å-family materials (InAs, GaSb, and AlSb) has become an area of interest for developing IR detectors and their FPAs. The ability to vary the bandgap in the IR range, suppression of Auger processes, prospective reduction of Shockley-Read-Hall centers by improved material growth capabilities, and the material stability are a few reasons for the predicted dominance of the T2SL technology over presently leading HgCdTe and quantum well technologies. The focus of the work reported here is on the development of T2SL based dual-band IR detectors and their applicability for multispectral imaging. A new NpBPN detector designed for the detection of IR in the 3-5 and 8-12 μm atmospheric windows is presented; comparing its advantages over other T2SL based approaches. One of the key challenges of the T2SL dual-band detectors is the spectral crosstalk associated with the LWIR band. The properties of the state-of-the-art T2SLs (i.e., absorption coefficient, minority carrier lifetime and mobility, etc.) and the present growth limitations that impact spectral crosstalk are discussed.

  18. Edaravone suppresses degradation of type II collagen.

    Science.gov (United States)

    Huang, Chen; Liao, Guangjun; Han, Jian; Zhang, Guofeng; Zou, Benguo

    2016-05-13

    Osteoarthritis (OA) is a degenerative joint disease affecting millions of people. The degradation and loss of type II collagen induced by proinflammatory cytokines secreted by chondrocytes, such as factor-α (TNF-α) is an important pathological mechanism to the progression of OA. Edaravone is a potent free radical scavenger, which has been clinically used to treat the neuronal damage following acute ischemic stroke. However, whether Edaravone has a protective effect in articular cartilage hasn't been reported before. In this study, we investigated the chondrocyte protective effects of Edaravone on TNF-α induced degradation of type Ⅱ collagen. And our results indicated that TNF-α treatment resulted in degradation of type Ⅱ collagen, which can be ameliorated by treatment with Edaravone in a dose dependent manner. Notably, it was found that the inhibitory effects of Edaravone on TNF-α-induced reduction of type Ⅱ collagen were mediated by MMP-3 and MMP-13. Mechanistically, we found that Edaravone alleviated TNF-α induced activation of STAT1 and expression of IRF-1. These findings suggest a potential protective effect of Edaravone in OA. PMID:27037019

  19. Type II supernovae modelisation: neutrinos transport simulation

    International Nuclear Information System (INIS)

    A modelisation of neutrino transport in type II supernovae is presented. The first part is a description of hydrodynamics and radiative processes responsible of supernovae explosions. Macroscopic aspects of these are displayed in part two. Neutrino transport theory and usual numerical methods are also developed. A new technic of coherent scattering of neutrinos on nuclei or free nucleons is proposed in the frame work of the Lorentz bifluid approximation. This method deals with all numerical artifices (flux limiting schemes, closure relationship of Eddington moments) and allows a complete and consistent determination of the time-dependent neutrino distribution function for any value of the opacity, gradient of opacity and for all (relativistic) velocity fields of the diffusive medium. Part three is dedicated to microscopic phenomena (electronic capture, chimical composition, etc) which rule neutrinos emission-absorption mechanisms. The numerical treatments of those are presented, and some applications are useful for their parametrization. Finally, an extension of the method to inelastic scattering on light particules (electrons) is described in view to study neutrinos thermalization mechanism

  20. Dust Formation in Primordial Type II Supernovae

    CERN Document Server

    Todini, P; Todini, Paolo

    2000-01-01

    We have investigated the formation of dust in the ejecta of Type II supernovae (SNe), mostly of primordial composition, to answer the question of where are the first solid particles formed in the universe. However, we have also considered non-zero progenitor's metallicity values up to Z=Zsun. The calculations are based on standard nucleation theory and the scheme has been first tested on the well studied case of SN1987A, yielding results that are in agreement with the available data. We find that: i) the first dust grains are predominantly made of silicates, amorphous carbon (AC), magnetite, and corundum; ii) the largest grains are the AC ones, with sizes around 300 A, whereas other grain types have smaller radii, around 10-20 A. The grain size distribution depends somewhat on the thermodynamics of the ejecta expansion and variations in the results by a factor ~ 2 might occur within reasonable estimates of the relevant parameters. Also, and for the same reason, the grain size distribution, is essentially unaf...

  1. Changes of lipid domains in Bacillus subtilis cells with disrupted cell wall peptidoglycan

    OpenAIRE

    Muchová, Katarína; Wilkinson, Anthony J.; Barák, Imrich

    2011-01-01

    The cell wall is responsible for cell integrity and the maintenance of cell shape in bacteria. The Gram-positive bacterial cell wall consists of a thick peptidoglycan layer located on the outside of the cytoplasmic membrane. Bacterial cell membranes, like eukaryotic cell membranes, are known to contain domains of specific lipid and protein composition. Recently, using the membrane-binding fluorescent dye FM4-64, helix-like lipid structures extending along the long axis of the cell and consist...

  2. The Interplay between Cell Wall Mechanical Properties and the Cell Cycle in Staphylococcus aureus

    OpenAIRE

    Bailey, Richard G.; Turner, Robert D.; Mullin, Nic; Clarke, Nigel,; Foster, Simon J.; Hobbs, Jamie K.

    2014-01-01

    The nanoscale mechanical properties of live Staphylococcus aureus cells during different phases of growth were studied by atomic force microscopy. Indentation to different depths provided access to both local cell wall mechanical properties and whole-cell properties, including a component related to cell turgor pressure. Local cell wall properties were found to change in a characteristic manner throughout the division cycle. Splitting of the cell into two daughter cells followed a local softe...

  3. Structure, function, and biosynthesis of plant cell walls: proceedings of the seventh annual symposium in botany

    Energy Technology Data Exchange (ETDEWEB)

    Dugger, W.M.; Bartnicki-Garcia, S. (eds.)

    1984-01-01

    Papers in the following areas were included in these symposium proceedings: (1) cell wall chemistry and biosynthesis; (2) cell wall hydrolysis and associated physiology; (3) cellular events associated with cell wall biosynthesis; and (4) interactions of plant cell walls with pathogens and related responses. Papers have been individually abstracted for the data base. (ACR)

  4. Immunocytochemical characterization of the cell walls of bean cell suspensions during habituation and dehabituation to dichlobenil

    DEFF Research Database (Denmark)

    Garcia-Angulo, P.; Willats, W. G. T.; Encina, A. E.;

    2006-01-01

    analysed showed calcofluor-stained appositions. However, in habituated and dehabituated cells, appositions were not recognized by an anticallose antibody. This finding suggested the accumulation of an extracellular polysaccharide different to callose, probably a 1,4-ß-glucan in these cell lines......The effects of the cellulose inhibitor dichlobenil on the cell wall composition and structure during the habituation/dehabituation process of suspension-cultured bean cells were assessed. A range of techniques were used including cell wall fractionation, sugar analysis, immunofluorescence and...... fluorochrome labelling of resin-embedded sections, and immunodot assays (IDAs) of cell wall fractions. The cell walls from bean cell suspensions with initial levels of habituation to dichlobenil had decreased levels of cellulose, but this effect lessened with increasing numbers of subcultures. All cell walls...

  5. Ultrastructure of organic cell walls in Proterozoic microalgae

    Science.gov (United States)

    Moczydlowska-Vidal, M.

    2009-04-01

    The antiquity of life has been well appreciated since the discoveries of microfossils and confirmation of their authenticity, as well as the recognition of geochemical signs of biogenicity in the Archean successions. Resolving the biological affinities of early biota is essential for the unravelling the changes that led to modern biodiversity, but also for the detection of possible biogenic records outside of the terrestrial biosphere. Advanced techniques in microscopy, tomography and spectroscopy applied to examine individual microfossils at the highest attainable spatial resolution have provided unprecedented insights into micro- and nano-scale structure and composition of organic matter. Transmission and scanning electron microscopy studies of the wall ultrastructure of sphaeromorphic and ornamented acritarchs have revealed complex, single to multilayered walls, having a unique texture in sub-layers and an occasionally preserved trilaminar sheath structure (TLS) of the cell wall. A variety of optical characteristics, the electron density and texture of fabrics of discrete layers, and the properties of biopolymers may indicate the polyphyletic affiliations of such microfossils and/or the preservation of various stages (vegetative, resting) in their life cycle. I evaluate the morphological features of organic-walled unicellular microfossils in conjunction with their cell wall ultrastructure to infer their life cycle and to recognize various developmental stages represented among microfossils attributed to a single form-taxon. Several cases of fine wall ultrastructure in microfossils have been documented and have had a conclusive influence on understanding their affinities. Some Proterozoic and Cambrian leiosphaerids are of algal affinities. Certain specimens represent chlorophyceaens, having the multilayered composite wall with TLS structure known from vegetative and resting cells in modern genera of the Chlorococcales and Volvocales. The wall ultrastructure of

  6. Transcriptional Wiring of Cell Wall-Related Genes in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Marek Mutwil; Colin Ruprecht; Federico M. Giorgi; Martin Bringmann; Bj(o)rn Usadel; Staffan Persson

    2009-01-01

    Transcriptional coordination, or co-expression, of genes may signify functional relatedness of the correspond-ing proteins. For example, several genes involved in secondary cell wall cellulose biosynthesis are co-expressed with genes engaged in the synthesis of xylan, which is a major component of the secondary cell wall. To extend these types of anal-yses, we investigated the co-expression relationships of all Carbohydrate-Active enZYmes (CAZy)-related genes for Arabidopsis thaliana. Thus, the intention was to transcriptionally link different cell wall-related processes to each other, and also to other biological functions. To facilitate easy manual inspection, we have displayed these interactions as networks and matrices, and created a web-based interface (http://aranet.mpimp-golm.mpg.de/corecarb) containing downloadable files for all the transcriptional associations.

  7. Fluorescent Probes for Exploring Plant Cell Wall Deconstruction: A Review

    Directory of Open Access Journals (Sweden)

    Gabriel Paës

    2014-07-01

    Full Text Available Plant biomass is a potential resource of chemicals, new materials and biofuels that could reduce our dependency on fossil carbon, thus decreasing the greenhouse effect. However, due to its chemical and structural complexity, plant biomass is recalcitrant to green biological transformation by enzymes, preventing the establishment of integrated bio-refineries. In order to gain more knowledge in the architecture of plant cell wall to facilitate their deconstruction, many fluorescent probes bearing various fluorophores have been devised and used successfully to reveal the changes in structural motifs during plant biomass deconstruction, and the molecular interactions between enzymes and plant cell wall polymers. Fluorescent probes are thus relevant tools to explore plant cell wall deconstruction.

  8. Synthesis and Application of Plant Cell Wall Oligogalactans

    DEFF Research Database (Denmark)

    Andersen, Mathias Christian Franch

    The plant cell walls represent almost 50% of the biomass found in plants and are therefore one of the main targets for biotechnological research. Major motivators are their potential as a renewable energy source for transport fuels, as functional foods, and as a source of raw materials to generate...... chemical building blocks for industrial processes. To achieve a sustainable development it is necessary to optimize plant production and utilization. This will require a better understanding of the cell wall structure and function at the molecular level. The cell wall is composed by an intricate network of...... as part of the arabinogalactans series. The fragments were applied in the characterization of a glycosyl transferase, a hydrolase and to study the important cancer biomarker galectin-3. The work done during an external stay at University of Oxford is also presented. This concerns isolation and...

  9. The role of the cell wall in plant immunity

    DEFF Research Database (Denmark)

    Malinovsky, Frederikke Gro; Fangel, Jonatan Ulrik; Willats, William George Tycho

    2014-01-01

    The battle between plants and microbes is evolutionarily ancient, highly complex, and often co-dependent. A primary challenge for microbes is to breach the physical barrier of host cell walls whilst avoiding detection by the plant's immune receptors. While some receptors sense conserved microbial...... features, others monitor physical changes caused by an infection attempt. Detection of microbes leads to activation of appropriate defense responses that then challenge the attack. Plant cell walls are formidable and dynamic barriers. They are constructed primarily of complex carbohydrates joined by...... numerous distinct connection types, and are subject to extensive post-synthetic modification to suit prevailing local requirements. Multiple changes can be triggered in cell walls in response to microbial attack. Some of these are well described, but many remain obscure. The study of the myriad of subtle...

  10. Cell wall integrity signalling in human pathogenic fungi.

    Science.gov (United States)

    Dichtl, Karl; Samantaray, Sweta; Wagener, Johannes

    2016-09-01

    Fungi are surrounded by a rigid structure, the fungal cell wall. Its plasticity and composition depend on active regulation of the underlying biosynthesis and restructuring processes. This involves specialised signalling pathways that control gene expression and activities of biosynthetic enzymes. The cell wall integrity (CWI) pathway is the central signalling cascade required for the adaptation to a wide spectrum of cell wall perturbing conditions, including heat, oxidative stress and antifungals. In the recent years, great efforts were made to analyse the CWI pathway of diverse fungi. It turned out that the CWI signalling cascade is mostly conserved in the fungal kingdom. In this review, we summarise as well as compare the current knowledge on the canonical CWI pathway in the human pathogenic fungi Candida albicans, Candida glabrata, Aspergillus fumigatus and Cryptococcus neoformans. Understanding the differences and similarities in the stress responses of these organisms could become a key to improving existing or developing new antifungal therapies. PMID:27155139

  11. Histochemical effects of γ radiation on soft fruit cell walls

    International Nuclear Information System (INIS)

    Irradiation effects in peaches, tomatoes, cherries and grapes on the composition of cell wall polysaccharides were investigated by histochemical techniques. Cell wall polysaccharides, separated by a modified Jensen's method were pectins, hemicellulose, non-cellulosic polysaccharides and cellulose. The extinction values of Periodic Acid Schiff stained tissues was measured by microscopical photometry. Irradiation induced highly significant changes in polysaccharide composition of mesocarp cell walls; these changes were found to be a function of time of irradiation after harvest and of the species tested. A general influence on polysaccharide molecules was not found. Variations produced by irradiation are postulated to be an interference with a regulatory system rather than a breakdown of a functional molecule (metabolic enzyme or polysaccharide. (author)

  12. Stem and progenitor cells in biostructure of blood vessel walls

    Directory of Open Access Journals (Sweden)

    Krzysztof Korta

    2013-09-01

    Full Text Available Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, “anchored” in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC. Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as “subendothelial or vasculogenic zones”. Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.

  13. Evolution of the cell wall components during terrestrialization

    Directory of Open Access Journals (Sweden)

    Alicja Banasiak

    2014-12-01

    Full Text Available Colonization of terrestrial ecosystems by the first land plants, and their subsequent expansion and diversification, were crucial for the life on the Earth. However, our understanding of these processes is still relatively poor. Recent intensification of studies on various plant organisms have identified the plant cell walls are those structures, which played a key role in adaptive processes during the evolution of land plants. Cell wall as a structure protecting protoplasts and showing a high structural plasticity was one of the primary subjects to changes, giving plants the new properties and capabilities, which undoubtedly contributed to the evolutionary success of land plants. In this paper, the current state of knowledge about some main components of the cell walls (cellulose, hemicelluloses, pectins and lignins and their evolutionary alterations, as preadaptive features for the land colonization and the plant taxa diversification, is summarized. Some aspects related to the biosynthesis and modification of the cell wall components, with particular emphasis on the mechanism of transglycosylation, are also discussed. In addition, new surprising discoveries related to the composition of various cell walls, which change how we perceive their evolution, are presented, such as the presence of lignin in red algae or MLG (1→3,(1→4-β-D-glucan in horsetails. Currently, several new and promising projects, regarding the cell wall, have started, deciphering its structure, composition and metabolism in the evolutionary context. That additional information will allow us to better understand the processes leading to the terrestrialization and the evolution of extant land plants.

  14. Bacterial Cell Wall-Induced Arthritis: Chemical Composition and Tissue Distribution of Four Lactobacillus Strains

    OpenAIRE

    Šimelyte, Egle; Rimpiläinen, Marja; Lehtonen, Leena; Zhang, Xiang; Toivanen, Paavo

    2000-01-01

    To study what determines the arthritogenicity of bacterial cell walls, cell wall-induced arthritis in the rat was applied, using four strains of Lactobacillus. Three of the strains used proved to induce chronic arthritis in the rat; all were Lactobacillus casei. The cell wall of Lactobacillus fermentum did not induce chronic arthritis. All arthritogenic bacterial cell walls had the same peptidoglycan structure, whereas that of L. fermentum was different. Likewise, all arthritogenic cell walls...

  15. Type II superlattice technology for LWIR detectors

    Science.gov (United States)

    Klipstein, P. C.; Avnon, E.; Azulai, D.; Benny, Y.; Fraenkel, R.; Glozman, A.; Hojman, E.; Klin, O.; Krasovitsky, L.; Langof, L.; Lukomsky, I.; Nitzani, M.; Shtrichman, I.; Rappaport, N.; Snapi, N.; Weiss, E.; Tuito, A.

    2016-05-01

    SCD has developed a range of advanced infrared detectors based on III-V semiconductor heterostructures grown on GaSb. The XBn/XBp family of barrier detectors enables diffusion limited dark currents, comparable with MCT Rule-07, and high quantum efficiencies. This work describes some of the technical challenges that were overcome, and the ultimate performance that was finally achieved, for SCD's new 15 μm pitch "Pelican-D LW" type II superlattice (T2SL) XBp array detector. This detector is the first of SCD's line of high performance two dimensional arrays working in the LWIR spectral range, and was designed with a ~9.3 micron cut-off wavelength and a format of 640 x 512 pixels. It contains InAs/GaSb and InAs/AlSb T2SLs, engineered using k • p modeling of the energy bands and photo-response. The wafers are grown by molecular beam epitaxy and are fabricated into Focal Plane Array (FPA) detectors using standard FPA processes, including wet and dry etching, indium bump hybridization, under-fill, and back-side polishing. The FPA has a quantum efficiency of nearly 50%, and operates at 77 K and F/2.7 with background limited performance. The pixel operability of the FPA is above 99% and it exhibits a stable residual non uniformity (RNU) of better than 0.04% of the dynamic range. The FPA uses a new digital read-out integrated circuit (ROIC), and the complete detector closely follows the interfaces of SCD's MWIR Pelican-D detector. The Pelican- D LW detector is now in the final stages of qualification and transfer to production, with first prototypes already integrated into new electro-optical systems.

  16. Nonlocal conductivity in type-II superconductors

    International Nuclear Information System (INIS)

    Multiterminal transport measurements on YBa2Cu2O7 crystals in the vortex liquid regime have shown nonlocal conductivity on length scales up to 50 microns. Motivated by these results we explore the wave vector (k) dependence of the dc conductivity tensor, σμν(k), in the Meissner, vortex lattice, and disordered phases of a type-II superconductor. Our results are based on time-dependent Ginzburg-Landau (TDGL) theory and on phenomenological arguments. We find four qualitatively different types of behavior. First, in the Meissner phase, the conductivity is infinite at k=0 and is a continuous function of k, monotonically decreasing with increasing k. Second, in the vortex-lattice phase, in the absence of pinning, the conductivity is finite (due to flux flow) at k=0; it is discontinuous there and remains qualitatively like the Meissner phase for k>0. Third, in the vortex liquid regime in a magnetic field and at low temperature, the conductivity is finite, smooth and nonmonotonic, first increasing with k at small k and then decreasing at larger k. This third behavior is expected to apply at temperatures just above the melting transition of the vortex lattice, where the vortex liquid shows strong short-range order and a large viscosity. Finally, at higher temperatures in the disordered phase, the conductivity is finite, smooth and again monotonically decreasing with k. This last, monotonic behavior applies in zero magnetic field for the entire disordered phase, i.e., at all temperatures above Tc, while in a field the nonmonotonic behavior may occur in a low-temperature portion of the disordered phase

  17. Particle Trajectories in Rotating Wall Cell Culture Devices

    Science.gov (United States)

    Ramachandran N.; Downey, J. P.

    1999-01-01

    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.

  18. Cell Wall Polysaccharides of Candida albicans Induce Mast Cell Degranulation in the Gut

    OpenAIRE

    Sakurai, Atsuko; Yamaguchi, Natsu; Sonoyama, Kei

    2012-01-01

    We investigated Candida albicans-induced mast cell degranulation in vitro and in vivo. Cell wall fraction but not culture supernatant and cell membrane fraction prepared from hyphally grown C. albicans induced β-hexosaminidase release in RBL-2H3 cells. Cell wall mannan and soluble β-glucan fractions also induced β-hexosaminidase release. Histological examination of mouse forestomach showed that C. albicans gut colonization induces mast cell degranulation. However, intragastric administration ...

  19. Characters of Fractal Ultrastructure in Wood Cell Wall

    Institute of Scientific and Technical Information of China (English)

    LI Beimei; ZHAO Guangjie

    2006-01-01

    Fractal theory was introduced in order to describe the ultrastructure of wood cell wall in this paper.The cellulose chain clusters around nano-scale were viewed as a fractal object that consists of many fibrillar structural units with different scales including microfibrils.On the basis of the morphological data of wood cell wall.fractal dimensions of multi-level fibrillar structural units were calculated by fractal-geometry approach,and then the morphological and structural characteristics of fibers as well as the influences on wood properties were investigated according to the dimensions.Besides,the fractal self-nesting character of the ultrastruture was also analyzed.

  20. Chemical and in situ characterization of macromolecular components of the cell walls from the green seaweed Codium fragile.

    Science.gov (United States)

    Estevez, José Manuel; Fernández, Paula Virginia; Kasulin, Luciana; Dupree, Paul; Ciancia, Marina

    2009-03-01

    A comprehensive analysis of the carbohydrate-containing macromolecules from the coencocytic green seaweed Codium fragile and their arrangement in the cell wall was carried out. Cell walls in this seaweed are highly complex structures composed of 31% (w/w) of linear (1-->4)-beta-D-mannans, 9% (w/w) of pyruvylated arabinogalactan sulfates (pAGS), and low amounts of hydroxyproline rich-glycoprotein epitopes (HRGP). In situ chemical imaging by synchrotron radiation Fourier transform infrared (SR-FTIR) microspectroscopy and by immunolabeling using antibodies against specific cell wall carbohydrate epitopes revealed that beta-d-mannans and pAGS are placed in the middle part of the cell wall, whereas HRGP epitopes (arabinogalactan proteins (AGPs) and extensins) are located on the wall boundaries, especially in the utricle apical zone. pAGS are sulfated at C-2 and/or C-4 of the 3-linked beta-L-arabinopyranose units and at C-4 and/or C-6 of the 3-linked beta-D-galactopyranose residues. In addition, high levels of ketals of pyruvic acid were found mainly at 3,4- of some terminal beta-D-Galp units forming a five-membered ring. Ramification was found at some C-6 of the 3-linked beta-D-Galp units. In agreement with the immunolabeled AGP epitopes, a nonsulfated branched furanosidic arabinan with 5-linked alpha-L-Araf, 3,5-linked alpha-L-Araf, and terminal alpha-L-Araf units and a nonsulfated galactan structure composed of 3-(3,6)-linked beta-D-Galp residues, both typical of type-II AG glycans were found, suggesting that AGP structures are present at low levels in the cell walls of this seaweed. Based on this study, it is starting to emerge that Codium has developed unique cell wall architecture, when compared, not only with that of vascular plants, but also with other related green seaweeds and algae. PMID:18832454

  1. Excitation of type II anterior caudate neurons by stimulation of dopamine D3 receptors.

    Science.gov (United States)

    Piercey, M F; Hyslop, D K; Hoffmann, W E

    1997-07-11

    Previous studies have demonstrated that both direct- and indirect-acting dopamine (DA) receptor agonists excite type II neurons in the anterior caudate (CN) by stimulation of DA receptors belonging to the D2 receptor subfamily (D2, D3, D4 receptor subtypes). In the present study, pramipexole, a D3-preferring DA agonist effective in treating Parkinson's disease, excited type II anterior CN neurons. As with other direct-acting agonists, excitation of the CN neurons occurred only at doses above those that silenced DA neurons in the substantia nigra pars compacta (SNPC). Although more potent than pramipexole in inhibiting SNPC cells, PNU-91356A, a D2-preferring agonist, did not excite type II CN cells. The D3-preferring antagonist (+)-AJ76 was weaker than haloperidol, a D2-preferring antagonist, in reversing the effects of amphetamine on firing rates in dopaminergic neurons in both the SNPC and the CN. However, in relationship to its potency in the SNPC, (+)-AJ76 was more potent than haloperidol in the CN. PNU-101387, a selective D4 antagonist, did not alter amphetamine-induced stimulation of type II CN neurons. We conclude that DA agonists may excite type II anterior CN neurons via D3 receptor activation. The stimulation of these neurons may contribute to the anti-parkinsonian effects of pramipexole. PMID:9262154

  2. Organization of the human keratin type II gene cluster at 12q13

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S.J.; LeBlanc-Straceski, J.; Krauter, K. [Albert Einstein College of Medicine, Bronx, NY (United States)] [and others

    1994-12-01

    Keratin proteins constitute intermediate filaments and are the major differentiation products of mammalian epithelial cells. The epithelial keratins are classified into two groups, type I and type II, and one member of each group is expressed in a given epithelial cell differentiation stage. Mutations in type I and type II keratin genes have now been implicated in three different human genetic disorders, epidermolysis bullosa simplex, epidermolytic hyperkeratosis, and epidermolytic palmoplantar keratoderma. Members of the type I keratins are mapped to human chromosome 17, and the type II keratin genes are mapped to chromosome 12. To understand the organization of the type II keratin genes on chromosome 12, we isolated several yeast artificial chromosomes carrying these keratin genes and examined them in detail. We show that eight already known type II keratin genes are located in a cluster at 12q13, and their relative organization reflects their evolutionary relationship. We also determined that a type I keratin gene, KRT8, is located next to its partner, KRT18, in this cluster. Careful examination of the cluster also revealed that there may be a number of additional keratin genes at this locus that have not been described previously. 41 refs., 3 figs., 1 tab.

  3. Cell wall modification in grapevine cells in response to UV stress investigated by atomic force microscopy

    International Nuclear Information System (INIS)

    Despite cell wall reinforcement being a well-known defence mechanism of plants, it remains poorly characterized from a physical point of view. The objective of this work was to further describe this mechanism. Vitis vinifera cv Gamay cells were treated with UV-light (254 nm), a well-known elicitor of defence mechanisms in grapevines, and physical cell wall modifications were observed using the atomic force microscopy (AFM) under native conditions. The grapevine cell suspensions were continuously observed in their culture medium from 30 min to 24 h after elicitation. In the beginning, cellulose fibrils covered by a matrix surrounded the control and treated cells. After 3 h, the elicited cells displayed sprouted expansions around the cell wall that correspond to pectin chains. These expansions were not observed on untreated grapevine cells. The AFM tip was used to determine the average surface elastic modulus of cell wall that account for cell wall mechanical properties. The elasticity is diminished in UV-treated cells. In a comparative study, grapevine cells showed the same decrease in cell wall elasticity when treated with a fungal biotic elicitor of defence response. These results demonstrate cell wall strengthening by UV stress

  4. Congenital dyserythropoietic anemia type II associated with G6PD Seattle in a Sicilian child.

    Science.gov (United States)

    Gangarossa, S; Romano, V; Miraglia del Giudice, E; Perrotta, S; Iolascon, A; Schiliro, G

    1995-01-01

    A 2-year-old Sicilian boy was investigated because of chronic nonspherocytic hemolytic anemia (CNSHA) associated with hepatosplenomegaly. Appropriate studies revealed deficiency of glucose-6-phosphate dehydrogenase type Seattle (G6PD Seattle). In addition, bone marrow morphology, serological studies and analysis of red cell membrane proteins revealed congenital dyserythropoietic anemia (CDA) type II (or HEMPAS). Because G6PD Seattle on its own does not cause CNSHA, we believe that the clinical manifestations in this patient are essentially due to the CDA type II abnormality. However, the coexistence of these two different red cell abnormalities may affect the clinical picture specifically by making CDA type II more hemolytic than it would have been otherwise. PMID:7725848

  5. The Cellulose System in the Cell Wall of Micrasterias

    Science.gov (United States)

    Kim; Herth; Vuong; Chanzy

    1996-11-01

    The cellulose system of the cell wall of Micrasterias denticulata and Micrasterias rotata was analyzed by diffraction contrast transmission electron microscopy, electron diffraction, and X-ray analysis. The studies, achieved on disencrusted cell ghosts, confirmed that the cellulose microfibrils occurred in crisscrossed bands consisting of a number of parallel ribbon-like microfibrils. The individual microfibrils had thicknesses of 5 nm for a width of around 20 nm, but in some instances, two or three microfibrils merged into one another to yield larger monocrystalline domains reaching up to 60 nm in lateral size. The orientation of the cellulose of Micrasterias is very unusual, as it was found that in the cell wall, the equatorial crystallographic planes of cellulose having a d-spacing of 0.60 nm [(11;0) in the Ibeta cellulose unit cell defined by Sugiyama et al., 1991, Macromolecules 24, 4168-4175] were oriented perpendicular to the cell wall surface. Up to now, such orientation has been found only in Spirogyra, another member of the Zygnemataceae group. The unusual structure of the secondary wall cellulose of Micrasterias may be tentatively correlated with the unique organization of the terminal complexes, which in this alga occur as hexagonal arrays of rosettes. PMID:8986649

  6. The metabolic enzyme ManA reveals a link between cell wall integrity and chromosome morphology.

    OpenAIRE

    Maya Elbaz; Sigal Ben-Yehuda

    2010-01-01

    Author Summary The bacterial cell is resistant to extremes of osmotic pressure and protected against mechanical damages by the existence of a rigid outer shell defined as the cell wall. The strength of the cell wall is achieved by the presence of long glycan strands cross-linked by peptide side bridges. The cell wall is a dynamic structure continuously being synthesized and modified to allow for cell growth and division. Damaging the cell wall leads to abnormal cellular morphologies and cell ...

  7. A model of cell wall expansion based on thermodynamics of polymer networks

    Science.gov (United States)

    Veytsman, B. A.; Cosgrove, D. J.

    1998-01-01

    A theory of cell wall extension is proposed. It is shown that macroscopic properties of cell walls can be explained through the microscopic properties of interpenetrating networks of cellulose and hemicellulose. The qualitative conclusions of the theory agree with the existing experimental data. The dependence of the cell wall yield threshold on the secretion of the wall components is discussed.

  8. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells

    DEFF Research Database (Denmark)

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with...... Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain...... Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals...

  9. CORRELATION THEOREMS FOR TYPE II QUATERNION FOURIER TRANSFORM

    OpenAIRE

    Bahri, Mawardi; Ashino, Ryuichi

    2013-01-01

    We present the correlation within the framework of the quaternion algebra. We establish the correlation theorem for type II quaternion Fourier transform (QFT) and obtain some important properties of the relationship between the quaternion correlation and the type II QFT. Keywords: quaternion correlation; quaternion Fourier transform

  10. Catalysts of plant cell wall loosening [version 1; referees: 2 approved

    OpenAIRE

    Cosgrove, Daniel J.

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyl...

  11. An emerging role of pectic rhamnogalacturonanII for cell wall integrity

    OpenAIRE

    Reboul, Rebecca; Tenhaken, Raimund

    2012-01-01

    The plant cell wall is a complex network of different polysaccharides and glycoproteins, showing high diversity in nature. The essential components, tethering cell wall are under debate, as novel mutants challenge established models. The mutant ugd2,3 with a reduced supply of the important wall precursor UDP-glucuronic acid reveals the critical role of the pectic compound rhamnogalacturonanII for cell wall stability. This polymer seems to be more important for cell wall integrity than the pre...

  12. Cell wall structure and function in lactic acid bacteria.

    Science.gov (United States)

    Chapot-Chartier, Marie-Pierre; Kulakauskas, Saulius

    2014-08-29

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts. PMID:25186919

  13. Analyzing the complex machinery of cell wall biosynthesis

    NARCIS (Netherlands)

    Timmers, J.F.P.

    2009-01-01

    The plant cell wall polymers make up most of the plant biomass and provide the raw material for many economically important products including food, feed, bio-materials, chemicals, textiles, and biofuel. This broad range of functions and applications make the biosynthesis of these polysaccharides a

  14. The identification of cell wall degrading enzymes in Globodera rostochiensis

    NARCIS (Netherlands)

    Popeijus, H.E.

    2002-01-01

    This thesis describes the identification of cell wall degrading enzymes of the potato cyst nematode Globodera rostochiensis . A robust method using expressed sequence tags (ESTs) was applied to identify new parasitism related enzymes. One of the ESTs revealed the first pectate lyase from a metazoan

  15. Magnetic domain wall conduits for single cell applications

    DEFF Research Database (Denmark)

    Donolato, Marco; Torti, A.; Kostesha, Natalie;

    2011-01-01

    The ability to trap, manipulate and release single cells on a surface is important both for fundamental studies of cellular processes and for the development of novel lab-on-chip miniaturized tools for biological and medical applications. In this paper we demonstrate how magnetic domain walls...

  16. Characterisation of cell wall polysaccharides in bilberries and black currants

    NARCIS (Netherlands)

    Hilz, H.

    2007-01-01

    During berry juice production, polysaccharides are released from the cell walls and cause thickening and high viscosity when the berries are mashed. Consequences are a low juice yield and a poor colour. This can be prevented by the use of enzymes that degrade these polysaccharides. To use these enzy

  17. Characterisation of cell-wall polysaccharides from mandarin segment membranes

    NARCIS (Netherlands)

    Coll-Almela, L.; Saura-Lopez, D.; Laencina-Sanchez, J.; Schols, H.A.; Voragen, A.G.J.; Ros-García, J.M.

    2015-01-01

    In an attempt to develop a process of enzymatic peeling of mandarin segments suitable for use on an industrial scale, the cell wall fraction of the segment membrane of Satsuma mandarin fruits was extracted to obtain a chelating agent-soluble pectin fraction (ChSS), a dilute sodium hydroxide-soluble

  18. Evidence for a Melanin Cell Wall Component in Pneumocystis carinii

    OpenAIRE

    Icenhour, Crystal R.; Kottom, Theodore J.; Limper, Andrew H.

    2003-01-01

    Fluorescein isothiocyanate-labeled monoclonal antibodies specific for fungal melanin were used in this study to visualize melanin-like components of the Pneumocystis carinii cell wall. A colorimetric enzyme assay confirmed these findings. This is the first report of melanin-like pigments in Pneumocystis.

  19. Hetero-oligomeric cell wall channels (porins) of Nocardia farcinica.

    Science.gov (United States)

    Kläckta, Christian; Knörzer, Philipp; Riess, Franziska; Benz, Roland

    2011-06-01

    The cell wall of Nocardia farcinica contains a cation-selective cell wall channel, which may be responsible for the limited permeability of the cell wall of N. farcinica for negatively charged antibiotics. Based on partial sequencing of the protein responsible for channel formation derived from N. farcinica ATTC 3318 we were able to identify the corresponding genes (nfa15890 and nfa15900) within the known genome of N. farcinica IFM 10152. The corresponding genes of N. farcinica ATTC 3318 were separately expressed in the Escherichia coli BL21DE3Omp8 strain and the N-terminal His10-tagged proteins were purified to homogeneity using immobilized metal affinity chromatography. The pure proteins were designated NfpANHis and NfpBNHis, for N. farcinica porin A and N. farcinica porin B. The two proteins were checked separately for channel formation in lipid bilayers. Our results clearly indicate that the proteins NfpANHis and NfpBNHis expressed in E. coli could only together form a channel in lipid bilayer membranes. This means that the cell wall channel of N. farcinica is formed by a heterooligomer. NfpA and NfpB form together a channel that may structurally be related to MspA of Mycobacterium smegmatis based on amino acid comparison and renaturation procedure. PMID:21092733

  20. Structure of cellulose microfibrils in primary cell walls from Collenchyma

    Czech Academy of Sciences Publication Activity Database

    Thomas, L. H.; Forsyth, V. T.; Šturcová, Adriana; Kennedy, C. J.; May, R. P.; Altaner, C. M.; Apperley, D. C.; Wess, T. J.; Jarvis, M. C.

    2013-01-01

    Roč. 161, č. 1 (2013), s. 465-476. ISSN 0032-0889 R&D Projects: GA ČR GAP108/12/0703 Institutional support: RVO:61389013 Keywords : primary cell wall * cellulose microfibril structure * chain packing disorder Subject RIV: CD - Macromolecular Chemistry Impact factor: 7.394, year: 2013

  1. Polymer mobility in cell walls of cucumber hypocotyls

    Science.gov (United States)

    Fenwick, K. M.; Apperley, D. C.; Cosgrove, D. J.; Jarvis, M. C.

    1999-01-01

    Cell walls were prepared from the growing region of cucumber (Cucumis sativus) hypocotyls and examined by solid-state 13C NMR spectroscopy, in both enzymically active and inactivated states. The rigidity of individual polymer segments within the hydrated cell walls was assessed from the proton magnetic relaxation parameter, T2, and from the kinetics of cross-polarisation from 1H to 13C. The microfibrils, including most of the xyloglucan in the cell wall, as well as cellulose, behaved as very rigid solids. A minor xyloglucan fraction, which may correspond to cross-links between microfibrils, shared a lower level of rigidity with some of the pectic galacturonan. Other pectins, including most of the galactan side-chain residues of rhamnogalacturonan I, were much more mobile and behaved in a manner intermediate between the solid and liquid states. The only difference observed between the enzymically active and inactive cell walls, was the loss of a highly mobile, methyl-esterified galacturonan fraction, as the result of pectinesterase activity.

  2. Environmental stability of stem cell wall traits in alfalfa

    Science.gov (United States)

    The concentration of stem cell wall constituents in alfalfa, Medicago sativa L., herbage can affect dry matter intake and energy availability in dairy and beef production systems and impact energy conversion efficiency when alfalfa is used to produce biofuels. Stem Klason lignin, glucose, xylose, an...

  3. Plant Cell Wall Carbohydrates as Substrates for Azospirillum brasiliense†

    OpenAIRE

    Myers, Mary L.; Hubbell, David H.

    1987-01-01

    Carbohydrate components (simple sugars and polysaccharides) of cell walls of pearl millet (Pennisetum americanum L., cv. Gahi) were studied as potential substrates for the root-associated diazotroph Azospirillum brasiliense Sp. 7. Simple sugars were utilized, but no evidence was obtained to support the suggestion that the polysaccharide components tested might serve as substrates for growth following hydrolysis by the associated azospirilla.

  4. Cell wall structure and function in lactic acid bacteria

    OpenAIRE

    Kulakauskas, Saulius

    2014-01-01

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionall...

  5. Ultrastructure and biochemistry of the cell wall of Methanococcus voltae.

    OpenAIRE

    Koval, S F; Jarrell, K F

    1987-01-01

    The ultrastructure and chemical composition of the cell wall of the marine archaebacterium Methanococcus voltae were studied by negative-staining and freeze-etch electron microscopy and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. M. voltae possesses a single regularly structured (RS) protein layer external to the plasma membrane. Freeze-etch preparations of cells indicated that the protein subunits are hexagonally arranged with a center-to-center spacing of approximately 10 ...

  6. A Phosphorylated Pseudokinase Complex Controls Cell Wall Synthesis in Mycobacteria

    OpenAIRE

    Gee, Christine L.; Papavinasasundaram, Kadamba G.; Blair, Sloane R.; Baer, Christina E.; Falick, Arnold M.; King, David S.; Griffin, Jennifer E.; Venghatakrishnan, Harene; Zukauskas, Andrew; Wei, Jun-Rong; Dhiman, Rakesh K.; Crick, Dean C.; Rubin, Eric J.; Sassetti, Christopher M.; Alber, Tom

    2012-01-01

    Prokaryotic cell wall biosynthesis is coordinated with cell growth and division, but the mechanisms regulating this dynamic process remain obscure. Here, we describe a phosphorylation-dependent regulatory complex that controls peptidoglycan (PG) biosynthesis in Mycobacterium tuberculosis. We found that PknB, a PG-responsive Ser-Thr protein kinase (STPK), initiates complex assembly by phosphorylating a kinase-like domain in the essential PG biosynthetic protein, MviN. This domain was structura...

  7. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation

    OpenAIRE

    Yang, Jung Hyun; Wang, Huanzhong

    2016-01-01

    Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW bio...

  8. Recent Concepts of Ovarian Carcinogenesis: Type I and Type II

    Directory of Open Access Journals (Sweden)

    Masafumi Koshiyama

    2014-01-01

    Full Text Available Type I ovarian tumors, where precursor lesions in the ovary have clearly been described, include endometrioid, clear cell, mucinous, low grade serous, and transitional cell carcinomas, while type II tumors, where such lesions have not been described clearly and tumors may develop de novo from the tubal and/or ovarian surface epithelium, comprise high grade serous carcinomas, undifferentiated carcinomas, and carcinosarcomas. The carcinogenesis of endometrioid and clear cell carcinoma (CCC arising from endometriotic cysts is significantly influenced by the free iron concentration, which is associated with cancer development through the induction of persistent oxidative stress. A subset of mucinous carcinomas develop in association with ovarian teratomas; however, the majority of these tumors do not harbor any teratomatous component. Other theories of their origin include mucinous metaplasia of surface epithelial inclusions, endometriosis, and Brenner tumors. Low grade serous carcinomas are thought to evolve in a stepwise fashion from benign serous cystadenoma to a serous borderline tumor (SBT. With regard to high grade serous carcinoma, the serous tubal intraepithelial carcinomas (STICs of the junction of the fallopian tube epithelium with the mesothelium of the tubal serosa, termed the “tubal peritoneal junction” (TPJ, undergo malignant transformation due to their location, and metastasize to the nearby ovary and surrounding pelvic peritoneum. Other theories of their origin include the ovarian hilum cells.

  9. Crushing Strength of Aluminum Honeycomb with Thinning Cell Wall

    Science.gov (United States)

    Ogasawara, Nagahisa; Chiba, Norimasa; Kobayashi, Eiji; Kikuchi, Yuji

    To evaluate the crash safety of automobiles, various collision tests are performed by the auto industry. In the offset frontal collision test and the side collision test, the target is an aluminum honeycomb material which has thinning cell walls. In this study, based on the analyses of the shock absorption mechanism, a new crushing strength formula is proposed. First, load-displacement curves obtained from compression tests in quasi-static condition showed an almost linear relation between a thinning rate of cell walls and a crushing strength. Second, based on Wierzbicki's theory, a new formula was proposed, which can estimate a crushing strength of a honeycomb material with thinning wall. In addition, a correcting equation which considered an elastic deformation was also proposed. Third, parametric analyses were carried out with a FE model which can simulate a delamination between cell walls. The results obtained from the theory and FEM almost corresponded to each other for a wide range of the thinning rate. Fourth, impact tests were carried out, in which the weight was dropped freely at the speed used for the automobile tests. Those results almost agreed well with the sum of the theoretical crush strength and the inside air pressure.

  10. Nucleated assembly of Chlamydomonas and Volvox cell walls.

    Science.gov (United States)

    Adair, W S; Steinmetz, S A; Mattson, D M; Goodenough, U W; Heuser, J E

    1987-11-01

    The Chlamydomonas reinhardtii cell wall is made up of hydroxyproline-rich glycoproteins, arranged in five distinct layers. The W6 (crystalline) layer contains three major glycoproteins (GP1, GP2, GP3), selectively extractable with chaotropic agents, that self-assemble into crystals in vitro. A system to study W6 assembly in a quantitative fashion was developed that employs perchlorate-extracted Chlamydomonas cells as nucleating agents. Wall reconstitution by biotinylated W6 monomers was monitored by FITC-streptavidin fluorescence and quick-freeze/deep-etch electron microscopy. Optimal reconstitution was obtained at monomer concentrations (0.2-0.3 mg/ml) well below those required for nonnucleated assembly. Assembly occurred from multiple nucleation sites, and faithfully reflected the structure of the intact W6 layer. Specificity of nucleated assembly was demonstrated using two cell-wall mutants (cw-2 and cw-15); neither served as a substrate for assembly of wild-type monomers. In addition, W6 sublayers were assembled from purified components: GP2 and GP3 coassembled to form the inner (W6A) sublayer; this then served as a substrate for self-assembly of GP1 into the outer (W6B) sublayer. Finally, evolutionary relationships between C. reinhardtii and two additional members of the Volvocales (Chlamydomonas eugametos and Volvox carteri) were explored by performing interspecific reconstitutions. Hybrid walls were obtained between C. reinhardtii and Volvox but not with C. eugametos, confirming taxonomic assignments based on structural criteria. PMID:3680387

  11. In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions

    OpenAIRE

    Shigeru Deguchi; Kaoru Tsujii; Koki Horikoshi

    2015-01-01

    Recent findings of intact chitin in fossil records suggest surprisingly high recalcitrance of this biopolymer during hydrothermal treatments. We also know in the experience of everyday life that mushroom, cells of which have chitinous cell walls, do not fall apart however long they are simmered. We used in situ optical microscopy to examine chitin and fungal cells with chitinous cell walls during hydrothermal treatments, and obtained direct evidence that they remained undegraded at temperatur...

  12. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption

    OpenAIRE

    Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli

    2015-01-01

    The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin ...

  13. Prediction of Type II Burst Radiation for Large CME Events

    Science.gov (United States)

    Cairns, I. H.; Schmidt, J. M.

    2013-12-01

    Type IIs are associated with shocks in the corona and solar wind, either driven by CMEs or else blast waves. Recent quantitative theories for type II radiation show that the amount of radiation depends on the speed and spatial extent of the 3D shock, as well as on the background plasma, magnetic field configuration, and the number of superthermal electrons available for acceleration by the shock. In principle, then, Type II bursts may provide 1-3 day warnings of large and fast CMEs that might produce space weather at Earth. In this paper we couple the advanced 3D MHD BATS-R-US code of Toth, Gombosi, and colleagues with our new ``bolt-on'' theory for type II emission. The modeling includes initialization with coronal and active region magnetic fields reconstructed from solar magnetograms, coronal densities determined by 1 AU data, and CMEs modelled using STEREO coronagraph data. Two events with type IIs and strong CMEs are analyzed: 15 February 2011 and 7 March 2012. We demonstrate impressive accuracy in time, frequency, and intensity for both type II bursts. This strongly supports the type II theory, implies real understanding of the physics involved, and supports the near-term development of a capability to predict and track these events for space weather prediction.

  14. Simvastatin enhances bone morphogenetic protein receptor type II expression

    International Nuclear Information System (INIS)

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function

  15. Identification of Cell Wall Synthesis Regulatory Genes Controlling Biomass Characteristics and Yield in Rice (Oryza Sativa)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhaohua PEng [Mississippi State University; Ronald, Palmela [UC-Davis; Wang, Guo-Liang [The Ohio State University

    2013-04-26

    This project aims to identify the regulatory genes of rice cell wall synthesis pathways using a cell wall removal and regeneration system. We completed the gene expression profiling studies following the time course from cell wall removal to cell wall regeneration in rice suspension cells. We also completed, total proteome, nuclear subproteome and histone modification studies following the course from cell wall removal and cell wall regeneration process. A large number of differentially expressed regulatory genes and proteins were identified. Meanwhile, we generated RNAi and over-expression transgenic rice for 45 genes with at least 10 independent transgenic lines for each gene. In addition, we ordered T-DNA and transposon insertion mutants for 60 genes from Korea, Japan, and France and characterized the mutants. Overall, we have mutants and transgenic lines for over 90 genes, exceeded our proposed goal of generating mutants for 50 genes. Interesting Discoveries a) Cell wall re-synthesis in protoplasts may involve a novel cell wall synthesis mechanism. The synthesis of the primary cell wall is initiated in late cytokinesis with further modification during cell expansion. Phragmoplast plays an essential role in cell wall synthesis. It services as a scaffold for building the cell plate and formation of a new cell wall. Only one phragmoplast and one new cell wall is produced for each dividing cell. When the cell wall was removed enzymatically, we found that cell wall re-synthesis started from multiple locations simultaneously, suggesting that a novel mechanism is involved in cell wall re-synthesis. This observation raised many interesting questions, such as how the starting sites of cell wall synthesis are determined, whether phragmoplast and cell plate like structures are involved in cell wall re-synthesis, and more importantly whether the same set of enzymes and apparatus are used in cell wall re-synthesis as during cytokinesis. Given that many known cell wall

  16. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures

    Institute of Scientific and Technical Information of China (English)

    Hugo Melida; Antonio Encina; Asier Largo-Gosens; Esther Novo-Uzal; Rogelio Santiago; Federico Pomar; Pedro Garca; Penelope Garca-Angulo; Jose Luis Acebes; Jesus Alvarez

    2015-01-01

    Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment.

  17. Surface Analyses and Immune Reactivities of Major Cell Wall-Associated Proteins of Group A Streptococcus

    OpenAIRE

    Cole, Jason N; Ramirez, Ruben D.; Currie, Bart J.; Cordwell, Stuart J.; Djordjevic, Steven P.; Mark J Walker

    2005-01-01

    A proteomic analysis was undertaken to identify cell wall-associated proteins of Streptococcus pyogenes. Seventy-four distinct cell wall-associated proteins were identified, 66 of which were novel. Thirty-three proteins were immunoreactive with pooled S. pyogenes-reactive human antisera. Biotinylation of the GAS cell surface identified 23 cell wall-associated proteins that are surface exposed.

  18. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis

    DEFF Research Database (Denmark)

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha;

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double...... quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco) mannan, and xyloglucan as well as overall cell wall acetylation is affected differently...... in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell...

  19. Type II Toxoplasma gondii Induction of CD40 on Infected Macrophages Enhances Interleukin-12 Responses

    Science.gov (United States)

    Morgado, Pedro; Sudarshana, Dattanand M.; Gov, Lanny; Harker, Katherine S.; Lam, Tonika; Casali, Paolo; Boyle, Jon P.

    2014-01-01

    Toxoplasma gondii is an obligate intracellular parasite that can cause severe neurological disease in infected humans. CD40 is a receptor on macrophages that plays a critical role in controlling T. gondii infection. We examined the regulation of CD40 on the surface of T. gondii-infected bone marrow-derived macrophages (BMdMs). T. gondii induced CD40 expression both at the transcript level and on the cell surface, and interestingly, the effect was parasite strain specific: CD40 levels were dramatically increased in type II T. gondii-infected BMdMs compared to type I- or type III-infected cells. Type II induction of CD40 was specific to cells harboring intracellular parasites and detectable as early as 6 h postinfection (hpi) at the transcript level. CD40 protein expression peaked at 18 hpi. Using forward genetics with progeny from a type II × type III cross, we found that CD40 induction mapped to a region of chromosome X that included the gene encoding the dense granule protein 15 (GRA15). Using type I parasites stably expressing the type II allele of GRA15 (GRA15II), we found that type I GRA15II parasites induced the expression of CD40 on infected cells in an NF-κB-dependent manner. In addition, stable expression of hemagglutinin-tagged GRA15II in THP-1 cells resulted in CD40 upregulation in the absence of infection. Since CD40 signaling contributes to interleukin-12 (IL-12) production, we examined IL-12 from infected macrophages and found that CD40L engagement of CD40 amplified the IL-12 response in type II-infected cells. These data indicate that GRA15II induction of CD40 promotes parasite immunity through the production of IL-12. PMID:25024369

  20. Cartilage turnover reflected by metabolic processing of type II collagen

    DEFF Research Database (Denmark)

    Gudmann, Karoline Natasja Stæhr; Wang, Jianxia; Hoielt, Sabine;

    2014-01-01

    The aim of this study was to enable measurement of cartilage formation by a novel biomarker of type II collagen formation. The competitive enzyme-linked immunosorbent assay (ELISA) Pro-C2 was developed and characterized for assessment of the beta splice variant of type II procollagen (PIIBNP). This...... our models. To our knowledge this is the first assay, which is able to specifically evaluate PIIBNP excretion. The Pro-C2 assay seems to provide a promising and novel marker of type II collagen formation....

  1. Antigenicity and immunogenicity of an extract from the cell wall and cell membrane of Histoplasma capsulatum yeast cells.

    OpenAIRE

    Gómez, A M; Rhodes, J C; Deepe, G S

    1991-01-01

    In order to identify T-cell antigens from Histoplasma capsulatum yeast cells, we prepared a detergent extract of the cell wall and cell membrane of yeast-phase H. capsulatum G217B and analyzed its antigenicity and immunogenicity. Mice injected with viable H. capsulatum yeast cells or with 500 or 1,000 micrograms of the extract mounted a delayed-type hypersensitivity response to solubilized cell wall and cell membrane. Vaccination with this antigenic preparation conferred a protective immune r...

  2. Orbital wall infarction in child with sickle cell disease.

    Science.gov (United States)

    Janssens, C; Claeys, L; Maes, P; Boiy, T; Wojciechowski, M

    2015-12-01

    We present the case of a 17-year-old boy, known with homozygous sickle cell disease, who was admitted because of generalised pain. He developed bilateral periorbital oedema and proptosis, without pain or visual disturbances. In addition to hyperhydration, oxygen and analgesia IV antibiotics were started, to cover a possible osteomyelitis. Patients with sickle cell disease are at risk for vaso-occlusive crises, when the abnormally shaped red blood cells aggregate and block the capillaries. Such a crisis typically presents at a location with high bone marrow activity, as the vertebrae and long bones. At an early age, the bone marrow is still active at other sites, for example the orbital wall, and thus infarction can also occur there. Thus, in young persons with sickle cell disease, it is important to consider orbital wall infarction in the differential diagnosis, since the approach is different from osteomyelitis. If the disease is complicated by an orbital compression syndrome, corticosteroids or surgical intervention may be necessary to preserve the vision. In our patient, an MRI of the orbitae demonstrated periorbital oedema with bone anomalies in the orbital and frontal bones, confirming orbital wall infarction. Ophthalmological examination revealed no signs of pressure on the nervus opticus. The patient recovered gradually with conservative treatment. PMID:26790559

  3. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

    Directory of Open Access Journals (Sweden)

    Ying Luo

    Full Text Available The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.

  4. Effects of spaceflight on polysaccharides of Saccharomyces cerevisiae cell wall.

    Science.gov (United States)

    Liu, Hong-Zhi; Wang, Qiang; Liu, Xiao-Yong; Tan, Sze-Sze

    2008-12-01

    Freeze-dried samples of four Saccharomyces cerevisiae strains, namely, FL01, FL03, 2.0016, and 2.1424, were subjected to spaceflight. After the satellite's landing on Earth, the samples were recovered and changes in yeast cell wall were analyzed. Spaceflight strains of all S. cerevisiae strains showed significant changes in cell wall thickness (P growth curve analysis showed spaceflight S. cerevisiae 2.0016 had a faster growth rate, shorter lag phase periods, higher final biomass, and higher content of beta-glucan. Genetic stability analysis showed that prolonged subculturing of spaceflight strain S. cerevisiae 2.0016 did not lead to the appearance of variants, indicating that the genetic stability of S. cerevisiae 2.0016 mutant could be sufficient for its exploitation of beta-glucan production. PMID:18797865

  5. Plasmonic Enhanced Type-II Superlattice Focal Plane Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SVT Associates proposes an novel type II superlattice structure to extend the cutoff wavelength and CBIRD SL photo diode structure with unipolar barriers to...

  6. Genetics Home Reference: lattice corneal dystrophy type II

    Science.gov (United States)

    ... Diagnosis & Management These resources address the diagnosis or management of lattice corneal dystrophy type II: American Foundation for the Blind: Living with Vision Loss Genetic Testing Registry: Meretoja syndrome Merck Manual ...

  7. Nitrate sensing and cell wall modification in Staphylococci

    OpenAIRE

    Niemann, Volker

    2015-01-01

    This thesis highlights two topics concerning the regulation of energy metabolism and the cell wall biosynthesis in Staphylococci. Most members of this genus are facultative anaerobic microorganisms able to respire on nitrate as final electron acceptor. The completely apathogenic organism Staphylococcus carnosus is used as starter culture in food industry. Dissimilatory nitrate reduction causes desired effects during the ripening process of sausages. First, the nitrate concentra...

  8. Transcriptome analysis of secondary cell wall development in Medicago truncatula

    OpenAIRE

    Wang, Huanzhong; Yang, Jung Hyun; Chen, Fang; Torres-Jerez, Ivone; Tang, Yuhong; Wang, Mingyi; Du, Qian; Cheng, Xiaofei; Wen, Jiangqi; Dixon, Richard

    2016-01-01

    Background Legumes are important to humans by providing food, feed and raw materials for industrial utilizations. Some legumes, such as alfalfa, are potential bioenergy crops due to their high biomass productivity. Global transcriptional profiling has been successfully used to identify genes and regulatory pathways in secondary cell wall thickening in Arabidopsis, but such transcriptome data is lacking in legumes. Results A systematic microarray assay and high through-put real time PCR analys...

  9. Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves

    OpenAIRE

    Mediesse Kengne Francine; Woguia Alice Louise; Fogue Souopgui Pythagore; Atogho-Tiedeu Barbara; Simo Gustave; Thaddée Boudjeko

    2014-01-01

    Objective: To examine the total phenolic and protein contents, and the antioxidant activities of cell wall polysaccharide fractions of Stevia rebaudiana leaves. Methods: Three different polysaccharide-enriched fractions, namely FPE (extract with 50 mmol/ L ethylene diamine tetra acetic acid), FPK (extract with 0.05 mol/L KOH) and FH (extract with 4 mol/L KOH) were extracted from Stevia rebaudiana leaves. The antioxidant activity of these fractions was evaluated based on thei...

  10. Cell-wall hemicelluloses as mobile carbon stores in plants

    OpenAIRE

    Schädel, Christina

    2009-01-01

    Hemicelluloses are the second most abundant polysaccharide in nature after cellulose. So far, the chemical heterogeneity of cell-wall hemicelluloses and the relatively large sample-volume required in existing methods represent major obstacles for large-scale, cross-species analyses of this important plant compounds. Here, we apply a new micro-extraction method to analyse hemicelluloses and the ratio of ‘cellulose and lignin’ to hemicelluloses in different tissues of 28 plant species comprisin...

  11. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    OpenAIRE

    Thygesen, Lisbeth G; Thybring, Emil E.; Johansen, Katja S.; Claus Felby

    2014-01-01

    Mechanical agitation during enzymatic hydrolysis of insoluble plant biomass at high dry matter contents is indispensable for the initial liquefaction step in biorefining. It is known that particle size reduction is an important part of liquefaction, but the mechanisms involved are poorly understood. Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic ...

  12. Plant cell walls: New insights from ancient species

    DEFF Research Database (Denmark)

    Sørensen, Iben; Willats, William George Tycho

    2008-01-01

    ¿4)-linked ß-D-Glcp are joined by occasional (1¿3)-linkages. This mixed linkage glucan (MLG) has been the subject of extensive research because of the economic importance of several Poales species including rice, barley and wheat and because MLG has proven health benefits. The recent discovery of MLG......-D-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. Plant J 2008; 54:510-21....

  13. Cell wall perturbation sensitizes fungi to the antimalarial drug chloroquine

    OpenAIRE

    Islahudin, Farida; Khozoie, Combiz; Bates, Steven; Ting, Kang-Nee; Pleass, Richard J.; Avery, Simon V.

    2013-01-01

    Chloroquine (CQ) has been a mainstay of antimalarial drug treatment for several decades. Additional therapeutic actions of CQ have been described, including some reports of fungal inhibition. Here we investigated the action of CQ in fungi, including the yeast model Saccharomyces cerevisiae. A genomewide yeast deletion strain collection was screened against CQ, revealing that bck1Δ and slt2Δ mutants of the cell wall integrity pathway are CQ hypersensitive. This phenotype was rescued with sorbi...

  14. Enzyme Amplified Detection of Microbial Cell Wall Components

    Science.gov (United States)

    Wainwright, Norman R.

    2004-01-01

    This proposal is MBL's portion of NASA's Johnson Space Center's Astrobiology Center led by Principal Investigator, Dr. David McKay, entitled: 'Institute for the Study of Biomarkers in Astromaterials.' Dr. Norman Wainwright is the principal investigator at MBL and is responsible for developing methods to detect trace quantities of microbial cell wall chemicals using the enzyme amplification system of Limulus polyphemus and other related methods.

  15. Biomarkers of Type II Synthetic Pyrethroid Pesticides in Freshwater Fish

    OpenAIRE

    2014-01-01

    Type II synthetic pyrethroids contain an alpha-cyano group which renders them more neurotoxic than their noncyano type I counterparts. A wide array of biomarkers have been employed to delineate the toxic responses of freshwater fish to various type II synthetic pyrethroids. These include hematological, enzymatic, cytological, genetic, omic and other types of biomarkers. This review puts together the applications of different biomarkers in freshwater fish species in response to the toxicity of...

  16. Subclinical Onychomycosis in Patients With Type II Diabetes

    OpenAIRE

    Amira Elbendary; Amira El Tawdy; Naglaa Zaki; Mostafa Alfishawy; Amr Rateb

    2015-01-01

    Fungal organisms could be present in the nail without any clinical manifestations. As onychomycosis in diabetics has more serious complications, early detection of such infection could be helpful to prevent them. We aim in this study to assess the possibility of detecting subclinical onychomycosis in type II diabetic patients and addressing possible associated neuropathy. A cross sectional, observational study included patients with type II diabetes with normal big toe nail. All were subjecte...

  17. Anterior uveitis secondary to type II essential cryoglobulinemia

    OpenAIRE

    Nicholson, Laura; Sobrin, Lucia

    2013-01-01

    Background: The purpose of this report is to describe the association of severe anterior uveitis with type II essential cryoglobulinemia. Findings: A 40-year-old male with a history of psoriatic arthritis presented with severe anterior uveitis associated with type II essential cryoglobulinemia. His uveitis, refractory to steroid treatments, was well controlled following treatments for cryoglobulinemia. The temporal association between his cryoglobulinemia and uveitis, combined with his improv...

  18. STUDY OF FINGERPRINT PATTERNS IN TYPE II DIABETES MELLITUS

    OpenAIRE

    Amit A. Mehta; Anjulika A. Mehta

    2015-01-01

    Objective: To correlate between fingertip patterns between type II diabetic cases and controls. Methodology: One hundred type II diabeties mellitus patients (50 male and 50 female) were selected for study and compared with equal number of controls. Fingerprints were obtained by printing method. Parameters studied were arches, whorls, loops. Distribution of fingertip patterns showed significant difference between diabetics and controls. Result and Conclusion: In diabetic patient's frequ...

  19. Changes in alfalfa cell wall structure during vegetation

    Directory of Open Access Journals (Sweden)

    Božičković Aleksa Đ.

    2014-01-01

    Full Text Available The investigation was done on 141 samples of one alfalfa cultivar, collected from the same location during the first three growth cycles: spring growth, the first and the second regrowth. Within each growth cycle, sampling was done during the whole growing period, commencing when plant height was below 150 mm and continuing until plants were bearing ripe seeds. On all collected samples the following cell wall characteristics were determined: neutral detergent fibre (NDF, acid detergent fibre (ADF, acid detergent lignin (ADL, neutral detergent insoluble crude protein (NDICP, acid detergent insoluble crude protein (ADICP. Cellulose and hemicellulose were detected on the base of the mentioned chemical parameters. Significantly lower (p<0.01 content of aNDF, ADF, ADL, ADICP and cellulose is found in the second regrowth, while there were no significant differences between the other two growth cycles. Except in NDICP and ADICP, the increase in all accompanying components of the cell wall was observed, and expressed in average daily changes. There was no consistent trend in NDICP and ADICP. During the spring growth from late bud to full-bloom stage the ’plateau’ was observed. The plateau was represented as almost constant content of aNDF, ADF, ADL and cellulose. The correlations between all components of the cell wall were shown. The equation aNDF = 36.713 + 1.181 × ADF is recommended for conversion of ADF into aNDF in alfalfa. [Projekat Ministarstva nauke Republike Srbije, br. III 46012

  20. Secondary cell wall polysaccharides in Bacillus anthracis and Bacillus cereus strains

    OpenAIRE

    Leoff, Christine

    2009-01-01

    This thesis presents a systematic comparison of cell wall carbohydrates, in particular the non classical secondary cell wall polysaccharides from closely related strains within the Bacillus cereus group. The results suggest that the cell wall glycosyl composition of the various Bacillus cereus group strains display differences that correlate with their phylogenetic relatedness. Comparative structural analysis of polysaccharide components that were released from the cell walls of the various s...

  1. Protein transport across the cell wall of monoderm Gram-positive bacteria

    OpenAIRE

    Forster, Brian M.; Marquis, Hélène

    2012-01-01

    In monoderm (single membrane) Gram-positive bacteria, the majority of secreted proteins are first translocated across the cytoplasmic membrane into the inner wall zone. For a subset of these proteins, final destination is within the cell envelope either as membrane-anchored or cell wall-anchored proteins, whereas another subset of proteins is destined to be transported across the cell wall into the extracellular milieu. Although the cell wall is a porous structure, there is evidence that, for...

  2. The cell wall and endoplasmic reticulum stress responses are coordinately regulated in Saccharomyces cerevisiae

    OpenAIRE

    Krysan, Damian J.

    2009-01-01

    The unfolded protein response (UPR) is an intracellular signaling pathway that regulates the cellular response to the accumulation of misfolded proteins in eukaryotes. Our group has demonstrated that cell wall stress activates UPR in yeast through signals transmitted by the cell wall integrity (CWI) mitogen-activated protein (MAP) kinase cascade. The UPR is required to maintain cell wall integrity; mutants lacking a functional UPR have defects in cell wall biosynthesis and are hypersensitive ...

  3. Homogenization of a system of elastic and reaction-diffusion equations modelling plant cell wall biomechanics

    OpenAIRE

    Ptashnyk, Mariya; Seguin, Brian

    2014-01-01

    In this paper we present a derivation and multiscale analysis of a mathematical model for plant cell wall biomechanics that takes into account both the microscopic structure of a cell wall coming from the cellulose microfibrils and the chemical reactions between the cell wall's constituents. Particular attention is paid to the role of pectin and the impact of calcium-pectin cross-linking chemistry on the mechanical properties of the cell wall. We prove the existence and uniqueness of the stro...

  4. Plectasin, a Fungal Defensin, Targets the Bacterial Cell Wall Precursor Lipid II

    DEFF Research Database (Denmark)

    Schneider, Tanja; Kruse, Thomas; Wimmer, Reinhard;

    2010-01-01

    plectasin, a fungal defensin, acts by directly binding the bacterial cell-wall precursor Lipid II. A wide range of genetic and biochemical approaches identify cell-wall biosynthesis as the pathway targeted by plectasin. In vitro assays for cell-wall synthesis identified Lipid II as the specific cellular...

  5. Staphylococcus aureus Cell Wall Stress Stimulon Gene-lacZ Fusion Strains: Potential for Use in Screening for Cell Wall-Active Antimicrobials▿

    OpenAIRE

    Steidl, Rebecca; Pearson, Stacy; Stephenson, Robert E.; Ledala, Nagender; Sitthisak, Sutthirat; Wilkinson, Brian J; Jayaswal, Radheshyam K.

    2008-01-01

    lacZ fusion strains were constructed using the promoters of five cell wall stress stimulon genes: pbp2, tcaA, vraSR, sgtB, and lytR. All fusion strains were induced only in the presence of cell wall-active antibiotics, suggesting the potential of these strains for use in high-throughput screening for new cell wall-active agents.

  6. The Unfolded Protein Response Is Induced by the Cell Wall Integrity Mitogen-activated Protein Kinase Signaling Cascade and Is Required for Cell Wall Integrity in Saccharomyces cerevisiae

    OpenAIRE

    Scrimale, Thomas; DiDone, Louis; de Mesy Bentley, Karen L.; Krysan, Damian J.

    2009-01-01

    The yeast cell wall is an extracellular structure that is dependent on secretory and membrane proteins for its construction. We investigated the role of protein quality control mechanisms in cell wall integrity and found that the unfolded protein response (UPR) and, to a lesser extent, endoplasmic reticulum (ER)-associated degradation (ERAD) pathways are required for proper cell wall construction. Null mutation of IRE1, double mutation of ERAD components (hrd1Δ and ubc7Δ) and ire1Δ, or expres...

  7. Effect of Wall Charge on Striation in Plasma Display Cells

    Institute of Scientific and Technical Information of China (English)

    HE Feng; OUYANG Jiting; CAO Jing; FENG Shuo; MIAO Jinsong; WANG Jianqi

    2007-01-01

    Different configurations and driving voltages have been employed to investigate the effect of the wall charge on the striations in macroscopic plasma display panel (PDP) cells.The experimental results show that a discharge channel near the dielectric layer is indispensable to striation occurring in the anode area during a discharge,while the pre-accumulated charge on the dielectric layer and the surface state are not important.The origin of the striation is related only to the physical process in the cell.The dielectric layer acts as a charge collector during a PDP discharge.

  8. Stress analysis for wall structure in mobile hot cell design

    Energy Technology Data Exchange (ETDEWEB)

    Bahrin, Muhammad Hannan, E-mail: hannan@nuclearmalaysia.gov.my; Rahman, Anwar Abdul, E-mail: anwar@nuclearmalaysia.gov.my; Hamzah, Mohd Arif, E-mail: arif@nuclearmalaysia.gov.my; Mamat, Mohd Rizal; Azman, Azraf; Hasan, Hasni [Prototype and Plant Development Centre, Technical Services Division, Malaysian Nuclear Agency (Malaysia)

    2016-01-22

    Malaysian Nuclear Agency is developing a Mobile Hot Cell (MHC) in order to handle and manage Spent High Activity Radioactive Sources (SHARS) such as teletherapy heads and irradiators. At present, there are only two units of MHC in the world, in South Africa and China. Malaysian Mobile Hot cell is developed by Malaysian Nuclear Agency with the assistance of IAEA expert, based on the design of South Africa and China, but with improved features. Stress analysis has been performed on the design in order to fulfil the safety requirement in operation of MHC. This paper discusses the loading analysis effect from the sand to the MHC wall structure.

  9. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    OpenAIRE

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell...

  10. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls

    DEFF Research Database (Denmark)

    Marcus, Susan E; Verhertbruggen, Yves; Hervé, Cécile;

    2008-01-01

    BACKGROUND: Molecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally...... regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure. RESULTS: Using a neoglycoprotein approach, in which a XXXG heptasaccharide...... hapten inhibition of binding studies. The use of LM15 for the analysis of xyloglucan in the cell walls of tamarind and nasturtium seeds, in which xyloglucan occurs as a storage polysaccharide, indicated that the LM15 xyloglucan epitope occurs throughout the thickened cell walls of the tamarind seed and...

  11. Rapid single step subcloning procedure by combined action of type II and type IIs endonucleases with ligase

    OpenAIRE

    Klingenspor Martin; Fromme Tobias

    2007-01-01

    Abstract Background The subcloning of a DNA fragment from an entry vector into a destination vector is a routinely performed task in molecular biology labs. Results We here present a novel benchtop procedure to achieve rapid recombination into any destination vector of choice with the sole requirement of an endonuclease recognition site. The method relies on a specifically designed entry vector and the combined action of type II and type IIs endonucleases with ligase. The formulation leads to...

  12. Expansins are among plant cell wall modifying agents specifically expressed during development of nematode-induced syncytia

    OpenAIRE

    Fudali, Sylwia; Sobczak, Miroslaw; Janakowski, Slawomir; Griesser, Michaela; Grundler, Florian MW; Golinowski, Wladyslaw

    2008-01-01

    Cyst nematodes are economically important pests. As obligatory biotrophic endoparasites they invade host roots and induce formation of syncytia, structures that serve them as the only source of nutrients. During syncytium development, extensive cell wall modifications take place. Cell wall dissolution occurs during cell wall opening formation, cell walls expand during hypertrophy of syncytial elements and local cell wall synthesis leads to the thickening of syncytial cell wall and the formati...

  13. Impact of processing on the noncovalent interactions between procyanidin and apple cell wall.

    Science.gov (United States)

    Le Bourvellec, Carine; Watrelot, Aude A; Ginies, Christian; Imberty, Anne; Renard, Catherine M G C

    2012-09-19

    Procyanidins can bind cell wall material in raw product, and it could be supposed that the same mechanism of retention of procyanidins by apple cell walls takes place in cooked products. To evaluate the influence of cell wall composition and disassembly during cooking on the cell walls' capacity to interact with procyanidins, four cell wall materials differing in their protein contents and physical characteristics were prepared: cell wall with proteins, cell wall devoid of protein, and two processed cell walls differing by their drying method. Protein contents varied from 23 to 99 mg/g and surface areas from 1.26 to 3.16 m(2)/g. Apple procyanidins with an average polymerization degree of 8.7 were used. The adsorption of apple procyanidins on solid cell wall material was quantified using the Langmuir isotherm formulation. The protein contents in cell wall material had no effect on procyanidin/cell wall interactions, whereas modification of the cell wall material by boiling, which reduces pectin content, and drying decreased the apparent affinity and increased the apparent saturation levels when constants were expressed relative to cell wall weight. However, boiling and drying increased apparent saturation levels and had no effect on apparent affinity when the same data were expressed per surface units. Isothermal titration calorimetry indicated strong affinity (K(a) = 1.4 × 10(4) M(-1)) between pectins solubilized by boiling and procyanidins. This study higllights the impact of highly methylated pectins and drying, that is, composition and structure of cell wall in the cell wall/procyanidin interactions. PMID:22861056

  14. Seed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research.

    Science.gov (United States)

    Arsovski, Andrej A; Haughn, George W; Western, Tamara L

    2010-07-01

    Plant cells are encased within a complex polysaccharide wall that strengthens the cell and has key roles in all aspects of plant cell growth, differentiation, and interaction with the environment. This dynamic structure is under continual modification during plant development, and its synthesis and modification require the activity of a myriad of enzymes. The mucilage secretory cells (MSCs) of the Arabidopsis thaliana seed coat provide a model for the discovery of novel genes involved in the synthesis, secretion and modification of cell wall components, particularly pectin. These cells synthesize copious amounts of pectinaceous mucilage during development and, upon hydration of the desiccated seed, the mucilage rapidly swells, bursts from the MSCs and surrounds the seed in a gelatinous capsule. Several genes affecting MSC differentiation, pectin synthesis, and mucilage release have been identified and additional genes involved in these and related processes including pectin secretion and the mechanical alteration of cell walls await to be discovered. PMID:20505351

  15. Cell wall pH and auxin transport velocity

    Science.gov (United States)

    Hasenstein, K. H.; Rayle, D.

    1984-01-01

    According to the chemiosmotic polar diffusion hypothesis, auxin pulse velocity and basal secretion should increase with decreasing cell wall pH. Experiments were designed to test this prediction. Avena coleoptile sections were preincubated in either fusicoccin (FC), cycloheximide, pH 4.0, or pH 8.0 buffer and subsequently their polar transport capacities were determined. Relative to controls, FC enhanced auxin (IAA) uptake while CHI and pH 8.0 buffer reduced IAA uptake. Nevertheless, FC reduced IAA pulse velocity while cycloheximide increased velocity. Additional experiments showed that delivery of auxin to receivers is enhanced by increased receiver pH. This phenomenon was overcome by a pretreatment of the tissue with IAA. Our data suggest that while acidic wall pH values facilitate cellular IAA uptake, they do not enhance pulse velocity or basal secretion. These findings are inconsistent with the chemiosmotic hypothesis for auxin transport.

  16. Association of a microsatellite in FASL to type II diabetes and of the FAS-670G>A genotype to insulin resistance

    DEFF Research Database (Denmark)

    Nolsøe, R L; Hamid, Y H; Pociot, F;

    2006-01-01

    Type II diabetes is caused by a failure of the pancreatic beta-cells to compensate for insulin resistance leading to hyperglycaemia. There is evidence for an essential role of an increased beta-cell apoptosis in type II diabetes. High glucose concentrations induce IL-1beta production in human beta......-cells, Fas expression and concomitant apoptosis owing to a constitutive expression of FasL. FASL and FAS map to loci linked to type II diabetes and estimates of insulin resistance, respectively. We have tested two functional promoter polymorphisms, FAS-670 G>A and FASL-844C>T as well as a microsatellite in...... the 3' UTR of FASL for association to type II diabetes in 549 type II diabetic patients and 525 normal-glucose-tolerant (NGT) control subjects. Furthermore, we have tested these polymorphisms for association to estimates of beta-cell function and insulin resistance in NGT subjects. We found...

  17. Scattering properties of microalgae: the effect of cell size and cell wall

    Science.gov (United States)

    Svensen, Øyvind; Frette, Øyvind; Rune Erga, Svein

    2007-08-01

    The main objective of this work was to investigate how the cell size and the presence of a cell wall influence the scattering properties of the green microalgae Chlamydomonas reinhardtii. The growth cycle of two strains, one with a cell wall and one without, was synchronized to be in the same growth phase. Measurements were conducted at two different phases of the growth cycle on both strains of the algae. It was found that the shape of the scattering phase function was very similar for both strains at both growth phases, but the regular strain with a cell wall scatters more strongly than the wall-less mutant. It was also found that the mutant strain has a stronger increase in scattering than the regular strain, as the algae grow, and that the scattering from the regular strain is more wavelength dependent than from the mutant strain.

  18. Immunotherapy with BCG cell wall plus irradiated tumor cells

    International Nuclear Information System (INIS)

    Two different fibrosarcomas (MCB-I, MCB-II) were induced by methylcholcholanthrene in syngeneic Balb/C mice were used. The tumor cells irradiated with 5,000 to 30,000 rads did not growth in mice on 30 days after inoculation. The viable tumor cells were challenged intradermally to mice on 7 days after inoculation of the tumor cells irradiated with 5,000 to 30,000 rads. The challenged tumor cells were all rejected at 30 days after inoculation. Mice were challenged with 5 x 105 viable tumor cells on 7 days after inoculation of 103 to 108 irradiated tumor cells. Mice pretreated with 105 or 106 irradiated tumor cells rejected the tumor cells completely. The viable tumor cells were challenged to mice on 7 days after inoculation of BCG-CW emulsion plus 106 irradiated tumor cells. 0, 50, 100, 200, and 400 mu g of BCG-CW emulsion were mixed in 106 irradiated tumor cells. Optimal dosage of BCG-CW emulsion was 50 or 100 mu g. BCG-CW emulsion plus irradiated tumor cells were injected subcutaneously to the mice after tumor cells inoculation. Three injections of the vaccine significantly suppressed the tumor outgrowth, but not one or two injections in no-treated mice. However, in the mice pretreated with BCG-CW emulsion, the tumor growth was significantly suppressed by one or two injections of the vaccine. Especially, the three injections of the vaccine significantly suppressed the tumor growth and the 25% of the mice were completely cured. The effect of the vaccine was almost the same grade by contralateral or ipsilateral treatment. The irradiated MCB-II tumor cells plus BCG-CW emulsion were not effective to the MCB-1 tumor bearing mice, suggesting the anti-tumor effect of this vaccine was immunologically specific

  19. Immunotherapy with BCG cell wall plus irradiated tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Mizukuro, Tomoyuki (Kyoto Prefectural Univ. of Medicine (Japan))

    1983-04-01

    Two different fibrosarcomas (MCB-I, MCB-II) were induced by methylcholcholanthrene in syngeneic Balb/C mice were used. The tumor cells irradiated with 5,000 to 30,000 rads did not growth in mice on 30 days after inoculation. The viable tumor cells were challenged intradermally to mice on 7 days after inoculation of the tumor cells irradiated with 5,000 to 30,000 rads. The challenged tumor cells were all rejected at 30 days after inoculation. Mice were challenged with 5 x 10/sup 5/ viable tumor cells on 7 days after inoculation of 10/sup 3/ to 10/sup 8/ irradiated tumor cells. Mice pretreated with 10/sup 5/ or 10/sup 6/ irradiated tumor cells rejected the tumor cells completely. The viable tumor cells were challenged to mice on 7 days after inoculation of BCG-CW emulsion plus 10/sup 6/ irradiated tumor cells. 0, 50, 100, 200, and 400 mu g of BCG-CW emulsion were mixed in 10/sup 6/ irradiated tumor cells. Optimal dosage of BCG-CW emulsion was 50 or 100 mu g. BCG-CW emulsion plus irradiated tumor cells were injected subcutaneously to the mice after tumor cells inoculation. Three injections of the vaccine significantly suppressed the tumor outgrowth, but not one or two injections in no-treated mice. However, in the mice pretreated with BCG-CW emulsion, the tumor growth was significantly suppressed by one or two injections of the vaccine. Especially, the three injections of the vaccine significantly suppressed the tumor growth and the 25% of the mice were completely cured. The effect of the vaccine was almost the same grade by contralateral or ipsilateral treatment. The irradiated MCB-II tumor cells plus BCG-CW emulsion were not effective to the MCB-1 tumor bearing mice, suggesting the anti-tumor effect of this vaccine was immunologically specific.

  20. Penium margaritaceum: A Unicellular Model Organism for Studying Plant Cell Wall Architecture and Dynamics

    OpenAIRE

    Domozych, David S

    2014-01-01

    Penium margaritaceum is a new and valuable unicellular model organism for studying plant cell wall structure and developmental dynamics. This charophyte has a cell wall composition remarkably similar to the primary cell wall of many higher plants and clearly-defined inclusive zones containing specific polymers. Penium has a simple cylindrical phenotype with a distinct region of focused wall synthesis. Specific polymers, particularly pectins, can be identified using monoclonal antibodies rais...

  1. [Hydroxyproline: Rich glycoproteins of the plant and cell wall

    Energy Technology Data Exchange (ETDEWEB)

    Varner, J.E.

    1993-01-01

    Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a number of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H[sub 2]O[sub 2] production reinforce the earlier ideas of others that H[sub 2]O[sub 2] is involved in normal lignification.

  2. Induction kinetics of the Staphylococcus aureus cell wall stress stimulon in response to different cell wall active antibiotics

    Directory of Open Access Journals (Sweden)

    Berger-Bächi Brigitte

    2011-01-01

    Full Text Available Abstract Background Staphylococcus aureus activates a protective cell wall stress stimulon (CWSS in response to the inhibition of cell wall synthesis or cell envelope damage caused by several structurally and functionally different antibiotics. CWSS induction is coordinated by the VraSR two-component system, which senses an unknown signal triggered by diverse cell wall active agents. Results We have constructed a highly sensitive luciferase reporter gene system, using the promoter of sas016 (S. aureus N315, which detects very subtle differences in expression as well as measuring > 4 log-fold changes in CWSS activity, to compare the concentration dependence of CWSS induction kinetics of antibiotics with different cell envelope targets. We compared the effects of subinhibitory up to suprainhibitory concentrations of fosfomycin, D-cycloserine, tunicamycin, bacitracin, flavomycin, vancomycin, teicoplanin, oxacillin, lysostaphin and daptomycin. Induction kinetics were both strongly antibiotic- and concentration-dependent. Most antibiotics triggered an immediate response with induction beginning within 10 min, except for tunicamycin, D-cycloserine and fosfomycin which showed lags of up to one generation before induction commenced. Induction characteristics, such as the rate of CWSS induction once initiated and maximal induction reached, were strongly antibiotic dependent. We observed a clear correlation between the inhibitory effects of specific antibiotic concentrations on growth and corresponding increases in CWSS induction kinetics. Inactivation of VraR increased susceptibility to the antibiotics tested from 2- to 16-fold, with the exceptions of oxacillin and D-cycloserine, where no differences were detected in the methicillin susceptible S. aureus strain background analysed. There was no apparent correlation between the induction capacity of the various antibiotics and the relative importance of the CWSS for the corresponding resistance phenotypes

  3. Chromatin and Cell Wall Staining of Schizosaccharomyces pombe.

    Science.gov (United States)

    Hagan, Iain M

    2016-01-01

    Fission yeasts grow by tip extension, maintaining a constant width until they reach a critical size threshold and divide. Division by medial fission-which gives these yeast their name-generates a new end that arises from the site of cytokinesis. The old end, which was produced during the previous cell cycle, initiates progression of the new cell cycle, and in G2, the new end is activated in a process termed new-end takeoff (NETO). In this protocol, the fluorescent stains calcofluor and 4',6-diamidino-2-phenylindole (DAPI) are used to give a rapid and informative assessment of morphogenesis and cell-cycle progression in the fission yeast Schizosaccharomyces pombe Calcofluor reveals the timing of NETO because it stains the birth scars that are generated at new ends by cytokinesis less efficiently than the rest of the cell wall. Intense calcofluor staining of the septum and measurement of cell length are also widely used to identify dividing cells and to gauge the timing of mitotic commitment. Staining nuclei with DAPI identifies mono- and binucleated cells and complements the calcofluor staining procedure to evaluate the stages of the cell cycle and identify mitotic errors. Equally simple DAPI staining procedures reveal chromatin structure in higher resolution, facilitating more accurate staging of mitotic progression and characterization of mitotic errors. PMID:27250942

  4. Profiling the Hydrolysis of Isolated Grape Berry Skin Cell Walls by Purified Enzymes.

    Science.gov (United States)

    Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Vivier, Melané A

    2015-09-23

    The unraveling of crushed grapes by maceration enzymes during winemaking is difficult to study because of the complex and rather undefined nature of both the substrate and the enzyme preparations. In this study we simplified both the substrate, by using isolated grape skin cell walls, and the enzyme preparations, by using purified enzymes in buffered conditions, to carefully follow the impact of the individual and combined enzymes on the grape skin cell walls. By using cell wall profiling techniques we could monitor the compositional changes in the grape cell wall polymers due to enzyme activity. Extensive enzymatic hydrolysis, achieved with a preparation of pectinases or pectinases combined with cellulase or hemicellulase enzymes, completely removed or drastically reduced levels of pectin polymers, whereas less extensive hydrolysis only opened up the cell wall structure and allowed extraction of polymers from within the cell wall layers. Synergistic enzyme activity was detectable as well as indications of specific cell wall polymer associations. PMID:26309153

  5. Auxin-induced modifications of cell wall polysaccharides in cat coleoptile segments. Effect of galactose

    International Nuclear Information System (INIS)

    Galactose inhibits auxin-induced cell elongation in oat coleoptile segments. Cell elongation induced by exogenously applied auxin is controlled by factors such as auxin uptake, cell wall loosening, osmotic concentration of sap and hydraulic conductivity. However, galactose does not have any effect on these factors. The results discussed in this paper led to the conclusion that galactose does not affect cell wall loosening which controls rapid growth, but inhibits cell wall synthesis which is required to maintain long-term growth

  6. Members of the Hsp70 family of proteins in the cell wall of Saccharomyces cerevisiae.

    OpenAIRE

    López-Ribot, J L; Chaffin, W L

    1996-01-01

    Western blot (immunoblot) analysis of cell wall and cytosolic extracts obtained from parental and ssa1 and ssa2 single- and double-mutant strains of Saccharomyces cerevisiae showed that the heat shock protein 70 (Hsp70) products of these genes, previously thought to be restricted to the cell interior, are also present in the cell wall. A cell wall location was further confirmed by indirect immunofluorescence with intact cells and biotinylation of extracellular Hsp70. Hsp70s have been implicat...

  7. Cellulose-hemicellulose interaction in wood secondary cell-wall

    Science.gov (United States)

    Zhang, Ning; Li, Shi; Xiong, Liming; Hong, Yu; Chen, Youping

    2015-12-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.

  8. Nutrient depletion modifies cell wall adsorption activity of wine yeast.

    Science.gov (United States)

    Sidari, R; Caridi, A

    2016-06-01

    Yeast cell wall is a structure that helps yeasts to manage and respond to many environmental stresses. The mannosylphosphorylation is a modification in response to stress that provides the cell wall with negative charges able to bind compounds present in the environment. Phenotypes related to the cell wall modification such as the filamentous growth in Saccharomyces cerevisiae are affected by nutrient depletion. The present work aimed at describing the effect of carbon and/or nitrogen limitation on the aptitude of S. cerevisiae strains to bind coloured polyphenols. Carbon- and nitrogen-rich or deficient media supplemented with grape polyphenols were used to simulate different grape juice conditions-early, mid, 'adjusted' for nitrogen, and late fermentations. In early fermentation condition, the R+G+B values range from 106 (high adsorption, strain Sc1128) to 192 (low adsorption, strain Σ1278b), in mid-fermentation the values range from 111 (high adsorption, strain Sc1321) to 258 (low adsorption, strain Sc2306), in 'adjusted' for nitrogen conditions the values range from 105 (high adsorption, strain Sc1321) to 194 (low adsorption, strain Sc2306) while in late fermentation conditions the values range from 101 (high adsorption, strain Sc384) to 293 (low adsorption, strain Sc2306). The effect of nutrient availability is not univocal for all the strains and the different media tested modified the strains behaviour. In all the media the strains show significant differences. Results demonstrate that wine yeasts decrease/increase their parietal adsorption activity according to the nutrient availability. The wide range of strain variability observed could be useful in selecting wine starters. PMID:27116955

  9. A radioimmunoassay for lignin in plant cell walls

    International Nuclear Information System (INIS)

    Lignin detection and determination in herbaceous tissue requires selective, specific assays which are not currently available. A radioimmunoassay (RIA) was developed to study lignin metabolism in these tissues. A β-aryl ether lignin model compound was synthesized, linked to keyhole limpet hemocyanin using a water-soluble carbodiimide, and injected into rabbits. The highest titer of the antiserum obtained was 34 ηg/mL of model derivatized BSA. An in vitro system was developed to characterize the RIA. The model compound was linked to amino activated polyacrylamide beads to mimic lignin in the cell walls. 125I Radiolabelled protein A was used to detect IgG antibody binding. The RIA was shown in the in vitro system to exhibit saturable binding. The amount of antibody bound decreased when the serum was diluted. Immunoelectrophoresis and competitive binding experiments confirmed that both aromatic rings of the lignin model compound had been antigenic. Chlorogenic acid, a phenolic known to be present in plant cells, did not compete for antibody binding. The RIA was used to measure lignin in milled plant samples and barley seedlings. Antiserum binding to wheat cell walls and stressed barley segments was higher than preimmune serum binding. Antibody binding to stressed barley tissue decreased following NaClO2 delignification. The RIA was found to be less sensitive than expected, so several avenues for improving the method are discussed

  10. Lignification in poplar tension wood lignified cell wall layers.

    Science.gov (United States)

    Yoshinaga, Arata; Kusumoto, Hiroshi; Laurans, Françoise; Pilate, Gilles; Takabe, Keiji

    2012-09-01

    The lignification process in poplar tension wood lignified cell wall layers, specifically the S(1) and S(2) layers and the compound middle lamella (CML), was analysed using ultraviolet (UV) and transmission electron microscopy (TEM). Variations in the thickness of the gelatinous layer (G-layer) were also measured to clarify whether the lignified cell wall layers had completed their lignification before the deposition of G-layers, or, on the contrary, if lignification of these layers was still active during G-layer formation. Observations using UV microscopy and TEM indicated that both UV absorbance and the degree of potassium permanganate staining increased in the CML and S(1) and S(2) layers during G-layer formation, suggesting that the lignification of these lignified layers is still in progress during G-layer formation. In the context of the cell-autonomous monolignol synthesis hypothesis, our observations suggest that monolignols must go through the developing G-layer during the lignification of CML and the S(1) and S(2) layers. The alternative hypothesis of external synthesis (in the rays) does not require that monolignols go through the G-layer before being deposited in the CML, or the S(1) and S(2) layers. Interestingly, the previous observation of lignin in the poplar G-layer was not confirmed with the microscopy techniques used in the present study. PMID:22933655

  11. Absence of correlation between rates of cell wall turnover and autolysis shown by Bacillus subtilis mutants.

    OpenAIRE

    Vitković, L; Cheung, H. Y.; Freese, E

    1984-01-01

    Bacillus subtilis mutants with reduced rates of cell wall autolysis reached a constant rate of wall turnover after a longer lag than the standard strain but eventually showed the same turnover rate. In reverse, a turnover-deficient mutant autolysed at a slightly higher rate than the standard strain. Consequently, there is no correlation between the rates of cell wall turnover and autolysis.

  12. Cell wall loosening proteins of the stigma exudate

    OpenAIRE

    Nieuwland, J.H.

    2004-01-01

    Outline of the thesis: The idea, formulated by Cosgrove, that cell wall loosening of the maternal tissue facilitates pollen tube growth is a central theme of this thesis. This idea was originally proposed for beta-expansins released by maize pollen. Since the pollen coat of dry stigma type plants, like maize, bears a functional similarity with the exudate of wet stigma type plants (e.g. tobacco and petunia), this research was started with the analysis of the putative function of the pistil-sp...

  13. Clinical analysis of lateral oropharyngeal-wall squamous cell carcinoma

    International Nuclear Information System (INIS)

    We retrospectively reviewed 98 cases of lateral-oropharyngeal wall squamous cell carcinoma seen from January 1999 to March 2011. The majority-75 cases-involeved advanced cancer. For these, we conducted concurrent chemoradiotherapy (CCRT) with cisplatin, docetaxel, and 5-FU from 2007. Five-year overall survival was 64.4%. In advanced cases, three-year overall survival was 77.8% in surgery, 71.2% in radiation therapy, and 84.6% in CCRT. While no statistically significant difference was seen, CCRT, appeared to provide more curative effectiveness. (author)

  14. Mass spectrometry for characterizing plant cell wall polysaccharides

    Directory of Open Access Journals (Sweden)

    Stefan eBauer

    2012-03-01

    Full Text Available Mass spectrometry is a selective and powerful technique to obtain identification and structural information on compounds present in complex mixtures. Since it requires only small sample amount it is an excellent tool for researchers interested in detecting changes in composition of complex carbohydrates of plants. This mini-review gives an overview of common mass spectrometry techniques applied to the analysis of plant cell wall carbohydrates. It presents examples in which mass spectrometry has been used to elucidate the structure of oligosaccharides derived from hemicelluloses and pectins and illustrates how information on sequence, linkages, branching and modifications are obtained from characteristic fragmentation patterns.

  15. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; E. Thybring, Emil; Johansen, Katja Salomon;

    2014-01-01

    Mechanical agitation during enzymatic hydrolysis of insoluble plant biomass at high dry matter contents is indispensable for the initial liquefaction step in biorefining. It is known that particle size reduction is an important part of liquefaction, but the mechanisms involved are poorly understood....... Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic bonds. This study illustrates that basic material science insights are relevant also within biochemistry...

  16. Chitosan Obtained from Cell Wall of Aspergillus Niger Mycelium

    Institute of Scientific and Technical Information of China (English)

    HUANG Hui-li; LIN Wen-luan; LIN Jian-ming

    2004-01-01

    Chitin from cell walls of Aspergillus Niger mycelium was prepared. A new method for the preparation of high deacetylation degree chitosan was studied in a dilute sodium hydroxide solution at a high pressure. The experimental results indicate that the deacetylation degree of the chitosan can reach 80% under the condition of a 5.00 mol/L sodium hydroxide solution at 0.1 MPa of pressure for 1 h. This method shows the advantages of the applications in the industry production and environment protection.

  17. Cellulose synthesis inhibition, cell expansion, and patterns of cell wall deposition in Nitella internodes

    International Nuclear Information System (INIS)

    The authors have investigated the pattern of wall deposition and maturation and correlated it with cell expansion and cellulose biosynthesis. The herbicide 2,6-dichlorobenzonitrile (DCB) was found to be a potent inhibitor of cellulose synthesis, but not of cell expansion in Nitella internodal cells. Although cellulose synthesis is inhibited during DCB treatment, matrix substances continue to be synthesized and deposited. The inhibition of cellulose microfibril deposition can be demonstrated by various techniques. These results demonstrate that matrix deposition is by apposition, not by intussusception, and that the previously deposited wall moves progressively outward while stretching and thinning as a result of cell expansion

  18. Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins.

    OpenAIRE

    van der Vaart, J. M.; te Biesebeke, R; Chapman, J.W.; Toschka, H Y; Klis, F M; Verrips, C. T.

    1997-01-01

    The carboxyl-terminal regions of five cell wall proteins (Cwp1p, Cwp2p, Ag alpha 1p, Tip1p, and Flo1p) and three potential cell wall proteins (Sed1p, YCR89w, and Tir1p) all proved capable of immobilizing alpha-galactosidase in the cell wall of Saccharomyces cerevisiae. The fraction of the total amount of fusion protein that was localized to the cell wall varied depending on the anchor domain used. The highest proportion of cell wall incorporation was achieved with Cwp2p, Ag alpha 1p, or Sed1p...

  19. Determination of the pore size of cell walls of living plant cells

    Energy Technology Data Exchange (ETDEWEB)

    Carpita, N.; Sabularse, D.; Montezinos, D.; Delmer, D.P.

    1979-09-14

    The limiting diameter of pores in the walls of living plant cells through which molecules can freely pass has been determined by a solute exclusion technique to be 35 to 38 angstroms for hair cells of Raphanus sativus roots and fibers of Gossypium hirsutum, 38 to 40 angstroms for cultured cells of Acer pseudoplatanus, and 45 to 52 angstroms for isolated palisade parenchyma cells of the leaves of Xanthium strumarium and Commelina communis. These results indicate that molecules with diameters larger than these pores would be restricted in their ability to penetrate such a cell wall, and that such a wall may represent a more significant barrier to cellular communication than has been previously assumed.

  20. Drug Evaluations: Type I vs. Type II Errors

    OpenAIRE

    Intriligator, Michael D.

    1996-01-01

    Drug testing in the United States is currently biased toward the minimization of "Type I" error, that is, toward minimizing the chance of approving drugs that are unsafe or ineffective. This regulatory focus of the Food and Drug Administration (FDA) ignores the potential for committing the alternative "Type II" error, that is, the error of not approving drugs that are, in fact, safe and effective. Such Type II errors can result in the loss of significant benefits to society when the sale of d...

  1. Nonrandom association of a type II procollagen genotype with achondroplasia

    OpenAIRE

    Eng, C E; Pauli, R. M.; C. M. Strom

    1986-01-01

    Achondroplasia is an autosomal dominant disorder that involves defective endochondral bone formation. Type II collagen is the predominant collagen of cartilage. We found a HindIII polymorphic site in the normal Caucasian population by using the type II procollagen gene probe pgHCol(II)A. The presence of this site yields a 7.0-kilobase (kb) band; its absence yields a 14.0-kb band. We found a significant deviation in genotype distribution and allele frequencies in a population of unrelated indi...

  2. Predicted Unusual Magnetoresponse in Type-II Weyl Semimetals

    Science.gov (United States)

    Yu, Zhi-Ming; Yao, Yugui; Yang, Shengyuan A.

    2016-08-01

    We show several distinct signatures in the magnetoresponse of type-II Weyl semimetals. The energy tilt tends to squeeze the Landau levels (LLs), and, for a type-II Weyl node, there always exists a critical angle between the B field and the tilt, at which the LL spectrum collapses, regardless of the field strength. Before the collapse, signatures also appear in the magneto-optical spectrum, including the invariable presence of intraband peaks, the absence of absorption tails, and the special anisotropic field dependence.

  3. Hepatitis C: a possible etiology for cryoglobulinaemia type II.

    Science.gov (United States)

    Pechère-Bertschi, A; Perrin, L; de Saussure, P; Widmann, J J; Giostra, E; Schifferli, J A

    1992-01-01

    Out of 15 successive patients with mixed essential cryoglobulinaemia type II (monoclonal IgM kappa/IgG), 13 had serological evidence for hepatitis C infection as shown by specific enzyme immunoassays and immunoblot. RNA was purified from the serum of seven patients and hepatitis C sequences were identified in five following reverse transcription and DNA amplification. The liver histology showed chronic active hepatitis with or without cirrhosis in the 12 patients with hepatitis C who had a liver biopsy. The two patients without serological evidence of hepatitis C suffered from haematological malignancies. Hepatitis C may be a major etiological agent of cryoglobulinaemia type II. PMID:1381302

  4. wall

    Directory of Open Access Journals (Sweden)

    Irshad Kashif

    2016-01-01

    Full Text Available Maintaining indoor climatic conditions of buildings compatible with the occupant comfort by consuming minimum energy, especially in a tropical climate becomes a challenging problem for researchers. This paper aims to investigate this problem by evaluating the effect of different kind of Photovoltaic Trombe wall system (PV-TW on thermal comfort, energy consumption and CO2 emission. A detailed simulation model of a single room building integrated with PV-TW was modelled using TRNSYS software. Results show that 14-35% PMV index and 26-38% PPD index reduces as system shifted from SPV-TW to DGPV-TW as compared to normal buildings. Thermal comfort indexes (PMV and PPD lie in the recommended range of ASHARE for both DPV-TW and DGPV-TW except for the few months when RH%, solar radiation intensity and ambient temperature were high. Moreover PVTW system significantly reduces energy consumption and CO2 emission of the building and also 2-4.8 °C of temperature differences between indoor and outdoor climate of building was examined.

  5. The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii.

    Science.gov (United States)

    Voigt, Jürgen; Stolarczyk, Adam; Zych, Maria; Malec, Przemysław; Burczyk, Jan

    2014-02-01

    The green alga Scenedesmus obliquus contains a multilayered cell wall, ultrastructurally similar to that of Chlamydomonas reinhardtii, although its proportion of hydroxyproline is considerably lower. Therefore, we have investigated the polypeptide composition of the insoluble and the chaotrope-soluble wall fractions of S. obliquus. The polypeptide pattern of the chaotrope-soluble wall fraction was strongly modified by chemical deglycosylation with anhydrous hydrogen fluoride (HF) in pyridine indicating that most of these polypeptides are glycosylated. Polypeptide constituents of the chaotrope-soluble cell-wall fraction with apparent molecular masses of 240, 270, 265, and 135 kDa cross-reacted with a polyclonal antibody raised against the 100 kDa deglycosylation product of the C. reinhardtii cell-wall glycoprotein GP3B. Chemical deglycosylation of the chaotrope-soluble wall fraction resulted in a 135 kDa major polypeptide and a 106 kDa minor component reacting with the same antibody. This antibody recognized specific peptide epitopes of GP3B. When the insoluble wall fraction of S. obliquus was treated with anhydrous HF/pyridine, three polypeptides with apparent molecular masses of 144, 135, and 65 kDa were solubilized, which also occured in the deglycosylated chaotrope-soluble wall fraction. These findings indicate that theses glycoproteins are cross-linked to the insoluble wall fraction via HF-sensitive bonds. PMID:24388513

  6. Gonadotropin-releasing hormone type II (GnRH-II) agonist regulates the invasiveness of endometrial cancer cells through the GnRH-I receptor and mitogen-activated protein kinase (MAPK)-dependent activation of matrix metalloproteinase (MMP)-2

    International Nuclear Information System (INIS)

    More than 25% of patients diagnosed with endometrial carcinoma have an invasive primary cancer accompanied by metastases. Gonadotropin-releasing hormone (GnRH) plays an important role in reproduction. In mammals, expression of GnRH-II is higher than GnRH-I in reproductive tissues. Here, we examined the effect of a GnRH-II agonist on the motility of endometrial cancer cells and its mechanism of action in endometrial cancer therapy. Immunoblotting and immunohistochemistry (IHC) were used to determine the expression of the GnRH-I receptor protein in human endometrial cancer. The activity of MMP-2 in the conditioned medium was determined by gelatin zymography. Cell motility was assessed by invasion and migration assay. GnRH-I receptor si-RNA was applied to knockdown GnRH-I receptor. The GnRH-I receptor was expressed in the endometrial cancer cells. The GnRH-II agonist promoted cell motility in a dose-dependent manner. The GnRH-II agonist induced the phosphorylation of ERK1/2 and JNK, and the phosphorylation was abolished by ERK1/2 inhibitor (U0126) and the JNK inhibitor (SP600125). Cell motility promoted by GnRH-II agonist was suppressed in cells that were pretreated with U0126 and SP600125. Moreover, U0126 and SP600125 abolished the GnRH-II agonist-induced activation of MMP-2. The inhibition of MMP-2 with MMP-2 inhibitor (OA-Hy) suppressed the increase in cell motility in response to the GnRH-II agonist. Enhanced cell motility mediated by GnRH-II agonist was also suppressed by the knockdown of the endogenous GnRH-I receptor using siRNA. Our study indicates that GnRH-II agonist promoted cell motility of endometrial cancer cells through the GnRH-I receptor via the phosphorylation of ERK1/2 and JNK, and the subsequent, MAPK-dependent activation of MMP-2. Our findings represent a new concept regarding the mechanism of GnRH-II-induced cell motility in endometrial cancer cells and suggest the possibility of exploring GnRH-II as a potential therapeutic target for the

  7. Rhizobium sp. Degradation of Legume Root Hair Cell Wall at the Site of Infection Thread Origin

    OpenAIRE

    Ridge, Robert W.; Rolfe, Barry G.

    1985-01-01

    Using a new microinoculation technique, we demonstrated that penetration of Rhizobium sp. into the host root hair cell occurs at 20 to 22 h after inoculation. It did this by dissolving the cell wall maxtrix, leaving a layer of depolymerized wall microfibrils. Colony growth pressure “stretched” the weakened wall, forming a bulge into an interfacial zone between the wall and plasmalemma. At the same time vesicular bodies, similar to plasmalemmasomes, accumulated at the penetration site in a man...

  8. Reversal of tolerance induced by transplantation of skin expressing the immunodominant T cell epitope of rat type II collagen entitles development of collagen-induced arthritis but not graft rejection

    DEFF Research Database (Denmark)

    Bäcklund, Johan; Treschow, Alexandra; Firan, Mihail; Malmström, Vivianne; Issazadeh-Navikas, Shohreh; Ward, E Sally; Holmdahl, Rikard

    2002-01-01

    collagen (CI), e.g. in skin, are tolerized against rat CII and resistant to CIA. In this study we transplanted skin from TSC transgenic mice onto non-transgenic CIA-susceptible littermates to investigate whether introduction of this epitope to a naïve immune system would lead to T cell priming and graft...... rejection or instead to tolerance and arthritis protection. Interestingly, TSC grafts were accepted and not even immunization of recipient mice with CII in adjuvant induced graft rejection. Instead, TSC skin recipients displayed a reduced T and B cell response to CII and were also protected from arthritis....... However, additional priming could break arthritis protection and was accompanied by an increased T cell response to the grafted epitope. Strikingly, despite the regained T cell response, development of arthritis was not accompanied by graft rejection, showing that these immune-mediated inflammatory...

  9. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

    OpenAIRE

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J.; Kim, Jae-Yean

    2015-01-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Ba...

  10. Nonlinear Wave Interactions as Emission Process of Type II Radio Bursts

    OpenAIRE

    Ganse, Urs; Kilian, Patrick; Spanier, Felix; Vainio, Rami

    2012-01-01

    The emission of fundamental and harmonic frequency radio waves of type II radio bursts are assumed to be products of three-wave interaction processes of beam-excited Langmuir waves. Using a particle-in-cell code, we have performed simulations of the assumed emission region, a CME foreshock with two counterstreaming electron beams. Analysis of wavemodes within the simulation shows self-consistent excitation of beam driven modes, which yield interaction products at both fundamental and harmonic...

  11. Seed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research

    OpenAIRE

    Arsovski, Andrej A; Haughn, George W; Western, Tamara L.

    2010-01-01

    Plant cells are encased within a complex polysaccharide wall that strengthens the cell and has key roles in all aspects of plant cell growth, differentiation and interaction with the environment. This dynamic structure is under continual modification during plant development, and its synthesis and modification require the activity of a myriad of enzymes. The mucilage secretory cells (MSCs) of the Arabidopsis thaliana seed coat provide a model for the discovery of novel genes involved in the s...

  12. Soya beans and Maize : The effect of chemical and physical structure of cell wall polysaccharides on fermentation kinetics

    OpenAIRE

    Laar, van, J.A.

    2000-01-01

    The analysis of the relationship between cell wall composition and fermentation of endosperm cell walls of soya beans and maize was approached from three different angles. Firstly, the fermentation (rate and extent of fermentation, the sugar degradation pattern, and volatile fatty acid production) of soya bean and maize cell walls was analysed, both in situ and in vitro. This analysis revealed that the physical structure of the cell wall (particle size and cell wall thickness) influences cell...

  13. The connection of cytoskeletal network with plasma membrane and the cell wall

    Institute of Scientific and Technical Information of China (English)

    Zengyu Liu; Staffan Persson; Yi Zhang

    2015-01-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosyn-thesis and modifications, and aim to provide a platform for further studies in this field.

  14. Kaehler forms and cosmological solutions in type II supergravities

    OpenAIRE

    Alonso-Alberca, N.; Meessen, P.

    2000-01-01

    We consider cosmological solutions to type II supergravity theories where the spacetime is split into a FRW universe and a K\\"ahler space, which may be taken to be Calabi-Yau. The various 2-forms present in the theories are taken to be proportional to the K\\"ahler form associated to the K\\"ahler space.

  15. Phase transitions in n=4 type II antiferromagnets

    International Nuclear Information System (INIS)

    The Landau-Ginzburg-Wilson (LGW) Hamiltonian associated with n=4 type II fcc antiferromagnets is discussed. It is shown that the model is expected to exhibit a first order transition in d=3 dimensions. Recent experimental results on CeS, CeSe and CeTe are discussed. (author)

  16. Type II parametric downconversion in a poled fiber

    OpenAIRE

    Zhu, Eric Y.; Lee-Kim Koon, Edward A.; Qian, Lee-Kim; Helt, L. G.; Liscidini, Marco; Sipe, J. E.; Corbari, Costantino; Canagasabey, Albert; Ibsen, Morten; Kazansky, Peter G.

    2011-01-01

    We report photon-pair generation at the 1.5-?m telecom band via continuous-wave type-II parametric downconversion in a birefringent periodically-poled silica fiber. The time- and polarization-correlations of the downconverted light are examined

  17. HYDRODYNAMICAL MODELS OF TYPE II-P SUPERNOVA LIGHT CURVES

    Directory of Open Access Journals (Sweden)

    M. C. Bersten

    2009-01-01

    Full Text Available We present progress in light curve models of type II-P supernovae (SNe II-P obtained using a newly devel- oped, one-dimensional hydrodynamic code. Using simple initial models (polytropes, we reproduced the global behavior of the observed light curves and we analyzed the sensitivity of the light curves to the variation of free parameters.

  18. Oro-facial-digital syndrome type II with otolaryngological manifestations

    Directory of Open Access Journals (Sweden)

    A Havle

    2015-01-01

    Full Text Available We present a case of oro-facial-digital syndrome type II (Mohr′s syndrome which is characterized by malformations of the oral cavity, face and digits. The facial and oral features include tongue nodules, cleft or high-arched palate, missing teeth, broad nose; cleft lip. The digital features include clinodactyly, polydactyly, syndactyly, brachydactyly and duplication of the hallux.

  19. Knowledge Is Power: Teaching Children about Type II Diabetes

    Science.gov (United States)

    Feild-Berner, Natalie; Balgopal, Meena

    2011-01-01

    World Diabetes Day (November 14) offers a wonderful opportunity to educate elementary children about the power they have to control their health. First lady Michelle Obama has urged Americans to educate themselves about childhood obesity, which is often associated with the onset of type II diabetes (Rabin 2010). The authors developed activities to…

  20. A Type II Radio Burst without a Coronal Mass Ejection

    CERN Document Server

    Su, W; Ding, M D; Chen, P F; Sun, J Q

    2015-01-01

    Type II radio bursts are thought to be a signature of coronal shocks. In this paper, we analyze a short-lived type II burst that started at 07:40 UT on 2011 February 28. By carefully checking white-light images, we find that the type II radio burst is not accompanied by a coronal mass ejection, only with a C2.4 class flare and narrow jet. However, in the extreme-ultraviolet (EUV) images provided by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), we find a wave-like structure that propagated at a speed of $\\sim$ 600 km s$^{-1}$ during the burst. The relationship between the type II radio burst and the wave-like structure is in particular explored. For this purpose, we first derive the density distribution under the wave by the differential emission measure (DEM) method, which is used to restrict the empirical density model. We then use the restricted density model to invert the speed of the shock that produces the observed frequency drift rate in the dynamic spectrum. The ...

  1. Acute type II cryoglobulinaemic vasculitis mimicking atherosclerotic peripheral vascular disease.

    LENUS (Irish Health Repository)

    Saeed, A

    2012-01-31

    Atherosclerotic peripheral vascular disease is a common presenting cause for digital ischaemia in life long smokers. Acute severe Type II Cryoglobulinaemic vasculitis is a rare yet important cause, which may present with similar clinical features and which if undiagnosed may be rapidly fatal. Following the instigation of therapy with intravenous methylprednisolone and cyclophosphamide this patient made an excellent recovery.

  2. Type-II Supernovae and Neutrino Magnetic Moment

    CERN Document Server

    Nunokawa, H; Valle, José W F

    1999-01-01

    The present solar and atmospheric neutrino data together with the LSND results and the presence of hot dark matter (HDM) suggest the existence of a sterile neutrino at the eV scale. We have reanalysed the effect of resonant type-II supernova. We analyse the implications of $\

  3. Pregnancy with neurofibromatosis type II: the enigma continues

    Directory of Open Access Journals (Sweden)

    Ankita Pandey

    2015-06-01

    Full Text Available Neurofibromatosis type II in pregnancy has variable presentations. The recurrence rate and bilaterality of CP angle tumour is very high. We present a case of bilateral schwanomma diagnosed in midpregnancy, for which patient was operated in second trimester and postpartum radiotherapy will now be given. [Int J Reprod Contracept Obstet Gynecol 2015; 4(3.000: 869-870

  4. ACCELERATION OF TYPE II SPICULES IN THE SOLAR CHROMOSPHERE

    International Nuclear Information System (INIS)

    A 2.5D, time-dependent magnetohydrodynamic model is used to test the proposition that observed type II spicule velocities can be generated by a Lorentz force under chromospheric conditions. It is found that current densities localized on observed space and time scales of type II spicules and that generate maximum magnetic field strengths ≤50 G can generate a Lorentz force that accelerates plasma to terminal velocities similar to those of type II spicules. Maximum vertical flow speeds are ∼150-460 km s–1, horizontally localized within ∼2.5-10 km from the vertical axis of the spicule, and comparable to slow solar wind speeds, suggesting that significant solar wind acceleration occurs in type II spicules. Horizontal speeds are ∼20 times smaller than vertical speeds. Terminal velocity is reached ∼100 s after acceleration begins. The increase in the mechanical and thermal energy of the plasma during acceleration is (2-3) × 1022 ergs. The radial component of the Lorentz force compresses the plasma during the acceleration process by factors as large as ∼100. The Joule heating flux generated during this process is essentially due to proton Pedersen current dissipation and can be ∼0.1-3.7 times the heating flux of ∼106 ergs cm–2 s–1 associated with middle-upper chromospheric emission. About 84%-94% of the magnetic energy that accelerates and heats the spicules is converted into bulk flow kinetic energy.

  5. Cocaine-Mediated Autophagy in Astrocytes Involves Sigma 1 Receptor, PI3K, mTOR, Atg5/7, Beclin-1 and Induces Type II Programed Cell Death.

    Science.gov (United States)

    Cao, Lu; Walker, Mary P; Vaidya, Naveen K; Fu, Mingui; Kumar, Santosh; Kumar, Anil

    2016-09-01

    Cocaine, a commonly used drug of abuse, has been shown to cause neuropathological dysfunction and damage in the human brain. However, the role of autophagy in this process is not defined. Autophagy, generally protective in nature, can also be destructive leading to autophagic cell death. This study was designed to investigate whether cocaine induces autophagy in the cells of CNS origin. We employed astrocyte, the most abundant cell in the CNS, to define the effects of cocaine on autophagy. We measured levels of the autophagic marker protein LC3II in SVGA astrocytes after exposure with cocaine. The results showed that cocaine caused an increase in LC3II level in a dose- and time-dependent manner, with the peak observed at 1 mM cocaine after 6-h exposure. This result was also confirmed by detecting LC3II in SVGA astrocytes using confocal microscopy and transmission electron microscopy. Next, we sought to explore the mechanism by which cocaine induces the autophagic response. We found that cocaine-induced autophagy was mediated by sigma 1 receptor, and autophagy signaling proteins p-mTOR, Atg5, Atg7, and p-Bcl-2/Beclin-1 were also involved, and this was confirmed by using selective inhibitors and small interfering RNAs (siRNAs). In addition, we found that chronic treatment with cocaine resulted in cell death, which is caspase-3 independent and can be ameliorated by autophagy inhibitor. Therefore, this study demonstrated that cocaine induces autophagy in astrocytes and is associated with autophagic cell death. PMID:26243186

  6. Cell Wall Microstructure Analysis Implicates Hemicellulose Polysaccharides in Cell Adhesion in Tomato Fruit Pericarp Parenchyma

    Institute of Scientific and Technical Information of China (English)

    Jose J. Ordaz-Ortiz; Susan E. Marcus; J. Paul Knox

    2009-01-01

    Methods developed to isolate intact cells from both unripe and ripe tomato fruit pericarp parenchyma have allowed the cell biological analysis of polysaccharide epitopes at the surface of separated cells. The LM7 pectic homoga-lacturonan epitope is a marker of the junctions of adhesion planes and intercellular spaces in parenchyma systems. The LM7 epitope persistently marked the former edge of adhesion planes at the surface of cells separated from unripe and ripened tomato fruit and also from fruits with the Cnr mutation. The LM 11 xylan epitope was associated, in sections, with cell walls lining intercellular space but the epitope was not detected at the surface of isolated cells, being lost during cell isolation. The LM15 xyloglucan epitope was present at the surface of cells isolated from unripe fruit in a pattern reflecting the former edge of cell adhesion planes/intercellular space but with gaps and apparent breaks, An equivalent pattern ofLM15 epitope occurrence was revealed at the surface of cells isolated by pectate lyase action but was not present in cells isolated from ripe fruit or from Cnr fruit. In contrast to wild-type cells, the LM5 galactan and LM21 mannan epitopes oc-curred predominantly in positions reflecting intercellular space in Cnr, suggesting a concerted alteration in cell wall mi-crostructure in response to this mutation. Galactanase and mannanase, along with pectic homogalacturonan-degrading enzymes, were capable of releasing cells from unripe fruit parenchyma. These observations indicate that hemicellulose polymers are present in architectural contexts reflecting cell adhesion and that several cell wall polysaccharide classes are likely to contribute to cell adhesion/cell separation in tomato fruit pericarp parenchyma.

  7. Inhibition of Shikimate Kinase and Type II Dehydroquinase for Antibiotic Discovery: Structure-Based Design and Simulation Studies.

    Science.gov (United States)

    Gonzalez-Bello, Concepcion

    2016-01-01

    The loss of effectiveness of current antibiotics caused by the development of drug resistance has become a severe threat to public health. Current widely used antibiotics are surprisingly targeted at a few bacterial functions - cell wall, DNA, RNA, and protein biosynthesis - and resistance to them is widespread and well identified. There is therefore great interest in the discovery of novel drugs and therapies to tackle antimicrobial resistance, in particular drugs that target other essential processes for bacterial survival. In the past few years a great deal of effort has been focused on the discovery of new inhibitors of the enzymes involved in the biosynthesis of aromatic amino acids, also known as the shikimic acid pathway, in which chorismic acid is synthesized. The latter compound is the synthetic precursor of L-Phe, L-Tyr, L-Phe, and other important aromatic metabolites. These enzymes are recognized as attractive targets for the development of new antibacterial agents because they are essential in important pathogenic bacteria, such as Mycobacterium tuberculosis and Helicobacter pylori, but do not have any counterpart in human cells. This review is focused on two key enzymes of this pathway, shikimate kinase and type II dehydroquinase. An overview of the use of structure-based design and computational studies for the discovery of selective inhibitors of these enzymes will be provided. A detailed view of the structural changes caused by these inhibitors in the catalytic arrangement of these enzymes, which are responsible for the inhibition of their activity, is described. PMID:26303426

  8. Area Expansivity Moduli of Regenerating Plant Protoplast Cell Walls Exposed to Shear Flows

    Science.gov (United States)

    Fujimura, Yuu; Iino, Masaaki; Watanabe, Ugai

    2005-05-01

    To control the elasticity of the plant cell wall, protoplasts isolated from cultured Catharanthus roseus cells were regenerated in shear flows of 115 s-1 (high shear) and 19.2 s-1 (low shear, as a control). The surface area expansivity modulus and the surface breaking strength of these regenerating protoplasts were measured by a micropipette aspiration technique. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye. High shear exposure for 3 h doubled both the surface area modulus and breaking strength observed under low shear, significantly decreased cell wall synthesis, and roughly quadrupled the moduli of the cell wall. Based on the cell wall synthesis data, we estimated the three-dimensional modulus of the cell wall to be 4.1± 1.2 GPa for the high shear, and 0.35± 0.2 GPa for the low shear condition, using the surface area expansivity modulus divided by the cell wall thickness, which is identical with the Young’s modulus divided by 2(1-σ), where σ is Poisson's ratio. We concluded that high shear exposure considerably strengthens the newly synthesized cell wall.

  9. Starting to Gel: How Arabidopsis Seed Coat Epidermal Cells Produce Specialized Secondary Cell Walls

    Directory of Open Access Journals (Sweden)

    Cătălin Voiniciuc

    2015-02-01

    Full Text Available For more than a decade, the Arabidopsis seed coat epidermis (SCE has been used as a model system to study the synthesis, secretion and modification of cell wall polysaccharides, particularly pectin. Our detailed re-evaluation of available biochemical data highlights that Arabidopsis seed mucilage is more than just pectin. Typical secondary wall polymers such as xylans and heteromannans are also present in mucilage. Despite their low abundance, these components appear to play essential roles in controlling mucilage properties, and should be further investigated. We also provide a comprehensive community resource by re-assessing the mucilage phenotypes of almost 20 mutants using the same conditions. We conduct an in-depth functional evaluation of all the SCE genes described in the literature and propose a revised model for mucilage production. Further investigation of SCE cells will improve our understanding of plant cell walls.

  10. Ultrafast dynamics of type-II GaSb/GaAs quantum dots

    Science.gov (United States)

    Komolibus, K.; Piwonski, T.; Gradkowski, K.; Reyner, C. J.; Liang, B.; Huyet, G.; Huffaker, D. L.; Houlihan, J.

    2015-01-01

    In this paper, room temperature two-colour pump-probe spectroscopy is employed to study ultrafast carrier dynamics in type-II GaSb/GaAs quantum dots. Our results demonstrate a strong dependency of carrier capture/escape processes on applied reverse bias voltage, probing wavelength and number of injected carriers. The extracted timescales as a function of both forward and reverse bias may provide important information for the design of efficient solar cells and quantum dot memories based on this material. The first few picoseconds of the dynamics reveal a complex behaviour with an interesting feature, which does not appear in devices based on type-I materials, and hence is linked to the unique carrier capture/escape processes possible in type-II structures.

  11. Elucidation of the chemical fine structure of polysaccharides from soybean and maize kernel cell walls

    OpenAIRE

    Huisman, M.M.H.

    2000-01-01

    The subject of this thesis was the elucidation of the chemical fine structure of polysaccharides from cell walls of soybean and maize kernel. The two species investigated represent different taxonomic groups, soybean belonging to the dicotyledonous and maize to the monocotyledonous plants. Besides representing the most important structures present in cell wall material, these raw materials are of great importance in food and feed industry.The characterisation of the soybean cell wall polysacc...

  12. In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth

    OpenAIRE

    Müller, Kerstin; Linkies, Ada; Vreeburg, Robert A. M.; Fry, Stephen C; Krieger-Liszkay, Anja; Leubner-Metzger, Gerhard

    2009-01-01

    Loosening of cell walls is an important developmental process in key stages of plant life cycles, including seed germination, elongation growth and fruit ripening. Here we report direct in vivo evidence for hydroxyl radical (•OH)-mediated cell wall loosening during plant seed germination and seedling growth. We used electron paramagnetic resonance (EPR)-spectroscopy to show that •OH is generated in the cell wall during radicle elongation and weakening of the endosperm of cress (Lepidium sativ...

  13. Cell wall synthesis and initiation of deoxyribonucleic acid replication in Bacillus subtilis.

    OpenAIRE

    Sandler, N.; Keynan, A

    1981-01-01

    We have observed a connection between cell wall synthesis and the initiation of chromosome replication in Bacillus subtilis. Initiation of chromosome replication was prevented in synchronous cultures in the presence of the cell wall synthesis inhibitor vancomycin. When vancomycin was added to the cultures after initiation of chromosome replication, one round of replication was completed but no reinitiation occurred. Similar results were obtained when cell wall synthesis was inhibited by risto...

  14. Cell wall sorting signals in surface proteins of gram-positive bacteria.

    OpenAIRE

    Schneewind, O; Mihaylova-Petkov, D; Model, P

    1993-01-01

    Staphylococcal protein A is anchored to the cell wall, a unique cellular compartment of Gram-positive bacteria. The sorting signal sufficient for cell wall anchoring consists of an LPXTG motif, a C-terminal hydrophobic domain and a charged tail. Homologous sequences are found in many surface proteins of Gram-positive bacteria and we explored the universality of these sequences to serve as cell wall sorting signals. We show that several signals are able to anchor fusion proteins to the staphyl...

  15. Diversity of beetle genes encoding novel plant cell wall degrading enzymes

    OpenAIRE

    Pauchet, Y.; Wilkinson, P.; Chauhan, R.; Ffrench-Constant, R.

    2010-01-01

    Plant cell walls are a heterogeneous mixture of polysaccharides and proteins that require a range of different enzymes to degrade them. Plant cell walls are also the primary source of cellulose, the most abundant and useful biopolymer on the planet. Plant cell wall degrading enzymes (PCWDEs) are therefore important in a wide range of biotechnological processes from the production of biofuels and food to waste processing. However, despite the fact that the last common ancestor of all deuterost...

  16. Ultrastructure of Fibre and Parenchyma Cell Walls During Early Stages of Culm Development in Dendrocalamus asper

    OpenAIRE

    Gritsch, Cristina Sanchis; Murphy, Richard J.

    2005-01-01

    • Background and Aims The anatomy of bamboo culms and the multilayered structure of fibre cell walls are known to be the main determinant factors for its physical and mechanical properties. Studies on the bamboo cell wall have focussed mainly on fully elongated and mature fibres. The main aim of this study was to describe the ultrastructure of primary and secondary cell walls in culm tissues of Dendrocalamus asper at different stages of development.

  17. BMP type II receptor regulates positioning of outflow tract and remodeling of atrioventricular cushion during cardiogenesis.

    Science.gov (United States)

    Beppu, Hideyuki; Malhotra, Rajeev; Beppu, Yuko; Lepore, John J; Parmacek, Michael S; Bloch, Kenneth D

    2009-07-15

    Signaling of bone morphogenetic protein (BMP) via type I and type II receptors is involved in multiple processes contributing to cardiogenesis. To investigate the role of the BMP type II receptor (BMPRII) in heart development, the BMPRII gene was deleted throughout the embryo during gastrulation using a Mox2-Cre transgene. BMPRII(flox/-);Mox2-Cre mice exhibited cardiac defects including double-outlet right ventricle, ventricular septal defect (VSD), atrioventricular (AV) cushion defects, and thickened valve leaflets. To characterize the tissue-specific functions of BMPRII in cardiogenesis, a series of Cre transgenes (alphaMHC-, Tie2-, Wnt1-, and SM22alpha-Cre) was employed. Interestingly, myocardial development was normal when the BMPRII gene was deleted in myocardial cells using Mox2-Cre, alphaMHC-Cre, or SM22alpha-Cre transgenes, suggesting that signaling by other BMP type II receptors may compensate for the absence of BMPRII in the myocardial cells. AV cushion defects including atrial septal defect, membranous VSD, and thickened valve leaflets were found in BMPRII(flox/-);Tie2-Cre mice. Abnormal positioning of the aorta was observed in BMPRII(flox/-);Wnt1-Cre and BMPRII(flox/-);SM22alpha-Cre mice. Taken together, these results demonstrate that endocardial BMPRII expression is required for septal formation and valvulogenesis. Moreover, mesenchymal BMPRII expression in the outflow tract cushion is required for proper positioning of the aorta. PMID:19409885

  18. Two cationic peroxidases from cell walls of Araucaria araucana seeds.

    Science.gov (United States)

    Riquelme, A; Cardemil, L

    1995-05-01

    We have previously reported the purification and partial characterization of two cationic peroxidases from the cell walls of seeds and seedlings of the South American conifer, Araucaria araucana. In this work, we have studied the amino acid composition and NH2-terminal sequences of both enzymes. We also compare the data obtained from these analyses with those reported for other plant peroxidases. The two peroxidases are similar in their amino acid compositions. Both are particularly rich in glycine, which comprises more than 30% of the amino acid residues. The content of serine is also high, ca 17%. The two enzymes are different in their content of arginine, alanine, valine, phenylalanine and threonine. Both peroxidases have identical NH2-terminal sequences, indicating that the two proteins are genetically related and probably are isoforms of the same kind of peroxidase. The amino acid composition and NH2-terminal sequence analyses showed marked differences from the cationic peroxidases from turnip and horseradish. PMID:7786490

  19. Single Wall Carbon Nanotube-polymer Solar Cells

    Science.gov (United States)

    Bailey, Sheila G.; Castro, Stephanie L.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2005-01-01

    Investigation of single wall carbon nanotube (SWNT)-polymer solar cells has been conducted towards developing alternative lightweight, flexible devices for space power applications. Photovoltaic devices were constructed with regioregular poly(3-octylthiophene)-(P3OT) and purified, >95% w/w, laser-generated SWNTs. The P3OT composites were deposited on ITO-coated polyethylene terapthalate (PET) and I-V characterization was performed under simulated AM0 illumination. Fabricated devices for the 1.0% w/w SWNT-P3OT composites showed a photoresponse with an open-circuit voltage (V(sub oc)) of 0.98 V and a short-circuit current density (I(sub sc)) of 0.12 mA/sq cm. Optimization of carrier transport within these novel photovoltaic systems is proposed, specifically development of nanostructure-SWNT complexes to enhance exciton dissociation.

  20. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    Science.gov (United States)

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. PMID:27107260

  1. In-vitro fermentability of cell walls as influenced by lignin composition and cross-linking.

    Science.gov (United States)

    We assessed how diverse modifications in lignin composition and reductions in ferulate-lignin cross-linking influence the degradability of cell walls. Cell walls from nonlignified maize cell suspensions were artificially lignified with varying ratios of normal monolignols (coniferyl and sinapyl alco...

  2. Composition and architecture of the cell walls of grasses and the mechanisms of synthesis of cell wall polysaccharides. Final report for period September 1, 1988 - April 30, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Carpita, Nicholas C.

    2001-10-18

    This program was devoted toward complete understanding of the polysaccharide structure and architecture of the primary cell walls grasses and cereals, and the biosynthesis of the mixed-linkage beta-glucane, a cellulose interacting polymer that is synthesized uniquely by grass species and close relatives. With these studies as focal point, the support from DOE was instrumental in the development of new analytical means that enabled us to characterize carbohydrate structure, to reveal new features of cell wall dynamics during cell growth, and to apply these techniques in other model organisms. The support by DOE in these basic studies was acknowledged on numerous occasions in review articles covering current knowledge of cell wall structure, architecture, dynamics, biosynthesis, and in all genes related to cell wall biogenesis.

  3. Luminescence dynamics in type-II GaAs/AlAs superlattices near the type-I to type-II crossover

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Kalt, H.; Hvam, Jørn Märcher

    1996-01-01

    We report on a study of the time-resolved luminescence of type-II GaAs/AlAs superlattices near the type-I to type-II crossover. In spite of the slight type-II band alignment, the luminescence is dominated by the type-I transition. This is due to the inhomogeneous broadening of the type-I transiti...

  4. Cell wall antibiotics provoke accumulation of anchored mCherry in the cross wall of Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Wenqi Yu

    Full Text Available A fluorescence microscopy method to directly follow the localization of defined proteins in Staphylococcus was hampered by the unstable fluorescence of fluorescent proteins. Here, we constructed plasmid (pCX encoded red fluorescence (RF mCherry (mCh hybrids, namely mCh-cyto (no signal peptide and no sorting sequence, mCh-sec (with signal peptide, and mCh-cw (with signal peptide and cell wall sorting sequence. The S. aureus clones targeted mCh-fusion proteins into the cytosol, the supernatant and the cell envelope respectively; in all cases mCherry exhibited bright fluorescence. In staphylococci two types of signal peptides (SP can be distinguished: the +YSIRK motif SP(lip and the -YSIRK motif SP(sasF. mCh-hybrids supplied with the +YSIRK motif SP(lip were always expressed higher than those with -YSIRK motif SP(sasF. To study the location of the anchoring process and also the influence of SP type, mCh-cw was supplied on the one hand with +YSIRK motif (mCh-cw1 and the other hand with -YSIRK motif (mCh-cw2. MCh-cw1 preferentially localized at the cross wall, while mCh-cw2 preferentially localized at the peripheral wall. Interestingly, when treated with sub-lethal concentrations of penicillin or moenomycin, both mCh-cw1 and mCh-cw2 were concentrated at the cross wall. The shift from the peripheral wall to the cross wall required Sortase A (SrtA, as in the srtA mutant this effect was blunted. The effect is most likely due to antibiotic mediated increase of free anchoring sites (Lipid II at the cross wall, the substrate of SrtA, leading to a preferential incorporation of anchored proteins at the cross wall.

  5. Principles of bacterial cell-size determination revealed by cell wall synthesis perturbations

    OpenAIRE

    Carolina Tropini; Timothy K. Lee; Jen Hsin; Samantha M. Desmarais; Tristan Ursell; Russell D. Monds; Kerwyn Casey Huang

    2014-01-01

    Although bacterial cell morphology is tightly controlled, the principles of size regulation remain elusive. In Escherichia coli, perturbation of cell-wall synthesis often results in similar morphologies, making it difficult to deconvolve the complex genotype-phenotype relationships underlying morphogenesis. Here we modulated cell width through heterologous expression of sequences encoding the essential enzyme PBP2 and through sublethal treatments with drugs that inhibit PBP2 and the MreB cyto...

  6. Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves

    Directory of Open Access Journals (Sweden)

    Mediesse Kengne Francine

    2014-12-01

    Full Text Available Objective: To examine the total phenolic and protein contents, and the antioxidant activities of cell wall polysaccharide fractions of Stevia rebaudiana leaves. Methods: Three different polysaccharide-enriched fractions, namely FPE (extract with 50 mmol/ L ethylene diamine tetra acetic acid, FPK (extract with 0.05 mol/L KOH and FH (extract with 4 mol/L KOH were extracted from Stevia rebaudiana leaves. The antioxidant activity of these fractions was evaluated based on their ability to scavenge DPPH (1, 1-diphenyl-2-picryl hydrazyl free radical, to reduce ferric power, to chelate ferrous ion and to protect human DNA. Results: The results indicated that protein content was found to be higher in FPK polysaccharide enriched fraction (47.48 µg per mg of FPK. Furthermore, the phenolic compound analysis according to the Folin-Ciocalteu method was higher in FPK (17.71 µg ferulic acid. The DPPH maximal inhibition percentage of the three polysaccharide-enriched fractions at 400 µg/mL was 27.66%, 59.90% and 23.21% respectively for FPE, FPK and FH. All the polysaccharide fractions exhibited a ferric reducing power except the FH one. The three fractions also exhibited lipid peroxidation inhibition, and they completely reverted the DNA damage induced by H2O2/FeCl2. FPK showed the strongest scavenging activity against the DPPH radical, the best chelating ability and lipid peroxidation inhibition. Conclusions: Stevia cell wall polysaccharide fractions are potent protective agents against oxidative stress. The analysis revealed major differences in the antioxidant activity in the three polysaccharides fractions. However, the 0.05 mol/L KOH pectin fraction (FPK showed better antioxidant activity.

  7. Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves

    Institute of Scientific and Technical Information of China (English)

    Mediesse Kengne Francine; Woguia Alice Louise; Fogue Souopgui Pythagore; Atogho-Tiedeu Barbara; Simo Gustave; Thadde Boudjeko

    2014-01-01

    Objective: To examine the total phenolic and protein contents, and the antioxidant activities of cell wall polysaccharide fractions of Stevia rebaudiana leaves.Methods:L ethylene diamine tetra acetic acid), FPK (extract with 0.05 mol/L KOH) and FH (extract with 4 mol/L KOH) were extracted from Stevia rebaudiana leaves. The antioxidant activity of these fractions was evaluated based on their ability to scavenge DPPH (1, 1-diphenyl-2-picryl hydrazyl) free radical, to reduce ferric power, to chelate ferrous ion and to protect human DNA. Three different polysaccharide-enriched fractions, namely FPE (extract with 50 mmol/Results: The results indicated that protein content was found to be higher in FPK polysaccharide enriched fraction (47.48 µg per mg of FPK). Furthermore, the phenolic compound analysis according to the Folin-Ciocalteu method was higher in FPK (17.71 µg ferulic acid). The DPPH maximal inhibition percentage of the three polysaccharide-enriched fractions at 400 µg/mL was 27.66%, 59.90% and 23.21% respectively for FPE, FPK and FH. All the polysaccharide fractions exhibited a ferric reducing power except the FH one. The three fractions also exhibited lipid peroxidation inhibition, and they completely reverted the DNA damage induced by H2O2/FeCl2. FPK showed the strongest scavenging activity against the DPPH radical, the best chelating ability and lipid peroxidation inhibition.Conclusions: Stevia cell wall polysaccharide fractions are potent protective agents against oxidative stress. The analysis revealed major differences in the antioxidant activity in the three polysaccharides fractions. However, the 0.05 mol/L KOH pectin fraction (FPK) showed better antioxidant activity.

  8. Plant cell walls throughout evolution: towards a molecular understanding of their design principles

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    2009-02-16

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche,which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.

  9. A 3-D Model of a Perennial Ryegrass Primary Cell Wall and Its Enzymatic Degradation

    OpenAIRE

    Indrakumar Vetharaniam; Kelly, William J.; Graeme T. Attwood; Harris, Philip J.

    2014-01-01

    We have developed a novel 3-D, agent-based model of cell-wall digestion to improve our understanding of ruminal cell-wall digestion. It offers a capability to study cell walls and their enzymatic modification, by providing a representation of cellulose microfibrils and non-cellulosic polysaccharides and by simulating their spatial and catalytic interactions with enzymes. One can vary cell-wall composition and the types and numbers of enzyme molecules, allowing the model to be applied to a ran...

  10. Isolation and molecular characterization of type I and type II feline coronavirus in Malaysia

    Directory of Open Access Journals (Sweden)

    Amer Alazawy

    2012-11-01

    Full Text Available Abstract Background Feline infectious peritonitis virus (FIPV and feline enteric coronavirus (FECV are two important coronaviruses of domestic cat worldwide. Although FCoV is prevalent among cats; the fastidious nature of type I FCoV to grow on cell culture has limited further studies on tissue tropism and pathogenesis of FCoV. While several studies reported serological evidence for FCoV in Malaysia, neither the circulating FCoV isolated nor its biotypes determined. This study for the first time, describes the isolation and biotypes determination of type I and type II FCoV from naturally infected cats in Malaysia. Findings Of the total number of cats sampled, 95% (40/42 were RT-PCR positive for FCoV. Inoculation of clinical samples into Crandell feline kidney cells (CrFK, and Feline catus whole fetus-4 cells (Fcwf-4, show cytopathic effect (CPE characterized by syncytial cells formation and later cell detachment. Differentiation of FCoV biotypes using RT-PCR assay revealed that, 97.5% and 2.5% of local isolates were type I and type II FCoV, respectively. These isolates had high sequence homology and phylogenetic similarity with several FCoV isolates from Europe, South East Asia and USA. Conclusions This study reported the successful isolation of local type I and type II FCoV evident with formation of cytopathic effects in two types of cell cultures namely the CrFK and Fcwf-4 , where the later cells being more permissive. However, the RT-PCR assay is more sensitive in detecting the antigen in suspected samples as compared to virus isolation in cell culture. The present study indicated that type I FCoV is more prevalent among cats in Malaysia.

  11. A phosphorylated pseudokinase complex controls cell wall synthesis in mycobacteria.

    Science.gov (United States)

    Gee, Christine L; Papavinasasundaram, Kadamba G; Blair, Sloane R; Baer, Christina E; Falick, Arnold M; King, David S; Griffin, Jennifer E; Venghatakrishnan, Harene; Zukauskas, Andrew; Wei, Jun-Rong; Dhiman, Rakesh K; Crick, Dean C; Rubin, Eric J; Sassetti, Christopher M; Alber, Tom

    2012-01-24

    Prokaryotic cell wall biosynthesis is coordinated with cell growth and division, but the mechanisms regulating this dynamic process remain obscure. Here, we describe a phosphorylation-dependent regulatory complex that controls peptidoglycan (PG) biosynthesis in Mycobacterium tuberculosis. We found that PknB, a PG-responsive Ser-Thr protein kinase (STPK), initiates complex assembly by phosphorylating a kinase-like domain in the essential PG biosynthetic protein, MviN. This domain was structurally diverged from active kinases and did not mediate phosphotransfer. Threonine phosphorylation of the pseudokinase domain recruited the FhaA protein through its forkhead-associated (FHA) domain. The crystal structure of this phosphorylated pseudokinase-FHA domain complex revealed the basis of FHA domain recognition, which included unexpected contacts distal to the phosphorylated threonine. Conditional degradation of these proteins in mycobacteria demonstrated that MviN was essential for growth and PG biosynthesis and that FhaA regulated these processes at the cell poles and septum. Controlling this spatially localized PG regulatory complex is only one of several cellular roles ascribed to PknB, suggesting that the capacity to coordinate signaling across multiple processes is an important feature conserved between eukaryotic and prokaryotic STPK networks. PMID:22275220

  12. Coronal magnetic fields from multiple type II bursts

    Science.gov (United States)

    Honnappa, Vijayakumar; Raveesha, K. H.; Subramanian, K. R.

    Coronal magnetic fields from multiple type II bursts Vijayakumar H Doddamani1*, Raveesha K H2 and Subramanian3 1Bangalore University, Bangalore, Karnataka state, India 2CMR Institute of Technology, Bangalore, Karnataka state, India 3 Retd, Indian Institute of Astrophysics, Bangalore, Karnataka state, India Abstract Magnetic fields play an important role in the astrophysical processes occurring in solar corona. In the solar atmosphere, magnetic field interacts with the plasma, producing abundant eruptive activities. They are considered to be the main factors for coronal heating, particle acceleration and the formation of structures like prominences, flares and Coronal Mass Ejections. The magnetic field in solar atmosphere in the range of 1.1-3 Rsun is especially important as an interface between the photospheric magnetic field and the solar wind. Its structure and time dependent change affects space weather by modifying solar wind conditions, Cho (2000). Type II doublet bursts can be used for the estimation of the strength of the magnetic field at two different heights. Two type II bursts occur sometimes in sequence. By relating the speed of the type II radio burst to Alfven Mach Number, the Alfven speed of the shock wave generating type II radio burst can be calculated. Using the relation between the Alfven speed and the mean frequency of emission, the magnetic field strength can be determined at a particular height. We have used the relative bandwidth and drift rate properties of multiple type II radio bursts to derive magnetic field strengths at two different heights and also the gradient of the magnetic field in the outer corona. The magnetic field strength has been derived for different density factors. It varied from 1.2 to 2.5 gauss at a solar height of 1.4 Rsun. The empirical relation of the variation of the magnetic field with height is found to be of the form B(R) = In the present case the power law index ‘γ’ varied from -3 to -2 for variation of

  13. CELL-WALL GROWTH AND PROTEIN SECRETION IN FUNGI

    NARCIS (Netherlands)

    SIETSMA, JH; WOSTEN, HAB; WESSELS, JGH

    1995-01-01

    Secretion of proteins is a vital process in fungi. Because hyphal walls form a diffusion barrier for proteins, a mechanism different from diffusion probably exist to transport proteins across the wall. In Schizophyllum commune, evidence has been obtained for synthesis at the hyphal apex of wall comp

  14. Wall extensibility: its nature, measurement and relationship to plant cell growth

    Science.gov (United States)

    Cosgrove, D. J.

    1993-01-01

    Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.

  15. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    António Rego

    2014-08-01

    Full Text Available Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria.

  16. Horizontal Visibility graphs generated by type-II intermittency

    International Nuclear Information System (INIS)

    In this contribution we study the onset of chaos via type-II intermittency within the framework of Horizontal Visibility graph theory. We construct graphs associated to time series generated by an iterated map close to a Neimark–Sacker bifurcation and study, both numerically and analytically, their main topological properties. We find well defined equivalences between the main statistical properties of intermittent series (scaling of laminar trends and Lyapunov exponent) and those of the resulting graphs, and accordingly construct a graph-theoretical description of type-II intermittency. We finally recast this theory into a graph-theoretical renormalization group (RG) framework, and show that the fixed point structure of RG flow diagram separates regular, critical and chaotic dynamics. (paper)

  17. Subclinical Onychomycosis in Patients With Type II Diabetes

    Science.gov (United States)

    El Tawdy, Amira; Zaki, Naglaa; Alfishawy, Mostafa; Rateb, Amr

    2015-01-01

    Fungal organisms could be present in the nail without any clinical manifestations. As onychomycosis in diabetics has more serious complications, early detection of such infection could be helpful to prevent them. We aim in this study to assess the possibility of detecting subclinical onychomycosis in type II diabetic patients and addressing possible associated neuropathy. A cross sectional, observational study included patients with type II diabetes with normal big toe nail. All were subjected to nail clipping of the big toe nail, followed by staining with Hematoxylin and Eosin and Periodic-Acid-Schiff (PAS) stains and examined microscopically. A total of 106 patients were included, fungal infection was identified in eight specimens, all were uncontrolled diabetes, and six had neuropathy. Using the nail clipping and microscopic examination with PAS stain to detect such subclinical infection could be an applicable screening test for diabetic patients, for early detection and management of onychomycosis. PMID:26734120

  18. Subclinical onychomycosis in patients with type II diabetes

    Directory of Open Access Journals (Sweden)

    Amira Elbendary

    2015-12-01

    Full Text Available Fungal organisms could be present in the nail without any clinical manifestations. As onychomycosis in diabetics has more serious complications, early detection of such infection could be helpful to prevent them. We aim in this study to assess the possibility of detecting subclinical onychomycosis in type II diabetic patients and addressing possible associated neuropathy. A cross sectional, observational study included patients with type II diabetes with normal big toe nail. All were subjected to nail clipping of the big toe nail, followed by staining with Hematoxylin and Eosin and Periodic-Acid-Schiff (PAS stains and examined microscopically. A total of 106 patients were included, fungal infection was identified in eight specimens, all were uncontrolled diabetes, and six had neuropathy. Using the nail clipping and microscopic examination with PAS stain to detect such subclinical infection could be an applicable screening test for diabetic patients, for early detection and management of onychomycosis.

  19. Charged macroscopic type II strings and their networks

    International Nuclear Information System (INIS)

    We write down charged macroscopic string solutions in type II string theories, compactified on torii, and present an explicit solution of the spinor Killing equations to show that they preserve 1/2 of the type II supersymmetries. The S-duality symmetry of the type IIB string theory in ten-dimensions is used to write down the SL(2,Z) multiplets of such strings and the corresponding 1/2 supersymmetry conditions. Finally we present examples of planar string networks, using charged macroscopic (p,q)-strings. An interesting feature of some of these networks, which preserve 1/4 supersymmetry, is a required alignment among three parameters, namely the orientation of strings, a U(1) phase associated with the maximal compact subgroup of SL(2, Z), and an (angular) parameter associated with a solution generating transformation, which is responsible for creating charges and currents on the strings. (author)

  20. Progression of Jackhammer Esophagus to Type II Achalasia.

    Science.gov (United States)

    Abdallah, Jason; Fass, Ronnie

    2016-01-31

    It has been suggested that patients with certain motility disorders may progress overtime to develop achalasia. We describe a 66 year-old woman who presented with dysphagia for solids and liquids for a period of 18 months. Her initial workup showed normal endoscopy and non-specific esophageal motility disorder on conventional manometry. Six months later, due to persistence of symptoms, the patient underwent a high resolution esophageal manometry (HREM) demonstrating jackhammer esophagus. The patient was treated with a high dose proton pump inhibitor but without resolution of her symptoms. During the last year, the patient reported repeated episodes of food regurgitation and a significant weight loss. A repeat HREM revealed type II achalasia. Multiple case reports, and only a few prospective studies have demonstrated progression from certain esophageal motility disorders to achalasia. However, this report is the first to describe a case of jackhammer esophagus progressing to type II achalasia. PMID:26717932